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Chapter 0

The SIQURO project and thesis outline

This thesis work has been largely carried out within the framework of the project SIQURO, which started

in 2013 funded by the Provincia Autonoma di Trento (PAT) [1]. SIQURO covers both fundamental aspects

of quantum physics and experimental applications. Theory of quantum �uids of photons, experimental

generation of rotating photon gasses, phenomenology of strongly correlated photon gasses in silicon waveguide

are some examples of the �rst. The original milestones of the project were the demonstration of entangled

photon pairs and heralded photon generation in strained Silicon waveguides, the development of a new Mid

Infrared (MIR) detector based on up-converted photons, the fabrication of an heterogeneous mode-locked

III-V laser on Silicon and the engineering of a quantum random number generator based on spontaneous

emission of radiation in Silicon. The various building blocks for an integrated quantum photonic circuit

should all be demonstrated in SIQURO. The eventual further step is their integration in a single circuit

where the heterogeneous integrated mode-locked laser acts as a pump to induce second order or third order

parametric processes in suitably designed silicon waveguides which generate the correlated photon pairs or

single heralded photons. These photons, with Mid Infrared (or near infrared, if produced by Spontaneous Four

Wave Mixing (sFWM) wavelength, will then propagate in a Silicon quantum circuits. Then, the MIR photons

will be upconverted to a spectral region suitable for being absorbed by a Silicon photomultiplier. Therefore,

from the quantum optics circuit, an electronic signal will be generated which will be easily processed by

standard microelectronics circuits. To help the reader to understand the main tasks of the project and their

connections, the network of concepts are illustrated in Fig.1. This picture highlights also the topics covered

by this thesis work, and indicates their link with the SIQURO project.
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Chapter0. The SIQURO project and thesis outline

SPDC

Strained silicon

(Chapter 4)

Off chip

Interferometers

(Chapter 6)

SPDC

PPLN

(Chapter 5)

On chip

Interferometers

(Chapter 6)

Two photon interference

(Chapter 5)

Chaos in SCISSOR

(Chapter 2)

sMMFWM

Waveguides

(Chapter 3)

sFWM

Resonators

(Chapter 6)

𝑅𝑒(𝜒(3))

𝐼𝑚(𝜒(3))

 |Ψ𝑜𝑢𝑡 = 𝑈(𝜙)  |Ψ𝑖𝑛

Figure 1: Illustration of the milestones of the project SIQURO and the thesis chapters in which these are
covered. The research on quantum sources is represented by the input state |Ψin〉, their manipulation by the
operator U(φ) and the detection of the output state by |Ψout〉.

Except for chapter 2, the research activities of all the other chapters have been carried out within the

framework of the SIQURO project. By the way, chapter 2 covers a di�erent aspect of the same nonlinearity

which will be the subject of chapter 3. The �rst is indeed focused on TPA, which is mediated by the imaginary

part of the complex χ(3) tensor, while the second deals with FWM, which is instead related to the real part.

By virtue of this fact, and by following the logical streamlines of the project SIQURO, this thesis work will

be organized as follows:

� Chapter 1 gives an introduction to Silicon Photonics, which is the platform over which the SIQURO

project aims to realize the integrated quantum circuits. In the �rst part of this chapter, some historical

remarks and a general overview of the subject are presented. Then, the chapter focuses on the basic

building blocks of a photonic integrated circuit, like waveguides, splitters, resonators, modulators, lasers

and photodetectors. This section is intended to o�er a brief insight on the physics of the devices that

will be implemented in the experiments described in the following chapters, as well to review the state

of the art of these components.

� Chapter 2 is linked to thermal and free carrier nonlinearities activated by TPA in single and coupled

resonator sequences. In the �rst part of the chapter, the theory of resonators under thermal and free

carrier e�ects is presented, and the solutions to the dynamical �eld equations inside the resonator

are presented. These include optical limiting, bistability and self pulsing. All these phenomena are

successively experimentally validated in a single ring resonator. Particular attention will be devoted to

the self pulsing regime, which is literally the conversion of a continuos pump beam into a pulsed one

by the periodic interplay of thermal and free carrier nonlinearities. This concept will be extended to a

sequence of coupled resonators organized in the SCISSOR geometry. In the latter, the optical feedback

between many cavities under self pulsing provides a route to the instauration of a chaotic regime. The

latter is exploited for the generation of random bit sequences, thus paving the way for an all optical,

8



Chapter0. The SIQURO project and thesis outline

all passive, CMOS compatible random number generator.

� Chapter 3 is devoted to the study of Multi Modal Four Wave Mixing (MMFWM) in straight Silicon

waveguides. The �nal goal of this study is the engineering of multimode waveguides for the e�cient

generation of entangled photon pairs through sFWM. These will constitute a possible on chip integrated

source of nonclassical states of light, through which multiphoton manipulation and quantum interference

is made possible. Despite the fact that this phase matching technique directly comes from earlier

studies in optical �bers [2], only few and very simple examples have been reported on a chip [3]. To

my knowldge, examples of wavelength conversion in which the pump, the signal and the idler wave

propagates in di�erent mode orders have never been reported in literature. In chapter 3, MMFWM

will be experimentally demonstrated for several modal combinations and waveguide widths. Di�erent

setups for selective mode excitation will be discussed.

� Chapter 4 focuses on the investigation of χ(2) nonlinearities in strained Silicon waveguides. Within the

framework of the project SIQURO, the �nal aim of this work is to exploit the induced second order

nonlinearities to generate entangled photon pairs through SPDC. The process would convert a pump

photon at 1.55µm into two twin photons at MIR wavelengths. These will constitute a possible source

of nonclassical states of light integrated on a Silicon chip, through which multiphoton manipulation and

quantum interference is made possible. To probe the existence of χ(2) e�ects, the linear electro optic

e�ect (or Pockels e�ect) is investigated in strained racetrack resonators using an homodyne detection

based on Lock In ampli�ers. In comparison with previosly reported works, which rely on the static

Pockels e�ect in strained Mach Zehnder interferometers, this technique o�er enhanced sensitivity and

immunity to noise sources. During this activity, it has been found that free carrier accumulation and

depletion at the waveguide boundaries in response to an applied voltage, was the main source of electro

optic modulation, which masked any χ(2) contribution. These observations have been validated by high

frequency measurements, which allowed to disentangle χ(2) e�ects from free carrier ones on the basis

of the di�erent timescales at which the modulation is performed.

� Chapter 5 reports on a quantum optic experiment performed by using Infra-Red entangled photon pairs

produced by SPDC in a Periodically Poled Lithium Niobate (PPLN) crystal. Such experiment has been

preparatory for the future implementations of integrated interferometric structures on a Silicon chip,

which is outlined as one of the main goals of the SIQURO project. In the �rst part of the chapter, the

SPDC source has been characterized. In the second part, the theory of entangled photon propagation

in an amplitude unbalanced free space Mach Zehnder interfefometer is presented and experimentally

validated. Novel two photon interference e�ects, which arise from the asymmetric excitation of the

device, have been observed. The experiment was preparatory in the sense that the whole theoretical

framework can be straightforwardly applied to integrated circuits, provided that the refractive index of

the medium in which light propagates is replaced by the e�ective modal index.

� Chapter 6 concerns the future perspectives of the SIQURO project. In particular, the designs of the main

elements which compose a complete integrated quantum network are presented and validated through

simulations. Such elements include quantum sources based on sFWM in waveguides and resonators,

phase shifters and delay lines, pump suppression �lters and arrayed waveguide gratings. The main goal

of this chapter is to propose an optical nework which includes all the functionalies required to perform

a complete quantum optics experiment on a Silicon chip. Only the pump laser and the photodetectors

are not integrated and have to be supplied from the outside.

� The concluding remarks, the list of the publications and the appendices are given at the end of the text.
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In appendix A, the theory of optical resonators under the simultaneous action of thermal, free carrier

and χ(3) nonlinearities is presented. The coupled wave equations for the resonator modes involved in

the FWM process are derived. In appendix B, the relation between bulk refractive index perturbations

and modal e�ective index variations in straight waveguides are derived.
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Chapter 1

Introduction

The global data tra�c is steadly growing [4, 5, 6, 7]. This massive tra�c is generated by enterprises,

governments, universities and individuals. In the last decade, the rapid di�usion of cloud computing for data

storage, entertainment and social media, signi�cantly contributed to the increasing demand of bandwidth for

data transmission and computing. A feeling on the orders of mangnitude involved can be get by looking at

Fig.1.1, which shows the North American internet tra�c during the last three decades.

Figure 1.1: Amount of internet tra�c in the North America in the last three decades. 1PB = 1015 bytes.
Datas taken from [7].

All data sources, among which the in�uential Minnesota Internet Tra�c Study (MINTS), show very similar

trends. The linear projection extrapolated from the MINT data of 2007 has been respected during the years:

from a data tra�c of 103 PB/month in 2007 , it was reached a volume of 104 PB/month in 2016. Following

this extrapolation, the projection for 2020 are of 105 PB/month. Needless to say, this rapid growth was

possible through a concurrent technological improvement which sends, receives and routes the data. Up

to now, the technological improvement occurred at all scales, from big data centers grouping thousands of

clusters, to commercial devices of everyday use [8, 5]. Progress has been made in the communication protocols

[9], in the physical medium through which data is sent [10], and in the performances of the transceiving

stations [11]. A clear example of technological evolution is constituted by the optical �ber communication
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Chapter1. Introduction

link. Nowadays, long haul connections, ranging from tens to hundreds of kilometers, are based on optical

�bers. Since the early 1970s, the system capacity, i.e., the maximum amount of bits that can be sent in

one second in a single �ber, has improved by a factor of 105 [7]. On one side, this has been possible by the

introduction of Wavelength Division Multiplexing (WDM) at the beginning of the 1990s, which consists in

the encoding data streams in di�erent wavelengths which simultaneously travel along the same �ber without

interference [12]. WDM improved the aggregate bitrate by a factor of 103 [7] On the other side, also the

spectral e�ciency (SE), i.e., the number of bits per second per channel bandwidth (typically measured in

b/s/Hz), increased by a factor 102 [7]. These trends are shown in Fig.1.2.

a) b)

Figure 1.2: (a) Fiber system capacity during the years. Blue circles represent single mode �bers for Time
Division Multiplexing (TDM), while red rectangles represent �bers engineered for WDM applications. Picture
from [7]. (b) Spectral e�ciency (SE) of a single �ber as a function of the years. The red star corresponds
to the maximum SE according to Shannon's limit, which is set by the nonlinear e�ects occurring in optical
�bers [7]. Picture taken from [7].

Progress in the fabrication technology of optical �bers has been of paramount importance as well. There has

been a continuous e�ort in material science to realize low loss optical �bers. Since their introduction in the

early 1960s, when signal attenuation exceeded 1000 dBkm−1, losses have been constantly decreased to less

than 0.2 dBkm−1 at a wavelength of 1.55µm [2]. The simultaneous reduction of the modal birifrangence and

the engineering of the chromatic dispersion to tailor the group velocity dispersion contributed to increase

the bitrate, to improve the signal integrity and to decrease the numbers of repeaters. The hardware which

handles the microelectronic interfaces of the transceiving stations has followed similar progress during those

years. In this technological challenge, a key role has been played by Very Large Scale Integration (VLSI),

that is the continuos reduction of the size of the electronic and optical components. Smaller dimensions

imply higher component density and enhanced computing capabilities. This concept is well exempli�ed by

the famous Moore's law, introduced for the �rst time in 1965, and which states that the number of functions

per microelectronic chip would double every two years [13]. As shown in Fig.1.3, Moore's predictions were

right, and the transistor counts in a microprocessor steadily increased during the years.
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Figure 1.3: Transistor count in processors during the years. The solid black curve represent the Moore's
prediction of 1965. Picture taken from [14].

As reported in Fig.1.4, the gate width of the transistor was approximately 1.3µm wide at the beginning of

the 1970s, and stacked to a constant value of ∼ 25nm during the last few years. Recent reports show that

15nm transistors are being implemented in low power microprocessor for smartphone applications.

Figure 1.4: The evolution of the gate length of a transistor during the years. Picture taken from [15].

Miniaturization has been possible by the huge investments of the semiconductor companies in Integrated

Circuit (IC) facilities, which in turn have been motivated by the increasingly demandes of the market. VLSI

has been pursued to reduce the production cost. A synergy between di�erent industries declared the success

of VLSI. Indeed, the realization of an IC requires a series of complex operations such as photolithography,

etching and metal deposition [16]. In case that each of these operations were performed by specialized
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Chapter1. Introduction

machines built by a variety of commercial companies, it would be di�cult for the industry to advance, since

in many cases it would not be ideal for one company to introduce a new product if the other needed machines

are not available around at the same time. A shared roadmap to plan and control the technological needs of

IC production and to anticipate the evolution of the market was needed. This task has been ful�lled by the

institution of the IndustrialTechnology Roadmap for Semiconductors (ITRS), a set of documents produced

by a group of semiconductor industry experts [17].

By the way, the continuos race toward more complex and performant architectures, which shall meet the

increasing demand in computation, data tra�c, bandwidth and storage, hardly will follow the Moore's law in

the very near future, if a new paradigm will not support or even replace the one of miniaturization. Indeed,

the density of the electrical components has reached a so high level of packaging and integration that the

operation frequency of a single processing unit has levelled to few GHz over the last decade. This was due

to heat dissipation, signal attenuation and Resistor-Capacitance (RC) delays associated to the copper lines

used for the interconnections [18, 19]. Heat dissipation occurs because the metals have a �nite resistance,

which increases as the cross section diminuishes. Large scale integration implies an increased number of

wires, with smaller dimensions, which goes in the opposite direction with respect to heat reduction . Energy

is also required every time that a capacity, which can be associated to a transistor or to a connection line

of similar length (these are almost the same and equal to ≈ 1 fF for state of the art electronic design and

fabrication [18]), has to be charged or discarged. On average, the switching of a transistor, which can be

roughly assimilated to the processing of one bit, consumes about 1 pJ of energy [18]. The trends in heat

dissipation over the last three decades are shown in Fig.1.5.

Figure 1.5: Power density developed inside a single core microprocessor during the years. Picture taken from
[19].

The dielectric support where the ICs are fabricated, which has a poor heat conduction, sets a threshold to the

maximum dissipated power density slightly above 100Wcm−1. If one thinks that 200Wcm−1 is the power

generated by a nuclear reactor, it can be seen that this is a huge amount of power. Power loss is also induced

by radio frequency (RF) signals which are radiated from the interconnection lines when they operate at GHz

frequencies [20]. Miniaturization also crashes with the problem of RC delays. The resistance-capacitance

product is the characteristic time which limits the speed of the processor. Scaling does not help to reduce the

time constant. Indeed, it can be demonstrated that the uniform scaling along the three dimensions of a copper
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wire does not alter its RC constant [18]. By looking at Fig.1.3, one may wonder how it has been possible

to follow the Moore's law in the last decade, if miniaturization su�ers for all the problems cited above. The

answer relies in the introduction of the multi-core paradigm. Instead of increasing the processing capability

of a single CPU, many of them, called cores, have been connected together in a single microprocessor and

made to work in parallel to increase the overall computational power. By the way, as a natural consequence

of coworking, more and more interconnections are needed to let the cores to communicate and exchange data,

with the consequence that this approach will soon face the same heat dissipation problems encountered in

single CPU units. The only viable solution is the use of optical interconnections instead of copper wires

[21, 22, 8, 5, 11, 6]. This is not a completely new paradigm, since it has been already applied at the macro-

scale level with the introduction of optical �bers for long and medium distance telecommunications. As

exempli�ed in Fig.1.6, in the last 20 years, copper cables were progressively replaced by optical links.

Figure 1.6: The progressive replacement of copper interconnection with optical ones as the length scale of
the communication link decreases. Picture taken from [23].

The length scale of interconnections progressively moved from long haul (> 100 km), to rack-to-rack (100m)

and even to board to board (< 1m) connections. The challenge of the next few years will be the implemen-

tation of optical interconnections at the chip-to-chip (< 1 cm) or even intra-chip (< 10µm) scale. There are

several advantages of using light instead of electrons for the transfer of data. Light is made by photons, which

travels at the speed of light with zero rest mass, which implies that no energy is wasted for line charging

or for sending/retriving bits. This aspect is signi�cant if one thinks to the typical matrix organization of a

dynamic random access memory (DRAM). Here, for accessing to the single content of a memory cell, whole

sets of lines are continuosly charged and discharged. As it will be discussed later, losses in sub-wavelength

nanophotonic wires are associated to light which is scattered away from the wire itself, and thus do not con-

tribute to material heating. In a fully optoelectronic network, in which electronic components are connected

by optical links, the heat sources would be mostly localized in light sources, detectors and switching elements

like electro optic modulators and memories, which are associated to a �nite capacitance and resistance, but

not from the interconnections. The reduction of the power consumption, hence in the power dissipation, will

be enormous. Indeed, the dominant energy dissipation in the core operations is linked to the actual logic

switching, or in the energy stored in the memory cells which hold the information. However, of these three

core operations, it is the interconnect that accounts for most of the energy dissipation, and that the energy

is almost entirely used by charging and discharging the capacitance of signal lines [18]. The zero capacitance
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of the nanophotonic wires allows also to eliminate the RC time constant required to shift from an O� to an

On state and vice versa. In the optical domain, the fundamental limit to the maximum achievable bitrate is

the Nyquist limit, which however is very far from being reached, as it lies in the hundreds of THz regime.

Photonic chips are also immune to electromagnetic interference and do not su�er from antenna's e�ects.

The most promising platform for on chip optical interconnections is Silicon Photonics [24, 25, 21, 26]. The

latter is the technology of integrating electronic and photonic functionalities with processing tools currently

used in the microelectronic industry. Silicon Photonics is fabbricated by the well-developed infrastructure of

Complementary Metal Oxide Semiconductor (CMOS) technology, which allows for VLSI in a cost-e�ective

and monolithic manner. Silicon Photonics started in the 1980s, with the pioneering works of R. Soref et. al.

At that time, the �rst structures for guiding and splitting light on Silicon waveguides have been proposed

and demonstrated [27]. In 1993, following the early ideas of Abstreiter about an OptoElectronic Integrated

Circuit (OEIC) [28], Soref proposed the concept of �superchip� [29]. That visionary idea, whose original

sketch is shown in Fig.1.7, was incredibly close to the state of the art Optical Networks On Chip (ONoC)

produced today.

Figure 1.7: The idea of optoelectronic �superchip� proposed by Soref in 1993. Picture taken from [29].

The idea of Soref was to realize a chip which merges and combines the potential of electronics and photonics

on the same substrate, which is the Silicon platform. In the superchip of Fig.1.7, it is possible to recognize all

the fundamentals building blocks which are now part of a typical ONoC: etched V-grooves for on chip �ber

coupling, splitters, combiners, ampli�ers and modulators, switches, photodiodes and so on. The ten years

following 1993 were not of such big impact for Silicon Photonics as the last ten years. The scene of integrated

photonic devices was dominated by semiconductors belonging to the III-V groups like AlGaAs/GaAs and

InGaAsP/InP . The main reason was that the III-V platform was already well understood for the realization

of active devices like Light Emitting Diodes (LEDs), ampli�ers or lasers . Silicon, being an indirect bandgap

material, has an intrinsic low radiative recombination probability, which makes it not suitable for the fabri-

cation of active sources [30]. What is also relevant is that Silicon is a centrosymmetric material, therefore

it lacks of the electro optic e�ect, which is at the basis for the realization of fast electro optic modulators

[31]. During those years, it was thought that these fundamental limitations would never promote Silicon

as the primary material for the realization of opoelectronic devices. However, already in 1993, Soref stated

that �the performance of Si-based OEIC's will eventually surpass that of III-V's in niche areas, yielding a

shared dominion of IV's and III-V's. Si-based OEIC's should have economic advantages over their III-V
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counterparts. The multi-billion dollar Silicon VLSI industry has given an immense knowledge of how process

silicon circuits at low cost. Much of that know-how can be adapted for optoelectronic processing, putting us

part-way up to the learning curse of Silicon optoelectronics� [30]. The Soref's predictions were right. The year

2004 represented a turning point for Silicon Photonics. A ramping up of the investments to promote research

and developement has been done by governments and industries [30]. A big e�ort was done by the DARPA

microelectronics technology o�ce with the four year project on electronic and photonic integrated circuits

(EPIC) in Silicon at 1.55µm. On the other side, Europe lauched the MELARI initiative at the end of the

1990s, which founded several projects on Silicon Photonics (PICMOS, WADIMOS, SYNERGIA, HELIOS).

Starting from 2004, the path of Silicon Photonics never stopped, as it is witnessed by the steadily increasing

number of publications and citations over the years [22](see Fig.1.8).

a) b)

Figure 1.8: (a) Number of published articles per year having as a keyword �Silicon� or �waveguide� . (b)
Number of citations per year to articles having as a keyword �Silicon� and �waveguides�. Picture taken from
[22].

Silicon Photonics was able to follow the same steps which decretated the leadership of CMOS microelectronics.

This is schematically shown in Fig.1.9.

17



Chapter1. Introduction

Years

M
ic

ro
el

ec
tr

o
n

ic
s

Si
lic

o
n

 P
h

o
to

n
is

Years

Fundamental blocks 

Chip

Processing units

Figure 1.9: The similar path followed by Silicon Photonics with respect to microelectronics during the years.
From the basic building blocks, progressively more complex circuits have been realized by connecting together
several components.

At �rst, the basic bulding blocks have been demonstrated and progressively optimized. These includes

both passive devices, as waveguides, splitters, grating couplers and interferometers, and active ones, like

modulators, hybrid lasers and photodetectors. Then, these building blocks have been connected together,

and assembled in networks to realize more complex functions. As a last step, photonic networks have been

compatibily integrated with electronic ones to realize optoelectronic circuits. All these steps have been done

under the same paradigms which moves the IC industry: miniaturization and standardization. The latter can

be de�ned as the attempt to realize all the functionalities using only a limited number of materials (mainly

Silicon and Silica, but also other group IV compounds and metals) and only one processing technology,

which is CMOS. In particular, the CMOS processing technique was already available to Silicon Photonics for

low-cost mass production, so no investments were required. With the introduction of Silicon On Insulator

(SOI) wafers in the late 1980's and in the middle of 1990's to decrease the parasitic capacitance of ICs,

the index contrast between the core and the cladding material increased, shrinking the dimensions of the

photonic devices [32] . The �rst waveguides were fabricated in Silicon on heavily doped Silicon, with poor

refractive index contrast, of the order of 0.01− 0.1 [27, 33]. The guided modes were weakly con�ned within

the waveguide, with considerable energy leakage into the substrate. Large radius (> 100µm) was required to

bend the waveguides without signi�cant radiative losses. The use of SOI wafers permitted to use Silica as the

cladding material, boosting the refractive index contrast to ≈ 2.92 at a wavelength of 1.55µm. As a result,

modes are more con�ned, and waveguides can be bent with lower radii [34]. The shift from the 850nm band

to the O-band (1.26µm− 1.36µm) and C-band (1.53µm− 1.565µm) for �ber-optics communication; which

are spectral regions where Silicon is highly transparent, contribuited to promote Silicon Photonics as the

leading technology for small scale optical interconnections. The spread of Silicon Photonics is not limited to

datacom and telecom application. The versatility of the building blocks has been exploited for applications

in medical diagnostics [35], lab-on-chip [36, 37], spectrometer-on-a-chip [38], environamental monitoring [39],
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neural networs [40, 41, 42] and so on. Today, Silicon Photonics can be considered as a mature technology,

which is the subject of many books [25, 24] and enstablished international conferences [43, 44]. ONoC moved

from the laboratories to the market, which is projected to increase from US$-25M in 2013 to more than

US$-700M in 2024 [23]. Fig.1.10 reports an example of a commercial device fabbricated by Intel labs and

named the Silicon Photonic link [45].

a)

b)

Figure 1.10: (a) The Silicon photonic link developed by Intel. (b) Schematic of the operation of the Silicon
Photonic link. Pictures taken from [46].

It is a transceiver which operates at 50Gbps using 4 hybrid Silicon laser sources which fed a WDM stage and

are coupled to a �ber link. It has been launched on the market in 2015. Another example, which outlines

the high level of complexity and co-integration with electronics reached by Silicon Photonics today, comes

from the matrix router shown in Fig.1.11. This chip is being fabbricated by the Integrated Recon�gurable

sIlicon phonic Switch (IRIS) european project, coordinated by Ericsson, one of the world-leading provider of

communications technology and services [47].
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Figure 1.11: A schematic of the layout of the transponder aggregator developed within the european project
IRIS. Picture taken from [47].

If successfully demonstrated in 2016, the router will pave the way for a new generation of optical systems

integrated in a single chip (more than 105 photonic components and 48 WDM channels in less than 30mm2

of chip area). Such a chip will enable network operators to enhance the network performance, increasing

node capacity as required by future 5G networks and Cloud.

Some challenges are, however, still open. As already introduced before, Silicon is mainly a passive material

due to its indirect bandgap, and the realization of active devices still mainly proceed through the hetero-

integration of III-V semiconductors [48]. These processes are expensive and not always compatible with the

CMOS fabrication. Monolithic integration would be desired, but still much work has to be done in this

direction. The same does not hold for photodetectors at 1.55µm. Silicon is transparent in the O and C

telecom bands, thus can not be used for photodetection and needs the hetero-integration of narrow bandgap

semiconductors like Germanium [49]. There are also some technical aspects that need to be solved. For

example, almost every Silicon Photonic company has its own Computer Aided Design (CAD) suite, and the

di�usion of common Process Design Kits (PDK) are not so popular, even if lot of e�orts has been done

to invert this trend . In general, today's design methods and tools are not up to the task, mainly for

what concernes the co-integration of photonics and electronics blocks. More on this subject can be found

in Ref.[50]. Last, but surely not least, the cost of a photonic device is still too high. This is because the

production volumes are still too low for bringing down the market prices, and because most of the foundries

have been focused on developing individual Silicon Photonics elements, rather than complete ONoC.
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1.1 Silicon photonics building blocks

In the next sections, the main building blocks of a Silicon Photonic network are introduced and briefely re-

viewed. The �rst block which will be presented is the waveguide, then couplers and splitters will be discussed.

Next, more advanced devices will be reported, like optical resonators, sequence of coupled resonators, electro

optic modulators and active sources.

1.1.1 Waveguides

Waveguides are probably the most important elements of photonic networks, since they carry the optical

signal from one block to the other. Light is con�ned inside the waveguide by Total Internal Re�ection (TIR),

which requires a cladding material of lower refractive index than the one of the core, as shown in Fig.1.12(a).

Light travels in the form of discrete modes of electric �eld pro�le em(x, y, ω), which are solution of the

Helmoltz equation [51]:

(
∇2
xy + β2

m

)
em(x, y, ω) =

ω2

c2
n2(x, y)em(x, y) (1.1)

𝑧

𝑥

𝑦

𝑛𝑐𝑙𝑎𝑑
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Figure 1.12: (a) Schematic of a channel waveguide. The index of refraction of the cladding material is nclad
while the one of the core is ncore. The propagation direction is z. (b) Distribution of the dominant electric
�eld component (Ex for TE modes, Ey for TM modes) for the three lowest order TE and TM modes of a
waveguide with cross section 1.6µm× 0.25µm .

Due to the invariance of the refractive index distribution n(x, y) along the propagation direction z, the

dependence on this coordinate is on the form e−iβmz, where βm = ω
c neff,m is called the modal propagation

constant (or wavevector), and neff,m the e�ective index. In general, neff,m is a complex quantity. As for

plane waves, the real part is associated with propagation, while the imaginary one to losses. The �eld intensity

exponentially decreases along z as e−αz, where the attenuation coe�cient α is given by α = 2ω
c Im(neff,m).

Fig.1.12(b) shows an example of the electric �eld distribution em(x, y) for three lowest order solutions of

Eq.1.1. Each solution is associated to a di�erent number of nodal points n, in which the electric �eld is equal

to zero. In what follows, the modal order m will be de�ned as m = n+ 1. As the modal order increases, the

modal con�nenement, de�ned as:

Γm =

´
wg
n2(x, y)|em(x, y)|2 dxdy´
n2(x, y)|em(x, y)|2 dxdy

(1.2)

in which the integral at the numerator is performed only in the core region, decreased. As a consequence,

the e�ective index monotonically decreases as the modal order increases, because the optical �eld senses less
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the refractive index of the core. Given the geometry of the waveguide, the maximum number of supported

modes is limited. Apart from very simple geometries, as the slab one [52], no analytical expression exists

for determining this number. For the channel waveguides implemented in this work, it is possible to take

as a rough rule the fact that light of wavelength λ can not be con�ned to features which are lower than
λ
2 due to the di�raction limit. The maximum number of supported modes (for a �xed polarization) can

then be approximated as ∼ 4wh
λ2 . Modes can be classi�ed also on the basis of their polarization. In general,

for waveguides of sub-wavelength dimension, the electric and the magnetic �elds are not transverse to the

propagation direction and neither orthogonal to each other. The classi�cation between Transverse Electric

(TE) and Transverse Magnetic (TM) modes is done on the basis of their dominant electric feld component,

which for the reference frame of Fig.1.12(b) concides with the x direction in case of TE modes, and y for

TM modes. The e�ective index of each mode depends on wavelength. As the latter increases, the mode get

less con�ned due to di�raction, and the e�ective index decreases. The way this occurs strongly depends on

the mode order, the waveguide geometry, the polarization and the core and cladding chromatic dispersion.

In micron size waveguides, it is the geometric dispersion which dominates over chromatic one, in opposition

with what happens in an optical �ber [2, 53]. A measure of the e�ective index dispersion is given by the high

order dispersion coe�cients β
(j)
m = djβm

djλ . For j = 1, this is given by:

β(1)
m =

dβm
dλ

=

(
neff,m − λ

dneff,m
dλ

)
1

c
=
ng,m
c

(1.3)

and represents the inverse of the group velocity vg,m = c
ng,m

, where the group index is de�ned as ng,m =

neff,m − λdneff,mdλ . For j = 2, the quantity β
(2)
m is called Group Velocity Dispersion (GVD), and for j > 2

the terms are in general referred as jth order dispersions. Another important property is the mode e�ective

area Aeff,m, de�ned as:

Aeff,m =

(´
|em(x, y)|2 dxdy

)2
´
|em(x, y)|4 dxdy

(1.4)

which is a measure of the e�ective extension of the optical mode into the core and cladding regions. Higher

order modes, being less con�ned, have larger e�ective areas than the lower order ones.

The �rst Silicon waveguides, reported in 1980, were fabricated on the Silicon-On-Silicon platform, in which

the crystalline Silicon core was deposited on a substrate of heavily doped one. The process of doping lowers

the index of refraction of the material through plasma carrier dispersion, thus creating the conditions for

waveguiding [33]. However, the index contrast was of the order of 0.01, so the mode was highly delocalized

and su�ered from leakage of energy into the substrate. In the late 1980s, SOI wafers were introduced in

the microelectronic industry, o�ering an improved refractive index contrast. Wafers were developed with

methods like SIMOX, BESOI and SmartCut [24]. Waveguide fabrication requires de�nition of their edges in

a photoresist (through deep UltraViolet (DUV) or electron beam lithography) and subsequent dry etch. The

process naturally introduces roughness on the side walls of the waveguide, which is source of scattering. As

a consequence of the enhanced refractive index contrast, the spatial mode pro�le got tightly con�ned inside

the core. On one side, this allowed to shrink the waveguide dimensions and to realize smaller bends, and on

the other side to avoid energy leakage into the cladding material. The �rst fabricated SOI waveguide was

characterized by 0.5 dBcm−1 of propagation loss, but this was due to the fact that it had several microns of

cross section, so the modal overlap with side wall roughness was negligible. During the following years, lots of

e�orts have been done in the design and fabrication of low cross section and low loss waveguides. To reduce

the side wall roughnesses, post-etch thermal oxidation has been introduced. Using this technique, Lee et.

al. demonstrated that it was possible to reduce the losses at 1.55µm of a 500nm× 50nm Silicon wire from

32 dBcm−1 before thermal oxidation, to 0.8 dBcm−1 after post etch oxidation [54]. Local oxidation of Silicon
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(LOCOS), a technique �rstly reported at the Carleton University, allowed to realize etchless ridge Silicon

waveguides by the local oxydation of Silicon, which resulted in 0.3 dBcm−1 of propagation loss in a 1µm wide

waveguide with a rib height of 70nm [55]. For small scale production, the use of electron beam lithography

has proven to be a very e�ective tool for the realization of low loss Silicon waveguides. For example, Gnan

et. al. reported about photonic wires formed by electron beam lithography with 0.92 dBcm−1 of loss [56].

The current record of propagation loss at 1.55µm is 0.27 dBcm−1, achieved by Bogaerts and Selvaraja using

hybrid ridge-channel waveguides [57].

1.1.2 Couplers

One of the biggest challenges in realizing photonic chips relates to the e�ciency of the coupling of light in

the waveguide by an input �ber. The di�culties arise from the huge mismatch between the e�ective area of

the mode which propagates in the �ber and the one in the waveguide. A standard single mode Silica �ber

has a core with a typical dimension of ∼ 10µm, and an e�ective mode area of ∼ 315µm2, while the one

of a waveguide is of the order of 1µm2, which is more than two orders of magnitude lower. It comes out

that if the two cores are brought into contact (edge coupling), more than 20 dB of power is lost. Tapered

lensed �bers, which are �bers in which one of the two ends are progressively reduced in size to ∼ 2µm, o�er

better performances by focusing light to an e�ective area of ∼ 10µm2, thus reducing the coupling losses at a

value close to 10 dB. If lower losses are needed, the input facet of the waveguide havs to be engineered. Two

approaches have been developed during the years: tapering, which consists in enlarging or reducing the size

of the waveguide core as it approaches to the �ber, or patterning subwavelength periodic structures at the

waveguide extremities called grating coupler. Both are schematically shown in Fig.1.13.

a) b) c)

Direct tapering Inverse tapering Grating coupler

Fiber

𝜃

Fiber Fiber

Figure 1.13: (a) Direct tapering of a waveguide. (b) Inverse tapering of a waveguide. (c) Grating coupler,
with the �ber tilted by an angle θ with respect to the normal of the grating. In all panels, the yellow circle
sketches the modal intensity of the propagating light. Fiber is not to scale.

Tapers are also called Spot Size Converters (SSC). Tapering can be direct if the end of the waveguide is

smoothly increased to match the dimension of the spot of the �ber, or inverse, if the end of the waveguide is

progressively reduced to delocalize the modal pro�le outside the core. The performances are quite similar. By

using direct tapering, in which both the width and the thickness of the waveguide were increased, Day et. al.

demonstrated coupling losses of less than 0.5 dB in 1mm of taper length [58]. M.Pu et. al. reported on inverse

tapers in which a 450nm width waveguide was reduced to only 15nm using thermal oxydation, achieving

an ultra low value of 0.36 dB of coupling loss [59]. Grating couplers relies instead on a completely di�erent

working principle. In the most simple implementation, they are structures in which Silicon is periodically
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etched with a period Λ, creating alternating regions of di�erent index of refraction. As a consequence of

the periodicity, the mode of propagation constant β is converted into a wave which is di�racted into the

cladding with an angle θ with respect to the propagation direction [60]. This occurs if the period Λ satis�es

the following phase matching relation:

sin θ =
Λneff − λ0

Λn
(1.5)

where neff is the e�ective index of the mode which di�racts light, λ0 is the wavelength and n is the refractive

index of the medium in which the wave is radiated. A �ber placed at an angle θ can than collect the di�racted

light. The reverse process can be exploited to couple light from the �ber into the mode of the waveguide.

Starting from the most simple implementation described above, the e�ort to reduce the coupling losses in

grating couplers produced a wide variety of structures. Coupling e�ciencies of 37% have been demonstrated

using shallow-etched gratings [61], 42% using photonic crystal structures within the grating [62], 64% using

apodization [63], and 69% using backside re�ectors [64]. The current record of couplig losses is 0.58 dB,

achieved by Ding et. al. in a fully etched apodized grating coupler using sub-wavelength photonic crystals

and a bonded aluminum mirror [65].

1.1.3 Splitters and combiners

Light which propagates in a waveguide can be split into one or more waveguides and vice-versa. Several

structures allow achieving this: Y-junctions [66], Multi Mode Interference (MMI) devices [67] and directional

couplers [68]. Only the latter will be briefely discussed here, due to its use in the designs shown in the rest of

this thesis. As sketched in Fig.1.14(a), a directional coupler if formed by two waveguides which are brought

in close proximity. Their separation is the coupling gap cg, which is few hundreds of nanometers long [51].

The region where the two waveguides are close is long L.
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Figure 1.14: (a) Sktech of a directional coupler of length L and coupling gap cg. Electric �elds Ein,1 and Ein,2
represent the inputs, while Eout,1 and Eout,2 represent the outputs. (b) Dominant electric �eld component
(Ex) for the even and odd TE supermodes of the two coupled waveguides.

The gap is so narrow that the evanescent tail of the optical mode of each waveguide penetrates, through the

cladding, into the core of the neighboring one, thus allowing cross talk between the two. In the most simple

case of two identical parallel waveguides, if some power P10 is launched into waveguide 1 while waveguide 2

is not excited, after a certain propagation distance z = L, the powers in the two waveguides P1(L) and P2(L)

become [52, 51]:
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P1(L) = P10 cos2

(
π

2
· L
Lc

)
= |r|2P10 (1.6)

P2(L) = P10 sin2

(
π

2
· L
Lc

)
= |κ|2P10 (1.7)

where r and κ are called the re�ection and the transmission coe�cient of the coupler respectively. κ and

r for a lossless system satisfy |r|2 + |κ|2 = 1. In Eqs.1.6-1.7, the quantity Lc is called the transfer length,

and coincides with the length of the coupler which realizes a complete transfer of power from waveguide 1 to

waveguide 2. It can be demonstrated that Lc is given by [52]:

Lc =
λ

2(no − ne)
(1.8)

where no and ne are the e�ective indexes of the �supermodes� of the combined structures, shown in Fig.1.14(b).

The subscripts o and e stand for odd and even respectively, and refer to the parity of the electric �eld

distribution with respect to the x = 0 axes of Fig.1.14(b). In general, if both waveguide 1 and waveguide 2

are excited at the input, the system is described by a 2× 2 unitary matrix M which maps the input electric

�eld vector Ein = (Ein,1, Ein,2) at z = 0 into the output one Eout = (Eout,1, Eout,2) at z = L. The matrix

M is given by:

M =

(
r −iκ
−iκ r

)
e−iβL (1.9)

where β is the propagation constant of the mode in the waveguides, while κ and r are de�ned above. If the

two waveguides are not equal, and hence a phase mismatch ∆β exists between the propagation constants, the

expression for the transfer matrix M gets more complex. When ∆β 6= 0, a complete power transfer can no

more occur between the two waveguides [51]. Directional couplers are fabricated through patterning of the

photoresist and subsequent etching. Coupling gaps as low as 160nm can be fabricated using 193nm DUV

lithography and dry etching. For lower gaps, electron beam lithography gives better results. The size of the

gap is a critical dimension for the coupler, since the dependence of the coupling and re�ection coe�cients on

the gap is exponential [69]. This is a direct consequence of the fact that the evanescent tail of the optical

modes exponentially decreases in the cladding. The ability to fabricate waveguides with tight tolerances on

the dimensions is also required to set the phase mismatch ∆β equal to zero, thus allowing a more e�cient

energy transfer. For these reasons, tapered directional couplers have been proposed, in which the size of one

waveguide is intentionally adiabatically swept in the neighboring of the nominal one. This trick allows to

relax the fabrication tolerances on the �nal waveguide dimensions to tens of nanometers [70, 71].

1.1.4 Microresonators

Microresonators are ones of the most important, multi purpose and versatile tools in Silicon Photonics

[72, 73, 74]. They can be realized in very di�erent geometries, as, for example, microrings, racetracks,

microdisks and microtoroids [75, 76, 77, 78]. Some of them are shown in Fig.1.15.
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Figure 1.15: (a) Scanning Electron Microscopy (SEM) image of a ring resonator in the All Pass con�guration.
Picture taken from [76]. (b) Optical microscope image of a racetrack resonator. Picture taken from [79].
(c) SEM image of a suspendend microdisk resonator. Picture from [75]. (d) SEM image of a suspended
microtoroid resonator. Picture taken from [77].

Each of these shapes possess its own advantages and disadvantages, so the resonator type has to be choosen

to best match the purposes of the experiment. The common feature of each resonator is that light is made to

travel in a closed path, and, as a consequence, only certain wavelengths λm can be supported. For travelling

wave resonators, as microrings or racetracks, these wavelengths are the ones which satisfy the resonance

condition [74]:

neffp = mλm (1.10)

where neff is the e�ective index of the waveguide, p is the resonator perimeter and m is an integer number.

Eq.1.10 has a simple physical interpretation: the perimeter of the resonator has to contain an integer number

of wavelengths (in the material), in such a way that the travelling wave, after a roundtrip, can reproduce

itself. Alternatively, Eq.1.10 can be cast in the form βp = 2mπ, in which β is the propagation constant

de�ned in Section 1.1.1. Given in this form, the resonance condition is met every time that after a complete

roundtrip, the light has acquired a phase which is a multiple integer of 2π, so that the wave undergoes

constructive interference each time it completes a roundtrip.

1.1.4.1 Add Drop and All Pass con�gurations

In order to be excited, a resonator requires to be coupled to a bus waveguide. When only one waveguide is

used, the resonator is said to be in the All Pass (AP) con�guration. When two waveguides are coupled, the

con�guration is called Add Drop (AD). As sketched in Fig.1.16(a), the AP con�guration possess an input

and an output port.
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Figure 1.16: (a) Ring resonator in the All Pass con�guration. The coupling region and the Free Propagation
Region (FPR) are explicitally indicated. The re�ection and transmission coe�cients of the coupler are r and
κ respectively. Scattering losses are indicated as τ . (b) Ring resonator in the Add Drop con�guration. The
meaning of the parameters are the same as for panel (a).

The electric �eld amplitude at the input port Ein is connected to the one at the output port Eout by the

transfer function HAP (ω), which is a complex function that depends on the light frequency ω. An expression

for HAP (ω) can be derived using the Transfer Matrix Method (TMM) [80]: the two sections of the resonator,

which are the coupling region CR and the free propagation region FPR in Fig.1.16(a), are treated as four

and two port systems respectively, whose outputs are connected to the inputs by linear matrix relations.

A system of equations is then derived which can be solved for Eout, once that Ein is known. The transfer

function HAP (ω) can be demonstrated to be [81, 80]:

HAP (ω) =
τ − re−iφ(ω)

rτ − e−iφ(ω)
(1.11)

where τ = e−αp (α is the scattering loss coe�cient) represents the roundtrip losses, r is the re�ection

coe�cient of the coupler and φ(ω) = ω
c neff (ω)p is the roundtrip phase. The quantity |HAP (ω)|2 is plotted

in Fig.1.17 as a function of φ.
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Figure 1.17: Plot of the quantites |HAP |2, |HD
AD|2 and |HT

AD|2 as a function of the roundtrip phase φ. For
all the curves, the re�ectance of the coupler is set to r = 0.95.
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As already introduced above, each time that φ = 2mπ, the resonance condition is met, and a transmission

dip appears in the spectral response. When this occur, energy is accumulated inside the resonator and a

fraction τ is lost (for example, from scattering with the side walls roughness), resulting in a lack of power

in the transmission. Outside the resonance condition, the resonator behaves as a straight waveguide, and no

light is coupled. It is worth to note that when τ = 1, i.e., no losses are present, HAP = 1 independently on

the phase. This comes directly from energy conservation.

The AD resonator has instead two input ports, conventionally named Input and Add, and two output ones,

named Drop and Through. These are sketched in Fig.1.16(b). If only the Input port is excited, the transfer

function HD
AD(ω), which express the ratio between the input �eld Ein and the dropped �eld ED, is given by

[81]:

HD
AD(ω) =

κ2
√
τeiφ(ω)/2

r2τ − eiφ(ω)
(1.12)

where κ is the transmission coe�cient of the coupler (for simplicity, the two coupling regions are assumed to

be symmetric). The transfer function of the Through port HT
AD(ω) = ET

Ein
is instead given by [81]:

HT
AD(ω) =

r
(
eiφ(ω) − τ

)
eiφ(ω) − r2τ

(1.13)

The quantities |HT
AD(ω)|2 and |HD

AD(ω)|2 are plotted in Fig.1.17 as a function of φ(ω). As for the AP

con�guration, everytime that φ = 2mπ a resonance occurs, which is manifested in a peak in the Drop signal

and in a dip in the Through one. When the Add port is simultaneously excited, it is possible to exploit

the linearity of the system to calculate the expressions for the dropped and transmitted powers. The key

parameters which characterize a resonator are the quality factor Q, the Free Spectral range (FSR) and the

Field Enhancement factor FE. The quality factor of themth resonance order is de�ned as the ratio between the

resonant wavelength λm and the Full Width at Half Maximum (FWHM) ∆λm of the peak, i.e., Q = λm
∆λm

.

It can be shown, by expanding the exponential terms in Eq.1.12 to the �rst order in ω − ωm (ωm is the

resonance frequency), that the the peak is actually a lorentzian function. The FSR is de�ned as the distance

between two adjacent resonance wavelengths, while the FE factor is the ratio between the �eld inside the

resonator and the one in the input waveguide. The expressions for these quantities are reported in Table 1.1.

The interested reader can refer, for example, to Ref.[82], for a complete derivation.

Parameter All Pass Add Drop

Q
πng(λm)p

√
rτ

(1−rτ)λm

πng(λm)pr
√
τ

(1−r2τ)λm

FSR
λ2
m

ng(λm)p
λ2
m

ng(λm)p

FE iκ
1−rτe−iφ(ω)

iκ
1−r2τe−iφ(ω)

Table 1.1: Main parameters which characterize the performances of a resonator expressed as a function of
the coupler parameters r and κ, the perimeter p, the resonant wavelength λm and the group index ng.

By looking at Table 1.1, some general considerations can be made:

� The quality factor is inversely proportional to the transmittance of the coupler κ and to the roundtrip

losses τ . Hence, high Q resonators are characterized by weak coupling with the waveguide and low

losses.

� The FSR is inversely proportional to the resonator perimeter. The average spectral distance between

two resonances thus decreases as the resonator is made bigger.
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� For small losses, the on resonance FE is given by FE ∼ 1/κ. Hence, if the resonator is weakly coupled

to the waveguide, and has very low losses, the �eld inside the resonator is greately enhanced with

respect to the one in the bus waveguide. For example, if κ2 = 0.01, the power inside the resonator is

100 times higher than in the bus waveguide. As described later and in Chapter 6, this feature can be

exploited for nonlinear optics applications.

Another important quantity is the group delay τg. The latter is de�ned as the derivative of the phase δ(ω)

of the transfer function with respect to the frequency, i.e., τg = dδ(ω)
dω . As derived in Chapter 6, it represents

the time delay that is imparted to an incoming electric �eld envelope when passing through the resonator.

Fig.1.18(left panel) shows the phase δ for an AP �lter in the neighboring of a resonance.
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Figure 1.18: Left: Phase δ of the transfer function HAP as a function of the roundtrip phase φ. Right: group
delay τg as a function of the rountrip phase φ. The parameters used in the simulation are the ones of the
All Pass �lters implemented in the delay line for the broadband design of Section 6.4, which are reported in
Table 6.2.

As it can be appreciated, the curve is very steep in proximity of the resonance, which means that the group

delay is quite high in this region. The derived group delay is shown in Fig.1.18(right panel). The slow

light properties of the resonator can be more appreciated through an example. As shown in Fig.1.18(right

panel), if the carrier frequency of the incoming �eld lies near resonance, delays at the order of ∼ 6 ps can be

achieved. The size of the resonator used for this simulation is 50µm. If the resonator would be replaced by

a straight waveguide of group velocity vg = 75 µm
ps (a waveguide of cross section 400nm× 250nm full�ls this

requirement) and having the same length, the group delay would be τg = 50
75 ∼ 0.75 ps, i.e, 8 times shorter.

The speed of light is then reduced by a factor 8 by using the resonator.

1.1.4.2 Sequence of coupled resonators: CROW and SCISSOR

The slow light property of single resonators can be enhanced by N times if N cavities are connected in series

to form, for example, an AP chain. Indeed, sequence of resonators have been widely used as optical delay

lines due to their slow light properties [83, 84]. Di�erent geometries have been explored, among which the

most implemented was the Coupled Resonator Optical Waveguide (CROW) [85, 86], and the Side Coupled

Integrated Spaced Sequence Of Resonators (SCISSOR) [87, 78, 82]. Both are sketched in Fig.1.19.

29



Chapter1. Introduction

a) b)

𝐸𝑖𝑛

𝐸𝑇

𝐸𝐷 𝐸𝑇

𝐸𝑖𝑛

𝐸𝐷

Λ

Unit cell

Figure 1.19: (a) Sketch of a CROW made by 5 coupled resonators. The input, Drop and Through ports Ein,
ED and ET are also indicated. (b) Sketch of a SCISSOR made by 5 side coupled resonators. The input, Drop
and Through ports Ein, ED and ET are also indicated. The lattice periodicity of the unit cell is indicated
by Λ.

In the CROW geometry, resonators are directly coupled, and only the �rst and the latter resonators of the

sequence are coupled to the bus waveguides. On the contrary, in the SCISSOR geometry, resonators are all

coupled to two straight side waveguides. Due to the implementation of the ring-based SCISSOR geometry

in Chapter 2, a brief discussion of its spectral properties is now outlined. The SCISSOR is actually a one

dimensional photonic crystal made by the repetition of a unit cell constituted by an AD �lter. From the

theory of light propagation in periodic media [51, 88], it results that there are some frequency ranges in

which light can not penetrate in the structure, which are called Photonic BandGaps (PBG). PBGs manifest

themselves in dips in the transmission spectra (Through port) and peaks in re�ectance (Drop port) spectra.

An example of the latter is shown in Fig.1.20.
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Figure 1.20: Drop spectral response of a SCISSOR as a function of the number of rings which compose the
sequence.
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The SCISSOR con�guration has two types of PBGs, one is called the Resonator Band (RB) and the other

the Bragg Band (BB) [78]. The RB is due to the response of each resonator of the chain. Indeed, it occurs

when the input wavelength satis�es the condition in Eq.1.10. The BB is due to the coherent, constructive

superposition, of all waves which are back re�ected by each resonator. Infact, even when the input wavelength

is o� resonance, a small portion of electric �eld is coupled into the Drop port (back re�ected). If the resonator

distance Λ satis�es Λβ = qπ, in which q is an integer number, then all the re�ected waves superimpose

contructively, and signi�cant power can be build up into the drop port. If the SCISSOR is designed to have

Λ = πR, in which R is the radius of the rings, the RB and the BB overlap for all orders. From Fig.1.20, it

is possible to notice that as the number of resonators increase, the bandwith of the �lter both �attens and

increases, becoming very similar to a box-like response. One may wonder what happens if the resonators

which compose the sequence are not all equal, i.e., they have resonant frequencies which are slightly detuned

between each other. This situation can be intentionally induced already at the design stage [87], or it can

be an undesired consequence of defects in the fabrication process [89]. What happens is that defect states,

in which the energy is mosty localized in the neighborhood of the defects, are created. These manifest in

the spectral response as narrow transparency peaks inside the PBGs of the Through port, or equivalently in

dips into the Drop one. The phenomenon is called Coupled Resonator Induced Transparency (CRIT) and

is widely discussed in Refs.[87, 78, 82]. By virtue of the intrinsic link between CRIT and defects, a device

which quanti�es the amount of fabrication disorder in a SOI wafer by exploiting the CRIT e�ect has been

proposed [89].

1.1.4.3 Tuning of microresonators

The resonance wavelength of a microresonator is very sensitive to fabrication imperfections. By di�erentiat-

ing both sides of Eq.1.10, it is derived that a small change in the e�ective index ∆n is re�ected in a shift in

the resonance wavelength of ∆λ = λm
∆n
ng

. For example, a variation of 5nm in the width of a waveguide of

cross section 450nm×250nm, which corresponds to a realistic value for both DUV and electron beam lithog-

raphy [90, 91], implies ∆n ∼ 0.01 (calculated from a Finite Element Method simulation), and a consequent

wavelength shift of ∆λ ∼ 3.8nm (in the calculation, λm = 1550nm and ng ∼ 4). For resonators implemented

in WDM applications, this quantity is typically much higher than the FWHM of the resonace [74], with the

consequence that if the �lter is designed to drop all the power at λm, no power will be actually dropped

when fabricated. It comes naturally that a trimming mechanism is required for aligning the resonance at the

wavelength where the �lter has been designed to operate. Two tuning mechanisms are typically implemented:

thermal [92, 93] and plasma carrier tuning [94, 95]. The �rst exploits the thermo optic coe�cient of Silicon,

which is dn
dT = 1.86 · 10−4K−1 [96], to change the e�ective index of the mode by inducing a temperature

variation of ∆T into the waveguide core. The relation is linear, i.e, ∆n = dn
dT ∆T . At this purpose, a metallic

heater can be placed on top of the resonator, optically isolated from the mode by hundreds of nanometers of

cladding. When a current �ows in it, the metal increases its temperature, and by conduction the heat �ows

through the cladding and reaches the waveguide core. For example, for correcting the e�ective index by 0.01,

a temperature increase of the core of the order of ∼ 55K is required, which can be easily achieved using

an Aluminium or a Titanium Nitride (TiN) metal stripe of less than 1µm2 of cross section and few mW of

electrical power [82]. Since the sign of the thermo optic coe�cient is positive, temperature tuning only acts

in one direction. For realizing a wavelength shift in the opposite direction, free carrier injection can be used.

When electrons and holes are injected into the Silicon core at concentrations above equilibrium, indicated as

∆N and ∆P respectively, both the refractive index n and the absorption coe�cient α of the material change.

The variations ∆n and ∆α are given by [97]:

31



Chapter1. Introduction

∆n = σeFCD∆N + σhFCD∆P 0.8 = −8.8 · 10−22∆N − 8.5 · 10−18∆P 0.8 (1.14)

∆α = σFCA(∆N + ∆P ) = 1.45 · 10−17(∆N + ∆P ) (1.15)

In the relations (1.13) and (1.15), the carrier concentrations have been expressed in cm−3. For example, to

change the refractive index of 0.01, an electron concentration of ∆N ∼ 1019 cm−3 is required. A wide variety

of geometries have been implemented to achieve this goal. One of the most popular and e�ective one consists

in embedding a rib waveguide into the intrisinc region of a PIN diode, and by connecting the n and p regions

to metal electrodes [98]. In this way, the optical mode propagates without signi�cant attenuation, because

it has negligible overlap with the highly doped regions (which are source of losses, as indicated by Eq.1.15).

Thermal and free carrier e�ects are the most important and more e�ective tools for tuning the spectral

response of resonators. Their main limitation relies on the fact that they are quite slow tuning mechanisms.

Thermal e�ects have a slow dynamics because of the quite high heat capacity of Silicon and the very low

thermal conductivity of the Silica cladding. Typically involved timescales lie in the µs range [96, 99]. Free

carriers are limited by the recombination time, which is of the order of 500 ps − 5ns for micron size Silicon

waveguides [100, 101, 102], and by the charging and discharging of the junction and di�usion capacitances of

the PIN diodes [103].

1.1.4.4 Applications of Silicon microresonators

Originally, microresonators have been conceived for WDM applications. The ability to send a speci�c set

of wavelengths into the Drop port make resonators natural building blocks for �ltering applications. The

characteristics which are required to e�ciently route di�erent channels are a very high FSR, low insertion loss,

steep roll o� of the transmittance and high extinction. Typical values for C band telecom applications are tens

of nanometers for the FSR, ∼ 0.2 dB/GHz for the transmittance roll o�, and < −30 dB for the extinction

[72]. Usually, these requirements are too high to be ful�lled by a single resonator, so high order �lters like

CROWs or SCISSORs are implemented. The reader can refer to Ref.[103]for a state of the art review about

this subject. Resonators can be organized in matrix of elements for bidirectional routers. An example is

the one by D. Sherwood et. al., who demonstrated a 4 × 4 nonblocking Silicon optical router using thermo

optic switching, with a footprint of 0.07mm2 [104]. Their design enabled bidirectional communications

among the four input ports and the four output ports. Each communication path demonstrated a maximum

extinction of −20.79 dB and a bandwidth of 38.5GHz. The biggest, and most complex matrix router is the

one developed within the project IRIS, and discussed at the beginning of the chapter, with more than 105

photonic components, 4 directions of operation and 48 WDM channels. Resonators are also the building

blocks of optical modulators (discussed in Section 1.1.5) and laser cavities (discussed in Section 1.1.6).

Silicon resonators have been demonstrated to be very e�ective tools for sensing and biomolecule recog-

nition. The optical mode inside the resonator evanescently extends into the cladding, where the target

molecule/protein can be trapped by surface functionalization [105, 106]. The mode is then able to sense the

external environment, and, as a consequence, its e�ective index is altered. From Eq.1.10, this implies a shift

of the resonant wavelength, which constitutes the transduced signal. The shift is proportional to the amount

of biomolecule that is trapped on the surface, so not only the concentration, but also the kinetics of the

binding reaction can be tracked [107]. The parameters which quantify the performances of the sensor are the

sensitivity and the limit of detection. The sensitivity S is de�ned as the nanometers of resonance shift as a

consequence of a unit change of the refractive index (RIU). The limit of detection, LOD, is the minimum

detectable refractive index shift, and is given by LOD = 3σ
S , where σis the uncertainty given by repeated
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measurements of the same blank solution (when no analyte is present). A review on the state of the art of

resonators for biosensing is given in Ref. [72].

Due to the ability of optical microresonators to enhance the power which is sent into the input waveguide, a

wide variety of nonlinear optical phenomena have been demonstrated. Examples are wavelength conversion

through Stimulated Four Wave Mixing (SFWM) [108, 109], optical frequency combs through Spontaneous

FWM (sFWM) [110, 111, 112], optical parametric oscillators and ampli�ers (OPO and OPA) [113, 114, 115].

Some of them are reviewed in Section 1.2. Nonlinearities associated to Two Photon Absorption (TPA) have

been used for all optical switching[116, 117]. Thermal e�ects induced by nonlinear absorption, which drive the

resonator into a bistable state, have been proposed for the realization of all optical memories [118]. Dynamical

e�ects induced by the interplay of thermal and free carrier nonlinearities have been demonstrated to produce

the self pulsing [96, 119, 120]of the transmitted signal or even chaos [99]. This part will be investigated in

depth in Chapter 2.

1.1.5 Modulators

Modulators are used to convert an electrical signal into an optical one and vice versa. Through modulators,

it is possible to encode data into the optical signal. Their working principle is depicted in Fig.1.21.

𝐼𝑛

𝑂𝑢𝑡

p-doped

n-doped

intrinsic

Wavelength

Out

Low

𝜆0

Laser wavelength

Wavelength

Out

𝜆0 − Δ𝜆

Laser wavelength

High

OFF state

(Reverse bias)

ON state

(Forward bias)

a) b)

Figure 1.21: (a) Sketch of a ring resonator realized using a rib waveguide which embeds a PIN junction
(shown in the inset). The input light is constant, while the output one depends on the bias of the junction.
(b) Relative position of the resonant wavelength λ0 and of the input laser wavelength in case of reverse and
forward bias of the PIN junction. In the latter case, the injection of free carriers in the intrinsic region
determines a shift of the resonance wavelength of ∆λ.

The resonance wavelength of a microresonator, in this example an AP �lter, is initially aligned with the

carrier wavelength λ0 of the WDM channel that has to be modulated (Fig.1.21(b)). The waveguide which

forms the resonator is embedded into a PIN junction, which can inject carriers into the core when the junction

is forward biased. When this occurs, the modal e�ective index changes through plasma carrier dispersion

(see Eq.1.14), and the resonance position accordingly shifts by a quantity ∆λ. The carrier wavelength is no

longer on resonance, so the transmitted intensity switches from a low value to an high one. The voltage which

forward bias the junction is applied until the bit is processed, and then the bias turns to o�, waiting for the

next bit. In this way, electrical bits, which are encoded in low/high state voltages, are transduced into the

optical domain through high and low intensity signals. Needless to say, there has been a a steady growth of

modulator designs through the years, with the attempt to lower the voltage and the power required to switch

the modulator state. There are several �gures of merit that are used to characterize a modulator: modulation
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speed and depth, optical bandwidth, insertion loss, area e�ciency (footprint) and power consumption. An

excellent review on the state of the art of optical modulators is given in Ref.[103]. Basically, two big lines of

research developed during the years. Both rely on plasma carrier dispersion, but the �rst class is based on

carrier injection while the other one on carrier depletion. In general, modulators based on carrier injection

have a very good extinction (∼ −8 dB at maximum operating speed), but low bandwidth (∼ 10GHz).

The speed is mainly limited by the di�usion times of the carriers from the highly doped regions into the

intrinsic one [103]. On the contraty, modulators based on carrier depletion have poor extinction (∼ −1 dB

at maximum operating speed) but high bandwith (∼ 30GHz). In this class of modulators, the optical mode

propagates in the junction region of a reverse biased PN diode, and the modulation is achieved by changing

the depletion width of the juction. The extinction is limited by the amount of carriers which can be depleted

between the on and the o� states. State of the art modulators based on carrier accumulation are represented

by the work of Liao et. al., in which it is reported 10Gbps operation with an extinction ration of −3.8 dB

[121], and by Lightwire, which achieved the same bandwith but with the improved extinction ratio of −9 dB

[122]. The fastest reported Silicon modulators are based on carrier depletion and are the ones of Liu et. al.,

which operates at 40Gbps [123], and the modulators of T.Baba et. al. [124] and D.Thomson et.al. [125],

with 50Gbps operation.

1.1.6 Lasers and photodetectors

As introduced at the beginning of Chapter 1, one of the still open questions of Silicon Photonics is the lack

of e�cient monolithic laser sources, which could be easily integrated using the standard CMOS process �ow.

In fact, Silicon is a very good passive optical material, but, due its indirect bandgap, it is very ine�cient for

light emission, which are necessarily phonon mediated [25]. Di�erent approaches to the problem have been

a�orded to overcome this intrinsic limitation. One of these is Stimulated Raman Scattering (SRS) [2, 126].

SRS relies on the interaction of photons with the optical phonons inside the material, which is described by

the Raman contribution to the third order optical nonlinearity χ(3) of Silicon [127]. A pump wave can be

scattered by an optical phonon into two waves, called Stokes (or signal) and Anti-Stokes (or idler) waves.

The spectral separation between the Stokes and the Anti-Stokes wave is determined by the energy and the

wavevector of the involved phonon. If a signal wave is added to the pump, and tuned at the Stoke frequency,

the material can exhibit a net gain at the idler frequency. By exploting this fact, Raman lasing on Silicon has

been demonstrated in 2004 [128]. Recently, �vefold enhancement of the gain has been demonstrated in Silica

waveguides which embeds Silicon nanoparticles [129]. However, lasers based on SRS require intense pump

�elds, which are naturally subject to TPA and Free Carrier Absorption (FCA) (both discussed in detail in

Chapter 2), which are limiting the maximum gain [130]. Other approaches than SRS make use of epitaxial

growth of III-V compounds on Silicon. Such materials have a direct bandgap, so they can be electrically

pumped to obtain ampli�cation and then lasing. One example are the on-chip InGaAs nanopillar lasers

reported by Chen et. al., which are grown e�ciently on Silicon using the bottom-up self-organized technique

[131]. The advantge of these nanopillars is that they can be integrated onto Silicon after a single growth step.

In addition to III�V materials, Germanium also attracted increasing interest in making lasers on Silicon.

Although Germanium is an indirect bandgap semiconductor, it has a direct bandgap at 0.8 eV , which is close

to the indirect bandgap at 0.66 eV . The �rst Germanium on Silicon continuos wave laser, working at room

temperature, was demonstrated by the MIT in 2010 [132]. Recent works towards more e�cient Germanium

lasers are mainly focused on bi-axially tensile strained quantum wells and quantum dots [133]. The applied

strain has seen to reduce the size of the indirect bandgap faster than the direct one, and in generally it is

believed that 1.7%−2.5% of biaxial tensile strain will turn Germainium into a direct bandgap material [134].

Hybrid Silicon lasers also increased their popularity in the last few years [135]. These classes of lasers are
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made by a complex combination of active III-V materials which are �rstly fabricated on a separate substrate,

more suited for the growth and deposition processes, and then bonded on the Silicon chip. The output coupler

of the heterointegrated laser can be directly aligned to the input Silicon waveguide, or the laser cavity can

be evanescently coupled to the latter [136].

Photodetectors for telecom applications have to be necessarily made by a di�erent material than Silicon, since

the latter is transparent at such wavelengths. Materials with lower bandgaps have to be grown on Silicon

or bonded as it is made for lasers. Among these, Germanium based photodetectors played a primary role.

This is due to their excellent optoelectronic properties: high responsivity from visible to near-infrared wave-

lengths, high bandwidths, and compatibility with CMOS technology. A comprehensive review on Germanium

photodetectors is presented in Ref.[49].

1.2 Nonlinear Silicon Photonics

The nonlinear optical properties of any material are described by the fundamental relation between the

macroscopic polarization P and the applied electric �eld E:

P = ε0(χ(1) ·E + χ(2) ·EE + χ(3) ·EEE + ...) (1.16)

where χ(j) are tensors of rank j+ 1. Depending on the order of magnitude of the various terms, only some of

them are signi�cant for the problem considered. In general, χ(j+1) < χ(j), but this is not an universal relation

and strongly depends on the geometry of the unit cell of the material. For an extended class of materials,

which are centrosymmetric, any susceptibility of even order vanishes due to symmetry considerations [137].

In such class of materials, each unit cell possess a geometrical point from which the whole lattice is invariant

under the inversion operation, which accounts in inverting the position vectors of each atom from r to −r.
This aspect will be covered in detail in Chapter 4. Silicon belongs to the class of centrosymmetric materials,

so it has no native χ(2) . Since also χ(4) vanishes, it comes out that the dominant nonlinearity is the third

order non linear susceptibility χ(3). The order of magnitude of the �eld polarization P due to the χ(3) in bulk

Silicon is 8.85·10−30 Fm−1 [137] for an electric �eld of amplitude 1V m−1, which is twenty orders of magnitude

lower with respect to the one induced by the linear susceptibility χ(1) (χ(1) ≈ 13). It is worth to note that a

χ(2) can be induced in Silicon by breaking the centrosymmetry of the unit cell. This has been accomplished in

many works by applying a strain gradient to the material [138, 139, 140, 141, 142]. Connected to that, chapter

4 is focused on the investigation of strain induced second order nonlinearities in strained Silicon waveguides.

The large χ(3) of Silicon enables several e�ects, like Self Phase Modulation (SPM), Cross Phase Modulation

(XPM), Four Wave Mixing (FWM), Two Photon Absorption (TPA) and Stimulated Raman Scattering (SRS)

[53, 127]. The interested reader can refer to Ref. [143] for a comprehensive review of each of these processes.

Two key parameters, which quantify the strength of the nonlinear processes are the nonlinear coe�cient γ

and the Figure of Merit FOM. These are de�ned as:

γ =
ωn2

Aeff
(1.17)

FOM =
n2

βTPAλ
(1.18)

where n2 is called the nonlinear index (n = n0 + n2I , where n0 is the low power refractive index and I

the �eld intensity) and βTPA the TPA coe�cient (α = α0 + βTPAI, where α0 is the low power attenuation

constant). These are connected to the real and the imaginary part of the χ
(3)
iiii tensor element as [127]:
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χ
(3)
iiii =

4

3
ε0n2n

2
0c+ i

2

3ω
βTPAε0n

2
0c

2 (1.19)

In writing Eq.1.19 it has been assumed that the ith direction coincides with one of the equivalent directions

[100], [010] or [001] of the Silicon unit cell. As it will be shown in Chapters 3 and 2, the n2 coe�cient

is responsable for FWM (and in general for all the other χ(3) e�ects listed above), while the βTPA term

is associated to nonlinear absorption. The FOM, which is proportional to their ratio, gives a method for

comparing the performances of di�erent nonlinear optical materials. A typical value for Silicon is ∼ 0.4 at

a wavelength of λ = 1.55µm [144]. From Eq.1.17, it can be seen that the magnitude of nonlinear e�ects

is inversely proportional to the modal e�ective area. The factor 1
Aeff

is, on average, greater by a factor

100 − 1000 with respect to the one in optical �bers [53, 143]. This is a direct consequence of the fact that

the same power is con�ned to �ow in a smaller core area than the one of optical �bers. The use of resonators

can further reduce the power which is needed to activate nonlinearities because of their ability to enhance

the stored �eld with respect to the exciting one. Power enhancements of 100 can be achieved using high Q

cavities, corresponding to γ values which are 105 times greater than in optical �bers. Compactness and power

enhancement make Silicon Photonics a very attractive platform for nonlinear optics applications. These are

so many that they are subject of many review papers [53, 145, 143, 146]. Some examples, which will not

be discussed here, include supercontinuum generation [147, 148], wavelength conversion [108, 109], optical

parametric ampli�cation and oscillation [113, 114, 115], Stimulated Raman Scattering [149, 150], frequency

comb generation [111], optical soliton generation [151, 152] and third harmonic generation [153]. Most of the

parametric processes cited above requires a phase matching condition to be satis�ed in order to be e�cient.

For example, as demonstrated in Section 3.1, wavelength conversion from an idler wave at λi into a signal

wave at λs through the use of a strong pump at λp occurs via FWM if the following phase matching relation

is satis�ed: 2ωpn(ωp) = ωsn(ωs) + ωin(ωi) [2]. Waveguides fabricated on SOI can be easily engineered to

tailor the e�ective index dispersion in order to full�l this requirement [53]. The opportunity to control and

precisely tune the geometric dispersion by engineering the waveguide cross section or shape, is one of the

major advatages of using Silicon Photonics for parametric processes over bulk media.

In this thesis work, particular attention will be devoted to Four Wave Mixing. As discussed in Section 3.1,

when FWM is stimulated by random vacuum �uctuations (Spontaneous FWM, or sFWM), it can produce

pairs of energy-time entangled photons [154, 155, 156]. As detailed in the next section, these are nonclassical

states of light which are of valuable interest for the emerging �eld of Quantum Silicon photonics.

The χ(2) nonlinear optics of Silicon is quite a new �eld of research, which acquired increasingly growing

attentions from the seminal paper of R.S.Jacobsen et.al. in 2006 [142]. The interests mainly lie on the

possibility to promote Silicon as CMOS compatible electro optic material. The latter is the ability of a

material to change its refractive index when a static electric �eld is applied. When this is induced by second

order nonlinearities, it is referred as Pockels e�ect. The amount of index change is linear with the applied

�eld, and what is most important, is instantaneous up to optical frequencies. This means that ultrafast

optical modulators, with improved speed and power consumption with respect to the ones based on plasma

carrier dispersion, can be implemented. The all Silicon modulators could replace the ones based on Lithium

Niobate [31]. Methods for breaking the centrosymmetry of the Silicon unit cell mainly rely on the application

of stressing materials, like Silicon Nitride, on the top of Silicon waveguides [139, 140]. As a consequence of

the applied stress, a non uniform strain is induced in the crystal unit cell, and the inversion symmetry is

removed. By doing that, Second Harmonic Generation (SHG) [157, 158, 159] and electro optic modulation

[142, 139, 138] have been demonstrated , and some of the χ(2) tensor elements have been extracted, with values

ranging from 40 pmV −1 at optical frequencies [157], to 336 pmV −1 in static regime [138]. In parallel, lots of

e�orts have been dedicated to �nd a theoretical link between the strain distribution and the magnitude of the
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χ(2) components [160, 161]. Recent works, demonstrated that the injection of free carriers accumulated at

the interfaces between Silicon and the straining material as a consequence of an applied voltage, signi�cantly

masks the electro optic modulation due to the Pockels e�ect [162, 163]. A method for distinguishing the

two contributions has been implemented on the basis of the di�erent timescales over which free carrier and

χ(2) nonlinearities act [79]. This work proved that, at DC regime, the value of the χ(2) should lie below

(8± 3) pmV −1 with −0.48GPa of applied compressive strain in a 1.6µm× 0.25µm cross section waveguide.

Chapter 4 will present this method in detail.

The enabling of χ(2) nonlinearities in Silicon is important also for quantum photonics applications. The

process of Spontaneous Parametric Down Conversion (SPDC), which is mediated by χ(2) nonlinearities,

converts a pump photon at frequency ωp into two energy-time entangled photons whose frequencies are

simmetrically located with respect to the pump one [164, 165]. The produced quantum state has correlation

properties which are very similar to the ones of the entangled state produced by sFWM. This aspect will be

covered in depth in Chapter 5.

1.3 Quantum Silicon Photonics

It is a well know fact that quantum mechanical e�ects can dramatically improve the performance for certain

tasks in communication, computation and measurement [166]. Of the various physical systems being pursued,

single particles of light (photons) have been widely used in quantum communication [167], quantum metrology

[168], and quantum lithography [169]. Photons are subjected to low decoherence e�ects, which means that

once a quantum state is prepared, the statistical uncertaintly on the �nal state produced by stochastic

interactions with the environment is very low [170, 171]. For this reason, photons are attractive quantum

bits (or qubits), and they have emerged as a leading approach to quantum information processing. Although

a number of photonic quantum circuits have been realized for quantum metrology [172, 173], lithography

[174], quantum logic gates [175, 176], and other entangling circuits [177, 178], these demonstrations have

relied on large-scale (bulk) optical elements bolted to large optical tables, thereby making them inherently

unscalable. In the last few years, Silicon photonics has been proposed as the ideal platform for the realization

of integrated quantum photonic circuits [171]. The latter are realized using the standard bulding blocks

already implemented in ONoC, like waveguides and directional couplers, but which operate at the single

photon level. Integration and light con�nenement provide natural tools for subwavelength stability of the

optical paths, complete mode overlap between interferring beams, and low propagation loss, which are the

most challenging task for the realization of high visibility classical and quantum interference. Practically all

the optical elements and the functionalities currently implemented in free space quantum photonic circuits

can be integrated on a single chip, even if only a limited set, like quantum sources, beasmplitters and

interferometers have been integrated at the same time. The �rst integrated quantum lightwave circuits

have been demonstrated on the Silica On Silicon (SOS) platform, rather than on SOI [171]. Waveguides

were patterned using standard photolithographic techniques on a Germanium and Boron Oxide doped Silica

layer deposited by �ame hydrolysis. With a refractive index contrast between the core and the cladding of

∼ 0.5%, single mode operation at a wavelength of 800nm was realized using waveguides with a cross section

of 3.5µm × 3.5µm. The SOS platform was chosen because of the transparency at 800nm, which lies in a

spectral region where Silicon Avalanche Photodiode Single-Photon Counting Modules (SPCMs) have their

peak e�ciency (∼ 70%). The �rst demonstrations, dated 2008, rely on Hong Ou Mandel (HOM) quantum

interference with (94.8±0.5)% visibility, controlled-NOT quantum gates with an average logical basis �delity

of (94.3± 0.2)% and a path-entangled state of two photons with �delity > 92% [171] . Later, in 2009, J.C.F

Matthews et. al. succesfully demonstrated multiphoton entanglement, and performed quantum metrology
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experiments using two and four photon entrangled states [179]. The visibility of the two and four photon

interference patterns were (97.2 ± 0.4)% and (92 ± 4)% respectively. Hong Ou Mandel interference with

recon�gurable visibility up to (98.2± 0.9)% has been also demonstrated using resistive elements for changing

the phase of an interferometer.

The developement of increasingly bright quantum sources at 1.55µm from sFWM or from SPDC of 775nm

pump photons allowed to promote Silicon has the core material of the waveguides. SOI wafers gradually

replaced the SOS ones, and fully CMOS compatible quantum circuits were then fabricated. In 2013, J.W.

Silverstone et. al. published a seminal work in which photon pairs produced by sFWM in two Silicon spiral

sources were directly manipulated on the same chip to deterministically prepare quantum states of light [180].

By using a thermal heater to tune the phase of one of the two sources, one could choose wheater the output

state is a split state, in which the photons travel into two di�erent spatial modes, or a N00N state, in which

both photons travel in the same spatial mode. O� chip HOM experiments were performed to test the degree

of entanglement of the pair and the purity of the split state, yelding visibilities of the two photon interference

fringes as high as (100.0± 0.4)%.
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Chapter 2

Chaotic dynamics in coupled resonator

sequences

In chapter 1, the thermo optic and the free carrier dispersion e�ects have been introduced as the main

mechanisms which a�ect the spectral response of Silicon resonators. Strictly speaking, these do not belong

to the class of linear e�ects. A shift in the refractive index induced by a change in temperature ∆T or by a

change in the free carrier concentrion ∆N (for simplicity, assumed unipolar) is re�ected in a perturbation of

the linear susceptibility ∆χ(1) given by:

∆χ(1) = ∆nth + ∆nFC = 2n0
dn

dT
∆T + 2n0σFC∆N (2.1)

where n0 is the unperturbed refractive index, and σFC = σFCD + i c2ωσFCA is the complex free carrier

dispersion coe�cient. The excess polarization ∆P is then ∆P = ε0∆χ(1)E, where E is the electric �eld.

Thus, the relation between P and E is still linear, even in presence of thermal and free carrier e�ects. This

is why they can not be classi�ed as nonlinear e�ects. However, if the change in temperature or in the free

carrier concentration is induced by the nonlinear material absorption, both ∆T and ∆N become dependent

on the light intensity, and the relation between P and E becomes nonlinear [181]. Only in this case, it is

possible to refer to thermal and free carrier nonlinearities. This fact can have important consequences on the

dynamics of the �eld inside optical resonators, since a nonlinear dynamic is often associated with chaos and

turbulence.

In this chapter, the impact of thermal and free carriers which are generated by TPA inside a chain of coupled

resonators is investigated. It will be demonstrated, both theoretically and experimentally, that when the

sequence of resonators is excited by a continuos wave pump beam, the intensity of the light at the output can

become unstable in time, showing a periodic self pulsing or chaotic �uctuations. While the �rst dynamics

can be observed even in single resonator, the latter is seen to be an e�ect of the coupling between several

resonators. The chapter is divided as follows: in the �rst section, the theory of the �eld dynamics in single

resonators under the action of thermal and free carrier nonlinearities is presented. Next, the experimental

evidence of unstable regimes is presented for both single and coupled resonators, and their connection with

the input exciting conditions is analyzed. In the rest of the chapter, the sensitivity of the system to small

changes in the initial conditions is tested, and the shape of the phase space reconstructed. From these

analyzes, the presence of chaotic instabilities are found. As a last step, it is investigated the possibility to

engineer a simple system constituted by three coupled optical cavities, in order to tune the onset of chaotic

oscillations by changing the device geometry.
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The experiments described in this chapter have been done in collaboration with Dr. Mattia Mancinelli and

Dr. Fernando Ramiro Manzano. Prof. Leonardo Ricci gave also an important contribution through helpful

discussions and hints.

2.1 Theory of optical resonators under thermal and free carrier non-

linearities

As discussed in Section 1.1.4.3, the temperature and the free carrier concentration in a resonator can be

altered through the use of heaters or PN junctions. However, as described above, these mechanisms do

not break the linear relation between the polarization P and the electric �eld E. This can only be done

if the temperature or the free carrier concentration are changed by nonlinear absorption. At a wavelength

of 1.55µm, the photon energy is ∼ 0.81 eV , which is less than the Silicon energy bandgap (1.1 eV ). Due

to this fact, linear absorption, that is the direct creation of an electro-hole pair by the absorption of one

photon, has vanishing probability. However, TPA, that is the simultaneous annihilation of two photons to

promote the transition of an electron from the valence band to the conduction band, is not forbidden by

energy conservation. As it will be shown later, TPA is a phenomenon which is mediated by the imaginary

part of the χ(3) of the material, and is only signi�cant when the optical intensity circulating in a waveguide

becomes of the order of the tens ofmW [181, 96], a value easily achievable in an optical resonator. The energy

diagram of the TPA process is sketched in Fig.2.1(b). When two photons at a wavelength of 1.55µm are

simultaneously absorbed, the sum of their energies exceed the Silicon bandgap, but their momentum is not

su�cient to perform the transition towards the conduction band. This is because the top of the valence band

does not have the same crystal momentum as the bottom of the conduction band. The transition becomes

possible if at the same time a phonon is created. The latter gives the required momentum to complete the

transition. As a consequence, the TPA process simultaneously promotes the creation of electron/hole pairs

and contributes to heat the material (phonons are created). The excess of carriers is itself a source of losses, a

phenomenon known as Free Carrier Absorption (FCA). In this process, sketched in Fig.2.1(c), the absorption

of a photon from an electron in the conduction band (or in the valence band) induces an intraband transition

to the quasi-continuum of energy states at higher energies. As before, the transition requires the creation of

phonons to conserve the momentum, and the temperature of the material raises.

Figure 2.1: Di�erent absorption mechanisms in Silicon at a wavelength of 1.55µm. (a) Linear absorption is
not allowed since the photon energy lies below the bandgap. (b) Two Photon Absorption. The energy of two
photons is used to overcome the energy gap, while the creation of a phonon allows to acquire the momentum
necessary to complete the transition toward the conduction band. (c) Free Carrier Absorption. An electron
in the conduction band absorbs a photon with the simultaneous excitation of a phonon. The same process
can occur for an electron in the valence band.
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In the next section, it is derived the equation of motion of the �eld inside an optical resonator under the action

of temperature and free carrier induced refractive index changes. The latter are caused by the �eld itself

through TPA and FCA. A full and more general derivation of the equation of motion is given in Appendix

A.

2.1.1 Equation of motion for the �eld

In what follows, the resonator is assumed to have a cylindrical symmetry. Without losing of generality, the

latter will be assumed to be a ring resonator of perimeter L. The jth eigenfrequency relative to the mth

spatial mode (indicated as ωmj) satis�es the equation:(
∇2 + ω2

mj

n2(r)

c2

)
ũmj(r) = 0 (2.2)

which is the Helmoltz equation in absence of material nonlinearites [182, 183] . In Eq.2.2, ũmj(r) is the

modal electric �eld distribution associated to the eigenfrequency ωmj , while n(r) is the refractive index of

the whole structure. In the experiments described later, the resonator supports only the fundamental spatial

mode, and the coupling between di�erent eigenfrequencies will not be considered. The opposite situation will

be considered in Chapter 6. In this case, it is possible to remove all the subscripts from both ωmj and umj ,

and write them as simply ω and u. The total electric �eld E, which is solution of Eq.2.2, can be written as:

E(r, t) =
1

2
A0u(r)eiωt + c.c (2.3)

where A0 is a constant amplitude. In order to simplify further, the �eld is assumed to be polarized mainly

in one direction of space, so Eq.2.2 is reduced to a scalar equation.

When a nonlinear polarization δPNL is induced as a consequence of the material nonlinearities, and at

the same time a refractive index change ∆n = ∆nth + ∆nfc occurs due to thermal and free carrier e�ects

(described by a change in the linear polarization δPL), the unperturbed �eld of Eq.2.3 is no more solution

of the (now) nonlinear wave equation [182, 183]. If the perturbation is small, it is possible to assume that

only the amplitude A0 is altered in the new solution, and replace it with a slowly varying envelope A(t). The

latter has the property that d2A(t)
dt2 � ω2A. Using this approximation, the equation of motion for the modal

amplitude A(t) reduces to (see Appendix A):

dA(t)

dt
=
iµ0c

2

ω
e−iωt

∂2

∂2t

ˆ
u∗q(r)

(
δPL + δPNL

)
dr (2.4)

where δPNL(r, t) and δPL(r, t) are given by:

δPL = 2ε0n0(∆nth + ∆nfc)(E + c.c) (2.5)

δPNL =
3

8
ε0χ

(3)|E|2E (2.6)

In writing Eq.2.6, the value of the χ(3) is an average of the projected tensor components along the radial

direction. Eq.2.4 can be rewritten in terms of the total energy Uint = |uint|2 stored inside the resonator by

using the fact that (see Appendix A):

uint =

√
ε0
2
A(t) (2.7)

By inserting the expression for δPL and δPNL in Eq.2.4, and by including the fact that the resonator is

excited from an external bus waveguide with an energy exchange rate η , one obtains (see Appendix A for
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the full derivation):

dũint
dt

= i [ω(1−∆(t))− ωp] ũint −
ũint
τtot(t)

+ i

√
2

τext
P0 (2.8)

in which the internal energy amplitude has been expressed in terms of a slowly varying envelope ũint and a

carrier term ei(ω−ωp) as uint(t) = ũint(t)e
−(ωp−ω)t. In Eq. 2.8, |P0|2 is the power of the incident laser, which

has a frequency ωp. The most important quantity in Eq.2.8 is the frequency perturbation ∆(t), which is

given by:

∆(t) =
σFCD
n0

∆̄N +
1

n0

dn

dT
∆̄T + γR|uint(t)|2 (2.9)

The de�nitions of ∆̄N,∆̄T ,τtot, τext and γ
R can be found in Appendix A.

It can be noticed that Eq.2.8 is the energy equation of a damped harmonic oscillator of fundamental frequency

ω that is perturbed in time by a quantity ∆(t). The latter is the sum of three contributions: a thermal

induced resonance shift, a free carrier based resonance shift and a Kerr shift [184, 99, 82]. The oscillator is

driven by an external force at frequency ωp , and has a variable decay time τtot. An e�cient coupling of

energy into the cavity is then possible only when the exciting frequency ωp is close to ω(1 − ∆(t)). If one

neglects the contribution of thermal, free carrier, and TPA e�ects, and solve Eq.2.8 for a steady state solution

ũint(t) = ũint0, one gets:

ũint0 =
−i
√

2
τext

P0

i(ω − ωp)− 2
τext

(2.10)

The modulus square of the expression above, which gives the total stored energy Uint = |ũint|2, then reads:

Uint =
2
τext
|P0|2

(ω − ωp)2 +
(

2
τext

)2 (2.11)

which is the lorentzian lineshape of the resonance. In the denominator, one can indentify 1
τext

as the FWHM

of the resonance, from which the quality factor is given by Q = ω
FWHM = ωτext. Eq.2.8 depends on ∆̄N

and ∆̄T , so it can not be solved if the temperature and the free carrier dynamics inside the resonator is not

known. This is why two additional equations have to be provided. This is the subject of the next section.

2.1.2 Rate equations for the carriers and temperature

Let's concentrate �rst on free carriers. These are created by TPA, so their generation rate GTPA will be

given by the power per unit time absorbed by TPA divided by 2~ω. Once a concetration ∆N is created

above equilibrium, the recombination process takes place to restore the initial concentration. The timescales

at which recombination acts is strongly dependent on the waveguide geometry, the quality of the interfaces

and the doping of the material. For Silicon nanowires with submicron dimensions, free carriers lifetimes are

typically of the order of τr = 500 ps−1ns [100, 101, 102]. The equilibrium concentration when simultaneously

TPA and recombination act will be the result of the balance between the two. In appendix A, the rate equation

is derived, which yields:

d∆̄N(t)

dt
= −

¯∆N(t)

τr
+GTPA(t) (2.12)

where the generation rate GTPA is given by:
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GTPA(t) =
c2βTPAΓFCA
n2

0(2~ω)V 2
FCA

|ũint(t)|4 (2.13)

The carrier con�nement factor ΓFCA and the FCA e�ective volume VFCA are de�ned as:

ΓFCA =

´
wg
n(r, z)6|u(r, z)|6 drdz´
n(r, z)6|u(r, z)|6 drdz

; V 2
FCA =

L2
(´
n(r, z)2|u(r, z)|2 drdz

)3
´
n(r, z)6|u(r, z)|6 drdz

(2.14)

The quartic dependence of GTPA on the internal energy amplitude ũint means that free carriers are mainly

generated when the optical power circulating in the resonator is high. This happens only when the input

laser frequency is very close to the resonance frequency.

A similar equation as the one of Eq.2.12 can be derived for the temperature dynamics. All the power which is

absorbed by the material contributes to raise its temperature. Di�erent contributions to the total absorbed

power come from TPA (PTPA) and FCA (PFCA). At the same time, the thermal energy of the resonator can

decay into the surrounding medium through conduction at the interfaces. The characteristic time scale τth at

which this occurs, depends on the geometry of the resonator and on the materials. The balance between the

absorbed power and the dissipated one governs the dynamics of the temperature, which can be demonstrated

(see Appendix A) to be given by:

d∆T

dt
= −∆T

τth
+
PTPA + PFCA

Mrescp
(2.15)

where Mres is the mass of the resonator and cp is the speci�c heat at constant pressure. The expressions for

the absorbed powers PTPA and PFCA are given by:

PTPA =
βTPAc

2

n0VTPA
|ũint|4 (2.16)

PFCA =
σFCAc|ũint|2∆̄N

2n0
(2.17)

with the TPA e�ective volume de�ned as:

1

VTPA
=

´
wg
n4(r, z)|u(r, z)|4 drdz

L
(´
n2(r, z)|u(r, z)|2 drdz

)2 (2.18)

In deriving Eq.2.15, the temperature pro�le has been assumed constant inside the waveguide core. This is a

good approximation since Silicon has an high thermal conductivity with respect to the Silica cladding. The

assumption of a constant pro�le allows to write ∆̄T = Γ∆T , where the con�nement factor Γ is de�ned in

Eq.1.2.

From the analysis of the above equations, it comes out that temperature and free carrier variations are

maximized when the ratio between the optical energy and the e�ective modal volumes (VFCA and VTPA)

is high. This is why thermal and free carrier nonlinearities are enhanced in high Q resonators, where the

optical energy is con�ned in small modal volumes.

2.1.3 Qualitative discussion of the solutions of the �eld equation

The �eld equation in (2.8) can be solved together with the temperature and the free carrier equations (2.15)

and (2.12) provided that a set of initial conditions is given. Depending on the relative orders of magnitude

between the time decay constants τext, τth, τr, the frequency of the input laser and the modal volume of

the resonator, Eq.2.8 can have a wide variety of solutions. The stability analysis of the latter has been
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widely investigated in the literature [120, 82, 185], so it will not be performed here. In this section, only the

qualitative features of the solutions are discussed.

As a �rst step, the di�erent types of solutions of Eq.2.8 can be roughly classi�ed on the basis of the position

of the input laser frequency ωp with respect to the resonance frequency ω. This is schematically shown in

Fig.2.2.
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Figure 2.2: The di�erent regimes that can be observed in a resonator under thermal and free carrier non-
linearities as a function of the input laser frequency ωp. At ωp < ω, thermal bistability and self pulsing
occur. The corresponding inset shows the hysteresis loop connected to thermal bisability. At ωp > ω, the
two regimes are optical limiting and self pulsing. In all the cases, the solution choosen by the system depends
on the cavity geometry and on the input power and wavelength conditions.

If ωp lies within the FWHM of the resonance, and on the blue side of ω (ω < ωp), Eq.2.8 can have three

solutions: a stable, a bistable and an unstable one. The stable solution is found at low input powers, where

the device response is linear. The bistable and self pulsing ones manifest at higher powers, since they are

the result of a nonlinear regime. The type of solution which is enstablished depends on di�erent factors,

which include the ratio between the quality factor Q and the modal volume Veff , the input laser wavelength

and the input pump power. In general, if Q
Veff

is su�ciently high, a thermal bistability creates the initial

conditions which are necessary for activating the self pulsing regime, otherwise only a bistable behaviour is

registered. Here, su�ciently high means that the �eld enhancement factor should be enough to generate a

number of free carriers which is capable to activate, after the thermal bistability, a subsequent free carrier

bistability, as it will be discussed in Section2.2. In the bistable regime, the output is always constant in time

but an hysteresis cycle is exhibited as the pump power is increased and decreased (see corresponsind inset in

Fig.2.2). Optical bistability is a direct manifestation of the thermo optic e�ect: consider for example a ring

resonator in AD conguration, and a frequency that initially is smaller than the resonance frequency; when the

input power is increased, the optical intensity in the resonator begins to grow, heating the material through

TPA. This decreases the spectral distance ω−ωp, since the correction ∆ of Eq.2.9 is negative. In other words,

the resonance frequency is pushed toward the one of the pump. A consequent enhancement of the internal

44



Chapter2. Chaotic dynamics in coupled resonator sequences

energy occurs, which in turn heats further the resonator. When the input power reaches a threshold, this

leads to a positive feedback mechanism that makes the resonance locking with the laser frequency (slightly

red detuned), determining a steep increase of the transmission intensity (point 1 in the inset of Fig.2.2). At

this point a further increase of the input power no longer leads to a positive feedback, so the output power

will again increase linearly with the input one. Then, when the input power is reduced, the transmitted

intensity decreases linearly up to a second threshold (point (2) in Fig.2.2). This is due to the fact that on

the right shoulder of the resonance, the feedback between the input power reduction and the internal energy

is negative. At the same input power the internal energy is now higher than it was at point 1, because the

resonator frequency is locked to the one of the laser. The negative feedback turns to positive at point 2, where

a steep decrease of the transmitted signal is observed and the original path is recovered, closing the hysteresis

loop. It is worth to note that a thermal hysteresis loop can only occur if at the beginning ω < ωp, becuse it

is the only condition to achieve a positive feedback. The threshold power at point (1) in the hysteresis loop

depends on the initial spectral distance |ωp − ω|. The more the spectral distance is increased, the higher is

the threshold power. This is because as |ωp − ω| increases, a larger resonance shift (i.e. higher temperature)

is needed to lock the resonance to the input wavelength.

If the laser frequency ωp is initially tuned on the red side (ω > ωp), Eq.2.8 still has three di�erent solutions.

One solution is stable, one is associated to optical limiting and the other one to self pulsing. The type of

regime which is entablished depends on the same factors which regulates the boundary between thermal

bistability and thermally induced self pulsing. In the optical limiting regime, as the input power is increased,

thermal e�ects dominate, with the result that the spectral distance ω − ωp increases. This in turn decreases

the Drop transmittance at the laser frequency (see inset which corresponds to optical limiting in Fig.2.2). It

comes out that after a �rst linear increase of the transmitted power, the latter saturates to a constant value

due to the continuos decrease of the transmittance at the laser frequency. The probability of activating a self

pulsing regime when ω > ωp is much lower than in the opposite case. This is because, as it will be discussed

in the next section, the activation of self pulsing requires a free carrier bistability. However, thermal e�ects

are stronger than free carrier ones, so if ω > ωp they will more likely set the system into the optical limiting

regime. In contrast to optical limiting and thermal bistability, in which the output power is constant in time,

the self pulsing regime is characterized by a periodic modulation of the transmitted intensity.

2.2 Hysteresis, optical limiting and self pulsing of a single cavity

In this section, the self pulsing of a single cavity is �rstly introduced from an experimental point of view. Then,

the behaviour will be interpreted using the theoretical model developed in Section 2.1. The use of the model

will be essential for connecting the time varying shape of the transmitted power to the internal dynamics of

carriers and temperature. At �rst, the di�erent regimes which are solution of Eq.2.8 are validated by the

experiment. Since only the self pulsing regime will be of interest for the following sections, the hysteretic

behaviour and the optical limiting one will be brie�y covered and not discussed in detail.

The resonator under test is shown in the inset of Fig.2.3. The ring is made by a bent waveguide with a width

of 500nm and a inner radius of 7µm. The resonator is realized on the SOI platform using 193nm DUV

lithography by CEA Leti [186]. The thickness of the Silicon layer is 220nm, while the lower and upper SiO2

cladding have a thickness of 1.5µm and 750nm respectively. The ring geometry is an AD con�guration. Two

500nm wide bus waveguides are evanescently coupled to the ring by means of a 160nm gap. The time and

spectral response of the resonator are investigated using the setup shown in Fig.2.3.
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Figure 2.3: Sketch of the experimental setup used to investigate the di�erent regimes shown in Fig.2.2. The
geometry of the resonator is shown in the inset.

A tunable infrared laser of 10 dBm of maximum output power is �ber coupled to an Erbium Doped Fiber

Ampli�er (EDFA), which can deliver more than 30 dBm of power. The output of the EDFA is sent to a

variable optical attenuator (VOA). A polarization controller sets the polarization to TE. The input signal is

then split by a �ber beamsplitter: 10% goes to an Optical Spectrum Analyzer (OSA) which gives a feedback

on the input power, while 90% goes to the sample. The coupling of light to the sample is made by using

a tapered lensed �ber of 2µm tip width and 16µm of working distance. To minimize the coupling losses,

a micrometric XYZ alignment stage is used. The �ne tuning of the alignment is done using piezoelectric

controllers. The whole coupling is monitored by an Infra-Red camera. A lensed �ber collectes the light

from the output, which is ampli�ed by 28 dB using a Booster Optical Ampli�er (BOA) before feeding a

photodiode. The latter has a bandwidth of 1GHz. The output of the photodiode is monitored in time

using an oscilloscope with more than 40GHz of bandiwidth. As shown in Fig.2.4, the hysteretic regime is

investigated by tuning the laser wavelength at λp = 1549.72nm, at +60 pm of spectral distance with respect

to the selected resonance order (centered at λ0 = 1549.66nm and with Q ≈ 10800).
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Figure 2.4: Normalized drop spectral response of the resonator at the resonance under test. The arrows
indicate the wavelengths of the input laser where the bistable and the optical limiting regimes are investigated.
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Using the VOA, and λp = 1549.72nm, the pump power is slowly increased from 0mW to 1.5mW (e�ectively

coupled into the waveguide), and the output power in the drop port is monitored. As it can be seen from

Fig.2.5, when the power is raised (black curve) the bistability occurs nearly at 0.7mW , and is manifested

by the steep increase of the transmitted power. The hysteretic behaviour is evidenced by the fact that the

jump in the transmittance occurs at a lower power than before (≈ 0.6mW ), when the power is successively

decreased (red curve), The black and the red curves in Fig.2.5 do overlap, a part between 0.6mW and 0.7mW

where two stable states are allowed, one at low transmitted power and the other one at high transmitted

power.
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Figure 2.5: The hysteresis loop found when the input laser wavelength is tuned at λp = 1549.72nm, which
is at +60 pm of spectral distance with respect to the selected resonance order. The black line indicates the
transmitted power in the Drop port when the input power is raised. The red line indicated the transmitted
power in the Drop port when the input power is decreased.

The system is then bistable, and sets to one or to the other state depending on the history, which would

allow realizing all optical memories [118]. The optical limiting regime is observed when the laser wavelength

is tuned at λp = 1549.54nm, at −120 pm from the resonance. As it can be noticed from Fig.2.6, as the

input power is increased, the transmitted power initially grows linearly, but after a certain threshold of about

0.2mW , it saturates to a constant value.
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Figure 2.6: The cavity in the optical limiting regime: the solid red curve is added to show the linear regime,
and its tangent to the blue curve at zero pump power. The blue curve is �ttted on experimental data using
the function a(1− e− xb ) + c, in which a = (3.13±0.03) ·102 µW, b = (4.94±0.06) ·102 µW , c = (−28±1)µW
.

It is worth to note that in both the optical limiting regime and in the hysteretic one, the time trace recorded

at the output of the photodiode is constant in time. This is not the case for the self pulsing regime, which is

registered at λp = 1549.84nm. As shown in Fig.2.7, the transmitted intensity is periodically modulated in

time, even if the input laser is continuous wave. The period and the shape of the oscillations depend on the

level of the input power. As the latter is raised, the period grows.
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Figure 2.7: Power tuning of the oscillation period at �xed wavelength, in this case λp = 1549.6nm. The
period and the shape of the oscillations become progressively similar to a sinusoid as the power is decreased.

In Fig.2.8, it is analyzed in detail the shape of a single period of oscillation, from which four di�erent features

emerged. These are labelled from (i) to (iv), and are characterized by di�erent shapes and time scales.
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Figure 2.8: The period of the waveform is divided in four distinct regions (from (i) to (iv)). Each of these
corresponds to a di�erent physical process, as described in the text.

In order to understand the physical mechanisms which are responsable of self pulsing, the system is simulated

through Eq.2.8 by using parameters which are as close as possible to the ones of the experiment. Fig.2.9

shows a comparison between simulation and experiment, and Table 2.1 summarizes the parameters of the

simulation.
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Figure 2.9: Comparison between theory and experiment when the cavity is in the self pulsing regime. The
red curve is obtained from the numerical integration of Eqs.2.12, 2.15, 2.8 using the parameters listed in
Table 2.1.

Parameter Value Source Unit
1/τext (51± 2) Experiment GHz
1/τ0 (0.33± 0.10) Experiment GHz
dn
dT 1.86 · 10−4 [96] K−1

σFCD −1.73 · 10−27 [96] m3

σFCA 1.1 · 10−15 [96] m2

βTPA 0.79 · 10−11 [187] m
W

n2 0.45 · 10−17 [187] m2

W

ΓFCA 0.99 FEM simulation -
Γ 0.92 FEM simulation -
n0 3.485 [96] -

VFCA 5.331 FEM simulation µm3

Veff 4.34 FEM simulation µm3

Mres 1.013 · 10−11 Experiment g

cp 0.7 [96] J
gK

1
τth

7.5 Fit MHz

|P0|2 (exp.) (4.92± 0.01) Experiment mW
|P0|2 (sim.) 4.92 Fit mW

1
τfc

250 Fit MHz

λp (simulation) 1550nm Fit nm
λp (experiment) (1549.84± 0.01)nm Experiment nm

λ0 (1549.66± 0.01)nm Experiment nm

Table 2.1: Parameters used in the numerical integration of Eq.2.12,2.15 and 2.8.

From the analysis of the temperature and of the free carrier dynamics shown in Fig.2.10(a), and from the

corresponding induced resonance shifts with respect to the input wavelength (Fig.2.10(b)), it is now possible

to identify the origin of the unstable regime and associate each of the four regions in Fig.2.8 to a speci�c

physical situation.
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Figure 2.10: (a) Normalized energy amplitude Uint (black curve), temperature variation ∆T (red curve)
and free carrier concentration ∆N (blue curve) during an oscillation cycle. The ranges of variation are
[3÷ 57] fJ for Uint , [5÷ 8.3]K for ∆T and [5 · 1015÷ 5.6 · 1017] cm−3 for ∆N . Regions from (i) to (iv) in the
coloured rectangles have the same meaning of the ones in Fig.2.8. (b) Total detuning (black) of the resonance
wavelength λ0 with respect to the one of the input pump λp, decomposed into the thermo optic (red) and
into the free carrier (blue) induced resonance wavelength shifts ∆λTOE and ∆λFCD respectively. The total
detuning is the sum of the initial detuning, the thermo optic contribution and the free carrier contribution.

Region (i): the resonance is initially slightly red detuned from the input wavelength, and a large number of

free carriers are generated through TPA due to the high internal energy density, determining a blue shift of

the resonance and a consequent free carrier bistability. The temperature grows at slower rate, making the

free carrier dispersion dominating at this stage. This process continues until the resonance is slightly blue

detuned from the input wavelength. At this point, the positive feedback that achieved bistability turns to

negative. The result of these steps is a �rst steep increase of the Drop transmitted intensity, followed by a

smaller rapid reduction when the maximum of the transmittivity is passed.

Region (ii): at this stage, the resonance wavelength is blue detuned with respect to the one of the input

laser, a condition which is favorable for thermal bistability. Thus, when the slow increase in temperature is

su�cient to activate a positive feedback mechanism, the resonance red shifts toward the input wavelength,

crossing the resonance peak and increasing again the transmittivity.

Region (iii): Once the resonance peak has crossed the input wavelength, the decrease of the internal energy

causes a fast decay of the free carrier population which further pushes away the peak, determining a steep

decrease in transmission and a large residual detuning.

Region (iv): Temperature now slowly decreases, and a consequent blue shift of the resonance is achieved,

until it is so close to the pump wavelength that the oscillation starts again.

The involved time scales are ∼ 6ns for the fast increase in the transmission of region (i), then ∼ 12ns for

region (ii), ∼ 6ns for region (iii) and ∼ 32ns for region (iv).

Even if in the above description the cycle starts when the resonance wavelength is slightly red detuned with

respect to the input wavelength, this does not correspond to the true experimental situation. In fact, as it
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can be noticed in Table 2.1, λp > λ0 . The reason why this occurs, is that the starting conditions of region

(i) are reached by a prior thermal bistability. The latter will set the resonance slightly red detuned from the

input wavelength. At this point, thermal e�ects no more contribute to shift the resonance, and a free carrier

bistability can occur. On the contrary, if at the beginning λp < λ0, thermal e�ects will in general dominate

over free carrier ones, and this will set the system into the optical limiting regime.

An illustrative and exemplifying view of what happes during an oscillation cycle is shown in Fig.2.11(a-c).
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61.354%

FCD 

38.461%

Kerr 

0.185%

d) % of contribution to resonance shift

Figure 2.11: From (a) to (c): di�erent frames in time illustrating the position of the resonance wavelength
with respect to the laser wavelength λp. The thermo optic e�ect (TOE) and the free carrier dispersion e�ect
(FCD) both contribute to shift the resonance wavelength by changing the modal e�ective index through
Eq.2.1. The shifts have opposite signs. This is illustrated by two springs which are locked to the resonance
and pull it into opposite directions. (d) Percentage contribution to the total shift of the resonance during
one cycle of oscillation. This has been split into TOE, FCD and Kerr contributions.

Two springs, corresponding to thermal and free carrier e�ects, pull the resonance wavelength in opposite

directions. Carriers pull toward the blue side with respect to the initial, or �cold� resonance wavelength,

while temperature pull on the red side. The two springs have di�erent damping times, in particular the

one representing free carriers damps much faster than the one representing temperature, even if the latter is

stronger (higher elastic constant). As a result, there is an interplay of the dominating dispersion mechanism,

with the result that the resonance oscillates back and forth with respect to the input laser wavelength,

determining a periodic modulation of the transmitted intensity. During the description of the physical

processes involved from region (i) to (iv) in Fig.2.10, only thermal and free carrier e�ects have been considered,

even if from Eq.2.9 it is evident that also the Kerr e�ect partecipates in the dynamics. In particular, the latter

pulls the resonance wavelength on the same side as the temperature. However, the strength of this shift is very

small compared to the ones induced by temperature and carriers. This becomes evident from Fig.2.11(d),

where the average strength of the resonance shifts occurring in one oscillation cycle is evaluated. This is

de�ned as the ratio between the resonance shift induced by a speci�c dispersion mechanism (temperature,

carriers, Kerr) over the total resonance shift ∆(t) , which is then averaged in time. The Kerr e�ect partecipates

only for the 0.19% of the total shift, which is a negligible contribution compared to the ones due to thermal

e�ects (61.35%) and due to carrier e�ects (38.46%).
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2.3 Periodic self pulsing and chaos in coupled resonator sequences

The main feature shared by all the waveforms shown in Fig.2.7 is that they are all periodic. The period

and the shape of the oscillations can be modi�ed by changing the input exciting conditions or the resonator

geometry, but nevertheless the system will never show aperiodic outputs. It has been theoretically proved,

on the basis of the stability analysis of the solutions of Eq.2.8, that a system composed by a single cavity will

never show a chaotic regime, regardeless of the input conditions [82, 99]. This is true provided that the only

nonlinearites which act are of thermal and free carrier origin. The question which naturally arise is: can a

single cavity show a chaotic output under the action of some nonlinear dispersion mechanism? The questions

has been addressed in many works. For examples, in many of them chaos is achieved by the inclusion of a

cm-size external cavity to a distributed feedback (DFB) III-V laser [188, 189], thus forming a multi-cavity

system. An alternative solution exploits Kerr nonlinearities in mm size silicon microresonators. In this way,

Armaroli et. al. predicted a chaotic regime in single resonators with short photon lifetime through an exotic

non instantaneous Kerr e�ect [185]. Nevertheless, in order to achieve such a slow χ(3) relaxation time (at ps

scale), the addition of metals and liquids to the silicon device has been suggested, which limits the resonant

cavity feasibility and the industrial manufacturing process.

These technical issues could be only faced by employing multi-cavity systems. In fact, there are some

theoretical studies that predict a broad chaotic regime for passive coupled cavities, like Coupled Resonator

Optical Waveguides (CROW) [190] or inline photonic crystal (PhC) nanocavities [191]. However, such models

consider the Kerr e�ect as the only intensity dependent perturbation to the refractive index, neglecting

thermal and free carrier ones. This is no longer valid in the continous wave regime, where, as shown in

Fig.2.11, free carriers and temperature e�ects dominate over Kerr ones. Therefore, the demonstration either

theoretically or experimentally of a Silicon-based device showing chaos is still open. In the next sections,

it is studied the nonlinear dynamics of a SCISSOR under thermal and free carrier nonlinearities. It is

demonstrated, both theoretically and experimentally, that the intracavity feedback of optical energy provides

the necessary input for the onset of chaotic oscillations.

2.3.1 System geometry

The schematic of the resonator sequence under study is shown in Fig.2.12(a). The SCISSOR device has

been fabricated on a 200mm wafer using 193nm DUV lithography. The SOI wafer consists of 220nm thick

Silicon layer laid on top of a 2µm thick buried oxide (BOX) layer with underlying the Silicon substrate.

After patterning and etching, a 745nm thick Silica layer was deposited to form buried single mode (in

TM polarization) channel waveguides of 500nm × 220nm cross section. The SCISSOR is composed by a

sequence of 8 ring resonators. The latter has a nominal inner radius of R = 7µm and are separated by

a distanceL = 22µm. They are evanescently coupled to the waveguides by means of a 300nm gap. The

number of resonators is determined by the amount of power which can be coupled into the Drop port by each

ring. With the considered design parameters, TMM simulations reveal that the input pump power is almost

totally depleted after 10 rings, so adding more cavities does not signi�cantly change the device performance.

The number of rings has then been �xed to 8. At a wavelength of 1.55µm, each resonator is designed to have

a resonance linewidth of 0.8nm, corresponding to a Q of ∼ 1900. The ratio between the resonator separation

and its perimeter is ∼ 0.5, a value which ensures the maximum feedback between the cavities [82]. To probe

the device spectral response, both in the high power and low power regime, it has been implemented the

experimental setup sketched in Fig.2.12(b). A near Infra-Red tunable laser ampli�ed by an EDFA was end-

�re coupled to the input waveguide through a lensed optical �ber. The position of the input (output) lensed
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Figure 2.12: (a) Sketch of the device geometry. The values of the parameters R and L are indicated in the
text. The SCISSOR is excited from the Input (In) port. Dropped and transmitted signals are recorded in
the Drop (D) and Through (T) ports, respectively. (b) Schematic of the experimental setup.

�ber is controlled with a closed-loop three-axis piezoelectric stage ensuring accurate and stable alignment

conditions. TM polarization was used. The signal power was controlled and monitored by using a VOA and

an Optical Spectrum Analyzer respectively. In addition, an external 38 dB �ber optic isolator blocked the

light back re�ected from the sample facet avoiding spurious e�ects in the EDFA. The signal polarization was

controlled employing two quarter-wave and one half plates placed in an U-bench module before inserting the

light into the input waveguide. An InGaAs camera with a 20× objective and 16× zoom lens recorded the

radiation scattered out of the surface of the SCISSOR. The output signal from the drop port was collected

with another lensed �ber and connected to a detection system, composed by a 1GHz photodetector and a

40GHz digital oscilloscope. To study the time evolution of the system, a 10GHz amplitude modulator was

employed to switch o� the input signal for a period of 1ms prior to the signal acquisition. This modulator

and the oscilloscope were electrically driven/triggered by an arbitrary function generator. The scattered light

from the top of the sample as a function of the input power and wavelength, and the time evolution of the

output signal, were remotely acquired by a computer.

2.3.2 Dynamic time response of the SCISSOR

At �rst, the low power spectral response of the device in the Drop port has been recorded to track the

position of the resonances. As already introduced in section 1.1.4.2, the Through spectra consists of a

sequence of regions of low transmissivity, where the input signal is resonantly coupled to the ring sequence

and is directed to the Drop port. Such wavelength regions represent the PBGs. The spectral response is

shown in Fig.2.13(a). From the zoom of one of the PBGs, shown in Fig.2.13(b), it is possible to notice the

presence of narrow transparency peaks inside the bandgap.
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Figure 2.13: (a) Spectral response of the SCISSOR at 1mW of pump power. The Drop transmitted intensity
is shown in the upper panel while the Through one is shown in the lower panel. The arrows indicate the
Resonator Band (RB) and the Bragg Band (BB) position. (b) A zoom of the PBG centered at 1542.75nm.
The RB and the BB are indicated with two coloured rectangles. CRIT peaks lie inside the dashed ractangle.
The solid red line is a �t of the experimental spectral response obtained using a Transfer Matrix simulation.

It is well known that these states are created by defects in the resonator sequence (CRIT e�ect) [87, 78, 82].

The observation of CRIT reveals that the rings in the sequence have optical paths slightly di�erent from each

other. As a consequence, the resonances of each cavity are not perfectly overlapped.

If the input power coupled into the waveguide is kept lower than 1mW , the output power in the Drop

port is found constant in time, which means that the system has still a linear behaviour. However, after a

certain threshold input power, this is no more true: depending on the input wavelength, a transition from

a static output to an unstable one is observed, exactly as it has been described for the single cavity of

section 2.2. When this occurs, the Drop(Through) intensity switches from its high(low) constant amplitude

to a time varying value. The phenomenon is resonance assisted since it only occurs when the input signal

wavelength lies in one of the PBGs. Fig.2.14 reports some of the observed Drop signal waveforms in the

1542.5nm− 1545.5nm PBG.
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Figure 2.14: (a) Top scattered light from the SCISSOR associated to the three waveforms shown in (b-
d), respectively. A schematic of the device geometry (white line on the scattering images) illustrates the
position of the rings in the chain. (b-d) Drop signal waveforms at di�erent input powers (Pin, coupled
in the waveguide) and wavelength (λp) combinations - (b) Pin = 20mW ; λp = 1543.225nm, (c) Pin =
13mW ; λp = 1543.17nm, (d) Pin = 14.5mW ; λp = 1543.99nm - showing six (b), three (c) and two (d) hot
resonators.

A common feature is the presence of sharp transitions from an high transmission state to a lower one and back,

creating short time intervals of low intensity separated by transient regions of slowly varying high intensity.

Typical time scales are 5ns for the sharp features and 70ns for the transient ones. The involved time scales

are the same of the self pulsing experiment described in Section 2.2, so the instabilities can be still associated

to thermal and free carrier e�ects. The out of plane scattered light signal shown in Fig.2.14(a) reveals that,

during the unstable regime, the energy is mostly localized in a limited number of resonators. The number of

resonators to which the input signal e�ciently couples is power and wavelength dependent. The complexity

of the Drop signal waveforms scales with this number, that can be de�ned as the number of �hot� cavities.

The term hot is here used since it corresponds to ring resonators where a high internal energy is accumulated

due to the resonant coupling with the input light signal. In Fig.2.14(a-d) it is shown that periodic outputs

are observed when a maximum of two resonators become hot. For more hot resonators, the output signal

shows complex aperiodic waveforms. The light pattern associated to the waveform in Fig.2.14(b) shows one

of the peculiarities of the SCISSOR geometry compared to that of a CROW or to a sequence of inline PhC

nanocavities. Even if the two central resonators are o� resonance due to fabrication defects, the energy �ow

along the chain is not interrupted and reaches the last three cavities.

2.3.3 Comparison between periodic and chaotic waveforms

The di�erent unstable regimes shown in Fig.2.14 are now analyzed from a more quantitative point of view.

In particular, some tests are performed to assess if the complex patterns as the one in Fig.2.14(b) are truly

chaotic or simply aperiodic. Indeed, the aperiodicity of some physical observable (the light intensity in

this case) is not always related to chaos. For example, the time evolution of the distance between two

pendulums which independently oscillate at frequencies ω1 and ω2, can be aperiodic if the ratio ω1

ω2
is not
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commensurable. By the way, the described system is clearly not chaotic. This can be easily detected from a

Fast Fourier Transform (FFT) of the signal, which would reveal the two main frequencies at ω1 and ω2. In

Fig.2.15, two Drop signal waveforms of Fig.2.14, one periodic and one aperiodic, are analyzed. This is done

to compare the distinguishing features of chaos to the ones of a periodic regime.

Figure 2.15: (a) Frequency distributions of the periodic and of the aperiodic Drop signal waveforms shown
in Fig.2.14(d) and in Fig.2.14(b). (b) Time evolution of two periodic (aperiodic) signals, indicated as run 1
and 2, which start from slightly di�erent initial conditions. Input powers and wavelength positions are the
same as in (a). (c) Reconstructed phase spaces of the system for the periodic and the aperiodic outputs in
(b). The reconstruction makes use of the Taken's theorem with m = 2 and τ = 8ns. (d) Cross correlation
between the two periodic (aperiodic) Drop signal waveforms in (b).

At �rst sight, the main di�erence between the waveforms in Fig.2.14(d) and in Fig.2.14(b) is the spectral

content. To extract the frequencies with which the sharp transitions recur, the two 50ms long sequences

are converted into binary ones by a digital Schmitt trigger (10ns of hysteresis time). In Fig.2.15(a) the

histograms of the inverse of the time lags between two subsequent rising edges are reported. The periodic

sequence has only one predominant frequency at 15MHz, while the aperiodic one is characterized by a wider

distribution in the 0.5MHz − 90MHz range. Similar considerations can be done by comparing the FFT of

the two time sequences (not shown in Fig.2.15). The FFT of the periodic sequence is made by a comb of

equidistant frequency peaks, spaced by the fundamental frequency of 15MHz. The FFT of the aperiodic

sequence is white, in the sense that there are not dominant frequencies. The complete lack of regularities and

the wide spectral content of the aperiodic sequence suggests the presence of chaos. One of the distinguishing

features of a chaotic dynamical system is the high sensitivity to the initial conditions. Two trajectories which

start from slightly di�erent initial conditions rapidly lose correlation as the system evolves. The sensitivity

to the initial conditions is proven as follows: the input signal of a given wavelength is square wave modulated

with a 2% duty cycle. The o� duration is nearly 1ms, which is su�cient to let the SCISSOR to relax and

thermalize with the environment. The experimental noise (chip temperature and pump intensity �uctuations)
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makes the initial conditions slightly di�erent every square wave edge front. The similarities of the generated

waveforms are monitored as a function of time by studying their cross correlation. Fig.2.15(b) shows that

two periodic sequences with small di�erent initial conditions evolve towards two identical signals that are

again periodic and slightly delayed. The case of two aperiodic outputs is di�erent: after few microseconds

(∼ 30µs), the waveforms completely lose their similarity. As shown in Fig.2.15(d), the cross correlation

between the two aperiodic sequences vanishes, meaning that the small perturbations of the initial state are

modifying the evolution of the system. To further investigate the presence of chaos, the concept of phase

space has to be introduced.

Given a system with Hamiltonian H(q,p, t) with R generalized coordinates q and R conjugate momentum

p, this generates a 2R− dimensional space, called the phase space, in which the system evolves. Each time,

the state of the latter is de�ned by a point in that space corresponding to the vector x = (q,p) . Given

the initial conditions x0 = (q0,p0), the vector x(t) will evolve in time following the Hamilton's equation of

motion, and it will generate a sequence of points in the phase space. The latter is called the trajectory of the

system. These concepts are illustrated in Fig.2.16, where the system is constituted by a simple pendulum

subjected to gravity.

 𝜃 + 𝜃 = 0  𝜃 + 𝜃 + 𝛾  𝜃 = 0  𝜃 + 𝜃 − 𝑓 𝑡 = 0

Equations of motion

The system Phase space
a) b) c)

Figure 2.16: Examples of phase space trajectories for a system constituted by a simple pendulum. The phase
space vector has two coordinates, q = θ (angular position) and p = dθ

dt (angular velocity). (a) Phase space
of an undamped pendulum. The trajectory is a closed curve. (b) Phase space of a damped pendulum. The
trajectory collapses toward a stable point. (c) Phase space of a pendulum which is driven by a stochastic
force f(t). In this example, at each time t the value of f is normally distribuited around zero. The equation
of motion associated to each phase space is shown at the bottom of each panel.

From panel (a) of Fig.2.16, which corresponds to the phase space associated to a periodic motion, it can

be noticed that the trajectory is a closed curve. When the system is purely dissipative, as in the case of

the damped pendulum in panel (b), the trajectory evolves toward a point, which is an equilibrium point

for the system. When the system is chaotic, as in the case of a pendulum subjected to a stochastic force

f(t) (panel (c)), some regions of the phase space get densely covered with points. Such regions are called

attractors. Intuitively, this happens because the stochastic force kicks the pendulum into random directions.

The pendulum is nevertheless forced by the gravity, by the length of the wire and by its inertial mass to

explore limited regions of space. Of course, the concepts of phase space, density of points and sensitivity to

initial conditions introduced above are very simplicistic. They have been introduced only to o�er a direct

insight to the qualitative features which distinguish a chaotic motion from a not chaotic one. In this sense,

they are not rigourous and do not pretend to o�er a complete comprehension of the concept of chaotic
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systems. This lies well outside the scope of this work.

From a more practical point of view, the phase space trajectory can not be traced except for very simple

systems. This is because it requires the knowledge of all the internal degrees of freedom of the system, and

usually most of them are not accessible. As explained in detail in section 2.3.5, in the present experiment

the dimension of the phase space is R = 24. However, the only (easily) measurable quantities are the

Through and Drop signal intensities. Given in this terms, it seems that it is not possible to extract any

information concerning the properties of the phase space. However, with the help of the Taken's theorem

[192], it is possible to construct an equivalent m−dimensional space by using m delayed versions of the same

system observable, which in this case is the Drop(Through) intensity. For m = 2 the generated space is two-

dimensional, while for m = 3 the space is three dimensional. It has to be pointed out that the reconstructed

space does not correspond to the one spanned by the vector x(t). Nevertheless, it preserves the properties of

the dynamical system. A closed trajectory in the original space will be mapped into a closed trajectory in

the reconstructed one, and an attractor will be mapped into an attractor of a di�erent shape. In Fig.2.15(c),

the reconstructed phase space is obtained for both aperiodic and periodic Drop signals. The trajectory is

traced by the vector x(t) = (D(t), D(t+ τ), D(t+ 2τ)), in which D(t) is the Drop intensity at time t, while

τ = 8ns is the delay time. There is no a general rule for choosing τ , even if some choices of the latter

allow to reconstruct the properties of the original space with more e�ciency and less data [193]. The same

holds for the dimension m. The use of 8ns ensures that the information carried by the fastest features

in the generated waveforms are correctly reproduced in the reconstructed space. As it can be seen from

Fig.2.15(c), the periodic sequence (green line) always retraces the same trajectory. The aperiodic sequence

has a trajectory that folds on itself several times with no preferential directions and results in a phase space

which is dense of points.

The high sensitivity to the initial conditions and the dense phase space are strongly indicators of chaos.

2.3.4 In�uence of the input initial conditions on the onset of chaos

The transitions between stable, periodic and chaotic regimes are seen to be regulated by the input signal

wavelength and power. The onset of the various regimes are studied in detail by performing an input power

scan from 5mW to 23mW (coupled in the waveguide) in the 1542.5nm− 1545nm range. The Drop signal

is recorded at each combination of input power and wavelength, then the phase space density is calculated

using a 2D reconstructed space with m = 2 and and τ = 8ns. The computation of the phase space density

proceeds as follows (refer to Fig.2.17 for the illustration of the method):

1. The Drop signal D(t) is recorded .

2. The 2D projection of the phase space is reconstructed using Taken's theorem and two delayed versions

of the recorded output, D(t) and D(t+ τ), with τ = 8ns. The �nal result is a plot which has D(t) on

the x-axis and D(t+ τ) on the the y-axis.

3. The signals D(t) and D(t + τ) are normalized to one, in order that the whole phase space has unit

volume.

4. The phase space is divided into a 100 × 100 matrix ρ. The element ρmn is set equal to one if the

corresponding element of the phase space grid contains at least one point of the plane trajectory

(D(t), D(t+ τ)), otherwise is set to zero.

5. The density is calculated as (
∑
mn ρmn) /104. The quantity 104 corresponds to the total number of

phase space accessible points.
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Results are shown in Fig.2.18(b).
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Figure 2.17: Illustration showing how the phase space density is calculated starting from a single recorded
Drop intensity D(t).
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Figure 2.18: (a) Experimental (black) and simulated (red) low power (< mW ) spectral response of the
SCISSOR in the 1542.5nm − 1545nm range. The resonance positions of each ring in the SCISSOR are
indicated with a vertical blue line. (b) Experimental phase space density as a function of the input power
and wavelength. (c) Simulated phase space density as a function of the input power and wavelength. Density
is computed as in (b) using simulated Drop signals. Colored dots indicate the combinations of input power
and wavelength at which the Lyapunov exponents, reported in Fig.2.21, are computed. Dots coordinates are
(21.0mW, 1543.11nm) for the red one, (17.8mW, 1543.91nm) for the green one and (13.3mW, 1543.59nm)
for the blue one.

High density regions, associated to the most complex and irregular Drop signal waveforms, are found at

high input powers and in the wavelength ranges where the ring resonances lie close together (Fig. 2.18(a)).

The approximate wavelength position of the latter are found by using a Transfer Matrix code to simulate

the SCISSOR's Drop spectra. Transitions towards lower density areas are smooth, indicating that chaotic
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outputs adiabatically turn to periodic ones before reaching stable states. No oscillations in the Drop signals are

observed for input powers below 5mW . It can be noticed that the densest regions resemble a triangle whose

basis is tilted toward larger wavelengths. In this way, the wavelength range in which complex oscillations

are found is more extended at higher powers rather than at lower ones. This can be understood from the

fact that, as described in Section 2.2, each oscillation starts with a thermal bistability, and the latter can be

activated at progressively larger spectral distances, between the pump and the resonance wavelength, as the

input power is increased. The information coming from the shape of the phase space density of Fig.2.18(b)

and from the scattered light patterns of Fig.2.14(a) can be merged together to qualitatively interpret the role

of the input exciting conditions on the onset of unstable regimes. The input wavelength selects which rings in

the sequence are on resonance, i.e the spectral position of the hot resonators. The increase of the input power

induces a resonance oscillation in the hot resonators similar to the one described in Section 2.2 for a single

cavity. As a consequence, the spectral response of the SCISSOR, which depends on the actual position of all

the resonances, gets time dependent. When many rings have close resonance positions, collective oscillations

can be activated at high input powers, which are associated to the localized scattering patterns of Fig.2.14(a).

The higher the number of hot cavities, the more the spectral response gets distorted and complex waveforms

are generated. In some cases, the e�ect of coupling leads to chaos. In principle, the presence of fabrication

defects is detrimental for the creation of collective excitations, since it limits the number of cavities having

overlapping resonances. Hovewer, defects can also induce localized states in which energy is trapped and

enhanced, leading to higher nonlinear e�ects [82, 99, 78].

2.3.5 Theoretical model of the coupled cavity system and computation of the

Lyapunov exponents

The theoretical model presented in Section 2.1 for a single cavity is extended to the system constituted by 8

coupled cavities. This is done in order to validate the qualitative deductions of the previous section and to

analyze the stability of the solutions. With reference to Fig.2.19, the internal energy amplitude ũjint of the

jth cavity evolves following the di�erential equation:

dũjint
dt

= i [ωj(1−∆j(t))− ωp] ũjint −
ũjint
τ jtot(t)

+ i

√
2

τext
(P jH(t) + P jL(t)) (2.19)
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Figure 2.19: Schematic of the coupled cavity system. Only three cavities are shown. Each resonator stores
an internal energy |ũjint(t)|2, with j = 1, ..., 8, and is excited from both the upper and the lower waveguides.
The straight waveguides make the light experience a phase φ during the propagation from one resonator to
the other. The energy is coupled from the bus waveguides to the resonator with a rate η, and at the same
time it is dissipated through scattering loss, TPA and FCA. This results in a total photon lifetime of τtot.
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Eq.2.19 has exactly the same form of Eq.2.8 but now the external excitation is provided both from the upper

and from the lower waveguides. The incoming power amplitudes are P jH(t) and P jL(t) respectively, and are

given by:

P jH(t) = e−iφ
(
P j+1
H (t) + i

√
2

τext
ũj+1
int (t)

)
(2.20)

P jL(t) = e−iφ
(
P j−1
L (t) + i

√
2

τext
ũj−1
int (t)

)
(2.21)

in which φ = 2π
λ neffL is the phase acquired during the propagation in the straight waveguide sections

connecting the adjacent cavities. The coupling rate is assumed to be the same for all the cavities and equal

to η =
√

2
τext

. Each cavity has a di�erent resonant frequency ωj due to the presence of fabrication defects, a

fact supported by the observation of CRIT peaks inside the PBG. The propagation and bending lossess have

been measured to be 2 dBcm−1 . Needless to say, in addition to Eq.2.19, each cavity comes with two more

equations, one for the internal temperature and one for the free carrier concentration. The global system is

then described by 24 di�erential equations (Eq.2.19 is complex, so it has to be counted twice, one for the real

part and one for the imaginary part). The model consider a strictly unidirectional propagation, backward

waves generated by surface roughness have not been considered. The set of equations has been integrated

using a variable order solver. At t = 0, which corresponds to the initial step, all the cavities are assumed

to have internal energy equal to zero. The same is true for ∆T and ∆N in each cavity. The accuracy of

the model is tested by comparing simulations with experiment at the same input power and wavelength

conditions. Most of the simulation parameters were found by �tting the low power spectral response of

Fig.2.18(a). The complete list of the simulation parameters is presented in Table 2.2. Fig.2.20 shows the

agreement between a simulated periodic Drop signal waveform and an experimental one.

Figure 2.20: Comparison between simulation (red line) and experiment (black line) for an input power of
14.5mW and an input wavelength of 1543.99nm.

The perodicity of the signal is a fundamental requirement for a correct comparison. In fact, it relaxes the

choice of the initial conditions in the neighborhood of the ones of the experiment, which are not exactly

known. This would not be possible for chaotic outputs due to the high sensitivity to the input initial

conditions. Using simulated Drop signals, the phase space density diagram in Fig.2.18(c) is generated, which

closely resembles the one of Fig.2.18(b). High density areas distribution, intensity and shape are in agreement

with the experiment.

To theoretically prove the existence of a chaotic regime, the stability of the solutions of Eq.2.19 is evaluated

by calculating the Lyapunov exponents (LE) by integrating the Jacobian of the system of equations (2.19)
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Parameter Value Source

λi = 2πc
ω0i

i i
1 1543.00nm 5 1544.21nm
2 1542.92nm 6 1542.83nm
3 1542.80nm 7 1542.79nm
4 1543.67nm 8 1543.06nm

Fit of spectra in Fig.2.18(a)

1/τext (107± 5)GHz Experiment
1/τ0 (17± 1)GHz Experiment
1/τfc 220MHz Fit
1/τth 7.2MHz Fit
L 22.03µm Fit
neff 1.78 FEM
V 2
eff 8.85µm3 FEM

V 2
FCA 49.47µm3 FEM
Γ 0.58 FEM

ΓFCA 0.99 FEM
λexpp (1543.91± 0.01)nm Experiment

λp 1543.99nm Fit
|P 0
L|2 (experiment) (13.33± 0.01)mW Experiment
|P 0
L|2 (simulation) 14.5mW Fit

Table 2.2: Values of the simulation parameters used to generate the red curve in Fig.2.20.

using a QR factorization algorithm [194]. The latter are indicators on how fast two phase space trajectories

xx0
(t) and xx0+∆(t), which start from slightly di�erent initial conditions x0 and x0 + ∆ , separate from each

other. In order to get an immediate feeling on the concept of LE without developing a full theory (which lies

outisde the scope of this work), it is possible to consider a more simple one dimensional problem. Given again

two solutions xx0
(t) and xx0+∆(t), which are generated by the hamiltonian of the system starting from two

slightly di�erent initial conditions, their separation d = |xx0
(t) − xx0+∆(t)| can be demonstrated to evolve

in time as d(t) = ∆eλet [195]. The quantity λe is called the Lyapunov exponent of the system. It comes

out that a positive LE implies ultra-sensitivity to the initial conditions, since the distance between the two

trajectories exponentially increases with time. This is why positive LE are often associated to chaotic regimes.

A LE which is equal to zero implies that the system dynamics is not in�uenced by the choice of the initial

conditions, because xx0+∆(t) will keep the same initial distance ∆ from xx0(t). The two trajectories will stay

very close to each other as the time evolves. A negative LE implies that xx0+∆(t) and xx0(t) will collapse to

the same trajectory or toward a �xed point as the time evolves. This is the case of dissipative systems. If the

system has dimension R, it will have R Lyapunov exponents [195]. In this case it is the sign of the Largest

Lyapunov exponent (LLE) which determines the system dynamics, while the very same considerations done

for the unidimensional system still apply. LEs are evaluated at three di�erent combinations of power and

wavelength, corresponding to regions of low, medium and high phase space density, respectively (colored dots

in Fig.2.18(c)). Figure 2.21 reports the six LLEs for each combination. The lowest density region has all the

LLEs lower than zero, which is associated to a stable output. The medium density one has the maximum LE

equal to zero, which implies a stable periodic motion. Finally, the region of highest density admits a positive

LE. This constitutes another demonstration that a chaotic regime is allowed in the SCISSOR device.
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Figure 2.21: System stability analysis through Lyapunov Exponents (LE). At each combination of input power
and wavelength position, indicated with colored dots in Fig.2.18(c), the spectrum of Lyapunov exponents
of the SCISSOR is computed. As the time evolves, curves in each panel converge to the values of such
exponents. Only the largest six LEs are plotted in each panel. The Drop signal waveforms (not shown) is
constant in the case of the blue dot, periodic for the green one and chaotic for the red one.

2.3.6 Tuning the onset of chaos with the device geometry

Up to now, chaos has benn reported for a given SCISSOR geometry with 8 resonators. A reliable relation

between the SCISSOR parameters and chaos would be of much more interest for device engineering. However,

an 8 cavity system has too many degrees of freedom to easily derive a relationship between the onset of chaos

and the device parameters, or with the combinations of input power and wavelength. To achieve this goal,

it is convenient to reduce the number of coupled resonators. The computation of Lyapunov exponents did

not reveal any positve LE up to three coupled cavities. It comes out that the minimum number of coupled

resonators required to generate chaos in the SCISSOR con�guration is three. The investigated geometry is

shown in Fig.2.22(a).
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Figure 2.22: (a) Sketch of the device geometry. By moving from left to right, the three rings have resonance
wavelength λ1 = λ3 + δλ, λ2 = λ3 − 0.1nm and λ3 respectively. The input signal wavelength is set to
λp = λ3 +0.075nm. Vertical red lines show the input wavelength λp and λ2, respectively. The ring separation
is chosen to give a phase delay of π to light which propagates in the straight waveguide sections. Each cavity
has a linewidth of 0.8nm. (b) Phase space density as a function of the parameter δλ and of the input power.
Contour lines separate the regions where the largest Lyapunov exponent turns from negative (labelled Stable)
to null (labelled SP, for Self Pulsing regime), null to positive (labelled Chaos) and vice versa.

To further simplify the model, the resonant wavelength of the �rst ring and the input power were set to

be the only variables, as depicted in Fig.2.22(a). The �rst cavity, being directly connected to the input

port, plays a crucial role in the dynamics of the whole structure. The input wavelength λp has been set

slightly red detuned with respect to the third cavity resonance λ3. At each combination of input power and

�rst resonance position λ1 = λ3 + δλ, the density of the phase space and the corresponding spectrum of

Lyapunov exponents have been computed. Contour lines separating regions of positive (chaotic), null (stable

oscillation) and negative (stable state) LLEs are then superimposed to the phase space density plot. The

result is shown in Fig.2.22(b). Chaos is found, at similar powers, both on positive and negative δλ, but

with the important di�erence that the associated phase space densities, hence the complexity of the output

waveforms, are higher at negative detunings. This is due to the fact that at positive δλ, the �rst cavity

gets red detuned with respect to the input wavelength, and then works in the optical limiting regime. Its

resonant wavelength is then pushed away from the other two, reducing the optical feedback that provides.

The power threshold for the onset of chaos is also much more irregular at positive δλ, while it is quite �at on

the other side. Therefore, in spite of the simplicity of the model, a reliable recipe to achieve chaos is found:

to obtain a uniform threshold power for a complex chaotic output, all the three cavities must be blue detuned

with respect to the input signal wavelength.This is not surprising since the chaotic regime requires the self

pulsing of resonators, and, as it has been described in Section 2.2, this will most likely occur when the input

wavelength is red detuned with respect to the cavity resonance.
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2.4 Generation of random bit sequences using chaotic waveforms

The observation of chaos in a SCISSOR could be relevant for the generation of random data sequences, both

in the electrical and in the optical domain. In this context, a SCISSOR based random number generator

will be conceptually simple and easy to fabricate while preserving the �exibility of Silicon Photonics, which

allows integrating them with other photonic components to realize complex optical functions in a single chip.

In order to demonstrate the capability of the SCISSOR to generate a random bit sequence, the same data

post processing discussed in the work of Kanter et.al. is applied to a chaotic signal seed [196]. The post

processing consists in computing the nth numerical derivative of the signal, then converting each point into

a binary value (using a 8 bit (32 bit) ADC), and assembling the �nal sequence by taking the 5 (15) less

signi�cant bits (LSB) from each point. In what follows, the rough chaotic signal has been recorded at an

input power of 15mW and at an input wavelength of 1543.848nm . The sequence is 5ms long and has been

sampled with a 20GS digital oscilloscope with 5ns of temporal resolution, yelding a total number of 107

sampled points. Since the derivative stage enhances the high frequency electronic noise superimposed to the

deterministic signal, a moving average �lter has been used on the rough sequence to increase the signal to

noise ratio (SNR). With this step, the random properties of the �nal bit sequence would arise mostly from

the deterministic part of the signal and less from the stochastic noise. The �lter allows to achieve a SNR of

≈ 16 (on the derived sequence) and at the same time does not tailor the sharp spikes of the deterministic

signal. The randomness of the �nal sequence is evaluated using the statistical test suite provided by the

National Institute of Standards and Technology (NIST) [197]. This consist in a series of tests that a sequence

of bits has to pass in order to be classi�ed as a random sequence. In a perfectly random bit sequence, each

bit has an equal probabily to be zero or one. The highest bitrate that passed all the NIST tests is 1Gbps ,

and has been reached using the post processing parameters listed in Table 2.3. The reports of the statistical

tests are shown in Table 2.4. It has been found that the sampling rate of 200MHz was too high to generate

uncorrelated points, so the latter has been halved. To verify that the SNR iwas su�ciently high to exclude

any contribution from the stochastic noise to the randomicity of the �nal bit sequence, the NIST tests were

performed on the electronic noise alone, using the same post processing parameters of Table 2.3. As it can be

seen from the report of Table 2.4, the electronic noise did not pass three tests, meaninig that the noise level

superimposed to the deterministic signal was indeed very low after the averaging stage. Furthermore, to also

exclude that the randomicity of the sequence may have originated from the post processing steps, the NIST

tests have been performed on a quasi-periodic signal, recorded at an input wavelength of 1543.893nm and

at 15mW of input power. The signal is quasi-periodic in the sense that a small jitter ∆T on the period T is

present, but ∆T/T � 1 holds. The post processing parameters were again the ones listed in Table 2.3. The

reports of Table 2.4 show that the bit sequence did not pass many tests, meaning that the random properties

of the bit sequence arised from the chaotic nature of the signal seed.

Post processing parameter Value
Temporal resolution of derivatives points 10ns

Number of derivatives 4
Total bits of the digital ADC 13

LSB 10

Table 2.3: Values of the post processing parameters used to generate the 1Gbps sequence. The digital ADC
has 13 bits instead of the 8 of the oscilloscope which recorded the rough sequence. However, as discussed
in [196], the derivative stage ensures that no redundancy is introduced in the sequence in the case of higher
resolutions.
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Test description Chaotic sequence Noise sequence Quasi-periodic sequence

Frequency Passed Passed Not passed

Block Frequency Passed Passed Passed

Cumulative Sums Passed Passed Not passed

Longest runs of ones Passed Passed Passed

Runs Passed Not passed Passed
Rank Passed Passed Passed

FFT Passed Passed Not passed

Non overlapping template Passed Not passed Not passed

Overlapping template Passed Passed Passed

Random excursions Passed Passed Not passed

Random excursions variant Passed Passed Passed

Universal test Passed Passed Passed

Approximate entropy Passed Not passed Not passed

Serial test Passed Passed Passed

Linear complexity test Passed Passed Passed

Table 2.4: List of the results of the NIST statistical tests performed with the chaotic signal, the electronic
noise and the quasi periodic sequence. The tests have been performed analyzing 98 sequences of 1Mbit each.

The fact that it has not been possible to raise the bitrate over 1Gbps was due to the intrinsic timescales of

thermal and free carrier nonlinearities. The thermal decay of region (iv) in Fig.2.10 has a characteristic time

scale at the order of ∼ 30ns, which correspond to a decay rate of ∼ 30MHz. This means that the waveform

has a �nite correlation time, which limits the time interval over which two sampled points can be considered

to be completely independent. The use of increasingly complex post processing algoritms help to decrease

the correlation time of the original sequence, but of course there will be some maximum achievable bit rate.

The latter is dictated by the timescales of the orginal process. In order to further increase the bitrate, faster

chaotic waveforms are required, which means that one has to look for other modulation mechanism rather

than thermal and free carrier ones.

2.5 Conclusions

In this chapter, the in�uence of thermal and free carrier e�ects on the temporal response of Silicon resonators

have been studied. When the variation in the temperature, or in the free carrier concentration, arises from

TPA, the associated refractive index changes become dependent on the light intensity. As a consequence,

the dynamics governing the internal energy can be strongly nonlinear, even if χ(3) e�ects are negligible. In

a single optical resonator, several regimes can be enstablished. The one which sets in is determined by the

characteristics of the cavity as well as from the input exciting conditions. On the same ring resonator, with

Q = 10800 and modal volume Veff ≈ 5µm3, a bistable output, an optical limiting regime and a self pulsing

one. The latter consists in a periodic modulation of the transmitted intensity in time, even if the input

excitation is continous wave. Self pulsing is seen to arise as a consequence of the periodic interplay between

the resonance shifts induced by thermal and free carrier e�ects. The signs of the thermo optic shift and

of the free carrier dispersion coe�cient are opposite, so the resonance wavelength is made to oscillate with

respect to the initial position in time. If the laser wavelength is tuned near resonance, also the transmittivity

follows the oscillation, modulating the transmitted power. When many resonators are coupled together in

the SCISSOR con�guration, a new dynamic and chaotic regime enstablishes together with self pulsing. When

this occurs, the light intensity at the output of the device randomly �uctuates and becomes unpredictable.

The system possesses very high sensitivity to initial conditions and the generated waveforms completely lack

of self similarities as the time evolves, creating a phase space which is dense of points and whose shape
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resembles that of a strange attractor. All these features are strongly indicators of the presence of chaos.

The conditions which regulate the onset of chaos are studied. The input laser wavelength and the input

power must be chosen to set as many cavities as possible in the self pulsing regime. When a joint oscillation

of three or more cavities is activated, the intracavity feedback of optical energy turns the independent self

pulsing of each cavity into a collective chaotic oscillation. The system geometry has also a strong in�uence on

chaos. If the resonances of the coupled resonators do not overlap, the collective oscillation is limited to few

cavities, which does not result in a chaotic motion. Cavities have also to be designed with a su�ciently high

Q/Veff ratio to let self pulsing to occur. At the end of the chapter, it has been explored the possibility to

use the chaotic waveforms as input seeds for the generation of random bit sequences. Using a post processing

algorithm on a rough chaotic waveform, it has been possible to generate a 1Gbps random bit sequence which

passed all the NIST test of randomness. The bitrate of the SCISSOR based random number generator is

fundamentally upper limited by the timescales of thermal and free carrier nonlinearities, which are at the

order of ∼ 30ns. The corresponding raw bitrate, which is ∼ 30MHz, has been enhanced by two orders of

magnitude with the use of a post processing algorithm. Nevertheless, it seemed that this is the maximum

achievable value. To further increase the bitrate, intrinsically faster nonlinearities are required.

68



Chapter 3

Multimodal Four Wave Mixing in Silicon

waveguides

This chapter addresses the study of Multimodal Four Wave Mixing (MMFWM) in straight Silicon waveguides.

Together with Chapter 4, it belongs to that part of the project SIQURO which aims to the realization of

integrated sources of correlated photon pairs. In the �rst part, the concepts of Stimulated and Spontaneous

FWM (sFWM and SFWM respectively) are introduced. The technique of MMFWM is then discussed as a

tool for achieving an e�cient process at large spectral distances from the pump, a task which will be di�cult

to realize using standard FWM in which all the �elds involved in the process propagate in the same spatial

mode order. Since the MMFWM technique requires the ability to selectively excite speci�c mode orders

in the waveguide, the problem will be faced using two di�erent approaches. The �rst method exploits the

interference of two oblique beams to create a standing wave pattern at the waveguide input facet which

selectively excites a speci�c mode order in the waveguide. Unfortunately, this method proved to be not

e�cient for observing MMFWM. For this reason, a second approach has been developed. The latter relies

on the excitation of higher order modes in the waveguide using tilted lensed �bers. Using this method,

Stimulated MMFW will be demonstrated for several modal combinations and for di�erent waveguide widths.

Even if the tilted �ber approach has been su�cient for observing Stimulated FWM, the losses were still too

high for observing the spontaneous counterpart. This is why, at the end of the chapter, the design and the

simulation of an integrated interferometer which mimics the oblique beam interference is proposed. In the

integrated version, losses get greatly reduced, and sFWM could in principle be observed.

The experiments described in this chapter have been done in collaboration with Dr. Mattia Mancinelli and

Mr. Stefano Signorini, who also performed the major part of the simulations.

3.1 Stimulated and Spontaneous FWM in straight Silicon waveg-

uides

The process of SFWM is �rstly introduced. FWM is a process which is mediated by the χ(3) nonlinearity of the

material, and which couples four waves at frequencies ωi, with i = 1, 2, 3, 4. Suppose that the χ(3) material, of

index of refraction n(ω), in�nitely extends over the transverse dimensions x and y, where the term transverse

applies to the z direction, along which light is propagating. The total electric �eld constituted by the four

waves can be written as E(z, t) =
∑
i

1
2

(
Ai(z)e

i(ωit−kiz) + c.c
)
, in which ki = ωi

c n(ωi) is the wavevector

and Ai(z) is a slowly varying envelope. The latter condition implies that d2Ai
d2z � ω2

iAi. The amplitudes Ai
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are normalized in such a way that the light intensity |Ii|2 is given by |Ii|2 = 1
2Z |Ai|

2 (Z =
√

µ0µr
ε0εr

is the

characteristic impedance of the medium). In absence of χ(3) nonlinearities, each of the four waves evolves

following the Helmoltz equation:

(
∇2 + k2

i

)
Ei = 0 (3.1)

which gives Ai(z) = Ci, where Ci are constants which depend on the value of the �eld at z = 0. In other

terms, each wave evolves freely and they are not coupled. In particular, if the initial amplitude Ci = 0, then

there is no possibility that such frequency will be generated inside the material. The picture changes when a

χ(3) nonlinearity is present. In this case, the Helmoltz equation modi�es to the more general wave equation

[51, 2]: (
∇2 − n(ω)2

c2
∂2

∂2t

)
E = µ0

∂2PNL

∂2t
(3.2)

where the nonlinear polarization PNL is given by:

PNL = ε0χ
(3)E3

= ε0χ
(3)
∑
ijk

(
1

8
AiAjAke

i(ωi+ωj+ωk)te−i(ki+kj+kk)z +
3

8
AiA

∗
jAke

i(ωi−ωj+ωk)te−i(ki−kj+kk)z

)
+ c.c

(3.3)

Each of the index i, j, k runs from 1 to 4. From Eq.3.3, it can be seen that new frequencies are created.

These are ωijk = ωi + ωj + ωk and ω′ijk = ωi − ωj + ωk. Both terms involve the interaction of four waves

(ωijk, ωi, ωj , ωk), reason why they are called Four Wave Mixing terms. The left hand side of Eq.3.2 has

terms which oscillate in time as eiωlt, so they are coupled only to those terms at the right hand side which

oscillate at the same frequency. Since, in general, ωijk 6= ω
′

ijk, only one of the two terms of Eq.3.3 has to be

considered. If ωl = ωi + ωj + ωk, then the coupled term is the one at ωijk, otherwise if ωl = ωi − ωj + ωk,

only the term at ω′ijk has to be kept. In what follows, it is assumed that only the term at ω
′

ijk partecipates

to the FWM process. In general, it is customary to refer as FWM the interaction of four waves which satisfy

ωl = ωi − ωj + ωk, while the process ωl = ωi + ωj + ωk is called sum frequency generation. Third harmonic

generation is a special case of sum frequency generation, in which ωi = ωj = ωk. The equality:

ωl = ωi − ωj + ωk (3.4)

is called the energy conservation relation. In a quantum mechanical description, Eq.3.4 corresponds to the

annihilation of two photons at frequencies ωl and ωj with the simultaneous creation of two photons at

frequencies ωi and ωk. This is sketched in Fig.3.1(a).

70



Chapter3. Multimodal Four Wave Mixing in Silicon waveguides

a)

ℏ𝜔𝑙
𝜒(3)

ℏ𝜔𝑖

ℏ𝜔𝑘

ℏ𝜔𝑗

b)

-15 -10 -5 0 5 10 15

0,0

0,2

0,4

0,6

0,8

1,0

 

 

F
W

M
 E

ff
ic

ie
n

c
y
 (

n
o

rm
.U

.)

k (cm
-1
)

 L = 1 cm

 L = 2 cm

 L = 3 cm

Figure 3.1: (a) Description of FWM in terms of photons. Two photons at frequencies ωl and ωj are annihilated
for creating other two photons at frequencies ωi and ωk. (b) E�ciency of the FWM process as a function of
the phase mismatch parameter ∆k for di�erent values of sample length L.

Without losing in generality, it is possible to set ωl = ω1, ωi = ω2, ωj = ω3 and ω4 = ωk into Eq.3.4. By

inserting the expression for the �eld E into Eq.3.2, and by using the slowly varying envelope approximation

introduced above, one obtains the set of coupled equations:

dI1
dz

= −iγ1

[
(2|I2|2 + 2|I3|2 + 2|I4|2 + |I1|2)I1 + 2I2I

∗
3 I4e

−i∆kz] (3.5)

dI2
dz

= −iγ2

[
(2|I1|2 + 2|I3|2 + 2|I4|2 + |I2|2)I2 + 2I1I

∗
4 I3e

−i∆kz] (3.6)

dI3
dz

= −iγ3

[
(2|I2|2 + 2|I1|2 + 2|I4|2 + |I3|2)I3 + 2I2I

∗
1 I4e

−i∆kz] (3.7)

dI4
dz

= −iγ4

[
(2|I2|2 + 2|I3|2 + 2|I1|2 + |I4|2)I4 + 2I1I

∗
2 I3e

−i∆kz] (3.8)

where γi = 2n2ωi
c and:

∆k = k2 − k3 + k4 − k1 (3.9)

The quantity ∆k is called the phase mismatch parameter. The various terms on the right hand side of

Eqs.3.5-3.8 have di�erent meaning:

� The term proportional to |Ii|2 in the equation for Ii is called Self Phase Modulation (SPM). For example,

if Eq.3.5 is solved neglecting the term I2I
∗
3 I4e

−i∆kz and the ones proportional to |Ij |2 with j 6= 1, one

gets I1(z) = I10e
−iγ|I10|2z. Then |I1|2 in�luences the phase of the same I1. This is why it is called

SPM.

� The term proportional to |Ij |2 in the equation for Ii, with i 6= j, is called Cross Phase Modulation

(XPM). For example, if Eq.3.5 is solved neglecting the term I2I
∗
3 I4e

−i∆kz and the one proportional

to |I1|2 , one gets I1(z) = I10e
−i2γ(|I20|2+|I30|2+|I40|2)z (the �elds Ij with j 6= 1 have been assumed

in the form Ij = Ij0e
iφj , i.e, they do not change their amplitude during propagation. This is an

approximation.). The intensity of the �elds 2, 3 and 4 (|I2|2, |I3|2 and |I4|2 respectively) in�luences the
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phase of the �eld 1. This is why it is called XPM.

� The term proportional to 2IiI
∗
j Ike

−i∆kz is called the FWM term, and acts as a polarization source for

the �eld at frequency ωl = ωi − ωj + ωk.

The FWM process which is of interest for the generation of photon pairs is the one in which ω1 = ω3 = ωp,

and it is sketched in Fig.3.2 (non degenerate FWM).

ℏ𝜔𝑝 − ℏΩ

ℏ𝜔𝑝 + ℏΩ

ℏ𝜔𝑝

ℏ𝜔𝑝

2ℏ𝜔𝑝

Non degenerate
FWM

Degenerate
FWM

ℏ𝜔𝑝 − ℏΩ

ℏ𝜔𝑝 + ℏΩ

Figure 3.2: Non degenerate and degenerate FWM. In the �rst case, two equal photons annihilates to produce
two photons at di�erent frequncies. In the second case, two photons at di�erent frequency annihilates to
generate two photons at equal frequency.

The wave at ωp is called the pump wave. For historical reasons, the �elds at ω2 and ω4 are called the signal

and idler waves respectively. By using this convention, it has been assumed that ω2 = ωs > ω4 = ωi, since the

signal has higher frequency than the idler. The energy conservation relation of Eq.3.4 becomes 2ωp = ωs+ωi,

and the corresponding phase matching relation:

2ωpn(ωp) = ωsn(ωs) + ωin(ωi) (3.10)

By writing ωs = ωp + Ω, it comes out from Eq.3.4 that the idler frequency is ωi = ωp−Ω, i.e., the signal and

idler frequencies are simmetrically located with respect to the one of the pump. The reverse FWM process,

shown in Fig.3.2 (degenerate FWM), is also possible. In this case, two pump �elds, one at ωp1 = ωp−Ω and

one at ωp2 = ωp + Ω can be combined to produce two waves at the degenerate frequency ωp [198].

The set of equations from (3.5) to (3.8) can be solved under some approximations. At �rst, the pump

�eld is considered more intense than the signal one, which in turn is considered much stronger than the

idler, i.e, |Ip|2 � |Is|2 � |Ii|2. As a consequence, the FWM and the XPM term can be neglected in the

pump equation. The solution for the pump �eld is then Ip(z) = Ip0e
−iγp|Ip0|2z. This is usually called the

undepleted pump approximation, since only the phase changes during propagation. In the equation for

the signal, the FWM term is neglected and only the SPM and XPM terms are kept, giving as solution

Is(z) = Is0e
−iγs(|Is0|2+2|Ip0|2)z. Then, by inserting these expressions into the equation for the idler, and by

considering only the FWM term, the following expression for the idler intensity |Ii|2 is obtained:

|Ii(z)|2 =
2

∆k2
|γ|2|Ip0|4|Is0|2 (1− cos(∆k′z)) (3.11)

which for z 6= 0 can be rewritten as:

|Ii(z)|2 = |γ|2|Ip|4|Is|2L2sinc

(
∆k′z

2π

)
(3.12)
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The new phase mismatch parameter becomes:

∆k′ = ∆k − 2(γs − γp)|Ip0|2 − γs|Is0|2 (3.13)

which takes into account the wavevector correction due to XPM. In what follows, these corrections will

be neglected since, for the experiment described in section 3.4, they are several orders of magnitude lower

than ∆k. Several considerations can be done by looking at Eq.3.12. The �rst is that the generated idler

wave increases quadratically with the pump intensity (hence the pump power) and linearly with the signal

intensity (hence the signal power). The second, and most important, is that the e�ciency of the process

depends quadratically on the sample length and on the phase mismatch parameter ∆k. Fig.3.1(b) plots the

sinc2 term as a function of ∆k when the length of the material is �xed to L. It can be seen that the e�ciency

is maximum at ∆k = 0 and decreases to zero as the mismatch approaches ∆k = 2π
L . The condition ∆k = 0

is called perfect phase matching, and is a direct consequence of the wavevector conservation of all the waves

involved in the FWM process. In a quantum mechanical description, this corresponds to the momentum

conservation between the two annihilated pump photons and the generated signal and idler photons. As the

phase mismatch increases, the maximum length over which the process is e�cient inversely decreases. This

length is called the FWM coherence length and is given by Lc = 2π
∆k . It comes out that for achieving an

e�cient FWM, which scales as L2, the condition ∆k = 0 has to be satis�ed. As indicated by Eq.3.10, the

phase matching relation reduces to energy conservation if the refractive index of the material does not depend

on frequency, i.e., the medium is not dispersive. Since Eq.3.4 is naturally satis�ed, perfect phase matching

is always achieved in a non dispersive medium. However, this condition is just an idealization, since every

material has a refractive index which depends on the frequency. As a consequence, some techniques have to

be used in order to realize the condition ∆k = 0. One of the most implemented exploits the birifrangence

of the material [137]. The pump and signal waves propagate on di�erent directions, which corresponds to

the ordinary and the extraordinary waves. The latter experiences a refractive index which depends on the

direction of propagation, which is then chosen to satisfy Eq.3.10. Another technique, named periodically

poling [165], will be discussed in Chapter 5. These techniques are not easily scalable to integrated Silicon

devices, because they are a�ected from both fundamental issues and fabrication problems. For example,

the elements of the χ(3) tensor of Silicon which couples cross polarized �elds (the case of ordinary and

extraordinary waves) are in average one third of those which couple copolarized ones [127], so the use of

birifrangence is intrinsically not e�cient in Silicon. In order to overcome these di�culties, the method of

MMFWM in Silicon nanowires is developed (Section 3.2).

The starting point for the derivation of Eqs.3.5-3.8 is the wave equation (3.2) for a medium which in�nitely

extends over the transverse dimensions x and y. As a consequence of this, the solutions are plane waves in

which the amplitude and phase only change along z, the direction of propagation. In a waveguiding geometry,

modal con�nenement has to be considered. The electric �eld of the jth waveguide mode can be written as

Ej = 1
2

(
E0jAj(z)uj(x, y)e−i(βjz−ωjt) + c.c

)
, where E0j is a constant amplitude, uj(x, y) is the transverse

pro�le, Aj a slowly varying envelope and βj =
ωjneff,j(ωj)

c is the propagation constant. The corresponding

set of FWM equations for the coupled waveguide modes representing the pump, the signal and the idler (see

full derivation in [2]) is:

dAp
dz

=
in2ωp
c

(
fpp|Ap|2 + 2fps|As|2 + 2fpi|Ai|2 + fppsiAsAiA

∗
pe
−i∆kz) (3.14)

dAs
dz

=
in2ωs
c

(
fss|As|2 + 2fsp|Ap|2 + 2fsi|Ai|2 + 2fA2

pA
∗
i e
−i∆kz) (3.15)
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dAi
dz

=
in2ωi
c

(
fii|Ai|2 + 2fis|As|2 + 2fip|Ap|2 + 2fA2

pA
∗
se
−i∆kz) (3.16)

where the parameters fijkl and fij (with i, j, k, l that can be replaced by p, s, i) are de�ned as:

fijkl =

´
wg
u∗i u

∗
jukul dxdy[(´

|ui|2 dxdy
) (´
|uj |2 dxdy

) (´
|uk|2 dxdy

) (´
|ul|2 dxdy

)]1/2 (3.17)

fij =

´
|ui|2|uj |2 dxdy(´

|ui|2 dxdy
) (´
|uj |2 dxdy

) (3.18)

Essentially, the structure of the FWM equations (3.5)-(3.8) is mantained, but the e�ect of modal con�nement

is taken into account by the overlap integrals in the parameters fijkl and fij . Diagonal terms such as fii

correspond to the modal e�ective areas, while the term fijkl is called the FWM e�ective area. An important

di�erence with respect the plane wave case discussed before is that the term fijkl can be zero for certain

modal combinations, which means that FWM can not occur even if ∆k = 0. This happens if the product of

the four �elds in the numerator of Eq.3.17 is an odd function. In this case, the integral over the waveguide

cross section gives exactly zero. This fact will strongly in�uence the choice of the mode order combinations

implemented for MMFWM in Section 3.4. The phase mismatch parameter ∆k is now given by:

2ωpneff,p(ωp) = ωsneff,s(ωs) + ωineff,i(ωi) (3.19)

which is identical to the one of Eq.3.10 except that the material refractive index is replaced by the modal

e�ective index.

Up to now, the set of FWM equations have been derived on the basis of a complete classical treatement,

since the starting point was the wave equation of Eq.3.2. In this derivation, the presence of the signal �eld is

necessary for generating the idler, since as it is indicated in Eq.3.12, the idler intensity is proportional to the

signal one. In other words, the signal stimulates the process, reason why it is referred as Stimulated FWM.

On the contrary, in the Spontaneous case, only the pump �ed is required, and the signal and idler photons

are spontaneously generated at frequencies ωp ± Ω. As it can be deduced, sFWM must have an intrinsically

quantum mechanical explanation. Qualitatively speaking, the input signal can be seen to be provided by the

vacuum �uctuations of the quantized electric �eld. Such a feature can not be explained in classical terms,

and one has necessary to refer to quantum electrodynamics. It is possible to prove that, while the mean value

of the electric �eld operator E(r) at a point r of space gives zero if evaluated on the vacuum state |0〉, i.e,
〈0|E(r) |0〉 = 0 [199], the variance does not vanish, and gives [199]:

〈0|E2(r) |0〉 =
∑
j

~ωj
2ε0V

(3.20)

where ωj is the angular frequency of the jth radiation mode of the free space and V is the volume over which

the electric �eld is quantized (in this case it is considered to enclose free space). It can be seen that the

variance in Eq.3.20 diverges, since no upper limit exists on the value that ωj could take. However, since

the physical measurable quantity is not the electric �eld in a single point of space but the average of the

electric �eld over a �nite volume r3
o, it can be proved that in this case the variance becomes �nite, and that

the electric �eld �uctuations around the zero mean value possess a characteristic correlation time of ≈ 1
cr0

[199]. These noise �uctuations can be qualitatively interpreted as the input seed involved in the activation

of sFWM process.

Since sFWM will not be touched in the experiments described in Section 3.4, only a brief overview will be

given in the following. The electromagnetic �eld inside the waveguide in absence of χ(3) e�ects evolves freely
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following the unperturbed hamiltonian H0:

H0 =

ˆ (
1

2
D0 ·E0 +

1

2
B0 ·B0

)
dr (3.21)

in which E0,B0 and D0 are the unperturbed electric �eld, magnetic �eld and displacement vectors inside

the waveguide respectively. The hamiltonian operator H0 in Eq.3.21 represents the total electromagnetic

energy which is stored inside the waveguide. By performing a canonical quantization of the modal �elds, the

operator H0 can be rewritten in terms of creation and annihilation operators as [200] :

H0 =

ˆ
~ωka†kak dk (3.22)

in which ~ωk is the energy of the photon created with wavevector k inside the waveguide by the operator

a†k. Here, the wavevector k uniquely de�nes the energy of the photon, therefore the waveguide is assumed

to support only the fundamental mode. The connection between the electric �eld operator Ek and the

creation/annihilation operators is provided by:

Ek = ekuk(x, y)e−i(βkz−ωkt)ak + c.c (3.23)

where ek is a normalization constant. Similarly to the quantization of H0, one can quantize also the nonlinear

polarization PNL introduced in Eq.3.3, and write the hamiltonian H under the presence of χ(3) nonlinearities

as H = H0 +HNL, where HNL is given by (see Ref.[180] (supplementary materials)):

HNL = −γ0

ˆ
dk1dk2dk3dk4a

†
k1a
†
k2ak3ak4e

−i(k1+k2−k3−k4)z dxdy + c.c (3.24)

where γ0 is a constant which includes the nonlinear coe�cient γ introduced in Eqs.3.8-3.10. The pump is

represented by a coherent state |α〉 oscillating at ωp and carrying an average number of photons |α|2. At the
same time the initial signal and idler modes at ωi and ωs are not occupied. The initial radiation state can

then be written as |Ψin〉 = |α〉 |0s, 0i〉, where |0s, 0i〉 denotes the absence of photons in the signal and idler

modes. The output state at time t can be evaluated by:

|Ψout(t)〉 = exp

− i
~

tˆ

0

HNL(t′)dt′

 |Ψin〉 (3.25)

where HNL is written in the interaction picture [201]. At �rst order in HNL, the output state after a

su�ciently long time interval ∆t is given by (see Ref.[180](supplementary materials)):

|Ψout〉 = |α〉 |0s, 0i〉+
α2γ0L√

2
sinc(

∆kL

2π
) |α〉 |1s, 1i〉 (3.26)

where for su�ciently long it means that the corresponding uncertaintly in the energies of the signal and idler

photon ∆Es,i satis�es ∆Es,i∆t � 1. The phase mismatch is given by ∆k = 2k(ωp) − k(ωs) − k(ωi). For

clearness, in deriving Eq.3.26, it has been assumed that only one signal/idler pair is produced, which is the

one that satisfy ∆k ≈ 0. Of course this does not correspond to a realistic case, in which pairs are produced

in all the frequency range in which ∆k < 2π
Lc
, but it allows to get a direct insight into the physical situation.

Eq.3.26 tells that even in absence of a stimulating signal �eld, a pair of photons symmetrically located with

respect to the frequency of the pump are created. The probability of detecting the pair is proportional to
α4γ2

0L
2

2 sinc2(∆kL
2π ), so the �ux of photon pairs is still quadratic in the pump power and in the sample length

as in the stimulated case. The photon pair is said to be energy entangled, since the energy of one photon

determines the energy of the other and vice versa.
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3.2 Multimodal phase matching technique

In the previous section, it was observed that the phase mismatch ∆k regulates the e�ciency of the FWM

process, both in the stimulated and in the spontaneous version. In particular, the e�ciency is maximized by

making ∆k = 0. Due to the dispersion of the refractive index, in general ∆k 6= 0 and the e�ciency of the

process is very low. Given a single mode waveguide, with propagation constant β(ω), the phase matching

relation of Eq.3.10 can be written up to the second order in the pump detuning Ω as [2]:

∆k ≈ β2(ωp)Ω
2 (3.27)

From Eq.3.27 it can be seen that if β2 6= 0, the phase mismatch quadratically grows as the spectral distance

Ω between the signal/idler photons and the pump increases. E�cient FWM is then possible only in a

narrowband spectral region in the proximity of the pump wavelength. The waveguide can be engineered to

achieve β2 = 0 at ωp, in this case the expression in Eq.3.10 has to be expanded up to the fourth order in Ω

to give:

∆k ≈ β4

14
Ω4 (3.28)

in which the fourth order dispersion β4 = d4β
d4ω has been introduced. Again, the e�ciency decreases as Ω

increases. Therefore, if one wants to achieve e�cient FWM at large detunings from the pump, a possible

technique is to engineer the waveguide in such a way that the sign of the GVD is opposite to the one of the

β4 dispersion, in order to obtain β2Ω2 + β4

14 Ω4 = 0. This technique has been used in Ref. [108] to achieve a

spectral translation from a signal at 2.44µm to an idler at 1.62µm using stimulated FWM in a dispersion

engineered single mode waveguide. However, this method possess the drawback of being very sensitive to

fabrication defects. Indeed, the value of β4 is strongly a�ected by small variations in the waveguide cross

section, so even small imperfections could compromise the outcome of the experiment.

Here it is presented a more robust technique, called MultiModal Phase Matching (MMPM). The latter has

been already implemented in optical �bers for broadband FWM [2]. The essence of MMPM is to exploit the

di�erent e�ective index dispersion of the optical modes in a waveguide (shown in Fig.3.3) to achieve perfect

phase matching. The pump, signal and idler waves are let to propagate in di�erent mode orders, associated

to the e�ective indexes neff,p, neff,s and neff,i. The orders are chosen to satisfy Eq.3.19. Fig.3.4 shows an

example for a silicon waveguide of cross section 3.05µm × 0.25µm, in which ∆k = 0 is achieved when the

signal propagates into the 2rd order mode at 1.464µm, the pump into the 3rd order mode at 1.55µm and

the idler into the 4th order mode at 1.644µm.
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Figure 3.3: E�ective index dispersion for the four lowest order modes in TM polarization. The inset shows
the intensity patterns of the main component of the electric �eld for each mode. A sketch of the waveguide
cross section is shown in the upper panel.
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Figure 3.4: (a) Phase mismatch parameter ∆k for the mode order combination (3, 2, 4) (pump order, signal
order, idler order) in a 3.05µm×0.25µm waveguide. All the modes have TM polarization. The curve crosses
the zero at the signal wavelength λs = 1.464µm. (b) The di�erent contributions to the total phase mismatch

∆k given by ∆k = ∆kp + ∆ks + ∆ki =
2neff,p(λp)

λp
− neff,s(λs)

λs
− neff,i(λi)

λi
. The idler wavelength is expressed

as a function of the signal one as λi =
(

2
λp
− 1

λs

)−1

.

The di�erent dispersion of the mode orders can be engineered by changing the waveguide geometry. The

phase matching relation of Eq.3.10 for MMPM can be written up to the �rst order in the pump detuning Ω

as:

∆k ≈ ∆kdeg + Ω (β1.i(ωp)− β1,s(ωp)) (3.29)

in which ∆kdeg is the phase mismatch at the degenerate pump wavelength, and is given by ∆kdeg = 2βp(ωp)−
βs(ωp)− βi(ωp). Note that this term would be equal to zero if all the waves were propagating into the same

mode order. The essence of MMFWM is to balance the contribution of ∆kdeg with the di�erence in the �rst
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order dispersions of the signal and idler modes. If ∆kdeg < 0, then the group velocity of the signal has to

exceed the one of the idler in orde to get ∆k = 0, Otherwise, if ∆kdeg > 0, it is the group velocity of the

idler that has to be greater than the one of the signal. Since the relation in Eq.3.29 only depends on β1,

MMPM is intrinsically less sensitive to fabrication imperfections than the phase matching technique based

on the balance between the β2 and the β4 term.

3.3 Selective mode excitation in multimode waveguides

In order to implement MMPM, one has to be able to selectively excite speci�c mode orders. For example, in

the combination reported in Fig.3.3, it is required to couple the pump �eld into the third order mode and the

signal �eld into the second order mode. An easy way to implement selective mode excitation is through an

asymmetrical directional coupler [70, 71, 202]. The e�ective index of a higher order mode is matched to the

one of the fundamental mode of a narrower waveguide. When the two waveguides are evanescently coupled,

and light is sent into the fundamental mode of the narrower waveguide, after a certain propagation distance

the energy gets completely transferred into the higher order mode of the larger waveguide. An example is

reported in Fig.3.5.

1𝑠𝑡

3𝑟𝑑

Figure 3.5: Excitation of the third order TM mode using an asymmetric directional coupler. The narrow
waveguide has a cross section of 326nm × 220nm while the multimode waveguide of 1550nm × 220nm.
The two waveguides are separated by a gap of 160nm. The e�ective index of the fundamental mode of the
326nm wide waveguide is the same as the e�ective index of the third order mode of the 1.55µm waveguide,
and after 5.25µm the power transfer is completed

The weakness of this method is that it requires both high fabrication resolution and tight tolerances in the

waveguide size. The resolution is required in order to realize small coupling gaps, while the precision in the

waveguide size is required to perfectly match the e�ective indexes. The photolithographic process imple-

mented for the fabrication of the samples described in Section 3.4 is 293nm DUV lithography. The minimum

allowed coupling gap is 400nm, while the tolerance on the �nal waveguide dimension is ±20nm. These

fabrication limitations make di�cult to implement the approach based on the use of directional couplers.

In order to overcome this limitation, the higher order modes are directly excited at the input of the multi-

mode waveguide without the use of a directional coupler. This is done by matching the �eld distribution of

the exciting radiation to the one of the optical modes that have to be selectively excited. Fig.3.6 helps to

understand why this occurs.
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Figure 3.6: Coupling of an incoming electric �eld Einc into di�erent waveguide mode orders. The re�ected
�eld at the interface is Eref = rEinc. The guided �elds inside the waveguide have modal amplitudes Γj .

Here, the waveguide input facet is placed in the plane z = 0, and the tangential component of the incoming

electric �eld is Einc(x, y). The tangential component of the electric �eld inside the waveguide Ewg can be

expanded on the basis of its orthogonal guided modes ej as:

Ewg(x, y) =
∑
j

Γjej(x, y) (3.30)

where Γj is the modal amplitude. Following the derivation of Ref.[52], the orthogonality relation between

two di�erent modes ej and ek (j 6= k) is given by:

1

2

ˆ
Re(ej × h∗k) · ẑ dxdy = 0 (3.31)

where hk denotes the magnetic displacement vector of mode k. As a consequence of the boundary between

the waveguide and the free space region at z < 0, a portion Eref of the incoming �eld is re�ected. As a good

approximation, Eref can be written as Eref = rEinc, where r is the Fresnel re�ection coe�cient for a plane

wave which impinges at the dielectric boundary between two media [203]. This coe�cient depends on the

angle of incidence, the polarization of light and on the refractive index contrast. The index of the medium

which contains the waveguide is assumed to be the one of Silicon. Since the tangential component of the

electric �eld must be continuos at the interface, one can write :

Einc(x, y)(1 + r) =
∑
j

Γjej(x, y) (3.32)

By exploting the orthogonality condition of Eq.3.31, it is possible to isolate the coe�cients Γj , which then

get the following expression:

Γj =
(1 + r)

´ (
Einc × h∗j

)
· ẑ dxdy´ (

ej × h∗j · ẑ
)
dxdy

(3.33)

The ratio between the power coupled into the jth mode Pj = 1
2 |Γj |

2
´
Re(ej × h∗j ) · ẑ dxdy and the incident

power Pinc =
´
Re(Einc ×H∗inc) · ẑ dxdy, indicated as ηj =

Pj
Pinc

, is then:

ηj = (1 + r)2

(´ (
Einc × h∗j

)
· ẑ dxdy

)2(´
Einc ×H∗inc · ẑ dxdy

) (´
ej × h∗j · ẑ dxdy

) (3.34)

As a �rst approximation, it is possible to consider the guided modes to have a dominant component of the

electric �eld along a speci�c direction, and neglect all the others in the computation of the numerator in

79



Chapter3. Multimodal Four Wave Mixing in Silicon waveguides

Eq.3.34. With reference to Fig.3.6, the dominant components are x for TE modes and y for the TM ones. In

this way, it is possible to express the magnetic displacement h∗j as h
∗
j

= 1
Zeff,j

e∗j , where Zeff,j = cµ0

neff,j
is the

e�ective impedance of the �eld inside the waveguide. The same approximation can be done for the incoming

�eld Einc, for which it is possible to write H∗inc = 1
Zinc

E∗inc (with Zinc = cµ0

n2 ), thus simplifying Eq.3.34 to :

ηj =
(1 + r2)Zinc

Zeff,j
·

(´
(Einc · e∗j ) dxdy

)2(´
|Einc|2 dxdy

) (´
|ej |2 dxdy

) (3.35)

which is the quantity that is evaluated for estimating the percentage of power which is coupled from the

incident �eld Einc to the jth mode of the waveguide. The highest value of ηj is obtained when the ratio

between the integral quantities is maximized. This happens when Einc = ej . In that case, the integral at

the numerator becomes equal to the one at the denominator and their ratio is equal to one. The condition

Einc = ej tells that if one wants to selectively excite a speci�c mode order j inside the waveguide, one has

to shape the input �eld in such a way that its pattern is identical to the one of the guided mode.

3.3.1 Interference of two oblique beams

As can be appreciated from Fig.3.3, the modal �eld pro�les resemble standing wave patterns, in which maxima

and minima are separated by nodal points. The period Λ depends on the modal order j and on the width of

the waveguide w. For well con�ned modes (i.e., having a modal con�nement factor > 0.9), the period is well

approximated by Λ = w
j . As a natural consequence, if one is able to generate at the input of the waveguide

facet a standing wave pattern of the same period, the overlap integral in the numerator of Eq.3.35 will be

maximized as the corresponding coupled power. As sketched in Fig.3.7, the standing wave pattern can be

created by the interference of two waves which form between them an angle 2θ.

𝑧

𝑦

𝑧 < 0 𝑧 > 0

𝑥𝑦

XY plane view
𝜃

𝐴1

𝐴2

+Δ𝐿

Figure 3.7: Interference of two oblique beams of amplitude A1 and A2 which travels at a relative angle
2θ. The plane which contains the waveguide facet is xy. The center of the waveguide facet is placed at
(x, y) = (0, 0). The medium at z < 0 is uniform and with refractive index n.

For simplicity, the �rst �eld is decribed by the plane wave A1 = A10e
−i|k| sin θy , while the second by A2 =

A20e
i(|k| sin θy+|k|∆L), where |k|∆L is a phase di�erence that could exists if the two incoming waves do not

travel along paths of equal length. At the plane z = 0, where the waveguide facet is placed, the intensity

pattern is:

I(θ) = |A10|2 + |A20|2 + 2A10A20 cos(2|k| sin θy + |k|∆L) (3.36)

In Eq.3.36, the wavevector |k| is equal to |k| = 2π
λ n, where n is the refractive index of the medium at z < 0.

Fig.3.8 plots Eq.3.36 along the waveguide cross section (y direction) for di�erent values of θ at the �xed
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wavelength of λ = 1.55µm. The path length ∆L is chosen equal to zero and the material refractive index n

equal to one.
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Figure 3.8: Intensity patterns created by the interference of two oblique beams which travels at an angle 2θ
between each other. The patterns are evaluated along the y direction of Fig.3.7.

It is seen that the period d of the standing wave pattern can be tuned by changing the angle θ , according

to the relation:

d =
λ

2n sin θ
(3.37)

If one want to excite a waveguide mode which has the lobes at a distance Λ, the angle θ has to be chosen

in order to satisfy d(θ) = Λ. In pratice, the incoming radiation is never in the form of plane waves, but the

beams have always a �nite size. Fig.3.9(a) shows how the 2D interference pattern on the xy plane looks like

when the two beams have a gaussian envelope with waist 10µm and an angle of θ = 40°.

𝑥
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a) b)

Figure 3.9: (a) Intensity pattern on the xy plane at z = 0 of Fig.3.7 when the two waves are described by
gaussian beams with waist 10µm and travelling at an angle 2θ = 80°. The wavelength is set to 1.55µm. (b)
One dimensional slice of the intensity pattern of panel (a) at x = 0.
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The maximum intensity is found at x = 0 and y = 0, reason why it is the point where the waveguide input

facet has to be aligned in order to couple the highest fraction of power. The amplitudes of the two beams

A10 and A20 regulate the visibility V of the interference pattern. The latter is de�ned as:

V =
Imax − Imin
Imax + Imin

(3.38)

which expressed as a function of A10 and A20 reads:

V =

(
|A10|+ |A20|
|A10| − |A20|

)2

(3.39)

The maximum attainable visibility is achieved when the two beams have equal intensity, i.e, |A10|2 = |A20|2.
In this case V = 1. Having a visibility which is close to one is of crucial importance for selective mode

excitation. The modal �eld pro�le is indeed a standing wave pattern with V = 1, and the same must hold

for the one created in free space. In order to simulate and evaluate the performances of the method, the

following steps have been done:

1. A target waveguide is chosen. The latter has a cross section of 3.6µm × 0.25µm and has the center

placed at x = 0 and y = 0. Using a FEM simulator, the modal �eld pro�les ej(x, y) of the di�erent

orders are computed over the xy plane, where the input facet of the waveguide lies. The �eld polarization

is set to TM.

2. The exciting �eld Einc(x, y) is calculated as the superposition of two gaussian beams with waist σw =

10µm, of equal amplitude. The index of the free space propagation region is set to n = 1. The �eld

Einc is assumed to be di�erent from zero only inside the simulation window where the waveguide modes

are evaluated.

3. The overlap integral in Eq.3.35 is evaluated for di�erent values of θ at the �xed wavelength of λ =

1.55µm.

The result is shown in Fig.3.10.

Odd mode number Even mode number

𝜂 𝜂

Figure 3.10: Coupling e�ciency η for the lowest �ve modes of a 3.65µm width waveguide in TM polarization.
The exciting pattern is obtained by the superposition of two gaussian beams travelling at angle 2θ with waist
σw = 10µm.
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Odd mode numbers have even symmetry with respect to y = 0, so they can be excited if the path mismatch

∆L is equal to zero. Even mode numbers have odd symmetry with respect to y = 0, so the interference

pattern has to be shifted by half of the fringe period to maximize the overlap. This can be done by setting

∆L = λ
2 in Eq.3.36. From Fig.3.10 it can be seen that in both cases very high mode selectivity is achieved.

When the angle is tuned for exciting a speci�c mode order, the average crosstalk with the other modes is

below the 3%. The approach seems to be also robouts against small errors in the angle tuning between the

two beams. For example, if the latter di�ers at about 5° from the optimal one, the percentage of coupled

power decreases by less than the 10%, while the crosstalk keeps lower than the 5%. For the excitation of

both the even and the odd mode orders, it is always convenient to set the path di�erence ∆L = 0. In case

of modes of odd symmetry, the excitation can be performed by shifting the waveguide center by half of the

fringe period, rather than setting ∆L = λ
2 . If ∆L = 0, the fringe position will not signi�cantly shift with

wavelength, thus decreasing the overlap with the desired mode order. This is shown in Fig.3.11, where the

the overlap integral, the �eld pro�le at z = 1 cm in a 3.65µm wide waveguide and the interference pattern

on the waveguide input facet are shown as a function of wavelength for ∆L = 40µm and θ = 40°. As a

consequence of the path mismatch ∆L, the coupled mode periodically oscillates between a 3rd order mode,

which was the target one, and a 4th order mode. In between, beatings between the two modes are observed.

𝑦
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𝑚
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𝜂

Figure 3.11: From the top panel to the bottom panel: modal coupling e�ciency η, �eld intensity pro�le
at z = 1 cm along the y direction (x = 0) in the 3.65µm wide waveguide and intensity pro�le along the y
direction (x = 0) of the incident �eld Einc. The intensity �eld pro�le |Ewg|2 inside the waveguide is calculated
using Eq.3.30. The incident �eld is the superposition of two gaussian beams of waist 10µm travelling at an
angle 2θ = 80° and with path di�erence ∆L = 40µm.
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3.3.2 Experimental realization

The oblique beam interference experiment modeled in the previous section has been implemented using the

setup shown in Fig.3.12.

𝑦

𝑧 𝑥 VOA

VOA

a)

b)

Figure 3.12: (a) Sketch of the experimental setup for oblique beam interference. A = laser source, B = Beam
Expander, C = Beamsplitter, D = Translation stage, E = Mirrors, F = Input biconvex lenses, G = sample,
H = collecting lensed �ber, I = photodetector. (b) A photograph of the experimental setup sketched in panel
(a).

A tunable IR laser is sent into a beam expander which extends the waist of the original beam. Then the latter

is split by a 50 : 50 beamsplitter cube and both the outgoing beams are directed toward two gold mirrors.

One of the two mirrors is mounted over a micrometric translation stage, which is used to compensate the

path length di�erence ∆L between the two beams. The mirrors direct the beams toward two biconvex lenses

which focalize them at the input facet of the waveguide (fabbricated by by Fondazione Bruno Kessler (FBK)

[204] using 293nm DUV lithography ). The use of a beam expander allows to reduce the waist of the beam

to σw = (8.6±0.2)µm. The angle 2θ between the beams can be read directly on a goniometer which is placed

below the posts which hold the two mirrors. The sample which contains the straight waveguides engineered for

MMFWM is mounted on a XYZ micrometric positioning stage that can perform also nanometric movements

using piezoelectric controllers. The output power from the waveguide is collected using a tapered lensed �ber

and monitored using a photodetector. Several waveguide widths and the coupling of di�erent mode orders

have been tested. In the following, only the results for the coupling of a 3rd order TM mode in a 3.8µm

wide waveguide and for the coupling of a 2nd order mode in a 2.45µm wide waveguide are reported. In both

cases, the height of the waveguides is 250nm. At �rst, the angle was chosen. From Fig.3.13, which shows

the modal pro�les under test, it can be seen that the lobes of the 3rd order mode are spaced by Λ3 = 1.3µm,

while the lobes of the 2nd order mode are spaced by Λ2 = 1.31µm.
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Figure 3.13: Upper panel: electric �eld intensity distribution of the 3rd order TM mode in the 3.8µm wide
waveguide. Lower panel: electric �eld intensity distribution of the 2rd order TM mode in the 2.45µm wide
waveguide.

Then, as a good approximation, Λ3 = Λ2 = Λ and a unique angle can be used to excite both of them. This

angle can be derived by setting d(θ) = Λ, which yelds θ = 36.3°. Once that the angle has been chosen, the

visibility of the fringes has to be evaluated. This is done by using a Scanning NearField Optical Microscopy

(SNOM) optical �ber with a tip aperture of 100nm. The SNOM �ber tip is placed where the two oblique

beams intersects, ideally in the point at coordinates x = 0 and y = 0 of Fig.3.7. The �ber is then moved

along the y direction using a piezoelectric controller, and the coupled power is monitored using a photon

counter. The spatial resolution provided by the �ber is of the order of the tip aperture. The recorded pattern

in the xy plane is shown in Fig.3.14, while a one dimensional slice of the latter is shown in Fig.3.15.
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Figure 3.14: Simulated and measured intensity patterns (on the xy plane at z = 0 of Fig.3.7) when the angle
θ is tuned at θ = (36.6±0.3)°. Patterns have been recorded using a SNOM �ber coupled to a photon counter.
The point (x, y) = (11.75, 14.9)µm in the picture corresponds to the point (x, y) = (0, 0) in Fig.3.7.
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𝑦[𝜇𝑚]

Figure 3.15: A one dimensional slice along the y direction at x = 11.75 in Fig.3.14. Green scatters represent
experimental data while the solid red line is obtained using Eq.3.36.

From this picture, the fringe period can be extracted and is given by Λexp = (1.30±0.01), which is compatible

with an angle of θexp = (36.6 ± 0.3)°. The latter is very close to the optimal value of 36.6°. The amplitude

of the two beams is made approximately equal using a variable optical attenuator. The maximum obtained

fringe visibility is V = (0.95 ± 0.02). The last step before the coupling of light inside the waveguide is the

balance of the path length di�erence ∆L. This has been done by placing the SNOM �ber at (x, y) = (0, 0)

and by monitoring the recorded intensity as the wavelength is changed. Using the micrometric positioning

stage mounted on one of the two mirrors, the latter is moved until no fringes are registered as a function

of wavelength, which, as indicated by Eq.3.36, implies ∆L = 0. Two examples of patterns, recorded at

∆L = (1.47 ± 0.01)mm and at ∆L = (8 ± 1)µm are shown in Fig.3.16. The latter condition, which

correponds to the smallest path unbalancing that has been possible to realize, will coincide with the working

point in the rest of the experiment. The central fringe shows almost constant intensity (3% decrease) in a

wavelength range of 1530nm− 1550nm.
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Figure 3.16: Interference fringes recorded at (x, y, z) = (0, 0, 0) (with respect to the reference frame of Fig.3.7)
as a function of wavelength. The values of the path unbalancing ∆L have been extracted from the �t (solid
red curve) of the experimental data (black scatters). The �t is performed using Eq.3.36.

At this point, the sample has been positioned in such a way that the input facet of the waveguide under test

laid as close as possible to the point (x, y, z) = (0, 0, 0) of Fig.3.7. Since this point corresponds to the place

of maximum intensity (see Fig.3.9), this task has been achieved by maximizing the power coupled into the

waveguide. Fine adjusements have been performed using piezoelectric controllers. In order to evaluate the

mode which is coupled into the waveguide, and thus validating the theoretical calculations, the near �eld

pro�le at the output of the waveguide has been monitored using the SNOM �ber coupled to a photon counter.

The recorded �eld pro�les are then compared to the ones in Fig.3.13 obtained using FEM simulations. It is

worth to note that even if a certain similarity is found between the experimental and the theoretical patterns,

this does not automatically imply that only the target mode is propagating inside the waveguide. This can

be understood by looking at Fig.3.11 (middle panel). If the incident �eld simultaneously excites many modes,

these will exhibit beatings during the propagation along the waveguide, which are eventually enhanced by

the re�ections at the input/output facet of the sample. It may occur that, for a certain wavelength, and for

a certain waveguide width, the envelope of the beatings resembles the one of the target mode, even if the

modal excitation is far from being selective. A de�nitive proof that only one mode is propagating in the

waveguide, is the observation of a stable pattern as the wavelength is changed. This is because the intensity

distribution changes with wavelength if modal beatings are present. Fig.3.17 shows the intensity patterns

recorded at the output of the 2.45µm wide waveguide and of the 3.8µm wide waveguide as the wavelength

is changed.
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Figure 3.17: Comparison between the simulated and experimentally recorded modal �eld patterns at the
output of a 2.45µm wide waveguide and of a 3.8µm wide waveguide. The target mode orders were the 2nd

and the 3rd, respectively. Each slice along y is recorded at a di�erent wavelength λ.

A quite good stability of the patterns is found, which is a clear sign that selective mode excitation has

been achieved. Some intensity variations are found as the wavelength is changed, which can be mainly

attributed to the re�ections at the input/ouput waveguide facets. The system is then capable of performing

selective mode excitation by exploiting the interference of two oblique beams. Nevertheless, it has been

impossible to use it for probing MMFW due to the high coupling losses between the incoming radiation and

the waveguides on the chip. These have been estimated to be (−25.62±0.02) dB, which mostly arise from the

huge mismatch between the e�ective area of the waveguide mode Aeff,wg and the one of the incoming beam

Aeff,inc. For example, the e�ective area of the waveguide with cross section 3.8µm×0.25µm is approximately

Aeff,wg ≈ 0.95µm2 , while the one of the exciting radiation is Aeff,inc ≈ (2σw)2 = (296±7)µm2, which yelds

10 log
(
Aeff,wg
Aeff,inc

)
≈ −25 dB of coupling losses, a value which is very close to the one found in the experiment.

Unfortunately, it has been impossible to further reduce the waist of the laser due to some limitations in the

implemented optical components. Due to the high coupling losses, an alternative method, which achieves less

mode selectivity but ensure lower losses, has been implemented and it will be discussed in the next section.

3.3.3 Tilted �ber approach

A tapered lensed �ber which is tilted by an angle θ with respect to the normal of the waveguide facet can be

used to excite higher order modes. The physical situation is the same of the oblique interference experiment

described in Fig.3.7, but with the lack of one of the two beams. As a good approximation, the electric �eld

on the (x, y) plane radiated by the �ber can be written as:

Einc(x, y) ∝ e
y cos θ+x2

σ2
w [cos (|k|y sin θ) + i sin (|k|x sin θ)] (3.40)
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The measured waist σw for the �ber implemented in the experiment described in Section 3.4 is σw = (0.8±
0.2)µm, which is an order of magnitude lower than the ones of the beams implemented in Section 3.3.2.

The associated e�ective area is then two orders of magnitude lower, with the result that the losses should

be decreased by approximately 20 dB. Indeed, the latter have been measured to be (7.23 ± 0.2) dB for a

waveguide of width 2µm. Fig.3.18 shows the fraction of coupled power η between di�erent TM modes,

calculated as de�ned in Eq.3.34, when the incident �eld is given by Eq.3.40 and the target waveguide has a

cross section of 3.65µm×0.25µm. It can be noticed that the ability to selectively excite only a speci�c mode

order is lower than in the approach based on two beams interference. The maximum fraction of coupled

power is about η = 0.5 for higher order modes, while the cross talk is always higher than the 20%. This is

due to the fact that the �eld in Eq.3.40 does not represent a standing wave pattern, since the intensity does

not show interference fringes. Nevertheless, the tradeo� between coupling losses and mode purity is better

than in the approach based on two beams interference, so it has been choosen to probe MMWFM. Table 3.1

compares the performances of the two approaches.

𝜼

Figure 3.18: Fraction of coupled power η for the �ve lowest order TM modes of a waveguide with a cross
section of 3.65µm× 0.25µm. The exciting �eld is given by Eq.3.40.

Parameter Two beam interference Tilted �ber
Average modal excitation > 75% 40%

Modal cross talk < 3% > 20%
Beam waist (8.6± 0.2) (0.8± 0.2)µm

Coupling losses (25.62± 0.2) dB (7.23± 0.2) dB

Table 3.1: Comparison of the main parameters which characterizes the selective mode excitation based on
two beams interference and on the tilted �ber.

3.4 Experimental MMFW in straight Silicon waveguides

The tilted �ber approach to MMFWM described in the previous section has been implemented using the

experimental setup sketched in Fig.3.19
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a)

b)

IDLER

𝜆𝑖

Figure 3.19: (a) Sktech of the experimental setup implementing the tilted �ber approach. A = pump source,
B = idler source, C = beam splitter, D = �ber port collimator, E = input tapered lensed �ber, F =
sample waveguide, G = output tapered lensed �ber, H = optical spectrum analyzer. The angle between the
input(output) �ber and the input(output) waveguide facet is θ(α).

A pump source constituted by a pulsed Infra-Red laser (40 ps of pulse width and 100MHz repetition rate)

is combined with the idler, coming from a continuous wave laser, using a beamsplitter. The free space beams

are then coupled into a single mode �ber using a �ber port collimator. The polarization of both sources can

be controlled using either free space half/quarter waveplates (for the pump) or �ber polarization controllers

(for the idler). The input(output) tapered lensed �ber, which lies in the yz plane of Fig.3.19, makes an

angle θ(α) with respect to the normal of the input(output) waveguide facet (directed along the z axis). The

tested waveguides have a length of 1.4 cm. The output signal is monitored using an OSA. In case that the

generated signal power lies below 90 dBm, the OSA is replaced by a home made monochromator coupled to a

photon counter, which is able to measure up to −120 dBm of power. The angles α and θ have been chosen in

order to maximize the modal collection and excitation e�ciency with the mode orders involved in the FWM

process. Table 3.2 shows some of the investigated modal combinations. In what follows, each of them will

be referred by the vector (mp,mp,mi,ms), where mp, mi and ms refer to the pump, idler and signal mode

order respectively. The expected phase matching point has been calculated using Eq.3.19. The e�ective index

dispersions have been simulated using a FEM solver. As an example of the whole procedure implemented

for each combination, in what follows it is reported in detail the case of MMFWM for a waveguide of cross

section 3.65µm× 0.25µm.
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Waveguide cross section Pump Idler Signal Combination

3.65µm× 0.25µm
4 3 5 Mode order

(4, 4, 3, 5)TM TM TM Polarization
1.55µm 1.648µm 1.462µm Wavelength

1.85µm× 0.25µm
1 4 2 Mode order

(1, 1, 4, 2)TM TM TE Polarization
1.55µm 1.610µm 1.493µm Wavelength

1.70µm× 0.25µm
1 3 3 Mode order

(1, 1, 3, 3)TM TM TE Polarization
1.55µm 1.665µm 1.450µm Wavelength

1.70µm× 0.25µm
3 3 5 Mode order

(3, 3, 3, 5)TM TM TE Polarization
1.55µm 1.57µm 1.53µm Wavelength

Table 3.2: Simulated phase matching points for several modal combinations and waveguide widths.

In this case, the pump and the idler have to be copolarized in TM polarization, travelling into the 4th and

the 3rd order mode respectively. Fig.3.20 shows the coupling e�ciencies for the �ve lowest order TM modes

as a function of the angle θ.

𝜼

Figure 3.20: Coupling e�ciency η as a function of the �ber tilting angle θ for the lowest �ve TM mode orders
in a 3.65µm waveguide.

Since only one �ber is used to excite both the pump and the idler wave, the angle has to be chosen in such

a way that both modes are almost equally excited. From Fig.3.20, it can be seen that the 3rd order mode

is e�ciently excited at θ = 39°, while the 4th order mode at θ = 55°. The tradeo� angle is the average

between the two, which gives θ = 45°. The signal will be generated into the 5th order mode, so the output

�ber will be tilted by α = 70°. Once the angles have been �xed, the idler wavelength is spanned in the

neighborhood of 1.648µm, which is the phase matching wavelength expected from simulations. Fig.3.21

reports the whole spectrum of the transmitted radiation from the waveguide, which shows that a signal peak

at (1466.1± 0.1)nm is generated due to FWM at ≈ −82 dBm.
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Figure 3.21: (a) Spectrum of the light collected at the ouput of the 3.65µm width waveguide. Arrows indicate
the wavelength position of the pump, the signal and idler. (b) A zoom of the spectral region where the signal
is generated. (c) Simulated signal bandwidth and e�ciency. To obtain this curve, the set of equations from
(3.14) to (3.16) has been numerically integrated using the same input conditions of the experiment. The
integrals in the de�nitions of fij and fijkl have been computed using a FEM mode solver.

This wavelength is where the maximum of the e�ciency is observed (the corresponding idler wavelength is

1644nm). The 3 dB bandwidth of the process, that is the wavelength range in which the generated signal

decreases by less than 3 dB from its maximum value, has been measured to be (1.0 ± 0.2)nm. In order to

evaluate the e�ciency of the process, the fact that the pump (hence the signal) is pulsed and that the idler

is CW has to be taken into account. The bandwidth of the OSA is 100Hz, which is much less than the

100MHz of the repetition rate of the pump/signal. As a consequence, the power measured with the OSA is

the average power power 〈P 〉 of the pulsed radiation, which is related to the repetition rate R, to the pulse

width ∆t and to the peak power Ppeak as:

〈P 〉 = PpeakR∆t (3.41)

The conversion e�ciency ηFWM is de�ned as the ratio between the signal peak power Ppeak(λs) and the idler

peak power Ppeak(λi):

ηFWM = 10 log

(
Ppeak(λs)

Ppeak(λi)

)
(3.42)

By using Eq.3.41 and the fact that for a continuous laser 〈P 〉 = Ppeak, one obtains ηFWM = 〈ηFWM 〉 −
10 log(R∆t), where the average e�ciency 〈ηFWM 〉 = 10 log (〈Pλs〉 / 〈Pλi〉) has been introduced.
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From Fig.3.21, 〈ηFWM 〉 = −60 dB, and 10 log(R∆t) ≈ −23 dB, giving ηFWM = 37 dB. This e�ciency has

been obtained using a pump peak power of 25 dBm ≈ 316mW coupled into the waveguide (the �ber to chip

coupling losses were ≈ −8 dB for each waveguide facet). In order to be sure that the signal is generated

through MMFWM and not from FWM arising between the same mode orders, the expected bandwidths

for the combinations (m,m,m,m) with m = 1, .., 5 have been simulated using the same parameters of the

experiment. The results are reported in Fig.3.22.
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Figure 3.22: Simulated signal power generated through FWM for the combinations (m,m,m,m) with m =
1, .., 5. The cases of TE and TM polarizations are reported separately.

It is evident that the signal peak at 1466.1nm in Fig.3.21 can not be due to any of these combinations. This

is because already at 1535nm, the signal intensity lies below −90 dBm, which is the minimum detectable

signal by the OSA, and it continues to decrease at shorter wavelengths. Also the 3 dB bandwidths do not

agree with the experimental one. The narrowest is about 20nm for the (1, 1, 1, 1) combination, which is

an order of magnitude higher than the one measured in Fig.3.21. The possibility that FWM occurs in the

tapered �ber should also be excluded. Fig.3.23 shows the experimental result and the simulation of the FWM

experiment performed without the sample, when the input and the output �bers are directly coupled tip to

tip.
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Figure 3.23: Signal power generated through FWM in a single mode Silica optical �ber having a core width
of 10µm. Black scatters are experimental data while the solid blue line comes from a simulation. The
parameters are the same used to simulate the curves in Fig.3.22, except for the modal dispersion and the n2

coe�cient, which are taken from FEM simulations and from [2] respectively.

The parameters of a standard single mode Silica �ber, having a core width of 10µm, have been used in the

simulation [2]. The generated signal was detectable till 1525nm, while at lower wavelengths it laid below the

noise limit of the OSA. This excludes the possibility that the FWM of the �ber was the responsable of the

signal peak in Fig.3.21. The dependence of the generated signal in Fig.3.21 on the average pump power and

on the idler power is shown in Fig.3.24.
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Figure 3.24: (a) Signal power as a function of the average pump power at the �xed idler power of 0.15mW .
(b) Signal power as a function of the idler power at the �xed average pump power of 15mW . In both panels,
the pump wavelength is λp = 1.55µm, while the idler wavelength is λi = 1.644µm.

Before TPA e�ects occur near 20mW of average pump power, the relation between the pump and the signal
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power is quadratic, as predicted from Eq.3.12. TPA has the e�ect of saturating the maximum coupled power

inside the waveguide, so after a certain threshold the generated signal does not increase anymore even if

the pump power is further raised. The relation between the signal and the idler power is linear, which is in

agreement with Eq.3.12. The behaviours of Fig.3.24 con�rm that the process which creates the signal peak

is FWM.

Fig.3.25 shows the generated signal power as a function of the wavelength for the di�erent waveguide widths

and modal combinations of Table 3.2. Table 3.3 summarizes the conversion e�ciencies, and compares the

wavelengths λs where the maximum signal is expected from simulations to the ones actually recorded in the

experiment.
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-

-
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Figure 3.25: (a) Signal power for the combination (1, 1, 3, 3) in the 1.70µm width waveguide. Here, the
average pump power is 1.6mW and the idler power is 40µW . (b) Signal power for the combination (1, 1, 4, 2)
in the 1.85µm width waveguide. Here, the average pump power is 1mW and the idler power is 10µW . (a)
Signal power for the combination (3, 3, 3, 5) in the 1.70µm width waveguide. Here, the average pump power
is 1.6mW and the idler power is 40µW .

Combination Wg.width (µm) λs Simulation (nm) λs Experiment (nm) E�ciency (dB)
(4, 4, 3, 5) 3.65 1462.0 1466.1± 0.1 −37.4± 0.2
(1, 1, 4, 2) 1.85 1493.4 1462.1± 0.1 −19.4± 0.2
(3, 3, 3, 5) 1.70 1530.2 1501.0± 0.1 −37.8± 0.2
(1, 1, 3, 3) 1.70 1449.9 1480.5± 0.1 −36.3± 0.2

Table 3.3: Comparison between the signal wavelengths where the maximum e�ciencies are found and the
ones predicted from the simulations.

For the combinations which involve cross polarized �elds, there is a quite large mismatch, of the order

of 30nm, between the wavelength where the maximum e�ciency is expected and the ones found in the

experiment. This is due to the fact that the widths of the fabricated waveguides may slightly di�er from the

ones used in the simulations. Indeed, Fig.3.26 shows that the wavelength where the maximum e�ciency is

expected strongly depends on the width of the waveguide.
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Figure 3.26: Simulated wavelength position of the maximum signal power generated through MMFWM as a
function of the waveguide width. The investigated combinations are the same reported in Table 3.2.

This is measured by the parameter dλs
dW , which is the slope of the curve which links λs with the waveguide

width w, and that is reported in Table 3.4. By matching the experimental value of λs with the curves in

Fig.3.26, the average width of the fabricated waveguide can be extracted, and is reported in Table 3.5.

Modal combination dλs/dw
(4, 4, 3, 5) 0.01
(1, 1, 4, 2) −1
(3, 3, 3, 5) −2
(1, 1, 3, 3) 3

Table 3.4: Slope of the curves in Fig.3.26.

Modal combination Nominal width (nm) Fabricated (nm)
(4, 4, 3, 5) 3650 −
(1, 1, 4, 2) 1850 1879.3± 0.1
(3, 3, 3, 5) 1700 1683.8± 0.1
(1, 1, 3, 3) 1700 1690.7± 0.1

Table 3.5: Comparison between the nominal waveguide widths and the values of the fabricated ones.
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An average deviation of (18.4 ± 0.2)nm is found between the nominal values of the waveguide widths and

the fabricated ones, which is compatible with the tolerances of the photolithographic process (±20nm). It is

interesting to note that the value of dλsdW is higher for the combinations which involve cross polarized �elds.

Qualitatively, this can be explained by the fact that the e�ective indexes of TE modes are much more sensitive

to variations in the waveguide width rather than TM ones. In mathematical terms, if ∆Ω denotes the shift

of the signal frequency as a consequence of a change ∆w in the waveguide width, one can expand the phase

matching relation of Eq.3.19 to the �rst order in ∆w to get:

∆Ω = (βs(λp)− βi(λp))
(

2
dβp(λp)

dw
− dβs(λp)

dw
− dβi(λi)

dw

)
∆w (3.43)

which tells that ∆Ω depends on the variations of the propagation constants β with respect to the width w.

From Fig.3.26, it can be seen that for the combination (4, 4, 3, 5), which involves only TM modes, no matching

is found between theory and experiment for any reasonable value of waveguide width. This tells that variations

on the waveguide height have to be considered when dealing with only TM modes, due to their high e�ective

index sensitivity to thickness variations. Nevertheless, the height can be controlled with much more tight

tolerances than the width. Typically, the height of the Silicon layer of a SOI wafer has inhomogeneities at

the order of ±5nm [90]. This is why the discrepancy between the experimental and the theoretical signal

wavelengths is only (4.1± 0.1)nm.

While the average width of the waveguide has the e�ect to shift the wavelength position of the signal

peak, the inhomogeneities along the propagation direction have the e�ect to increase the bandwidth of the

generated radiation. For example, this can be appreciated from the comparison between the simulated and

the experimental signal spectra in Fig.3.21. The predicted bandwidth is 0.3nm, while the experimental

one is (1.0 ± 0.2)nm, i.e., three times larger. The e�ect of inhomogeneities in the waveguide width, of

amplitude ∆w(z), is to change the wavevector of the propagating radiation along the length of the waveguide.

Each of these wavevectors generaties signal radiation at frequencies which are shifted by ∆Ω(∆w) from the

average one. As a consequence, the bandwidth of the process is increased. In a �rst approximation the

broadening of the signal peak has been computed by writing the modes of the waveguide with a variable

width w(z) = 〈w〉+ ∆w(z) as:

E ≈ 1

2
E0e(x, y)e−iβ(w(z))z + c.c (3.44)

where β(w(z)) is the wavevector associated to the same mode order in a uniform straight waveguide of width

w = w(z). Using the same approach which lead to the derivation of Eq.3.5-3.8, the generated signal power

Ps is found to be proportional to:

Ps ∝
∣∣∣∣ˆ e−i∆k(z)z dz

∣∣∣∣2 (3.45)

where the position dependent phase matching ∆k(z) is written as:

∆k(z) = 2βp(w(z), λp)− βs(w(z), λs)− βi(w(z), λi) (3.46)

In order to calculate the integral in Eq.3.45, the waveguide width variations are modeled as follows :

1. The width variation is assumed to be piecewise constant in sections of length σcoh . The latter is a

uniformally distribuited variable between 1nm and 18nm, which is the maximum correlation length

measured from Scanning Electron Microscopy images of the fabricated waveguides. The integration

step of Eq.3.45 is 1nm.
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2. For each section, the width is constant and given by w = 〈w〉 + ∆w, where 〈w〉 is the average value

given in Table 3.5 and ∆w is a random variable with zero mean value and standard deviation σ∆.

The use of this procedure allows to reproduce the more realistic situation where the width of the waveguide

randomly changes with a �nite correlation length. The results are shown for the combination (1, 1, 4, 2) in

Fig.3.27, where the spectrum of the signal power is plotted for di�erent values of σ∆.
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Figure 3.27: Normalized signal power spectrum as a function of the modulation width parameter σ∆. The
power is normalized with respect to the peak power at σ∆ = 0.

As σ∆ increases, the FWM peak broadens, and at the same time the e�ciency decreases. Note that the

wavelength where the signal power is maximum is not a�ected by the magnitude of σ∆, since it is �xed

only by the average width 〈w〉. Using Eq.3.45, the values of σ∆ are evaluated for all the combinations

listed in Table 3.3 by matching the experimental 3 dB bandwidth with the ones from simulations. Table 3.6

summarizes the results.

Modal combination σ∆(nm)
(1, 1, 4, 2) 0.68± 0.2
(3, 3, 3, 5) 0.70± 0.2
(1, 1, 3, 3) 0.51± 0.2

Table 3.6: Magnitude of the modulation width parameter σ∆ for the di�erent combinations reported in Table
3.2.

As a last step, few words have to be spent about the spontaneous version of the MMFWM processes described

above. All the combinations reported above have been probed using an idler beam which stimulates the

process. Some experiments have been also performed by removing the idler, but no correlated pairs have

been detected. The motivation lies in the fact that the generated photon �ux was too low for being detected

even with a photon counter of −120 dBm of detection limit. An estimation of the expected �ux can be done

using the scaling relations provided by the work of G.Helt et.al. [200]. Here, an expression for the idler power

Pi generated by sFWM in a straight waveguide has been derived in terms of the e�ciency of the stimulated

process ηFWM , and of a �semi-classical� input signal power Ps, as Pi = ηFWMPs. The signal power is given

by Ps = ~ωpB, where ωp is the frequency of the pump and B the bandwidth of the process. For example, with
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reference to the modal combination (4, 4, 3, 5) in the 3.65µm wide waveguide, B ≈ 124GHz (corresponding

to a linewidth of ≈ 1nm, see Fig.3.21(b)), Ps ≈ −50 dBm and ηFWM = −82 dB. This has been computed

by considering a continuos wave pump power of 0 dBm, which corresponds to the realistic value that can be

coupled into the waveguide by using the tunable Infra-Red laser of the experiment described in section 3.4.

By combining together these factors, the expected idler power is Pi ≈ −132 dBm, to which ≈ −8 dB of �ber

to chip coupling losses have to be added, with the result that the power to be detected is ≈ −140 dBm. This

value lies well below the detection limit of the implemented photon counter. In the experimental conditions

described in section 3.4, the conversion e�ciency is ηFWM = (−37.4 ± 0.2) dB, and is higher than in the

continuous case because the peak power of the pulsed laser is ≈ 25 dBm. In this case, the detected �ux would

be −95.4 dBm (coupling losses have already been taken into account). However, the generated �ux comes in

temporal pulses of width ∆t and repetition rate R, and one has to consider the average �ux as the quantity

that the photon counters detects. As already discussed in section 3.4, the average �ux (expressed in dBm)

is lower than the peak �ux by a quantity 10 log(R∆t), which for the parameters of the pulsed laser is equal

to ≈ −23 dB. The average photon �ux is then Pi = −118.4 dBm. This value is very close to the detection

limit of the photon counter, which could explain the reason why no sFWM has been detected.

3.5 Future perspectives: use of MMFWM for MIR to NIR conver-

sion

As discussed in Section 3.2, the main feature of the MMFWM approach is its ability to achieve large spectral

translations between the signal and the idler signals while keeping the roboustness against fabrication imper-

fections. Such large wavelength conversions are very di�cult to achieve with FWM in which all the waves

propagate in the same mode order, due to GVD and to the ultra-high sensitivity of even order dispersions

to small changes in the waveguide cross section. Table 3.7 summarizes the e�ciencies of the process and the

relative spectral translations for the di�erent modal combinations tested in the experiment.

Modal combination Polarization Spectral translation (nm) E�ciency (dB)
(1, 1, 1, 1) (TM,TM,TM,TM) 20 −31.4
(3, 3, 3, 3) (TE,TE,TE,TE) 40 −35
(4, 4, 3, 5) (TM,TM,TM,TM) 178.0± 0.2 −37.4± 0.2
(1, 1, 4, 2) (TM,TM,TM,TE) 187.0± 0.2 −19.4± 0.2
(3, 3, 3, 5) (TM,TM,TM,TE) 101.3± 0.2 −37.8± 0.2
(1, 1, 3, 3) (TM,TM,TM,TE) 145.8± 0.2 −36.3± 0.2

Table 3.7: Spectral translation (de�ned as the distance between the signal and the idler wavelength) and
associated conversion e�ciencies for di�erent MMFWM combinations. The results for the combinations
(1, 1, 1, 1) and (3, 3, 3, 3) come from numerical simulations.

In this table, also the single mode combinations (1, 1, 1, 1) and (3, 3, 3, 3) have been included, to emphasize

that the conversion e�ciency is comparable to the ones achieved using MMFWM at spectral distances which

are an order of magnitude larger. This peculiarity can be exploited to realize up conversions from MIR

photons to Near Visible ones. The detection of MIR photons is indeed a very di�cult task, and requires

the use of expensive and not CMOS compatible materials as HgCdTe (Mercury Cadmium Telluride) or

InSb (Indium Antimonide) [205]. What is more, these detectors are very bulky due to their internal cooling

system which has to keep the operating temperature typically below 70K [206]. The di�culties in MIR

photon detection mainly rely on the fact that the energy of the photons to be detected is comparable to

the thermal energy kT of the environment. This fact has the drawback of creating electron hole pairs in
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the material due to thermal excitation, thus contributing to the enhance the dark counts of the detector.

This is why a cooling system is always required. The blackbody radiation emitted by the detector itself, or

from the surrounding environment, has also a not negligible component in the MIR spectral region, which

requires �ltering to isolate the signal. If MIR photons were converted to NIR or visible ones, one could

employ the wide variety of NIR-Vis detectors to detect the up converted radiation. This class of detectors

have the advantages of being less expensive that the ones for MIR, and to have higher detection e�ciencies,

lower dark counts and can operate at room temperature. The principle of up conversion has been already

implemented in the work of S.D. Jeppe et. al.[207], where MIR photons are up converted to visible ones

using sum frequency generation in a periodically poled Lithium Niobate crystal. A similar approach can be

done on a chip by using MMFWM in Silicon waveguides. An illustrative example of a conversion of a MIR

idler at 2.88µm to a NIR signal at 1.06µm using a pump at 1.55µm is given in Fig.3.28.
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Figure 3.28: Simulation of MMFWM for realizing a spectral translation from an idler at 2.88µm into a signal
at 1.06µm using MMFWM in a Silicon waveguide of 3.65µm×0.25µm cross section. The implemented com-
bination is (1, 1, 1, 5), and all the modes have TM polarization. The simulation of the (4, 4, 3, 5) combination,
whose feasibility has been experimentally demonstrated in Section 3.4, is also shown in the picture. For each
curve, the power is normalized with respect to the maximum value.

This translation is realized by a waveguide of cross section 3.65µm × 0.25µm and the modal combination

(1, 1, 1, 5), where all the modes have TM polarization. The e�ciency of the wavelength conversion could be

limited by TPA, which limits the amount of power that can propagate in the waveguide. In order to overcome

this limitation, di�erent materials than Silicon can be implemented. For example, Silicon Nitride or Silicon

Oxinitride are both CMOS compatible materials whose bandgap is much larger than the one of Silicon. In

this way, the threshold for the occurrence of TPA is signi�cantly shifted towards lower wavelengths, with the

result that the pump power at 1.55µm can be grately increased without incurring in the problem of nonlinear

absorption.
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3.6 Future perspectives: on chip implementation of two beams in-

terference

The two beam interference experiment discussed in Section 3.3.2 revealed that the method was e�ective for

selective mode excitation with a very low modal cross talk. The main drawbacks were the high coupling

losses and the di�culties to align the input waveguide facet in the point where the two beams interfere.

These problems can be solved by integrating the interferometer on a chip. The design of the device which

accomplish this task is shown in Fig.3.29(a). Here, the pump and the idler beams are coupled into two

single mode waveguides from separate inputs. Both are equally split using a directional coupler and the four

outgoing waveguides are directed toward a Free Propagation Region (FPR), where light can freely di�ract

into a Silicon slab waveguide. The four input waveguides are placed on the circumference of a circle of radius

R. The two arms which originate from the pump splitting approach the FPR by making an angle 2θp, while

the two arms which originate from the idler splitting make an angle 2θi (see Fig.3.29(b)). These angles are

chosen in order to maximize the overlap of the di�racted �eld with the one of the modes which one wants

to selectively excite, and can be extracted from Fig.3.8. Since the transmitted �eld of a directional coupler

is −π2 out of phase with respect to the re�ected one, attention has to be paid to the symmetry of the mode

which one want to excite in the output waveguide. In case of modes with odd symmetry with respect to the

center of the waveguide, the relative phase φ between the outgoing arms of the directional coupler has to be

set to φ = ±π (see Section 3.3.1). In case of modes with even symmetry, the phase has to be set to φ = 0.

A FEM simulation which shows the light propagation into the FPR is shown in Fig.3.29(c). Here, the angle

is chosen in order to maximize the overlap with the 3rd order mode of the output waveguide. The size of

the four input waveguides win and the radius R of the FPR have to be optimized in order to maximize the

ratio between the power coupled into the output waveguide and the losses due to the portion of the di�racted

�eld which is not coupled. As a general rule, the larger is the radius, the lower is the crosstalk between the

excited modes, since the gaussian envelope of the fringes is less marked and the resulting interference pattern

is closer to the ones of Fig.3.3. However, larger radius imply more losses, since the �eld spreads more with

distance due to di�raction. This can compensated by enlarging the size of the input waveguides. A tradeo�

between all these e�ects have to be chosen. At the moment of writing this work, the optimization procedure

is currently under investigation. The �rst results reveal that the coupling losses range from a minimum of

1 dB to a maximum of 5 dB, depending on the value of R and win.
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Figure 3.29: (a) Design of the integrated device which realizes the two beam interference experiment of
section 3.3.2. In this example, the pump is coupled into a mode of even symmetry (φ = 0), while the idler
into a mode of odd symmetry (φ = ±π). (b) Detail of the FPR, indicating the key parameters of the device
as the size of the input waveguides win, the radius R of the Free Propagation Region, the angle θ and the size
of the output waveguide wout. Here, only two of the four inputs are shown for clarity. (c) FEM simulation
of the light propagation in the FPR.

3.7 Conclusions

In this chapter, the process of Multi Modal Four Wave Mixing has been studied in straight Silicon waveguides.

An intense pump and an idler beam have been coupled into a multimode waveguide in speci�c mode orders,

and the generated signal is collected at the output. To this purpose, two methods have been introduced

and experimentally characterized. The �rst exploits the interference of two coherent beams which converges

toward the input of the waveguide at an angle θ between each other. The interference pattern created by the

crossing of the two beams reproduces the standing wave pattern of the �eld distribution of the waveguide

modes. The angle is tuned to maximize the overlap between the incoming �eld with the one of the target

mode that one wants to selectively excite into the waveguide. Using this procedure, a stable selective mode

excitation has been demonstrated. Unfortunately, the method su�ered from high coupling losses, which

prevented to observe any MMWFM process. Losses mostly originated from the huge mismatch between

the modal e�ective area and the one of the incoming exciting �eld. The second approach is based on the

capability of a tilted tapered lensed �ber to excite higher order modes. The inclination of the �ber with

respect to the normal of the waveguide input facet determines the fraction of power which is coupled at

the di�erent mode orders. As the angle increases, higher order modes are excited. Thanks to the reduced

e�ective area of the �eld which exits from the �ber, it has been possible to signi�cantly reduce the coupling

losses and to observe MMFWM for di�erent modal combinations and waveguide widths. Several tests have

been done in order to demonstrate that the FWM process was realized from a multimode excitation. In
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particular, numerical simulations revealed that the measured conversion e�ciencies could be only explained

if the pump, the signal and the idler waves were propagating in di�erent mode orders. All the main features of

the measured FWM spectra have been interpreted with the help of numerical simulations. The discrepancies

between the wavelengths where the maximum signal was predicted and the ones found in the experiment were

attribuited to the fact that the average waveguide width di�ered from the nominal ones due to fabrication

defects. Random nanometric variations of the width along the propagation direction were seen to broaden

the FWM signal peak. The capability of MMFWM to achieve high conversion e�ciencies at large spectral

distances between the signal and the idler can be exploited to realize an integrated device which up converts

MIR photons to NIR ones, or to realize the inverse process in which NIR photons are converted into MIR

ones (MIR sources). This would allow to detect MIR photons by using NIR detectors, which are less bulky

and expensive than the ones for the Mid Infrared. For all the investigated combinations, the FWM process

is stimulated by the presence of the idler wave, and thus do not create correlate pairs of signal/idler photons.

The latter is indeed an intrinsic property of spontaneous FWM, in which only the pump beam is coupled into

the waveguide, and signal/idler pairs are generated by the ampli�cation of vacuum �uctuations. This process

is of interest for the realization of on chip quantum sources of entangled photons, that was the main motivation

for which the straight waveguides were designed and fabricated. The high coupling losses associated to the

stage of selective mode excitation prevented the observation of the spontaneous phenomenon. This is the

reason why a new class of devices are currently under design and will be tested in the near future. These

are essentially the integrated implementation of the two beam experiment described in section 3.3.2, but

with highly reduced coupling losses. The main features of such devices are represented by high coupling

e�ciencies, low modal crosstalk and roboustness against fabrication imperfections.
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Chapter 4

Investigation of strain induced χ(2)

nonlinearities in Silicon waveguides

through the electro optic e�ect

In this chapter, the possibility to induce a χ(2) nonlinearity in Silicon by straining its unit cell is investigated.

Within the framework of the project SIQURO, this task has the �nal aim to propose Silicon as a platform for

generating entangled photon pairs through SPDC. Enabling a χ(2) in Silicon would allow to integrate the χ(2)

quantum sources directly on a chip, removing the constraint to look for bulky external sources like Lithium

Niobate or Barium Borate crystals. From a more general point of view, the enabling of the whole class of

χ(2) e�ects, like SHG, Sum Frequency Generation, Di�erence Frequency Generation and especially electro

optic modulation (Pockels e�ect), would enormously boost the applications and engineering possibilities

of Silicon Photonics. This will constitute an important step towards standardization, in which only one

material (Silicon) and only one fabrication process (CMOS) is used to accomplish an increasingly number of

functionalities within the same integrated chip.

As already introduced in Chapter 1, crystalline Silicon has a diamond structure, which means that it is

intrinsically centrosymmetric. With reference to Fig.4.1(a), showing the Silicon unit cell, this means that

the points indicated by the vectors r and −r are equivalent, i.e, they share all the symmetry and geometric

properties.
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Figure 4.1: (a) Hard ball model of the unit cell of crystalline Silicon. The point O, where opposite vectors
r and −r originate, is the inversion point. (b) Top panel: unstrained unit cell. Low panel: unit cell with
inhomogeneous strain applied and loss of centrosymmetry.

The point O, which is located exactly at the center of the cubic lattice, is called the inversion point. The

macroscopic polarization P should then change sign upon inversion of the direction of an applied static

electric �eld E, in other words:

P(E) = −P(−E) (4.1)

By expanding the constitutive relation P(E) up to the third order in E, we have:

P(E) ≈ ε0(χ(1) ·E + χ(2) ·EE + χ(3) ·EEE) (4.2)

Equations (4.1) and (4.2) are compatible only if the second order susceptibility tensor χ(2) is equal to zero,

that is, crystalline Silicon has no native second order nonlinearities. The only way to enable second order

nonlinearities is to break the centrosimmetry of the fundamental unit cell. In the experiments described later,

this is accomplished by covering Silicon waveguides with a thin stressing layer of Silicon Nitride.

In this chapter, a method which, in principle, would allow to determine most of the components of the χ(2)

tensor, is presented. The latter makes use of the electro optic e�ect in titled strained racetrack resonators.

In contrast with all the previous works, in which the Pockels e�ect is monitored using DC signals [139, 140,

141, 138, 142], the probe here is a low frequency (KHz) AC voltage captured by two Lock In Ampli�ers.

The basic theory and the experimental methods are introduced in section 4.1.1 and 4.1.3, while the results

are discussed in section 4.3.1. At this stage, some anomalies have been encountered, which suggested that

the observed electro optic modulation does not have a χ(2) origin but it is rather a consequence of plasma

carrier dispersion. To distentagle the two contributions, high frequency (GHz) electro optic measurements

have been performed on the same devices, and the results and conclusions are presented in section 4.3.4 and

4.3.5.

The experiments described in section 4.3.1 and in section 4.3.2 have been done with the collaboration of Dr.

Mattia Mancinelli (University of Trento). Experiments described in section 4.3.5 have been done with the

collaboration of Mr. Saeed Sharif, Dr. Florian Merget and Dr. Jeremy Witzens (RWTH-Aachen University).

105



Chapter4. Investigation of strain induced χ(2) nonlinearities in Si. wg. through the e.o e�ect

4.1 Electro optic e�ect in titled racetrack resonators: principles and

design

4.1.1 Principles of the method

In most of the previous works, the elements of the χ(2) tensor have been probed by measuring the electro

optic e�ect in an unbalanced integrated Mach Zehnder (MZ) interferometer [139, 138, 142]. Electrodes are

placed on the top of one or both arms of the interferometer, and are driven by a DC (or low frequency)

voltage. A stressing layer, usually Silicon Nitride, is conformally deposited on the waveguide core to break

the centrosymmetry [157, 140]. As a consequence of the applied voltage and of the electro optic e�ect, the

refractive index of the material changes by ∆n, and a relative phase shift ∆φ(∆n) between the two arms is

induced. Since interference fringes of the form cos(Φ0 + ∆φ(∆n)) are created at the output of the MZ, this

has the e�ect to shift the whole pattern and form this shift, ∆φ can be extracted. Plotting ∆φ as a function

of the applied voltage V has revealed a linear relationship, which has been considered as the proof of the

presence of a χ(2) electro optic modulation in Silicon. The reason why the shift should be linear in V comes

directly from Eq.4.2: if we write the total electric �eld inside the material as the sum of an optical �eld E(ω)

plus a DC �eld EDC , we obtain a polarization source at frequency ω of the form:

Peo(ω) = ε0χ
(2)·EDCE(ω) (4.3)

This polarization factorizes with the linear polarization induced by the valence bond electrons P(1)(ω) =

ε0χ
(1)E(ω), to give a total polarization:

P(ω) = P(1) + Peo = ε0(χ(1) + χ(2)·EDC)·E(ω) = ε0εr ·E(ω) (4.4)

From the relation εr = n2, where nis the material refractive index, we obtain:

n ≈ n0 + ∆n = n0

(
1 +

χ(2)

2
·EDC

)
(4.5)

which states that a linear relation exists between the induced refractive index change ∆n (hence ∆φ) and

the applied static �eld EDC (hence V ).

Following this approach, only few elements of the χ(2) tensor have been extracted, and the reason lies in the

geometry of the implemented con�gurations. Fig.4.2(a) shows a typical layout of the MZ device, while the

cross section is shown in Fig.4.2(b).
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Figure 4.2: (a) A typical layout of the MZ interferometer for testing the electro optic e�ect. Electrodes in
con�guration A applies an electric �eld in the ŷ direction. Electrodes in con�guration B applies an electric
�eld in the x̂ direction. (b) Cross sections of the device (xy plane) associated to the con�gurations of
electrodes A and B. The green layer is the stressing material, usually Silicon Nitride (Si3N4). +V indicates
a positive voltage, while GND stands for Ground.

The propagation direction is ẑ, while (x̂, ŷ) are the transverse directions of modal con�nement. Using the

set of electrodes indicated as (A), a DC �eld in the ŷ direction can be applied, while using the set (B), the

direction is along x̂. The optical �eld can be set either TE (x̂) or TM (ŷ). With these constraints, the four

elements of the χ(2) tensor that can be extracted from an electro optic measurement are reported in Table

4.1.

χ
(2)
ijk component Optical �eld polarization DC �eld polarization

χ
(2)
xxx x x

χ
(2)
yyx y x

χ
(2)
xxy x y

χ
(2)
yyy y y

Table 4.1: Elements of the χ(2) tensor which can be extracted using the electrodes con�guration shown in
Fig.4.2.

It is worth to point out that, in principle, by sending a cross polarized �eld at the input and by monitoring

the fringes separately for the TE and TM polarizations, one could also get some informations about the

χ
(2)
ijk components with i 6= j . However, this approach is complicated by the fact the device can not be

easily optimized for achieving good performances for both the TE and TM polarizations due to the strong

birifrangences of Silicon waveguides.

Probing components which involve the ẑ direction is extremely di�cult due to the fact that the electric �elds

of the optical modes are mainly transverse. The component along the propagation direction is typically one

order of magnitude lower with respect to the transverse ones, and it decreases as the width of the waveguide

increases.

This bottleneck could be removed using tilted devices. The tilting angle is referred to a reference crystallo-

graphic axes, and the choice of the latter depends on the SOI wafer cut orientation. In the work described

in section 4.3.1, this direction is the [100], which means that devices at 0 degrees have waveguides where

[100] correponds the propagation direction. To illustrate the concept, consider the two waveguides shown in

Fig.4.3.
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𝛼
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Figure 4.3: Two waveguides rotated by an angle α, together with their reference frames ((x, y, z) for the red
one, (x′, y′, z′) for the green one). The red waveguide has the propagation direction aligned with the reference
crystallographic axis, shown with a black arrow.

The red one is at 0 degrees, the green one at α degrees. The two reference frames O(x, y, z) and O′(x′, y′, z′)

have the z(z′) direction aligned with the direction of propagation of light, and are linked together by the

rotation matrix Rij(α). If one applies to the Maxwell's equations, written in the O reference frame, the

transformation described by the rotation matrix Rij(α), one would obtain the same set of equations in which

the new χ(2) tensor is written as:

χ
(2)
i′j′k′ =

∑
lmn

RilRjmRknχ
(2)
lmn (4.6)

Which states that the χ(2) tensor in the rotated reference frame can be written as a linear combination of

the χ(2) components in the not rotated one. A 3rd rank tensor has in general 33 = 27 independent elements,

but from Maxwell's equations it turns out that only 18 are independent [160]. It would be su�cient to tilt

the device in at least �ve independent orientations, and for each direction measure four components as the

ones listed in Table 4.1, to build a set of 5 × 4 = 20 equations in 18 unknowns and consequently map the

χ(2) tensor.

However, this is subjected to some assumptions, which have to be validated from the experiment:

� Each set of four measurements, executed at a �xed angle, constitutes a set of four independent equations.

Each set of equations is independent from each other.

� The strain distribution does not depend on the direction of the waveguide. This condion is necessary

to use Eq.4.6.

4.1.2 Design of racetrack resonators

The MZ structure requires quite long arms (at the order of 1 − 2 cm in Ref.[139]) to be sensitive to small

phase shifts ∆φ, so in order to reduce the footprint and accomodate on a single chip more devices at di�erent

tilting angles, racetrack shaped resonators have been designed. The use of high Q cavities allows to detect

very small phase shifts, keeping low footprints, by monitoring the wavelength position of the resonances when

a voltage is applied at the electrodes. The resonator is arranged in the AD con�guration, so it has two output

ports, the Drop and the Through one. The coupling length Lc and the resonator perimeter Ltot �x, together

with the propagation losses, the Q factor of the resonator and, hence, the FWHM of the resonance. In order
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to detect the small phase shifts imparted by the electro optic e�ect, the resonance width has to be su�ciently

narrow to resolve such small phase variations. Using a value of χ(2) ≈ 100 pmV −1 [139] and an electric �eld

of the order of 106 V m−1 (which corresponds to approximately 100V applied to the electrodes in Ref.[139]),

the voltage induced refractive index shift can be predicted using Eq. 4.5 to be ∆n ≈ 10−4. The associated

resonance shift ∆λ is of the order of ∆λ = λ0(∆n/ng) ≈ 40 pm (the resonance wavelength is assumed to be

1.55µm and the group index ng = 4). The FWHM of the resonator should be then of the order of 40 pm to

easily detect the resonance shift. In Fig.4.4 it is shown the FWHM of an Add Drop �lter as a function of the

perimeter and the coupling coe�cient κ2 at λ = 1.53µm , with the propagation loss �xed at 4 dBcm−1.
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Figure 4.4: The FWHM of an Add-Drop �lter as a function of the coupling coe�cient κ2 and of the resonator
perimeter, with the losses �xed to 4 dBcm−1

The white star in the contour plot indicates the values of κ2 and Ltot that have been chosen for the design.

These are κ2 = 3.5% and Ltot = 415µm, corresponding to a FWHM of ≈ 35 pm. Four class of devices

have been designed, and are referred as CAP140, CAP70, HAT140 and HAT70. These di�er from the shape

and the thickness of the stressing layer (Silicon Nitride (Si3N4)) deposited on the top of the waveguides,

as shown in Fig.4.5. The length of Lc and the coupling gap cg will depend on the polarization and on the

type/geometry of the stressing layer deposited on the top of the waveguides. The coupling length Lc is kept

�xed and cg is tuned for achieving κ2 ≤ 3.5% (which means a FWHM ≤ 35 pm), as indicated in Table 4.2.
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Wafer Deposition Si3N4

thickness
Lc cg (nm) κ2

CAP140 Conformal 140nm 12.17 450(TE), 600(TM) 3.5%(TE), 3.5%(TM)

CAP70 Conformal 70nm 12.17 450(TE), 600(TM) 2.4%(TE), 4%(TM)

HAT140
Only on the

WG top
140nm 12.17 450(TE), 600(TM) 1.4%(TE), 2.5%(TM)

HAT70
Only on the

WG top
70nm 12.17 450(TE), 600(TM) 1.4%(TE), 3.8%(TM)

Table 4.2: Design details of the four class of devices dedicated for the study of the electro optic e�ect in
strained Silicon resonators.

Si3N4

SiO2
Si

SiO2

a) b)

c) d)

Figure 4.5: FEM simulations of the �rst TM supermode of the directional coupler used to couple energy from
the bus waveguide to the resonator. The colormap refers to the �eld intensity. (a) HAT70, (b) HAT140, (c)
CAP70, (d) CAP140.

To study the connection between the induced χ(2) tensor and strain, resonators with di�erent waveguide

widths have been designed. The waveguide width, which strongly in�uences the strain distribution, is changed

from 400 nm to 4µm with steps of 400nm. The �nal device geometry is shown in Fig.4.6.
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Input

Drop

Through

𝐿𝑐

Electrodes A
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𝐿ℎ

𝑐𝑔

a)

b)

GND Pad GND Pad+ V Pad + V Pad

Figure 4.6: (a) Extended layout of the resonator geometry, showing the Aluminium pads connections to the
electrodes. (b) Zoom of the device geometry. Lc = coupling length, cg = coupling gap, Lh = electrode length.
In the electrode con�guration A, the central electrode has a width of 8.5µm and is separated by the two
external electrodes (of 4.5µm width) by 7.75µm. The external electrodes are shorted to a common voltage
(usually GND). In the con�guration B, the electrodes have a width of 2µm and are separated by 4µm.

To preserve single mode operation, the resonator waveguide is tapered from 400nm to the desired width

using an adiabatic taper of length 40µm. Two set of Alluminium electrodes of length Lh = 50µm, in the

same con�guration as the ones shown in Fig.4.2, are deposited on the top of the waveguides, and optically

isolated using a Silica layer of thickness 900nm. Only one set of electrodes can be activated at the same

time. As shown in Fig.4.7, the geometry of the electrodes provides a quite �at electric �eld pro�le inside the

waveguide. The intensity of such �eld depends on the direction, the width of the waveguide and the Silicon

Nitride thickness/conformation. For example, in Fig.4.7, the average electric �eld inside a waveguide of

800nm width in the CAP140 con�guration is EDC = −0.5·104ŷV m−1 (Fig.4.7(a)) or EDC = 8.2·104x̂V m−1

(Fig.4.7(b)) at 1V applied to the set of electrodes A and B respectively. The average electric �eld increases

linearly as a function of the applied voltage, as it is shown in Fig.4.8.
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a)

b)

Figure 4.7: (a) Electric �eld intensity and direction for the electrode con�guration indicated as A in Fig.4.6
when a voltage of 1V is applied. (b) Electric �eld intensity and direction for the electrode con�guration
indicated as B in Fig.4.6 when a voltage of 1V is applied.
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Figure 4.8: Average electric �eld in the x̂ direction as a function of the applied voltage V for a 800nm
waveguide in the CAP140 con�guration.

Five tilting angles have been chosen. These are α = 0, 30, 45, 60, 90. Angles are referred with respect to the

crystallographic direction [100]. Considering all the permutations of waveguide widths (10), polarizations

(2), Si3N4 thickness/conformation (4), the total number of di�erent devices is N = 4× 2× 10× 5 = 400.
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4.1.3 AC Electro optic measurements using a Lock In ampli�er: theory

The simplest idea for extracting the value of one of the χ(2) components using the electro optic e�ect could

be the following:

1. Measure one of the resonance wavelengths λ0 when zero bias voltage is applied between the electrodes.

2. Apply a voltage V , and measure the resonance shift ∆λ due to the voltage induced refractive index

shift described in Eq.4.5.

3. Compute the slope of the ∆λ(V ) curve. The slope is proportional to the involved χ(2) component,

which can be extracted from the knowledge of the device geometry and the applied electric �eld.

However, this method does not provide a very high sensitivity. In fact, any temperature �uctuation of the

sample at the order of 0.5K induces a resonance shift of the order of 30 pm, which corresponds approximately

to the FWHM of the resonance linewidth. What is even worse, strong Fabry Perot (FP) oscillations are always

superimposed to the device spectral response, which are due to the re�ections of the propagating mode at the

input/output facets of the sample. FP oscillations alter the resonance lineshape, making di�cult to recognize

small resonance shifts ∆λ.

To greatly enhance the sensitivity, a homodyne detection which makes use of a Lock In ampli�er is used.

This is sketched in Fig.4.9.

𝑉(𝑡)

𝑡

0

𝑉 𝑡 = 𝑉0𝑠𝑖𝑛(𝜔0𝑡)

𝐼𝑜𝑢𝑡(𝑡)

𝜆𝑖𝑛 Wavelength

Figure 4.9: A sketch of the modulation system implemented to quantify the resonance shift. A sinusoidal
voltage is applied at the resonator electrodes, inducing a periodic shift of the resonance with respect to the
zero-bias position (black dot). As a result, the optical signal Iout at the output (in this case the Drop port)
oscillates between a maximum (blue dot) and a minimum (red dot). The amplitude of these oscillations are
proportional to the electro optic induced refractive index shift.

The laser wavelength λin is tuned near the −3 dB point of one of the resonances, where the sensitivity to small

refractive index variations is maximized. A sinusoidal voltage is applied to the sample electrodes. As a result

of the bias modulation, the resonance oscillates back and forth with respect to the laser wavelength, inducing

a periodic modulation of the transmitted optical signal Iout at the Through/Drop port of the resonator,

similar to the operation of a conventional resonant ring modulator (RRM). The modulated signal is sent
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to a Lock in Ampli�er, which detects the amplitude of the modulation. The use of a Lock In allows to

eliminate all the noise sources which can a�ect the measurement (thermal �uctuations, detector shot noise,

laser instabilities, FP oscillations), reaching a signal to noise ratio which is typically 60 dB − 80 dB.

The question now is how to relate the amplitude of the modulation to the χ(2) component that is inducing

them. In what follows, no assumptions on the origin of the modulation mechanism is done. The relation

between the applied voltage V (t) and the resonance position λres is given by a generic function λres(V ) ,

which is assumed to be di�erentiable. In this general treatment, also the amplitude Ares of the resonance

can be a�ected by the modulation voltage. At any time t, and when the input wavelength λin is tuned

close to a resonance, the light intensity Iout(t) at the output of the Drop port of the resonator can be well

approximated by:

Iout(t) = Ares(V (t))

(
γ2

γ2 + (λin − λres(V (t)))2

)
(4.7)

where 2γ is the FWHM of the lorentzian. The dynamics of Iout(t) follows the di�erential equation:

dIout(t)

dt
=

(
∂Iout
∂λres

∂λres
∂V

+
∂Iout
∂Ares

∂Ares
∂V

)
dV

dt
(4.8)

Since λres and Ares are di�erentiable, they can be expanded in Taylor series around a reference voltage

V = 0:

∂λres
∂V

=
∑
m

(
∂mλres
∂mV

)
0

V m−1 1

(m− 1)!
;

∂Ares
∂V

=
∑
m

(
∂mAres
∂mV

)
0

V m−1 1

(m− 1)!
(4.9)

By inserting Eq.4.9 into Eq.4.8 and setting V (t) = V0 cos(ωt) , the output intensity can be written as:

dIout(t)

dt
= −V0ω sin(ωt)

∑
m

1

(m− 1)!

[
∂Iout
∂λres

(
∂mλres
∂mV

)
0

V m−1 +
∂Iout
∂Ares

(
∂mAres
∂mV

)
0

V m−1

]
(4.10)

Keeping only terms up to the fourth order in V , it is found that Iout(t) can be expressed as the sum of terms

oscillating at ω, 2ω, 3ω and 4ω. The �rst and second harmonics amplitudes Iout(ω) and Iout(2ω) are given

respectively by:

Iout(ω) =
∂Iout
∂λres

[(
∂λres
∂V

)
0

V0 +
1

4

(
∂3λres
∂3V

)
0

V 3
0

]
+
∂Iout
∂Ares

[(
∂Ares
∂V

)
0

V0 +
1

4

(
∂3Ares
∂3V

)
0

V 3
0

]
(4.11)

Iout(2ω) =
∂Iout
∂λres

[
1

2

(
∂2λres
∂2V

)
0

V 2
0 +

1

24

(
∂4λres
∂4V

)
0

V 4
0

]
+
∂Iout
∂Ares

[(
∂2Ares
∂2V

)
0

V0 +
1

24

(
∂4Ares
∂4V

)
0

V 4
0

]
(4.12)

It can be readly seen that the �rst harmonic amplitude depends only on odd powers of the voltage ampli-

tude V0, while the second harmonic amplitude only on even powers of the voltage amplitude V0. The two

contributions on the right hand side of Eq.4.11 and Eq.4.12 have opposite parity if considered as a function

of the wavelength position λin. This is shown in Fig.4.10, which plots ∂Iout
∂λres

and ∂Iout
∂Ares

as a function of λin.
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Figure 4.10: The functions ∂Iout
∂λres

and ∂Iout
∂Ares

as a function of λin − λres.

It can be seen that ∂Iout
∂λres

is an odd function of λin, while
∂Iout
∂Ares

is an even function. These opposite behaviour

will be of crucial importance for understanding the outcomes of the experiments described in section 4.3.2.

If Eq.4.11 and Eq.4.12 are applied to the speci�c case of χ(2) electro optic modulation, it comes out that
∂Iout
∂Ares

= 0, since the modulation alters only the resonance wavelength position but not the amplitude (i.e., no

losses are introduced). The link between the χ(2) component and the resonance position λres can be derived

starting from a generalization of Eq.4.5 for guided modes (see Apppendix B):

∆neff =
χ2
eff,jjjEDC

2n2
0

ng (4.13)

where ∆neff is the electro optic e�ective index change, ng the modal group index, n0 the core refractive

index and the e�ective χ
(2)
eff is de�ned as:

χ
(2)
eff,jjj =

´
core

χ
(2)
mat,jjj(rT )n2(rT )|ej(rT )|2drT´

n2(rT )|e(rT )|2drT
(4.14)

where j could be (x, y, z), χ
(2)
mat,jjj is the χ

(2)
jjj component in the material, n is the refractive index pro�le,

e(rT ) is electric �eld pro�le of the optical mode and rT denotes the transverse dimensions of the waveguide.

In Eq.4.14 it has been assumed that the optical �eld is mainly polarized in the j direction, so that o�-diagonal

tensor elements do not contribute to the integral. The change in the e�ective index ∆neff results in the

resonance shift:

∆λres = λres,0
∆neff
ng

Lh
Ltot

(4.15)

where λres,0 is the resonance wavelength at zero bias applied. By inserting Eq.4.13 into Eq.4.15, and by

expressing EDC as EDC = dEDC
dV V (the linear relation is an excellent approximation as it can be seen in

Fig.4.8), the relation between λres and V reads:

λres(V ) = λres,0

(
1 +

Lhχ
(2)
eff,jjj

2Ltotn2
0

dEDC
dV

V

)
(4.16)

Using Eq.4.16 to compute ∂λres
∂V in Eq.4.11 and in Eq.4.12, the �rst and second harmonic amplitudes in the

case of χ(2) electro optic modulation become:

Iout(ω) =
∂Iout
∂λres

λres,0Lχ
(2)
eff,jjj

2Ltotn2
0

dEDC
dV

V0 (4.17)
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Iout(2ω) = 0 (4.18)

A linear relation between the applied voltage amplitude V0 and the �rst harmonic amplitude Iout(ω) is

expected in the case of pure electro optic modulation, while the second harmonic amplitude should vanish.

The Lock In ampli�er is able to detect both Iout(ω) and Iout(2ω), and from the knowledge of the parameters
∂Iout
∂λres

,λres,0 (from experiment), Lh, Ltot (from the geometry), dEDCdV (from FEM simulations) it is possible to

extract χ
(2)
eff .

4.2 Device fabrication and passive characterization

The resonators have been fabricated on 6′′ SOI wafer using 293nm UV lithography by FBK [204]. An

optical microscope image is shown in Fig.4.11(b). A Low Pressure Chemical Vapour Deposition Silicon

Nitride (Si3N4) layer is deposited on the Silicon waveguides. The thickness and the conformation of this

layer depend on the type of device. A 3µm thick buried oxide layer (BOX) and a 900nm thick Plasma

Enhanced Chemical Vapour Deposition Silica layer serve as lower and upper cladding materials, respectively.

Post fabrication measurements, shown in Fig.4.12 (Ox-Nit column) revealed that the residual stress on the

top Silica layer was −0.19GPa, nearly an order of magnitude lower with respect to the values reported in

similar experiments on the electro optic e�ect in strained Silicon [140, 157]. The reason of this lies in the fact

that the upper Silica cladding applies a compressive stress which overcomes the tensile one provided by the

Si3N4. Such a low stress level could not be su�ient to make χ(2) e�ects detectable. For this reason, some

of the samples have been fabricated without the top cladding, in which a residual strain of ≈ −1.4GPa has

been recorded (Fig.4.12 (Nit column)). The absence of the top cladding precludes the possibility to position

the electrodes in the con�guration A of Fig.4.2, because the Nitride thickness is not su�cient to isolate the

optical mode from the metallic electrodes.

𝟏𝟎 𝝁𝒎

Electrodes

Z-Field

Electrodes

Y-Field
Z

Y

X

Input

Drop Through

a)

b)

Figure 4.11: (a) An optical microscope image of the fabricated devices, showing the �ve di�erent tilting
angles. (b) A zoomed view of one of the devices. Pictures are at the courtesy of Mr.Martino Bernard from
FBK [204].
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a) b)

Nit

Oxide

TEOS

Ox-Nit

TEOS-Nit

Figure 4.12: (a) Layer con�guration and materials. The con�guration implemented for the fabrication of
the devices is the one indicated as Ox-Nit. (Oxide-Nitride). (b) Stress measurements executed on the layer
con�gurations shown in (a). The stress level is evaluated by measuring the curvature of the wafer surface
after the material deposition [208]. Datas are courtesy of Dr.Mher Ghulinyan, from FBK [204].

A �rst passive characterization is done on the fabricated devices. This is done using the experimental setup

shown in Fig.4.13. Light from a tunable C-band laser is edge coupled to the input waveguide using tapered

lensed �bers (2µm spot size, 14µm working distance) and a XYZ micrometric and nanometric positioning

stage. The alignment stage is monitored using an Infra-Red camera placed on the top of the sample which is

equipped with a 10X objective and a variable zoom. The output light from the Drop (Through) waveguide

is edge coupled to another lensed �ber and sent to an Infra-Red detector.
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Figure 4.13: The experimental setup used to perform passive characterizations.

The �rst passive characterization concernes a propagation loss measurement. To achieve that, straight

waveguides of various lengths have been designed on the same chip which contains the resonators. These

are fabricated along the [100] direction. The ratio between the output signal and the input one is plotted
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as a function of the waveguide length. An example is shown in Fig.4.14 for the CAP140 sample at a laser

wavelength of 1.550µm. From the slope of the curves, the propagation loss values listed in Table 4.3 have

been extracted. The highest losses have been observed for HAT samples in TE polarization. This is due

to the fact that, in the CAP con�guration, the Silicon Nitride layer completely covers the side walls of the

waveguide, acting as a passivation mechanism which reduces the surface roughness.
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Figure 4.14: Transmittance of waveguides of di�erent lengths and for di�erent polarizations lying on the
CAP140 chip.

Sample type Propagation loss TM (dBcm−1) Propagation loss TE (dBcm−1)
CAP140 4.9± 0.5 6.1± 0.6
CAP70 4.5± 0.1 4.5± 0.1
HAT140 11± 2 > 15
HAT70 12.0± 0.4 > 12

Table 4.3: List of propagation losses measured for the di�erent device con�gurations.

The second passive characterization concernes the spectral response of the devices. As discussed in Section

4.1.2, resonators have been designed to have a FWHM of ≈ 35 pm, corresponding to a quality factor of

Q ≈ 44000. As we can see from Fig.4.15, which shows the spectra recorded in the Through port of a

CAP140 device, these requirements well matches with the ones of the experiment. Quality factors ranging

from Q ≈ 25000 up to Q ≈ 55000 have been measured, depending on the waveguide size and Silicon Nitride

layer conformation.
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Figure 4.15: Example of one of the Through transmission spectra. The inset shows the details of one resonance
order.

4.3 AC electro optic measurements using a Lock In ampli�er: ex-

periment

The experimental setup implemented for the Lock In measurements is shown in Fig.4.16. The light coupling

stage is the same as the one in Fig.4.13. To provide the electric �eld across the metallic pads of the device,

two Tungsten tips connected to a function generator have been used. This function generator provides the

sinusoidal signal at a frequency ω. A static bias can be added to the sinusoidal modulation using a static

voltage source connected to the Aluminum sample holder. When the static bias is not applied, the sample

holder is kept grounded. The modulated signal which exists from the photodetector is sent to a digital

Lock In ampli�er to extract the amplitude of the �rst and second harmonic components Iout(ω) and Iout(2ω)

respectively. To measure the local slope of the spectrum ∂Iout
∂λres

, the laser wavelength is modulated at frequency

ωλ by a second function generator, and the �rst harmonic component is detected by a second Lock In (not

shown in Figure 3 for clearness).
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Figure 4.16: The experimental setup used to perform AC electro optic measurements using the Lock In
ampli�er.

The whole setup is automated by computer routine which:

1. Performs a coarse spectrum (0.1nm resolution) in a wavelength interval which covers approximately

one FSR.

2. Finds the resonance peak in the interval, performs a �ne spectra (5 pm resolution) around the maximum

value and sets the laser wavelength at the point where the slope of the spectrum is maximum.

3. Applies a modulated voltage across the pads, starting from V0 = 0.35V to V0 = 7V with 0.35V

increments, and simultaneously detects the amplitude of the �rst harmonic component Iout(ω) and the

second harmonic one Iout(2ω).

4. Extracts the value of χ
(2)
eff using the method discussed in Section 4.1.3.

5. Shifts to the next resonance order and repeats the points from 1 to 5. This is repeated for the desired

number of resonance orders (a number of 3 resonances have been chosen).

4.3.1 Normal behaviour

A large number of devices exhibited a �normal behaviour� when probed by AC electro optic measurements.

For �normal behaviour� it is meant that the �rst harmonic amplitude Iout(ω) is linear in the amplitude voltage

V0 and that the second harmonic amplitude is negligible or it has a noisy trend. This behaviour is consistent

with an electro optic modulation which has a χ(2) origin. An example of �normal behaviour� is shown in

Fig.4.17 for three di�erent type of devices.
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Figure 4.17: Example of �rst and second harmonic amplitudes as a function of the amplitude voltage V0 for
di�erent devices. All these devices exhibited a �normal� behaviour.

For the same device, slightly di�erent values of the slope of the �rst harmonic can be found at di�erent

resonance orders. This is mainly due to the FP oscillations between the input and output facets of the

samples that can distort the shape of the resonance, and consequently the local value of ∂Iout
∂λres

. The Fabry

Perot oscillations constitute the main source of uncertainties in determining of the χ
(2)
eff value. Normal

behaviour is also observed when Iout(ω) is measured as a function of wavelength, keeping the amplitude

voltage V0 �xed to V0 = 5V . This is shown in Fig.4.18.
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Figure 4.18: (a) Spectral response of the Drop port of a device, showing one resonance order. (b) First
harmonic amplitude as a function of the laser wavelength at a �xed amplitude voltage V0.
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The curve has an odd parity, which is expected from the fact that Iout(ω) is proportional to ∂Iout
∂λres

(see Eq.

4.17), which is in turn an odd function of (λres−λin). Starting from the slopes of Iout(ω), and using Eq.4.17,

some of the values of the χ
(2)
eff component have been extracted. As an example, in Fig.4.19, the data for

all the di�erent angles and for several waveguide widths of the CAP 140 sample (with top cladding) are

reported. Assuming the same reference frame shown in Fig.4.11, the measured component of the tensor is

the χ
(2)
eff,zzz, since both the static �eld and the optical �eld are polarized in the ẑ direction.
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Figure 4.19: The extracted values of χ
(2)
eff,zzz for di�erent waveguide widths and di�erent angles for the

CAP140 sample. The reported values are the result of an average between three di�erent resonance orders.

A closer look at Fig.4.19 reveals several anomalies in the extracted values of χ
(2)
eff,zzz. Firstly, there is not

a precise trend with the waveguide width, or with the waveguide tilting angle. This is considered as an

anomaly since it is expected that the strain distribution should smoothly vary as a function of the waveguide

width. From FEM simulations, the average strain and strain gradient is found to decrease as the waveguide

width increases, and consequently also the χ(2) value should decrease. This behaviour has been observed, for

example, in Refs [140, 138]. However, it has to be pointed out that their analysis was restricted to the very
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small range of waveguide widths between 300nm and 500nm, in which a di�erent trend might be observed.

Secondly, the value can be as high as 600 pmV −1, which is much greater than the ones reported in literature

for similar geometries (122 pmV −1 in Ref. [139], 188 pmV −1 in Ref.[141] or 336 pmV −1 in Ref.[138]). What

is more, surprisingly these extremely high values have been found with a stress level of −0.19GPa, which is

an order of magnitude lower than the one in the above cited works. Already at this stage it can be claimed

that the modulation mechanism is not probably related to the χ(2) non linearity, even if it shares all the

distinctive signs. Values of χ
(2)
eff comparable to the ones reported in Fig.4.19 , showing no clear trend, have

been also found for CAP70, HAT140 and HAT70 samples. No appreciable di�erences have been found in

samples in which the Silica top cladding has been removed, which constitues another anomalous behaviour

since the residual stress is higher by an order of magnitude. In general, samples without the Si3N4 layer

showed values of χ
(2)
eff which are nearly an order of magnitude lower with respect to the samples covered by

the stressing layer.

4.3.2 Not normal behaviour

The anomalies encountered in the so called �normal� behaviour are supported by the observation of �not

normal� behaviours in many other samples. One of the latter can be seen in Fig.4.20, which compares

Iout(ω) with Iout(ωλ) as a function of the laser wavelength λin in a CAP 140 sample with a waveguide width

of 400nm.
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Figure 4.20: (a) Drop spectral response of the resonator centered on the reference resonance. (b) Normalized
�rst harmonic amplitudes recorded by the Lock in locked at ω (red curve, recorded using an amplitude of
the voltage modulation of V0 = 5V ) and by the Lock in locked at ωλ (black curve).

The two curves should share the same odd parity, since they are both proportional to ∂Iout
∂λres

. However it can

be noticed that while Iout(ωλ) is almost odd, Iout(ω) is of not de�ned parity. This behaviour is encountered

in many samples. In all the cases the asymmetry was recorded in the function Iout(ω), i.e., the one related

to the electro optic modulation. As it can be seen in Fig.4.21(c), the degree of asymmetry Γ, de�ned as:

Γ =

ˆ
Iout(ω, λin) dλin (4.19)

can be tuned if a static voltage bias VDC is added to the sinusoidal modulation.
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Figure 4.21: (a) First harmonic amplitude Iout(ω) as a function of wavelength for di�erent values of positive
applied voltages. Scatter points represent experimental data, while solid lines are obtained using Eq.4.20.
(b) First harmonic amplitude Iout(ω) as a function of wavelength for di�erent values of negative applied
voltages. (c) Asymmetry coe�cient Γ, de�ned in Eq.4.19, plotted as a function of the bias voltage VDC .
The black line is obtained by directly integrating Iout(ω) with respect to λin on experimental data. The red
line is obtained by integrating the solid curves in panels (a,b) with respect to λin. (d) Values of

(
∂Ares
∂V

)
for

di�erent bias voltages. For simplicity, in computing the value of ∂Ares∂V , the quantity ∂Iout
∂Ares

has been assumed
normalized to one. In all these measurements, the amplitude of the sinusoidal voltage modulation has been
�xed to V0 = 5V .

The static bias does not in�uence the behaviour of Iout(ωλ), which remains always of odd parity. Other

anomalous behaviours concern the relations between the applied voltage amplitude V0 and the �rst and

second harmonic amplitudes. As predicted by Eq.4.17 and by Eq.4.18, if the electro optic modulation had

a χ(2) origin, the �rst harmonic should be linear in V0 and the second harmonic equal to zero. However, as

shown in Fig.4.22, in some of the samples Iout(ω) is found to be cubic in V0 and Iout(2ω) to be quadratic in

V0.
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Figure 4.22: (a) First harmonic amplitude as a function of the sinusoidal voltage amplitude V0. The cubic
polynomial is Iout(ω) = a0 + a1V0 + a3V

3
0 . The linear polinomial is Iout(ω) = b0 + b1V0. (b) Second

harmonic amplitude as a function of the sinusoidal voltage amplitude V0. The second order polinomial is
Iout(2ω) = c0 + c2V

2
0 . Values of the coe�cients are listed in Table 4.4.

Coe�cient Value
a0 (−0.07± 0.01)W
a1 (0.019± 0.007)WV −1

a3 (7.6± 0.6) · 10−4WV −3

b0 (−0.133± 0.007)W
b1 (0.047± 0.002)WV −1

c0 (0.037± 0.003)W
c2 (0.030± 0.008)WV −2

Table 4.4: Values of the coe�cients of the polynomials used to �t the experimental data shown in Fig.4.22.

All the reported anomalies seem to not have no clear relationship either with the waveguide width, or with

the stress distribution, since they have been randomly observed for di�erent widths and in di�erent type of

samples. It is worth to note that two nominally identical samples could exhibit respectively a normal and

an anomalous behaviour depending on their position on the wafer. From these observations, it is clear that

the source of electro optic modulation is not of χ(2) origin, since it does not follow the theoretical predictions

outlined in section 4.1.3.

4.3.3 Interpretation of the anomalous behaviour

In the previous section it has been shown that Eq.4.17 and Eq.4.18 are able to account for the behaviour

of only a limited class of samples, the ones which show a normal behaviour. For samples exhibiting an

anomalous behaviour, one has necessary to refer to the more general forms of Eq.4.11 and of Eq.4.12. By

keeping only the leading terms in Eq.4.11, one obtains:

Iout(ω) =
∂Iout
∂λres

(
∂λres
∂V

)
0

V0 +
∂Iout
∂Ares

(
∂Ares
∂V

)
0

V0 (4.20)

which di�ers from Eq.4.17 by the term ∂Iout
∂Ares

(
∂Ares
∂V

)
0
V0. As already discussed in Section 4.1.3, this term is

an even function of λin. Eq.4.20 is now a function with an unde�ned parity, and as can be seen in Fig.4.20
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Figure 4.23: The asymmetric �rst harmonic amplitude shown in Fig.4.20 (black scatters) is �tted using
Eq.4.20 (red solid curve).

it makes possible to account for the asymmetry shown in Fig.4.20(b).

By integrating Eq.4.20 with respect to λin, and by using the fact that
∂Iout
∂λres

is an odd function in this variable,

the degree of asymmetry of Iout(ω) is found to be:

Γ =

ˆ
∂Iout
∂Ares

(
∂Ares
∂V

)
0

V0 dλin (4.21)

which is di�erent from zero if
(
∂Ares
∂V

)
0
6= 0. Since, as can be seen in Fig.4.21(c), values of Γ 6= 0 have been

found experimentally, it has to be concluded that the modulation voltage a�ects both the resonance position

and the resonance amplitude, i.e., losses are induced. This fact is not compatible with the assumption of a

χ(2) induced electro optic modulation, since the latter only a�ects the resonance position by changing the

refractive index. The variable asymmetry in the �rst harmonic amplitude Iout(ω) shown in Fig.4.21(a-b)

as a function of the bias voltage VDC can be explained by assuming that ∂Ares
∂V is a function of VDC . This

means that the amount of losses which are induced by the voltage modulation depends on the bias point. In

Fig.4.21(a-b) the experimental data is �tted using Eq.4.20 to �nd the value ∂Ares
∂V as a function of VDC . During

this procedure, the quantities ∂Iout
∂λres

and ∂Iout
∂Ares

have been assumed normalized to one. It is worth to note

that this means that the true value of ∂Ares∂V di�ers from the one shown in Fig..4.21(d) by a proportionality

factor. As it can be seen from Fig.4.21(a-b), a good agreement is found between the experimental data and

the curves generated by Eq.4.20.

Evidences of voltage induced absorption have been also found in purely DC measurements , in which V0 is

set to zero and the spectral response of the resonator in the Drop port is recorded as a function of VDC . In

this measurement, performed on a HAT 140 resonator with a waveguide width of 1.2µm, VDC is swept from

−70V to 70V , and the recorded spectra are shown in Fig.4.24(a-b). Both the optical �eld and the static

�eld were polarized in the ẑ direction.
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Figure 4.24: (a) Drop spectral response of the resonator at di�erent values of negative bias voltage VDC .
(b) Drop spectral response of the resonator at di�erent values of positive bias voltage VDC . (c) Resonance
shift with respect to the zero bias (VDC = 0V ) wavelength position at di�erent values of VDC (error bars are
smaller than the symbols). (d) Quality factor of the resonance as a function of the bias voltage VDC . Data
are normalized with respect to the quality factor value at zero bias.

Two important features emerge from this analysis. The �rst is that the amplitude and the quality factor of

the resonance is a�ected by the applied voltage. The signal at 70V is lower then the one at 0V of about

1 dB, while the quality factor decreases of (0.16 ± 0.05) dB. This is accompained by a blue shift of the

resonance wavelength of (−10.10 ± 0.09) pm with respect to its position at VDC = 0 (see Fig.4.24(d) and

Fig.4.24(c) respectively). The second important feature is that the losses and the resonance blue shift are

not symmetric with respect to the zero bias point at VDC = 0. A phenomenological justi�cation of this

behaviour will be given in section 4.3.4. The magnitude of the resonance shift and of the induced losses are

not independent. It is evident from Fig.4.24(a-b) that higher losses are accompained to higher resonance

shifts. This fact suggests that the mechanism which causes the two phenomena has a common origin. A

closer look at Fig.4.24(a) reveals that the amplitude of the resonance at VDC = 0 is lower with respect to the

amplitude at VDC = −10V or VDC = −40V , while in Fig.4.24(d) the Q factors corresponding to these points

are lower. These two observations seem to be in contradiction. However this can be probably explained by

noting that in Fig.4.6(a), a portion of the Drop waveguide lies under the two pads used to apply voltage to the

electrodes, and, thus, it is subjected to an electric �eld of the same order of magnitude and direction of the

resonator waveguide. Voltage induced absorption occurs also in this portion of waveguide, which is not part

of the resonator. However, in this part the zero bias point is located at VDC < 0, so it is possible to decrease

the propagation losses by applying a negative voltage. Further details will be outlined in Section 4.3.4. The
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more general forms of Eq.4.11 and of Eq.4.12 are also able to account for the non linear relationship observed

between Iout(ω) and V0 and Iout(2ω) and V0. The �rst non linear correction to Eq.4.11 is indeed cubic in

V0, which well �ts the behaviour observed in Fig.4.22. The quadratic relation between Iout(2ω) and V0 is

predicted by the lowest order term in Eq.4.12.

It is worth to note that, even though a theory which relies only on χ(2) e�ects is not able to account for

the observed anomalies, some of them can be predicted by assuming the simultaneous action of a linear

electro optic e�ect mediated by the χ(2) nonlinearity and a quadratic electro optic e�ect mediated by the

χ(3) nonlinearity. The terms linear and quadratic refer to the dependence of the refractive index change with

respect to the applied DC electric �eld EDC . Under these conditions Eq.4.13 modi�es to (see Appendix B):

∆neff ≈
χ

(2)
eff,jjjng

2n2
0

EDC +
9χ

(3
eff,jjjjng

16n2
0

E2
DC (4.22)

If now the relationship between the applied voltage V and the induced electric �eld EDC is assumed to be

quadratic, in the form:

EDC = EDC0 + c1V + c2V
2 (4.23)

where c1 and c2 are coe�cients and EDC0 is a frozen electric �eld which may be present in the material (it

could be due to a surface charge distribution at the Si − Si3N4 interface, or at the Si − SiO2 interface, or

to an applied electric bias [159]), the �rst and second harmonic amplitudes get the following form:

Iout(ω) = (K1c1 + 2K2E0c1)V0 + 12K2c1c2V
3
0 (4.24)

Iout(2ω) =
(
2K2c

2
1 + 2K1c2 + 4K2E0c2

)
V 2

0 (4.25)

where the constants K1 and K2 are de�ned as:

K1 =
λres,0Lhχ

(2)
eff,jjj

2n2
0Ltot

(4.26)

K2 =
9λres,0Lhχ

(3)
eff,jjjj

16n2
0Ltot

(4.27)

and the e�ective third order non linearity χ
(3)
eff,jjjj is written as:

χ
(3)
eff,jjjj =

´
core

χ
(3)
mat,jjjj(rT )n2(rT )|ej(rT )|2drT´

n2(rT )|e(rT )|2drT
(4.28)

From Eq.4.23 and Eq.4.24 it can be seen that by including a χ(3) nonlinearity it is possible to predict a

cubic relation between Iout(ω) and V0, and a quadratic relation between Iout(ω) and V0. However, the order

of magnitude of the χ(3) contribution can be easily demonstrated to be not su�cient for accounting the

observed anomalies reported in Fig.4.22. To prove this, from Eq.4.24 it can be seen that the magnitude of

the corrections due to the χ(3) term is of the order of ≈ V 2
0 K2c2/K1. By assuming the set of parameters listed

in Table 4.5, which are meaningful for the experiment described in section 4.3.1 for a CAP 140 resonator

of width 1.2µm (both the optical �eld and the static �eld are applied in the ẑ direction), this correction is

of the order of 10−8 � 1. This means that the presence of χ(3) nonlinearites alone can not quantitatively

accounts for the cubic relation observed in Fig.4.22, since the measured correction, as shown in Table 4.4, is
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Parameter Value Source
V0 5V Experiment

χ
(2)
eff 102 pmV −1 [139]

χ
(3)
eff 10−18m2V −2 [127]

c2 10−1 FEM simulation

Table 4.5: Values of the parameters used to evaluate the order of magnitude of the cubic correction in Eq.4.24.

of the order of 10−2. What is more interesting, the quadratic electro optic e�ect alters only the real part of

the e�ective index, thus it does not explain the presence of voltage induced absorption.

4.3.4 Phenomenological interpretation in terms of trap released free carriers

The presence of a voltage induced absorption, which is accompained by a dominant blue shift of the resonance

wavelength, indicates that the origin of the electro optic modulation could rely on free carrier e�ects. Injection

of free carriers inside the core of the waveguide has the e�ect to decrease the real part of the refractive index

by a quantity ∆n, while at the same time increases the absorption coe�cient by a quantity ∆α. This is

described by the relations reported in Eqs.1.14-1.15. From these equations, it can be seen that ∆n and ∆α

are not independent, since both depends on the same electron and hole concentration. It comes out that the

blue shift of the resonance wavelength and the corresponding losses observed in Fig.4.24(a-b) should follow

the same trend. In order to translate the changes in the refractive index and in the absorption coe�cient

into a shift of the resonance wavelength and into a decrease of the quality factor of the resonator, one can

use the relations (see Appendix B):

∆neff =
Γc∆n

n0
ng (4.29)

∆αeff =
Γc∆α

2n0
ng (4.30)

where Γc is the modal con�nement factor, together with Eq. 4.15 and the relation (reported in Table 1.1):

Q =
πngLtot

√
1− κ2

√
τ

(1− (1− κ2)τ)λres,0
(4.31)

where τ = τ0e
−∆αeffLh . Here, τ0 represents the round trip losses when no voltage is applied through the

electrodes. Using the set of parameters listed in Table 4.6, which refer to the experimental conditions in

which the curves shown in Fig.4.24(a-b) have been recorded, the resonance shift ∆λres and the quality factor

decrease have been computed through Eqs.1.14, 1.15, 4.29, 4.30, 4.31, and plotted in Fig.4.25 as a function

of ∆P and ∆N . During this procedure, it has been assumed a unipolar injection mechanism, in which only

electrons (holes) are injected in the core of the waveguide.

Parameter Value Source
κ2 0.025 FEM simulation
ng 4.24 FEM simulation
τ0 0.9 Experiment
Γc 0.705 FEM simulation

λres,0 1.5294µm Experiment
n0 3.485 [96]

Table 4.6: List of the parameters used to simulate the curves in Fig.4.25.
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Figure 4.25: Shift of the resonance wavelength (black curve) and corresponding decrease of the quality factor
(blue curve) as a function of the holes and electrons concentrations. The red dashed line correspond to the
resonance shift shown in Fig.4.24(c) when VDC = 70V .

From the curves in Fig.4.25 it comes out that, if the injected carriers were holes, a concentration of

(7.67± 0.01) · 1016 cm−3 is needed to cause the same resonance shift found in the experiment. At the same

time, this causes a decrease of the quality factor with respect to the zero bias condition of (−0.12± 0.01) dB.

On the other hand, if the carriers responsable to the electro optic modulation were electrons, a concentration

of (3.07± 0.01) · 1017 cm−3 is needed to cause the same shift, and the resulting decrease in the quality factor

is (−0.68±0.01) dB. The Q factor decrease measured in the experiment is (−0.16±0.05) dB, thus indicating

that holes are probably the carriers which are the responsible of the electro optic modulation. This is not

surprising, since the Silicon layer of the SOI wafer implemented in the fabrication of the samples is slightly

p−doped, with an inpurity concentration of 10−16 cm−3. The question which now arise is on the type of

injection mechanism. The core of the waveguide is surrounded by SiO2, which is an electrical insulator, so

holes can not be injected from the outside. The oxide thickness on the top of the waveguide is 900nm, which

also precludes tunneling of carriers through this layer. One can then infer that the change in the absorption

and in the refractive index comes from a redistribution of the carriers inside the waveguide as a consequence

of the applied electric �eld. However, as indicated in Fig.4.26, which shows a FEM simulation of a HAT140

waveguide of 1.2µm width under the action of an electric �eld, holes are depleted from the center of the

waveguide and directed towards the upper (or lower, depending on the �eld direction, which in Fig.4.26(a) is

polarized along −ẑ ) interfaces of the oxide. This is expected since, as in metals, carriers tend to shield the

applied electric �eld by redistribution. As a consequence of carrier depletion, their overlap with the optical

mode decreases, and this increases the refractive index of the material and at the same time lowers the losses.
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Figure 4.26: (a) Hole concentration inside the waveguide core under an applied voltage of VDC = 10V . Black
arrows represent the direction of the applied electric �eld. (b) Hole concentration along the vertical red
dashed line shown in panel (a). The zero point on the x axis corresponds to the center of the waveguide.

This is in contradiction with the experimental observations. The most plausible explanation on the origin of

the carrier injection relies on Surface Transfer Doping (STD) between Silicon and the Si3N4 interface (or with

the SiO2 interface) [209, 210]. STD is a mechanism through which electrons and holes of a semiconductor

can be exchanged with an insulating interface due to the trap states located at the boundary between the

semiconductor and the insulator. These trap states introduce energy levels within the energy gap of the

semiconductor, which can be of donor type or acceptor type, depending on the interface in which they are

located. For example, in Ref.[211], acceptor sites, located at 0.3 eV from the semiconductor valence band, are

introduced as a consequence of the dimer-bond reconstruction which occurs at the interface between Silicon

and air. The energy band diagram of the system exhibiting p−type STD, which probably corresponds to the

case of the Si− Si3N4 interface, is schematically shown in Fig.4.27.
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Figure 4.27: (a) Cross section of the waveguide in the resonator, with the di�erent layers and materials. (b)
Energy band diagram of the Si−Si3N4 interface when no voltage is applied. This is the �at band condition.
(c) Energy band diagram of the Si− Si3N4 interface when a positive voltage is applied, showing the release
of holes from the trap states. (d) Energy band diagram of the Si− Si3N4 interface when a negative voltage
is applied. (e) Energy band diagram of the Si − Si3N4 interface when no voltage is applied but a positive
charge layer is present at the interface. Panels from (b) to (e) refer to the band diagrams along the vertical
black dashed line of panel (a). Ec = conduction band, Ev = valence band, EF = Fermi level.

The Silicon is slightly p−doped, so it has the Fermi level close to the top of the valence band. The energy

levels due to interface states within the bandgap are acceptors, i.e, they are empty and can be occupied

by electrons from the valence band of Silicon when a positive bias is applied. The occupancy fT (E) of the

interface states follows the usual Fermi distribution [212]:

fT (E) =
1

1 + gAe
E−EF
KT

(4.32)

where E is the energy of the trap, gA is the ground state degeneracy, EF is the Fermi level, K is the Boltzmann

constant and T is the temperature. Traps are distribuited within the energy gap with a trap density Dt(E).

If a positive voltage is applied, the Fermi level is pushed toward the lowest energy trap states (Fig.4.27(c)),

and electrons �ll the trap states tunneling from the valence band of the semiconductor, just as for bulk

impurity acceptors. As a result, holes will form in Silicon, and negative charge will be localized on the

surface acceptors. This is the injection mechanism which creates carriers in the waveguide core. When the

applied voltage is negative, the Fermi level is pulled away from the lowest energy trap states (Fig.4.27(c)),

so no holes are created in Silicon. This could explain the asymmetric resonance shift observed in Fig.4.24(c)

between positive and negative applied voltages. A �xed surface charge can be present at the Si3N4 interface,

which induces band bending when no voltage is applied (Fig.4.27(c)). In this case the �at band condition

is reached if a positive/negative (depending on the surface charge sign) is applied. This is similar to what
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happens in a Metal Oxide Semiconductor capacitor in which trapped charges are present within the oxide

layer [212]. The presence of a surface charge may be the cause of the shift of the zero bias point, where

the propagation losses are lower, which is observed in Fig.4.24(a) and located near VDC = −40V . The

concentration of injected holes as a function of the applied voltage VDC can be estimated using the relation:

∆P (V ) =

Ecˆ

Ev

Dt(E)fT (E,EF (V )) dE (4.33)

which can be a non linear function of V . The trap density Dt(E) is closely related to the type and quality of

the interface, which is not easily controllabe during fabrication. As a result, each device could have its own

trap density distribution, and this could explain the random trends observed in the electro optic modulation

shown in Fig.4.19. As a further support that the interface type plays a primary role in the experiment, in

Section 4.3.1 it has been proved that samples without the Si3N4 stressing layer exhibited an electro optic

modulation which is an order of magnitude lower with respect to the ones with Si3N4. Nevertheless, a more

quantitative analysis is needed to con�rm the hypotesis of STD.

4.3.5 High frequency electro optic measurements

In case that the trap distribution Dt(E) , introduced in section 4.3.4 is generating a linear relation between

the injected holes and the applied voltage, the resulting electro optic modulation would show exactly the

same behaviour as if it was induced by χ(2) nonlinearities. This is because the refractive index change is in

both cases linear with the applied voltage, and also the orders of magnitude (∆neff ≈ 10−5) of these changes

are comparable. The linearity of the e�ective index change as a function of the applied voltage necessarily

requires the presence of a surface charge at the Si3N4 − Si interface, since the zero bias point has to be

shifted from VDC = 0, as shown in Fig.4.27(d). If this was not the case, and the �at band condition was

reached at VDC = 0, the negative part of the sinusoidal modulation will not inject holes, while the positive

part will do. This will result in an asymmetric refractive index change with respect to the zero bias point,

which does not occur in a electro optic modulation of a χ(2) origin.

A method which allows to distinguish free carriers from second order nonlinearites uses the di�erent timescales

on which the two dispersion mechanisms act. The electro optic modulation induced by χ(2) e�ects has a

response which is instanteneous with respect to voltage variations. This is because the nonlinearity origins

from the second order dipole moment of the electrons in the material, which can follow an applied electric �eld

up to optical frequencies (fs timescale). On the other hand, free carriers in a waveguide have a characteristic

e�ective lifetime in the range of 500 ps− 1ns. This means that they are not able to follow voltage variations

if these are su�ciently fast, i.e, in the GHz range. In this sense, a de�nitive proof of the presence of strain

induced second order nonlinearities would rely on high frequency electro optic measurements.

This is accomplished using the experimental setup in Fig.4.28(a).
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Figure 4.28: (a) Experimental setup used for the electro-optic measurements. PMF = polarization maintain-
ing �bers; PD = photodiodes; V NA = vector network analyzer RF IN(OUT) = Radio frequency IN(OUT).
(b) 3D model of the stressing sample holder. The sample is indicated in red. (c-d) Stressing sample holder
with the screw set at two di�erent displacements. (c) Stressing sample holder with the Silicon chip mounted
on it. The inset shows that the sample is not touching the Alluminium surface. The contact lines between
the holder and the sample, which constitute a �xed constraint on the vertical direction, are also indicated.

Light from a C-band Infra-Red laser ampli�ed by an EDFA is edge coupled to the input port of the resonator

using a polarization maintaining lensed �ber (PMF). The light polarization is set to TM . A nanometric XYZ

positioning stage is used to minimize the coupling losses. The transmitted light from the resonator Through

port, which is a CAP140 racetrack with a waveguide width of 1.6µm, is split: 10% is sent to a reference

photodiode, while 90% feeds a high-bandwidth photoreceiver (43GHz) connected to a vector network an-

alyzer (VNA). The VNA also provides a 28 dBm (after ampli�cation) sinusoidal voltage modulation to the

electrodes, using impedance matched Tungsten tips with 40GHz bandwidth. For this experiment, the sample

is strained by a mechanical deformation through a special sample holder. This is shown in Fig.4.28(b). The

device is �xed on a sample holder that can provide a variable stress, adjusted by rotating a 250µm pitch

screw. The strain is mechanically induced since the sample ends are �xed to the holder, while the screw

pushes the center of the sample. The pressure exercised by the screw bends the sample (see Fig.4.28(c,d,e)).

It is possible to displace the screw by approximately its complete pitch before breaking the chip. To avoid

microfractures, the screw displacements are kept lower than 150µm. The reason why the mechanical sample

holder is used is to exhamine the behavior of the electro optic modulation as a function of di�erent stress

levels at high frequencies, where free carrier e�ects should be not present. In this way it is possible to in-

vestigate the dependence of the induced χ(2) tensor components as a function of the applied strain. The

relationship between the screw displacement and the stress induced inside the waveguide is computed from

FEM computations. The results are shown in Figs.4.29(a) and 4.29(b).
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Figure 4.29: (a) Finite element simulation of the stress distribution (σxx element of the stress tensorσij) on
the sample subjected to a 62.5µm screw displacement. The discontinuities near the ends are due to the line
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Only the σxx element of the stress tensor σij is plotted, since it was found to be one order of magnitude higher

than the σyy component and �ve orders of magnitude higher than the remaining tensor elements. In the

reference frame indicated in Fig.4.29(a), x̂ is the direction of light propagation while (x, z) are the transverse

dimensions of the waveguide. In the region where the resonator is located (dashed rectangle in Fig.4.29(a)),

the overall stress distribution can be approximated as compressive and uniaxial in the x̂ direction. In Fig.

4.29(b), it is shown the linear relationship between the screw displacement and the computed average stress

in the waveguide. At the working point (displacement ∼ 125µm), the stress level is about −0.48GPa in the

waveguide and −0.78GPa in the Si3N4 layer. The stress magnitude and direction are comparable to the ones

used in other experiments [140, 138]. In the inset of Fig. 4.29(a) it can be noticed that a high stress (hence

strain) gradient is present at the upper and lower interface between the Si3N4 and the waveguide. This feature

is essential since it is theoretically predicted that the induced χ(2) is proportional to the strain gradient in the

material [160]. At �rst, the screw displacement is set to zero, so no stress (except the residual one due to the

Si3N4 interface) is applied to the waveguide. By monitoring the output signal at the reference photodiode,

the laser wavelength is tuned near the −3 dB point of one of the resonances (Fig.4.30(a), inset), where the

sensitivity to small refractive index variations is maximized. The quality factor of this resonance is ≈ 23200.

The sinusoidal modulation is then applied to the sample electrodes using the VNA and a 32dB electrical

ampli�er (see Fig.4.28(a)). With reference to Fig.4.29(a), both the optical �eld and the static electric �eld lie

in the ẑ direction. Exactly as discussed for the homodyne detection described in Section 4.1.3, as a result of

the bias modulation, the resonance oscillates back and forth with respect to the laser wavelength, inducing a

periodic modulation of the transmitted optical signal at the Through port of the resonator. Assuming that

this signal modulation is due to the electro optic e�ect caused by the strain induced second order nonlinearity,

the oscillation amplitude Iout is given by Eq.4.17. By following the method described in section 4.1.3 and

4.3.1, the e�ective χ
(2)
eff,zzz is measured and plotted in Fig.4.30(a) as a function of the driving bias frequency,

swept from 50MHz to 5GHz.
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Figure 4.30: (a) E�ective χ
(2)
eff,zzz as a function of the electrical modulation frequency for three di�erent stress

levels in the waveguide. For clarity, the errors are reported only for certain points of the curves. The inset
shows the working point of the electro optic measurement. The black line denotes the Through transmission,
while the vertical blue dashed line represents the wavelength of the laser. (b) Measurement of the carrier
lifetime. The black line is the Drop signal (in normalized units) in time, while the red dotted line is an
exponential �t of the rising edge.

As can be seen, the value of χ
(2)
eff,zzz is maximum in the low frequency range and decreases as the modulation

frequency increases. The extracted value of χ
(2)
eff,zzz close to the DC regime is ≈ 270 pmV −1, which is

comparable to values reported in the literature for static electro-optic measurements using the same electric

�eld and optical polarization directions [141, 138], and is also comparable to the ones found using the

Lock In and shown in Fig.4.19. The cuto� frequency, i.e., the frequency at which the χ
(2)
eff,zzz halves, is

νc = (0.50± 0.01)GHz, corresponding to a time constant τ =
√

3
2π νc = (0.55± 0.01)ns. The minimum value

of χ
(2)
eff,zzz that can be detected is limited by the electrical noise �oors of the VNA and the photoreceiver.

This corresponds to an e�ective χ
(2)
eff,zzz of (8± 3) pmV −1. From Fig.4.30(a), one can see that this value is

reached for ν ≥ 4.5GHz. To exclude the possibility that the bandwidth is limited by the photon lifetime

in the cavity, the optical input is modulated and the signal at the Drop port is measured with the laser

wavelength tuned on resonance. The cavity response is shown in Fig.4.31.
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Figure 4.31: (a) Drop transmission as a function of the frequency of the input optical signal. Data are
normalized with respect to the response at 0.5GHz. (b) Electrical signal re�ected back from the sample
electrodes toward the VNA due to impedance mismatch.

136



Chapter4. Investigation of strain induced χ(2) nonlinearities in Si. wg. through the e.o e�ect

The signal drops by ≈ −1.3 dB from 50MHz to 5GHz, showing that the cavity is far from the optical cuto�.

This frequency response has been subtracted from the curves in Fig.4.30(a). To ensure that the voltage which

exists from the VNA is e�ectively applied to the sample electrodes, the electrical signal which is re�ected

back from the on chip metallic pads towards the VNA is recorded and plotted in Fig.4.31(b). This is found

to be < 0.01%, so that almost all the power which exits from the VNA reaches the sample electrodes. As

shown in Fig. 4.30(a), the electro-optic measurements are repeated after applying di�erent stress levels to the

waveguide of −0.24GPa and −0.48GPa. Very slight di�erences are observed with respect to the no-stress

case. These results clearly show that the modulation cannot be attributed to a strain-induced χ(2). In fact, if

the latter was the cause for the observed e�ect, one would expect the transmitted signal to follow the voltage

variations instantaneously up to optical frequencies. Rather, the signal modulation is related to a slower

dispersion mechanism, with a characteristic time in the nanosecond scale. This con�rms the results discussed

in Section 4.3.4, in which the electro optic modulation has been supposed to be attribuited to free carrier

dispersion. As a further demonstration, the e�ective carrier lifetime in the waveguide is measured to verify

its consistency with the cuto� frequency in the electro optic experiments. This is done by using a pump

and probe scheme, in which an intense picosecond laser pulse is coupled to the waveguide, and the time-

dependent losses of a weaker probe beam are monitored. The short pump pulse generates free carriers due to

TPA; these free carriers in turn attenuate the probe signal due to free-carrier absorption. After switching o�

the pump laser, the probe beam transmission slowly recovers due to free carrier recombination or di�usion

away from the spot of the pump laser. The e�ective free carrier lifetime can then be extracted from the

time-resolved measurement of the recovering probe beam transmission. The result is shown in Fig.4.30(b).

The sudden signal decrease is due to the pulse arrival and, consequently, to TPA carrier generation. The

subsequent slower signal recovery is due to the �nite free carrier lifetime. From these data, a carrier life time

of τc = (1.06±0.01)ns has been estimated. Being τc ≈ 1/νc, this constitutes another proof that the observed

modulation can be attributed to plasma carrier dispersion.

In the implemented resonator geometry and with ∼ −0.5GPa of applied stress, the upper limit to the strain

induced χ
(2)
eff,zzz is (8 ± 3) pmV −1 . This value is about an order of magnitude lower than those extracted

from DC measurements, as reported here and in the literature [139, 138, 141].

4.3.6 Summary and conclusions

In this chapter, the possibility to induce a second order nonlinearity in Silicon waveguides has been investi-

gated. The key for enabling a χ(2) 6= 0 is to break the centrosymmetry of the unit cell of the material, and

this has been performed using di�erent types of stressing layer of Silicon Nitride deposited on the top of the

waveguide. Strained racetrack shaped optical resonators have been designed and fabricated, with the aim

to probe the linear electro optic modulation induced by the second order nonlinearity. In this approach, a

portion of the resonator perimeter is subjected to a quasi static (KHz regime) electric �eld which imparts

a variable phase shift to the travelling wave inside the resonator. This phase shift, which should be pro-

portional to the magnitude of the strain induced χ(2) component, is detected by a Lock In ampli�er. From

the amplitude of the signal detected by the Lock in, and from the knowledge of the resonator parameters,

the value of the χ
(2)
eff,zzz tensor component have been extracted for di�erent device geometries and stress

distributions. Similar approaches, which exploited the static electro optic e�ect in integrated Mach Zenhder

interferometers (even though no Lock in ampli�cation was used) were already reported in literature, and val-

ues of χ(2) as high as 330 pmV −1 were found. Even though the presence of a linear electro optic modulation

was found, with values of χ(2) comparable to the ones reported in literature, a large number of anomalies

has been encountered during the measurements. Many of them were incompatible with the assumption that

the electro optic modulation had a χ(2) origin. The most evident one was the presence of losses which are
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introduced as a consequence of the applied static electric �eld. Evidences of voltage induced absorption have

been encountered both in Lock in measurements and in purely DC regime. The presence of losses suggested

that the mechanism responsable for the observed electro optic modulation was the injection of free carriers

in response to an applied electric �eld. This has been supported by the quantitative relation which exists

between the change in the real part of the refractive index and the change in the absorption coe�cient. From

this analysis, it emerged that the injection is unipolar, and that the type of injected carriers is holes. The

most plausible explanation of the observed phenomenon, is p−type Surface Transfer Doping between Silicon

and Si3N4 occurring at their interface. At quasi DC regimes, χ(2) induced modulation is completely masked

by free carrier e�ects. In order to distinguish the two contributions, high-frequency (GHz) measurements of

the optical transmission under an AC electric �eld variation have been performed. This allowed to separate

the contribution arising from χ(2) non linearities, which are able to follow instantaneously the electric �eld

variations, to the one due to free carriers, whose modulation speed is bandwidth limited to few hundreds

of MHz due to the electron-hole recombination time. It has been found that the electro optic modulation

vanished as the modulation speed exceeded the free carrier lifetime. No appreciable di�erences have been

found by increasing the stress level in the waveguide core up to −0.48GPa. A time response in the nanosec-

ond range has been revealed, which consequently rules out potential strain induced χ(2) as the origin of the

modulation. An upper limit of (8± 3) pmV −1 for the strain induced χ
(2)
eff,zzz in Silicon waveguides has been

set, which corresponds to the minimum detectable signal of the implemented apparatus. This value is more

than one order of magnitude lower than the ones reported in the low frequency regime in the literature.

It has to be remarked that these results do not completely exclude the presence of a strain-induced χ(2)

in Silicon. Indeed, there exist proofs of SHG in strained Silicon that intrinsically cannot have explanations

relying purely on free carriers [157, 213]. These experiments revealed a χ(2) value up to 40 pmV −1 for

−1.2GPa of applied stress [157]. Di�erences can be due to the fact that the χ(2) tensor is dispersive, so its

value at optical frequencies can be signi�cantly di�erent from the one measured under DC [160]. In addition,

it has recently been shown that electrostatic �elds at the Si3N4 − Si interface can couple with the optical

�elds through χ(3) nonlinearities, resulting in an electric �eld second harmonic contribution (EFISH) [159].

This may have altered and consequently increased the extracted values of the χ(2) in the optical measurement.

Larger stress or di�erent stressing materials than Si3N4 are needed to de�nitely prove the presence of the

electro optic e�ect in strained silicon waveguides.

From the point of view of the project SIQURO, these considerations cast several doubts on the feasibility

and on the e�ciency of MIR photon pair generation through SPDC.

138



Chapter 5

Manipulation of SPDC photon pairs in a

Mach Zehnder interferometer

In chapters 3 and 4, the possibility to integrate quantum sources of photon pairs based on χ(3) and χ(2)

nonlinearities in Silicon have been investigated. Multi Modal Four Wave Mixing in straight Silicon waveg-

uides, has been proved to be a powerful tool for achieving e�cient wavelength conversion with large spectral

translations. Despite this fact, the predicted photon pair generation was too much low for being exploited

in a photonic circuit. In parallel, investigations of χ(2) nonlinearities through the electro optic e�ect in

strained Silicon resonators demonstrated that the value of the strain induced χ(2) is (probably) lower than

8 pmV −1, which casts several doubts on the feasibility of MIR photon sources through SPDC. At the moment

of writing this work, the project SIQURO still lacks of integrated quantum sources. Nevertheless, quantum

optics experiments have been done, which were preparatory for the next developements of the project. Such

experiments have been performed using photon pairs produced by SPDC in a PPLN crystal coupled to a

free space Mach Zehnder (MZ) interferometer. Although the whole setup was far from being compact, it

allowed to get all the necessary knowledges and skills required for the realization of the same experiment on

a chip. In fact, from the point of view of photon pair manipulation and interference, there are no di�erences

between a free space device and an integrated device which shares the same transfer function. In order to

shift from one to the other, it is su�cient to replace the refractive index of the medium in which photons are

propagating with the e�ective index of the optical mode of the waveguide.

In this chapter, it will be �rstly reviewed the process of SPDC. Then the source will be characterized and the

correlated nature of the photons will be revealed by a coincidence measurement of their arrival time in two

photon counters. Finally, photon pairs will be used to excite a free space MZ interferometer, and two photon

interference will be monitored as a function of the relative phase between the two arms of the interferometer.

This work has been done with the collaboration of Mr. Alessandro Trenti, Dr. Mattia Mancinelli and Dr.

Hannah Price. Dr. Iacopo Carusotto also gave an important contribution through helpful discussions.

5.1 Spontaneous Parametric Down Conversion

The process of SPDC occurs in any medium which exhibits a second order nonlinearity. The process can be

schematically represented as in Fig.5.1(a): a pump photon, of energy ~ωp, interacts with the χ(2) nonlinearity

of the material and is split into two lower energy photons, called signal and idler, at frequencies ωs and ωi.

During this process, both energy and momentum have to be conserved, which means that:
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~ωp = ~ωi + ~ωs (5.1)

ωpn(ωp) = ωin(ωi) + ωsn(ωs) (5.2)

where n(ω) is the refractive index of the material evaluated at angular frequency ω. If the frequency of the

signal is expressed with respect to half of the frequency of the pump as ωs =
ωp
2 + Ω, Eq. 5.1 implies that

ωi =
ωp
2 − Ω. This means that the signal and the idler frequencies are simmetrically located with respect to

half of the frequency of the pump.

ℏ𝜔𝑝

𝜒(2)

ℏ𝜔𝑠

ℏ𝜔𝑖

a)

ℏ𝜔𝑝/2 − ℏΩ

ℏ𝜔𝑝/2 + ℏΩ

ℏ𝜔𝑝/2

ℏ𝜔𝑝/2

ℏ𝜔𝑝 ℏ𝜔𝑝

Non degenerate Degenerate

b)

Figure 5.1: (a) Schematic process of SPDC which converts one pump photon at energy ~ωp into two photons
at energies ~ωs and ~ωi. (b) Energies of the photons involved in the degenerate and non degenerate SPDC
process.

When Ω = 0, the process is said to be degenerate, and the signal and the idler photons have the same

frequency (see Fig.5.1(b)). It is worth to note that Eq.5.1 does not imply Eq.5.2, since the medium can

be dispersive. In free space, Eq.5.1 is always satis�ed since there exist a continuum of radiation modes at

di�erent frequencies. However, due to the fact that energy and momentum are connected by the refractive

index, Eq.5.2 is not in general satis�ed. When Eq.5.2 is not full�lled, the SPDC process is said to be not

phase matched. As it will be demonstrated, when a phase mismatch ∆k exists in a material of length L, the

e�ciency of the process scales as:
P∆k=0

P∆k
∝ sinc2

(
∆kL

2π

)
(5.3)

where P∆k=0 is the generated signal/idler power (if we assume a degenerate process they are equivalent) at

perfect phase matching (∆k = 0), while P∆k is the generated signal/idler power when a phase mismatch ∆k

exists. From Eq.5.3, it is possible to de�ne a characteristic length Lc , called the coherence length, as:

Lc =
2π

∆k
(5.4)

The coherence length is a measure of the maximum length within which the parametric interaction is e�cient.

Several techniques exist to achieve perfect phase matching. Some of them have been reported in Chapter

3, since they are shared with the FWM process. The particular technique implemented in the following of

this chapter is called periodically poling, or quasi phase matching. Here, the material has a χ(2) value which

periodically changes its value along the direction of light propagation, with a period of Λ. When light travels

in a medium with a periodic χ(2) variation, Eq.5.2 modi�es to:

ωpn(ωp) = ωin(ωi) + ωsn(ωs) +m
c

Λ
(5.5)
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in which c is the speed of light in vacuum and m is an integer number. Usually m = 1, the reason will be

cleari�ed in section 5.1.1. Eq.5.5 tells that momentum is conserved up to a multiple of the reciprocal vector

of the unidimensional lattice de�ned by the χ(2) periodicity. This phenomenon has analogues in photonic

crystals [88], as well in the study of the electronic structure and transport in matter [214].

By tuning Λ, it is possible to obtain quasi phase matching in a very high range of wavelengths. In principle,

the tuning is limited by the fabrication tolerances of the poling. The crystal used in the experiment described

in section 5.2.2 has a poling which is realized by periodically inverting the sign of the χ(2) nonlinearity. This

has been achieved by lithographically exposing the crystal (which is ferroelectric) to a periodic strong electric

�eld which reverses the direction of the permanent dipole moment [215].

Depending on the relative polarization directions between the generated signal and idler photons, the process

of SPDC is said to be of Type I or Type II. In the �rst case, both photons share the same polarization while

in the second case their polarizations are ortogonal.

5.1.1 A brief theory of SPDC

The process of SPDC has no classical analogue. To see this, one can assume that the total electric �eld inside

the material is given by E = (Ep +Es +Ei) + c.c, where Ep is the pump �eld, Es the signal �eld and Ei the

idler �eld. By inserting this expression into Eq.4.2, the polarization source which generates the signal (idler)

is:

Ps(i) = ε0χ
(2)EpE

∗
s(i) (5.6)

If the initial �eld amplitude at the input of the crystal Es(i) is zero, which corresponds to a classical assump-

tion, also the polarization source in Eq.5.6 vanishes. This means that no �eld at frequency ωs(i) will be built

inside the material as the pump propagates. In order to generate down converted photons, an input seed

is needed. As already discussed in section 3.1, this is provided by the vacuum �uctuations of the quantized

electric �eld.

In order to derive more precisely the expressions for the photon rates of the down converted radiation, the

work of M.Fioretino et. al. will be followed [165] . In this work, they derive an expression for the generated

signal power in a Periodically Poled Potassium Titanyl Phosphate (PPKTP) waveguide. This geometry is

quite dissimilar to the one implemented in the experiment described in section 5.2.2, since it refers to a

guiding geometry rather than to a poled bulk crystal. However, it allows to cover all the principal physical

results without the need of using the more general (and complex) theory of non collinear phase matching in

bulk crystals [216]. The signal and idler �elds are written inside the single mode waveguide as:

Es,i(r, t) =
1

2

(
cs,i

us,i(x, y)√
L

ei(βs,iz−ωs,it) + c.c

)
(5.7)

in which u(x, y) is the normalized transverse �eld pro�le, β = ω
c n(ω) the propagation constant and L the

length of the waveguide. The direction of light propagation is assumed to be ẑ. The quantized form of the

�elds in Eq.5.7 are:

Ês,i(r, t) =
i

2

(
2~ωs,i

n2(ωs,i)ε0

) 1
2 1√

L
us,i(x, y)ei(βs,iz−ωs,it)as,i + c.c (5.8)

where as,i is the operator which annihilates a photon at the signal (idler) frequency. The pump �eld is

assumed to be in the classical form:
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Ep =
1

2

(√
2Pp
cnpε0

up(x, y)ei(βpz−ωpt) + c.c

)
(5.9)

where Pp is the pump power. The �eld is not quantized since it is much more intense than the signal/idler

ones. The �elds in Eqs.5.7, 5.8, 5.9 are not coupled and evolve freely if the electromagnetic �eld hamiltonian

is the one in Eq.3.21. If a second order nonlinear polarization PNL = ε0χ
(2)E2 is added as a perturbation

in the material, the displacement �eld modi�es to D = D0 + ε0χ
(2)E2. By inserting the expression for D

into Eq.3.21, and by expressing the �eld E as the sum of the pump, the signal and the idler �elds given in

Eqs.5.8-5.9, one obtains:

H = H0 +HNL (5.10)

in which the nonlinear hamiltonian HNL is given by:

HNL = −ε0
2

ˆ
wg

χ(2)(x, y, z)
(
Ep

ˆ
E†i

ˆ
E†s + c.c

)
dr (5.11)

Due to the waveguide poling, the non linear susceptibility is periodic in the propagation direction with period

Λ, and has the form of a square wave. It is then possible to expand χ(2) in Fourier series as:

χ(2)(x, y, z) =
∑
m

dm(x, y)eim
2π
Λ z (5.12)

The perturbation hamiltonian HNL in Eq.5.10 can induce a transition between the vacuum state |0s0i〉, in
which there are no signal/idler photons, into the two photon state |1s1i〉 by means of the annihilation of a

pump photon. The generated power per unit frequency can be evaluated using the Fermi's Golden rule as:

Ps,i = ~ωs,i ×
2π

~
ρs,i |〈1s1i|Hint |0s0i〉|2 (5.13)

in which ρs,i is the number of signal (idler) states in a frequency interval dωs,i allowed insed the waveguide,

which is given by [165]:

ρs,i =
L2n(ωs)n(ωi)

~c2
dωs,i (5.14)

It is worth to note that the density of states in Eq.5.14 di�ers from the one of a bulk medium since in

the latter case light is not con�ned in the transverse direction [165]. This has important consequences on

the dependence of the �nal output power as a function of the crystal length L, even though these are not

important for the results discussed in section 5.2.2. In deriving Eq.5.13, the energy conservation relation in

Eq.5.1 has been assumed. By inserting Eqs.5.11, 5.12, 5.14 into Eq.5.13, one obtains:

Ps,i =
~ω2

s(i)ωi(s)L
2Pp

πc3ε0n(ωs)n(ωi)n(ωp)Aeff

∑
m

dmsinc
2

(
∆kmL

2

)
dωs,i (5.15)

where the e�ective area is de�ned as:

Aeff =

(ˆ
wg

up(x, y)u∗s(x, y)u∗i (x, y) dxdy

)−2

(5.16)

and the phase mismatch ∆km is given by the expression in Eq.5.5. For a χ(2) periodically changing its sign

as a square wave between the values d0 and −d0, dm = 2
mπd0 for m odd (dm = 0 if m is even). It is clear that

maximum e�ciency is reached if the poling period Λ is chosen such as the quasi phase matching condition

142



Chapter5. Manipulation of SPDC photon pairs in a MZI

is satis�ed with m = 1. In this case, it is possible to neglect the contribution arising from the higher order

periods, and Eq.5.15 becomes:

Ps,i =
4d2

0~ω2
s(i)ωi(s)L

2Pp

π3c3ε0n(ωs)n(ωi)n(ωp)Aeff
sinc2

(
∆k1L

2π

)
dωs,i (5.17)

If one had performed the whole calculations for a poled bulk crystal, in which a continuum of plane wave

modes are able to satisfy the phase matching condition at di�erent angles, one would have obtained a more

complex dependence of the generated power as a function of the angle of emission and of the signal (idler)

frequency [216]. The bulk and waveguide dependencies of the generated power on frequency become similar

in the limit of collinear emission (signal, idler and pump beams propagates in the same direction) and with

a pump beam which is spatially large enough to carry negligible transverse momentum with respect to the

longitudinal one [165]. In addition, the power per unit frequency would scale as L instead of L2 [165].

However, it can be demonstrated that by integrating Eq.5.17 to get all the generated signal (idler) power,

the integrated power scales as L exactly as it happens in a bulk medium. The result shown in Eq.5.17 tells

that the generated signal/idler power scales linearly with the pump power Pp, and due to the sinc term, the

process of down conversion is e�cient only near phase matching.

Even though the approach based on Fermi's Golden rule is able to predict the generated power, it does

not tell anything about the quantum state which is generated upon down conversion. The knowledge of

this state is essential for the manipulation of SPDC photons in external interferometric structures, and

for predicting the outcomes of two photon interference experiments. A common approach which allows to

evaluate the state produced during the process SPDC relies on considering the evolution of the initial vacuum

state |Ψ(t = 0)〉 = |Ψin〉 = |0〉, under the action of the perturbation hamiltonian in Eq.5.11, written in the

interaction picture:

|Ψ(t)〉 = exp

− i
~

tˆ

0

HNL(t′)dt′

 |0〉 (5.18)

By skipping all the calculations, and keeping only the �rst order terms in HNL (which means that only one

pump photon is annihilated at a time, so no multi photon pair emission occurs), the down converted state is:

|Ψ(t→∞〉 = |ΨSPDC〉 = |0〉+

ˆ
Φ(ωs, ωi) |1ωs1ωi〉 dωsdωi (5.19)

in which Φ(ωs, ωi) is a function of the signal and idler frequencies ωs and ωi and it is commonly called the

biphoton wavefunction. The modulus square of the latter gives the probability that a signal photon with

energy ~ωs and an idler photon with energy ~ωi are generated in the SPDC process. The function has to be

normalized in order that
´
|Φ(ωs, ωi)|2dωsdωi = 1. A example of gaussian biphoton wavefunction is shown

in Fig.5.2.
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Figure 5.2: The modulus square of the biphoton wavefunction Φ(ωs, ωi) is plotted as a function of the signal
and idler frequencies ωs and ωi. The quantity ∆Ω indicates the average spectral bandwidth of the down
converted photons. The quantity ∆ωp is the bandwidth of the pump photons.

The function can be viewed as the product of two gaussian distributions, one with a FWHM of ∆Ω and

the other with a FWHM of ∆ωp, tilted by 45° with respect to the ωi axis. The quantity ∆Ω represent the

average bandwidth of the generated photons, with mean frequency ωp/2, i.e, half of the frequency of the

pump. Since energy conservation implies that ωp = ωs + ωi, the signal and idler frequencies are perfectly

anti-correlated. This is re�ected in the fact that |Φ(ωs, ωi)|2 is titled by 45° degrees. The perfect anti-

correlation of the signal and idler frequencies makes the biphoton wavefunction to be not separable, which

means that Φ(ωs, ωi) can not be expressed as the product of two independent distributions Φ(ωs) and Φ(ωi)

which depends only on the frequency of one of the two photons of the pair. This is why the SPDC photon

pair is said to be energy or colour entangled. The biphoton wavefunction in Fig.5.2 has also a �nite extension

∆ωp along the direction which is transverse with respect to the spectral bandwidth. This seems to violate

energy conservation. However, any pump �eld has always a �nite coherence time, which corresponds to a

spectral linewidth of ∆ωp. This uncertaintly in the energy of the pump re�ects in the spectral properties of

the down converted radiation. In particular, the e�ect is to broaden the signal/idler spectral distribution.

Another peculiar property of SPDC process is that the two photons are created simultaneously, i.e., they

are time entangled. As shown in Fig.5.3(a), if the pair is �rstly separated by a beamsplitter, and then each

photon is directed toward single photon detectors, one would measure coincidences in the photodetections.

The coincidence measurement is often used to evaluate the degree of entanglement of the down converted

radiation [217, 154]. Time and energy entanglement can be exploited in photon heralding, that is, the

detection of one of the two photons of the pair heralds the presence of the other and vice versa.
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Figure 5.3: (a) A typical coincidence experiment. Signal and idler photons (red and orange arrows) are
split by a beamsplitter and directed toward two photodetectors. (b) Coincidences in the photodetections
are evaluated as a function of the time delay between the two time traces generated by the detectors. If a
time delay ∆τ is introduced between the arrival times of the two photons at the photodetectors, then the
coincidence peak accordingly shifts from ∆τ = 0. In this case, the series of pulses registered by one detector
is a copy of the time trace of the other detector but shifted by ∆τ in time.

5.2 Generation of photon pairs in a periodically poled Lithium Nio-

bate crystal

As introduced at the beginning of this chapter, the lack of integrated quantum sources has been overcome

by the use of photon pairs produced by a PPLN crystal. This has been achieved using the experimental

apparatus shown in Fig.5.4.

Ti:S 775 nm

L1

PPLN 

L2

IF

OBJ 1
D1

L1

PPLN

L2

IF
OBJ 1

D1

Figure 5.4: (a) Generation stage setup. Ti:S = Titanium Sapphire laser, L1 = Input lens, PPLN = Periodi-
cally Poled Lithium Niobate crystal, L2 = Output lens, IF = interference �lters (two long wave pass �lters
with cut-o� wavelength 1.5µm), OBJ = Collection objective for collimation in �ber.

The pump source is a 775nm Titanium Sapphire laser equipped with an acousto optic modulator that can

switch the laser operation from quasi-continuos wave (not mode locked) to mode locked. The laser operates

in the �rst con�guration during the experiment. The output beam, of approximately 440µm waist, has an

average power of 1W and can be regulated using a variable optical attenuator (not shown in Fig.5.4). Two

gold mirrors direct the beam into the input converging lens (L1), which has a focal length of 5 cm. The PPLN

crystal is placed in the focal plane of the lens, where the beam waist is minimum and equal to ≈ 12µm. The
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laser intensity at the input facet of the sample is ≈ 0.26MW/cm2. The PPLN crystal, shown in Fig.5.5(a),

is sandwiched between a metal holder and an ITO coated glass.

b)

a)

ITO glass
PPLN crystal

Laser spot

Poled regions

PPLN crystal

ITO glass

Figure 5.5: (a) Side view of the PPLN crystal. The crystal is completely transparent and is sandwiched
between the ITO glass and the metal holder. (b) Enlarged side view of the PPLN crystal, showing the
locations of the poled regions (actually a re�ection on the metal holder) and the pump laser beam spot.

The crystal contains 9 di�erent poled regions of cross section 500µm × 500µm and of length 1mm, some

of them are shown in Fig.5.5(b). Each region has a di�erent poling period, which guarantees quasi phase

matching in the 760nm − 820nm range of input wavelength. The �ne tuning of the phase matching is

performed by changing the temperature of the sample with an oven. This is accomplished using a temperature

controller (TEC). Temperature slightly changes the refractive index of the material by di�erent amounts at

the frequency of the pump and at the frequency of the down converted photons. In this way, Eq.5.5 can

be satis�ed at di�erent pump wavelengths using the same poling period. The SPDC photons (coming from

a type I process, i.e, signal and idler are copolarized) and the 775nm pump are collected and collimated

by a lens of 8.5 cm focal length. Two long wavelength pass �lters (1.35µm of cuto� wavelength) allows

to �lter out the pump from the Infra-Red light, providing an isolation higher than 100 dB. The Infra-Red

beam is then coupled into a Single Mode (SM) �ber using a collimator. The latter is connected to a photon

counting module (ID Quantique id201). To maximize the coupling e�ciency, the collimator can be tilted and

translated in all the directions using a micrometric alignment stage. A total loss of 7.8 dB from the output

facet of the sample to the SM �ber has been measured.

5.2.1 Source characterization

At �rst, the PPLN source has been characterized in terms of generation e�ciency. Following the guidelines

provided by the crystal manufacturier (Covesion Ltd. [215]), it has been veri�ed that the maximum rate of

generated photons is found at particular temperatures as reported on the datasheet. Fig.5.6 reports the phase
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matching curves as a function of temperature for the 9 di�erent poling periods reported by the manufacturier.

Figure 5.6: Phase matching wavelength as a function of temperature for the 9 di�erent poling periods. The
red dashed line indicates the studied wavelength (1550nm).

For the 775nm pump, the generation lies at 1550nm, and the maximum e�ciency temperatures are listed in

Table 5.1. Fig.5.7 shows the measured generation rate as a function of the crystal temperature for 3 poling

periods.

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0

�

 

Co
un

ts 
(M

Hz
)

�����������
�

��	������� ��	������� ���������

Figure 5.7: Measured generation rate as a function of the crystal temperature for several poling periods:
18.8 µm, (red) 19.1 µm (black) and 19.4µm (blue).

Poling period (µm) T
(th)
MAX T

(exp)
MAX

18.8 175 175± 1
19.1 105 108± 1
19.4 30 < 30

Table 5.1: Temperatures of maximum e�ciency for di�erent poling periods. T
(th)
MAX are the temperatures

predicted by the curves in Fig.5.6, T
(exp)
MAX are the temperatures found in the experiment.
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The temperatures of maximum e�ciency extracted from the experimental data are very close to the ones

reported in the datasheet. The conversion e�ciency can be estimated by knowing the pump power, the losses

from the output of the sample (η = 7.8 dB) toward the photodetector, its detection e�ciency (20%) and the

measured SPDC photon �ux. The pump power has been measured through a thermopile. The generated

power has been estimated using the ID Quantique detector. Since the photon counter operates in gated mode

at a frequecy of 10KHz with 100ns of gate width and no dead time, the measured �ux has to be multiplied

by a factor 103 to take into account the photons which arrive when the detector is blind. Fig.5.8 reports the

measured generated power (integrated over all the wavelengths) as a function of pump power.
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Figure 5.8: Power of the generated SPDC radiation as a function of the input pump power. The slope of the
linear �t gives the e�ciency of the process.

A linear dependence is found, which agrees with the theoretical predictions of Eq.5.17. A conversion e�ciency

of (−99.8±0.1) dB is estimated from the slope of the linear �t. In terms of photon �ux, the maximum genera-

tion rate is 600MHz. Commercial PPLN crystals under similar input conditions predict a SPDC generation

e�ciency up to −70 dB [218], which is 30 dB higher then what it has been measured. A possible explanation

of such a low generation rate could rely on the very poor quality of the poling of the crystal. Indeed, the

microscope image shown in Fig.5.9 reveals that the poling is not perfectly periodic and su�ers from several

fabrication imperfections (see Fig.5.9(b)). The e�ect of random imperfections is to lower the amplitudes of

the spatial frequencies in the Fourier series in Eq.5.12, and at the same time to add a background of new

spatial frequencies (some of them can be phase matched with the input radiation, with the consequence that

the spectral width of the generated radiation increases). This e�ect is known as inhomogeneous broadening

[51]). Since the generated power is proportional to the amplitude of these spatial frequencies (see Eq.5.17),

the overall e�ciency of the process decreases.
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40 mm

a)
b)

Figure 5.9: a) A microscope image of the 19.4µm poling period in our sample. b) Details of the poling,
revealing fabrication imperfections.

5.2.2 Coincidence measurements

The temperature dependence of the e�ciency of the process and the linear relation between the generated

power with the input pump indicate that the detected radiation is almost certainly coming from an SPDC

process. However, as discussed in Section 5.1.1, in order to have a de�nitive proof one has to perform a

coincidence measurement. This experiment reveals the time entanglement of the pair, which is a distinctive

sign of the down converted radiation. To perform the experiment, the setup shown in Fig.5.10 has been

implemented.

&

Δ𝜏
OBJ 1

SPDC pair

APD 1

APD 2

Correlator 
(Oscilloscope) 12

3

4

a)
b)

Figure 5.10: a) Schematic of the coincidence measurement setup. (b) A picture of the implemented setup.
(1) Fiber beam splitter (2) APD modules (3) Peltier cells current sources (4) Oscilloscope.

The �ber which exits from the collimator OBJ1 in Fig.5.4(a) has been connected to a 3 dB beam splitter. In

one of the two outgoing arms has been placed a variable delay line consisting of coils of optical �ber of di�erent

lengths. The coil has the e�ect to delay the arrival time of one photon of the pair with respect to the other. The

two outputs were connected to two InGaAs Single Photon Avalance Photodiodes (SPADs) with active home

made quenching electronics. The APDs were cooled down to their optimal operating temperature (−70◦C)

using three Peltier cells and liquid nitrogen. The maximum e�ciency has been measured to be γ = 5% with

5MHz of dark counts. The output voltage from the two APDs was sent to a digital oscilloscope.

The post processing functions of the oscilloscope were used for:
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1. Squaring the input signal. Each time that a photon was detected, a voltage pulse of about 3ns duration

was generated from the APD. Voltage values going above a �xed threshold were interpreted as ones

and voltages below the threshold were interpreted as zeros. At the end of the squaring process, the

output consisted of a sequence of square pulses with amplitude one and average width σ.

2. Calculating the cross correlation Rxy on the two squared sequences x and y (of 2ms duration) using

the following formula: Rxy(m) =
∑N−m−1
n xn+myn. Here, N is the number of points in a sequence,

which is 107. The acquisition rate was set to R = 5GS/s. The calculated cross correlation, divided by

σ, gave the number of coincidence events that have been recorded in 2ms when the two sequences are

delayed by m points. The time delay corresponding to m points is m/R.

In order to increase the signal to noise ratio, a number of 500 sequences have been recorded in the same

experimental conditions. The presence of spurious periodic correlations due to the gating technique and due

to the pump laser oscillations were �ltered through a digital �lter.

Fig.5.11 shows the coincidence measurement for coil lengths of L0 = 0m (no coil), L1 = 6m and L2 = 12m.

The associated time delays, calculated as ∆τi =
Ling
c (ng ≈ 1.45 for a single mode Silica �ber), are ∆τ0 = 0ns,

∆τ1 = 28.8ns and ∆τ2 = 57.7ns.

Figure 5.11: Cross correlation curves for several delay line lengths, 0m,6m, 12m and 2 di�erent sources: (a)
SPDC photons source, (b) Uncorrelated photon source. The grey bar are the error on the maximum. The
vertical red dashed lines represent the theoretical delays calculated from the coil lengths Li and the group
index ng of the �ber.

When no optical delay is inserted between the two APDs (Fig.5.11(a), 0m panel), the cross correlation curve

is found peaked at 0.4ns. This is not zero because of the electronic delay that comes from small di�erences in

the circuitry. If an optical delay is added, the peak shifts to a delay of 29.8ns and 59.6ns for the 6m coil and

for the 12m coil respectively. These values are very close to the theoretical ones calculated starting from the

coil length and the �ber group velocity. The width of the coincidence peak is about ≈ 3ns, which is limited
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by the time response of the APDs. This means that two photons with arrival times which di�er by less than

3ns are considered as coincident. The coindicence peaks which emerge from the noisy background have an

heigth of approximately (0.04 ± 0.01)MHz. To check the consistency with the theoretical predictions, one

has to �nd the probability that each photon of the pair reaches the APDs after that the pair splits by the

beamsplitter. By denotining with η the losses from the output of the crysytal to the APDs and with γ the

APDs e�ciencies, this probabability is P = 0.25 × (ηγ)2, which is the square of the probability that one

photon of the pair reaches the APD by travelling in one speci�c output branch of the beamsplitter. Since the

arrival times of photon pairs constitutes a poissonian process, the average coincidence �ux is Φcoinc = ΦtotP ,

where Φtot is the �ux of photon pairs at the output of the crystal. The curves shown in Fig.5.11 have

been recorded with Φtot = 600MHz, thus giving Φcoinc = 0.01MHz, which is comparable to the measured

�ux. Fig.5.11(b) reports the cross correlation curves for an uncorrelated photon source generated from an

Ampli�ed Spontaneous Emission (ASE) source with a center wavelength of 1.53µm. The photon �ux has

been regulated to keep the conditions as close as possible to the SPDC case. Also the post processing routine

was equal to the one applied to the data shown in Fig.5.11(a). The fact that the cross correlation curves of

Fig.5.11(b) did not show any trend ensures that the peaks in Fig.5.11(a) are caused by the time entanglement

of the SPDC radiation.

5.2.3 Spectral properties of the generated radation

A common feature of interferometric structures which are based on amplitude division (Mach Zehnder in-

terferometer, Michelson interferometer) is that the input radation Ein is, �rst, split into two beams αEin

and βEin, which are then recombined at the output of the device with a time delay ∆τ . The amplitude of

the disturbance Eout at the output is Eout(t) = αEin(t) + βEin(t + ∆τ) (the disturbance is assumed to be

normalized in such a way that |Ein|2 represents the light intensity). Since the photodetectors only respond

to a time average of the intensity, the photocurrent J is proportional to:

J ∝
〈
|Eout(t)|2

〉
∝ Iα + Iβ + 2Re [αβ∗ 〈Ein(t)Ein(t+ ∆τ)∗〉] (5.20)

in which 〈〉 denotes the time averaging operation and Iα,β =
〈
|Eα,β |2

〉
are the intensities of the two beams.

The time averaging process has to be interpreted as:

〈E〉 =
1

T

T/2ˆ

−T/2

E(t)dt (5.21)

in which T is a time window much larger than the time scales over which the optical �eld �uctuates. It comes

out from Eq.5.20 that the ability to create interference fringes as a function of the time delay ∆τ is related

to the term 2Re [αβ∗ 〈Ein(t)Ein(t+ ∆τ)∗〉]. One can de�ne the �rst order correlation function G(1)(∆τ) as:

G(1)(∆τ) = 〈E(t)E(t+ ∆τ)∗〉 (5.22)

In writing Eq.5.22 it has been tacitly assumed that E(t) is a stationary ergodic process, so that G(1) is a

function only of the time delay ∆τ and the ensemble averages can be replaced by time averages as in Eq.5.21

[219]. From a comparison between Eq.5.20 and Eq.5.22, it can be seen that the range of ∆τ in which the

function G(1) is appreciabily di�erent from zero coindices with the range in which interference e�ects can be

observed. This range can be de�ned more precisely as |∆τ | < τc, in which τc is called the coherence time of

the radiation and is de�ned as:
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τc =
1

|G(1)(0)|2

+∞ˆ

−∞

|G(1)(∆τ)|2d(∆τ) (5.23)

It is clear that the knowledge of the coherence time of the radiation is essential for properly designing any

interferometric structure. From reasons that will be clear in section 5.3.1, the design of an interferometer

which is capable of spanning a time delay greately exceeding τc allows to reveal interference e�ects which

have no classical analogue. The magnitude of τc can be extracted from the knowledge of the spectra of the

radiation. The spectra S(ω) is de�ned as:

S(ω) =
1

T
lim
T→∞

〈
|VT (ω)|2

〉
(5.24)

where VT is the truncated Fourier transform of the electric �eld E(t):

VT (ω) =
1

T

T/2ˆ

−T/2

E(t)e−iωt dt (5.25)

A relation exists between S(ω) and G(1)(∆τ), and is given by the Wiener-Khinchin theorem [219]:

S(ω) =

∞̂

−∞

G(1)(∆τ)e−iω∆τ d(∆τ) (5.26)

By inserting Eq.5.26 into Eq.5.23 and by integrating with respect to ∆τ , one obtains:

τc =
1

|G(0)|2

∞̂

−∞

|S(ω)|2 dω (5.27)

By de�ning the spectral width of the radiation as:

∆ν =
|G(0)|2´∞

−∞ |S(ω)|2 dω
(5.28)

one obtain the �nal relation:

τc =
1

∆ν
(5.29)

Eq.5.29 tells that by measuring the spectral width of the radiation, one can extract the related coherence

time. The measure of the spectral width can be done by using an OSA. However, this task can not be easily

accomplished because the noise level of commercial OSA are of the order of −90 dBm (1 pW ), which is very

close to the power of the generated radiation (see Fig.5.8). No signal has been detected by the OSA with the

pump power set to its maximum value (1W ), which means that the nearly 100 pW of generated power shown

in Fig.5.8 is spread in wavelength (so as the resulting spectral density, which is the quantity that actually

measures the OSA, is lower than the noise limit). To overcome this limitation, the experimental setup shown

in Fig.5.12 has been implemented.
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Figure 5.12: The setup implemented for measuring the spectra of the down converted radiation.

The SPDC radiation which exits out from the multimode �ber is collimated using a microlens objective

and then sent to a blazed di�raction grating. The latter can rotate by means of micrometric screws. The

dispersed light is then coupled to a �xed �ber collimator, interfaced with a photon counting module. The

use of a photon counter allows to detect signals as small as −120 dBm. By rotating the screw, the spectrum

of the radiation can be recorded. The system has been calibrated using a tunable infrared laser. In Fig.5.13

the spectra of the radiation is reported for two di�erent poling periods (Λ = 19.4µm and Λ = 19.1µm) and

various temperatures. The variable detection e�ciency of the photon counter as a function of the wavelength

has been taken into account for correcting the recorded photon �ux.
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Figure 5.13: Spectra of the SPDC photons for two di�erent poling periods and for di�erent temperatures.
The dashed blue line in the spectra relative to the 19.4µm poling period indicates the position of the idler
peak, which lies in a wavelength interval that can not be detected by the photon counter.

It is evident that the spectra are quite broad, especially for the 19.1µm poling of at low temperatures. In

this case, the average power integrated over 1nm of bandwidth (which is the minimum resolution that can

be set in the OSA of the laboratory) is −100 dBm, far below the noise lovel of the instrument. This justi�es

the fact that it was not possible to detect any signal by sending directly the SPDC radiation to the OSA. The

19.4µm poling generates a down converted radiation which is strongly not degenerate. A band, placed on

the blue side of the 1.55µm degenerate wavelength, has been recorded. The band is approximately peaked at
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1325nm, and corresponds to the signal photons. A wavelength of 1867nm for the idler peak can be evaluated

by Eq.5.1. The idler peak lies in a wavelength interval which can not be detected by the photon counter, since

its detection e�ciency has a cut o� at 1600nm. For the 19.1µm poling period, the raise in temperature has

the e�ect to shift the SPDC signal from a nearly degenerate emission (T = 60°C) to a non degenerate one.

A signal band is observed as the temperature increases. It may be pointed out that the spectra which are

relative to the 19.1µm poling are not symmetric with respect to the degenerate wavelength. In particular,

it seems that some power is lacking on the red side. This is probably due to the fact that it has not been

possible to measure the detection e�ciency of the photon counter at wavelengths above 1600nm, which has

been then extrapolated from the instrument datasheet. This procedure probably overestimated the detection

e�ciency, so the spectral power relative to this wavelength range is probably higher than the one reported in

Fig.5.13. In the experiment described in Section 5.3, SPDC photons are emitted from the crystal region with

a poling period of 19.1µm when the operating temperature was set to T = 80°C. In order to have a rough

estimation of the coherence time of the radiation, the spectra has been approximated by a box function of

approximately ∆λ = 300nm width and centered at λc = 1.475µm, which gives τc = ∆ν−1 =
λ2
c

c∆λ ≈ 24 fs.

The box-like approximation is justi�ed from the fact that the spectrum is bandwidth limited by the high

frequency cut-o� provided by interference �lters in Fig.5.4 at 1.35µm, and by the low frequency cut-o�

provided by the detection e�ciency of the photon counters at 1.6µm. As it will be shown in Section 5.3, this

approximation gives a coherence time which is very close to the one measured through an interferogram.

5.3 One and two photon interference in a free space Mach Zenhder

Interferometer

The interferometric structure which allowed to perform the �rst quantum optics experiment of the project

SIQURO is the Mach Zenhder Interferometer The choice has been dictated from the fact that, despite the

simplicity of the geometry, the MZI is a versatile and e�ective tool for the manipulation of entangled states

of light. The setup has been entirely realized in free space, but the same theory and experimental results are

expected in an integrated MZI. In this sense, the experiment has been preparatory for the next developements

of the SIQURO project, for which on chip quantum interference has to be demonstrated. In this section, the

theory of the device operation is �rstly presented and the probability of recording a coincidence detection of

SPDC photons is derived in terms of the parameters of the MZI. The novelties with respect to previously

reported experiments in the literature are highlighted [220, 221, 222, 223]. The experimental setup and the

results are discussed at the end of the section.

5.3.1 Theory of the MZI excited by SPDC photons

The sketch of the MZI is shown in Fig.5.14.
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Figure 5.14: A sketch of the MZ device.

The input radiation state |Ψin〉 is sent into a single input port of the �rst beamsplitter (BS1). By using only

one input port, it is possible to probe a wider range of interference e�ects than if both input ports are used, as

discussed below. The asymmetric excitation constitutes one of the main di�erences with respect to previously

reported experiments, in which both the input ports were excited [220, 221, 222, 223]. After exiting BS1,

the light propagates along the MZ arms. The latter have di�erent optical paths, which reduces to a time

delay∆τ , and di�erent propagation loss γh and γr. The subscripts r and h stand for Reference and Heater

respectively. This is because in the experimental implementation of the device, discussed in section 5.3.2,

the time delay ∆τ is changed using an electrical heater. Light is then recombined at the second beamsplitter

(BS2) before being collected by photodetectors C and D. The beasmplitters transform the input �elds to

the output �elds according to [222]:

BS1→

(
r1e
−iδ t1

t1 r1e
−iδ

)
, BS2→

(
r2ce

−iδ t2c

t2d r2de
−iδ

)
(5.30)

where the coe�cients ri and ti are real, and represent the amplitude re�ectivity and transmittivity of the BS

respectively. For simplicity, it has been assumed that ri and ti do not depend on frequency. The operation

of BS1 is taken to be symmetric, while that of BS2 may be di�erent for the light collected by detector C or

D, as indicated by the second subscript c, d. In this way, the re�ectivity from A to C (r2c) can be di�erent

with respect to the re�ectivity from B to D (r2d). It is worth to note that, in the modeled experiment, such

asymmetry is not attributed to an intrinsic unbalance of the BS2 transmittance/re�ectance, but rather to

controlled misalignments of the detectors C and D with respect to the transmitted/re�ected beams from

BS2. As it will be showed, these coe�cients control the amplitude of various photon interference e�ects and

so this controlled asymmetry can be used to tune between di�erent regimes. In the beamsplitter relation

of Eq.5.30, a relative phase between the re�ection and transmission coe�cients exists. For an ideal lossless

beamsplitter, the relative phase must be equal to π/2, as required by energy conservation [224]. However,

as derived by Barnett et. al. [225], this stringent phase condition may be relaxed when a beamsplitter

is intrinsically lossy. This will be discussed in further detail in section 5.3.1.2. For simplicity, it has been

assumed that the relative phase is identical and symmetric for both beamsplitters; this is reasonable for this

experiment, as the controlled asymmetry for BS2 introduced above a�ects the amplitude but not the phase
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of the light collected. To study photon interference, the coincidence rate of photons arriving at the two

photodetectors is calculated. The photodetectors operate with a time resolution TR. The probability of a

joint photodetection at time t and t+ τ is described by the second-order correlation function [222]:

g(2)(t, τ) = K
〈
E−d (t)E−c (t+ τ)E+

c (t+ τ)E+
d (t)

〉
(5.31)

where E+
c (E

−
c ) and E

+
d (E

−
d ) are the positive(negative) frequency parts of the electric �eld operator at the

output of BS2 at the C and D detectors respectively. Here K is a constant that has to be tailored on the

experiment. The expectation value is evaluated with respect to the input radiation state |Ψin〉. Eq.5.31 is the
quantum mechanical generalization of the classical intensity correlation function g

(2)
cl (t, τ) = 〈I(t)I(t+ τ)〉,

where I(t) denotes the light intensity at time t and the operator 〈〉 denotes the time averaging operation of

Eq.5.23. Combining Eq.5.31 with the beamsplitter relations in Eq.5.30, it is possible to write the electric

�elds E−c and E−d as:

E−c (t) = r1γhr2ce
−i2δE−in(t−∆τ) + t1γrt2cE

−
in(t)

E−d (t) = t1γrr2de
−iδE−in(t) + r1γht2de

−iδE−in(t−∆τ)
(5.32)

where E−in is the negative frequency part of the input electric �eld operator at BS1. From these expressions,

it is possible to calculate the second order correlation function g(2)(t, τ), and hence the photon coincidence

rate, provided that the input radiation state is speci�ed. For SPDC photons, the expression is given by

Eq.5.19. In what follows, the pump will be assumed to be monochromatic, since its linewidth ∆ωp is much

narrower than the one of the generated radiation. The biphoton wavefunction in Fig.5.2 becomes then a

straight line. In this way, it is possible to exploit the energy conservation relation of Eq.5.1 to express the

frequency of one photon as ω and the frequency of the twin photon as ω̃−ω, where ω̃ is the frequency of the

pump. Using this property, the input radiation �eld can be written as:

|Ψin〉 =

ˆ
Φ(ω)a†ω̃−ωa

†
ω |0〉 dω (5.33)

where a†ω denotes the creation operator of a photon at frequency ω at the input port of BS1 and Φ(ω) is the

biphoton wavefunction. The latter is assumed to be of Gaussian-like distribution:

φ(ω) = Ne−
(ω−ω̃/2)2

2σ2 (5.34)

centred at the degenerate frequency ω̃/2 with bandwidth σ = 1
τc
, where τc represent the coherence time of each

photon. Here, N is a normalization constant which can be determined by using the fact that
´
|Φ(ω)|2 dω = 1.

By inserting a completeness relation between E+
c (t) and E+

c (t + τ) in Eq.5.31, and by using Eq.5.32, one

gets:

g(2) = K
∣∣∣γhcγrde−i3δ 〈E−in(t)E−in(t+ τ −∆τ)〉+

+ γrdγrce
−iδ 〈E−in(t)E−in(t+ τ)〉

+ γhcγhde
−i3δ 〈E−in(t−∆τ)E−in(t+ τ −∆τ)〉

+ γhdγrce
−iδ 〈E−in(t−∆τ)E−in(t+ τ)〉

∣∣∣2
(5.35)

where the expectation values are now evaluated between the initial state |Ψin〉 and the vacuum state |0〉, i.e,
〈E−in(t)E−in(t′)〉 = 〈Ψin|E−in(t)E−in(t′) |0〉. In Eq.5.35 the following parameters have been introduced:
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γhc = r1γh r2c γhd = r1γh t2d

γrc = t1γr t2c γrd = t1γr r2d

(5.36)

where the subscript h, r refers to the path along the upper or lower arm of the interferometer respectively,

while subscript c, d denotes whether the photon arrives at detector C or D. The expectation values in Eq.5.35

can be evaluated by using the Fourier representation of the negative frequency part of the input electric �eld:

E−in(t) =

ˆ
a†ωe

iωtdω (5.37)

and hence that:

〈E−in(t)E−in(t′)〉 = 2φ(t− t′)eiω̃t
′

(5.38)

where φ(t) is the Fourier transform of φ(ω). Substituting Eq.5.38 into Eq.5.35, it is obtained that g(2) =

K|ph,h + pr,r + p
(R)
h,r + p

(T )
h,r |2, where:

ph,h = 2N2γhcγhd exp [−i (ω̄∆τ + 3δ)] exp

(
−σ

2τ2

2

)
(5.39)

pr,r = 2N2γrcγrd exp (−iδ) exp

(
−σ

2τ2

2

)
(5.40)

p
(R)
r,h = 2N2γhcγrd exp

[
−i
(
ω̄∆τ

2
+ 3δ

)]
exp

(
−σ

2(τ −∆τ)2

2

)
(5.41)

p
(T )
r,h = 2N2γhdγrc exp

[
−i
(
ω̄∆τ

2
+ δ

)]
exp

(
−σ

2(τ + ∆τ)2

2

)
(5.42)

Eqs. 5.39-5.42 are the transition amplitudes associated with the indistinguishable paths through which the

photon pair can propagate from the input of BS1 to the photodetectors, as sketched schematically in the

grey shaded region of Fig.5.15.
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Figure 5.15: A summary of the interference terms between all the possible paths leading to a coincidence
photodetection. The paths are sketched in the panels with a gray shaded background. From left to right, in
the uppermost row, these are: (ph,h) both photons are re�ected in the upper arm, (pr,r) both photons are

transmitted in the lower arm, (p
(R)
h,r ) photons are split by BS1 and reach the detectors by two re�ections at

BS2, (p
(T )
h,r ) photons are split by BS1 and reach the detectors by two transmission at BS2. The transition

amplitudes associated with the paths are given in Eq.5.39-5.42. The main entries of the table sketch the
resulting contribution to the correlation function from the interference of these paths as a function of ∆τ ,
where the integration in τ has been performed as described in the main text. By proceeding from left to

right, for example, the panels in the second row represent contributions from |ph,h|2, p∗h,hpr,r, p∗h,hp
(R)
h,r and

p∗h,hp
(T )
h,r .

As it can be seen, the amplitudes ph,h and pr,r refer to bunching, when both photons are either re�ected

or transmitted by BS1. On the other hand, the amplitudes p
(R)
h,r and p

(T )
h,r describe anti-bunching, when the

photon pair is split at BS1. In these cases, the superscript R, T denotes respectively the cases in which the

photons are both either re�ected or transmitted at BS2. It is important to emphasise that the antibunching

paths (p
(T,R)
h,r ) are not generally allowed when both input ports of BS1 are excited, due to the Hong Ou

Mandel (HOM) e�ect at the �rst beamsplitter [226]. The HOM manifests when two indistinguishable photons

simultaneously enter at both the input ports of a BS. The amplitude probabilities associated with the cases

in which both photons are re�ected or both photons are transmitted, which would crate an antibunchin

state, undergoes completely destructive interference due to photon indistinguishability. The result is that the

pair is never split, and both photons exit together from one of the two output ports, with equal probability.

By exciting the input BS from a single input port, it is therefore possible to explore a richer interplay

of interference e�ects where the photon pair can travel along both antibunching and bunching paths. To

calculate the correlation function g(2), one has to square the sum of all the transition amplitudes in Eqs.5.39-

5.42, and integrate τ over the coincidence resolving time of the photodetectors TR. As can be seen from the

expressions above, each amplitude vanishes when τ is much greater than the photon coherence time τc = 1/σ,

while for all practical experiments TR � τc. Hence, the integration over τ can be e�ectively extended from

−∞ to ∞, to �nally obtain:

g(2)(∆τ) = K ′(C1 + C2 + C3) (5.43)
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where K ′ includes all the constants. The three terms on the right hand side are de�ned as follows:

C1 = γ2
hcγ

2
rd + γ2

hdγ
2
rc + 2Aω̃ e

−σ2∆τ2

cos(2δ) (5.44)

C2 = γ2
hcγ

2
hd + γ2

rcγ
2
rd + 2Aω̃ cos(ω̃∆τ − 2δ) (5.45)

C3 = 2e−
σ2∆τ2

4

(
A

(1)
ω̃/2 cos

( ω̃∆τ

2
+ 2δ

)
+A

(2)
ω̃/2 cos

( ω̃∆τ

2

))
(5.46)

where the following parameters have been introduced:

Aω̃ = γrcγrdγhcγhd (5.47)

A
(1)
ω̃/2 = γhcγrc(γ

2
rd + γ2

hd) (5.48)

A
(2)
ω̃/2 = γhdγrd(γ

2
hc + γ2

rc) (5.49)

It will also be convenient to introduce the power-amplitude coe�cient Aω̃/2 associated with the frequency

component at ω̃/2:

A2
ω̃/2 =

(
A

(1)
ω̃/2

)2

+
(
A

(2)
ω̃/2

)2

+ 2A
(1)
ω̃/2A

(2)
ω̃/2 cos(2δ) (5.50)

In Eqs.5.44-5.46, it has been grouped into C1,2,3 those terms which arise respectively from the interplay of

antibunching with antibunching paths; of bunching with bunching paths; and of antibunching with bunching

paths. These various combinations are illustrated schematically in the table of Fig.5.15, where the photon

paths are shown in the �rst gray-shaded row and column, and the resulting terms in g(2)(∆τ) are sketched in

the main entries of the table. For example, all terms on the diagonal of this table represent the interference

of a two-photon path with itself and hence are independent of the delay ∆τ and are depicted as a constant

contribution. As illustrated in the four bottom-right entries of Fig.5.15, the interplay of antibunching with

antibunching terms in Eq.5.44 includes the characteristic Hong Ou Mandel dip in the coincidence due to the

destructive interference of the two di�erent antibunching paths at the second beamsplitter. This reduction

in the coincidence is largest when the time delay between the two arms of the MZ is equal to zero, i.e

when it is reached the optical contact of the interferometer. Note that here the term cos(2δ) is assumed

to be negative, which is appropriate both for a lossless beamsplitter and for the lossy beamsplitters in the

experiment discussed later. As it can be seen in the four top-left main panels of Fig.5.15, the interaction

between the two di�erent bunching paths leads to fringes at a frequency which is doubled with respect to the

average frequency ω̃/2 of the two photons. By looking at Eq.(5.45), it comes out that these oscillations persist

even when the time delay ∆τ exceeds the single-photon coherence time τc. As discussed in Section 5.2.3,

classical interference is expected to vanish at time delays exceeding the coherence time of the radiation. These

therefore are two-photon interference e�ects arising from the colour-entanglement of the SPDC radiation,

which is a purely quantum mechanical e�ect. Finally, in the top-right and bottom-left entries of Fig.5.15, the

interplay between the antibunching and bunching paths leads to terms which oscillate at the photon average

frequency ω̃/2. As can be seen from Eq.5.46, these terms are damped out as ∆τ increases beyond τc, and

can be assimilated to single photon interference e�ects. The equivalence comes from the fact that the phase

di�erence between the bunching and the antibunching cases is always (ω̃/2)∆τ . In fact, from the comparison

of the paths pr,r (or ph,h) with the paths pTh,r (or p
R
h,r) in Fig.5.15, one can notice that there is always one

arm of the interferometer which carries one more photon with respect to the other. The same happens when

a single photon enters at the input of BS1 : it can take either the lower arm or the upper one, giving a
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relative phase of (ω̃/2)∆τ between the two paths. The combination of all of these terms into Eq.(5.43) leads

to a complicated coincidence pattern which will, in general, contain features from both the two-photon and

single-photon interference. The strength of the di�erent oscillating terms is respectively measured by the

terms Aω̃ and Aω̃/2 in Eqs.5.47-5.50. Their ratio

ξ =
Aω̃/2

Aω̃
(5.51)

will be called the unbalancing parameter, and it will be used in the following to quantify the relative magnitude

of these e�ects.

5.3.1.1 SPDC Light in a MZ Interferometer with Lossless Beamsplitters

To understand the di�erent physical regimes, let's consider the simplest case of ideal lossless beamsplitters.

Then the relative phase of the re�ection and transmission coe�cients in the beamsplitters is set by energy

conservation as δ = π/2 [225, 224]. Consequently, the unbalancing parameter simpli�es to:

ξ =
Aω̃/2

Aω̃
=

(γhcγrd − γrcγhd)(γhcγhd − γrcγrd)
γrcγrdγhcγhd

(5.52)

and the two limits of ξ = 0 and ξ → ∞ can be straightforwardly considered. In the limit when ξ = 0,

antibunching-bunching interactions undergo complete destructive interference, and the single-particle-like

features disappear from the coincidence pattern. This happens if some symmetries are imposed on the lossess

of the MZ arms or on the beamsplitter coe�cients. The simplest example is when both the beamsplitters are

50 : 50 devices and the two arms have identical loss rates, which implies γhc = γhd = γrc = γrd and Aω̃/2 = 0.

Thus, only one frequency is observed when the device is ideal and symmetric, which is consistent with what

was found in previous works [220, 221]. Other three con�gurations exist for which ξ = 0:

1. If BS2 is balanced, so that γhc = γhd and γrd = γrc.

2. If BS1 is balanced while the γr and γh lossess are also equal, so that γhc = γrc and γrd = γhd.

3. If the transmittance from the input to port C along the upper arm is equal to the transmittance to

port D along the lower arm (i.e. γrd = γhc) or vice-versa (γhd = γrc).

In the opposite limit of ξ → ∞, the g(2) function will show no features of two-photon correlations. This

happens when one of the four factors in Eq.5.36 is equal to zero. To see this it is possible to consider,

for example, γhc = 0; then a photon collected at detector C can only have come from the lower MZ arm,

providing which-way information and destroying any two-photon interference. Values of the unbalancing

parameter ξ between [0,∞] occur when no particular symmetries are imposed. This leads to coincidence

patterns where the hallmarks of both one-photon and two-photon interference are present.

5.3.1.2 SPDC Light in a MZ Interferometer with Lossy Beamsplitters

As introduced above, the g(2) function in Eq.5.43 contains the sum of three oscillating terms, each having

a di�erent dependence on δ. Consequently, the qualitative appearance of the coincidence pattern can be

remarkably sensitive to the value of this phase. For a lossy beamsplitter, Barnett et. al. [225] showed that

in general the complex transmittance t and re�ectance r satisfy:

|t|2 + |r|2 ≤ 1 (5.53)
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where the equality holds for a lossless device. Considering incoming classical or coherent �elds of equal or

opposite amplitude, he showed that [225]:

|tr∗ + t∗r| ≤ 1− |r|2 − |t|2 (5.54)

By assuming for simplicity t∗ = t =
√

χ
2 and r = te−iδ to describe a balanced BS where the photon has an

intrinsic survival probability χ, the constraint on the relative phase between the re�ection and transmission

coe�cients is:

| cos δ| ≤ (1/χ− 1) (5.55)

When χ = 1 (i.e. for a lossless beamsplitter), this sets δ = ±π/2, as used in Section 5.3.1.1. When χ < 1, the

phase δ can also be larger or smaller than π/2, with important consequences. First, from Eq.(5.44) it follows

that if δ 6= π/2, the magnitude of the HOM dip is smaller as the antibunching paths acquire di�erent phases

upon exiting BS2 and no longer interfere completely destructively. This is the reduction in the visibility of the

Hong Ou Mandel e�ect for a lossy beamsplitter with non-orthogonal re�ection and transmission coe�cients

predicted in [225]. Furthermore, from the above discussion, it can be seen that while the condition for ξ →∞
is not a�ected by the beamsplitter phase, the limit of ξ = 0 is. This can be understood directly from Eq.5.50,

by nothing that if δ 6= π/2, there will never be a complete cancellation of the antibunching-bunching term.

5.3.1.3 Examples of SPDC Coincidence Patterns for Lossless and Lossy Beamsplitters

To give concrete examples of the coincidence patterns discussed above, Eq.5.43 is plotted in Fig.5.16(a) for

three di�erent values of the unbalance parameter ξ. In these cases the phase δ is set to π/2.
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Figure 5.16: The coincidence rate is plotted against the interferometer time delay ∆τ for di�erent values
of the unbalance parameter ξ. For simplicity, the phase δ has been �xed to π/2. The parameters used for
the simulation are indicated in Table 5.2. The parameters used are meaningful for the experiment as it is
discussed in section 5.3.2.

Parameter ξ = 0 ξ = 0.5 ξ = 1.6
K 3.5

σ−1 [fs] 24.1
δ π

2

ω̃ [fs−1] 2.43
γhd 0.4 0.45 0.45
γhc 0.4 0.5 0.55
γrd 0.4 0.4 0.12
γrc 0.4 0.25 0.3

Table 5.2: Values of the parameters used for simulating the curves in Fig.5.16.

For realizing the balanced case ξ = 0 in Fig.5.16(a), it has been set γhc = γrd = γhd = γrc. As a consequence

of the perfect balancing, the g(2) function oscillates at a single frequency ω̃ both within and outside τc. This

is a clear manifestation of the correlated or entangled nature of the two photon state created in the down

conversion process [222]. As already discussed in Section 5.3.1, it is possible to interpret the single frequency

oscillation as a suppression of the antibunching-bunching interference, and the observed pattern as due purely

to two photon correlations. The decrease in the average value of the coincidence events as the optical contact

is approached is due to the HOM e�ect. As ξ is increased, the pattern changes signi�cantly with respect to

the balanced situation. When ξ = 0.5, a new component at frequency ω̃/2 appears within the coherence time.

This is interpreted as follows: outside the coherence time, the antibunching paths in Fig.5.15 have vanishing

probability, so the interference fringes at ω̃ are due to two-photon correlation e�ects. Within the coherence

time of the photon wave packet instead, the bunching paths can interfere together with the antibunching
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ones, creating a mixed pattern in which single-particle interference at ω̃/2 and two-particle interference at ω̃

coexist. In general the higher the unbalancing between the arms, the higher the visibility of the component

at ω̃/2. We see from Fig.5.16 that it is su�cient to consider a value of ξ = 1.6 to practically cancel out the

oscillation at ω̃ within the coherence time. Next, the losses in the beamsplitters are explicitly considered,

allowing the value of the intrinsic survival probability χ to be smaller than one. For example, as shown

in Fig.5.17, the average value of the losses (for S polarization) of the BS implemented in the experiment

described in section 5.3.2 is (22.0± 0.4) %, which corresponds to a value of χ = (0.78± 0.4).
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Figure 5.17: Losses of the two BS implemented in the experiment described in section 5.3.2 as a function of
wavelength for P and S polarizations.

Then, assuming that the beamsplitter is balanced (i.e. |r| = |t|), the range of δ becomes:

0.82
π

2
. |δ| . 1.12

π

2
(5.56)

While this may at �rst seem a small di�erence from δ = π/2, it is enough to dramatically a�ect the appearance

of the coincidence pattern, as can be appreciated in Fig.5.18.
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Figure 5.18: The theoretical coincidence rate in Eq.(5.35) is plotted against the interferometer time delay
∆τ for di�erent values of the beamsplitter phase δ. The parameters of the simulation are the same used for
the solid red curve in Fig.5.21 for ξ = 1.34, and are listed in Table 5.3.
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Here, patterns have been simulated using the parameters listed in Table 5.3 (panel ξ = 1.34), and changing

only the value of δ. With a 20% deviation of δ from π
2 , the fringe pattern gets mirrored-like with respect

to the lossless case. This high sensitivity comes from the fact that the BS phase δ enters in the three

path interactions terms in Eqs.5.44, 5.45, 5.46 with di�erent combinations, so that even small variations can

signi�cantly alter the g(2) correlation function.

5.3.2 Experimental results

The practical realization of the free space MZI is shown in Fig.5.19(a). Standard 50 : 50 BS cubes and gold

mirrors are used to split and guide light through the device respectively. In order to introduce a variable

time delay between the two arms of the interferometer, a cylinder of Borosilicate Crown glass (NbK7) was

placed in both MZ arms, and, in one arm, the NbK7 was connected to an electric heater. This is shown in

Fig.5.19(b).

C

D
M1

M2

BS2

BS1

a) b)

Figure 5.19: (a) The realization of the free space MZI. The symbols indicates the same optical components
sketched in Fig.5.14. The heater is inserted in the upper arm. (b) Detail of the electrical heater, which is
constituted by a hollow cylinder of copper surrounded by 10 Ω resistors connected in parallell.

The thermo-optic coe�cient of the NbK7 was then exploited to smoothly vary its refractive index as the

temperature is changed. The maximum achievable time delay between the arms was 150 fs, which was

su�cient to span the whole coherence time of the radiation. The latter has been estimated from the spectral

response of Fig.5.13 to be approximately τc = 24 fs. The detection stage and the coincidence electronics

implemented in this experiment have been greatly improved with respect to the ones used to perform the

coincidence measurements described in Section 5.2.2. The photons at the output ports of the interferometer

were �ber coupled using two lenses onto two InGaAs single photon counting detectors (ID Quantique Id210

and ID Quantique Id201) with 20% e�ciency. One detector was used in free running mode (40µs of deadtime,

5KHz of dark counts) to detect one photon of the pair. When the other detector, operating in gated mode

(10KHz of gating frequency, 100Hz of dark counts) was triggered, it was enabled for a gate width of 100ns.

The outputs of the photon counters were then fed into a Field Programmable Gate Array digital correlator

that provided the coincidence rate over a coincidence window of 5ns. This is all performed in real time,

which allows to greately enhance the averaging time and consequently improve the signal to noise ratio.

As introduced above, the parameters in Eq.5.36 are tuned by inducing losses in the BS by by purposely

misaligning the lenses in front of the photon counters.
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First, the single port (in this case, port D) count rate Pd is measured as a function of the time delay ∆τ .

Results are shown in Fig. 5.20. Since the curve is symmetric with respect to the optical contact, only the

measured values for negative time delays have been reported.
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Figure 5.20: The single port count rate of port D in Fig.5.19 is plotted as a function of the time delay ∆τ .
The optical contact, where the two arms have no time delay, is placed at ∆τ = 0.

In order to interpret the behaviour of this curve, which is proportional to
〈
E−d (t)E+

d (t)
〉
evaluated on the

SPDC state in Eq.5.33, one can follow a similar approach as the one described in Section 5.3.1 , which would

give:

Pd(∆τ) ∝
〈
E−d (t)E+

d (t)
〉
∝ γ2

hd + γ2
rd + 2γhdγrde

−∆τ2σ2

4 cos

(
ω̃∆τ

2

)
(5.57)

From the curve displayed in Fig.5.20, a lot of informations can be extracted. As predicted by Eq.5.57, the

single port count rate exhibits oscillations with a period equal to 2π
ω̃/2 , since it comes from single particle

interference. These oscillations are modulated by a slowly varying envelope due to the �nite coherence time

of the photons, through which it can be estimated a value of τc = (24.1 ± 0.7) fs. This value is very close

to the one extracted from the spectra of the radiation, indicating that the approximations that were done in

Section 5.2.3 were reasonable. The oscillations do not damp immediately to zero for ∆τ � τc, but exhibits

some ripple. This is due to the box-like distribution of the photons entering in the MZ shown in Fig.5.13,

whose Fourier transfrm is a sinc function. However, the gaussian distribution in Eq.5.34 will be kept during

the rest of this section since it provides an excellent approximation. Second, the full MZ was operated. The

results of the two photon interference experiment are displayed in Fig.5.21. Experimental data are shown

in black while �ts with Eq.(5.43) are shown in red. The �t was done with a Di�erential Evolution genetic

algorithm [227].
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Figure 5.21: Measured coincidence rates for di�erent values of the unbalance parameter ξ for SPDC light.
The solid red curves are �ts from Eq. (5.43), while black scatter points are experimental data. The reported
value of ξ is taken from the �t. Values of the other �t parameters are reported in Table 5.3.

The latter minimizes the cost function f(x) represented by:

f(x) =
1

Ttot

Ttotˆ

0

|g(2)
exp(∆τ)− g(2)

th (x,∆τ)|2 d(∆τ) (5.58)

where Ttot is the range of ∆τ over which the experimental g
(2)
exp (curves in Fig.5.21) has been recorded, g

(2)
th

is the theoretical second order correlation function of Eq.5.31 and x is the vector of free parameters to be

�tted. These are x = (γhd, γhc, γrd, γrc, σ, δ, K). The frequency ω̃ has been �xed to ω̃ = 2.448 fs−1,which

corresponds to an average wavelength of λ̃ = 775 nm.

The algorithm was runned for 15 times in order to improve the accuracy of the parameters. Each run has been

stopped after a �xed number of iterations (600). Further iterations were seen to not signi�cantly improve

the goodness of the �t (�t quality increases only by 0.001% by doubling the number of iterations). The list

of the �tted parameters is indicated in Table 5.3.
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Parameter ξ = 0.77 (Upper panel) ξ = 0.83 (Middle panel) ξ = 1.34 (Lower panel)
K[fs−1] 1.8± 0.1 3.6± 0.4 12± 1
1/σ[fs] 24.1± 0.7
δ[rad] 1.37± 0.04
γhd 0.47± 0.01 0.300± 0.001 0.124± 0.005
γhc 0.65± 0.02 0.66± 0.04 0.55± 0.02
γrd 0.64± 0.02 0.500± 0.001 0.36± 0.01
γrc 0.65± 0.02 0.66± 0.03 0.35± 0.01
Aω̃/2 (9.7± 0.7) · 10−2 (5.41± 0.3) · 10−2 (1.14± 0.04) · 10−2

Aω̃ (0.125± 0.002) (6.5± 0.2) · 10−2 (8± 1) · 10−3

ξ 0.77± 0.05 0.83± 0.04 1.34± 0.05

Table 5.3: List of the coe�cients minimizing the discrepancy between the experimental data and the curve
generated by Eq.5.43

This �tting procedure was used to determine the unbalance parameter ξ which is reported each graph; the

�tted parameters found in this way were consistent with the controlled losses introduced in the experiment.

The measured propagation losses from the input port of the MZ to the two detectors were ≈ 7 dB; a value

comparable to the one found using the model in Eq.5.36, which gives 9 dB. Importantly, the experimental

data could not be �tted with a phase of δ = π/2, corresponding to lossless beamsplitters. This can be

seen at a glance by comparing Fig.5.17 with Fig.5.21, and noting the key qualitative di�erences between

the theoretical pattern obtained for δ = π/2 and the experimental results. Allowing then the phase to

be a free parameter, the value of δ is found to be δ = (1.37 ± 0.04) rad, where the uncertainly re�ected

the spread in the phase obtained from independent runs of the �tting algorithm. This value is compatible

with the measured beamsplitter losses in Eq.5.56. For all three values of the unbalancing parameter in

Fig.5.21, a very good agreement between the experimental results and the theoretical model is observed. For

ξ = 0.77, the antibunching-bunching interference is suppressed as expected, although there are still some

residual oscillations at ω̃/2 due to the beam-splitter losses as discussed in section 5.3.1.2. To clearly show

that the oscillation at frequency ω̃ is due to purely second order interference e�ects, the inset of Fig.5.21

(panel ξ = 1.34) shows the coincidence rate for time delays greatly exceeding the single photon coherence

time (∆τ > 100fs). As it can be seen from Fig.5.20, for such time delays any possible contribution arising

from �rst order interference to the coincidence pattern vanishes. Even if not reported in Fig.5.21, the very

same oscillations outside τc are observed regardless of the value of ξ.

As ξ is increased, the pattern changes signi�cantly; for example, at ξ = 1.34 the oscillation at ω̃ is highly

suppressed within the coherence time, while in the intermediate case (ξ = 0.83), it is possible to observe

feature of single-photon, two-photon and HOM-like interference e�ects in the same coincidence pattern as

expected. The theoretical model is therefore able to predict all the main features of the coincidence rate.

5.3.3 Comparison with other input radiation states

In this section the response of the MZI to input radiation states di�erent from SPDC one are considered.

This is done in order compare the two photon interference fringes generated by SPDC, to the ones created

by photons which posses weaker correlations, as in the case of thermal light, and to the ones of completely

uncorrelated photons. The direct comparison of the interference patterns hallmarks the unique features

arising from colour entanglement, which is an intrinsic property of the radiation generated by SPDC. In the

�rst part, a simple model is developed to explore the possibility that the coincidence patterns shown in Fig

5.16 could be reproduced by a fully classical treatment. Then, the case of indipendent photons is considered.

At the end, weakly correlated thermal light is examined both from a theoretical and from an experimental

point of view.
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5.3.3.1 Classical light

A natural question to be explored is if the coincidence patterns shown in Fig 5.16 can be reproduced from

a simple classical model. Following the reasoning of Kwiat et al. [228], it is possible to develop a classical-

�eld model in which the rate of coincidence detection can be described by ensemble averages in a stochastic

classical �eld theory. In this theory, a signal and an idler beam of frequencies ωs and ωi enters at the same

port of the MZ. Both frequencies are treated as random variables subjected to the constraint ωs + ωi = ω̃,

where ω̃ is �xed and set by the frequency of the pump. Considering the input-output MZ relation in Eq.5.32

as well as the loss factor in Eq.5.36, one can show that the classical electric �elds Eclc and Ecld , as a function

of the signal and idler amplitudes Eks and Eki, are:

Eclc = iγrd
(
Eki + Eks

)
+iγhd

(
Ekie

−iωi∆τ + Ekse
−iωs∆τ

)
Ecld = −γhc

(
Eki + Eks

)
+iγrc

(
Ekie

−iωi∆τ + Ekse
−iωs∆τ

) (5.59)

where, for simplicity, it is considered a lossless beamsplitter.

By calculating the cross correlation between the intensities Ic = |Ec|2 and Id = |Ed|2, and by performing a

statistical average on the frequency distribution, one �nds:

〈IcId〉 = g(2)(∆τ) = I1 + I2 cos(ω̃∆τ) (5.60)

where I1 and I2 are two constants de�ned as:

I1 = γ2
rdγ

2
rc

(
Eki + Eks

)4
+γ2

hdγ
2
hc

(
E2
ki + E2

ks

)2
+ γ2

rdγ
2
hc

(
Eki + Eks

)2(
E2
ki + E2

ks

)
+ γ2

hdγ
2
rc

(
Eki + Eks

)2(
E2
ki + E2

ks

)
I2 = −4γrdγhdγrcγhcEkiEks

(
Eki + Eks

)2
(5.61)

where it has been used that 〈cos(ωs,i)∆τ)〉 = 0 and 〈cos((2ωi,s − ωs,i)∆τ)〉 = 0 [228]. As it can be seen

from Eq. 5.60, this classical treatment does not lead to any terms of frequency ω̃/2 in the mutual intensity

correlation function, although these are predicted by the above quantum approach (Eq.5.67). Furthermore,

if the case of a perfectly balanced interferometer is considered, one can see from Eq.5.45 that the visibility

can reach the 100% outside the single photon coherence time, while from Eq.5.60, the maximum allowed

visibility is 50%. This simple classical model does not therefore reproduce the full behaviour predicted above

for SPDC light. It is worth to note that, in principle, one can construct a more general model in which

frequency, amplitude, and phase of the classical waves are all considered as random variables [228]; however

this goes beyond the aim of this current work. In this sense, the arguments presented here do not exclude

that a classical model can predict the interferograms of Fig.5.16, at least within the coherence time of the

radiation.

5.3.3.2 Independent Photons

The interference e�ects presented in Section 5.3.1.3 are a manifestation of the correlated nature of the photon

pairs produced via SPDC. Indeed, if the two photons entering at BS1 are treated as being independent, i.e,

completely not correlated, the probability of observing a coincidence between the output ports C and D

factorizes into the product of the two probabilities Pin→C and Pin→D for each photon to reach port C and

port D, respectively. Both probabilities describe single photon interference patterns, which can be written
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explicitly as:

Pin→C = 〈E+
c E
−
c 〉

= γ2
hc + γ2

rc − 2γhcγrce
−∆τ2σ2

4 cos
( ω̃∆τ

2

)
(5.62)

Pin→D = 〈E+
d E
−
d 〉

= γ2
hd + γ2

rd + 2γhdγrde
−∆τ2σ2

4 cos
( ω̃∆τ

2

)
(5.63)

where the expectation values are evaluated with respect to the input radiation state |Ψin〉 de�ned in Eq.5.33.

Consequently, the product Pin→CPin→D, which is plotted in Fig.5.22 for di�erent values of the unbalancing

parameter ξ, contains terms oscillating both as cos( ω̃2 ∆τ) and cos(ω̃∆τ). As discussed in section 5.3.1.3, the

same frequencies are present for the case of the SPDC light. However, it is still possible to clearly distinguish

between SPDC photons and independent particles from several features:

1. The absence of the HOM dip near the optical contact at ∆τ = 0.

2. The absence of interference fringes outside the coherence time of the radiation.

3. The fact that the component at frequency ω̃ increases in amplitude as the optical contact is approached.

0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0

0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5

- 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 00 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

 

 
 

Co
inc

ide
nc

e p
rob

ab
ility

ξ =  1 . 6

ξ =  0 . 5

ξ =  0
 

T i m e  d e l a y  ∆τ ( f s )
Figure 5.22: The theoretical coincidence probability is plotted against the interferometer time delay ∆τ for
di�erent values of the unbalance parameter ξ for two photons entering in the same input port of the MZ,
treated as independent particles. The simulation parameters are the same used in Fig.5.16and listed in Table
5.2.
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5.3.3.3 Thermal Light

After having investigated the interference properties of uncorrelated photons in section 5.3.3.2, the case of

weakly-correlated thermal photons is considered. An input thermal light is considered as the sum over many

independent modes thermally occupied, as described by the following density matrix [229]

ρ̂ =
1

Z
exp

(∑
i

~ωi
kBT

a†ωiaωi

)
(5.64)

where Z is the partition function of the grand canonical ensemble of the photon gas at temperature T and

kB is the Boltzmann constant. To calculate the second order correlation function in Eq. (5.31), the Wick's

theorem [229] is used as follows:

g(2)(t, τ) = KTr(E−d (t)E−c (t+ τ)E+
c (t+ τ)E+

d (t))

= K(| 〈E−d (t)E+
c (t+ τ)〉 |2+

+ 〈E−d (t)E+
d (t)〉 〈E−c (t+ τ)E+

c (t+ τ)〉)

= ηcorr(t, τ) + ηd(τ)ηc(τ)

(5.65)

where the expectation values must be calculated on the thermal state de�ned in Eq.5.64. In Eq.5.65 the

term ηcorr describes two photon correlations between the output ports C and D, while the term ηd(τ)ηc(τ)

is simply the product of �rst order correlation functions, describing single photon interference. By inserting

the input-output relations in Eq.5.32 into Eq.5.65, and by using the fact that for a thermal state [229]

〈a†ωaω′〉 =
δ(ω − ω′)
e

~ω
kBT − 1

(5.66)

after integrating in τ as described in section 5.3.1, it is found that the g(2) function is:

g(2)(∆τ) = ηcorr(∆τ) + ηd(∆τ)ηc(∆τ) (5.67)

where ηcorr(∆τ) and ηd(∆τ)ηc(∆τ) are given by:

ηcorr(∆τ) = KG(0)
{
γ2
hcγ

2
rd + γ2

rcγ
2
hd + γ2

hcγ
2
hd

+ γ2
rcγ

2
rd + 2Aω̃ cos(2δ) g(2∆τ) + 2Aω̃ cos(2δ)

+ 2
[
A

(1)
ω̃/2 cos(2δ) +A

(2)
ω̃/2

]
g(∆τ)

} (5.68)

and

ηd(∆τ) ηc(∆τ) = KTR

{
(γ2
rd + γ2

hd)(γ
2
hc + γ2

rc)n̄
2(0)

+4Aω̃ cos(2δ)Re
[
n̄(∆τ)

]2
+ 2
[
A

(1)
ω̃/2 cos(2δ)

+A
(2)
ω̃/2

]
× n̄(0)Re

[
n̄(∆τ)

]} (5.69)

Here the normalized �rst order correlation function g(∆τ) = G(∆τ)/G(0) is introduced, with:

G(∆τ) =

ˆ
Re
{
n̄(τ −∆τ)n̄∗(τ)

}
dτ. (5.70)
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The quantity n̄(τ) is the Fourier transform of the average number of photons:

n̄(τ) =

ˆ
φ(ω)

e
~ω
kBT − 1

eiωτdω (5.71)

where the function φ(ω) de�nes the bandwidth of the thermal radiation. The integral can be calculated

analytically, provided that it is possible to make the approximation (e
~ω
kBT − 1)−1 ' e

− ~ω
kBT ; which will be

justi�ed in the experiment described later. Using this approximation, it is found that:

n̄(τ) ' N
√

2πσ exp

(
−σ2τ2

2

)
exp

[
i

(
ω̃

2
− σ2~
kBT

)
τ

]
exp

(
~ω̃

2kBT
+

σ2~2

2k2
BT

2

)
(5.72)

Eq.5.72 can be recognized as a thermally frequency-shifted Gaussian, weighted by an exponential factor

that takes into account the thermal distribution. From Eq.5.68, it can be shown that for thermal light,

there are oscillating terms in the coincidence pattern both at frequency ω̃/2 and ω̃. Consequently, the

arguments concerning the e�ect of the MZ unbalance parameter ξ that have been previously discussed for

SPDC light, can again be applied here. The major di�erence between these two cases is that, for thermal

light, the two-photon correlation function ηcorr is several orders of magnitude lower than the product ηdηc,

as ηcorr/ηdηc ≈ 1[fs]/TR[fs] where TR ≈ 1ns for typical coincidence electronics [154]. Thus, thermal

photons behave more like independent particles, and show negligible second-order interference. This can

be seen in Fig.5.23, where the coincidence patterns as a function of ξ are shown for thermal light. These

patterns more closely resemble those in Fig.5.22 for independent photons than those in Fig.5.16 for SPDC

light. In particular, the oscillations at frequency ω̃ are always present outside the single-photon coherence

time τc = 1/σ for SPDC radiation, while they damp out for thermal light due to the negligible two-photon

correlations. Finally, the coincidence rate for thermal light is two order of magnitude lower than that for

SPDC radiation, re�ecting that SPDC photons always enter into the MZ in pairs.
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Figure 5.23: Theoretical coincidence rates as a function of the time delay ∆τ for thermal photons at the
input of the MZ. These are plotted for di�erent values of the unbalance parameter ξ. The parameters used
to simulate the curves are the same of the SPDC simulation shown in Fig.5.16 and listed in Table 5.3. The
temperature of the source is set to T = 3000K.

An attempt to realize the coincidence experiment with a thermal light source has been done. For this purpose,

a Tungsten Halogen lamp at a temperature of T = 3000 K has been used. This has been placed before the

interference �lters IF of Fig.5.4, while the rest of the setup has not been changed. Within the bandwidth

spanned by the interference �lters and the detectors, the factor ~ω/kBT has a value of ≈ 3.15, so that the

approximation in Eq.(5.72) holds. The light intensity is regulated in order to have the same average number

of photons entering the MZ as in the case of SPDC light. Unfortunately, the result, reported in Fig.5.24 for

ξ = 0.83 (blue scatter points), shows only noise �uctuations. This is because the coincidence signal probably

lies below the noise level of the measuring apparatus. Indeed, the latter is about 1 Hz while the expected

coincidence rate, as shown in Fig.5.23, is ≈ 0.02 Hz. While this experiment was therefore not able to test all

details of the model for thermal light, it did con�rm the overall di�erence in magnitude between SPDC light

and thermal light oscillations, while also providing an additional feedback of the goodness of the measuring

setup.
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Figure 5.24: Comparison between the coincidence experiment performed with an SPDC state at the input
(black scatters) and a thermal state (blue scatters). The solid curves are obtained using Eq.5.43 for the
SPDC state and using Eq.5.65 for the thermal state. In both cases, the unbalance parameter ξ has been
tuned to ξ = 0.83, which is the same condition reported in Fig.5.21.

5.4 Summary and conclusions

In this chapter, it is reported an experiment in which pairs of colour entangled photons produced by SPDC

in a PPLN crystal excites a free space MZI. The source has been previously characterized both in frequency

and in time domain by respectively implementing a dispersive stage coupled to a photon counter and by

performing a coincidence experiment. The particular asymmetrical excitation of the device allowed observing

new interference e�ects which have never been reported in previous works. This is because previous works

were often performed using type II degenerate SPDC, for which the pair is �rstly separated on the basis

of their orthogonal polarizations and then sent to both ports of the input beamsplitter. The Hong Ou

Mandel e�ect occuring after the �rst beamsplitter impeds the creation of antibunching paths, thus limiting

the number of interference channels leading to a coincidence event. On the other hand, if both photons

are sent to the same input port, as it is the case of the experiment described in this chapter, after the

�rst beamsplitter there is the coexistence between bunching and antibunching paths, leading to a richer

interplay of the interfering channels. The amplitude probabilities of these are seen to be easily manipulated

by inducing controlled losses on the two arms of the interferometer, which allowed to shift from a pure

two photon interference pattern to a mixture between two photon and single photon interference. This

con�guration has revealed to be extremely sensitive to the phase imparted by the beamsplitter, which can

slightly di�er from π/2 in case of intrinsic losses. In this sense, the asymmetrically excited MZ can be used

as a tool for detecting this phase shift. The whole theoretical work developed for predicting the probabilities

of observing a coincidence event can be straightforwadly applied to an integrated MZ device. It would be

su�cient to replace the thermo optic coe�cient of the NbK7 glass with the one of the material employed for

fabricating the waveguides. Furthermore, the asymmetric excitation comes natural for an integrated quantum

source, since the correlated photons are usually created in the same spatial mode, i.e., they travel collinearly

in the same waveguide. This is why the theoretical knowledges and the skills acquired in this work will be of
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great help for the future developements of the SIQURO project, in which the MZ will constitute part of the

interference schemes which will be proposed on the Silicon chip.
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Chapter 6

On chip integrated circuits for the

manipulation of quantum states of light

As already introduced in section 1.3 , the �eld of integrated quantum photonics is rapidly growing, and

many examples of on chip generation and manipulation of quantum states of light have been demonstrated.

Such experiments share some fundamentals building blocks. One of these is the quantum source. In gen-

eral, experiments performed on the Silicon platform make use of the χ(3) non linearity of the material to

produce photon pairs through sFWM. This requires the use of a bright pump which has to be �ltered out

from the generated radiation. This stage is usually accomplished o� chip by the use of interference �lters,

Arrayed Waveguide Gratings (AWG) or Fiber Bragg Gratings (FBG) (see e.g., Ref.[180]). The �lter itself

constitutes another building block of the experiment. Next, the generated radiation is manipulated in in-

terferometric structures which allow to create well de�ned quantum states to be eventually fed o� chip for

further manipulation. These includes the use of delay lines, beamsplitters, AWGs etc. Up to now, a network

which integrates all these functionalities on a chip has not been yet demonstrated. Functions that can not

be easily integrated, such as the delay lines or �lters, have been supplied by external optical components.

In this chapter, the design and the simulation of most of the main building blocks for integrated quantum

networks is reported. The goal is to produce the �rst network in which all the functionalities are integrated,

and the only external components required to perform the experiment are the pump laser and the photon

counters. In the �rst section the sources are discussed. These are based on sFWM in racetrack resonators or

in straight waveguides. The pump �ltering stage and its roboustness to fabrication defects is discussed later.

Interferometers, AWGs and delay lines are covered at the end of the chapter. In this chapter, the design of

the integrated quantum photonic chip is presented. Its fabrication is underway.

The designs and simulations shown in this chapter have been done in collaboration with Mr.Stefano Signorini

and Mr.Claudio Castellan.

6.1 Quantum sources based on racetrack resonators

The input pump power required to obtain a bright source of correlated photons can be dramatically decreased

by the use of resonators. This is because the resonating structure enhances the power which is circulating

inside the cavity with respect to the one that is used to excite the device. In this section, the use of racetrack

shaped resonators realized on the SOI platform is investigated as a tool for generating photon pairs through

sFWM. The racetrack is organized in the AD �lter con�guration. In order to estimate the e�ciency of the

process, one can in principle follow an approach similar to the one derived in Section 5.1.1 to predict the
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generation rate of signal/idler pairs. This would require to quantize the �eld in the resonator geometry, to

derive an expression for the χ(3) perturbation hamiltonian and to use it in the Fermi's golden rule to derive

the transition probability to annihilate two pump photons and simultaneously create a signal and an idler

pair. Instead of using this approach, it was preferred to use the classical wave equations for stimulated FWM

derived in Appendix A integrated with an input �quantum seed� to stimulate the process. This approach has

been already used in section 3.4 to predict the e�ciency of the sFWM process in straight Silicon waveguides.

Following the derivation in Appendix A, the classical coupled wave equations for stimulated FWM in a

resonating geometry are:

dup(t)

dt
= i (ω̄p(1−∆p(t))− ωp)up(t)−

1

τtot,p(t)
up(t) + 2iγpispui(t)us(t)u

∗
p(t) + i

√
2

τext,p
Pp (6.1)

dus(t)

dt
= i (ω̄s(1−∆s(t))− ωs)us(t)−

1

τtot,s(t)
us(t) + 2iγsppiu

2
p(t)u

∗
i (t) + i

√
2

τext,s
Ps (6.2)

dui(t)

dt
= i (ω̄i(1−∆i(t))− ωi)ui(t)−

1

τtot,i(t)
ui(t) + 2iγippsu

2
p(t)u

∗
s(t) (6.3)

where:

� up,s,i are the slowly varying time envelopes of the pump, signal and idler modes within the resonator,

normalized in such a way that |up,s,i|2 represent the energy.

� ω̄p,s,i are the eigenfrequencies of the pump, signal and idler modes when the resonator is �cold�, that

is when no optical power is circulating inside the resonator. When some power is circulating, these

frequencies are perturbed from their initial values by a quantity ∆p,s,i due to power dependent refractive

index changes. The ones considered in this model are: the thermo optic e�ect, the free carrier dispersion

e�ect, the self phase modulation and the cross phase modulation. Since the thermo optic e�ect and the

free carrier dispersion e�ect requires the knowledge of the temperature of the resonator and of the free

carrier concentration, two additional equations, describing their dynamics, are added to the model and

detailed in Appendix A.

� ωp and ωs are the frequencies of the input pump laser and of the input signal, respectively, while ωi is

determined by energy conservation as ωi = 2ωp − ωs.

� τtot,psi and τext,ps are respectively the photon lifetime (for pump, signal and idler) in the cavity and the

inverse of the energy decay rate into the exciting waveguide. The �rst is given by the sum of various

contributions, which are: linear losses, two photon absorption, cross photon absorption and free carrier

absorption.

� γ is the nonlinear FWM coe�cient, which is inversely proportional to the e�ective modal volume and

proportional to the magnitude of the χ(3) in the material.

� Pp,s are the pump and signal power in the exciting waveguide.

The de�nition of the parameters and their link with the resonator geometry is indicated in Appendix A.

According to Ref.[200], the �quantum seed� used as the input signal power is given by:

Ps =
~ωsvg

2L|F0|2
(6.4)
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where vg,s is the group velocity of the signal, L is the length of the resonator and F0 is the �eld enhancement

factor. From the analysis of Eq.6.1-6.3 it comes out that the e�ciency of the process is maximized when:

ω̄s(1 + ∆s(t))− ωs = 0; ω̄p(1 + ∆p(t))− ωp = 0; ω̄i(1 + ∆i(t))− ωi = 0 (6.5)

which can be interpreted as the energy conservation relations of the FWM process applied to resonators. As

a �rst approximation, the corrections ∆p,s,i can be neglected and the above set of equations can be cast in

the equivalent form:

¯(ωs + ω̄i − 2ω̄p) + (2ωp − ωs − ωi) = 0 (6.6)

Energy conservation implies that 2ωp−ωs−ωi = 0, so that Eq.6.6 reduces to an energy conservation relation

between the resonator eigenfrequencies:

ω̄s + ω̄i − 2ω̄p = 0 (6.7)

Eq.6.7 can be satis�ed if the signal and the idler eigenfrequencies are symmetrically shifted with respect to

the pump frequency by a quantity Ω, in this way ω̄s = ω̄p + Ω , ω̄p − Ω and ω̄s + ω̄i = 2ω̄p. According

to Eq.1.10, the resonance frequencies ωm of a resonator of perimeter L and e�ective index neff (ω) are

ωm = (2mπc)/(neff (ω)L). Eq.6.7 can then be satis�ed provided that the e�ective index does not depend

on frequency. This condition clearly does not apply to the case of the guided modes of a nanophotonic wire,

in which the geometric dispersion is high due to modal con�nement. This re�ects in a not equidistant mode

spacing which is mathematically described by a free spectral range that is frequency dependent. It can be

demonstrated [183] that the spread in the FSR ∆(FSR) due to the dispersion of the e�ective index is related

to the group velocity dispersion β2 through:

∆(FSR) = 2πL× (FSR)3 × β2 (6.8)

To obtain a mode spacing which is as constant as possible, it is therefore possible to engineer the waveguide

geometry in order to achieve zero GVD. This constitues the starting point for choosing the waveguide width

of the resonator. The waveguide height is �xed to 250nm since this value corresponds to the thickness of

the Silicon layer implemented in the fabrication. In order to keep a small mode volume, and hence a higher

nonlinear FWM coe�cient, light is chosen to propagate with TE polarization and in the fundamental mode

of the waveguide. The group velocity dispersion is then computed using FEM simulations in the interval of

wavelengths which goes from 1.4µm to 1.7µm and for di�erent waveguide widths. The range of investigated

waveguide widths spans from 400nm to 860nm, with increments of 20nm. The plot in Fig.6.1 shows the

computed β2 for only some of these widths.
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Figure 6.1: Group velocity dispersion of Silicon waveguides of 250nm height and di�erent widths.

From the results shown in Fig.6.1, two widths have been selected for designing the resonators: 400nm and

700nm. At 1.55µm, where the pump wavelength is placed, the 400nm waveguide has a high value of β2,

which indicates that the e�ciency of the FWM process will be limited to a narrow bandwidth around the

degenerate wavelength. For this reason, this design will be called the �narrowband� one. On the other hand,

the 700nm waveguide has a group velocity dispersion which is �at and close to zero in all the investigated

wavelength interval. This will be called the �broadband� design. The performances of the two designs will be

now compared. The resonator parameters which have not been set yet are the coupling coe�cient and the

perimeter. For this purpose, the generation rate of the signal/idler photons are computed using Eq.6.1-6.3 for

di�erent combinations of the coupling coe�cient and of the resonator perimeter. This is done by setting the

propagation losses to 5 dBcm−1 (which corresponds to a realistic value for the fabrication process involved,

as shown in Table 4.3), the pump power to −10 dBm and the waveguide width to 700nm. The result is

shown in Fig.6.2.
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Figure 6.2: Pair generation rate at the resonance orders mp+1 (for the signal) and mp−1 (for the idler) (mp

is the resonance order of the pump) as a function of the coupling coe�cient κ2 and the resonator perimeter.
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As expected, the highest generation rates are found at low coupling coe�cients and at small perimeters.

A low coupling coe�cient implies a high power enhancement of the circulating power within the resonator.

Small perimeters ensure tiny mode volumes and higher nonlinear FWM coe�cients. Of course there exists

some practical limitations to the smallest perimeter that can be achieved. The bending radius of the resonator

can not be arbitrarily decreased if one wants to avoid signi�cative energy leakage into the cladding. It is

worth to note that the waveguide bending a�ects the group velocity dispersion of the waveguide, the amount

of which is inversersely proportional to the bending radius. At the same time, a section of the resonator

waveguide has to be coupled to the exciting waveguide. The �nalized geometry is shown in Fig.6.3. For the

narrow band design, the (inner) radius of curvature is R = 5µm, while the coupling with the waveguide is

achieved using a directional coupler of length 6µm. The coupling gap is lower limited by the fabrication

resolution, which in this case corresponds to 400nm. The coupling coe�cient is then ≈ 2% at 1.55µm and

the corresponding Q ≈ 30000. For the broadband design, the curved sections are of 700nm width and the

bending radius equal to R = 5µm. The waveguide size is then reduced to 400nm using a tapering section of

600nm before entering in the directional coupler stage. The length of the coupler is 7.57µm, which yelds a

coupling coe�cient of ≈ 3% and Q ≈ 20000.

𝐿𝑐 = 6 𝜇𝑚

𝜅2 ≈ 2%

𝐿𝑐

𝐿𝑐 = 7.57 𝜇𝑚

𝜅2 ≈ 3%

600 𝑛𝑚 𝑡𝑎𝑝

2 𝜇𝑚

Through

Drop

2 𝜇𝑚
𝐿𝑐

a)

b)

Figure 6.3: (a) Resonator geometry for the narrow band design, in which all the waveguide sections of the
resonator are made with waveguides of 400nm width. (b) Resonator geometry for the broad band design, in
which the curved sections are of 700nm width and the straight ones of 400nm width.

Once the geometry is �nalized, the generation e�ciency of both the broad band and the narrow band design

are simulated and compared. The pump power used to excite the waveguide is 0 dBm. Fig.6.4 summarizes

the results.
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Figure 6.4: (a) Resonance wavelengths on the red and blue side of the pump (resonance order mpump = 0)
for the racetracks of 400nm width and 700nm width. (b) Conversion e�ciency of the idler photons. (c-d)
Idler photon rate as a function of wavelength, expressed both in terms of power and in terms of numbers of
photon per second.

From Fig.6.4(a), it can be noticed that the FSR of the two designs are similar, with a value of FSR ≈ 13nm

at 1.55µm. As a result, the number of resonances at the red and blue side of the pump (centered at 1.55µm

for the 400nm design and at 1.553µm for the 700nm design) are almost the same. The e�ect of the di�erent

group velocity dispersion can be appreciated in Fig.6.4(b), where the conversion e�ciencies are reported. It

is evident that the 700nm design has a much higher bandwidth (≈ 43nm of 3 dB bandwidth) with respect

to the 400nm one (≈ 18nm). The generated power, for the signal photons, is in both cases at the order

of ≈ −100 dBm, which corresponds to a photon pair generation rate of ≈ 1MHz. Since this �ux has been

obtained with a pump power of 0 dBm, it comes out that a �ltering stage which realizes a pump suppression

higher than 100 dB is needed to isolate the correlared pairs. Furthermore, especially for the broad band

design, each photon pair has to be separated from the others which form the comb before applying any

further manipulation. This is necessary since the energy entaglement exists between signal and idler photons

of the same pair, but not for photons of di�erent pairs. As discussed in section 6.5, this �ltering stage will

be implemented using integrated AWGs.
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6.2 Quantum sources based on degenerate FWM in multimode waveg-

uides

The quantum source based on racetrack resonators described in the previous section generates signal/idler

pairs of di�erent colour. It is also desirable to have a source which is capable to produce photons which

are degenerate in wavelength. This would allow to perform quantum optics experiment without the use of

interference �lters for separating the signal from the idler photon before their detection [180, 230]. Typically,

degenerate FWM is achieved using a dual pump scheme, as described for example in Ref. [198]. In this work,

two pump photons, one at frequency ωp + Ω and one at ωp − Ω are annihilated to produce two entangled

photons at frequency ωp. This experiment can be viewed as the time reversal of the FWM process which

converts two pump photons at ωp into a signal and an idler photon whose frequencies are symmetrically

located with respect to ωp. A way to realize degenerate FWM using a single pump beam relies on the

MMFWM process described in Chapter 3. The frequencies of the pump, the signal and the idler photons are

all the same and equal to ωdeg, but the pump travels in a waveguide mode that is di�erent from the one of the

signal/idler pair. In this way, it is possible to distinguish the pump photons from the ones of the correlated

pair by labelling them with a di�erent modal index. An example of modal combination which achieves this

goal is the (1, 1, 4, 4) in a Silicon waveguide of cross section 1.6µm × 0.25µm , where the same notation of

Section 3.4 has been used to label the modal combination. The pump propagates in TM polarization, while

the signal and the idler in TE polarization. Fig.6.5 shows the phase mismatch ∆k introduced in Eq.3.19 as

a function of the idler wavelength. In this simulation, the wavelengths of all the �elds involved in the FWM

process are the same. At the degenerate wavelength of λdeg = 1549.96nm, the curve cross the zero, i.e.,

phase matching occurs.
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Figure 6.5: Phase mismatch ∆k as a function of the idler wavelength. The phase matching point, where
∆k = 0, is found at λdeg = 1549.96nm, and it is the wavelength of all the waves involved in the FWM
process.

By using the same semiclassical approach adopted in Section 3.4, it is possible to get an estimation of the

generated power starting from the bandwidth of the process B and from the classical e�ciency ηFWM . Fig.6.6
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shows the conversion e�ciency as a function of the pump wavelength, with the pump power set to 0 dBm.
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Figure 6.6: Conversion e�ciency ηFWM as a function of the pump wavelength for degenerate MMFWM in
a 1.6µm waveguide.

The peak e�ciency is about −81 dB for a waveguide length of 1.75 cm with 2 dBcm−1 of propagation loss. A

wide bandwith, B = 2500GHz (∼ 20nm), is achieved by the virtue of the fact that the process is degenerate.

By performing the calculations as in section 3.4, the estimated signal/idler power is ∼ −115 dBm. This value

is comparable to the ones achieved using the resonant structures described in Section 6.2. At this point, a

way to separate the generated pairs from the pump in necessary. The lower con�nement factor of the TM

pump mode with respect to the TE mode where the signal/idler photons are propagating can be exploited

to introduce a selective loss. As shown in Fig.6.7, a Titanium Nitride (TiN) metal stripe, of width 450nm,

is placed at 250nm from the top of the waveguide, separated by a thin Silica layer.

TiN

1𝑠𝑡 𝑇𝑀 − 𝑝𝑢𝑚𝑝 4𝑡ℎ 𝑇𝐸 − 𝑠𝑖𝑔𝑛𝑎𝑙/𝑖𝑑𝑙𝑒𝑟

a) b)

c)

Pump input FWM Pump suppressionHeater (1.75 cm)

Pump filter (0.25 cm)

Figure 6.7: (a) Pump mode pro�le with the TiN metal stripe placed at 250nm from the top of the waveguide.
(b) The same as (a), but showing the signal/idler mode pro�le. (c) How pump suppression is realized. The
pump is coupled into the �rst TM mode, then FWM occurs during the propagation in the 1.75 cm waveguide
(in red), generating signal/idler pairs in TE polarization. The pump is suppressed at the end of the waveguide
using a 0.25 cm long TiN metal stripe (in green). A TiN heater (in blue) is placed along the direction of light
propagation to tune the phase matching point as shown in Fig.6.8.
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The TM mode is highly delocalized along the vertical direction, and couples to the metallic stripe, leading to

energy dissipation through the Joule e�ect (Fig.6.7(a)). The TE mode is instead mostly delocalized in the

horizontal direction, and does not e�ciently overlap with the TiN (Fig.6.7(b)). The associated propagation

losses have been computed through FEM simulations and are 570 dBcm−1 for the pump mode and 33 dBcm−1

for the signal/idler mode. If the length of the stripe is 2.5mm, the pump gets attenuated by −142.5 dB

while the signal/idler by −8.25 dB. Such value of pump suppression is su�ciently high to achieve a good

isolation from the generated photon pair. As discussed in detail in Section 3.4, the phase matching point

for combinations involving TE modes is highly sensitive to small changes in the waveguide width. These

unavoidably occur during the fabrication process, so a tuning mechanism to restore the perfect phase matching

is necessary. This can be provided by changing the temperature of the waveguide or by changing the input

laser wavelength, as shown in Fig.6.7(c). If the dimension of the fabricated waveguide is lower than 1.6µm,

phase matching can be recovered by heating the material (Fig.6.7(a)). On average, a temperature increase

of 100K allows to correct a mismatch of 1.5nm on the fabricated waveguide dimension with respect to the

nominal value. Temperature variations are realized by placing a TiN heater on the top of the waveguide, as

shown in Fig.6.8(c). The heater is separated from the optical mode by 900nm of Silica cladding, so that the

energy of the pump and signal/idler modes does not couple to the metal. If the wavguide is larger than the

nominal dimension, phase matching is restored by increasing the wavelength of the input laser (Fig.6.8(b)).

In this case, a mismatch of 3nm on the width can be corrected by changing the laser wavelength by 10nm.
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Figure 6.8: (a) Phase mismatch ∆k as a function of the waveguide width and temperature. (b) Phase
mismatch ∆k as a function of the waveguide width and the pump wavelength.

6.3 Pump �lter

It is clear from Fig.6.4 that, in order to isolate the photon pairs from the bright pump, a �ltering stage which

operates a pump suppression higher than 100 dB is needed after the racetrack resonator. For this purporse,

the di�erent colours of the pump photons with respect to the ones of the signal/idler pairs are used. The

idea is to use a MZI as an interleaver, in which the pump exists from one port of the interferometer and

the signal/idler are directed to other ports. This can be achieved by choosing the FSR of the MZI to be

equal to twice the FSR of the resonator. In this way, the signal and idler wavelengths are both transmitted

in the same port of the MZ, while the pump wavelength, which lies exactly at the half of the FSR of the

interferometer, is transmitted to the other port. The design of the MZ is shown in Fig.6.9(a).
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Figure 6.9: (a) Design of the MZI. The couplers have length Lc and coupling gap cg. The upper arm is longer
than the lower one by a quantity ∆L. The pump is directed toward the pump port, while the signal/idler
wavelengths are directed toward the signal/idler port. (b) Spectral response of the MZ with the e�ect of
fabrication defects included. The reported spectra is the result of an averaging over 30 independent spectra.
The arrows indicate where the pump, signal and idler wavelengths are located.

The MZ is composed by two directional couplers operating as 50 : 50 BS at 1.55µm and by two arms which

di�er in length by a quantity ∆L. This is chosen to give a FSR = 26nm. Table 6.1 summarizes all the

principal geometrical details. The spectral response of the port in which signal and idler pairs exit is shown

in Fig.6.9(b). This takes into account the fabrication detects of the structure, among which:

� Errors in the couplers and consequent deviation from a 50 : 50 operation. The width of the waveguides

which compose the coupling region are let to deviate from their nominal dimension by a random quantity

∆w. The latter is a normally distribuited variable with zero mean value and variance 3σ = 50nm. The

change in the waveguide width is assumed to be the same for both waveguides. As a consequence, the

coupling gap changes by a quantity −∆w.

� Errors in the width of the waveguide of the longer arm. The error is treated as a perturbation of the

nominal width by a quantity ∆w2. The latter is a normally distribuited variable with zero mean value

and variance 3σ = 50nm.

The magnitude of the errors have been previously estimated from Scanning Electron Microscopy images of

grating couplers with similar waveguide widths and gaps.

From the analysis of Fig.6.9, it comes out that the presence of fabrication defects induces a cross talk of

(−11 ± 1) dB between the output ports of the interferometer. Such a cross talk is too high for completely
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Parameter Value
Lc 44.245µm
cg 400nm

∆L 25.315µm
Average bending radius 5µm

Waveguide width bending from 400nm to 700nm (lin.tapered)
Waveguide width couplers 400nm
Waveguide width of ∆L 700nm

Table 6.1: List of the main geometrical parameters used for the design of the MZ based pump �lter. Symbols
are indicated in Fig.6.9.

isolating the pump. In order to reduce the cross talk under the −100 dB level, several MZI are connected

in series. The signal/idler port in Fig.6.9(a), where the generated photons are directed, is connected to the

input port of the following stage, while the pump port is suppressed using an attenuator which also kills the

back re�ections. A number of 10 MZ have been used to build the �nal pump �lter. The spectral response is

shown in Fig.6.10.
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Figure 6.10: Spectral response of the pump port as a function of wavelength for a chain of 10 MZ. Each
individual stage has the signal/idler port connected to the input of the following stage. The pump port signal
is suppressed using an attenuator which also kills back re�ections.

Now, the crosstalk at the pump wavelength is (−128±3) dB, which is an acceptable value to completely isolate

the pump from the generated radiation. The transmittance at the signal/idler wavelength is (−5.2±0.3) dB,

which represents the insertion loss of the �lter.

In conclusion, the advantages of the �lter are the simple operating principle and the ability to achieve

≈ −130 dB pump suppression at the expense of only −5 dB of insertion loss. The major drawback is that the

�lter operates as an interleaver, so half of the pairs, whose spectral distance contains an even number of FSR

of the MZI, are lost because directed into the pump port. Furthermore, the more is the spectral distance

between the pairs, the more is di�cult to separate them from the pump due to the wavelength dependence

of both the FSR of the MZI and of the resonator. As a consequence, the maximum transmittance of the
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�lter will depart from the spectral position of the signal/idler resonances as their wavelength distance from

the pump increases.

6.4 Phase shifters and delay line

In many quantum optics experiment, it is necessary to delay one photon of the pair with respect to the

other to manipulate their relative phase or to alter the overlap of their wavepackets in time. Depending

on the magnitude ∆τ of the time delay, two di�erent approaches can be used. In case of small delays, for

which ω∆τ < 2π, it is easy to induce small phase shifts by simply placing an electrical heater on the top of a

waveguide, and by using the thermo optic e�ect to change the phase velocity of light. When, a current �ows in

the heater, a change in temperature ∆T is induced in the waveguide. The e�ective index of mode changes by

a quantity ∆neff ≈ ng
Γc
n0

dn
dT ∆T . The phase velocity accordingly changes by a quantity ∆vf = − c

n2
eff

∆neff

, and a phase shift of ∆φ = − ω
v2
f

∆vfL = ω∆τ(ω) is introduced during the propagation in a section of

waveguide of length L. This expression holds for each frequency contained in the spectra Ein(ω) of the input

electric �eld Ein(t). If the spectra is centered at ω0 and it is narrowband (i.e., the bandwidth ∆ω satis�es

∆ω � ω0), as applies for signal/idler photons, the �eld Ein(t) can be written as Ein(t) = E0(t)eiω0t, where

E0(t) is a slowly varying envelope. The �eld Eout(t) at the end of the waveguide section is then:

Eout(t) =

ˆ
E0(ω + ω0)eiω(t+∆τ(ω)) dω (6.9)

which yelds Eout(t) ≈ Ein(t + ∆τ) = E0(t + ∆τ(ω0))eiω0(t+∆τ(ω0) provided that the phase perturbation

ω(∆τ(ω)−∆τ(ω0)) is much smaller than 2π in the frequency range where E0(ω+ω0) is appreciably di�erent

from zero. Since the latter condition is met when ω < ∆ω, the above approximation is well justi�ed when

∆ω(∆τ(ω)−∆τ(ω0))� 2π. Using the fact that, from Eq.5.29, ∆ω = 2π/τc, the inequality can be rewritten as

(∆τ(ω)−∆τ(ω0))� τc. In other words, the delay imparted by the electrical heater can be considered to be

the same for all the frequencies of the input spectrum, and equal to ∆τ(ω0), if the deviation ∆τ(ω)−∆τ(ω0)

from the average delay ∆τ(ω0) is less than the coherence time of the radiation. This approximation has been

used, as instance, for expressing the �elds at the output ports of the MZ as a function of the input ones

in Eq.5.32. As example of a phase shifter for which Eq.6.9 applies, the simulations of the electrical heaters

described in Section 6.1 are reported. The geometry of the heater is shown in Fig.6.11(a-b), while a cross

section of the temperature distribution is shown in Fig.6.11(c).
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a) b)

c)

waveguide

Heater

Figure 6.11: (a) Geometry of the heater for the resonator with the 400nm wide waveguide. (b) Geometry of
the heater for the resonator with the with the 700nm wide waveguide. In both (a) and (b), the blue layer
represent TiN while the red one Silicon. The metal stripe has a cross section of 450nm× 250nm. (c) FEM
simulation of the temperature distribution across the waveguide section when the heater is at 500K.

Heaters are separated from the top of the waveguides by an oxide thickness of 900nm and are realized in

TiN. This thickness ensures a good temperature tuning and at the same time it keeps the losses induced by

the coupling of the optical energy to the metal stripe negligible. The resonance shift associated to a thermo

optic change of the e�ective index ∆neff is given by Eq.4.15. This relation is used to calculate the resonance

shift as a function of the heater temperature, which is shown in Fig.6.12.
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Figure 6.12: Temperature dependence of the wavelength position of the resonance peak λres(T ). Data have
been subtracted from its value at T = 273.15K (room temperature) λres,0 = 1.55µm to obtain a relative
wavelength shift.
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It can be seen that by heating the TiN stripe at a temperature of ≈ 950K, the resonance wavelength shifts of

an amount which correspond to the resonator FSR (FSR ≈ 13nm at 1.55µm, as described in Section 6.1).

This corresponds to a phase shift inside the resonator of 2π (or, equivalently, to a time delay of ∼ 5.2 fs).

The thermal tuning of the resonance wavelength is essential for:

� Aligning the signal/idler wavelengths exactly on the maximum of the transmittance of the pump �lter

described in Section 6.3.

� Aligning the signal/idler wavelengths of two independent quantum sources for the creation of N00N

and split quantum states, as discussed in section 6.6.1.

When the required time delay is high, and the inequality ω∆τ � 2π holds, a di�erent solution is needed. For

example, if one wants to use the signal/idler pairs generated by the racetrack resonators for Hong Ou Mandel

interference, one has to be able to induce time delays of the order of the coherence time of the generated

radiation [226]. To get an estimate of the amount of the required delay, one can consider that the resonators

implemented in the so called �broad band� design have a quality factor of Q ≈ 30000, corresponding to a

linewidth of ∆νFWHM = ν
Q ≈ 6.45GHz. For a lorentzian lineshape, the quantity ∆νFWHM is connected to

the spectral width ∆ν by the relation ∆ν = π∆νFWHM [51], which yields a coherence time of τc ≈ 33 ps.

It can be easily proved that in order to induce a similar time delay using the thermo optic tuning of the

phase velocity, tens of centimeters of waveguide are required. By assuming the realistic value of 5 dBcm−1 of

propagation loss, this means more than 50 dB of loss. From this analysis, it is clear that di�erent approaches

are needed.

The limitation can be overcome by using slow light structures. The simplest one, which will be studied in the

following, is to use a chain of resonators in the AP con�guration. To understand the working principle, let's

consider what happens when narrowband light travels a single resonator. This is described by the transfer

function HAP (ω) = |HAP (ω)|eiδ(ω) reported in section 1.1.4, where δ(ω) is the frequency dependent phase

shift. According to Eq.6.9, the output �eld is given by:

Eout(t) = eiω0t

ˆ
|HAP (ω + ω0)|E0(ω)eiωteiδ(ω+ω0) dω (6.10)

This time the approximation that (δ(ω) − δ(ω0))/ω � τc does not hold, and one has to expand the phase

according to δ(ω + ω0) ≈ δ(ω0) + τg(ω0)ω, where τg(ω0) =
(
dδ
dω

)
ω0

represents the group delay. With this

linear approximation, Eq.6.10 gives:

Eout(t) = E
′

0(t+ τg)e
iω0teiδ(ω0) (6.11)

where E′0 =
´
E0(ω)|HAP (ω + ω0)| dω. If |HAP (ω)| is smoothly varying over the spectral width of E0(ω), it

can be approximated by the constant value |HAP (ω0)|, with the result that the output �eld is proportional to

the input �eld shifted by a time delay equal to τg(ω0). By combining N �lters in series, one has to multiply

HAP (ω) by itself for N times to produce the �nal transfer function, with the result that the group delay is

increased to τNg = Nτg. Fig.6.13 reports the group delay τNg as a function of wavelength for two di�erent

chains of N = 10 all pass �lters. One chain is used as a delay line for the idler photon generated by the

700nm resonator at wavelength λidler = 1.567µm. The other chain works similarly but for the idler photon

generated by the 400nm resonator at λidler = 1.565µm. The design of the full delay line is shown in Fig.6.14,

while the main geometrical parameters are indicated in Table 6.2.
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Figure 6.13: Group delay as a function of the wavelength for both the broadbad 700nm design (red) and for
the narrowband 400nm design (blue).
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Figure 6.14: Design of the optical delay line, showing the main geometrical parameters. These are the
coupling gap cg, the waveguide width w and the coupling length Lc. The inset contains a zoom of the
geometry of one of the AP �lters which compose the chain. An input spectrum In(ω) is converted to an
output one given by HAP (ω)In(ω), where HAP (ω) is the transfer function of the �lter.

Parameter For broadband design For narrow band design
N 10 10

Waveguide width (w) 400nm 400nm
Coupling gap (cg) 400nm 400nm

Coupling length (Lc) 50µm 36µm
Coupling coe�. 58% 33%

Perimeter 133.54µm 105.12µm
Losses 5 dBcm−1 5 dBcm−1

Insertion loss 1.25 dB 2.21 dB

Table 6.2: List of the parameters used for designing the delay lines for both the broadband geometry and for
the narrowband one.

For example, if one concentrates on the operation of the delay line implemented in the 700nm design (red

curve in Fig.6.13), it can be seen that the group delay at the ider wavelength is τNg ≈ 40 ps, which is su�cient

to exceed the coherence time of the photon wavepacket. Note that this delay line has been designed in such

a way that the resonance is exactly centered at the idler wavelength. Probably, this will not hold also for the

fabricated device, but thermal trimming will allow to compensate for small resonance misalignments. For
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this purpose, a series of electrical heaters will be placed on each all pass �lter to uniformly shift the spectral

response of the delay line without distortion. The use of heaters allows to perform a continuos tuning of the

group delay. As can be seen from Fig.6.13, if the idler wavelength is tuned outside the �lter resonance, then

τNg ≈ 0. On the contrary, if the idler wavelegth is thermally tuned toward the �lter resonance, the group

delay will monotonically increase and it will reach the maximum value when the two resonances wavelengths

will exactly overlap. This is shown in Fig.6.15, in which a time domain simulation of th propagation of a

photon pulse has been performed. In this simulation, the complex photon wavepacket is described in the

frequency domain by a lorentzian function φ(ω) = γ2/(γ2 + (ω−ω0)2) of central frequency ω0 and linewidth

γ = 1
τc
. This constitues an approximation to the true biphoton wavefunction introduced in Eq. 5.19. In

Fig.6.15, the quantity ∆λ indicates the mismatch between the photon central wavelength and the resonance

of the AP �lter.

Figure 6.15: (a) Spectrum of the idler photon plotted together with the transmittance of the delay line for
di�erent wavelength mismatch ∆λ. (b) Time domain simulation of the modulus square of the envelope of
the photon wavepacket for di�erent values of wavelength mismatch ∆λ. Paneles (a) and (b) refer to the delay
line designed for operating with idler photons generated by the 400nm design. Panels (c) and (d) refer to
the delay line designed to operate with idler photons coming from the 700nm design.

The increasing group delay imparted by the delay line to the wavepacket as the the wavelength mismatch

∆λ decreases is shown in Fig.6.15(b) and Fig.6.15(d) as a shift of the main wavepacket peak towards higher

delays. Since the twin signal photons will have a similar coherence time, the delay line can be e�ectively used
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in a HOM experiment. What emerges from Fig.6.15(b) and from Fig.6.15(d) is that the wavepacket is not

simply delayed, but it is also distorted. This is due to the fact that the transfer function of the �lter can not

be considered as perfectly constant over the linewidth of the input radiation, with the consequence that the

shape of the initial envelope E0(t) is no more proportional to the the �nal E′0(t). This is the reason why the

FWHM of the all pass �lter can not be arbitrarily decreased to enhance the group delay. In the design of the

delay line, a trade o� between the magnitude of the group delay and the amount of wavepacket distortion has

been considered. Furthermore, one sees from Fig.6.15(b,d) that the intensity of the delayed �eld decreases

as ∆λ approaches to zero. This comes out from the fact that the on resonance �lter transmittance is lower

than its value out of resonance.

6.5 Arrayed Waveguide Gratings

The quantum source described in Section 6.1 has the property that it emits a comb of entangled photon

pairs. For the narrowband design, only the pairs which are generared close to the pump wavelength have

su�ciently high e�ciency to be used for further manipulation. On the other hand, for the broadband design,

many pairs are generated with similar e�ciency even at large spectral distances from the pump. If one

considers a signal photon at energy ~ωs = ~(ωp + Ω), then the corresponding entangled idler has energy

~(ωp−Ω). All the other idler photons of the comb which do not satisfy this energy relation are not entangled

with the considered signal, so in principle they constitute accidental counts in coincidence measurements.

Furthermore, if an interferometer is designed for the manipulation of a pair, it will not work for another

pair of a di�erent colour. This is because the phase shifters, the splitters/combiners, the delay lines and all

the other components which compose the integrated network are strongly wavelength sensitive. From these

considerations, it comes out that to simplify the design of the network and to perform a clean interferometric

experiment it is necessary to separate the generated pairs on the basis of their di�erent color. The structure

implemented for achieving this is the AWG. The device operates as a wavelength demultiplexer. A set of

di�erent wavelengths which travels collinearly in the AWG input waveguide is chromatically dispersed, and

each wavelength is directed into a di�erent output channel waveguide. Although it is not the aim of this

work to cover in detail the physics of the AWG, the basic parameters are now reviewed. The AWG is made

by three main components, as shown in Fig.6.16(a).
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Figure 6.16: (a) Geometry of an AWG, with indicated the main components. (b) Schematic of a transmittive
di�raction grating with period d. Here, α is the angle of incidence of the input beam, and θ the angle of
observation of the di�racted �eld. Each element of the grating is labeled with an increasing index p. The
output channels are numbered from 1 to 4.

The �rst is the input star coupler, in which the light carried by the input waveguide is let to freely di�ract.

The end of the star coupler is of circular shape, with a radius of curvature of R, and has a number of

Nin waveguides which collect the di�racted light. The circular shape ensures that the phase pro�le of the

di�racted light is constant over all the waveguides. The nth waveguide has a length Ln which is given by

Ln = Ln±1 ±∆L. All the waveguides, whose center to center separation is given by d, shine light into the

ouput star coupler. As a consequence of the di�erent length of the waveguides, the phase pro�le at the

input of the second star coupler linearly changes with the curved abscissa. The di�racted light in the second

star coupler is collected by a number of Nout output waveguides spread by a quantity D. The way light is

chromatically dispersed and focalized into di�erent waveguides can be intuitively explained by making the

analogy with a free space transmissive di�raction grating shown in Fig.6.16(b). When white light is normally

incident on the grating, the transmitted maximum power is localized into the 0th di�raction order, which

lies in the same position for all the wavelengths (θ = 0° in Fig.6.16(b)). The higher order di�raction peaks

satis�es the grating's equation [203]:

d sin(θ) = mλm (6.12)

where d is the grating periodicity, θ is the observation angle and m an integer number.

If the input beam is titled by an angle α, Eq.6.12 modi�es to:

d(sin(θ)− sin(α)) = mλm (6.13)

which states that the position of the 0th di�raction order is shifted from θ = 0, and what is most important,
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the shift depends on the wavelength. In this way it is possible to separate the di�erent colours on the basis

of the di�erent angles at which the 0th di�raction order is created. This principle is applied to chromatically

dispersed light in the AWG as well. The phase of the titled beam at the pth element of periodicity of the

transmittive grating is given by φp = p∆φ, where ∆φ = d sin(α), and thus is linearly increasing with the

number of the element. The same happens in the AWG, where the phase of the �eld at the input of the second

star coupler is given by φn,wg = n∆φwg, where ∆φwg = neff∆L and n is the number of the waveguide. In

the AWG, the output waveguides are placed where the 0th di�raction orders of the di�erent wavelengths are

located. The AWG design starts from the knowledge of the spectral position of the input wavelengths, which

must be equally spaced by a quantity ∆λ, and from the number of desired output channels. The �rst is

given by the resonance wavelengths of the resonators constituting the quantum sources. The second depends

on the number of pairs which one wants to �lter from the comb. Once that these parameters are �xed, the

practical design rules for �nding the geometrical parameters of the AWG are given by [231]:

∆λ =
ngR∆L

nsceffdλ0
(6.14)

Nmax =
Rλ

nsceffdD
(6.15)

where nsceff is the e�ective index of the star coupler and λ0 is the wavelength collected in the central output

channel indicated with the label 2 in Fig.6.16(a). λ0 is determined by the equation:

neff (λ0)∆L = qλ0 (6.16)

with q an integer number. The number Nin of waveguides at the output of the �rst star coupler determines

the losses of the device and the wavelength resolution of the output spectrum, i.e, the cross talk between

the output waveguides. It is of considerable interest to have a number of input waveguides which is as high

as possible, compatibly with the fabrication resolution and with the cross talk issues that arises when the

waveguide spacing d decreases. This is because as Nin increases, the portion of the di�racted wavefront which

is coupled to the waveguide array accordingly increases, and losses are consequently lowered. The number of

waveguides of the array plays the same role of the number of grooves which are illuminated in a free space

di�raction grating. The higher is this number, the narrow is the linewidth of the di�raction peaks [203].

However, for most of the routing applications, one is interested in having a device with insertion loss which

are as low as possible, and a common design rule which ful�lls this requirement is:

Nin =
0.666R

d
(6.17)

which �xes the relation between d, Nin and R in such a way that 90% of the di�racted energy in the input

star coupler is coupled to the array of waveguides. By following the design rules given by Eq.6.14 through

Eq.6.17, two AWGs have been simulated and designed for the demultiplexing of a photon pair generated in

the 700nm resonator and in the 400nm resonator. Each AWG has three output channels: one is centered at

the pump wavelength and the two adjacent ones are centered at the signal and idler wavelength respectively.

In this way, only the photon pair which is closest to the pump wavelength is collected. The geometrical

details of the design are given in Table 6.3. The simulated spectral response of each channel is shown in

Fig.6.17. The simulation is the result of the averaging of 30 di�erent spectral responses, in which the width

of the waveguides of the array (which constitute the most sensible element) are let to deviate from their

nominal value by a quantity ∆w. This is a normally distribuited variable with zero mean value and standard

deviation 3σ = 15nm.
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a) b)

Figure 6.17: (a) Spectral response of each output channel of the AWG for the resonator of 400nm width.
(b) Spectral response of each output channel of the AWG for the resonator of 700nm width.

Parameter Value (400nm design) Value (700nm design)
R 30.63µm 30.63µm
Nin 16 16
Nout 3 3
∆L 11.224µm 11.24µm
d 0.4µm 0.4µm
D 0.9µm 0.9µm
λ0 1.553µm 1.55µm
win 0.8µm 0.8µm
wout 1.99µm 1.99µm

Table 6.3: List of the key parameters used to design the AWGs.

From Fig.6.17, it can be seen that for both designs the channel cross talk is below −25 dB, and that the

insertion loss at the signal/idler wavelength are at the order of −3.5 dB.

6.6 Examples of integrated quantum circuits

In the previous sections, the main builnding blocks which compose a quantum circuit have been designed

and simulated. Here, two examples of the complete networks are reported to show the full system. The

�rst example is an integrated implementation of the experiment described by J.Silverstone et. al. [180],

where a recon�gurable circuit capable of manipulating entangled states produced by spontaneous FWM

in spiral waveguides is demonstrated. In the following circuit, the spiral waveguides will be replaced by

racetrack resonators. The pump �lter and the delay line, which in Ref.[180] were implemented o�-chip, will

be integrated and thermally tuned directly on the chip. The second example is the realization of Hong Ou

Mandel interference using degenerate photon pairs produced by Multi Modal spontaneous FWM in straight

silicon waveguides.
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6.6.1 Recon�gurable network for the creation and manipulation of N00N and

antibunching states

The schematic of this network is shown in Fig.6.18.
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Figure 6.18: (a) The whole integrated quantum network. Sections labeled with numbers from 1 to 5 indicate
di�erent building blocks, which are shown in detail in the lower panel. The network has three di�erent layers:
the waveguide layer (red), the metal layer used for the heaters (blue), and the metal layer used to absorb the
undesired energy from the waveguide (green layer, see section 6.2). (b) Zoomed view of the main building
blocks which constitute the network.

This implements racetrack resonators of 400nm width for a narrow band comb generation of photon pairs.

The network is organized in three di�erent layers. The main layer is the one where waveguides are fabricated

(indicated in red in Fig.6.18(a)). The second one (indicated in green in Fig.6.18(a)) is a TiN metal layer,

which is separated by 100nm of oxide from the top of the waveguides. This layer is used to absorb light

from the lower waveguides, and it is implemented to cancell re�ections. The metal layer (indicated in blue

in Fig.6.18) is realized in TiN and is placed 900nm above the waveguide layer. This is used to realize the

electrical heaters. By moving from left to right in Fig.6.18(a), a bright pump laser at 1.55µm is coupled

into the input waveguide and it is split by a 3 dB directional coupler (1). The two outgoing arms excite the

quantum sources (2), which will generate photon pairs through sFWM. In the weak pump approximation,

the probability that both sources generate a pair is negligible, so pair generation will occur in one of the two

resonators, with equal probability. Since only one pair of the comb will be post selected by the AWG �lters,

it is su�cient to consider the evolution of the quantum state associated to a single pair. The state |Ψin〉 of
the selected pair of signal and idler photons after the sources can be written as:
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|Ψin〉 =
1√
2

(∣∣1Aωs1Aωi〉− ∣∣1Bωs1Bωi〉) (6.18)

where A and B labels the spatial mode where the photon is generated (A = waveguide A, B = waveguide B),

while ωs,i designates the frequencies of the signal/idler photon. The state of Eq.6.18 is called a N00N state

(in this case, N = 2) [179], and is an equal superposition of two photons in spatial mode A and two photons

in spatial mode B. This corresponds to a bunching state, because the probability to register a coincidence

photodetection event from waveguide A and B is zero. The state in Eq.6.18 can be manipulated using the

phase shifter (3) placed on a section of the waveguide A. The phase shifter is an electrical heater as the ones

described in Section 6.4, which operates in the regime where the imparted phase φ is φ ≤ 2π. After the phase

shifter, the state |Ψin〉 becomes:

|Ψin〉 =
1√
2

(∣∣1Aωs1Aωi〉− ei2φ ∣∣1Bωs1Bωi〉) (6.19)

where the factor 2 comes from the fact that two photons travels in the same spatial mode A. Note that an

equivalent phase shift will be acquired by a single photon of doubled energy. The state in Eq.6.19 is then

sent to a 3 dB beamsplitter, again realized using a directional coupler. The output state then becomes:

|Ψout〉 = sinφ |Ψsplit〉+ cosφ |ΨN00N 〉 (6.20)

with:

|Ψsplit〉 =
i√
2

(∣∣1Cωs1Dωi〉+
∣∣1Cωs1Dωi〉) (6.21)

|ΨN00N 〉 =
1√
2

(∣∣1Cωs1Cωi〉− ∣∣1Dωs1Dωi〉) (6.22)

The state |Ψsplit〉 describes a situation in which there is one photon in mode C and one photon in mode

D, with equal probability. There is a complete indetermination on the colour of the photon occupying each

mode. One sees from Eq.6.20 that, by tuning the phase φ, one can shift from |Ψsplit〉, when φ = π
2 , to

|ΨN00N 〉 ,when φ = 0. This constitues an example of deterministic preparation of a quantum state of light.

Next, the bright pump is �ltered from both the waveguides C and D using the cascated of MZ (4) described

in Section 6.3. At this point, 1% of the signal is picked from each waveguide and monitored. An o�-chip

coincidence experiment can be performed to �nd the value of current to be applied to the electrical heater in

order to set the quantum state |Ψout〉 to the desired one. The observation of a minimum in the coincidence

rate between channels C and D would correspond to the quantum state |ΨN00N 〉, while a maximum would

correspond to the state |Ψsplit〉. Once that the state is prepared, it can be further manipulated. In the case

of the network shown in Fig.6.18, an HOM interference with non degenerate photons is performed. This is

achieved by con�guring the output state |Ψout〉 to |Ψout〉 = |Ψsplit〉, and then by placing an optical delay line

(5) at the end of waveguides C or D. The working principle of the latter is the same described in Section 6.4,

but a little care has to be paid to modify the geometry in such a way that the FSR of the delay line coincides

with the one of the resonator constituting the quantum source. This is because the colour of the photon

which enters into the delay line is not know in advance (see Eq.6.21), but the latter has to impart a similar

delay independently on the colour. For example, if the FSR are not matched, the signal wavelength can be

on resonance with the ones of the delay line, while the idler wavelength can lie completely o� resonance. As

a consequence, the device will work as a delay line only for signal photons. At the end of the delay line,

the selected pair is separated from the other using two AWGs (6), which work as the interference �lters of
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the HOM experiment described in Ref.[180]. The two outputs of the AWGs are then collected o� chip using

lensed �bers and sent to two photon counters coupled to a coincidence electronics. The use of thermal heaters

is essential for the outcome of the experiment. They are used to:

1. Align the resonances of one source with the resonances of the other source. This is needed since the

pair generated by one source has to be indistinguishable from the pair produced by the other source on

the basis of the signal/idler color.

2. Apply the phase φ required for tuning the output state between |Ψsplit〉 and |ΨN00N 〉.

3. Apply a tunable group delay.

It is worth to note that the wires which connect the heaters to the metal pads in Fig.6.18 are characterized by

a very large cross section to decrease their resistivity. This allows to reduce the dissipated electrical power in

the circuit regions where the meaterial temperature has not to be changed. The magnitude of the coincidence

rate expected from the HOM interference can be estimated by knowing the insertion loss of each stage. These

are summarized in Table 6.4 and give a total insertion loss of ≈ −17.75 dB. This value has to be considered

twice since a coincidence event is registered only when both photons of the pair survive from the source to the

detectors. By considering 0 dBm of input pump power, the expected generation rate is, from Fig.6.4(c-d), of

the order of 1MHz. The coincidence rate will be reduced by a factor −35.5 dB, which gives ≈ 300Hz. This

value can be easily detected using the coincidence electronics described in the experiment in Section 5.3.2.

Network block Insertion loss (dB)
Pump �lter 5
Delay line 1.25
AWG 3.5

O� chip light coupling 8

Table 6.4: A summary of the approximate insertion loss of the di�erent blocks which compose the quantum
network.

6.6.2 On chip Hong Ou Mandel interference with degenerate photon pairs

The main di�erence between the circuit described in this section and the one in Fig.6.18(a) lies in the type of

quantum sources that is implemented. Here the racetrack resonators are replaced with straight waveguides,

and the pair generation occurs through MMFWM. The waveguides are engineered in such a way that the

FWM process is degenerate, i.e., signal and idler have the same wavelength. As described in Section 6.2,

the pump �eld has TM polarization and it propagates in the fundamental mode of the waveguide, while

signal/idler �elds have TE polarization and are generated in the fourth order mode. The schematic of this

circuit is shown in Fig.6.19.
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Figure 6.19: (a) The whole integrated quantum circuit. Sections labeled with numbers from 1 to 5 indicate
di�erent building blocks, which are shown in detail in the lower panel. The circuit has three di�erent layers,
whose function and color are the same as in Fig.6.18(a). (b) Zoomed view of the main building blocks which
constitute the circuit.

Similarly to the circuit of Fig.6.18(a), the whole structure is realized in three layers. The type of material, the

thickness and the position (except for the green layer, which lies 250nm from the top of the waveguides) of

these layer are the same as the ones described in Section 6.6.1 and shown in Fig.6.18(a), reason why the same

colors are used in Fig.6.19. By moving from left to right, the bright pump is split by a 3 dB directional coupler

to obtain two coherent beams. In the two outgoing waveguides, of 2 cm length, photon pairs are generated

through MMFWM. After 1.75 cm of propagation, a metal stripe of 0.25mm is positioned at the center of

the waveguide to suppress the pump. As detailed in Section 6.2, the lower con�nement factor of the pump

with respect to the signal/idler beams and its di�erent modal �eld pro�le is used to induce selective loss on

the pump beam. The result is that the pump is attenuated by the metal stripe by approximately −142.5 dB,

while the signal/idler �elds are attenuated by only ≈ −8.25 dB. In order to manage more easily the generated

pair, it is desirable to convert the fourth order mode in which entangled photons are propagating into the

fundamental mode. For this purpose, the interferometer described in Section 3.6 is used. Two waveguides,

forming a relative angle θ, input light into a FPR. The power is carried by the fundamental mode of each

waveguide. The di�racted �eld is coupled into themth mode order of a multimode waveguide. If the direction

of light propagation is reversed, light will be coupled from the mth mode order into the fundamental mode

of the two waveguides at the input of the FPR. This property is used to convert the fourth order mode of

the signal/idler pair into a fundamental mode. Each interferometer has two output waveguides (A-B and

C-D respectively) in which the pair can be split or bunched. By post selecting only the case in which both

photons are directed into one of the two waveguides (waveguide B and C in Fig.6.19(b), panel 3), the state
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at the output of the two interferometers can be written as:

|ΨN00N 〉 =
1√
2

(∣∣∣2Bωp0Cωp

〉
−
∣∣∣0Bωp2Cωp

〉)
(6.23)

whis is a N00N state with N = 2. Post selection can be done by placing an attenuator at the end of

waveguides A and D, which scatters the incoming photons into radiative modes. Next, the state described

by Eq.6.23 is manipulated to create the degenerate split state |Ψsplit〉 = i
∣∣∣1Eωp1Fωp

〉
. This is done by using

the same procedure discussed in Section 6.6.1. The state can be monitored by taking 1% of the intensity

from waveguide E and F and by performing a coincidence measurement. To realize the HOM interference,

one of the two photons is sent into a delay line, of the same kind described in Section 6.4. Signal and idler

photons are then collected using two lensed �bers and sent to two photon counters coupled to a coincidence

electronics. The total loss experienced by a photon which travels from the source to the detectors is given

by the sum of the insertion loss of each stage, which are listed in Table 6.5. This sum gives ≈ −22.5 dB.

Again, the loss factor has to be counted twice in order to account for the joint probability that both photons

of the pair reach the detectors, which yelds ≈ −45 dB. With the pump power set to 10 dBm, the expected

coincidence rate should be of the order of 10Hz.

Network block Insertion loss (dB)
Interferometer (with post selection) 5

Delay line 1.25
Pump �lter (metal stripe) 8.25
O� chip light coupling 8

Table 6.5: A summary of the approximate insertion loss of the di�erent blocks which compose the quantum
network.

6.7 Summary and conclusions

In this chapter it is reported the design and simulation of the main building blocks which form an integrated

circuit used for generating and manipulating quantum states of light. Signal and idler entangled photon

pairs are produced using non degenerate spontaneous FWM in racetrack resonators. Two di�erent resonator

designs have been investigated. In the �rst, a broadband comb of photon pairs is generated by exploiting

the low group velocity dipersion of the resonator waveguide. In the second, the waveguide width has been

chosen to achieve high group velocity dispersion at the pump wavelength, with the result that the generated

comb is narrow band. The e�ciency of the process and the expected photon �ux is computed by a semi

classical approach, in which the dynamics of the �elds inside the resonator is treated as classical, while the

input seed which stimulates the FWM process comes from a quantum mechanical analysis. The geometry

of the resonators are then optimized to achieve the highest e�ciency, compatibly with the resolution limits

imposed by the photolithographic process. A �lter constituted by a chain of 10 Mach Zenhder interferometers

working as interleaver for the pump, the signal and the idler wavelengths is presented. This achieves −130 dB

of pump rejection, thus isolating the photon pairs from the bright pump. Some tools for photon manipulation

are then presented. One is the phase shifter. This allows to impart a variable phase to the propagating light,

and is implemented by using electrical heaters on the waveguides to change the e�ective index of the material

through the thermo optic e�ect. The variable phase is used to prepare the quantum state at the output of the

circuit. In the proposed examples, this can be either a split (or antibunching) state, in which the signal and

idler photon travel in di�erent spatial modes, or a N00N (or bunching) state, where both photons are bunched

into the same spatial mode. Other tools are used for photon manipulation after that the state is prepated.

These include optical delay lines and AWGs. The �rsts are used to delay the arrival time of a photon with
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respect to the other by a quantity which is of the order of the single photon coherence time. Such delays can be

obtained in slow light structures like chains of AP resonators. AWGs are implemented for demultiplexing the

pair. They direct the signal photon into one channel and the idler photon into another one. In principle, they

can be also used for demultiplexing the whole comb of signal/idler pairs generated by the resonators. Two

quantum circuit examples are presented at the end of the chapter. These integrate several functionalities

for performing a complete quantum optics experiment on a chip. The experiment includes photon pair

generation, bright pump suppression, quantum state preparation, and HOM two photon interferometry. The

total insertion loss of each circuit has been analyzed in order to predict the expected coincidence rate of the

HOM experiment. The major limitation comes from the quite high insertion loss encountered during the

input and output coupling of light from the chip. The insertion losses of the integrated photonic components

are comparable to the ones of the o�-the-shelf optical components implemented in free space experiments.

The only functionalities which are not integrated in the circuit, are the pump laser and the photon detectors.

As discussed in section 0, the on chip integration of the pump laser and of the photodetectors will be the next

steps of the project SIQURO, and will be performed after that the circuit operation will be experimentally

validated. The designs discussed in this chapter are at the present being fabbricated.
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This thesis work has been largely carried out within the framework of the project SIQURO, which is focused

on the study of integrated devices for quantum optics applications. Di�erent milestones of the project

were covered in the di�erent chapters. Chapter 3 theoretically studied and experimentally demonstrated,

MMFWM in integrated straight Silicon waveguides. This chapter was devoted to investigate the possibility

of using MMFWM as a tool for the generation of entangled photon pairs through Spontaneous FWM. High

�ber to chip coupling losses prevented the observation of the spontaneous process, but nevertheless the proof

of concept has been validated by Stimulated FWM. Novel approaches for selective mode excitation have

been proposed, which led to the design of innovative integrated devices which exploit two beam interference

for maximixing the coupling to speci�c mode orders by shaping of the electric �eld. These new devices

should minimize the coupling losses while attaining excellent mode selectivity, thus enabling the observation

of photon pairs. The research toward innovative quantum sources then moved to chapter 4, in which it is

investigated the χ(2) tensor of strained Silicon resonators. This chapter was focused to the measurement of

the di�erent χ(2) tensor componens of strained Silicon, in order to prove the e�ciency and, thus, the feasibility

of on chip quantum sources based on χ(2)-mediated SPDC. The presence of second order nonlinearities has

been proven through the dynamical electro optic e�ect using homodyne detection. This approach di�ers from

the other works reported in literature, which are all based on the static electro optic e�ect. The technique

o�ered enhanced sensitivity, immunity to noise sources and was able to reveal novel physical features which

were hidden in static measurements. Thanks to this approach, it has been possible to detect plasma carrier

dispersion as the main mechanism involved in the electro optic modulation, which then masks truly χ(2)

e�ects. A method to distinguish the two contributions has been implemented, which relies on time resolved

measurements of the electro optic modulation. The results of these measurements con�rmed the hypotesis of

an electro optic modulation of free carrier origin, and set an upper limit to the magnitude of the χ(2) tensor

components. This work furnished the evidence that previously reported values for the χ(2) components were

overestimated because of the free carrier contribution. By virtue of the very weak (if present) induced second

order nonlinearity, a doubt can be cast on the feasibility of integrated SPDC sources.

The preliminar results on the e�ciencies of photon pair generation of both χ(2) and χ(3) sources were not

satisfactory, so in chapter 5 it is discussed about a free space quantum optics experiment which implements

photon pairs produced by SPDC in an external PPLN crystal. Such experiment can be viewed as the free

space implementation of an integrated Mach Zenhder interferometer, which will be one of the interferometric

structures for photon manipulation to be realized in the next developements of the SIQURO project. A theory

has been enstablished to interpret the two photon interference patterns which emerged from coincidence

measurements of the outputs. Such a theory can be straightforwardly applied to the integrated version

of the device. A novel experimental technique which allows to smoothly change the phase of one arm of

the interferometer, enabled to obtain very low noise interference patterns even with few coincidence events.

As a consequence of the particular asymmetric excitation of the device, new interference e�ects have been

reported. These arise from the superposition of bunching and antibunching states which coherently interfere
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at the output of the interferometer. Future perspectives of the project have been given in chapter 6, where

the steps toward the integration of a complete quantum circuit on a chip are discussed. All the main bulding

blocks have been designed and their performance evaluated through numerical simulations. Quantum sources

will be realized using either resonators or straight waveguides through Spontanoeous FWM, pump �lters using

cascaded Mach Zenhder interferometers, optical delay lines using slow light in sequences of resonators and

interference �lters using arrayed waveguide gratings. Two examples of circuits, in which the quantum state

can be deterministically prepared and entanglement tested by Hong Ou Mandel interference, have been

designed. This work will pave the way toward the realization, on a Silicon chip of few mm2, of a complete,

compact and recon�gurable quantum circuit, which incorporates all the functionalities which are now bolted

on bulky optical tables. The designs are on the way to be fabbricated.

A separate treatement is deserved for chapter 2. The latter does not strictly belong to the project SIQURO,

but focuses on a di�erent aspect of the same nonlinearity which governs FWM, that is the χ(3) nonlinearity.

In particular, the phenomenologies discussed throughout the whole chapter are induced by Two Photon

Absorption, which is linked to the imaginary part of the χ(3) tensor. It is shown that TPA can induce

dynamical free carriers and temperature variations inside single and coupled resonators, which convert a CW

input beam into a pulsed one. While the pulse sequences are always periodic in a single resonator, they

can turn to chaotic when many cavities are coupled together in the SCISSOR geometry. A �rst attempt

to engineer a simple three cavity system to produce �chaos on demand� has been done. Using a simple

post processing algorithm applied to the chaotic waveforms, random sequences of bit have been generated

which passed all the required statistical tests. The work carried out in this chapter explore a new range of

applications of sequence of resonators. Up to now, only the linear behaviour of the SCISSOR was exploited for

wavelength routing or slow light propagation. The nonlinear chaotic dynamics opens brand new possibilities.

One is the realization of an all optical, all passive and CMOS compatible random number generator. Another

could be the implementation of the SCISSOR as the fundamental block of photonic neural networks.

In conclusion, this thesis constitutes a step forward to the realization of integrated quantum circuits on

Silicon Photonics. The �nal aim has been to extend the capabilities of the quantum circuits demonstrated so

far by providing additional functionalities. This work could pave the way to the realization of self subsistent

devices for quantum enhanced measurement, quantum computation or quantum crypthography.
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Appendix A: Nonlinear coupled wave

theory for optical resonators

This section derives the coupled wave equations for the energy amplitudes of the eigenmodes of the resonator,

subjected to linear and nonlinear perturbations of the polarization. In what follows, a ring resonator of

cylindrical symmetry will be considered, since it is implemented in chapter 2 and in chapter 6. The geometry

is shown in Fig.6.20.

𝑟

𝑧

𝜙

Figure 6.20: Sktech of the resonator geometry under consideration. A cylindrical coordinate system has been
adopted, in which each point of space is indicated by its radial distance r, the height z and the azimuthal
angle φ.

The origin is placed at the center of the resonator. The radial coordinate is designated as r, the height with

z and the azimuthal angle with φ. The resonator possess eigenmodes umj which are solution of the Helmoltz

equation: (
∇2 +

ω̄2
mjn

2(r)

c2

)
ũmj = 0 (6.24)

The resonance frequencies associated to eigenmodes ũmj are indicated as ω̄mj . The subscript m labels the

radial mode number, while j labels the azimuthal mode number. The waveguide which forms the resonator

is assumed to be single mode in the z direction, so no label will be used to indicate the vertical mode order.

This is implicitally assumed to be the fundamental one. To simplify the treatement, the eigenmodes are

assumed to be scalar quantities. The total electric �eld Emj can be written as:

Emj(r, t) =
1

2
Amj ũmj(r, z)e

−imφeiω̄mjt + c.c (6.25)
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where Amj is a constant amplitude. It can be demonstrated [232] that two di�erent eigenmodes ũmj and

ũm′j′ satis�es the orthogonality condition:

ˆ
n2(r)ũmj(r) · ũm′j′(r) dr = δmm′δjj′Kmj (6.26)

where δik is the Kronecker delta, and the normalization constant Kmj is de�ned as:

Kmj = 2π

ˆ
n2(r, z)|ũmj(r, z)|2rdrdz (6.27)

From Eqs.6.26-6.27, it is possible to de�ne the normalized �elds umj :

umj =
ũmj(

2π
´
n2(r, z)|ũmj |2rdrdz

)1/2 (6.28)

which satis�es:

ˆ
n2(r)umj(r) · u(r) dr = δmm′δjj′ (6.29)

The di�erent eigenmodes are not coupled beacuse they are orthogonal. However, if some perturbation acts

on the medium, this is no longer holds. Here, only χ(3), thermal and free carrier perturbations are considered

to act at the same time. The χ(3) tensor, being of the fourth rank, couples four waves. As reported in Eq.2.1,

thermal and free carrier are instead perturbations of the linear susceptibility χ(1), so they are described by a

second rank tensor, and thus couple only two waves. It is then su�cient to write the total electric �eld E as

the sum of four waves Em for deriving the coupled amplitude equations. These waves will be labelled by the

subscripts m = 1, 2, 3, 4. In principle, each of these subscripts can be associated to a di�erent combination

of radial and azimuthal mode numbers m and j. The perturbation δP to the polarization can be written as

the sum of two contributions, one arising from thermal and free carrier e�ects, indicated as δPL, and one

due to the χ(3) nonlinearity, indicated as δPNL. These are given by:

δPL = 2ε0n(∆nth + ∆nfc)
∑
m

(Em + c.c) (6.30)

δPNL = 3ε0χ
(3)
∑
mnl

(EmE
∗
nEl + c.c) (6.31)

where ∆nth and ∆nfc represent the refractive index perturbations induced by thermal and free carrier

e�ects, whose expressions are given by Eq.2.1. Each of the subscripts m,n, l spans from 1 to 4. In writing

Eq.6.31, the term ε0χ
(3)
∑
mnlEmEnEl has been neglected because it is usually o� resonance with any of

the eigenfrequecies of the resonator, so it does couple to any of the travelling waves, neither generates new

frequencies. Furthermore, the value of the χ(3) considered in Eq.6.31 is an average of the projected tensor

components along the radial direction (TE modes are considered). The �eld E satis�es the nonlinear wave

equation: (
∇2 − n(r)

c2
∂2

∂2t

)
E(r, t) = µ0

∂2(δPL + δPNL)

∂2t
(6.32)

Due to this fact, the waves Em can not be written as in Eq.6.25, since they are not solution of Eq.6.24.

However, if the perturbation δP is small, it is possible to assume that only the amplitudes Am are altered,

and replace them with slowly varying envelopes Am(t). These have the property that d2Am(t)
dt2 � ω̄2

mAm.

By multiplicating both sides of Eq.6.32 by u∗qe
−iω̄qt, by integrating over all the volume, and by using the
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orthogonality relation in Eq.6.29, one �nds:

dAq(t)

dt
=
iµ0c

2

ω̄q
e−iω̄qt

∂2

∂2t

ˆ
u∗q(r)

(
δPL + δPNL

)
dr (6.33)

The next step is to insert the expressions for the linear and nonlinear perturbations δPL and δPNL, given

by Eq.6.30 and Eq.6.31, into Eq.6.33, which results in the equation of motion:

dAq(t)

dt
= −i ω̄qAq

n0

(
¯∆nfc,q + ∆̄nth,q

)
− i 3χ(3)

8n4
0ωq

∑
mnl

(ω̄m − ω̄n + ω̄l)
2

Vqmnl
AmA

∗
nAle

i∆ωqmnlt (6.34)

where n0 is the refractive index of the core. In Eq.6.34, the following de�nitions have been used:

¯∆nfc,q =

´
wg
n2(r, z)∆nfc(r, z)|uq(r, z)|2 drdz´

n2(r, z)|uq(r, z)|2 drdz
(6.35)

¯∆nth,q =

´
wg
n2(r, z)∆nth(r, z)|uq(r, z)|2 drdz´

n2(r, z)|uq(r, z)|2 drdz
(6.36)

1

Vqmnl
=

´
wg n2(r, z)u∗

q(r, z)um(r, z)u∗
n(r, z)ul(r, z) drdz

Ltot
[(´

n2(r, z)|uq(r, z)|2 drdz
) (´

n2(r, z)|um(r, z)|2 drdz
) (´

n2(r, z)|un(r, z)|2 drdz
) (´

n2(r, z)|ul(r, z)|2 drdz
)]1/2
(6.37)

∆ωqmnl = ω̄m − ω̄n + ω̄l − ω̄q (6.38)

where Ltot is the resonator perimeter. In deriving Eqs.6.35, 6.36, 6.37, the perturbation is assumed to be

localized within the core of the waveguide, and the approximation
´
f(r, z) rdrdφdz ≈ Ltot

´
f(r, z) drz (here

f(r, z) is an arbitrary function of the coordinates r and z) has been used. The quantity in Eq.6.37 is called

the e�ective modal volume of FWM. Eq.6.34 can be cast in an equivalent form in which the amplitudes Aq

are replaced by the energy amplitudes Uq. These are de�ned in such a way that their modulus square give the

total electromagnetic energy stored inside the resonator. The relationship between Aq and Uq can be derived

by considering that the energy density ρq is given by [203] ρq = 1
2ε0n

2|Eq|2, so the total energy stored inside

the resonator is |Uq|2 =
´
ρqdr. By inserting into this expression the one for Eq , given by Eq.6.25, one gets:

|Uq|2 =
1

2
ε0|Aq|2

ˆ
n2(r)|uq(r)|2dr =

1

2
ε0|Aq|2 (6.39)

where the ortogonality relation in Eq.6.29 has been used. From Eq.6.39 it comes out that the quantities Aq

and Uq are related by:

Aq =

√
2

ε0
Uq (6.40)

Expressed as a function of the energy amplitude Uq, Eq.6.34 has the form:

dUq
dt

= −i ω̄qUq
n0

(
¯∆nfc,q + ∆̄nth,q

)
− i
(
cn2

n2
0ω̄q

+ i
βTPAc

2

2n0ω̄2
q

)∑
mnl

(ω̄m − ω̄n + ω̄l)
2UmU

∗
nUle

i∆ωqmnlt

Vqmnl
(6.41)

in which the real and the imaginary part of the χ(3) tensor have been expressed in terms of the nonlinear

coe�cient n2 and the TPA coe�cient βTPA using the relation in Eq.1.19. Up to now, the resonator has been

considered an isolated system. In order to excite the optical modes, one has to couple the resonator to an
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external source. This can be accomplished, for example, by placing a straight waveguide in close proximity

to the waveguide of the resonator. At the same time, the energy of the resonator can leak into the waveguide

with a characteristic decay constant τext. It can be demonstrated that the rate η with which energy is

coupled from the waveguide into the resonator is related to τext by η =
√

2
τext

[233, 101]. If the exciting �eld

is written as Pinc = Pqe
iωqt, where ωq is the laser frequency and |Pq|2 is the incoming optical power in the

bus waveguide, the right hand side of Eq.6.41 gets one more term, written as ηqPqe
i(ωq−ω̄q)t (the di�erence

ωq − ω̄q at the exponential comes from the multiplication by the factor u∗qe
−iω̄qt, which has been done to

shift from Eq.6.32 to Eq.6.33). This term forces Uq to oscillate at the frequency ωq − ω̄q . In this way, one

can write the internal energy as Uq = Ũq(t)e
i(ωq−ω̄q)t, in which Ũq(t) is a slowly varying envelope. In chapter

6, two laser �elds, placed in proximity of two di�erent resonance orders, are used to excite the resonator.

The �rst is called the pump laser, it has a frequency ωp and it carries a power |Pp|2. The second is the idler

laser, it has a frequency ωi and it carries a power |Pi|2 � |Pp|2. By virtue of the FWM term on the right

hand side of Eq.6.41, new frequencies are generated inside the resonator. The FWM process of interest is

the partially degenerate one in which two pump photons annihilates to create a signal and an idler photon.

Therefore, two of the four coupled waves represent the pump, one indicates the signal and one the idler. The

source term for the signal is proportional to U2
pU
∗
i e
i∆ωipspt, which then oscillates as ei(2ωp−ωi−ω̄s)t (the fact

that Up(i) evolves in time as Ũp(s)e
i(ωp(s)−ω̄p(s))t has been used). The signal is generated at ωs = 2ωp − ωi.

The �nal set of equations for the pump, the signal, and the idler energy amplitudes are:

dŨp(t)

dt
= i (ω̄p(1−∆p(t))− ωp) Ũp(t)−

1

τtot,p(t)
Ũp(t)− 2iγRpipsŨi(t)Ũs(t)Ũ

∗
p (t) + i

√
2

τext,p
Pp (6.42)

dŨs(t)

dt
= i (ω̄s(1−∆s(t))− ωs) Ũs(t)−

1

τtot,s(t)
Ũs(t)− 2iγRspipŨ

2
p (t)Ũ∗i (t) + i

√
2

τext,s
Ps (6.43)

dŨi(t)

dt
= i (ω̄i(1−∆i(t))− ωi) Ũi(t)−

1

τtot,i(t)
Ũi(t)− 2iγRipspŨ

2
p (t)Ũ∗s (t) (6.44)

The following de�nitions have been adopted:

∆k =
σFCD
n0

¯∆Nk +
1

n0

dn

dT
∆̄Tk + γRkkkk|Ũk|2 + 2γRkkjj |Ũj |2 + 2γRkkll|Ũl|2 (6.45)

1

τtot,k(t)
=

1

τTPA,k(t)
+

1

τFCA,k(t)
+

2

τext,k
+

1

τ0,k
(6.46)

where the indexes k 6= l 6= j can indicate the pump, the signal or the idler. In Eqs.6.45-6.46, the following

quantities have been de�ned:

∆̄Nk =

´
wg
n(r, z)2|uk(r, z)|2∆N(r, z) drdz´

n(r, z)2|uk(r, z)|2 drdz
; ∆̄Tk =

´
wg
n(r, z)2|uk(r, z)|2∆T (r, z) drdz´

n(r, z)2|uk(r, z)|2 drdz
(6.47)

1

τTPA,k
= γIkkkk|Ũk|2 + 2γIkkjj |Ũj |2 + 2γIkkll|Ũl|2;

1

τFCA,k
=
σFCAc

2n0
∆̄Nk;

1

τ0,p
= αkvg,k (6.48)
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γRjklr =
cn2

n2
0Vjklr

; γIjklr =
βTPAc

2

2n2
0Vjklr

(6.49)

Losses associated with scattering of radiation from the sidewalls roughness have been taken into account by

the inclusion of the decay time τ0, which is inversely proportional to the linear attenuation coe�cient αk and

to the group velocity vg,k [117].

Rate equation for temperature

The resonator heats as a consequence of the absorbed optical power Pabs. The latter can be computed as the

decay rate of the internal energy d|Ũ |2
dt . Since |Ũ |2 = Ũ Ũ∗, the decay rate is given by dŨ

dt Ũ
∗ + dŨ∗

dt Ũ , which

can be computed starting from one of the Eqs.6.42, 6.43, 6.44. This gives:

d|Ũk|2

dt
= −|Ũk|2

2

τtot,k(t)
(6.50)

where k can label the pump, the signal or the idler. The total absorbed power Pabs is the sum of the decay

rates of the pump, the signal and the idler waves:

Pabs(t) = |Ũp|2
2

τtot,p(t)
+ |Ũs|2

2

τtot,s(t)
+ |Ũi|2

2

τtot,i(t)
(6.51)

The resonator can also exchange heat with the external environement by conduction through the Silica

cladding. This occurs with a characteristic decay time τth. Due to the quite high thermal conductivity of

Silicon, the temperature distribution inside the resonator is approximately uniform. This is used to write

the modal average temperature ∆̄T as ∆̄T k = Γk∆T , in which Γk is the modal con�nement factor de�ned

in Eq.1.2. In this way, it is su�cient to track the evolution of the quantity ∆T to express the thermo optic

frequency shift in Eq.6.45. The equation of motion for the temperature is then:

d∆T

dt
= −∆T

τth
+
Pabs(t)

Mrescp
(6.52)

where the mass of the resonator Mres and the speci�c heat at constant pressure cp have been introduced.

Rate equations for free carriers

Free carriers are generated inside the resonator as a consequence of Two Photon Absorption and Cross

Photon Absorption (XPA). The plasma carrier frequency shift in Eq.6.45 is related to the local free carrier

concentration ∆N(r). Then, one has to derive a relation between the local TPA and XPA absorbed power

and ∆N(r). By looking at Eq.6.50, one can notice that the TPA and XPA decay rates can be rewritten as:

d|Ũk|2

dt
=

ˆ
(PTPA,k(r) + PXPA,k(r)) dr (6.53)

where the local TPA and XPA absorbed powers PTPA,k(r) and PXPA,k(r) are given by:

PTPA,k(r) = |Ũk|4
βTPAc

2n2(r)|uk(r)|4

L2
tot

(´
n2|uk(r, z)|2 drdz

)2 (6.54)
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PXPA,k(r) = c2βTPAn
2(r)

(
|Ũk|2|Ũj |2

|uk(r)|2|uj(r)|2

L2
tot

(´
n2|uk(r, z)|2 drdz

) (´
n2|uj(r, z)|2 drdz

)+

= +2|Ũk|2|Ũi|2
|uk(r)|2|ul(r)|2

L2
tot

(´
n2|uk(r, z)|2 drdz

) (´
n2|ul(r, z)|2 drdz

)) (6.55)

where the subscripts k 6= j 6= l can designate the pump, the signal or the idler. When a concentration

∆N of free carriers enstablishes above equilibrium, electron-hole recombination occurs to restore the initial

concentration. The recombination rate is described by a characteristic free carrier lifetime τfc. The local free

carrier concentration ∆N(r) is a balance between generation and recombination:

d∆Nk(r, t)

dt
= −∆Nk(r, t)

τfc
+
PTPA,k(r)

2~ωk
+
PXPA,kj(r)

~(ωk + ωj)
+
PXPA,kl(r)

~(ωk + ωl)
(6.56)

where PXPA,kj and PXPA,kl indicate, respectively, the �rst and the second term on the right hand side of

Eq.6.55. By performing a modal averaging on ∆Nk, the following equations of motions are obtained:

d∆̄Np

dt
= − ∆̄Np

τfc
+
c2βTPA

2n2
0~

(
Γppp|Ũp|4

ωpV 2
ppp

+
Γssp|Ũs|4

ωsV 2
ssp

+
Γiip|Ũi|4

ωiV 2
iip

+
2Γpsp|Ũp|2|Ũs|2

(ωp + ωs)V 2
psp

+
2Γppp|Ũp|2|Ũi|2

(ωp + ωi)V 2
pip

+
2Γsip|Ũs|2|Ũi|2

(ωs + ωi)V 2
sip

)
(6.57)

d∆̄Ns

dt
= − ∆̄Ns

τfc
+
c2βTPA

2n2
0~

(
Γpps|Ũp|4

ωpV 2
pps

+
Γsss|Ũs|4

ωsV 2
sss

+
Γiis|Ũi|4

ωiV 2
iis

+
2Γpss|Ũp|2|Ũs|2

(ωp + ωs)V 2
pss

+
2Γpis|Ũp|2|Ũi|2

(ωp + ωi)V 2
pis

+
2Γsis|Ũs|2|Ũi|2

(ωs + ωi)V 2
sis

)
(6.58)

d∆̄N i

dt
= − ∆̄N i

τfc
+
c2βTPA

2n2
0~

(
Γppi|Ũp|4

ωpV 2
ppi

+
Γssi|Ũs|4

ωsV 2
ssi

+
Γiii|Ũi|4

ωiV 2
iii

+
2Γpsi|Ũp|2|Ũs|2

(ωp + ωs)V 2
psi

+
2Γpii|Ũp|2|Ũi|2

(ωp + ωi)V 2
pii

+
2Γsii|Ũs|2|Ũi|2

(ωs + ωi)V 2
sii

)
(6.59)

with the de�nitions:

Γjkl =

´
wg
n6(r, z)|uj |2|uk|2|ul|2 drdz´
n6(r, z)|uj |2|uk|2|ul|2 drdz

(6.60)

1

V 2
jkl

=

´
n6(r, z)|uj |2|uk|2|ul|2 drdz(´

n2(r, z)|uj |2 drdz
) (´

n2(r, z)|uk|2 drdz
) (´

n2(r, z)|ul|2 drdz
) (6.61)
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Appendix B: Linear and nonlinear

refractive index changes in straight

nanophotonic waveguides

This appendix quanti�es the relation between a change in the refractive index ∆n in the material, and a

change ∆neff of the e�ective index in the waveguide. The straight waveguide shown in Fig.1.12 has modal

solutions which can be expressed as:

E0j(x, y, z, t) =

√
Z0P0

A0
e0j(x, y)ei(β0jz−ωt) + c.c (6.62)

H0j(x, y, z, t) =

√
P0

Z0A0
h0j(x, y)ei(β0jz−ωt) + c.c (6.63)

where E0j is the electric �eld, e0j its transverse pro�le (the same holds for H0j and h0j , which refer to the

magnetic displacement), Z0 the vacuum impedance, P0 the power carried by the mode and A0 the area of

the core. The �elds in Eq.6.62-6.63 are normalized in such a way that:

1

4A0

ˆ (
e0j × h∗0j + e∗0j × h0j

)
· ẑ dxdy = 1 (6.64)

which implies that the �ux of the Poyinting vector S = 1
2Re(E0j ×H0j) on the xy plane (i.e., the power)

gives:

1

2

ˆ
Re(E0j ×H∗0j) · ẑ = P0 (6.65)

When a perturbation δP to the polarization P occurs, and this depends only on the transverse coordinates,

the modal solutions are expressed as:

Ej(x, y, z, t) =

√
Z0P0

A0
ej0(x, y)uj(z)e

i(βjz−ωt) + c.c (6.66)

Hj(x, y, z, t) =

√
Z0P0

A0
hj0(x, y)uj(z)e

i(βjz−ωt) + c.c (6.67)

where the slowly varying envelope uj(z) has been introduced. This satis�es
d2uj(z)
d2z � β2

0juj . In what follows,

the waveguide will be assumed to support only the fundamental mode, so the subcript j will be dropped.

The set of solutions (E0,H0) and (E,H) can be demonstrated to satisfy [53]:
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Appendix B

Origin ∆n

Thermo optic dn
dT ∆T (x, y)

Free carrier dispersion
(
σFCD + i c2ωσFCA

)
∆N(x, y)

Linear electro optic χ(2)·EDC
2n0

Qudratic electro optic 9χ(3)·EDCEDC
16n0

Table 6.6: Bulk refractive index changes associated to di�erent physical quantities.

d

dz

ˆ
(E∗0 ×H + E×H∗0) · ẑ dxdy = iω

ˆ
δP ·E∗0dxdy (6.68)

By inserting the expressions for E0,H0,E and H into Eq.6.68, and by using the orthogonality relation in

Eq.6.64, one �nds:

du(z)

dz
+ i(β − β0)u(z) =

iω

4P0

ˆ
δP ·E∗0 dxdy (6.69)

The expression for δP depends on the physical mechanisms which are inducing the refractive index change.

� Thermo optic shift. If the change in polarization δP is induced by a temperature variation ∆T (x, y),

one has δP(x, y) = 2ε0n0∆n(x, y)E = 2ε0n0
dn
dT ∆T (x, y)E.

� Free carrier dispersion. If the change in polarization δP is induced by a variation ∆N(x, y) of the

free carrrier concentration (assumed electrons, for simplicity), one has: δP(x, y) = 2ε0n0∆n(x, y)E =

2ε0n0

(
σFCD + i c2ωσFCA

)
∆N(x, y)E.

� Linear electro optic e�ect. In this case, the change in polarization δP is given by δP = ε0χ
(2) ·EE. The

electric �eld is the sum of an optical �eld Eω and of a static �eld EDC . By inserting the expression

(6.66) for the electric �eld Eω, and by keeping only the terms which evolve in time as e−iωt, one gets

δP = ε0χ
(2) ·EωEDC .

� Quadratic electro optic e�ect. In this case, the change in polarization δP is given by δP = ε0χ
(3) ·EEE.

The electric �eld is the sum of an optical �eld Eω and of a static �eld EDC . By inserting the expression

(6.66) for the electric �eld Eω, and by keeping only the terms which evolve in time as e−iωt, one gets

δP = 9
8ε0χ

(3) ·EωEDCEDC .

In all the cases described above, the perturbation δP can be written in the form δP = 2ε0n0∆n ·E, in which

the refractive index change ∆n (generally a second second rank tensor) can assume the di�erent expressions

indicated in Table 6.6.

By inserting the expression for δP into Eq.6.69, and by using the relation [53]:

Z0

A0
=

2ng
cε0
´
n2(x, y)|e(x, y)|2 dxdy

(6.70)

one �nds:

du(z)

dz
= i
(
β − β0 +

ωng
c
ξ
)
u(z) (6.71)

where the parameter ξ is de�ned as:

ξ =
n0

´
∆n(x, y) · e(x, y)e∗(x, y) dxdy´
n2(x, y)|e(x, y)|2 dxdy

(6.72)
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Origin Refractive index shift E�ective index shift

Thermo optic dn
dT ∆T (x, y)

ng
n0

dn
dT

´
wg

n2(x,y)∆T (x,y)|e(x,y)|2 dxdy´
n2(x,y)|e(x,y)|2 dxdy

Free carrier dispersion
(
σFCD + i c2ωσFCA

)
∆N(x, y)

ng
n0
σFC

´
wg

n2(x,y)∆N(x,y)|e(x,y)|2 dxdy´
n2(x,y)|e(x,y)|2 dxdy

Linear electro optic χ(2)·EDC
2n0

ng
2n2

0

´
wg

n2(x,y)χ(2)·EDCe(x,y)e(x,y) dxdy´
n2(x,y)|e(x,y)|2 dxdy

Quadratic electro optic 9χ·EDCEDC
16n0

9ng
16n2

0

´
wg

n2(x,y)χ(3)·EDCEDCe(x,y)e(x,y) dxdy´
n2(x,y)|e(x,y)|2 dxdy

Table 6.7: Summary of the relations between the bulk refractive index changes and the associated e�ective
index variations. The quantity σFC = σFCD + i c2ωσFCA has been introduced to compact the notation.

The solution of Eq.6.71 is u(z) = u0e
iβ′z, with β′ = β − β0 +

ωng
2c ξ , which, if inserted into Eq.6.66, gives:

Ej(x, y, z, t) =

√
Z0P0

A0
ej0(x, y)u0e

i((β0+∆β)z−ωt) + c.c (6.73)

where ∆β =
ωng
c ξ. Eq.6.73 states that if the bulk refractive index is perturbed by a quantity ∆n(x, y), whose

expression is given in Table 6.6, the propagation constant of the mode changes by a quantity ∆β. Since the

latter is related to the e�ective index through ∆β = ω
c ∆neff , it is possible to conclude that ∆neff = ngξ.

Table 6.7 summarizes the di�erent expressions for ∆neff for the cases of thermo optic shift, free carrier

dispersion, linear electro optic e�ect and quadratic electro optic e�ect.

In deriving the expressions reported in Table 6.7, the refractive index perturbation ∆n(x, y) has been assumed

localized within the core of the waveguide.
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