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A B S T R A C T

When a second-order phase transition is crossed at finite speed, do-
mains with independent order parameters can appear in the sys-
tem, with the consequent formation of defects at the domain bound-
aries. The Kibble–Zurek theory provides a description for this uni-
versal phenomenon, which applies to many different systems in na-
ture, and it predicts a power-law dependence of the defect density
on the quench rate. This thesis reports on the results of the exper-
imental study of the Kibble–Zurek mechanism in elongated Bose–
Einstein condensates of atomic sodium gases, following the obser-
vations on the spontaneous formation of defects after temperature
quenches across the BEC transition. The power-law scaling of the de-
fect number with the quench speed was observed and characterized
for the first time in ultracold gases. The characterization of the den-
sity and phase profiles of the defects allowed their identification as
solitonic vortices, representing the first direct experimental evidence
for this kind of long living excitation, which sets a link between soli-
tons and vortices. The measurements reported in this thesis provide
a novel approach to the study of the critical phenomena happening
at phase transitions, and introduce to the possibility of exploring the
turbulent dynamics of quenched systems through the spontaneous
production of solitonic vortices.
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I N T R O D U C T I O N

Second-order phase transitions are ubiquitous phenomena in nature,
and are intrinsically linked with the universal laws of physics. They
occur with continuous changes of the fundamental properties of sys-
tems, whose description can be made in terms of transformations
from disordered phases to ordered ones. Below the transition point of
a second-order phase transition the system can be described by means
of an order parameter, whose phase is randomly chosen through
spontaneous symmetry breaking. The fact that the order parameter
becomes finite in the whole system at the transition crossing reflects
in long-range fluctuations characterized by a divergence of the cor-
relation length, hence demonstrating the criticality of the system at
the phase transition. The study of second-order phase transitions ac-
quires a fundamental importance in many fields of physics, since the
description of the singularities in many thermodynamic quantities at
the critical point can be done in terms of universal power laws and
critical exponents, which are common to different systems sharing
the same universality class.

Analogously to the correlation length, the relaxation time diverges
at the transition. This implies that, when the critical point is crossed at
a finite rate, the transition happens in a nonadiabatic regime, and con-
sequently the dynamical properties of the system freeze in an interval
around the transition point. This, in combination with the causality
principle that sets the limit for the velocity at which information can
travel in the system, can lead to the formation of independent phase
domains, reflecting the local choice of the phase of the order param-
eter. Then, when the system relaxes and the phase domains merge,
defects can appear at the domain boundaries. A model of this uni-
versal phenomenon is provided by the Kibble–Zurek theory (Kibble,
1976; Zurek, 1985), which was initially introduced in the context of
cosmology, but subsequently generalized to systems quenched across
a generic second-order phase transition.

The Kibble–Zurek theory provides quantitative predictions for the
defect number scaling with the quench speed (del Campo et al., 2014),
whose measurement is particularly intriguing since it represents an
experimentally accessible way to test the universal theories on phase
transitions and critical exponents. The results of the Kibble–Zurek
theory apply both to homogeneous and inhomogeneous systems (del
Campo et al., 2013), and both to classical and quantum phase transi-
tions (Zurek et al., 2005). So far experimental evidences of the Kibble–
Zurek mechanism were reported in experiments with many different
systems, such as superfluid helium-3 (Bäuerle et al., 1996; Ruutu et
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2 introduction

al., 1996), nonlinear optical systems (Ducci et al., 1999), thin-film su-
perconductors (Carmi et al., 1999; Kirtley et al., 2003), annular Joseph-
son junctions (Carmi et al., 2000; Monaco et al., 2006), ferromagnetic
spinor BECs (Sadler et al., 2006), multiferroic crystals (Chae et al.,
2012), atomic Mott insulators (Chen et al., 2011; Braun et al., 2015),
and ion chains (Pyka et al., 2013; Ulm et al., 2013).

Other systems which were predicted to be ideal for the study of
the Kibble–Zurek mechanism are ultracold gases undergoing Bose–
Einstein condensation (Kibble, 2007; Zurek, 2009; del Campo et al.,
2011). In fact experiments with dilute atomic gases are typically per-
formed in clean environments, with a high control over the exper-
imental parameters at the transition. Moreover Bose–Einstein con-
densates support different kinds of phase defects, such as solitons
and vortices, which can be directly detected with imaging techniques.
Within this framework, the spontaneous formation of vortices after
fast temperature quenches was already observed in oblate conden-
sates (Weiler et al., 2008), but the defect number scaling versus the
quench time was never reported before using atomic gases.

In this thesis I present the most important results obtained during
my doctorate at the laboratory of ultracold gases of the University
of Trento, mainly related to the study of the spontaneous formation
of defects in elongated Bose–Einstein condensates of sodium. In our
inhomogeneous system we have characterized the defect number at
different quench speeds, measuring a power-law scaling as predicted
by the Kibble–Zurek mechanism. This measurement, the first one in
ultracold gases, was performed by varying the evaporation cooling
rate over a wide interval, and by directly observing the defects with
absorption imaging after long ballistic expansion. Our results confirm
that atomic Bose–Einstein condensates represent a powerful testbed
for exploring the critical phenomena occurring at phase transitions,
and they inspired other intriguing studies on the Kibble–Zurek mech-
anism, such as recent experiments with three-dimensional (Navon et
al., 2015) and quasi-two-dimensional homogeneous systems (Chomaz
et al., 2015).

The thesis is organized as follows.

• In the first chapter I will introduce the main results of the Kibble–
Zurek theory, in particular regarding the predictions about the
defect number scaling with the quench parameters. I will also
provide a theoretical background for the phase transition that
is object of study in our case, which is Bose–Einstein condensa-
tion.

• In the second chapter I will describe our experimental apparatus
for the production of Bose–Einstein condensates of sodium that
I contributed to build, as well as the techniques for the real-
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ization of the experiments presented in the following chapters
(Lamporesi et al., 2013a).

• In the third chapter I will present the results of our first obser-
vations on the spontaneous formation of defects in condensates
after fast temperature quenches (Lamporesi et al., 2013b). The
measurement of a power-law scaling for the defect number as a
function of the quench speed represents one of the first tests for
the Kibble–Zurek mechanism in ultracold gases.

• In the fourth chapter I will present the experimental and numer-
ical characterization of the long living defects forming in our
system, which allowed their identification as solitonic vortices
(Donadello et al., 2014; Tylutki et al., 2015). These represent the
first direct observations of solitonic vortices in Bose–Einstein
condensates, the defects which set a link between vortices and
solitons in elongated systems.

• Finally, in the fifth chapter I will present the additional measure-
ments of the defect number scaling that we performed with the
aim of studying the Kibble–Zurek mechanism in different con-
finement regimes. I will also discuss the role of the post-quench
dynamics of defects, as suggested by the observation of differ-
ent evolution paths for solitonic vortices (Serafini et al., 2015).
The latter may play a key role to determine the departure from a
simple power-law scaling as we observe for very fast quenches.





1 T H E O R E T I C A L B A C KG R O U N D

Phase transitions are intriguing phenomena of nature, occurring with
important transformations in the properties of physical systems. In
section 1.1 I will introduce the particular class of continuous phase
transitions. In general an adiabatic description of the system is not
valid if this kind of transition is crossed at a finite speed: indepen-
dent phase domains can form in the system, with the possible con-
sequent creation of topological defects. A universal treatment of this
phenomenon is given within the Kibble–Zurek theory, whose predic-
tions will be presented in section 1.2.

A phase transition which is ideal for the study of the Kibble–Zurek
mechanism is Bose–Einstein condensation in dilute atomic gases. This
phenomenon, whose main characteristics will be discussed in sec-
tion 1.3, leads to a fascinating state of matter where quantum mechan-
ics manifests itself on a macroscopic scale, and where phase defects
can take different forms such as solitons or quantized vortices.

1.1 continuous phase transitions

A phase transition is the transformation of the equilibrium state of a
system from one phase to another, occurring with significant changes
in several of its physical properties. Phase transitions can be divided
into two classes, depending on the thermodynamic characteristics of
the considered system during the transformation (Huang, 1987).

first order A transition is of first order when it shows a disconti-
nuity for one of the first partial derivatives of the Gibbs free
energy. A typical example is the transition from liquid to gas
phases, where the discontinuity is manifested as latent heat.

second order A transition is of second order, also called continuous,
when all the first partial derivatives of the free energy are con-
tinuous during the transition. Examples are the paramagnetic to
ferromagnetic and the normal to superfluid transitions. A par-
ticular subset of this class of phenomena, not considered here,
are the infinite-order phase transitions, such as the BKT transi-
tion (Berezinskii, 1971; Kosterlitz et al., 1973).

In this discussion we focus on continuous phase transitions, where
the transformation is driven by the variation of a thermodynamic
variable, called control parameter, through a particular value, called

5



6 theoretical background

critical point. Let us consider as an example the ferromagnetic transi-
tion, where the control parameter is the temperature T and the criti-
cal point is the Curie temperature Tc. Above Tc there is no net mag-
netization in the system, which therefore results to be magnetically
isotropic. On the contrary, at low temperatures spontaneous magne-
tization occurs: the original symmetry is broken, since a preferred
direction, given by the magnetization vector, is chosen.

An additional parameter, called order parameter, can be introduced
in order to describe the state with lower symmetry below the critical
point. The order parameter is zero in the symmetric state above the
transition, while it takes a finite value in the ordered state. Concern-
ing the example of the ferromagnetic transition, the natural choice for
the order parameter is the magnetization, which represents a measure
of the magnetic order of the system.

Statistical fluctuations of the order parameter play a key role in
second-order phase transitions. Even if for quantum transitions these
fluctuations can be present also at zero temperature, here we focus on
classical transitions occurring at finite temperature and characterized
by thermal fluctuations. The length scale over which such fluctuations
are correlated is called correlation length, labeled with ξ. At the transi-
tion the correlation length diverges, reflecting the fact that below the
critical point the order parameter becomes finite and homogeneous
in the whole system. Considering the example of the ferromagnetic
transition, the behavior of the correlation length at the critical temper-
ature is described by a power-law scaling as follows:

ξ ∼ |T − Tc|
−ν . (1.1)

The divergence of ξ corresponds to singularities in other thermody-
namic quantities, such as the specific heat C, the magnetization* M,
and the susceptibility χ of the ferromagnet:

C ∼ |T − Tc|
−α (1.2)

M ∼ |T − Tc|
β (1.3)

χ ∼ |T − Tc|
−γ . (1.4)

This description can be generalized to other second-order phase tran-
sitions, and the exponents α,β,γ, . . . of the power laws describing the
singular thermodynamic properties at the transition point are called
critical exponents. It must be noted that the critical value of the con-
trol parameter Tc depends on the properties of the specific system,
whereas the critical exponents are determined only by the universal-
ity class of the transition, not by the microscopic details. Continuous
phase transitions sharing the same universality class are described by
equal scaling laws, even in very different kinds of systems.

* Note that the magnetization, i. e., the order parameter of the ferromagnetic transition,
follows a power-law scaling for T − Tc → 0−, while for T > Tc it is zero by definition.



1.1 continuous phase transitions 7

So far we considered a stationary system: the transition occurs adi-
abatically, and the system is point-by-point at its equilibrium while
varying the control parameter. However this adiabatic description is
not realistic in experiments, where the transition is crossed chang-
ing the control parameter at a finite speed. In order to describe the
dynamical properties of the system, one can introduce another char-
acteristic quantity called relaxation time, which sets the timescale for
the relaxation of the order parameter to its equilibrium value. Simi-
larly to the correlation length, the relaxation time τ scales with the
control parameter as a power law, diverging at the critical point of a
second-order phase transition:

τ ∼ |T − Tc|
−zν . (1.5)

As a result of the critical slowing down, i. e., the divergence of the
relaxation time, phase transitions in experiments are always crossed
in a nonadiabatic regime. Moreover it must be considered that the in-
formation about the choice of the order parameter cannot propagate
faster than the limit imposed by the causality principle, which is a
characteristic velocity of the specific system. Thus at the symmetry
breaking the order parameter can take different random values in dif-
ferent regions of the system. As sketched in figure 1.1, this may cause
the formation of independent phase domains, whose typical size is re-
lated to the correlation length near the transition. Topological defects
may consequently form at the domain boundaries after the transition
has been crossed, as a consequence of the merging of the different
phases at the system relaxation.

The mechanism that we just introduced was discussed by Tom W.
B. Kibble for a cosmological problem related to the theories for the
unification of fundamental interactions, predicting an original sym-
metry between those interactions at very high energies. In particular
Kibble proposed a description for the spontaneous symmetry break-
ing that might have occurred during the fast expansion and cooling
of the universe after the Big Bang, leading to the formation of cosmic
anisotropies (Kibble, 1976).

The idea of Kibble was subsequently extended by Wojciech H. Zurek
to second-order phase transitions in condensed matter systems, pro-
viding an important background for testing the theories for critical
phenomena on systems which are experimentally accessible (Zurek,
1985). This general description is usually referred as the Kibble–Zurek
mechanism (KZM). It predicts the formation of smaller phase domains
for faster quenches across the phase transition, and it describes the
scaling with the quench speed of the number of phase defects formed
after the transition crossing by means of simple analytical relations.
The most important results of the Kibble–Zurek (KZ) theory will be
presented in the next section.



8 theoretical background

time

co
n

tr
o
l 

p
a
ra

m
e
te

r

fast quench slow quench

critical point

disordered phase

ordered phase

Figure 1.1: In this picture of a continuous phase transition the initial con-
dition is a system above the transition point. When the control
parameter is reduced below its critical value, spontaneous sym-
metry breaking causes the order parameter to pick finite random
values, represented with arrows. Due to causality and to diver-
gence of the relaxation time, for fast quenches different regions
of the system can choose different values of the order parameter,
hence forming independent phase domains.

1.2 kibble–zurek mechanism

1.2.1 Homogeneous KZM

The KZM focuses on the spontaneous symmetry breaking occurring at
the critical value λc of a generic control parameter λ while driving a
continuous phase transition in a homogeneous system, starting from
λ > λc. Following the review of del Campo et al. (2014), we can define
the reduced control parameter as

ε =
λc − λ

λc
, (1.6)

a dimensionless variable which is zero at the critical point.
As introduced while discussing equations (1.1) and (1.5), a second-

order phase transition is characterized by the power-law divergence†

in the equilibrium correlation length ξ and the equilibrium relaxation
time τ, defined as

ξ(ε) =
ξ0
|ε|ν

(1.7)

τ(ε) =
τ0
|ε|zν

. (1.8)

† The results of the KZ theory do not fully apply to specific cases where the relax-
ation time of the system does not scale as a power law with the control parameter.
As an example, the infinite-order Berezinskii–Kosterlitz–Thouless transition needs a
revised description for the KZM (Jelić et al., 2011; Dziarmaga et al., 2014).
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Here ν and z are respectively the correlation and the dynamic critical
exponents, which depend only on the universality class of the tran-
sition, while ξ0 and τ0 are constants determined by the microscopic
properties of the specific system. From these quantities one can esti-
mate the characteristic speed of perturbations of the order parameter
in the system as

v =
ξ

τ
=
ξ0
τ0

|ε|ν(z−1) . (1.9)

The phase transition is generally crossed at a variable rate, defined
by the speed of the control parameter ε̇, the quench rate. If we consider
a quench that is linear in time, we can express the control parameter
around the critical point at t = 0 as

λ(t) = λc
(
1− ε(t)

)
, (1.10)

where the reduced parameter becomes

ε(t) =
t

τQ
(1.11)

for −τQ < t < τQ, defining the quench time as

τQ =
1

ε̇
. (1.12)

Therefore the quench time is the parameter characterizing the speed
of the transition and one of the relevant timescales for the KZM.

Following its definition, given in equation (1.8), the relaxation time
τ diverges at the critical point in t = 0. Starting from a high-symmetry
state, i. e., when t � 0 and τ is small, the spontaneous symmetry
breaking occurs while driving the system to cross the transition. Close
to the critical point the relaxation time increases: due to the critical
slowing down the dynamics of the transition freezes and the system
is no longer able to follow the variation of the control parameter. The
dynamics becomes adiabatic again for t� 0.

Within the approximation introduced by the KZM, the crossing of
a continuous transition is described by the presence of three distinct
regimes, as illustrated in figure 1.2. The frozen regime is the one during
which the relaxation time τ is larger than the time distance from the
transition point, expressed as |ε/ε̇|. The time for which the distance
from the transition equals the relaxation time is called freeze-out time
and labeled with t̂:

τ(t̂) ∼

∣∣∣∣ε(t̂)ε̇(t̂)

∣∣∣∣ . (1.13)

The system is considered frozen for |t| < t̂, adiabatic elsewhere.
Introducing ε̂ = ε(t̂), the relaxation time at the freeze-out can be

expressed as

τ̂ = τ(ε̂) =
τ0
|ε̂|νz

=
τ0τ

νz
Q

|t̂|νz
. (1.14)
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τ̂

−t̂ +t̂0 t

∣∣ε
ε̇

∣∣
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τ

slow quench

τ̂

−t̂ +t̂0 t
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adiabatic frozen adiabatic
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fast quench

Figure 1.2: Schematic representation of the timescales around the transition
at t = 0, where the relaxation time τ (red) diverges. In the KZ the-
ory the crossing between the adiabatic-frozen-adiabatic regimes
is approximated by the freeze-out time t̂, corresponding to the
instant where τ equals the time distance from the transition
(green). For a slow quench (left) the interval around the criti-
cal point where the dynamics is frozen is wider compared to
the case a fast quench (right).

From the definition τ̂ = t̂, the freeze-out time results to depend on the
critical exponents ν and z, the quench time τQ, and the characteristic
relaxation time τ0 introduced in equation (1.8):

t̂ ∼
(
τ0τ

zν
Q

) 1
1+zν . (1.15)

As a consequence of causality and of the frozen dynamics, different
regions of the system independently choose different values for the
order parameter while crossing the transition. The KZM predicts the
scaling with τQ of the average size of such domains as the correlation
length ξ at the freeze-out:

ξ̂ = ξ(ε̂) = ξ0

(
τQ

τ0

) ν
1+zν

. (1.16)

After the freeze-out the presence of independent phase domains
may lead to the formation of topological defects, arising from discon-
tinuities at the domain boundaries of the order parameter. Then the
density of defects n created in the homogeneous system would scale
with the quench time τQ as a power law:

n ∼
ξ̂d

ξ̂D
=

1

ξD−d
0

(
τ0
τQ

)(D−d) ν
1+zν

, (1.17)
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where the integers d and D are the dimensions of defects and phase
domains respectively‡. This prediction for n typically overestimates
the density of defects observed in numerical simulations and exper-
iments. For a better estimate a multiplicative factor f should be in-
troduced in the definition of ξ̂ in equation (1.16), with the value of f
being of the order of unity and depending on the specific model (del
Campo et al., 2014).

1.2.2 Inhomogeneous KZM

The theoretical derivations of the previous section were obtained con-
sidering a homogeneous system. A different approach is needed in
presence of an inhomogeneous external potential, as it is for the case
of many experiments with trapped gases, where the inhomogeneities
play a key role in the description of the KZM and further assumptions
must be introduced (Zurek, 2009; del Campo et al., 2011; del Campo
et al., 2013).

Let us take the example of a bosonic gas in a harmonic trap, un-
dergoing Bose–Einstein condensation with the temperature being the
control parameter. The main properties of this kind of system will be
object of section 1.3.1. Considering an elongated system with a cigar-
like shape, for simplicity we can restrict our attention to the spatial
dependence along the axial dimension (Ketterle et al., 1996b). In such
an inhomogeneous system above the transition point, the density of
the gas ρ depends on the position z along the trap axis, since at ther-
mal equilibrium the trap potential U maps the local gas density as

ρ(z) = ρ0 exp
(
−U(z)

kBT

)
, (1.18)

with kB being the Boltzmann constant, T the temperature of the gas,
and ρ0 the peak density. Therefore also the critical temperature Tc for
the condensation acquires a spatial dependence:

Tc(z) '
2π h2

mkB

(
ρ(z)

2.61

)2/3
, (1.19)

where m is the mass of the boson and  h is the reduced Planck con-
stant. For a simpler theoretical derivation one can assume that the
temperature T is uniform in the gas during the quench, even if this
condition may not be met experimentally. Following equation (1.10),
for a linear quench the temperature can be expressed as

T(t) = Tc(0)

(
1−

t

τQ

)
, (1.20)

‡ Considering the case of defects in a 3D superfluid, i. e., with D = 3, we have d = 1

for vortex lines and d = 2 for solitonic planes. In 1D systems solitons are point-like
defects, hence D = 1 and d = 0.
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where τQ is the quench time.
Despite the assumption of a uniform temperature in the gas, as a

consequence of the local nature of Tc the transition does not occur
simultaneously everywhere in the system. Different points will reach
the critical temperature at different instants of the quench: a front of
the transition can be identified as the boundary of that part of the
system which has undergone the transition at a given time. From
the definition ε(zF, t) = 0, the position transition front zF(t) can be
described with the following relation, derived from equation (1.20)
considering the condition for the transition T = Tc:

t

τQ
= 1−

Tc(zF)

Tc(0)
. (1.21)

Therefore the Bose–Einstein condensate (BEC) starts to form at z ∼ 0,
where the potential is deepest, and it spreads in the system with a
transition front velocity that can be calculated as

vF(z) =

∣∣∣∣dzFdt
∣∣∣∣ = Tc(0)

τQ

∣∣∣∣dTc(z)dz

∣∣∣∣−1 . (1.22)

We can observe that in general vF depends on the position in the trap,
and that it is proportional to the quench speed τ−1Q .

The finite value of the transition front velocity plays a key role in
inhomogeneous systems. If the quench is slow the condensate will
grow around the initial seed: the order parameter chosen at the be-
ginning, i. e., the BEC wave function at z = 0, will be spatially uniform
after that the transition has been crossed in the whole sample. On the
other hand, if the quench is fast the system can undergo the transition
at unconnected positions in the trap, growing independently around
local seeds and choosing random values of the order parameter. The
relevant quantity that must be compared with the front velocity vF
is the characteristic speed at which perturbations travel, already in-
troduced in equation (1.9). This is the maximum speed at which the
choice of the order parameter can be communicated, and at the freeze-
out it can be estimated as the velocity v̂, defined as the ratio between
the correlation length ξ̂ and the relaxation time τ̂ at ε̂, previously
defined in equations (1.16) and (1.14):

v̂ ' ξ̂
τ̂
=
ξ0
τ0

(
τ0
τQ

)ν(z−1)
1+νz

. (1.23)

The KZM is activated when the moving transition front locally ex-
ceeds the causal horizon set by v̂.

slow quench If vF < v̂ the condensate grows with a uniform or-
der parameter in the whole trap, and topological defects do not
form. Conversely it should be noted that the formation of de-
fects is always expected in the homogeneous case.
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fast quench If vF > v̂ symmetry breaking happens on a local scale.
This implies the formation of independent phase domains: simi-
larly to the homogeneous case, defects can appear in the system
at the boundaries between these domains, with a density which
depends on ξ̂.

The theoretical derivation of the defect number for the inhomoge-
neous KZM is not trivial, even given the approximations that have
been introduced. Here we report the result derived by Zurek (2009)
for the average total number of solitons formed after a temperature
quench in a cigar-shaped BEC trapped in a harmonic potential, scaling
as a power law of the quench time:

N ∼
2∆2

ξ20

(
τ0
τQ

) 1+2ν
1+νz

. (1.24)

Here ∆2 = 3kBT
2mω2z

, where ωz2π is the axial trapping frequency.

1.2.3 Defect number scaling

From equations (1.17) and (1.24) one can deduce that, for every second-
order phase transition in a generic system, the KZM predicts a power-
law scaling for the defect density n with the quench time τQ, a quan-
tity that can be measured in many experimental cases:

n ∝ τ−αQ . (1.25)

The predictions for the power-law exponent α are different for the ho-
mogeneous and inhomogeneous, specifically harmonic, cases, which
gives respectively

αhom = (D− d)
ν

1+ νz
(1.26a)

αharm = (D− d)
1+ 2ν

1+ νz
. (1.26b)

The power-law exponent α depends on the critical exponents ν and
z, whose values are not know a priori: in principle measurements on
the KZ scaling can be used to test the theories predicting their values.
Within this contest, for the universality class of interacting Bose gases
a first theoretical approach for the critical exponents can be a pure
mean-field calculation, giving ν = 1

2 and z = 2. Going beyond the
mean-field theory, the so-called F-model predicts ν = 2

3 and z = 3
2

(Hohenberg et al., 1977).
The exponent α of equation (1.26) depends also on the dimensional-

ity of the defects d and of the systemD. For solitons in 1D systems§ we

§ In principle solitons can be present also in 2D and 3D systems, characterized by the
same dimensionality factor (D− d) = 1. However there are theoretical and experi-
mental evidences of their instability in such systems.
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Table 1.1: Power-law exponent α of the KZ defect number scaling, calcu-
lated with equation (1.26) in different regimes. These results are
obtained considering the critical exponents predicted with the F-
model, ν = 2

3 and z = 3
2 (Hohenberg et al., 1977).

(D− d) αhom αharm

solitons 1 1/3 7/6

vortices 2 2/3 7/3

have (D− d) = 1, while vortices in 2D or 3D systems give (D− d) = 2.
The power-law exponents predicted for these cases are reported in
table 1.1 for the homogeneous and harmonic cases, considering the
values of ν and z from the F-model, since recent experiments with
ultracold gases seem to support this approach for the universality
class of a BEC (Donner et al., 2007; Navon et al., 2015; Chomaz et al.,
2015). Therefore, for a comparison between the KZ theory and mea-
surements on the defect number scaling, the confinement regime of
the system and the nature of defects must be known.

1.2.4 Experiments on the KZM

In his original paper Zurek proposed a condensed matter experiment
setting an analogy with Kibble’s theory for the formation of cosmic
defects (Zurek, 1985). In particular he considered the system of liq-
uid helium-4, where the phase transition from the normal to the su-
perfluid state is driven by a pressure quench in an annular geometry,
sketched in figure 1.3. In such a system the superfluid wave func-
tion can be taken as order parameter, and the causality is driven by
the speed of second sound. If the quench is fast enough independent
phase domains might be created in the superfluid, having a character-
istic size of the order of the correlation length. Defects in the form of
vortices are expected to form at the boundaries of the phase domains.
Zurek’s idea inspired many experimental works aimed to demon-
strate the predictions of the KZ theory (Kibble, 2007; del Campo et
al., 2014).

One of the first attempts to experimentally observe the KZM was
performed with nematic liquid crystals. The formation of random
disclinations, which are linear defects arising from the rotation of rod-
shaped molecules around an axis and directly visible as in figure 1.4,
was observed after fast temperature quenches in the liquid crystal
(Chuang et al., 1991). However the phase transition considered in this
experiment is of first order, hence the requirements for the application
of the KZ theory are not fully met.

The proposal of Zurek exploiting the superfluid transition in 4He,
whose phase diagram is reported in figure 1.5, was implemented in
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Figure 1.3: The experiment proposed by Zurek (1985) for the observation of
the KZM was based on the superfluid transition in 4He, consid-
ering a narrow annular geometry as sketched here (del Campo
et al., 2014). After fast quenches independent phase domains are
expected to form, having a typical size fixed by the correlation
length ξ̂.

Figure 1.4: Random defects formed in a nematic liquid crystal after a fast
temperature quench (Chuang et al., 1991).
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Figure 1.5: Pressure quenches across the normal to superfluid transition in
helium-4 were initially considered in order to observe the KZM

in experiments (Hendry et al., 1994).

an experiment described by Hendry et al. (1994). Even if the observa-
tion of vortices after rapid expansions suggested a possible agreement
with the expectations for the KZM, the results were considered incon-
clusive because of the presence of a residual flow turbulence, which
might have caused the formation of defects through other kinds of
mechanisms. A later experiment with an improved experimental de-
sign was not able to reproduce such defects, supporting the idea that
the first observations were in fact related to spurious artifacts (Dodd
et al., 1998). The absence of vortices was attributed to their short life-
time, causing the defects to decay and disappear from the system too
quickly to be observed.

Other cryogenic experiments were performed using the helium-3
isotope, whose superfluid phase supports vortices that are easier to
be detected than in 4He. A fast transition to the 3He – B phase was trig-
gered in two distinct experiments exploiting an exothermic nuclear
reaction (Bäuerle et al., 1996; Ruutu et al., 1996). Those experiments
were based on the heating of small portions of superfluid helium
above the critical temperature, caused by the absorption of neutrons.
These regions of helium in the normal phase are then rapidly cooled
back by the surrounding superfluid, a process that can lead to the
formation of random vortical filaments as represented in figure 1.6a.
The indirect detection of vortices was based on a calorimetry mea-
surement in the first experiment, and on a rotating cryostat in the sec-
ond one, sketched in figure 1.6b. The observations reported in both
studies were in agreement with the KZ model. However they were
able to provide only indirect proofs about the defect number scaling,
since the local heating associated to the nuclear reaction was almost
instantaneous.

Since the first experiments on liquid helium, some of the predic-
tions for the KZM were observed in many different systems, such as
nonlinear optical systems (Ducci et al., 1999), thin-film superconduc-
tors (Carmi et al., 1999; Kirtley et al., 2003), annular Josephson junc-
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(a) Formation of vortices in 3He (Bäuerle et
al., 1996).

(b) Rotating cryostat in the experi-
ment of Ruutu et al. (1996).

Figure 1.6: One of the first systems where the formation of defects predicted
by the KZM was observed, was helium-3 undergoing the super-
fluid transition, with quenches being triggered by nuclear reac-
tions.

Formation of defects

F

Quench
a bBreaking the symmetry

p/2

p/2

1–p

Figure 1.7: Sketch of the procedure for the quench of a Coulomb crystal
through the modification of the trapping potential, which can
lead to the formation of defects in the zigzag phase (Pyka et al.,
2013).

tions (Carmi et al., 2000; Monaco et al., 2006), ferromagnetic spinor
BECs (Sadler et al., 2006), multiferroic crystals (Chae et al., 2012), atomic
Mott insulators (Chen et al., 2011; Braun et al., 2015), and others.
Those observations seem to confirm the universality of the mech-
anism of random defect formation in systems crossing continuous
phase transitions with fast quenches, a situation that in general may
apply to many different physical systems. Some of the limits often
encountered in experiments are set by the possibility of tuning the
quench parameters and by the detection of defects.

The observation of defects formed via the KZM was reported also in
Coulomb crystals made of ion chains by Pyka et al. (2013) and Ulm et
al. (2013). These artificial systems show a structural phase transition
of second order between the linear ion chain and the zigzag phase,
driven by the variation of the trapping frequency. The formation of
kinks, i. e., irregularities in the zigzag chain directly visible as in fig-
ure 1.7, has been observed for fast quenches across this transition.
A good control of the quench speed allowed to measure the defect
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(a) Sketch of the formation of a vortex pair when
different phase domains merge.

(b) Images of BECs containing one (left and center)
and two (right) vortices.

Figure 1.8: Observation of vortices in a bosonic gas, spontaneously created
after fast temperature quenches across the BEC transition (Weiler
et al., 2008). After free expansion the defects are visible as dips in
the density profile imaged along the symmetry axis of an oblate
harmonic trap.

number scaling in a clear way. One possible drawback of those exper-
iments might be that the Coulomb crystals are typically composed
of a limited number of ions, with finite-size effects that cannot be
ignored. Moreover those systems are affected by kink losses, decay
processes that can alter the scaling measurement and that are only
partially overcome by the introduction of optical dissipative mecha-
nisms.

Dilute atomic gases undergoing Bose–Einstein condensation were al-
ready considered in the past as ideal candidates for testing the KZM

(Kibble, 2007). They are simple systems, whose experimental param-
eters, such as temperature and sample size, can be finely controlled
in clean environments. BECs can be produced in a variety of differ-
ent experimental conditions and geometries, and direct observations
of their properties are possible with several techniques such as ab-
sorption imaging. Within this framework, the creation of quantized
vortices via the KZM was observed by Weiler et al. (2008) in pancake-
shaped condensates, after fast temperature quenches performed with
evaporative cooling across the critical point of the BEC transition. As
it can be seen from figure 1.8, the randomly formed defects were di-
rectly visible in the density profile of the BEC after ballistic expansion.
However in that experiment a measurement of the defect number
scaling was not possible, since, due to experimental limitations, only
few evaporation rates were considered.

In our laboratory we observed the spontaneous creation of defects
via the KZM in a cigar-shaped BEC of sodium, and we measured for the



1.3 bose–einstein condensation 19

first time in ultracold gases a power-law scaling for the defect number
with the quench time (Lamporesi et al., 2013b). As it will be described
in chapter 3, this was possible thanks to the combination of imaging
techniques that allowed for a good defect number counting, up to
some units, and the possibility for the quench rate to be varied over
a wide interval using evaporative cooling. In the next section we will
introduce the principal characteristics of Bose–Einstein condensation,
the phase transition considered for the measurements that will be
presented in this thesis.

1.3 bose–einstein condensation

1.3.1 Properties of condensates

Bose–Einstein condensation is a phenomenon that was theoretically
predicted by Satyendra Nath Bose and Albert Einstein between 1924

and 1925. In his work Bose introduced a new statical model explain-
ing the black-body radiation in terms of photons, while Einstein ex-
panded it to the case of a gas of indistinguishable atoms, applying the
concepts proposed by Louis de Broglie for the wave nature of matter.
A Bose–Einstein condensate (BEC) is a system where a quantum state
is macroscopically occupied, showing intriguing characteristics such
as superfluidity, phase coherence and the possibility to observe effects
of quantum mechanics on a macroscopic scale.

The observation of the Bose–Einstein condensation in dilute atomic
gases was reported for the first time by Anderson et al. (1995) and
Davis et al. (1995), only some decades after its prediction, also thanks
to the laser and evaporative cooling techniques developed in the
meanwhile, which made accessible the temperature and density con-
ditions needed for the phase transition. A variety of experimental
techniques, e. g., exploiting the interaction of atoms with photons
or magnetic fields, allow for the manipulation of this novel state
of matter, which can be directly observed with different imaging
methods. Experiments with BECs in ultracold gases are performed in
clean environments, with a high control over many parameters of the
system, such as temperature, occupation of internal states, confine-
ment regime, and strength of atomic interactions (Ketterle et al., 1999;
Cohen-Tannoudji et al., 2011). Indeed BECs are ideal quantum simula-
tors for the study of problems belonging to many different fields of
physics.

The phenomenon of Bose–Einstein condensation can be understood
in a simplified picture as the transition from a classical to a quantum
regime for a gas of bosons, i. e., indistinguishable atoms with integer
spin obeying to the Bose–Einstein statistics. In general each particle
can be described as a quantum wave packet, having a characteristic
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Figure 1.9: Qualitative representation of different regimes for a gas of
bosons undergoing Bose–Einstein condensation (Ketterle et al.,
1999). At the critical temperature the extent of the single-particle
quantum wave packets becomes comparable with the average
distance between atoms: a macroscopic number of atoms will
condense in the ground state, forming a coherent state of matter
described by the BEC wave function.

extent of the order of the thermal de Broglie wavelength, which is de-
fined as

λdB =

√
2π h2

mkBT
, (1.27)

where T is the gas temperature andm is the atomic mass. As sketched
in figure 1.9, at high temperatures λdB is small compared to the in-
teratomic distance, and the gas behaves as an ensemble of classical
point-like particles. The value of λdB increases as the gas is cooled.
In particular at the critical temperature Tc the thermal wavelength
becomes of the order of the interatomic distance: hence a transition
occurs, with a macroscopic number of atoms condensing in the same
coherent quantum state at lowest energy.

Following the results derived in the book of Pitaevskii et al. (2016),
for an ideal gas of Nat atoms at uniform density ρ the condition for
Bose–Einstein condensation is

ρλ3dB = 2.61 . (1.28)

Consequently the critical temperature of the BEC transition can be ex-
pressed as

Tc =
2π h2

mkB

( ρ

2.61

)2/3
. (1.29)
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Figure 1.10: Condensed fraction of atoms as a function of temperature for a
uniform ideal gas of bosons. The number of atoms in the con-
densate becomes macroscopic below the critical temperature of
the BEC transition.

The number of atoms N0 in the condensate becomes macroscopic
below the critical temperature. As plotted in figure 1.10, in the ther-
modynamic limit the condensed fraction N0/Nat is zero for T > Tc,
while for T < Tc it grows following the relation

N0
Nat

= 1−

(
T

Tc

)3/2
. (1.30)

The number of atoms left in the non-condensed thermal fraction, i. e.,
Nat −N0, becomes negligible as the temperature approaches zero.

Going beyond the ideal gas model, the realistic case of a gas of
interacting particles confined in a trap should be treated including the
particle-particle interaction potential V and the external potential U
(Dalfovo et al., 1999). In terms of the second quantization formalism,
such a many-body quantum system is described by the field operator

Ψ̂(r, t) =
∑

i

Φi(r, t)âi , (1.31)

where âi is the annihilation operator for a particle in the state Φi.
During Bose–Einstein condensation a single state, labeled with Φ0,
becomes macroscopically and coherently occupied, with an occupa-
tion number given by N0. If the number of atoms Nat is big and if
the non-condensed fraction is negligible, as it happens at low temper-
atures, the fluctuations over N0 can be neglected and the operator Ψ̂
can be replaced by a classical complex field Ψ0, which is called the
macroscopic wave function of the condensate:

Ψ0(r, t) =
√
N0Φ0(r, t) = |Ψ0(r, t)|eiϕ(r,t) . (1.32)

The wave function Ψ0 plays the role of the order parameter of the
BEC transition. In fact, similarly to the magnetization in the ferromag-
netic transition that was introduced in section 1.1, Ψ0 is zero above



22 theoretical background

the critical point and it becomes finite as the temperature is lowered
below Tc, being proportional to

√
N0. The modulus squared of Ψ0

determines the density of particles in the condensate:

ρ(r) = |Ψ0(r)|
2 . (1.33)

The phase ϕ of the order parameter has a crucial importance for the
coherence properties of the condensate. The choice of a random value
of ϕ, happening at the transition, is linked to the phenomenon of
spontaneous symmetry breaking relevant in the context of the KZM.
Moreover the phase gradient contains information about the flow dy-
namics of the condensate, defining its velocity field, which can be
expressed as

v(r, t) =
 h

m
∇ϕ(r, t) . (1.34)

A further assumption can be done in the case of ultracold dilute
gases, where the interaction between atoms is short ranged and atomic
collisions can be described by a single real parameter, the s-wave scat-
tering length a. This means that the interaction potential V can be
replaced by an effective contact interaction, defined as

V(r− r ′) = gδ(r− r ′) , (1.35)

where δ is the Dirac delta function and g is the coupling constant,
expressed as

g =
4π h2a

m
, (1.36)

whose value is positive for repulsive interactions, negative for at-
tractive ones. Within the above hypotheses the evolution of the con-
densate wave function can be described with a particular case of
nonlinear Schrödinger equation, known as the Gross–Pitaevskii equa-
tion (GPE):

i h
∂

∂t
Ψ0 =

(
−

 h2∇2

2m
+U+ g|Ψ0|

2

)
Ψ0 . (1.37)

The GPE describes well BECs in the limit of low temperature T � Tc,
high number of particles Nat � 1, and diluteness ρ|a|3 � 1.

The balance between the kinetic energy and the effective interaction
energy fixes a characteristic length scale, called healing length, which
is defined as

ξl =

√
 h2

2mgρ
=

1√
8πρa

. (1.38)

This quantity sets the minimum length scale of density perturbations
in the condensate wave function, such as defects, and it increases for
weaker interactions and smaller particle densities.
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For a gas confined in a harmonic trap the external potential at a
given position r can be expressed as

U(r) =
1

2
m
(
ω2xx

2 +ω2yy
2 +ω2zz

2
)

, (1.39)

with ωi
2π being the trapping frequencies along the respective axes, la-

beled with i = x,y, z. Considering a trap with cylindrical symmetry
the description of the potential reduces to ω⊥ = ωy = ωz in the
radial plane and ω‖ = ωx along the symmetry axis. The trap can be
either spherical for ω‖ = ω⊥, cigar-shaped for ω‖ < ω⊥, or pancake-
shaped for ω‖ > ω⊥. The conditions for the 1D and 2D regimes can
be reached in tightly confined traps (Görlitz et al., 2001).

When the number of particles is sufficiently high the kinetic term
in the GPE can be neglected. The condition for the validity of this
approximation, which is referred as the Thomas–Fermi limit, is given
by

N0a

aho
� 1 , (1.40)

where aho is the harmonic oscillator length defined as

aho =

√
 h

mωho
, (1.41)

introducing the geometric mean of the trapping frequencies as

ωho = 3
√
ωxωyωz . (1.42)

In the Thomas–Fermi limit the atomic density of the condensate in the
ground state maps the harmonic potential, hence taking the shape of
an inverted parabola:

ρ(r) = max
(
µ−U(r)

g
, 0
)

. (1.43)

Here µ is the chemical potential, which represents the variation of the
total energy of the system when a single particle is added or removed.
The radii of the ellipsoid corresponding to the atomic cloud are called
Thomas–Fermi radii, defined as

Ri =

√
2µ

mω2i
(1.44)

for each axis i. Following the condition of normalization for equa-
tion (1.43) over the spatial extent of the condensate given by Ri, the
chemical potential can be expressed as

µ =
 hωho

2

(
15N0a

aho

)2/5
. (1.45)
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1.3.2 Defects in condensates

Bose–Einstein condensates in dilute gases at low temperatures are
described by the GPE, which was introduced in equation (1.37). Its
ground state solution is characterized by a uniform phase of the con-
densate wave function, and by a regular density profile mapping the
external potential. However the GPE also admits different stationary
solutions at higher energies, whose phase and density profiles are
more intricate. In particular we can talk about a defect of the conden-
sate when the many-body excitation results in a wave function with
a localized deviation from the ground state.

A special class of solutions of the GPE is represented by solitons
(Frantzeskakis, 2010). Considering the 1D solutions for systems with
repulsive interactions, a soliton is a localized density depletion, mov-
ing as a solitary wave at a constant velocity v while maintaining its
shape. Solitons are called dark when they are characterized by a com-
pete depletion in the density profile, corresponding to a discontinuity
in the phase equal to π: they appear as stationary defects with a typi-
cal size of the order of the healing length ξl. Conversely solitons are
called gray when they move at a finite velocity v, with a partial density
suppression and a shallower phase jump, as plotted in figure 1.11. In
fact, the minimum density in the solitonic plane and the phase jump
between the two sides of the system are respectively

ρ(0) = ρ0
v2

v2s
(1.46)

∆ϕ = 2 arccos
(
v

vs

)
, (1.47)

with vs being the speed of sound in the system and ρ0 the bulk atomic
density (Pitaevskii et al., 2016). The respective energy per unit of sur-
face of a soliton can be expressed as

εsol =
4

3
 hvsρ0

(
1−

v2

v2s

)3/2
. (1.48)

In experiments solitons can be artificially created in BECs by means
of phase imprinting techniques, where the phase jump is imprinted
using optical potentials with sharp profiles (Burger et al., 1999; Den-
schlag et al., 2000).

Solitons in 1D systems behave as stable point-like defects. The de-
scription of solitons can be extended to 2D and 3D systems, where
they appear as linear or planar defects respectively. In particular in
3D cigar-shaped systems the depleted solitonic plane minimizes its
surface taking an orientation perpendicular to the long axis in order
to reduce its total energy, calculated as the integral of the expres-
sion in equation (1.48) in the transverse plane. However, in the cases
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Figure 1.11: Profiles of normalized density (solid blue, left scale) and phase
(dashed red, right scale) for a gray soliton, plotted as a func-
tion of the relative spatial coordinate in a 1D system. Here we
consider a soliton moving at v = 0.4vs, where vs is the speed
of sound.

with dimensionality higher than one, solitons are unstable: both ex-
perimental and theoretical studies show that solitons suffer from dy-
namical instabilities, which cause their bending and evolution into
more stable structures, such as vortices or vortex rings, through a de-
cay phenomenon also known as snaking instability (Anderson et al.,
2001; Cetoli et al., 2013).

Quantized vortices are excited solutions of the GPE showing phase
circulation, which can be defined in 2D and 3D systems (Kasamastu
et al., 2009). The wave function of a vortex shows a local cylindri-
cal symmetry, with a phase profile displaying a continuous variation
form −π to +π while winding around the vortex axis, as represented
in figure 1.12. Following the definition of the velocity field given in
equation (1.34), this means that the gas rotates around the vortex core,
with a tangential velocity that decreases with the distance from the
axis. The density of the gas goes to zero at the singularity of the vor-
tex core, which in a 3D system appears as a linear depletion with a
radial size of the order of the healing length ξl. In an axially symmet-
ric system of radius R the excitation energy of the vortex scales as the
length of the nodal line L (Pitaevskii et al., 2016):

Evor = Lπρ
 h2

m
ln
(
1.46 R
ξl

)
. (1.49)

The description of vortices can be extended to even more complex
structures, such as vortex rings, i. e., defects where the nodal line is
closed in a circular configuration (Anderson et al., 2001).

The first experimental observations of quantized vortices in BECs

were reported in oblate systems with cylindrical symmetry. A vor-
tex can take a stable configuration in the center of the trap when its
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Figure 1.12: Phase profile of a vortex. The arrows represent the velocity
field circulating around the vortex core, with thicker arrows
for higher velocities.

axis is oriented along the short axial direction, hence minimizing its
energy expressed in equation (1.49) and exhibiting an isotropic cir-
culation. Vortices can be created in a BEC using several different tech-
niques. Among them a vortex can be imprinted in a deterministic way
using two-photon Raman processes, which couple different internal
states of atoms with a transfer of angular momentum (Matthews et
al., 1999), or by means of stirring optical potentials, hence inducing
a circulating flow in the condensate (Madison et al., 2000). A com-
pletely different approach for the creation of vortices relies on the
KZM: as introduced in section 1.2.4 while discussing figure 1.8, the
spontaneous formation of vortices after fast temperature quenches
was observed by Weiler et al. (2008), resulting from the relaxation of
a random pattern of independent phase domains created at the BEC

transition.
Whereas solitons and vortices were studied in theory and experi-

ments considering axially symmetric systems, numerical simulations
of the GPE showed that different kinds of stationary states can be ob-
tained by breaking the cylindrical symmetry (Brand et al., 2001, 2002;
Komineas et al., 2003). In the simplest case these excitations are called
solitonic vortices, defects setting a link between solitons and vortices:
as it can be seen from the calculated density and phase profiles of
figure 1.13, a solitonic vortex (SV) in a cigar-shaped trap appears as
a deformed vortex, with a phase gradient concentrated in the trans-
verse region corresponding to a shallow solitonic plane.

For condensates trapped in elongated harmonic potentials with
cylindrical symmetry, the nature of stable defects depends on the
dimensionless confinement parameter γ, defined as the ratio between
the chemical potential µ and the transverse harmonic oscillator en-
ergy  hω⊥, or equivalently between the Thomas–Fermi radius in the
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Figure 1.13: Phase profile (color scale plane) and equi-density surface (red)
for a solitonic vortex simulated in a 3D harmonic trap (Brand
et al., 2002).

transverse direction R⊥ and the healing length ξl (Brand et al., 2002;
Komineas et al., 2003):

γ =
µ

 hω⊥
=
R⊥
2ξl

. (1.50)

The energy spectrum calculated for a continuous variation of γ, re-
ported in figure 1.14, shows that when γ � 1 solitons are the only
possible stable structures. Conversely additional kinds of defects char-
acterized by lower excitation energies are possible at larger values of
γ, hence introducing the possibility of a decay channel of solitons
into more stable states via snake instability (Becker et al., 2013). This
possibility sets in when γ is of the order of unity, which corresponds
to the crossover from the effective 1D regime to the 3D regime in the
limit of T = 0. In particular for γ � 1 the least energetic state is the
SV, whereas vortex rings or defects with more complex geometries
exhibits higher energies (Mateo et al., 2014).

The spontaneous formation of defects in cigar-shaped BECs of so-
dium has been studied in our laboratory in Trento. Our first obser-
vations of defects in the condensate were done while optimizing the
procedure of evaporative cooling. Initially we identified those defects
as solitons, randomly produced via the KZM after fast temperature
quenches across the BEC transition. As I will describe in chapter 3,
we characterized this phenomenon as a function of the quench speed,
measuring a power-law scaling for the average number of defects
with the quench time (Lamporesi et al., 2013b). However, the contex-
tual observation of a long defect lifetime appeared in contrast with
our knowledge about the stability of solitons in 3D systems. This ob-
servation suggested us to study more in detail the nature of defects
produced in our system. In chapter 4 I will discuss how the char-
acterization of phase and density profiles of defects allowed us to
identify them as solitonic vortices (Donadello et al., 2014; Tylutki et
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Figure 1.14: Excitation energy of defects calculated as a function of the
confinement parameter defined in equation (1.50) for solitonic
kinks, vortex rings, solitonic vortices, and more complex de-
fects in a cylindrical trap (Mateo et al., 2014).

al., 2015). Finally, as I will present in chapter 5, the dependence of the
predictions of KZ theory on the defect dimensionality suggested us
to explore the defect number scaling in different confinement condi-
tions, also studying the possible effects of defect evolution on those
measurements.



2 P R O D U C T I O N A N D
O B S E R VAT I O N O F A B E C

Experiments with ultracold gases require efficient atomic sources and
stable experimental conditions in terms of many physical parameters,
such as vacuum quality, laser stability and timing precision. In order
to fulfill these requirements a reliable control over many instruments
is typically needed. In this chapter I will introduce our experimen-
tal setup and the main techniques that we use for the realization of
experiments with Bose–Einstein condensates.

The main parts of our experimental apparatus will be described in
section 2.1. There I will present the high-flux atomic source based on
laser cooling techniques that provides samples of cold sodium atoms,
which are subsequently transferred in the magnetic trap where, us-
ing evaporative cooling, we reach quantum degeneracy. In section 2.2
I will describe the imaging techniques and the image analysis proce-
dures implemented in the laboratory for probing the atoms. Finally
in section 2.3 I will present the digital system and the relative soft-
ware used to control the experimental sequence and the various in-
struments.

2.1 experimental apparatus

2.1.1 Atomic source

The conditions for quantum degeneracy in dilute atomic gases were
made accessible also thanks to the progress in laser and evaporative
cooling techniques, which are particularly efficient for alkali atoms
and that led to the first observations of the Bose–Einstein condensa-
tion in gases of rubidium and sodium (Anderson et al., 1995; Davis et
al., 1995). The growing interest in this new kind of systems inspired
the development of specific and efficient atomic sources in order to
expand the possibilities of experiments with ultracold atoms, hence
opening to new and promising options.

Atomic sources based on laser cooling can be divided into two main
classes.

• The first one uses dissipative light forces and inhomogeneous
magnetic fields to slow down a thermal flux of atoms coming
from an oven. A typical implementation of this type of sources
is the Zeeman slower (ZS), a stage where fast atoms are slowed
down with a counter-propagating laser beam in a specifically

29
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designed magnetic field. The slowed atoms can be subsequently
trapped and cooled in magneto-optical traps (MOTs) (Phillips et
al., 1982).

• The second class of atomic sources exploits atomic vapors di-
rectly loaded and cooled in a MOT: these kinds of setups have a
simpler design, but they provide significant performances only
for sufficiently heavy atoms, such as potassium, rubidium and
cesium (Catani et al., 2006; Dieckmann et al., 1998; Yu et al.,
1994). In fact, in general a MOT can capture only atoms moving
below a certain critical velocity: considering equal temperatures,
the fraction of the thermal distribution that stays below a given
capture velocity is smaller for lighter atomic masses.

Experiments involving high atom numbers of light alkali species,
such as lithium and sodium, typically need the implementation of
atomic sources based on very efficient ZS stages (van der Stam et al.,
2007). However these kinds of systems exhibit some drawbacks: the
long ZS stages can suffer of significant flux losses due to the atomic
beam divergence, and often the experimental setups result big and
complex to be operated, hence possibly reducing the vacuum quality
by the presence of hot background atoms.

Recently a different type of atomic source based on a 2D MOT was
developed for lithium by Tiecke et al. (2009), being able to combine
compactness with the possibility of a high atomic yield. In our labora-
tory we extended this alternative approach to sodium, implementing
a hybrid solution based on a 2D MOT and a compact ZS. Moreover we
took advantage of the progresses in the field of diode laser sources:
as a matter of fact, the wavelengths suitable for laser cooling of so-
dium became accessible also with solid state lasers, without the need
of more complex dye lasers as previously required.

In our atomic source the 2D MOT is loaded transversely with a flux
of atoms coming from an oven containing metallic sodium, which
is heated by about 140 ◦C above its melting point at 97.8 ◦C. A reso-
nant laser beam aligned with the unconfined direction can be used
to push atoms from the 2D MOT, hence producing a beam of atoms
moving horizontally. The atomic flux is increased by about an order
of magnitude exploiting a laser beam that, in combination with the
residual magnetic field of the 2D MOT, acts like a very short ZS stage
which slows down the thermal atoms coming from the oven. Finally
we obtain a collimated atomic beam with a flux of more than 4× 109
atoms per second.

The vacuum setup is sketched in figure 2.1. It is divided into two
parts: the high vacuum (HV) chamber where the sodium oven and the
2D MOT are present, and the ultra-high vacuum (UHV) chamber where
the experiments are performed in a clean environment. The two parts
are connected with a differential pumping channel, which allows for
a differential pressure between the HV and UHV chambers up to 103.
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Figure 2.1: View of our atomic source of sodium. The atoms are transferred
from the 2D MOT to the 3D MOT with a horizontal push light beam.
The MOT light beams are drawn in yellow. The magnification
of the 2D MOT region and of the differential pumping channel
connecting the HV and the UHV parts is reported on the right.

Two ion pumps (Varian Starcell, with nominal pumping speed of
55 L s−1) and two titanium sublimation pumps allow to reach a pres-
sure which is below the instrumental resolution of 10−10mbar in the
UHV part.

The atoms of the atomic source are transferred by the push light
beam through the differential pumping channel in the UHV chamber,
where a 3D MOT captures them. The system results more compact and
simple than similar setups for sodium. As a consequence of compact-
ness, the vertical path of atoms from the oven to the 2D MOT and the
horizontal one during the transfer to the UHV chamber are short: this
allows for higher atomic fluxes available for capture in the 3D MOT,
since the losses caused by the atomic beam divergence are reduced.
As it can be seen from figure 2.2, it is possible to use different atomic
species simultaneously, since the 2D MOT can be loaded from different
radial directions. A mixture of cold gases of sodium and potassium
in the 3D MOT and in an optical dipole trap has been realized with
this apparatus (Toffali, 2013).

The magnetic fields required to operate the 2D MOT and the ZS are
obtained with permanent magnets, whereas the quadrupole field of
the 3D MOT is produced with the same coils used for the magnetic
trap (MT), as it will be described in section 2.1.3. In order to allow for
a good optical access and to minimize uncontrolled magnetic fields,
the 3D MOT is realized in a quartz cell, which can be seen from the
photo in figure 2.3. A detailed description and characterization of the
atomic source can be found in my master thesis (Donadello, 2012)
and in the article published on the topic (Lamporesi et al., 2013a).
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Figure 2.2: Radial section of the apparatus in the 2D MOT plane. Each light
beam reports its polarization ε. In addition to sodium a flux
of potassium atoms can be obtained from the left side. Even a
strontium oven is present on the right, not yet activated.

Figure 2.3: Cloud of sodium atoms trapped in the 3D MOT, emitting yellow
light due to the fluorescence induced by the laser cooling beams.
The photo was taken before the MT was mounted around the
quartz cell.
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Figure 2.4: Hyperfine level structure of the sodium D2 line, with the energy
spacing between different levels given in frequency units. Each
transition is reported with its relative strength.

2.1.2 Optical system

Laser cooling is a required first step in essentially all experiments
with ultracold gases. The combination of dissipative light forces with
magnetic fields allows to pre-cool hot atomic samples from hundreds
of K down to some tens of µK in a few ms, representing a fundamen-
tal prerequisite for the subsequent experimental steps in conserva-
tive traps (Cohen-Tannoudji et al., 2011). The laser light used in laser
cooling techniques must have suitable properties in terms of spectral
linewidth and polarization definition, and it must be stably tuned in
resonance with a closed atomic transition.

Sodium is an alkali atom, with the valence electron determining its
principal electronic properties. In our case the laser cooling transition
corresponds to the D2 line, which in spectroscopic notation* is ex-
pressed as 32S1/2 → 32P3/2. The atomic transitions of main interest
here are sketched in figure 2.4. The wavelength in vacuum associated
to the D2 transition of sodium is 589.16nm, which is not directly ac-
cessible with diode lasers. However, the recent developments in the
quantum dot laser technology made accessible also the near-infrared
region of the spectrum around 1100–1200nm. This means that with
a frequency doubling process we are able to use a solid state laser sys-
tem also for sodium, which has a simpler design compared to other
kinds of laser sources based on dye lasers.

The master source is a home-made external-cavity diode laser (ECDL)
in Littrow configuration (Ricci et al., 1995). The active medium is
a diode based on InAs quantum dots (Innolume GC-1178-TO-200),
emitting in the infrared region around 1178nm. The light of the diode
is collimated using an aspheric lens (Thorlabs C340TME-B). The ex-

* In atomic physics the quantum numbers associated to an atomic state are commonly
labeled as n2s+1Lj, where n is the principal quantum number, s the total spin, L the
orbital angular momentum, and j the total angular momentum.
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ternal cavity output coupler and wavelength discriminator is realized
with a holographic grating with 1200 lines per mm (Thorlabs GH13-
12V), such that the cavity free-spectral-range is about 10GHz. The
temperature of the diode is stabilized with a controller driving a
Peltier-cell. The ECDL configuration allows for a good tunability of
the output wavelength, which can be changed with the orientation of
the grating. Fine tuning can be obtained by applying a voltage to a
piezoelectric crystal fixed to the holder of the grating.

The master laser is optically amplified with a Raman fiber ampli-
fier (MPB RFA-SF-series), pumped with a Ytterbium fiber laser. The
input power of 20mW is amplified to about 7W, while maintaining
the polarization and spectral properties of the master laser. Then the
infrared light is doubled in frequency with a Li B3 O5 non-linear crys-
tal placed within a resonant cavity, obtaining about 3.5W of yellow
light at 589nm.

The wavelength of the master laser is stabilized by performing fre-
quency modulation saturated spectroscopy on a sodium vapor-cell.
The dispersive signal of the saturated absorption is used as error sig-
nal to a feedback loop controller, acting on the voltage applied to
the piezoelectric crystal of the ECDL. The emission frequency of the
master laser is locked directly on the D2 transition of sodium, hence
obtaining a stable and reliable frequency reference.

The frequency-stabilized light is split into several secondary beams
using polarizing beam splitters. The intensity and frequency of each
beam are independently controlled with radio frequency (RF) signals
driving acousto-optic modulators (AOMs) and electro-optic modula-
tors (EOMs), which are placed on the beam paths. Each beam is then
injected into polarization-maintaining optical fibers and transported
to the main optical table which hosts the atomic source. The laser
system and the optical beams used in experiments are sketched in
figure 2.5.

Besides the resonant laser source just described, in the laboratory
we also have a Nd:YAG laser, which can be used for the creation of
optical dipole potentials (Grimm et al., 2000). For this aim we use a
commercial source (Innolight Mephisto MOPA), which provides up
to 42W at 1064nm. This infrared light is red-detuned considering the
D2 atomic transition of sodium, hence it can be directly used for the
creation of attractive potentials. Alternatively we can create repulsive
potentials with blue-detuned light obtained by frequency doubling
the infrared light. In this case a 30W beam is sent through a PP-SLT
non-linear crystal†, and with just a single pass we can obtain more
than 6W of green light at the wavelength of 532nm.

† The condition of quasi-phase matching can be obtained with Periodically Polled
Stoichiometric Lithium Tantalate crystals without the need of resonant cavities.
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Figure 2.5: Scheme of the optical setup used for the production of the light
beams needed for the laser cooling of sodium. The laser source
is based on a ECDL, whose light is amplified and frequency dou-
bled. The master laser wavelength is stabilized performing satu-
rated spectroscopy on a sodium vapor-cell. The laser beams are
split with polarizing beam splitters, and the light polarization
is modified with λ/2 and λ/4 wave-plates. Each AOM and EOM

reports its working frequency. The lenses for the focusing and
collimation of beams are omitted.
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2.1.3 Magnetic trap

The manipulation of neutral atoms with magnetic fields has been
proven to be particularly effective in experiments with cold gases.
In particular magnetic gradients and potentials with specifically de-
signed profiles are used during most of the laser cooling techniques
and for the realization of conservative traps (Ketterle et al., 1999).

In our experiments the first laser cooling stages need a simple mag-
netic configuration. In fact for the atomic source we use 4 stacks
of 9 neodymium permanent magnets (Eclipse N750-RB) each, placed
around the HV chamber to obtain a quasi-2D magnetic quadrupole
configuration, suitable for the 2D MOT: the magnetic field is zero along
the unconfined axis, while it varies linearly in the capture region
along the transverse plane. Far from the 2D MOT the magnetic field
reaches its maximum and decays with the distance: the tails of this
vanishing magnetic field are exploited for the realization of the com-
pact ZS stage.

Once the atoms are transferred from the atomic source to the quartz
cell, we must be able to dynamically change the magnetic field con-
figuration during the experimental sequence, and eventually to turn
all fields off. A typical experimental procedure includes the following
steps.

magneto-optical trap At the beginning of experiments the atomic
samples are trapped and cooled in a dark-spot 3D MOT (Ket-
terle et al., 1993). This is obtained with the combination of a
quadrupole magnetic field, of three orthogonal pairs of coun-
terpropagating laser cooling beams, and of a single dark-spot
repumping beam, obtained by imaging on the atomic cloud an
8mm diameter black dot. Before the transfer in the MT a sub-
Doppler cooling stage based on optical molasses is performed
in absence of magnetic fields (Lett et al., 1988), obtaining about
3× 109 atoms at 50µK.

magnetic trap After the atomic samples have been pre-cooled with
laser cooling they are transferred into a Ioffe–Pritchard conserva-
tive MT (Pritchard, 1983). Its non-vanishing magnetic field pro-
duces a cigar-shaped harmonic potential that confines atoms,
which can be further evaporatively cooled or manipulated with
other techniques. In the MT the conditions for Bose–Einstein con-
densation are typically reached with 30× 106 atoms at 800nK,
with a peak atomic density of the order of 1013 atoms per cm3.

magnetic levitation A vertical magnetic field gradient of about
8Gcm−1 can be used to produce a force that compensates the
gravity, hence levitating the atoms while letting them to expand
for long time of flights (TOFs) without falling.
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Figure 2.6: Views of the coils of the MT: quadrupole coils (cyan), compensa-
tion coils (red), and pinch coil (green). In the top view (on the
right) the quartz cell and the 3D MOT laser beams (yellow) are
also reported.

In our laboratory the magnetic field configurations just described
are obtained with different combinations for the current flowing in
the coils represented in figure 2.6.

• The quadrupole field is produced with a pair of twin coils
with the same current flowing in opposite directions in anti-
Helmholtz configuration. Each quadrupole coil is composed of
72windings around an internal radius of 5.5 cm, placed at±2 cm
along the vertical direction relative to the center of the trap.

• The levitating magnetic field gradient is obtained with the cur-
rent flowing only in one of two quadrupole coils.

• A pinch coil is added in the MT configuration to provide a non-
zero field minimum. This is composed of 12 windings around
an internal radius of 1.3 cm, and it is placed at 2 cm of distance
from the trap center along the horizontal symmetry axis.

• Another pair of coils can be used to compensate the bias field.
These are composed of 16 windings around an internal radius
of 8.7 cm, and are placed at ±7.5 cm along the symmetry axis.

The magnetic field minimum of the 3D MOT and of the MT share
the same spatial position: therefore we can switch between the differ-
ent magnetic configurations without changing the location of atoms,
exploiting the electric circuit based on relays switches and insulated-
gate bipolar transistors (IGBTs) that is sketched in figure 2.7. The IGBTs

(Semikron SKM400GAL12E4) can be used either as fast switches,
characterized by a response time of about 1µs, or as variable resis-
tors if driven with an analog voltage.

The continuous current flowing in the coils is generated with power
supplies (Delta Elektronica SM30-200) which can be programmed
to output up to 200A, characterized by a maximum rms-ripple noise
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Figure 2.7: Electrical scheme of the magnetic field control system, com-
posed of the quadrupole coils (Q), the compensation coils (C)
and the pinch coil (P). The required magnetic fields are obtained
with different combinations for the current flowing in the coils,
programmed with IGBTs (I) and relay switches (R).

of the order of 20mA. Further smaller coils with fixed currents are
used to compensate static magnetic fields of the laboratory environ-
ment. The typical working conditions at the BEC transition point are
reached with a current of 100A, where the magnetic trap is charac-
terized by a bottom field B0 ' 2G, a field gradient B ′ ' 106Gcm−1,
and a field curvature B ′′ ' 59Gcm−2. Under these conditions the ax-
ial and radial trapping frequencies are

ω‖
2π ' 13Hz and ω⊥

2π ' 131Hz
respectively, with an aspect ratio of about 10. A detailed characteriza-
tion of the MT can be found in the master thesis of Serafini (2013).

2.1.4 Evaporative cooling

The sodium atoms are trapped in the conservative MT in the low-field
seeking state |F,mF〉 = |1,−1〉. The trapped atomic samples are char-
acterized by a lifetime of about 5 minutes, limited by background
pressure. They are cooled down with forced RF evaporative cooling, a
technique that consists in continuously removing the atoms belong-
ing to the high energy tail of the thermal distribution of a gas (Ket-
terle et al., 1996a). This cooling step allows us to reach the conditions
for the BEC transition, obtaining about 10× 106 atoms in the final con-
densate.

In the presence of a weak magnetic field, the Zeeman splitting be-
tween adjacent magnetic sub-levels in frequency units is µBgFh−1 =

−0.70MHzG−1. Here h is the Plank constant, µB the Bohr magneton,
and gF the Landé g-factor, equal to −12 for the ground state hyperfine
level F = 1. Following the scheme of figure 2.8, the Zeeman sub-levels
with mF = −1 and mF = 0 are coupled by a RF field on the surface
where the magnetic potential equals the photon energy hν, with ν
being the radiation frequency. This means that the spin-flip to the
untrapped state |F,mF〉 = |1, 0〉 is induced by RF for atoms having a
total energy larger than h(ν− ν0), where ν0 is the frequency at the
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Figure 2.8: Energies of the Zeeman sub-levelsmF relative to the F = 1 hyper-
fine level for an atom in a magnetic potential, plotted as a func-
tion of the position in the trap (Cohen-Tannoudji et al., 2011).
The atoms coupled by the radiation of frequency ν are trans-
ferred in the untrapped state mF = 0.

bottom of the trap. Such an energy-selective removal process causes
the atoms remaining in the trapped gas to thermalize at a lower tem-
perature. A continuous variation to lower values of ν allows to reach
the temperatures required to achieve quantum degeneracy.

The temperature quench across the BEC transition is the procedure
used to study the KZM in the measurements that will be presented
in the following chapters, with the speed of the quench being the
main parameter that will be varied while measuring the defect num-
ber scaling. Therefore a precise control of the evaporative cooling is
crucial in our experiments. Typical RF generators do not meet the re-
quirements of precise frequency timing and fast programming, as we
need during the evaporation ramps. In order to overcome these lim-
its we use a system based on a direct digital synthesizer (DDS) and a
lookup table (LUT) managed by a microcontroller. The 1024-lines LUT

is programmed with the frequencies required for the quench, with the
execution timing being managed by the digital system controlling the
experiment, which will be described in section 2.3. This configuration
allows for flexibility both in time and frequency resolutions.

An example of evaporation frequency ramp is plotted in figure 2.9.
The ramp is started just after the transfer of atoms in the MT, with an
initial frequency of about 40MHz. Then the RF is ramped down in a
time of 40-60 s to the values where the BEC transition occurs, i. e., just
above the trap bottom, whose typical value in our experiments is ν0 '
1.2MHz. The speed of the transition crossing can be varied over two
orders of magnitude, with a maximum achievable evaporation rate of
about 2MHz s−1. We program the LUT of the DDS in order to have a
higher density of frequency values around the transition point, where
a continuous-like control of the evaporation is particularly important.

The RF field is irradiated on atoms using an antenna driven by the
DDS signal after amplification. This antenna is composed of a single
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Figure 2.9: Typical frequency ramp used for RF evaporative cooling. The
color intensity (red) is proportional to the density of frequency
points programmed on the DDS, with each value corresponding
to one of the 1024 lines of the LUT. A higher point density is
crucial around the BEC transition (solid blue) for a precise control
of the quench. The evaporation ramp ends just above the trap
bottom (dashed gray).

wire loop, with a radius of 1.3 cm and a wire section diameter of
1mm. It is placed horizontally above the quartz cell, at a distance of
1.75 cm from atoms. Such an antenna is used for frequencies below
50MHz, i. e., in the high frequency (HF) band of the spectrum: the
antenna relies in the so-called small loop regime, being its circumfer-
ence much smaller than the RF wavelength. Concerning the near-field
regime of our interest for evaporative cooling, these conditions are
ideal for producing a sufficiently uniform and strong magnetic field,
linearly polarized along the vertical direction‡. Figure 2.10a reports
the magnetic component of the radiation pattern, calculated using the
NEC2c software considering the geometry of the loop antenna. These
numerical simulations also indicate an almost flat antenna response
in the frequency range considered for evaporative cooling, being far
from any resonance.

The use of RF radiation is not limited to evaporative cooling, but
it can be exploited as a general technique for the manipulation of
the atomic internal states, and for extracting fractions of atoms from
the trapped samples. As an example of this latter possibility, in the
experiment reported in the article on the solitonic vortex dynamics
(Serafini et al., 2015), we were able to acquire a sequence of images

‡ The transition |mF = −1〉 → |mF = 0〉 exploited during evaporative cooling is cou-
pled by radiation with σ+ polarization. Considering that the atoms are polarized in
the horizontal direction by the magnetic field of the trap, the vertically polarized RF

magnetic field can be decomposed into σ− and σ+ polarizations.
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(b) UHF monopole antenna at 1.77GHz.

Figure 2.10: Magnitude (normalized color scale) and direction (arrows) of
the magnetic component of the near-field RF radiation, gener-
ated by the antennas used for evaporative cooling and outcou-
pling at the respective operating frequencies. The pattern is
simulated in the horizontal plane, with atoms being trapped in
the origin. The antenna (blue) is placed in the horizontal plane
at y = +1.75 cm, and its feed point is indicated in red.
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for each condensate performing coherent splitting of the atomic cloud
induced by RF radiation. This outcoupling technique transfers fractions
of atoms in the condensate from the |F,mF〉 = |1,−1〉 trapped state to
the |F,mF〉 = |2,−2〉 untrapped state, coupled by a RF field. As it
can be seen from the sketch of the atomic levels in figure 2.4, this
transition corresponds to a frequency of about 1.77GHz, i. e., in the
ultra-high frequency (UHF) band of the RF spectrum.

Experimentally we found that the loop antenna exploited for evap-
orative cooling is not suitable for the outcoupling technique just de-
scribed. The simulations with NEC2c indicate the presence of a reso-
nance phenomenon with phase inversion in the frequency range be-
tween 1.5 and 2.0GHz, where the electrical size of the antenna be-
comes comparable with the RF half-wavelength, hence possibly ex-
plaining its reduced outcoupling efficiency at 1.77GHz.

Empirically we found that a monopole-like antenna, obtained with
a wire forming an arc of circumference over an angle of about 130°
and with the same diameter of the original loop antenna, is more
efficient in the UHF band of our interest. The numerical simulations
confirm that resonances with this geometry occur at higher frequen-
cies, hence not interfering with the near-field pattern that interacts
with atoms, whose magnetic component is plotted in figure 2.10b.
Since the frequencies in the UHF band are not accessible with the
DDSs used in our laboratory, whose maximum operative frequency is
about 140MHz, we drive the UHF antenna with a commercial signal
generator (Marconi Instruments 2024), triggered with a transistor-
transistor logic (TTL) signal integrated with the system controlling the
other instruments.

2.2 probing the atoms

2.2.1 Imaging system

The atomic samples are probed using resonant absorption imaging (Ket-
terle et al., 1999). The sequence of the image acquisition begins when
the magnetic trapping potential is suddenly switched off, and the
atomic cloud starts a ballistic expansion. The consequent free fall of
atoms would limit the expansion time to about 50ms, due to the fi-
nite distance of 1.7 cm between the center of the trap and the bottom
of the quartz cell. In order to circumvent this limit we set the mag-
netic trap coils in a levitation configuration. In fact, as introduced
in section 2.1.3, we can obtain a vertical magnetic gradient with a
suitable current flowing in a single horizontal coil, which produces
a force that compensates the gravity allowing very long TOFs, up to
hundreds of ms.
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The atomic sample is shined with a probe laser beam, and its ab-
sorption signal is acquired with a digital camera. The acquisition pro-
cess is triggered with a TTL signal, which defines the integration time
interval. Since the probe light is resonant with the |F = 2〉 → |F ′ = 3〉
transition, before the acquisition the atoms in |F = 1〉 are transferred
in the |F = 2〉 state with optical pumping. A second image acquisition
is performed without atoms in order to get a reference, allowing to
reconstruct the net optical density profile of the atomic cloud. Using
different cameras we can take pictures simultaneously along different
directions.

We use charge-coupled device (CCD) cameras (Stingray F-201B)
having a resolution of 1624× 1234 pixels, with a single pixel size of
4.4µm× 4.4µm. The acquisition rate at full resolution is of 14 frames
per second, with the images being transferred to a computer with a
FireWire connection. The atoms are imaged on the camera sensor
with a set of lenses ensuring a magnification up to 2, hence allowing
to resolve structures of about 2µm. Essentially this also corresponds
to the limit imposed by diffraction in the conditions of our imaging
system. Reducing the camera resolution to 300× 250 pixels we are
able to take faster sequences of images, up to about 50 frames per
second. The properties of the atomic sample, specifically the size of
the cloud and its optical density, as well as other derived quantities
such as temperature and atom number, are extracted from the images
using a software written in Python by Gregor Thalhammer, that I
partially adapted to our needs.

2.2.2 Image processing

In the following chapters we will present the results of measurements
which mainly rely on the observation and characterization of defects
in the density profiles of BECs after expansion. Considering the exper-
iments on the KZ scaling, the defects are counted by eye directly in
the absorption images, which typically show a high signal-to-noise
ratio for bulk condensates in standard conditions.

The situation is different for the real-time imaging technique that
we used for studying the defect dynamics (Serafini et al., 2015). In this
case the images are taken in a rapid succession for coherent copies
of the same condensate, being composed of small fractions of out-
coupled atoms, about the 4% of the trapped sample. These pictures
exhibit a much smaller signal-to-noise ratio, as it can be seen from
the example in figure 2.11a, which shows a noisy profile containing a
defect that is hardly distinguishable. In fact, the presence of thermal
noise in the atomic signal and of fringes, caused either by optical or
electrical interferences, partially hides the information that can be of
our interest. Moreover the limited dynamic range of the image sup-
presses the visibility of small signals.



44 production and observation of a bec

(a) Raw image taken with CCD camera. (b) Image filtered from interferences.

(c) Residuals of Gaussian-parabolic fit.

Figure 2.11: Sample experimental image for a fraction of atoms outcoupled
from a condensate, which contains a defect visible as a shallow
depletion in the density profile. The image, taken after an ex-
pansion of 13ms, is processed with the FFT filtering software
described in the text in order to magnify the defect visibility.
The respective FFT space is reported in figure 2.12.
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(a) Original FFT of figure 2.11a. (b) Masked FFT spectrum relative to fig-
ure 2.11b.

Figure 2.12: Example of FFT filtering aimed to the removal of the interfer-
ence fringes and other spurious signals, referring to the exper-
imental image of figure 2.11.

In order to overcome the limitations set by the imaging acquisi-
tion system just described, I wrote a software in Python 2.7 which
helps in the extraction of defect signals in BECs with digital filtering
techniques. It relies on the ScyPy package for the numerical analy-
sis and image rendering, performed with NumPy and Matplotlib

respectively. The PyQt library is used for the realization of the graph-
ical user interface (GUI), which allows to easily analyze sequences of
experimental images.

The first step of the image processing is aimed to the removal of the
interference fringes. The image is transformed to the Fourier space with
a 2D FFT algorithm. Being the fringes periodical signals, they appear
as peaks in the FFT space, as it can be seen from figure 2.12: once iden-
tified, a mask for these peaks can be created using the mouse in order
to filter out the correspondent signals. A screenshot of the interface is
reported in figure 2.13. The software plots interactively the result of
the inversion of the masked FFT, hence creating a clearer image in the
real space. A Gaussian filter can also be applied for the reduction of
the high-frequency noise. Since defects represent nonperiodic signals,
in general the removal of single FFT peaks does not affect the strength
of defect signals, which conversely appear with better signal-to-noise
ratios.

As a further step we can fit the atomic profile with a suitable 2D

function, e. g., a Gaussian or an inverted parabola. The software can
plot the residual image of the fit: since defects represent deviations
from a smooth atomic distribution, their visibility is highly improved
in the residuals. The fit residuals of the filtered image in figure 2.11b
are reported in figure 2.11c. It is evident how a defect, hardly visible
in the original image of figure 2.11a, is clearly distinguishable in the
final processed image, with the dynamic range of the image being
enhanced by a factor of about 4.
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Figure 2.13: Screenshot of the software GUI used to filter and render se-
quences of experimental images. The original frames (top right)
are transformed in the FFT space (left). Masks can be applied to
the FFT in order to filter out the fringes. The results of FFT inver-
sion are rendered interactively (bottom right). Other features
include color scale adjustments, residuals of fitting functions,
and filtering of shot noise.
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Figure 2.14: Series of filtered images of the same BEC taken every 28mswith
non-destructive imaging (Serafini et al., 2015). The sequence
allows to follow the motion of two defects in the condensate.

As previously introduced, the CCD cameras can be configured for
taking sequences of several images in a rapid temporal succession. In
order to simplify the application of the filtering procedure to series
of pictures acquired in similar experimental conditions, the image
analysis software allows to automatically process all the images of the
sequence using the same parameters, adjusting the color palettes and
compensating for variations in the atomic signals in order to obtain
an optimal and uniform visibility, as in figure 2.14. Other functions
of the software are also present, such as the possibility to track the
positions of defects in the condensate and to render the sequence of
images as a smooth video, useful for a qualitative comprehension of
the defect dynamics.

2.3 control of the experiment

2.3.1 Digital control system

The experiments performed with the apparatus described so far re-
quire a high degree of control over many different instruments. The
experimental procedure for the production of a condensate, from
laser cooling to imaging, can be composed of thousands of instruc-
tions that must be executed with a timing precision better than 1µs
in some cases, and that must be reproducible with reliability.

Most of the instruments in our laboratory are controlled with a
unified digital control system based on a field-programmable gate array
(FPGA), which was developed by Marco Prevedelli and successively
adapted to our needs. The central FPGA (Xilinx Spartan XC3S250E,
clocked at 10MHz) receives the temporal sequence of instructions to
be executed from a computer software, which will be described in
section 2.3.2, through a Universal Serial Bus (USB) connection. Each
instruction has a target slave board, identified by a univocal address.
The FPGA writes the instructions on a 24-bit bus with a resolution
in time of 100ns and with a maximum instruction rate of 2.5MHz.
All the slave boards are connected to a common bus, and each board
reads and executes only the instructions corresponding to its address.
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In order to control all the parts of our experimental setup we need
about 50 digital lines, 30 RF sources and 15 analog sources, which are
provided by three kinds of dedicated slave boards.

digital boards Each digital board can output 16 independent TTL

channels. The digital lines are used mainly for setting the mag-
netic field configuration, by opening or closing the IGBTs and
relay switches, and to trigger the image acquisition. The digital
outputs are also exploited for moving mirrors and mechanical
shutters for the optical beams, using a system that I developed
during my master thesis based on microcontrollers and servo
motors (Donadello, 2012).

analog boards These boards mount two 16-bit digital-to-analog con-
verter (DAC) chips. The output analog voltages can be either
referred to ground or floating. They are used to program the
power supplies which provide the currents flowing in the coils
for the generation of magnetic fields, and for a smooth control
of the IGBT switches.

rf boards The programmable RF signals are generated with boards
equipped with a DDS chip (Analog Devices AD9958), based
on a 10-bit DAC with two output channels. Each channel can
have independent settings for frequency (ranging from about
200 kHz to 140MHz with a 32-bit resolution), amplitude (up to
+13 dBm) and phase. A microcontroller (PIC18F2550) programs
the DDS reading the parameters from a LUT. The signals of the
DDS boards are amplified and used to drive the AOMs for the
optical beams and the antenna for the RF evaporative cooling.

The number of slave boards exploited in our experiments grew
with the development of the setup, with the need of always longer
bus connections between the boards. This created some problems in
the reliability of the communication between the parts of the control
system. In fact the bus is composed of 64 parallel unshielded wires:
when the length increases over a couple of meters, effects of cross-talk
between adjacent channels, of noise pick-up, and of too big capaci-
tive load become evident. In order to circumvent these problems the
control system is divided into different parts, each one with an inde-
pendent FPGA and bus placed in different locations of the laboratory,
hence keeping the cable connections short.

However, since the communication via USB between the computer
and the FPGA does not happen in real time, without further refine-
ments this solution would introduce a time jitter of many tens of ms
between the different parts. This would be incompatible for an exper-
iment in atomic physics. The solution was found by using a single
clock source distributed to all the FPGAs, triggering their startup with
a single signal emitted once the USB communication is entirely com-
pleted. This is done with a system that I developed with a ATmega328
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microcontroller. With this approach we are able to keep the nominal
resolution of 100ns with negligible jitter, even in such a distributed
system.

2.3.2 Software for the control system

The FPGAs of the system controlling the several slave boards must
be programmed using a computer software. During the experiments
the experimentalists have to define series of instructions, which must
be translated into the specific format of the FPGA firmware and sub-
sequently sent to the hardware via a USB serial connection. For this
purpose we initially used a LabVIEW software that was already avail-
able at the beginning of our experience in the laboratory, but which
showed some limits during the development of the setup. As an ex-
ample, that software did not allowed for a stable communication with
the different FPGAs, and it was not able to manage the execution of
repetitive series of instructions as required in many experiments.

Since the implementation of new features in the original software
was not easy due to the complexity of its structure, I wrote a new
control software meeting the requirements of usability, flexibility and
stability, hence facilitating the interaction with the instruments of the
laboratory independently of their technical implementation. In par-
ticular this new software allows to manage complex experimental se-
quences, introducing the possibility to perform automatic iterations
of parametrized procedures over different experimental variables.

The control software currently used in the laboratory is entirely
written in Python 2.7. It is composed of more than 3000 lines of code
and, even if it was developed under Linux, it is platform indepen-
dent. It relies on open-source libraries such as NumPy for numerical
calculations and Matplotlib for plotting. The PyQt library is used
for the realization of the GUI, while the library Libftdi ensures a sta-
ble communication with the FPGAs. The software can be divided into
two main parts.

kernel The core of the software translates the user instructions into
the binary format that can be interpreted by the FPGA. This ker-
nel is implemented following a object-oriented scheme in pure
Python language. This approach allows for a simple and clear
definition of abstract structures for boards (e. g., digital, RF and
analog boards) and actions (e. g., variations in the states of TTL

channels, DDS frequencies and amplitudes, or DAC voltages).

interface Typically the users do not interact directly with the ker-
nel, but with a GUI which allows for an easier access to the
various functions of the software. As it can be seen from the
screenshot in figure 2.15, the interface allows to manage lists of
actions, called programs, using a tabular form where the exe-



50 production and observation of a bec

Figure 2.15: Screenshot of the GUI for the experiment control software writ-
ten in Python, running a sample program of experimental
instructions. Each line of the central table corresponds to an
instruction or to a nested sub-program, and if needed it can
be temporarily disabled and excluded from the execution flow.
The columns report the execution time, the action name, and
other eventual parameters.

cution time of actions and other parameters can be directly set.
The programs are subsequently translated and stored into stan-
dard Python files.

Thanks to its implementation the kernel results to be both robust
and flexible, while keeping the possibility to be easily maintained
and expanded in future. In fact it works independently of the spe-
cific hardware, and if required it can be adapted to new boards or
instruments. The kernel checks for possible user errors and conflicts,
e. g., producing warnings when different actions overlap in time or
when the parameters are incompatible with the hardware specifica-
tions. This possibility also takes into account the response time of
some slave boards, such as the DDS boards, whose microcontroller
takes about 35µs to load the parameters from a line of the LUT. The
kernel is able to start sequences in less than 100ms, and it can be set
to run continuously the same program for hours.

The instructions managed by the control software can be either
simple actions, ramps of values, or even nested programs contain-
ing other instructions. The implementation of sub-programs allows
to interlace several sequences of actions by using positive or nega-
tive relative execution times. More advanced features are also present.



2.3 control of the experiment 51

...
cmd.load("Main program")
for time in [1000, 2000, 3000]:
   cmd.set_var("final_t", time)
   cmd.run()
...

Iteration control

1
2
3
4

...
prg.add(120000, "IGBT 2 voltage", 10.0)
prg.add(120100, "All AOM On subprogram")
prg.add(120200, "IGBT 1 voltage ramp",
                start_t=0.0000, stop_t=2000.0000,
                start_x=10.000, stop_x=-10.000,
                n_points=500)
prg.add(200100, "IGBT B comp x ON",
                functions=dict(time=lambda x: x+cmd.get_var("final_t")))
...

Main program

5
6
7

8

...
prg.add(-1000, "Na Probe/Push Amp", 1000)
prg.add(-500, "Na Zeeman slower Amp", 1000, enable=False)
prg.add(0, "Na Repumper Amp", 1000)
prg.add(500, "Na Repumper MOT Amp", 1000)
...

All AOM On subprogram

9
10
11
12

Figure 2.16: Demo code of the control software for some parts of an hypo-
thetical experimental sequence. Line 1 in the iteration control
block (top) loads the main program (middle). Each program in-
struction takes as arguments the execution time (in FPGA clock
units), the action name, and eventual parameters (as in instruc-
tion 5). Instruction 6 loads a sub-program composed of other
instructions (bottom), whose execution times are relative to the
absolute time of the main program. Instruction 7 executes a se-
quence of actions, performing a linear ramp for the parameter
of the considered action. Lines 2, 3 and 4 iterate the launch of
the main program setting different values of a variable, which
specifically applies to the execution time of instruction 8. In-
struction 10 is not executed.

These include the possibility to automatize the scan of experimen-
tal parameters using variables and conditional statements while iter-
ating parametrized programs, hence allowing to perform long and
repetitive data acquisitions without requiring any user interaction.
Figure 2.16 sketches the native Python code interpreted by the con-
trol software for a demo experimental sequence, containing a nested
program and being iterated over different values of a given variable.

The software performs automatic incremental backups of programs
and settings, allowing to reconstruct the history of experiments if
needed. In order to debug the experimental procedure, the temporal
sequence of the instructions of a program can also be visualized in a
graphical way, as it can be seen from figure 2.17. Finally the kernel
and the interface are designed in such a way that they can be executed
independently, even on different computers, possibly expanding the
applications of the software. As an example, this allows for the inte-
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Figure 2.17: Graphical visualization of a demo sequence of actions plotted
by the control software as a function of time. In this example
the plot reports the variations of a DDS amplitude, of an ana-
log voltage, of a TTL line, and the execution of a sub-program
(shadowed in the lower plot).

gration of the kernel in standalone scripts or other programs. Another
possibility is to leave the kernel running on a computer directly con-
nected to the FPGAs in the laboratory, while executing the GUI from
somewhere else, hence accessing remotely to the experimental appa-
ratus via a standard network connection.



3 S P O N TA N E O U S D E F E C T
C R E AT I O N I N A B E C

The Kibble–Zurek theory describes the universal phenomenon of for-
mation of phase defects occurring when a system is quenched across
a second-order phase transition. This mechanism has been observed
in many different systems, from condensed matter to ultracold di-
lute gases. In this chapter I will report the measurement in BECs of
the defect number scaling with the temperature quench rate, the first
ever done in such kinds of systems, and realized in the laboratory of
ultracold gases in Trento.

The observation of defects spontaneously created in condensates
via the KZM after temperature quenches is reported in section 3.1. In
section 3.2 I will describe how we image our BECs of sodium for the
detection of defects. The characterization of the number of defects as
a function of the quench parameters will be reported in section 3.3.
In section 3.4 I will present a toy model that deals with the KZM

in the presence of inhomogeneities related to the trapping potential.
Finally in section 3.5 I will talk about the observation of a finite defect
lifetime, which inspired the subsequent studies that will be presented
in chapters 4 and 5.

3.1 observation of defects

Following a phase of laser trapping and cooling in the MOT, we trans-
fer the atoms in an axially symmetric harmonic magnetic trap. Subse-
quently the atomic samples are cooled down with forced RF evapora-
tive cooling. During the evaporation we decompress the trap poten-
tial by a factor of

√
2 to the final axial and radial trapping frequencies,

ω‖
2π = 13Hz and ω⊥

2π = 131Hz respectively, hence with an aspect ra-
tio of about 10. Just above the BEC transition point, which typically
occurs around 800nK, we have about 25× 106 atoms. At the end of
the evaporation ramp we obtain about 10× 106 atoms in the final
cigar-shaped condensate.

While we were optimizing the evaporative cooling parameters for
the condensation, we occasionally observed unexpected structures in
the density profiles of the BECs after free expansion: some depletion
lines were visible in the experimental pictures taken along the hori-
zontal radial direction, as in the examples of figure 3.1. The number of
those lines was random, ranging from zero for regular condensates,
up to a few units. They seemed to be oriented mostly perpendicu-
lar to the trap axis, and showed random positions in the BEC. As a

53
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(a) (b) (c) (d) (e) (f)

1 mm

Figure 3.1: Absorption images of condensates observed along the horizon-
tal radial direction, containing a variable number of linear de-
fects. In order we count from 0 to 3 defects (a-d), while the last
two pictures (e-f) show more intricate structures. These images
are taken after 180ms of free expansion with the tomographic
technique described in the text. On the top of each picture the
density profile integrated along the vertical direction (black) is
compared with the respective parabolic fit (red), highlighting
the density dips of defects. The color scale is normalized to the
maximum optical density, which is of the order of 1.

first step we checked if those irregularities were just technical arti-
facts of the imaging acquisition or if they were the sign of some kind
of physical phenomenon happening in the condensate. As it will be
described in section 3.2, the simultaneous observation of those struc-
tures in the condensates along different directions supported the idea
that we were looking at defects actually present in the atomic density
distribution.

Another important observation was that the presence of defects
was more probable when the BEC transition was crossed with faster
evaporative cooling ramps. This link between the defect probability
and the cooling speed suggested us that our observations might be in-
terpreted in the context of the Kibble–Zurek mechanism (KZM), which
predicts the creation of phase defects after fast quenches while cross-
ing a second-order phase transition. This possibility was particularly
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interesting since Bose–Einstein condensation in dilute gases was pre-
viously considered as an ideal environment for the study of the KZ

theory (Kibble, 2007; Zurek, 2009; del Campo et al., 2011), thanks
to the high degree of experimental control available with ultracold
atoms. Moreover the spontaneous formation of vortices in oblate BECs

after fast temperature quenches was already described by Weiler et al.
(2008), but a similar observation in elongated systems, as well as the
power-law scaling of the defect number as predicted for the KZM, was
never reported before.

3.2 imaging of planar defects

In order to study and characterize the defects appearing in the con-
densate we adapted the image acquisition for the optimization of
the defect visibility. The imaging procedure starts when the trap is
suddenly switched off. As illustrated in figure 3.2, the released con-
densate mainly expands along the tightly confined radial direction,
and the cigar-shaped cloud inverts its aspect ratio and turns into a
pancake-shaped distribution (Castin et al., 1996; Ernst et al., 1998).
During the free expansion we compensate the gravity force with a
vertical magnetic field gradient. As introduced in section 2.2.1, thanks
to this levitation technique we can overcome the limit of about 50ms
that would be imposed by the physical size of the quartz cell of the
vacuum chamber during the free fall starting from the center of the
trap, hence allowing expansions much longer than ordinary TOFs.

We found that an optimal visibility of defects is achievable with
an expansion of 180ms. For such a long TOF the optical density of
the condensate is always below 2, thus the images acquired with the
CCD camera are not affected by saturation and we are able to appre-
ciate smaller density variations. The observation of the condensate
along a single radial direction gives only a partial knowledge about
the geometry of defects: the 3D structure of a defect cannot be fully
reconstructed from the atomic density integrated along the direction
of observation. More information can be deduced if the condensate
is imaged simultaneously along different directions: in our configura-
tion we take pictures along the vertical and horizontal radial axes of
the trap, as represented in figure 3.3a.

One interesting observation is that in most cases each linear de-
fect is observed along the two orthogonal radial directions, implying
that it can be related to a single structure with a planar geometry
perpendicular to the trap symmetry axis: this suggested the initial
identification of the depletion lines in images as the nodal planes of
solitons, seen along a direction parallel to their surface (Lamporesi
et al., 2013b). This possibility was also supported by the fact that, in
order to minimize their surface and consequently their energy as sug-
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Figure 3.2: On the left the trapped gas is sketched while crossing the BEC

transition occurring at the critical temperature Tc. According to
the KZM, if the quench is fast enough different independent con-
densates (gray) can nucleate in the thermal gas (red). When the
condensate is released from the trap it expands mainly along the
radial directions, i. e., x and y, acquiring a pancake-like shape af-
ter long expansion times as represented on the right.
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(a) Radial imaging. (b) Tomographic imaging.

Figure 3.3: Sketch of our configuration for absorption imaging (left), where
pictures of the expanded condensate are taken along two orthog-
onal radial directions. The orange arrows indicate the directions
of the probe light beams, aligned with the plane of main expan-
sion of the condensate (green plane). Possible planar structures
perpendicular to the axial direction are seen as depletion lines
in both the radial pictures. For the tomographic imaging con-
figuration (right) just a central slice of the condensate is opti-
cally pumped in the correct hyperfine state for the absorption
imaging, while the rest remains off-resonance and does not con-
tribute to the integrated pictures.
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gested by equation (1.48), in elongated BECs solitons tend to assume
the favored configuration with their plane perpendicular to the long
axis of the cloud, therefore being visible as linear dips in the den-
sity profile along any radial direction after expansion. Moreover the
creation of gray solitons from independent phase domains formed
along the symmetry axis of a cigar-shaped condensate was predicted
by Zurek (2009) while studying the KZM in inhomogeneous systems.

As introduced in section 1.3.2, solitons are localized collective exci-
tations of the condensate, characterized by a density depletion whose
size is of the order of the healing length, defined in (1.38) as ξl =

(8πaρ)−1/2, where a is the scattering length and ρ is the atomic den-
sity. For sodium atoms in the |F,mF〉 = |1,−1〉 state we have a = 55a0,
where a0 is the Bohr radius. In our experimental conditions we expect
that the in-trap healing length is of the order of 200nm. Assuming
that ξl adiabatically follows the density reduction occurring during
the free expansion in the radial plane, after a TOF of 180ms we ex-
pect the healing length to be much larger, of the order of 100µm,
and well above the imaging resolution of about 10µm. These consid-
erations are in agreement with the experimentally observed defect
width. Moreover we can justify why the visibility of defects increases
for longer TOFs: after the expansion solitons become bigger and easier
to be observed.

Defects have a maximum visibility when the solitonic planes are
straight and perpendicular to the trap axis, therefore appearing as
sharp lines in the integrated radial images. For this reason the imag-
ing directions have been precisely aligned along the transverse plane
of the trap, an important requirement for the observation of planar
structures. However, as it can be seen from figure 3.1, we often ob-
serve depletion lines that are bent or curved, sometimes crossing and
overlapping each other when more defects are present. A tilted plane
can appear with a lower contrast in an image taken along a radial di-
rection: in order to increase the visibility of defects, we implemented
a tomographic technique that allows to reduce the integration interval
along the direction of observation.

To explain the working principle of this tomography of the con-
densate, we recall that absorption imaging is performed using light
resonant with the |F = 2〉 → |F ′ = 3〉 hyperfine atomic transition. Since
the atoms in the magnetic trap are in the |F = 1〉 state, which is a dark
state to the imaging light, before taking the picture we need to trans-
fer the population to the bright state |F = 2〉, for instance by optical
pumping, which in general is performed on the whole sample. We
can perform this repumping just on a narrow slice of the expanded
atomic cloud, while leaving the rest of the atoms in the dark state that
is invisible in images. As illustrated in figure 3.3b, we shine the cen-
tral part of the condensate, that after an expansion of 180ms takes the
shape of a disk with a radius of about 2.5mm, using a vertical narrow
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repumping light sheet with a waist of 600µm. Thanks to this tomo-
graphic technique the contrast of the depletion lines results higher,
and we can identify and count the defects with a better confidence.

3.3 defect number scaling

3.3.1 Temperature quenches

The KZM gives a quantitative prediction for the scaling of the number
of defects formed after crossing a second-order phase transition with
a given quench rate, i. e., the velocity at which the control parameter
is varied. In our system the control parameter for the BEC transition is
the temperature of the gas, which is indirectly controlled through the
RF threshold during the evaporative cooling phase. Even if we exploit
evaporative cooling to reduce the temperature by about three orders
of magnitude during the preparation of the atomic samples and the
production of BECs, in the framework of the KZM only the interval
around the transition point is relevant.

In order to quantitatively characterize the defect number scaling we
need to define a procedure which guarantees that the transition is
crossed with a given cooling rate ∂T/∂t. By measuring the tempera-
ture T as a function of the evaporation frequency ν around the tran-
sition point, we found that T scales as ν with a proportionality factor
of about 5nKkHz−1, which is almost constant with the quench rate.
We can therefore assume that the quenches performed with linear
evaporation ramps are effectively linear temperature quenches, and that
∂T/∂t at the transition is proportional to the evaporation speed ∂ν/∂t,
which can be controlled in a precise and flexible way with the digital
control system of the experiment described in section 2.1.4.

The transition point is experimentally determined by imaging the
atomic cloud at different RF values: we find the frequency νc that
sets the threshold for the presence of a minimal condensed fraction,
and we measure the correspondent critical temperature Tc from the
Gaussian width of the thermal fraction after ballistic expansion. The
critical point νc depends on many parameters, such as the quench
rate ∂ν/∂t and the number of atoms at the transitionNc. We choose to
keep Nc as constant as possible, within the shot-to-shot fluctuations
of about 20%, by controlling the number of atoms that are loaded in
the MOT at the beginning of each experimental sequence. This allows
us to apply the predictions of the KZ theory for the scaling of the
defect density directly to the number of defects counted in the BEC.
In fact, if the in-trap dimensions of the atomic sample at Tc, fixed by
Nc, remain the same, defect density and their absolute number are
linked by a constant multiplicative factor which can be neglected in
the subsequent analysis on the defect number scaling.
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Figure 3.4: We use a common RF evaporative cooling procedure to pre-
pare all the cold atomic samples above the critical temperature
Tc (point 2). The transition occurs in a frequency interval de-
pending on the experimental parameters (yellow). The transition
point is crossed with a linear frequency ramp that ends below
Tc, performed in a time τQ depending on the variable frequency
rate (from point 2 to 1). After the quench an additional cooling
ramp increases the condensed atomic fraction in 100ms. A fixed
waiting time of 100ms is waited keeping a RF shield, before the
atoms are released from the trap and imaged after 180ms of TOF.

We define the quench as a linear evaporation ramp with variable
slope ∂ν/∂t between the fixed RF limits ν2 = 1.39MHz and ν1 =

1.25MHz, since we observed that the transition frequency νc lies
within this range for every quench rate that has been experimentally
explored. Following these considerations, we can define the quench
time τQ, that was introduced in equation (1.12), as the duration of
the linear quench ramp over the frequency interval ∆ν = ν2 − ν1 =

140 kHz around the transition*:

τQ =
∆ν

∂ν/∂t
∝
(
∂T

∂t

)−1

. (3.1)

As it can be seen also from figure 3.4, smaller values of τQ correspond
to faster quenches and vice versa.

At the end of the quench ramp, i. e., at ν1, the condensate is not
pure and a sizable fraction of atoms remains in the non-condensed
state. In absorption images the thermal fraction is visible as a broad
background signal, which overlaps with the density profiles of defects
in the condensate, reducing their contrast. In order to maximize the
visibility of defects, after the quench we reduce the thermal fraction
with an additional ramp of 100ms at a constant slope of 300 kHz s−1,
hence obtaining for every τQ almost pure condensates at 1.22MHz,
which is 25 kHz above the trap bottom at ν0 = 1.195MHz.

* Note that this definition of τQ is partially different from the one that will be pre-
sented in section 5.1.1.
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After the completion of the evaporation we wait an additional time
of 100ms before taking the picture. This is done in order to allow
the stabilization of defects and the thermalization of the condensate
also for the fastest ramps: in fact we note that the temperature sta-
bilizes some tens of ms after the quench. During this waiting time
we also observe that the temperature of the atomic sample rises by
more than 100nK from its final value of about 200nK: in order avoid
this heating process, during the waiting time we keep the evapora-
tion frequency at the constant value of 1.24MHz, hence introducing
a RF shield and continuously removing from the sample the thermal
atoms with higher energies.

3.3.2 Defect number counting

After the quench procedure is completed we probe the condensate
with tomographic absorption imaging along the horizontal radial di-
rection, as described in section 3.2. Then we count by eye the number
of depletion lines that are visible in the density profile of the BEC, as
in the examples of figure 3.1, hence associating a number of defects
N to each experimental run. We expect N to follow a Poisson statistics:

• for each shot we measure an integer number of defects N, typi-
cally ranging from 0 to 5;

• the number N is random and independent shot-to-shot, as we
expect from the stochastic nature of the KZM;

• due to the low density of defects, it is unlikely to find more than
one defect at the same position;

• since the dimensions of the atomic cloud at the transition are
almost constant, the probability to find N defects is simply pro-
portional to the defect density, which is fixed by the KZM.

As it can be seen from figure 3.5, the probability distribution of N is
characterized by a higher average when the quench time is smaller,
and, in addition, it is well fitted with a Poisson distribution, as it will
be discussed also in section 5.3.1.

The meaningful quantity of our interest for the KZM is the average
defect number 〈N〉, which is extracted by repeating the experiment M
times for each condition of the experimental parameters:

〈N〉 = 1

M

M∑

i=1

Ni . (3.2)

The uncertainty over 〈N〉 is calculated as the sum in quadrature of
the standard error of the mean

δN =

√√√√M∑

i=1

(Ni − 〈N〉)2
M(M− 1)

(3.3)
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Figure 3.5: Occurrence probability for the number of defects counted in
the single experimental runs, considering different values of the
quench time: the distribution moves to higher defect numbers
for smaller values of τQ. The statistics refers to the data set with
Nc = 25× 106 atoms of the measurements on defect number
scaling reported in figure 3.6.

and of a resolution term estimated as M−1, hence giving a total error
bar† of

∆N =

√
δN2 +

1

M2
. (3.4)

The number of experimental realizations M is varied between 20 and
40, depending on the resulting average defect number in order to
minimize the error bars.

3.3.3 Power-law scaling

We measured the average defect number 〈N〉 over more than one
order of magnitude of the quench time τQ, which has been varied be-
tween 140ms (1MHz s−1) and 2.5 s (60 kHz s−1). The measurement
has been repeated for two values of the atom number at the transi-
tion, respectively Nc = 25(5)× 106 and Nc = 4(1)× 106 atoms. The
results are reported in figure 3.6. For each series the number of de-
fects decreases with the quench time, and can we identify a threshold
value of τQ for the detection of defects, shown in the plot with a
vertical arrow: above this value of τQ we never observe defects. Con-
sidering the series with higher Nc, from the plot in logarithmic scale

† In this chapter we report the uncertainties as in our first article on the KZM (Lam-
poresi et al., 2013b). However the resolution term M−1 is underestimated here, as it
will be discussed in section 5.1.4.
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along both vertical and horizontal axes, it is evident that the average
defect number 〈N〉 scales with the quench time τQ as a power law, as
predicted by the KZM. This strongly supports our hypothesis about
the origin of defects in our system.

For fast quenches our measurements are limited by atom loss at
the end of the evaporation ramp, caused by the reduced evaporative
cooling efficiency. In fact, considering the series with Nc = 25× 106
atoms at the transition, for τQ . 140ms the number of atoms in the
final condensate significantly drops compared to its average value of
10× 106 atoms. We discard these experimental data, since a signifi-
cant variation of the condensate size may alter the number of defects
that are visible. For the same reason the series with Nc = 4× 106
atoms was performed on a reduced interval of the quench time: the
atom loss becomes important already for values of τQ smaller than
about 1 s.

The average defect number as a function of the quench time has
been fitted with a power law, following the expression in equation
(1.25) introduced for the KZ scaling:

N(τQ) ∝ τ−αQ . (3.5)

For the series with higher atom number we measure an exponent
α = 1.38(6)‡. A similar power-law fit has not been possible for the
series with Nc = 4× 106 atoms, because of the reduced set of data
points. Moreover we observe an unexpected abrupt change in the
power-law slope at large τQ values, which further limits the avail-
able interval. However a qualitative comparison between the points
at smaller τQ seems to indicate a similar power-law behavior between
the two series. If confirmed, this would suggest a universal behavior
for the defect number scaling, independent on the properties of the
system and in accordance with the KZM.

A comparison of these experimental results with the KZ theory is
not straightforward for several reasons that can be evinced from the
discussion done for equation (1.26). First of all the power-law expo-
nent α depends on the critical exponents ν and z: different theories
predict different values of ν and z, and the topic is still debated (Don-
ner et al., 2007; Chomaz et al., 2015; Navon et al., 2015). Moreover
α depends on the defect dimensionality: as described in section 3.2,
a preliminary identification of our defects was made in terms of soli-
tons. However, as it will be presented in chapter 4, subsequent studies
led us to identify these defects as solitonic vortices, which may have
a different dimensionality: according to the KZ theory the power-law
exponent α changes by a factor of 2 between solitons and vortices
in 3D systems, and therefore a clear knowledge of the defect nature
plays a crucial role in this kind of measurements.

‡ The uncertainty over α reported here is the asymptotic standard error. It neglects
possible systematic and resolution errors.
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Figure 3.6: Average number of defects as a function of the quench time
for two series taken with different atom numbers at the BEC

transition, reported in linear (top) and log-log (bottom) scales.
For each data set the arrow indicates the value of τQ set-
ting the threshold for the detection of defects. The set with
Nc = 25× 106 atoms is fitted with a power law (dashed line) as
defined in equation (3.5), excluding the fastest point where the
number of condensed atoms is significantly smaller. The best fit
to the data provides an exponent α = 1.38(6). The dot-dashed
line is not a fit: it is a power law with the same exponent α,
shifted upward in order to overlap the series with Nc = 4× 106
atoms, and it is plotted only for comparison.
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Within the limits discussed above, the calculations for gray solitons
produced via the KZM in a cigar-shaped condensate give a power-law
exponent of α = 7/6 ' 1.2 (Zurek, 2009), considering the critical
exponents from the F-model (Hohenberg et al., 1977) and assuming
the BEC transition to be in the same universality class of the superfluid
transition in 4He. Even if the measured exponent α ' 1.4 is of the
same order of magnitude, a direct comparison cannot be done since
the theory assumes a constant temperature in the condensate, while
this condition may not be met in our system as it will be discussed in
the following section.

3.4 role of the inhomogeneity

3.4.1 Model for the inhomogeneous BEC

In section 1.2.2 we discussed the condition for the formation of in-
dependent phase domains in inhomogeneous systems, which trans-
lates into the comparison between the velocity of the transition front
vF and the speed setting the causal horizon v̂, introduced in equa-
tions (1.22) and (1.23) respectively: phase defects can form when
vF > v̂, hence when the transition is so fast that the order parame-
ter must be chosen locally. Here we present a simple model that was
proposed in order to check if this condition can apply to our system
(Lamporesi et al., 2013b), eventually supporting the interpretation of
our experimental results within the KZM framework.

The atoms are confined in an axially symmetric harmonic potential
that, following equation (1.39), can be expressed in cylindrical coordi-
nates as

U(r, z) =
1

2
m
(
ω2⊥r

2 +ω2‖z
2
)

, (3.6)

where r2 = x2 + y2. The elongated profile of the trapping potential
is sketched in figure 3.7. As previously described, we perform tem-
perature quenches through the BEC transition using RF evaporative
cooling: the frequency ν sets the evaporation threshold at a given po-
tential energy from the trap bottom in r = z = 0, thus mapping the
potential depth as

Eev = hν−U(r, z) . (3.7)

The thermalization properties of the gas depend both on the con-
finement regime and on the elastic collisional time, which, in our
experimental conditions at the BEC transition, in the center of the trap
is of the order of

τcoll =
1

ρ0σcoll vT
' 10ms . (3.8)
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Figure 3.7: Sketch of the elongated trapping potential (gray), with the RF

setting the evaporation threshold (horizontal red plane). During
the quench the threshold is linearly reduced at a given quench
rate. We assume the thermal equilibrium along the radial di-
rection, with an inhomogeneous temperature depending on the
axial position z.

Here ρ0 is the peak atomic density, σcoll = 8πa2 is the elastic colli-
sional cross section with a being the scattering length, and vT is the
thermal velocity of the gas at T = Tc (Arndt et al., 1997). From the
comparison of τcoll with the radial and axial oscillation periods, re-
spectively 2π

ω⊥
' 8ms and 2π

ω‖
' 80ms, in first approximation we

can assume to be in an axial collisional regime (Ketterle et al., 1999):
around the transition we expect a local thermal equilibrium in the
gas, with a temperature gradient along the axial direction.

It follows that, for a given radio frequency ν, during the evapo-
ration quench the local temperature of the gas can be expressed as a
function of the axial position z, neglecting the radial dependence:

T(z) ' Eev

ηkB
=
hν−U(r = 0, z)

ηkB
. (3.9)

Here η is the evaporation truncation parameter, i. e., the factor setting
the proportionality between the trap depth and the gas temperature
(Ketterle et al., 1996a). In our case η ' 11, as it will be discussed in
section 5.1.3.

Along the trap axis, at thermal equilibrium the local atomic density
above the critical point can be expressed as

ρ(z) = ρ0 exp
(
−U(r = 0, z)

kBT

)
, (3.10)

where T is the equilibrium temperature and ρ0 the peak density in the
center. The critical temperature of the BEC transition can be estimated
by inserting ρ(z) in the expression for non-interacting particles, intro-
duced in equation (1.29):

Tc(z) '
2π h2

mkB

(
ρ(z)

2.61

)2/3
. (3.11)

The profiles of the transition evaporation frequency νc(z) and of
the critical temperature Tc(z), estimated for our experimental con-
ditions with Nc = 25× 106 atoms, are reported respectively in the
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upper and middle plots of figure 3.8. The same plots report also
the temperature profiles of T(z) calculated for three sample values
of the evaporation threshold ν. From the comparison between T(z)
and Tc(z) we can identify the transition front, located at the position
that satisfies T(z) = Tc(z). Considering a linear variation of the evap-
oration frequency ν, the transition front will propagate starting from
the center of the trap, with a velocity vF that depends on the axial
position z and on the quench time τQ.

The front velocity vF has to be compared with the speed v̂ that sets
the causality limit, i. e., the maximum velocity at which the informa-
tion about the choice of the order parameter travels across the gas.
In first approximation, within the two-fluid model we can consider
the speed of first sound for the causal horizon of the gas undergoing
the condensation. A precise calculation of this quantity at the transi-
tion is highly nontrivial. However, for a weakly interacting gas, we
can roughly estimate the speed of first sound at Tc with the ordinary
speed of sound in an ideal gas (Pitaevskii et al., 2016), which scales as

vs(z) ∝
√
kBTc(z)

m
. (3.12)

From the comparison between vF and vs in the lower plot of figure 3.8,
we can see that within the trapped inhomogeneous gas there are re-
gions where the transition front moves faster than sound, i. e., where
the nucleation of independent phase domains may occur. We can also
observe that these regions where the KZM should be active are wider
for faster quenches, in accordance with the observation of higher de-
fect numbers for smaller τQ values.

Even if the strong assumptions that we have done here should
be treated deeper, this simple model supports the interpretation of
our observations with the KZM. However, it also puts some concerns
about a quantitative comparison between our experimental results
and the predictions of the KZ theory for inhomogeneous systems.
In fact, the power law and respective exponent α reported in equa-
tions (1.25) and (1.26b) refer to calculations done by Zurek (2009) in
the assumption of a uniform temperature in the gas, whereas, as just
discussed, in our experimental conditions we expect a non-uniform
temperature during the quench. The difference can be appreciated
from figure 3.8, where the speed of the transition front at a given τQ
is plotted considering both uniform and inhomogeneous gas temper-
atures. If we neglect the outer part of the atomic cloud where the
density is vanishingly small, for a uniform temperature the condition
vF > vs is verified only within a narrow region near the center of the
trap. This means that the calculations with an inhomogeneous tem-
perature may lead to a different number of defects, and in particular
to a different power-law exponent α.
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Figure 3.8: Results of our toy model for the local properties of the gas at the
BEC transition, plotted as a function of the axial position z in the
trap. In the upper plot we consider three evaporation thresholds
ν1,2,3 (dashed red), to be compared with the RF critical profile νc
(solid blue). The corresponding temperature profiles T1,2,3 and
Tc are plotted in the middle, calculated considering a truncation
parameter η ' 5. During the evaporation ramp the transition
front (defined by ν = νc, or equivalently by T = Tc) moves
from the center (A) to outer positions (B,C). In the bottom plot
the front velocity vF for fast (dashed purple) and slow (dashed
green) linear quenches is compared with the sound velocity vs
(solid orange). The KZM should be activated in the regions where
vF > vs. For comparison vF is calculated also assuming a uni-
form temperature T in the gas during the slower quench (dot-
dashed gray). The atomic density (background gray scale) is
maximum in the center of the trap at z = 0, and it vanishes
at the borders.
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3.4.2 Effects of the inhomogeneous temperature

We tried to find an experimental support for the hypothesis of an
axially dependent temperature T(z) set by the evaporative frequency
ν during the quench, as discussed for equation (3.9), which is the
basis of the model previously presented for the inhomogeneities in
our system. In general the temperature of a trapped thermal gas can
be measured with absorption imaging from the Gaussian width σi
of the expanded density distribution along the axis i, which after a
ballistic expansion of tTOF scales as

σi = σi0

√
1+ω2i t

2
TOF , (3.13)

where

σi0 =

√
kBT

mω2i
(3.14)

is the cloud size in the trap along the respective axis (Ketterle et al.,
1999). If the expansion is long compared to the trap oscillation pe-
riod, i. e., if the condition tTOF � ω−1

i is verified, the atomic density
distribution after free expansion reflects the in-trap momentum distri-
bution and σi0 can be neglected. However, since we want to main-
tain the information about the in-trap spatial distribution along the
axial direction, we can consider an intermediate regime by choosing
an expansion time which is longer than the radial oscillation period
(tTOF > ω−1

⊥ ) while being at the same time shorter than the axial
period (tTOF < ω

−1
‖ ).

We prepare the atomic sample with a fast temperature quench with
τQ = 280ms, stopping the ramp at the frequency ν = 1.31MHz, just
above the transition occurring at ν = 1.29MHz. In order to access the
intermediate expansion regime just discussed, the cloud is imaged
after a time tTOF = 5ms. Then we divide the picture into narrow
slices at different axial positions in the atomic distribution, and we fit
each slice with a 1D Gaussian function along the radial direction, thus
measuring the local Gaussian radial width σ⊥ as a function of z. We
repeat this measurement of σ⊥(z) for different values of the time tw

waited after the end of the quench and before taking the picture. The
results are reported in figure 3.9.

In first approximation we can neglect the in-trap radial width σ⊥0 ,
hence supposing that σ⊥(z) ∝

√
T(z). Under this assumption the tem-

perature trend just after the quench, i. e., the series with tw = 0ms,
seems to qualitatively agree with the behavior that can be extrapo-
lated from equation (3.9). In fact the radial Gaussian width is higher
in the center of the cloud, while it decreases at the borders. For higher
values of tw the axial inhomogeneity of σ⊥ looks less pronounced,
suggesting that the axial thermalization actually happens on a longer
timescale, of the order of few hundreds of ms.
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Figure 3.9: Radial Gaussian width (first plot) and peak optical density (sec-
ond plot) of thermal atomic clouds after a TOF of 5ms. The re-
sults are plotted as a function of the axial position for different
values of the time waited after a fast quench with τQ = 280ms.
A sample picture of thermal cloud considered for this measure-
ment is reported in the upper part.
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Even if these observations go in the right direction, we should take
them with care. In fact the measurements could be affected by spu-
rious effects, such as the vanishing atomic density in the outer part
of the cloud, as it can be seen from the optical density plotted in fig-
ure 3.9. In particular we did not try to extract a quantitative value
of the temperature since this would require the knowledge of σ⊥0 ,
which is not directly measurable with our imaging system. Moreover
we observed a dependence of the measured σ⊥ on the intensity of the
repumping light used during the imaging sequence, hence putting a
strong concern on the validity of any quantitative analysis.

3.4.3 Role of the atom number

Some indications about the validity of the model previously pre-
sented for our inhomogeneous gas can be extracted from the compar-
ison between the two series of figure 3.6, reporting the defect number
scaling with different atom numbers at the transition Nc. The quench
time setting the threshold for the observation of defects, highlighted
with a arrow in the plot, is shifted to higher values of τQ for the series
with lower Nc. This means that defects are created even for slower
quenches relative to the case with higher Nc. This is consistent with
a lower speed of sound for a lower atomic density, which we roughly
considered for the causal horizon. In fact the critical temperature for
an ideal gas in a harmonic potential (Pitaevskii et al., 2016) can be
expressed as

Tc =
0.94  hωho

kB
N
1/3
c , (3.15)

where ωho the geometric mean of the trapping frequencies:

ωho = 3

√
ω2⊥ω‖ . (3.16)

Therefore the speed of sound around Tc introduced in equation (3.12)
would scale as

vs ∝
√
Tc ∝ N1/6c . (3.17)

Even if a quantitative comparison would require a deeper theoret-
ical understanding of the threshold phenomena for the KZM in inho-
mogeneous systems, we observe that, considering the experimental
data with Nc = 25× 106 and Nc = 4× 106 atoms, we expect vs to
be smaller by a factor of 0.74(6). This is consistent with the measured
factor of 0.84(8) for the relative shift in τQ of the defect detection
threshold. A slower sound velocity would also explain why in the
data set with Nc = 4× 106 atoms we observe more defects compared
to the series with Nc = 25× 106 atoms for the same values of τQ. In
fact, since the speed of sound is slower, with fewer atoms we expect
a wider region of the condensate where vF > vs, hence leading to a
higher number of defects.
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Figure 3.10: Average defect number as a function of the time waited af-
ter a quench ramp with τQ = 467ms. Two series are re-
ported: one for an almost pure condensate with a tempera-
ture Tlow ' 200nK, the other leaving a sizable fraction of
atoms in the non-condensed state with a higher temperature
Thigh ' 600nK, near to Tc ' 800nK. For each data set the
solid line is the exponential decay curve fitting the experimen-
tal points with an offset. From our observation we find that the
final temperature does not show a dependence on the waiting
time.

3.5 defect lifetime

As discussed in section 3.2, we initially interpreted the defects ob-
served in our condensates as solitons, mislead by their apparent pla-
nar 2D shape. However solitons are not expected to be stable in 3D

systems with a finite temperature (Brand et al., 2002; Komineas et al.,
2003), and in experiments they are typically observed on timescales
short as compared to the harmonic oscillator period (Burger et al.,
1999; Denschlag et al., 2000; Anderson et al., 2001). The defect lifetime
should be taken into consideration in measurements based on defect
counting such ours. In fact, if a soliton decays on a timescale that is
shorter or comparable with the experimental quench procedure, i. e.,
on the order of τQ, the number of counts will be lower than the orig-
inal defect number. A direct study of this possibility would require a
non-destructive imaging technique, not implemented here. Therefore,
in order to clarify this possibility, we measure the average number of
defects as a function of the wait time tw spent in the trap at the end
of the quench ramp for a given τQ.

The results for the defect lifetime are reported in figure 3.10 for two
sets of measurements with different temperatures Tlow and Thigh, the
latter controlled by changing the final frequency of the evaporation
ramp. The average defect number as a function of tw is fitted to an
exponential decay curve with offset. For the series at a temperature
that is well below Tc we measure a defect lifetime τlow = 1.2(5) s,
while for the series at higher temperature we measure a slightly faster
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decay with a time constant τhigh = 0.9(3) s. This is consistent with a
temperature-dependent decay mechanism for solitons.

The lifetime τ is long compared to the experimental procedure fol-
lowing the quench, therefore in first approximation we can assume
that, during the finalization ramp and the time waited before the
imaging as described in section 3.3.1, the decay does not alter the scal-
ing behavior measured for the defect number. However, since the de-
cay time is comparable with the quench time τQ, our measurements
of the defect number scaling might be slightly affected, in particular
for the slower quenches. The role of the defect decay on the defect
counts will be discussed in detail in chapter 5.

As a final remark, from figure 3.10 we observe that an important
fraction of defects survives for more than 5 s, measured as an offset
of about 0.5 defects in the exponential decay for the series at lower
temperature. Regarding this unexpectedly long lifetime, in our first
article on the KZM (Lamporesi et al., 2013b) we speculated the creation
of long living solitons generated with a small initial velocity and a
reduced energy dissipation, even if this mechanism remained unclear.
This point suggested us to better investigate the nature of the defects
forming in our system, that, following the study that will be reported
in the next chapter 4, we finally identified as solitonic vortices instead
of solitons (Donadello et al., 2014).



4 S O L I TO N I C V O R T I C E S

The ground state of a Bose–Einstein condensate is characterized by
a well-defined order parameter, with a uniform phase and a smooth
density profile related to the confining potential. Excited states can
exhibit stable phase defects, such as solitons or vortices. In the pre-
vious chapter I discussed the spontaneous creation of defects in our
elongated gas, occurring after fast quenches across the BEC transition
via the KZM. In the present chapter I will describe the studies that
allowed us to identify those defects as solitonic vortices.

The peculiar properties of solitonic vortices will be presented in sec-
tion 4.1, following our first experimental observations. The direct ob-
servation of the nodal line of solitonic vortices, as well as the demon-
stration of phase circulation with matter interferometry, will be re-
ported in section 4.2. In section 4.3 I will present the results of numer-
ical calculations supporting our experimental conclusions. Finally in
section 4.4 I will discuss the possible temporal evolution of solitonic
vortices.

4.1 observation of vortices in an elongated
bec

In the previous chapter 3 we reported the experimental observation
of defects spontaneously created via the KZM after rapid temperature
quenches across the BEC transition. In our article on the KZ scaling
we identified those defects as gray solitons (Lamporesi et al., 2013b).
This was mainly motivated by the elongated shape of the sample and
by the planar geometry of defects, as they appeared by imaging the
condensate along two orthogonal radial directions after a long TOF.
However, the observation of a long defect lifetime of the order of 1 s
was unexpected for this kind of defects, since several numerical and
experimental studies showed that solitons are unstable in 3D systems
(Burger et al., 1999; Feder et al., 2000; Denschlag et al., 2000; Anderson
et al., 2001). Long living solitonic structures were similarly observed
by Yefsah et al. (2013) in an elongated unitary Fermi gas.

Another point that drew our attention was the observation of de-
fects with a particular and recurring shape in many of the experi-
mental images taken while studying the KZM. Considering the exam-
ples of figure 4.1, the density depletion associated to the defect is
not straight as one would expect while looking at a regular planar

73



74 solitonic vortices

(a) (b) (c) (d) (e) (f)

Figure 4.1: Examples of condensates containing defects twisting around a
hollow core, observed during the KZM measurements reported
in chapter 3. The absorption images are taken along the hori-
zontal radial direction after an expansion time of 180ms. We
observe both clockwise and counterclockwise twists for these
defects that we identified as solitonic vortices. Two solitonic vor-
tices are visible in the last picture.

structure, but it twists around a density dip. This bended shape of the
solitonic plane intuitively suggested us that some kind of circulation
was present in the superfluid around a line aligned with the direction
of observation, similarly to what happens for a vortex.

The identification of our defects as vortices was intriguing since,
whereas these structures have been extensively studied in oblate or
spherical traps, stable vortices in elongated condensates such ours
were never observed before in a direct way, although being predicted
by Brand et al. (2002) and Komineas et al. (2003). Following those
theoretical studies, the relevant parameter to address the stability of
defects in axially symmetric systems is the dimensionless confinement
parameter γ, defined in equation (1.50) as

γ =
µ

 hω⊥
=
R⊥
2ξl

, (4.1)

where µ is the chemical potential, ω⊥2π the radial trapping frequency,
R⊥ the in-trap radius of the condensate in the transverse direction,
and ξl the healing length. As previously introduced in section 1.3.2,
in tightly confined systems with γ � 1 solitons are stable, whereas
states with lower excitation energy become accessible for bigger val-
ues of γ. In particular, structures called solitonic vortices, which can
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be described as vortices with anisotropic phase and density profiles,
represent the least energetic states in elongated systems with γ � 1.
The crossover between the two regimes sets in when γ ∼ 1, i. e., when
the defect size, fixed by ξl, becomes of the order of the transverse size
of the condensate, fixed by Thomas–Fermi radius R⊥.

In our system defects are spontaneously created while crossing the
BEC transition with forced evaporative cooling, with the confining po-
tential being characterized by axial and radial trapping frequencies
of respectively

ω‖
2π = 13Hz and ω⊥

2π = 131Hz. Starting from 25× 106
atoms at the transition point, after the temperature quench we ob-
tain almost pure condensates of about 10× 106 atoms. Under these
experimental conditions at the end of the evaporation we have a con-
finement parameter γ ' 27, and thus we expect to be in the regime
where the solitonic vortex (SV) is the most stable topological excitation
(Brand et al., 2002; Komineas et al., 2003). In our articles on the topic
we reported experimental and numerical arguments supporting this
interpretation (Donadello et al., 2014; Tylutki et al., 2015). The obser-
vation of solitonic vortices in cigar-shaped unitary Fermi gases was
simultaneously reported by Ku et al. (2014), while indirect evidences
of this kind of defect in BECs were previously described by Becker
et al. (2013).

Considering axially symmetric systems, figure 4.2 reports the den-
sity distribution and phase pattern calculated for a vortex in an iso-
tropic geometry, a SV, and a dark soliton. The equilibrium configu-
ration of vortices in trapped condensates with different aspect ratios
can be understood observing the expression for the vortex excitation
energy reported in equation (1.49), which is proportional to the length
of the nodal line.

• In oblate systems vortices are less energetic when they are aligned
parallel to the symmetry axis. If a vortex is placed in the center
of such a system, the phase of the order parameter winds lin-
early with angle by 2π while rotating around the vortex core.
Therefore the phase gradient maintains the cylindrical symme-
try around the principal axis, with an isotropic circulation in the
velocity field defined by the relation of equation (1.34).

• In prolate systems vortices minimize their energy taking an ori-
entation which is orthogonal to the symmetry axis. The equi-
phase surfaces of the vortex phase pattern must be orthogonal
to the outer surface of the cigar-shaped condensate, resulting
therefore bended and squeezed along the short radial direction.
The result is vortex where the phase variation is concentrated
in a narrow region around the radial plane of the vortex core.
Consequently the system reduces its energy by depleting the
atomic density in the transverse surface where the phase gra-
dient and the velocity field are higher, a configuration that is
called solitonic vortex.
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vortex
(in a pancake-shaped trap)

phase profiledensity profile

soliton
(in a cigar-shaped trap)

solitonic vortex
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Figure 4.2: Phase and density profiles calculated for different configura-
tions of defects in BECs trapped in axially symmetric potentials:
a vortex aligned with the symmetry axis, a SV with its core along
the transverse direction, a soliton with the nodal plane perpen-
dicular to the symmetry axis. The atomic flow, indicated with ar-
rows, is uniformly oriented across the plane of the soliton. Con-
versely, in the case of the SV, the velocity field exhibits opposite
relative directions above and below the vortex core.

From figure 4.2 it can also be observed that, far from the depleted
region, the phase pattern looks similar for a SV and a soliton, with the
two sides of the condensate showing a phase difference of about π.
However, whereas for a soliton the phase gradient is constant on the
nodal plane, for a SV it has opposite signs in the two half-planes sepa-
rated by the vortex core. For this reason one may expect that, during
the free expansion of a condensate containing a SV, the two sides
of the depleted plane twist around the vortex core. This qualitative
picture can explain the geometry of the defects in figure 4.1, and it
suggests that the rotation sign of a SV can be extracted directly from
the observation of the depletion twist around the hollow core, whose
direction can be either clockwise or counterclockwise.

4.2 characterization of solitonic vortices

4.2.1 Triaxial imaging of vortex lines

In order to demonstrate our hypothesis about solitonic vortices we
wanted to figure out if the defects that we observe in condensates
have a non-planar geometry. The observation of the system only along
radial directions, as we have done in the measurements presented in
chapter 3, cannot give us an ultimate answer. In fact the twists ob-



4.2 characterization of solitonic vortices 77

in trap

TOF

z x

y

Figure 4.3: Sketch of our imaging configuration, where after a long free
expansion the pancake-shaped condensate is probed along the
symmetry axis and two orthogonal radial directions. The direc-
tions of the probe light beams are indicated with orange arrows.
Possible non-planar structures might be observed along the ax-
ial direction.

servable in the radial images of figure 4.1 might be also interpreted
as solitons having bended planes. As a natural extension of our imag-
ing we added a CCD camera along the direction of the trap symmetry
axis, thus being able to take pictures of the condensate simultane-
ously along three orthogonal axes, as sketched in figure 4.3.

We perform temperature quenches with an evaporation rate of
300 kHz s−1. Then we leave the condensate to expand for a TOF of
120ms with magnetic levitation, and we probe the atoms with triax-
ial imaging. After such a long expansion time the condensate takes a
pancake-like shape (Castin et al., 1996; Ernst et al., 1998). The Thomas–
Fermi radii of the expanded condensate are about 1.5mm in the ra-
dial direction and 0.3mm along the symmetry axis. Due to the oblate
shape of the atomic cloud, the peak optical density in axial pictures
is less than 1/4 respectively to radial ones, resulting in a significantly
reduced signal-to-noise ratio. For this reason the small depletion sig-
nals that we observed in some axial images were hardly distinguish-
able from background shot noise and other spurious signals such as
optical interference fringes, as it can be seen from the example of
figure 4.4a.

In order to enhance the visibility of possible defects in axial pictures
we implemented the following digital filtering procedure.

1. Firstly we fit the axial image with a 2D parabolic function, which
describes well a smooth condensate during free expansion.
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(a) Raw absorption image. (b) Processed fit residuals.

Figure 4.4: Example of image filtering applied to the axial image of an
expanded condensate. Two linear defects are clearly visible
in the final processed image, obtained from the residuals of
the parabolic fit performed on the original image. The optical
fringes and the shot noise are attenuated respectively by sub-
tracting a reference matrix and by applying a Gaussian filter.

2. Then we consider the matrix of the fit residuals, i. e., the differ-
ence between the experimental image and the fitting parabola.
Any irregularity in the density profile results to be amplified in
the residuals, indistinguishably for spurious signals or possible
interesting structures in the condensate.

3. We create a reference matrix by averaging the fit residuals of
many different axial images. The optical fringes give rise to sig-
nals which remain almost constant shot-to-shot, whereas spon-
taneous defects are created with random orientations and posi-
tions, hence giving a negligible contribution to the final average.

4. We selectively remove the optical fringes by subtracting the ref-
erence matrix to the fit residuals for each axial image, hence
being able to discriminate real irregularities in the atomic distri-
bution.

5. Finally we apply a Gaussian filter in order to reduce the shot
noise, with a filter width of about 1 pixel.

The result of this processing sequence applied to the picture in fig-
ure 4.4a is reported in figure 4.4b. In the final axial image two lin-
ear structures are observable with enhanced contrast and visibility,
whereas in the raw picture they represent a depletion of less than 5%
in the density profile.

The comparison between axial and radial images gives us a clear
picture of defects inside the condensate, supporting their identifica-
tion as solitonic vortices. In fact, a twisting plane observed along one
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(b) Solitonic anti-vortex.

Figure 4.5: Triaxial absorption images of condensates taken after 120ms of
expansion with levitation. A SV is present in each sample, with
the vortex core being aligned horizontally. The direction of the
atomic flow is indicated with arrows in the respective horizon-
tal radial images: the atomic circulation is clockwise in the first
condensate, opposite in the second one, which we arbitrarily
refer as vortex and anti-vortex. Each radial image reports the in-
tegrated atomic density, whereas each axial image presents the
filtered residuals of the parabolic fit.

radial direction in general can be associated to a linear structure in the
axial image, that we consequently identify as the core of a SV. Let us
take the two examples of figure 4.5, where the nodal lines are aligned
horizontally: in each respective radial picture along the horizontal di-
rection we observe that the solitonic plane twists around the density
dip of the vortex core, whereas just a linear stripe is visible in the
vertical radial image.

As introduced in previous section 4.1, the twist of the solitonic
plane observed in an expanding condensate along a radial direction
can be the effect of the atomic flow, circulating around the vortex
core as defined by the phase gradient. Specifically the velocity field
causes a deformation in the depleted plane, that seems to twist in the
opposite direction. Therefore the sign of vorticity can be determined
directly from absorption images. In particular we can arbitrarily de-
fine the solitonic vortex when the circulation is clockwise in our frame,
i. e., with a s-shaped twist, and the solitonic anti-vortex when the cir-
culation is counterclockwise, i. e., with a z-shaped twist. The exper-
imental images of a solitonic vortex and anti-vortex are reported in
figures 4.5a and 4.5b respectively.

We do not observe any preferred orientation for solitonic vortices,
as we expect for defects randomly created via the KZM in an isotropic
radial confinement. We quantify the negligible radial anisotropy to
be . 10−4, estimated by measuring with high accuracy the radial
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Figure 4.6: Triaxial images of condensates containing one ore more solitonic
vortices with random orientations and shapes. The geometry of
defects can be identified from the comparison of radial and axial
images.

trapping frequency along horizontal and vertical directions. This was
done by exciting the respective dipole oscillatory modes of a trapped
condensate, after applying a pulsed homogeneous magnetic field.

As it can be seen from the examples in figure 4.6, the interpretation
of images can be more complicated in the presence of more than one
solitonic vortex in the same condensate. Anyway the triaxial imag-
ing allows us to identify and count defects with enough confidence
from the comparison of pictures taken from different point of views.
Further observations can explain why often we do not observe any
twist in radial images: only when at least one end of the vortex core
is aligned with the direction of observation it is visible as a twist in
the respective integrated radial image. Conversely, the twist can have
a reduced contrast when the vortex line is tilted or bended, being
completely hidden in some cases where just the solitonic plane can
be distinguished, a possibility that can lead to a misleading interpre-
tation in terms of solitons.
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4.2.2 Interferometric detection of phase circulation

The triaxial imaging clearly demonstrates the non-planar geometry of
our defects and strongly supports the solitonic vortex hypothesis. In
order to provide a direct experimental proof for phase circulation we
implemented a matter-wave interferometer, which exploits the coher-
ence properties of BECs. The mechanism behind this technique can be
understood in analogy with optics: since a BEC is a quantum system
with a well-defined macroscopic wave function, condensates with dif-
ferent phases will interfere producing matter interference fringes in a
similar way as light in classical optical interferometers.

The possibility of identifying vortices in BECs with interferometry
was theoretically proposed by Bolda et al. (1998): whereas systems
with uniform phase gradients produce interference fringes with reg-
ular patterns, the presence of phase circulation causes the appear-
ance of fringe dislocations in correspondence of the vortex core, with
one or more fringes disappearing at the phase singularity. The detec-
tion of artificially created vortices with heterodyne and homodyne
interferometric techniques was demonstrated respectively by Inouye
et al. (2001) and Chevy et al. (2001). In the former experiment, per-
formed in a double-well system where one unperturbed condensate
was used as local oscillator for the interferometer, vortices appeared
as single dislocations. Instead in the latter experiment vortices were
visible as pairs of dislocations in the interference pattern, originating
from slightly separated copies of the same condensate.

Our interferometer is based on homodyne detection: we obtain
coherent copies of the BEC using optically induced Bragg diffraction,
following the scheme described by Kozuma et al. (1999). This two-
photon Raman process is triggered by shining the atoms with Bragg
pulses using two off-resonance laser beams. These beams are aligned
with a relative angle of ϑB = 110° and propagate along the vertical
plane passing through the symmetry axis of the trap, with a linear po-
larization along the same axis. The diffracted atoms acquire a velocity
equal to

vB = 2 sin
(
ϑB
2

)
vrec ' 4.8 cms−1 , (4.2)

with vrec = 2.9 cms−1 being the recoil velocity of sodium atoms at
the wavelength of the D2 transition. In our conditions the relative
light detuning between the beams, which is optimal for exciting the
first-order Bragg diffraction, is ∆B = 2π× 67 kHz.

The condition that must be verified to obtain a momentum transfer
on half of the atomic population is Ωτ ' π

2 , with τ the duration
of the pulse, and Ω the Rabi frequency related to the optical dipole
potential:

Ω =
I |〈d〉|2

2cε0 h2∆B
' 2π× 25 kHz , (4.3)
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where |〈d〉| = 3.0× 10−29Cm is the matrix element of the electric
dipole moment for the D2 transition, I = 12mW cm−2 the intensity of
each optical beam, c the speed of light, and ε0 the dielectric constant.
Therefore, in order to split the condensate into almost equal parts, we
perform π

2 -pulses of duration τ = 8ms.
The experimental sequence implemented for our open-type inter-

ferometer, sketched in figure 4.7, is based on two π
2 -pulses.

1. The first π2 -pulse coherently splits the condensate into two copies
after a time t1 = 20ms from the release of the trap, with one
copy traveling along the direction of the transferred momentum,
the other remaining at rest. This initial expansion is needed in
order to reduce the atomic density and consequently the inter-
action effects between the copies of the condensate.

2. The second π
2 -pulse is applied after a time t2 = 1.5ms, when

the two copies of the condensate are separated by

dB = vBt2 ' 72µm . (4.4)

3. After the two Bragg pulses, we obtain four equally populated
copies of the original condensate, two of them at rest (output
A), the other two traveling at velocity vB (output B).

4. We take a picture of the system with standard absorption imag-
ing along the horizontal radial direction after a time t3 = 98.5ms,
when the copies with different velocities are well separated. The
total expansion time is therefore tTOF = t1 + t2 + t3 = 120ms.

At the end of the interferometer sequence the copies of the conden-
sate with equal velocities partially overlap in space, being slightly
separated by the distance dB. The resulting density profiles show in-
terference patterns with a fringe spacing of

λ =
ht3
mdB

' 25µm , (4.5)

well above the imaging resolution of about 5µm.
In figure 4.8a we report the two outputs of the interferometer in the

presence of a solitonic vortex, i. e., with the atomic flow rotating clock-
wise while looking at the picture, following the definition previously
proposed. The atomic density modulation caused by the presence of
the defect is partially preserved in output A, while the correspond-
ing interference pattern can be better appreciated from output B. The
density dip of the vortex core, where the solitonic plane twists, can
be associated to a pair of fringe dislocations as expected for vortices
within the homodyne detection method (Bolda et al., 1998; Chevy et
al., 2001). Moreover a qualitative agreement can be observed with the
interference pattern calculated for a solitonic vortex from the 2D nu-
merical simulations that will be described in the next section 4.3. In
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Figure 4.7: Temporal sequence for the Bragg interferometer. After a time t1
from the trap release we perform two π

2 -pulses separated by a
time t2. Each pulse splits the condensate into equal parts. After
a time t3 we image the two outputs of the interferometer, one at
rest (A), the other moving at the Bragg velocity vB (B). Interfer-
ence fringes originate in the density profiles of the overlapping
and slightly separated copies of the condensate.
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(b) Solitonic anti-vortex.

Figure 4.8: The two outputs of the Bragg interferometer in presence of a
solitonic vortex (left) and anti-vortex (right). In each case the pair
of fringe dislocations associated to the vortex core is magnified
and sketched for simplicity. The experimental fringe patterns are
compared with 2D GPE simulations.

figure 4.8b we report the interferometer outputs for a solitonic anti-
vortex, i. e., with counterclockwise circulation: a pair of dislocations is
present also in this case, but showing a chiral mirror image in relation
to the previous case.

These observations confirm that the twist in the depleted plane
of a defect observed in the radial density profile of a condensate is
associated to phase circulation, and that therefore we are actually
observing solitonic vortices. Moreover we demonstrate that the sign
of vorticity can be assigned directly from the observation of the twist
direction in absorption images of BECs after free expansion.

4.3 numerical simulations of solitonic vor-
tices

In order to further support our experimental evidences we performed
numerical calculations for the density distribution of a SV in a BEC,
both in trap and after free expansion, the latter to be compared with
the experimental images taken after TOFs. More technical details on
the simulation methods, performed by solving the GPE introduced in
equation (1.37), can be found in our article on the topic (Tylutki et al.,
2015).

The initial condition for the simulations is a trapped stationary
state, whose phase pattern is imprinted with a SV. As a first step
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we characterize the in-trap properties of the SV by varying the aspect
ratio AR = ω⊥/ω‖ and the chemical potential µ of the condensate,
both for 2D and 3D simulations. For each condition we extract the in-
trap atomic densities na and nb at half of the Thomas–Fermi radii,
respectively along axial and radial directions. The ratio nb/na repre-
sents a measure for the contrast of the radial depletion, being 1 when
the system is isotropic and 0 when the transverse plane is completely
depleted.

The results for nb/na as a function of the inverse aspect ratio AR−1

are reported in figure 4.9, considering the range going from the limit
of a spherical trap, with ω‖/ω⊥ = 1, to the limit of a quasi-1D system,
with ω‖/ω⊥ � 1. We can distinguish three regimes.

• The bulk regime, where the solitonic vortex becomes an isotropic
vortex and the density distribution is symmetric around the core,
with nb/na ' 1.

• Going to elongated systems we enter in a crossover regime, where
the solitonic plane appears in the transverse direction passing
through the vortex core, with 0 < nb/na < 1.

• The effective 1D regime, where the defect becomes a dark soliton,
with a maximum contrast and nb/na ' 0.

When the same data are plotted as a function of confinement param-
eter γ, defined in equation (1.50), all the points belonging to different
series collapse on the same curve, confirming that γ is the quantity
which is relevant for the nature of defects.

We also performed simulations of defects after free expansion, inte-
grating the GPE in time after setting the trapping potential to zero.
The results show that, considering a soliton as initial state, the planar
density depletion maintains its shape in time. As it can be deduced
from the definition of the healing length reported in equation (1.38),
during the expansion the soliton becomes wider as a consequence
of the decreasing density. Conversely, when the initial state contains
a solitonic vortex, the solitonic plane becomes visible while expand-
ing, twisting as a consequence of the atomic flow circulating around
the vortex core. This phenomenon can be observed from figure 4.10,
where the 2D density profile of the SV is reported at different values
of the expansion time. The rotation of the solitonic plane saturates
when the mean-field interaction stops to play a role and the expan-
sion becomes ballistic.

The free expansion of a solitonic vortex has been characterized with
3D simulations, performed considering an aspect ratio of the trap
AR = 10, as in our experimental conditions, and a confinement pa-
rameter γ = 10. This value of γ is smaller than the experimental one,
which is about 27, since we considered a lower chemical potential in
order to speed up the simulations. In figure 4.11 the ratio nb/na is
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Figure 4.9: Ratio between the atomic density in the solitonic plane and
along the symmetry axis, for a SV imprinted in a trapped BEC.
In the first graph the results for 2D and 3D numerical simula-
tions are plotted as a function of the inverse aspect ratio, also
considering different values of the chemical potential. As it can
be seen from the plot in the bottom, the effective variable setting
the defect geometry is the confinement parameter γ. The den-
sity profile of the condensate is reported in the upper part for
different values of γ.
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Figure 4.10: Density profile simulated for an expanding 2D BEC containing a
solitonic vortex, calculated at different values of the expansion
time tTOF. The confinement parameter is γ = 10. The depleted
solitonic plane appears during expansion, increasing its con-
trast and twisting around the vortex core as a consequence of
the atomic circulation.

plotted as a function of the expansion time, where na and nb are de-
fined respectively as the maximum and minimum densities at half of
the axial and radial radii of the expanded condensate. These results
show that a SV in the trapped BEC appears essentially as an isotropic
vortex, with a negligible solitonic plane and nb/na ' 1 for tTOF = 0.
Conversely the transverse depletion appears after the trap release, be-
coming deeper while increasing the expansion time, as it can be seen
from the decreasing ratio nb/na for tTOF > 0. Therefore the peculiar
shape of the solitonic vortex becomes particularly visible after long
expansions.

The 3D simulation of a condensate containing a solitonic vortex, i. e.,
with clockwise phase circulation, is reported in figure 4.12, where the
density profile is integrated along radial and axial directions after
an expansion of 120ms. We observe a good qualitative agreement
with the analogous experimental images of figure 4.5a. In the simula-
tion the defect appears wider as a consequence of the bigger healing
length, since the chemical potential considered for the calculations is
about 1/3 of the experimental one.

The interference pattern calculated for a 2D solitonic vortex after
expansion was already reported in figure 4.8a while discussing the
results of the Bragg interferometry. Also in that case we find a quali-
tative agreement between the simulation and the experimental coun-
terpart, with a pair of dislocations observed in correspondence to the
vortex core. The analogous simulation of figure 4.8b considering a
solitonic anti-vortex confirms the previous considerations about the
relation between the vorticity sign and the observation of the twist in
the solitonic plane.
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Figure 4.11: Evolution of the contrast of the transverse depletion for a soli-
tonic vortex simulated in an expanding condensate. Before the
release from the trap the density is essentially isotropic around
the core, hence nb/na ' 1. During the expansion nb/na de-
creases, meaning that the solitonic plane appears in the radial
direction with an increasing contrast.
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Figure 4.12: Density profile simulated for a solitonic vortex in a condensate
after an expansion of 120ms, with a confinement parameter
γ = 10. Some white noise is added in the axial profile, for a nat-
ural comparison with the experimental residuals in figure 4.5a.
Here the density depletion is thicker: in order to speed up the
calculations the chemical potential is lower than the experimen-
tal one, hence leading to a larger healing length.
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4.4 evolution of a solitonic vortex

The identification of defects as solitonic vortices allows us to explain
the long defect lifetime observed while studying the KZM, since they
are energetically stable and topologically protected in elongated 3D

systems. However the details of the defect formation remain unclear.
In particular it is unknown if solitonic vortices arise directly from the
merging of random phase domains formed via the KZM, or if soli-
tons are actually created after the transition crossing as suggested by
Zurek (2009) for cigar-shaped condensates. In the latter possibility
the solitons may eventually decay into less energetic structures on a
timescale of the order of the transverse oscillation period, as studied
by Becker et al. (2013). These two hypothesis cannot be easily distin-
guished in our experiments, since at the first instants after the BEC

transition the condensate is not well-formed and defects cannot be
directly observed. We can only probe the final products of the defect
formation process, which are long living solitonic vortices, i. e., the ex-
citations with lowest energy for elongated systems such ours (Brand
et al., 2002; Komineas et al., 2003; Mateo et al., 2014).

In order to explore the possible defect evolution we measure the aver-
age number of defects as a function of the time te from the BEC transi-
tion. We follow a procedure which is similar to the one exploited for
the measurement of the defect lifetime presented in section 3.5, but
extending the explored temporal interval to instants closer to the crit-
ical point. We consider a constant RF evaporation rate of 320 kHz s−1

across the transition. We obtain almost pure condensates at 1.22MHz,
which is 25 kHz above the trap bottom. The quench ramp ends about
400ms after the transition, occurring around 1.34MHz. Following the
sketch reported in the upper part of figure 4.13, when considering
short evolution times we interrupt the evaporation ramp before reach-
ing its end. Conversely, while exploring longer evolutions, we add a
constant RF shield in order to maintain the temperature the atomic
sample. This measurement has been repeated also by stopping the
evaporation ramp always at 1.32MHz, just after the transition point,
where the temperature is about 650nK.

The measurements of the defect lifetime, reported in figure 4.13,
show that the defect number is significantly higher before the ramp
completion. Moreover the results suggest the presence of two defect
decay timescales. The fastest one is limited to a short interval after the
BEC transition, where for the two series we measure an average decay
time τ = 105(25)ms, obtained by fitting an exponential curve with
offset to the data with te . 400ms. After such a time the average
number of defects becomes of the order of 1.

One may argue that this initial decay could be a spurious effect re-
lated to the undergoing evaporative cooling, since for the series with
lower final frequency the points with a short evolution time refer to
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Figure 4.13: Average number of defects plotted as a function of the evolu-
tion time from the transition point. The two series refer to dif-
ferent final frequencies of the RF evaporation ramp, as sketched
on the top. The bottom plot reports the fraction of the total
counted defects that we can identify with reliability as vortices
(the big error bars are omitted here).
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uncompleted ramps. However a similar behavior is observed also in
the data set at higher temperature, where the ramp is interrupted at
te ' 70ms: this allows us to exclude that the evaporation plays a di-
rect role in the time interval considered for these measurements. The
defects which survive to the first fast decay can live for a very long
time, with a sizable fraction of defects being still present 25 s after the
transition. This long lifetime for solitonic vortices is consistent with
the observations reported in chapter 3 and in our article on the KZ

scaling (Lamporesi et al., 2013b).
Figure 4.13 also reports the ratio between the number of defects

that we clearly identify as solitonic vortices 〈Nv〉, i. e., where we ob-
serve a vortex line along the axial direction or a twist in the radial
images, and the total number of defects 〈N〉, i. e., possibly includ-
ing all other kinds of defects, such as solitons. The data set at lower
temperature shows that the probability of identifying a defect as a
SV increases from 0 to almost 1, which means that after a long evolu-
tion we identify essentially all defects as vortices. However we cannot
find an unambiguous connection between this observation and possi-
ble defect evolution paths. In fact this behavior is also related to the
finite signal-to-noise ratio, which increases as the evaporation ramp
removes atoms from the thermal fraction. This hypothesis can be sup-
ported observing the series at higher temperature, where, apart from
the first point, 〈Nv〉/〈N〉 is lower and it does not increase with time,
as one would expect considering that, in such case, the evaporation
ramp is interrupted at a higher frequency. The signal-to-noise ratio
sets also the limit for short evolutions, since the interpretation of im-
ages for te . 50ms is not possible.

The results for the defect lifetime discussed here suggest the pres-
ence of decay processes happening on different timescales, but clear
indications about the defect evolution can be hardly extracted. In fact
these measurements are based on the averaging of the defect counts
over many independent experimental sequences. In order to over-
come some of these limits, as described in the article on the SV dy-
namics (Serafini et al., 2015), we also implemented a non-destructive
imaging of the condensate, which allowed us to track the position
of single defects during their evolution in time. Those measurements
opened for the possibility of a quantitative study of the defect decay,
whose possible role on the KZ scaling will be discussed in the follow-
ing chapter 5. One limit of the non-destructive imagining technique
that we implemented is that it is functional for the observation de-
fects only in almost pure condensates. In particular it does not allow
to study the defects near to the phase transition, whose dynamics
should be further investigated.





5 C H A R A C T E R I Z AT I O N O F T H E
D E F E C T N U M B E R S C A L I N G

In chapter 3 I described the spontaneous formation of phase defects
in elongated gases after temperature quenches across the BEC tran-
sition, whose number scales as a power law of the quench time, as
predicted by the KZM. Those defects were in the first instance inter-
preted as solitons. As I discussed in chapter 4, the observation of
an unexpectedly long defect lifetime suggested us to study deeper
the nature of the defects produced in our system: experimental and
numerical investigations allowed us to identify them as solitonic vor-
tices rather than solitons. In this chapter I will present some further
measurements that were suggested by such observations.

In order to properly consider the finite lifetime of defects, in sec-
tion 5.1 I will discuss a new procedure for the temperature quench
ramps, and I will also recall the role of dimensionality in the KZM with
a possible approach for its study. The results for the defect number
scaling measured using this new method are presented in section 5.2.
The measurements evidenced the presence of an unexpected satura-
tion in the defect counts for fast quenches, that will be discussed in
the following section 5.3. The possible dependence of the defect num-
ber scaling on the confinement regime will be finally discussed in
section 5.4.

5.1 new approach to measuring the kzm

5.1.1 Quench method and defect decay

Regarding the number of defects that are spontaneously produced in
our condensates, an exponential decay happening on a timescale of
the order of 1 s was already reported in our first article on the KZM

(Lamporesi et al., 2013b). A similar long lifetime was also confirmed
in our subsequent work on solitonic vortices (Donadello et al., 2014),
and the decay dynamics was afterward investigated with a real-time
imaging technique (Serafini et al., 2015). As introduced in section 1.2,
the KZM predicts the scaling laws for the number of defects produced
after a quench. It must be noted that the theory deals with the density
of topological defects at their creation, assuming that they have a
stable nature and not considering their evolution after the quench. In
the presence of post-quench dynamics the link between the power law
of equation (1.25) and the actually measured defect number must be
further investigated. In particular, in an experiment involving defect
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counting, the defects might change their nature or decay from their
formation, before they are observed.

In order to take into account these effects related to the finite de-
fect lifetime, the instant of the defect creation should be known. Fol-
lowing the KZM simplified scheme including the adiabatic-frozen-
adiabatic representation, one can argue that the freeze-out time t̂ of
equation (1.15) is the right time, before the transition, that should be
considered for the determination of the number of defects originally
formed in the system. However, in order to observe those defects, the
critical point must be crossed such that the order parameter becomes
macroscopically occupied.

Moreover t̂ is hard to estimate in experiments for several reasons:
its definition depends on microscopic parameters that are not well de-
fined in the theory, such as the time τ0 setting the relaxation timescale
for the order parameter. Even if for dilute gases one may speculate τ0
to be of the order of the collisional time, a numeric factor should also
be considered in the definition of t̂, reflecting the effective size fξ̂
of the phase domains formed after the quench, with the value of f
depending on the specific model (del Campo et al., 2014). Finally it
must be noted that a finite time is needed for the actual formation of
defects from an arbitrary phase pattern, i. e., the system has to relax
and reach a metastable state.

The impossibility to unambiguously identify the instant of defect
creation suggests us to take the transition point as a reference for the
defect evolution: occurring in the middle of the frozen interval rele-
vant for the KZM, the critical point seems to be a plausible approxi-
mation for the defect formation. Moreover, from a practical point of
view, the transition point is experimentally identifiable in a clear way,
as it can be seen from the example of figure 5.1.

As described in chapter 3, our first approach to measurements on
the KZM was based on temperature quenches performed while keep-
ing the initial and final temperatures constant, in order to produce
almost pure condensates for any given quench rate. This was aimed
to the optimization of the visibility of defects: the possible presence
of a big thermal atomic fraction introduces a broad background sig-
nal with a Gaussian profile in absorption images, reducing the con-
trast of the optical density depletion associated to a defect. Following
the sketch in figure 3.4, within that quench method the evaporation
ramps used for the preparation of the BECs were all equivalent except
for the slope of the portion around the transition: the RF limits were
kept fixed while the timing was changed, hence resulting in ramps
with different durations for different quench rates. This procedure
was used for our first measurements on the defect number scaling
(Lamporesi et al., 2013b), where we changed the length of the ramps
from 140ms (fastest ramps) up to more than 2 s (slowest ramps). Such
a variation in the experimental sequence duration can be relevant on
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ν = 1370 kHz

te = −49ms

ν = 1360 kHz

te = +0ms

ν = 1350 kHz

te = +49ms

ν = 1330 kHz

te = +147ms

Figure 5.1: Sequence of experimental absorption images of atomic samples
around the BEC transition, occurring at νc ' 1360 kHz for a RF

ramp of 203 kHz s−1 with AR = 10.1. These radial pictures are
taken after a TOF of 50ms. The timescale is relative to the tran-
sition point: at te = 0ms a small condensate fraction of about
1% of the total sample appears in the cloud, and it grows for
te > 0ms. In the last picture the condensate is well defined
above the thermal background, and a defect is also visible in
the density profile. In general for te . 100ms defects are hardly
detectable with this imaging technique.
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the scale of the defect lifetime, and may eventually alter the measure-
ment of the KZ scaling.

In the new set of measurements that are presented in this chapter
we considered a different quench method, where the defect number
is measured after a constant evolution time te from the transition point.
In order to apply this new procedure, for each experimental condition
we need to precisely determine the critical evaporation frequency νc
and temperature Tc where the BEC transition occurs. Given an arbi-
trarily chosen evolution time te starting at the transition, the quench
ramps have to be modified consequently to the determination of νc.

slow ramps If te is reached before the end of the quench ramp the
evaporation is interrupted before its completion, the atoms are
released from the trap and imaged after TOF. A sizable fraction
of atoms will remain in the non-condensed state.

fast ramps If the given te ends after the ramp completion a waiting
time is added in the sequence before taking the picture. During
the waiting time we keep a constant evaporation threshold in or-
der to prevent any heating of the atomic sample. This RF shield
does not participate to the dynamics of the quench, since its
frequency is well above the limits of the quench ramp.

A very small evolution time would be ideal since it would reduce
the influence of the decay of defects on measurements. However, at
the very early instants after the transition the condensate fraction is
small, and the visibility of defects is limited by the low signal-to-
noise ratio in absorption images taken after TOF. Therefore a compro-
mise must be found between defect visibility and minimization of
te. Different probing methods, not implemented here, may partially
overcome these problems, such as the measurement of the phase cor-
relation function of the condensate (Navon et al., 2015). Anyhow it
should be noted that the KZ model focuses only on the scaling of the
defect density, and it is not meant to provide a quantitative prediction
of the absolute values of the defect number.

The speed of the quench is described by the quench time τQ that
was defined while discussing the KZ theory in section 1.2.1. For a
linear temperature quench with a constant time derivative Ṫ , the re-
duced control parameter of the transition can be expressed as

ε(t) =
Tc − T(t)

Tc
= 1−

t Ṫ

Tc
, (5.1)

whose derivative defines the quench rate*:

ε̇ = −Ṫ
1

Tc
=
∂T

∂t

1

Tc
. (5.2)

* For simplicity ∂T
∂t and ∂ν

∂t are defined positive. Therefore, considering a reduction
of the control parameter in time, we have ∂T∂t = −Ṫ and ∂ν

∂t = −ν̇.
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Figure 5.2: Experimental quench sequence for three ramp speed examples
(columns) and two different values of evolution time (rows), rel-
ative to the measurements with aspect ratioAR = 10.1. The evap-
oration frequency ν is plotted as a function of time relative to
the start of the final quench ramp (solid blue). Negative times
refer to the RF evaporative cooling for the preparation of the
samples, common to all quenches and omitted here. The critical
point νc of the BEC transition is reported for each quench ramp
(cyan squares). The evolution time te is kept constant relative
to the transition (shadowed in yellow). After a time te the sam-
ple is released, let expand for a fixed TOF of 120ms (shadowed
in red), and finally observed with absorption imaging (dashed).
For faster quenches a waiting time is eventually added keeping
a constant RF shield (dot-dashed blue). The extent of the quench
time τQ is reported for comparison (green).

Experimentally the speed of the temperature quench ∂T
∂t is controlled

with the slope of the RF evaporation ramp ∂ν
∂t . Therefore, following its

definition given in equation (1.12), the quench time can be calculated
from the critical temperature Tc and the proportionality factor ∂T∂ν be-
tween temperature and evaporation frequency around the transition:

τQ =
1

ε̇
=
Tc
∂T
∂t

=
Tc
∂T
∂ν
∂ν
∂t

. (5.3)

It should be noted that this definition of the quench time slightly dif-
fers from the one given in chapter 3 accordingly with our article on
the KZM (Lamporesi et al., 2013b), where τQ was defined in a simpler
way as τQ ∝ (∂ν/∂t)−1. The quench procedure adopted for the mea-
surements on the KZ scaling presented in this chapter is sketched in
figure 5.2, considering different values of τQ and te.
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5.1.2 Changing the dimensionality

Following the discussion of section 1.2.3 on the KZ theory, the expo-
nent α of the power law describing the defect number scaling and
defined in equation (1.26) is proportional to (D− d), i. e., the differ-
ence between system and defect dimensions. The dimensionality of
a condensate depends on the confinement regime, that, for axially
symmetric harmonic potentials, is described by the dimensionless pa-
rameter γ, defined in equation (1.50) while discussing the stability of
phase defects. Even if in our experiments we produce condensates
in an elongated trap, our cigar-shaped system can be considered 3D,
therefore withD = 3, since in our standard conditions we have γ� 1.

Regarding the defect dimensionality, initially the defects were inter-
preted as solitons (Lamporesi et al., 2013b), having a planar geometry
in 3D systems, hence with d = 2. However, as described in chap-
ter 4, we subsequently identified those defects as solitonic vortices
(Donadello et al., 2014). This kind of defect has a nontrivial structure,
showing characteristics in common with solitons and vortices: how-
ever, from a geometrical point of view, a SV is a vortical filament in
an elongated system, and therefore in first approximation one may
assume that d = 1. This evolution in the comprehension of the defect
nature suggests us to better investigate the role of dimensionality in
the KZM.

As introduced in section 1.3.2, theoretical studies show that the con-
finement regime determines the type of stable defects in condensates
(Brand et al., 2002; Komineas et al., 2003; Mateo et al., 2014): when
the confinement parameter γ is small compared to unity solitons are
expected to be stable, while the SV becomes the least energetic state
for bigger values of γ. Here we are going to deal with the influence of
dimensionality on the defect number scaling: in particular, consider-
ing the dependence of γ on the radial trapping frequency, we want to
understand what happens to the measurements while changing the
transverse confinement.

The values of the power-law exponent α predicted by the KZ the-
ory in different conditions were reported in table 1.1 considering the
critical exponents from the F-model (Hohenberg et al., 1977). Start-
ing from our supposed situation of vortices in an inhomogeneous 3D

system, i. e., with (D− d) = 2, equation (1.26b) predicts α = 7
3 . In-

creasing the radial confinement one may expect reduction of a factor
of 2 in the power-law exponent, since the system should tend to the
regime where γ is small and solitons are stable, i. e., with (D−d) = 1

and α = 7
6 .
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A tighter radial confinement reflects into a more elongated shape
of the BEC, which, in an axially symmetric trap, can be described with
the aspect ratio. This quantity is defined as

AR =
R‖
R⊥

=
ω⊥
ω‖

, (5.4)

where, for a given axis i, Ri is the Thomas–Fermi radius of the con-
densate defined in equation (1.44), and ωi

2π is the respective trapping
frequency. Here we take AR as a convenient measure of the confine-
ment condition.

The aspect ratio of a cigar-shaped Ioffe–Pritchard trap like our can
be easily changed through the magnitude of the magnetic field bias
B0, which is aligned in the direction of the symmetry axis and sets the
bottom of the trap potential (Ketterle et al., 1999). In fact the strength
of the magnetic field in the harmonic approximation can be expressed
in cylindrical coordinates as

B(r, z) ' B0 +
1

2

(
B ′2

B0
−
B ′′

2

)
r2 +

1

2
B ′′z2 , (5.5)

with r2 = x2 + y2, B ′ the field gradient, and B ′′ the field curvature.
The squared radial and axial trapping frequencies of the resulting
magnetic potential are respectively

ω2⊥ =
mFgFµB
m

(
B ′2

B0
−
B ′′

2

)
(5.6a)

ω2‖ =
mFgFµB
m

B ′′ , (5.6b)

with m the atomic mass, mF the Zeeman sub-level of trapped atoms,
gF the hyperfine Landé g-factor, and µB the Bohr magneton. There-
fore with B0 we can change the radial confinement while leaving the
axial trapping frequency constant, hence varying the aspect ratio of
the condensate.

The bias field B0 in our setup is controlled using a pair of secondary
coils, where a continuous current of the order of few hundreds of
mA can be precisely programmed through the digital control system
described in chapter 2. In practice we vary the bias current in order
to find the condition where, using an evaporation ramp with a given
final frequency ν0, the BEC atoms are completely evaporated, which
means that the resonance of the RF coupling reached the minimum of
the trapping potential:

B0 =
hν0

µBmFgF
. (5.7)

For this reason the trap bottom can be conveniently expressed in fre-
quency units. For each value of ν0 we measure the radial trapping
frequency ω⊥ by exciting the dipole oscillatory mode of a trapped
condensate with a pulse of a uniform magnetic field.
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Table 5.1: Aspect ratio calculated from the trapping frequencies, measured
for the different radial confinement regimes considered in this
chapter. The frequency at the trap bottom ν0 and the limits of the
evaporation quench ramp ν2 and ν1 are reported for each aspect
ratio. The TOF considered for the absorption imaging procedure
is also reported.

AR ω⊥/2π ω‖/2π ν0 ν1 ν2 tTOF

[Hz] [Hz] [kHz] [kHz] [kHz] [ms]

5.8(2) 76.3(1) 13.0(5) 3500 3525 3700 150

10.1(4) 131.4(1) 13.0(5) 1195 1220 1410 120

13.4(5) 173.8(1) 13.0(5) 650 690 920 100

16.5(6) 214.1(1) 13.0(5) 450 510 770 80

The measurements presented in the previous chapters were per-
formed with a constant aspect ratio of about 10. Within the new mea-
surements that we are going to present here the aspect ratio is varied
between 5.8 and 16.5, as reported in table 5.1 and figure 5.3. We are
not able to explore higher AR values because of the presence in our
setup of electrical noise in the spectral region . 400 kHz, hence set-
ting a lower limit for the trap bottom. Since we are mainly interested
in the physics of elongated systems, we do not explore lower aspect
ratio values.

Table 5.1 also reports the evaporation frequency limits ν2 and ν1
of the linear quench ramps, fixed for each aspect ratio, which are
varied accordingly to the trap bottom ν0 in order to always include
the transition point νc and to produce almost pure condensates at the
ramp completion. The expansion time considered during the imaging
procedure is reported in the same table. We change the TOF duration
in order to keep a constant defect visibility for the different AR values,
since during the free expansion a cigar-shaped condensate inverts its
aspect ratio turning into pancake-shaped, with the speed of the radial
expansion depending on the transverse confinement (Castin et al.,
1996; Ernst et al., 1998).

5.1.3 Characterization of the BEC transition

In order to control the defect evolution time we need to precisely
characterize the BEC transition point, whose properties depend on the
experimental parameters, such as the confinement regime, the quench
rate, and the atom number. For each value of aspect ratio AR and
evaporation speed ∂ν

∂t we image the system at different points of the
RF ramp, determining the threshold value νc for the observation of
the condensate as in figure 5.1. The temperature and atom number
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Figure 5.3: Aspect ratio at different values of the trap bottom, varied with
the magnitude of the magnetic field bias. The solid line repre-
sents the theoretical behavior. The aspect ratio is calculated from
the trapping frequencies measured in the different conditions.
The shadowed interval refers to values of ν0 which are not ac-
cessible in our setup because of electrical noise.

around the transition are measured from the atomic distribution after
ballistic expansion: as an example, the characterization of T(ν) for a
series of quench rates with AR = 5.8 is reported in figure 5.4. In order
to compare measurements taken in different experimental conditions,
we keep the atom number at the transition constant by controlling
the loading of the MOT during the initial stages of the experimental
procedure, obtaining on average Nc = 27(1)× 106 atoms.

The values of the critical frequency νc, relative to the trap bottom
ν0, are plotted in figure 5.5 as a function of the evaporation speed for
the different values of AR. With faster quenches the transition occurs
at lower RF values, i. e., deeper in the trapping potential. This may
be explained with a lower cooling efficiency when the cut in thermal
distribution introduced by the forced evaporation is more abrupt, re-
flecting also in a lower number of atoms in the condensed fraction
after the quench procedure. In fact, from figure 5.6 we can observe
that, even if the number of atoms at the transition Nc is kept almost
constant, the number of atoms in the final condensate N0 varies sig-
nificantly with the quench rate, both because of the reduced cool-
ing efficiency for fast ramps and the incomplete evaporation for slow
ramps.

Following the definition of τQ given in equation (5.3), the knowl-
edge of Tc and ∂T

∂ν is needed case-by-case for the determination of the
quench time. As it can be observed from figure 5.7, the critical tem-
perature Tc is higher for higher aspect ratios and it decreases with
the ramp speed as a consequence of the behavior of νc. The value of
∂T
∂ν is determined as the slope of the linear function fitting the tem-
perature measured around Tc, as in the example of figure 5.4 for the
characterization of T(ν). The results for ∂T∂ν , plotted in figure 5.8 as
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Figure 5.4: Characterization of the temperature around the BEC transition,
plotted as a function of the evaporation frequency for different
values of the evaporation rate. Each point is the average over a
couple of shots taken after 50ms of TOF with magnetic levitation.
This set of plots refers to the series with AR = 5.8. The BEC tran-
sition occurs in the shadowed region. Each ramp is fitted with a
linear function, and the fit parameters are used to determine Tc
and ∂T
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Figure 5.5: Evaporation frequency at the BEC transition point plotted as a
function of the ramp speed for different aspect ratios. The RF is
relative to the trap bottom.
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Figure 5.6: Final number of atoms in the condensed fraction at the end
of the quench ramp, plotted as a function of the evaporation
speed for different aspect ratios and considering an evolution
time te = 250ms. The atoms are fewer for fastest ramps because
of the reduced evaporative cooling efficiency, and for slowest
ramps because in those cases te ends before obtaining pure con-
densates. The half-filled points refer to the uncompleted ramps.

a function of ∂ν∂t and AR, do not show any evident trend with the
experimental parameters. Therefore, while applying the definition of
τQ, we consider its average value ∂T

∂ν = 4.5(9)nKkHz−1. From this
measurement we can estimate the evaporative truncation parameter
(Ketterle et al., 1996a) for our system as

η =

(
kB
h

∂T

∂ν

)−1

= 11(2) . (5.8)

5.1.4 Defect number counting

Once the quench procedure has been completed, the atomic cloud is
released from the trap and let to expand in the presence of a levitating
magnetic field gradient. After TOF the atomic distribution is probed
with absorption imaging. As it can be understood from the sketch
in figure 5.2, for a given evolution time te the slowest evaporation
ramps can end when a fraction of atoms is still in the non-condensed
state, possibly reducing the contrast of defect signals in the exper-
imental pictures. However, using the triaxial imaging described in
section 4.2.1, we can identify the defects with reliability even in the
presence of a sizable thermal fraction, without the need of the to-
mographic technique described in section 3.2 and used for the first
KZM measurements. Moreover, in order to improve the contrast of
defects, we apply the image processing method introduced for the
characterization of solitonic vortices, hence observing the residuals
of a suitable function fitting the experimental axial images. The de-
fect visibility is also enhanced by reducing the shot noise of pictures
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Figure 5.7: Critical temperature at the BEC transition as a function of the
cooling speed and aspect ratio. The temperature is measured
from the Gaussian width of the thermal atomic distribution after
TOF at the critical evaporation frequency νc.
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Figure 5.8: Proportionality factor between temperature and evaporation fre-
quency, whose value is extracted from the characterization of
T(ν) around the BEC transition, as in the example of figure 5.4.
Apparently any unambiguous trend of ∂T∂ν with the ramp speed
and the aspect ratio can be extracted from these results, since
each point is consistent with others within the error bars.
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Figure 5.9: Observation of the condensate after 120ms of expansion, with
the absorption images taken along the three orthogonal axes of
the trap and referring to the series with AR = 10.1. In the first
picture we clearly observe a single SV with a tilted nodal line. In
each other image we count 2 defects. The defect counting is not
always unambiguous, especially when more than 3 defects are
present or when the thermal fraction is big. Often the compari-
son between the observations along all the three imaging axes is
necessary to assign the defect number to an experimental run.

with Gaussian filtering. Samples of 3D reconstructions of condensates
containing solitonic vortices are reported in figure 5.9.

We tried to implement an automatic technique for defect counting
via software analysis of the experimental images. The first attempt
was based on pattern recognition algorithms. This method was aban-
doned since it resulted to be complex and unreliable for the identifica-
tion of defects with very different shapes as in our case, which often
need the human interpretation in order to disambiguate the pattern.
The second approach that we followed was based on the analysis of
the total fit residuals of images. Also in this case the results were
inconclusive, since it was not possible to find a direct connection be-
tween the number of defects and the image residuals, whose sum
strongly depends on the image noise and on the shape of defects,
varying shot-to-shot. Therefore the easiest and most reliable method
for measuring the defect number resulted to be the human counting
of the depleted structures in the BEC, even if this approach can be
affected by a small variability due to subjective interpretation.

For each experimental image we determine the single-shot defect
numberN. Similarly to the previous measurements presented in chap-
ter 3, we repeat the procedure M times in order to extract the average
defect number 〈N〉 for each experimental condition. The error bars over
〈N〉 are calculated as the quadratic sum between the standard error of
the mean δN, defined in equation (3.3), and a resolution term M−1/2,
whose value decreases with the number of shots:

∆N =

√
δN2 +

1

M
. (5.9)

It must be noted that here the resolution error is different from the
one considered in the first KZM measurements and reported in equa-
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Figure 5.10: Average number of defects measured for different aspect ra-
tios, plotted in log-log scale as a function of the quench time
defined in equation (5.3). Each point is averaged over some
tens of shots: a larger number of measurements is performed
in the case of lower occurrence in order reduce the relative reso-
lution error. The data are fitted with equation (5.10), following
a power law for big τQ values while saturating when τQ is
small. The colored shadows highlight the connections between
points in the same series considering half of the error bars.

tion (3.4), where, following our article on the topic (Lamporesi et al.,
2013b), it was underestimated as M−1. Typically the number of de-
fects counted in each shot varies between N = 0 and N = 4. In order
to get good statistical samples with similar resolutions within the se-
ries, for each experimental point we average over a variable number
of shots, e. g., M ∼ 10 when 〈N〉 & 2, and M ∼ 70 when 〈N〉 . 0.2.

5.2 new results for the defect number scal-
ing

The measurements of the average defect number 〈N〉 as a function of
the quench time τQ for different aspect ratios AR are reported in fig-
ure 5.10. For these series we consider an evolution time te = 250ms,
which allows for a good defect visibility also considering the resid-
ual thermal fraction for slowest quenches. The results clearly show
two distinct regimes within each AR value: for large values of τQ we
observe a power-law scaling of 〈N〉, whereas for fast quenches with
τQ . 0.2 s the average defect number saturates, forming a plateau
where 〈N〉 remains almost constant independently of τQ.

Since the behavior of 〈N〉 deviates from the simple power-law scal-
ing predicted by the KZM in equation (1.25), we extract the power-law
exponent α in the region of big τQ and the average defect number
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Table 5.2: Parameters of equation (5.10) fitting the data of figure 5.10 for
different values of the aspect ratio AR: the average number of
defects in the saturated region Ns, the crossover time τ∗Q, and
the power-law exponent α.

AR Ns τ∗Q [s] α

5.8 2.4(3) 0.49(13) 1.6(4)

10.1 2.6(3) 0.26(8) 1.3(3)

13.4 2.2(3) 0.32(8) 2.3(8)

16.5 2.2(3) 0.27(6) 2.8(9)

Ns in the saturated interval by fitting the experimental data with the
following function:

N(τQ) = Ns

√
1

1+ (τQ/τ
∗
Q)
2α

. (5.10)

This expression is suitable for the description of our data since it
tends to a constant value Ns for τQ → 0, while it decreases as a
power law with exponent α for τQ → +∞. The crossover between
the two regimes occurs at the quench time τ∗Q. The fit results for
the series with different aspect ratios of figure 5.10 are reported in
table 5.2. We can observe that, whereas α varies by about a factor 2 in
the considered range of AR, the level of the plateau Ns is essentially
not affected by the aspect ratio, hence suggesting that this saturation
phenomenon is intrinsically related to the defect number.

In order to investigate the effects of evolution time on the defect
number scaling, we repeat the measurements also for different values
of te while keeping the aspect ratio fixed to AR = 10.1. In particular
we consider longer evolutions, since for te < 250ms the defect visibility
is suppressed for the reasons already explained before. The results are
reported in figure 5.11. We can observe that in the region where τQ
is big the points for the different values of te are consistent within
their error bars. In particular the exponent α of the power law fitting
the data with τQ & 0.2 s looks insensitive to the evolution time te,
leading to an average exponent α = 1.1(2). This essentially confirms
the robustness of the new quench procedure that has been adopted.
The saturated region instead shows a dependence on te: qualitatively
we can observe that for longer evolutions the saturation occurs at
lower values of Ns. This may suggest that some kind of defect decay
happens for fast quenches, hence altering the power-law scaling at
small τQ values.

The defect number saturation and the possible dependence of the
exponent α on the aspect ratio will be discussed respectively in the
following sections 5.3 and 5.4. Here we only note that for the series
with AR = 10.1 of figure 5.10 we measure α = 1.3(3), which is con-
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Figure 5.11: This plot is analogous to the one of figure 5.10, but here the dif-
ferent series refer to different evolution times, while the aspect
ratio is fixed to AR = 10.1. The power-law behavior at big τQ
values seems to be uninfluenced by te. The dashed line is the
power law fitting all the points in the region with τQ & 0.2 s.

sistent with the value α = 1.38(6) that we formerly measured for the
data in figure 3.6†, where the aspect ratio was the same (Lamporesi et
al., 2013b). Our first measurements presented in chapter 3 are there-
fore confirmed, even with the different quench procedure and the
different definition for τQ that we are considering here. Previously
the defect number saturation was not observed in a such clear way,
probably because τQ was limited at about the threshold value for
observing the plateau.

5.3 defect number saturation

5.3.1 Observations for fast quenches

Following the discussion of section 5.1.1, the duration of the quench
procedure for the fastest evaporation rates is dominated by the wait-
ing time, added at the end of the evaporation ramp in order to obtain
a given evolution time te from the transition. One may argue that,
even with the implementation of the RF shield, the atomic sample
may heat during this long waiting time of the order of te. Therefore
a possible explanation for the defect number saturation described in
the previous section 5.2 would be the increased thermal effects, causing
a faster decay of defects when τQ is smaller.

† The error bars over α are bigger in the new measurements because these include
also the uncertainty over τQ, not considered in the first ones. Moreover previously
we underestimated the defect number resolution error and we considered only the
asymptotic standard error.
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To explore this possibility we measure the temperature as a func-
tion of te after a very fast quench with τQ = 55ms. In order to pre-
cisely determine the temperature we do not finalize the evaporation
ramp down to its usual frequency limit of 1.22MHz, as we do for
the series with AR = 10.1 to obtain almost pure condensates. Con-
versely here we interrupt the ramp at 1.24MHz, hence leaving a frac-
tion of atoms in the non-condensed state. From the results reported
in figure 5.12a we can observe that, once the thermal equilibrium is
reached some tens of ms after the quench, the temperature remains
constant over a long timescale. This allows us to exclude any heating
process occurring during the waiting time with the RF shield, and con-
sequently to exclude a role of thermal effects on the defect number
saturation.

While acquiring the temperature measurements just presented, we
also noted that the apparent aspect ratio‡ of the expanded conden-
sate after a given TOF was changing with the evolution time te. The
ratio between the radii R ′z and R ′y of the 2D parabola fitting the con-
densed fraction cloud, respectively along axial and radial directions,
is plotted as a function of te in figure 5.12b. We observe a damped
oscillation of R ′z/R ′y, with a damping constant of 0.30(7) s. The oscilla-
tion frequency of about 19.5(2)Hz is consistent with the prediction of√
5/2ω‖ = 2π× 20.5(8)Hz for the breathing mode of a bosonic gas

in a cigar-shaped harmonic trap (De Rosi et al., 2015). This collective
oscillation is likely triggered with the fast evaporative quench, which
introduces an abrupt cut in the thermal distribution. In order to avoid
possible spurious effects not considered within the KZM framework,
very fast quenches like this one should be avoided while studying the
defect number scaling.

Another approach to the study of the defect number saturation can
be a statistical analysis. Due to the stochastic nature of the KZM, the
integer number of defects N counted in each shot is random and in-
dependent. Therefore, as it was discussed in section 3.3.2, a Poisson
statistics is expected for the defect counts, whose probability distribu-
tion is defined as

P(N) =
λk

k!
e−λ k = 0, 1, 2 . . . (5.11)

with the parameter λ coinciding with the distribution mean. Let us
take the experimental data of figure 5.10 in an aggregated way, inde-
pendently of τQ and AR, and group the points according to different
intervals of 〈N〉: this is equivalent to apply data binning along the
vertical direction. Since each experimental point is the average over
M shots, for each bin we consider the ensemble of the single mea-
surements contributing to 〈N〉, that is expected to follow the Poisson

‡ The aspect ratio R ′z/R ′y considered here is the one of the condensate after expansion,
not the in-trap aspect ratio AR defined in equation (5.4).
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(a) Temperature measured in the non-condensed fraction.
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(b) Apparent aspect ratio of the expanded condensate.

Figure 5.12: Characterization the atomic sample after a fast quench with
τQ = 55ms, obtained with a RF ramp of ∂ν∂t ' 2MHz s−1 for
an aspect ratio AR = 10.1. The atomic sample is let to evolve
for a variable time te and imaged after 50ms of TOF with levita-
tion. The measurements of the temperature (upper plot) show
that, after a thermalization transient for te . 50ms, the tem-
perature remains substantially stable. The aspect ratio of the
condensate after free expansion (lower plot), which must not
be confounded with the in-trap AR, shows a damped oscilla-
tion corresponding to the breathing mode excited by the abrupt
quench.
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Figure 5.13: Defect counting statistics. A vertical binning in 〈N〉 has been
performed for the data of figure 5.10, independently of AR and
τQ. Each normalized histogram refers to the occurrence within
a bin of the defect number N counted in the single shots. The
average number of defects λ and the total number of single-
shot measurements

∑
M contributing to each histogram are

also reported. The experimental histograms are compared with
the Poisson distribution calculated using equation (5.11) with
mean λ: the agreement with the experimental data is good only
for small values of 〈N〉, i. e., in the non-saturated regime.

statistics being the sum of Poisson-distributed ensembles with similar
mean values.

Each histogram of figure 5.13 represents the occurrence distribution
of the single-shot defect number N for a given data bin. We can ob-
serve that for the bins corresponding to the power-law regime, where
〈N〉 . 1, there is a good agreement between the experimental data
and the Poisson distribution with the same mean value λ. Instead the
points relative to the saturated regime, where 〈N〉 & 1, clearly do not
follow a Poisson statistics. This could be the signature of some addi-
tional process that alters the defect counting for fast quenches, i. e.,
when 〈N〉 is big.

From the previous observations one may argue that defects decay
in different ways for different quench rates. To clarify this point we
measure the lifetime of defects produced in different conditions: we
consider a fast quench in the saturated regime and a slow quench
in the power-law interval, with quench time τQ1 = 63(20)ms and
τQ2 = 0.59(11) s respectively. Similarly to the measurements reported
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Figure 5.14: Average defect number as a function of the evolution time
spent in trap after fast and slow quenches. The measurements
are taken with AR = 10.1. Within the explored temporal range,
an exponential decay in the defect number is evident only for
the fast quench (gray line), while both the series present an
offset in the defect number.

in sections 3.5 and 4.4, the defect number is measured after a vari-
able evolution time with AR = 10.1. From the results reported in
figure 5.14 we can observe that the decay plays an important role for
the fast ramp, where we observe a fast decay for the defect number
with an exponential time constant τ1 = 0.29(9) s. Conversely for the
slow quench the number of defects remains almost constant in time.
Both series do not go to zero in the considered range of time, showing
an offset of 0.7(2) long living defects.

All these observations seem to suggest the presence of different de-
cay mechanisms happening on different timescales. In particular the
defect number saturation might be explained with a faster decay hap-
pening for faster quenches. Such an interpretation can be supported
observing the results of figure 5.11, where the fitting power law with
α = 1.1(2), extrapolated at τQ = τQ1 , would give 7(5) defects. This
value is consistent with the extrapolation of the exponential decay
of figure 5.14 for the τQ1 series, which at te = 0ms gives 4.9(7) de-
fects. Therefore we can speculate that with a hypothetical zero evolu-
tion time, i. e., without the effects of defect decay, the defect number
at small τQ values would be much higher than what is experimen-
tally measured, whereas in the power-law region 〈N〉 would be only
slightly different.

5.3.2 Effects of the defect decay

The saturation in the defect number scaling discussed in section 5.2 is
not contemplated by the KZ theory. Moreover the finite defect lifetime
reported in the present chapter and in our previous works (Lamporesi
et al., 2013b; Donadello et al., 2014; Serafini et al., 2015) suggests that
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Figure 5.15: Preliminary simulations for an elongated gas quenched across
the BEC transition, based on the resolution of the stochastic GPE

at different evolution times from the transition point (Liu et al.,
2015). The numerical results show the presence of many phase
defects (purple) in the growing condensate (green). After the
completion of the fast quench, i. e., for te > 42ms, the chaotic
system rapidly relaxes to a configuration where the condensate
contains only few long living solitonic vortices.

the dynamics happening after the quench may alter the defect count-
ing, since the condensate can be imaged only many tens of ms after
the BEC transition, as discussed in section 5.1.1.

Furthermore, recent simulations§ based on the temporal resolution
of the stochastic GPE suggest that in the early moments after the
quench the system is highly turbulent, with the presence of many vor-
tical lines in the order of tens for a system with parameters similar to
our experimental ones (Liu et al., 2015). As it can be observed from
the indicative results of figure 5.15, the numerical simulations show a
rapid relaxation of the system in the instants following a fast quench,
with a fast decay of the defect number down to the order of units. This
picture is consistent with our experimental observations, possibly ex-
plaining why we hardly count more than 3 solitonic vortices, even
for fast quenches. In particular these numerical results confirm that
the post-quench dynamics must be taken into account for the interpreta-
tion of the defect number scaling, and can give important indications
about the origin of defect number plateau that we measure after a
finite evolution time.

The dynamics for solitonic vortices in our condensates has been
experimentally studied using a non-destructive imaging technique
which allows to follow single defects while evolving in time, as de-
scribed in the article on the topic (Serafini et al., 2015). A remarkable
result of those measurements was the observation of different decay

§ The unpublished results of the GPE simulations introduced here are prepared by I.-K.
Liu (Ph.D. student of S.-C. Gou) and N. P. Proukakis.
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rates for different initial defect numbers. In particular, starting from a
condition with 3 defects, we measured a faster decay compared to the
cases with 2 and 1 defects at the beginning, with exponential decay
constants τ3 = 0.49(10) s, τ2 = 1.05(10) s and τ1 = 0.91(10) s respec-
tively. These differences in the evolution path were interpreted as the
effects of turbulent interactions occurring between 3 defects, whereas
for lower defect numbers only the thermal decay should be present.
The defect evolution for an initial condition with 4 or more defects
was not studied because of the limited statistics, since the occurrence
for those cases is low.

The observation of a defect lifetime which is dependent on the ini-
tial defect number suggests an interpretation for the saturation in the
average defect number scaling visible in figures 5.10 and 5.11. This
would also confirm the hypotheses proposed while discussing the re-
sults for the defect number statistics and the defect lifetime, referring
to figures 5.13 and 5.14 respectively. In order to understand if the de-
fect evolution can effectively explain our observations, we simulated
the effects of defect decay on the defect number scaling at different
times from the transition.

As already discussed in the previous sections 3.3.2 and 5.3.1, due to
the stochastic nature of the KZM the defect numberN at the defect for-
mation follows Poisson statistics. Starting from this assumption, the
average defect number after a given time can be predicted by apply-
ing independent decay paths separately to the fractions with N = 1,
N = 2 and N = 3 of the Poisson distribution with a given mean λ,
defined in equation (5.11). With this simple model we are introduc-
ing a cut-off for 4 or more defects, since the correspondent lifetimes
are unknown, i. e., the cases with N > 3 are assumed to decay at the
very beginning. Such a speculation is suggested by the faster decay
measured for N = 3. As it can be evinced from figure 5.16, this ap-
proximation becomes stronger when the average defect number 〈N〉
increases and the probability to find such high values of N is not
negligible.

The results for the defect number scaling simulated in the presence
of defect decay are reported in figure 5.17, which must be compared
with the measurements of figure 5.11. The calculations are performed
applying the following steps.

1. We start considering the power law with average exponent α =

1.1, fitting the experimental data of figure 5.11 for τQ & 0.2 s.

2. The values of 〈N〉 are extrapolated from this power law over a
broad interval in τQ, also where the experimental points would
saturate. The corresponding Poisson distributions with λ = 〈N〉
are calculated point-by-point, as in the examples of figure 5.16.

3. We take the fractions with 0 < N 6 3 of these hypothetical
distributions as the starting points for the exponential decay
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Figure 5.16: Poisson distribution for different mean values. The defect
counts with average 〈N〉 = λ are expected to follow this statis-
tics. The shadowed interval represents the fraction of the dis-
tribution that is not considered within the calculations for the
defect number scaling after defect decay, as described in the
text. This cut-off in the distribution represents only the 2% for
λ = 1, but the neglected probability is much more important,
the 35%, for λ = 3.

described in the previous paragraphs, hence considering the re-
spective lifetimes τ1, τ2 and τ3 measured while studying the
defect dynamics (Serafini et al., 2015). A cut-off for the fractions
with N > 4 is introduced in the distributions.

4. For comparison with the experimental data, the final defect
number scaling is calculated after the same values of te con-
sidered for the series of figure 5.11.

5. Finally we normalize the initial power law by an arbitrary con-
stant to overlap the simulated and experimental curves, hence
compensating a posteriori the unknown decay that is intrinsi-
cally present in the measurements.

From the comparison between figures 5.11 and 5.17 we observe a
good qualitative agreement for the series at different evolution times,
with an evident deviation from the power-law behavior in the region
where τQ is small. In particular the plateau scales with te similarly
in the experimental data and in the simulations, while the power-
law scaling shifts rigidly keeping the same exponent α. Moreover,
for the curves predicted with our simple model we find values for
the crossover time τ∗Q and the saturated defect number Ns that are
compatible with the measurements. Even if the assumptions that we
have made are strong and should be supported by extended future
measurements, going beyond the qualitative analysis presented here,
the defect lifetime can be proposed as a possible explanation for the
saturation that we observe in the KZ scaling.
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Figure 5.17: Predictions for the defect number scaling including the effects
of defect decay, in analogy with the experimental measure-
ments of figure 5.11 after analogous evolution times. The power
law fitting the experimental data (dashed purple) is reported
also after the arbitrary normalization considered for the calcu-
lations (dot-dashed red). For each τQ we introduce a cut-off for
N > 4 in the probability distribution at te = 0ms (solid green),
and we calculate the defect number scaling for different val-
ues of te: we apply an exponential decay to the fractions with
different values of N, using the time constants reported in our
article on the defect dynamics (Serafini et al., 2015).

5.4 role of the dimensionality

In section 5.1.2 we discussed the possibility to study the defect num-
ber scaling in different confinement regimes in order to test the pre-
dictions of the KZ theory. In particular we hypothesized that the
power-law exponent α should decrease for a tighter radial confine-
ment, i. e., a higher aspect ratio, as a consequence of a possible change
in the defect dimensionality and reflecting the spontaneous produc-
tion of solitons instead of solitonic vortices. In figure 5.18 we report
the power-law exponent measured for different values of AR, in rela-
tion to the data of figure 5.10 and already reported in table 5.2. The
exponent α seems to increase with AR: this behavior is not in agree-
ment with the hypothesis that we initially proposed. Even if we can-
not suggest a clear explanation for these results, we can make some
observations.

First of all, considering the large experimental error bars we can-
not completely exclude that the increasing trend of α is only appar-
ent, since the points are essentially consistent even with a constant
behavior. A reduction of the uncertainties would be desirable, how-
ever this is not a trivial task: one would need a more precise and
reliable method for the characterization of the BEC transition and for
the determination of τQ. Moreover from equation (5.9) it should be
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Figure 5.18: Power-law exponents fitting the experimental series of fig-
ure 5.10 for different aspect ratios. The predictions of the KZ

theory for solitons and vortices in a harmonic 3D regime are
plotted for comparison, taking the critical exponents from the
F-model (Hohenberg et al., 1977) as in table 1.1.

noted that the resolution error term over 〈N〉 scales as
√
1/M, with

M the number of observations. As an example, to halve an error bar
we would have to repeat 4 times the number of experimental runs to
average: for an error bar of ∆N = 0.1 this would translate in an addi-
tion of about 10 hours of experiments in stable conditions, just for a
single experimental point and neglecting the statistical error term δN.

Another aspect that should be considered while interpreting the re-
sults for α is that the idea of studying the KZ scaling while changing
the aspect ratio was suggested by the discussion on the confinement
parameter γ in section 5.1.2. From its definition in equation (1.50), this
dimensionless parameter is the ratio between the BEC chemical poten-
tial and the transverse harmonic oscillator energy. For a harmonically
trapped condensate the chemical potential µ can be calculated from
the number of condensed atoms N0 and the trapping frequencies,
using the Thomas–Fermi expression of equation (1.45):

µ =
 hωho

2

(
15N0a

aho

)2/5
. (5.12)

Here aho is the harmonic oscillator length defined in equation (1.41),
andωho is the geometric mean of the trapping frequencies introduced
in equation (3.16). Therefore γ can be expressed as

γ =
µ

 hω⊥
=
1

2

(
152ma2

 h

ω2‖
ω⊥

N20

)1/5
. (5.13)

The experimental values of γ relative to the measurements of the
defect number scaling are reported in figure 5.19. We can observe that
γ varies by about a factor 2 with τQ within each data set at constant
AR: this is a consequence of the variation of the number of atoms
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Figure 5.19: Confinement parameter γ calculated with equation (5.13) as
a function of the quench time for different aspect ratios. The
big error bars are omitted here. As discussed in previous chap-
ters, this dimensionless parameter defines the nature of stable
defects in the condensate and, consequently, their dimensional-
ity.

in the final condensate N0, plotted in figure 5.6. In principle we can-
not exclude that this trend of γ may affect the defect dimensionality
in a nontrivial way. Conversely we do not observe an unambiguous
correlation between γ and AR as we intended to do, and we never ap-
proach to the values of γ predicted for the crossover between the dif-
ferent confinement regimes. In fact solitons are expected for smaller
values of the confinement parameter, i. e., for γ of the order of unity
(Brand et al., 2002; Komineas et al., 2003; Mateo et al., 2014).

Following the observations presented in this section, we conclude
that a quantitative comparison between the measurements of power-
law exponent α and the predictions for the KZM is not straightforward.
A deeper comprehension on the relation between the defect number
scaling and the confinement regime is needed in order to explain our
experimental data. Finally, our approach for the study of the dimen-
sionality, based on the variation of the aspect ratio, does not seem
to be effective for this task. This might suggest future measurements
with different methods, e. g., with the implementation of procedures
that allow to vary the quench time while keeping γ constant. Fur-
ther theoretical and experimental studies are therefore required for
understanding the role of dimensionality in the KZM.



C O N C L U S I O N

In this thesis I have presented the principal results obtained during
my doctorate at the laboratory of ultracold gases in Trento. These are
mainly related to the study of the spontaneous formation of defects
in harmonically trapped Bose–Einstein condensates, after tempera-
ture quenches across the phase transition. In particular, the measure-
ment of the power-law scaling of the defect number with the quench
time opened to the possibility of the quantitative study of the Kibble–
Zurek mechanism in ultracold gases.

We reported experimental evidences for the identification of the de-
fects spontaneously produced in our condensates as solitonic vortices,
providing the first experimental observation and characterization of
their phase and density profiles with three-dimensional imaging and
matter interferometry after time of flight. Solitonic vortices appear as
long lived excitations of the condensate thanks to their topological
nature, and they set a link between vortices in bulk systems and soli-
tons in the effective one-dimensional regime. Further studies may be
needed to understand how do these defects form at the phase tran-
sition, also exploring the interplay between the confinement regime
and the defect dimensionality in experiments.

Following the observations on solitonic vortices, we extended the
measurements on the defect number scaling proposing a quench pro-
cedure that keeps into account of the finite defect lifetime. Our results
at constant evolution time showed an unexpected deviation from the
simple power-law scaling predicted by the Kibble–Zurek mechanism,
with the number of defects saturating at faster quenches. We pro-
posed an interpretation for these observations in terms of the post-
quench evolution of defects. However, in order to provide a clear pic-
ture, the turbulent dynamics in the presence of many defects needs
to be studied in closer detail, both theoretically and experimentally.

The other topic that we addressed is the dependence of the defect
number scaling on the radial confinement of our elongated harmonic
trap. Even if we observed a possible dependence of the power-law ex-
ponent on the condensate aspect ratio, a better understanding of the
role of dimensionality on the Kibble–Zurek mechanism is needed for
interpreting these results, as well as the effects of thermal dissipation
and of temperature inhomogeneities in the gas.

Our observations demonstrate that ultracold gases are promising
systems for exploring the critical phenomena occurring at phase tran-
sitions, and they inspired subsequent studies for systems in differ-
ent geometries and confinement regimes. In addition we showed that
the production of solitonic vortices via the Kibble–Zurek mechanism

119



120 conclusion

in elongated Bose–Einstein condensates represents a powerful tool
for the experimental study of vortex-vortex interactions. This is cur-
rently a challenging open problem both in theoretical and experimen-
tal physics, with fundamental implications in many domains of con-
densed matter physics.
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