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Abstract

Diffusion MRI (dMRI) data allows to reconstruct the 3D pathways of ax-
ons within the white matter of the brain as a set of streamlines, called trac-
tography. A streamline is a vectorial representation of thousands of neuronal
axons expressing structural connectivity. An important task is to group the
same functional streamlines into one tract segmentation. This work is ex-
tremely helpful for neuro surgery or diagnosing brain disease. However, the
segmentation process is difficult and time consuming due to the large number
of streamlines (about 3× 105 in a normal brain) and the variability of the brain
anatomy among different subjects. In our project, the goal is to design an effec-
tive method for tract segmentation task based on machine learning techniques
and to develop an interactive tool to assist medical practitioners to perform this
task more precisely, more easily, and faster. First, we propose a design of in-
teractive segmentation process by presenting the user a clustered version of the
tractography in which user selects some of the clusters to identify a superset
of the streamlines of interest. This superset is then re-clustered at a finer scale
and again the user is requested to select the relevant clusters. The process of
re-clustering and manual selection is iterated until the remaining streamlines
faithfully represent the desired anatomical structure of interest. To solve the
computational issue of clustering a large number of streamlines under the strict
time constraints requested by the interactive use, we present a solution which
consists in embedding the streamlines into a Euclidean space (call dissimilarity
representation), and then in adopting a state-of-the art scalable implementation



of the k-means algorithm. The dissimilarity representation is defined by select-
ing a set of streamlines called prototypes and then mapping any new streamline
to the vector of distances from prototypes. Second, an algorithm is proposed to
find the correspondence/mapping between streamlines in tractographies among
two different samples, without requiring any transformation as the traditional
tractography registration usually does. In other words, we try to find a map-
ping between the tractographies. Mapping is very useful for studying tractog-
raphy data across subjects. Last but not least, by exploring the mapping in the
context of dissimilarity representation, we also propose the algorithmic solution
to build the common vectorial representation of streamlines across subject. The
core of the proposed solution combines two state-of-the-art elements: first using
the recently proposed tractography mapping approach to align the prototypes
across subjects; then applying the dissimilarity representation to build the com-
mon vectorial representation for streamline. Preliminary results of applying
our methods in clinical use-cases show evidence that our proposed algorithm
is greatly beneficial (in terms of time efficiency, easiness.etc.) for the study of
white matter tractography in clinical applications.

Keywords
Machine Learning, Tract Segmentation, Brain Connectivity, dMRI Data, Neuro
Imaging
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Chapter 1

Introduction

1.1 The Context

The brain, the central part of the nervous system, consists of the grey
matter, known as cerebral cortex, and the white matter. Its core compo-
nents are the neurons (nerve cells), that are in-charge of all the commu-
nication and processing within the brain. Neurons are divided into three
main parts: cell body, dendrites and axons. The grey matter is composed
of dense concentrations of the cell bodies and dendrites of these neu-
rons and all the processing of the brain takes place here. On the other
hand, the white matter works as the brain’s connective cabling. It is
composed of billions of myelinated axons that connect, i.e. transmit sig-
nals between neurons in different regions of the brain [25]. The patterns
and structures of these anatomical links between regions in the brain are
known as anatomical connectivity [55] [17] of white matter. Anatomical
connectivity can vary among people if, for example, they have mental
disorders, neurologic or neuropsychiatric diseases. Therefore, research
about the anatomical connectivity of the white matter hence becomes
essential in neuroscience and is also the main focus of this work.

Currently, diffusion magnetic resonance imaging (dMRI), a non-invasive
technique, is popularly used to find the anatomical connectivity in brain [6,
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Figure 1.1: (A) Tractography overlaid with the structural image (only 10% of the
streamlines are shown). The colour encodes the orientation of the mid-segment of
every streamlines using a colour map based on [23]. (B) Amplifying an area of the
tractography. (C) Small subset of streamlines.

99]. It measures the displacement distribution of water molecules in the
brain tissue, that is mechanically constrained by the myelinated axons.
Thereby, it provides information about the local orientation of white
matter axons. The data obtained with this technique, can be used to
extract the anatomical connectivity information by using deterministic
tractography algorithms [69, 56, 30]. These algorithms reconstruct the
approximate trajectories of the axons as polylines, so they resemble the
white matter anatomical structures (see Figure 1.1). A polyline in this
context is called streamline, and the full brain streamlines are called brain
tractography. It is worth to notice that one streamline represents approx-
imately 104 neural axons sharing the same structural connectivity path.
In some cases, streamline is also called track or fiber. The whole set of
streamlines of a brain is called tractography. And given that the resolu-
tion of modern MRI scanners is in the order of 1mm3, a full brain trac-
tography consists of ≈ 3 × 105 streamlines (see Figure 1.1). Bundle is a
set of streamlines with similar spatial and shape characteristics e.g. they
are close to each other according to a streamline distance, while tract is
the real anatomical group of neuronal axons.
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Figure 1.2: The structural image of the brain with different type of views. The 2D
views: (A) coronal, (B) sagittal, (C) axial

The exploration of tractography data sets has hence become very use-
ful to neuroanatomists. Information like the shape of streamlines, their
spatial location and the relation with each other, allows to identify and
study the subsets of streamlines related to specific function(s). From
there, it can be also determined if there is (or the status of) an ongoing
neurodegenerative process.

With these data, there are two main approaches for the study of anatom-
ical connectivity: automatic and manual. The automatic analysis has
gained popularity over the last few years. It is based on machine learn-
ing and data mining algorithms. It is mainly aimed at a fast segmenta-
tion of the white matter into sets of streamlines that follow similar trajec-
tories [105, 39, 91]. Nevertheless, the automatic segmentation of the trac-
tography is not always in agreement with the real anatomical structures
of the white matter. Therefore, neuroanatomists still strongly rely on
their manually guided visual exploration. This manual task though, is
complex and slow. The manual exploration of the streamlines is usually
supported by the overlaid structural image, such that experts can ori-
ent themselves into specific regions of the brain they are focusing their
analysis (Figure 1.1). Moreover, the number of streamlines can be really
large, usually in the order of hundreds of thousands, making the ex-
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ploration i.e. shape recognition, spatial localization, quite difficult. See
for example, in Figure 1.1.A, where only a 10% of the total amount of
streamlines is shown, it is still difficult to visually understand the data.

1.2 The Problem

Recently, the literature about machine learning techniques to apply for
analyzing and studying the white matter tractography is increasing. Al-
though it has gained some encouraging results, but these results are still
under the satisfactory of medical practitioners. In this work, we want
improve the support of machine learning techniques for studying the
white matter tractography. We want to help the medical practitioners to
analyse the white matter tractography data more easily and more accu-
rately based on machine learning techniques. The things that we want
to investigate in this project are :

• Brain tractography segmentation: Traditionally the segmentation
task is done by neuroanatomists and it consumes a lot of time and
effort due to the large number of streamlines (about 3×105 in a nor-
mal brain). Moreover, the variability of the brain anatomy among
different subjects makes the segmentation a difficult task [12]. Up
to now, there are two machine learning approaches for tractography
segmentation: supervised [15] and unsupervised [34] learning. The
unsupervised techniques often rely on expert-crafted streamline-
streamline distance functions [26, 111] encoding informative rela-
tionships for the segmentation task, then followed by a clustering
algorithm (agglomerative, k-means, Gaussian mixture model, etc.
see [105] for a recent brief review). Supervised tract segmenta-
tion [15, 75] instead aims at learning how to segment the tractogra-
phy from expert-made examples provided as input. Although both
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supervised and unsupervised techniques get some encouraging re-
sults, but they are below the expectation of medical practitioners.
Unsupervised techniques usually work on the whole tractography
while medical practitioner often focus on a specific tract. In the case
of supervised learning, the lack of ground truth data makes the re-
sults not good and need the refinement from experts. Although
both supervised and unsupervised learning have gain some en-
couraging results, but they are still under the satisfactory of medical
practitioners. In this work, we try to assist the medical practition-
ers to do the tract segmentation task more accurately, more easily in
order to improve the quality of the segmentation.

• Vectorial representation for tractography streamline: Most of the
machine learning and patern recognition techniques used for trac-
tography analyses (such as supervised and unsupervised learning
for tractography segmentation, clustering for tractography visulaiza-
tion, ...) require the input to be from a vectorial space. This re-
quirement contrasts with the intrinsic nature of the tractography
because streamlines have different lengths and different number of
points and for this reason they cannot be directly represented in a
common vectorial space. This lack of the vectorial representation
avoids the use of some of those algorithms and of computationally
efficient implementations. In this thesis, we try to define a new rep-
resentation for tractography streamline that can be fed to the most
machine learning technigues.

• Tractography registration: Initially, tractography is originally in
the space of scanner with different coordinate, it is necessary to
align tractography from different brains together or combine differ-
ent tractographies of same brain using different image registration
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techniques, for further analysis.

• A common vectorial representation for streamline across subjects:
Current neuroscientific analyses of white matter tractography data
are limited to qualitative intra-subject comparisons. It is then quite
difficult to use the information for direct inter-subject comparisons [37,
7]. Thus, when applying machine learning techniques for inter-
subject tractography analyses, it leads to the need of defining a com-
mon vectorial representation for tractography streamlines not only
intra-subject but also across subjects.

1.3 The Solution

In this part, we shortly describe the solution for the problem mentioned
before.

• BOI (Bundle of Interest) based tractography segmentation: The
drawback of all the current tractography segmentation approaches
is that they work on a large number of tracks and most of them
are not interested to medical practitioners; or they focus on a target
tract but the variance between brains makes it difficult to generate
well. The results from both case are neccessary to be refined by
experts. In this work, we want to overcome these disadvantage
by proposing a framework using BOI (Bundles of Interest) con-
trasting with ROI (Region of Interest). While ROI concerns about
which streamlines go through some interesting regions, BOI focuses
only on streamlines inside some specific bundles. Because all of
the current approaches only work on the tracks without caring the
anatomy [102], it makes difficult to validate the result. Using BOI
would make medical practitioners concentrate on which tracts they
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are working on, and of course these tracts also correlate to the anatomy.

• Interactive visualization tractography: In order to help medical
practitioners to do the segmentation task more easily and quickly,
we provide an interactive tool for visualization tractography data
in 3D space. While all the current methods are off-line and medical
practitioners can not interact or modify the result of segmentation,
our tool is able to support them instantly to refine the segmentation
result manually. This tool has to adapt to the real time responses
of the user. This also differentiates our method from most of the
current state of art approaches that do not adjust to user feedback.

• Dissimilarity approximation: The dissimilarity space representa-
tion could be the way to provide a vectorial representation for stream-
line, and for this reason it is crucial to assess the current machine
learning techniques that require the input to be from a vectorial
space. Actually, the dissimilarity representation is an Euclidean em-
bedding technique defined by selecting a set of objects (e.g. a set of
streamlines) called prototypes, and then by mapping any new object
(e.g. any new streamline) to the vector of distances from the pro-
totypes. This representation [88, 5, 16] is usually presented in the
context of classification.

• Tractography mapping: Tractography registration is most often per-
formed by applying the transformation resulting from the regis-
tration of other images, such as T1 or fractional anisotropy (FA),
to tractography [38, 106, 37, 113]. In contrast to all current trac-
tography registration methods based on rigid or non-rigid shape
transformation of one tractography into another, we suggest to find
which streamline of one tractography corresponds to which stream-
line in the other tractography, without transformations. This cor-
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respondence is a mapping from one tractography to the other. We
propose to solve the problem of finding the mapping between two
tractographies through a graph-based approach similar to that of
the well-known graph matching problem [18, 109] in pattern recog-
nition literature .

• A common vectorial representation for streamline across subjects:
By exploring the tractography mapping idea in the context of dis-
similarity representation, we propose a new common vectorial rep-
resentation for streamlines across subjects. This representation, as
far as we know, is the first approach that create a common space for
representing streamlines from multiple subjects without require-
ment of co-registering subjects in the same space.

1.4 Innovative Aspects

This research is motivated to support medical practitioners to analyse
and study the brain white matter tractography more easily and accu-
rately. Results of tractography studying are immediately applicable to
surgical intervention, and to the treatment of psychological and psychi-
atric disorders. The main contributions of this thesis are the following:

• First, we design an effective method for tract segmentation task us-
ing machine learning based on BOI approach.

• Second, we present a solution to solve the computational issue of
clustering a large number of streamlines under the strict time con-
straints requested by the interactive use. The solution consists in
embedding the streamlines into a Euclidean space using dissimilar-
ity representation technique, and then in adopting a state-of-the art
scalable implementation of the k-means algorithm.
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• Third, we propose a methodology to map the tractography from
one subject to another subject, i.e to find the correspondence of
streamlines between two different tractographies without co-registering
tractographies together.

• Fourth, based on exploring the dissimilarity representation idea in
the context of tractography mapping, we are able to build up a
common vectorial representation for streamline across subjects with
high accuracy and low computational cost.

• Fifth, we develop a scientific interactive visualization tool, the im-
plementation of the framework that we propose for tract segmenta-
tion task, to help medical practitioners to perform this segmentation
task more precisely and easily based on BOI approach.

1.5 Structure of the Thesis

Chapter 2 presents the state of the art of the current white matter trac-
tography analysis. The first part introduces the dMRI technique and
how to reconstruct the tractography from dMRI data. The analysis of
tractography is subdivided into two parts: tractography segmentation
and tractography registration. In tractography segmentation section, we
present the overview of the current segmentation methods, and point
out some limitation of these methods. The later part describes the reg-
istration approaches for tractography including voxel-based and tract-
based method.

Chapter 3 introduces the first main contribution, the dissimilarity ap-
proximation for tractography. The proposed approach solves the prob-
lem of how to represent streamlines, which have different number of 3D
points and differ in sizes, in an Euclidean space. This work is motivated
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by practical applications about executing common algorithms, like spa-
tial queries, clustering or classification, on large collections of objects
that do not have a natural vectorial space representation (i.e stream-
lines in our case). The lack of the vectorial representation of streamlines
avoids the use of some of those algorithms and of computationally effi-
cient implementations. The dissimilarity space representation could be
the way to provide such a vectorial representation. The dissimilarity
representation is an Euclidean embedding technique defined by select-
ing a set of objects (e.g. a set of streamlines) called prototypes, and then by
mapping any new object (e.g. any new streamline) to the vector of dis-
tances from the prototypes. The use of a stochastic approximation of an
optimal algorithm for prototype selection is also discussed in this chap-
ter. Finally, we provide practical examples both from simulated data
and human brain tractographies, and confirm that dissimilarity approx-
imation is able to provide a fast and accurate vectorial representation for
tractography.

Chapter 4 proposes an alternative way of the traditional tractogra-
phy registration. Tractography registration is most often performed by
applying the transformation resulting from other images (T1, FA, DTI)
to tractography data, or to register tractographies themselves. However,
the above methods can not deal with a new coming tractograhy, except
for running the whole registration process again with all data plus the
new comer. In contrast with the registration methods, instead of finding
the transformation between tractographies, in this work, we want to di-
rectly map the source tractography to the target tractography. We believe
to be the first to recast the problem as mapping problem rather than reg-
istration problem. By taking advantage of more than thirty year graph-
matching research, we propose a graph-based solution for tractography
mapping problem and explain similarities and differences with the well-
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known graph matching problem. We define the loss function based on
the pairwise streamline distance, and reformulate the mapping prob-
lem as the problem of minimizing that loss function. To our knowledge,
this is also the first graph-matching-based objective function applied to
tractography. Moreover, we propose an algorithm for building the com-
mon vectorial representation for streamlines across subject. The core
idea is to combine the dissimilarity representation with tractography
mapping. Tractography mapping allows to find the correspondence be-
tween streamlines across subjects, while dissimilarity representation is
able to build an Euclidean representation for streamline. We apply the
proposed algorithm in the context of tractography segmentation. Exper-
iments using real dMRI data demonstrate the potential of the proposed
method for medical or neuroscientific analyses of white matter tractog-
raphy data.

Chapter 5 describes a novel interactive system for human brain trac-
tography segmentation to assist neuroanatomists in identifying white
matter anatomical structures of interest from dMRI data. The difficulty
in segmenting and navigating tractographies lies in the very large num-
ber of reconstructed neuronal pathways, i.e. the streamlines, which are
in the order of hundreds of thousands with modern dMRI techniques.
The novelty of our system resides in presenting the user a clustered ver-
sion of the tractography in which he/she selects some of the clusters to
identify a superset of the streamlines of interest. This superset is then
re-clustered at a finer scale and again the user is requested to select the
relevant clusters. The process of re-clustering and manual selection is
iterated until the remaining streamlines faithfully represent the desired
anatomical structure of interest. The computational issue of clustering a
large number of streamlines under the strict time constraints requested
by the interactive use, is solved by embedding the streamlines into a Eu-
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clidean space and then in adopting a state-of-the art scalable implemen-
tation of the k-means algorithm. We tested the proposed system on trac-
tographies from amyotrophic lateral sclerosis (ALS) patients and healthy
subjects that we collected for a forthcoming study about the system-
atic differences between their corticospinal tracts. The latter part of this
chapter contains the demonstration of the usefulness of our proposed
interactive visualization tractography segmentation software tool in the
neuroscientific analyses activities. The first one is to study the charac-
terisation of the amiotrophic lateral sclerosis (ALS) disease through the
corticospinal tract. The second one uses the result of tract segmentation
for validation two tractography registration methods, voxel-based and
tract-based method.

Chapter 6 concludes the thesis work.



Chapter 2

State of the Art

Neuroimaging techniques allow researchers and clinicians to gain in-
sights of unprecedented quality on the cerebral anatomy. Three main
focuses of neuroimaging include brain decoding, brain mapping and brain
connectivity. Both brain mapping and brain decoding concern about the
prediction or detection of a cognitive stimulus given a recording brain
activity and reverse. Contrast with them, brain connectivity tries to
build a model of the connections between different brain areas. Func-
tional connectivity focuses on the correlation between the brain activity of
anatomically remote areas. Effective connectivity investigates on finding
a causal link between different brain structures. Anatomical connectivity
refers to the structural links between different areas that develops in the
white matter of the brain, and it also the main focus of this work. In this
chapter, we review the state of the art of some activities that study the
anatomical connectivity using the diffusion magnetic resonance imag-
ing (dMRI) data.
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2.1 Diffusion magnetic resonance imaging (dMRI) data
and deterministic tractography

DMRI data allow to reconstruct the 3D pathways of axons within the
white matter of the brain as a set of streamlines, called tractography. A
streamline is a vectorial representation of thousands of neuronal axons
expressing structural connectivity. In this part, we will discuss more
detail of the pipeline to reconstruct the tractography from raw dMRI
data.

2.1.1 From raw data to NIfTI format

Most of the dMRI scanner produces data in DICOM format (.dcm - Dig-
ital Imaging and Communications in Medicine). DICOM is the most
common standard for receiving scans from a hospital [10, 67, 70]. The
DICOM standard was created by the National Electrical Manufacturers
Association (NEMA)1 to aid the distribution and viewing of medical im-
ages, such as CT scans, MRIs, and ultrasound. A single DICOM file con-
tains both a header (which stores information about the patient’s name,
the type of scan, image dimensions, etc), as well as all of the image data
(which can contain information in three dimensions) [45].

Figure 2.1 shows an example of the hypothetical DICOM image file.
In this one, DICOM header uses the first 794 bytes to describe the im-
age dimensions and retain other text information about the scan. The
size of this header varies depending on how much header information
is stored. For example, in the Figure 2.1, the header defines an image
which has the dimensions 109× 91× 2 voxels, with a data resolution of
1 byte per voxel, and the total image size will be 19838. Following the
header is the image data, and both the header and the image data are

1http://dicom.nema.org/

http://dicom.nema.org/
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Figure 2.1: An example of the DICOM image file. The image is reproduced from http:
//www.cabiatl.com/mricro/dicom/

stored in the same file. More information about DICOM format can be
found on the official webpage of DICOM 2.

Although DICOM is the most common standard for receiving scans,
it is quite complex format, and difficultly to be understood. DICOM
data, thus, needs to be converted in the format of NIfTI (Neuroimag-
ing Informatics Technology Initiative) [108]. NIfTI is a modern incar-
nation of the Analyze format, but includes important information like
the orientation of the image [22]. It was for scientific analysis of brain
images 3. The images can be stored as a pair of files (hdr/img, compli-
ant with most Analyze format viewers), or a single file (nii). Many tools
like FSL [49], NiBabel4, MRIcron5, . . . are also able to read compressed
(nii.gz) images. NIfTI format attempts to keep spatial orientation in-
formation, therefore, it should reduce the chance of making left-right
errors.

2http://medical.nema.org/
3http://nifti.nimh.nih.gov/
4http://nipy.org/nibabel
5http://www.nitrc.org/projects/mricron

http://www.cabiatl.com/mricro/dicom/
http://www.cabiatl.com/mricro/dicom/
http://medical.nema.org/
http://nifti.nimh.nih.gov/
http://nipy.org/nibabel
http://www.nitrc.org/projects/mricron
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Figure 2.2: Image acquired orthogonal to scanner bore

When converting image from DICOM format to NIfTI format, beside
the NIfTI file image, most of DICOM image conversion tools also gen-
erate (.bvec) and b-value (.bval) text files (contains diffusion gradient
vector and the b-value). These files are very important to reconstruct
diffusion properties. Because in diffusion tensor imaging (DTI) method,
we construct tensors by collecting a series of direction-sensitive diffu-
sion images [6]. Therefore, in addition to recording the images, the scan-
ner also saves these directions. A potential concern is that the scanner
manufacturers can choose to either report the vectors with reference to
the scanner bore, or with reference to the imaging plane (i.e., imaging
grid). This is not a problem if the images are always acquired precisely
orthogonal to the scanner bore (Figure 2.2), as the image and scanner
have the same frame of reference. However, problems can arise when
the image plane is not aligned with the scanner bore (i.e., oblique acqui-
sitions). In this situation, it is important to ensure that these vectors are
in the same frame of reference as the image. Moreover, the eigenvectors
of the tensor, and consequently tractography programs are sensitive to
proper interpretation of the bvecs relative to the imaging plane.

2.1.2 Reconstruction

From the dMRI data, tractography is created in two steps: reconstruction
and tracking. Reconstruction is about computing the information about
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the spatial distribution of the diffusion signal within each voxel. While
tracking tries to connect many signals to form a tractography based on
orientation signal of each voxel.

It is usually to extract brain image only from the actual dMRI data in
NIfTI images before doing reconstruction, because the result of scanner
contains not only brain but also other things close to brain which can
distract the processing of tracking. Brain extraction is the process of re-
moving the skull and the rest of the head from the brain (see Figure 2.3).
The resulting file only contains a representation of the brain’s anatomy.

Brain extraction can be done with the FSL 6 program BET (Brain Ex-
traction Tool) [96]. BET takes an image of a head and removes all non-
brain parts of the image. It uses a deformable model that evolves to fit
the brain’s surface by the application of a set of locally adaptive model
forces. This method is fast and requires no preregistration or other pre-
processing before being applied. Result of BET is a file saved with a
brain extension at its end. An example of BET result can be seen in the
bottom line of the Figure 2.3, while original image data is at the top.

After brain extraction, we can do reconstruction step. The main pur-
pose of this is to estimate the orientation information from the diffusion
signal within each voxel which is adequate for accurate tractography
generation. In the last few years, there has been an increasing number
of techniques which are proposed to recover the signal directions inside
the voxel from dMRI data, and the most simple one is Diffusion Tensor
Model [6]. But in many cases this model is not sufficiently [2], because
most of voxels inside brain contain multiple streamline bundles cross-
ings while this model is only working with single tensor. Many other
reconstruction methods have been proposed to overcome the limitations
of this Diffusion Tensor model, such as Diffusion Spectrum Imaging [14]

6http://www.fmrib.ox.ac.uk/fsl/index.html

http://www.fmrib.ox.ac.uk/fsl/index.html
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Figure 2.3: An example of the dMRI data after doing brain extraction. Top: the original
NIfTI images. Bottom: the result of doing brain extraction

or Higher Order Tensors [80]. The overview of these model can be found
more detail in [42].

To visualize the 3D diffusion data, [42] proposed two approaches.
The first one is to replace the displacement distribution with an isosur-
face, which is a surface that passes through all points of equal probabil-
ity density value. And the second one is to compute the orientation dis-
tribution function (ODF) from the displacement distribution. Figure 2.4
represents these two approaches.

2.1.3 Tracking

In the previous part 2.1.2, information about orientation of streamlines at
every voxel has been gained. Based on these information, tractography
algorithms (or tracking algorithms) can be used to join these directions
up to reconstruct complete tracks and hence approximate anatomical
tracts. This processing is known as tracking, which connect voxels in
order to create tracks (or fibers, streamlines), using the spatial informa-
tion computed during the reconstruction step. Basically, tracking proce-
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Figure 2.4: Two approaches maybe used to simplify the visual representation of 3D
diffusion data. Top: the reconstruction of the 3D displacement probability distribution
from the diffusion signal. Left: the replacement of the displacement distribution with
an isosurface. Right: the computation of the commonly used Orientation Distribution
Function (ODF). This displacement distribution simulates the crossing of two fibres. In
general, the ODF is used essentially to identify the primary directions of the underlying
fibres. Picture is reproduced from [42]

dure consists of starting at a seed location and following the preferred
direction until we reach a new voxel. Then, we can change to this vox-
els referred direction and continue until an entire track is propagated.
An example about creating track from orientation of streamline signal
within voxels is presented in Figure 2.5

Tracking algorithms can be grouped in three categories: local, global
and simulated. The local approaches tries to propagate a strealine from
a starting (seed) point using locally greedy criteria, i.e. tracking sequen-
tially through orientation estimates in adjacent voxels [24]. The global
ones find the best path between two points of interest, based on some
optimization criterion, rather than identifying paths arising from a sin-
gle point [57, 46]. The simulated approaches simulate the diffusion pro-
cess or solve the diffusion equation to reconstruct tracks [40, 51]. Due to
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Figure 2.5: Tracking from tensor direction information. The white line shows the
streamline obtained by joining a set of voxels based on their diffusion direction in-
formation. The color is a complementary way of coding the preferred direction where
red denotes left-right, green denotes back-front and blue denotes up-down. Picture is
produced from [30]

the need of creating the whole brain tractography, only local techniques
are described in this part.

In local techniques, deterministic and probabilistic tracking algorithm
are the two best known families [24]. Deterministic fiber tracking uses
the principal direction of diffusion to integrate trajectories over the im-
age, and to make a series of discrete locally optimum decisions [69]. It
is fast, simple and easy to interpret. The disadvantages of deterministic
algorithms are that a pathway either exists or not (no uncertainty) and
that they do not explore the entire space of possible white matter tracts.
Probabilistic procedure is to calculate a spatial distribution of tracks aris-
ing from a single seed rather than a single track. It considers the tensor
as a probability distribution of fiber orientation [8, 41, 83, 9]. An example
about the difference between deterministic and probabilistic is shown in
the Figure 2.6.
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Figure 2.6: A simplified example showing in (i) and (ii) the same data set. (i) The
yellow line shows the result of deterministic tractography which is given by a single
trajectory and in (ii) is given by connectivity matrix depicting in red the probability of
different pathways throughout the hole slice. For the ease of understanding, only 3
possible pathways are depicted. Finally, in (iii) an example is given where it is shown
that probabilistic tractography weights more closer connections. However, it can track
further deep than deterministic tractography. Picture is produced from [30]

2.2 Tractography segmentation

From the dMRI data, by using fiber-tracking algorithms, we can extract
the structural connectivity information, called tractography, of the brain.
However, the resulting tractography datasets are highly complex and
include thousands of fibers (about≈ 3× 105), which requires techniques
or method to create the exact anatomic brain before doing further study-
ing. The tractography segmentation aims at grouping some fiber tracts
belonging to a common anatomical area, into one segmentation, and it is
a task of interest in neurological studies [12], for example for the study of
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Alzheimer disease. Traditionally, the segmentation task is done by neu-
roanatomists, and it consumes a lot of time and effort due to the large
number of streamlines (about 3 × 105 in a normal brain). Moreover, the
variability of the brain anatomy among different subjects makes this task
more difficult. Furthermore, clinical studies often use the segmentation
of white matter bundles in order to perform comparisons between pop-
ulations, and thus, it is also an press on the accuracy of the segmentation
task. Therefore, . Recently, there is a rise of applying pattern recognition
techniques to solve this problem [73, 111, 75], however the segmentation
of tractography is still not completely solved problem. In the following
part, the brief survey about currently trends in segmentation tractogra-
phy is presented.

Atlas approach: Atlas are the models of white mater structure in
brain. Firstly, atlas are created from experience of experts without be-
ing driven from data. After that, atlas are used as model of clusters for
tractography segmentation. All streamlines would be grouped into the
closest cluster in atlas. O’Donnell and Westin [73] generated a tracto-
graphic atlas using spectral embedding and expert anatomical labeling.
They then automatically segmented the new tractography using again
spectral clustering and embedding the tracks as points in the embed-
ded space, to the closest existing atlas clusters. The true affinity matrix
was too big to compute therefore they used the Nystrom approximation:
working on a subset and avoid generating the complete distance matrix.
However, the important information from the full data set may be lost
after sub-sampling.

ROI - region of interest: One of the first idea for segmentation is to
use the region of interest (ROI) [102]. This approach tried to reconstruct
tracts passing through ROI by exploiting existing anatomical knowledge
of tract trajectories. First, some target tracts must be defined. It also re-
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quires to specified manually some regions where tracts start, end or pass
through. Then streamlines would be filtered based on the constraint of
passing through ROIs. ROI approach needs a prior knowledge about the
trajectory and is used only for well-characterized white matter tracts. In
order to refine the segmentation, multi-ROIs were used to include or
exclude tracks.

Unsupervised learning: From the point of view of algorithmic ap-
proaches, the segmentation task has traditionally been addressed with
unsupervised techniques over only diffusion data [111]. This typical
framework first defines a pairwise distance between fibers and inputs
the similarity matrix to standard clustering algorithms. Various distance
functions between fibers have been proposed: the Euclidean distances
between fiber shape descriptors [13]; the similarity between two fibers
based on the number of points sharing the same voxel [50]; distance
from the B − spline representation [63]; closest point distance, mean
of closest distances and Hausdorff distance [33]. Then, following is a
clustering algorithm such as agglomerative, k-means, Gaussian mixture
model, etc (see [105] for a recent brief review of applying these algorithm
for tractography).
The disadvantage of these clustering algorithms is that they require man-
ually specifying the number of clusters or a threshold to stop merging
or splitting clusters. The different numbers of chosen clusters vary sig-
nificantly the performance of clustering [68]. Recently, there are some
approaches try to solve this problem by auto choosing the number of
clusters. In [73], a large cluster number for spectral clustering is chosen,
and then these clusters are manually merged to obtain models for white
matter structures. Zvitia et al. [115] and Wassermannet et al. [107] de-
cide the number of clusters based on mean-shift. By adding a penalty to
a larger cluster number, Neji et al. [71] solved the optimization using lin-
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ear programming to chose the number of clusters. Recently, Garyfallidis
et al. [32] proposed a very quick clustering algorithm, called QuickBun-
dles. It took one random streamlines as initial cluster, and calculated the
distance from all the un-clustered streamlines to the representatives of
clusters. Only the streamline with the minimum distance was grouped
into the closest cluster if the distance was less than a given threshold,
other while, that streamline became a new cluster.
Although these approaches avoid manually choosing number of clus-
ter, the drawback is the high space and time complexity of computing
pairwise distances between fibers. Whole brain tractography produces
≈ 3 × 105 streamlines fibers per subject, the pairwise distance between
fibers is difficult to compute. And it becomes more serious when clus-
tering fibers of multiple subjects. To avoid computing pairwise dis-
tances between fibers, Savadjiev et. al. [93] clustered diffusion orien-
tation distribution functions maxima instead of clustering fiber tracts
directly. This algorithm based on the geometric coherence of fiber ori-
entations. Maddah et al. in [64] proposed a probabilistic approach to
cluster fibers. It used a Dirichlet distribution as a prior to incorporate
anatomical information. However, this algorithm also required estab-
lishing point correspondence which was difficult to define.

Supervised learning: The most disadvantage of unsupervised ap-
proach is that it works on the whole tractogrpahy and tries to cluster
tractography into many tracts, while the requirement of medical prac-
titioners only focuses on some specific tracts. Supervised segmentation
is the method of partitioning according to some provided tract exam-
ples, therefore, it only focuses on a specific tract [63, 73] . Firstly, the
target tracts should be specific, such as corticol spinal tracts (see Fig-
ure 5.13). Then, a repository of samples must be collected. A sample
is an expert-made assignment of streamlines to the target tracts. These
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samples are used to train a classify model, which is used to cluster a new
streamline. In this setting, each streamline can be class-labelled as being
member of the fiber tract of interest or not. For this reason the super-
vised segmentation problem becomes a binary classification problem.
Maddah et al. [63] used the B-spline representation of the streamlines,
and classified by the nearest-neighbor algorithm with respect to an at-
las. Wang et al. [105] proposed a non-parametric Bayesian framework
using a hierarchical Dirichlet processes mixture (HDPM) model, and
the models of bundles were learned from how voxels are connected by
fibers in training data instead of comparing fiber distances. Olivetti [77]
combined both structural and functional connectivity to study jointly
in a pairwise approach with the goal of assessing the contributions of
structural information and functional information when segmenting the
tracts. Recently, [75] solved this classification problem basing on the dis-
similarity representation. After projecting all streamlines into some pro-
totypes, one streamline-streamline distance function is computed in this
new representation space, and it is used for classifying.
Although supervised approaches focus on a specific tract as requirement
of medical practitioners. However, because the number of data for train-
ing and testing is very small due to the vague time for collecting enough
the truth background data of manual segmentation tractography, the re-
sults usually are bellow the expectation of medical practitioners, and
they need to be refined to use in clinical applications.

Most of these above methods often require the data to lie in a vecto-
rial space, which is not the case for streamlines. Streamlines are poly-
lines in 3D space and have different lengths and numbers of points. The
lack of the vectorial representation avoids the use of some of those al-
gorithms and of computationally efficient implementations. The dis-
similarity space representation [88, 5, 16] could be the way to provide
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such a vectorial representation. The dissimilarity representation, a spe-
cific Euclidean embedding technique, is usually used in the context of
classification and clustering problems. It is defined by selecting a set of
objects (e.g. a set of streamlines) called prototypes, and then by mapping
any new object (e.g. anynew streamline) to the vector of distances from
the prototypes. It is a lossy transformation in the sense that some infor-
mation is lost when projecting the data into the dissimilarity space. To
the best of our knowledge this loss, i.e. the degree of approximation, has
received little attention in the literature. In [86] the approximation was
studied to decide among competing prototype selection policies only
for classification tasks. In this work we are interested in assessing and
controlling this loss without restriction to the classification scenario.

2.3 Tractography registration

Current neuroscientific analyses of white matter tractography data are
limited to qualitative intra-subject comparisons. Thus, it is quite difficult
to use the information for direct inter-subject comparisons [37, 7]. This
leads to the need of initial alignment, or registration, of tractographies
together via some methods before doing further study.

Registration is the problem of identifying the process of geometric
transforming the coordinate system of an input image to be as spatially
aligned to a reference image, more generally establishing a homology
among the input images [43]. In this scenario, a group of transforma-
tions needs to be established to put all the inputs into correspondence [114].
Inter-modal registration allows precise spatial localization across images
of the same subject but under different modalities, while intra-modal
one tries to specify spatial localization across multiple subjects [37]. The
most important transformation is the affine transformation, as in Equa-
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tion 2.1, which has 12 degrees of freedom (DOF) in 3D.
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where lij are the nine parameters of a linear transformation, the ti are
the translation parameters in 3D; x, y, and z are the input coordinates
and x′, y′, and z′ are the transformed coordinates. Any registration tech-
nique can typically be described by three components: a transformation,
a similarity measure and an optimization. The transformation is applied
to an input image to increase its similarity with the reference image. The
similarity measure measures the similarity between the reference image
and the input image after transforming. And the optimization algorithm
iteratively determines the optimal transformation parameters as a func-
tion of the similarity measure. Image registration plays an important
role in medical image analysis, group analysis and statistical parametric
mapping. Because of its importance in both research and medical ap-
plications, medical image registration has been intensively investigated
for almost three decades and numerous algorithms have been proposed.
More detail can be found in the recent survey of medical image registra-
tion in [65].

Specific to the tractography registration, different authors classified
tractography registration in different ways. Some classifications are based
on what kind of registration techniques are used [59] and some are based
on what kind of diffusion data are used [58]. If we consider from the
point view of registration technique, it is basically based on different
similarity measures: rigid, non-rigid registration; linear, non-linear reg-
istration and the feature based registration. According to the data type
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registration, there are three alternative approaches: scalar or vectorial
registration, tensor registration and fiber or streamline registration. We
choose to keep the registration based on data type to elaborate.

From scalar image based registration point of view, mutual infor-
mation is used to measure the similarity between images. Affine co-
registration along with mutual information is performed with diffusion
weighted images [62]. Orientation information of the diffusion tensor
preserves after affine transformation in order to align anatomical struc-
ture. Scalar registration are used at early stage of dMRI registration with
the scaler images; without considering the directional images. More de-
tails can be found in [82, 35].

In tensor based method [92], FA (Fractional Anisotrophy) mapping
or affine registration is applied on tractography along with tensorial
value of the images. We can distinguished tensor based registration
with the scalar registration by additional deformation model which keep
the tensor orientation consistent according to the anatomical structure
of the image. Direct and feature based methods are discussed in [92],
where direct approach is based on Diffusion Tensor Constancy Con-
straint (DTCC) along with finite strain reorientation schema, and feature
based method is based on singular value decompositions (SVD). Above
described image based and tensor based model are voxel based registra-
tion and by considering the anatomical images, not on 3D reconstructed
tractography.

Actually for the tractographiy data registration, no transformation is
meaningful since it is not possible to reconcile two different anatomies
by means of rigid (ornon-rigid) transformations. Also recent methods
are voxel based and computationally very expensive due to voxel to
vexel similarity measuring cost. And as it calculates the spatial trans-
formation iteratively, it could suffer for local optima. That is the rea-



Tractography registration 29

Figure 2.7: Tractography registration: voxel based method and tract-based method

son why the concept of streamline-streamline registration comes on the
mind of researchers as the quality being optimized during registration
are closely related to final goal of streamline registration. When we use
the voxel based method, we have information about one voxel, but a
streamline (i.e, its a set of voxel information) could be used for registra-
tion techniques. Hence, the problem is how to use the streamline infor-
mation to register the whole brain tractrography. In fiber or streamline
registration, the concept is to register the tractography in native space di-
rectly, without any prior knowledge of structural images and any kinds
of transformation. Figure 2.7 demonstrates the overall concept of trac-
tography registration both in image and streamline based. The solid
lines show how images are converted from native to common space.
Afterward, the affine transformation is used to wrap tractography in
common space that is illustrated in the right upper corner of the figure.
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In streamline registration, streamline is usually considered as a set of
points [66, 59, 115]. Points are represented in high dimensional point
space. In [66], Efficient Interactive Closest Feature point (ICF) is used
to register different tractographies. Computational complexity on high
dimensional search is handled by implementing approximate nearest
neighbors techniques. In [115], streamlines are projected on high di-
mensional feature space with a 3D coordinates sequence. Fiber model
is extracted by adaptive mean shift (AMS) clustering. Gaussian Mixture
Model (GMM) is represented by assigning weight to each fiber model.
The registration is performed as the alignment of two GMMs by maxi-
mizing the correlation ratio.

Recently another unbiased multi-subject registration is proposed in [72].
In that paper registrations are done by minimizing the entropy based
objective function. Distance between the streamlines are calculated and
represented by the Gaussian kernel distribution. This registration tech-
nique works with the whole brain with group wise registration.

In this work, instead of finding the shape transformation of one trac-
tography into another, we try to find which streamline in one tractogra-
phy correspond to which streamline in the other tractography, without
any transformation. In other words, we try to find a mapping between
the tractographies. The tractography mapping is similar to the well-
known graph matching problem [18, 109] in pattern recognition litera-
ture. During the last decade, graph matching has paid a huge attention
due to the application of it in modern scientific discipline and applied
field [61]. The graph matching problem can be described as follows. An
undirected weighted graph G = (V,E) of size N is a finite set of vertices
V = {1, . . . , N} and edges E ⊂ V × V . Given two graphs GA to GB

with the same number of vertices N , the problem of matching GA and
GB is to find the correspondence between vertices of GA and vertices of
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GB, which allows to align, or register, GA and GB in some optimal way.
The correspondence between vertices of GA and of GB is defined as a
permutation P of the N vertices, i.e. there a one-to-one correspondence
between the two set of vertices. P is usually represented as a binary
N × N matrix where Pij is equal to 1, if the ith vertex of GA is matched
to the jth vertex of GB, otherwise 0.

In literature, efficient algorithms for finding the matching matrix P

can be either optimal or approximate methods [18, 36, 109, 110]. Opti-
mal matching algorithms always find an exact solution if it exists, and
have exponential time complexity in the worst case, which makes them
unattractive for many applications. In contrast, approximate or subop-
timal matching algorithms find the local minima of the matching cost
with the polynomial time complexity respect to the number of nodes.
Generally, there are no guarantees to reach the global minimum, but
often the approximation is not very far from the global one [18]. Al-
mohamad et. al. [3] solved the quadratic problem by using the simplex
algorithm, while [90] used a method based on Lagrangian relaxation
network. In [36], Gold et. al. proposed the graduated non-convexity
assignment to avoid poor local optima. The relaxation of the discrete
optimization problem to be continuous one for the graph-matching was
introduced in [109, 110]. Recently, a new graph matching algorithm has
proposed with the exploration of factorizing affinity matrix in [112].

By considering each streamline as a vertex and the edge connecting
vertex si and sj as the distance between the two streamlines, d(si, sj)

(the concept of distance between two streamline is presented in the next
Section 2.4). Then, intuitively, the problem of tractography mapping be-
comes very similar to that of graph matching, but with some key dif-
ferences. Firstly, the size of the two tractographies is in general not
the same. Global differences in the anatomy of the brains, e.g. dif-
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ferent volume, motivates this difference. Secondly, in general there is
not a one-to-one correspondence between the streamlines but a many-
to-one correspondence. This is anatomically likely if we consider that
a given anatomical structure (tract), e.g. the cortico-spinal tract (CST),
whose streamlines should have direct correspondence across subjects,
may have different number of streamlines. In this case, for example,
multiple streamlines of one CST would correspond to a single streamline
in the other CST. Because of these differences, it is generally not possible
to directly apply efficient graph matching algorithms to the problem of
mapping tractographies.

2.4 Notation

Let the polyline s = { ~x1, . . . , ~xns}, where ~x ∈ R3, be a streamline (or fiber,
track) reconstructed from dMRI data by deterministic tractography al-
gorithms [69]. Note that each streamline has a different number of 3D
points with other streamlines. Let the tractography T = {s1, . . . , sn} be
defined as a set of n streamlines. Current dMRI techniques operated
on adult humans generate tractography of size in the order of 3 × 105

streamlines. Let τ be an anatomical fiber tract of interest, e.g. the cor-
tical spinal tract (see figure 5.13), and let T ⊂ T be its corresponding
streamline-based approximation within given the tractography.

In the literature of tract segmentation or registration, it usually refers
to distances between pair of streamlines as a leading way to incorpo-
rate domain specific information. The recent survey about streamline
distance can be found more detial in [111]. A popular group of dis-
tances is the modified Hausdorff distances [26] and among the most
popular [111] are

• d1(sA, sB) = 1
nsA

∑nsA
i=1 d(xAi , sB)
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sA
Bs

Figure 2.8: Many distances between two streamlines, sA and sB (solid line), that are
proposed in the literature are based on the set of minimum distances between each
point of sA to sB. The set of minimal distances is represented here as dotted lines.

• d2(sA, sB) = mini=1,...,nsA
d(xAi , sB)

• d3(sA, sB) = maxi=1,...,nsA
d(xAi , sB)

where (see Figure 2.8)

d(xAi , sB) = min
j=1,...,nsB

||xAi − xBj ||2 (2.2)

which can be combined in order to get the symmetric versions:

• ha(d, sA, sB) = d(sA,sB)+d(sB ,sA)
2

• hb(d, sA, sB) = min(d(sA, sB),d(sB, sA))

• hc(d, sA, sB) = max(d(sA, sB),d(sB, sA))

Note that all distances defined above are not metric [26] because d(sA, sB) =

0 does not imply that sA = sB.
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Chapter 3

Dissimilarity Representation for
Tractography

Diffusion magnetic resonance imaging (dMRI) data allow to reconstruct
the 3D pathways of axons within the white matter of the brain as a
tractography. The analysis of tractographies has drawn attention from
the machine learning and pattern recognition communities. Many of
the current learning algorithms require the input to be from a vectorial
space. This requirement contrasts with the intrinsic nature of the trac-
tography because its basic elements, called streamlines or tracks, have
different lengths and different number of points and for this reason they
cannot be directly represented in a common vectorial space. In this work
we propose the adoption of the dissimilarity representation which is an
Euclidean embedding technique defined by selecting a set of streamlines
called prototypes and then mapping any new streamline to the vector of
distances from prototypes. We investigate the degree of approximation
of this projection under different prototype selection policies and proto-
type set sizes in order to characterise its use on tractography data. Ad-
ditionally we propose the use of a scalable approximation of the most
effective prototype selection policy that provides fast and accurate dis-
similarity approximations of complete tractographies.
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3.1 Introduction

Deterministic tractography algorithms [69] can reconstruct white mat-
ter fiber tracts as a set of streamlines, also known as tracks, from diffu-
sion Magnetic Resonance Imaging (dMRI) [6] data. A streamline is a
mathematical approximation of thousands of neuronal axons expressing
anatomical connectivity between different areas of the brain, see Fig-
ure 3.1. Recently there has been an increase of attention in analysing
tractography data by means of machine learning and pattern recogni-
tion methods, e.g. [111, 105]. These methods often require the data to
lie in a vectorial space, which is not the case for streamlines. Stream-
lines are polylines in 3D space and have different lengths and numbers
of points. The goal of this work is to investigate the features and limits
of a specific Euclidean embedding, i.e. the dissimilarity representation,
that was recently applied to the analysis of tractography data [75].

The dissimilarity representation is an Euclidean embedding technique
defined by selecting a set of objects (e.g. a set of streamlines) called
prototypes, and then by mapping any new object (e.g. any new stream-
line) to the vector of distances from the prototypes. This representa-
tion [88, 5, 16] is usually presented in the context of classification and
clustering problems. It is a lossy transformation in the sense that some in-
formation is lost when projecting the data into the dissimilarity space. To
the best of our knowledge this loss, i.e. the degree of approximation, has
received little attention in the literature. In [86] the approximation was
studied to decide among competing prototype selection policies only
for classification tasks. In this work we are interested in assessing and
controlling this loss without restriction to the classification scenario.

This work is motivated by practical applications about executing com-
mon algorithms, like spatial queries, clustering or classification, on large
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Figure 3.1: A set of 100 streamlines, i.e. an example of prototypes, from a full tractog-
raphy

collections of objects that do not have a natural vectorial space represen-
tation. The lack of the vectorial representation avoids the use of some
of those algorithms and of computationally efficient implementations.
The dissimilarity space representation could be the way to provide such
a vectorial representation and for this reason it is crucial to assess the
degree of approximation introduced. Besides this characterisation we
propose the use of a stochastic approximation of an optimal algorithm
for prototype selection that scales well on large datasets. This scalability
issue is of primary importance for tractographies given that a full brain
tractography is a large collection of streamlines, usually≈ 3× 105, a size
for which algorithms may become impractical. We provide practical ex-
amples both from simulated data and human brain tractographies.

3.2 Methods

In the following we present a concise formal description of the dissim-
ilarity projection together with a notion of approximation to quantify
how accurate this representation is. Additionally we introduce three
strategies for prototype selection that will be compared in Section 3.3.
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3.2.1 The dissimilarity projection

Let X be the space of the objects of interest, e.g. streamlines, and let X ∈
X . Let d : X×X 7→ R+ be a distance function between objects inX . Note
that d is not assumed to be necessarily metric. Let Π = {X̃1, . . . , X̃p},
where ∀i X̃i ∈ X and p is finite. We call each X̃i as prototype or landmark.
The dissimilarity representation/projection is defined as φdΠ(X) : X 7→ Rp

s.t.
φdΠ(X) = [d(X, X̃1), . . . , d(X, X̃p)] (3.1)

and maps an object X from its original space X to a vector of Rp.

Note that this representation is a lossy one in the sense that in gen-
eral it is not possible to exactly reconstruct X from φdΠ(X) because some
information is lost during the projection.

We define the distance between projected objects as the Euclidean dis-
tance between them: ∆d

Π(X,X ′) = ||φdΠ(X)−φdΠ(X ′)||2, i.e. ∆d
Π : X ×X 7→

R+. It is intuitive that ∆d
Π and d should be strongly related. In the fol-

lowing sections we will present more details and explanations about this
relation.

3.2.2 A measure of approximation

We investigate the relationship between the distribution of distances
among objects in X through d and the corresponding distances in the
dissimilarity representation space through ∆d

Π. We claim that a good
dissimilarity representation must be able to accurately preserve the par-
tial order of the distances, i.e. if d(X,X ′) ≤ d(X,X ′′) then ∆d

Π(X,X ′) ≤
∆d

Π(X,X ′′) for each X,X ′, X ′′ ∈ X almost always. As a measure of the
degree of approximation of the dissimilarity representation we define
the Pearson correlation coefficient ρ between the two distances over all
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possible pairs of objects in X :

ρ =
Cov(d(X,X ′),∆d

Π(X,X ′))

σd(X,X ′)σ∆d
Π(X,X ′)

(3.2)

where X,X ′ ∼ PX . In practical cases PX is unknown and only a finite
sample S is available. We can approximate ρ as the sample correlation r
where X,X ′ ∈ S. An accurate approximation of the relative distances
between objects in X results in values of ρ far from zero and close to 11.

In the literature of the Euclidean embeddings of metric spaces, the
term of distortion is used for representing the relation between the dis-
tances in the original space and the corresponding ones in the projected
space. The embedding is said to have distortion≤ c if for every x, x′ ∈ X :

d(x, x′) ≥ ∆d
Π(x, x′) ≥ 1

c
d(x, x′). (3.3)

An interesting embedding of metric spaces is described in [60]. It is
based on ideas similar to the dissimilarity representation and has the
advantage of providing a theoretical bound on the distortion. Unfortu-
nately this embedding is computationally too expensive to be used in
practice.

We claim that correlation and distortion target are slightly different
aspects of the embedding quality, the first focuses on the averaged dif-
ferences between the original and projected space, and the second on
the worst case scenario. For this reason we claim that, in the context of
machine learning and pattern recognition applications, correlation is a
more appropriate measure.

1Note that negative correlation is not considered as accurate approximation. Moreover it never oc-
curred during experiments
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3.2.3 Strategies for prototype selection

The definition of the set of prototypes with the goal of minimising the
loss of the dissimilarity projection is an open issue in the dissimilarity
space representation literature. In the context of classification problems
the policy of random selection of the prototypes was proved to be use-
ful under certain assumptions [5]. In the following we address the issue
of choosing the prototypes in order to achieve the desired degree of ap-
proximation but we do not restrict to the classification case only. We de-
fine and discuss the following policies for prototype selection: random
selection, farthest first traversal (FFT) and subset farthest first (SFF). All
these policies are parametric with respect to p, i.e. the number of proto-
types.

Random Selection

In practical cases we have a sample of objects S = {X1, . . . , XN} ⊂ X .
This selection policy draws uniformly at random from S, i.e. Π ⊆ S

and |Π| = p. Note that sampling is without replacement because identical
prototypes provide redundant, i.e. useless, information. This policy was
first proposed in [29] for seeding clustering algorithms. This policy has
the lowest computational complexity O(1).

Farthest First Traversal (FFT)

This policy selects an initial prototype at random from S and then each
new one is defined as the farthest element of S from all previously cho-
sen prototypes. The FFT policy is related to the k-center problem [44]:
given a set S and an integer k, what is the smallest ε for which you
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can find an ε-cover2 of S of size k? 3. The k-center problem is known
to be an NP-hard [44], i.e. no efficient algorithm can be devised that
always returns the optimal answer. Nevertheless FFT is known to be
close to the optimal solution, in the following sense: If T is the solution
returned by FFT and T ∗ is the optimal solution, then maxx∈S d(x, T ) ≤
2 maxx∈S d(x, T ∗). Moreover, in metric spaces, any algorithm having a
better ratio must be NP-hard [44]. FFT has O(p|S|) complexity. Unfor-
tunately when |S| becomes very large this prototype selection policy be-
comes impractical.

Subset Farthest First (SFF)

In the context of radial basis function networks initialisation, a scalable
approximation of the FFT algorithm, called subset farthest first (SFF), was
proposed in [100]. This approximation is also claimed to reduce the
chances to select outliers that can lead to a poor representation of large
datasets. The SFF policy samplesm = dcp log pe points from S uniformly
at random and then applies FFT on this sample in order to select the p
prototypes. In [100] it was proved that under the hypothesis of p clus-
ters in S, the probability of not having a representative of some clusters
in the sample is at most pe−m/p. The computational complexity of SFF is
O(p2 log p). Note that for large datasets and small p this prototype selec-
tion policy has a much lower computational cost than FFT.

3.3 Experiments

In the following we describe the assessment of the degree of approxi-
mation of the dissimilarity representation across different prototype se-

2Given a metric space (X , d), for any ε > 0, an ε-cover of a set S ⊂ X is defined to be any set T ⊂ X
such that d(x, T ) ≤ ε,∀x ∈ S. Here d(x, T ) is the distance from point x to the closest point in set T .

3Note that in our problem k is called p.
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Figure 3.2: A 2-dimensional example of 50 points (black circles) drawn from N (0, I)
and 3 prototypes (red stars) drawn from the same pdf.

lection policies and different numbers of prototypes. The aim is to in-
vestigate the trade-off between accuracy and computational cost. The
experiments are carried out on 2D simulated data and on real tractogra-
phies reconstructed from dMRI recordings of the human brain.

3.3.1 Simulated data

LetX = R2, PX = N (µ,Σ), µ = [0, 0], Σ = I , d(X,X ′) = ||X−X ′||2, p = 3

and X̃1, X̃2, X̃3 ∼ PX . Then φdΠ(X) =
[
||X − X̃1||2, ||X − X̃2||2, ||X − X̃3||2

]
∈

R3. Figure 3.2 shows a sample of 50 points drawn from PX together with
the 3 prototypes X̃1, X̃2, X̃3. Figure 3.3 shows the sample projected into
the dissimilarity space together with the prototypes.

The selection of the prototypes according to different policies is ex-
plained in Section 3.2.3. For SFF we chose c = 3 in order to have high
probability (> 0.95) of accurately representing S through the subset.
Each dataset was projected in the dissimilarity space. The correlation ρ
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Figure 3.3: The dissimilarity projection of the dataset and prototypes of Figure 3.2.

between distances in the original space and the corresponding distances
in the projected space was estimated by computing 50 repetitions of the
simulated dataset. The average correlation and one standard deviation
for each prototype selection strategy are shown in Figure 3.5.

In this simulated dataset both SFF and FFT performed significantly
better than the random selection, on average. FFT showed a small ad-
vantage over SFF when p < 10.

3.3.2 Tractography data

We estimated the dissimilarity representation over tractography data
from dMRI recordings of the MRI facility at the MRC Cognition and
Brain Sciences Unit, Cambridge UK. The dataset consisted of 12 healthy
subjects; 101 (+1, i.e. b = 0) gradients; b-values from 0 to 4000; voxel
size: 2.5 × 2.5 × 2.5mm3. In order to get the tractography we computed
the single tensor reconstruction (DTI) and created the streamlines using
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Experiments 45

EuDX, a deterministic tracking algorithm [30] from the DiPy library 4.
We obtained two tractographies using 104 and 3 × 106 random seed re-
spectively. The first tractography consisted of approximately 103 stream-
lines and the second one of 3 × 105 streamlines. An example of a set of
prototypes from the largest tractography is shown in Figure 3.1.

As the distance between streamlines we chose one of the most com-
mon, i.e. the symmetric minimum average distance from [111] defined
as d(Xa, Xb) = 1

2(δ(Xa, Xb) + δ(Xb, Xa)) where

δ(Xa, Xb) =
1

|Xa|
∑
xi∈Xa

min
y∈Xb

||xi − y||2. (3.4)

As it is shown in Figure 3.6 for the case of a tractography of 103

streamlines both FFT and SFF(c = 3) had significantly higher correlation
than the random sampling for all numbers of prototypes considered.
We confirmed that the SFF selection policy is an accurate approxima-
tion of the FFT policy for tractographies. Moreover we noted that after
15 − 20 prototypes the correlation reaches approximately 0.95 on aver-
age (50 repetitions) and then slightly decreases indicating that a little
number of prototypes is sufficient to reach a very accurate dissimilarity
representation.

Figure 3.7 shows the correlation for SFF and the random policy when
the tractography has 3× 105 streamlines, i.e. the standard size of a trac-
tography from current dMRI recording techniques. In this case FFT is
impractical to be computed because it requires approximately 15 min-
utes on a standard desktop computer for a single repetition when p = 50.
The cost of computing SFF is instead the same of the case of 103 stream-
lines, as its computational cost depends only on the number of proto-
types. It took ≈ 2 seconds on standard desktop computer when p = 50

4http://www.dipy.org

http://www.dipy.org
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Figure 3.6: The correlation between of d and ∆d
Π over a 103 streamlines tractography

for different prototype selection policies.

to compute one repetition. We observed that for 3× 105 streamlines SFF
significantly outperformed the random policy and reached the highest
correlation of 0.96 on average (50 repetitions) for 15− 25 prototypes.

Note that the figures presented in this section refers to data from sub-
ject 1 of the dMRI dataset. We conducted the same experiments on other
subjects obtaining equivalent results.

3.3.3 Dissimilarity for fast clustering tractography

In this part, we explain how to explore the dissimilarity in the clinical
application for using dMRI data. Our work is motivated by a clinical
research hypothesis about the characterisation of the amiotrophic lateral
sclerosis (ALS) disease. The ALS disease is known to be affected by the
corticospinal tract (CST) [21], an anatomical structure that connects cor-
tical motor areas to the spine and the body. For this reason, the first task
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Figure 3.7: The correlation between of d and ∆d
Π for a full tractography of 3 × 105

streamlines with random, and SFFprototype selection policies.

in the endeavour of characterisation of the ALS disease is to segment the
CST from the full brain tractography of each subject.

Tractography segmentation can be performed manually or automat-
ically. Despite an increasing literature in automatic segmentation (see a
brief review in [105]), the application in the clinical domain usually still
rely on manual segmentation. The manual segmentation process usu-
ally consists in selecting the subset of the streamlines connecting a few
manually located regions of interest5. This task is a lengthy and complex
one due to a very large set of streamlines in tractography, in the order
of 3 × 105, which makes it intrinsically difficult both to inspect and to
unfold anatomical structures.

In this part, we conceived a novel computer-assisted interactive pro-
cess based on clustering algorithms with the help of dissimilarity rep-
resentation, and aimed at greatly reducing the time required to manu-

5See for example http://www.trackvis.org.

http://www.trackvis.org


48 Dissimilarity Representation for Tractography

ally segment a given anatomical white matter structure of interest. Our
approach is based on a fast-clustering technique based on dissimilarity
representation, by means of which the expert is presented with a sum-
mary of the streamlines, i.e. the clusters represented by their medoids 6.
The expert manually selects the medoids/clusters of interest in order to
remove most of the streamlines not related to the anatomical structure
of interest. Interacting with the summary, instead of the actual stream-
lines, is much simpler for the user. In this part, we only mention the
fast clustering based on dissimilarity, the more detail of the interactive
segmentation procedure can be found in the Chapter 5.

The core of the problem is to cluster a large number of streamlines
in no more than a few seconds, to allow a comfortable interactive user
experience to the expert. The proposed solution combines two state-of-
the-art elements: first a recently proposed Euclidean embedding algo-
rithm for streamlines, i.e. the dissimilarity representation with the scal-
able subset farthest first (SFF) prototype selection policy [76]. This embed-
ding provides fast and accurate vectorial representation of streamlines.
Second, a recently proposed improvement of the k-means clustering al-
gorithm called mini-batch k-means [94] (MBKM). This algorithm, which
require the data to lie in a vector space, drastically reduces the conver-
gence time to the actual clusters in case of large and very-large sets of
objects. We claim that the dissimilarity embedding together with the
MBKM algorithm provides a viable solution to problem of fast cluster-
ing of streamlines.

Mini-Batch k-means

The k-means clustering problem is a cornerstone of the clustering liter-
ature. Given k, the number of clusters, the problem is to find k clus-

6A medoid is the element of a cluster closest to its centre.
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ter centres C = {c1, . . . , ck}, c ∈ Rp, and to assign each element of
the vectorial dataset Φ(T ) = {φ(X1), . . . , φ(XM)} ⊂ Rp to the closest
cluster7. The k-means problem is then to compute centres C such as
to minimise the loss function f(C) =

∑
φ(X)∈Φ(T )D(φ(X), C)2, where

D(φ(X), C) = minc∈C ||φ(X) − c||2 is the distance between φ(X) and
the closest centre. The exact solution of the k-means problem is NP -
hard and the computational complexity of the standard algorithm, the
Lloyd’s algorithm, has been proved to be O(M 34) in the general case [4],
even though much less in practical applications.

The mini-batch k-means (MBKM) algorithm [94] is a recently proposed
modification of the standard algorithm that is able to reduce the com-
putational costs by orders of magnitude. The intuitive idea is to use a
stochastic gradient descent approach to find the centresC starting from a
random initialisation. This idea was introduced in [11] where the points
of the dataset were given one at a time in an online fashion.

Instead of updating the centers with one streamline at a time, the
MBKM algorithm proposes to use multiple random subsets of the dataset,
i.e. the mini batches, to update the cluster centres and to estimate the per-
centre learning rates. As soon as the objective function f(C) converges
the process stops. The pseudocode algorithm of MBKM is shown Algo-
rithm 1.

The computational complexity of the MBKM algorithm is not known
in the general case but empirical results in [94] show a reduction of two
orders of magnitude in computation time with respect to the standard
k-means.

7From now on, we denote φdΠ(X) as φ(X) to simplify the notation without introducing ambiguity.
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Algorithm 1 Mini-batch k-Means algorithm

Given: k, mini-batch size b, iteration t, dataset X

Initialize each c ∈ C with an x picked randomly from X

v ← 0

for i = 1 to t do

M ← b examples picked randomly from X

for x ∈M do

d[x]← f(C, x) //Cache the center nearest to x

for x ∈M do

c← d[x] //Get cached center for this x

v[c]← v[c] + 1 //Update per-center counts

η ← 1
v[c]

//Get per-center learning rate

[c]← (1− η)c+ ηx //Take gradient step

From Centroids to Medoids

In order to visually present the clusters of streamlines to the user one
representative streamline of each cluster needs to be selected. In the
general case the dissimilarity representation is not invertible, i.e. given
a vector c ∈ Rp it is not possible to construct the streamline Xc such that
c = φ(Xc). This means that the centroids C obtained with the k-means
or the MBKM cannot be shown to the user as streamlines. For this rea-
son we decided to display the medoid of each cluster, i.e. the streamline
of the tractography closest to each centroid c. The exhaustive search
of the medoids requires the computation of kM distances, which is too
slow for interactive use. For this reason we adopted a data structure
for efficient computation of the nearest neighbour in high-dimensional
spaces: the Ball Tree. We refer the reader to [78] for additional details.
We present empirical results of the time required for the computation of
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the medoids in Table 3.1.

ALS Dataset

The data was recorded with a 3T scanner at the Brain Institute, Univer-
sity of Utah. It consisted of 12 ALS patients and 12 healthy controls (64

gradients; b-value= 1000.; anatomical scan (1 × 1 × 1mm3)). We recon-
structed the streamlines using EuDX, a deterministic tracking algorithm
[30] from the DiPy library 8. The tractography was then embedded in
Rp using the dissimilarity representation presented in Section 3.2 with
p = 40 and the SFF prototype selection procedure (c = 3) as suggested
in [76]. The prototype selection and the actual embedding of ≈ 3 × 105

streamlines required ≈ 180s. The resulting matrix φ(T ) ∈ R300K×40 was
computed once and stored, so that the time to compute the projection
did not affect the interactive segmentation.

The average timings of the clustering algorithms of are reported in
Table 3.1. In the first column (size) are reported the size of the subset
of streamlines that were clustered. The second column (k) reports the
number of clusters, according to the notes expressed above. The third
(k-means) and the fourth (MBKM) report the time for clustering. Note
that the clustering of the whole tractography can be computed once and
stored, so its time does not affect the interactive use. The Fifth column
reports the size (b) of the mini-batches for the MBKM, which was always
100 except for the full tractography for which we observed a significant
gain in time when increasing it to 1000. The sixth column reports the
time to compute the medoids from the centroids provided by k-means
and MBKM. Each medoid was computed with simple exhaustive search
within each cluster. The time to compute all medoids was always neg-
ligible with respect to the clustering time. All computations were per-

8http://www.dipy.org

http://www.dipy.org
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Table 3.1: For a given number of streamlines (1st column, size) and a given number of
clusters (2nd column, k) the time to compute the clustering with k-means and MBKM
is reported in the 3rd and 4th columns, respectively. The size (b) of the mini-batches
for MBKM is in the 5th column. The time to compute the medoids from the centroids
is in the 6th column.

size k k-means MBKM b medoids
500 50 0.3s 0.2s 100 0.003s

1000 50 0.6s 0.2s 100 0.004s
5000 50 6.1s 0.4s 100 0.009s

10000 50 14.4s 0.6s 100 0.018s
15000 50 29.9s 0.7s 100 0.026s

250000 150 > 1000s 13.3s 1000 0.72s

formed on a standard desktop computer.

In this part, in order to handle the computational burden of clus-
tering a large number of streamline under strong time constraints, we
proposed a solution based on the dissimilarity representation and the
MBKM algorithm. As shown in Table 3.1 (4th column) the time required
to cluster the streamlines with the proposed solution was always the
lowest and always < 1s, thus meeting the requirements for a comfort-
able user experience. Conversely, the time required by the standard k-
means algorithm was inadequate (see the 3rd column in Table 3.1).

3.4 Discussion

In this document we investigated the degree of approximation of the dis-
similarity representation for the goal of preserving the relative distances
between streamlines within tractographies. Empirical assessment has
been conducted on two different datasets and through various proto-
type selection methods. All of the results from both simulated data and
real tractography data reached correlation ≥ 0.95 with respect to the
distances in the original space. This fact proved that the dissimilarity
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representation works well for preserving the relative distances. More-
over on tractography data the maximum correlation was reached with
just approximately 20−25 prototypes proving that the dissimilarity rep-
resentation can produce compact feature spaces for this kind of data.

When comparing the different prototype selection policies we found
that FFT had a small advantage over SFF but only when the number
of prototypes was very low (p < 10). Both FFT and SFF always out-
performed the random policy. Moreover, since the computational cost
of SFF does not increase with the size of the dataset but only with the
number of prototypes, we observed that the SFF policy can be easily
computed on a standard computer even in the case of a tractography of
3× 105 streamlines. This is different from FFT which is several orders of
magnitude slower than SFF, thus computationally less practical.

We advocate the use of the dissimilarity approximation for the Eu-
clidean embedding of tractography data in machine learning and pat-
tern recognition applications. Moreover we strongly suggest the use of
the SFF policy to obtain an efficient and effective selection of the pro-
totypes. We also applied dissimilarity representation to mini-batch k-
mean clustering algorithm for supporting segmentation tractography.
Experiments showed that combination of dissimilarity and MNBKM
could meet the requirements for a comfortable interactive use. It showed
a potential of using dissimilarity for tractography in real medical appli-
cations.
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Chapter 4

Mapping Tractography Across Subjects

Diffusion tensor imaging (DTI) and tractography provide mean to study
the anatomical structures within the white matter. When studying the
tractography data across subjects, it requires to align or register trac-
tographies together. This registration is most often performed by apply-
ing the transformation resulting from other images (T1, FA, DTI) to trac-
tography data, or to register tractographies themselves. However, the
above methods can not deal with a new coming tractograhy, except for
running the whole registration process again with all data plus the new
comer. In contrast with these registration methods, instead of finding
the transformation between tractographies, in this work, we try to find
which streamline in one tractography corresponding to which stream-
line in the other tractography without any transformation, or to directly
map the source tractography to the target tractography. We present what
we believe to be the first recasting the problem as mapping problem
rather than registration problem. Moreover, by taking advantage of
more than thirty year graph-matching research, we propose a graph-
based solution for tractography mapping problem and explain similari-
ties and differences with the well-known graph matching problem. We
define the loss function based on the pairwise streamline distance, and
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reformulate the mapping problem as the problem of minimizing that
loss function. To our knowledge, this is also the first graph-matching-
based objective function applied to tractography. Moreover, we also try
to explore the dissimilarity representation idea with the help of mapping
in the context of finding the correspondences between streamlines across
different tractographies. Experiments using real dMRI data demonstrate
the potential of the proposed method for medical or neuroscientific anal-
yses of white matter tractography data.

4.1 Introduction

Diffusion magnetic resonance imaging (dMRI) [6] is a modality that pro-
vides non-invasive images of the brain white matter. It captures the dif-
fusion process of the water molecules in each voxel which represents im-
portant structural information of the axons of the neurons. From dMRI
data, tracking algorithms [69, 111] allow to reconstruct the 3D pathways
of axons within the white matter of the brain as a set of streamlines,
called tractography. A streamline is a vectorial representation of thou-
sands of neuronal axons expressing structural connectivity, and tractog-
raphy is a set of N streamlines (N ∼ 3× 105 usually).

Current neuroscientific analyses of white matter tractography data
are limited to qualitative intra-subject comparisons. Thus, it is quite dif-
ficult to use the information for direct inter-subject comparisons [37, 7].
This leads to the need of initial alignment, or registration, of tractogra-
phies via some methods before doing further study. Registration is most
often performed by applying the transformation resulting from the reg-
istration of other images, such as T1 or fractional anisotropy (FA), to
tractography [38, 106, 37, 113]. Recently, [72] proposed group-wise reg-
istration using the trajectory data of the streamlines. The idea to work
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on tractography rather than other images is quite innovative. And, it
may be advantageous to directly align the streamlines because the re-
sult would be closely related to the final goal of registration.

Similar to [72], in this work, we explore the idea of working on trac-
tography rather than other images. However, in contrast to all current
tractography registration methods, which are based on rigid or non-
rigid shape transformation of one tractography into another, our ap-
proach tries to find which streamline of one tractography corresponds
to which streamline in the other tractography, without transformations.
This correspondence is a mapping from one tractography to the other.

We propose to solve the problem of finding the mapping between
two tractographies through a graph-based approach similar to that of
the well-known graph matching problem [18, 109]. In the graph match-
ing problem the aim is to find which node of one graph corresponds to
which node of another graph, under the assumption that graphs have
the same number of nodes and that the correspondence is one-to-one.

Given a tractography of N streamlines T = {s1, . . . , sN} and a dis-
tance function d between streamlines, we can create an undirected weighted
graph by considering each streamline as a vertex and the edge con-
necting vertex si and sj as the distance between streamline si and sj,
d(si, sj). Then, intuitively, the problem of tractography mapping be-
comes very similar to that of graph matching, but with some key dif-
ferences. Firstly, the size of the two tractographies/graphs is in general
not the same. Global differences in the anatomy of the brains, e.g. dif-
ferent volume, motivates this difference. Secondly, in general there is
not a one-to-one correspondence between the streamlines/vertexs but
a many-to-one correspondence. This is anatomically likely if we con-
sider that a given anatomical structure (tract), e.g. the cortico-spinal
tract (CST), whose streamlines should have direct correspondence across
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subjects, may have different number of streamlines. In this case, for ex-
ample, multiple streamlines of one CST would correspond to a single
streamline in the other CST. Because of these differences, it is generally
not possible to directly apply efficient graph matching algorithms to the
problem of mapping tractographies.

In the following we formally describe the tractography mapping prob-
lem starting from the graph matching problem and define the details of
the optimization problem to solve. We provide a preliminary algorith-
mic solution, based on simulated annealing, to minimize the proposed
loss function. Then, we apply our proposed solution to a tractography
segmentation task in order to compare a standard registration-based
method to our proposed method on a fair ground.

Moreover, as discussed in the Chapter 3, dissimilarity representation
for tractography provides a fast and accurate vectorial representation of
the streamlines. However, its use is limited to intra-subject analysis only,
because the choice of prototypes is subject-specific. This fact prevents
the use of dissimilarity representation in the context inter-subject stud-
ies, because they require inter-subject comparisons [37, 7]. The best prac-
tice for studying structural connectivity across subjects recommends the
alignment of all tractographies to one common space before the quanti-
tative assessment. In this part, we combine dissimilarity representation
and mapping to build a common vectorial representation of streamlines
across subjects. First, given two tractographies, we compute the proto-
types of one and, by mapping them, we obtain those of the other tractog-
raphy. Second, we build a common vectorial space by simply merging
the two dissimilarity representations, now aligned because prototypes
were mapped. With such common space, we are able to align tractogra-
phies of two subjects and we claim that the quality of such alignment is
superior to that of affine-based registration.
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In Section 4.2, the algorithmic elements of the proposed method are
formally described. In Section 4.3, we describe some experiments of only
mapping and the combination of mapping and dissimilarity representa-
tion. We report the details of the actual use of the proposed solution in
the context of the cortico-spinal tract (CST) segmentation. We quanti-
tatively describe the result of mapping and provide figures to evaluate
the viability of the proposed solution. In Section 4.4 we discuss the re-
sults and show that the proposed solution is quite challenging, but also
promises many benefit in the field of brain connectivity. We conclude
with a summary of our contribution and open challenges that needs to
be solved in future work.

4.2 Methods

Our basic approach is to consider a streamline as a point in the space
of co-relation with other streamlines in tractography. The co-relation
between two streamlines can be defined as the distance between them.
Streamline sBj in the target tractography TB is known as the correspon-
dence of streamline sAi in the source tractography TA if it reserves the co-
relation with other mapped streamlines in the mapped source in target.
It means that the co-relation of mapped streamlines in mapped source
to target, must similar to the co-relation of the source streamlines in the
source TA. For that reason, we then choose the mapping of TA into TB on
the collection of permutation TB by maximizing the similarity, or mini-
mizing the difference between mapped TA and TA.

4.2.1 Tractography mapping

An undirected weighted graph G = (V,E) of size N is a finite set of ver-
tices V = {1, . . . , N} and edgesE ⊂ V ×V . The graph matching problem
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can be described as follows. Given two graphs GA to GB with the same
number of vertices N , the problem of matching GA and GB is to find
the correspondence between vertices of GA and vertices of GB, which
allows to align, or register, GA and GB in some optimal way. The corre-
spondence between vertices of GA and of GB is defined as a permutation
P of the N vertices, i.e. there a one-to-one correspondence between the
two set of vertices. P is usually represented as a binary N × N matrix
where Pij is equal to 1, if the ith vertex ofGA is matched to the jth vertex
of GB, otherwise 0. Given A and B, i.e. the N ×N adjacency matrices of
the two graphs, the quality of the matching is assessed by the discrep-
ancy, or loss, between the graphs after matching as:

L(P ) = ‖A− PBP>‖2 (4.1)

where ‖A‖2 =
√∑N

ij A
2
ij is the Frobenius norm. Therefore, the graph

matching problem becomes the problem of finding P ∗ that minimize L
over the set of permutation matrices P :

P ∗ = argmin
P∈P

‖A− PBP>‖2 (4.2)

which is a combinatorial optimization problem. The exact solution to
this problem has extremely high complexity and only approximate so-
lutions are available in practical cases [18, 109].

A tractography can be encoded as a fully-connected undirected weighted
graph [1]. Let TA = {sA1 , . . . , sAN} and TB = {sB1 , . . . , sBM}, where s =

{x1, . . . , xns} is a streamline and x ∈ R3, be the tractographies of two
subjects. With a given distance function d between streamlines, we de-
fine two graphs GA and GB, where their nodes are respectively TA and
TB, and their adjacency matrix is A ∈ RN×N and B ∈ RM×M , with
Aij = d(sAi , s

A
j ) and Bkl = d(sBk , s

B
l ). Our current choice of d is discussed
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in Section 3.3, however any common streamline distance from the liter-
ature can be used.

Given two graphs GA and GB, the problem of mapping TA to TB be-
comes that of finding the correspondence between vertices of GA and
vertices of GB. Such correspondence, called mapping [1], can be repre-
sented as a binary matrix Q, where Qij = 1, if the ith vertex of GA is
mapped to the jth vertex of GB or, according to tractography notation,
sAi ∈ TA is mapped to sBj ∈ TB, otherwise 0. With mapping,

∑
kQij = 1,

which means that the correspondence can be many-to-one. Given A and
B, the quality of the mapping is measured by the discrepancy, or loss,
between the two graphs after the application of Q:

L(Q) = ‖A−QBQ>‖2 (4.3)

Note that, in general, Q is not a permutation matrix. In order to find the
optimal mapping Q∗, we minimize L so that TB is most similar to TA:

Q∗ = argmin
Q∈Q

‖A−QBQ>‖2 (4.4)

where Q is the set of all possible mappings. Notice that |Q| = MN

which, given the typical size of tractographies, or even small part of
them, is prohibitively high as combinatorial optimisation problem. For
this reason only approximate solutions can be found in practical cases.
In general N 6= M and Q is a mapping and not just a permutation,
therefore the tractography mapping problem is more general than the
graph matching problem, i.e. the size of the search space Q, i.e. MN ,
is much larger than P . As a consequence, the efficient solutions avail-
able in the literature of graph matching, e.g. [109], are not applicable,
because they heavily rely on the assumptions that we violate here. In
Section 3.3 we implemented a simple preliminary solution to the com-
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binatorial optimization problem by means of the Simulated Annealing
meta-heuristic [54].

Moreover, the distance between streamlines d(s, s′) in Equation 4.3, is
computed when both s and s′ belong to tractography of one subject, not
across subjects. Thus, it does not require to put both tractographies TA,
TB in the same space. It, as far as we know, is prominent comparing to
other tractography registration.

In order to compare the proposed method against a standard regis-
tration procedure on a fair ground, we cannot rely on the value of the
loss function L as in Equation4.3, because it is defined only in the case
of mapping. As the evaluation criterion, we measured the overlap be-
tween the aligned TA from subject A to B, called TA(B), and the expert-
segmented tract TB of subject B, in terms of voxels, as proposed in [37].
The idea is that the more voxel-overlap between TA(B) and TB, the bet-
ter the mapping is. Our hypothesis is that reducing L leads to better
overlap between tractographies, which is important for practical appli-
cations like segmentation. In Section 3.3 we describe experiments to test
this hypothesis and provide the necessary details. Here we introduce
the metric that we use for comparing registration and mapping. As pro-
posed in [37], we compare the set of voxels crossed by the streamlines
of each tractography after mapping or after registration. We considered
two scores: the sensitivity, or True Positive Rate, and the False Discovery
Rate. TPR and FDR are computed as following:

TPR =
|TA(B) ∩ TB|
|TB|

(4.5)

FDR =
|TA(B) \ TB|
|TA(B)|

(4.6)

Note that in the above equations, |T | is the volume computed as num-
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ber of voxels that any streamline s ∈ T goes through, and |T1 ∩ T2| indi-
cates the number of voxels in common between T1 and T2.

4.2.2 Common vectorial representation across subjects

The dissimilarity representation [88] is a lossy Euclidean embedding algo-
rithm that maps general objects into Rp. Dissimilarity representation for
tractography was previously introduced in [76], and it is also claimed
that this embedding provided fast and accurate vectorial representation
of streamlines. Our assumption is that when exploring the dissimilarity
representation idea based on mapping, we can get the better representa-
tion for streamlines, and it thus would provide a better correspondences
between streamlines across different tractographies.

Dissimilarity representation

The dissimilarity representation [88] is a Euclidean embedding technique
for generic spaces, originally proposed in the context of classification
and clustering problems [16]. Given a set of objects, e.g., a tractography,
the dissimilarity representation is defined by two elements: a distance
function and a subset of objects, i.e., a subset of streamlines, called proto-
types. Then, the dissimilarity representation maps every new object, i.e.
every other streamline, into Rp [76] through φdΠ(s) : S 7→ Rp s.t.

φdΠ(s) = [d(s, s̃1), . . . , d(s, s̃p)] (4.7)

where d is a given distance function between streamlines, and Π = {s̃1, . . . , s̃p}
is a given set of p streamlines used as prototypes. The quality of the re-
sulting Euclidean embedding is strongly dependent on the choice of d
and on the selection and number of prototypes (see [86, 76]).

An efficient procedure to select effective prototypes in the case of trac-
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tography data was presented in [76]: the subset farthest first (SFF) algo-
rithm. This procedure is a scalable approximation of the well known far-
thest first traversal (FFT) algorithm which is a standard greedy solution
to the well known k centre problem. This problem, put in our context,
entails selecting a set Π of p streamlines 1 such that the sum of the dis-
tances of each streamline of the tractography to closest streamline in Π

is minimised. Intuitively the streamlines in Π are designed to be a rep-
resentative sample of the whole tractography. The FFT algorithm selects
one streamline at random from the tractography as the first prototype s̃1

and then iteratively adds a new prototype as the streamline maximising
the distance to the already selected prototypes. The SFF algorithms is
a stochastic scalable version of FFT, which subsamples m = dcp log pe
streamlines from the whole tractography, and then applies FFT to the
subsample. For the case of tractography data, when c >= 3 the SFF
algorithm is comparable to the FFT algorithm with high probability, fol-
lowing the proof in [100] and the empirical results in [76].

Common vectorial representation

By combining mapping and dissimilarity representation, we propose to
build a common vectorial representation of streamlines across subjects,
as described in Algorithm 2.

After finding corresponding prototypes in the two sets, the respective
embeddings of the streamlines are aligned. The quality of this alignment
mainly depends on three approximations:

• The one introduced by the dissimilarity representation of TA.

• The one introduced by the dissimilarity representation of TB.
1Note that here we use p to denote the size of Π instead of the k of the “k centre problem”. This is to

avoid confusion with the notation we adopt in this paper.
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Algorithm 2 Common vectorial representation

Step 1: Select prototypes ΠA from tractography TA (SFF)

Step 2: Find prototypes ΠB by mapping ΠA to TB

Step 3: Compute the dissimilarity representation of TA based on ΠA

Step 4: Compute the dissimilarity representation of TB based on ΠB

Step 5: Align dissimilarities according to map of ΠA to ΠB

• The one introduced by the mismatch of mapping ΠA to ΠB.

Ideally, if the error introduced by each of these approximations were
zero, then the corresponding streamline sB ∈ TB of sA ∈ TA would be
the nearest neighbour of φdΠA

(s) in the embedding of TB. In this work
we provide only indirect experimental evidence of this observation and
leave its detailed investigation to future work.

By exploring the mapping idea in the context of dissimilarity repre-
sentation, we propose a new common vectorial representation for stream-
lines across subjects, no matter what subjects are in the same space or
not. This representation, as far as we know, is the first approach that can
create a common space for representing streamlines from multiple sub-
jects without requirement of co-registering subjects in the same space,
and it can be free to to be used for further research purpose.

4.3 Experiments

We designed two experiments to evaluate the mapping method and the
common vectorial representations. The first experiment aimed at pro-
viding empirical evidence that reducing the loss in Equation 4.3 is re-
lated to an increase of the overlap between tractographies. The second
one was conducted to afford that the combination of DR and tractog-
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raphy mapping provides an accurate alignment of the streamlines of
two subjects, even better than traditional affine-based registration. We
considered the scenario of tract segmentation. There, the task was the
identification of a desired tract in the tractography of a subject, given
the equivalent tract segmented from the tractography of an other sub-
ject. We applied our proposed tractography mapping framework on the
task of Cortical Spinal Tract (CST) segmentation. CST is a set of stream-
lines projecting from the lateral medial cortex associated with the motor
homunculus, and is known to affect the characterisation of the Amy-
otrophic Lateral Sclerosis (ALS) disease. From a pre-defined CST in one
tractography, we tried to infer the CST in another tractography. The
goals were, first to investigate the behavior of the TPR and FDR indices,
when minimizing the loss function in Equation 4.3; and second to un-
derstand whether the combination of mapping and dissimilarity repre-
sentation in Algorithm 2 could provide a better correspondence between
source and target tractography or not.

4.3.1 Data and preprocessing

The dataset used for the experiment is based on dMRI data recorded
with a 3T scanner at Utah Brain Institute2, 65 gradients (64 + b0); b-value
= 1000; anatomical scan (2 × 2 × 2mm3). The tractography was recon-
structed with the EuDX algorithm [30] using the dipy3 toolbox. We con-
sidered 4 healthy subjects and focused the analysis on the corticospinal
tract (CST). CST is a set of streamlines projecting from the lateral me-
dial cortex associated with the motor homunculus. This tract is of main
interest for the characterization of neurodegenerative diseases, like the

2The authors are grateful to Prof. Mark B.Bromberg, Prof. Lubdha Shah and Prof. Perry Renshaw
of the Department of Neurology and the Department of Radiology, University of Utah (US), for their
assistance in acquiring MR data

3http://www.dipy.org

http://www.dipy.org
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amyotrophic lateral sclerosis (ALS). The CST tracts were segmented by
the expert neuroanatomists using a toolbox [74] that supports an interac-
tive selection of streamlines. The size of the segmented tracts is reported
in Table 4.2 (see column size).

4.3.2 Design experiments

We considered four alternative methods to align tractographies in a com-
mon space. The first, as baseline, was the affine registration of the trac-
tographies in a common MNI space using the voxel-based FLIRT method [47].
FLIRT is an affine FA-image based registration, with 6 DOF (degrees
of freedom), and uses correlation ratio as the cost function. The reg-
istration is defined as follows: first, FA images were registered to the
MNI-FMRIB-58 FA template, then the affine transformation was applied
to the tractographies. The TPR and FDR index computed between the
CSTA and CSTB in common space is reported in Table 4.2 (see column
FLIRT). The second (ODON) [72] and the third (GARY) [30] meth-
ods computed the affine transformations by minimizing a loss function
based on distances among streamlines. The fourth method was the pro-
posed approach based on mapping/combination of mapping and dis-
similarity representation as described in Section 4.2 .

To encode the tractography as graph, we used the common distance
between streamlines, Mean Average Minimum distance (MAM) [111],
based on the Hausdorff distance. Given two streamlines s = {x1, . . . , xK}
and s′ = {x′1, . . . , x′K ′}, the distance metric dMAM is calculated as:

dMAM(s, s′) =
1

2
(D(s, s′) +D(s′, s)) (4.8)

where D(s, s′) = 1
K

∑K
i=1 d(xi, s

′), and d(x, s′) = min |x− x′j|, j = 1, ..., K ′.
We calculated dMAM as the mean of the average of the minimum distance
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between pairs of points along the streamlines. This distance computa-
tion is a symmetric one, and thus can take advantage of matrix subtrac-
tions that we need to calculate in the loss function Equation 4.3.

The four algorithms were applied to all 8 pairs of tracts (4 pairs left, 4
right), in the following way. Given the segmented CSTA of one subject,
as source tract, and the tractography of another subject, TB, the task was
to find the corresponding CSTB ⊂ TB.

Mapping a tract such as CST, which usually comprises 102 stream-
lines, to an entire tractography TB, which usually consist of 107 stream-
lines, is computationally extremely expensive because the space of all
possible mappings Q has size |TB||CST |. For this reason, we introduced
a heuristic to retain some of the streamlines in TB. The intuitive idea
was to define a superset of streamlines of the CST for subject B, denoted
CST+

B . The heuristic is in two steps: first, we computed the medoid sm

of CSTB, and the radius r = max{d(sm, si),∀si ∈ CSTB}. Second, we fil-
tered the streamlines in TB such that CST+

B = {sj ∈ TB|d(sm, sj) ≤ α · r},
where α = 3. An example of CSTA and the extension CST+

B can be
found in Figure 4.3-B (the CST is in the middle with green colour, while
the extension is red). The segmentation task was then to identify CSTB
in CST+

B . The sizes of CST and CST+ of all subjects are reported in
Table 4.1, both as number of streamlines and voxels. The adjacency ma-
trices of both source and target tractography CSTA, CST+

B were pre-
computed for computational speed.

Computing the optimal mapping Q∗ requires to solve, even in an ap-
proximate way, the minimization problem of Equation 4.4. As a prelimi-
nary strategy to approximate the optimal mapping Q∗, we implemented
the simulated annealing (SA) [54] meta-heuristic, a reference method for
combinatorial optimization. SA requires the definition of a function to
move from the current state, i.e. the current mappingQ, to a (potentially
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Table 4.1: Data description: for each subject, the size of CST and CST+ are reported,
both as number of streamlines (the third and fourth column), and number of voxels
(the last column).

subject ID #stream. CST #stream. CST+ #voxel CST

Left 202 156 858 453

204 163 897 465

209 95 523 322

212 74 407 349

Right 204 124 682 426

205 60 330 221

206 100 550 346

212 68 374 365

better) neighbouring one. As transition function we used a stochastic
greedy one where, given the current mappingQ, one streamline ofCSTA
is selected at random and then it is greedily re-mapped to the streamline
in CST+

B providing the greatest reduction in the loss. As starting point
of the annealing process, we used the 1-nearest neighbour of CSTA with
respect to CST+

B after the registration of TA and TB. We ran the simu-
lated annealing for 1000 iterations, which required a few minutes on a
standard computer4.

The SFF policy was used to select 50 prototypes for dissimilarity rep-
resentation as it was suggested in [76]. More detail can be found in the
Chapter 3.

4.3.3 Results

The proposed pipeline was applied to map the CSTA to CST+
B , for all

subjects in the ALS dataset (4 CST-Left + 4 CST-Right). We mapped one
CST-Left to the other 3 CST-Left, and did the same for CST-Right. Thus,

4We are aware that this method of combinatorial optimization can be significantly improved, but we
claim that the it was sufficient to do a preliminary investigation of the relation between the loss L and
the overlap between tractographies, by means of the Jaccard and BFF index.
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Figure 4.1: The visualization of CST and CST extension. Whole tractography with
about 3 × 105 streamlines is on the left. The original CST Left of subject 204 from ALS
dataset is in the middle, and the extension of CST Left, with α = 3, is on the right.

the pipeline was run 24 times (4× 3 + 4× 3) for each experiments.

Experiment 1: Mapping CSTA to CST+
B

With each mapping theCSTA toCST+
B , we used 06 different max-iteration

thresholds in SA optimization process: 100, 200, 400, 600, 800, and 1000.
These parameters were set empirically as a compromise between fast
optimization and good convergence. Two examples of the optimization
process of the loss function under different max-iteration thresholds,
when mapping subject ID 209-Left and subject ID 205-Right to other sub-
jects, were presented in Figure 4.2. With other mapping, we also got the
similar plots. The results showed that the approximation of the mini-
mum value of loss function could be reached from 400 to 800 iterations
with simulated annealing.

Due to the limit of paper space, we just present one detail example
from all 24 results in Table 4.2, which presents values of TPR and FDR
index when mapping CST-Right of subject ID 205 to other subjects. Ta-
ble 4.3 shows the mean of TPR and FDR index from all 12 mapping re-
sults of CST-Left, and 12 mapping results of CST-Right.

The results reported in Figure 4.2 show the behaviour of the loss dur-
ing the optimization process for the mapping of CSTA (subject ID 205),
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Figure 4.2: Plots of the normalized loss (Lnorm = L
|CSTA| ) as a function of number of

iterations with simulated annealing, when mapping the CST-Left of subject 209 to those
of subjects 202, 204 and 212 (left), and the CST-Right of subject 205 to those of subjects
204, 206 and 212 (right). under different number of iterations in simulated annealing
algorithm. The initial state is 1-nearest neighbor (1-NN) of CSTA to CST+

B when both
of them are in MNI space.

Figure 4.3: (A) - The CST-Left of the subject ID 204 used as source for mapping, CSTA;
(B) - Red colour: the subset of the whole tractography of subject ID 202 used as target,
CST+

B ; Green colour: the ground-truth CST of the target, CSTB; (C) - Blue colour (on
both left and right): 1-NN from source to target after registering to MNI space; Red-left:
the target CST+

B ; Green-right: the ground-truth CSTB; (D) - Blue colour (on both left
and right): the result of mapping source to target using our proposed method; Red-left:
the target CST+

B ; Green-right: the ground-truth CST T
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Figure 4.4: The visualization of the volume (voxel unit) of CST. (A) - the CST-Left
of subject ID 204 used as source. (B) - the CST-Left of subject ID 202 used as the
ground-truth in target. (C) - the overlap of source and ground-truth in target after
co-registering both of them to MNI space. (D) - the overlap of 1-nearest neighbour
(1-NN) of source in the target, with the ground-truth target, when both of them are in
MNI space. (E) - the overlap of mapped source and the ground-truth target using our
normal mapping method with 1000 iterations for SA.

with respect to the tractography of three other subjects (subject IDs 204,
206 and 212). In all cases, as the number of iterations increases, the value
of loss function decreases. In Figure 4.3 we show an example of ex-
periment with the outcome of FLIRT registration and mapping which
refers to subjects 204 and 202. In subfigure A, the source tract CSTA is
shown in blue, in subfigure B the target tract CSTB is shown in green
and the related superset of streamlines CST+

B in red. In subfigure C,
the result of FLIRT registration is presented, both with respect to the
superset CST+

B on the left and with respect to the target tract CSTB
on the right. On the right side, it is illustrated the set of streamlines
(blue) from the source tract CSTA associated to streamlines of target
tract CSTB. The association between streamlines of CSTA and CSTB

is computed as nearest neighbour after the FLIRT registration. The ra-
tio between blue and green streamlines represents the portion of target
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Table 4.2: Comparison of registration vs. mapping. The subject IDs of CSTA and CSTB
are reported in the first two columns (CST Right). Their sizes in number of streamlines
together with that of CST+

B are in columns three to five. The last nine columns report
the overlap between CSTA and CSTB in terms of true positive rate (TPR) and false
discovery rate (FDR) for the four compared methods: FLIRT, ODON [72], GARY [30]
and our proposed MAPP (mapping) method, respectively.

A B size TPR (True Positive Rate)

ID ID |CSTA| |CSTB| |CST+
B | FLIRT ODON GARY MAPP

205 206 60 100 550 0.20 0.28 0.27 0.46

204 60 124 682 0.19 0.20 0.24 0.30

212 60 68 374 0.16 0.16 0.14 0.47

A B size FDR (False Discovery Rate)

ID ID |CSTA| |CSTB| |CST+
B | FLIRT ODON GARY MAPP

205 206 60 100 550 0.68 0.89 0.48 0.07

204 60 124 682 0.64 0.63 0.55 0.37

212 60 68 374 0.74 0.76 0.74 0.08

tract correctly detected. On the left side of subfigure C, blue streamlines
represents the portion of source tract CSTA not associated to target tract
CSTB. In subfigure D, the result of mapping is presented, with the same
strategy of presentation of subfigure C. On the right side the visualiza-
tion shows a greater amount of (blue) streamlines correctly mapped into
target tract. Even on the left side the amount of (blue) streamlines erro-
neously mapped is greater. The sum of blue streamlines on the left and
right side represents the portion of streamlines projected from the source
to the target. The registration based on FLIRT does not preserve after the
alignment the same amount of streamlines from the source tract.

The overlap betweenCSTA andCSTB provided by FLIRT registration
is generally quite poor. This is partly expected because even after the
registration of TA and TB, CSTA and CSTB may have a systematic dis-
placement due to the variability of anatomy across subjects. The results
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of mapping at different iterations of the optimization process shows a re-
markable global increase in the overlap and a general trend of improved
alignment when more iterations are computed.

Table 4.3: The average mean and standard deviation of True Positive Rate (TPR) and
False Discovery Rate (FDR) for the four compared methods: FLIRT, ODON, GARY and
MAPP. The FLIRT column is calculated when both CSTA and CSTB are in the MNI
space after alignment using FLIRT registration method. The fifth and sixth columns
are calculated in the same way but using the tract-based registration method proposed
in [72] and [30], respectively. And MAPP indicates the results using our mapping
method.

size TPR (True Positive Rate)

|CSTA| |CST+
B | FLIRT ODON GARY MAPP

Left 122± 40 671± 220 0.21± 0.06 0.14± 0.07 0.30± 0.05 0.53± 0.31

Right 88± 27 484± 147 0.27± 0.07 0.23± 0.12 0.26± 0.08 0.55± 0.14

All 105± 38 578± 206 0.24± 0.06 0.19± 0.10 0.27± 0.06 0.52± 0.14

size FDR (False Discovery Rate)

|CSTA| |CST+
B | FLIRT ODON GARY MAPP

Left 122± 40 671± 220 0.80± 0.06 0.87± 0.04 0.58± 0.07 0.31± 0.19

Right 88± 27 484± 147 0.74± 0.07 0.79± 0.08 0.65± 0.08 0.32± 0.17

All 105± 38 578± 206 0.76± 0.07 0.82± 0.07 0.62± 0.08 0.31± 0.15

Experiment 2: Exploring the dissimilarity representation based on mapping

The proposed Algorithm 2 was applied to the full ALS dataset including
4 CST-Left plus 4 CST-Right. The pipeline used 50 prototypes selected by
SFF policy as in [76]. Note that, in this experiment, for a fair comparison,
we used the 1-NN to choose the correspondences of the source in the tar-
get when both source and target were aligned together after registration.
We just presented in the Table 4.4 the detail of TPR and FDR for finding
the correspondence between CST-Right of subject ID 205 to 3 other sub-
jects. Table 4.5 shows the comparison of our method with other state-of-
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Figure 4.5: Visualization of the result when the left CST of subject 204 is obtained from
the left CST from subject 202: (A) FLIRT registration, (B) ODON [72], (C) GARY [30],
(D) DMAP, dissimilarity and mapping. Blue color denotes the correctly aligned stream-
lines, while the yellow color the incorrect ones.

the-art registration methods. It strongly confirms that our method is out-
standing with the others in finding the correct correspondences, but not
too much better in removing incorrect ones. The reason is that the CST
is not symmetric, therefore it is difficult to map correctly. After dividing
the dataset according to the size of the CST, we get the better result. Ta-
ble 4.6 reports the mean and the standard deviation of TPR and FDR for
all four methods, over all pairs of subjects. The results are split in two
groups because the task is not symmetric: |CSTA| > |CSTB| (source >
target) and |CSTA| < |CSTB|. The results demonstrate successful seg-
mentation of the CST of the brains when combining the dissimilarity
representation with mapping method. Additionally, Figure 4.5 shows
an example of CST alignment of the four methods, where blue stream-
lines indicate the ones contributing to TPR and the yellow ones to FDR.
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Table 4.4: The performance of exploring the dissimilarity based on mapping for find-
ing the correspondences of CST-Right of subject ID 205 to other subjects are represented
by the TPR and FDR index. The subject IDs of CSTA and CSTB are reported in the first
two columns. Their sizes together with that of CST+

B are in columns three to five. The
last four columns report the overlap between CSTA and CSTB in terms of TPR index
(higher is better) or FDR index (lower is better), with FLIRT registration method (6th
column), tract-based ODON [72] method (7th column), tract-based GARY [30] method
(8th column), and with exploring the dissimilarity representation based on mapping
(DMAP). Note that, for a fair comparison, the results of column six, seven and eight are
calculated by using the 1-nearest neighbour of CSTA in the CST+

B when both are in the
common space after registration with FLIRT, ODON and GARY method respectively.

A B size TPR (True Positive Rate)

ID ID |CSTA| |CSTB| |CST+
B | FLIRT ODON GARY DMAP

205 206 60 100 550 0.36 0.32 0.27 0.42

204 60 124 682 0.22 0.24 0.23 0.29

212 60 68 374 0.31 0.35 0.22 0.45

A B size FDR (False Discovery Rate)

ID ID |CSTA| |CSTB| |CST+
B | FLIRT ODON GARY DMAP

205 206 60 100 550 0.14 0.22 0.21 0.11

204 60 124 682 0.39 0.25 0.32 0.40

212 60 68 374 0.10 0.17 0.41 0.10

4.4 Discussion and Conclusion

With tractography mapping, we have addressed an alternative way for
doing tractography registration without affine transformation informa-
tion. We also have linked the tractography mapping problem to the
graph matching problem, and proposed a graph-based solution for trac-
tography mapping problem by optimizing the loss function. We have
explored the mapping as a solution for the task of tract segmentation.
Experiments have shown that mapping by minimizing the loss func-
tion can successfully map one tractography to another tractography. The
comparisons of the results from our proposed method and other tradi-
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Table 4.5: The average performance of segment CST by combining mapping and dis-
similarity approximation is represented by TPR and FDR index. The FLIRT column is
calculated with the 1-nearest neighbour of CSTA in the CST+

B when both CSTA and
CSTB are in the MNI space after alignment using FLIRT registration method. The fifth
and sixth columns are calculated in the same way but using the tract-based ODON [72]
and GARY [30] registration method. And DMAP indicates the results of our proposed
method in Algorithm 2.

size TPR (True Positive Rate)

|CSTA| |CST+
B | FLIRT ODON GARY DMAP

Left 122± 40 671± 220 0.30± 0.09 0.36± 0.15 0.36± 0.09 0.41± 0.13

Right 88± 27 484± 147 0.40± 0.09 0.41± 0.14 0.31± 0.08 0.48± 0.11

All 105± 38 578± 206 0.35± 0.10 0.39± 0.15 0.33± 0.09 0.44± 0.13

size FDR (False Discovery Rate)

|CSTA| |CST+
B | FLIRT ODON GARY DMAP

Left 122± 40 671± 220 0.37± 0.16 0.34± 0.14 0.24± 0.16 0.34± 0.17

Right 88± 27 484± 147 0.28± 0.14 0.35± 0.13 0.36± 0.13 0.31± 0.14

All 105± 38 578± 206 0.32± 0.15 0.35± 0.13 0.30± 0.15 0.32± 0.15

tional registration methods (FLIRT, ODON, GARY) have presented that
our method is more prominent and demonstrates the potential of map-
ping for medical or neuroscientific analyses of tractography.

By combining mapping with dissimilarity approximation, we have
proposed a new method for constructing the common vectorial repre-
sentation of streamlines across subjects. The aggregated results for TPR
reported in Table 4.6 show that the proposed method, based on dissim-
ilarity and tractography mapping, outperforms the methods based on
registration, while keeping a comparable FDR. This occurs both when
the source tract is larger or smaller than the target tract. In our opinion,
the lower performance of registration methods is a tendency to under-
estimate the target tract: when the affine transformation results in poor
alignment of the two tractographies, the nearest neighbour computation
may return the same streamline multiple times. In other words, many
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Table 4.6: Average mean and standard deviation of true positive rate (TPR) and false
discovery rate (FDR) for the four compared methods: FLIRT, ODON [72], GARY [30]
and DMAP (dissimilarity + mapping). Results are aggregated in two groups, according
to the size of source and target tracts.

source < target source > target
Method TPR FDR TPR FDR
FLIRT 0.30± 0.09 0.32± 0.17 0.39± 0.10 0.33± 0.14

ODON 0.30± 0.08 0.34± 0.15 0.46± 0.15 0.36± 0.11

GARY 0.29± 0.08 0.33± 0.12 0.37± 0.08 0.27± 0.18

DMAP 0.40± 0.10 0.30± 0.15 0.48± 0.13 0.35± 0.16

streamlines from the source tract are projected to the same streamline of
the target tract. This issues does not happen for the proposed method,
that better preserves the proportion of streamlines between source and
target tracts.

The proposed method presents some limitations too. As mentioned
in Section 4.2, the quality of the provided alignment has no theoreti-
cal guarantees. There, we speculated that such approximation can be
decomposed in three separate parts, i.e., two due to the dissimilarity
representation and the one due to mapping; but more work is needed
to identify their cumulative effects and interactions. Additionally, the
mapping of prototypes is currently limited to a number of streamlines
much smaller than a full tractography. For this reason improvements to
the scalability issue of mapping algorithms are necessary in order to ex-
tend the proposed solution set of streamlines larger than single tracts.



Chapter 5

An Interactive Visual Tool for
Tractography Segmentation

Diffusion magnetic resonance imaging data allows reconstructing the
neural pathways of the white matter of the brain as a set of 3D poly-
lines. This kind of data sets provides a means of study of the anatomical
structures within the white matter, in order to detect neurologic diseases
and understand the anatomical connectivity of the brain. To the best of
our knowledge, there is still not an effective or satisfactory method for
automatic processing of these data. Therefore, a manually guided vi-
sual exploration of experts is crucial for the purpose. In order to make
the use of the advantages of both manual and automatic analysis, we
have developed a new visual data mining tool for the analysis of human
brain anatomical connectivity. With such tool, humans and automatic
algorithms capabilities are integrated in an interactive data exploration,
analysis process and identifying white matter anatomical structures of
interest from diffusion magnetic resonance imaging (dMRI) data. How-
ever, because of the large size of these data sets, visual exploration and
analysis has also become intractable. The difficulty in visual exploration,
navigating and analysis segmenting tractographies lies in the very large
number of reconstructed neuronal pathways, i.e. the streamlines, which
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are in the order of hundreds of thousands with modern dMRI tech-
niques. The novelty of our system resides in presenting the user a clus-
tered version of the tractography in which user selects some of the clus-
ters to identify a superset of the streamlines of interest. This superset
is then re-clustered at a finer scale and again the user is requested to
select the relevant clusters. The process of re-clustering and manual se-
lection is iterated until the remaining streamlines faithfully represent the
desired anatomical structure of interest. In this work, we present a so-
lution to solve the computational issue of clustering a large number of
streamlines under the strict time constraints requested by the interactive
use. The solution consists in embedding the streamlines into a Euclidean
space and then in adopting a state-of-the-art scalable implementation of
the k-means algorithm. We tested the proposed system on tractogra-
phies from real dMRI data set that we collected for a forthcoming study
about the systematic differences between the corticospinal tracts.

5.1 Introduction

Brain connectivity analysis is the field dedicated to investigating aspects
of the organization and dynamics of the brain. There are three differ-
ent but related forms of brain connectivity: anatomical, functional and
effective [55]. Our work focuses on the anatomical connectivity. Dif-
fusion magnetic resonance imaging (dMRI) [6] is a non-invasive tech-
nique, well established in the neuroimaging community for this pur-
pose. It measures the translational displacement (diffusion) of water
molecules in the brain tissue, which is mechanically constrained by the
myelinated axons. Thereby, it provides information about the local ori-
entation of white matter axons. The data obtained with this technique,
can be used to extract the anatomical connectivity information by using
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Figure 5.1: (A) Tractography overlaid with the structural image(only 10% of the stream-
lines are shown), (B) Amplifying an area of the tractography (C) Small subset of stream-
lines (D) Corticospinal tract right of a healthy subject with the 3D view of the structural
image.

Figure 5.2: The structural image of the brain with different type of views. The 2D
views: (A) coronal, (B) sagittal, (C) axial

deterministic tractography algorithms [69], [56], [30]. These algorithms
reconstruct the approximate trajectories of the axons as polylines, so
they resemble the white matter anatomical structures (see Figure 5.1).
A polyline in this context is called streamline, and the full brain stream-
lines are called brain tractography. It is worth to notice that one streamline
represents 104 axons approximately.
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The exploration of tractography data sets has become then very use-
ful to neuroanatomists. Information like the shape of streamlines, their
spatial location and relation with each other, allows for the identifica-
tion and study of anatomical structures of interest within the white mat-
ter, i.e. locating subsets of streamlines which are related to specific func-
tion(s), and from which it can be also determined if there is (or the sta-
tus of) an ongoing neurodegenerative process (see Figure 5.1.C). For this
purpose, besides the tractography, a high-resolution structural magnetic
resonance image is typically available. This image shows a good con-
trast between gray matter and white matter, thus it is commonly used
as reference for visualizing and studying brain anatomy (see Figures 5.2
and 5.1.D), e.g. if a neuroanatomist wants to explore the fornix struc-
ture, she knows that it is the bundle of fibers (axons) that carries signals
from the hippocampus to the hypothalamus. With these data, there are
two main approaches for the study of anatomical connectivity: auto-
matic and manual. The automatic analysis has gained popularity over
the last years, and it is based on machine learning and data mining al-
gorithms, mainly for clustering (for more details see Section 5.2). It is
mainly aimed at a fast segmentation of the white matter into sets of
streamlines that follow similar trajectories [105], [39], [91]. Nevertheless,
the automatic segmentation of the tractography is not always in agree-
ment with the real anatomical structures of the white matter. Therefore,
neuroanatomists still strongly rely on their manually guided visual ex-
ploration. This manual task though, is complex and slow. The manual
exploration of the streamlines is usually supported by the overlaid struc-
tural image, such that experts can orient themselves into which regions
of the brain they are focusing their analysis (Figure 5.1). Moreover, the
number of streamlines can be really large, usually in the order of hun-
dreds of thousands, making the exploration i.e. shape recognition, spa-
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tial localization, quite difficult. See for example, in Figure 5.1.A, where
only a 10% of the total amount of streamlines is shown, it is still difficult
to visually understand the data. For the previous presented reasons we
believe that combining the advantages of automatic and manual explo-
ration can be a solution to improve the current practice.

Visual data mining is precisely the field that aims at integrating hu-
mans in the data-mining process by interaction with visual represen-
tations of abstract data, thus applying humans perceptual abilities and
their domain expertise for the analysis of large datasets [95], [52]. Visual
data mining tools allow viable data exploration and often provide effec-
tive results [52], [95], [98]. This field strongly relies on the visualization
and interaction, therefore a new requirement is added to the standard
data mining process. Scalability becomes a major problem not only in
the automatic analysis of the large data sets, but also in the interactive
visualization [28], [53], [95]. The strategy is then to develop a solution
which integrates high-performance analysis algorithms with appropri-
ate and efficient visualization and interaction techniques.

In this paper, we propose a visual data mining tool, Tractome, for
the analysis of human brain anatomical connectivity. This work focuses
on computer-assisted tractography segmentation and describes the solu-
tion we developed to build a software system to support neuroanatomists
and medical doctors in studying the white matter. With such tool, both
the automatic algorithms and neuroanatomists capabilities are integrated
in an interactive tractography exploration process. To the best of our
knowledge, this mixed approach for tractography exploration has not
yet been proposed in the literature.

In Tractome, we address the scalability issue as it demands. For the
interactive visualization, we follow the visual scalability analysis made
in [28]. With this purpose, we define a visual metaphor that allows pre-
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senting the experts with a comprehensible summary of the tractography.
It makes also possible the concurrent reading of the anatomical connec-
tivity when they are presented with an overlapped view of the structural
image and the tractography. Moreover, interactive techniques [52] are
exploited in the tool, such that the neuroanatomist can browse through
the streamlines and see the details of any anatomical structure of interest
on demand.

To obtain the abstract or compact version of the tractography, the sys-
tem relies on automatic clustering of the data. If we want to provide
a comfortable user experience, the clustering algorithm has to be fast
and scalable. However, the standard representation of tractography data
prevents the achievement of this goal. Streamlines are 3D polylines that
can even have different lengths and different number of points (see Fig-
ure 5.1 for a visual representation of streamlines). This representation
may hinder the use of many machine learning and data mining algo-
rithms, as most of them are based on a vectorial representation of the
data. Even though some algorithms do not strictly require a vectorial
representation of data, it frequently allows fast and scalable implemen-
tations. In the designed tool, we use what is called the Dissimilarity Rep-
resentation (DR) approach [87], in order to embed the tractography data
into an Euclidean space. The DR maps each streamline in the space of
its dissimilarities with respect to a selected set of representative stream-
lines, called prototypes. This leads to a vectorial representation of the
streamlines, where the domain information is taken into account, pro-
vided that an informative streamline-to-streamline distance function is
available. A crucial step in the DR approach is the selection of the pro-
totypes [87], [76]. Thus, given the large number of streamlines, a fast
prototype selection algorithm is also needed. For this tool, we propose
a domain-based heuristic that improves the general prototype selection
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policy that was proposed in [76]. This policy is a stochastic approxi-
mation of an effective algorithm for prototype selection that scales well
with the large collection of streamlines.

With respect to the clustering task, we recently proposed the applica-
tion of the mini-batch k-means algorithm [94] for segmenting tractogra-
phy data [74]. Mini-batch k-means is an approximation of the k-means
clustering algorithm, which dramatically reduces the computation of
clusters in very large data sets.

In Section 5.2, we give more details about tractography data and the
available tools for their analysis. The designed visual data mining tool
is presented in Section 5.3, where we explain in detail how we approach
the scalability issue in every stage of the whole process. The detail of
Tractome software architect is described in Section 5.4. Section 5.5 is
dedicated to the experimental part, where we show in practice how
our tool performs on a real data set. Some case studies by using our
software Tractome for different neuroscientific analyses purpose are de-
scribed in Section 5.6. Finally, the conclusions of this study are drawn in
Section 5.7.

5.2 Basic Concepts and Related Works

When reconstructing white matter axons, the result is a set of stream-
lines T = {s1, s2, . . . , sm}, which is called brain tractography. Each stream-
line si is defined as a polyline si = {xi1,xi2, . . . ,xinsi}, with xij ∈ R3. We
use nsi to denominate the number of points of streamline si because this
number usually differs from one streamline to another. A set of stream-
lines with anatomical meaning is called a tract (see Figure 5.1.C).

Tractography data can be analysed automatically and manually. In
fact, the literature on methods for automatic extraction of specific tracts
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has increased over the years. Both supervised and unsupervised learn-
ing have been used for this purpose [91], [39], [105]. However, it can
be difficult to model the different structures into groups over different
subjects, hence unsupervised approaches are most common (see [105]
for a larger review). The idea is to partition the whole tractography into
clusters, such that streamlines that are spatially closer and have similar
shape are grouped together. Thereby, the obtained clusters are supposed
to represent discernible tracts. Still, the drawback of just applying a clus-
tering algorithm is that the grouping of streamlines is usually not opti-
mal for the detection of anatomical structures. False merges of stream-
lines into the same cluster or false splits into different clusters may take
place, leading to a segmentation of the tractography that may not have
an anatomical meaning. The most common approach to deal with this
issue is to incorporate background anatomical knowledge from experts
in the process. The main idea has been to create a template or atlas of one
or several tracts, which can be obtained by a manual extraction of known
white matter tracts from a set of subjects [73], [39], [91], [103]. This ap-
proach is unsatisfactory as it introduces the problem of corregistration
of brain tractographies of the different subjects. Other works propose to
learn a model from the data as well as the clustering parameters with-
out supervision [105]. In any case, even if a reasonable segmentation of
the tractography is obtained, this is useful for analysing the main (most
distinguishable) tracts only.

Even though the automatic tract extraction is quite popular, in the
clinical domain preference is usually given to manually exploring and
analysing the data. Trackvis 1[104] for example, is a software tool com-
monly used by the neuroanatomists and doctors for this purpose. Any-
how, the manual approach of this kind of tools can make the task lengthy

1http://trackvis.org

http://trackvis.org
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and complex. Moreover, the exploration of the entire brain tractography
is not possible. Thus, they provide sub-sampling and filtering tools to
reduce the amount of objects visualized on the screen, such that users
can explore and locate specific tracts[104]. Filtering in this case is usu-
ally based on manually placing one or more regions of interest (ROIs),
such that the set of streamlines passing through these ROIs are selected.
However, a problem of this approach is that, to the best of our knowl-
edge, the definition of ROIs in this kind of tools is indirect, as they are de-
fined on the structural image and not on the tractography data. Hence,
in order for the extraction of the tracts to be accurate, it strictly requires
for the structural image and tractography to be correctly aligned. An-
other important aspect is that this kind of approach is strongly sensitive
to the quality of the reconstructed streamlines. Due to noise in the mea-
surement process, or to the performance of the tractography algorithm,
the reconstruction of a streamline may fail, resulting instead into multi-
ple disconnected polylines. As a consequence, these streamlines would
not fulfil the condition of connecting the ROIs defined by the experts.
When using this approach, it is a common experience to get a reduced
or non-existent set of streamlines, instead of the actual tract.

5.3 Tractome: A Visual Data Mining tool for tractography
analysis

Following the concepts and general scheme of visual data mining as a
human-centred discovery process, we define an interactive visual data
mining tool, Tractome, for the exploration and analysis of tractography
data. It is based on the Visual Exploration Paradigm (Visual Analyt-
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Figure 5.3: Workflow of the Visual Data Mining tool for analysis of tractography data.

ics Mantra): “Analyse First, Show the Important, Zoom2, Filter and Analyse
Further, Details on Demand” [53] and follows visual scalability require-
ments [28]. Thereby, experts are provided with a tool that allows them
for fast and easy exploration of tractography data. Moreover, they are in-
volved in the knowledge discovery process, by guiding the exploration
with their knowledge on the domain. See Figure 5.3 for the workflow
diagram.

Given that tractography algorithms can generate an extremely large
number of densely packed streamlines, it is difficult to interact with
these data or to do any visual interpretation (see Figure 5.1). There-
fore, the initial stage of the system consists in Analysing First the data,
by segmenting the tractography with a fast-clustering technique. More
technical details about the implementation of this step will be given at
Subsections 5.3.1 and 5.3.2. As result, the tool Shows the Important by pre-
senting a simplified version of the data set, i.e. the clusters represented

2Zoom is referred here to the definition in [52], which means that the data representation changes to
present more details at higher zoom levels.
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by one streamline each, together with a 3D perspective view (the 3D
slicer, see Figure 5.1.D) of the structural image. Thereby, the expert can
start the exploration with an overview of the whole tractography, and
the interaction and concurrent reading of the data with the structural
image is much simplified. A clearer view will be now available, instead
of the crowded picture with thousands of streamlines. In case the user
wants to see the whole data, she can Zoom on the clusters, and a view
of all the streamlines is presented. Afterwards, the expert can interact
with the system by doing some Filtering, such that she can focus only
on the clusters related to the anatomical structure of interest. Based on
the selection, the user can Zoom again on the chosen representatives and
will be able to see the streamlines belonging to the corresponding clus-
ters. From this first cycle, the expert can refine the exploratory process
by specifying the parameter of the clustering algorithm, i.e desired num-
ber of clusters, re-cluster again the streamlines belonging to the focused
area, and drill-down in order to inspect the details about the data. In this
way, she can explore and Analyse further until the anatomical structure(s)
of interest is found. At any iteration of this procedure, the expert can
manipulate and explore the data in more Detail by using common visual
interaction tools like panning, rotation, translation, traditional zooming.
Subsection 5.3.3 is dedicated to defining the visualization and interac-
tivity techniques that are used in the tool.

We have continuously stated that, in order for the interactivity feature
of the tool to be successful, we need to tackle the scalability problem.
Hence, in the following subsections, it will also be explained how our
choices, for the different steps of the system, are meant to deal with this
issue.
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5.3.1 Dissimilarity Representation

Despite that a vectorial representation of data is not an absolute require-
ment for machine learning and data mining, many algorithms rely on
this type of representation. It facilitates the development of efficient
algorithms, as it allows performing fast queries, as well as algorithms
based on simple linear algebra operations.

Given that the size and complex representation of the brain tractog-
raphy data is in contrast with the scalability requirement of our inter-
active tool, we apply a previously proposed vectorial representation for
streamlines [76].

The Dissimilarity Representation (DR) [87] approach was mainly in-
troduced for classification purposes. However, it has also been used in
the context of unsupervised learning [87], [79]. In this approach, new
features are defined for the objects, such that they are represented by
their (dis)similarities to a set of objects that are representative of the
problem at hand, i.e. the prototypes. In such way, every object is then
represented by a vector of dissimilarities, instead of the attributes from
the original feature space.

So, let us define the DR approach based on the tractography appli-
cation. Given X our space of objects i.e. the streamlines, and the brain
tractography T ⊆ X (as defined in Section 5.3), let Π = {ŝ1, ŝ2, . . . , ŝp},
Π ⊂ X be a set of prototypes of size p, and let d : X × X → R+ be a
dissimilarity measure between streamlines. A mapping φ(·,Π) : T → Rp

is done, such that every object is associated with its dissimilarities to
all prototypes in Π, φ(si,Π) = [d(si, ŝ1), d(si, ŝ2), . . . , d(si, ŝp)]. A way of
handling the DR is to interpret the dissimilarity vectors as features. The
obtained mapping to Rp is equipped with the traditional inner prod-
uct and Euclidean metric, and we have the so-called dissimilarity space
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(DS). In this way, the dissimilarity matrix Φ(T,Π) is used as input for the
classification or clustering algorithms [87], [27].

The prototypes, are usually selected as the most representative ob-
jects of the data set, i.e. Π ⊆ T , or Π might be even the equal to T .
However, in our case, due to the large number of streamlines, comput-
ing the whole dissimilarity matrix would be computationally infeasible.
Hence, we need to find a set of prototypes, such that the computational
cost is reduced. Moreover, note that this Euclidean embedding is a lossy
one, in the sense that in general it is not possible to reconstruct si from
φ(si,Π). The quality of the representation is strongly dependent on the
choice of d and the selection of the prototypes. Therefore, it is important
that we use a suitable distance and an efficient method to select effec-
tive prototypes for our application. The following two subsections are
dedicated to these topics.

Dissimilarity Measure

One topic of research in the literature about tractography data analy-
sis, is the selection of a suitable distance between streamlines [111]. It
should allow the incorporation of domain specic information when clus-
tering streamlines. Moreover, if we map the tractography into the DS,
the geometry and structure of the data will be determined by the mea-
sure. Therefore, it is important to choose a measure that fits for the prob-
lem at hand. Most of the studied distances for streamlines are modified
versions of the Hausdorff distance [26]. They are based on the set of
minimum distances between each of the points of the compared stream-
lines(see Figure 5.4). In our work we use the symmetric minimum aver-
age distance [19], which is defined as:

d(sA, sB) =
1

2
(δ(sA, sB) + δ(sB, sA)) (5.1)
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sA
Bs

Figure 5.4: Set of minimum distances (dotted lines) between each point of two stream-
lines sA and sB (solid lines).

where

δ(sA, sB) =
1

nsA

∑
xj∈sA

min
y∈sB
||xj − y||2 (5.2)

given that nsA is the number of points of streamline sA.
This measure is symmetric, which is a desirable property in order

to remove inconsistencies when changing the order of the streamlines in
the comparison. Unfortunately, it is non-metric, as d(sA, sB) = 0 does not
necessarily imply that sA = sB. However, the metric requirements are
not essential for the DR approach. It has been shown that this modified
version of Hausdorff [19] gives better results when clustering stream-
lines [111]. Therefore, it is one of the most common measures used in
this domain [19], [111], [39].

Prototype selection Method

Due to the size of tractography data sets, the computation of the whole
dissimilarity matrix, i.e Π = T , for the DR approach has two main dis-
advantages: excessively large storage requirements and very high com-
putational complexity. Therefore, it is required to compute a small set
of prototypes, in order to tackle these problems. Nevertheless, we can-
not use just any prototype selection method. In this case, we need an
efficient procedure that can scale well on large data sets.
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Random Selection for example, is a very common algorithm and with
the lowest computational complexity O(1). In this case, given our set of
streamlines or tractography T , a subset Π of p number of streamlines is
randomly selected. This algorithm has shown to work reasonably well
for the DR approach [86], [87].

In [76], the authors proposed the use of the Subset Farthest First (SFF) [100]
algorithm for selecting effective prototypes from tractography data. This
procedure is a stochastic scalable approximation of the well known Far-
thest First Traversal (FFT) algorithm, which has a computational com-
plexity of O(p|T |). It is also claimed that it reduces the chances to select
outliers [100]. The SFF first samples m = [cp log p] streamlines from T

uniformly at random, where c = 3. Afterwards, FFT is applied on this
subsample i.e. one streamline is randomly selected as prototype ŝ1 and
a new prototype is iteratively added such that it is the streamline max-
imising the distance to the already selected prototypes. It was proved
that under the assumption of p clusters in T , the probability of not hav-
ing a representative of some clusters in the sample is at most pe

−m
p [100],

i.e. a sample of size m is a meaningful summary of T . The computa-
tional complexity of SFF is O(p2 log p). For large data sets and small p,
this prototype selection policy has a much lower computational cost that
FFT.

Even though the SFF policy has shown to be a suitable option for
prototype selection in tractography data sets, it is still based on an initial
random selection of streamlines. Therefore, the final representation set
will depend on whether the random selection is a poor subsample of the
tractography or not.

In this paper we propose a new algorithm of prototype selection for
tractography data sets, named Spatial SFF (S+SFF). It is basically the SFF
algorithm with a new heuristic, which is based on background knowl-
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edge information about the application. When looking at a full brain
tractography, it can be noticed that there are many short streamlines.
It is very likely that these are just noise artifacts that have, of course,
no anatomical meaning. Therefore, the first step of our algorithm is to
exclude these streamlines for our selection. Thus, given zmin, a mini-
mum allowed size for a streamline, we will just use the set of streamlines
Tmin = {s1, s2, . . . , sl}, such that zs > zmin. Moreover, longer streamlines
are believed to have greater potential to be useful landmarks, as they
are more likely to be present in most subjects [32]. Hence, before pro-
ceeding with the selection, streamlines will be organized in descendent
order according to their size. The goal of the selection step is to ob-
tain a subsample of spatially distributed streamlines, such that stream-
lines from all brain areas are considered. The procedure is as follows:
the longest streamline is selected and the next longest streamline is it-
eratively added, if it is not intersecting with any of the previously se-
lected streamlines. Afterwards, the FFT is applied on the obtained sub-
sample, as for the SFF algorithm. The computational cost of S+SFF is
O(|T | + l log l + pl). This is more computationally expensive than SFF,
but in practice l << |T |, therefore it is still feasible.

In Section 5.5, we investigate the trade-off between accuracy and com-
putational cost across the different prototype selection policies and dif-
ferent numbers of prototypes. The policy used in this tool was selected
based on this study.

5.3.2 Clustering

As mentioned in the beginning of this section, an important aspect for
the design of this tool was the selection of the clustering algorithm. This
clustering action has two main functions in this tool. The first one is to
use the obtained clusters as a way to present the user with a summary
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of the data, thus favouring the visual scalability of the tool (see subsec-
tion 5.3.3 for more details). Second, to provide the user with a segmen-
tation of the data with a “possible” anatomical meaning, such that she
has a guide for the visual data mining process. However, even when
the later gives an added value, it is not our aim to find the most mean-
ingful or accurate partitioning of a tractography, as it is the case of the
traditional automatic analysis of tractography data sets (as referred in
Section 5.2). Our main goal is to use the clustering results to provide the
user with a comfortable visualization and interactivity. Therefore, the
core problem is to use an algorithm such that a large number of stream-
lines can be clustered in no more than a few seconds.

The k-means clustering algorithm is very popular in machine learn-
ing and data mining, due to its simplicity and efficiency. Given k, the
number of clusters, the clustering problem is to find k cluster centres
C = {c1, c2, . . . , ck}, c ∈ Rp, and to assign each element of the vecto-
rial data set Φ(T ) = {φ(s1), φ(s2), . . . , φ(sm) ∈ Rp} to the closest cluster.
The k-means is then based on computing centres C such as to minimise
the loss function f(C) =

∑
φ(s)∈Φ(T )D(φ(s), C)2, where D(φ(s), C) =

minc∈C ||φ(s) − c||2 is the distance between φ(s) and its closest centre.
Even though it has been shown that the computational complexity of
the standard implementation for k-means is much less than the theo-
retical bound of O(m34) in practical applications [4], it is impractical
when clustering tractography data in an interactive setting. For this
purpose, we recently introduced the use of a scalable k-means imple-
mentation, known as mini-batch k-means (MBKM) [94], for clustering
streamlines [74].

The MBKM algorithm is a modification of the standard k-means algo-
rithm, that is able to reduce the computational costs by orders of mag-
nitude. Instead of updating centres with one streamline at a time, the
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MBKM uses multiple random subsets of the data sets, termed as mini-
batches b, in order to update the cluster centres and to estimate the per-
centre learning rates. The stopping criterion is also the convergence of
the loss function f(C). The computational complexity of the MBKM al-
gorithm is not known in the general case, but empirical results in [94]
show a reduction of two orders of magnitude in computation time with
respect to the standard k-means. We show similar results for tractogra-
phy data in Section 5.5.

5.3.3 Data Visualization and Interaction

Up to know, we have described the requirements of the proposed tool
from the point of view of the automatic algorithms. However, the suc-
cess of a visual data mining tool does not only depend on the compu-
tational complexity and scalability of the algorithms. The visualization
and the interactivity feature are also essential factors in its workflow. In
this subsection, we define the visualization and interaction techniques
used in this tool. These were selected by following the literature about
visual scalability [28], [89].

• Visual Metaphor: According to the literature, one of the most im-
portant factors affecting the visual scalability is the selection of a
proper visual metaphor [28]. These are the visual objects by which
the original data are encoded and displayed. They should be related
with the domain and be easy for the user to understand. Thus, in or-
der to present the user with an overview of the data and to Show the
Important, we have defined a visual metaphor [28], which is defined
as: “the medoid streamline of a cluster”. Thus, given the tractogra-
phy T and a partition of the data P , the summary of the tractogra-
phy data will be visualized as M = {µ1, µ2, . . . , µk}, where µi is the
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medoid streamline of cluster pi ∈ P (Figure 5.5 B). We use medoids
instead of centroids because we want to show real representatives
of the data. Averaging objects, i.e. streamlines, does not make sense
in this application, it has no anatomical meaning. Moreover, in or-
der to compute centroids we would have to do it in the DR and we
have no way to invert the DR in order to create the corresponding
streamline.

Figure 5.5: Analyse First and Show Important. (A) Whole tractography. Streamlines
are colored by following the Directionally Encoded Color convention [81]. (B) Visual-
ization of summary of the data by medoids of clusters.

• Interaction techniques: As explained above, from the summary of
the data, the neuroanatomists can explore the tractography by inter-
actively filtering and visualizing the streamlines that belong to the
specified clusters. In this tool, we use Selection and Zooming as in-
teraction techniques [52], [53]. Other common interactivity options
are also available.

– Selection: The user can iteratively select and focus on a set of
medoid(s)/cluster(s) of interest, by just pointing and clicking it
(them). The unselected clusters (those of no interest) can be hid-
den. Notice that the selected medoids change color (white) in
the view, because this color is not used in the color convention
for painting streamlines. See Figure 5.6.
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Figure 5.6: Filtering. (A) Selected clusters (in white) (B) Only selected clusters are
shown. The rest were removed from the view.

Figure 5.7: Zooming. Streamlines belonging to the selected clusters are shown in the
view, with a different line thickness and colors.

– Zooming: The selection can be expanded, such that all stream-
lines belonging to the selected clusters are also visualized, thus
providing the expert with a way to drill-down for a higher level
of detail. It is worth to remark that the detailed composition of
each cluster, i.e. the set of streamlines, is displayed in a different
line thickness, such that the expert can differentiate between the
different levels of detail (see Figure 5.7).

– Other interactivity tools: The user can interact with the data by
panning on the view and also by using the standard zooming to
amplify or decrease the size of the displayed objects. Moreover,
the scene can be modified by rotating it, or by translating the 3
orthogonal planar views (slices). Another tool is to hide/show
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the representatives of the clusters on demand.

In Section 5.5 we describe in more detail how the tractography explo-
ration works by means of these techniques, on a real example.

5.3.4 Limitations and potentialities of Tractome

In general, our current version of Tractome has some issues that can be
considered as limitations. However, many of them have potential for
future research works and new functionalities of the tool. These issues
are:

1. Effective abstraction: The main goal of the clustering step(s) in Trac-
tome is to support an abstraction of the data that enables a more
comfortable visualization/interaction. However, it is to some ex-
tent also desirable that the obtained partition is “meaningful” in
order to favour the exploration process. When this is not the case,
i.e. streamlines of similar shape fall in different clusters or those
with different shape fall in the same one, it is currently not pos-
sible to readjust the composition of the clusters by selection. As
there is no direct selection of streamlines, but selection of represen-
tatives (clusters), the neuroanatomist may find two problems: 1-
She cannot remove specific unwanted streamlines from the selected
clusters, therefore she will have to carry them to further clustering
steps until they can be separated and ignored. 2- Some streamlines
from other clusters are desired in the obtained bundle, but they are
removed in the selection process because the whole cluster is not
of interest and therefore the corresponding representative is not se-
lected. The solution to these problems can be content for future
research works.
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2. Preprocessing computation: In order to obtain the initial clustering of
the data the first time the system runs, a number of pre-computations
are needed. However, these pre-computations can be included in
the pipeline for obtaining the tractography from the dMRI data,
such that they are computed once and later used by the system.

3. Mixed strategy: The approach of Tractome, based on the selection
of a set of streamlines (bundle) of interest, is in contrast to that of
ROIs (see Section 5.2). However, combining the two approaches
may bring additional benefits in the process of finding the anatomi-
cal structure of interest. Part of our future work for the new version
of Tractome is to support this mixed strategy for the exploration of
tractography.

4. Segmentation assessment: We have verified with the neuroanatomists
and also shown in the example of Subsection 5.5.2, that the expert
should be able to arrive to the desired set of streamlines in a few
steps. However, this is only based on practical experience. There
is no information available on a “correct” segmentation of the trac-
tography, therefore it is difficult to do a proper evaluation on how
accurate the tool is.

Tractome was created with the specific purpose of solving a practical
problem of great importance, i.e. the analysis of human brain natomi-
cal connectivity. However, we believe that the methodology proposed
for this tool, i.e. DR + Clustering + Visualization and Interaction, can
be used as a template for designing Visual Data Mining tools for other
kinds of data which have e.g. complex non-vectorial representations. In
this approach, the most determinant step for generalization is the one
of the DR. Its success depends on finding a dissimilarity measure that
allows taking into account relevant characteristics of the analysed data.
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Moreover, it should be ensured that the relative distances between ob-
jects in the original feature space, is preserved in the dissimilarity space.
The main advantage of going to this representation is that now the trans-
formed data will be in a Euclidean space, which allows performing lin-
ear algebra operations that facilitate the development or application of
efficient algorithms. Such is the case for example, of the MBKM which
can only be applied on the proposed dissimilarity space. With respect to
the visualization and interaction techniques, they can also be applied, if
the Visual Metaphor based on the medoids and the Selection and Zoom-
ing techniques fit the purposes of the specific application. In this case,
it is necessary to find an appropriate visual object that is related to the
domain and easy for the user to understand.

5.4 Software Architecture

Tractome is organized as a three-layer model 3 which is often used in
software development and known as a well-established software archi-
tecture pattern. Three-layer architecture describes the separation of func-
tionality of a software into different layers including presentation (or
user interface) layer, application (or business) layer, and data (or low
level) layer; therefore, it allows to change or upgrade any of the three
layers independently in response to changes in requirements. The gen-
eral view of Tractome in three layer pattern is showed in Figure 5.4. In
this part, we will describe each layer of the Tractome software. The all
functions of each class in Tractome is showed in the Figure 5.4.3.

3It was developed by John J. Donovan in Open Environment Corporation (OEC), a tools company he
founded in Cambridge, Massachusetts.
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Figure 5.8: The architecture of Tractome software in three-layer pattern.

5.4.1 Presentation layer

This is the topmost level of the application. The presentation layer pro-
vides the application user interface (UI). Typically, this layer involves the
use of Graphical User Interface (GUI) for user interaction, such as load
structural image, load tractography, load segmentation, create ROI, ap-
ply ROIs, cluster tractography etc. The presentation tier also displays in-
formation related to the current state of the segmentation such as name
of object, number of clusters, number of streamlines, voxel-size, volume,
etc (the left of the interface in Figure 5.4). The presentation layer commu-
nicates with the application tiers by outputting the request from users
and getting back the changes for visualization from the application tier.

In this presentation layer, GLWidget class (in the file glwidget.py) is in-
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herited from the common QGLWidget class of QtOpenGL 4. It is a wid-
get for rendering and displaying OpenGL graphics. Some basic prop-
erties are the width/height of the widget, the back ground colore (bg-
color), and the orthogonal projection mode or not (ortho). GLWidget
provides three convenient functions to perform the typical OpenGL tasks:
initializeGL (sets up the OpenGL rendering context, defines display lists,
etc), paintGL (renders the OpenGL scene), and resizeGL (sets up the
OpenGL viewport, projection). Main actions of GLWidget class are mouse-
PressEvent (defines what to do when mouse is pressed), mouseMoveEvent
(what happens when mouse is move across), wheelEvent (changes the
zoom), and keyPressEvent (handle all key press events).

On the top of GLWidget class, there are other two main files: main-
window.py and ui mainwindow.py. The ui mainwindow.py defines all
the properties (position, size, color, default value, etc) of GUI objects
which would appear for user to interact. The GUI of Tractome is showed
in Figure 5.4.1. The other file, mainwindow.py, specifies all actions or
events that user can interact with each object in GUI.

We used Eric4 5, a full featured Python and Ruby editor and IDE, writ-
ten in python, to design GUI; and then exported it to python language
to generate these two mainwindown.py and ui mainwindow.py files.

5.4.2 Application layer

Application layer is pulled from the presentation layer, and controls all
application functionality by performing detailed processing. It is ac-
cessed on occasion by the user services layer. It receives the request
from the presentation layer, divides the request to many sub-missions
and sends these sub-missions to each components of the data layer.

4http://qt-project.org/doc/qt-4.8/qtopengl.html
5http://eric-ide.python-projects.org/

http://qt-project.org/doc/qt-4.8/qtopengl.html
http://eric-ide.python-projects.org/


104 An Interactive Visual Tool for Tractography Segmentation

Figure 5.9: The graphic user interface of Tractome software. On right: the structural
image and tractography; On left: the information of the current state of segmentation.

In our software, the application layer is coded in the source file of
tractome.py. We create a class named tractome, and each function of
tractome class corresponds to an event or action happening in the pre-
sentation layer. In general, it would be divided into three categories of
functions: ones involving to streamlines, ones taking care of structural
images, and ones working with the ROIs. Functions involving to stream-
lines are load tractography, save current working streamlines, save cur-
rent log of segmentation, load a log of segmentation, remove stream-
lines, select streamlines, re-cluster the current working streamlines, etc.
Structural image actions include hide or show a specific image (superi-
or/inferior or coronal plane, anterior/posterior or horizontal plane, and
left/right or sagittal plane), move a plane. ROIs functions can be listed
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as create a sphere, apply spheres on streamlines, update ROIs informa-
tion, etc.

5.4.3 Data layer

The tractome data layer includes programs to manage actor for drawing
streamlines, structural images in a very detail way. This layer is accessed
through the business services layer. This layer keeps all the action of
drawing and displaying actor independent from both application and
presentation layer. The list of files in this layer is as following:

• Manipulator.py file defines the Manipulator class, which implements
the logic of the operations for selecting, unselecting, expanding,
hiding, showing etc. of streamline clusters. It basically provides
set operations for streamline representatives.

• Streamshow.py file contains all the action that users can interact with
streamlines. The main class in this file is StreamlineLabeler class
which is inherited from the class Manipulator. Therefore, it in-
cludes all function from the mother class of Manipulator such as
select/unselect the representative track, expand/collapse the se-
lected streamlines, recluster the selected streamlines, invert selected
streamlines to unselected, hide/show all representative streamlines,
etc.

• ROIs.py file contains the class SphereTractome, which defines prop-
erties and functions for interacting between users and ROIs. Some
basic properties of ROIs are coordinates (x,y,z) of the center, radius
of sphere, color, and dimension. The main function of SphereTrac-
tome class is tractome inside, which finds streamlines that are in-
side the sphere defined by the center and radius.
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• Guillotine.py file describes the Guillotine class, inherited from the
Slicer class of fos.actor 6. It is a volume slicer actor to visualize a
3D volumetric image of the head as slices. It provides functions for
showing/hiding and moving three planes (coronal plane, horizon-
tal plane, and sagittal plane).

• Dissimilarity.py is a module that implements the computation of the
dissimilarity representation of a set of objects from a set of proto-
types given a distance function. In this module, various prototype
selection policies are available such as FFT (furthest first traversal),
SFF (subset furthest first).

5.5 Experiments

In this section we will describe in detail how the interactive exploration
of tractography data is performed with the proposed tool. Moreover, we
will show numerical experiments that provide evidence of the accuracy
and efficiency of the automatic algorithms involved in the process.

For these experiments we used the dMRI recordings of 10 healthy
subjects (100307, 124422, 161731, 245333, 528446, 556766, 201111, 199655,
239944 and 366446) from the Human Connectome Project [101], [97].
They were acquired on a Siemens Skyra 3T scanner (90 gradients; b-
value= 1000s/mm2; anatomical scan (1.25 × 1.25 × 1.25mm3)). From
these data we reconstructed the streamlines using EuDX, a deterministic
tracking algorithm [30] from the DiPy library [31]. The obtained tractog-
raphy for each subject consists of approximately of 5× 105 streamlines.

The proposed tool was implemented in Python code on top of the

6https://fos.readthedocs.org/en/latest/actors.html

https://fos.readthedocs.org/en/latest/actors.html
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Diagram: /home/nusrat/tractome, Page 1

Figure 5.10: The list of functions of each class in Tractome software.

DiPy 7, Fos 8 and OpenGL 9. The software project is distributed under a
Free/Open Source license 10. The code of the k-means and the MBKM
are from scikit-learn [85] 11. The code used to generate the tractographies

7http://nipy.org/dipy
8https://github.com/fos/fos
9http://opengl.org

10http://www.tractome.org
11http://scikit-learn.org

http://nipy.org/dipy
https://github.com/fos/fos
http://opengl.org
http://www.tractome.org
http://scikit-learn.org
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has also been published in the softwares’ web page.

5.5.1 Dissimilarity Representation and Prototype Selection

As it was mentioned in Section 5.3, the first step of the workflow (see
Subsection 5.3.1) is to project the data into the dissimilarity space Rp.
With this purpose, a set of prototypes has to be selected in advance.
Next, we present a study of the degree of approximation of the dissimi-
larity representation across different prototype selection policies i.e. Ran-
dom, SFF and S+SFF, and different numbers of prototypes. The aim is to
investigate the trade-off between accuracy and computational cost. For
SFF we chose c = 3 in order to have high probability (> 0.95) of accu-
rately representing T through the subset. For S+SFF, only streamlines
with size z > 10 will be used. By using this value, the set of streamlines
to be analysed is drastically reduced in the order of 105 times.

In order to evaluate how accurate our dissimilarity representation
is, we investigate the relationship between the distribution of distance
among objects in X through d and the corresponding distances in the
dissimilarity space through ∆d

Π, where ∆d
Π : φ(s) × φ(s′) → R+ and

∆d
Π = ||φ(s)− φ(s′)||2. It was claimed in [76], that a good dissimilarity

representation must be able to accurately preserve the partial order of
the distances, i.e. if d(s, s′) ≤ d(s, s′′) then ∆d

Π(s, s′) ≤ ∆d
Π(s, s′′) for each

s, s′ , s′′ ∈ X almost always. As a measure of the degree of approxima-
tion of the dissimilarity representation we define the Pearson correlation
coefficient ρ between the two distances over all possible pairs of objects
in X :

ρ =
Cov(d(s, s′),∆d

Π(s, s′))

σd(s,s′)σ∆d
Π(s,s′)

(5.3)

where given Ps a probability distribution over X , s, s′ ∼ Ps. In practical
cases Ps is unknown and only a finite sample F is available. We can
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approximate ρ as the sample correlation r where s, s′ ∈ F . An accurate
approximation of the relative distances between objects in X results in
values of ρ far from zero and close to 112.

The correlation and standard deviation for each prototype selection
strategy are shown in Figure 5.11 13. The correlation ρ between distances
in the original space and the corresponding distances in the projected
space was estimated by computing 50 repetitions for each subject.

We can observe that, as an overall behaviour for all subjects, SFF sig-
nificantly outperformed the random policy, in agreement to what was
reported in [76]. Moreover, it can be seen that S+SFF, outperformed the
other two policies. In particular, we conducted a one-tailed t-test com-
paring the correlation values of the 50 repetitions of S+SFF against those
of SFF for each number of prototypes p (11 values) and for each of the 10
subjects. Of these 11× 10 = 110 tests, when p ≥ 5, the obtained p-values
were always lower than 5.2× 10−13. Even considering an overly conser-
vative Bonferroni correction, the p-values were sufficiently low to reject
the null hypothesis of S+SFF equal to SFF for p ≥ 5.

We observe that S+SFF reached the highest correlation of 0.95 on av-
erage (50 repetitions) with respect to the distances in the original space,
using only 15 − 25 prototypes, which is half of the amount used in the
previous paper with the SFF policy [76].

It is also worth to notice that the standard deviation with this last
approach, σ̂S+SFF, is smaller than that of SFF, σ̂SFF, thus implying that the
proposed heuristic is more stable. To support this point, we conducted
a one-tailed t-test of the standard deviations of correlation for the 10
subjects, comparing S+SFF vs. SFF for each number of prototypes p (11

12Note that negative correlation is not considered as accurate approximation. Moreover it never oc-
curred during experiments.

13The figure is restricted to 6 of the 10 subjects for lack of space. The graphs of all subjects showed an
equivalent behaviour.
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Figure 5.11: Average correlation between d and ∆d
Π across the different prototype se-

lection policies and different numbers of prototypes. Each figure corresponds to a
different subject.

values). In all these 11 tests, the p-values were always lower than 1.2 ×
10−5. Even considering a very restrictive Bonferroni correction, the p-
values were sufficiently low to reject the null hypothesis of σ̂S+SFF = σ̂SFF.

From these results we can conclude that the dissimilarity representa-
tion works well for preserving the relative distances. Given the number
of prototypes with which the maximum correlation was reached, it is
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proven that this approach can produce compact feature spaces for this
kind of data. Moreover, we observed that the S+SFF policy can be easily
computed on a standard computer even in the case of a large tractogra-
phies. Therefore, we use the S+SFF to obtain an efficient and effective
selection of the prototypes in our tool.

5.5.2 Tractography exploration example

In the following, we describe the steps for the tractography exploration
process with our tool, based on the workflow presented in Section 5.3.
For the example, we use subject 100307 from the HCP data set, and the
goal is to explore the Corticospinal Tract (CST). For the embedding of
the tractography in the dissimilarity space, and based on the study from
the previous subsection, we use p = 20 prototypes and the new S+SFF
prototype selection policy, according to the results in Section 5.5.1. The
prototype selection and the actual embedding of ≈ 5 × 105 streamlines
required ≈ 630s. The resulting matrix φ(T ) ∈ R500K×20 was computed
once and stored, so that the time to compute the projection did not affect
the interactive segmentation.

The full brain tractography (Figure 5.12.A) of ≈ 470000 streamlines
was initially clustered in k = 150 clusters and the medoids were pre-
sented to the user (5.12.B). We have observed from previous trials with
experts, that k = 150 is approximately the highest number of medoids
the users could comfortably interact with in the 3D scene when the whole
tractography is presented. Afterwards, the expert selected 11 clusters by
clicking on the corresponding medoids (5.12.C, in white). These medoid
streamlines are those approximating the structure, or positioned in the
area (provided by the structural image) that correspond to the CST. In or-
der to know if she is going in the proper direction and the right medoids
were selected, the expert usually explores the composition of the clus-



112 An Interactive Visual Tool for Tractography Segmentation

ters. With this purpose, the expert expands on the selected clusters
(Zooming), which in this case represent a set of ≈ 35000 streamlines
(5.12.D), that are shown in the same screen with a different line thick-
ness. In order to be able to continue and do a further analysis, the ex-
pert re-clusters the streamlines of the initially selected clusters, into new
k = 50 clusters (5.12.E) and selects 15 of them (5.12.F, in white). In this
case, and from now on, the number of clusters is interactively specified
by the expert. We have also observed that 50 medoids are approximately
the highest number she can comfortably interact with after the initial se-
lection from the full tractography. The 15 selected clusters corresponds
to≈ 9600 streamlines (5.12.G) that are then re-clustered into k = 50 clus-
ters (5.12.H). For the selection and exploration of the clusters, the user
may need to interact with the 3D slicer by rotating it, such that she can
explore the different areas that streamlines are passing through. More-
over, the expert may need to do panning, zoom-in or zoom-out on a set
of streamlines, such that she can explore and study the conditions of the
structures of the streamlines. In two further steps the user reduced the
selected streamlines to ≈ 2000 (5.12.J) and then to ≈ 650 (5.12.M), until
he finally reached the desired anatomical structure, i.e. CST.

5.5.3 Clustering analysis

The average timings of the MBKM algorithm in each step of the explo-
ration process are reported in Table 5.1. These are also compared to those
of the k-means algorithm, in order to prove its scalability with respect
to the former algorithm. In the first column (size) are reported the size
of the subset of streamlines that were clustered. The second column (k)
reports the number of clusters, according to the notes expressed above.
The third (k-means) and the fourth (MBKM) report the time for clus-
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Figure 5.12: The segmentation process. (A) Full tractography ≈ 5 × 105 streamlines;
(B) Computation of 150 clusters (C) Selection of 11 clusters (in white); (D) ≈ 35000
streamlines corresponding to previous selection; (E) Computation of 50 clusters (F) Se-
lection of 15 clusters; (G) ≈ 9600 streamlines corresponding to the previous selection;
(H) Computation of 50 clusters (I) Selection of 15 clusters; (J) ≈ 2000 streamlines corre-
sponding to the previous selection; (K) Computation of 50 clusters (L) Selection of 25
clusters; (M) ≈ 650 streamlines corresponding to previous selection and representing
the segmented CST.
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size k k-means MBKM b medoids
500 50 0.3s 0.2s 100 0.006s

1000 50 0.6s 0.2s 100 0.007s
5000 50 7.2s 0.4s 100 0.011s

10000 50 19.8s 0.6s 100 0.015s
15000 50 32.4s 1s 100 0.021s

470000 150 > 2000s 42s 1000 0.28s

Table 5.1: For a given number of streamlines (1st column, size) and a given number of
clusters (2nd column, k) the time to compute the clustering with k-means and MBKM
is reported in the 3rd and 4th columns, respectively. The size (b) of the mini-batches
for MBKM is in the 5th column. The time to compute the medoids from the centroids
is in the 6th column.

tering14. The Fifth column reports the size (b) of the mini-batches for the
MBKM, which was always 100 except for the full tractography for which
we observed a significant gain in time when increasing it to 1000. The
sixth column reports the time to compute the medoids from the cen-
troids provided by k-means and MBKM. Each medoid was computed
with simple exhaustive search within each cluster. The time to compute
all medoids was always negligible with respect to the clustering time.
All computations were performed on a standard desktop computer.

As it is shown in the Table, the time required to cluster the streamlines
with the MBKM was always the lowest one, i.e < 1s during interactive
use, thus meeting the requirements for a comfortable user experience.

5.6 Case Study

In this part, we demonstrate the usefulness of our proposed interactive
visualization tractography segmentation software tool in the neurosci-
entific analyses activities. The first one is to study the characterisation of
the amiotrophic lateral sclerosis (ALS) disease through the corticospinal

14The clustering of the whole tractography can be computed once and stored, so its time does not
affect the interactive use.
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tract. The second one uses the result of tract segmentation for validation
the tractography registration method.

5.6.1 Corticospincal Tract segmentation for ALS disease analysis

In this part, we demonstrate the usefulness of tract segmentation us-
ing our Tractome software, in clinical study. Our work is motivated by a
clinical research hypothesis about the characterisation of the amiotrophic
lateral sclerosis (ALS) disease. Amyotrophic Lateral Sclerosi (ALS), also
known as motor neurone disease or Lou Gehrigs disease, is a progres-
sive neurodegenerative disease that affects nerve cells in the brain and in
the spinal cord controlling voluntary movement. Motor neurons reach
from the brain to the spinal cord and from the spinal cord to the mus-
cles throughout the body. As motor neurons degenerate, they can no
longer send impulses to the muscle fibers that normally result in mus-
cle movement. The result is wasting and atrophy of muscles, leading to
difficulties in speaking, swallowing, stumbling, permanent fatigue and
cramping, amongst other symptoms. The ALS is known to be affected
by CST (Corticol Spinal Tract) [21] and for this reason, the long term goal
is to characterise these effects through tractography data.

Usually, CST starts from the cerebral cortex, and terminates in the
spinal cord. Note that fibers after crossing over from one side to the
other in the medulla, continue downward in the lateral corticospinal
tract on the opposite side and go to muscles (see Figure 5.13-left). Each
crossed corticospinal tract, therefore, conducts motor impulses from one
side of the brain on interneurons or anterior horn motoneurons on the
opposite site of the cord. That is the reason why impulses from one side
of the cerebrum cause movements of the opposite side of the body. An
example of CST can be found in the Figure 5.13.

From the prior knowledge of neuroscientists and doctors, there is



116 An Interactive Visual Tool for Tractography Segmentation

Figure 5.13: Left - the Cortico Spinal Tracts in general. Right - the left CST segmentation
of the control ID 201 in the dataset ALS with 487 streamlines

an evidence about the reducing of the number of fibers in CST of ALS
patients compared with control people [21]. It is also the same situa-
tion with the volume of CST. Beside the number of fibers and the vol-
ume, fractional anisotropy (FA) and mean diffusion (MD) also play an
important role for recognizing the ALS disease. Following are some
quantitative features which may effectively affect on ALS patients: fiber
count - the number of streamlines belonging to CST; fiber length in mm

(min, max, mean length); fiber volume - number of voxels occupied by
all streamlines or the bounding geometry cylinder of CST; fiber density -
ratio between fiber count and voxel number; fragmentation - be quanti-
fied by the ratio between fiber count and the volume; fractional anisotropy
(FA) - defined as mean value of the standard deviation in the three eigen-
values and in the range 0 to 1

FA =
1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

(5.4)
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and mean diffusion (MD) - the average diffusion rate in all directions

MD =
trace(DT )

3
=
λ1 + λ2 + λ3

3
(5.5)

where (λ1, λ2, λ3) is eigenvalues of diffusion at a given voxel.

The dMRI data from ALS patients and healthy controls collected were
collected with the aim of studying the effects of the ALS disease on the
corticospinal tract (CST) (see Figure 5.13), an anatomical structure that
connects cortical motor areas to the spine and the body. Traditionally,
diagnostic decision making has involved using evidence provided by
patient data coupled with priori experience of physician. Up to now, it
is still very much an art for many physicians due to a lack of quantitative
tools and measurements. In this work, we overcome this drawback by
exloring our proposed software tool for segmenting CST from the full
brain tractography of each subject.

The dataset in our experiments was recorded with a 3T scanner at
Utah Brain Institute15. This dataset consisted of 12 healthy controls and
12 subjects; 64 (+1, i.e. b = 0) gradients; b-values 1000; anatomical scan
(2 × 2 × 2mm3). We reconstructed the streamlines using EuDX tracking
algorithm [30] from dipy16 with 3 × 105 random seeds. CST segmenta-
tion was done by doctors17 using our interactive visualization tool. An
example of CST segmentation from ALS dataset is in figure 5.13 (left).
As the result, we had 48 segmentations (24 of patients including 12 left
CST and 12 right CST; and similar for controls).

After segmentation, we computed the value of quantitative features:

15The authors are grateful to Prof. Mark B.Bromberg, Prof. Lubdha Shah and Prof. Perry Renshaw
of the Department of Neurology and the Department of Radiology, University of Utah (US), for their
assistance in acquiring MR data

16http://www.dipy.org
17We thank Nivedita Agarwal, Department of Neuroradiology, S.Maria del Carmine Hospital,

Rovereto, Italy and Francesca Maule, University of Trento, for the segmentation of the corticospinal
tracts.

http://www.dipy.org
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fiber count, fiber length (min, max, mean), fiber volume, fiber density,
fragmentation, FA and MD. We, then, did a t − test on each set of left
and right. It showed that, in the right CST, fiber number significantly
decreased (p = 0.00042) in ALS patients (meanfiber−number = 294) com-
pared with controls (meanfiber−number = 640). In contrast, patients had
the fiber min length slightly higher then controls (p = 0.07, patients:
meanmin−length = 74.25 and controls: meanmin−length = 53.9). Moreover,
the volumn of the left CST dramatically diminished (p = 0.0034) be-
tween patients (meanvolumn = 6038) and healthy peoples (meanvolumn =

4230). These are just some preliminary results and it needs more in-
vestigation to confirm the difference between healthy and ALS-diseased
brain. But it also shows an strong evidence that the tract segmenation
has a bright capability for applying in clinical diagnosing application.

5.6.2 Comparison between voxel-based and tract-based registration

Traditionally the segmentation task is done by neuroanatomists, and it
consumes a lot of time and effort due to the large number of streamlines
(about 3 × 105 in a normal brain). Moreover, the variability of the brain
anatomy among different subjects makes the segmentation become a dif-
ficult task [12]. The first task in this endeavour is to align or register
tractographies from different subject together. Registration is the prob-
lem of identifying the process of geometric transforming the coordinate
system of an image to be as spatially aligned to a reference image, more
generally establishing a homology among the input images [43]. In this
scenario, a group of transformations needs to be established to put all
the inputs into correspondence [114]. Specific to the tractography regis-
tration, it is most often performed by applying the transformation result-
ing from an image-based fractional anisotropy (FA) or diffusion tensor
imaging (DTI) [38, 106, 37, 113]. Recently, O’Donnell et. al. proposed
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the unbiased multiple subject registration using the trajectory data pro-
duced by streamline tractography [72]. The idea to work on determinis-
tic tractography rather than dMRI images or FA images is quite innova-
tive, and it may be advantageous to register the tracts themselves as the
quantity being optimized would be closely related to the final goal. An
open point of [72] is how to collect evidence that the proposed approach
is effective in practice.

In this work, we attempt to evaluate the result of [72] in the context
of tractography segmentation. The transformed tractography after reg-
istration will be fed into a classifier to do the segmentation of tracts. We
conceive an experiment of applying the whole process on the clinical
case study of dMRI dataset. The results are used to empirically analyze
the usefulness of [72] in the context of supervised segmentation of tracts.

Data acquisition and tractography

The dataset and tractography in this experiment is the same as in the
previous one (see more detail in Section 5.6.1).The dataset consisted of
the brain tractography from 12 ALS patients and 12 healthy controls.

Tractography registration

Method 1: affine FA to MNI Atlas.
FLIRT [48] is a linear (affine) image registration algorithm in FSL 18,

and is specifically developed for brain imaging. It is a robust and accu-
rate automated affine registration tool based around a multi-start, multi-
resolution global optimization method [47]. It is available as part of the
FSL software package. It provides different cost functions, including the
within-modality functions Least Squares and Normalised Correlation,

18http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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as well as the between-modality functions Correlation Ratio, Mutual In-
formation and Normalised Mutual Information. Additionally, it can be
run with a number of different transformation model (degrees of free-
dom - DOF) and it generates a global cost function as weighting of all
cost functions. In our experiment, we ran this algorithm with the de-
fault parameter as recommendation from FSL (6 ODF and correlation
ratio as cost function). All registrations were performed on the FA vol-
umes, which are computed from the corresponding diffusion weighted
images, with the FMRIB−58 FA template 19 in MNI atlas space as the
reference image. Bellow, we refer to this registration as MNI-registration
method.

Method 2: unbiased groupwise tractography registration, tract-based affine.

Instead of doing registration by applying the transformation result-
ing from an image-based fractional anisotropy (FA) as in method 1, re-
cently O’Donnell et. al. proposed the unbiased multiple subject regis-
tration method using the trajectory data produced by streamline trac-
tography [72]. It presents a brain tractographyd as a probability distri-
bution on trajectories. The brain distribution is constructed as a kernel
density estimate from the tractography, and an atlas distribution is con-
structed as a mixture of the constituent brain distributions. From this
atlas, the entropy of all fibers is calculated. By minimizing this entropy
the registration can successfully align the tractography in multiple sub-
jects. The most advantages of this method is that it does not require any
other prior information from outside of the set of fibers needed to be
registered. Moreover, because it is based on only tractography data, the
aligning the tracts themselves as the quantity being optimized would
be closely related to the final goal. In this project, we used the current

19the average of 58 well-aligned FA images from healthy male and female subjects aged between
20− 50
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Figure 5.14: An example of the atlas after registration using tract-based method. Note
that each color is a different subject

library available at whitematteranalysis 20. Each tractography was sub-
sampled with 750 fibers for creating the atlas, and each fiber was down
sampled to 5 points.

Expert selection of CST

The groundtruth data was manually segmented by experts from both
CiMec center 23 and Azienda Provinciale Sanitari, Trento, Italy 24 using
our computer aided tractography segmentation software tool, Spaghetti 25.
First, the full tractography is initially clustered in k clusters/medoids (k
is around 150 to 200). The expert then manually selects the medoids/-

20https://github.com/ljod/whitematteranalysis
23http://www.unitn.it/en/cimec
24http://www.apss.tn.it/
25https://github.com/dporro/spaghetti

https://github.com/ljod/whitematteranalysis
http://www.unitn.it/en/cimec
http://www.apss.tn.it/
https://github.com/dporro/spaghetti
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Registra)on	  results	  

MNI	   Tract	  (leave-‐one-‐out)	  
One	  of	  many	  LOO	  registra)ons	  

Figure 5.15: At left, the visualization of tracts from alll subjects to MNI space, per-
formed by affine FA image registration to FA−FMRI58 atlas, then applying the trans-
form to the tractography. Each subject is presented by a unique color. At right, the
visualization of results of unbiased tract-based registration performed with the soft-
ware package whitematteranalysis 22.

clusters of interest in order to remove most of the streamlines not related
to the anatomical structure of interest. The process of reclustering the se-
lected streamlines and of manual selection by the expert is iterated until
the expert is confident of having segmented the structure of interest (in
our case it is corticospinal tract). More detail about Spaghetti can be
found in [74]. As the result, each subject/control has two CSTs, one in
the left brain and another in the right one. In total, we have 12 left CSTs
of patients, 12 right CSTs of patients, and the same quantity for healthy
controls.

Note that, the tractography used in this step is only the MNI-registration
result, because the current version of Spaghetti does only support in the
MNI space not in native space. Moreover, instead of saving the CSTs
as the real streamlines belonging to CSTs, we only saved CST as indices
of the streamlines, which is the ordered number of each streamline in



Case Study 123

the whole tractography ranging from 0 to N − 1, where N is the size
of tractography in the number of streamlines. With these indices, it is
easy to extract the real CSTs both in MNI-registered tractography or in
tract-based registered tractography.

Training of SVM classifier for CST segmentation

Dissimilarity representation: In this experiment, we used SVM (support
vector machine) classifier[20] to automatically segment the CST. Due to
the fact that each streamline has different length and different number
of points, while SVM requires the data to lie in a vectorial space, it is
necessary to find a representation φ of streamline in a vectorial space,
by mapping a streamline s from its original space T to a vector of Rp -
φ : T 7→ Rp, where p is the dimension of the new space. In [72], au-
thors downsample each streamline into 5-point length to calculate the
distance between two streamlines. Downsampling is somehow simple
and easy to calculate, but it also has some limitations(see [76] for more
detail). Here, we proposed to use the dissimilarity approximation [88] in-
stead of downsampling. This replacement promises a better result of
registration comparing with the downsampling method.

The dissimilarity representation [88] is defined as φdΠ(X) : X 7→ Rp

s.t. φdΠ(X) = [d(X, X̃1), . . . , d(X, X̃p)], where d(·, ·) is a distance func-
tion between two streamlines, and Π = {X̃1, . . . , X̃p} ⊆ X is a set of
p streamlines called prototypes. The quality of the Euclidean embed-
ding is strongly dependent on the selection of the prototypes (see [86,
76]). The dissimilarity representation for streamlines was previously
proposed in [76].

One-class-SVM classifier: Support vector machines (SVMs) are a set of
supervised learning methods used for classification, regression and out-
liers detection. In this experiment, we used the current version of SVM
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classifier available at scikit-learn[84]. For the purpose of evaluation the
correctness of the classifier, we used leave-one-out fashion to separate
the initial tractography dataset into two sub-dataset, one for training
and the other for testing.

At first, for the training step, all n− 1 subjects S = {s1, s2, ..., sn−1} in
the training dataset would be fed in the groupwise registration process,
and it resulted in n − 1-registered subjects S

′
= {s′1, s

′

2, ..., s
′

n−1}. Beside
the set of n − 1 registered subjects, we also created the atlas A of n-1
training subjects. An example of atlas can be found in the Figure 5.14.

Let T = {T1, T2, ..., Tn−1} be n − 1 corticospinal tracts of S
′
. The dis-

similarity approximation was then used to represent each streamline t ∈
Ti,∀i ∈ [1, n−1] as a p-dimension vector: t

′
= (d(t, x1), d(t, x2), ..., d(t, xp)),

where d(a, b) was the distance between two streamlines a and b; and
π = (x1, x2, ..., xp) was a set of p prototypes chosen from T . From the
representation, the Euclidean distance was calculated between each pair
of streamline representation to create the dissimilarity matrix. After
that, the dissimilarity matrix was fed into the SVM classifier for training.
Note that, in this experiment, the purpose was to know which stream-
line would belong to the CST, so instead of using the multiple class SVM,
the one-class-SVM classifier was then used.

Testing of SVM classifier for CST segmentation

The testing subject was first registered to the atlas A (created during the
tractography registration step when prepairing for training SVM) sepa-
rately with the registration process of training set. The aim was to make
sure that the testing subject was completely new with the training set,
and thus it did not provide any information which could effect on the fi-
nal classifier. After registered, the testing subject was also re-represented
using the same prototype set p, and this representation was put into one-
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Expert	  CST	  input:	  na0ve	  space	  

control	   pa0ent	  

Figure 5.16: An example of the input CST from controls and patients. To create this test
dataset, 46 expert segmentations were produced using our interactive segmentation
software.

class-SVM classifier for automatically segmenting the CST.

Experiments

The entire pipeline consists of the following steps: 1. tractography reg-
istration to a common coordinate system; 2. extraction of CST according
to expertly selected tracts (represented as indices into the tract file); 3.

creation of a CST segmenter by training an SVM classifier using expert
labeled training data; and 4. testing of the classifier. We performed this
pipeline experiment in a leave-one-out fashion, and for each type of reg-
istration. Thus, the whole pipe line was run 24 × 2 times. Tract-based
registration used 750 fibers of length > 120mm per subject to form the
atlas, and 2000 for registration to the atlas.

Cross-validation: from the N -objects dataset, we trained the one-class
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Example	  output:	  control	  207,	  tract-‐based	  

RED:	  TP	  
BLUE:	  FP	  

RED:	  TP	  
BLUE:	  FN	  

Example	  output:	  control	  207,	  tract-‐based	  

Figure 5.17: An example of the result of CST segmentation in one subject. At left,
result calculated in tract-atlas space, in the middle, result calculated in MNI space. For
comparison, at right the input expert segmentation.

SVM classifier on N − 1 objects, and d the test on the remain object.
We measured true positive (TP), false negative (FN), false positive (FP),
true negative (TN) in units of numbers of tractography trajectories, by
comparing the output of the SVM classifier to the known ground truth
labels. The precision and recall were also calculated. We evaluated the
effect of the registration methods using a paired t-test on the leave-one-
out results. Example results of both styles of registration, applied to the
tractography from multiple subjects are in Figure5.15. Examples of the
input and output of SVM CST classifier are in Figures 5.16 and 5.17. The
average and standard deviation of the performance of the SVM classifier
over all subjects, are presented in Table I. It is possible to see that there
is no significant difference between two registration methods.

This work represents an evaluation of a novel method for white mat-
ter registration. It demonstrates the potential of tractography registra-
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Table 5.2: Performance of CST SVM classifier over 20 leave-one-out trials, in two atlas
coordinate systems. On the left, unbiased tract-based registration atlas space vs on
the right MNI FMRIB58−FA atlas space. The t-test does not detect a different in these
methods.

tract-based MNI

mean std mean std t-test

training-error 0.10 0.01 0.10 0.01 0.18

training-correct 0.90 0.01 0.90 0.01 0.18

precision 0.45 0.15 0.46 0.17 0.23

recall 0.93 0.06 0.92 0.08 0.48

TP 566.71 252.02 563.43 257.82 0.66

FN 44.95 44.47 48.24 48.10 0.66

FP 733.33 372.44 703.29 400.39 0.39

TN 17856.24 3620.64 17886.29 3569.35 0.39

tion, which is sufficient to align the group data comparably to a popular
affine registration method with respect to automatic tract segmentation.
However, it is also clear that future work is needed, for example to in-
crease robustness to tractography variability across subjects; to optimize
parameter settings, to increase the appeal of such a tractography regis-
tration method; and to tune the parameter of classifier to increase speci-
ficity of the SVM itself with reducing the false positive.

5.7 Conclusions

We created a visual data mining tool for the exploration and analysis of
tractography data sets. It provides the expert with a meaningful sum-
mary of the data and allows an iterative visual exploration of these large
data sets, by integrating it with automatic clustering. In order to pro-
vide the user with a comfortable interaction with the tool, we used a
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scalable automatic algorithm. Moreover, a more effective representation
for brain tractography data is used, such that the use of efficient imple-
mentations of the clustering algorithms are possible. These also allow
for the use of advanced visualization and interaction techniques, such
that the visual scalability requirement is accomplished. Considering the
observed timings and the scalability of the interactive visualization, we
observed that a trained neuroanatomist could find the studied tract in
approximately 5 iterations. Thus, based on the performed studies, we
believe that this software is compliant with the requisites of a scalable vi-
sual data mining tool. Consequently, it should provide neuroanatomists
with a more useful system for the exploration of tractography data sets.



Chapter 6

Conclusion

The aims of this PhD thesis were to develop methods using machine
learning techniques to enhance the robust segmentation of a specific
tract from a whole brain white matter tractography. In the final chap-
ter, we present the summary of our main original contributions, and
discuss the extent to the works already described in previous chapters,
that needs to be done.

6.1 Summary

In this document we investigated the using of machine learning tech-
niques in neuroimaging for tractogarphy segmentation task. First, we
propose a design of interactive segmentation process based on BOI (bun-
dle of interest) approach instead of traditional ROI (region of interest)
one. While ROI concerns about which streamlines go through some in-
teresting regions, BOI focuses only on streamlines inside some specific
bundles. Using BOI would make medical practitioners concentrate on
which tracts they are working on, and thus, the final target tract would
be easy to get.

Second, we suggested to use dissimilarity representation as a novel
way to present streamlines in a vectorial space, which is required for
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most of the current machine learning algorithms. We investigated the
degree of approximation of the dissimilarity representation for the goal
of preserving the relative distances between streamlines within tractogra-
phies. Empirical assessment has been conducted on both simulated and
real dMRI datasets, and through various prototype selection methods.
The results from real tractography data reached correlation ≥ 0.95 with
respect to the distances in the original space. This fact proved that, the
dissimilarity representation works well for preserving the relative dis-
tances. Moreover on tractography data the maximum correlation was
reached with just approximately 20 − 25 prototypes. Thus, it claimed
that the dissimilarity representation can produce compact feature spaces
for this kind of data.

In order to handle the computational burden of clustering a large
number of streamline under strong time constraints for real-time inter-
action when doing segmentation, we proposed a solution based on the
dissimilarity representation and the MBKM (mini-batch k-mean) algo-
rithm. Experiments on real dMRI data showed that the time required to
cluster the streamlines with the proposed solution was always the low-
est and always < 1s during interactive use, thus it met the requirements
for a comfortable user experience. Conversely, the time required by the
standard k-means algorithm was inadequate. At the first step of the
segmentation session the clustering of the whole tractography requires
≈ 20s with the proposed method. This may be an issue with interactive
use, but can be solved by pre-computing this clustering once and then
by storing the result together with the actual dataset for future use.

When studying tractography data across subjects, it is usually neces-
sary to align, i.e. to register, tractographies together. This registration
step is most often performed by applying the transformation resulting
from the registration of other volumetric images (T1, FA). In contrast
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with registration methods that transform tractographies, in this work,
we tried to find which streamline in one tractography corresponds to
which streamline in the other tractography, without any transforma-
tion. In other words, we tried to find a mapping between the tractogra-
phies. We proposed a graph-based solution for the tractography map-
ping problem and we explained similarities and differences with the re-
lated well-known graph matching problem. Specifically, we defined a
loss function based on the pairwise streamline distance and reformulate
the mapping problem as combinatorial optimization of that loss func-
tion. We showed preliminary promising results where we compared
the proposed method, implemented with simulated annealing, against
other standard registration techniques in the task of segmentation of the
corticospinal tract.

Although dissimilarity representation is able to build a fast and accu-
rate vectorial representation for streamline, it limits to only intra-subject
while most of neuroscientific analyses of tractography require inter-subject
comparisons. In this work, we proposed the algorithmic solution to
build the common vectorial representation of streamlines across subject.
The core of the proposed solution was to combine two state-of-the-art
elements: first using the recently proposed tractography mapping ap-
proach to align the prototypes across subjects; then applying the dissim-
ilarity representation based on the aligned prototypes to build the com-
mon vectorial representation for streamline. We evaluated our proposed
solution in the context of tractography segmentation. Results from CST
(Cortical Spinal Tract) segmentation showed that our method can pro-
duce a good vectorial representation for streamlines across subjects com-
paring to the original tractography registration method.

We also provided an implementation of our framework for tract seg-
mentation, call TRACTOME. In this scientific interaction tool we pre-
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sented a novel, simple way to interactively visualize and segment stream-
lines from large tractogaphy in 3D space. We solved the problem of
interacting with tractographies by creating real-time simplifications in
terms of the underlying bundle structures. The process that we pro-
posed works recursively: starting from a small number of clusters of
streamlines the user decides which clusters to explore. Exploring a clus-
ter means that the application re-clusters its content at a finer grained
level. This goes, as far as we know, beyond any other available medical
imaging software. Moreover, this demonstration also integrated many
utility functions, such as undo, log, zoom, save the works, load the re-
sult, etc. This enables medical practitioners and researchers to mean-
ingfully navigate the entire space of the tractography and perform the
segmentation task more easily and accuracy.

6.2 Future works

Here, we will describe our future plans and what the research extension
that we want to take after finishing this thesis.

Tractography mapping: currently, as a preliminary strategy to ap-
proximate the minimal loss function to get the optimal mapping, we im-
plemented the simulated annealing (SA) [54] meta-heuristic, a reference
method for combinatorial optimization. We are aware that this method
of combinatorial optimization can be significantly improved by using
different optimization method, or even we should propose a specific op-
timizer for our problem.

Common representation: in this work, we proposed a new method
for building a common vectorial representation for streamlines across
subjects. However, the evaluation process was only based on the seg-
mentation task. We need to investigate a general method for evaluating
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the common vectorial representation for streamlines.
Clinical application: up to present, the task of finding the difference

between healthy and ALS diseased brains has not completed yet. We
believe that the satisfactory result will be published in near future. After
that, the general framework for clinical diagnosing based on the differ-
ences between two folders of interesting tracks must be presented and
applied for other brain diseases.

Software improvement: we plan to investigate further pattern recog-
nition algorithms to better support the expert during tractography seg-
mentation. One example is to use supervised machine learning to au-
tomatic identify the candidate of a specific tract from a given a set of
labelled-streamlines, instead of working on the whole tractography at
the beginning. Working on this direction is able to help the segmenta-
tion task to get a high accuracy with less computational cost. Moreover,
integrating the libraries used in our software in order to run it in differ-
ent platform is also another work which has to be done in near future.
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Polynomial Smoothed Complexity. In Proceedings of the 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS
’09, pages 405–414, Washington, DC, USA, 2009. IEEE Computer
Society.

[5] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory
of learning with similarity functions. Machine Learning, 72(1):89–
112, August 2008.

[6] P. J. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spec-
troscopy and imaging. Biophysical journal, 66(1):259–267, January
1994.



136 Bibliography

[7] Pierre-Louis L. Bazin, Chuyang Ye, John A. Bogovic, Navid Shiee,
Daniel S. Reich, Jerry L. Prince, and Dzung L. Pham. Direct seg-
mentation of the major white matter tracts in diffusion tensor im-
ages. NeuroImage, 58(2):458–468, September 2011.

[8] T. E. Behrens, H. Johansen Berg, S. Jbabdi, M. F. Rushworth, and
M. W. Woolrich. Probabilistic diffusion tractography with multiple
fibre orientations: What can we gain? NeuroImage, 34(1):144–155,
January 2007.

[9] T. E. J. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-
Berg, R. G. Nunes, S. Clare, P. M. Matthews, J. M. Brady, and
S. M. Smith. Characterization and propagation of uncertainty in
diffusion-weighted MR imaging. Magn. Reson. Med., 50(5):1077–
1088, November 2003.

[10] W. D. Bidgood and S. C. Horii. Introduction to the ACR-NEMA
DICOM standard. RadioGraphics, 12(2):345–355, March 1992.
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