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Introduction

Motivations & Goals

 General summary

 Resting-state or task-free functional magnetic resonance imaging (RS-fMRI) of 

the human brain is a functional neuroimaging technique that exploits the magnetic 

resonance (MR) technology to measure spontaneous brain activity in-vivo using 

endogenous contrasts associated with blood flow changes (Ogawa et al., 1990). fMRI 

experiments are characterized by the acquisition of T1-weighted (structural) and T2*-

weighted (functional) images, the latter obtained using the blood-oxygen-level-

dependent (BOLD) contrast (Ogawa et al., 1992). This endogenous contrast  is 

advantageous for scientific and medical research for being non-invasive and 

comparatively  cheap for not  requiring administration of paramagnetic external contrasts 

or radioactive tracers (Ogawa et al., 1990).

 The RS-fMRI methodology was introduced a couple of decades ago with the 

discovery  of functional co-activation patterns in sensory-motor areas even in absence of 

task performance (Biswal et al., 1995; Biswal et al., 1997) and has since been developed 

into well structured experimental protocols. During RS-fMRI studies, subjects are 

typically instructed to stay still in the scanner, refraining from being engaged in any 

cognitive task. This allows the investigation of the whole human brain intrinsic 

functional organization across several neurophysiological states.

 This thesis will consider functional connectivity MRI (FC-fMRI) measures of 

cortical brain activity  using RS-fMRI. FC-fMRI is defined as a statistical measure of 

temporal dependencies of the BOLD signal (defined on T2*-weighted images) among 

distinct brain regions or areas of the brain (defined on T1-weighted images). Resting-

state FC-fMRI revealed the existence of several widely  distributed coactive brain areas, 
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usually  referred to as resting-state or intrinsic brain networks that are associated with 

self-oriented cognition and other neurophysiologic and metabolic processes in the 

cortical areas under consideration (Van den Heuvel & Hulshoff Pol, 2010).

 In this thesis we focus on one particular intrinsic brain network, the default-

mode network (DMN) (Greicius, 2003). The DMN has recently received particular 

attention from clinical neurosciences since its intrinsic FC-fMRI appears to be sensitive 

to a wide range of neurodevelopmental, neuropsychiatric and neurodegerative disorders 

(Anticevic et al., 2012). Therefore, considering the ease of acquisition and the technical 

feasibility of RS-fMRI with non-cooperative clinical populations, intrinsic DMN 

connectivity properties could be used to validate clinical and develop preclinical 

biomarkers to predict and monitor disease progression (Chhatwal & Sperling, 2012; 

Greicius et al., 2004; Zhou et al., 2010).

 Despite the potentials of the intrinsic DMN connectivity as a disease marker, 

there are several signal fluctuations of non-neural origins that  confound intrinsic FC-

fMRI estimates within the DMN. The BOLD contrast is only an indirect measure of 

cortical brain activity and captures several unwanted artifacts rising from human 

physiology or MRI hardware system. This means that suboptimal choices in defining 

RS-fMRI protocols could lead to reduced BOLD sensitivity to neural activity. Recently, 

many issues related to different aspects of RS-fMRI protocol were investigated, 

including acquisition issues (Biswal et al., 2010; Patriat et  al., 2013), data preprocessing 

(Cordes et al., 2001) and analysis (Chang et al., 2009; Fox et al., 2009; Murphy et al., 

2009; Power et al., 2012; Tzourio-Mazoyer et al., 2002; Van Dijk et  al., 2012; Yeo et al., 

2011). Altogether, these observations indicate that physiological and MRI hardware 

related artifacts confound FC-fMRI metrics in RS-fMRI making their interpretation 

quite challenging (Power et al., 2014; Van Dijk et al., 2012; Weissenbacher et al., 2009). 

This thesis focuses on the identification and elimination of two main resting-state FC-

fMRI confounds that hamper the characterization of intrinsic FC-fMRI within the 

default-mode system: physiological noise (intended as cardiac and respiratory  related 

fluctuations) and head motion.

Chapter 1
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 Physiological noise artifacts

 Physiological noise rising from cardiac activity and respiration can either 

increase or decrease intrinsic FC-fMRI in resting-state networks leading to an 

overestimation or underestimation of intrinisc DMN connectivity (Churchill et  al., 

2012; Liu et al., 2006; Welvaert & Rosseel, 2012). In particular, unless monitored 

during the fMRI scanning sessions and removed offline (Birn et al., 2006; Birn et al., 

2009; Lund, 2001) signals associated with human physiology unavoidably introduce 

unwanted variability  in resting-state FC-fMRI metrics across subjects or repeated 

sessions. However, due to technical limitations or lack of MRI equipment it  is often not 

possible to monitor physiological signals during MR acquisitions. This is often the case 

in multisite studies where MRI-compatible pulse-oxymeters and respiration belts might 

not be available at each site.

 In these cases, retrospective data-based correction methods can be used to  

estimate and reduce the effects of physiological noise. These technical approaches 

include the averaged white matter (WM) and cerebral spinal fluid (CSF) nuisance 

regressions (Behzadi et al., 2007; Jo et  al., 2010), Bayesian methods to track the 

frequency trajectories of cardiac and respiration for removing physiological noise 

(Sarkka et al., 2012) or canonical correlations analysis to identify autocorrelated 

physiological noise (Churchill & Strother, 2013). Other methods exploit independent 

component analysis (ICA) to remove temporal (Beall, 2010; Beall & Lowe, 2007) or 

spatial components associated to physiological noise (Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014).

 Retrospective physiological denoising methods have their limitations. 

Retrospective estimation of physiological fluctuations based on the periodicity of the 

respiration or the heart beat (Glover et al., 2000; Hu et al., 1995) is limited by the 

model-order selection of the Fourier transformations (Beall & Lowe, 2007). While low 

model-orders would only  minimize noise in the data (Glover et al., 2000) higher model-

orders would overfit heart beat and respiration profiles (Harvey  et al., 2008) reducing 

also non-noise signal variance (Beall & Lowe, 2007). On the other hand, ICA-based 

separation does not reduce temporal correlations between resting-state brain networks 

and parallel measures of human physiology (Beall & Lowe, 2010). This could depend 

1.1.2.
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on ICA model-order dimensionality  (Beall & Lowe, 2010) and highlights the need of a 

specific physiological denoising strategy prior running ICA algorithms.

 Therefore, it remains an open question what is an optimal physiological 

correction strategy that increases DMN specificity. The contributions of cardiac and 

respiratory activity on BOLD signal fluctuations as a function of age are unknown; 

therefore physiological effects in young and elderly people may be different. 

Furthermore, the application of resting-state FC-fMRI as a longitudinal biomarker of 

dementia would require both reliability  and sensitivity  to longitudinal neuropathological 

changes. An optimal physiological noise correction is expected to improve the stability 

of DMN connectivity measures over time, thereby increasing the sensitivity of 

longitudinal studies evaluating DMN connectivity  changes related to normal aging, 

disease progression or disease treatment.

 Head-motion artifacts

 Another important confounding factor in RS-fMRI comes from head 

movements, even if small, which can introduce spurious but structured noise in 

functional brain connectivity measures (Power et  al., 2015). Movements typically 

induce reduction and increase in FC-fMRI metrics between spatially distant and close 

areas, respectively. Considering the main regions of the DMN, connectivity between 

anterior-posterior regions is particularly vulnerable to head motion (Power et al., 2012; 

Van Dijk et al., 2012). Connectivity  loss induced by head-motion effects in the anterior-

posterior regions of the DMN could lead to erroneous diagnosis of pathological 

conditions characterized by reduction of connectivity in the anterior regions of the 

network. In fact, motion effects are particularly  problematic in children (Fair et al., 

2007) and elderly (Andrews-Hanna et al., 2007) individuals who are generally 

characterized by  higher motion than healthy young adults. This limits motion-unbiased 

cross-sectional comparisons of intrinsic DMN in development and aging.

 Furthermore, longitudinal evaluations demonstrated a predisposition to motion 

in young adults (Van Dijk et al., 2012). This indicates that motion is not exclusively 

incidental but more broadly  constitutes an individual biological trait (Van Dijk et al., 

2012; Zeng et al., 2014). It remains challenging to distinguish between “biological” and 

“incidental” head-motion because no “gold standard” is available to date.

1.1.3.
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 There are two general types of approaches aimed at addressing head motion 

correction in MRI studies, one is based on prospective “real-time” measures of head 

motion with reorientation of the imaging slices during acquisition, and the other is 

based on retrospective estimation and reorientation of the data during processing of the 

data after acquisition (Godenschweger et al., 2016). The study of prospective measures 

is a promising active field of research, but such methods are not yet standardly 

available. Here we focus on retrospective head motion correction methods, moreover in 

some aspects of data acquisition.

 Standard retrospective motion correction approaches implemented in FC-fMRI 

studies account  only for rigid head-motion effects occurring between the acquired 

volumes (Jenkinson et al., 2002). However, in standard single-shot 2D echo-planar 

imaging (EPI) acquisition protocols there are two acquisition choices, interleaved or 

sequential acquisitions. One open question is whether there are quantitative advantages 

between using one of these methods for motion sensitivity effects on RS-fMRI, in 

particular it is not clear how slice-timing differences between the acquisition of adjacent 

slices might influence BOLD sensitivity to head-motion and consequently  intrinsic 

DMN connectivity.

 A separate issue relates to the implementation of the co-registrations done for the 

head motion correction, which can be performed on the full 3D volume or at the 2D 

slice level. Standard volumetric correction methods are therefore not sensitive to true 

motion occurring during the acquisition of each single volume. Although novel methods 

have been recently introduced to correct for deformable (non-rigid) motion within each 

acquired volume (Beall & Lowe, 2014) more effort  should be made to account for 

through-plane motion effects (Godenschweger et al., 2016). These technical limitations 

are potentially relevant in longitudinal study designs since motion might be associated 

with reduced FC-fMRI reliability in the DMN (Guo et al., 2012).

 Thesis goals

 This thesis aims at evaluating, in two separate studies, strategies for 

physiological noise and head motion correction in resting state brain FC-fMRI. In 

particular, as a general marker of noise correction performance we use the test-retest 

reproducibility of the DMN. The guiding hypothesis is that methods that  improve 

1.1.4.
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reproducibility should reflect more efficient corrections and thus be preferable in 

longitudinal studies.

 The physiological denoising study evaluated longitudinal changes in a 3T 

harmonized multisite fMRI study  of healthy elderly  participants from the PharmaCog 

Consortium (Jovicich et al., 2016). Retrospective physiological noise correction (rPNC) 

methods were here implemented to investigate their influence on several DMN 

reliability  measures within and between 13 MRI sites. Each site involved five different 

healthy elderly  participants who were scanned twice at least a week apart (5 participants 

per site). fMRI data analysis was performed once without rPNC and then with WM/CSF 

regression, with physiological estimation by temporal ICA (PESTICA) (Beall & Lowe, 

2007) and FMRIB's ICA-based Xnoiseifier (FSL-FIX) (Griffanti et  al., 2014; Salimi-

Khorshidi et al., 2014). These methods differ for their data-based computational 

approach to identify  physiological noise fluctuations and need to be applied at different 

stages of data preprocessing. As a working hypothesis, physiological denoising was in 

general expected to improve DMN reliability.

 The head motion study  evaluated longitudinal changes in the DMN connectivity  

from a 4T single-site study of 24 healthy young volunteers who were scanned twice 

within a week. Within each scanning session, RS-fMRI scans were acquired once using 

interleaved and then sequential slice-order acquisition methods. Furthermore, brain 

volumes were corrected for motion using once rigid-body volumetric and then slice-

wise methods. The effects of these choices were then evaluated computing multiple 

DMN reliability measures and investigating single regions within the DMN to assess 

the existence of inter-regional effects associated with head-motion. In this case, we 

expected to find slice-order acquisition effects in reliability  estimates under standard 

volumetric motion correction and no slice-order acquisition effect under 2D slice-based 

motion correction.

 Both studies used ICA to characterize the DMN using group-ICA and dual 

regression procedures (Beckmann et al., 2009). This methodology proved successful at 

defining consistent DMN connectivity  metrics in longitudinal and clinical RS-fMRI 

studies (Zuo & Xing, 2014). Automatic DMN selection procedures and other quality 

assurance analyses were made to supervise ICA performance. 
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 Both studies considered several test-retest (TRT) reliability estimates (Vilagut, 

2014) for some DMN connectivity  measurements: absolute percent error between the 

sessions, intraclass correlation coefficients (ICC) between sessions and multiple sites, 

the Jaccard index to evaluate the degree of voxel-wise spatial pattern actiavtion overlap 

between sessions.

Research Outline

 After a general introduction (Chapter 2), the research in this thesis focuses on the 

evaluation of physiological noise correction methods (Chapter 3) and on the evaluation 

of acquisition and analyses strategies to reduce the effects of head motion (Chapter 4). 

 The physiological noise study (Chapter 3) revealed that retrospective 

physiological denoising methods significantly affected the mean z-scores and, albeit 

less markedly, the cluster-size in the DMN; in particular, FSL-FIX tended to increase 

the DMN z-scores compared to others. Within-site test-retest reliability was consistent 

across sites, with no differences across denoising methods. The absolute percent errors 

were in the range of 5-11% for DMN z-scores and cluster-size reliability. DMN pattern 

overlap was in the range 60-65%. In particular, no rPNC method showed a significant 

reliability  improvement compared with no physiological correction implemented. 

However, FSL-FIX and WM/CSF regressions showed both similar and significant 

improvements of reproducibility consistency across the consortium (ICC = 0.67) for the 

DMN z-scores relative to no physiological noise correction (NPC). Overall these 

findings support the use of rPNC methods like WM/CSF regressions or FSL-FIX to 

characterize multisite longitudinal changes of intrinsic FC-fMRI.

 The head motion study (Chapter 4) revealed that mean z-scores within the DMN 

are influenced by both slice-order acquisition and motion correction methods in all 

DMN regions even in presence of low motion. In contrast, no combinations-of-interest 

influenced or systematically improved the TRT reliability in all regions. In the DMN, 

TRT reliability errors were overall below 8% and ICC were overall moderate 0.47 (C.I. 

0.29-0.57), indicating longitudinally stable spatio-temporal network characteristics. The 

average DMN pattern overlap was 40% (range: 14-65%). The longitudinal spatial 

reproducibility was the lowest in the ACC region at 30%. Acquisition protocols and 

motion correction methods could however be optimized to reduce cluster-size 

1.2.
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variability in frontal DMN areas. These results support freedom of choice between the 

examined acquisition protocols and head-motion correction methods in longitudinal 

DMN studies.

 The main thesis findings are outlined and put in perspective with the literature in 

the discussion (Chapter 5). These indicate that the intrinsic DMN connectivity is 

significantly sensitive to the factorts manipulated (slice-order acquisition and 

preprocessing correction choices), while TRT reliability of the DMN connectivity is not, 

or at least not systematically.

Contributions

 The entire work presented in this thesis has been realized in the Laboratory for 

the Functional Neuroimaging (Lnif) within the Interdepartmental Center for Brain/Mind 

Sciences (CIMeC, University of Trento). Within the duration of the PhD activity, 

contributions were given with extensive data analysis to two main projects, namely 

PharmaCog, a European multisite consortium of Alzheimer research, and a resting-state 

Lnif project. The work performed during the PhD resulted in published works as well as 

several proceedings, in national and international conferences, both as first author or co-

author. A list of author’s publications is provided in the following.

 Publications

 Jovicich J, Minati L, Marizzoni M, Marchitelli R, Sala-Llonch R, Bartrés-Faz 

D, Arnold J, Benninghoff J, Fiedler U, Roccatagliata L, Picco A, Nobili F, Blin O, 

Bombois S, Lopes R, Bordet R, Sein J, Ranjeva JP, Didic M, Gros-Dagnac H, Payoux P, 

Zoccatelli G, Alessandrini F, Beltramello A, Bargalló N, Ferretti A, Caulo M, Aiello M, 

Cavaliere C, Soricelli A, Parnetti L, Tarducci R, Floridi P, Tsolaki M, Constantinidis M, 

Drevelegas A, Rossini PM, Marra C, Schönknecht P, Hensch T, Hoffmann KT, Kuijer 

JP, Visser PJ, Barkhof F, Frisoni GB; PharmaCog Consortium. Longitudinal 

reproducibility of default-mode network connectivity in healthy elderly participants: A 

multicentric resting-state fMRI study. Neuroimage. 2016 Jan 1;124(Pt A):442-54.
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of Data-Driven Physiological Noise Correction Techniques, Human Brain Mapping, 
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2

Resting-State Functional Connectivity 

MRI

Discovery and properties of resting-state networks

 In their pioneeristic work, Biswal et al. were the first who observed spontaneous 

BOLD oscillations in the motor system during resting conditions marking de facto the 

beginning of RS-fMRI (Biswal et al., 1995). Later, further investigations confirmed the 

relevance of RS-fMRI as a valuable paradigm to investigate brain function (Biswal et 

al., 1997; Lowe et al., 1998) and functional mapping was extended to other areas 

throughout the whole human brain (Xiong et al., 1999).

 These studies attempted to functionally map the entire brain using the intrinsic 

FC-MRI methodology. Intrinsic FC-fMRI is defined as a statistical measure of temporal 

dependencies between low-frequency BOLD signal oscillations from distinct  brain 

areas, that is commonly obtained using temporal correlations (Figure 2.1) (Biswal et 

al., 2010; Fox & Raichle, 2007; Lowe et al., 2000). Intrinsic FC-fMRI was determinant 

in the exploration of the whole-brain intrinsic architecture and led to the discovery  of 

many resting-state networks (Figure 2.2). These networks show resilient  spatio-

temporal characteristics which allows their robust identification across individuals 

(Damoiseaux et al., 2006; De Luca et al., 2006; Salvador et al., 2005). Some overlap 

with sensory-motor activations detected in task-based fMRI studies (Lee et al., 2013) 

which indicates that spontaneous brain activity during rest is relevant to understand 

cognition (Buckner & Vincent, 2007).

2.1.




 Resting-state networks are 

characterized by complex and 

dynamic interactivity between the 

regions involved in the network as 

well as with other networks (Kelly, 

2008). These interactions are 

however difficult to be understood 

using only intrinsic FC-fMRI 

methods both because correlations 

are not very informative about the 

directionality of interactions within 

and between intrinsic brain 

systems, and because non-neural 

fMRI signals or some effects of 

particular data analysis methods can induce temporal correlations between two given 

time courses (Liao, 2009; Murphy et al., 2009). These limitations will be outlined in 

more details in the next sections since they represent the main concern of our 

experimental studies aimed at  clarifing how to minimize the impact of non-neural 

spurious correlations from intrinsic FC-fMRI metrics.

Figure 2.1. Example of intrinsic FC-fMRI. The figure 
shows  temporal correlations  of the low-frequency BOLD 
oscillations  between three different regions. These were 
defined in the Left, L and Right, R Motor cortex, MOT and 
in the Left, L Visual cortex,VIS. High correlation between 
the inter-hemispheric motor corteces  (top) and no 
correlation between ipsilateral correlations in left motor and 
visual cortex (bottom). from Van Dijk et al., 2010.

Figure 2.2. Consistent resting-state 
networks in the human brain. The figure 
shows  the main widely  distributed brain 
networks  identified using RS-fMRI and 
projected on a  standardized brain surface. 
These networks  are the A) default-mode 
network; B) somatomotor network; C) 
visual network; D) language network; E) 
dorsal attention network; F)  ventral 
attention network; G)  frontoparietal 
network. From: (Lee et al., 2013)
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Origins of resting-state fMRI signals

 To date, the neural underpinnings of low-frequency oscillations in the RS-fMRI 

and consequently the neural sensitivity  of intrinsic FC-fMRI mapping are not fully 

understood (Horwitz et al., 2005; Van den Heuvel & Hulshoff Pol, 2010). As previously 

mentioned, the fMRI signal is not a direct measure of neural activity but rather a 

measure of blood oxygenation, therefore BOLD effects do not only  raise from neural 

activity, primary linked to synaptic metabolic activity, but also from random nuisance 

factors such as thermal or quantum mechanical noise and from structured nuisance 

components associated with signal reconstruction and distortion, non-neural 

physiological processes (i.e. cardiac and respiratory activity) and head-motion.

 According to these considerations, the characteristics of resting-state and task-

based fMRI signals would be alike with both advantages and disadvantages associated 

with the implementation of the BOLD contrast. However, since an evoked stimulus is 

missing in the resting-state, it is even more challenging to interpret and quantify the 

contributions of each constituent to the resulting BOLD effect (Arthurs & Boniface, 

2002). For this reason, whether spontaneous oscillations include a neural constituent  has 

been debated for long. Some have argued that  they do not reflect neural activity but 

only physiological processes related to cardiac and respiratory  activity  (Birn, 2012; Birn 

et al., 2008; Shmueli et al., 2007). In contrast, some others have not denied the influence 

of physiological aliasing on intrinsic FC-fMRI but argued that spontaneous brain 

activity would also be neural in origin (Buckner & Vincent, 2007; Greicius et al., 2003; 

Gusnard et al., 2001) since these spontaneous oscillations mainly  occur at very low 

frequencies (< 0.1 Hz) whereas physiological processes occur at higher frequencies (> 

0.3 Hz) (Cordes et al., 2001; Cordes et al., 2000).

 Several other reasons in favor of a neural hypothesis for the RS-fMRI signals 

have been proposed. Some were already outlined in the previous sections of this work 

and include the consistent  identification of resting-state networks across healthy 

individuals (Damoiseaux et al., 2006) as well as the spatial correspondence with task-

evoked networks in motor, visual and auditory  areas which suggests that the intrinsic 

functional architecture of the brain develops in regions more frequently  recruited for 

cognitive performance (Veer et al., 2010).

2.2.
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 Finally, other reasons include the inter-hemispheric synchrony  found in humans 

and other mammals (Biswal & Kannurpatti, 2009) and additional evidence comes from 

other imaging modalities such as electroencephalography  (EEG): local field potentials 

at low-frequency also show temporal synchronicity (Kenet et al., 2003; Leopold & 

Logothetis, 2003; Lowe, 2012), recordings of neuronal firing are indirectly associated to 

the amplitude profiles of RS-fMRI correlations (Nir et al., 2008) and simultaneously 

measured fluctuations in neuronal spiking are associated to spontaneous BOLD 

fluctuations (Pan et al., 2013; Shmuel & Leopold, 2008; Shmuel et al., 2002).

 In summary, both neural and non-neural fMRI signals contribute to intrinsic FC-

fMRI. This highlights the need for optimizing the RS-fMRI design, developing 

technical solutions or improving analytical methods to minimize the influence of non-

neural BOLD signals from intrinsic FC-fMRI measures.

The Default Mode Network

 Among all resting-state functional networks mentioned previously, the work 

outlined in this thesis focuses on an intrinsic network in particular: the default mode 

network (DMN). Functional coactivations associated with this network typically 

encompass regions in the posterior cingulate cortex (PCC) and precuneus, medial 

prefrontal cortex (MPFC), anterior cingulate cortex (ACC), inferior parietal lobule and 

bilateral parietal cortex (LPC) (Buckner, 2012) (Figure 2.3). Neuroimaging research of 

the DMN grows at fast pace today  and is grounded on solid scientific knowledge about 

its intrinsic functional dynamics and relevance for cognition (Buckner, 2012).

 The DMN was observed for the first time in positron emission tomography 

(PET) studies (Mazoyer et al., 2001; Shulman et al., 1997) and the idea of a “default-

mode” system was not immediately recognized until evidence in support of a plausible 

self-referential processing role was put forward (Gusnard & Raichle, 2001) and 

knowledge about its complex physiological dynamics was also gained from other 

imaging modalities (Laufs et al., 2003). Afterwards, first descriptions of the DMN using 

RS-fMRI were made using intrinsic FC-fMRI methods similar to those Biswal had used 

for mapping the motor system at rest in 1995 (Greicius, 2003).

2.3.
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 The DMN owes its name to its main 

characteristic of showing prominent 

activation during the resting-state and 

low-demanding passive stimulation tasks 

in contrast  to goal-directed cognitive 

tasks (Greicius & Menon, 2004). The 

DMN is a unique intrinsic brain network 

with this endogeneous dynamical 

dichotomy and for this reason it has been 

s tudied extensively. These DMN 

dynamics are crucial to understand its role 

in cognition: since the beginning, intrinsic 

FC-fMRI of the DMN was linked to 

memory function (Andreasen et al., 1995; Binder et al., 1999) and in particular to the 

retrieval of information from long-term memory, conscious representation of mental 

imagery and thoughts (Andrews-Hanna, 2012) and cognitive operations involved in 

problem solving and future planning (Buckner et al., 2008; Buckner & Carroll, 2007). 

In fact, it has been shown that the exacerbated dichotomy in DMN dynamics between 

attention-demanding tasks and resting-state (Fox et al., 2005) is mitigated by the 

inclusion of task features related to self-referential thoughts (McGuire et al., 1996), 

episodic memory (Shannon & Buckner, 2004) and meditation practice (Brewer et al., 

2011; Jao et al., 2015).

 In general, evidence suggests that the DMN is not innate. There are no adult-like 

patterns resembling the DMN in neonates and children aged below 4 years. Anyway, 

this might result from absent distant connectivity in children, which does not exclude 

the hypothesis of independent default mode function confined to single brain regions 

(Fair et al., 2009). Additional evidence suggests that DMN activity tends to decrease as 

a function of normal aging with substantial loss of intrinsic FC-fMRI (Andrews-Hanna 

et al., 2007; Damoiseaux et  al., 2008; Ferreira et al., 2015; Sambataro et al., 2010). The 

most credited hypothesis is that loss of intrinsic FC-fMRI might be associated to age-

related widespread structural changes (Horn et al., 2014) that affect the network 

efficiency in the transmission of neural information (Marstaller et  al., 2015). Finally, 

Figure 2.3. Main regions of the DMN. Current 
representation of the four main regions of the DMN 
located in the posterior cingulate, bilateral 
temporo-parietal cortex and medial prefrontal 
cortex/anterior cingulate (Photo/Courtesy of Sarah 
Gimbel/USC). 
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there is evidence suggesting that DMN connectivity  is sensitive to circadian rhythm 

gradually reducing co-activations from morning to afternoon (Blautzik et al., 2013; 

Hodkinson et al., 2014).

Current issues in intrinsic DMN connectivity studies

 RS-fMRI data analysis is not subjected to standardized acquisition and analysis 

methods. This lessens the reproducibility of findings across studies and increases the 

risk of adopting suboptimal acquisition and analysis methods (Griffanti et al., 2016) 

which could bias DMN connectivity metrics. On the other side the optimization of RS-

fMRI data acquisition and analysis is challenging. It is not trivial to identify analytic 

expedients which favor the characterization of the DMN and the interpretability of its 

dynamics because of many issues arising from limitations in the fMRI technology and 

analysis software. The most critical ones are outlined in the following.

 Data acquisition factors that affect DMN connectivity

 Primarily, data acquisition choices can influence the overall data quality  and 

determine decision making for analytic operations to be performed downstream 

including data preprocessing and FC-fMRI method choices. Standard acquisition 

protocols include single-shot multislice echo-planar imaging (EPI) which allows overall 

moderate temporal resolution (~ 0.5 Hz) in acquired volumes. This privileges the spatial 

dimension to perform data analysis and to compute FC-fMRI, unavoidably increasing 

the risk of spatial overlapping between the DMN and other brain networks or, even 

worse, structured noise (Birn et al., 2006). Novel acquisition sequences such as 

multiband echo-planar imaging allow the acquisition of multiple slices at  the same time, 

improving the overal temporal resolution of fMRI (~ 1.25 Hz). This acquisition method 

improves DMN sensitivity (Feinberg et al., 2010) and has been used to investigate 

temporal modes of the DMN (Smith et al., 2012) but it is limited in the ability to encode 

spatial information by the radio frequency coil array alone which can lead to reduction 

in signal-to-noise-ratio (Feinberg et al., 2010).

2.4.
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 Although a wide range of sampling rates and a relatively small number of 

datapoints can be used to measure sufficient BOLD activity  for identifying stable 

spatio-temporal DMN patterns, the standardization of these parameters is still an open 

issue (Van Dijk et al., 2010; Whitlow et  al., 2011). This becomes particularly 

controversial when harmonizing acquisition sequences across different imaging sites, 

using different MRI vendors, RF coils and fat suppression methods (Jovicich et al., 

2016).

 Acquisition methods are defined upon default settings provided by MRI scanner 

manufacturers which could be different across Siemens, Philips and General Electric 

Table 2.1. Summary table of fMRI acquisition and human physiologic factors influencing the 
characterization of the DMN.

Factors influencing intrinsic DMN connectivityFactors influencing intrinsic DMN connectivityFactors influencing intrinsic DMN connectivity

Factor Issue Publication

Pulse sequence

setting
Temporal resolution

Smith et al., 2012Pulse sequence

setting
Temporal resolution

Feinberg et al., 2010

Scanner hardware

Vendor default choices Parker et al., 2014

Scanner hardware
Multisite variability

Feis et al., 2015Scanner hardware
Multisite variability

Jovicich et al., 2016

2D Multislice

acquisition

Slice-order and

slice-orientation choices
Not investigated

Subject instructions

Eyes-opened / closed / fixated Van Dijk et al., 2010

Subject instructions

Head-motion Van Dijk et al., 2010

Psycho-physiological 
state

Circadian rhythm Blautzik et al., 2013

Psycho-physiological 
state

Recreational or medical drugs

taken by the subject

Tanabe et al., 2011

Psycho-physiological 
state

Recreational or medical drugs

taken by the subject
Noseworthy et al., 2003Psycho-physiological 

state

Recreational or medical drugs

taken by the subject

Rack-Gomer et al., 2009

Psycho-physiological 
state

Sleep Horovitz et al., 2009

Psycho-physiological 
state

Human physiology Birn et al., 2006
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(GE) scanners (Jovicich et al., 2016). These differences also concern 2D slice 

acquisition methods (Parker et al., 2014) which are usually  acquired in an interleaved 

fashion (Westbrook, 2005) with axial in-plane orientation (O'Connor, 2010). Interleaved 

slice acquisition is typically chosen to allow for zero or small slice gap while avoiding 

slice cross-talking effects and related magnetic saturation effects but increases BOLD 

sensitivity to head motion effects, which are known to bias DMN connectivity (Van 

Dijk et al., 2012). It was recently  proposed that, with some slice gap to avoid slice 

cross-talking effects, sequential slice acquisition methods might reduce head-motion 

effects in DMN connectivity  (Cheng & Puce, 2014). However, slice-order acquisition 

choices remain an open issue in the field, especially because these two methods were 

not directly compared on the same subjects.

 As mentioned previously, recent investigations suggest  that  coactivations in the 

default-mode system might be influenced also by  psycho-physiological states and that 

individual psychological characteristics should not be underestimated in RS-fMRI 

designs to characterize consistent DMN connectivity metrics in a sample. In typical 

designs, subjects are instructed to lay  still and relaxing while in the scanner, avoiding 

the engagement of particular attention towards something in particular and falling 

asleep (Horovitz et al., 2009). For this reason, it  is yet not fully understood whether 

instructing participants to keep their eyes closed, opened or fixated on a cue could be of 

help  for them to relax without influencing spontaneous brain activity  somehow (Van 

Dijk et al., 2010; Yan et al., 2009). Moreover, considering circadian rhythm effects on 

the DMN, it  would be optimal to scan all individuals at the same time of the day, 

particularly in longitudinal study designs as in (Meindl et al., 2010). Finally, even 

though substance abuse is a common exclusion criterion in studies of healthy 

individuals, the degree of coffee intake (Rack-Gomer et al., 2009), nicotine (Tanabe et 

al., 2011) or food (Noseworthy et al., 2003) is usually not properly considered and 

should be at least better supervised.

 Image preprocessing issues

 After data acquisition, 4D EPI images commonly undergo preprocessing to 

enhance signal detection and prepare the data for group analysis. RS-fMRI 

2.4.2.
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preprocessing is characterized by a non-standardized workflow of signal processing 

operations which typically but not necessarily include the following:

- The elimination of some initial TRs to account for magnetic saturation effects.

- Physiological denoising to correct for cardiac and respiratory activities.

- 3D image volume realignment via spatial coregistration.

- Slice-timing correction such that all voxels represent the signal at the same time.

- Spatial smoothing using a Gaussian kernel to increase temporal signal-to-noise 

ratio (tSNR). 

- Temporal smoothing to restrict the analysis to frequencies of interest.

- Regression of motion and additional confounds.

- Mean or mode intensity normalization.

- Spatial normalization to a common space template for group analysis.

 The implementation of these operations deserves caution and might be subjected 

to different ordering to preserve data structure. To improve DMN signal detection, 

preprocessing workflows include methods to detect and attenuate spurious BOLD 

fluctuations induced by non-neural biological processes and MRI hardware noise.

 Physiological denoising issues

 This is not straightforward: the success of these methods is often compromised 

by the fact that neural and non-neural signals are coupled in time and overlap in space 

(Figure 2.4); therefore their removal will unavoidably be associated with loss in signal 

of neural origins.

 Spontaneous neural BOLD oscillations in the DMN regions occur at very low 

frequencies (0.01 - 0.1 Hz). In principle, these do not overlap with respiratory (0.1 - 0.5 

Hz) and cardiac activity  (0.6 - 1.2 Hz) even though DMN signals could also occur at 

higher frequencies (Cordes et al., 2001). A bandpass filter is typically applied during 

image preprocessing to remove higher frequencies; however the relatively  low sampling 

rate employed in standard EPI acquisitions (~ 0.5 Hz) does not allow the perfect 

characterization of these physiological confounds which are aliased in the low 

frequency range (< 0.1 Hz) (Cordes et al., 2001).

2.4.3.
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 One partial technical solution to this issue consists of recording signals of non-

interest such as those rising from human physiology during MRI acqusition to remove 

them offline by  filtering them out of the BOLD timeseries (Glover et  al., 2000). MRI-

compatible pulse oxymeters and respiration belts can be used to monitor cardiac and 

respiratory cycles, respectively (Chia et al., 2000; Santelli et al., 2011). However, these 

parallel measurements cannot often be obtained due to lack of equipment. This issue is 

especially relevant in multicentric designs where limited availability  in parallel 

measurements across sites is often the case.

 As previously mentioned in the introduction, data-based fMRI methods have 

been developed to deal with this issue. These are retrospective methods that 

automatically detect non-neural signal sources from the empirical data. A common 

approach, the global regression (Fox et al., 2009) removes the whole-brain averaged 

timecourse from the data using regression methods. This approach assumes that 

physiological confounds are widespread in the entire brain and that can be consequently 

catched by averaging the signal across all voxels. A methodological challenge with this 

approach is that the global average also includes signal from gray  matter voxels and 

therefore unavoidably leads to remotion of signal of interest (Jo et al., 2010). One 

technical solution in this case includes the adoption of probabilistic segmented 

anatomical masks of WM and CSF (Figure 2.5) to avoid averaging signals from gray 

Figure 2.4. Spatial distribution of physiological noise compared with intrinsic DMN 
connectivity. The figure shows the distribution of physiological artifacts  associated with respiration (left 
panel) and seed-based DMN connectivity (right) averaged across  11  subjects. Physiological activity 
largely overlaps with DMN coactivation patterns. Adapted from (Birn et al., 2006).
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matter (GM) (Weissenbacher, 

2009) . The g loba l s igna l 

regression method remains 

controversial for inducing anti-

c o r r e l a t i o n s i n F C - f M R I 

measures in the entire brain (Fox 

et al., 2009; Murphy et  al., 2009) 

even though they  do not 

negatively  influence DMN 

connectivity.

 Other methods exploit the 

ICA methodology to detect and separate signal sources associated to physiological noise 

(Figure 2.6). This multivariate approach decomposes the signal into either temporal or 

spatial statistically  addittive independent signal sources by  maximizing non-gaussianity 

or minimizing mutual information between 

them. Using these methods, human 

physiology can be observed in the Willis 

polygon, WM and the ventricles. Despite 

the relatively  low number of timepoints, 

temporal ICA can be used to isolate 

temporal modes associated with cardiac (48 

- 85 bpm) and respiratory (10 - 24 bpm) 

frequencies using spatio-temporal priors 

(Beall & Lowe, 2007).

 On the other side, spatial ICA 

methods able to classify and remove 

various signal artifacts according to spatio-

temporal features were also developed 

(Griffanti et al., 2014; Salimi-Khorshidi et 

al., 2014). Both methods share ICA 

limitations and need the user supervision to 

be conducted. For instance, temporal ICA limitations include the need of a user-defined 

Figure 2.5. Anatomical masks adopted for cardiac and 
respiratory signal regressions. (green)  anatomical masks 
of the full brain are adopted in global signal regression. 
Segmented WM (blue)  and CSF (red) anatomical masks  used 
to reduce loss in GM neural signals from Jo et al., 2010.

F i g u r e 2 . 6 . S p a t i a l i n d e p e n d e n t 
components  associated with physiological 

noise. Three known components  associated 
with ventricular activity  (top row), vascular 
activity of veins  (middle row)  and WM (bottom 
row). From Tong & Frederick, 2014.

Chapter 2

22



frequency range which might be difficult to be standardized across subjects. Spatial ICA 

classifiers are parametric and might require training the features thus being time-

consuming. Furthermore, preprocessing workflows including ICA-based physiological 

denoising must  be defined with attention because slice-timing correction, spatial and 

temporal smoothing might reduce ICA sensitivity (Beall & Lowe, 2007).

 Motion correction issues

 If not addressed properly, head motion can severely confound single-subject and 

group functional DMN connectivity 

(Figure 2.7). Some preprocessing 

strategies known as motion correction 

or volume realignment were developed 

to deal with motion and are commonly 

implemented in the majority of resting-

state studies. These methods consist of 

coregistering all train of volumes to a 

reference volume, by default  the 

volume in the middle of the acquisition 

train. This procedure shifts all voxels in 

the exact spatial location defined in the 

reference volume. Complementary 

motion correction approaches include 

the regression of motion metrics 

obtained from the coregistration process 

(Satterthwaite et al., 2013) and to 

censor highly  motion corrupted 

volumes (Power et al., 2012). Similarly to physiological noise correction, ICA-based 

approaches were developed to automatically  detect and correct for head-motion (Pruim 

et al., 2015a; Pruim et  al., 2015b; Schopf et al., 2010; Schopf et al., 2011; Wang et al., 

2012).

 For several reasons, the implementation of motion correction is always 

recommended even if motion is overall low. First, it has been show that even 

2.4.4.

Figure 2 .7 . Surface maps reveal ing 
differences in head-motion in the main DMN 

regions. Differential group seed-based intrinsic 
FC-fMRI maps  illustrate how head motion might 
confound DMN connectivity. Each map represents 
the FC-fMRI difference with lesser motion as 
compared to a second group with greater motion. 
The leftmost image shows  the contrast between 
the two most extreme groups. The rightmost 
image shows the contrast between groups  that 
have a subtle difference in mean motion 
estimates. Even tight differences  in head motion 
yield difference maps  that could easily be 
mistaken for neuronal effects. Adapted from (Van 
Dijk, et al., 2012).
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submillimetrical motion can confound DMN connectivity estimates (Power et al., 

2012). However, if motion estimated is low, ICA methods can quite efficaciously deal 

with it  (Figure 2.8) and therefore motion correction could be avoided to preserve data 

structure (Meindl et al., 2010). Second, the 

order of slice-timing and head-motion 

corrections cannot be predefined but 

depends on slice-order acquisition methods 

and the amount of motion detected in the 

data. Some methods which can perform 

both corrections simultaneously  have been 

proposed (Roche, 2011) while other argued 

that applying motion correction prior slice-

timing correction would be an optimal 

solution (Jones et al., 2008) especially if 

some preprocess ing sof tware and 

a l g o r i t h m s r e q u i r e s l i c e - t i m i n g 

information to be implemented (Beall & 

Lowe, 2007). In general, relative freedom 

of choice is admitted for interleaved slice 

acquisition protocols. Instead, different 

optimal solutions are proposed in case slices are acquired sequentially as a function of 

head-motion severity (Huettel et al., 2008; Poldrack et al., 2011).

 The relevance of slice-order acquisition methods for head-motion correction was 

already described previously among the fMRI data acqusition issues. Regarding this 

issue, volume realignment is only a part of motion correction. Volume-based motion 

correction methods treat brain volumes as a rigid-body  and perform inter-volume 

coregistration. While the rigid-body assumption is technically wrong (Poncelet et al., 

1992), these methods do not correct for motion occurring within-volume associated 

with timing differences in the acquisition of consecutive 2D slices (0 < t < TR). More 

recently, advanced retrospective motion correction solutions have been proposed with 

the introduction of novel slice-wise correction methods (Beall & Lowe, 2014). In 

particular it has also been showed that standard volume-based methods might be quite 

Figure 2.8. Spatial independent components 
associated with head-motion. The figure 
shows  three typical motion-related spatial 
components  identified using ICA on preprocessed 
data. From Tong & Frederick, 2014.
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insensitive to motion in BOLD-weighted MRI data (Beall & Lowe, 2014). In any  case, 

it remains unclear how within-volume motion occurring during different slice-timing 

acquisitions might influence the intrinsic DMN connectivity (Kim et al., 2008; Sladky 

et al., 2011). It should be noted, however, that no methods can account  for motion in its 

entirety  so far, with slice-based motion correction (SLOMOCO) slightly outperforming 

the others.

 DMN extraction methods

 Following preprocessing steps, several methods have been developed to 

characterize intrinsic DMN connectivity. These can be grouped into two categories here 

defined as model-based or model-free methods. Model-based methods are hypothesis-

driven approaches which exploit predefined anatomical region(s)-of-interest (ROIs) to 

investigate intrinsic FC-fMRI in the entire brain. They permit to gain an immediate 

inspection and high interpretability  about the intrinsic human brain functional 

architecture. In contrast, model-free methods are exploratory and do not require the 

predefinition of anatomical priors to characterize intrinsic brain networks (Beckmann et 

al., 2005; Calhoun et  al., 2001a). Both methods present advantages and disadvantages 

and their choice strictly depends on the scientific question of the experimenters.

 The simplest and most common model-based method is the seed-based 

approach. This method characterizes FC-fMRI by  means of univariate temporal 

correlations between the averaged signal within a predefined ROI, technically referred 

to as the seed, and the signal in all other voxels/ROIs throughout the brain (Fransson, 

2005). Another model-based method exploits graph-theory analysis to investigate 

topological properties of intrinsic brain networks. This method is a mathematical 

representation of brain networks as graphs, characterizing FC-fMRI as edges or archs 

between a set of predefined ROIs, technically  referred to as the nodes of the graph. 

Topological properties of intrinsic brain networks include clustering coefficient i.e. the 

degree of local interconnectivity between nodes; the path length, i.e. the efficiency  of 

the neural transmission among distant nodes; hub analysis to identify  those ROIs that 

plays a fundamental role within the network, et cetera (Bullmore & Sporns, 2009; 

Hosseini & Kesler, 2013). Both methods are used to identify the DMN by placing the 

seed in the posterior cingulate cortex and the precuneus, considered the main hub of the 

2.4.5.
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DMN (Fransson & Marrelec, 2008; Leech et al., 2012; Leech et al., 2011). The 

definition of the shape and size of ROIs poses serious challenges to characterize 

intrinsic DMN connectivity (Figure 2.9), considering eventual parcellation scheme 

(Shen et al., 2013) and, edge thresholding in graph-theory approaches (Van Wijk et al., 

2010).

 Model-free methods include multivariate approaches such as ICA (Bell & 

Sejnowski, 1995), an exploratory method that decomposes the BOLD signal into its 

addittive, statistically  independent, spatio-temporal sources. Therefore, ICA can 

automatically identify independent spatio-temporal sources of resting-state brain 

networks, including the DMN, in addition with the aforementioned artifacts associated 

with head-motion and physiological noise (Kiviniemi et al., 2003; McKeown, 1997). 

ICA cannot be perfomed on space and time simultaneously. For this reason, although it 

is possible to identify the DMN by  conducting ICA in either dimensions (Boubela et al., 

2013), the spatial dimension is preferred because of the larger number of voxels 

compared with time points (Beall & Lowe, 2007).

 Moreover, different ICA approaches do exist. The first approach consists of 

conducting an ICA on individual EPI data. This method is usually  named single-subject 

ICA. An alternative approach consists of conducting an ICA on the entire group of 

subjects, concatenating all the EPI volumes in time (Calhoun & Adali, 2012). Then, 

methods to characterize the activation patterns in each individual include back-

reconstruction (Calhoun et  al., 2001b) or dual-regression (Beckmann et al., 2009). Very 

recently, it has been shown that group ICA approaches improve separability of neural 

from artifactual signals improving the ultimate ICA sensitivity to FC-fMRI signals (Du 

et al., 2016).

 Despite its advantages, ICA also comes with some limitations. First, ICA is non-

deterministic which implies that the ultimate decomposition of the BOLD signal sources 

always allows some degree of run-to-run variability. Second, ICA is also unsupervised 

which implies that no predefined number of components exists and that this could be 

therefore extablished using semi-quantitative methods or empirically by (re-)conducting 

ICA at different dimensionality orders on the same data. Suboptimal dimensionality 

order might either cause signal overlapping (erring on the side of caution) or splitting 

across several components (erring on the side of excess) (Figure 2.10).

Chapter 2

26



 In the former case, DMN signals will coexist with irrelevant signals in the same 

component. In the latter, DMN signals will be split across several components 

introducing spurious interregional variability in connectivity  patterns within one single 

component. Similarly, if spatio-temporal signal patterns largely overlap, ICA might fail 

to separate independent signals sources. This would introduce some degree of 

interdependence among components leading to the imperfect characterization of the 

DMN or other resting-state networks, which will be likely to be contaminated by non-

neural sources (Beall & Lowe, 2007). Overall, these issues might lead to reduce DMN 

consistency across individuals and reduce the reproducibility of intrinsic fMRI studies 

(Schopf et al., 2010).

Figure 2.9. ROI definition issues and Intrinsic DMN connectivity as a function of seed location. 
The top figure shows  two atlases  made of 90 (Shirer et al., 2012) and 499 functional ROIs  (Richiardi et 
al., 2015) respectively, while the bottom figure shows  the DMN characterized from three identical seeds 
located in different positions. Seed voxel locations  from (Fox et al., 2005) in red; (Singh et al., 2008)  in 
green; (Greicius  M. D., 2003), in dark blue; Model-based methods  are limited in the definition and 
location of seeds  or nodes, atlases  or parcellation schemes  which lessens  repeatability and 
reproducibility across studies. © 2010 Cole, Smith and Beckmann.

Chapter 2

27



Intrinsic DMN connectivity: a potential biomarker?

 Many definitions of biomarkers have been proposed over the last decades. 

Fortunately they converge quite well with the general definition given by the National 

Institutes of Health (NIH). According to this definition, a biological marker or 

biomarker is a metric that can denote both normal biological and pathogenic processes 

or pharmacological responses to therapeutic drugs (Biomarkers Definitions Working, 

2001). Neuroimaging biomarkers are detailed biological features derived from 

radiological images or recorded brain signals that can be used in isolation and jointly 

with known biomarkers to assess or predict the presence of disease and evaluate 

treatment response (Richter, 2006).

 Diagnostic biomarkers can be clinical, i.e. able to assess the presence of disease, 

and preclinical, i.e. able to assess signs or risk factors for health and function 

deterioration (Shoji, 2012). Preclinical neuroimaging biomarkers are particularly 

important in case of neurodegenerative diseases or cancer that present a symptom-free 

phase. In these cases, these biomarkers might timely identify high-risk individuals so 

that they receive either preventive treatments or further follow-up  evaluations (Frank & 

Hargreaves, 2003; Sapsford et al., 2010). This class of biomarkers include hippocampal 

atrophy  measured in morphometric MRI studies of Alzheimer Disease (AD) (Fraser et 

al., 2015). This MRI-based biomarker can be used in conjunction with CSF analytes 

that measure abnormal protein aggregates (i.e. amyloid beta, phosphorilated tau protein) 

or with indicators of neural loss to distinguish between disease-modifying and 

symptomatic treatment effects (Hampel et al., 2011; Saumier et al., 2009).

Figure 2.10. The DMN splitting phenomenon following ICA. The figure shows  an example of 
strong DMN splitting onto 5 independent components following group ICA. From (Rytty et al., 2013).

2.5.
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 Other relevant longitudinal biomarkers of AD are obtained from molecular 

neuroimaging using PET. The Pittsburgh compound-B (PiB-PET) tracer and 

Fludeoxyglucose PET (FDG-PET) represent validated biomarkers of amyloid-beta 

plaques accumulation and abnormal glucose metabolism, respectively (Frisoni et al., 

2013; Habeck et  al., 2012). Nevertheless, healthcare providers resist compensating for 

the expensive costs of these diagnostic biomarkers for insufficient clinical evidence 

about diagnosis or treatment of illness and improvement of cognitive functioning in 

people affected by dementia (Frisoni & Visser, 2015).

 While technique noninvasiveness, ease of acquisition and unexpensive costs are 

standard criteria to qualify  preclinical biomarkers (Katz, 2004a, 2004b), further 

evidence from comparative and longitudinal studies involving subjects from appropriate 

populations is demanded (Frisoni & Visser, 2015). In contrast, these neuroimaging 

biomarkers reflect neurodegeneration and metabolic dysfunction only in symptomatic 

stages of AD but not in its preclinical asymptomatic stages where structural MRI and 

FDG-PET efficacy is lessened while PiB-PET becomes more challenging considering 

that amyloid-beta deposition is not AD specific and may be also found in normal aging 

(Jack et al., 2012; Toledo et al., 2015).

 Intrinsic DMN fMRI-based biomarker

 Intrinsic DMN connectivity as defined by fMRI offers attractive possibilities for 

evaluation as a biomarker for some diseases. Evidence from cross-sectional studies 

suggets that  the intrinsic DMN connectivity  is sensitive to neuropsychiatric illness and 

neurodegenerative diseases showing aberrant loss in connectivity strength with regional 

dysconnectivity or hyperconnectivity. Since BOLD-weighted FC-fMRI is not a direct 

measure of neural activity, these alterations likely indicate metabolic dysfunction that 

would cause an incomplete recruitment of DMN regions or induce additional brain 

effort to safeguard network integrity and support  cognition with higher computation 

costs (Palop et al., 2006).

 DMN-based biomarkers can be easily developed considering that the network is 

consistently observable in healthy young adults (Damoiseaux et al., 2006) and that 

default-mode connectivity predicts cognitive performance (Sala-Llonch et  al., 2012). 

The ability to characterize the DMN in young healthy  adults has allowed the study of its 
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neurophysiological changes (Chou et al., 2012; Patriat  et al., 2013; Shehzad et al., 2009) 

and to characterize abnormal DMN connectivity changes in pathological conditions 

(Somandepalli et al., 2015; Song et al., 2012). This is of primary  importance for 

studying typical and atypical development in children (Uddin et al., 2010) where 

aberrant connectivity patterns undergoing atypical brain maturation trajectories were 

identified (Uddin et al., 2010). These are found in the DMN that show a retarded 

formation of distant  connectivity in autism (ASD) until late adolescence (Washington et 

al., 2014).

 There is evidence supporting DMN-based biomarkers of major depression which 

causes changes in anterior-posterior DMN connectivity with increased connectivity in 

anterior DMN regions (Craddock et al., 2009; Greicius et al., 2007; Mulders et al., 

2015; Sheline et al., 2009). Increases in intrinsic DMN connectivity are also typically 

found in case of structural white matter degeneration in multiple sclerosis (MS) 

probably  because of compensatory  mechanisms that preserve deficitary cognition 

(Hawellek et al., 2011).

 Diminished FC-fMRI can instead be used as a DMN-based biomarker of normal 

aging and more relevantly for mild cognitive impairment (MCI) and mild AD 

(Balthazar et al., 2014; Greicius et al., 2004). DMN connectivity shrinkage in normal 

elderly is a natural process associated with aging decline and gray  matter atrophy which 

does not necessarily  indicate the presence of disease. However, evidence suggests that 

DMN connectivity  loss is related to increased amyloid-beta (Hedden et al., 2009; 

Sheline et al., 2010) and symptoms’ severity of dementia (Hafkemeijer et al., 2012). 

These findings consequently promoted the ability  to track and monitor clinical 

deterioration in MCI and AD patients (Binnewijzend et al., 2012; Damoiseaux, 2012) 

and discriminate between AD and other forms of dementia such as fronto-temporal 

dementia (FTD) (Zhou et al., 2010) or dementia with Lewy bodies (Galvin et al., 2011). 

Importantly, intrinsic DMN connectivity  might distinguish between MCI who would 

undergo cognitive decline, hence conversion to AD, from those who would remain more 

stable over time (Prestia et al., 2013; Vos et al., 2013).

 Longitudinal task-based BOLD fMRI studies provided evidence in support of 

DMN-based predictive biomarkers of dementia (Petrella et al., 2011) but longitudinal 

RS-fMRI studies are still exiguous in this context (Drago et al., 2011) because of little 
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knowledge in the reliability of the default-mode system (Zuo & Xing, 2014). This not 

just a case. Physiological and head-motion related artifacts that are not  sufficiently 

removed from the BOLD signal using optimized acquisition protocols associated with 

tailored preprocessing strategies induce changes in intrinsic DMN connectivity patterns 

that can be misunderstood as disease or treatment related effects. TRT reliability 

investigations are important in this context because it  has been shown that non-neural 

BOLD components will reduce DMN reliability even when the tSNR would indicate 

low noise in the data (Mueller et al., 2015). Therefore, TRT reliability studies would be 

useful to investigate the stability of DMN connectivity measures over time and optimize 

longitdunal RS-fMRI protocols regarding acquisition and analysis methods 

implemented.

 Different methods exist to quantitatively  assess the TRT reliability of the DMN. 

Some methods are complementary but not necessarily interchangable, depending on 

sample size or mathematical constraints of some FC-fMRI metrics. These are better 

outlined in the following paragraph.

 Test-retest reliability methods

 In general reliability refers to the degree of stability exhibited when a 

measurement is repeated under identical conditions. In research, reliability analyses are 

conducted to evaluate the extent to which unsupervised sources of noise introduce 

variability in the measurements obtained from a given scientific apparatus. As such, 

reliability  analyses are conducted under the assumptions that measurements are valid 

and are not changing across repeated conditions. In the context of resting-state brain 

MRI experiments with human subjects, there are many  factors that might introduce 

error while measuring brain function. Some depend on the MRI hardware (i.e. thermal 

noise) or task setup (i.e. clarity  of instructions, personality of the examiner) and some 

on individual characteristics of the participant (i.e. health, fatigue, coughing, 

motivation, momentary distractions, comprehension of task). 

 Reliability  becomes of particular interest when evaluating the consistency of 

measurements obtained from the same subject over multiple trials over time. This TRT  

reliability  method quantifies the degree of intra-individual variability and is pratically 

used in medical contexts to monitor patients and differentiate the relative contribution 
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of disease or treatment from confounding factors in the measurement change. In the 

MRI context, TRT reliability is appropriate if scanning repetitions occured over a short 

time and were conducted by the same experimenter at  the same MRI center using the 

same MRI scanner, image acquisition protocol and data analysis software.

 Reliability  can be measured using different mathematical and statistical 

approaches. A general approach includes standard pairwise correlation methods using 

parametric Pearson’s or non-parametric Spearman’s correlations between all 

measurements across sessions. Correlations yielded will fall in the range [-1, 1] with 

values higher than 0.5 indicating a moderate to high degree of test-retest  reliability, 

values in between 0 and 0.5 indicating a low degree of reliability and negative values 

indicating unreliable measurements. Although intuitive, this approach was not adopted 

in the reliability studies reported in this work because more sophisticated methods have 

been introduced recently.

 The TRT reliability  method adopted in these longitudinal studies is a measure of 

absolute percent change in the measurements across repetitions for each single subject. 

In the present work the absolute percentage change was mathematically  defined as the 

fraction between the absolute difference and the mean of measurements across 

repetitions expressed in percentage. This TRT reliability measures the error across 

repetitions ranging from 0 to ∞. Since the measurement error and reliability  are 

indirectly proportional, the more the error approaches 0 the higher the reliability and 

vice versa. Of note, this reliability measurement is unitless and needs thresholding 

definitions to allow interpretations and decisions. In the present work, 10% error across 

repetitions was conventionally  defined as the limit between good and poor reliability. 

Also, this method is not adequate for examining the reliability of seed-based pearson’s 

correlation coefficients unless thresholding rho > ± 0.1, to avoid zero correlations that 

bias reliability  estimates toward ∞. Moreover, for similar formulation reasons, higher 

correlations will be less reliable than lower correlations. Since Fisher’s z-transformation 

typically increases pearson’s correlation coefficients, this will lead to reliability loss. In 

contrast, this method can be efficaciously implemented on ICA z-scores values that are 

usually thresholded at z > ± 2.3, p < .001. 

 Other reliability methods include inter-rater approaches which are well suited in 

multicentric fMRI studies to evaluate the degree of absolute agreement across different 
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MRI centers, MRI machines and analysis protocols on different individuals. However, 

inter-rater methods can also be adopted in single site studies as a measure of 

concordance of measurements across repetitions in all individuals. To this extent, inter-

rater methods can be adopted along with the absolute percent change to circumvent its 

limitations.

 Inter-rater reliability is calculated via ICC-analysis (Shrout & Fleiss, 1979). This 

coefficient is mathematically inscribed in an analysis-of-variance (ANOVA) framework 

and quantifies the “consensus” as the variability  measured within all subjects and 

between repetitions (concordance) and/or across multiple MRI sites (agreement). 

Simplifying, ICC can be therefore calculated as the fraction of between-subject variance 

and the total variance detected in the sample (Bennet & Miller, 2010). This formula 

allows a range for ICC values between 0 and 1 with moderate-to-high reliability in the 

range [0.5, 1] and poor reliability otherwise. Furthermore, there are different types and 

models of ICC depending on whether reliability measures are calculated from single or 

multiple averaged measures (type 1 and type 2, respectively) and, depending on the 

study design, if the same subjects were considered across conditions or if they were 

randomly selected for each condition. The main difference between the ICC and the 

absolute percent change regards the fact that the former computes reliability in a group-

wise fashion while the second can be used to monitor variance in each single subject or 

voxel. Since the ICC is mathematically  derived from the ANOVA it could be similarly 

biased by outliers or underpowered in small samples.

 In the main works outlined in this thesis the absolute percent change and the ICC 

methods were both adopted to investigate the stability  of DMN connectivity 

measurements. This choice was in part related to the study  design of these longitudinal 

studies and to their popularity in the current investigations in the field.

 Furthermore, other reliability measures adopted in these works include the Jaccard 

and Dice indexes. These are statistics that compare the similarity of two or more samples 

(Tan et al., 2005) and have been adopted in reliability studies of brain imaging to evaluate 

voxel-wise spatial reproducibility  of brain network patterns across sessions (Rombouts et 

al., 1997; Rombouts et al., 1998). Jaccard and Dice indexes are very similar statistics with 

Jaccard = Dice / (2 - Dice). The Jaccard index is computed from the ratio between the 

intersection and the union of the two or more activation patterns whereas the Dice index is 
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computed as the ratio between the intersection and the mean spatial pattern between 

sessions. Both statistics return values in-between 0 and 1 indicating poor and high 

reliability, respectively.

DMN reliability: a systematic review

 TRT reliability  studies are fundamental to optimize longitudinal RS-fMRI 

protocols and evaluate the clinical value of intrinsic DMN connectivity. To date, despite 

efforts in the scientific community, our knowledge about DMN reliability  remains 

limited and need further investigations. Overall, the existing studies suggests that 

functional DMN connectivity metrics are overall substantially stable in the long term, 

suggesting that this network can be a promising candidate to validate biomarkers in 

longitudinal RS-fMRI studies. However, TRT reliability  metrics can be influenced by 

MRI acquisition and preprocessing choices. In the next paragraphs, some of known 

effects are illustrated along with open issues to be addressed.

 Longitudinal data acquisition issues

 Despite large variability  in MRI acquisition protocols, TRT reliability of the 

DMN is generally substantial to support the development of novel biomerkers. High 

long-term DMN reliability  is indeed found in 1.5T studies as well as at higher field 

strength (Chou et al., 2012). Notwithstanding the success to detect the DMN at ultra 

high-field (Hale et al., 2010), no studies have so far either evaluated DMN reliability  at 

7T or compared it across different field strengths.

 Most reliability  investigations have been conducted at single MRI centers (Chou 

et al., 2012; Guo et al., 2012; Patriat et al., 2013; Shehzad et al., 2009; Somandepalli et 

al., 2015). These studies may vary in EPI acquisition schemes which can be determinant 

for ultimate reliability  metrics, such as number of acquired volumes (Braun et al., 

2012), limiting reproducibility  and clinical relevance of findings. Longitudinal datasets 

are unique and often challenging to obtain, so their public availability may  help 

generalizing the results from different analyses methods. Within, the 100 functional 

connectome project (http://fcon_1000.projects.nitrc.org/), the Consortium for Reliability 

and Reproducibility (Zuo & Xing, 2014) is a recent  effort that created a public 

2.6.

2.6.1.

Chapter 2

34



repository  of various longitudinal RS-fMRI datasets independently  collected worldwide 

on 3T MRI machines (Siemens, Philips, GE) using a variety of MR acquisition 

protocols. Another important neuroimaging data-sharing initiative is the International 

Consortium for Brain Mapping (ICBM) from which interesting DMN reliability 

information have been gained (Song et al., 2012). Other efforts to build 3T multisite 

datasets come from The PharmaCog project (Jovicich et al., 2016) that  collected data 

using a harmonized protocol from a European consortium of 13 MRI centers under a 

large umbrella of hardware characteristics that span from scanner manufacturer 

(Siemens, Philips, GE) to head-coils (8-12 channels) and fat-suppression methods 

(constrained to vendor’s choice).

 As mentioned in previous sections, subjects instructions might differently 

influence FC-fMRI estimates. This issue of eyes-condition is particular relevant for 

DMN reliability studies since it cannot be optimized apriori. While being disregarded in 

some studies (Guo et al., 2012; Song et al., 2012) and in disagreement across studies 

(Chou et al., 2012; Shehzad et al., 2009), some have directly  addressed this issue 

(Patriat et al., 2013). Their conclusion was that eyes-fixated would provide more 

reliable connectivity estimates. However, given the complexity of the field further 

investigations are needed to corroborate this solution.

 Despite the strong dynamical nature of the default-mode function, all FC-fMRI 

measures provides high reliability within DMN regions. However, biological changes in 

DMN function remain an open issue, especially  in clinically oriented longitudinal 

studies that implement long-term repetitions to mimic clinical trials (Chou et al., 2012; 

Jovicich et al., 2016). However, a conservative approach would consider also short-term 

repetitions in clinical longitudinal studies such as in (Somandepalli et al., 2015) or in 

multisession (i.e. more than 2 scanning repetitions) studies (Shehzad et al., 2009) to 

improve the statistical power of reliability analyses. 

 An important source of variability across longitudinal acquisition protocols is 

related to the number of 2D slices adopted to image full 3D volumes. Most importantly, 

no studies either reported or compared slice-order acquisition sequences in longitudinal 

studies, which does not help clarifying whether interactions between head-motion and 

slice-timing acquisition differences would influence the TRT reliability of the DMN.
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 Finally, considering that it has been recently  shown that DMN connectivity is 

sensitive to circadian rhythm in healthy  young adults, with gradually  reduced 

synchronization from morning to afternoon (Blautzik et al., 2013), and that rhythmicity 

dysregulation undergoing in clinical populations would affect DMN connectivity 

(Blautzik et al., 2014), TRT reliability could be higher following standardization of 

acquisition time, particularly  in the morning, when DMN connectivity is the strongest 

(Meindl et al., 2010).

 Longitudinal data analysis optimization

 Longitudinal RS-fMRI studies do not show significant changes from standard 

single-session designs. Indeed standard correction procedures and FC-fMRI methods 

allow the characterization of stable connectivity metrics over time. In 1.5T fMRI 

protocols, minimal preprocessing consisting of motion correction and bandpass filtering 

was able to return high multisession seed-based DMN reliability, with 45% of DMN 

connections showing outstanding ICC scores (ICC ≥ 0.8) (Chou et al., 2012). In 3T 

studies, which constitutes the majority in the literature, many attempts were made to 

reduce spurious fluctuations rising from non-neural signals that would lessen TRT 

reliability of FC-fMRI metrics.

 Besides common physiological denoising strategies including WM/CSF and 

global signal regression, (Birn et al., 2014) compared longitudinal effects of 

RETROICOR (Glover et al., 2000), progressively adding respiration-related metrics 

(Bianciardi et al., 2009; Birn et al., 2006), relative derivatives (Bianciardi et  al., 2009), 

cardiac rate correction metrics (Chang et al., 2009) with NPC on model-based FC-fMRI 

in healthy young adults. In contrast to their expectations, they found that physiological 

noise corrections determined significant decreases in TRT reliability in the whole brain. 

In agreement with (Braun et al., 2012; Guo et al., 2012; Song et al., 2012), the greatest 

decreases were found for those denoising approaches using nuisance regressors derived 

from the data itself, specifically global signal regression (Birn et al., 2014). However, 

when only brain networks ROIs were interrogated, the results were similar, except that 

the WM/CSF, and global signal regression did not result in a significant difference in 

ICC values (Birn et al., 2014). This counterintuitive effect  might be explained 

considering that physiological noise can be characteristic and repeatable within subjects, 
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and reduction of this noise would therefore reduce TRT reliability of individual FC-

fMRI metrics (Birn et al., 2014).

 These observations are indeed surprising and do not easily lead to the conclusion 

that physiological noise correction should not be performed in longitudinal RS-fMRI 

studies. Rather, physiological noise correction would constitute a tradeoff between 

reliability  and specificity of connectivity results. Even so, further investigations 

involving healthy old participants who show higher between-subject variability in 

respiratory and cardiac rates might confirm these findings. Furthermore, (Birn et al., 

2014) did neither specifically interrogate DMN regions nor compare different FC-fMRI 

methods.

 Particular attention was also given to the temporal filter frequency range in the 

context of model-based whole-brain intrinsic FC-fMRI. Typical RS-fMRI preprocessing 

use bandpass filters in the range 0.01 - 0.1 Hz. When comparing a narrower frequency 

range (0.04-0.08 Hz) with a broader one (0.008-0.15 Hz), a larger range returned higher 

TRT reliability in the whole brain (Braun et al., 2012). These choices have not been 

investigated in the context of ICA-based methods but are particularly interesting in the 

context of fast sampling rate acquisitions that allow the investigations of higher 

frequencies ranges, spare of physiological artifacts, eventually leading to the discovery 

of neural network hubs (Liao, 2013).

 Certainly, global signal regression received particular attention in DMN 

reliability  studies. As described previously, this method introduces anticorrelations in 

the entire brain that  would overall reduce model-based reliability in healthy young and 

old adults up  to 50% (Braun et al., 2012; Guo et al., 2012; Song et al., 2012). However, 

the severity  of reliability loss seems more pronounced in seed-based and ROI-based 

connectivity than graph-based approaches (Braun et al., 2012). Auspiciously, global 

signal regression is less than an issue in longitudinal DMN studies since anti-

correlations are not introduced within the DMN regions (Guo et al., 2012).

 Comparison of functional connectivity methods

 The majority  of TRT reliability studies of the DMN was conducted using model-

based connectivity  methods, particularly seed-based or ROI-based approaches. These 

manifest overall fair reliability estimates in healthy young individuals, ICC (0.47 ± 
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0.16; range 0.3 - 0.69) without global signal regression (Braun et al., 2012). However, 

the magnitude of the correlations affects the ICC analysis with higher between-subject 

than within-subject variance (Birn et al., 2014; Chou et al., 2012; Shehzad et al., 2009). 

 Besides, the main issue with model-based connectivity approaches relates to the 

selection of seeds and nodes. Considering the high variability  of FC-fMRI maps as a 

function of seed location and characteristics, PCC-located seeds (MNI coordinates: –6 –

58 28) manifest high DMN reliability  only  at short-term (Shehzad et al., 2009). One 

solution to optimize ROI definition can be the adoption of ROI atlases. The automated 

anatomical labeling (AAL) atlas would improve DMN reliability  in the long-term 

(Wang et al., 2011). No differences in DMN reliability were observed in short-term 

reliability  across commonly adopted anatomical parcellation templates (Desikan et al., 

2006; Dosenbach et al., 2010; Toro et al., 2008).

 Optimizing ROI choices is important to evaluate seed-based DMN reliability 

differences across healthy subjects and patients. When comparing typical developing 

with attention-deficit/hypercativity  disorder (ADHD) children, seed-based connectivity 

ICC is the highest  in regions exhibiting significant correlations with PCC (ICC > 0.4), 

but across the whole brain ranged from fair to moderate (ICC, 0.2 – 0.6) (Somandepalli 

et al., 2015). These non-zero ICCs found outside the DMN indicate the existence of 

reliable within-subject  noise that likely confounds group comparisons (Patriat et al., 

2013). To further reduce these biases, ICA-informed ROIs could also be used to 

optimize individual ROIs definition in the DMN (Franco et al., 2013). However, this 

would need for a direct comparison between the TRT reliabilities of model-based and 

model-free connectivity methods within the default-mode system.

 Intrinsic issues related to model-free methods, such as DMN-splitting, lessen 

ICA-based DMN reliability (Jeong et al., 2012; Meindl et al., 2010) but could be 

circumvented by determining low-order dimensionality  (Abou-Elseoud et al., 2010). 

Despite being not appropriate to investigate the functional connectome to large extents, 

the decomposition of groupwise data into 10 components proved successful at 

characterizing highly reliable multisite DMN connectivity  patterns in healthy  aging 

individuals (Jovicich et al., 2016). Group-ICA methods produce more reliable DMN 

connectivity estimates compared with single-subject ICA methods (Guo et al., 2012; 
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Zuo et al., 2010) and their application is favored in longitudinal study designs given that 

multiple acquisitions increase group-ICA sensitivity (Franco et al., 2013).

 DMN reliability studies are relevant in the context of healthy aging considering 

age-related reliability differences, with healthy elders showing poorer reliability  when 

compared to young adults (Song et al., 2012). This is an interesting finding that can lead 

to the development of DMN-based longitudinal biomarkers or multivariate 

classification algorithms used to distinguish age-related or abnormal FC-fMRI changes 

(Meier et al., 2012).

 To strengthen this research stream, (Jovicich et  al., 2016) recently showed that in 

the context of 3T multicentric studies, despite variability in the tSNR across multiple 

sites due to hardware and pulse-sequence differences, both seed-based and ICA-based 

DMN connectivity methods showed consistent TRT reliability  across 13 different MRI 

sites with the latter methodology providing overall higher DMN reliability.

 This result agrees with previous single-site DMN reliability studies of healthy  

aging (Guo et al., 2012) and could depend on technical differences or different degrees 

of sensitivity  to motion artifacts between the two FC-fMRI approaches (Guo et al., 

2012). In the latter study, seed-based and ICA-based approaches were compared as a 

function of across-session head-motion severity (Figure 2.11).

 In this study, motion metrics calculated during 3D volume realignment were 

used to separate the entire sample (N=24) into two subgroups: ‘mvmt<3’ (N = 20) and 

‘mvmt<2’ (N = 15) that included subjects with less than 3 mm and 2 mm of movement 

fluctuation in either translation or rotation across sessions, respectively. This study 

indicates that both methods agree in good large-scale and poor voxel-wise DMN 

reliability, with a slight advantage for model-free methods at the voxel-wise level. In 

contrast to model-based approaches, ICA-based DMN reliability is more robust against 

head-motion in healthy aging (Guo et al., 2012). However, as previously  described, 

volume-based motion correction methods account for motion only in minimal part 

(Beall & Lowe, 2014) and no longitudinal study  has so far compared different 

retrospective approaches to minimize motion correction effects on model-based and 

model-free DMN reliability.
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Challenges addressed in this thesis

 This thesis uses TRT reliability metrics of the intrinsic DMN connectivity as a 

probe in two separate studies that investigate different strategies for physiological noise 

(Chapter 3) and head motion correction (Chapter 4) methods. Both studies used group-

Figure 2.11. Comparison of seed-based and ICA reliability analysis using ICC. A) shows  seed-
based ICC analysis  and B) shows  ICA-based ICC analysis  at the ROI (left) and voxel-wise level (right), 
respectively. Bargroups  include all individuals  (black), high-motion individuals  (dark gray), low-motion 
individuals (light gray). The image shows  that global-regression induce loss  of seed-based reliability and 
that remotion of  motion parameters  or non-brain signals  including WM/CSF can improve reliability. 
Group-ICA returns  higher reliability than single subject ICA approaches. Higher reliability is  found in large 
ROIs compared with single voxels. However, ROIs  are more susceptible to motion. WM/CSF/NB: 
regression of WM/CSF and non-brain tissue; WM/CSF/NB_GI: includes  global regression; WM/CSF: use 
only WM/CSF regressors; WM/CSF/NB_mvmt: includes motion parameters. ICA_est: single-subject ICA 
with automatic dimensionality estimation. ICA_20: single-subject ICA with 20 components; TC-
GICA_est: group ICA with automatic dimensionality estimation; TC-GICA_20: group ICA with 20 
components. From Guo et al., 2012.
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ICA and dual-regression methods to define DMN and to capitalize on ICA’s power to 

eliminate unwanted sources of signal noise. The general assumption is that acquisition 

and/or analyses methods that improve TRT reliability (i.e., reduce test-retest variability), 

should be preferred in longitudinal studies evaluating the value of DMN as a biomarker.
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3 

Experiment 1: Influence of physiological 

denoising on multisite DMN reliability in 

healthy aging

Introduction 

The first challenge addressed in the present thesis relates to physiological 

aliasing and correction methods in longitudinal RS-fMRI studies of the DMN. The 

purpose of this study was to evaluate whether different rPNC approaches, intended as 

methods that minimize the cardiac and respiratory components in the resting state 

BOLD fMRI signal, would differently affect the within-site TRT reliability of DMN 

connectivity across two MRI sessions and the consistency of the reliability  in healthy 

aging subjects from the PharmaCog consortium. In this 3T harmonized multisite fMRI 

study, three ICA-based physiological denoising algorithms were evaluated, namely 

PESTICA and FSL-FIX along with the WM/CSF regression method. These were 

compared to a control condition where no retrospective physiological denoising was 

implemented (NPC). The raw data of this study  is public so it can be used to evaluate 

additional physiological or head motion correction methods.

The rationale of the current study is to extend previous findings (Birn et al., 

2014) to 3T multisite studies, healthy aging individuals and model-free intrinsic FC-

fMRI methods. To the best of our knowledge it remains unclear how rPNC may affect 

TRT reliability in the context of a multicenter MRI study. In the context of multisite 

experiments, rPNC methods are of special interest because short TR acquisitions or 

direct physiological measurements are more challenging to implement uniformly  across 

clinical sites that may not have special equipment or access to special MRI sequences.

3.1.



 In particular, reliability (or lack thereof) may be exacerbated in heterogeneous 

populations such as healthy elderly  subjects. In the context of the current  study, this age 

group is relevant because the patterns of physiological noise variability might not be the 

same in young and elderly people (Nicolini et al., 2012; Schulz et al., 2013; Taylor, 

2010). The contributions of cardiac and respiratory activity on BOLD signal 

fluctuations as a function of age are unknown, so a conservative approach is to consider 

that physiological effects in young and elderly people may be different. Therefore, 

evaluating how physiological correction methods minimize unwanted variability in 

longitudinal multisite studies of healthy elderly is crucial to validate probable DMN-

based markers to predict the onset or track the staging of cognitive deterioration in 

elderly (Hedden et al., 2009; Vannini, 2012).

 In this study group-ICA was used to extract DMN connectivity features and 

evaluate the TRT reliability of ICA-derived connectivity metrics, such as mean z-scores, 

coactivation cluster-sizes and coactivation spatial overlap across sessions, for ach rPNC 

method and each of the 13 sites in the consortium. Multisite evaluations of TRT 

reliability  metrics were additionally  investigated for each rPNC method. The following 

paragraphs report in part the research article published in Human Brain Mapping 

journal on March 2016 (Marchitelli et al., 2016).

Materials & Methods

 MRI data acquisition

Fifteen clinical sites (13 MRI sites) participated in this study  across Italy 

(Brescia, Verona, Genoa, Rome, Chieti, Perugia and Naples), Spain (Barcelona), France 

(Marseille, Lille, and Toulouse), Germany (Essen, Leipzig), Greece (Thessaloniki) and 

The Netherlands (Amsterdam) (Jovicich et al., 2016). The Brescia site was responsible 

for the coordination and analysis of the whole study and did not acquire MRI data. Each 

MRI site recruited 5 local volunteers within an age range of 50-80 years. Each subject 

underwent two MRI sessions completed at least 7 days (but no more than 60 days) apart 

at the site. This short period between the test and retest sessions was chosen to minimize 

biological changes that could affect the reliability of the measures and to mimic the 

variability expected from separate sessions, as measured in longitudinal studies. Table 

3.2.

3.2.1.
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3.1 summarizes information about age, gender and TRT interval times of the subjects 

scanned at each MRI acquisition site. All participants were volunteers with no history of 

major psychiatric, neurological or cognitive impairment (referred to as healthy  in this 

study), were Caucasian and provided written informed consent according to the local 

ethical committee for each institution. Exclusion criteria were described in previous 

work (Jovicich et al., 2014). 

The thirteen 3T MRI sites that participated in this study  used a variety of MRI 

system vendors and models (Siemens, GE, and Philips). Table 3.1 summarizes the main 

MRI system and EPI acquisition differences across sites. Only vendor-provided 

sequences were used. Each subject  had a total of two resting state EPI acquisitions (RS-

fMRI), one from the test session and one from the retest session. In each session the 

following single shot EPI acquisition parameters were common across sites: nominal 

voxel size 3 x 3 x 3 mm3, TE = 30 ms, TR = 2.7 s, Ernst flip  angle of 850, one-pass 

interleaved axial slices acquired (equidistant choice in Philips, default  options in GE 

and Siemens) oriented parallel to the AC-PC line covering the full brain, 0.45 mm slice 

gap (15% slice thickness), 40 slices, 200 volumes, fat  suppression, no parallel imaging.  

TR was chosen to be the shortest common possible value in the consortium allowing 

full brain coverage while keeping consistent temporal resolution across sites. The total 

resting state acquisition duration was 9 min, a duration that has been shown appropriate 

for reliable intrinsic connectivity results (Liao, 2013; Van Dijk et al., 2010; Zuo, 2013). 

Each MRI session included the acquisition of two T1 weighted anatomical scans 

(Jovicich et al., 2013). Subjects were instructed to keep their eyes closed, stay  relaxed 

and try to avoid falling asleep. 

Other acquisition parameters including head RF coil characteristics, pulse 

sequence and fat suppression methods were difficult to standardize due to system 

differences. The choices for these parameters were made based on the optimal or 

possible options available at the different platforms (Table 3.1). All images from 

multichannel coils were reconstructed online as the sum of the squares across channels. 

When allowed by the MRI system, images were reconstructed and saved disabling 

additional filtering options that could differ across scanners introducing different 

degrees of smoothing.
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 Data preprocessing

Data preprocessing was performed in the individual space of each subject using 

a combination of FSL (Jenkinson et al., 2012) and AFNI (Cox, 1996) programs in the 

same order as they are listed. The following preprocessing steps were performed with 

NPC (Figure 3.1). The first 4 volumes were discarded (fslroi, FSL) to allow for steady 

state stabilization of the BOLD fMRI signal. Then, EPI volumes were realigned 

(mcflirt, FSL) and 6 head movement metrics were calculated; slice timing correction 

based on the slice acquisitions parameters at each site (slicetimer, FSL); non-brain 

voxels removal (bet2, FSL); temporal filtering with a bandpass filter (0.01 - 0.1 Hz) 

(fslmaths, FSL) to remove low and high-frequency signal fluctuations. Additional 

confounds, such as the 6 head movement metrics and their derivatives (1d_tool.py, 

AFNI), temporally filtered (1dBandpass, AFNI) as the main signal (Hallquist et al., 

2013), were removed from the data using multiple linear regressions (3dDeconvolve, 

AFNI) for an overall of 12 regressors of no interest plus linear and quadratic trends. 

Neither regressors nor volumes were censored. 4D EPI volumes were spatially 

smoothed using 6 mm full-width at half-maximum Gaussian filter (susan, FSL) and 

normalized to mean signal intensity by a single factor (fslmaths, FSL). 

Considering that variability  in head-motion within and between subjects could 

confound our FC-fMRI estimates (Power et al., 2012; Van Dijk et al., 2012), head-

motion was quantified using the framewise displacement (FD) timeseries derived from 

the 6 head movement metrics (Power et al., 2012). Mean and maxima FD were used to 

summarize head-motion in each subject and session.

 Retrospective physiological denoising methods

Besides NPC, the following three methods for rPNC were evaluated: i) 

PESTICA correction (Beall & Lowe, 2007); ii) WM/CSF regression (Weissenbacher et 

al., 2009); and iii) FSL-FIX correction (Griffanti et al., 2014; Salimi-Khorshidi et  al., 

2014). Each of these methods followed a slightly different preprocessing workflow, as 

schematically shown in Figure 3.1 and described below. All preprocessing pipelines, 

with or without rPNC, were performed in single subject space.

3.2.2.

3.2.3.
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1. PESTICA (http://www.nitrc.org/projects/pestica/) is a freely  available retrospective 

physiologic denoising algorithm (AFNI, MATLAB) that estimates the cardiac and 

breathing cycle directly from the BOLD fMRI data using temporal ICA (Beall & 

Lowe, 2007). The software defines 2 regressors-of-no-interest  from the 2 most 

correlated independent components to spatial template references of heart beating 

and breathing, converts and regresses them out from the main signal using IRF-

RETROICOR (Beall, 2010). Following the developers’ recommendations, PESTICA 

v2.0 was run before slice timing correction. Default parameters suggested by the 

developers were used, such as temporal ICA dimensionality (15 components) and the 

full range for cardiac and respiratory estimators (48-85 bpm for cardiac and 10-24 

bpm for breathing). All recommended PESTICA QA tools were used to verify that 

the algorithm performed properly: 1) visual inspection to assess the correct 

coregistration of the current EPI volume and the mean EPI template provided within 

PESTICA; 2) Plots of cardiac and breathing estimators; 3) coupling maps of cardiac 

and respiratory profiles.

2. Brain WM/CSF regression, here referred to as Tissue-based correction, is a common 

method to remove physiological confounds without a predefined model of noise 

(Birn et al., 2009; Bright & Murphy, 2013; Weissenbacher et al., 2009). This method 

relies on the assumption that BOLD fluctuations in WM and CSF are dominated by 

physiological noise, whereas BOLD fluctuations in GM combine signals from neural 

origin and physiological noise. One approach, the global regression method, removes 

the mean signal from the full brain. Therefore it might cause the loss of neural signal 

from GM. Instead, regression of the average WM and CSF time series from GM is 

expected to reduce the impact of physiological fluctuations in GM. Therefore the 

latter approach was chosen, here referred to as Tissue-based correction. Tissue-based 

correction is hence applied during multiple linear regressions together with 

movement confounds (Figure 3.1).

Tissue-based correction requires processing of T1 anatomical images to spatially 

define WM and CSF masks. In this study, for each subject, the first individual 

anatomical volume acquired at test was only used to define WM  and CSF masks. Non-
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brain tissue was initially removed from center-oriented T1 anatomical volumes (bet, 

FSL); the anatomical volume was then registered to the original EPI (align_epi_anat.py, 

AFNI); segmented in WM and CSF using partial volume segmentation (fast, FSL). 

Masks were thresholded at 0.99 (3dcalc, AFNI) to reduce the inclusion of gray matter 

voxels into the masks. To avoid gross coregistration and segmentation errors visual 

inspection was used. Two regressors of no interest were calculated from brain-extracted 

EPI as the mean time series within the non-gray  matter masks (3dcalc, AFNI), 

temporally filtered as the main signal (1dBandpass, AFNI), and removed together with 

movement confounds by multiple linear regressions (3dDeconvolve, AFNI). The total 

number of nuisance regressors in this analysis pipeline was therefore 14 (6 head 

movement, 6 derivative of head movement, mean WM and CSF time series).

3. FSL-FIX (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) exploits single-subject  spatial 

ICA to auto-classify noisy components and remove them from the main signal 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Components classified as noise 

include physiological, head movement and other artifacts relative to image 

acquisition. The classification of noise components can be performed either by using 

one of several training files provided by the authors or by  generating a data-specific 

training set on one’s own data. In this study both approaches were investigated. 

Following the developers’ suggestions, FSL-FIX was run after the NPC 

preprocessing pipeline. No changes were made to the preprocessing pipeline to be 

consistent across all rPNC methods examined. Temporal filtering was used 

consistently with common practice and works implementing FSL-FIX (Griffanti et 

al., 2014). Spatial smoothing was also performed, since it  returned high 

reproducibility of the tSNR across multiple sites in our previous works (Jovicich et 

al., 2016). Single-subject ICA was run with automatic estimation of dimensionality 

using MELODIC on preprocessed data including the brain-extracted anatomical 

images (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). From the various pre-

defined FIX training sets offered, the one (herein referred to as FIX-standard) 

generated from a set of acquisition and preprocessing conditions as close as possible 

to those employed in this study was selected (Standard.RData: TR=3s, 

Resolution=3.5x3.5x3.5mm3, session=6mins, default FEAT preprocessing including 
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default spatial smoothing).

 The data-specific FIX training set (herein referred to as FIX-training) was 

generated separately for each MRI site using the two acquisition sessions of each 

subject (i.e., a total of 10 resting state runs per site). FIX-standard and FIX-training 

corrections were run using a signal/noise threshold of 75 and 20, respectively. 

Thresholds were determined as the minimum value to consistently remove at least those 

components that were visually  related to physiological artifacts across subjects, sessions 

and sites. For FIX-standard this could not be achieved with a threshold lower than 75, 

whereas the implementation of site-specific classifiers in FIX-training allowed the 

usage of considerably smaller thresholds.
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Figure 3.1. RS-fMRI preprocessing outline. The diagram shows  main preprocessing steps for 
each rPNC method under investigation: NPC (blue); PESTICA (P, green); Tissue-based (TB, 
orange); FSL-FIX using standard (FIX-S, red) or site-specific classifier (FIX-T, violet). MC, motion 
correction; SC, slice-timing correction; BE, brain extraction; BP, band-pass filtering 
(0.001-0.01Hz); MLR, multiple linear regression; SS, spatial smoothing  (FWHM = 6mm); N, mean 
intensity normalization; MNI, MNI coregistration.TB  correction required anatomical image 
preprocessing: BE, brain extraction; SEG, segmentation; WM/CSF, white matter/cerebral spinal 
fluid regressors; BP, band-pass  filtering of regressors  (WM/CSF regressors  were bandpass 
filtered). Anatomical BE images were also used for FSL-FIX.



 DMN extraction methods

After preprocessing with each rPNC method in the individual space of each 

subject across all preprocessing workflows, group-ICA was performed using 

MELODIC (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) to extract the site-specific 

group DMN, for each site and each rPNC method separately. For each site and rPNC 

method, all subjects and sessions (i.e. 10 resting state runs) were spatially normalized to 

the MNI template via linear (affine) registration (Jenkinson et al., 2002) and 

subsampled at a resolution of 4 mm isotropic voxels, then decomposed into 10 

independent components (Jovicich et al., 2016), using the multisession temporal 

concatenation procedure in MELODIC. A higher number of components were not 

extracted to avoid splitting of the DMN (Abou-Elseoud et al., 2010; Jovicich et al., 

2016).

An automatic selection procedure was used for each MRI site and rPNC method 

to select the group DMN from the 10 ICs in each dataset. In particular, an overlap 

measure was used to select the DMN using only  the posterior regions (posterior 

cingulate and precuneus, left / right parietal cortex) from an independent functional 

DMN template (Rosazza et al., 2012) to avoid circularity. The component with the 

highest number of voxels in common with the template was chosen as representative of 

the DMN. Both our components and the DMN template were thresholded at z-scores > 

2.3, p  < .01 (Beckmann & Smith, 2004). The automatically selected group DMN for 

each site was visually inspected to assess overall resemblance with standard DMN 

patterns including its main coactivation areas.

For each site and rPNC method, dual-regression was then used to derive the 

single subject and session DMN from the site-specific group DMN (Beckmann, 2009; 

Zuo et al., 2010). Single-subject DMN volume maps were thresholded at z > 2.3, p < 

0.01 (Beckmann & Smith, 2004). To account for spatial DMN variability across 

sessions and subjects, a functional cluster-criterion was used to define the DMN by four 

main clusters (3dclust, AFNI). These clusters were i) posterior cingulate and precuneus 

(BA31, BA30, BA29, BA23), ii) left/right parietal cortex (BA39, BA40, BA22, BA7) 

and iii) medial prefrontal cortex (BA9, BA10, BA32, BA24) (Franco et al., 2009).

3.2.4.

Chapter 3

51

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC)ADDIN
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC)ADDIN


To avoid inaccuracies for the definition of DMN activation maps, clusters were 

defined as made of voxels no more than 4mm apart and a cluster volume of at least 

1800 micro-liters, per each ROI. These clusters were anatomically constrained by a 

reference DMN template derived from conducting a group-ICA overall the consortium 

with NPC implemented. For each rPNC method, spatial reproducibilityspatial 

reproducibility  defined as the percent overlap  between each individual DMN 

component and this reference template was calculated to quantify single-subject DMN 

variability across MRI sites after image processing.

Mean z-scores in the DMN (i.e., the mean z-score across all voxels in the four 

main clusters) and relative activation cluster-size (i.e. the total number of voxels in the 

four main nodes) were characterized for each subject, session, and rPNC method. 

Furthermore, the DMN activation cluster-overlap between sessions (i.e. the total 

number of common voxel coordinates between sessions) was also calculated for each 

subject and rPNC method.

 Intra-site TRT reliability metrics

The main goal of this study was to evaluate the effects of different rPNC 

techniques on the precision of the DMN-derived measurements. To this end, a measure 

of TRT reliability  within each site in the consortium was considered. Within-site TRT 

reliability  was studied for each rPNC method using the following three metrics: 1) 

absolute percent change of mean DMN connectivity; 2) absolute percent change of 

DMN cluster-size, and 3) Jaccard index for DMN cluster-overlap across sessions 

(Bennett & Miller, 2010; Maitra, 2010; Meindl et al., 2010). These measurements were 

then used for the statistical analysis of within-site TRT reliability  and inter-site 

reliability consistency across the consortium.

 Inter-site reliability consistency metrics

For each DMN reliability measure and each rPNC condition, ICC(2,1) was used 

to quantify  the degree of consistency of TRT reliability  scores (here defined as inter-site 

reliability  consistency) across all 13 sites in the consortium (Bennett & Miller, 2010). 

Considering subjects as “raters” and sites as “targets”, ICC measures the proportion of 

3.2.5.

3.2.6.
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variance between-sites out of the total variance. This formulation returns positive 

coefficients in the range [0,1] with values close to 1 indicating no strong site differences 

or biases in TRT reliability scores. Inter-site reliability consistency was measured using 

an in-house Matlab script; a leave-one-out approach was used to define the standard 

deviation of the ICCs.

 Statistical measures

All statistical measures were performed using IBM SPSS Statistics for 

Macintosh, Version 22.0. Non-parametric Kruskal-Wallis tests was conducted to 

evaluate MRI site effects for each DMN-derived measurements and related TRT 

reliability  scores under each rPNC approach. In the latter case, the variance estimated 

was used to calculate inter-site reliability  consistency, for each DMN-derived 

measurement and rPNC method, respectively. The Kruskal-Wallis test was used on the 

various TRT reliability scores to obtain a statistical measure of site independence. The 

ICC analysis was used as a descriptive measure of inter-site reliability consistency 

across sites. Non-parametric Friedman test was conducted to evaluate rPNC effects in 

each site of the consortium and, if MRI site effects were not found (Kruskal-Wallis, p  > 

0.05), even on the pooled data across the consortium. rPNC method effects on the inter-

site reliability consistency was also evaluated using Friedman test. 

To increase the statistical power of the present analysis, along with the non-

parametric analysis a 2-way ANOVA was also conducted on the pooled reliability 

scores across rPNC methods and sites for each DMN-derived measurement, separately. 

The indexes of kurtosis and skewness were examined to assess the distributional shape 

of TRT reliability  scores and determine whether the assumption of normality was met 

(kurtosis range: [-2, 2] / skewness range: [-1, 1]) (Bulmer, 1979; Mat Roni, 2014).

Finally, bivariate Pearson’s correlations were conducted to evaluate the 

existence of a relationship between the TRT reliability of connectivity  measurements (z-

scores, cluster-size, cluster-overlap) and across-session averaged movement estimates 

(mean FD). The significance level for all the statistics was set at p  < 0.05. Statistics 

were corrected for multiple comparisons over all possible pairwise combinations (13 

sites for Kruskal-Wallis and 5 rPNC methods for the Friedman test) using the method of 

Dunn-Bonferroni (Dunn, 1964) at α = 0.05.

3.2.7.
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Results

 Head-motion metrics

Overall low head movement was found: mean (SD) (0.11 ± 0.1 mm) with only 

8% of time points exceeding 0.25 mm and 1% of them exceeding 0.5 mm. Mean FD 

range was (0.02 – 0.37 mm) where only the 4% of subjects exceeded higher mean FD 

than 0.25 mm. Maxima FD range was (0.07 – 3.32 mm) with roughly  the 3% of subjects 

exceeding 1.5 mm (half-voxel size). Mean FD showed statistical differences across sites 

(Kruskal-Wallis, χ²(12, n = 130) = 31, p = 0.002 uncorrected) but not across sessions 

(paired t-test, p=0.99). Likewise, maxima FD showed site effects (Kruskal-Wallis, 

χ²(12, n = 130) = 24, p = 0.02 uncorrected) and no statistical difference between the two 

sessions (paired t-test, p=0.51). Given that the overall head movement was considered 

low and that ICA tends to separate movement components, we decided not to censor 

volumes in this study  (Power et al, 2012). This also lets us use group-ICA on time series 

of the same length (196 vols).

 Intrinsic DMN connectivity

Despite the low number of subjects (5 per sites, 2 repetitions for each), group-

ICA successfully revealed DMN activation maps in all MRI sites and for all rPNC 

methods, consistently detected via automatic selection (Figure 3.2): selected DMN 

components substantially matched with DMN posterior regions for at least 50% in all 

MRI sites. Moreover, the difference between the first and second ranked components 

was very often higher than 30%, suggesting negligible variability between the selected 

DMN components across MRI sites (Table 3.2). Single-subject DMN maps were also 

successfully  obtained using dual regression for each rPNC method and site (Figure 

3.3).

3.3.

3.3.1.

3.3.2.
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Figure 3.2. Automatic selection of the group DMN at a sample MRI site. (A) Group-
ICA decomposition in 10 ICs  (rows) for each physiological correction method (columns) is 
shown for one sample site (site 1).  Activation maps  include both positive (z  > 2.3) and 
negative (z < -2.3) co-activations. Colored squares  show the components  that were 
automatically selected as  the DMN in each rPNC condition. (B) Proportion of overlapping 
voxels  between each independent component (IC) and the DMN template is  reported for 
each rPNC method. Only positive z-score (z > 2.3) were considered for the selection. (C)  The 
IC with maximum spatial overlap with the posterior regions  of the DMN template was 
selected as the site-group DMN for each rPNC method respectively.
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 In NPC and FIX-training conditions, DMN patterns were either not found or did 

not exceed the threshold in one and five subjects, respectively. This allowed us to 

measure the median and its interquartile range (IQR) across subjects and sessions for 

the average DMN z-scores and cluster-size for each rPNC approach and MRI site 

(Figure 3.4). FIX-standard was found to classify 85% of single subject ICA 

components as noise across the entire consortium, whereas FIX-training, performed 

with a more conservative threshold, classified and removed 71%. FIX-standard 

removed much more components than FIX-training at each site except for site 2. In any 

case, both techniques were effective at attenuating physiological noise, overall. Spatial 

Reproducibility of single-subject  DMN maps was overall medium-to-high within a 

range of 58-61%. Despite this convergence, a Kruskal-Wallis test revealed considerable 

MRI site effects in the spatial reproducibility of single-subject DMN maps. These were 

found for NPC, PESTICA, Tissue-based and FIX-standard and abolished only for FIX-

training (Kruskal-Wallis, χ²(12, n = 125) = 17, p = 0.2).

 A Kruskal-Wallis test also revealed significant MRI site effects in both DMN 

Figure 3.3. Single-subject DMN example. Reconstructed DMN map after dual regression on a 
sample single subject (site 1) is  shown for each rPNC method (columns) at test (top row), retest (middle 
row) and its across-session spatial overlap (bottom row).
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mean z-scores (χ²(12, n = 129) = 29; p=0.004 uncorrected) and cluster-size values 

(χ²(12, n = 129) = 42; p<0.001 uncorrected) when NPC is applied (Table 3.3). Similarly 

to single-subject DMN spatial reproducibility, MRI site effects persisted even after 

applying PESTICA, Tissue-based and FIX-standard methods. Only FIX-training 

canceled MRI site effects in DMN mean z-scores (Kruskal-Wallis, χ²(12, n = 125) = 17; 

p=0.2), cluster-size (Kruskal-Wallis, χ²(12, n = 125) = 15; p=0.3).

In general, FSL-FIX tended to increase median values of mean z-scores within 

the DMN nodes compared to the other methods: FIX-standard significantly increased 

median values of mean z-scores relative to NPC in 4 sites and FIX-training in 5 sites 

(Table 3.4). Nonetheless, FSL-FIX did not concurrently reduce activations in those 

brain regions prone to physiological noise such as WM and CSF in the selected DMN 

component (Andronache et al., 2013). The other rPNC methods did not exert any 

significant change on median values of mean z-scores relative to NPC in single sites. 

Figure 3.4. Within-Site intrinsic DMN connectivity and activation cluster-size results. Median 
(IQR) across  subjects for supra-thresholded (A) mean z-scores  (z  > 2.3)  and (B) volume cluster-size 
(N° active voxels  at z > 2.3) within each site and for each PNC method. rPNC effects  were evaluated 
within each site using Friedman test (p < .05, corrected with Dunn-Bonferroni method). Physiological 
correction using FIX tended to increase FC-fMRI but not cluster-size in the DMN across sites.
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Fewer rPNC effects were found for DMN cluster-size across sites relative to mean z-

scores.

CONNECTIVITY METRICCONNECTIVITY METRIC TEST-RETEST RELIABILITYTEST-RETEST RELIABILITYTEST-RETEST RELIABILITY

METHOD MEAN 
Z-SCORE

CLUSTER
SIZE

MEAN 
Z-SCORE

CLUSTER 
SIZE

CLUSTER
OVERLAP

NPC
χ²(12,129)=29; 

p=0.004
χ²(12,129)=42; 

p<0.001
χ²(12,64)=13; 

p=0.3
χ²(12,64)=19; 

p=0.08
χ²(12,64)=23; 

p=0.03

PESTICA χ²(12,130)=54; 
p<0.001

χ²(12,130)=58;
p<0.001

χ²(12,65)=7; 
p=0.9

χ²(12,65)=15; 
p=0.2

χ²(12,65)=29; 
p=0.004

TISSUE
BASED

χ²(12,130)=28; 
p=0.006

χ²(12,130)=42;
p<0.001

χ²(1265)=20; 
p=0.07

χ²(12,65)=13; 
p=0.3

χ²(12,65)=21; 
p=0.05

FIX
STANDARD

χ²(12,130)=24; 
p=0.02

χ²(12,130)=30; 
p=0.003

χ²(12,65)=21; 
p=0.06

χ²(12,65)=17; 
p=0.1

χ²(12,65)=26; 
p=0.01

FIX
TRAINING

χ²(12,125)=17; 
p=0.2

χ²(12,125)=15; 
p=0.3

χ²(12,60)=14; 
p=0.3

χ²(12,60)=8; 
p=0.8

χ²(12,60)=22; 
p=0.04

Table 3.3. Statistical testing for site-effects. Kruskal-Wallis  tests performed for each rPNC method 
(rows) and DMN-derived measurement (columns 1  - 2) and relative TRT reliability  (columns  4 - 6) scores 
are here reported (p-values  uncorrected). All DMN-derived measurements  showed site-effects  under 
NPC condition while FSL-FIX tended to reduce site effects; in particular FIX-training canceled site 
effects. In contrast, TRT reliability of intrinsic DMN connectivity and its  activation cluster-size did not 
show site effects. Some subjects  did not show DMN functional clusters  at the given threshold in the 
NPC (1 subject) and FIX-training (5 subjects) conditions.
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 Intra-site TRT reliability metrics

 

Figure 3.5 shows the TRT reliability of the DMN connectivity metrics within 

each MRI site and rPNC method. We report the median (IQR) value across subjects at 

each site and rPNC method, for each DMN-derived measurement under investigation. 

No rPNC method significantly influenced TRT reliability relative to NPC at each single 

site for any DMN-derived measurement (Friedman test p>0.05, Bonferroni corrected).

 Furthermore, differences between rPNC methods were not systematic across 

MR sites. There were no statistically significant MRI site effects (Kruskal-Wallis, 

p>0.05) for the TRT reliability of mean z-scores in the DMN or the reliability of its 

3.3.3.

Figure 3.5. Within-site test-retest  reliability of DMN-derived measurements  for each rPNC 
method. Median (IQR) across  subjects for TRT reliability scores  in the DMN: (A)  absolute percent 
change for FC-fMRI; (B)  Cluster-size error (0% highest reliability, 100% lowest reliability); (C)  Jaccard 
index of DMN spatial overlap (0%  lowest reliability, 100%  highest reliability). High TRT reliability was 
found for any rPNC method and DMN-derived measurement in all sites. rPNC effects were evaluated 
within each site using Friedman test (p < .05, corrected with Dunn-Bonferroni method). No systematic 
rPNC effects  were found across  the different sites. Statistically  significant differences  between rPNC 
methods were rarely found.
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volume cluster-size under all rPNC method conditions. There were statistically 

significant MRI site effects (Kruskal-Wallis, p  < 0.05) for the TRT reliability of cluster-

overlap in the DMN. However, these effects did not survive multiple comparisons.

 Therefore, all the TRT reliability scores of each rPNC method were pooled 

together across subjects and sites to examine overall TRT reliability (Figure 3.6). 

Absolute percent errors ranged from 5-11% for DMN z-scores and cluster-size 

reliability. DMN cluster-overlap was in the range 60-65%. There was a statistically 

significant difference in the TRT reliability of mean z-scores and volume cluster-size in 

the DMN, depending on the rPNC method implemented, mean z-scores: χ²(4) = 14; 

p=0.009, uncorrected; Cluster-Size: χ²(4) = 21; p<0.001, uncorrected; (Table 3.4). 

Multiple comparisons applied via pairwise comparisons revealed that the median (IQR) 

mean z-scores reliability error of PESTICA, 4.6% (6%), was statistically  different from 

FIX-training, 10.6% (16.9%), (Z=-3.6, p=0.003). Pairwise comparisons revealed that 

the median (IQR) cluster-size reliability  error of Tissue-based, 5.3% (6.3%) was 

statistically  different from FIX-standard, 9.4% (12.1%), (Z=-4.08, p<0.001) and FIX-

training, 7.3% (12.6%), (Z=-3.03, p=0.03). However, no rPNC method showed a 

statistically  significant  reduction of TRT reliability  of mean z-scores or and cluster-size 

in relation to NPC within the DMN (Figure 3.6). Mean FDs did not correlate with 

absolute percent errors of DMN mean z-scores and cluster-size for all rPNC methods. 

However, the TRT reliability of cluster-overlap (i.e. the Jaccard index) was significantly 

anti-correlated with mean FD when using FSL-FIX (FIX-standard: r(63) = -0.4, p< 0.01 

and FIX-training: r(58) = -0.3, p < 0.01).

Regarding the ANOVA framework, the distributions of TRT reliability scores 

were not normally  distributed for mean z-scores (kurtosis: 2.5, skewness: 1.6) and 

cluster-size (kurtosis: 4.5, skewness: 1.9). However, a square root transformation was 

found to make these distributions more Gaussian-like (mean z-scores: kurtosis: -0.1, 

skewness: 0.5; cluster-size: kurtosis: 0.2, skewness: 0.6). The TRT reliability scores of 

the cluster-overlap were instead normally  distributed (kurtosis: 0.3, skewness: -0.5). 

After this transformation, statistically significant rPNC method effects were found in 
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TRT reliability of mean z-scores 

( F ( 4 , 1 2 ) = 4 . 5 , p = 0 . 0 0 2 

u n c o r r e c t e d ) . I n a d d i t i o n , 

statistically significant MRI site 

effects were found in the TRT 

reliability  of both mean z-scores 

(F(4,12) = 2, p = 0.02 uncorrected) 

and cluster-size (F(4,12) = 6, p < 

0.001, uncorrected). However, 

consistently with non-parametric 

statistical tests, both rPNC method 

and MRI site effects in the TRT 

reliability  of both DMN-derived 

measurements did not survive 

multiple pairwise comparisons. 

Importantly, none of these metrics 

showed interaction effects.

C o n s i d e r i n g t h e T RT 

reliability  of cluster-overlap  (i.e. the 

Jacca rd index) , s t a t i s t i ca l ly 

significant MRI site effects (F(4,12) 

= 8.3, p < 0.001 uncorrected) and 

interaction between rPNC methods 

and sites (F(4,12) = 1.9, p  < 0.01 

uncorrected) were found. Multiple 

pairwise comparisons performed 

between MRI sites for each rPNC 

method revealed that MRI site effects 

were exacerbated under FIX-training 

correction and minimized under 

Tissue-based correction, respectively.

Figure 3.6. Overall test-retest reliability of DMN-
derived measurements  as function of rPNC 

method. Consortium median (IQR) of TRT reliability of 
each DMN-derived measurement: mean z-score (left), 
cluster-size volume (right), overlap-size (bottom). For 
each DMN-derived measurement, rPNC effects were 
evaluated using Friedman test (p < .05, corrected with 
Dunn-Bonferroni method). No rPNC method 
statistically reduced the TRT %  error of FC-fMRI and 
cluster-size nor increased the Jaccard index for the 
cluster-overlap in the DMN.
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Table 3.4. Statistical testing for rPNC-effects. Friedman tests  performed for each site (rows) and DMN-derived measurement 
(columns 1 - 2)  and relative TRT reliability (columns  4 - 6)  scores are here reported (adjusted p-values  across  13  sites  using 
Bonferroni correction). Mean z-score and volume cluster-size showed significant rPNC effects  within many sites. In contrast, the 
TRT reliability  of these DMN-derived measurements  showed rPNC effects  only rarely. The test was  also performed on the scores 
from the entire consortium (last row) in case no site-effects were found for these estimates (see table 4.3).

CONNECTIVITY METRICCONNECTIVITY METRIC TEST-RETEST RELIABILITYTEST-RETEST RELIABILITYTEST-RETEST RELIABILITY

MEAN
Z-SCORE

CLUSTER
SIZE

MEAN
Z-SCORE

CLUSTER
SIZE

CLUSTER 
OVERLAP

SITE 1
χ²(4)=13;

p=0.1
χ²(4)=8;

p=1
χ²(4)=2;

p=1
χ²(4)=5;

p=1
χ²(4)=6;

p=1

SITE 2
χ²(4)=8;

p=1
χ²(4)=14;

p=0.1
χ²(4)=5;

p=1
χ²(4)=6;

p=1
χ²(4)=2;

p=1

SITE 3 χ²(4)=24;
p<0.01

χ²(4)=22;
p<0.01

χ²(4)=11;
p=0.4

χ²(4)=3;
p=1

χ²(4)=6;
p=1

SITE 4 χ²(4)=19;
p=0.01

χ²(4)=17;
p=0.03

χ²(4)=8;
p=1

χ²(4)=16;
p=0.04

χ²(4)=6;
p=1

SITE 5
χ²(4) = 31;

p<0.01
χ²(4) = 8;

p=1
χ²(4)=3;

p=1
χ²(4)=1;

p=1
χ²(4)=1.6;

p=1

SITE 6
χ²(4) = 34;

p<0.01
χ²(4)=8;

p=1
χ²(4)=13;

p=0.1
χ²(4)=31;

p=1
χ²(4)=13;

p=0.2

SITE 7 χ²(4)=10;
p=0.5

χ²(4)=3;
p=1

χ²(4)=2;
p=1

χ²(4)=4;
p=1

χ²(4)=5;
p=1

SITE 8
χ²(4)=11;

p=0.4
χ²(4)=1;

p=1
χ²(4)=7;

p=1
χ²(4)=8;

p=1
χ²(4)=7;

p=1

SITE 9
χ²(4)=21;
p<0.01

χ²(4)=9;
p=1

χ²(4)=2;
p=1

χ²(4)=3;
p=1

χ²(4)=4;
p=1

SITE 10 χ²(4)=19;
p=0.01

χ²(4)=29;
p<0.01

χ²(4)=7;
p=1

χ²(4)=9;
p=0.9

χ²(4)=10;
p=0.5

SITE 11 χ²(4)=14;
p=0.1

χ²(4)=13;
p=0.1

χ²(4)=10;
p=0.4

χ²(4)=7;
p=1

χ²(4)=5;
p=1

SITE 12 χ²(4)=16;
p=0.05

χ²(4)=5;
p=1

χ²(4)=2;
p=1

χ²(4)=5;
p=1

χ²(4)=5;
p=1

SITE 13 χ²(4)=26;
p<0.01

χ²(4)=16;
p=0.05

χ²(4)=4;
p=1

χ²(4)=10;
p=0.5

χ²(4)=6;
p=1

ALL 
SITES - -

χ²(4)=14;
p=0.1

χ²(4)=21;
p<0.01

χ²(4)=7;
p=1



 Inter-site reliability consistency

Figure 3.7 shows inter-site reliability consistency (ICC) results for the three 

DMN-derived measurements (mean z-scores, volume cluster-size and cluster-overlap). 

A statistically significant difference was found in the inter-site reliability consistency  of 

all these measurements (mean z-scores: χ²(4) = 52, p  < 0.001; cluster-size: χ²(4) = 54, p 

< 0.001; cluster-overlap: χ²(4) =45, p  < 0.001), depending on the rPNC method 

implemented. For mean z-scores, pairwise comparisons revealed that the median (IQR) 

ICC values applying Tissue-based, 0.67 (0.04), and FIX-standard, 0.68 (0.04) was 

statistically  different from NPC, 0.55 (0.02), (Z = -3.5, p = 0.005; Z = -4.2, p < 0.001; 

respectively). For cluster-size, pairwise comparisons revealed that median (IQR) ICC 

values are significantly reduced applying all rPNC methods excepted for FIX-standard 

(PESTICA, 0.47 (0.04), Tissue-based, 0.54 (0.02), and FIX-training, 0.28 (0.03)) 

compared to NPC, 0.65 (0.04), (Z = 4.7, p  < 0.001; Z = 3.2, p < 0.01; Z = 6.5, p  < 

0.001, respectively). For cluster-overlap, pairwise comparisons showed that median ICC 

values for FIX-training, 0.61 (0.02), were significantly  reduced compared to NPC, 0.74 

(0.02), (Z = 4.1, p < 0.001).

3.3.4.

Figure 3.7. Inter-Site Reliability Consistency of DMN-derived measurements  across 
sites. Inter-Site Reliability Consistency measured via ICC (mean ± standard deviation) is  here 
shown for each DMN-derived measurement (bar groups) and rPNC method (color bars). For 
each DMN-derived measurement, rPNC effects were evaluated using Friedman test (p < .05, 
corrected with Dunn-Bonferroni method). Tissue-based and FIX-standard increase the inter-
site reliability consistency of TRT reliability of average z-score reliability (left) with respect to 
NPC; in contrast, FIX-training increases variability of reliability estimates across different sites.
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Limitations

 General study design limitations were already discussed in recent morphometry 

(Jovicich et al., 2013) and diffusion (Jovicich et al., 2014) investigations from the 

Pharmacog consortium. This multisite study is limited in demographics for having 

investigated different individuals across sites and having acquired a rather small sample 

size at  each site (five) reducing the statistical power in inter-site analyses. Moreover, 

TRT reliability analyses are limited by the acquisition of only two sessions, which could 

lead to variability understimation. Furthermore, multisite standardization came at the 

cost of reduced TR to image the entire brain, unavoidably affecting BOLD neural 

sensitivity and specificity, whereas shorter TR (< 1 s) acquisitions avoid aliasing of 

cardiac and respiratory fluctuations (Birn et al., 2008; Birn et al., 2006; Lund, 2001).

 Besides the investigated rPNC methods, others including bayesian methods 

(Särkkä et al., 2012) or canonical correlations analysis (Churchill & Strother, 2013) 

could still be evaluated. From a methodological point  of view, rPNC method effects 

were here ascertained only on model-free ICA-based DMN connectivity but graph-

based measurements of network architecture are currently receiving wide attention in 

the context of monitoring physiological and pathological brain changes (Friston, 2011; 

Sporns, 2014; Stam, 2014); rPNC method effects should therefore be evaluated in future 

TRT reliability graph-based FC-fMRI studies.

3.4.
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4

Experiment 2: Influence of slice-order 

acquisition and head-motion correction 

methods on the DMN reliability in 

healthy adults

Introduction

The second challenge addressed in the present thesis relates to head-motion in 

longitudinal RS-fMRI studies of the DMN. In this 4T resting-state study of healthy 

young adults, we evaluated whether different combinations of ascending slice-order 

protocols, namely interleaved or sequential, and head-motion correction methods, 

namely volume-based or slice-based, would influence the TRT reliability  of intrinsic 

DMN connectivity. Our initial hypothesis was that, in single-shot multislice echo planar 

imaging, sequential slice-order acquisitions could minimize BOLD sensitivity to in-

scanner head-motion compared with interleaved acquisitions and hence lead to more 

reliable DMN connectivity metrics in longitudinal resting-state connectivity  studies 

(Cheng & Puce, 2014). To this extent, recent retrospective methods providing for both 

in-volume and inter-volume motion correction could be advantageous over standard 

rigid-body  volumetric methods for both slice-order acquisition sequences (Beall & 

Lowe, 2014).

As previously described in this thesis, the in-scanner head-motion confounding 

factor cannot be easily isolated during MR scanning sessions for being very subject-

specific and beyond the experimenter control (Van Dijk et al., 2012). This biological 

artifact exerts a global effect even in exiguous amount (< 1 mm) causing alterations in 

4.1.



FC-fMRI patterns, leading to an increase in spatial short-distance connections and 

reduction in long-distance and anterior-posterior connectivity (Murphy et al., 2013).

These effects introduce unwanted variability across subjects making it 

challenging to compare different groups of individuals characterized by  different head-

motion profiles (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012; 

Zeng et al., 2014). Moreover, head-motion is associated with reliability loss in 

longitudinal resting-state studies (Guo et al., 2012). Therefore, it is important to 

evaluate how specific approaches aimed at minimizing head-motion can influence the 

TRT reliability in longitudinal studies.

While the most commonly adopted resting-state acquisition protocols consider 

interleaved slice-order sequences to minimize cross-talking effects, this choice might be 

sub-optimal to account for head-motion and prone to spin-history  artifacts. In contrast, 

sequential slice-order sequences would represent a diametrically  opposite technical 

solution with overall reduced sensitivity to head-motion (Kim et al., 2008; Sladky et al., 

2011).

When it comes to data preprocessing, commonly implemented volumetric 

coregistration methods (a.k.a. motion-correction or volume-realignment) such as FSL-

FLIRT or AFNI-3dvolreg are also suboptimal for being developed withouth considering 

that each excitation pulse is targeted to one slice at a time and that the head is not still 

but moving across all slices (Murphy  et al., 2013). This means that these software do 

not account for motion that occur on a scale of less than a TR (in-volume) because they 

are designed to deal only with rigid-body motion occurring across volumes (inter-

volume). 

Other jointly applied approaches such as multiple linear regressions of the 

estimated rigid-body head translations and rotations (Satterthwaite et  al., 2013), 

“censoring” highly motion-compromised volumes (FD > 0.25 mm) (Power et al., 2012), 

ICA-based techniques to isolate motion-related spatio-temporal characteristics 

(Griffanti et al., 2014; Pruim et al., 2015; Schopf et al., 2010) can further reduce non-

linear motion-related variability  but cannot account for the consequences of head-

motion on activation timing and patterns of excitation that occur across slices during 

EPI volume acquisition.
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To the best of our knowledge, no resting-state TRT reliability studies have 

previously  investigated how combiantions of these acquisition and motion correction 

methods would influence the stability  of intrinsic DMN connectivity metrics. This 4T 

TRT reliability  study evaluates whether some combinations of slice-order protocols and 

head-motion correction methods would improve the stability  of ICA-based FC-fMRI 

measures within the default-mode system of healthy  young adults. FC-fMRI was 

measured in the entire DMN and its main four regions, separately. For each ROI, mean 

z-scores and cluster-sizes were collected as measures of FC-fMRI. TRT reliability 

analysis included examination of the absolute percent change of mean z-scores, ICC 

evaluations of mean z-scores and inter-session spatial reproducibility  using the jaccard 

index.

Materials & Methods

 MRI data acquisition

A 4T Bruker Medspec scanner (Bruker Medical, Ettlingen, Germany) with a 

birdcage-transmit and an 8-channel receive head coil (USA Instruments, Inc., Ohio) was 

used to acquire resting-state scans from 24 healthy  young volunteers (12 female, 27.0 ± 

5.3 y). Subjects were scanned in two sessions, in average 4.2 ± 4.4 days apart. During 

each RS-fMRI session subjects were asked to relax, keep their eyes closed, stay still 

avoiding falling asleep  or engaging in structured thoughts. In each session, one 3D T1-

weighted MP-RAGE (TR/TE 2,700/4.18 ms; 1 mm3 voxel), and two resting state fMRI 

(rsfMRI) runs (TR/TE 2.2s/30 ms, with 37 AC-PC parallel slices, voxel size 3 mm3, 

slice-gap 0.6 mm, 200 volumes) were acquired. The RS-fMRI scans were acquired once 

with ascending interleaved and once with ascending sequential 2D slice-order protocols. 

Data from 1 participant were excluded from the analysis for being collected with a 

smaller number of TRs.

 Head-motion correction methods

Below the two head-motion correction methods applied and compared in this 

study are outlined: volume-based head-motion correction, here referred to as VOMOCO 

4.2.

4.2.1.

4.2.2.
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(Jenkinson et  al., 2002), and slice-based head-motion correction, here referred to as 

SLOMOCO (Beall & Lowe, 2014).

VOMOCO was performed using a rigid-body  motion correction method (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT) based on the affine registration tool in FSL 

(FLIRT). For each subject and session, the train of 3D brain volumes (N=194) was 

registered to the middle reference volume (97th) using linear sinc interpolation with 6 

degrees of freedom (DOF). This procedure yields a transformation matrix of 6 

volumetric movement displacement parameters.

SLOMOCO was performed using SLice-Oriented MOtion COrrection (http://

www.nitrc.org/frs/?group_id=361). SLOMOCO is a publicly available slice-based 

motion regression method that corrects each slice for movement within and between 

volumes using AFNI programs. During within-volume motion correction each slice 

undergoes an in-plane co-registration. Motion estimates are regressed from each voxel 

including movement information from adjacent  slices. Thereafter, between-volume 

motion correction is performed for each slice of interest  (all other slices are replaced 

with their mean timeseries across time). This procedure yields a 6 DOF transformation 

matrix re-assembling the 3 DOF movement time-series resulting from both correction 

steps and matching the average of their variances, respectively. Of note, time-series 

from between-volume correction are variance-normalized and all slices have the same 

variance thereof (Beall & Lowe, 2014).

Both motion-correction methods produced 6D head-motion timeseries 

associated with 3D head translation and 3D head rotation in each subject and session 

and under each slice-order protocol. These metrics were simplified to a 1D timeseries to 

quantify the amount of head motion: 3D head rotation timeseries were converted from 

radians to millimeters in terms of the corresponding displacement on a r=50 mm sphere, 

which represents the average distance between the cortex and head center (Siegel et  al., 

2014); then, the straight sum across timeseries (in absolute value) was calculated to 

obtain 1D volume-to-volume head-displacements. The median value of the 1D 

timeseries was finally calculated to summarize head-motion in a scalar.
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 Data preprocessing

The preprocessing of the functional EPI data was performed in the individual 

space of each subject using a combination of FSL (Jenkinson et al., 2012) and AFNI 

(Cox, 1996) programs (Figure 4.1). Non-brain voxels were removed from the EPI 

volume (bet2, FSL) and, to remove high-frequency signal fluctuations, a temporal 

filtering with a bandpass filter (0.01 - 0.1Hz) was used on both the EPI volume 

(fslmaths, FSL) and the 6 movement metrics (1dBandpass, AFNI) (Hallquist et al., 

2013). Multiple linear regressions (3dDeconvolve, AFNI) were used to remove the 6 

movement metrics and their relative derivatives (1d_tool.py, AFNI) plus second-order 

polynomials from the main signal.

4.2.3.

Figure 4.1. Pre-processing workflow. The figure illustrates  the preprocessing  pipeline under 
each slice-order acquisition condition, either interleaved (blue rectangle) or sequential (orange 
rectangle) and movement correction method, either volume-based (VOMOCO)  or slice-based 
(SLOMOCO). TR, denotes the removal of the first 6  TRs  from the BOLD timeseries; STC, slice-
timing correction (interleaved / sequential); BE, brain extraction (included in SLOMOCO); BP = 
band-pass filtering  (0.01–0.1 Hz); MLR, multiple linear regression (12 head movement timeseries 
(6 head movement timeseries  + 6 derivatives)  filtered as  BP; MIN, mean intensity  normalization; 
FIX, FSL-FIX implementation. The bottom row indicates  the anatomical brain extraction step 
needed for use in FSL-FIX.
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Individual brain volumes were normalized to mean signal intensity  by a single 

factor (fslmaths, FSL) and registered to brain-extracted anatomical volumes using 

Boundary-Based-Registration (Greve & Fischl, 2009) and decomposed into 25 spatial 

independent components using single-subject spatial ICA algorithms implemented in 

MELODIC (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). FSL-FIX (Griffanti et  al., 

2014; Salimi-Khorshidi et al., 2014) was implemented to detect and remove 

physiological noise and MRI hardware-related artifactual components using a standard 

classifier (Standard.RData: TR=3s, Resolution=3.5x3.5x3.5mm3, session=6mins, default 

FEAT preprocessing) and a medium classification threshold (50/100) as a criterion to 

distinguish between signal and noise associated components. To remove physiological 

noise confounds FSL-FIX uses the non-gray  matter tissue masks (WM & CSF) and the 6 

motion parameters obtained after head-motion correction. The tissue masks are derived 

from the brain extracted anatomical volume, which was obtained using OptiBET for each 

single subject and session (Lutkenhoff et al., 2014).

Although the contribution of head motion is substantial at 4T field strength 

(Hutton et al., 2011; Triantafyllou et al., 2005) and spatial smoothing can counteract 

motion-induced BOLD modulations (Triantafyllou et al., 2006), no spatial smoothing 

was applied since its application is discouraged in conjunction with FSL-FIX (Salimi-

Khorshidi et  al., 2014) and does not improve the detectability of the DMN (Molloy  et al., 

2014). Moreover, given that  ICA tends to separate motion components, we decided not to 

censor volumes in this study (Power et al., 2012). This also lets us use FSL-FIX and 

perform group analysis on time series of the same length (194 vols).

 DMN extraction methods

After preprocessing, group-ICA was conducted across all subjects and sessions 

for each slice-order protocol and head-motion correction method (i.e. 48 resting state 

runs per condition), using MELODIC to extract  the group DMN (Figure 4.2). All 

preprocessed images were spatially  normalized to the MNI template via application of 

linear (affine) FLIRT (Jenkinson & Smith, 2001) and subsampled at a resolution of 3 mm 

isotropic voxels, before decomposition into 15 independent components, using the multi-

session temporal concatenation procedure in MELODIC. A higher number of 

4.2.4.
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components were not extracted to avoid splitting of the DMN (Abou Elseoud et  al., 2011; 

Jovicich et al., 2016).

For each condition, the DMN was visually  selected among the 15 components as 

the one that included the most common DMN nodes: medial prefrontal and anterior 

cingulate cortex, posterior cingulate cortex and precuneus, left/right parietal corteces, 

using a threshold of z-score > 2.3 (Franco et al., 2009). A reference template (Rosazza et 

al., 2012) was also used to qualitatively  verify  the degree of overlap of the group 

component map.

 For each slice-order protocol 

and head-motion correct ion 

method, dual-regression was then 

used to derive the DMN for each 

single subject and session (Figure 

4.3) from the selected group 

component (Beckmann et al., 

2009). Individual DMN volume 

maps were thresholded at z > 2.3, p 

< 0.01 (Beckmann & Smith, 2004). 

To account for spatial DMN 

variability  across sessions and 

subjects a cluster analysis was run 

to detect the four main functional 

c o - a c t i v a t e d c l u s t e r s t h a t 

characterize the DMN (3dclust, 

AFNI). These clusters are the 

posterior cingulate and precuneus 

(including BA31, BA30, BA29, 

BA23), the left/right parietal cortex 

(including BA39, BA40, BA22, 

BA7) and prefrontal and anterior 

cingulate areas (including BA9, 

BA10, BA32, BA24) (Franco et 

Figure 4.2. Group-ICA results at  15 IC dimensionality. 

The figure illustrates  a sample dataset of preprocessed 
EPI volumes  (Interleaved + SLOMOCO) for each MRI 
session (session 1 or test, session 2 or retest) (top) and 
following group ICA using  15 components  on the group of 
48  sessions  (bottom). Statistical maps  were thresholded at 
z > 2.3. The second component in the top-left corner was 
visually selected as the DMN in this example.
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al., 2009). To avoid inaccuracies for the definition of DMN activation maps, clusters 

were defined as made of voxels no more than 4mm apart and a cluster volume of at  least 

1800 micro-liters in size, per each ROI. These clusters were anatomically  constrained by 

a reference DMN template (Rosazza et  al., 2012). Visual inspection was done to verify 

that clusters overlapped with the main regions attributed to the DMN.

Mean z-scores in the DMN (i.e., the mean z-score across all voxels in the four 

main clusters) and relative activation cluster-size (i.e. the total number of voxels in the 

four main nodes) were characterized for each subject, session and condition. In addition, 

mean z-scores and relative cluster-sizes were calculated for the posterior cingulate, 

medial prefrontal cortex and parietal cortex, separately.

 TRT reliability metrics

The main goal of this study was to evaluate the effects of different slice-order 

acquisition strategies and head-motion correction techniques on the longitudinal 

precision of intrinsic DMN connectivity metrics. For each of these condition and for 

Figure 4.3. Dual Regression Analysis.  The figure illustrates  dual-regression results  relative to the 
DMN from the same sample subjects  shown in Figure 13. All statistical maps  are thresholded at z  > 2.3. 
In the right panel, individual DMN activations before (left) and after the cluster-analysis  (right)  are shown 
for some subjects  for each session. Colors indicate ROIs  (PCC: yellow; ACC: green; LPC: red/orange; 
DMN: all ROIs). FC-fMRI metrics derived from these maps were forwarded to the TRT reliability analysis.

4.2.5.
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each ROI under consideration, three TRT reliability metrics were here calculated on 

suprathresholded connectivity maps (z > 2.3): 1) the absolute percent change of mean 

ROI z-scores to measure the inter-session error in mean z-scores for each subject 

(Bennett, & Miller, 2010); 2) the intraclass correlation coefficient ICC(2,1) and relative 

confidence intervals (CI) (McGraw & Wong, 1996) of mean ROI z-scores to measure 

the proportion of inter-session variance out of the total variance in the entire sample 

(Shrout & Fleiss, 1979) and 3) the Jaccard index, to measure voxel-wise spatial inter-

session convergency of cluster activations in each subject (Jovicich et al., 2016).

 Statistical evaluations

Statistical evaluations were performed in IBM  SPSS Statistics for Macintosh, 

Version 22.0. A paired t-test was used to evaluate fatigue effects in the tSNR across slice-

order protocols. Bivariate Pearson’s correlations were computed to evaluate the existence 

of relationships between FC-fMRI and head movement measures in all the ROIs under 

investigation and for each combination of slice-order protocol and head-motion 

correction method. In the specific case of TRT reliability examinations, volume-to-

volume head movement parameters were averaged across sessions.

The Friedman test was conducted to evaluate both slice-order acquisition and 

head-motion correction method effects in head-motion derived metrics (i.e. median 

volume-to-volume displacement) across all subjects and sessions (N=47). The same non-

parametric test was also used to assess the same effects in mean z-scores and in both 

TRT reliability measures, for the entire DMN and its single ROIs, respectively.

Statistical significance level was set  to p < .05. Statistics were corrected for 

multiple comparisons over all possible pairwise combinations (2 slice-order x 2 

movement correction methods) using the method of Dunn-Bonferroni (Dunn, 1964) at α 

= 0.05.

4.2.6.
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Results 

 tSNR & head-motion metrics

No significant difference was found in tSNR measures for interleaved (22.2 ± 

4.3) and sequential (22.6 ± 4.4) slice-order protocols; t(46) = -4.9, p = 0.63. Overall 

estimated head movement parameters from VOMOCO and SLOMOCO are summarized 

in Table 4.1. The Friedman test performed across all slice-order protocols and head-

motion correction methods revealed statistical significant  differences in the amount of 

estimated motion (Friedman, χ²(3, n = 47) = 112.9, p  < .001 uncorrected). Pairwise 

comparisons revealed that median volume-to-volume displacements were statistically 

different between head-motion correction methods, (Interleaved: Z = -2, p  < 0.001; 

Sequential: Z =-2, p  < 0.001) and not statistically significant between slice-order 

protocols, (VOMOCO: Z=.06, p=.81; SLOMOCO: Z=.02, p=.94).

In summary, in this group  of subjects, the amount of movement estimated from 

both head-motion correction methods was relatively low compared to the voxel size. 

The movement estimates were not significantly affected by  slice-order sequences but 

they  were significantly affected by the head-motion correction method used, with 

SLOMOCO giving larger movement estimates.

4.3.

4.3.1.

Table 4.1. Head movement statistics after head motion correction. The table shows  averaged 
median and maxima  head movement displacements  across  individuals  for each slice-order acqusition 
sequence and head movement correction method. Bottom line reports  the tSNR prior any head 
movement correction. Head movement displacement timeseries  were derived from the straight sum of 
the absolute value of 6 head movement parameters  of  194 time points  in length. Head movement 
estimates  and the tSNR are similar across  slice-order acquisition sequences  but differ across  head 
movement correction methods.

TSNR & HEAD-MOTION ESTIMATESTSNR & HEAD-MOTION ESTIMATESTSNR & HEAD-MOTION ESTIMATESTSNR & HEAD-MOTION ESTIMATES

INTERLEAVEDINTERLEAVED SEQUENTIALSEQUENTIAL

TSNR 22 ± 422 ± 4 23 ± 423 ± 4

VOMOCO SLOMOCO VOMOCO SLOMOCO

MEDIAN 0.19 ± 0.17 mm 1.1 ± 0.9 mm 0.2 ± 0.1 mm 1.2 ± 1.1 mm

MAXIMA 0.8 ± 0.7 mm 2 ± 1 mm 1.2 ± 1.4 mm 2.8 ± 2.6 mm
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 Intrinsic DMN connectivity

Notwithstanding differences in movement estimates across head-motion 

correction methods during the pre-processing of the data, group-ICA revealed DMN co-

activation patterns across all combinations of slice-order protocols and head-motion 

correction method. No subject was discarded during data post-processing since dual-

regression methodology revealed individual DMN maps across all subjects, sessions 

and combinations-of-inteerst, and the cluster analysis returned intact  DMN maps which 

allowed measurability of mean z-scores in all ROIs (Figure 4.4). Descriptive and 

inferential statistical results are reported in Table 4.2. As for the full DMN, significant 

statistical differences in mean z-scores across slice-order protocols and head-motion 

correction methods were found (p < 0.001 uncorrected).

4.3.2.

Figure 4.4. Intrinsic FC-fMRI in the DMN and its main nodes. Mean z-scores averaged across 
subjects  (error bars  are the standard deviation between subjects)  in four ROIs  (from left to right): the 
entire DMN (DMN), the posterior cingulate cortex (PCC), lateroparietal lobes  (LPC), and anterior 
cingulate (ACC). For each ROI, results  are differentiated for movement correction method, within which 
slice-order conditions  are displayed (Interleaved, blue; Sequential, orange). Mean z-scores  are sensitive 
to slice-order acquisitions and movement correction methods in all ROIs (corrected).
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Pairwise comparisons revealed that  mean z-scores in the entire DMN were 

statistically  different between head-motion correction methods, (Interleaved: Z = 1.3, p 

< 0.001) and statistically  different between slice-order protocols, (VOMOCO: Z = 0.08, 

p = 0.02; SLOMOCO: Z = - 0.09, p  = 0.005). Statistical significant effects were also 

found in each single node of the DMN (PCC: p = 0.025 uncorrected; ACC: p < 0.001 

uncorrected; LPC: = p < 0.001 uncorrected).

In the PCC, pairwise comparisons revealed that mean z-scores were statistically 

different between slice-order protocols (SLOMOCO: Z = -.76, p = .03) but not across 

head-motion correction methods. In the ACC, pairwise comparisons revealed that mean 

z-scores were statistically  different between slice-order protocols (VOMOCO: Z = 1.72, 

p < 0.001) and head-motion correction methods (Interleaved: Z = 1.68, p  < 0.001). In 

the LPC, pairwise comparisons revealed that mean z-scores were statistically  different 

between slice-order acquisitions (SLOMOCO: Z = - 0.9, p  = 0.005) and head-motion 

correction methods (Interleaved: Z = 1.26, p < 0.001).

Considering the whole DMN regions and the PCC node, no statistically 

significant correlations between absolute mean z-scores and median volume-to-volume 

displacements were found for any  slice-order protocol and head-motion correction 

Table 4.2. FC-fMRI results.  Average (SD) mean z-score across participants  under each condition 
(columns) for each ROI (rows). The last column provides  non-parametric analysis  of variance output 
(uncorrected). Significant statistical effects  were found across  conditions  in each single ROI (p < 0.05). 
Except for PCC (slice order effects  only), for all other areas  the effects  were significant for both slice 
order and motion correction method.

MEAN Z-SCORESMEAN Z-SCORESMEAN Z-SCORESMEAN Z-SCORES Statistics

VOMOCOVOMOCO SLOMOCOSLOMOCO

INTERLEA
VED

SEQUENTI
AL

INTERLE
AVED

SEQUENT
IAL

DMN 7.3 ± 0.9 6.6 ± 0.7 6.5 ± 0.8 7 ± 1 Friedman Χ2 (3, n=47)=26.18
p < .001

PCC 7.4 ± 1.1 7.2 ± 0.9 7.1 ± 1.2 8 ± 1.4 Friedman Χ2 (3, n=47)=9.36
p < .025

ACC 7 ± 1 5.6 ± 0.5 5.6 ± 0.5 6.1 ± 0.7 Friedman Χ2 (3, n=47)=56.03
p < .001

LPC 7.6 ± 1.1 7 ± 0.9 6.5 ± 1 7.2 ± 1.2 Friedman Χ2 (3, n=47)=23.7
p < .001
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method. Considering bilateral LPC and the ACC regions a weak correlation was found 

between absolute mean z-scores and median volume-to-volume displacements (LPC/

ACC: r = 0.3, p < 0.05) only for sequentially  acquired data combined with VOMOCO 

(LPC) and SLOMOCO (ACC).

To summarize, the main characteristic DMN nodes were found and had similar 

spatial locations in all slice acquisition and head-motion correction methods. However, 

the group connectivity  estimations of the whole DMN and its separate main nodes were 

significantly affected by slice-order protocol and head-motion correction methods.

 TRT reliability metrics

TRT reliability of intrinsic DMN connectivity is reported for each slice-order 

protocol and head-motion correction method in Figure 4.5 and summarized in Table 

4.3. The overall mean (SD) absolute percent errors across subjects, conditions and ROIs 

were below 8% (DMN: 6.7 ± 0.5%; PCC: 8.0 ± 0.9%; ACC: 6.3 ± 0.4%; LPC: 7.7 ± 

0.1%). The overall ICC score averaged across conditions and all ROIs, indicate 

smoderate mean z-scores reliability (ICC = 0.46; C.I. 0.29 - 0.57); TRT reliability was 

moderate in the entire DMN (ICC = 0.47; C.I. 0.31 - 0.57), as well as its nodes, PCC 

(ICC = 0.41; C.I. 0.26 - 0.52), ACC (ICC = 0.49; C.I. 0.32 - 0.62), LPC (ICC = 0.47; 

C.I. 0.28 - 0.58). There were no statistically  significant effects of slice acquisition or 

motion correction method in the test-retest reliability of mean ROI z-scores.

The Jaccard index indicated lower reliability in the voxel-wise spatial overlap  of 

each functional ROIs with an average of 40 ± 13% (DMN: 39 ± 9%; PCC: 51 ± 15%; 

ACC: 30 ± 12%; LPC: 39 ± 13%). The Friedman test performed across all subjects, 

sessions and conditions-of-interest revealed no statistically significant effects of either 

slice-order acquisition or head-motion correction method in the entire DMN but 

revealed statistically significant effects in the single nodes of the default-mode system 

(Table 4.4).

When considering the PCC, multiple comparisons applied via pairwise 

comparisons revealed that mean (SD) TRT reliability  were statistically different (Z = 

-1.2, p = 0.008) between interleaved (53 ± 8)% and sequential slice-order protocols (62 

± 15)% in SLOMOCO corrected data and between VOMOCO (42 ± 28)% and 

4.3.3.
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SLOMOCO (62 ± 15)% in sequentially acquired data (Z = -1.8, p < 0.001).

Figure 4.5. Test-retest reliability of intinsic DMN connectivity. The figure shows (A) mean (SD) 
absolute percent error in mean DMN z-scores  across  subjects; (B)  intraclass correlation coefficients 
(C.I.) for mean DMN z-scores; (C)  mean (SD)  Jaccard indexes  across  subjects  for the degree of 
spatial reproducibility of the DMN. These are shown for each slice-order acquisition sequence, 
interleaved (blue)  and sequential (orange), and motion correction method, VOMOCO and 
SLOMOCO, for each DMN node under investigation (from left to right: the entire DMN, posterior 
cingulate cortex (PCC), lateroparietal cortex (LPC), and anterior cingulate (ACC). No statistically 
significant effects  associated with slice-order acquisition or motion correction method were found in 
the reliability of mean z-scores  (moderate) and cluster-overlap (poor) in the DMN. The cluster-
overlap was  particularly diminished in the ACC. Mixed effects  (corrected) were found for the 
Jaccard index in each single DMN node indicating inter-regional variability of motion correction 
method and slice-order acquisition effects.

 When considering the ACC, mean (SD) TRT reliability was statistically different 

(Z = 1.9, p < 0.001) between interleaved (37 ± 7)% and sequential slice-order protocols 

(0.2 ± 0.08) in SLOMOCO corrected data. When considering LPC, mean (SD) TRT 

reliability  was statistically  different (Z = 1.17, p  < 0.001) between interleaved (52 ± 

10)% and sequential (37 ± 22)% slice-order protocols in VOMOCO corrected data and 

between VOMOCO (52 ± 10)% and SLOMOCO (32 ± 9)% in interleaved acquired data 

(Z = 1.6, p < 0.001). Importantly, no correlation was found between any TRT reliability 
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measure and movement-derived metrics, averaged across sessions, in any ROI and for 

any combination-of-interest.

To summarize, neither slice-order protocols nor head-motion correction methods 

affected the across-session TRT reliability of FC-fMRI in single DMN nodes. The 

Jaccard index emphasizes that the frontal DMN node is the least reliable, with optimal 

choice of slice acquisition depending on the head-motion correction method. Most 

importantly, no combination of slice-order protocol and head-motion correction method 

was found that would offer significant TRT reliability improvements that were 

systematically consistent across nodes.

Absolute Percent ChangeAbsolute Percent ChangeAbsolute Percent ChangeAbsolute Percent Change Statistics

VOMOCOVOMOCO SLOMOCOSLOMOCO

Interleaved Sequential Interleaved Sequential

DMN 7.2 ± 4.8% 5.5 ± 4.1% 6.3 ± 5.2% 7.8 ± 5% Friedman, χ²(3, n = 23) 
= 2.5, p = .5

PCC 7.3 ± 5.0% 6.2 ± 5.0% 8.1 ± 6.9% 10.3 ± 6.1% Friedman, χ²(3, n = 23) 
= 5.8, p = .1

ACC 8.2 ± 5.2% 4.3 ± 4.2% 5.7 ± 4.4% 7.0 ± 4.5% Friedman, χ²(3, n = 23) 
= 56.0, p = .06

LPC 8.0 ± 5.4% 6.9 ± 5.5% 7.4 ± 5.6% 8.7 ± 5.6% Friedman, χ²(3, n = 23) 
= 3.7, p = .3

ICC (C.I.)ICC (C.I.)ICC (C.I.)ICC (C.I.)

DMN 0.45
(0.29 - 0.55)

0.51
(0.35 - 0.61)

0.4
(0.24 - 0.51)

0.5
(0.37 - 0.61)

PCC 0.33
(0.19 - 0.4)

0.4
(0.23 - 0.51)

0.43
(0.26 - 0.53)

0.52
(0.37 - 0.63)

ACC 0.5
(0.36 - 0.6)

0.45
(0.29 - 0.55)

0.59
(0.27 - 0.73)

0.47
(0.36 - 0.58)

LPC 0.49
(0.36 - 0.6)

0.56
(0.26 - 0.68)

0.36
(0.20 - 0.46)

0.47
(0.28 - 0.57)

Table 4.3. Reliability of mean DMN z-scores using test-retest and inter-rater reliability 

approaches. Test-retest percentage errors  (mean ± SD)  are reported for each condition (columns) 
and ROI (rows) with pairwise statistical evaluations  (uncorrected) across  columns  (right column). Inter-
rather reliability ICC confidence intervals are reported at bottom for comparison. No statistical 
difference in mean z-scores reliability was found across conditions, ROIs and reliability measures.
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Limitations

 This present work suggests that intrinisc DMN connectivity estimates derived 

using model-free methods are sensitive to data acquisition and analysis choices 

specifically  related to head-motion issues. However, the overall head-motion detected 

was low in this sample of collaborative young healthy adults. This might have hidden 

important slice-order protocol and/or motion correction method effects in the TRT 

reliability of the DMN. Moreover, this also prevented us from comparing our factors as a 

function of the amount of head-motion in the data. It would be interesting to investigate 

these issues in old individuals and children who are intrinsically characterized by higher 

motion and reduced connectivity in the anterior node of the DMN.

 Of note, one limitation of this study is that  slice-order protocols were not 

counterbalanced across MRI scanning sessions with interleaved always preceeding 

sequential acquisitions. Slice-order acquisition counterbalancing may be critical to 

eliminate biases induced by  fatigue effects in the BOLD signal or intrinsic DMN 

connectivity  measures. Even though, tSNR examinations did not  reveal any  significant 

difference associated with slice-order acquisition sequences in brain volumes prior 

Table 4.4. Summary of spatial inter-session convergence of the DMN. Jaccard index (mean ± 
SD) are shown for each condition (column)  and ROI (rows). Non-parametric statistical comparisons  are 
also reported in the last column on the right (uncorrected). No  significant statistical difference was found 
in the Jaccard index across  conditions  in the entire DMN. However, mixed effects were instead 
detected at the level of each single DMN ROI. The magnitude of spatial reproducibility was  the lowest in 
the ACC.

Jaccard indexJaccard indexJaccard indexJaccard index Statistics

VOMOCOVOMOCO SLOMOCOSLOMOCO

Interleaved Sequential Interleaved Sequential

DMN 43 ± 7% 36 ± 13% 40 ± 6% 41 ± 6% Friedman, χ²(3, n=23)=6.8, p = .08

PCC 49 ± 10% 44 ± 30% 53 ± 8% 64 ± 8% Friedman, χ²(3, n = 23) = 29.8, p < .
001

ACC 35 ± 8% 29 ± 28% 37 ± 7% 21 ± 7% Friedman, χ²(3, n = 23) = 31.5, p < .
001

LPC 52 ± 10% 39 ± 20% 32 ± 9% 40 ± 9% Friedman, χ²(3, n = 23) = 20.6, p < .
001
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motion correction, slice-order counterbalancing across MRI sessions would optimize the 

overall study design in future longitudinal studies.

 This study does not provide information about the TRT reliability of model-based 

methods such as graph-theoretical approaches. These have been demonstrated to have 

comparable reliability  with model-free intrinsic FC-fMRI methods. The present  scenario 

has shown overall low head-motion contamination which favors comparisons across 

these two methods not only regarding the DMN but also to other intrinsic brain networks 

with potential evaluations of between-network interactions.
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5

Discussion

Main findings

	 After having outlined the two main studies of this thesis, their results will be 

compared in this section and will be separately discussed and put  in perspective with the 

literature in the following sections.

 Despite differences in subject populations and MRI equipment used, the results 

of our studies indidate that the intrinsic DMN connectivity is significantly  sensitive to 

choices in slice acquisition, physiological denoising and head motion correction 

methods but that the DMN reliability  is not, or at least  not systematically. This is 

probably  due to technical properties of the ICA methdology to consistently detect  the 

DMN despite our manipulations. This encourages the usage of group-ICA and dual-

regression in longitudinal intrinsic FC-fMRI studies under a variety of acquisition and 

analysis choices.

 Table 5.1. compares acquisition and analysis protocols between the two studies 

and relative DMN reliability results. They markedly  differ in acquisition protocol 

choices but both underwent similar preprocessing workflows. For ease of comparison, 

only the shared preprocessing workflow that includes VOMOCO and FIX-standard 

physiological denoising was considered. The order of preprocessing steps was identical 

between studies. One main difference is in the application of spatial smoothing, which 

was avoided in the head motion study. Both studies used the group-ICA and dual-

regression methodology followed by identical cluster analyses to characterize the DMN. 

 However, the two studies resampled voxels at different spatial resolution during 

MNI coregistration and conducted group-ICA at different dimensionalities. Group-ICA 

dimensionality is characteristic of each single dataset. Our empirical evaluations 

indicated that low dimensionality is associated with higher DMN reliability in datasets 

characterized by  high variability  and small sample size (N=10 per site) (Jovicich et al., 
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2016; Marchitelli et al., 2016). In contrast, single-site studies with larger sample size 

(N=47) can benefit from a higher number of ICs for decomposition.

 

Table 5.1. Comparison between data acquisition, analysis  choices  and DMN reliability 
results  across  the two studies. The table compares the two studies  (second, third columns) for 
acquisition, analysis  (preprocessing, postprocessing) and TRT reliability results  (first column). For 
ease of comparison, the two studies  are considered only for preprocessing workflows  that follow 
volume-based head-motion correction and FIX-standard physiological denoising. Main differences 
include field strength, number of sites, age, time interval across  scanning repetitions, TR, number of 
slices  and slice acquisition methods, spatial resolution after spatial normalization, number of ICs. 
N.A. = not applied. * = p < 0.05, *** = p < 0.001;

Physiological denoising 
study

Head-motion correction 
study

Physiological denoising 
study

Head-motion correction 
study

Data acquisitionData acquisitionData acquisition

Field Strength
Manufacturer

3T multisite (13)
(Siemens, Philips, GE)

4T single site
Bruker Medspec

Participants N = 65 (62.6 ± 5.3y) N = 24 (27 ± 5.3y)

TRT interval 17 ± 10.2d 4.2 ± 4.4d

TE/TR 30 ms / 2.7s 30 ms / 2.2s

Slice acquisition (axial) 40 Interleaved
0.45 mm slice-gap

37 Interleaved / sequential
0.6 mm slice-gap

PreprocessingPreprocessingPreprocessing

Motion correction 3D 3D

Physiological 
denoising method FSL-FIX (standard) FSL-FIX (standard)

Spatial Smoothing 6 mm FWHM N.A.

Group analysisGroup analysisGroup analysis

Spatial MNI resolution 4x4x4 mm 3x3x3 mm

ICA dimensionality 10 IC 15 IC

DMN extraction Group-ICA / dual-regression Group-ICA / dual-regression

TRT reliability of DMN connectivityTRT reliability of DMN connectivityTRT reliability of DMN connectivity

Absolute % change (9.7 ± 9)% (6.3 ± 4.5)% *

Jaccard index (60 ± 15)% (40 ± 10)% ***

 The absolute percent change of mean z-scores averaged across all subjects from 

the 3T multisite study (N=65) and across all subjects and slice acquisition methods from 
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the 4T single-site study (N=47) were both below 10%. However, an independent 

samples t-test indicates higher reliability in the young cohort (6.3 ± 4.5)% when 

compared with old individuals (9.7 ± 9)%; t(110) = -2.16, p  < .05. No regional variation 

was found in the reliability scores among the DMN nodes in the young cohort. In 

contrast, previous studies showed increased regional variability  in healthy elders 

(Jovicich et al., 2016). The large variability between these two studies for MRI 

hardware and study-design makes it challenging to attribute this difference merely to 

demographic or cognitive factors. However, we feel confident to speculate that the 

strength of DMN connectivity  is more stable over time in younger individuals at shorter 

intervals between MRI scan repetitions.

 Despite the high TRT reliability  measured in the young cohort, the 

corresponding ICC indicates only  moderate / fair reliability (mean ICC: 0.47). This 

finding agrees with previous DMN reliability studies (Shehzad et al., 2009; Braun et al., 

2012; Guo et al., 2012) who reported comparable ICCs (range: 0.2, 0.52) and is driven 

by similar within- and between-subject variances in mean z-scores. This might indicate 

that ICC analyses show reduced sensitivity to aging effects. Indeed, previous studies 

indicate comparable ICCs between young and old individuals using either model-based 

or model-free connectivity methods (Song et al., 2012; Guo et al., 2012). Furthermore, 

it was also shown that ICC analyses might be sensitive to sample size (Bennet & Miller, 

2010) and FC-fMRI method choices, with group-ICA and dual-regression approaches 

yielding the highest reliability  in healthy aging (Jovicich et al., 2016; Guo et al., 2012). 

In the physiological noise correction study, due to the small sample size at  each site, the 

ICC analysis for the DMN connectivity measurements could not be performed and was 

conducted only to examine the inter-site “agreement” in the reliability scores.

 When considering the DMN spatial reproducibility within subjects, an 

independent-samples t-test indicates statistically significant higher spatial overlap in old 

individuals (60 ± 15)% than young adults (39.5 ± 9.8)%; t(110) = 8.1, p < .001. There 

was regional variability  in Jaccard indexes within the DMN, with the PCC (52 ± 13)% 

and the ACC (30 ± 11)% being the most and the least reliable nodes, respectively. 

Higher spatial overlap in the PCC was also found in healthy  old individuals (Jovicich et 

al., 2016) while other works showed that the ACC is generally characterized by higher 

spatial variability (Van Dijk et al., 2010).
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 One possibility of this difference across the two studies is that DMN signals 

become less detectable as field strenght increases or that spatial smoothing is essential 

to improve signal detection at higher field strength. Differences in ICA settings could 

have also led to these differences, with lower Jaccard indexes associated with higher IC 

dimensionality and higher spatial resolution after spatial MNI normalization. Future 

investigations should address these issues.

 Finally, the magnitude of spatial reproducibility  indicates that the Jaccard index 

would not be appropriate to validate spatial DMN biomarkers. It should be noted that 

these reliability measures are unitless and other affine metrics, such as the cosine 

similarity coefficient (Thada & Jaglan, 2013), could be more adequate to this purpose, 

yielding higher reliability in the old cohort (75 ± 12)%.

DMN connectivity in aging: MRI-site and physiological 
denoising effects

 In the first study, the influence of some rPNC methods was investigated on the 

TRT reliability of intrinsic DMN connectivity measured in elderly  participants across a 

consortium of 13 MRI sites. As a recent study showed (Jovicich et  al., 2016), despite 

MRI acquisition harmonization efforts, this consortium showed high variability of tSNR 

across sites. In this study those findings were extended to show that, in spite of the high 

tSNR variability, the site-group DMN was able to be automatically  selected for all 

rPNC methods, allowing robust DMN characterization at the single-subject level. This 

suggests that the rPNC methods evaluated here are valid candidates for longitudinal 

multisite RS-fMRI studies with elderly participants. However, the overlap measure 

using a full DMN-template was not always successful at automatically detecting the 

DMN among the components at every site and rPNC condition. The accuracy of the 

automatic selection procedure improved only once frontal ROIs were excluded from the 

template. This was due to high variability  of frontal DMN areas for co-activation 

cluster-size (number of active voxels), spatial coordinate locations of active voxels in 

relation to the template, and the presence of large structured noise in these regions in 

other components. The FC-fMRI variability in frontal regions might be a sign of age-

related decline of mean z-scores in the DMN of healthy aging subjects (Damoiseaux et 

al., 2008; Huang et al., 2015).

5.2.
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 An intrinsic challenge of characterizing resting-state networks with ICA methods 

is the possibility  of network splitting (Abou Elseoud et al., 2011), which can also affect 

reliability  (Zuo & Xing, 2014). In this study, the DMN splitting phenomenon was 

addressed in several ways: first, the number of ICs were kept low and constant  for all 

sties (Abou Elseoud et al., 2011). Second, a supervised algorithm was used to select the 

group component with maximum overlap  to a DMN reference template and the group 

DMN results were visually  inspected. As with most studies, it is possible that some 

components of the DMN were not properly  included in our estimations, and instead 

were distributed through one or more of the other rejected components. However, since 

the rPNC methods were applied at the single-subject level before group-ICA, after 

which all rPNC methods followed a similar workflow, the comparison of rPNC methods 

was not expected to be strongly biased by DMN splitting effects.

 It was found that, among the rPNC methods, FSL-FIX increased mean z-scores 

in the DMN without affecting the DMN cluster-size in many sites of the consortium. 

This finding is potentially due to FSL-FIX, which removes a larger proportion of signal-

of-no-interest from the data than the other rPNC methods (such as residual motion 

artifacts), leading to an increase in mean z-scores within the DMN. This effect was 

found also in other resting-state networks (Marchitelli et al., 2016). This suggests that, 

the application of FSL-FIX could increase the sensitivity of group-ICA to detect the 

DMN in healthy aging subjects and discern abnormal connectivity patterns in clinical 

aging, a task known to be not straightforward (Bai et al., 2008; Koch et al., 2012). 

Importantly, training the classifier at each site improved MRI site consistency in DMN-

derived measurements and confined individual spatial DMN maps within converging 

spatial locations across MRI sites. Relative to NPC, FSL-FIX was found to increase the 

number of active voxels in gray  matter areas outside the DMN nodes, together with 

surrounding white matter and CSF voxels (Marchitelli et al., 2016). This finding 

stresses the importance of the selection of nodes that will be defined as members of the 

DMN.

 These findings are consistent with previous works showing that DMN 

connectivity estimates strongly  depend on how thoroughly physiological and other 

confounds are removed upstream (Beall & Lowe, 2010; Birn, 2012; Murphy et  al., 

2013). Of note, in this work only  ICA (with a specific number of components) was 
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considered to characterize the DMN. This choice was mainly motivated by the high 

DMN reliability obtained via ICA in the previous work (Jovicich et al., 2016).

DMN reliability in aging: MRI-site and physiological 
denoising effects

 The TRT reliability  of DMN connectivity metrics was consistent  across all MRI 

sites for all rPNC methods, which allowed the averaging across sites to estimate 

consortium reliability metrics. Absolute percent errors were in the range of 5-11% for 

DMN z-score and cluster-size reliability. Jaccard indexes were in the range 60-65% for 

DMN cluster-overlap reliability. Only for FSL-FIX an inverse correlation between 

motion and Jaccard indexes was found. This dependence might originate from the 

additional cleaning of residual motion-related spatial maps implemented by  FSL-FIX, 

which leads to higher characterization of subject-specific DMN maps when the overall 

motion detected is lower.

 These results are consistent  with similar measures recently reported in a single-

site study  with young healthy  participants (Meindl et al., 2010). In the present study 

with elderly participants, high reliability  was found for DMN cluster-size and moderate 

reliability  for DMN cluster-overlap, consistent across sites, albeit not influenced by 

rPNC methods. The statistical evaluations of MRI site effects in TRT reliability scores 

were performed using both parametric and non-parametric approaches: both tests agreed 

in the lack of MRI site effects for DMN mean z-scores and cluster-size reliability. DMN 

cluster-overlap  reliability  results differed across tests, giving no MRI site effects with 

the non-parametric test  but significant MRI site effects with the 2-way ANOVA. Given 

the low number of subjects it is difficult to interpret this difference since the non-

parametric test is robust to outlier but underpowered with low samples while the 2-way 

ANOVA has the opposite characteristics.

 In particular, no rPNC correction method showed significant DMN reliability 

improvements relative to NPC. These findings agree with those from a recent single-site 

study (Birn et al., 2014) that found that neither correction based on parallel measures 

(cardiac and respiratory measures) nor Tissue-based correction improved the TRT 

reliability  of mean z-scores among ROIs, including the DMN in young adults. This 
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study extends those results in several ways: population age, multicentric MRI 

consortium and rPNC methods.

 To the best of our knowledge, this is the first study that investigates the 

influence of some rPNC methods on the consistency  of DMN connectivity reliability in 

a multisite study. In fact, although DMN reliability  is consistent across sites, rPNC 

methods are still likely to influence the degree of reproducibility consistency across the 

consortium.

 When considering mean z-scores in the DMN, Tissue-based and FIX-standard 

correction methods significantly improved the reproducibility  consistency  of the DMN 

amongst the different 3T MRI sites. This effect may be driven by exploiting individual 

anatomical information (T1-anatomical) to remove physiological noise from non-gray 

matter tissue. This suggests that the use of single-site derived spatial priors in 

PESTICA may not be sufficient to contrast multisite heterogeneity. When considering 

reproducibility consistency, FIX-training did not perform as well as FIX-standard. This 

may be related to the deviation of non-brain related percent variance classified between 

the two methods (FIX-training retained higher signal variance, very likely  not to be 

associated to the DMN). Furthermore, such variability  was unequally  distributed across 

sites, leading to overall lower reproducibility consistency of the DMN relative to FIX-

standard. Therefore, we recommend adopting a higher signal-noise threshold for FSL-

FIX in longitudinal multisite resting-state FC-fMRI studies.

DMN connectivity: slice-order acquisition and motion 
correction effects

 The main goal of the second reliability  study  was to evaluate whether different 

combinations of slice-order fMRI acquisition protocols and head-motion correction 

techniques would differently  affect the TRT reliability of intrinsic DMN connectivity. 

Subjects were instructed to stay still to investigate these effects in standard experimental 

conditions rather than with artificially directed movement. Using group-ICA and dual-

regression methods the group  DMN and reconstructed individual DMN components 

were all identified under all slice-order protocols and head-motion correction methods 

in both fMRI sessions. These findings highlight the reliable nature of the ICA approach 
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(Beckmann et al., 2009) to define consistent DMN maps across subjects and sessions 

(Chen et al., 2008; Damoiseaux et al., 2006).

 We found that both slice-order protocols and head-motion correction methods 

significantly affect mean z-scores within the DMN. These effects are not likely due to 

fatigue effects considering that no differences in the tSNR were found across slice-order 

protocols before head-motion correction. It  is more likely that this might depend on 

several factors: first, on the variability between head-motion correction methods to 

detect and remove the motion component of the BOLD signal. In fact, while head-

motion estimated using VOMOCO indicated overall low movement, significant more 

movement was estimated after SLOMOCO. In average across all participants and 

sessions (N=47), SLOMOCO metrics registered 64% and 61% higher motion than 

VOMOCO under interleaved and sequential slice-order protocols, respectively. This 

finding is in line with (Beall & Lowe, 2014) who showed that  VOMOCO estimates miss 

on average at least the 50% of non-volumetric motion in real data. Second, on BOLD 

effects arising from blood inflow effects, i.e. magnetically saturated blood flows from 

slice to slice, that depend on the ascending sequential slice-order protocol adopted. 

Although an earlier task-based 2T fMRI study demonstrated that no BOLD blood 

saturation issue arises from the selection of different slice-order protocols and that 

activations in the visual cortex overlap quite well across different slice-order protocols 

(Turner et al., 1998), these results suggest that slice-order selection cannot be an 

underestimated issue in RS-fMRI connectivity studies of the DMN at 4T.

 Both slice-order protocol and head-motion correction method effects were found 

within the entire DMN as well as its main nodes but were less pronounced in the PCC 

region. In fact, in contrast to all other DMN nodes, PCC connectivity was very robust 

against potential surviving motion artifacts showing no correlations with the estimated 

motion and no head-motion correction method effects. These observations confirm the 

resilience of the main hub of the DMN (Fransson & Marrelec, 2008) and support 

research in PCC-based connectivity  markers of dementia (Bai et al., 2009; Zhou et al., 

2008).
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 DMN reliability: slice-order acquisition and motion 
correction effects

 TRT reliability measures of mean DMN z-scores in our group  of healthy young 

participants indicate overall moderate-to-good reliability with absolute percent error 

below 8% and ICC range of 0.29 - 0.57.  These results are in line with previous DMN 

reliability  studies who adopted interleaved slice acquisition and VOMOCO methods, 

implementing the same methodology (i.e. Group-ICA and dual regression) in healthy 

young adults (Zuo et al., 2010) and healthy old individuals (Guo et al., 2012).

 In a previous study, it  was shown that there is dependence between the amount 

of head-motion and DMN reliability  in healthy old individuals, with high motion 

associated with reduced ICC (Guo et al., 2012). In the present  study both reliability 

measures did not correlate with motion-derived metrics and were not influenced by both 

slice-order acquisition and motion correction methods in the short-term. This might 

primarily  depend on our sample of young healthy adults who are characterized by low 

head-motion and were instructed not to move during scanning sessions. Investigating 

the influence of these combinations on the TRT reliability of FC-fMRI in high-motion 

populations will deepen our knowledge about potential optimizations in acquisition 

sequences and data analysis choices.

 Also, model-free ICA-based approaches are known to characterize highly  

reproducible components (Zuo et al., 2010). The adoption of this approach might 

therefore explain the present outcome even though a comparison with model-based 

approaches (i.e. seed-based methods) was not  directly investigated in the present study. 

Of note, model-free ICA-based methods were here optimized to circumvent their 

unsupervised nature (Abou Elseoud et al., 2011; Calhoun et  al., 2009) and ICA 

implementations were twofold: first, during individual image preprocessing using FSL-

FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) to remove additional 

physiological motion and hardware-related artifacts and second, during group post-

processing using group-ICA to characterize the DMN and isolate its component from 

spatio-temporal patterns of non-neural origins.

 The voxel-wise spatial overlap of within-subject DMN maps was lower than 

mean z-score reliabilities, indicating an overall spatial DMN reproducibility of 40% in 

agreement with a recent DMN reliability  study of healthy young adults (Meindl et al., 
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2010) who reported Dice coefficients for spatial DMN reproducibility of 42% (J = 33%) 

at 1x1x1 spatial voxel resolution using 3T MRI scanner. Spatial reproducibility  was the 

highest in the PCC (51%) and the lowest in the ACC (30%), consistently with previous 

reported findings (Jovicich et al., 2016; Van Dijk et  al., 2010). Neither slice acquisition 

nor head-motion correction methods influenced the voxel-wise spatial reproducibility  of 

the entire DMN.

 In contrast, Jaccard indexes were sensitive to these factors in the single nodes of 

the DMN. In particular none of the slice acquisition and motion correction methods 

improved reliability in the ACC which was slightly  lower than in (Meindl et al., 2010),    

ACC (J = 47%). Higher spatial variability in the ACC was already reported in other 

1.5T and 3T studies (Damoiseaux et al., 2006; Meindl et al., 2010) across subjects and 

sessions. Altogether, these results have important implications for the investigations of 

ACC-based longitudinal connectivity markers of psychopathological conditions (Davey 

et al., 2012; Tian et al., 2006).

 Future investigations of descending slice-order protocols might help clarify 

whether this instability in the ACC activation cluster-size might be minimized using 

sequential acquisitions, thought of being more robust against blood inflow saturation 

effects in that direction with overall low sensitivity to motion spin-history  artifacts 

(http://imaging.mrc-cbu.cam.ac.uk/imaging/TipsForDataAcquisition#Slice_order). Most 

importantly, no combination of slice-order protocols and head-motion correction 

methods improved the TRT reliability  of FC-fMRI consistently  across all DMN nodes. 

The present study therefore suggests relative freedom of choice between the examined 

slice-order protocols and head-motion correction methods when using model-free 

methods in longitudinal studies of intrinisc DMN connectivity.

Future studies

 The analyses presented in this thesis can be extended on several fronts to further 

investigate the TRT reliability  of intrinsic DMN connectivity. The head-motion study 

showed that different  reliability  metrics might not perfectly converge. This indicates 

that some metrics can bias the interpretation of reliability and limit the comparability 

and generalizability of findings. In particular, the ICC is limited by its specific 
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dependence on the data set under investigation (Bennet & Miller, 2010). In the head-

motion study, despite the low absolute percent change in DMN mean z-scores, low 

between-subject variability  could have biased the ICC analysis. Importantly, the 

conspicuous variability in ICC models adopted in the literature makes it challenging to 

interpret the reliability  of the functional connectome. Many previous studies adopted 

ICC models ascribable to the following:

with BMS indicating the mean square between subjects and WMS the mean square 

within subject, and k the number of fMRI sessions. This ICC model admits negative 

ICC values that cannot be easily  interpreted (Müller & Büttner, 1994; Rousson et  al., 

2002) and are tipically set to zero (Kong et al., 2007; Zhang et al., 2011). In agreement 

with (Bennett & Miller, 2010), we simplified the ICC equation by  dividing the variance 

of interest by the total variance:

 in this equation, a value of 0 would only  indicate that there is no agreement 

between the values across the k sessions, because within-subject variability would 

dominate the equation (Bennett & Miller, 2010). Direct comparisons of these ICC 

formulas and the evaluation of multiple TRT reliability measures are still needed in the 

context of unweighted and undirected graphs (i.e. standard measures of FC-fMRI). This 

is necessary to improve the current reliability framework in the context  of effective 

connectivity measures of the human brain that yield directed graphs to explore causal 

relationships between several brain systems (Li et al., 2009).

 To this aim, ICA-based functional activation clusters defined in this thesis could 

be used as spatial priors or reference for directed graph-based connectivity approaches 

to define the DMN (Franco et al., 2013). The longitudinal stability of the spatial DMN 

patterns demonstrates that ICA methods are valid and clear methodological criteria to 

define apriori DMN regions and are thus suitable to both serve as control and 

investigate abnormal resting-state FC-fMRI in patients (Fox & Greicius, 2010). 

Considering the wide set of graph-based connectivity properties and the relative degree 

ICC(1, 1) = BMS-WMS
BMS + (k-1)WMS

ICC(1, 1) = BMS
BMS + (k-1)WMS
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of variability  in TRT reliability methods, group-ICA DMN reliability constitutes an 

optimal term of comparison for longitudinal evaluations of directed graph-based 

connectivity approaches. Moreover, in the head-motion study, DMN reliability was 

comparable between interleaved and sequential slice-order acquisition methods. The 

influence that these acquisition choices might exert  on effective connectivity methods 

such as dynamic causal modeling (DCM) were postulated but not addressed in a 

systematic and empiric way (Stephan et al., 2010).

 Importantly, intrinsic brain networks besides the DMN might also show clinical 

relevance and deserve reliability investigations. The salience network is involved in 

fronto-temporal dementia (Seeley et al., 2007, 2008) and chronic pain (Greicius et al., 

2008; Cauda et al., 2009) and interacts with the amygdala and the frontoparietal control 

network in generalized anxiety disorder (Etkin et al., 2009) and with the DMN in 

ADHD (Weng et al., 2010). Therefore future reliability studies should not only consider 

measures of intrinsic connectivity within some brain networks but also between 

different brain systems (Wang et al., 2015).

 From our experience in longitudinal multisite resting-state FC-fMRI in healthy 

aging, it turns out that stringent correction for multiple comparisons will be very 

important in clinical studies and that correlations with clinical variables are needed to 

account for between-subject variability. Our investigations into the impact of different 

physiological denoising approaches in healthy old individuals should be translated to 

patients, together with the investigations of other preprocessing choices (Fox & 

Greicius, 2010). Although head-motion does not influence ICA-based connectivity  and 

its reliability, it is always necessary  to analyze motion metrics in healthy  controls and 

patients. We believe that reliability  in some clinical populations might be sensitive to 

motion and the stability  of FC-fMRI measures might improve after 2D slice-based 

motion correction methods also in patients.

 Novel methods that make use of reliability  indexes to further correct FC-fMRI in 

intrinsic brain networks are becoming available (Mueller et al., 2015). These reliability-

based correction methods will improve the comparability  between healthy  controls and 

patients.
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