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Introduction.

«Begin at the beginning,» the King said, gravely,
«and go on till you come to the end; then stop.»

Lewis Carroll – Alice in Wonderland

One of the most fundamental interactions in physics is that between elementary particles
and gauge fields. The most renowned example of these is probably the coupling between the
electromagnetic field and charged particles, described through the scalar and vector potentials.
While some of the effects of electromagnetism are familiar even to non-physicists, many of the most
surprising phenomena arising from gauge fields are only understood through quantum mechanical
concepts. For example, when a free electron is immersed in a uniform magnetic field, its quantum-
mechanical energy splits into equally-spaced Landau levels. Such energy quantization vanishes in
any classical calculation and it provides a nice explanation of the integer quantum Hall effect, that
is the exact quantization of the transverse Hall conductance of a two-dimensional electron gas at
a very low temperature and in a strong magnetic field. If instead we consider an electron moving
on a crystal lattice immersed in a extremely high magnetic field, the interplay between the Bloch
bands and the Landau levels results in a beautiful fractal self-recursive energy spectrum. Moreover,
the energy bands of this system, described by the Harper-Hofstadter model, can be connected by
robust one-way propagating states which are localised on the physical edge of the system and which
are also directly related to the integer quantum Hall effect.

Another important effect related to gauge fields is the coupling between the electron’s spin and
its own momentum, where the coupling results from the Dirac equation of relativistic quantum
mechanics. In this case, the gauge field is said to be non-Abelian, because its components do
not commute with each other due to their momentum-dependence. This spin-orbit coupling is
well-known in atomic and molecular physics because it explains the atomic fine-structure, but it is
also present in condensed matter systems, leading to interesting phenomena such as the quantum
spin Hall effect or Majorana fermions.

Recent technological advances in quantum simulators have proven that synthetic materials are
very well suited to study and implement almost any type of condensed matter model, thanks to the
high level of control and the ability to tune almost at will the system parameters. However, since
many of these synthetic systems are characterized by neutral particles that do not naturally couple
to real gauge fields, there is the need for the implementation of artificial gauge fields to simulate
interesting electromagnetic phenomena such as the ones introduced above. In fact, the aforemen-
tioned Harper-Hofstadter model requires magnetic fields that are too huge to be experimentally
produced in a laboratory, hence the possibility to simulate an artificial magnetic field allows for
the observation of effects that are otherwise impossible to achieve with conventional solid-state
materials.

One among the many motivations for the implementation of artificial gauge fields in artificial
materials, is the realization of topological insulators, which were first found in real condensed
matter systems. These are bulk insulating materials that carry a certain number of edge states
which are topologically protected against small perturbations of the system. One example of such
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Introduction. 2

a topological insulator is the quantum Hall effect introduced above. Topological insulators are then
very interesting both from the point of view of fundamental physics and concrete applications.

While there have been many works studying topological physics with quantum artificial systems,
such as ultracold atoms in optical lattices or polaritons in semiconductor microcavities, very little
attention was dedicated to the interplay of topology and the purely classical world. As a matter of
fact, only in the last couple of years has there been an explosion of interest towards the realization
of a classical acoustic topological insulator, which is just beginning as a rich, brand-new field
of research. For instance, in the mechanical meta-material context there can be floppy modes
localized on the edges, which are insensitive to local perturbations and which can be viewed as
having a topological origin. In these directions, pioneering efforts to encode a non-trivial topology
in the dynamical matrix or into the Hamiltonian of a system have proven that the hallmarks of a
topological insulator are not the prerogative of quantum mechanics, but can be also observed with
a classical system governed by Newton’s equations. The first part of this thesis is therefore based
on our studies dedicated to the implementation of a classical analogue of the integer quantum Hall
system, by realizing the Harper-Hofstadter model for classical coupled harmonic oscillators.

The achievement of an artificial gauge field allows also for the deeper study of fascinating mag-
netic effects such as, for example, Landau levels. One among the many remarkable properties
of graphene, a two-dimensional carbon allotrope, is that its low-energy excitations are described
by a Dirac equation for massless fermions. In graphene, an inhomogeneous strain introduced, for
example, as an elastic deformation of the honeycomb lattice, is equivalent to an artificial pseudo-
magnetic field: in this case the energy spectrum of the Dirac electrons shows the formation of
relativistic pseudo-Landau levels. Artificial graphene materials offer a tunable implementation
of the strain through a spatial modulation of the tight-binding couplings or through a physical
deformation of the lattice. In particular, with photonic graphene the formation of Landau levels
stemming from a strain-induced magnetic field has been proven. However, the observation of the
spatial wavefunction associated to these levels was not possible, due to limitation of the specific
set-up used in the experiment. The second part of the thesis is therefore focussed on the honey-
comb lattice geometry and our theoretical proposal for a configuration based on an intrinsically
driven-dissipative system in which to probe the physics of the Landau levels, and especially the
spatial structure of their wavefunctions. We have also focussed our attention to the effect of a
spin-orbit coupling on a pristine honeycomb lattice. More specifically, we have experimentally
realised a mechanical system of coupled pendula to investigate some of the aforementioned effects.
As a first step, we studied the eigenmodes of a mechanical benzene molecule in the presence of
a spin-orbit coupling. The mechanical benzene is composed of six pendula connected in pairs by
six springs. The springs are pre-tensioned and they split the coupling along the longitudinal and
transverse direction of the two connected masses. As the motion along the longitudinal (L) and
transverse (T) directions acts as a pseudo-spin, this L-T splitting can be described as a spin-orbit
coupling.

The detailed outline of the thesis is the following.

Chapter 1. The Harper-Hofstadter model, that is a tight-binding model of condensed matter
describing an electron on a lattice in the presence of a strong magnetic field, can be considered
as the archetypal lattice model of a quantum Hall system. We justify this statement by
reviewing the main properties of the model, illustrating the existence of topological edge
states between energy bands and their relationship with the Chern invariant, a non-trivial
topological integer that characterises the bands.

Chapter 2. We review some of the most relevant methods used for the implementation of an arti-
ficial gauge field in various artificial systems, mainly focussing on ultracold atoms, photonics
and classical systems. We clarify the differences between the various methods in connection
with the specifications of each system and we review the different topological models that
have been realized in the literature.

Chapter 3. We make use of the concepts introduced in the previous chapters to design a scheme
that realizes an artificial gauge field for coupled classical harmonic oscillators. We start by
theoretically studying the dynamics of two coupled pendula subject to a periodic tempo-
ral modulation of their natural frequency, to show that Newton’s equations of motion, in
a certain regime within the rotating wave approximation, can have the same form as the
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Heisenberg equations of motion written for a quantum tight-binding Hamiltonian. Apply-
ing Floquet theory, we derive the effective Hamiltonian and we show dynamical localization
and dynamical isolation effects together with the occurrence of non-trivial coupling Peierls
phase between the classical oscillators. The Chapter is based on the publication Salerno and
Carusotto [2014].

Chapter 4. We extend the scheme of the previous Chapter by considering frequency-modulated
coupled classical harmonic oscillators on a two-dimensional square lattice to realize a classical
analogue of the Harper-Hofstadter model. We show that when the natural frequencies of
such oscillators are suitably modulated in time and under the same regime as the previous
chapter, the energy bands are arranged in the self-similar structure of the Hofstadter butterfly.
Between the bands, we find topologically-protected one-way propagating edge states and we
also point out that the non-trivial topological Chern invariant of the quantum Hall effect can
be estimated from the shift of the oscillation amplitudes. The findings of this Chapter were
published in Salerno et al. [2016].

Chapter 5. In the system introduced in the previous Chapter, we explore a region of parameters
beyond the rotating wave approximation, where the quantum analogy with the classical
oscillators is weaker. We investigate the appearance of complex energy modes that signals a
parametric instability of the system and we also find a distortion of the Hofstadter bands, yet
the topological effects remain. For parameters that are further away from the rotating wave
approximation, a closing of the Hofstadter band gaps is accompanied by a disappearance
of topological edge states, and the system becomes topologically trivial. The results of this
Chapter were included in Salerno et al. [2016].

Chapter 6. We explore another method, namely strain in honeycomb photonic lattices, to im-
plement an artificial gauge field and study magnetic effects. In this chapter, we start by
reviewing in a concise manner the properties of honeycomb lattices in general, as well as in
the presence of a homogeneous strain, implemented as different hopping amplitudes of the
tight-binding model along the lattice directions. Such a homogeneous strain is described as
a pseudo-artificial vector potential.

Chapter 7. In the presence of a suitable spatially-dependent strain, a pseudo-artificial magnetic
field appears and the low-energy eigenmodes have the form of relativistic Landau levels. We
study the driven-dissipative steady-state of a coherently driven photon field in a honeycomb
lattice. We show how the main properties of the pseudo-Landau levels can be extracted
by observing the peaks in the absorption spectrum of the system and the corresponding
spatial intensity distribution. We also give quantitative predictions for realistic lattices based
on photonic or microwave technologies. The main results of this Chapter were published
in Salerno et al. [2015].

Chapter 8. We study spin-orbit coupling in a mechanical system of masses and springs, induced
by pre-tensioned springs that split the longitudinal and transverse couplings in a honeycomb
geometry. We theoretically derive the eigenmodes of the single hexagonal plaquette, that
is a benzene molecule, as well as the ones of the extended system. We also present the
experimental results of a simple mechanical benzene composed of six pendula connected with
pre-tensioned springs, to verify that the eigenfrequencies of this system are well described by
our theory in the presence of spin-orbit coupling.

Artificial gauge fields in photonics and mechanical systems. G. Salerno





Chapter 1

Real magnetic field on a lattice:
the Harper-Hofstadter model.

You might well wonder whether such an intricate
structure would ever show up in an experiment.
Frankly, I would be the most surprised person in the
world if Gplot came out of any experiment. The
physicality of Gplot lies in the fact that it points the
way to the proper mathematical treatment of less
idealized problems of this sort. In other words, Gplot
is purely a contribution to theoretical physics, not a
hint to experimentalists as to what to expect to see!

Douglas R. Hofstadter – Gödel, Escher, Bach.

The Harper-Hofstadter model describes the behaviour of a Bloch electron immersed in a
strong magnetic field on a lattice, and it was studied for the first time by Harper [1955] and then
by Hofstadter [1976]. This is a very interesting problem of condensed-matter physics, combining
two simple and fundamental physical situations that are both understood starting from quantum
mechanical principles: an electron in a perfect crystal, and an electron in a homogeneous magnetic
field. In the first case, we know that the energy of the electrons moving in a periodic potential
splits into the Bloch bands. In the second case, the energy of an electron moving in a magnetic field
is quantized into highly degenerate Landau levels. In both situations, the motion of the electron
has a characteristic length: the lattice spacing and the magnetic length. We shall also see that the
ratio of the two lengths is, surprisingly, the key parameter of the combined problem, as it holds
information about the distribution of allowed electron energies. The resulting energy bands are
arranged in a self-recursive structure, called by Hofstadter himself “Gplot”, but now commonly
known as the “Hofstadter butterfly”.

In this Chapter we will also review the topological properties of the Harper-Hofstadter model,
showing that a topological invariant, the Chern number, is associated to the eigenstates forming
the energy bands. We will also discuss how this Chern invariant is related to the quantized Hall
conductance and the topological edge states, legitimizing the idea that the Harper-Hofstadter is
one of the archetypical lattice models of a quantum Hall system.

1.1 The tight-binding model.

We first consider a particle of mass m moving in a lattice potential Vlattice. The Hamiltonian,

5



The tight-binding model of a particle in a magnetic field. 6

written in the second quantization formalism, is the following:

Ĥ =

∫
ψ̂†(~r)

(
− ~2

2m
∇2 + Vlattice

)
ψ̂(~r)d~r. (1.1)

We know from solid-state physics textbooks, such as Aschroft and Mermin [1976] or Marder [2010],
that the energies of such a Hamiltonian are organized in a band structure, and the eigenstates are
the Bloch wavefunctions: ψν,~k(~r) = ei~k·~r uν,~k(~r), where ~k is the quasi-momentum, ν is the index of
the energy band and the function uν,~k(~r) is periodic with the same periodicity of the lattice. We
consider the case where only the lowest band is populated and drop, for the moment, the band
index ν. Such an approximation is valid in the case of a deep potential when the particle is tightly
bound to the region of the minimum of the potential. Since the particle is confined to move around
the lattice sites, the wavefunction can be expressed in the basis of the Wannier functions, that are
strongly localised on the sites. These functions are defined from the Bloch functions as:

W(~r, ~R) ≡ 1

V

∫
~k∈BZ

e−i~k·~R ψ~k(~r)d~k, (1.2)

where V is the area of the Brillouin zone, ~R is the Bravais vector, and the integral is done over all
quasi-momenta in the Brillouin zone kx, ky ∈ [−π/a, π/a], where the lattice spacing is a.

As a consequence of Bloch’s theorem, the Wannier functions depend on the position of the
particle ~r and the position of the lattice site ~R only through their difference: W(~r, ~R) =W(~r− ~R).
The field operators in the Hamiltonian Eq. (1.1) are then defined as:

ψ̂(~r) ≡
∑
~R

W(~r − ~R)â~R, ψ̂†(~r) ≡
∑
~R

W∗(~r − ~R)â†~R, (1.3)

where â~R and â†~R are the annihilation and creation operators of a particle in the Wannier state at
the lattice position ~R, whose wavefunction is W(~r − ~R). Substituting the definition of the field
operators Eq. (1.3) in the Hamiltonian Eq. (1.1), we have:

ĤTB =
∑
~R,~R′

−J(~R− ~R′)â†~Râ~R′ . (1.4)

The quantity J(~R− ~R′) is the matrix element:

J(~R− ~R′) ≡
∫
W∗(~r − ~R)

(
− ~2

2m
∇2 + Vlattice

)
W(~r − ~R′)d~r. (1.5)

Since the overlap of the Wannier functions between distant sites is very small, the sum in the
tight-binding Hamiltonian Eq. (1.4) can usually be restricted to the nearest-neighbour sites only.

1.2 The tight-binding model of a particle in a magnetic field.
We now consider the square lattice potential Vlattice in the x−y plane penetrated by a magnetic

field that is oriented in the positive vertical direction: ~B = B~z. In the Hamiltonian of a particle of
mass m and charge e, we consider the minimal coupling with the magnetic vector potential ~A by
substituting −i~~∇ → −i~~∇−e ~A. The vector potential, written in the Landau gauge, is ~A = −By~x
and it is such that ~∇ · ~A = 0 and ~∇× ~A = ~B. The Hamiltonian in Eq. (1.1) will now read:

Ĥ =

∫
ψ̂†(~r)

(
− 1

2m
(−i~~∇− e ~A)2 + Vlattice

)
ψ̂(~r)d~r. (1.6)

This new magnetic potential term introduces some complications with respect to the derivation of
the previous section, that was based on Bloch’s theorem expanded in Wannier functions. In fact,
Bloch’s theorem holds for any Hamiltonian that is spatially periodic and Eq. (1.6) is no longer
translationally invariant due to the presence of the magnetic vector potential that depends linearly
on the coordinates. However, we can still define new translation operators that commute with this
Hamiltonian and that differ from the usual translation operators only by a phase factor, as shown
by Zak [1964a], Zak [1964b].
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1.2.1 The magnetic translation operator.

We now shall find a suitable translation operator that commutes with the magnetic Hamiltonian
in Eq. (1.6). We start by noticing that the magnetic vector potential satisfies the following relation:

~A(~r + ~a) = ~A(~r) + ~∇f(~r),

having defined ~∇f(~r) ≡ ~A(~r + ~a) − ~A(~r) = ∆ ~A, so that the previous relation stems from the
identity. Since the vector potential in the Landau gauge is linearly dependent on the position, the
difference ∆ ~A = −B~a is independent of ~r, and we can write the gradient as ~∇f(~r) = ~∇(∆ ~A · ~r).
We now apply a gauge transformation to the vector potential, such that ~A → ~A − ~∇f(~r) such
that in this new gauge the vector potential is invariant under translation by a lattice vector. From
standard quantum mechanics textbooks, such as Sakurai [1994], we know that the wavefunction
in this new gauge is transformed according to:

ψ(~r)→ eief(~r)/~ ψ(~r) (1.7)

where we could also write f(~r) =
∫
~∇f(~r)·d~r. This state is the magnetic-translated state, therefore

we can define the magnetic translation operator as:

T̂M~a = eie/~
∫
~A·d~r′ T̂~a (1.8)

where T̂~a is the usual translation operator: T̂~a ϕ(~r) = ϕ(~r+~a). In general, two magnetic translation
operators do not commute with each other:

T̂M~a1 T̂
M
~a2

= T̂M~a2 T̂
M
~a1

e
ie/~

∫ ~a2
~a1

~A·d~r′
.

The phase factor that appears when commuting two magnetic translations is the dynamical phase
of Aharonov and Bohm [1959] that the electron gains on the path defined along the lattice vectors
~a1 and ~a2. When such a path is a closed loop, for example, defined around the unit cell, the two
magnetic translations do commute with each other. In this case we have that the phase factor is:

e

~

∮
~A · d~r = 2π

eBa2

h
≡ 2π

Φ

Φ0
= 2πθ (1.9)

where Φ0 ≡ e/h is the flux quantum and Φ ≡ Ba2 = θΦ0 is the magnetic flux enclosed in the unit
cell. The parameter θ tells us how many flux quantum are in the magnetic flux Φ that is generated
by the magnetic field B. For this reason, in the following of the thesis, we will simply refer to θ as
being the “magnetic flux”. It is quite remarkable that θ can be also expressed as the ratio of two
characteristic length scales of the problem, as in Dalibard [2015]:

2πθ =
a2

`2B
, (1.10)

where `B =
√
~/|eB| is the magnetic length and a the unit length of the lattice.

Another important consequence of the magnetic translation operator, is that a modified mag-
netic unit cell is introduced. In fact, for the Landau gauge that we have chosen, the translation
operator along the x direction is unaffected, while the one along y is modified by a phase factor
e−i2πθRy/a that depends on the position Ry. This means that, for a rational magnetic flux θ = p/q,
the periodicity along the y direction is restored after q lattice sites, therefore a magnetic unit cell
is enlarged with respect to the pristine unit cell, as can be seen in Fig. 1.1. Different shapes of
the magnetic unit cell can be taken, although the number of plaquettes enclosed in the cell must
always be q. From this modified magnetic unit cell we can also define the magnetic Brillouin zone,
that extends for kx ∈ [−π/a, π/a] and ky ∈ [−π/(qa), π/(qa)].

By using the translated state in Eq. (1.7), the tight-binding Hamiltonian in magnetic field
becomes:

ĤMTB =
∑
~R,~R′

−J(~R− ~R′) eie/~
∫ ~R
~R′
~A·d~r′ â†~Râ~R′ . (1.11)
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x

y
a

2 π θ

x

y
a

Figure 1.1: A sketch of a square lattice with lattice unit vector a immersed in a uniform perpendic-
ular magnetic field. On the left, the phase acquired in a closed loop around a unit cell of the lattice.
On the right, the original unit cell versus the magnetic unit cell in real space. The magnetic unit
cell is shaded in green and is enlarged with respect to the original unit cell that is highlighted by
black lines. The magnetic unit cell depends on the magnetic flux and the gauge that is chosen for
the vector potential. For θ = 1/4 in the Landau gauge ~A = −By~x, this cell contains q = 4 lattice
vectors and covers an area of four pristine unit cells 4a2 along the y direction.

The presence of the vector potential ~A modifies the tight-binding Hamiltonian by only adding a
Peierls phase factor to the hopping term Wannier [1962]. In the Landau gauge the Hamiltonian
in Eq. (1.11) becomes:

Ĥ = −J
∑
~R

(
e−i2πθRy/a â†~R+~xa

â~R + â†~R+~ya
â~R + H. c.

)
(1.12)

where we have considered the nearest neighbour approximation and so coupled a lattice point in
position ~R to the nearest points that are only one unit cell away ~R+ ~xa along x and ~R+ ~ya along
y. This is the Harper-Hofstadter Hamiltonian.

1.2.2 The Harper equation.
We now calculate the energy dispersion of the Harper-Hofstadter model. It is convenient to

write the time-independent Schrödinger equation starting from the Hamiltonian in Eq. (1.12). We
have that:

Eψ(Rx, Ry) =

− J
(

e−i2πθRy/a ψ(Rx + a,Ry) + ei2πθRy/a ψ(Rx − a,Ry) + ψ(Rx, Ry + a) + ψ(Rx, Ry − a)
)
.

(1.13)

Since the coefficients in the above equation only involve Ry, there is still translational invariance
along x. We can assume a plane wave behaviour and expand as:

ψ(Rx, Ry) = g(Ry) eiRxkx

We can define new coordinates in units of the quantities of the lattice (the spacing a and the
tunnelling J) as:

i =
Rx
a
, j =

Ry
a
, κ = akx, ε =

E

J
. (1.14)

With simple calculations, Eq. (1.13) becomes the Harper equation:

−εg(j) = g(j + 1) + g(j − 1) + 2 cos(2πθj − κ)g(j), (1.15)

that was studied for the first time by Harper [1955].
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Figure 1.2: “Gplot : a recursive graph” from Hofstadter [1976]. Energy bands for the Bloch electron
in a uniform magnetic field. The magnetic flux θ runs vertically from 0 to 1, while energy runs
horizontally from −4ε to 4ε. The horizontal line segments are bands of allowed energies. As it
resembles a butterfly, this graph is now known as the “Hofstadter butterfly”. Copyright c© 1976,
American Physical Society.

1.3 The Hofstadter butterfly.

One of the most surprising properties of the Harper equation in Eq. (1.15) is evident when the
magnetic flux is a rational number:

θ = p/q

with p and q being co-prime integers. In this special case, investigated by Hofstadter [1976], Bloch’s
theorem implies that the energy levels split into exactly q bands, because the potential term in
the Eq. (1.15) is periodic with period q. To calculate these energy bands, it is convenient to write
Harper’s equation in the iterative-matrix form:(

g(q + 1)
g(q)

)
=

q∏
m=1

(
ε− 2 cos(2πmθ − κ) −1

1 0

)(
g(1)
g(0)

)
= Q(ε, κ)

(
g(1)
g(0)

)
. (1.16)

It can be shown that the product matrix Q is such that:∣∣∣∣Tr[Q(ε,
π

2q
)]

∣∣∣∣ ≤ 4. (1.17)

If ε satisfies Eq. (1.17), then this ε is an allowed eigenvalue. A full derivation of this result is given
in the Appendix A.

The energy spectrum predicted by Eq. (1.17) as a function of the magnetic flux θ has a recursive
and self-similar structure, which is shown in Fig. 1.2. The magnetic flux θ runs vertically from 0
to 1, while energy runs horizontally from −4ε to 4ε. For rational values of the flux θ = p/q, it
is easy to identify q horizontal line segments, that represent the bands of allowed energies. This
result is peculiar because it implies that changing the flux from θ = 0.5 to θ = 0.500001 changes
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the number of bands from 2 to 1000000. Besides, there is no guarantee that the magnetic flux θ is
always a rational number. Upon these two arguments, the result in Eq. (1.17) seems unreasonable:
an arbitrarily small variation on the strength of the magnetic field (hence the flux) should not
influence the physical observable. Nevertheless, the result is correct. In Hofstadter [1976], we read:

“For any θ, as θ′ approaches θ, then all points of spectrum(θ) are approached by points
belonging to spectrum(θ′); furthermore, only the points of spectrum(θ) are so ap-
proached. [...] vertical motion along the graph is continuous.”

This means that the whole physics of the system can be recovered from the rational cases, even
for the irrational θ, by indefinitely approaching this irrational value with a rational value of the
magnetic flux. However, the butterfly resulting from a real experiment will be “blurred”, because of
the unavoidable uncertainty on the value of the magnetic field that will result into an uncertainty
∆θ on the magnetic flux. Due to the continuity argument of Hofstadter, the behaviour of this
blurred butterfly will be continuous for all magnetic field values. The entire graph is recovered in
the limit ∆θ → 0.

1.4 Topological properties of the energy bands.
The Hofstadter butterfly in Fig. 1.2 shows us the single-particle energy as a function of the

magnetic flux through a very beautiful fractal self-similar structure. More insights on the spe-
cific energy dispersion in momentum space of the Harper-Hofstadter model and the topological
properties of its eigenfunctions can be obtained by directly diagonalizing the Harper-Hofstadter
Hamiltonian. Equation (1.12) in the tight-binding formalism is written as:

Ĥ = −J
∑
i,j

[
e−i2πθj â†i+1,j âi,j + â†i,j+1âi,j + H. c.

]
(1.18)

where i and j are the same as introduced in Eq. (1.14). We move to quasi-momentum space:

âi,j =
a2

4π2

∫ π
a

−πa
dkx

∫ π
a

−πa
dky eikxai eikyaj âkx,ky . (1.19)

Due to the presence of the magnetic flux, the quasi-momenta should belong to the magnetic
Brillouin zone, as previously defined, instead of to the original Brillouin zone as in Eq. (1.19). To
this end, the quasi-momentum along y goes to ky → ky − 2πθm, where m is an integer that runs
over m = 0 . . . q − 1. Substituting into Eq. (1.18), we have that :

Ĥ =
a2

4π2

∫ π
a

−πa

∫ π
qa

− π
qa

Ĥ(~k)dkxdky,

where:

Ĥ(~k) = −J
q−1∑
m=0

[
cos (kxa− 2πθm) â†kx,ky−2πθmâkx,ky−2πθm

+ eikya â†kx,ky−2πθ(m+1)âkx,ky−2πθm + e−ikya â†kx,ky−2πθ(m−1)âkx,ky−2πθm

]
.

(1.20)

This Hamiltonian can be viewed as a tight-binding model in one dimension, where the sites are
labelled by m. We can obtain the single-particle energies by expanding into single-particle states
according to:

|Ψ(~k)〉 =

q−1∑
m=0

ϕm(~k)â†kx,ky−2πθm|0〉 (1.21)

where |0〉 is the vacuum state and the expansion coefficients ϕm(~k) are such that ϕm(~k) = ϕm+q(~k),
if the flux θ = p/q. From the Schrödinger equation Ĥ(~k)|Ψ(~k)〉 = E(~k)|Ψ(~k)〉, we find that the
expansion coefficients satisfy the following expression:

Ĥk

 ϕ0(~k)
...

ϕq−1(~k)

 = E(~k)

 ϕ0(~k)
...

ϕq−1(~k)

 , (1.22)
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Figure 1.3: Bulk energy dispersion in units of J as a function of the quasi-momenta kx and ky in
the magnetic Brillouin zone for two values of the magnetic flux θ. On the left for θ = 1/3, we see
that there are three energy bands. On the right for θ = 1/4, there are four bands, but the two
central ones are touching in Dirac points at zero energy.

where:

Ĥk = −J


2 cos [kxa] eikya 0 . . . e−ikya

e−ikya 2 cos [kxa− 2πθ] eikya . . . 0
...

...
. . .

...
eikya 0 . . . e−ikya 2 cos [kxa− 2πθ(q − 1)]

 . (1.23)

The eigenvalues of this q-by-q matrix are the energy bands shown in Fig. 1.3 for two values of θ in
the magnetic Brillouin zone kx ∈

[
−πa ,

π
a

]
and ky ∈

[
− π
qa ,

π
qa

]
.

The eigenfunctions of the ν-th band Ĥkuν(~k) = Eν(~k)uν(~k), namely

uν(~k) =

 ϕν1(~k)
...

ϕνq−1(~k)

 , (1.24)

are associated with a geometrical quantity, that is the Berry curvature, defined as [Xiao et al.,
2010]:

~Ων(~k) ≡ ∇~k ×
〈
uν(~k)

∣∣∣i∇~k∣∣∣uν(~k)
〉
. (1.25)

The Berry curvature is an intrinsic geometrical property of the band that only depends on its wave
function, and is a local gauge invariant quantity, see Xiao et al. [2010]. Equation (1.25) can be
also written as ~Ων(~k) ≡ ∇~k × ~Aν(~k), where

~Aν(~k) ≡
〈
uν(~k)

∣∣∣i∇~k∣∣∣uν(~k)
〉

(1.26)

defines the Berry connection, [Berry, 1984]. A physical interpretation of the Berry connection and
curvature, is that they represent a magnetic vector potential and field in momentum space, as
found by Berry [1984], and recently discussed also by Price et al. [2014].

By integrating the Berry connection on a path C in the Brillouin zone, we obtain a geometrical
phase called Berry phase, [Berry, 1984]. If C is a closed path, the Berry phase is:

γν =

∮
C
~Aν(~k) · d~k (1.27)
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Figure 1.4: Figure from Cage et al. [1985], showing the series of plateaux in the (transverse) Hall
voltage VH as a function of the external magnetic field B. The VH = I/σxy, where I is the current
applied to the Hall device. Each plateau is highlighted with the integer i. The longitudinal voltage
Vx is also showed. c© 1985 IEEE.

and it is a gauge-invariant quantity. The physical interpretation of the Berry phase is that it
represents a magnetic flux in momentum space. In fact, the Berry phase can also be written as:

γν =

∫
S
~Ων(~k) · d ~S (1.28)

where we have used Stoke’s theorem and S is the surface enclosed by the contour C. From the
expression given in Eq. (1.28), it is clear that the Berry phase is similar to the Aharonov-Bohm
phase Aharonov and Bohm [1959], with the Berry curvature playing the role of a magnetic field in
momentum space.

The integral of the Berry curvature over the Brillouin zone is an integer, called the Chern
number :

Cν =
1

2π

∫
~Ων(~k) · ~zdkxdky. (1.29)

This topological quantity has important physical consequences in the integer quantum Hall effect,
as we shall see in the following.

1.5 The integer quantum Hall effect and the Chern number.
The exact quantization of the Hall conductance was experimentally discovered by von Klitzing

et al. [1980]. They considered a silicon-based device, cooled down to low temperatures, in which
the electrons can move only in a two dimensional layer between a metal and a semiconductor. This
system is immersed in a strong magnetic field along the z axis and subjected to a longitudinal
electric field Ey, as in a usual Hall device.

In contrast to the classical Hall effect, as the strong magnetic field is varied, the transverse
Hall current follows a linear relation jx = e2

h iEy, where i is an integer and we shall see in the
following that it is related to the Chern number. This means that the Hall conductance, defined
as σxy = jx/Ey, is quantized, i.e. it exhibits a series of plateaux at well-defined values:

σxy =
e2

h
i. (1.30)

The previous expression is for the integer quantum Hall effect.
In the following, we will show why the conductance must be quantized, first from the Kubo

formula, and then through a simple argument based on the Diophantine equation and the Strěda
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formula, for example see Bernevig [2013]. The former approach is more general, while the latter
is less rigorous but simpler and it can be specifically applied to the Harper-Hofstadter model
to calculate the Chern invariant. However, the integer quantum Hall effect can also be derived
from semi-classical arguments Chang and Niu [1996], by considering the effects of a magnetic field
perturbation on the density, as also discussed by Price et al. [2016].

1.5.1 The TKNN formula.
The integer quantum Hall effect was explained by Laughlin [1981] as the consequence of gauge

invariance, and then related to the topological Chern invariant of the energy bands by Thouless
et al. [1982], Niu et al. [1985] through the so-called TKNN formula.

In solid-state experiments, the quantization of σxy is observed by applying a constant current
to the sample and measuring the voltage difference in the transverse direction. Therefore, the
conductivity can be calculated from the linear response of the two-dimensional gas on a lattice
with magnetic field to an externally applied electric field. We assume that all energy bands below
the Fermi energy EF are filled and that the Fermi energy lies within a spectral gap. The Hall
conductance is determined by the following:

σxy =
ie2

2πh

∑
Eν<EF

∫ (〈
∂uν(~k)

∂kx

∣∣∣∣∣∂uν(~k)

∂ky

〉
−

〈
∂uν(~k)

∂ky

∣∣∣∣∣∂uν(~k)

∂kx

〉)
dkxdky, (1.31)

where uν(~k) is the eigenvector Ĥ(~k)uν(~k) = Eν(~k)uν(~k) associated to the ν-th band Eν , e.g. the
solution of Eq. (1.22). The sum runs over all occupied bands below the Fermi energy, while the
integral is taken over the first Brillouin zone. Equation (1.31) was derived from the Kubo formula
by Thouless et al. [1982]. The quantity in the parenthesis is the Berry curvature of the ν-th
band. Using Eq. (1.29), it is evident that the Hall conductance of a band insulator in Eq. (1.31) is
quantized, as shown also by Chang and Niu [1996] and Xiao et al. [2010]. More specifically, it is
equal to the sum of all the Chern number associated to the occupied bands:

σxy =
e2

h

∑
Eν<EF

Cν . (1.32)

An important property that one can derive from Eq. (1.32) is that the sum of the Chern number
of all bands must be zero, since if all bands are occupied there are no conducting states available
and the Hall conductance is zero.

1.5.2 The Diophantine equation.
Three positive integers r, p and q, where p and q are co-prime, always satisfy the following

Diophantine equation:
ptr + qsr = r, (1.33)

with unknowns tr and sr that depend on the value of r. A mathematical theorem states that this
equation has a solution for tr, sr ∈ Z if and only if r is a multiple of the greatest-common-divisor
of p and q. As these two are co-prime integers, the greatest-common-divisor of p and q is of course
1 and Eq. (1.33) has a unique solution if:

0 ≤ r ≤ q, |tr| ≤ q/2. (1.34)

We now show that an analytical computation of the Hall conductivity can be extracted from the
fractal structure of the Harper-Hofstadter model using the Diophantine equation. In fact, dividing
Eq. (1.33) by q, we get:

ne ≡
r

q
= θtr + sr. (1.35)

The quantity ne is the density of states below the r-th gap. It is reasonable to take such a quantity
equal to the number of the occupied bands r, divided by the total number of bands q, although this
argument is not rigorous. A simple argument due to Strěda [1982] shows that the Hall conductance
can be written as:

σxy = −e∂ne
∂Φ

. (1.36)
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Figure 1.5: The coloured butterfly, from Avron [2003], shows energy gaps coloured according to
the quantized values of the Hall conductance. The axes are the same as in Fig. 1.2. Warm colours
indicate positive Chern numbers, and cool colours negative. Zero Hall conductance is left blank.
Copyright c© 2004, Springer Basel AG.

Inserting Eq. (1.35) into the Strěda formula , we get that the conductance is:

σxy = −e ∂
∂Φ

(θtr + sr) = −e
2

h
tr, (1.37)

having used that θ = Φ/Φ0 and Φ0 = h/e.
This result tells us that the Hall conductivity is:

σxy = −e
2

h
tr, (1.38)

with tr ∈ Z being a solution of the Diophantine equation. This expression is valid if we assume
that the density ne is a differentiable function of the magnetic flux. Also both sr and tr must be
independent of the magnetic field, which is quite reasonable to assume, since they are integers and
cannot depend on a quantity that can be infinitesimally tuned.

1.5.3 Chern number of the Harper-Hofstadter bands.

Comparing the conductance in Eq. (1.32) with the one obtained from the Strěda formula and
the Diophantine argument in Eq. (1.38), we see that:

tr = −
r∑

ν=1

Cν . (1.39)

This equation means that to each of the q bands of the Harper-Hofstadter model we can associate
a topological invariant Cν , such that Eq. (1.39) is a solution of the Diophantine equation (1.33). In
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Fig. 1.5, we show each energy gaps of the Hofstadter butterfly coloured according to the quantized
values of the Hall conductance, tr. We shall now see how from these very simple arguments, the
Hall conductance and the Chern number of all the Harper-Hofstadter bands can be easily obtained.

The same results can be also obtained numerically, following the method proposed by Fukui
et al. [2005]. This method relies on the calculation of the Berry curvature from the eigenvectors of
Eq. (1.22) on a grid in quasi-momentum space and summing over the discretized Brillouin zone to
obtain the Chern number of the non-degenerate bands from Eq. (1.29).

Chern numbers for θ = 1/3.

Consider, for example a flux of θ = 1/3, which corresponds to p = 1 and q = 3. From the
condition of existence of a unique solution to the Diophantine equation, we must have r ≤ 3 and
|tr| ≤ 3/2, that is tr = 0,±1 since tr ∈ Z. Consider the first gap r = 1. The solution to Eq. (1.33)
is tr = 1, sr = 0, which from Eq. (1.39) implies that C1 = −1. Now assume r = 2: the Diophantine
equation is satisfied for tr = −1, sr = 1, and from Eq. (1.39) we have C1 + C2 = 1. Finally, for
r = 3, we must have tr = 0, sr = 1, corresponding to C1 +C2 +C3 = 0. From all these arguments,
the Chern numbers of the single bands are straightforwardly obtained:

C1 = −1, C2 = 2, C3 = −1.

Chern numbers for θ = 1/4.

For a flux of θ = 1/4, we must have r ≤ 4 and |tr| ≤ 2. As for before, for the first gap r = 1
we obtain sr = 0 and tr = 1, leaving us with C1 = −1. For r = 2, an interesting thing happens.
In fact, a unique solution of the Diophantine equation does not exist, since sr = 0, tr = 2 and
sr = 1, tr = −2 are both satisfying Eq. (1.33). This is because for even qs, the two middle bands
are not really separated by a gap, as is visible also in Fig. 1.3. Instead the bands touch at a finite
number of points in momentum space with a linear dispersion; consequently these points are called
Dirac points. The finite number of degenerate points between bands is enough to invalidate the
predictions from the Diophantine equation, which can therefore only predict the sum of the two
Chern numbers of the two bands together. In fact, for r = 3, we have C1 +C2 +C3 = 1, meaning
that C2 + C3 = 2. Finally, as we know, the four Chern numbers add up to zero, leaving us with
C4 = −1. In the end we have:

C1 = −1, C2 + C3 = 2, C4 = −1.

1.5.4 The bulk-edge correspondence.

In the previous sections, we have obtained that the Hall conductance of a bulk insulator, with
the Fermi energy in the band-gap between Hofstadter bands, is non-zero and quantized. It may
seem to be an apparent contradiction, but it is easily explained from the energy dispersion of a
finite system. In fact, even though the system is a bulk insulator, it has gap-less edge modes
across the bulk gaps that carry a non-zero current from one edge to another. These states are
contributing to the Hall conductance Bernevig [2013], and therefore their number in a given gap
is equal to:

Nedge states =

∣∣∣∣∣ ∑
Eν<EF

Cν

∣∣∣∣∣ . (1.40)

The chirality of these edge states is set instead by the sign of the sum of the Chern numbers of
the occupied bands, where −1 means that a certain edge state is counter-clock wise circulating in
a planar geometry, while +1 means that the edge state is clock wise circulating.

The presence of states in the band gap is evident in Fig. 1.6, where we plot the energy, in units of
J , of a finite system with Ny sites along the y direction and infinite (periodic boundary conditions)
along the x direction. The energy dispersion is represented as a function of the quasi-momentum
along kx for different values of the magnetic flux θ.

The left panel of Fig. 1.6 shows the energy spectrum for θ = 1/3: we see that the three bands
are connected by energy levels, highlighted in red. The wave functions associated to these states
are localized on the two opposite edges of the system, and have opposite velocity, meaning that
they are chiral. In fact, from Eq. (1.40) we have that the lowest gap has one edge state with
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Figure 1.6: Energy dispersion, in units of J , as a function of the quasi-momentum along kx for
different values of the magnetic flux θ of a semi-infinite system, with Ny sites along the y direction.
The energy levels corresponding to states localized on the edges of the system are highlighted in
red. Panels from left to right: θ = 1/3, 1/4, 1/5.

counter-clock-wise chirality −1. The higher gap has again a single edge state but an opposite
chirality +1.

Edge states are found also in the central panel, for θ = 1/4; we also see that the two middle
bands are touching at Dirac points, hence the gap is not defined, though localized edge states exist.
Again, the lowest gap has one edge state with counter-clock-wise chirality −1, while the higher
gap has one edge state with clock-wise chirality +1.

The band dispersion for θ = 1/5 is represented in the last panel of Fig. 1.6. From Eq. (1.40), it
is easy to check that the numbers of edge states in the band gaps (lower to higher) are: 1, 2, 2, 1.
This is exactly what we see from the numerical band dispersion. Additionally, the chiralities are
negative for the edge states in the two lower gaps and positive for the remaining states.

These edge states are one-way propagating along the edge and are topologically protected from
disorder, since there is no other state available for backscattering, an important fact that underlies
the perfectly quantized transport of the quantum Hall effect. The chiral edge states that are found
in the forbidden gaps between the bands of the Harper-Hofstadter model represent the smoking
gun of a non-trivial topological system.

Having used the Harper-Hofstadter model as a concrete example to introduce the physics of
the quantum Hall effect, we are now going to review some of the methods that are used in the
literature to implement such topological systems also in artificial materials.
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Chapter 2

Artificial fields in artificial systems.

There are more things in Heaven and Earth,
Horatio, than are dreamt of in your philosophy.

William Shakespeare – Hamlet.

Since topological concepts were first introduced by Thouless et al. [1982] to understand
the behaviour of electrons in the integer quantum Hall effect, topology itself has become a powerful
theme in condensed matter physics, applicable to a wide-range of different systems. These systems
are generally called topological insulators, as reviewed by Hasan and Kane [2010], Qi and Zhang
[2011] and Lu et al. [2014]. A topological insulator is characterized by electronic bulk bands
separated by energy gaps in which gap-less states live. Such states are localized on the edge of the
system and are topologically protected, i.e. they are robust against any perturbations that do not
close the energy gaps. The presence of the edge states is also related to robust bulk physics, such
as the precise quantisation of the Hall conductance introduced in the previous Chapter.

While the study of real materials is usually complicated, the essential physics of various topolog-
ical phenomena can be captured through simple lattice models. We have seen in Chapter 1 one of
the most famous of these models: the Harper-Hofstadter model. Not only does this model exhibit
the quantum Hall effect thanks to its topological energy bands and unidirectionally-propagating
edge states, but it has a rich fractal energy spectrum. However, the direct realization of such a
model in real crystalline solids with a real magnetic field is almost impossible, since the magnetic
field required for the generation of a flux per plaquette of the order of the flux quantum is out of
reach with the current technology. For example, if one wanted to achieve a flux of θ = 1/10 in
some material which has typical lattice constant a = 5Å, the required magnetic field is of the order
of B = 1600 T, that is too high to be experimentally generated 1. Only with the help of solid-state
superlattice devices, studies by Dean et al. [2013], Yu et al. [2014], Ponomarenko et al. [2013] have
reported the realization of self-similar energy structures analogous to the Hofstadter butterfly.

Recent advances in quantum simulators have proven that artificial systems are well-suited to
study a whole variety of condensed matter Hamiltonians and explore their physical properties over
a much wider range of parameters than is possible in real materials, as reviewed in the Nature
Physics Insight [2012] or by Carusotto and Ciuti [2013], Georgescu et al. [2014]. A quantum
simulator is a quantum system that mimics a quantum model, as proposed by Feynman [1982], and
can have huge advantages compared to a natural material. For example, many lattice geometries
can be engineered with a high degree of experimental control. The lattice depth can be changed
freely, and also the interaction strengths are precisely controllable. These synthetic materials also
provide access to physical observables typically not attainable in solid-state experiments, and a very
intriguing possibility is the implementation of novel effective Hamiltonians, that can be tailored
through some suitable temporal modulations of the system. For all of the above reasons, artificial

1The strongest pulsed magnetic field yet obtained in a laboratory is B = 730 T Nakamura et al. [2012]
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systems constitute promising candidates to gain deeper insights into the rich physics of topological
materials.

However, many of these systems are based on neutral objects such as atoms, photons or even
classical harmonic oscillators, meaning that the simple application of a magnetic field is not enough
to observe neither magnetic nor topological effects. Hence there is the need for the realization of
an “artificial gauge field ” acting on neutral particles, as has now been made possible by important
interdisciplinary developments, as reviewed for example in Raghu and Haldane [2008], Dalibard
et al. [2011], Goldman et al. [2014, 2015a]. The fundamental idea relies on making neutral objects
behave like charged particles immersed in a real magnetic field.

It is important to notice, at this point, the relation between the real magnetic field and time
reversal symmetry in electronic systems. In fact, the presence of a real magnetic field breaks
explicitly time reversal symmetry, therefore if one wants to simulate an artificial field, the desired
Hamiltonian must also break time reversal symmetry, i.e it must not commute with the time
reversal operator, that is T t→ −t. Besides, from the study of topological phases, Schnyder et al.
[2008] showed that, in two-dimensional systems, time reversal symmetry breaking is needed for
achieving a topological phase characterized by a Z-invariant, such as the Chern number in the
integer quantum Hall effect.

When the Hamiltonian is instead time reversal symmetric, we can obtain a topological phase
characterized by a Z2-invariant, provided there are no other symmetries, such as particle-hole
symmetry or chiral symmetry. In the presence of a spin-orbit coupling, one example of such a
topological phase is the quantum spin Hall effect, as first theorized by Kane and Mele [2005a,b].
Such a quantum spin Hall system consists of two copies of an integer quantum Hall system, where if
the spin-up electron has a clock-wise edge state, the spin-down one exhibits an anti-clock-wise edge
state. This results in a quantized spin Hall conductance and a vanishing charge Hall conductance.
The edge states participating to the spin Hall conductance are protected by the time reversal
symmetry, therefore this effect appears in absence of a real magnetic field, that would destroy it.
In fact, the edge states of the quantum spin Hall effect are not robust against a disorder which
breaks the time reversal symmetry. However, the same spin Hall effect can be reproduced by
creating an artificial magnetic field that has opposite sign for the two spin components, such that
the net magnetic flux is zero and time reversal symmetry is preserved.

In the following, we shall review only some of the most relevant strategies employed for simu-
lating an artificial gauge field and achieving topological effects in various artificial systems.

2.1 Artificial systems.
Ultracold atomic systems. Ultracold gases play a central role among quantum simulators,
thanks particularly to the high level of flexibility and control of experimental parameters that is
possible in these set-ups Bloch et al. [2008]. Ultracold systems consist of dilute gases of atoms
cooled to extremely low temperatures, where quantum effects can play a crucial role in describing
the properties of the atoms themselves Pitaevskii and Stringari [2016]. Usually, the neutral atoms
are trapped in a harmonic potential and subjected to an additional periodic optical lattice potential;
both of these potentials are created by interfering laser beams. The spacing, depth and geometry
of an optical lattice can be freely tuned, and therefore a huge variety of lattice models can be
easily implemented. For many atomic species, it is also possible to tune the interactions between
atoms through Feshbach resonances. The properties of ultracold gases, such as their momentum
distribution and quantum coherence, are typically obtained through the “time-of-flight” technique,
which consists of imaging a gas after it is allowed to freely expand, once all trapping potentials are
removed, see Bloch et al. [2008]. Recent advances have also lead to the implementation of “quantum
gas microscopes” which can access single-site and single-atom resolved density distributions of
atoms in optical lattices Sherson et al. [2010], making the observations of these system possible
also in-situ. Though the description of such systems is not the purpose of this thesis, it is useful
to have a brief overview of the methods used in ultracold atoms for the realization of an artificial
gauge field. For a more complete review, one could see Dalibard et al. [2011].

Photonic systems. Photonics are another excellent system for the simulation of a variety of
topological lattice models. These systems are realised by manipulating photons in a wide-range
of different scenarios, such as in free space, fibres, dielectrics, or cavities, with many interesting
effects, as reviewed by Carusotto and Ciuti [2013]. For some of these photonics systems, such as, for
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example, arrays of evanescently-coupled waveguides, the system is described by a paraxial equation
which has the same form as a Schrödinger equation except where the role of time is played by the
propagating coordinate along the waveguide. For some other systems, instead, the evolution of the
system is intrinsically driven-dissipative, allowing for a spectroscopic analysis. A great advantage
of this spectroscopic technique is the immediate and direct imaging of the wave function, together
with the excitation of any desired state by simply driving the system in a specific frequency band.
In parallel with the advances in the ultracold community, there have also been studies in the
photonics context focussed on the realization of artificial fields. The first works in this direction
were by Haldane and Raghu [2008] and Raghu and Haldane [2008], who theoretically proposed a
photonic crystal made from nonreciprocal (Faraday-effect) constituents that break time-reversal
symmetry, showing that the crystal can act as a chiral waveguide. This was quickly experimentally
realized by Wang et al. [2009] setting off the field of topological effects in photonics, that was
further explored with many recent developments, as we shall see in the following.

Classical systems. Coupled classical harmonic oscillators, such as pendula connected by a
spring or coupled RLC electrical circuits, are simple but fundamental objects in physics, familiar
to everyone. For obvious reasons, they do not represent a quantum simulator, but during the
preparation of this thesis, novel works have shown that the hallmarks of a topological insulator
can be also found in purely classical systems. For example, recently Kane and Lubensky [2014],
Paulose et al. [2015] showed that in mechanical meta-materials there can be topological soft modes,
which are protected against local perturbations. This is because a non-trivial topology is encoded
in the dynamical matrix or into the Hamiltonian of the system. Similar works have been done
also by Nash et al. [2015], Wang et al. [2015a], in which the time-reversal symmetry is intrinsically
broken by the use of coupled gyroscopes. In the following, we will discuss other classical systems
with artificial gauge fields and topological properties that provide particularly relevant context to
our own work.

2.2 The minimal coupling.

The minimal coupling is the appropriate method for taking into account the interaction between
the electromagnetic gauge field with a charged particle in free space. It is implemented by modifying
the momentum of a particle of charge e as:

~p→ ~p− e ~A, (2.1)

where ~B = ~∇ × ~A as usual. The Peierls phase of the Harper-Hofstadter model, as we have seen
in the previous chapter, is a consequence of the minimal coupling when the particle moves on a
lattice.

One of the strategies used for simulating an artificial gauge field for neutral particles is therefore
to engineer an Hamiltonian in which the minimal coupling in the form of Eq. (2.1) is present.

2.2.1 Rotation.

One of the first procedures to be proposed – thanks to its conceptual simplicity – for the
generation of an artificial gauge field, is the exploitation of the formal analogy between the Coriolis
force arising in a rotating frame at angular velocity ~Ω = Ω~z and the Lorentz force of magnetism.
In fact, the Hamiltonian of a single particle in the rotating frame is [Dalibard, 2015]:

Ĥ →

(
~p−m~Ω× ~r

)2

2m
+

1

2
mω2r2 − 1

2
mΩ2r2, (2.2)

where ω is the frequency of a harmonic trapping potential, which is usually present to trap ultracold
atoms. The last term is the centrifugal force. The kinetic term in Eq. (2.2) has the same form as
in Eq. (2.1) where the artificial gauge field is e ~A ≡ m~Ω× ~r.

Madison et al. [2000] and Abo-Shaeer et al. [2001] studied an ultracold gas confined in a 2D
harmonic potential. The gas was put in rotation by stirring it with lasers or by rotating directly
the harmonic trap. The creation of the artificial gauge field was confirmed by the formation
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of quantized vortices in the rotating superfluid gas above a critical rotation frequency [Cooper,
2008]. These vortices ordered into an Abrikosov lattice and their number increased as the artificial
magnetic field became larger, i.e. as the velocity of rotation increased. However, the presence
of the centrifugal force modifies the trapping potential and limits the rate of rotation which in
turn limits the maximum magnetic field that can be achieved. If the angular velocity exceeds the
centrifugal limit, the gas is no longer confined and the atoms fly apart.

The rotation method was also very recently considered theoretically in a classical mechanical
system of masses and springs arranged in a honeycomb lattice structure by Wang et al. [2015c] and
Kariyado and Hatsugai [2015]. In both works the phonon dispersion showed chiral topologically
protected edge states arising from the creation of an artificial magnetic field.

2.2.2 Strain.
The minimal coupling in the form as in Eq. (2.1) is usually implemented for a particle in free

space. However, there are some lattice systems, such as, for example, the carbon allotrope known as
graphene, in which the tight-binding Hamiltonian expanded around a highly symmetric point can
be rewritten in the same form of a kinetic term for a free Dirac particle. For these lattice systems,
the artificial gauge field is then implemented via a static modulation of some system parameters
that results in a new Hamiltonian which has the form as in Eq. (2.1). If the time-reversal symmetry
is not broken in these systems, the artificial gauge field is then known as an artificial pseudo-gauge
field. For example, a beautiful result from the theory of electron motion in a honeycomb lattice is
that the effect of a deformation of the material along the crystallographic axes can be described
as an artificial pseudo-magnetic field. This effect was predicted by Kane and Mele [1997] for the
elastic distortion as produced by mechanically straining a carbon nanotube. Remarkably, as we
shall see further on in Chap. 6 and Chap. 7, the peculiar energy dispersion of graphene is such that
the low-energy modes stemming from the pseudo-magnetic field are relativistic Landau levels.

Among the realizations with artificial systems, Rechtsman et al. [2013c] was the first to produce
a pseudo-magnetic field in a strained photonic lattice, and to indirectly probe the existence of the
Landau levels from the localized edge modes that reside in the energy-gaps. We have proposed in
Salerno et al. [2015] an alternative photonic set-up for observing the Landau levels with intrinsically
driven-dissipative photonic systems, and use spectroscopic techniques to characterize also their
wave functions. A recent work by Tian et al. [2015] proposed, for ultracold atoms in a strained
hexagonal optical lattice, the observation of Bloch oscillations and cyclotron motion resulting from
the formation of Landau levels.

2.3 The Peierls phase.
The effect of a real magnetic field on a charged electron moving on a lattice, as we have also seen

in Chapter 1 in the case of the Harper-Hofstadter model, is to modify the tight-binding tunnelling
amplitude by adding a complex spatially-dependent phase, called the Peierls phase:

J1,2 → J1,2 e
ie/~

∫ ~R2
~R1

~A·d~r
. (2.3)

where 1 and 2 label two adjacent lattice sites. Vice versa, if a charged particle experiences a
non-trivial phase when hopping on a lattice, then we can say it is subjected to a gauge field ~A,
such that Eq. (2.3) is valid, via the so called Peierls substitution. Regardless of the origin of such
a phase, the particle will behave as it was charged and subjected to a gauge field. The route to the
simulation of a magnetic lattice model with a neutral system, therefore, passes through the search
of a mechanism alternative to a real gauge field to generate the suitable complex hopping phase.

2.3.1 Using internal degrees of freedom.
One of the first proposals to achieve an artificial magnetic field was theorized for neutral atoms

in optical lattices by Jaksch and Zoller [2003]. They assumed that there were two distinct internal
states of the atoms, trapped in alternating columns of the lattice, such that the tunnelling along one
direction of the lattice was only possible with the help of laser beams, that are used to coherently
transfer atoms from one internal state to the other. This is called laser assisted tunnelling, and
the hopping amplitude in the Hamiltonian can acquire a Peierls phase that is freely set by these
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laser beams. By appropriately adjusting the laser parameters, a non-trivial artificial magnetic flux
can be generated across the plaquettes of the lattice. This proposal inspired the experimental
realisation of Aidelsburger et al. [2011], who combined laser assisted tunnelling with a two-site
superlattice to create a staggered flux, leading to the observation of the quantum cyclotron orbit
of single atoms.

Two related experiments by Mancini et al. [2015] and Stuhl et al. [2015] used the laser assisted
tunnelling to achieve a Peierls phase along a synthetic dimension, represented by the various spin
states of the atoms, and implementing an artificial magnetic field that lead to the realization of
a Hall system. By measuring the momentum of each spin state with the time of flight technique,
they proved the existence of chiral edge states.

In photonics, a recent work by Ozawa et al. [2015] proposed a way to use this idea of the
synthetic dimension to engineer gauge fields in integrated photonics set-ups of various dimensions.
In fact, their scheme allows for the generation of a variety of topological phenomena, such as,
for example, a topologically-robust optical isolator in a spatially one-dimensional ring-resonator
chain and a driven-dissipative analogue of the four-dimensional quantum Hall effect in a spatially
three-dimensional resonator lattice.

2.3.2 Floquet-based systems.
In these systems, we start by considering a periodic time-dependent Hamiltonian Ĥ(t + T ) =

Ĥ(t) where T = 2π/ω is the period. From the Floquet theory of periodic systems [Shirley, 1965,
Bukov et al., 2015], it can be shown that Ĥ(t) has a complete set of solutions to the time-dependent
Schrödinger equation in the form:

|ψn(t)〉 = e−iεnt/~ |un(t)〉,

where the functions |un(t)〉 = |un(t + T )〉 have the same periodicity as the Hamiltonian. Floquet
theory can be viewed as Bloch’s theory for time-periodic Hamiltonian. These new Floquet states
|un(t)〉 are the eigenvectors of the Floquet operator Ĥ(t)− i~∂t:(

Ĥ(t)− i~∂t
)
|un(t)〉 = εn|un(t)〉.

As in Bloch’s theory where the quasi-momenta are defined in the Brillouin zone, the eigenvalues εn
are the quasi-energies of the system and are periodically defined εn = εn +m~ω, up to an integer
times of ~ω. The Floquet basis can be used to solve the problem and map the time-dependent
Hamiltonian onto an effective time-independent one.

Floquet theory can be used as an excellent tool for engineering new lattice models. In fact, if the
original Hamiltonian has a temporal modulation of some system parameters that explicitly breaks
time-reversal symmetry, then we can design an effective topological time-independent Hamiltonian,
whose tunnelling amplitudes implement the Peierls phase.

For ultracold atoms, the periodic modulation of the optical lattice was already proven to rescale
the tunnelling amplitude of the Bose-Hubbard model Eckardt et al. [2005], Eckardt and Holthaus
[2007], Eckardt et al. [2009]. By applying the aforementioned Floquet theory, the system in which
the lattice potential is shaken, is effectively described, in the co-moving frame, by a new Hamilto-
nian with a renormalised hopping amplitude. Subsequent studies have shown that, by a suitable
modulation of the lattice that breaks the time-reversal symmetry, the hopping element can be made
complex: Struck et al. [2012] used the double harmonic shaking shown in Fig. 2.1, to implement a
Peierls phase for ultracold atoms.

An even more elaborate modulation is used in Jotzu et al. [2014] for the realization of the
Haldane model by Haldane [1988] on a shaken honeycomb optical lattice for ultracold atoms, in
which the next-nearest-neighbours coupling is complex (rather than the first-nearest one). Related
works on shaking of a triangular optical lattice studied frustrated magnetism [Sacha et al., 2012],
a non-abelian gauge field [Hauke et al., 2012] and implemented the Ising-XY model [Struck et al.,
2013].

A proposal by Kolovsky [2011] introduced a periodic modulation of a tilted optical lattice for
ultracold atoms, combining this with a laser assisted tunnelling to generate the required Peierls
phase. The tilting of the lattice suppresses the tunnelling, while the modulation through the
shaking of the lattice restores a complex hopping, whose phase depends on the phase of the shaking.
However, a comment by Creffield and Sols [2013] showed that this proposal produces a field that
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Figure 2.1: From Struck et al. [2012]. On the left, periodic driving of the optical lattice for neutral
gases, shown in (a). The forcing that shakes the lattice breaks time-reversal symmetry (b) and
creates a Peierls phase (c), which also shifts the single particle dispersion relation (d) used to
experimentally measure the Peierls phase. On the right, measured effective tunnelling, in absolute
value (a) and phase (b), as a function of the amplitude of the modulation. Copyright c© 2012
American Physical Society.

is constant only over a finite number of lattice cells. The idea was improved and extended to
superlattices with resonant modulations by Goldman et al. [2015b]. Aidelsburger et al. [2013] and
Miyake et al. [2013] applied such a technique and both groups were able to experimentally realize
the Harper-Hofstadter model with ultracold atoms in optical lattices.

In photonics, Fang et al. [2012] proposed a system of resonators in which the temporal modu-
lation is applied to the coupling and the gauge field is controlled by the spatial distribution of the
modulation phases. They discuss possible implementations with crystal resonators in the optical
range or RLC resonators in the microwave range, to observe the chiral edge states.

Rechtsman et al. [2013b], instead, used a system made of coupled helical waveguides arranged in
an hexagonal array, which is described by the paraxial equation that was mentioned above. In this
system, the spatial coordinate for the light travelling along the waveguide – that is perpendicular
to the two-dimensional hexagonal lattice – is equivalent to time for a particle in a lattice. Following
this analogy, the shaking of the potential is implemented as an helical shaping of the waveguide
profile, that is shown in the left part of Fig. 2.2. The helical shaping breaks explicitly time reversal
symmetry, leading to the realization of a gauge field for photons. Since the temporal modulation
is not fast compared to the other frequencies of the system, it is not possible to derive an effective
Hamiltonian as was later done in Jotzu et al. [2014], though the system shares the same topology of
the Haldane model. As a result, the system is a Floquet topological insulator, with topologically
protected edge states living in the energy bulk gaps. The existence of these edge states was
experimentally proven by sending light through the system and collecting the light emerging at
the end of the waveguides. These results are reported in the right part of Fig. 2.2, clearly showing
that light moves along the edge and does not scatter into the bulk.

As an extensive part of the work carried out in this thesis, in Salerno and Carusotto [2014]
we used a temporal modulation to break time reversal symmetry and implement a Peierls phase
for coupled pendula. By applying a gradient of frequencies of the pendula, in Salerno et al.
[2016] we also achieved an artificial magnetic field and the topological Harper-Hofstadter model.
Comprehensive details about our proposal are given in the following Chapters.

2.3.3 Geometrical implementation.

The desired coupling phase can be also be engineered into the system either with some clever
hard-wiring of the connections, or by using some intermediate objects between the neighbouring
sites that encode a Peierls phase that itself depends on some degrees of freedom of the system.
In these types of systems, time-reversal symmetry is usually not broken and instead two copies of
the quantum Hall effect are realized for two degrees of freedom, that act as “pseudo-spins". The
resulting chiral edge states are not protected against perturbations which flip the pseudo-spin, as
is the case in the quantum spin Hall effect.
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Figure 2.2: From Rechtsman et al. [2013b]. On the left, geometry of the photonic lattice (a), and
sketch of the helical waveguides in (b). For straight waveguides, the gap less band dispersion is
shown in (c). For the helical waveguides, a gap is opened (d), supporting edge states. On the
right, experimental evidence of the topological edge states living in the bulk energy gap. Light is
sent in the system at the position highlighted by the yellow ellipse, which is moved progressively
to the right (a-d), showing that the emerging beam moves accordingly along the edge and does not
scatter into the bulk. Copyright c© 2013, Nature Publishing Group.

Figure 2.3: From Hafezi et al. [2013]. On the left, in (a) sketch of the single plaquette, showing the
link resonators (in white) between the site resonators (in grey). In (b), real image of the photonic
lattice. On the right, chiral edge state propagation, as they results from the experiment (a-b)
compared to the numerical simulations (c-d). Copyright c© 2013, Nature Publishing Group.

A theoretical proposal by Umucalılar and Carusotto [2011] considered the implementation of a
gauge field for photons in optical cavities, by exploiting the (circular) polarization of light, which
acts as a pseudo-spin. The Peierls phase is then acquired by the photon as it passes through an
active optical medium or a particular geometrical arrangement of the mirrors forming the optical
cavities. Additionally, circularly birefringent layers are needed to protect the system from unwanted
pseudo-spin flips.

A similar proposal and subsequent experiments in Hafezi et al. [2011, 2013], Mittal et al. [2014]
realized a hopping Peierls phase for photons in ring resonator arrays. In this scheme, ring resonators
(sites) are coupled through another off-resonant ring resonator (links), as seen in Fig. 2.3. Due
to a resonance mismatch, the light is confined in the site rather than in the link, whose only
purpose is to let the photon acquire a hopping phase that depends on the position of the links.
The pseudo-spin is the clockwise or anti-clockwise circulation of the light in the rings. To avoid
backscattering processes, directional couplers are used in the coupling regions, allowing for the
experimental observation of chiral edge states, reproduced in the right part of Fig. 2.3.

Another example of a spin-dependent gauge field is realized experimentally in a system of
classical coupled RLC circuits, by Ningyuan et al. [2015]. In this system, the spin state is encoded
in two equivalent inductors on each lattice site, and the coupling phase is provided by a latticework
of wires and capacitors, realizing a net artificial magnetic flux that is opposite for the two pseudo-

Artificial gauge fields in photonics and mechanical systems. G. Salerno



The Peierls phase. 24

spins. One of the beauties of this configuration is that, with a suitable wiring, it realizes a Möbius
topological insulator, by exploiting the pseudo-spin flip at the edges to achieve a single chiral edge
state. A related theoretical work by Albert et al. [2015], using classical coupled RLC circuits,
generalizes the procedure of the intersite wiring to achieve an arbitrary hopping phase.

Similar ideas are also found in the classical mechanical context of the experiment by Süsstrunk
and Huber [2015], where a clever arrangement of springs allowed for the realization of an artificial
magnetic flux for coupled pendula. Also in this case, the pseudo-spins, realized by using two
pendula on a single site, experience opposite artificial magnetic fields, thus the system is the
classical analogue of a quantum spin Hall.
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Chapter 3

The Peierls phase for coupled pendula.

Despite the huge interest for the simulation of topological phenomena with artificial quantum
systems, the interplay of topology and the classical world is not yet well-understood and is only
just beginning to open up a brand-new field of research. Our goal is to show that the features of a
topological insulator are not the prerogative of quantum mechanics, but can be also observed with
a classical system governed by Newton’s equations.

In this Chapter we start by describing how the very simple and familiar physics of a pair of
coupled classical harmonic oscillators can be related to the quantum mechanical world. We show
that Newton’s equations of motion, in a certain regime, can be put in the same form as Heisenberg’s
equations of motion written for a quantum tight-binding Hamiltonian, by replacing commutators
with Poisson brackets. This analogy will then be exploited to introduce established concepts of
quantum mechanics in the context of classical physics, such as the implementation of a non-trivial
coupling phase between two classical harmonic oscillators, that constitutes the classical analogue
of the Peierls phase acquired by a quantum particle hopping on a lattice immersed in a magnetic
field. As we have seen, the generation of such a Peierls phase would allow us to achieve a magnetic
lattice model, such as the Harper-Hofstader model of Chap. 1, in a classical mechanical context.

The key element that we have implemented in our theory, is time reversal symmetry breaking
through a temporal modulation of the system parameters, as introduced briefly for other systems in
Chap. 2. The Floquet method, in fact, is a powerful and flexible method for engineering a particular
Hamiltonian starting from the system at one’s disposal and to induce non-trivial dynamical effects.
In the following, we will define a temporal modulation of the natural frequencies of the coupled
classical harmonic oscillators and study the effective dynamics of the system. We anticipate a
dynamical decoupling effect, where exchange of energy between the pendula is suppressed. This
phenomenon is analogous to the coherent destruction of tunnelling of a quantum particle in a
double-well potential, [Großmann et al., 1991, Grifoni and Hänggi, 1998, Lignier et al., 2007,
Kayanuma and Saito, 2008, Zenesini et al., 2009]. When the pendula are driven by an external
force, we anticipate a novel dynamic isolation effect, where the temporal modulation effectively
decouples the system from the external force. Most importantly, we demonstrate that a tunable
non-trivial coupling Peierls phase between the pendula can be implemented.

The main results of this Chapter are published in Salerno and Carusotto [2014].

3.1 Temporal modulation of classical harmonic oscillators.

We consider a system of two identical coupled pendula, modelled as a pair of coupled harmonic
oscillators of equal masses m. Within the small-oscillation regime, the displacements are much
smaller than the length L of the pendula and therefore the equations of motion can be linearised.
The spatial displacements of the pendula from the equilibrium position are indicated as x1,2 re-
spectively. The two pendula, taken separately and isolated, have the same natural oscillation
frequency, equal to ω0 =

√
g/L. All possible friction mechanisms acting on the two pendula are
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Figure 3.1: Sketch of the physical system described by Eqs. (3.1) and one of the possible realizations
of the temporal modulation of the natural oscillation frequencies of the pendula. The two pendula
are coupled through a spring and each contains a magnet that interacts with the magnetic field
generated by a coil. The specific form of the modulation is controlled by the time-dependent
current i1,2(t) flowing in the corresponding coil. The first pendulum may be externally driven by
a time-dependent force Fex(t), for later purposes.

assumed to have the constant value ξ, that is equal for the two oscillators. The coupling between
the pendula occurs via a spring of constant k and the restoring force of the spring is proportional
to the displacements of the two pendula according to Hooke’s law.

Newton’s equations of motion are written as:

mẋ1 = p1

ṗ1 = −mω2
1(t)x1 + k(x2 − x1)− ξẋ1

mẋ2 = p2

ṗ2 = −mω2
2(t)x2 + k(x1 − x2)− ξẋ2.

(3.1)

The key element is a time-periodic modulation of the system, which is included in Eq. (3.1)
as a temporal modulation of the frequencies ω1,2(t) around the natural frequency ω0. One of the
possible concrete realizations of this model is sketched in Fig. 3.1. Each pendulum contains a
magnet which feels the magnetic field generated by a coil located below its axis. In this way, the
gravitational restoring force felt by each pendulum is supplemented by a contribution of magnetic
origin, which can be controlled via the (time-dependent) current i1,2(t) flowing in the corresponding
coil. Another possible realization could be to directly change the length L of the pendula, through
an engine that rolls and unrolls the string.

However, regardless of the actual realization, we assume that the effective modulation of the
natural oscillator frequencies has the form:

ω2
1,2(t) = ω2

0 [1 + v1,2(t)] . (3.2)

In order to simplify the forthcoming equations, we introduce the rescaled quantities:

V1,2(t) =
v1,2(t)ω0

2
, Ω =

k

mω0
, γ =

ξ

2m
.

We now want to show that in certain regimes, Newton’s equations of motion (3.1) can be
formally mapped onto the Heisenberg equation for a tight-binding Hamiltonian, where the bosonic
annihilation and creation operators are replaced by C-numbers, and commutators with Poisson’s
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brackets. To this end, we consider the following transformation:

αi =

√
mω0

2
xi + i

√
1

2mω0
pi. (3.3)

These classical complex variables represent the classical analogue of the annihilation operators of
the quantum harmonic oscillator. It is also very easy to show that the square modulus |αi|2 have
a direct physical meaning, being proportional to the instantaneous oscillation energy of the i-th
pendulum.

With the help of the transformation in Eq. (3.3), Newton’s equations for the two pendula are
then summarized in a pair of complex equations:

α̇1 = −iω0 α1 − iV1(t)(α1 + α∗1)− γ (α1 − α∗1) + i
Ω

2
(α2 + α∗2 − α1 − α∗1)

α̇2 = −iω0 α2 − iV2(t)(α2 + α∗2)− γ (α2 − α∗2) + i
Ω

2
(α1 + α∗1 − α2 − α∗2)

(3.4)

for the α1,2 complex variables. Complex conjugate equations hold for the α∗1,2.
In the following we shall concentrate our attention on a sinusoidal form of the temporal mod-

ulations:
Vi(t) = (−1)iV sin(wt). (3.5)

Such modulations are periodic with period T = 2π/w, and have an opposite sign for the two
oscillators.

3.2 The rotating-wave approximation.

Analytical insight into the physics of the modulated system can be obtained within the so-called
rotating-wave approximation, well-known in the context of quantum optics. Equations (3.4) can
be simplified under the assumption that the natural frequencies ω0 of the pendula are much larger
than all other internal frequencies in the problem, that is:

ω0 � max(Ω, γ, w). (3.6)

In this case, the fastest time dependence of αi is proportional to e−iω0t, while the one of their
conjugate variables α∗i (t) is proportional to eiω0t. This is equivalent to saying that the α variables
rotate at ≈ ω0 and their conjugate variables α∗ rotate at ≈ −ω0. Then, by moving to a frame that
is rotating at the frequency ω0, the αi variables only has a (relatively) slow evolution, while their
complex conjugate variables α∗i will oscillate quickly around a frequency ≈ −2ω0.

We will often refer to terms proportional to the the αi variables as being rotating-wave terms,
since they are the leading ones in this rotating frame. The α∗i will be instead the counter-rotating-
wave terms, because their frequency is negative in the frame rotating at ω0 and therefore they
appear to oscillate in the opposite direction to the reference frame. It is then immediate to see
that in the limit ω0 → ∞ the contribution of the α∗i ’s to the motion equation for αi is negligible
as the fast oscillations quickly average to zero.

As a result, the rotating-wave approximation is legitimately implemented by neglecting in
the Eq. (3.4) for αi the terms involving the counter-rotating-wave variables α∗i and therefore by
completely decoupling the counter-rotating-wave from the rotating-wave variables. Equations (3.4),
within this approximation, are written as:

α̇1 = −iω0 α1 − iV1(t)α1 − γα1 + i
Ω

2
(α2 − α1)

α̇2 = −iω0 α2 − iV2(t)α2 − γα2 + i
Ω

2
(α1 − α2) .

(3.7)

3.2.1 Connection to the tight-binding model.

We now highlight the connection of the rotating-wave description of the coupled pendula in
Eq. (3.7) to a tight-binding model of quantum physics. Neglecting the damping term, the resulting
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Hamiltonian for the internal system dynamics:

H(t) =

2∑
i=1

(
ω0 + Vi(t) +

Ω

2

)
α∗iαi −

2∑
i=1

(
Ω

2
α∗iα3−i +

Ω

2
α∗3−iαi

)
(3.8)

is then a classical counterpart of a bosonic tight-binding Hamiltonian, where the bosonic anni-
hilation and destruction operators âi and â†i are replaced by the C-numbers complex variables
αi and α∗i . The first term in Eq. (3.8) accounts for the on-site energy, while the second one de-
scribes the hopping between the two sites. In terms of the α variables, Newton’s equations of
motion Eqs. (3.7) represent the Heisenberg equations of motion associated with the tight-binding
Hamiltonian in Eq. (3.8).

In the Hamiltonian, the rotating-wave approximation consists of neglecting all non-energy-
conserving terms proportional to αiαj and α∗iα∗j and only keep the energy-conserving ones α∗iαj .

We also notice that, if the anharmonicity of the pendula were taken into account beyond the
linearized Eqs. (3.1), a new term would appear in Eq. (3.8). Such a term would be the on-
site interaction term Uα∗iα

∗
iαiαi, that is typical of the Bose-Hubbard model of condensed-matter

physics.

3.3 Analytical equations of motion within the rotating-wave
approximation.

We have set up the analogy between the coupled pendula in the rotating-wave regime and the
tight-binding model. Now, we want to obtain some analytical insight into the dynamics of the
system. To this end, we introduce the following transformation of the complex variables:

βi(t) = αi(t) ei
∫ t
0
Vi(t

′) dt′ . (3.9)

This transformation defines a frame in which the pendula are not modulated and their oscillation
energy is proportional to |βi(t)|2. In such a frame, the phase factor involving the modulation
is exactly equal to 1 at the stroboscopic times tn = nT , for the chosen sinusoidal form of the
modulation. This means that the new variables are related to the original ones by a canonical
transformation which is invariant under the time translation t→ t+nT . With the transformation
in Eq. (3.9), the Hamiltonian Eq. (3.8) is written as:

H′(t) =

2∑
i=1

(
ω0 +

Ω

2

)
β∗i βi −

2∑
i=1

(
Ω

2
β∗i β3−i e−i

∫ t
0

(V3−i(t
′)−Vi(t′))dt′ +c.c.

)
. (3.10)

We notice that the temporal modulation enters directly in the Hamiltonian as a complex coupling-
amplitude. The time-dependent problem can be solved by means of Floquet theory for periodic
systems. The effective dynamics of the system can be obtained via an expansion in the modulation
frequency, known as the Magnus expansion. We performed this expansion at first order following
the approach, for example, given in Goldman et al. [2015b] or Bukov et al. [2015]. The effective
Hamiltonian is:

HEFF =
1

T

∫ T

0

H′(t)dt,

which is valid in the limit of high modulation frequency ω0 � w � Ω, where the higher order
terms of the Magnus expansion are negligible. The effective equations are derived from this effective
Hamiltonian as:

β̇i = {βi,HEFF} =
1

T

∫ T

0

{βi,H′(t)},

where the parenthesis {f, g} = −i
∑2
j=1

(
∂f
∂βj

∂g
∂β∗j
− ∂g

∂βj

∂f
∂β∗j

)
is the canonical Poisson bracket.

Therefore, from the equations of motion Eq. (3.7), substituting the transformed variables of
Eq. (3.9) and integrating over a period of the temporal modulation, we get the following equations
of motion:

β̇1 = −i

(
ω0 +

Ω

2

)
β1 + i

Ωeff
12

2
β2

β̇2 = −i

(
ω0 +

Ω

2

)
β2 + i

Ωeff
21

2
β1.

(3.11)
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Figure 3.2: Results of a numerical integration of the equations of motion Eq. (3.4) with a Runge-
Kutta algorithm. The blue (green) dots indicate the modulus |α1| (|α2|) of the oscillation amplitude
of the first (second) pendulum, normalized to the initial amplitude, while the lines are guides to
the eyes. At the initial time t = 0, only the first oscillator is excited, while α2(t = 0) = 0. The
evolution of the two pendula is followed with a stroboscopic sampling at the modulation frequency
w of the full numerical solution. The three panels are obtained for three different values of the
modulation amplitude, showing the renormalization of the effective coupling frequency. I0 = 0 in
A, I0 ≈ 0.63 in B, and I0 ≈ 1.05 in C. System parameters are: ω0/Ω ≈ 147, w/Ω ≈ 11, γ/Ω = 0.

The effective couplings in Eqs. (3.11) are defined by:

Ωeff
ij ≡

Ω

T

∫ T

0

dt ei
∫ t
0

[Vi(t
′)−Vj(t′)] dt′ (3.12)

and they are such that they are complex conjugate to each other, Ωeff
12 = Ωeff∗

21 . For the specific
modulation considered here, the effective coupling has the simple expression:

Ωeff ≡ Ωeff
12 = Ω e−2iI0 J0 (2I0) (3.13)

where we have used the Anger-Jacobi expansion to obtain the J0(2I0) zero-order Bessel function
of argument 2I0 = 2V/w. The modulus |Ωeff| will exhibit a series of zeros in correspondence to the
zeros of the Bessel function J0, which are indicative of a complete dynamical decoupling between
the two pendula. Further evidence for this dynamical decoupling effect can be observed in Fig. 3.2.
As we have just discussed, the dynamics of the system in Eq. (3.4), sampled at the stroboscopic
times tn = nT is effectively described by a time-independent discrete evolution law. In order to
prove that this is the case, we have numerically integrated Newton’s equations of motion in their
complete form given in Eq. (3.4), for the vanishing friction case γ = 0, with a standard fourth
order Runge-Kutta algorithm. The evolution of the amplitudes |α1,2|, sampled at the frequency
w of the temporal modulation, are reported in Fig. 3.2. Different panels correspond to the same
modulation frequency w but different values of the amplitude V , representing different regimes.

In panel 3.2-A, there is no temporal modulation, so V = 0: the amplitudes of the two oscillators
exhibit the usual beating effect, that is a periodic exchange of energy between the oscillators at
the coupling frequency Ω. As a result of a non-zero temporal modulation Vi(t), for increasing
values of its amplitude V , the frequency of the beat is modified, as expected and anticipated in
Eq. (3.13). In particular, for the parameters of panels 3.2-B and 3.2-C, the beat frequency is more
and more reduced. For even larger amplitudes V , we observed a non-monotonic behaviour of the
effective beat frequency. An analysis of the effective coupling based on numerical simulations of
the equation of motion will be given in the remainder of the Chapter.
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3.3.1 Monochromatic driving.
In order to perform a detailed study of the effect of the modulation and, at the same time, to

propose a viable procedure to experimentally observe these phenomena, it is useful to consider the
realistic case of dissipative pendula driven by an external force. We assume that such a driving
force is monochromatic at frequency ωex:

Fex(t) = 2fexδi,1 cos(ωext),

where δi,j is the usual Kronecker delta, so that the external force acts only the first pendulum.
The driven-dissipative form of the equations of motion (3.4) then is:

α̇i = −i (ω̃0 − iγ)αi − iVi(t)(αi + α∗i ) + iFex(t)− i

(
Ω

2
+ iγ

)
α∗i + i

Ω

2
(α3−i + α∗3−i) (3.14)

for i = 1, 2 and where we have defined the short-hand notation ω̃0 = ω0 + Ω/2.
The same procedure as the one done in the previous subsection for Eq. (3.4) must be applied

to Eq. (3.14) in order to obtain the effective dynamics within Floquet theory. We are interested
in the steady-state regime, where the αi variables oscillate at ≈ ωex. We assume this frequency is
comparable with ω0, so that |ω0 − ωex| � w. We use a slightly modified transformation of (3.9):

βi(t) = αi(t) ei
∫ t
0
Vi(t

′) dt′ eiωext (3.15)

that includes also the external driving frequency. Within the rotating-wave approximation, we
obtain explicit expressions that are valid in the steady oscillation regime, where the βi are not
oscillating. By setting β̇i = 0, and solving the two-by-two system, analytical forms of the ampli-
tudes of oscillation are found for the steady-state. These amplitudes are the “resonance curves” as
function of ωex:

β1(ωex) =
2 f effex (ω̃0 − iγ − ωex)

4(ω̃0 − iγ − ωex)2 − |Ωeff|2

β2(ωex) =
f effex Ω∗eff

4(ω̃0 − iγ − ωex)2 − |Ωeff|2
.

(3.16)

The effective coupling Ωeff is exactly the same as in Eq. (3.13). We notice that also the external
driving force gets renormalised:

f effex ≡
fex
T

∫ T

0

dt ei
∫ t
0
Vi(t

′) dt′ , (3.17)

and that, with the specific modulation in Eq. (3.5), has the explicit form:

f effex = fex e−iI0 J0(I0), (3.18)

having again used the Anger-Jacobi expansion for obtaining the Bessel function. More insights
into the derivation of Eq. (3.16) can be found in Appendix B. According to the specific value of
the argument I0 = V/w of the Bessel function, the effective driving force can be also equal to zero,
meaning that a complete dynamical isolation from the external force can occur. We shall further
explore this result in the numerical simulation of the system in the following.

3.3.2 First-order correction beyond the rotating-wave approximation.
The analytical results of the previous section were obtained within the rotating-wave approxi-

mation that is strictly valid only in the regime where ω0 →∞. For realistic oscillators, the validity
of this approximation is good so long as the following inequality chain is satisfied:

ω0 � w � Ω� γ. (3.19)

The first inequality in Eq. (3.19) is the same as in Eq. (3.6). The second one justifies our calculating
the effective dynamics after a time average over the period T = 2π/w of the temporal modulation,
by using the high-frequency expansion of Floquet theory, as in Holthaus [1992] or Bukov et al.
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[2015]. The last inequality is essential for observing an effective coupling before the oscillations
damp out. In addition to this, it is also important to satisfy the following chain of inequalities
w � |ω0 − ωex| ≈ Ω so that we can have clear access to the spectroscopic features.

We now extend the validity of expressions in Eq. (3.16) by considering a first order correc-
tion to the rotating-wave approximation. We notice that, since α and α∗ are coupled through
Eq. (3.14) and its complex-conjugate equation, a rotating-wave contribution appears also from the
counter-rotating-wave variable α∗. The full derivation of the first order correction is given in the
Appendix C, and the result is the following frequency shift:

∆ω0 ≡ ω̃0 −
V 2

4ω0
, (3.20)

which is more and more important for larger amplitude V of the temporal modulation. All other
counter-rotating-wave contributions involving Ω and γ are negligible for the chosen parameters and
were not included in Eq. (3.20). The shift is a classical analogue of the shift of nuclear magnetic
resonance discovered by Bloch and Siegert [1940]. We obtain equations similar to Eq. (3.16) where
the natural detuning frequency ω̃0 − ωex is shifted according to Eq. (3.20):

∆ω ≡ ω̃0 − ωex −
V 2

4ω0
. (3.21)

Equations. (3.16), with the substitution ω̃0−ωex → ∆ω, are the new resonance curves valid to the
first order in the rotating-wave approximation:

β1(ωex) =
2 f effex (∆ω − iγ)

4(∆ω − iγ)2 − |Ωeff|2

β2(ωex) =
f effex Ω∗eff

4(∆ω − iγ)2 − |Ωeff|2
.

(3.22)

By taking the ratio of these two resonance curves, we can also calculate the effective coupling Ωeff

as:

Ωeff = 2(∆ω + iγ)
β∗2
β∗1
. (3.23)

This formula will be used in the following to estimate, from the numerical simulations, the effective
coupling as a complex quantity, allowing us to measure both its modulus and phase.

3.4 Results of the driven-dissipative numerical simulations.
We have numerically integrated Newton’s equation of motion, in their driven-dissipative form

given in Eq. (3.14), with a standard fourth order Runge-Kutta algorithm. For a given value of
the external frequency ωex, these equations have been integrated until the steady-state regime at
long times t� γ, where we observe regular periodic oscillations. For the stroboscopic sampling at
times tn = nT , the steady-state oscillations have the form αi(t) ≈ Ai(ωex) e−iωext. The complex
amplitudes Ai are obtained via a Fourier transformation of the stroboscopically sampled numerical
solutions. The moduli |Ai|, as a function of the frequency of the external force, give the response
spectra shown in Fig. 3.3. The numerical results are shown with points and are compared with the
theoretical predictions in Eq. (3.22), shown in solid lines, that includes the first-order correction to
the rotating-wave approximation. Each panel corresponds to a different value of the modulation
amplitude V and illustrates a different regime.

The case of no modulation is shown in panel 3.3-A: the spectra are characterized by a pair of
peaks, of equal width γ, that correspond to the two eigenmodes of the system: the two pendula
oscillating with the same (lower frequency peak) or opposite (higher frequency peak) phase. We
notice that at all frequencies, the oscillation amplitudes of the two pendula remain comparable,
signifying that both pendula are almost equally excited.

Panel 3.3-B shows a case where the coupling of the two pendula is dramatically suppressed:
this effect is apparent in the figure as the two peaks merge into a single one and no significant
excitation is transferred to the second pendulum, which remains basically at rest with a negligible
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Figure 3.3: Response spectra |Ai(ωex)| as a function of the frequency ωex of the external force.
The stroboscopically sampled numerical results are shown for the first (second) pendulum as blue
(green) dots, normalized to the peak amplitude fex/(2γ) of a single isolated pendulum in the small
γ limit. The solid lines show the analytical spectra based on the rotating-wave approximation
of Eq. (3.22). The different panels corresponds to different values of the modulation amplitude,
I0 = 0 in A, I0 = 1.21 in B, I0 = 2.31 in C. The inset in panel-C shows an enlargement of the
main plot. System parameters are: ω0/Ω ≈ 147, w/Ω ≈ 11, γ/Ω ≈ 0.15, fex/Ω ≈ 6.

oscillation amplitude. The first pendulum behaves as if it was isolated, except that its resonance
frequency is shifted due to the counter-rotating-wave terms in Eq. (3.20). This behaviour is the
driven-dissipative manifestation of the dynamical decoupling effect, already seen in the lowest panel
of Fig. 3.2 for vanishing friction.

Panel 3.3-C shows the novel regime where the global excitation by the external force is sup-
pressed, while some effective coupling of the two pendula is still present. The suppressed excitation
is visible as a very small oscillation amplitude of both pendula, while the presence of a significant
coupling is apparent in the inset where the response of the first pendulum is still showing a doublet.
The absence of a significant excitation in the system is a dynamical isolation of the two pendula
from the external driving. This effect is due to the vanishing of the effective driving force f effex , for
a value of the amplitude of the temporal modulation V such that the Bessel function in Eq. (3.18)
of argument I0 = V/w, is close to a zero.

These different regimes are comprehensively illustrated in Fig. 3.4. For each of the response
spectra, calculated for different values of the amplitude of the modulation V , we present only
the resonant response at the peaks, that is the maximum oscillation amplitude |Ai(ωex)| for all
external drive frequencies ωex. This quantity has been normalised to the maximum of the oscillation
amplitude for the two oscillators and is presented as a function of the modulation amplitude. The
resonant response as calculated from the numerical simulations is presented in Fig. 3.4 with points
of different colors for the two oscillators, while the solid lines are the analytical predictions of the
rotating-wave approximation at first order given in Eq. (3.18). The agreement between numerical
and analytical data is very good, in particular for what concerns the position of the dynamical
isolation points for which f effex = 0 and both max(|A1,2|) = 0. Although not shown here, we have
found that the agreement gets worse when the inequality chain of Eq. (3.19) is only marginally
satisfied. The dynamical decoupling seen in Fig. 3.3-B corresponds in Fig. 3.4 to the minimum of
max(|A2|) that is visible around I0 ' 1.2. The dynamical isolation seen in Fig. 3.3-C lies in the
vicinity of the simultaneous minima of both max(|A1,2|) that are visible around I0 ' 2.4. In the
figure, note the further dynamical decoupling point around I0 ' 2.7.

We now present further insights into the coupling between the two pendula as resulting from the
temporal modulation. By applying Eq. (3.23) to the numerical results, we extracted the effective
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Figure 3.4: Blue (green) dots show the normalized maximum of the numerical amplitude of the
oscillations for the first (second) pendula as a function of the modulation amplitude I0. The solid
lines shows the result of the analytical calculation based on the rotating-wave approximation. Blue
(green) lines are the resonance peaks as in Eq. (3.22) for β1 (β2). Black line is the effective driving
force in Eq. (3.18). System parameters as in Fig. 3.3.

coupling as a complex quantity. The modulus of Ωeff is presented in Fig. 3.5, where the numerical
points are compared with the analytical expression that was obtained in Eq. (3.13). The agreement
appears again to be very good, in particular concerning the position of the dynamical decoupling
points at which Ωeff = 0. The small discrepancies occur when both numerator and denominator of
Eq. (3.23) go to zero and the procedure is more sensitive to numerical errors.

3.4.1 The coupling phase.

In this Chapter, we have seen that the temporal modulation of the bare frequency of two coupled
harmonic oscillators is able to dynamically decouple them from each other or to dynamically isolate
them both from an external driving force, depending on the magnitude of the temporal modulation.

The most crucial and probably the most important consequence of the temporal modulation is
that the effective coupling develops a non-trivial phase, as shown in Fig. 3.6, where we present the
argument of Ωeff as obtained from Eq. (3.23) as a function of I0. The physical interpretation of
this phenomena is the following. The two eigenmodes of the bare system, for I0 = 0, correspond
to in-phase and out-of-phase oscillations of the two pendula. The temporal modulation allows
us to tune the relative phase of these oscillations to any value θ from 0 to 2π for the “in-phase”
eigenmode, and to π− θ for the “out-of-phase” eigenmode. We also notice that the coupling phase
displays π jumps whenever the effective coupling Ωeff in Fig. (3.13) goes through a zero.

From the point of view of fundamental physics, such a non-trivial phase between the pendula
is a classical analogue of the Peierls phase of a quantum tight-binding model, as introduced in the
previous Chapters, and the complex hopping amplitude J eiφij ↔ Ωeff

ij is matched to the complex
coupling between the pendula.

This stunning result opens the intriguing possibility of creating a scheme for generating an
artificial gauge field in a purely classical system. In analogy to quantum-Hall systems, surprising
phenomena are expected to appear in multi-dimensional lattices of many temporally modulated
pendula, where their oscillation patterns show the behaviour of a topological insulator. However,
the temporal modulation introduced in this Chapter does not formally break time reversal sym-
metry, as this symmetry is restored when a different time origin is considered in Eq. (3.5). For this
purpose a different scheme is needed and it will be discussed in the next Chapter.
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Figure 3.5: Modulus of the effective coupling frequency |Ωeff|/Ω. Dots are the results of the numer-
ical calculations, while the solid line is the analytical prediction of the rotating-wave approximation
in Eq. (3.23). System parameters as in Fig. 3.3.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

I0

ar
g
(Ω

eff
/Ω

)

Numerical
Theory

Figure 3.6: Phase arg(Ωeff) modulo 2π of the effective coupling frequency. Dots are the results
of the numerical calculations, while the solid line is the analytical prediction of the rotating-wave
approximation in Eq. (3.23). System parameters as in Fig. 3.3.

Artificial gauge fields in photonics and mechanical systems. G. Salerno



Chapter 4

The Harper-Hofstadter model in a
classical mechanical system.

Meet the topo-pendula (in theory).

In Chap. 3 we have proposed a viable scheme to realize a tunable non-trivial coupling
phase in a system of two coupled classical harmonic oscillators. We have also seen that such
a phase is the analogue of the Peierls phase of a quantum tight-binding model. This remarkable
result opens up the possibility of simulating a strong artificial magnetic flux, of the order of the flux
quanta, to realize the Harper-Hofstadter model in a purely classical system governed by Newton’s
equations.

The Harper-Hofstadter model is the archetypical lattice model of a quantum Hall system. As
we have seen in Chap. 1, it has a rich fractal energy spectra known as the Hofstadter butterfly,
studied by Hofstadter [1976] where the eigenstates associated to the energy bands are characterized
by a non-trivial topological invariant, that is the Chern number. This invariant is also related to
the quantisation of the conductance in the quantum Hall effect, as shown by Thouless et al. [1982].

In this Chapter we will generalize the scheme of frequency-modulated coupled classical harmonic
oscillators of Chap. 3 to obtain non-trivial topological effects that are analogous to the integer
quantum Hall effect. We will obtain, within the Floquet framework and by applying the rotating-
wave approximation, effective equations of motion that obey the Harper-Hofstadter model. We
will show that the hallmarks of this model, such as the topologically robust and chiral edge states,
the self-similar energy spectra and the Chern invariants can be obtained in classical physics, and
we explore a classical analogue of the Hofstadter butterfly and the quantum Hall effect.

The main results of this Chapter are published in Salerno et al. [2016].

4.1 The model.

We consider a square lattice of N = Nx ×Ny sites, labelled by two indexes (i, j). Each lattice
site hosts a pendulum of massmi,j and frequency ω̃i,j , whose oscillation plane is rigidly fixed along,
for example, the unit-cell diagonal, as shown in Fig. 4.1. We indicate with zi,j the displacement
of each pendulum from its equilibrium point along this fixed direction. As we did in the previous
Chapter, we also assume that the natural frequencies of the pendula are periodically modulated in
time around the mean value ω̃i,j ≡ 〈ωi,j(t)〉. All the pendula are coupled to their nearest neighbours
by springs of rest length equal to the lattice spacing and of constant kx and ky along the two x and
y directions respectively. The pendula belonging to the edges of the lattice are coupled to a fixed
wall. Including loss mechanisms with a friction coefficient ξ, the linearised Newton’s equations of
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y
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k

Figure 4.1: View from above of a square lattice of pendula constrained to oscillate along the plane
indicated by the thick red lines. The coupling between neighbouring pendula is provided by elastic
springs with spring constants kx and ky. Pendula on the edges are coupled to a rigid wall.

motion for the generic (i, j)-th pendulum, driven by an external force Fex
i,j(t), read as:

mi,j żi,j = pi,j

ṗi,j = −mi,jω
2
i,j(t)zi,j +

∑
±1

kx (zi±1,j − zi,j) +
∑
±1

ky (zi,j±1 − zi,j)− 2ξżi,j − F ex
i,j(t).

(4.1)

We follow the same procedure as the previous Chapter and generalise the transformation in
Eq. (3.3), to include the position-dependent frequency and mass, such that the square modulus
|αi,j |2 is still proportional to the oscillation energy of the specific (i, j)-th pendulum:

αi,j =

√
mi,j ω̃i,j

2
zi,j + i

pi,j√
2mi,j ω̃i,j

. (4.2)

We now assume for simplicity that the product mi,jω̃i,j ≡ µ is constant for every site (i, j) and
we define the bare coupling frequencies as:

Ωx ≡ kx/(2µ), Ωy ≡ ky/(2µ).

As before, we combine the second-order differential equations in Eq. (4.1) to get a set of N first-
order differential equations for the complex variables αi,j :

α̇i,j =− i

[
ω̃i,j
2

+
ω2
i,j(t)

2ω̃i,j
− iγi,j + 2Ωx + 2Ωy

]
αi,j − i

[
ω̃i,j
2
−
ω2
i,j(t)

2ω̃i,j
+ iγi,j + 2Ωx + 2Ωy

]
α∗i,j

+ i
∑
±1

Ωx
(
αi±1,j + α∗i±1,j

)
+ i
∑
±1

Ωy
(
αi,j±1 + α∗i,j±1

)
+ if exi,j(t),

(4.3)

and a similar set of N equations for α∗i,j . The damping rate is γi,j ≡ ξ/mi,j , while the external
driving force is taken to be monochromatic at frequency ωex with amplitude proportional to fi,j :

f exi,j(t) ≡ Fex
i,j(t)/

√
2µ = 2fi,j cos(ωext). (4.4)

4.1.1 The temporal and spatial modulation.

Inspired by the realization of the Harper-Hofstadter model with ultra-cold atoms in optical
lattices by Aidelsburger et al. [2013] and Miyake et al. [2013] and by related proposals in the
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Figure 4.2: Section of the system along the x direction, sketching the spatial modulation of the
natural frequencies of the pendula with period s = 5. The temporal modulation is implemented as
in Chap. 3, by acting on the gravitational restoring force of each pendulum. A magnet is attached
to the mass of the pendulum and interacts with the time-dependent magnetic field generated by
an externally controlled current flowing in the coil below the axis of oscillation.

photonic context such as Fang et al. [2012] and Wang et al. [2015b], we take the natural frequency
of the pendula, i.e. a part of the single-particle on-site energy in the tight-binding analogy, to
be temporally and spatially modulated. In particular, we assume that the specific form of the
frequency modulation is:

ω2
i,j(t) = ω̃2

i,j

(
1 + 2

Vi,j(t)

ω̃i,j

)
(4.5)

where Vi,j(t) is the temporal modulation.
The spatial modulation is chosen to be:

ω̃i,j = ω0 − 2Ωx − 2Ωy + wS(i), (4.6)

where
S(i) ≡ mod(i− 1, s) (4.7)

is a saw-tooth function along the x-direction, of period s. We schematically show such a spatial
modulation in Fig. 4.2, where the pendula are hung from a tilted roof such that their lengths satisfy
Eq. (4.6). Of course, Fig. 4.2 is just a sketch, since for simplicity we have not taken into account
in the drawing the non-linear dependence of the frequency from the length of the pendulum.

The spatial modulation in Eq. (4.6) strongly suppress the coupling of the pendula along the x
direction, due to a “huge” mismatch of frequency between neighbouring pendula because w � Ω.
Such a hopping can be restored if a suitable temporal modulation is chosen. In fact, as shown by
Goldman et al. [2015b], when the frequency of the modulation is exactly on resonance with the
detuning of neighbouring sites, a uniform coupling is restored over the whole lattice. Given the
specific sawtooth form of Eq. (4.7) chosen for S(i), a bi-harmonic temporal modulation is needed:

Vi,j(t) = V [cos(wt+ φi,j) + (s− 1) cos (w(s− 1)t− φi,j)] (4.8)

where the amplitude V is position independent. The first component at frequency w restores a
uniform hopping between the pairs of pendula with natural frequency difference w, on the “small
steps” of the spatial modulation. The second component at frequency w(s − 1) addresses the
hopping between pendula with a frequency difference w(s− 1), on the “big steps” of S(i).

We will show that the position-dependence of the phase φi,j offers us a way to control the
coupling phase along x. In order to obtain the desired Harper-Hofstadter model, as was done in

Artificial gauge fields in photonics and mechanical systems. G. Salerno



The model. 38

Aidelsburger et al. [2013], a possible choice is:

φi,j = 2πθ(i+ j). (4.9)

We shall see in the remainder of the Chapter that such a phase is able to produce a uniform flux
per plaquette.

To summarise, with the temporal modulation in Eq. (4.5) and the spatial modulation in
Eq. (4.6), Newton’s equations of motion in their form Eq. (4.3) have become:

α̇i,j =− i [ω0 + wS(i) + Vi,j(t)− iγi,j ]αi,j − i [Vi,j(t)− iγi,j + 2Ωx + 2Ωy]α∗i,j

+ i
∑
±1

Ωx
(
αi±1,j + α∗i±1,j

)
+ i
∑
±1

Ωy
(
αi,j±1 + α∗i,j±1

)
+ if exi,j(t).

(4.10)

4.1.2 Analytical derivation of the Harper-Hofstadter effective equation
of motion.

We will now show how Newton’s equations of motion take the form of the Heisenberg equa-
tions of motion for the Harper-Hofstadter model. Performing the rotating-wave approximation to
Eq. (4.10), we straightforwardly obtain:

α̇i,j = −i [ω0 + wS(i) + Vi,j(t)− iγi,j ]αi,j + i
∑
±1

[Ωxαi±1,j + Ωyαi,j±1] + if exi,j(t). (4.11)

Throughout the Chapter we will focus on the case where a single (ip, jp) site is driven. We again
assume the inequality chain as in Eq. (3.19):

ω0 � sw � Ωx,y � γi,j , (4.12)

where this time the first inequality required for the rotating-wave approximation is more strict
because it has to be valid for the fastest frequency of the temporal modulation in Eq. (4.8).

Following an analogous procedure to that in Chap. 3, we introduce the βi,j variables:

βi,j(t) ≡ αi,j(t) eiwt(S(i)−S(ip)) eiωext ei
∫ t
0
Vi,j(t

′)dt′ (4.13)

and look for the steady-state solution. In the steady-state regime, the βi,j variables oscillate with
the same frequency as the external driving force, which is tuned in the vicinity of the natural
frequency of the driven pendulum (ip, jp). We again obtain the effective equations of motion
within the Floquet formalism of time periodic systems in the high-frequency limit, that is by time
averaging Eq. (4.11) over the period T = 2π/w of the temporal modulation. The full forms of
these equations are given in Appendix D and are expressed as sums of Bessel functions. Here
we present a simplified form of the effective equations, that was obtained by considering only the
largest contribution in these sums:

β̇i,j =− i (ω0 + wS(ip)− ωex)βi,j − γi,jβi,j + if exip,jpJ0 (V/w)
2

+ i
∑
±1

Ωx e∓i(ϕi±1,j−π2 ) J±1 (I0)J0 (I0)βi±1,j + i
∑
±1

ΩyJ0 (I0)
2
βi,j±1

(4.14)

where, with the definition of the modulation phase in Eq. (4.9), we have introduced the following
quantities:

ϕi±1,j ≡ − (2πθ(i+ j)± πθ) (4.15)

I0 ≡
V

w

√
2− 2 cos(2πθ). (4.16)

As detailed in Appendix D, the condition of validity for Eq. (4.14) is that the next order of the
Bessel functions can be neglected,

J(s−1)(I0)� J1(I0). (4.17)
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From this expression, it is apparent that a very large period of the spatial modulation s would
be optimal, with a linear ramp in the bare frequencies of the harmonic oscillators in Eq. (4.6).
While this configuration is possible for the ultracold atomic system of Aidelsburger et al. [2013]
or Miyake et al. [2013], it is not possible for these classical harmonic oscillators as the condition
ω0 � sw for the rotating-wave approximation does not allow us to use an arbitrarily large value
of s. We found that a good compromise can be found already for s as small as 5.

As in Chap. 3, we notice from Eq. (4.14) that the frequencies Ωx and Ωy are renormalised by
the Bessel functions and also that the effective couplings along the two directions of the lattice can
be very different from each other. Since the goal of this Chapter is to recover the usual Harper-
Hofstadter model with equal hopping in the two directions, it is useful to start from suitably chosen
Ωx,y that will result in the same effective coupling J for the two directions. We assume that the
bare couplings can be chosen accordingly to the following relations:

Ωx =
J

J0 (I0)J1 (I0)
, Ωy =

J

J0 (I0)
2 . (4.18)

One must of course be careful in tuning the amplitude of the modulation V , such that the frequen-
cies in Eq. (4.18) satisfy the inequality of Eq. (4.12).

As with the hopping terms, so is the amplitude of the driving term in Eq. (4.14) renormalised
by the Bessel functions. We choose the bare driving force on the pumped site as:

f exip,jp = 2f/J0 (V/w)
2 (4.19)

in order to keep the effective driving intensity f constant as we vary V or w.
With Eq. (4.14), without driving and dissipation, we have a classical version of the Heisenberg

equations derived from the following Harper-Hofstadter Hamiltonian:

Ĥ =
∑
i,j

[
−∆ωβ̂†i,j β̂i,j − J

(
β̂†i,j β̂i,j+1 + ei2πθ(i+j) ei(πθ−π/2) β̂†i,j β̂i+1,j + h.c.

)]
(4.20)

where ∆ω ≡ ωex − ω0 − wS(ip) is the energy at which the Harper-Hofstadter model is coherently
probed. We see clearly that the non-trivial hopping phase in Eq.(4.20) is determined by the
modulation phase in Eq. (4.9). The magnetic flux enclosed within a plaquette is calculated by
summing the phases accumulated on each link when hopping around a plaquette of the lattice.
With the definition in Eq. (4.9), the sum of the phases gained by the complex hopping elements
in Eq. (4.14), is uniform for the whole lattice and equal to:∑

�

φ =
1

2
(−φi+1,j − φi,j + φi,j+1 + φi+1,j+1) = 2πθ, (4.21)

where � indicates that the sum is done over a plaquette of the lattice. As a result, our model of
frequency-modulated coupled oscillators is a classical simulator of the Harper-Hofstadter model,
where the magnetic flux is freely controlled by the parameter θ.

This outcome inspires us to generate the Hofstadter butterfly by simply tuning the phase of all
the temporal modulations of the pendula according to Eq. (4.9). At this stage, we notice that any
other choice of the temporal modulation phase φi,j leading to the same flux per plaquette would
have given an equivalent Harper-Hofstadter model, that only differs by a gauge transformation.

First-order correction beyond the rotating-wave approximation.

Before concluding this section, we want to include the first effect beyond the rotating-wave
approximation in our analytical results. Analogously to what we have seen in the previous Chapter,
the first order correction is a global Bloch-Siegert shift of the detuning frequency:

∆ω ≡ ωex − ω0 − wS(ip)→ ωex − ω̄,

with:

ω̄ = ω0 + wS(ip)−
V 2

4ω0
(2− 2s+ s2)− 2

(Ωx + Ωy)2

ω0
. (4.22)

The derivation of such a shift is the same as the one for obtaining Eq. (3.20): more details are
given in Appendix C.
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4.2 Results of the numerical simulations.
We now present the numerical results of the integration of the equations of motion in their

complete form given in Eq. (4.10). In order to assess the validity of the effective Harper-Hofstadter
model obtained via the Floquet approach, we have quantitatively compared our numerical predic-
tions to those from the effective equation of motion for the Harper-Hofstadter model in Eq. (4.14).

The set of N time-dependent equations (4.10) have been numerically integrated with a standard
fourth-order Runge-Kutta. The total time of integration t � 1/min(γi,j) ≡ 1/γ is chosen large
enough to ensure that the steady state has been reached. The matching with the Floquet picture
was performed, as in Chap. 3, by a stroboscopic sampling of the numerical solution at integer times
of the period of the modulation tn = nT . At these times tn and under the monochromatic drive
in Eq. (4.4), the steady-state solution has the form:

αi,j(tn) ≈ Ai,j(ωex) e−iωextn ,

where Ai,j are the oscillation amplitudes of such a steady state. To study the response of the
system to a particular driving frequency, we will present the total intensity, which is obtained as
the sum of the oscillation amplitudes |Ai,j |2 of all the pendula:

I(ωex) =
∑
i,j

|Ai,j(ωex)|2.

The total intensity is a function of the detuning ∆ω = ωex − ω̄, which is the energy at which the
Harper-Hofstadter model is coherently probed. In fact, depending on the value of such a detuning
∆ω and the position (ip, jp) of the driven site, different behaviours are expected. For ∆ω within a
band of the bulk Harper-Hofstadter model and (ip, jp) located far from the edges, the bulk of the
system is excited and so the response is dominated by delocalized band states. When ∆ω belongs
to a gap between two energy bands, the total oscillation is suppressed unless (ip, jp) is located
close to an edge of the system, so that edge states can be excited. We shall now present a detailed
study of these regimes.

4.2.1 The response spectrum.
In Fig. 4.3 we present the response spectra calculated by driving the central site of a lattice

of 25 × 25 pendula with a flux per plaquette of θ = 1/4 in units of the flux quantum. Losses are
chosen to be γ/J = 0.1, which are large enough to ensure that the excitation damps out before
reaching the edge of the system and therefore that the response spectra is mainly determined by
the bulk properties. The blue circles show the response spectra of a system of bare frequency
ω0/J = 200, temporal modulation frequency w/J = 20 and amplitude such that I0 = 0.5 from
Eq. (4.16). This corresponds to V/J ≈ 7.1, Ωx/J ≈ 4.4 and Ωy/J ≈ 1.1. The orange triangles
are instead calculated for ω0/J = 2000, w/J = 50, and again I0 = 0.5, which corresponds to
V/J ≈ 17.7, and the same Ωx and Ωy as before. We compare these numerical spectra with the
prediction of the Harper-Hofstadter model.

From the properties of the pristine Harper-Hofstadter model, reviewed in Chap. 1, a system
with a flux of θ = p/q has exactly q bands, separated by gaps in which topologically protected
edge states are found. The theoretical position of these bands, for θ = 1/4, is highlighted by the
green shaded area. Although only 3 areas are highlighted, we must remember that for even q, the
two central bands touch at a finite number of points in momentum space, therefore in energy they
appear as a single band. We see that the regions of highest intensity for both blue and orange
curves agree with the positions of the theoretical bands of the model, signifying that the general
bulk properties are well captured by our description. The broadening of the peaks with respect to
these green areas is due to the losses, and it is typical of the driven-dissipative systems, as reviewed
by Carusotto and Ciuti [2013].

To have a more quantitative comparison with the theoretical model, we also show the prediction
of the driven-dissipative Harper-Hofstadter model studied in Umucalılar and Carusotto [2011] and
Ozawa and Carusotto [2014]. This spectra is presented with the solid black line in Fig. 4.3 and its
detailed structure is directly comparable with our numerical results. From the theoretical driven-
dissipative spectra, we see four peaks corresponding to the four bands of the Harper-Hofstadter.
We notice immediately that the two outer peaks of our numerical spectra presented with blue
circles are more clearly shaped than the two central ones, which are indeed difficult to resolve.
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Figure 4.3: Response spectra of a 25 × 25 lattice with a flux per plaquette θ = 1/4 and losses
γ/J = 0.1 where the central lattice site is pumped. The blue circles and orange triangles correspond
to the spectra calculated from the steady state of Eq. (4.10) as a function of the detuning from
the external driving frequency ∆ω = ωex − ω̄, including the shift in Eq. (4.22). Parameters are:
ω0/J = 200, w/J = 20, I0 = 0.5 for the blue circles, and ω0/J = 2000, w/J = 50, I0 = 0.5 for the
orange triangles. Black curve shows the spectra as obtained from the driven-dissipative Harper-
Hofstadter model. Green areas show the position of the Harper-Hofstadter bands. Frequencies
indicated by arrows are used in Fig. 4.4.

However, regardless of the detailed structure, the general form of the blue spectra is not dissimilar
from this theoretical black spectra. The second numerical spectra, which is presented with orange
triangles, instead agree very well, even in the finest detailed structure, with the spectra of the
driven-dissipative Harper-Hofstadter model. This is because for the considered set of parameters,
the inequality (4.12) is better satisfied, meaning that the system is well described by the equations
obtained in the rotating-wave approximation. We do not show here, but we have checked that the
deviation from the Harper-Hofstadter model would be much more dramatic for parameters that
satisfy the inequality (4.12) even less than the parameters for the blue spectra: this is because,
by reducing ω0, the rotating-wave approximation is no longer valid. We will investigate the con-
tribution of the counter-rotating-wave terms in this break-down of the effective model in the next
Chapter.

4.2.2 Topological edge states.

We now want to study the properties of the eigenmodes associated with the energy spectra of
Fig. 4.3, to show that, as expected from the Harper-Hofstadter model, the states whose energy lies
within the gaps are topologically protected and localized along the edge of the system.

To this end, in Fig. 4.4 we show, in colour scale, the steady state intensity distribution obtained
by pumping one site in the middle of the bottom edge with different values of the detuning ∆ω/J
corresponding to the arrows in Fig. 4.3. System parameters are ω0/J = 200, w/J = 20 and
I0 = 0.5 as for the blue spectra of Fig. 4.3. Losses are γ/J = 0.05, and are smaller than the
previous figure in order to allow the excitation amplitude to propagate over an adequate distance,
before decaying. In fact, this distance is set by the ratio of the group velocity of the edge state
over the loss rate, as is usual in driven-dissipative systems.

The intensity distributions shown in panels 4.4-A, 4.4-B and 4.4-C are obtained by driving
the system in the band gap where the chiral edge-states are expected, that is, between two peaks
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Figure 4.4: Spatial steady-state oscillation intensity distribution for a lattice of 25 × 25 pendula
with θ = 1/4, γ/J = 0.05, I0 = 0.5, w/J = 20 and ω0/J = 200, obtained by pumping a single site
on the lower edge for different values of the detuning of the pumping frequency ∆ω/J . Panel A
and C are for ∆ω/J = 1.7 located in a gap and show the excitation of an edge state with clockwise
chirality. In panel C, the blue square indicates the position of a defect composed of 3× 3 missing
pendula on the left edge. Panel B is for ∆ω/J = −1.7 located again in a gap and shows the
excitation of an edge state with counter-clockwise chirality. Panel D is for ∆ω/J = 0.7 located in
an energy band and shows the excitation of bulk states. The arrow indicates the position of the
pumped site on the lower edge.

in the spectra of Fig. 4.3. We see the pendula with the biggest oscillation amplitudes are indeed
localized on the edge of the system, apart from a small excitation that penetrates in the bulk close
to the pendulum that is driven. Such excitation is exponentially decaying into the bulk, because
no propagating states are available at that energy in the bulk of the lattice. As one can see by
comparing panels 4.4-A and 4.4-B, the direction of unidirectional propagation changes when the
sign of ∆ω is changed, as expected from the Harper-Hofstadter model. Also the chirality of the
edge states is very clear from the direction of the propagation compared to the position of the
arrow in the panels, that indicates the pumped site. In Fig. 4.4-C, we illustrate the topological
robustness of the edge state against a defect, modelled as 3×3 missing pendula, that is introduced
on the left edge of the lattice. The edge state is found to propagate around the defect, without
being scattered into the bulk, as expected.

Finally, panel 4.4-D shows the steady-state intensity distribution when the detuning corre-
sponds to a Harper-Hofstadter band: in this case, the excitation penetrates deeply into the bulk
and shows no preferred chirality.
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Figure 4.5: Spatial steady-state oscillation intensity pattern for a lattice of 25 × 25 pendula with
γ/J = 0.1, I0 = 0.5, w/J = 50 and ω0/J = 2000, obtained by pumping the central site. Panels A
and C are obtained from full numerical integration of Newton’s equation of motion, while panels
B and D are obtained from a driven-dissipative Harper-Hofstadter model as in Umucalılar and
Carusotto [2011] and Ozawa and Carusotto [2014], and are shown for comparison. The first row is
for θ = 1/4 and ∆ω/J = 2.7 corresponding to the center of the highest band. The second row is
for θ = 1/9 and ∆ω/J = 0 corresponding to the middle of the central band.

4.2.3 Bulk wave functions.

While the existence of the chiral edge states is one hallmark of a quantum Hall system, we
now demonstrate that our scheme truly is a simulator of the Harper-Hofstadter model. We show
now that the characteristic features of the driven-dissipative Harper-Hofstadter model can also be
observed in the response of the bulk of the system, and not only from the existence of the edge
states. In Fig. 4.5, we present the intensity distribution of the system when the central site of the
lattice is driven with a detuning frequency resonant with an energy band. For the panels in the
upper row, the magnetic flux is θ = 1/4, while θ = 1/9 for the panels in the lower row; losses
are γ/J = 0.1 in all panels. Panels 4.5-A and 4.5-C show the distributions of the full numerical
integration of Eq. (4.10) with ω0/J = 2000, w/J = 50, I0 = 0.5 and can be compared with panels
4.5-B and 4.5-D that are obtained from the driven-dissipative Harper-Hofstadter model as in
Umucalılar and Carusotto [2011] and Ozawa and Carusotto [2014]. We notice that the two pattern
distributions are in excellent qualitative agreement, in particular where the symmetry and the
periodicity of the pattern is concerned. As anticipated around Fig. 4.3, when the natural frequency
ω0 is reduced away from the rotating-wave approximation limit, the spatially symmetric structure
of the oscillation amplitude pattern is broken and the agreement with the driven-dissipative Harper-
Hofstadter model is less good (not shown).
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Figure 4.6: Total intensity response spectra as a function of flux per plaquette θ and frequency
detuning ∆ω/J . The total intensity of the oscillation is depicted with the color scale, where lower
intensities are in darker colors. Black regions indicating negligible intensities correspond to the
energy gaps between energy bands. The peculiar structure of the Hofstadter butterfly pattern is
clearly visible. System parameters are: ω0/J = 2000, w/J = 50, γ/J = 0.1, I0 = 0.5, for a lattice
of 25× 25 sites where only the central one is pumped.

4.2.4 The Hofstadter butterfly.

The system of frequency-modulated coupled pendula that we have proposed in this Chapter
allows us to change the magnetic flux θ per plaquette by simply adjusting the phase of the mod-
ulation of each pendula in Eq. (4.8). In this way, our scheme is sufficiently flexible to explore a
wide portion of the flux-frequency plane and observe the Hofstadter butterfly. Collecting a large
number of numerically calculated spectra of the total intensity for different values of θ in a single
colour-plot, we obtain the pattern shown in Fig. 4.6. Although the presence of dissipation does not
allow us to resolve details of the fractal structure that are smaller than the loss rate, the emerging
picture shows a close resemblance to the butterfly of Fig. 1.2.

One remark on the numerical method used to calculate Fig. 4.6. In order to speed up the
computational time, the equations of motion in Eq. (4.3) have been solved by expanding the
solution in the Fourier basis, instead of solving the full differential equations until reaching the
steady state. Solving the linear system for the Fourier components coupled by the time-dependent
modulation is equivalent to, but much faster than, solving the full differential equations until
reaching the steady state. More details on this decomposition method are found in Appendix E.

It is interesting to note that the agreement with the well-known Hofstadter butterfly gets worse
in the top and bottom regions of the spectra and eventually breaks down. Those areas correspond
to very low values of the magnetic flux θ for which the number of bands is large and the smoothing
has most dramatic consequences. To understand the break-down from the butterfly structure, we
checked the solutions with the full numerical Runge-Kutta integration method and we observed that
in these regions the system is dynamically unstable. This means that a stationary steady state can
not exist and therefore the Hofstadter butterfly pattern completely breaks down. These deviations
stem from the strength of the counter-rotating-wave-terms as controlled by the amplitude of the
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Figure 4.7: Spatial steady-state oscillation intensity distribution for a lattice of 25 × 25 pendula
with θ = 1/4, γ/J = 0.1, I0 = 0.5, w/J = 50 and ω0/J = 2000, obtained by pumping the central
site with a detuning corresponding to the middle of the lowest band ∆ω/J = −2.7. For panel A
there is no external force Fe/J = 0, and the centre of the intensity distribution indeed remains
at the centre of the system. For panel B, the force Fe/J = 0.5 is directed along the y-direction
as indicated by the arrow and induces a sizeable rightward shift of the centre of the distribution
towards the positive x direction as expected from the integer quantum Hall effect.

temporal modulation V . In our simulation, we take I0 = 0.5 to be fixed which, from Eq. (4.16),
results in an increase of V as the flux is decreased. Larger V implies a larger contribution from
counter-rotating-wave terms, that results in the emergence of a parametric instability Arnold [1989].
We note that the spectra obtained from the Fourier decomposition method appear to be still stable
despite the exponential growth of the Runge-Kutta solution because such a method begins from
the ansatz of a steady-state solution and so cannot predict the instability. More insights into the
instability will be given in the following Chapter.

4.2.5 The quantum Hall effect and the Chern number.

In the previous Sections, we have demonstrated that the system of frequency-modulated coupled
harmonic oscillators can be a classical simulator of the Harper-Hofstadter model. As a final point,
we now show that an analogue of the integer quantum Hall effect can be observed even in a classical
mechanical context. We have seen in Chap. 1 that the main feature of the integer quantum Hall
effect is that a current appears in the direction orthogonal to the applied electric field. The
associated conductivity is an integer multiple of the conductance quantum e2/h, and this integer
is related to the Chern number of the populated bands. For the bosonic model considered here,
these bands can be populated by a suitable excitation scheme.

In order to introduce an analogue of the electric field in our model, we need to generate a
linear potential acting on the excitation field αi,j . Applying such a potential along the positive y-
direction would correspond to a term of the form −iFejαi,j in Eq. (4.3). Equivalently, and perhaps
more straightforwardly, the analogue electric field could be introduced through an additional linear
gradient of the bare oscillation frequency along the y-direction in Eq. (4.6), with ω̃i,j → ω̃i,j +Fej.

In Fig. 4.7-A we show the intensity distribution of a system of 25 × 25 pendula with θ = 1/4
and γ/J = 0.1 in the absence of the external force and for a detuning ∆ω/J = −2.7 such that only
the lowest band is excited with a resulting population that is approximately uniform. As discussed
by Ozawa and Carusotto [2014], these conditions can be fulfilled provided the energy width of
the band ∆width is much smaller than the band gap ∆gap and the loss rate falls in between these
two energy scales. The intensity pattern is symmetric both in x and in y and is centred around
the middle point. When a non-zero force Fe/J = 0.5 along the vertical direction is applied as in
panel 4.7-B, the oscillation pattern clearly shifts to the right in the direction orthogonal to the
applied force. This is a manifestation of the Lorentz force and a clear signature of a Hall-like effect.
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Band 1st 2nd 3rd

θ = 1
3

Ce −0.803 −0.873
C −1 +2 −1

θ = 1
4

Ce −0.972
C −1 +1 +1

θ = 1
5

Ce −0.878
C −1 −1 +4

θ = 2
5

Ce +1.725
C +2 −3 +2

Table 4.1: Estimated value Ce of the Chern numbers as calculated from Eq. (4.23) for a system of
25× 25 lattice sites with the parameters given in the main text. These are compared to the exact
values C, for different bands and several values of the rational flux θ.

In order to assess the quantized nature of this Hall effect, we can quantify the lateral shift as:

〈x〉 ≡
∑
i,j

j|Ai,j |2

I(ωex)

and compare it to the prediction for the integer quantum Hall effect in driven-dissipative systems
of Ozawa and Carusotto [2014]:

〈x〉 = −Fe
(
qC

2πγ
+ η

)
. (4.23)

The q in Eq. (4.23) is the denominator of the rational flux θ = p/q, while C is the Chern number of
the excited band, as defined in Eq. (1.29). The real number η quantifies the spurious contribution
of the bandwidth, that is responsible for a non-uniform population of the band, as well of the other
neighbouring bands.

In Table 4.1 we summarize the estimated Chern numbers Ce of different bands for four different
θ as calculated from Eq. (4.23) for a system of 25 × 25 lattice sites, ω0/J = 2000, w/J = 50,
Fe/J = 0.07 and ∆width < γ < ∆gap. The constant η, that does not depend on the losses γ,
is eliminated by calculating the linear coefficient in the shift given in Eq. (4.23) for two values
of γ ∈ [∆width,∆gap]. Choosing any value in this frequency range only affects the calculation
of the Chern number to the least-significant digit. When the method is not applicable because
∆width & ∆gap, the corresponding Chern number of these bands was not calculated. In all other
cases, the agreement with the Chern number C of the Harper-Hofstadter model is good.

The topological invariant, together with the energy spectra and the chiral edge states, confirm
that the system described in this Chapter, within the rotating wave approximation, is the classical
mechanical analogue of the Harper-Hofstadter model. In the next chapter we shall discuss the
relaxation of the rotating wave approximation and its role in the effective model.
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Chapter 5

The Harper-Hofstadter model in a
classical mechanical system: beyond the

rotating-wave approximation.

If you raise a wall, think of what is left outside.

Italo Calvino – Il barone rampante.

We have shown in Chap. 3 that Newton’s equations for a system of coupled classical
harmonic oscillators are, in a convenient regime, analogous to the Heisenberg equations of motion
obtained from a quantum tight-binding Hamiltonian. In Chapter 4 we have also proved that
arrays of pendula, with a specific frequency-modulation scheme, obey the effective dynamics of the
Harper-Hofstadter model.

The rotating-wave approximation plays a crucial role in the validity of this formal analogy.
In fact, it allows us to neglect, at the level of the effective Hamiltonian, the terms that are “not
commuting” with the number “operator” α∗α, and to keep only the ones that are conserving the
oscillation energy |α|2 (i.e. the instantaneous energy rather than the total energy, which also
contains the elastic energy of the springs). In such a way, the remaining terms are exactly the
ones of a tight-binding Hamiltonian, when the quantum operators are replaced by C-numbers. In
Chap. 4, we also mentioned that when the rotating-wave approximation is more and more relaxed,
a break-down of the effective Harper-Hofstadter model may happen.

In this Chapter we want to deeply investigate the limitations of such a mapping as the role of
the counter-rotating-wave terms is increased. To this end, we study the eigenvalues of the system
without driving and dissipation, which give an energy spectrum that is not smeared out by the
losses and to obtain a clear estimate of the gaps between energy bands. As a result, we observe a
distortion of the Harper-Hofstadter bands, that is eventually accompanied by a band closing with
the disappearance of topological edge states for increasing strength of the counter-rotating-wave
terms in the equation of motion. Besides, we also notice that, for certain values of the parameters,
complex energy modes in the energy spectrum may appear. Those complex modes signal the
emergence of a dynamical instability, which was anticipated also in the previous Chapter when
discussing the Hofstadter butterfly around Fig. 4.6. We study such an instability and relate it to
the parametric instability of a classical system with time-dependent parameters, that is well-known
from classical mechanics textbooks such as Arnold [1989].

The main results of this chapter are partially reported in Salerno et al. [2016].

5.1 A reformulation of the model.

In this section we want to derive the Floquet energy spectrum of the system of frequency-
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modulated coupled pendula without driving and dissipation. We will not integrate the differential
equation as we did in Chap. (4), but rather directly diagonalize the Floquet effective Hamiltonian.
In this way, by making use of the theory of stability in classical mechanics, we can gain more
analytical insights into the parametric instability and predict its emergence.

It is convenient to recast the N equations in Eq. (4.3), together with the corresponding N
equations for α∗, in the matrix form:

i
∂

∂t

(
~α
~α∗

)
=M(t)

(
~α
~α∗

)
, (5.1)

where ~α = (α1,1, α2,1 . . . αNx−1,Ny , αNx,Ny )> is a column vector. The 2N × 2N time-periodic
matrixM(t) has the following block-structure:

M(t) =

(
A(t) B(t)
−B(t) −A(t)

)
. (5.2)

The A(t) and B(t) are N × N real symmetric matrices, periodic with the modulation period
T = 2π/w, and with the following structure:

A(t) =



dA1,1(t) −Ωx 0 . . . 0 −Ωy 0 . . . . . . 0
−Ωx dA2,1(t) −Ωx 0 . . . 0 −Ωy 0 . . . 0

0 . . .
. . . . . . . . . 0 . . . 0

. . . . . . 0

0 . . .
. . . 0 . . .

. . . . . . . . . 0 . . .
. . . . . . 0

0 . . .
. . . 0 . . . 0

. . . . . . . . . . . . 0
0 . . . 0 −Ωy 0 . . . 0 −Ωx dANx−1,Ny

−Ωx
0 . . . . . . 0 −Ωy 0 . . . 0 −Ωx dANx,Ny (t)


, (5.3)

where the diagonal elements are: dAi,j(t) = ω0 + wS(i) + Vi,j(t) and i, j are the indexes along
the lattice. The matrix B(t) has the same structure as A(t) if the diagonal elements are instead:
dBi,j(t) = Vi,j(t) + 2Ωx + 2Ωy.

Due to the coupling between the variables ~α and ~α∗, we notice that the matrix M(t) is not
Hermitian with respect to the standard positive-definite inner product, but that:

M(t)† = σzM(t)σz (5.4)

where σz =

(
I 0
0 −I

)
and I is the N×N identity matrix. From the specific structure of the matrix

M(t) and the fact that A(t) and B(t) are real symmetric matrices, Eq. (5.4) is easily proved.

5.1.1 The mapping at a period.
The mapping at a period is defined as:

U
(
~α(0)
~α(0)∗

)
=

(
~α(T )
~α(T )∗

)
. (5.5)

This represents the evolution operator of the state (~α, ~α∗)> within one period of the modulation
T . The time evolution can be expressed as the evolution with a time-independent matrix. In
fact, according to the Floquet theory of time-periodic systems, see for instance Bukov et al. [2015],
we have that the mapping is defined as the time-ordered exponential matrix of the stroboscopic
Floquet matrixMF :

U = e−iMFT ≡ T e−i
∫ T
0
M(t)dt . (5.6)

Without loss of generality, we can focus on the properties of this effective time-independent
stroboscopic Floquet matrix MF rather than the original M(t). Let’s say that εn is then an
eigenvalue ofMF :

MF

(
~un
~vn

)
= εn

(
~un
~vn

)
, (5.7)
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where ~un and ~vn are column vectors of length N . The matrix MF has a block structure similar
to the one ofM(t) in Eq. (5.2). Using its explicit expression, provided that all blocks are real, it
follows that:

MF

(
~v∗n
~u∗n

)
= −ε∗n

(
~v∗n
~u∗n

)
. (5.8)

5.2 The instability.
The non-Hermiticity of M(t) with respect to the standard inner product, that is stated in

Eq. (5.4), is crucial for the appearance of complex energy-modes and the emergence of an instability.
In fact, if M(t) were a Hermitian matrix, then U would be unitary and the eigenvalues of the
stroboscopic Floquet matrixMF would always be real, as in Shirley [1965]. In our system, instead,
the matrixM(t) describes, in terms of the complex variables in Eq. (4.2), the one-period evolution
of the system which is symplectic in the original xi,j and pi,j variables. As a result, this matrix
is not Hermitian with respect to the standard inner product, as shown in Eq. (5.4) which implies
that, in general, the eigenvalues of the Floquet matrixMF can also be complex, so the system can
be dynamically unstable.

It is known from classical mechanics textbooks as Arnold [1989], that if all the eigenvalues λn of
the mapping at a period U are distinct and lie on the unit circle in the complex plane, the system
is strongly stable, as it was proved by Krein [1950]. Since the Floquet matrix is related to U by
Eq. (5.6), the stability of the system can be checked just by looking at the eigenvalues of MF .
Notice that the condition on the eigenvalues of U to lie on the unit circle implies that the Floquet
spectra has to be real. In fact, if εn is an eigenvalue of the Floquet matrixMF with eigenvector
(~un, ~vn)

>, then the eigenvalues of U from Eq. (5.6) are:

U
(
~un
~vn

)
= e−iMFT

(
~un
~vn

)
= e−iεnT

(
~un
~vn

)
, (5.9)

therefore
λn = e−iεnT . (5.10)

It is straightforward to check that if εn ∈ R, i.e. the Floquet energies are real, then |λn| = 1 is on
the unit circle and the system is dynamically stable, as it is expected.

5.2.1 The Krein signature.
From Eq. (5.7) and Eq. (5.8), we see that the matrixM(t), hence also the matrixMF , has two

set of N eigenvalues εn and −ε∗n, that are associated with different eigenvectors. Such eigenvectors
can be distinguished according to their Krein signature, as shown by Krein [1950]. The Krein
signature of a certain eigenvector (~un, ~vn)

>, corresponding to a certain eigenvalue, is defined as
the sign of the norm:

K ≡ sign
[(
u∗n v∗n

)
σz

(
un
vn

)]
= sign

[
|un|2 − |vn|2

]
. (5.11)

Notice that this definition corresponds to the norm of a semi-definite inner product, that follows
from the modified condition of Hermiticity of the matrixM(t) in Eq. (5.4).

By definition, the Krein signature in Eq. (5.11) is either ±1, 0. The arising of the dynamical
instability is signalled by this signature. In fact, we show that all unstable eigenvalues ofMF have
K = 0.

From Eq. (5.7) and Eq. (5.8), it is easy to prove that if the Krein signature for the eigenvector
corresponding to the eigenvalue εn is K = +1:

|~un|2 − |~vn|2 > 0,

then the Krein signature corresponding to the eigenvalue −ε∗n is K = −1, since:

|~vn|2 − |~un|2 < 0.

Conversely, if the former is negative, the latter is positive. Therefore, if all the Krein signature are
non-zero, there are equal numbers of states with positive and negative K.
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Figure 5.1: Representation on the unit circle of the eigenvalues of the matrix U in the complex
plane. Red points corresponds to eigenvalues with Krein signature K > 0, points in blue are the
eigenvalues with K < 0 and green points are unstable eigenvalues with K = 0. Panel A shows a
stable configuration for ω0/w = 5.4, where all eigenvalues lies on the unit circles. Panel B shows
the unstable configuration ω0/w = 5.08, where some eigenvalues are clearly not lying on the unit
circle. Parameters are: θ = 1/5, s = 5, w/J = 50, and periodic boundary conditions apply.

We now prove that the Krein signature of a certain eigenvector of the matrixMF is zero if the
corresponding eigenvalue has a non-zero imaginary component.

We will use that the row vector
(
~u†n,−~v†n

)
is a left eigenvector ofMF with the eigenvalue ε∗n.

In fact:

(
~u†n −~v†n

)
MF =

[
M†F

(
~un
−~vn

)]†
=

[
M†Fσz

(
~un
~vn

)]†
=

[
σzMF

(
~un
~vn

)]†
=

[
εn

(
~un
−~vn

)]†
=
(
~u†n −~v†n

)
ε∗n.

(5.12)

Therefore, we can write:

(
~u†n −~v†n

) [
MF

(
~un
~vn

)]
=
[(
~u†n −~v†n

)
MF

](~un
~vn

)
(
~u†n −~v†n

) [
εn

(
~un
~vn

)]
=
[(
~u†n −~v†n

)
ε∗n
](~un

~vn

)
.

(5.13)

Multiplying out, we have:

εn
(
|~un|2 − |~vn|2

)
= ε∗n

(
|~un|2 − |~vn|2

)
. (5.14)

If the imaginary part of εn is non-zero, εn 6= ε∗n. Then, the previous equation is true only if:

|~un|2 − |~vn|2 = 0. (5.15)

Therefore, an unstable mode εn of the matrixMF corresponds to an eigenvector with zero Krein
signature. This also holds for the eigenvalues λn of U .

We now show a visual representation of emergence of the instability as the parameters of the
system are changed. We have just proved that an unstable mode λn of the mapping U has signature
K = 0, and we know that in this case |λn| 6= 1. Krein [1950] showed that an eigenvalue of U can
leave the unit circle only by colliding with another eigenvalue of opposite Krein signature, while
two eigenvalues of the same Krein signature go through one another.

This is evident in Fig. 5.1, where we represent, on the unit circle in the complex plane, the
eigenvalues of the matrix U coloured according to their Krein signature. Eigenvalues with positive
K are shown in red, eigenvalues with negative K are displayed in blue and unstable eigenvalues
with zero Krein signature are displayed in green.

We have diagonalized the matrix U obtained from Eq. (5.6) for two different values of the ratio
ω0/w. We recall that the eigenvalues of the Floquet matrix MF correspond to the oscillation
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Figure 5.2: Floquet quasi-energies εn, modulo w, in units of w, associated with K ≥ 0, and
|λn| ≥ 1. The system has a magnetic flux θ = 1/5, with periodic boundary conditions; driving and
dissipation are not included. The energy spectra are presented as a function of ω0/w, for a fixed
value of the amplitude modulation V/w ≈ 0.4. When all the eigenvalues at a particular frequency
are stable, we denote them in black, otherwise we denote them either in red or blue. Red points
are purely real modes, while blue points are the unstable modes, plotted according to the real part
of their complex energy. Parameters are: s = 5, w/J = 50, V/J = 20, and periodic boundary
conditions apply.

frequencies of the system, and therefore are in the vicinity of the natural bare frequency ω0. As a
consequence, when the ratio ω0/w is changed, the eigenvalues λn of U rotate on the unit circle. A
full rotation on the unit circle is performed when ω0/w is increased by 1, because they are periodic
with w = 2π/T , as: e−iεn(t+T ) = e−iεnt.

In panel 5.1A, we show the case of ω0/w = 5.4. All eigenvalues λn have K 6= 0 and, as expected,
they lie on the unit circle in the complex plane. When the natural frequency of the pendula ω0 is
reduced, the eigenvalues with negative Krein signature rotate clock-wise, while the eigenvalues with
positive Krein signature rotate counter-clock-wise. The two different sets collide when reaching
the real axis on the complex plane, and an instability develops. In panel 5.1B where ω0/w = 5.08,
we show that eigenvalues with zero Krein signature are not lying on the unit circle, while some of
the positive K eigenvalues have already collided with the negative ones and moved on.

5.2.2 The parametric instability.

We have just seen that, as a function of the ratio ω0/w, the eigenvalues of the mapping U rotate
on the unit circle. The parametric instability arises every time the positive and negative Krein
eigenvalues meet on the real axis of the complex-plane. This happens twice in a round-trip, at
Re[λn] = ±1. The eigenvalues λn perform a full rotation on the unit circle when ω0/w is increased
by 1, therefore the instability occurs when:

2ω0/w = m, with m ∈ N. (5.16)

This result is well-known in the classical mechanical context of the parametric resonance, see
Arnold [1989]. However, the result in Eq. (5.16) is valid in the limit of small amplitude of the
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modulation V → 0, Arnold [1989]. In general, there is a region of parameters ω0/w, around the
values of Eq. (5.16) for which the system is parametrically unstable, and a large amplitude V
increases this region.

In Fig. 5.2 the Floquet energy spectra εn of the system are shown as the bare frequency ω0

is changed for a fixed value of w and of the amplitude modulation V/w ≈ 0.4. With no loss of
information, in the figure we have only presented the stable eigenvalues εn of the Floquet matrix
MF that are associated with a positive Krein-signature and among the unstable eigenvalues, only
the ones with | e−iεnT | = |λn| ≥ 1. The eigenvalues are displayed modulo w in order to emphasise
their linear dependence on the frequency ω0 and their periodicity in w. When all the eigenvalues
εn at a particular frequency are stable, we denote them in black, otherwise we denote them either
in red or blue. The points in blue correspond to the modes which have become unstable, plotted
here according to the real part of the energy. The points in red are eigenmodes with purely real
energies. We refer to frequencies for which there are blue points as instability regions.

As anticipated above, we observe that the instability regions occur every integer and half-integer
times of ω0/w. In particular, it is evident that purely imaginary modes start to develop around
εn/w = 0 and εn/w = ±1/2, which is Re[λn] = 1. We also notice that the extension of the blue
unstable points (that have K = 0) gets larger as the rotating-wave approximation is less valid in the
small ω0 limit. However, we find that the instabilities still persist for a very high ratio ω0/w ≈ 12
in the conservative case considered here.

Theoretically, the parametric instability can be observed around the infinite collection of points
in Eq. (5.16). In practice, it is usually observed only for small values of the m in Eq. (5.16), and
the reasons are the followings. The region of instability gets thinner as the number m is increased,
as is visible also in Fig. 5.2. Besides this, the instability itself is weaker for large m as shown
in Arnold [1989], and we have also observed that the deviation from |λn| = 1 gets correspondingly
weaker as m is increased. Once losses are included in the model, stability improves because there
is a minimum value V̄ of the amplitude of the modulation in order for the parametric instability
to appear. The value V̄ gets larger for larger m in Eq. (5.16). These arguments explain why in
the large ω0 calculations shown in the previous Chapter, instabilities were only observed at very
high amplitude of the modulation V , on the order of V/J ≈ 100.

5.3 The band-gap closing and the topological transition.

Finally, we show how the detailed structure of the Floquet quasi-energy spectra is affected by
the counter-rotating-wave terms as the ratio ω0/w is reduced.

We consider a system with magnetic flux θ = 1/q and apply periodic boundary conditions,
so that the edge states do not appear in the energy spectra, allowing us for a clear estimate of
the presence and the extension of the band-gaps. Periodic boundary conditions are easily applied
when considering a finite system of Nx × Ny lattice site, with Nx = Ny commensurate with the
least common multiple of q and s. For simplicity, we have chosen q = s = 5, and Nx = Ny = 15.

The eigenvalues ofMF are calculated as in the previous section and are exactly the ones already
represented in Fig. 5.2. However, in order to allow us for an easy and direct comparison of the
spectra at different ω0/w, we have shifted each of them by the quantity ω̄ as defined in Eq. (4.22).
The result of this procedure is plotted in Fig. 5.3.

For large values of ω0/w ≈ 20 (not shown here), we have that the spectra consists of 5 bands in
perfect agreement with the Harper-Hofstadter model. This is because the rotating-wave approxi-
mation is well satisfied and the effective dynamics is the one of the Harper-Hofstadter model.

When the ratio between ω0/w is decreased, the band structure of the Floquet matrix re-
mains qualitatively similar to the Harper-Hofstadter model, with only minor deviations due to
the counter-rotating-wave terms, that mainly reduce the band-gaps. However, a remarkable result
is that as ω0/w is reduced further, the band-gaps eventually close. From Fig. 5.3 it is not clear
whether small gaps open again after ω0/w ≈ 7, due to the finite system size.

To understand the topological properties of the system beyond the rotating-wave approxima-
tion, we have also studied the eigenstate ofMF with open boundary conditions, searching for the
localized edge states. The resulting spectra is similar to the one in Fig. 5.3, excect that modes
corresponding to the edge states are visible between the gaps, therefore the identification of the gap
is not as immediate as it was with the periodic-boundary conditions. By analysing the eigenstates,
as soon as all the gaps are closed, around ω0/w ≈ 7, we notice that none of the eigenstates ofMF

are localized along the edges any more.
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Figure 5.3: Floquet quasi-energies εn, modulo w, shifted by ω̄ as defined in Eq. (4.22), associated
with either a positive Krein-signature K or with K = 0 and |λn| ≥ 1. The system has a magnetic
flux θ = 1/5, with periodic boundary conditions; driving and dissipation are not included. The
energy spectra are presented as a function of ω0/w, for a fixed value of the amplitude modulation
V/w ≈ 0.4. When all the eigenvalues at a particular frequency are stable, we denote them in black,
otherwise we denote them either in red or blue. Red points are purely real modes, while blue points
are the unstable modes, plotted according to the real part of their complex energy. Parameters
are: θ = 1/5, s = 5, w/J = 50.

From this analysis, we conclude that the counter-rotating-wave terms have an important role in
the break-down of the effective Harper-Hofstadter model. When the parameters are far from the
rotating-wave approximation, the system does not present any of the clear evidences of non-trivial
topology, as for example the localized edge states.
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Chapter 6

The honeycomb lattice.

.

Graphene is much more than just a flat crystal. It
possesses a number of unusual properties which are
often unique or superior to those in other materials.

Konstantin S. Novoselov – Nobel lecture.

So far, we have considered the square lattice geometry for the implementation of an
artificial gauge field by time-reversal symmetry breaking and the realization of the topological
Harper-Hofstadter model in a classical mechanical system. However, as we have seen in Chap. 2,
the generation of a non-trivial coupling phase is not the only signature of a magnetic field. We
have anticipated that in the honeycomb lattice geometry of graphene, for example, inhomogeneous
strain is responsible for the generation of an artificial pseudo-magnetic field.

Graphene is a material made out of carbon atoms arranged in an hexagonal structure. It
was the first two-dimensional material to be identified, successfully isolated and characterized.
It is mechanically a very strong, transparent, flexible conductor, and it immediately attracted
the scientific community for these properties, which are very interesting for both fundamental
studies and device applications. In fact, from the electronic point of view, it is a semi-metal with
unusual linearly-dispersing electronic low-energy excitations that mimic the physics of quantum
electrodynamics as these excitations can be described as massless, chiral, Dirac fermions.

It is exactly this linear Dirac dispersion that makes graphene such a peculiar material with
so many extraordinary properties, as reviewed for example by Castro Neto et al. [2009], Goerbig
[2011] and Vozmediano et al. [2010]. Dirac fermions behave differently compared to ordinary
electrons if subjected to magnetic fields or external electrostatic potentials, giving rise to interesting
phenomena such as relativistic Landau levels or the paradox of Klein tunnelling. We shall also see
how the effect of an elastic deformation of the honeycomb lattice structure, such as the one induced
by a mechanical strain, can be described in terms of an artificial valley-dependent magnetic field
acting on the electrons.

In this Chapter, we review those properties of particles moving in an honeycomb lattice that
are the most relevant to the work carried out in the thesis.

6.1 Band structure of the honeycomb lattice.

The lattice structure of graphene is the honeycomb lattice, as is shown in the left part of Fig.6.1,
in which the carbon atoms occupy the vertices of the hexagons. The honeycomb lattice is a Bravais
lattice with two atoms per unit cell, labelled as A and B, which are at a distance a, that is the
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A BR1

R2

R3

a1

a2

K

K'

Figure 6.1: On the left, the honeycomb lattice in real space, composed of sites arranged on the
vertices of the hexagons. The unit cell is highlighted in grey and contains the two crystallographic
inequivalent points A and B. The two vectors, ~a1 and ~a1, that generate the lattice from the unit
cell are also indicated, together with the nearest-neighbour vectors ~R1, ~R2 and ~R3. The Brillouin
zone is depicted on the right, and has the same hexagonal structure as the real-space lattice. The
grey area, that represents the real-space unit cell transformed in quasi-momentum space, has two
inequivalent points K and K ′.

lattice spacing. The generators of the lattice, indicated in Fig.6.1, are:

~a1 =

(
3

2
a,

√
3

2
a

)
~a2 =

(
3

2
a,−
√

3

2
a

)
.

With these generators, the whole lattice can be explored by moving from one unit cell to the other
by an integer times i, j of unit vectors.

It is also useful to define the vectors that connect nearest-neighbour sites as follows:

~R1 = (−a, 0) ~R2 =

(
1

2
a,

√
3

2
a

)
~R3 =

(
1

2
a,−
√

3

2
a

)
.

The reciprocal lattice is shown in the right part of Fig.6.1. The first Brillouin zone can be taken
in the form of a hexagon and is delimited by the points K and K ′, which are located at:

K =

(
2π

3a
,

2π

3
√

3a

)
, K =

(
−2π

3a
,

2π

3
√

3a

)
, K =

(
0,− 4π

3
√

3a

)
K ′ =

(
−2π

3a
,− 2π

3
√

3a

)
, K ′ =

(
2π

3a
,− 2π

3
√

3a

)
, K ′ =

(
0,

4π

3
√

3a

)
.

(6.1)

As for the real-space lattice, only two of these six points are independent and can be taken in
the unit cell of the reciprocal lattice, as visible in the right part of Fig. 6.1, while the rest are all
equivalent by symmetry.

To obtain the band structure of the honeycomb lattice, we consider the tight-binding Hamil-
tonian in real space, as in Wallace [1947]. We call respectively â(i, j) and b̂(i, j) the destruction
operator of a particle on the lattice site A and B in the unit cell (i, j). The coupling between near-
est neighbour atoms along the direction of ~Rl is indicated as tl. The tight binding Hamiltonian
is:

Ĥ =
∑
i,j

[
− t1â†(i, j)b̂(i, j)− t2â†(i+ 1, j)b̂(i, j)− t3â†(i, j + 1)b̂(i, j)

− t1b̂†(i, j)a(i, j)− t2b̂†(i− 1, j)â(i, j)− t3b̂†(i, j − 1)â(i, j)
]
,

(6.2)

where we have introduced the labelling of the unit cells as shown in Fig. 6.2. We now move into
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Figure 6.2: Edge terminations in the honeycomb lattice and labelling of the unit cells used in
Eq. (6.2). Each unit cell is composed by two sites of type A and B, which are shown in blue
and red respectively. The unit cells are also labelled with two indexes, i, j, which are incremented
according to the vectors ~a1 and ~a2.

quasi-momentum space, where we define operators as:

â(i, j) =
1

V

∫
kx∈BZ

∫
ky∈BZ

âk ei(i~k·~a1+j~k·~a2) dkxdky

b̂(i, j) =
1

V

∫
kx∈BZ

∫
ky∈BZ

b̂k ei(i~k·~a1+j~k·~a2) e−i~k·~R1 dkxdky,

where the integrals run over quasi-momenta in the Brillouin zone and V is the total area of the
Brillouin zone. The extra term ei~k·~R1 is for taking into account the inter unit-cell distance between
A and B sites. Substituting everything into Eq. (6.2), we have Ĥ = 1

V

∫
kx∈BZ

∫
ky∈BZ Ĥkdkxdky,

where:

Ĥk = −âk b̂†k e−i~k·~R1

(
t1 + t2 e−i~k·~a1 +t3 e−i~k·~a2

)
− b̂kâ†k ei~k·~R1

(
t1 + t2 ei~k·~a1 +t3 ei~k·~a2

)
. (6.3)

The previous expression becomes:

Ĥk = (â†k, b̂
†
k)

(
0 V ∗(~k)

V (~k) 0

)(
âk
b̂k

)
= (â†k, b̂

†
k)Ĥ

(
âk
b̂k

)
, (6.4)

where we have used a pseudo-spin matrix expression that describes the two sublattices of the
honeycomb lattice. The off-diagonal element is:

V (~k) = −t1 exp (−ikxa)− t2 exp

(
i
kx + ky

√
3

2
a

)
− t3 exp

(
i
kx − ky

√
3

2
a

)
,

which has a straightforward expression in terms of the nearest neighbour vectors:

V (~k) = −t1 ei~k·~R1 −t2 ei~k·~R2 −t3 ei~k·~R3 . (6.5)

By diagonalizing the hamiltonian Ĥ in Eq. (6.4), we obtain the energy structure of the honeycomb
lattice as a function of the quasi-momentum kx and ky in the first Brillouin zone. This energy
dispersion consists of two bands. In particular, for the case of homogeneous hopping t1 = t2 =
t3 = t these two bands have the following analytical expression:

E = ±t

√√√√3 + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+ 2 cos

(√
3kya

)
. (6.6)
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Figure 6.3: Energy bands of graphene, given in (6.6), as a function of quasi-momentum ~k in the
first Brillouin zone.

The energy bands are shown in Fig. 6.3, for quasi-momenta belonging to the first Brillouin zone,
for values of kx ∈ [−2π/(3a), 2π/(3a)] and ky ∈

[
−4π/(3

√
3a), 4π/(3

√
3a)
]
, such that the Brillouin

zone has the form of a hexagon, as shown in Fig. 6.1. From Fig. 6.3 we notice that the two bands
touch each other at E = 0 in six points; these are called Dirac points. We also notice that these
Dirac points correspond to the K and K ′ points, which are the corners of the hexagonal Brillouin
zone.

6.1.1 Expansion around the K point: Dirac-like Hamiltonian.

We now want to give more insights into the energy dispersion at the Dirac points. This disper-
sion can be obtained by expanding the full band structure in Eq. (6.6), close to the desired vector
in Eq. (6.1), as ~k = ~K + ~q, with |~q| � 1/a. An equivalent, but more interesting way, is to expand
directly the Ĥ in Eq. (6.4): this procedure will also allow us to clearly see that the tight-binding
Hamiltonian can be put in the form of a Dirac-like Hamiltonian, as done by Di Vincenzo and Mele
[1984].

From Eq. (6.5) for t1 = t2 = t3 = t, we have at the first order of the expansion around the K
point the following off-diagonal element: V (~k) → V ( ~K + ~q) ≈ −i3at/2(qx + iqy). Therefore, the
Hamiltonian can be written as:

Ĥ =

(
0 V ∗(~k)

V (~k) 0

)
≈
(

0 i~vD(qx − iqy)
−i~vD(qx + iqy) 0

)
, (6.7)

having introduced the quantity:

vD =
3at

2~
. (6.8)

In order to show the equivalence with the Dirac-like Hamiltonian, there is one caveat: the extra
imaginary factors must be reabsorbed into a new definition of the spinor wave functions around
the Dirac point, such that:

Φ =

(
ψA
ψB

)
→ Ψ =

(
−iψA
ψB

)
. (6.9)
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In this way, the Hamiltonian in Eq. (6.7) is transformed to a new Hamiltonian ĤD, such that Ψ is
an eigenvector of eigenvalue E, that are the same as in Eq. (6.6) close to the Dirac points. In the
end we have that the ĤD can be put in the following form, using the usual 2× 2 Pauli matrices in
the column vector form ~σ ≡ (σx, σy)>:

ĤD = −~vD ~σ · ~q. (6.10)

Equation (6.10) tells us that the electrons in graphene can be described by an equation that is
formally equivalent to the massless Dirac equation. The sublattice pseudo-spin is represented by
the Pauli matrices ~σ, where “spin up” corresponds to the component on one sublattice and “spin
down” to that on the other one. The energy dispersion of such a Hamiltonian is linear in ~q, resulting
in an isotropic cone-like shape whose slope is constant and equal to the Dirac velocity vD. For
their shape, the low-energy bands expanded around the Dirac points are also called “Dirac cones”.

6.2 Gauge field in honeycomb lattices.
In this section we shall now see how an artificial gauge field can be generated in honeycomb

geometries by means of a deformation of the lattice, for example, such as the one generated by a
mechanical stretch of a graphene flake Vozmediano et al. [2010]. In fact, Kane and Mele [1997]
and then Suzuura and Ando [2002] realized that the effects of a size or a shape deformation in
carbon nanotubes are the same as the ones of an effective vector potential acting on the pristine
system. This idea was soon extended to two-dimensional graphene, as done by Morozov et al.
[2006], Guinea et al. [2010a], de Juan et al. [2012], where the possibility of strain engineering were
also explored, as in Pereira and Castro Neto [2009], Guinea et al. [2010b].

As a first step, we consider a homogeneous strain, that is a constant and spatially-independent
hopping with different values along the three directions of the lattice:

t1 6= t2 6= t3.

As done in the previous section, we expand the Hamiltonian in Eq. (6.4) around the K (ξ = 1)
or K ′ (ξ = −1) point by setting ~k =

(
qx, qy − ξ4π/(3

√
3a)
)
, where |~q| � 1/a and the valley index

ξ = ±1 labels the K, K ′ -points. At first order in q, we get that the off-diagonal term in the
Hamiltonian is:

V

(
~q − ξ~y 4π

3
√

3a

)
≈ − qx

(√
3a

4
ξ(t2 − t3)− ia

4
(4t1 + t2 + t3)

)
−

qy

(
3a

4
ξ(t2 + t3)− i

√
3a

4
(t2 − t3)

)
−

1

2
(2t1 − t2 − t3)− i

√
3

2
ξ(t2 − t3).

(6.11)

With a simple manipulation, we can re-write Eq. (6.11) in the form:

V (~q) ≈ −ivxD(~qx + eAx) + vyD(~qy + eAy), (6.12)

where the Dirac velocity is generally no longer isotropic,

vxD =
a

4~
(4t1 + t2 + t3) + i

√
3a

4~
ξ(t2 − t3)

vyD =
3a

4~
(t2 + t3)− i

√
3a

4~
ξ(t2 − t3),

(6.13)

and an artificial magnetic vector potential appears with components Ax,y such that:

vxDeAx =

√
3

2
ξ (t2 − t3)

vyDeAy =
1

2
ξ (2t1 − t2 − t3) .

(6.14)
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Figure 6.4: Energy bands for different values of the ratio t1/t. From left to right: t1/t = 1.2, 1.6,
1.8, 2.4. Notice how the Dirac points move in ky, because of an effective vector potential Ay.

Since the sign of ~A depends on the particular valley index ξ, hence around which Dirac point is
the expansion calculated, this potential is called a pseudo-vector potential.

In the t1 = t2 = t3 case of a pristine honeycomb lattice, it is easy to check that the artificial
vector potential is zero and the Dirac velocities vx,yD in both the x, y directions are equal to each
other and to Eq. (6.8).

For generic, but still spatially-uniform hoppings, t1 6= t2 6= t3, the band dispersion as seen in
Fig. 6.3 is distorted. Provided that the hopping imbalance is not too strong, the Dirac cones are still
present, but their position in quasi-momentum space is shifted by an amount that is proportional
to the vector potential ~A. At the same time, the different values of the Dirac velocities in the
x, y directions vxD 6= vyD and the appearance of an imaginary part in these signal that neither the
group velocity nor the pseudo-spin are parallel to the wavevector ~q any more. This imaginary part
can be understood as off-diagonal components in the Dirac velocity recast in a tensorial form, as
shown in de Juan et al. [2012].

6.2.1 Motion of Dirac points for a homogeneous uni-axial strain.
We now discuss in more quantitative detail the motion of the Dirac points under a homogeneous

strain. As we have introduced, the Dirac points are special points at which the two energy bands
touch each other with a linear dispersion. In order to precisely evaluate these points, one has to
solve det(Ĥ) = 0, which gets to:

t21 + t22 + t23 + 2t1t3 cos

(
3akx

2
−
√

3aky
2

)
+ 2t2t3 cos(

√
3aky) + 2t1t2 cos

(
3akx

2
+

√
3aky
2

)
= 0.

(6.15)
This equation is satisfied for the pristine lattice t1 = t2 = t3 for each of the six K, K ′ points given
in Eq. (6.1).

We now consider the case in which the hopping along two of the three lattice directions are
equal t2 = t3 = t, and we let the hopping in the remaining direction be different but constant over
the lattice, t1 6= t. From the results of the previous section, we know that this particular type of
homogeneous uni-axial strain introduces a vector potential that, according to Eq. (6.14), is purely
oriented along the y-direction:

eAx = 0, eAy =
ξ

vyD
(t1 − t) . (6.16)

We can simplify Eq. (6.15) using that kx = {0,±2π/(3a)} must be on the vertical edges of the
Brillouin zone, since there is no vector potential along x. Therefore, for kx = ±2π/(3a), we have:

t1 ± 2t cos

(√
3kya

2

)
= 0

which has the solution in the first Brillouin zone:

ky = ± 2

a
√

3
arccos

(
t1
2t

)
. (6.17)
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Figure 6.5: Energy spectrum of a semi-infinite ribbon of pristine graphene for three combinations
of terminations along the open direction: bearded-bearded, zigzag-zigzag and zigzag-bearded.

This result means that if t1 = t, the Dirac point is exactly in the K-point ky = 2π/(3
√

3a),
otherwise, it is shifted, as also seen in Pereira et al. [2009].

The motion of the Dirac point is shown in Fig. 6.4, where the energy bands are plotted for
increasing values of the ratio t1/t. It is clear how the point where the bands touch, which are
by definition the Dirac points, move away from the K, K ′ points, which are the corners of the
hexagonal Brillouin zone. For a particular value of the hopping t1 = 2t, the two Dirac points
annihilate into a single one, and then further increase of the t1/t > 2 ratio, results in a gapped
band dispersion. This result is consistent with Eq. (6.17), because t1 = 2t is exactly the maximum
value of t1 for which ky is real, hence a Dirac cone exists.

Homogeneous uni-axial strain is therefore capable of driving a transition, from a gapless semi-
metallic phase to a gapped insulating one, after the critical point t1 = 2t; such a transition is called
a Lifshitz transition. This is also a topological transition, because the two Dirac points can be
associated with opposite topological Berry phases which cancel out when the Dirac point merge.

6.3 The edge states.

Another important aspect of the honeycomb lattice is the presence of zero-energy edge states
depending on the termination of the lattice. When considering a finite ribbon of graphene, there
are three different types of edges according to how the stripe is terminated, as is shown in Fig. 6.2.
These terminations are called armchair, zigzag and bearded, and have different behaviours. Some
of them possess localized zero-energy edge states, which appear flat in the energy spectrum and
which are separated from the rest of the band, as shown by Kohmoto and Hasegawa [2007]. In
particular, the zigzag and bearded edges support these zero edge states, while the armchair is
known to exhibit edge states only for the non uniform case t1 6= t2, t3.

Examples of the spectra obtained for a semi-infinite ribbon with different types of edge termina-
tions are shown in Fig. 6.5, in the homogeneous case t1 = t2 = t3 = t, for a finite number N = 200
lattice sites along the x-direction and for periodic boundary conditions along the y-direction. We
notice that the energy spectra appear similar to those shown in Fig. 6.4 apart from the presence of
flat zero energy modes, highlighted by red lines, that are located in different parts of the Brillouin
zone according to the particular edge termination. As the orientation shown in Fig. 6.2 fixes the
armchair edge along the x-axis, we will not discuss this case, but only the the zigzag and bearded
edges. The first panel on the left of Fig. 6.5 shows the energy spectrum as obtained for a ribbon
that terminates on both ends with a bearded edge. The edge state for this termination is found
between ky ∈

[
− 2π

3
√

3a
, 2π

3
√

3a

]
. In the central panel we show the energy spectrum as obtained for a

ribbon that terminates on both ends with a zigzag edge, which extends from ky ∈
[
− 4π

3
√

3a
,− 2π

3
√

3a

]
and ky ∈

[
2π

3
√

3a
, 4π

3
√

3a

]
. In the third panel the ribbon terminates with bearded on one side and

zigzag on the other, and we see that the edge state that covers all ky’s in the Brillouin zone is
actually the combination of the two edge states on the two different terminations. Details on the
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Figure 6.6: Energy spectrum of inhomogeneous graphene for t2 = t3 = t and t1 = 2t, for three
combinations of terminations: bearded-bearded, zigzag-zigzag and zigzag-bearded.

numerical derivation of these spectra are given in Appendix F.
An interesting feature about edge states is their different behaviour in the presence of a vector

potential. As we saw in the previous section, a vector potential is mimicked with an anisotropic
choice of the three hoppings, for example a uni-axial deformation t2 = t3 = t but t1 6= t. The effect
of this being to shift the Dirac points away from the highly symmetric K,K ′ points towards each
other. The bearded edge state disappears for all ky when the ratio t1/t → 2 tends to the critical
value of the Lifshitz transition introduced above, while conversely, the zigzag edge state extends
more and more for all ky. Results for the special limiting case t1 = 2t are shown in Fig. 6.6 for the
same type of edges already discussed in Fig. 6.5. Not shown in the figure is the appearance of an
edge state for the armchair termination, as discussed instead by Kohmoto and Hasegawa [2007].

The existence of zero-energy edge states can be predicted theoretically, as shown in Ryu and
Hatsugai [2002] and Delplace et al. [2011], based on the bulk-edge correspondence between a non-
trivial Zak phase – which is a Berry phase across a one-dimensional Brillouin zone – and the
existence of a localized state at the boundary of the ribbon.

6.4 The next-nearest-neighbour coupling.

So far we have considered a tight-binding model of the honeycomb lattice with only nearest-
neighbour hoppings. However, for realistic systems, it may be important to go beyond this ap-
proximation. In real graphene, for example, electrons hop to next-nearest-neighbour (NNN) sites
with an amplitude t′ that has been estimated as being on the order of five percent of the nearest-
neighbour hopping t Castro Neto et al. [2009]. Before moving on, we generalize the results of the
previous sections to the case of non-zero NNN hoppings.

The momentum-space Hamiltonian corresponding to Eq. (6.4) in presence of NNN hopping is:

ĤNNN =

(
V ′(~k) V ∗(~k)

V (~k) V ′(~k)

)
= Ĥ+ Ĥ′, (6.18)

where the anti-diagonal matrix Ĥ gives the contribution only from nearest-neighbour hoppings as
before, and the diagonal matrix Ĥ′ describes the NNN hoppings. Following the same strategy as
before, we define the NNN lattice vectors to be:

~D1 =
(

0,
√

3a
)
, ~D2 =

(
3

2
a,

√
3

2
a

)
, ~D3 =

(
3

2
a,−
√

3

2
a

)
.

Then we have:
V ′(~k) = −2t′

(
cos(~k · ~D1) + cos(~k · ~D2) + cos(~k · ~D3)

)
. (6.19)
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Figure 6.7: Energy bands of graphene, given in (6.20), as a function of ~k in the first Brillouin zone.
The NNN coupling strength is t′/t = 0.2 which, compared to the estimates of NNN coupling in
real graphene, has been exaggerated for clarity.

The energies are now:

E =± t

√√√√3 + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+ 2 cos

(√
3kya

)

− t′4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+ 2 cos

(√
3kya

)
.

(6.20)

Figure 6.7 shows the plot of the two energy bands as calculated from Eq. (6.20). We notice that
the principal effect of the NNN coupling is to break the symmetry between the upper and lower
band. However, the physics around the Dirac points, and their positions are affected by the NNN
coupling only to higher orders than the ones considered so far in this Chapter. This is because
the Dirac points are robust against any perturbation that does not break the inversion symmetry
between the two sublattices Kane and Mele [2005a]. Inversion symmetry breaking would correspond
to a σz term in the Hamiltonian Eq. (6.10), while the NNN term in Eq. (6.18) is proportional to
the identity and it only shifts the energy.

6.5 Artificial graphene.
Artificial graphene is a name given to a wide range of two-dimensional systems that mimic the

properties of real natural graphene. Such systems can have the advantage that physical param-
eters are much easier to control and manipulate, even going beyond what is possible for natural
graphene and suggesting new directions in which to push experimental investigations in materials
science Polini et al. [2013].

These systems are realized using particles other than electrons, moving in a honeycomb struc-
ture. Examples of artificial graphene are: light inside a photonic lattice composed of arrays of
waveguides as in Rechtsman et al. [2013c]; microwaves in a photonic lattice composed of dielectric
resonators as in Bellec et al. [2013a]; polaritons in a lattice of coupled micropillars etched in a
planar semiconductor microcavity as in Jacqmin et al. [2014]; ultracold atoms in optical lattices
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as in Tarruell et al. [2012]; or mechanical phonons of a system of masses and springs, as proposed
by Wang et al. [2015c], Kariyado and Hatsugai [2015], or realized by Wang et al. [2015a], Nash
et al. [2015].

Some of the greatest advantages of such artificial graphene systems are that the tunnelling of
particles between different lattice sites can be controlled in an independent and flexible way, and
that the honeycomb lattice can be shaped in any form and with any type of terminations. This
allowed physicists to observe, for the first time, phenomena that were only predicted by theoretical
calculations for the honeycomb lattice, but never observed in real graphene because they were
impossible to realize. For example, a linear and homogeneous uni-axial strain is troublesome to
achieve with real graphene, but very easily implemented in these artificial systems, resulting in
a clear verification of the Dirac point motion, as in Soltan-Panahi et al. [2011], Rechtsman et al.
[2013a] and Bellec et al. [2013b]. Another example is the observation of the localized edge states,
in particular the one associated with the bearded edge which is unstable in real graphene, as done
in Plotnik et al. [2014], Bellec et al. [2014] and Milićević et al. [2015]. Furthermore, with these
artificial realizations, it is possible to tailor or enhance physical quantities that we cannot control
in natural graphene, such as the next-nearest-neighbour or spin-orbit coupling, as done in Jacqmin
et al. [2014], and to design new types of Hamiltonians, as in Rechtsman et al. [2013b], Jotzu et al.
[2014].
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Chapter 7

Artificial magnetic field and
pseudo-Landau levels in a

strained honeycomb lattice.

The eye does not see things, but images of things
that mean other things.

Italo Calvino – Le città invisibili.

In the previous Chapter, we have reviewed some of the general properties of honeycomb
lattices. We have seen that the low-energy modes near the Dirac points are described by an equation
that is formally equivalent to the massless Dirac equation, and in particular that an homogeneous
strain can be described in terms of an artificial valley-dependent magnetic vector potential. As
a consequence, a suitably spatially-dependent strain can generate an artificial constant magnetic
field, such that the low-energy modes are quantized Landau levels. Due to the underlying Dirac
dispersion of the honeycomb band structure, the spacing between Landau levels will not be uniform,
as for a massive particle in free space with a real magnetic field, but will rather follow a square-root
law, starting from zero energy for both positive and negative energies.

The idea of a strain-induced artificial magnetic field was studied in real graphene, as done
by Pereira and Castro Neto [2009], Pereira et al. [2009], Guinea et al. [2010a] and Guinea et al.
[2010b], where the strain is physically applied through mechanical forces acting on the sample.
The atoms forming the lattice are physically pushed closer together or pulled further apart in
a spatially-dependent way, resulting in a modulation of both the sample geometry and the hop-
ping amplitudes, see Castro Neto et al. [2009]. Typical geometries used in experiments involve
graphene nanobubbles Levy et al. [2010] or trigonal deformations of the honeycomb lattice Guinea
et al. [2010b], which reflect the symmetry of the lattice, and are straightforwardly applicable to a
real sample of graphene. In the photonics community, such trigonal deformations were first imple-
mented in the artificial graphene of coupled waveguides by Rechtsman et al. [2013c]. Given the
propagating nature of this optical set-up, evidence of the Landau levels could only be obtained in
an indirect way from the localized edge modes, which reside in the energy-gaps between the Landau
levels, while it was not possible to obtain detailed information on the microscopic structure of the
Landau levels themselves.

In this chapter, we propose an alternative photonic set-up consisting of an array of cavities with
a honeycomb geometry, as inspired by the experiments of Jacqmin et al. [2014] and Bellec et al.
[2013a]. In contrast to the propagating waveguide set-up of Rechtsman et al. [2013c], the cavity ar-
rays are intrinsically driven-dissipative systems, which will allow us to use spectroscopic techniques
to characterize their eigenstates. As we have studied also for the pendula, the different eigenmodes
of a driven-dissipative system naturally appear as peaks in the transmission/absorption spectra
under a coherent incident field. When the pump frequency is set on resonance with a given mode
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Figure 7.1: The strained honeycomb lattice, with Nx unit cells along the x-armchair direction and
Ny along the y-bearded direction (in the figure Nx = Ny = 5). The unit cell is labelled with
two indices (i, j). The strain is introduced as a spatially-dependent hopping ti1 and schematically
represented by the thickness of the green line connecting the A and B sites in the unit cell along
the ~R1 direction. The thicker the green line, the stronger the coupling.

spectrally isolated from its neighbours, the intensity profiles in both real and momentum space
faithfully reproduce the mode wave function. We will apply this general spectroscopic technique
to the case of a uni-axially strained honeycomb lattice and investigate the Landau levels appearing
in the presence of a strain-induced artificial magnetic field.

The main results of this Chapter are published in Salerno et al. [2015].

7.1 The strained honeycomb lattice.

We consider an infinite ribbon along the y-direction that is of finite size Lx along the x-direction,
with Nx unit cells oriented as in Fig. 7.1, terminated on both ends with bearded edges. We assume
a uni-axial strain, t2 = t3 = t 6= t1, but this time we introduce a spatial dependence of the hopping
elements t(i,j)l on the site indices (i, j) along the horizontal direction. Specifically, we assume that
the hopping t(i,j)1 is positive and has the following spatial dependence:

t
(i,j)
1 ≡ t1(xi) = t

(
1 +

xi
3a

τ
)
. (7.1)

The positive dimensionless parameter τ quantifies the intensity of the spatially-inhomogeneous
strain and the positions xi ∈ (−Lx/2, Lx/2). In this way, the hopping linearly increase by τ/2
when passing from a unit cell i to the adjacent one i+ 1. We set the hopping in the middle of the
ribbon to be t1(0) = t. Physically, the hopping should all have the same sign at all positions along
x, therefore we require the condition t1(−Lx/2) ≥ 0 at one edge, which imposes an upper bound
on the strain,

τLx
6a

< 1. (7.2)

This condition automatically implies that t1(Lx/2) ≤ 2t at the other edge, which guarantees –
within a local band picture – that no local Lifshitz transition to a gapped state takes place in the
considered ribbon.

The vector potential, as defined from Eq. (6.14) in the Landau gauge with the specific form of
the strain in Eq. (7.1), is now spatially dependent. The artificial magnetic field ~B, that is naturally
defined as the curl of ~A:

e ~B = ξ
2~
9a2

τ~z, (7.3)

is oriented along the direction perpendicular to the lattice. Inserting the values of the electron
charge and the lattice spacing of real graphene, the field in Eq. (7.3) would correspond to a magnetic
field |B| ≈ 2τ103 T. It is important to notice that this strain-induced artificial gauge field does
not break time-reversal symmetry, therefore the magnetic field ~B has opposite signs in the two
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ξ = ±1 valleys. In this sense, the strained-induced field is not a “true” magnetic field, but rather
a pseudo-magnetic field. The magnetic length that is associated to this pseudo-magnetic field is:

lB ≡
√
~/|eB| = 3a/

√
2τ . (7.4)

Generally, there is also a small spatial dependence of the Dirac velocity, as we see from Eq. (6.13)
and discussed by de Juan et al. [2012]. With the specific form of the strain in Eq. (7.1), the two
components of the Dirac velocity in Eq. (6.13) become:{

vxD = vD + τtx̂/3~
vyD = vD.

(7.5)

where at the lowest order in q and x, we have expressed the spatial dependence of the hopping
amplitudes in terms of a position operator x̂. If the modulation of the hopping along the x direction
is small compared to the hoppings in the other two directions, we can neglect the spatial variation
of the Dirac velocity, as we do initially below. In more quantitative terms, the variation of vxD on
a magnetic length lB remains small compared to vD as long as the strain is weak

√
τ � 1.

7.1.1 Analytical derivation of the Landau levels in a uni-axially strained
honeycomb lattice.

We shall now derive how the strain-induced pseudo-magnetic field rearranges the continuous
conical dispersion around the Dirac points into a series of discrete Landau levels. The procedure
to diagonalize the Hamiltonian is closely analogous to the usual one for charged massive particles
in a uniform magnetic field in free space, as done by Castro Neto et al. [2009] or Goerbig [2011].
The off-diagonal matrix element in Eq. (6.11):

V̂ = −i~q̂xvD + ξ~q̂yvD + tτ x̂/3a, (7.6)

becomes itself an operator that acts on the spatial wave function. Using the standard canonical
relation [x̂, q̂x] = i, it is straightforward to show that the following commutation relation holds:

[V̂ †, V̂ ] = t2τ.

We can therefore introduce a creation operator â† ≡ V̂ /(t
√
τ) which satisfies the usual commutation

rules [â, â†] = 1 of a quantum harmonic oscillator and recast Eq. (7.6) into the form of the creation
operator of a shifted harmonic oscillator:

V̂ = ~ω

(√
mω

2~
(x̂− x0)− i

√
1

2m~ω
~q̂x

)
= ~ωâ†, (7.7)

where we have defined the mass:
m ≡ t

√
τ/(2v2

D).

The oscillation center is shifted in the x direction by the qy-dependent distance:

x0 ≡ −
3ξ~vDa
tτ

q̂y = −ξ l2B q̂y, (7.8)

and the oscillator frequency is:

~ω ≡
√

2~vDtτ
3a

= t
√
τ . (7.9)

In this way, we recover the cyclotron frequency of a massless Dirac particle in a real magnetic
field Goerbig [2011]

ω = vD
√

2|eB|/~. (7.10)

To obtain the eigenfunctions φA,B(x, y), we now re-write the Hamiltonian around the Dirac
points, with the help of Eq. (7.7), as:

Ĥ
(
φA
φB

)
= ~ω

(
0 â
â† 0

)(
φA
φB

)
= E

(
φA
φB

)
. (7.11)
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Separating the equations, we have:

(~ω)2ââ†φA = E2φA (7.12)
(~ω)2â†âφB = E2φB . (7.13)

From Eq.(7.13), we immediately see that φB is an eigenvector of the number operator: â†â|N〉 =
N |N〉 with an non-negative integer eigenvalue N ≥ 0. Therefore, φB is a 1D harmonic oscillator
eigenfunction |N〉 with frequency ω, centred at the qy-dependent position (7.8). Most remarkably,
for each φB with a given N 6= 0, two independent eigenstates exist with opposite energies E =
±~ω
√
N . Obtaining the corresponding φA requires a bit more care: from Eq. (7.11), for N = 0

one finds a single eigenstate with φA = 0, while for N > 0:

φA =
~ω
E
â|N〉 =

~ω
±~ω
√
N

√
N |N − 1〉 = ±|N − 1〉. (7.14)

To summarize, both the positive and negative energy states can be organized in a single sequence
labelled by an integer −∞ < n < ∞ with energies following the square-root law of relativistic
Landau levels with a cyclotron frequency ω,

En = ±~ω
√
|n| = ±t

√
τ |n|. (7.15)

For each eigenstate, the total wave function in the position representation is:

ψ±|n|(x, y) = eiqyy

(
φA(x)
φB(x)

)
= eiqyy

(
±〈x||n| − 1〉
〈x||n|〉

)
(7.16)

where |N〉 can be explicitly written in the position representation as a Hermite polynomial of
degree N ≥ 0,

〈x|N〉 ∝ e−(x−x0)2/(2l2B) HN

(
x− x0

lB

)
(7.17)

and we have implicitly assumed that |−1〉 = 0. This full wavefunction ψ(x, y) is therefore a spinor
with a Landau level wave function in each component: for |n| > 0, the relative sign of the two
components φA and φB is opposite for opposite eigenstates at ±n. For n = 0 the two sublattices
are decoupled, because from Eq. (7.16) we see that the Landau level wave function associated with
n = 0 is completely localized on the B sublattice:

ψ0(x, y) ∝ eiqyy

(
0

e−(x−x0)2/(2l2B)

)
.

We also notice that there is no dependence on the valley index ξ in the spinor of Eq. (7.16),
meaning that the wave function in the strained lattice is the same for the two Dirac valleys. This
is an important difference to the case of a non-strained system in a real external magnetic field,
where the wave function is valley-dependent and the role of the A and B sublattices is inverted
when passing from ξ = 1 to ξ = −1, as reviewed for example by Goerbig [2011].

All the discussion so far neglects the dependence of the Dirac velocity on the hopping amplitudes
in Eq. (6.13). The first correction to the relativistic Landau levels in Eq. (7.15) comes from the
spatial dependence of the Dirac velocity in Eq. (7.5). Substituting the value vxD ' vD + tτx0/3~
evaluated at the oscillation center x0 into (7.6), one obtains an expression of the Landau levels
that includes the first order correction,

En = ±t
√
τ |n|

√
1− ξqya. (7.18)

This correction shifts each level around the K,K ′ points with a square-root dependence on qy:
the fact that the resulting levels are no longer flat is a key difference with respect to the standard
Landau levels in the presence of a real magnetic field, where the Dirac velocity remains independent
of position. Further corrections coming from second- and higher-order terms in the expansion (6.11)
of V (~q) in powers of q are beyond the scope of the present thesis.
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Figure 7.2: The structure of levels around zero energy as a function of ky, in units of the bare
hopping t. This is numerically calculated from exact diagonalization of the tight-binding Hamilto-
nian for a ribbon of Nx = 601 unit cells along x with a strain of τ = 0.005, and periodic boundary
conditions along the y-direction. Relativistic Landau levels appear around the Dirac points K and
K ′ for kya ' ±1.21 and ±2.42. Red lines indicates the analytical prediction for the lowest Landau
levels including the first order correction to the Dirac velocity according to Eq. (7.18).

7.1.2 Comparison with numerical results from exact diagonalization.

The analytical results of the previous section were based on several approximations, in particular
the very notion of an artificial vector potential ~A relied on a local band structure for each value of
the hopping t(i,j)l . In order to verify the quantitative accuracy of this approach, we have numerically
diagonalized the full tight-binding Hamiltonian and compared the outcome with the aforementioned
analytical results.

In Fig. 7.2 we show the low-energy dispersion around the Dirac points of a large system of
Nx = 601 unit cells along x, with a relatively small strain parameter of τ = 0.005, and periodic
boundary conditions along y. The energy levels at zero energy are doubly degenerate, consisting of
the n = 0 Landau level and of the localized edge state associated with the left bearded edges (that
terminate with A sites). Around the Dirac points, we highlight the formation of quantized Landau
levels. Their energies are in good agreement with the analytical prediction of Eq. (7.18), which are
plotted in red and include the corrections due to the spatial dependence of the Dirac velocity. The
slight discrepancies that are visible to a careful eye can be explained by the approximations in our
analytical calculations, e.g. the neglecting of higher-order terms in the expansion of Eq. (6.11).
The finite extension in ky of the Landau level structure around the Dirac points, roughly indicated
in Fig. 7.2 by the extension of the red lines, is limited by the Landau level touching the physical
boundary of the system at x = ±Lx/2, as can be seen from Eq. (7.8). In the spectra, this is
apparent as a sudden increase of the level energy.

The agreement between the analytical model and the full numerics gets better for smaller values
of the strain parameter τ : in this regime, the magnetic length extends for a larger number of sites
(proportional to 1/

√
τ) and the ~k-space wave function consequently gets more localized in the

vicinity of the Dirac point. This makes the continuum approximation underlying the analytical
model more and more accurate. At the same time, the value of the vector potential ~A within the
real-space wave function decreases as

√
τ , thus reducing the importance of the corrections to the

isotropic conical Dirac dispersion. Of course, this accuracy comes at the price of a reduced energy
spacing of the Landau levels, which are themselves proportional to

√
τ .

The spatial structure of the wave functions is studied in Fig. 7.3, where the square modulus
of the numerical eigenfunctions obtained from the exact diagonalization is plotted for two Landau
levels with n = 1 and n = 2. The contributions from the A and B sublattices are separated
and represented in blue and red respectively, for easier identification. Dots correspond to the
numerical eigenfunctions and lines to the analytical wave functions as calculated in Eq. (7.17)
with aky = 4π/(3

√
3) around the K ′ point. As predicted by the analytical model, exactly at the
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Figure 7.3: Square modulus of the wave function of Landau levels around the K ′ point as numeri-
cally obtained from exact diagonalization of the tight-binding Hamiltonian. The wave function has
been separated for the two sublattices |φA|2 (blue) and |φB |2 (red). Left panel: n = 1, right panel:
n = 2. Dots correspond to the numerical eigenfunction, lines to the analytical wave function in
Eq. (7.17).

K,K ′ points the wave function is symmetrically centred in the ribbon while we find, as ky moves
away from the Dirac point, that its center x0 is shifted according to Eq. (7.8) (not shown here).
The left panel shows the states for n = 1: according to Eq. (7.16), the total wave function is
ψn=1 ∝ (|0〉, |1〉). On A sites, the wave function is a Gaussian times the zero-th order Hermite
polynomial, so the overall profile is Gaussian, as visible from the blue curve. On B sites, instead,
the wave function is proportional to a first-order Hermite polynomial, and the Gaussian profile
has one node as visible from the red curve. In the right panel of Fig. 7.3, which shows the n = 2
Landau level, there is one node in the A-site wave function as expected, and two nodes in the
B-site state. The slight asymmetry around the centre depends on the sign of the hopping gradient.

7.2 Steady state in a coherently driven-dissipative lattice.

We now describe our proposal to probe the Landau spectra by studying the steady state of a
driven-dissipative system, such as a photonic lattice made of a coupled cavity array as in Jacqmin
et al. [2014] or microwave resonators of Bellec et al. [2013a,b, 2014]. In both cases, the nearest-
neighbour hopping is due to the spatial overlap between modes localized on adjacent sites, so the
required spatial dependence of the hopping Eq. (7.1) can be tailored by a careful design of the
distance between neighbouring sites. Note that obtaining a gradient of t1 along the x direction
does not involve distorting the lattice, nor the geometry of the edge terminations, but only varying
the distance between some of the neighbouring sites along x.

We consider a large but finite honeycomb lattice, with the same orientation as the one that was
sketched in Fig. 7.1. We assume that photons are lost uniformly from all sites at the rate γ and
the coherent pump is spatially localized in the central part of the lattice. This set-up is beneficial
to focus on the bulk properties of the lattice and to suppress spurious effects due to reflections
from the lattice edges. We coherently pump the system with a monochromatic field at frequency
ω0. The pump has a spatial amplitude fi,j so that, in the steady state, the time-dependent fields
over A or B sites at position (i, j) are:

ai,j(T ) = ai,j e−iω0T bi,j(T ) = bi,j e−iω0T . (7.19)

with the time-independent amplitudes ai,j and bi,j satisfying a linear system of Heisenberg equa-
tions:

~ (ω0 + iγ) ai,j + ti1 bi,j + t bi−1,j−1 + t bi−1,j+1 = fi,j

~ (ω0 + iγ) bi,j + ti1 ai,j + t ai+1,j+1 + t ai+1,j−1 = fi,j
(7.20)
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Figure 7.4: Dots show numerically calculated spectra of the total field intensity in Eq. (7.22) as a
function of the pumping frequency ω0 for two values of the strain parameter, in arbitrary units.
The loss rate is ~γ/t = 0.005, and we take N = 601 and σx/a = σy/a = 10 for all panels. Panel
A is for τ = 0 (no strain), while panel B is for τ = 0.005 (strained) in dark blue and τ = 0
(unstrained) in light blue for easier comparison. The solid lines are a guide to the eye and the red
dashed lines indicate the analytical energies of the first six Landau levels as predicted by Eq. (7.15).

for the indexing given in Fig. 7.1.
As we want to probe Landau levels arising from the pseudo-magnetic field, it is important to

separate the contribution of the two inequivalent points K and K ′. To this end, we adopt the same
technique proposed by Ozawa and Carusotto [2014] and we assume the coherent driving to have
a Gaussian spatial profile of width σx,y in the two x, y directions, and to have an in-plane wave
vector in the vicinity of, e.g., the K ′ Dirac point:

fi,j = f0 exp

(
−
x2
i,j

2σ2
x

)
exp

(
−
y2
i,j

2σ2
y

)
ei ~K′·~Ri,j (7.21)

where ~Ri,j is the position vector of the appropriate site of the hexagonal lattice and the origin
is assumed to be located in the middle of the central unit cell. Provided the spatial extensions
σx,y � a, the coherent pump selectively addresses a small region in ~k-space in the vicinity of the
desired K ′ Dirac point and efficiently excludes the other Dirac point.

In Fig. 7.4 we show examples of spectra of the total intensity summed over all lattice sites

IT =
∑
i,j

(
|ai,j |2 + |bi,j |2

)
(7.22)

as a function of the pump frequency ω0.
Fig. 7.4-A shows the spectra of the unstrained case τ = 0. In this case, we know that the

eigenstates of the honeycomb lattice form a continuum with a conical Dirac dispersion ω ' vD |q|
in the vicinity of the K,K ′ points, so the spectrum is a featureless continuum, with only a peculiar
dip in the center due to the Dirac cone. The small oscillations in the spectra are due to finite size
effects stemming from a small but non-zero reflection at the edges and these disappear if larger
systems are considered. When a small strain τ = 0.005 is introduced, pronounced peaks emerge in
the spectra shown in Fig. 7.4-B, corresponding to the Landau levels. We compare the numerical
spectra with the analytical energies of Landau levels, as given by Eq. (7.15), and plotted with
dashed vertical red lines. We see that the position of the peaks in Fig. 7.4 is in good agreement
with the analytical values.

As usual, for a pump frequency close to resonance with a peak, the field intensity profile follows
the wave function of the corresponding mode: the two cases of unstrained and strained honeycomb
lattices will be separately discussed in the next sections.

7.2.1 The perfect honeycomb lattice.
Figure 7.5 shows the field amplitude |ai,j |2 and |bi,j |2 for the unstrained case, on the A and

B sites in the steady state for two different pumping frequencies ω0 and for two different spatial
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Figure 7.5: Field intensity distribution as numerically calculated from Eq. (7.20) for different
pumping frequencies ω0. N = 601, ~γ/t = 0.005, τ = 0 and σx/a = 10 for all panels. Panels
A and B are for σy/a = 50, while panels C and D are for σy/a = 10. The pumping area spot
is highlighted by the cyan circle. Panels A and C are for ~ω0/t = 0, corresponding to the Dirac
point, while panels B and D are for a positive detuning ~ω0/t = 0.1.

extents of the pump along y. The first row is obtained for σx/a = 10 and σy/a = 50, at ω0 = 0
for Fig. 7.5-A and at ω0 > 0 for Fig. 7.5-B. The second row is obtained for σx/a = σy/a = 10, at
the same two pumping frequencies.

The intensity patterns display an interesting structure that can be qualitatively understood as
follows. The pump excites waves that expand radially in all directions with the Dirac velocity for a
distance of the order of vD/γ, the so-called conical diffraction, see Peleg et al. [2007]. The angular
dependence around the pump spot is determined by the matching of the phase profile of the pump
with the relative phase of the A and B sites at different wave vectors in the vicinity of the Dirac
point. As can be seen in Fig. 7.5-A and Fig. 7.5-C for ω0 = 0, constructive interference reinforces
the intensity in the positive-y direction, while destructive interference reduces the intensity in the
negative-y direction.

At finite frequency ω0 6= 0, another mechanism contributes to the determination of the pattern:
as one can see in Fig. 7.5-B, the intensity is now concentrated laterally in the positive and negative
x direction and there is almost no intensity in the positive-y direction. This fact can be explained in
terms of the momentum distribution of the incident field, which does not overlap with the resonant
Dirac wave at a finite wave vector ky ' ω0/vD � 1/σy in the positive-y direction. As expected,
this feature no longer occurs for a smaller σy for which ky ' ω0/vD < 1/σy and a good overlap is
again possible also in the positive-y direction. As a result, the angular distribution is in this case
again maximal in the positive-y direction, see Fig. 7.5-D.

7.2.2 The strained honeycomb lattice.

The spatial structure of Landau levels in a strained honeycomb lattice are illustrated in Fig. 7.6.
We considered a relatively weak strain of τ = 0.005 and show the steady-states intensity patterns
for different pumping frequencies ω0. Fig. 7.60-4 are for frequencies of the first five Landau
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Figure 7.6: Numerically calculated steady-state intensity distribution for different pump frequencies
ω0 on resonance with the different Landau levels at the K ′ point. We have chosen N = 601,
~γ/t = 0.005, τ = 0.005, σx/a = 10 and σy/a = 50 for all panels. Panels 0-4 show the total
intensity for frequencies ω0 = 0, ω, ω

√
2, ω
√

3, ω
√

4 corresponding to the first five Landau levels.
The pumped region is highlighted by the cyan circle. While the left panels show the complete
intensity distribution, the central 0A-4A and right 0B-4B panels isolate the intensity distribution
on A and B sites.
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Figure 7.7: Numerical calculations using realistic parameters of state-of-the-art experimental se-
tups, namely Nx = Ny = 51, ~γ/t = 0.05, τ = 0.07, σx/a = 5 and σy/a = 10. Upper panel:
spectra of the total field intensity as a function of the pumping frequency ω0. The blue curve is
the spectra obtained with only nearest-neighbour hopping, the orange curve includes contributions
also from the position dependent next-nearest-neighbour (NNN) hopping, with t′ = 0.08t. Solid
lines are a guide to the eye and red dashed lines are the analytical energies of the first three Lan-
dau levels as predicted by Eq. (7.15). Lower panels: steady-state intensity distributions on the A
(panel 1A) and B (panel 1B) sites for a pump frequency ω0 tuned on resonance with the n = 1
Landau level at the K ′ point, in the presence of NNN hopping processes with a realistic amplitude
t′ = 0.08t.

levels n = 0 . . . 4, according to Eq. (7.15). Parameters for all panels were chosen to give the best
representation of the Landau level wave functions with a realistic form of the pump. In particular,
a relatively wide pump spot along y was needed so that the range of excited momenta qy ' 1/σy is
sufficiently small such that the jitter of the guiding center x0 is smaller than the magnetic length
lB . This helps to avoid blurring of the Landau level intensity pattern.

To better understand the mode structure, the separated field intensity distributions on respec-
tively the A and the B sites are shown in the panels labelled with A or B: as expected, the
qualitative structure of the intensity profile follows the shape of the eigenstates shown in Fig. 7.3.
In particular, the numbers of nodes and the width of the field amplitudes coincide with what is
expected from the analytical wave functions Eq. (7.16).

The particular spiral-like shape is due to the interference between the resonant Landau level and
its neighbours, that are non-resonantly excited. More details on this effect are given in Appendix G.

7.3 Experimental remarks.
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From the experimental point of view, the requirements to clearly observe the patterns discussed
in the previous section are a relatively small value of the loss rate and a relatively large size of
the lattice. Firstly, stronger loss rates may hinder a clear identification of the Landau level peaks
in the spectra of Fig. 7.4 and are responsible for strong mixing of neighbouring eigenstates in the
spatial pattern of Fig. 7.6. Secondly, in smaller lattices spurious reflections at the lattice edges may
occur as well as significant distortions of the mode wave functions. While propagation towards
the lattice edges can be a problem for propagating Dirac waves in perfect honeycomb lattices, this
issue is much less severe in the presence of strain as the Landau levels are spatially localized. As a
result, finite size effects are negligible as soon as the size of the lattice is larger than the magnetic
length lB .

In particular, we note that two consecutive Landau levels can be resolved if the separation
between them is larger than the linewidth, namely ~γ < En −En−1. This means that the n-th gap
is resolved if:

~γ
t
< (
√
n−
√
n− 1)

√
τ

2
. (7.23)

In order for the Landau wave function not to be distorted by the edges of the lattices, we need
the magnetic length to be much smaller than the size of the system. The total length of the lattice
in Fig. 7.1 is Lx = (3Nx − 1)a/2. The condition lB � Lx/2, then, implies that:

τ >

(
6
√

2

3Nx − 1

)2

. (7.24)

In order for the key features of Landau level wave function not to be blurred, such as the number
of nodes or the width of the wave function, one also needs that the position x0 of the guiding
center jitters by less than a magnetic length under the uncertainty of qy ' 1/Ly: remarkably,
this imposes a condition lB � Ly analogous to Eq. (7.24). Finally, we need to keep in mind the
condition already given in Eq. (7.2), which set an upper bound on the strain τ in order to have a
physical t1 ≥ 0 hopping at all points of the lattice:

τ <
12

3Nx − 1
. (7.25)

For the sake of concreteness, we can discuss these criteria having in mind a realistic experiment
using photonic Jacqmin et al. [2014] or microwave Bellec et al. [2013a,b, 2014] technology: state-
of-the-art samples are in both cases restricted to relatively small lattices, with a few tens of sites
in each direction. From Eq. (7.25), this imposes an upper bound to the strain τ < 0.08.

For a realistic loss rate ~γ/t ≈ 0.05 of current experiments, a value τ ≈ 0.07 of the strain
should however allow us to resolve the first two gaps between Landau levels. This is illustrated in
the upper panel of Fig. 7.7, where we show the total intensity spectra as a function of the pump
frequency: peaks corresponding to the lowest Landau levels are clearly visible with an excellent
agreement with the analytical prediction of Eq. (7.15). We also show that the spectra are only
slightly affected when a position-dependent NNN hopping is included with a realistic amplitude
t′ = 0.08t.

In the lower panels of Fig. 7.7 we show the intensity distribution for a pump on resonance
with the peak corresponding to the n = 1 Landau level. Independently of the presence of a NNN
hopping, the peculiar nodal profile of the mode is clearly visible as a central black stripe in the B
sites intensity pattern shown in panel B. The horizontal dark fringes that are visible in the upper
and lower part of the image are, instead, a spurious effect due to reflections on the edges of the
lattice.
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Chapter 8

Spin-orbit coupling in a honeycomb lattice.

Spin-orbit coupling is the interaction between the spin of a particle and its own motion.
Perhaps the most famous example of the effects of such a coupling is the energy shift of the levels
of an atomic electron stemming from the interaction between the spin of the electron and the
magnetic field generated by the orbit of the electron around the nucleus. Spin-orbit coupling is
also naturally present in solid materials due to the crystalline structure, but in some cases, however,
this effect is weak and not always of easy manipulation and control.

As we have discussed so far, an enormous advantage of artificial materials is the possibility
to tune and design the system Hamiltonian. Different ways to implement a synthetic spin-orbit
coupling are reviewed for ultracold atomic gases with dressed states by Galitski and Spielman
[2013], Li et al. [2015], or for optical photons using the polarization degree of freedom, by Car-
dano and Marrucci [2015]. In particular, Sala et al. [2015] implemented a spin-orbit coupling for a
polariton, i.e. a quasi-particle arising from the interaction of a photon and an exciton in a semi-
conductor micropillar, which has the same polarization properties as the photon. The polaritons in
different micropillars are coupled with different tunnelling amplitudes according to whether their
pseudo-spin polarization state is parallel or orthogonal to the link direction, as shown by de Vas-
concellos et al. [2011], due to a polarization splitting of the bonding (longitudinal) or anti-bonding
(transverse) states.

In this chapter we take inspiration from the work of Sala et al. [2015] and apply the concept
of polarization splitting within classical mechanics to realize a system with spin-orbit coupling.
We start by showing that a pre-tensioned spring induces a splitting between the longitudinal and
transverse degrees of freedom of a mechanical system of two coupled pendula. As the motion along
the longitudinal (L) and transverse (T) directions acts as a pseudo-spin, we will then review how,
for an extended system, such an L-T splitting can be described as a spin-orbit coupling.

We have also experimentally realized a mechanical benzene molecule that implements this
spin-orbit coupling, and studied the eigenmodes of the system. The experiment is the result of a
collaboration with Prof. Nicola Pugno, Alice Berardo, Ludovic Taxis and Giuseppe Vettori from
the Department of Civil, Environmental and Mechanical Engineering of the University of Trento.

8.1 L-T splitting in classical mechanics.

We start by considering a spring of rest length `0 and spring constant k, which is pre-elongated
to a length ` and kept in equilibrium by some other external force, as show in the left part of
Fig. 8.1. This could be, for example, the situation of two pendula whose hanging points are at a
distance that is larger than `0. In the equilibrium configuration, the gravitational restoring force
of the pendulum balances exactly the restoring force of the spring, whose length will be ` > `0,
as schematically shown in the right part of Fig. 8.1. When a further elongation that changes the
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δ

yδ

x

Figure 8.1: On the left, we show an isolated pre-tensioned spring stretched to a length ` by some
external force and subjected to a further elongation that changes its length by δx and δy along
the two directions. On the right, sketch of one of the possible situations that could produce the
desired stretch of the spring.

length by δx and δy along the two directions is applied to spring, the elastic energy stored in it is:

U =
1

2
k
(√

(δx + `)2 + δ2
y − `0

)2

, (8.1)

having assumed a linear spring, i.e. that the applied elongation is not causing any an-harmonic
behaviour. From this expression, we can see that the small oscillations in the x- and y-directions
around the equilibrium position are characterized by two different quantities:

∂2U

∂δ2
x

∣∣∣∣δx=0
δy=0

= k ≡ kL,
∂2U

∂δ2
y

∣∣∣∣
δx=0
δy=0

= k

(
1− `0

`

)
≡ kT (8.2)

while ∂2U
∂δxδy

∣∣∣
δx=0, δy=0

= 0 because of reflection symmetry. Equation (8.2) defines the couplings

respectively in the longitudinal and transverse directions, defined with respect to the axis of the
spring. If the initial length of the spring ` = `0 is exactly equal to the rest length, from Eq. (8.2)
we get that the restoring force of the spring in the transverse direction is zero, since kT = 0.
We have therefore that the motion along the two directions is completely decoupled, and that
the restoring force of the spring is mainly in the longitudinal direction and proportional to kL.
However, when ` 6= `0, the motion along the longitudinal direction responds with a different spring
constant than the motion along the perpendicular direction, according to Eq. (8.2). The strength
of this L-T splitting depends on the ration `0/` and it is stronger for more pre-elongated springs.
The longitudinal and transverse motions are considered as different pseudo-spins of an oscillator,
and the L-T splitting couples these two pseudo-spins, giving rise to the spin-orbit coupling in
classical mechanics, as we shall see in detail in the next section.

8.2 Modes of honeycomb lattices with L-T splitting.
We now derive the eigenmodes of an extended system of pendula connected by equally pre-

tensioned springs arranged in an honeycomb lattice. Similar theoretical ideas are proposed in the
paper by Kariyado and Hatsugai [2015]. We assume that the masses are all equal to m and that
the springs are identical and their spring constant is k. According to the amount ` of elongation
in the equilibrium configuration, we have from Eq. (8.2) that the frequencies of the motion along
the longitudinal and transverse directions are:

ΩL ≡
√
kL
m
, ΩT ≡

√
kT
m
. (8.3)

From the expressions of these two frequencies, we can directly separate the equation of motion
for the system of pendula along the L-T directions. For this purpose, it is useful to identify the
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Figure 8.2: Representation of the longitudinal and transverse unit vectors. We also show the
indexing of the unit cells, as was also introduced in Chap. 6.

following unit vectors, which are drawn with coloured arrows in Fig. 8.2:

L̂1 = (1, 0) , L̂2 =

(
−1

2
,

√
3

2

)
, L̂3 =

(
−1

2
,−
√

3

2

)
,

T̂1 = (0, 1) , T̂2 =

(
−
√

3

2
,−1

2

)
, T̂3 =

(
−
√

3

2
,

1

2

)
.

(8.4)

Each pendulum occupies the vertex of a hexagon and it is free to oscillate with a frequency
ω0. We use the labelling shown in Fig. 8.2, that is the same as in Chap. 6. We indicate with
~ai,j =

(
axi,j , a

y
i,j

)
the position of the mass located on an A-site in the unit cell i, j. For masses in

the sublattice A, Newton’s equations of motion are the following:

~̈ai,j = −ω2
0~ai,j

+ Ω2
L

{[(
~bi,j − ~ai,j

)
· L̂1

]
L̂1 +

[(
~bi,j−1 − ~ai,j

)
· L̂2

]
L̂2 +

[(
~bi−1,j − ~ai,j

)
· L̂3

]
L̂3

}
+ Ω2

T

{[(
~bi,j − ~ai,j

)
· T̂1

]
T̂1 +

[(
~bi,j−1 − ~ai,j

)
· T̂2

]
T̂2 +

[(
~bi−1,j − ~ai,j

)
· T̂3

]
T̂3

}
,

(8.5)

while, for the B-sublattice, symmetry along the three directions imposes that:

~̈bi,j = −ω2
0
~bi,j

+ Ω2
L

{[(
~ai,j −~bi,j

)
·
(
−L̂1

)](
−L̂1

)
+
[(
~ai,j+1 −~bi,j

)
·
(
−L̂2

)](
−L̂2

)
+
[(
~ai+1,j −~bi,j

)
·
(
−L̂3

)](
−L̂3

)}
+ Ω2

T

{[(
~ai,j −~bi,j

)
·
(
−T̂1

)](
−T̂1

)
+
[(
~ai,j+1 −~bi,j

)
·
(
−T̂2

)](
−T̂2

)
+
[(
~ai+1,j −~bi,j

)
·
(
−T̂3

)](
−T̂3

)}
.

(8.6)

For obtaining the dispersive normal modes, as we did in Chap. 6, we write our variables as:

~ai,j =
1

V

∫
kx∈BZ

∫
ky∈BZ

(
akx
aky

)
ei(i~k·~a1+j~k·~a2) eiΩt dkxdky

~bi,j =
1

V

∫
kx∈BZ

∫
ky∈BZ

(
bkx
bky

)
ei(i~k·~a1+j~k·~a2) e−i~k·~R1 eiΩt dkxdky.

(8.7)
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Figure 8.3: Frequency dispersion bands of phonons in a honeycomb lattice in the presence of a spin-
orbit interaction induced by the L-T splitting, obtained as Ω =

√
−ε, where ε are the eigenvalues

of the matrix in Eq. (8.8), for ω0 = 0. On the left, Ω2
T /Ω

2
L = 0 and we see that two of the four

bands are dispersion-less. On the right Ω2
T /Ω

2
L = 0.5 and all four bands are dispersive.

In this way, we can write the dynamical matrix −Ω2Ψxy = DΨxy in the following basis:

Ψxy =


akx
aky
bkx
bky

 ,

by projecting each of the equations in Eq. (8.5) and Eq. (8.6) along the x- and y- direction. The
resulting dynamical matrix is:

D =


d0 0 F ∗L(k) W ∗(k)
0 d0 W ∗(k) F ∗T (k)

FL(k) W (k) d0 0
W (k) FT (k) 0 d0

 , (8.8)

where for short-hand notation we have introduced the following quantities:

d0 = −3

2

(
Ω2
L + Ω2

T

)
− ω2

0 , FL(k) = Ω2
L ei~k·~R1 +

3Ω2
T + Ω2

L

4

(
ei~k·~R2 + ei~k·~R3

)
,

W (k) =

√
3

4

(
Ω2
L − Ω2

T

) (
ei~k·~R2 − ei~k·~R3

)
, FT (k) = Ω2

T ei~k·~R1 +
3Ω2

L + Ω2
T

4

(
ei~k·~R2 + ei~k·~R3

)
.

(8.9)

The eigenvalues ε of the dynamical matrix in Eq. (8.8) are the energy bands of the honeycomb
lattice in the presence of spin-orbit coupling, as found for example by Wu and Das Sarma [2008],
Jacqmin et al. [2014], and are related to the frequencies of the eigenmodes of the system as:
Ω =

√
−ε.

In Fig. 8.3 we show the eigenfrequencies Ω of the phonons of the honeycomb lattice for two
cases. On the left, we have considered the case of ΩT = 0, which happens when ` = `0 in Eq. (8.2).
We see that there are two flat non-dispersive modes, corresponding to the transverse modes, and
another two dispersive longitudinal modes. This is the same regime as in Jacqmin et al. [2014], that
lead to the direct observation of a flatband for a polariton system. On the right part of Fig. 8.3,
we show the eigenfrequencies in presence of a spin-orbit coupling Ω2

T /Ω
2
L = 0.5. In this case we

see that all modes are dispersive. In the limiting case (not shown) of Ω2
T /Ω

2
L = 1, the four modes

becomes two, with a two-fold degeneracy. From the standard theory of harmonic crystals Aschroft
and Mermin [1976], we can identify these four modes to be the “acoustical” and “optical” modes of
the phonons in the honeycomb lattice.
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8.2.1 The circular polarization basis.

More insight into the nature of the spin-orbit coupling can be obtained in the basis of circular
polarization +/−, rather than in the basis of coordinates x/y, as done in Sala et al. [2015]. To
move into the new basis, we implement the following unitary transformation:

M =
1√
2


1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i

 . (8.10)

This transformation, acting on the vector Ψxy, gives a new vector:

MΨxy = Φ ≡ 1√
2


akx + iaky
akx − iaky
bkx + ibky
bkx − ibky

 =


a+

a−
b+
b−

 , (8.11)

where for short-hand notation we have called a± ≡ (akx ± iaky)/
√

2, and similarly for b±.
The dynamical matrix in Eq. (8.8) becomes:

D̃ ≡MDM† =


d̃0 0 JV ∗(k) ∆V ∗1 (k)

0 d̃0 ∆V ∗2 (k) JV ∗(k)

JV (k) ∆V1(k) d̃0 0

∆V2(k) JV (k) 0 d̃0

 , (8.12)

where we have introduced:

J =
Ω2
L + Ω2

T

2
, ∆ =

Ω2
L − Ω2

T

2
, (8.13)

and

d̃0 = −3

2
J − ω2

0 , V1(k) = ei~k·~R1 + ei~k·~R2 e−i2π/3 + ei~k·~R3 ei2π/3,

V (k) = ei~k·~R1 + ei~k·~R2 + ei~k·~R3 , V2(k) = ei~k·~R1 + ei~k·~R2 ei2π/3 + ei~k·~R3 e−i2π/3 .

(8.14)

The matrix in Eq. (8.12) can be put in terms of a Hamiltonian with a spin operator acting on
the pseudo-spin of the sublattice and another spin operator acting on the polarization degree of
freedom. We now introduce these two operators. The first one acting on the sublattice degree of
freedom is:

Σ± =
Σx ± iΣy

2
≡ σ± ⊗ I2, (8.15)

while the second one, that acts instead on the polarization degree of freedom, is:

S± =
Sx ± iSy

2
≡ I2 ⊗ σ±, (8.16)

where In is the n-by-n identity matrix and σ± are defined as usual σ± = σx ± iσy from the 2-by-2
Pauli matrices. The two operators in Eq. (8.15) and Eq. (8.16) commute with each other. The
explicit matrix-expression of the operators Σ± and S± is the following:

Σ+ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Σ− =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,

S+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , S− =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .

(8.17)
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The action of those operators is better understood in the following basis:

|A+〉 =


1
0
0
0

 , |A−〉 =


0
1
0
0

 , |B+〉 =


0
0
1
0

 , |B−〉 =


0
0
0
1

 , (8.18)

where A,B stand for the sublattice degrees of freedom and +,− for the polarization degrees of
freedom. We have that:

Σ+S+|B−〉 = |A+〉, Σ+S−|B+〉 = |A−〉,
Σ−S+|A−〉 = |B+〉, Σ−S−|A+〉 = |B−〉,

(8.19)

since Σ+ is the sublattice pseudo-spin raising operator and S+ is the polarization pseudo-spin
raising operator. It is worth mentioning at this point that the rotation operator for the polarization
in the +/− basis reads as:

Rθ =


eiθ 0 0 0
0 e−iθ 0 0
0 0 eiθ 0
0 0 0 e−iθ

 , (8.20)

such that S± operators transform under this rotation as spin-1 and not as spin-1/2, Carusotto and
Ciuti [2013].

We can now expand the matrix in Eq. (8.12) around the K points ~k → (qx, qy − 4π/(3
√

3a)),
for |~q| � 1/a at the first order, as was done in Chap. 6. With the definition of the pseudo-spin
operators and with the gauge transformation already used in Chap. 6 for Eq. (6.10), we have:

D̃ =

(
−3

2
J − ω2

0

)
I4 +

3a

2
J [Σ+(qx − iqy) + Σ−(qx + iqy)] +

3∆i (Σ−S+ − Σ+S−) +
3a∆

2
[Σ−S− (qx − iqy) + Σ+S+ (qx + iqy)] .

(8.21)

Introducing as usual the Σx,y and Sx,y operators from the Σ± and S±, the dynamical matrix
D has the following form:

D̃ =

(
−3

2
J − ω2

0

)
I4 +

3a

2
J (Σxqx + Σyqy)−

3∆

2
(ΣxSy − ΣySx) +

3a∆

4
[Sx (Σxqx − Σyqy)− Sy (Σyqx + Σxqy)] .

(8.22)

From this expression, it is more evident how the terms in ∆ describe the spin-orbit coupling.
In particular, the case ∆ = 0 means that the Ω2

L = Ω2
T and the system consist of two “copies”

of graphene along the longitudinal and transverse directions. In fact, for ∆ = 0 we recover the
same expression as in Eq. (6.10), except that now Σx, Σy are 4× 4 matrices. In addition, for the
maximum value ∆ = Ω2

L/2, i.e. Ω2
T = 0, we have the two non-dispersive band modes, as seen in

left part of Fig. 8.3. Such spin-orbit term was originally found in Sala et al. [2015], Nalitov et al.
[2015a] and Nalitov et al. [2015b] for the L-T splitting of polaritons in coupled micropillars.

8.3 A mechanical model of the benzene molecule with L-T
splitting.

As a first step towards the implementation of spin-orbit coupling in classical systems on hon-
eycomb lattices, we considered a mechanical analogue of a benzene molecule in the presence of
spin-orbit coupling. The system is composed of six pendula of mass m, each occupying the ver-
tex of an hexagon and free to oscillate at a bare frequency ω0. Coupling between neighbouring
pendula at a distance a is provided by springs of constant k and rest length `0 < a, such that in
the equilibrium configuration the springs are pre-tensioned, as defined in the previous sections. A
sketch of the system, as seen from above, is shown in Fig. 8.4, where also the unit longitudinal
and transverse vectors are indicated. The different notation with respect to Fig. 8.2 serves only to
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Figure 8.4: Mechanical analogue of the benzene molecule with spin-orbit coupling. The six pendula,
as seen from above, are coupled with pre-tensioned springs, whose rest-length is smaller than the
side of the hexagon. The red arrows indicate the longitudinal vectors, while the blue arrows indicate
the transverse ones, useful for the analytical derivation of the eigenmodes from the equation of
motion in Eq. (8.23).

simplify Newton’s equations of motion, which now are, in fact, written in the following compact
form:

~̈ψi = −ω2
0
~ψi + Ω2

L

[(
~ψi+1 − ~ψi

)
· L̂i
]
L̂i + Ω2

L

[(
~ψi−1 − ~ψi

)
· L̂i−1

]
L̂i−1

+ Ω2
T

[(
~ψi+1 − ~ψi

)
· T̂i
]
T̂i + Ω2

T

[(
~ψi−1 − ~ψi

)
· T̂i−1

]
T̂i−1,

(8.23)

for i = 1, 6, where the displacement of the i-th pendulum is a two component vector written in the
x− y basis ~ψi = (ψxi , ψ

y
i ) and periodic boundary conditions are intended in the form i+ 1→ 1 for

i = 6 and i− 1→ 6 for i = 1. We have also used that the longitudinal vectors are:

L̂1 =

(
1

2
,−
√

3

2

)
, L̂2 = (1, 0) , L̂3 =

(
1

2
,

√
3

2

)
, L̂4 = −L̂1, L̂5 = −L̂2, L̂6 = −L̂3, (8.24)

and the transverse vectors are:

T̂1 =

(√
3

2
,−1

2

)
, T̂2 = (0, 1) , T̂3 =

(
−
√

3

2
,

1

2

)
, T̂4 = −T̂1, T̂5 = −T̂2, T̂6 = −T̂3, (8.25)

We solve the eigenvalue problem, searching for a solution of the type ~ψi(t) = ~ψi eiΩt. As we
did before, we project each of the equations in Eq. (8.23) along the x- and y- direction, in order
to write the system in Eq. (8.23) within a matrix formalism in the x, y basis as: −Ω2Ψ = DΨ.

By diagonalizing the 12× 12 matrix D we get the frequencies of the eigenmodes:

Ω1 = ω0 2-fold degenerate
Ω2 =

√
ω2

0 + Ω2
L

Ω3 =
√
ω2

0 + Ω2
T

Ω4 =
√
ω2

0 + 3Ω2
L

Ω5 =
√
ω2

0 + 3Ω2
T

Ω6 =
√
ω2

0 + 3
2 (Ω2

L + Ω2
T ) 2-fold degenerate

Ω7 = 1
2

√
4ω2

0 + 5Ω2
L + 5Ω2

T +
√

25Ω4
L − 14Ω2

LΩ2
T + 25Ω4

T 2-fold degenerate

Ω8 = 1
2

√
4ω2

0 + 5Ω2
L + 5Ω2

T −
√

25Ω4
L − 14Ω2

LΩ2
T + 25Ω4

T 2-fold degenerate

(8.26)
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Figure 8.5: Spatial eigenmodes of the mechanical benzene molecule for ω0 = 8.8 rad/s, ΩL =
7.44 rad/s and ΩT = 3.52 rad/s. The motion of the six pendula, within half a period of oscillation,
is spatially represented around the equilibrium positions. The colour gradient is indicative of time.
The different eigenmodes are ordered according to their increasing frequency of oscillation.
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Figure 8.6: Frequency of the eigenmodes of the mechanical benzene molecule as a function of the
ratio ΩT /ΩL, for fixed ΩL = 7.44rad/s and ω0 = 8.8rad/s. The vertical dashed black line indicates
the ratio of ΩT /ΩL that was used to order the eigenmodes in Fig. 8.5. The same ratio resulted in
the experimental data of the next section.

In the general case of ΩT 6= ΩL, the twelve eigenmodes are grouped into a set of eight different
values.

In Fig. 8.5 we show the resulting motion of the six pendula for each of the twelve eigenmodes
of the mechanical benzene molecule. These modes are the eigenvectors of the matrix D associated
to the eigenfrequencies in Eq. (8.26), for ω0 = 8.8 rad/s, ΩL = 7.44 rad/s and ΩT = 3.52 rad/s;
these are the experimental parameters presented in the next section. The motion of the pendula
is represented within half a period of oscillation around the equilibrium positions, and the colour
gradient is indicative of time. The twelve eigenmodes are grouped and ordered according to their
increasing oscillation frequency.

In Fig. 8.6 we show the frequency of the eigenmodes of the mechanical benzene molecule as a
function of the ratio ΩT /ΩL, for fixed ΩL = 7.44rad/s and ω0 = 8.8rad/s. We see that if ΩT = ΩL,
the number of different eigenfrequencies is four, and they can be labelled according to the orbital
angular momentum, as discussed in Sala et al. [2015]. However, for the general case ΩT 6= ΩL,
we notice that the eigenfrequencies split and cross each other as the ratio ΩT /ΩL is varied. The
vertical dashed black line in Fig. 8.6 indicates the particular value of the ratio ΩT /ΩL that was
used to sort the eigenmodes in Fig. 8.5. The same ratio resulted in the experimental data of the
next section.

8.3.1 Experimental data.
In collaboration with Prof. Nicola Pugno, Alice Berardo, Ludovic Taxis and Giuseppe Vettori,

we realized an experiment to prove that the pre-tensioned springs induce a spin-orbit coupling, by
checking the frequencies of the eigenmodes of the mechanical benzene as derived in Eq. (8.26).

In Fig. 8.7 we show a picture of the experimental setup. Each pendulum is realized as a
sphere of mass (0.596 ± 0.001) Kg and radius R = (2.7 ± 0.05) cm attached to a string of length
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Figure 8.7: On the left, picture of the setup used for the experiment. On the right, snapshot of
the video used for measuring the displacements of the pendula through the position of the white
squares.

l = (10.0±0.1) cm, hanging from a transparent plastic roof. The natural frequency of the pendula
is:

ω0 =

√
g

l +R
= (8.79± 0.04) rad/s, (8.27)

where the error is calculated according to the error analysis, see Taylor [1997].
The pendula are coupled through springs of elastic constant k = (33±3) N/m and `0 = (74.5±

0.5) mm. In the equilibrium configuration, the elongation of the springs is ` = (96.0 ± 0.5) mm.
The values of the elastic constants of the springs were extracted from Hooke’s law: by measuring
the elongations of a spring when subjected to known forces, the slope of the resulting line is the
elastic constant of the spring.

From the results in Eq. (8.2), we expect that the longitudinal and transverse frequencies are:

ΩL =

√
k

m
= (7.44± 0.34) rad/s, ΩT =

√
k

m

(
1− `0

`

)
= (3.52± 0.17) rad/s. (8.28)

Initially, one of the pendula is displaced from its equilibrium position in a random direction
and let free to oscillate. The initial condition is such that the subsequent motion of the pendula
is a superposition of all eigenmodes of the system. This motion is recorded with a standard
video-camera positioned above the system in order to extract the xi(t) and yi(t) displacement of
each mass from their equilibrium position. The motion of the pendula is sampled at a frequency
νs = 25 Hz, for a total time of T = 92 s. The video is analysed to extract the location of the center
of a white square of paper that is rigidly attached to the string of the pendulum itself. These white
squares allow us to numerically identify more easily the position of the pendulum, expecially on a
black background, as is shown in the right panel of Fig. 8.7. We then calculate the displacements
of the pendula from their equilibrium positions. In Fig. 8.8 we show the motion of the six pendula
as extracted from the video analysis.

The data on the displacements xi(t) and yi(t) of the pendula from their equilibrium positions
are then further analysed. A fast Fourier transform on each set of data is performed, to obtain the
Fourier amplitudes |Fxi(Ω)| and |Fyi(Ω)|. The frequency axis is defined as usual Ω ∈ [−πνs, πνs],
with a step of ∆Ω = 2π/T .

In Fig. 8.9 dots show the total intensity of the Fourier spectra,
∑6
i=1 (|Fxi(Ω)|+ |Fyi(Ω)|), for

the region of interest. The theoretical eigenmodes, calculated from Eq. (8.26) with the experimental
values given in Eq. (8.27) and Eq. (8.28), are shown in Fig. 8.9 with dashed black vertical lines.
We see a qualitative overall agreement between the experiment and the theoretical predictions,
especially regarding the number of peaks and the position of some of the eigenmodes. The small
discrepancy for the two eigenmodes around 9.5 rad/s is still within the experimental error, that is
indicated with the light blue area. There is however a sizeable deviation of the two peaks around
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Figure 8.8: Experimental displacements xi(t) and yi(t) of the six pendula from their equilibrium
positions as extracted from the video analysis.

10.4 and 12 rad/s. Further checks are needed for understanding this phenomena, but one of the
explanation could be the following. These frequencies correspond to eigenmodes with a radial
symmetry of oscillation, which stress all the six springs at the same time. The springs are already
elongated due to pre-tensioning, and a further elongation stretches them into a non-linear regime,
which is beyond our analysis.

Nevertheless, it is remarkable how a simple system, such the one that we presented in this
section, is able to show the effect of a spin-orbit coupling arising from the L-T splitting of the
mechanical modes.
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Figure 8.9: Experimental spectra in the region of interest. Dots show the total intensity of the
Fourier spectra,

∑6
i=1 (|Fxi(Ω)|+ |Fyi(Ω)|), while the solid line is a guide to the eye. The black

dashed lines corresponds to the theoretical values of the eigenfrequencies as analytically calculated
in Eq. (8.26) together with the experimental error as calculated from error propagation analysis
Taylor [1997], represented as a light blue area. The eigenfrequencies ordered as in Eq. (8.26)
are also indicated. We see a qualitative overall agreement within the experimental error, and a
discrepancy on only two of the eigenmodes.

Artificial gauge fields in photonics and mechanical systems. G. Salerno



Conclusions and outlooks.

I call my world Flatland, not because that is what
we call it, but rather to make its nature clearer to
you, my happy readers, who are privileged to live in
Space.

Edwin Abbott Abbot – Flatland: a romance of
many dimensions.

This thesis was dedicated to the study of the properties of classical mechanical and photonic
systems in the presence of artificial gauge fields.

In the first part, we have started by considering a pair of coupled classical harmonic oscillators
governed by Newton’s equations of motion. We have shown that, in the rotating wave approx-
imation, the dynamics of the system can be described by equations that have the same form
as Heisenberg’s equations of motion written for a quantum tight-binding Hamiltonian. We have
also seen that, when the natural frequencies of such oscillators are suitably modulated in time,
surprising phenomena happen, such as dynamical decoupling and isolation and in particular the
appearance of a tunable non-trivial Peierls coupling phase. We have then extended this idea by
theoretically designing a scheme to realize a Floquet topological insulator for a two-dimensional
lattice of frequency-modulated pendula. We have implemented a flexible and externally tunable
artificial magnetic field through a fast and well-chosen temporal-modulation of the natural frequen-
cies of each pendulum. Since such modulation breaks time-reversal symmetry, the system can be
described as a classical analogue of the Harper-Hofstadter model. In fact, through spectroscopic
analysis of the collective oscillations of the pendula, we have demonstrated that the energy dis-
persion of the proposed scheme has the self-similar structure of the Hofstadter butterfly, as well
as the topological properties of an integer quantum Hall system. We have also given examples of
the existence of one-way propagating topological edge-states in the gaps between the bands and
we have pointed out that the topological Chern number associated with the energy bands can
be estimated from the shift of the oscillation amplitudes. Additionally, we have explored regimes
where the quantum analogy with the classical oscillators gets weaker yet the topological effects
remain, until the system becomes topologically trivial. It is interesting to note that our results
are valid for coupled harmonic oscillators of any physical nature with a natural frequency that is
temporally modulated.

An exciting outlook for such classical mechanical periodically-driven systems would be, for
example, the creation of topologically protected Floquet edge modes between bands with zero
Chern number as proposed in other Floquet systems by Rudner et al. [2013]. In addition, when
the anharmonicity of the pendula is taken into account beyond the linearised equations of motion,
one could study the interplay of topology with nonlinearity. This nonlinearity is analogous to an
on-site interaction in the quantum tight-binding Hamiltonian and may lead to a variety of new
and unexpected effects. Furthermore, we believe that another important future direction would
be the exploration of unique topological models in classical systems, even beyond the quantum
Hall analogy. Another very interesting point that could be investigated is the role of the counter
rotating wave terms in topological systems and its interplay with the parametric instability. In our
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model, the increasing of the counter rotating wave terms led to the destruction of the topological
effects, but one could, for instance, design different schemes in which the role of these terms is
opposite and enhances the topological order.

In the second part of this thesis, we have focussed on the honeycomb geometry and the im-
plementation of a strain-induced artificial gauge field. We have envisaged the strain in a driven-
dissipative photonic system of an array of cavities to be implemented as an inhomogeneous spatial
modulation of the tight-binding coupling between neighbouring sites. The great advantage of such
photonic driven-dissipative systems is that they allow for the use of spectroscopic techniques to
characterize the eigenmodes that are resonant with the coherent driving field. In this way, we have
shown that the spectroscopic intensity profiles, in both real and momentum space, faithfully repro-
duce the mode wave function associated with the relativistic Landau levels. We have also briefly
discussed the experimental feasibility of our proposal, using realistic parameters from available
experiments such as a photonic lattice made of a coupled cavity arrays or microwave resonators.

A very natural outlook in this case is the practical realisation of the strained scheme with
the proposed systems, that would allow for a direct observation of the Landau wave functions
at a macroscopic scale. Further studies in this direction are already in progress. Besides, with
these photonic systems, it is typically easy to perform transmission and absorption measurement
under a coherent incident field. In this way, one could study wave-propagation physics in distorted
honeycomb lattices, in particular by sending photons across a region where either an artificial
magnetic vector potential or magnetic field are present and analyse the transmission through a
“magnetic barrier”.

The last chapter was dedicated to spin-orbit coupling in a classical mechanical system with a
honeycomb geometry. We have theoretically studied this system and we have also shown the pre-
liminary results of an experiment concerning a mechanical benzene molecule composed of pendula
coupled with pre-tensioned springs. Further investigations on this experiment are currently under
development, together with new perspectives for considering an extended lattice and including
the effect of nonlinearities beyond the harmonic approximation of the pendula. Moreover, the
simulation of an artificial magnetic field for this simple mechanical system is very easy to realise
experimentally. By mounting the system on a rotating table, we could investigate the interplay of
an artificial gauge field with the spin-orbit coupling induced by the pre-tensioned springs.

To conclude, artificial gauge fields can be a very important ingredient for the study of fascinating
properties of both classical and quantum systems. The recent developments in this direction have
already opened up many new opportunities for both theory and experiment, and bring the promise
of many other avenues of research to be explored in the future.
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Appendix A

Solution of the Harper Equation.

In this appendix we derive the Hofstadter energy spectrum Eq. (1.17) by solving the
Harper equation Eq. (1.15), following the derivation from Marder [2010].

We write Harper’s equation in the form:(
g(j + 1)
g(j)

)
=

(
ε− 2 cos(2πjθ − κ) −1

1 0

)(
g(j)

g(j − 1)

)
= A(j)

(
g(j)

g(j − 1)

)
. (A.1)

The “transfer matrix” structure is evident, as the vector (g(j + 1), g(j))
> is obtained from the

vector (g(j), g(j − 1))
> through the matrix A(j). We can write also the vector (g(j), g(j − 1))

>

by applying the transfer matrix A(j − 1) to the vector (g(j − 1), g(j − 2))
>. Iterating this process

j times, we have:(
g(j + 1)
g(j)

)
= A(j)A(j − 1)

(
g(j − 1)
g(j − 2)

)
= · · · =

j∏
m=1

A(m)

(
g(1)
g(0)

)
. (A.2)

From Bloch’s theorem, we can also write g(j + q) = eikq g(j), thus only q of this wavefunctions
are independent. We have: (

g(q + 1)
g(q)

)
= eikq

(
g(1)
g(0)

)
. (A.3)

From Eq. (A.2), we define the product of q of transfer matrices as:

Q(ε, κ) =

q∏
j=1

A(j) =

q∏
j=1

(
ε− 2 cos(2πjθ − κ) −1

1 0

)
, (A.4)

and write, for j = q: (
g(q + 1)
g(q)

)
= Q(ε, κ)

(
g(1)
g(0)

)
. (A.5)

Equations (A.3) and (A.5) implies that:

Det
∣∣Q(ε, κ)− eikq

∣∣ = 0. (A.6)

The matrix Q(ε, κ) is a product of q matrices of determinat 1, so it has determinant 1 itself. From
Eq. (A.6) we have that:

Det[Q(ε, κ)] + e2ikq −Tr[Q(ε, κ)] eikq = 0, (A.7)

therefore:
Tr[Q(ε, κ)] = 2 cos(qk). (A.8)

This is already an important property of the trace of the matrix product, that gives the allowed
eigenvalues ε at a specific κ and k. By varying both κ and k one gets the allowed energy bands in
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momentum space. However, we now want to obtain a relation that will allow us to get the whole
spectrum regardless of the value of κ or k. We start by noticing that Eq. (A.8) is valid for any
given value of κ, also for Tr[Q(ε, κ+ 2π/q)] = 2 cos(qk), then

Tr[Q(ε, κ)] = Tr[Q(ε, κ+ 2π/q)].

Besides, Q(ε, κ+ 2π/q) is built from a product of matrices A exactly as Q(ε, κ), only in a different
order. Thus, the trace of Q can be written as a Fourier series:

Tr[Q(ε, κ)] =

∞∑
m=−∞

Fm(ε) eiqκm, (A.9)

but we immediately see from Eq. (A.4) that the highest Fourier component that can appear in Q
is eiqκ. Taking only m = −1, 0, 1 in the sum:

Tr[Q(ε, κ)] = F0(ε) + F1(ε) eiqκ +F ∗−1(ε) e−iqκ .

We select in Eq. (A.4) the corresponding Fourier components. For F1 it is easy to check that:

F1(ε) =

q∏
m=1

(
− e−i2πθm

)
= (−1)q e−iπθq(q+1) . (A.10)

The constant value F0 is found from a value κ0 such that the F1 and F ∗1 terms vanish, i.e.
F0 = Tr[Q(ε, κ0)]. Putting Eq. (A.10) into the Fourier expansion, we find that the sum of terms
depending upon κ is:

(−1)q2 cos
[
πθ(q2 + q)− qκ)

]
= (−1)q2 cos [πp(q + 1)− qκ)] ,

since θ = p/q. The cosine then vanishes by choosing κ0 = π/2q. The trace of Q can be written as:

Tr[Q(ε, κ)] = Tr[Q(ε, π/2q)] + 2 cos
[
πθ(q2 + q) + πq − qκ

]
≤ 2, (A.11)

where the last inequality stands from Eq. (A.8). Because k and κ can be freely varied, Eq. (A.11)
means that Tr[Q(ε, π/2q)] ≤ 2 + 2 cos(f(κ)) and that therefore ε is an allowed eigenvalue if it
satisfies:

|Tr[Q(ε, π/2q)]| ≤ 4. (A.12)

The solution of the Harper equation was found in this form by Hofstadter, and the set of allowed
energies form the Hofstadter butterfly.
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Appendix B

Derivation of the effective dynamics:
two sites.

In this appendix, we give the complete and detailed derivation of the effective dynamics
and the resonance curves in Eq. (3.16) of Chap. 3.

We start from Eq. (3.14), that within the rotating-wave approximation reads as:

α̇i = −i (ω̃0 + Vi(t)− iγ)αi + iFex(t) + i
Ω

2
α3−i. (B.1)

According to the transformation in Eq. (3.15), we substitute

αi(t) = βi(t) e−i
∫ t
0
Vi(t

′) dt′ e−iωext

into the previous equation and get:

β̇i − i(Vi(t) + ωex)βi =

− i(ω̃0 + Vi(t)− iγ)βi + ifex(1 + ei2ωex) ei
∫ t
0
Vi(t

′) dt′ +i
Ω

2
β3−i e−i

∫ t
0 (V3−i(t

′)−Vi(t′)) dt′ .
(B.2)

Neglecting the term in ei2ωex because we are in the rotating-wave approximation, we now can apply
the Magnus expansion to the first order, i.e. apply the time-average to Eq. (B.2):

0 =
1

T

∫ T

0

[
−β̇i − i(ω̃0 − ωex − iγ)βi + ifex ei

∫ t
0
Vi(t

′) dt′ +i
Ω

2
β3−i e−i

∫ t
0 (V3−i(t

′)−Vi(t′)) dt′
]

dt.

(B.3)
The coupling term in Eq. (B.3), for i = 1 is:

Ωeff
21 =

Ω

T

∫ T

0

ei2I0 e−i2I0 cos(wt) dt. (B.4)

We apply now the Anger-Jacobi expansion of the exponential of a cosine in terms of a sum of
Bessel functions:

eix cos(y) =

∞∑
m=−∞

imJm(x) eimy (B.5)

and get:

Ωeff
21 =

∞∑
m=−∞

Ω

T
ei(2I0+mπ/2) Jm (2I0)

∫ T

0

eimwt dt. (B.6)

In order for the integral to be non-zero, since the time-average is over T = 2π/w, it has to be
m = 0. Therefore:

Ωeff
21 = Ω ei2I0 J0 (2I0) , (B.7)
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which gives exactly the Ωeff
12 = Ωeff

21
∗ as in Eq. (3.13).

Similarly for the effective external driving force:

f effex =
fex
T

∫ T

0

e−iI0 eiI0 cos(wt) dt = fex e−I0 J0(I0), (B.8)

that is Eq. (3.18).
With the effective force and effective coupling, Eq. (B.3) for i = 1, 2 become:

0 = −i(ω̃0 − ωex − iγ)β1 + if effex + i
Ω∗eff
2
β2,

0 = −i(ω̃0 − ωex − iγ)β2 + i
Ωeff

2
β1,

(B.9)

having put β̇i = 0 because we are interested in the steady-state where the variables do not oscillate.
This set of equations is easily solvable for β1, β2, giving the response spectra in Eq. (3.16).
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Appendix C

Derivation of the Bloch-Siegert shift.

In this appendix we present the full derivation of the Bloch-Siegert shift that comes from
a first-order correction to the rotating-wave approximation of the equation of motion.

For sake of simplicity, we only consider an isolated pendulum and write the corresponding
equations of motion:

α̇ = −i (ω̃0 − iγ)α− iV (t)(α+ α∗)− i

(
Ω

2
+ iγ

)
α∗,

α̇∗ = i (ω̃0 + iγ)α∗ + iV (t)(α∗ + α) + i

(
Ω

2
− iγ

)
α.

(C.1)

Since the Eqs. (C.1) couple the α and α∗ variables, a rotating-wave contribution appears also
from the counter-rotating-wave variable α∗. In order to calculate this contribution, we allow the
variables in the rotating frame to have a small correction that oscillates with an opposite frequency.
For example, the α∗ variables in a frame that rotates at ≈ −ω0 will be written as:

α∗(t) = α∗ + δα∗ e−i2ω0t . (C.2)

We substitute the previous expression in the second equation of Eq. (C.1), separating the contri-
bution of the rotating-wave terms from the one that oscillates at ≈ −2ω0. We have:

α̇∗ − i
(
ω̃0 + iγ + V (t)

)
α∗ = i2ω0δα

∗ e−i2ω0t +i

(
V (t) +

Ω

2
− iγ

)
α e−i2ω0t . (C.3)

The first term on the right-hand side is equal to zero, since it corresponds to Eq. (C.1) to the
leading order in the rotating-wave approximation. The second term gives:

δα∗ ' −
V (t) + Ω

2 − iγ

2ω0
α. (C.4)

Putting Eq. (C.4) back into Eq. (C.2), and transforming back to the frame that rotates as ≈ ω0,
we have:

α∗(t) ei2ω0t ≈ α∗ ei2ω0t−
V (t) + Ω

2 − iγ

2ω0
α. (C.5)

This expression contains the explicit contribution to the rotating-wave-terms, that can be finally
substituted in the first equation in Eq. (C.1), obtaining:

α̇ = −i
(
ω̃0 − iγ + V (t)

)
α− i

(
V (t) +

Ω

2
+ iγ

)(
V (t) + Ω/2− iγ

2ω0

)
α. (C.6)

where the counter-rotating-wave terms α∗ were neglected, because the leading order was already
included through the rotating-wave part in Eq. (C.5).
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Equation (C.6) is the first-order correction to the rotating-wave approximation of Eq. (3.7),
with driving and dissipation. By using the transformation in Eq. (3.15), we average over the period
T = 2π/w of the temporal modulation, obtaining the classical analogue of the Bloch-Siegert shift:

∆shift ≡ −
1

2ω0

1

T

∫ T

0

[(
V (t) +

Ω

2

)2

+ γ2

]
. (C.7)

This shift summarizes the principal effect of the counter-rotating-wave terms beyond the rotating-
wave approximation, and it is more and more important for larger amplitude V of the temporal
modulation.

For the specific form of the temporal modulation that was used in the Chap. 3, V (t) = V sin(wt):

∆shift = − V
2

4ω0
− Ω2

8ω0
− γ2

2ω0
. (C.8)

For the bi-harmonic modulation of Chap. 4, Vi,j(t) = V (cos(wt+φi,j) + (s− 1) cos((s− 1)wt−
φi,j)), and the specific form of the coupling along x and y, we have:

∆shift = − V
2

4ω0
(2− 2s+ s2)− 2

(Ωx + Ωy)2

ω0
− γ2

2ω0
. (C.9)
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Appendix D

Derivation of the effective dynamics:
the lattice.

In this appendix, we give insight into the effective Harper-Hofstadter equation of motion in
Eq. (4.14) of Chap. 4. The derivation of the effective dynamics follows the one in Appendix B. Upon
the unitary transformation to the βij variables in Eq. (4.13), after substitution into Eq. (4.11), the
equations of motion are:

β̇i,j−iωex + iwS(ip)βi,j = −i[ω0 − iγi,j ]βi,j

iΩxβi+1,j e−iw[S(i+1)−S(i)]t e−i
∫ T
0

[Vi+1,j(t
′)−Vi,j(t′)]dt′

+ iΩxβi−1,j e−iw[S(i−1)−S(i)]t e−i
∫ T
0

[Vi−1,j(t
′)−Vi,j(t′)]dt′

+ iΩyβi,j+1 e−i
∫ T
0

[Vi,j+1(t′)−Vi,j(t′)]dt′ +iΩyβi,j−1 e−i
∫ T
0

[Vi,j−1(t′)−Vi,j(t′)]dt′

+ if exi,j e−iw[S(i)−S(ip)] ei
∫ T
0
Vi,j(t

′)dt′ .

(D.1)

We first focus on the coupling along y. We have:

Ty = iΩy

[
βi,j+1 e−iVw (A+ cos(wt)+B+ sin(wt)+B+ sin((s−1)wt)−A+ cos((s−1)wt)) +

βi,j−1 e−iVw (A− cos(wt)+B− sin(wt)+B− sin((s−1)wt)−A− cos((s−1)wt))
]
,

(D.2)

having used the explicit form of the temporal modulation Vi,j = V [cos(wt+φi,j) + (s− 1) cos((s−
1)wt− φi,j)] and where we have defined:

A± ≡ sin(φi,j±1)− sin(φi,j), B± ≡ cos(φi,j±1)− cos(φi,j). (D.3)

The exponential part in Eq. (D.2) can be also written as:

A± cos(wt)±B± sin(wt) =
√
A±2 +B±2 cos

(
wt∓ arctan

(
B±

A±

))
. (D.4)

Calling C± ≡
√
A±2 +B±2 and ϕ± ≡ arctan(B±/A±), we have:

Ty =

iΩy

[
βi,j+1 e−iV C

+

w (cos(wt−ϕ+
i,j)−cos((s−1)wt+ϕ+

i,j)) +βi,j−1 e−iV C
−

w (cos(wt−ϕ−i,j)−cos((s−1)wt+ϕ−i,j))
]
.

(D.5)

Substituting the form of the modulation phase φi,j = 2πθ(i + j) in the expressions for C± and
ϕ±i,j , we have:

C ≡ C± =
√

2− 2 cos(2πθ), ϕ±i,j = − (2πθ(i+ j)± πθ) . (D.6)
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We now use the Anger-Jacobi expansion Eq. (B.5), and average over one period T of the temporal
modulation to obtain:

〈Ty〉T =
iΩy
T

∫ T

0

[
βi,j+1

∞∑
p,r=−∞

Jp
(
V C

w

)
Jr
(
V C

w

)
eiwt(r+p(s−1)) ei(p−r)ϕ+

i,j eiπ/2(p+r)

βi,j−1

∞∑
p,r=−∞

Jp
(
V C

w

)
Jr
(
V C

w

)
eiwt(r+p(s−1)) ei(p−r)ϕ−i,j eiπ/2(p+r)

]
dt.

(D.7)

The integral is non-null if the exponential eiwt(r+p(s−1)) = 1, that is for r = −p(s − 1). The
expression for the effective coupling along y is then:

ΩEFF
y ≡ Ωy

∞∑
p=−∞

J−(s−1)p(I0)Jp(I0) eipsϕ±i,j ei(sp−2p)π/2, (D.8)

where we have used the definition of I0 = V C/w.
We now proceed to the effective coupling along the x direction:

Tx = iΩx

[
βi+1,j e−iVw (Ã+ cos(wt)+B̃+ sin(wt)+B̃+ sin((s−1)wt)−Ã+ cos((s−1)wt))

βi−1,j e−iVw (Ã− cos(wt)+B̃− sin(wt)+B̃− sin((s−1)wt)−Ã− cos((s−1)wt))
]
.

(D.9)

where we have defined

Ã± ≡ sin(φi±1,j)− sin(φi,j), B̃± ≡ cos(φi±1,j)− cos(φi,j). (D.10)

As before, the exponential part in Eq. (D.9) can be also written as:

Ã± cos(wt)± B̃± sin(wt) = C cos
(
wt∓ ϕ±i,j

)
, (D.11)

where C and ϕ±i,j are the same as in Eq. (D.6).
We now use the Anger-Jacobi expansion and average over one period of the modulation to

obtain:

〈Tx〉T =

iΩx
T

∫ T

0

[
βi+1,j

∞∑
p,r=−∞

Jp
(
V C

w

)
Jr
(
V C

w

)
eiwt(r+p(s−1)−[S(i+1)−S(i)]) ei(p−r)ϕ+

i,j eiπ/2(p+r) +

βi−1,j

∞∑
p,r=−∞

Jp
(
V C

w

)
Jr
(
V C

w

)
eiwt(r+p(s−1)−[S(i−1)−S(i)]) ei(p−r)ϕ−i,j eiπ/2(p+r)

]
dt.

(D.12)

This coupling depends on the position along the static spatial modulation S(i). We first focus on
the couplings between pendula that have a natural-frequency difference of S(i ± 1) − S(i) = ±1,
where the ± indicates that the hopping is calculated going towards the left (+1) or towards the
right (−1). We have that in this case the integral in Eq. (D.12) is non-null if the exponential
eiwt(r+p(s−1)−[S(i+1)−S(i)]) = 1, that is for r = −p(s − 1) ∓ 1. The expression for the effective
coupling along x is then:

ΩEFF(±w)
x ≡ Ωx

∞∑
p=−∞

J±1−(s−1)p(I0)Jp(I0) e−iϕ±i,j(±1−p−(s−1)p) ei(±1−(s−1)p+p)π/2 . (D.13)

This equation describes the hopping along the small steps of the static spatial modulation.
The coupling between pendula that have a natural-frequency difference of S(i ± 1) − S(i) =

∓(s− 1) is obtained for r = −p(s− 1)∓ (s− 1) in the sum, and it is equal to:

ΩEFF(∓w(s−1))
x ≡

Ωx

∞∑
p=−∞

J(s−1)(∓1−p)(I0)Jp(I0) e−iϕ±i,j(∓(s−1)−p−(s−1)p) ei(∓(s−1)+p−(s−1)p)π/2 .
(D.14)

Artificial gauge fields in photonics and mechanical systems. G. Salerno



101

where this time ∓ indicates the hopping calculated going towards the left (−1) or towards the
right (+1). This is because the frequency-difference along the “big step” of the static modulation
has an opposite sign to the ones along the “small steps”.

Finally, the effective driving force:

fEFFip,jp ≡ f
ex
ip,jp

∞∑
p′=−∞

J−(s−1)p′

(
V

w

)
Jp′
(
V

w

)
e−i(p′+(s−1)p′)φi,j . (D.15)

The following effective equations of motion are found:

β̇i,j = −i∆ωβi,j − γi,jβi,j + ifEFFip,jp + i
∑
±1

ΩEFF
x βi±1,j + i

∑
±1

ΩEFF
y βi,j±1. (D.16)

We now assume that J0(I0) & J1(I0) � Jp(I0), with p ≥ 2 and take only the largest term in
the sums. In Eq. (D.8), (D.13), and (D.15) we have that p = p′ = 0, while in Eq. (D.14) we must
take p = ∓1. Remarkably, in this approximation, the hopping along x is uniform and does not
depend on the position along the static-spatial modulation, thus allowing for clear definitions of
ΩEFF
x , ΩEFF

y and fEFFip,jp
:

ΩEFF
x = Ωx J±1 (I0)J0 (I0) e∓i(2πθ(i+j)±πθ−π/2),

ΩEFF
y = Ωy J0 (I0)

2
,

fEFFip,jp = f exip,jp J0 (V/w)
2
.

(D.17)

By combining Eq. (D.17) with the effective equations of motion in Eq. (D.16) to lowest order in
I0 and V , we obtain exactly the equations in Eq. (4.14). From Eq. (D.8),(D.13) and (D.14) we
notice that the second largest term in the sums is proportional to J(s−1)(I0), that is very small
if I0 � 1 or when considering a large period of the static modulation s � 2. We found that
an optimal combination of these two requirements that fulfils the inequality Eq. (4.12) with the
renormalisation of Eq. (4.18) is to have I0 = 0.5 with s = 5.
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Appendix E

Fourier decomposition of the equations of
motion.

We now comment on the Fourier decomposition that was used as an alternative method to
the full-time integration with Runge-Kutta for solving the set of differential equations in Eq. (4.3)
to produce the butterfly spectra in Fig. 4.6.

From the properties of periodically driven systems Goldman and Dalibard [2014], Goldman
et al. [2015b], we know that, during a Floquet evolution between two stroboscopic times tn = nT ,
the system exhibits micro-motion, with a period set by the frequency of the temporal modulation
w. We are interested in the steady state, therefore, we search for a solution of Eq. (4.3) that
oscillates at the frequency of the external driving ωex. To this end, we expand the αi,j(t) in a
Fourier series, using both ωex and w as harmonics:

αi,j(t) =

∞∑
m=−∞

∞∑
n=−∞

α
(m,n)
i,j eimwt einωext, (E.1)

where α(m,n)
i,j are the time-independent Fourier amplitudes, assuming that all the time-dependencies

are in the exponential term, having care in writing the conjugate variables as:

α∗i,j(t) =

∞∑
m=−∞

∞∑
n=−∞

α
(−m,−n)
i,j eimwt einωext,

since the sum runs over symmetric indexes around 0. The sum over m is truncated to a finite
number M , that is large enough to ensure a convergent solution. The sum over n takes only
two values ±1, since we have assumed that the external driving force is a cosine with a defined
frequency ωex. By substituting Eq. (E.1) in Eq. (4.3) and isolating the component proportional to
eimwt einωext, we have a set of linear algebraic equations that can be inverted to find the coefficients
α

(m,n)
i,j .
In order to simulate the real experimental situation, we performed all the calculations using the

full numerical integral of Eq. (4.3), except for the Hofstadter butterfly, where the full numerical
integration would have been computationally demanding.

We have verified the good agreement between the two methods finding a mean error that is less
than 1%. We note that the two methods are in fact equivalent when the system is dynamically
stable. However, when there is an instability, the system does not reach the steady state. This
is clearly seen in the full numerical integration method, where the solution shows the typical
exponential growth of an unstable system. In the Fourier method the steady state is imposed by
the decomposition Eq. (E.1) itself and so the emergence of an instability can not be predicted, as
discussed in the main text.
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Appendix F

Calculation of edge states of the
honeycomb lattice.

In this appendix we show how to obtain the energy dispersion of a ribbon of a honeycomb
lattice, that differs from the one of an infinite lattice for the presence of zero-energy modes, which
depend on the various type of terminations. For simplicity, we consider a semi-infinite ribbon, of
N unit cells along the x direction and infinite along the y direction, oriented as shown in Fig. F.1.
The zigzag and the bearded termination can appear in the two edges on the left or on the right,
depending if the first or the last lattice site is a site of type A or B. Since we have edges along the
y-direction, we can apply periodic boundary conditions along y and keep the explicit dependence
on the i index along the x-direction:

a(i, j) = ai eij~k· ~Ay ,

b(i, j) = bi eij~k· ~Ay ,
(F.1)

where ~Ay = (0,
√

3a/2) and ~Ax = (3a/2, 0) are the vectors giving the indexing shown in Fig. F.1.
Substituting these conditions into Eq. (6.2), with the notation in Fig.F.1, we get the following

equations:

Ea(i) = −t1b(i)− t b(i− 1)2 cos

(√
3a

2
ky

)
,

Eb(i) = −t1a(i)− t a(i+ 1)2 cos

(√
3a

2
ky

)
,

(F.2)

having assumed that t2 = t3 = t. For each lattice point A, B in all of the unit cells, we have a set
of equations, that can be recast as a matrix:


. . . . . . . . . . . . . . . . . .

. . . 2t cos
(√

3a
2 ky

)
E t1 0 . . .

. . . 0 t1 E 2t cos
(√

3a
2 ky

)
. . .

. . . . . . . . . . . . . . . . . . . . .




. . .

b(i− 1)
a(i)
b(i)

a(i+ 1)
. . .

 , (F.3)

where the vector on the right contains all the fields on the lattice sites and it is ordered according
to the same indexing as in Fig. F.1. The energy dispersion obtained by diagonalizing the matrix
in Eq. (F.3) were shown in Fig. 6.5.
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Figure F.1: Edge terminations in the honeycomb lattice. Each unit cell is composed by two
sites of type A and B, which are shown in blue and red respectively. The unit cells are also
labelled with two indexes, i, j, which are incremented according to the vectors ~Ay = (0,

√
3a/2)

and ~Ax = (3a/2, 0). This labelling is more convenient for the calculation of the edge states
compared to the one introduced in Fig. 6.2
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Appendix G

Overlap between Landau levels due to a
coherent external pump.

In this Appendix we comment on the particular spiral-like shape that was observed in
Fig. 7.6. We want to show that when the dissipative system is pumped resonantly at the frequency
of a Landau level, the interference between this resonant level and its neighbours, that are non-
resonantly excited through a finite loss γ, has the spiral-shape of Fig. 7.6.

To do so, we consider the following wave function pump, that for simplicity is a delta in x and
a Gaussian of width σy in y:

|P 〉 = δ(x) e
− y2

2σ2y . (G.1)

We recall that the Landau wave functions are:

|n, qy〉 = eiqyy e
− (x−x0)2

2l2
B Hn

(
x− x0

lB

)
, (G.2)

with x0 = l2Bqy and lB = 3a/
√

2τ .
The wave function that is excited will be:

ψ =
∑
n

∫
dqy
|n, qy〉〈n, qy|P 〉
ωp − ωn − iγ

, (G.3)

where ωp is the frequency of the pump and the ωn is the frequency of the n-th Landau level. We
calculate separately:

〈n, qy|P 〉 =

∫ ∞
−∞

δ(x) e
− y2

2σ2y eiqyy e
− (x−x0)2

2l2
B Hn

(
x− x0

lB

)
dxdqy

= e
− x20

2l2
B Hn

(
−x0

lB

)
e−

q2yσ
2
y

2

√
2πσy.

(G.4)

Using the expressions in Eq. (G.1), Eq. (G.2) and Eq. (G.4), and assuming that we are reso-
nantly pumping the n = ñ level with ωp = ωñ , and mix with only the n = ñ+ 1, we have:

ψ =

∫
dqy
√

2πσy e
− x20

2l2
B e−

q2yσ
2
y

2 eiqyy e
− (x−x0)2

2l2
B[

Hñ

(
x−x0

lB

)
Hñ

(
−x0

lB

)
ωñ − ωñ − iγ

+
Hñ+1

(
x−x0

lB

)
Hñ+1

(
−x0

lB

)
ωñ − ωñ+1 − iγ

]
.

(G.5)

In Fig. G.1 we show the wave functions profile that is effectively excited by the pump, as
obtained by numerically calculating the integral in Eq. (G.5) for similar values of the system

107



108

Figure G.1: Effectively excited wave functions, as obtained by the overlap between the resonant
level that is selected by the pump, and the non-resonant level excited due a finite loss. Left panel
shows ñ = 0, while right panel is for ñ = 1. System parameters are the same as in Fig. 7.6.

parameter as in Fig. 7.6. The figure on the left is obtained by pumping ñ = 0, and mixing with the
n = 1 level. As we see, and expect from Fig. 7.6-1, the effective profile is Gaussian, not reflecting
any spiral-like shape. Conversely, on the right side, ñ = 1 and we show a mixing with the n = 2
level. In this case the spiral-like shape is evident, as it was in Fig. 7.6-2. Of course, by decreasing
the loss rate, in the limit of ~γ/t → 0, the resonant mode is more and more dominant while the
non-resonant contribution is suppressed and the spiral behaviour disappears.
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