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ABSTRACT  
 

Deciphering how neurons represent the external world is a fundamental goal in neuroscience. This 

requires identifying which features in the population response in a single trial are informative about 

the stimulus. Neurons can code stimuli using both space and time. Individual neurons show 

differential selectivity to certain stimuli across space at coarse time scales while representing others 

by modulating their activity at fine time scales. The information content in the population is modified 

from neural interactions across space and time. While this emphasizes the need to examine population 

responses across space and time, analyzing a population of hundreds of neurons is challenging when 

only a limited number of trials are available due to the high dimensionality of the joint spatiotemporal 

response space. We addressed this by introducing a novel method called space-by-time non-negative 

matrix factorization. The method describes the population activity with a low dimensional 

representation consisting of spatial modules, groups of neurons that are coactivated, and temporal 

modules, patterns that describe how these neurons modulate their spiking across time. The population 

activity in each trial is described by a set of coefficients, that indicate the level of activation of each 

spatial and temporal module in the trial. We used this method to analyze datasets from auditory, 

visual and somatosensory modalities. It identified physiologically meaningful spatial and temporal 

modules that described how each population coded stimuli in space and time. It further indicated the 

differential contributions of spatial and temporal dimensions for the population code. Particularly, the 

first spike latency was demonstrated to be informative at the population level. We refined the method 

to model the sub-Poisson, Poisson and supra-Poisson variability typically observed in spike counts. 

This refinement demonstrated enhanced capacity in identifying spatial and temporal modules from 

empirical data and indicated that the activity of a neural population code stimuli using multiple 

representations. Our findings indicate that our method is scalable to large populations of neurons and 

has the capacity to efficiently identify biologically meaningful and informative low dimensional 

representations.           
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Chapter 1: Introduction 
 

Neural populations from sensory areas (Stopfer et al., 2003; Jones et al., 2007), motor areas 

(Churchland et al., 2012) to higher level regions (Durstewitz et al., 2010; Mante et al., 2013) 

exhibit collective dynamics in response to stimuli. Neural population activity can be 

characterized using two dimensions; space and time. The spatial dimension describes how 

neurons modulate their tuning and interactions to represent stimuli (Rigotti et al., 2013; 

Moreno-Bote et al., 2014; Panzeri et al., 2015; Pitkow et al., 2015). The temporal dimension 

describes how the collective activity of a population of neurons evolves over time, which can 

contain information that is lost if the fine details of the  population activity across time is 

neglected.(Laurent, 1999; Petersen et al., 2002; Stopfer et al., 2003; Heil, 2004; Gollisch and 

Meister, 2008; Panzeri et al., 2010a; Zuo et al., 2015). With the recent advancements in 

recording methods it is now possible to record from hundreds of neurons simultaneously 

(Buzsáki et al., 2015). An emergent view from the insights gained from these large scale 

recordings is that the neural population activity consists of a limited number of stereotyped 

spiking patterns (Nádasdy et al., 1999). Sometimes these groups of neurons tend to fire close 

together in time, with the relative strength and timing of recruitment of different patterns 

encoding information about the stimulus features (Luczak et al., 2009; Luczak et al., 2013). 

How to extract a biologically meaningful and scalable representation of neural population 

spike trains in space and time remains an open problem. The purpose of this thesis is to make 

a contribution towards finding mathematical methods that can accomplish this goal. When 

developing such a method, first one has to identify the key requirements that the derived 

representation has to fulfill. It should satisfy many requirements. First, because the brain 

makes decisions in single trials, it should capture information in single trial spike trains. 

Second, it should capture most or all information about stimuli with a small number of 

parameters. Third, the basis functions used to describe single-trial neural activity should be 

interpretable biologically: in particular, it should decompose neural activity into the 

constituent stereotyped patterns of firing observed in the data..   

Current methods for finding low-dimensional representations of neural activity (Laubach et 

al., 1999a; Byron et al., 2009; Yu et al., 2009; Churchland et al., 2010; Cunningham and 

Byron, 2014) such as Principal Component Analysis (PCA), Independent Component 

Analysis (ICA), or Factor Analysis (FA) are usually applied to firing rate only, neglecting the 

temporal structure of spike trains, or to trial-averaged data in order to avoid the confounding 

effects of trial-to-trial spiking.  

The central hypothesis of this thesis is that part of the problems with the methods mentioned 

above can be solved by describing single-trial spatiotemporal firing patterns with a machine 

learning technique that is well-established, yet largely unexplored for spike train analysis: 

Non-negative Matrix Factorization (NMF, see (Lee and Seung, 1999)). NMF linearly 

decomposes a non-negative dataset into a sum over non-negative basis functions using non-

negative coefficients. The non-negativity constraint implemented in NMF yields several 
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advantages: its basis functions and coefficients are, in principle, interpretable as firing 

patterns and as their strength of recruitment in single trials; it generates sparse 

representations; and it can cope with non-orthogonal firing patterns such as the partly 

overlapping ones that may be generated by neural circuits with hard-wired connectivity.  

In this thesis we will explore in detail the potentials of NMF for spike train analysis by 

studying carefully the mathematical basis for application to spike trains such as assumptions 

to be made regarding the spatial and temporal nature of neural responses, models or neural 

noise or neural variability. We introduce and refine NMF based methodologies to study 

population coding that address the above mentioned key requirements. We apply it 

systematically to many different datasets of neural responses.  

Before I proceed further in studying these topics, in this introductory chapter I will review 

some basic empirical facts of neural population coding and some of the techniques currently 

used to study it. I will conclude with an overview of the other chapters of this thesis.   

 

1.1 The brain as an information processing machine 

The brain is an information-processing machine. It constructs representations of the external 

world from signals coming from our sensory organs. Computations on these representations 

lead to the way we perceive the world, remember past events, plan our future and make day-

to-day decisions. Our actions and behaviors in turn are initiated from signals that our brain 

sends to our motor elements (Decharms and Zador, 2000). The fundamental question in 

neuroscience is to understand how our brain performs these functions. 

Neurons are the basic information processing units in the brain. A neuron participates in 

information processing through changes in its membrane potential. Its membrane potential is 

generally at a resting value, but can change in a transient stereotypical voltage profile 

generating an action potential or a spike. Neurons communicate with each other by 

transmitting action potentials across chemical or electrical synapses. Typically, a neuron 

receives about 3000 - 10000 pre-synaptic connections from which about 85% are excitatory 

and the remaining are inhibitory (Mayhew, 1991; Shadlen and Newsome, 1998). Excitatory 

pre-synaptic spikes cause an increase in the membrane voltage of an excitatory neuron while 

inhibitory pre-synaptic spikes cause a decrease in its membrane voltage. Even though a 

neuron receives a large amount of inputs with strong temporal fluctuations, a neuron typically 

maintains a reasonably low firing rate with variable spike times through a balance in 

excitation and inhibition (van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 

1998; Wehr and Zador, 2003; Okun and Lampl, 2008). 

Many neurons involved in representing sensory stimuli are located in the cortex. One dataset 

we used was recorded from the auditory cortex and another from the somatosensory cortex of 

rat. The cortex is organized horizontally into six layers and vertically in a columnar 

architecture. In the six-layer organization, each layer contains a population of cells that are 

different in terms of sizes, shapes, densities, inputs and outputs. Cells are assigned to layers 

based on the layer that the cell body lies in. Cells in layer IV in sensory cortices receive input 
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from afferent thalamocortical connections. Layer V cells connect cortex to sub-cortical 

structures such as basal ganglia, while neurons in layer VI send efferent connections to the 

thalamus. In the columnar organization, a column is a vertical cluster of neurons that have 

similar functional roles (Mountcastle et al., 1957; Mountcastle, 1997). An example is a barrel 

column in rodent somatosensory cortex where inputs from the thalamus relating to a single 

whisker terminate at a distinct area in the layer IV of the somatosensory cortex called barrel 

column (Woolsey and Van der Loos, 1970).  The number of neurons per column varies with 

the distance of the respective whisker from the ground (Meyer et al., 2013). Another example 

is the columnar organization found in V1 that is defined by the ocular dominance and the 

orientation specificity (Hubel and Wiesel, 1959, 1962; Obermayer and Blasdel, 1993). While 

a similar architecture is found in many other cortical regions (Mountcastle, 1997), the reasons 

for the existence of such columnar organization is debated (Horton and Adams, 2005). 

Experimental studies have found that neuronal connectivity can be highly clustered and 

neurons can form sub-networks at a fine-scale (Song et al., 2005; Yoshimura and Callaway, 

2005; Yoshimura et al., 2005; Perin et al., 2011). The synaptic weight that specifies the 

strength of the connection between the pre-synaptic neuron and the post-synaptic neuron 

could be strong in a few synaptic connections that are more clustered (Song et al., 2005). 

Interconnected sub-networks could also share a higher degree of common excitatory input 

(Yoshimura et al., 2005) and process related sensory information with high functional 

specificity (Ko et al., 2011). Such sub-networks define localized organization at a finer scale 

within the cortex, which can give rise to coactivations and interactions between clustered 

neurons. Recent studies have proposed that the population activity is constrained to display 

stereotypical activity patterns that are recruited to encode sensory stimuli and to coordinate 

motor activity (Luczak et al., 2009; Sadtler et al., 2014).  

 

1.2 Brain states 

Neurons in the resting brain show spontaneous spiking. The global structure of the 

spontaneous activity depends on the state of the brain. Typically, the state of the brain is 

defined according to the observed variations in the spiking activity on a time scale of 

seconds. Traditionally, it is classified into two broad categories using observations related to 

the sleep cycle (Steriade et al., 1993; Steriade et al., 2001). During slow-wave sleep, the 

spiking activity of populations of neurons show large scale structured fluctuations where 

periods of concerted spiking activity is interleaved with periods of silence. The periods in 

which neurons show activity are called up-states and the periods in which the neurons are 

silent are called down-states. Up-states and down-states can range in a scale of seconds under 

certain anesthesia (Steriade et al., 1993) to tens of milliseconds in awake animals (Luczak et 

al., 2009; Harris, 2013). Such fluctuations can give rise to high correlated variability between 

neurons (Curto et al., 2009; Pachitariu et al., 2015). When neurons show this type of activity 

and the summed population activity undergoes slow low frequency fluctuations (~< 4 Hz), 

the brain is said to be in a synchronized state. On the other hand, during waking or in rapid 

eye movement sleep, these slow fluctuations are no longer visible. Then the brain is said to be 

in a desynchronized state. The brain state at any moment can be at any point between a highly 
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synchronized and a highly desynchronized state.  Mechanisms such as attention can cause 

changes in neuromodulation that result in changes of the state of the brain at a local level 

(Harris and Thiele, 2011). Furthermore, when experiments are conducted under anesthesia 

such as urethane, spontaneous changes in the brain state could be observed (Clement et al., 

2008; Curto et al., 2009). One of our datasets exhibits such a spontaneous state change. The 

state of the brain is relevant for sensory processing because the responses of neurons to 

external sensory inputs are shaped from the state of the cortex. Salient stimuli such as 

auditory clicks and whisker deflections generate large responses irrespective of the state of 

the brain while temporally extended stimuli are processed efficiently only in the 

desynchronized state (Harris and Thiele, 2011). Thus, there is a considerable influence of the 

endogenous brain state on the neural activity.  

Scientists conduct experiments to understand how external stimuli are presented in the brain 

and how computations on these representations lead to cognitive functions and motor actions. 

Based on what we know of the structure of the brain, how it represents the outside world and 

performs computations, we record responses from a population of neurons in the brain region 

that we believe to be involved in the task that we wish to investigate. We look at the recorded 

activity and try to decipher how the recorded population of neurons modulates their spiking 

to perform the representation or the computation using a method suitable to analyze the 

recorded neural activity. We further explore how the states of the brain shape this activity in 

time. We will now look at some ways in which neurons are known to represent the external 

world, or more specifically, how they represent the set of stimuli we present during the 

experiment. Methods that are used to analyze neural activity, which we will discuss later, are 

designed to suit what we know of these representations. 

 

 

1.3 Neural population codes 

The set of response properties that carry information about the stimuli is called the neural 

population code (Panzeri et al., 2015). There are many features in the recorded population 

responses that can convey information about stimuli (Onken et al., 2014; Panzeri et al., 

2015).  

Initial studies that explored neural coding were based on single neuron recordings or 

recordings from small neuron ensembles. Typically the response of a neuron was defined in 

terms of the average firing rate, using the total number of spikes of the neurons in a time 

window which spanned from tens to hundreds of milliseconds. Since the neural responses 

display variability in spiking from one trial to another, the trial averaged firing rate was 

typically used. The trial-averaged firing rate of each neuron was plot against the stimulus 

feature to form a tuning curve. A common observation was that neurons in the population 

selectively modulate their firing rates to different levels of the feature (Georgopoulos et al., 

1983; Maunsell and Van Essen, 1983; Miller et al., 1991; Lewis and Kristan, 1998). An 

example is the coding of movement directions by motor neurons in the proximal arm area 
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(Georgopoulos et al., 1982; Georgopoulos et al., 1983; Edelman et al., 1984) shown in Figure 

1.1A shows the raster responses of a cell to five trials each recorded when a monkey made 

hand movements from a central position to the eight equi-spaced directions indicated at the 

center. The firing rate of the cell shown in the tuning curve in Figure 1.1B is clearly 

modulated to the movement direction and defines a rate code for movement direction. In 

higher cortical areas neurons show mixed selectivity to a range of task related parameters 

simultaneously (Rigotti et al., 2013). The selective modulation of the firing rate across a 

neural population is a form of stimulus coding across the spatial dimension. 

Parallel studies found evidence for the coding in the temporal dimension. Neurons can use 

precise spike timing on the order of a few milliseconds to encode stimulus information that 

cannot be accounted for by the firing rates alone (Panzeri et al., 2010b; Onken et al., 2014). A 

simple example where spike timing is used is the latency code (Gawne et al., 1996). In this 

code, information about stimulus features is coded by means of the time of the first spike 

(Johansson and Birznieks, 2004; Gollisch and Meister, 2008). An illustration of a first spike 

latency code is shown in Figure 1.2. The cell shown responds with four spikes to all six 

stimuli and thus does not show any modulation in the total spike count between stimuli. 

However, the first spike latency varies between stimuli and forms the latency tuning curve 

shown in Figure 1.2B. A coding scheme based on latency is inherently fast and can be energy 

efficient since only a few spikes are needed to encode information. However, they can be 

susceptive to spike failure and jittering. When considering full responses, studies have 

divided the full responses into smaller bins forming spike words, and have investigated how 

the information in timing change with the size of these bins (Panzeri et al., 2001).  
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Figure 1.1: Coding of the movement direction using average firing rates  A: Raster 

plots of responses recorded from a neuron in the proximal motor area of a monkey when the 

hand was moved from a central position to the periphery in each of the eight directions 

indicated in the center. The movement is made after the target (T) is shown at the time 

indicated by longer vertical lines. Trials are aligned to the movement onset M also indicated 

by longer vertical bars.  B: The tuning curve of the cell in A showing the average firing rate 

of the neuron for the eight directions (The image is in (Edelman et al., 1984) and was adapted 

from (Georgopoulos et al., 1982b))  
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Figure 1.2: Illustration of latency code as an example of a spike timing code.  A: 

Responses of a hypothetical neuron to six stimuli B: The tuning curves constructed using the 

spike counts of the cell (top) and the first spike latency (bottom).    

 

When identifying neural codes that require the knowledge of either the stimulus onset or the 

segmentation of the response into informative bins, the natural question is how biologically 

realistic such a scheme could be. Is it possible for the brain to formulate this knowledge to 

use such a coding scheme? Some experimental studies have shown indications that such 

knowledge is available at the cellular level (Chase and Young, 2007; Onken et al., 2014; 

Panzeri et al., 2014). Subpopulations of neurons within the auditory cortex have been 

identified that respond early and reliably in a stimulus invariant way (Brasselet et al., 2012). 

When the response onsets of the remaining stimulus modulated neurons were set to the 

response onsets of these stereotyped neurons, about 95% of the spike timing information 

could be extracted indicating that this scheme could serve as a reliable way of identifying the 

stimulus onset. Similarly, in the somatosensory system, when single whiskers are deflected, 

the whisker position can be identified on a millisecond time scale by using the latency from 

the time at which a large portion of the neurons in the columns fired synchronously (Panzeri 

and Diamond, 2010). To address the question of how the brain could segment long time 

intervals into informative segments, (Kayser et al., 2009) indicated that when the spike train 

was partitioned into segments using the phase of the theta (2 - 6 Hz) frequency band in the 

local field potential forming a phase-partitioned code, it carried almost similar information as 

a time-partitioned code using the laboratory clock, which was large compared to information 

only in the total spike count. Finally, there is experimental evidence that timing codes could 

be read out from downstream neurons (Haddad et al., 2013; Uchida et al., 2014). 

Often patterns across spatial and temporal dimensions can code information (Stopfer et al., 

2003; Jones et al., 2007; Rabinovich et al., 2008; Shusterman et al., 2011; Churchland et al., 

2012; Mante et al., 2013). For a population of N neurons, this is visible as trajectories of 

activity in the N-dimensional space and state transitions in an ensemble state space. Often 
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some form of dimensional reduction method is used to analyze and visualize this activity. 

Visualization is done in the space defined by the low-dimensional components (latent 

components). In the illustrative example shown in Figure 1.3, the activity of N neurons is 

represented in the 3-dimensional latent component space. Each stimulus evokes a different 

trajectory in this space. Thus, each stimulus is coded by a different pattern of population 

activity evolving in space and time.  

 

 

Figure 1.3: Illustration of spatiotemporal trajectories coding stimuli.  The high 

dimensional neural activity is visualized using a dimensionality reduction method in the three 

dimensional latent component space. Each stimulus evokes a different trajectory in the 

component space. 

 

Collective behavior becomes increasingly important as the number of recorded neurons 

increases. As the size of the population becomes large, spikes of individual trials can be 

predicted more accurately using models based on pairwise interactions between neurons 

compared to models that predict spikes based on external stimuli  (Stevenson and Kording, 

2011). Thus, we next briefly look at the effects of correlated behavior in neural coding. 

 

1.4 Neural correlations 

Correlated spiking is typically defined as signal correlations and noise correlations. Signal 

correlations are defined as the correlation between mean spike counts of neurons to stimuli. 

Correlations in the trial-to-trial variability between spike counts during a single stimulus are 

called as noise correlations. Much effort has been directed towards understanding the effect 

of noise correlations on neural coding (Averbeck et al., 2006; Latham and Roudi, 2013). This 

is important because correlations can potentially either increase or decrease stimulus 

information in the neural population when compared to when all neurons are independent 

(Averbeck et al., 2006) and even small correlations between neurons could have a large 

impact at the population level (Zohary et al., 1994). Accumulation of results from many 

theoretical studies indicate that the effect of correlations depends on the correlation structure 
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(Abbott and Dayan, 1999; Sompolinsky et al., 2001; Wilke and Eurich, 2002; Shamir and 

Sompolinsky, 2006; Josic et al., 2009; Ecker et al., 2011; Moreno-Bote et al., 2014). When a 

population has similar tuning curves and has positive noise correlations, correlations limit the 

information coding capability (Sompolinsky et al., 2001), while such a limit does not exist 

when the neurons have heterogeneous tuning (Shamir and Sompolinsky, 2006). (Moreno-

Bote et al., 2014) formulated that correlation structures that limit the level of information 

coding has a component in the covariance matrix that is proportional to the product of the 

derivatives of the population responses. An illustrative example from (Moreno-Bote et al., 

2014) is shown in Figure 1.4. It shows the mean population activity ( )f s  in the N-

dimensional space. The distribution of the trial-to-trial variability is shown by the yellow 

curve. When this distribution has a small curvature along ( )f s , it can be approximated with 

the blue distribution that lies on the tangent to the mean population response indicating that 

the  covariance matrix is proportional to '
T

f'f .  

Correlational structures are not static. Experimental studies indicate that they can change 

dynamically with variations in attention and brain states (Steinmetz et al., 2000; Gutnisky and 

Dragoi, 2008; Cohen and Maunsell, 2009; Curto et al., 2009; Pachitariu et al., 2015). Certain 

correlation structures that show stimulus dependent changes can give substantial increases in 

the level of information coding (Franke et al., 2016; Zylberberg et al., 2016). Thus, noise 

correlations can shape neural coding in diverse ways. The presence of correlations that affect 

neural coding places a practical constraint known as the curse of dimensionality against 

increasing the spatiotemporal space in all methods that use the probability distribution of the 

population responses conditioned on a stimulus. We explain this in more detail in the next 

section. 

 

 

   

 

 

 

 

 

Figure 1.4: Information limiting correlations  An illustration of how the structure of 

the covariance matrix can limit information capacity (Adapted with permission from 

(Moreno-Bote et al., 2014)).   
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1.5 Methods to analyze neural populations 

Now we will look at methods that are commonly used to analyze spatiotemporal activity of 

neurons. In this thesis we propose methods based on non-negative matrix factorization 

(NMF) to analyze population activity. Although NMF  based methods are well established to 

study large scale datasets (Cichocki et al., 2009), these methods have only been used in a few 

studies to analyze neural data (Kim et al., 2005; Overduin et al., 2015; Wei et al., 2015). Thus 

in this section we review other commonly used methods to analyze neural activity and 

identify the contribution that our method provides compared to other methods. 

Since spike times are discrete events, from the statistical point of view, a spike train is a point 

process (van Vreeswijk, 2010). Multiple simultaneously recorded (parallel) spike trains form 

a multi-dimensional point process time series (Brown et al., 2004). Methods for analyzing 

these processes are still under development. The key challenge in this quest is that the 

number of parameters that needs to be estimated for a given method increases exponentially 

when the dimensionality of the response space, as specified by the number of neurons and the 

duration to be analyzed, increases. This is known as the curse of dimensionality. For 

example, in an experiment where N is the number of recorded neurons and the spikes of each 

neuron are discretized into T time bins, there are 2
NT

 possible spatiotemporal spike patterns 

that could appear in any trial. If there are 100 neurons and 100 time bins, this would give 

2
100x100

 ≈ 10
60

 possible patterns. If one wants to know whether there are correlated firing 

patterns between neurons, theoretically, the probability of seeing a particular pattern could be 

compared to the probability of the particular pattern occurring by chance if all neurons spiked 

independently. However, it is impossible to calculate the probability of seeing a pattern just 

by counting the number of times the pattern appears in experimental data because there are 

10
60

 possible patterns and it is impossible to record enough trials in an experiment. Therefore, 

from this practical limitation on the amount of data that is available, there is a limit to the 

number of parameters or, equivalently, the level of detail that can actually be estimated from 

the available data. Different methods employ different techniques and assumptions to 

overcome this problem, for example, by assuming an underlying statistical model of the data, 

by using a dimensionality reduction technique or by pooling data in one spatiotemporal 

dimension. 

In the following, we first briefly summarize methods that use statistical testing to identify 

salient spatial and temporal patterns from data. Then we detail model-based methods to 

explore population activity focusing mainly on the generalized linear model and the 

maximum entropy model. Next we look at decoding and information theory, which are two 

general methods that can be used to study neural coding in space and time. Finally we look 

into dimensionality reduction methods commonly used in neuroscience studies. 
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1.5.1 Statistical methods 

The presence of spatial, temporal or spatiotemporal activity from data can be identified using 

some form of statistical test. Task specific synchronization time points from the visual cortex 

(Maldonado et al., 2008), motor cortex (Riehle et al., 2000; Kilavik et al., 2009) and 

prefrontal cortex (Grun et al., 2002) were identified using unitary event analysis (Grun, 2009; 

Grün et al., 2010). a method that evaluates how synchronous spiking events at the population 

level change across time by comparing the number of spike synchronizations that occur in a 

specified time window with the number of spike synchronizations expected to occur if the 

spike trains of the neurons were independent. Optimized search algorithms for large scale 

datasets, such as used for frequent itemset mining, can aid statistical testing to identify 

groupings of neurons that occur more than a specified number of times (Picado-Muino et al., 

2013; Torre et al., 2013).  

 

1.5.2 Model-based methods 

More often experimental studies use model based approaches to study population activity. 

Two commonly used models are generalized linear models (GLM) and maximum entropy 

models (MEM). They model the probability distribution of response patterns that is 

conditional on a combination of past and/or present stimulus, spiking history and spiking 

interactions. The model parameters are estimated from the data to obtain the conditional 

response probability distribution of the data. 

 

Generalized linear models (GLM) 

GLMs are phenomenological models that generally assume that the responses of the neurons 

in the current time bin are independent of each other. The response of one neuron in the 

current time bin may depend on the current and past stimulus and the past spiking history of 

the neuron itself and other neurons as shown in Figure 1.5. The probability of the response of 

the thi  neuron conditional on the stimulus s is given as (Truccolo et al., 2005; Pillow et al., 

2008; Latham and Roudi, 2013), 

               
,

1
| exp ' 'i i i i i ij j

t t t t j i

q r t s K s r t h t r t t j t r t t
Z    

 
      

 
   (1.1) 

The first term inside the exponential takes into account the dependency of the response on the 

stimulus using the stimulus filter  iK s . The second term uses the post-spike filter  'ih t  to 

model effects such as refractoriness, burstiness and adaptation from the past spiking by the 

neuron. The third term captures the effects from spiking of other cells in the recent past. Z is 

a normalizing term. Parameters of the model that have to be estimated from the data are those 

associated with the three filters. They are usually estimated through maximum likelihood 

(Paninski, 2004; Truccolo et al., 2005). Once they are estimated and the model is fitted, it is 

able to predict the probability of spiking of a neuron when the stimulus and past spiking 
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histories are known. It has been used in many experimental studies investigating different 

cortical areas such as retina (Pillow et al., 2008), lateral geniculate nucleus (Babadi et al., 

2010), motor cortex (Truccolo et al., 2010) and auditory cortex (Calabrese et al., 2011). The 

model with and without the dependencies on the spike trains of other neurons can be used to 

decode the stimuli as a way of estimating the effect of correlations (Pillow et al., 2008). GLM 

models were generalized to model the dependency of the neural activity on unobserved 

internal and external states in (Lawhern et al., 2010; Escola et al., 2011; Pfau et al., 2013). 

We will discuss state-spaced based analysis methods in section 1.5.5. 

 

 

Figure 1.5: Illustration of the generalized linear model (GLM) for two neuron 

network. GLM model the response of a neuron conditional on a stimulus. The response of 

each neuron depends on the stimulus through the stimulus filter the dynamics of its own past 

spiking through the post-spike filter and the spiking dynamics of the rest of the network 

through coupling filters. The instantaneous firing rate is produced using a nonlinearity on the 

summed filter outputs. Spikes are generated using the instantaneous firing rate. (Adapted with 

permission from (Pillow et al., 2008)) 

 

 

Maximum entropy models (MEM) 

A MEM is the least structured model (and thus having the maximum entropy) giving the 

probability distribution of the population response in one time bin that is obtained subject to 

some predefined constraints (Jaynes, 1957; Schneidman et al., 2006; Shlens et al., 2006). 

Typically, the response is defined using a small time window where a neuron spikes at most 

once. Then the response is constructed as a binary word where one denotes the spiking of the 

neuron. Then if the mean firing rates and pairwise correlations are used as the constraints on 

the model, the probability distribution of the population response conditional on the stimulus 

is given by (Latham and Roudi, 2013), 
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   
 

         
1

| exp i i ij i j

i j i

q r t s h s r t J s r t r t
Z t 

 
  

 
   (1.2) 

The first term constrains the model to have the same mean firing rates for each neuron as in 

the data while the second term constraints the model to have the same pairwise correlations 

between pairs of neurons as in the data.  Z t   is a normalization factor called partition 

function. The model in this formulation treats the responses as stationary in time and thus 

does not consider the temporal dimension. However, it has been extended to include the 

temporal dimension by estimating the spatiotemporal probability distribution instead of the 

spatial distribution in (Nasser et al., 2013). Once the model is fitted, the effect of correlations 

could be investigated for example in an information theoretic framework using the reduction 

of the entropy of the probability distribution when the correlations are included in the model 

compared to when only the mean firing rates are included (Schneidman et al., 2006), or using 

mutual information between the responses and stimuli with different order of correlations 

included in the model (Ince et al., 2010). MEM models have been used to investigate 

correlations in the retina (Schneidman et al., 2006; Shlens et al., 2006; Ganmor et al., 2011; 

Granot-Atedgi et al., 2013; Tkacik et al., 2014), in V1 (Ohiorhenuan et al., 2010), motor 

cortex (Truccolo et al., 2010) and somatosensory cortex (Ince et al., 2010). As pointed out in 

(Roudi et al., 2009), the bin size is important for MEM models and predictions made for 

larger populations using models fitted to small populations or to larger time bins while 

assuming stationary may not always be true. 

 

1.5.3 Decoding 

Other general approaches to explore the activity of neural populations include decoding and 

information theory. Decoding takes a set of population response features in a trial and 

predicts which stimulus elicited them. In order to make the predictions, the decoder is first 

trained using a part of data that is not used for making predictions. Decoding is a generic 

method that can take into account different response features in space and time such as firing 

rates (Jazayeri and Movshon, 2006; Wu et al., 2006), spike patterns (Brown et al., 1998) and 

correlations (Pillow et al., 2008). By evaluating how the inclusion of different response 

properties changes the  stimulus predictions, it is possible to identify how a particular 

response property contributes to stimulus encoding. Many decoding algorithms such as 

nearest-neighbor algorithms, Fisher linear discriminant algorithms, support vector machines, 

Bayesian decoding algorithms, and maximum-likelihood decoding algorithms exist (Dayan 

and Abbott, 2001; Quian Quiroga and Panzeri, 2009). The decoding performance may be 

dependent on the particular decoding algorithm and different algorithms could give different 

results. The algorithm could fail to decode the stimuli if the response space is very large or if 

incorrect assumptions are made about the data (Quian Quiroga and Panzeri, 2009). When the 

response space is large, it is possible to use a dimensionality reduction method to identify 

representative features from the data. The ideal dimensionality reduction method to use 
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would be one that gives reduced representations that are representative of the property being 

investigated and are easily interpretable in relation to the original data. 

 

1.5.4 Mutual information 

Mutual information (MI) is another generic method commonly used to study population 

activity. MI  ;I S R   between a set of population response features R  and the stimuli set S

quantifies the reduction of uncertainty of a stimulus that can be gained from observing the 

response features in a single trial (Ince et al., 2010). It is calculated using the probability of 

each stimulus  P s , the probability of observing the response features across all stimuli 

 P r   and the conditional probability of observing the response features for a given stimulus 

 |P r s  using, 

      
 

 2

|
; | log

s S r R

P r s
I S R P s P r s

P r 

   (1.3) 

MI naturally accounts for all orders of interactions in the population (Ince et al., 2010). 

Breakdown of the full MI into subcomponents in (Pola et al., 2003) as shown below 

quantifies the impact of different correlative interactions in the population. 

  ; lin sig sim cor ind cor depI S R I I I I       (1.4) 

linI
 quantifies the information encoded if all cells were independent. sig simI   specifies how 

much of the information is redundant due to signal correlations that arise because the mean 

responses of different neurons have similar selectivity for stimuli. cor indI   and cor depI   specify 

the information gain or loss due to noise correlations between neurons; cor indI   is due to 

correlations that do not depend on the stimulus while cor depI   arises because of correlations 

that depend on the stimulus. 

Theoretically, MI is a generic method that can be used to evaluate any particular response 

feature to determine whether it is important in encoding stimuli. MI can be evaluated for 

different response definitions (for example, binning spikes in one 100 ms bin and thereby 

evaluating the MI in firing rate vs. binning spikes in 5 ms bins and thereby evaluating the MI 

in spike precision). However, when the response dimension (the number of neurons and the 

number of time bins) is high, MI suffers from the curse of dimensionality because the number 

of trials is not sufficient to evaluate the probabilities accurately. This gives rise to a 

systematic error (or a bias) between the true MI and the estimated MI from the limited 

number of trials available. Various bias correction techniques exist (Panzeri et al., 2007; Ince 

et al., 2010). However, these methods still set a limit for about 35 spatiotemporal 
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combinations (for example, 7 time bins in 5 neurons) when working with a typical number of 

trials (~30-60 trials) (Onken et al., 2014). Therefore, it is difficult to directly generalize MI 

calculation to high dimensional spatiotemporal response patterns. 

Some typical approaches to circumvent this problem are either to use a pooling strategy, to 

use an approximate probability distribution or to use a transformation or a dimensionality 

reduction method to reduce the dimensionality of the response space. In the first approach, all 

spikes of one neuron in a trial could be pooled together (i.e. pooled across time) or the 

responses of all neurons in one time bin could be pooled together (i.e. pooled across space) 

(Arabzadeh et al., 2004; Ince et al., 2013). In these cases, the population response R   is 

transformed to a pooled response 
 f R

 as 
 R f R

(Quian Quiroga and Panzeri, 2009). 

Since according to the data processing inequality, any transformation can only decrease the 

information in the original responses (Cover and Thomas, 2006), the MI calculated from 

pooling across dimensions gives a lower estimate of the information in the population. The 

pooling approach is only suitable if the pooled dimension has little contribution to the 

information encoding of the stimulus and is not suitable as a general analysis of the 

population activity. Under the second approach, a model such as MEM could be used as an 

approximate conditional probability distribution (Ince et al., 2010; Ohiorhenuan et al., 2010) 

or MI can be calculated under a framework of underlying Gaussian probability distributions 

(Yu et al., 2010; Crumiller et al., 2011). In these cases, how close the calculated MI would be 

to the true MI depends on how close the approximate probability distribution is to the true 

probability distribution. In the third approach, a decoder is trained to predict the stimulus 

from response features. The predicted stimulus of a decoder 
pS  is used as a transformation of 

the population response R  as given by 
pR S (Quian Quiroga and Panzeri, 2009) to get a 

lower estimation for MI. Alternatively, the response dimensionality can be reduced by a 

dimensionality reduction method such as principal component analysis (Optican and 

Richmond, 1987; Zuo et al., 2015). To directly relate MI values to response features, the 

dimensionality reduction method has to give a meaningful representation of the data. 

 

Figure 1.6: Illustration of extending mutual information (MI) to larger 

populations using a decoding framework.  The population response R  is transformed 

into the predicted response 
pS  from the decoder which is used for the MI calculation. 



23 

 

1.5.5 Dimensionality reduction methods 

Dimensionality reduction methods aim to describe a dataset that has a large number of data 

items using a few parameters (often called modules, bases, factors, hidden components or 

latent components) that are representative of the property being investigated (Cunningham 

and Byron, 2014). They are becoming increasingly important with the growth in the number 

of neurons that can be recorded simultaneously. Each of these methods is formulated to 

optimize a criterion that is specific to the method. Depending on this criterion, different 

methods can provide different viewpoints into a single large scale dataset. When using to 

analyze neural activity in space and time, dimensionality reduction methods can be broadly 

classified into two categories; static dimensionality reduction methods and dynamic methods 

(Roweis and Ghahramani, 1999; Churchland et al., 2007). Static dimensionality reduction 

methods first perform dimensionality reduction and subsequently formulate the time 

progression of the activity using the time progression of the reduced dimensional latent 

components. Dynamical methods on the other hand explicitly model the time progression of 

the neural activity, typically as the progression through a set of states.  

Next we will discuss three commonly used dimensionality reduction methods; principal 

component analysis (PCA), independent component analysis (ICA) and factor analysis (FA) 

and several dynamic dimensionality reduction methods. 

 

 

Static dimensionality reduction methods 

 

Principal component analysis (PCA) 

PCA extracts a set of low-dimensional components that best capture the variance in the data 

(Jolliffe, 2002). The components are ordered such that the first PCA component captures the 

highest level of variability in the dataset. The remaining components are ordered in the 

decreasing order of variance. All components are orthogonal to each other. A simple example 

of PCA applied on the spike counts recorded from two auditory cortical neurons is shown in 

Figure 1.7A. PCA finds that the direction that has the maximum variance in the spike counts 

d1 and the direction orthogonal to it d2. d1 is the low dimensional component that best 

preserves the covariance between the spike counts.  

PCA and its variants have been widely used in neuroscience (Chapin and Nicolelis, 1999; Hu 

et al., 2005; Mazor and Laurent, 2005; Peyrache et al., 2010; Lopes-dos-Santos et al., 2011; 

Ahrens et al., 2012; Churchland et al., 2012). A model of PCA using Hebbian learning in 

linear neurons was implemented in (Oja, 1982). When applying to neural spike counts, PCA 

is typically preceded by a processing step such as z-scoring of the spike counts, temporal 

smoothing of spike counts, trial averaging or a square-root transformation (Cunningham and 

Byron, 2014). This is because PCA is designed to capture variability, it can capture spiking 

variability, firing rate variability or trial-to-trial variability that is not representative of the 
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population activity, but can confound the interpretation of the low dimensional 

decomposition. The low dimensional representation can also be biased by the most active 

neurons since the variance of spike counts increases with the mean spike count (Byron et al., 

2009; Cunningham and Byron, 2014).  

A variant of PCA, demixed PCA (Kobak et al., 2014) is designed to address the mixed 

selectivity  displayed by neurons in higher cortical areas (Rigotti et al., 2013). It first 

marginalizes the response into independent parts that takes into account the time-varying, 

stimulus-dependent, decision-dependent components and their interaction. This is equivalent 

to the linear model used in the analysis of variance (ANOVA) test. The dimensionality 

reduction is performed on this marginalization with the constraint that the variance in each 

direction to be from only one component of the marginalization. The orthogonality constraint 

in PCA is relaxed in demixed PCA to allow for the demixing. 

In general, identifying what the components derived from PCA represent in terms of spike 

counts can be difficult because they consist of both positive and negative values, whereas 

neural spike counts contain only non-negative values. This is more easily understood in 

relation to an illustration from (Lee and Seung, 1999), shown in Figure 1.7B, where PCA is 

applied to a dataset containing facial images. The derived module images (eigen images) 

contain both positive and negative values which makes it difficult to understand that they 

represents in terms of the visible features in the original dataset. 

 

  

 

 

Figure 1.7: Principal component analysis (PCA).  A: Illustration of PCA on spike 

counts recorded from two auditory cortical neurons. PCA finds the direction that captures the 

highest variance in the spike counts d1 and the direction orthogonal to it d2. B: PCA applied 

to a database containing facial images extracts a set of orthonormal module images (eigen 

images) that best capture the variance in image pixels and a set of coefficients that indicate 

the contribution of each module to reconstruct an image as a linear combination of the 

module images. (Adapted with permission from (Lee and Seung, 1999)) 

Reconstructio

n 

Coefficients Module 

images 
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 Independent component analysis (ICA) 

Independent component analysis (ICA) is used to find independent sources of activity from a 

mixture of activities from different sources when the sources are non-Gaussian (Comon, 

1994; Hyvärinen and Oja, 2000; Brown et al., 2001). Typically, this is represented as, 

 s = Wx  (1.5) 

where the matrix s  contains the independent sources to be estimated, the matrix x  contains 

the observed data values and W is the demixing matrix. 

Typically several preprocessing steps such as centering and whitening are performed prior to 

applying ICA on the data (Hyvärinen and Oja, 2000). Whitening is a linear transformation on 

data to derive a matrix x  which contains uncorrelated components that have unit variance. 

Thus PCA can be used as a whitening method and ICA can be considered as an extension of 

PCA. Both PCA and ICA examine the dependency structure in the data. While PCA 

transforms data to remove the second order dependencies and decorrelates the data, ICA 

removes dependencies of all orders. In practice, when the sources are not strictly 

independent, ICA finds sources that are as independent as possible. It is based on the central 

limit theorem which says that the sum of a set of independent random variables will be more 

Gaussian than the variables themselves. ICA starts with a random vector W  and rotates its 

axes to minimize a measure that specifies the Gaussianity such as mutual information, 

negentropy, kurtosis or maximum likelihood (Hyvärinen and Oja, 2000; Lopes-dos-Santos et 

al., 2013).  

ICA has been used to identify neural ensembles with correlated firing (Laubach et al., 1999a; 

Laubach et al., 2000), analyze local field potentials (Makarov et al., 2010) and mass-scale 

neural signals (Makeig et al., 1997; Demirci et al., 2009; LeVan et al., 2010). In (Laubach et 

al., 1999a), where correlated firing was generated from common input, ICA was compared 

with PCA and was found to have a higher performance compared to PCA for identifying 

correlated neural ensembles. By observing that simple cells in the visual cortex that have 

distributed sparse representations of natural scenes using line and edge selectivities similar to 

independent components derived when applying ICA on natural images (Bell and Sejnowski, 

1997; Vinje and Gallant, 2000), (Bell and Sejnowski, 1997) proposed that these cells could 

perform ICA on natural image information they receive from the retina. Recent modeling 

studies (Clopath et al., 2009; Savin et al., 2010) have implemented ICA based neuron models 

using spike timing dependent plasticity to separate correlated sources.    
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Factor analysis (FA) 

FA assumes that the noise in the spike counts is Gaussian distributed and extracts a low-

dimensional representation that models the variance in the spike counts that is shared across 

neurons. Simultaneously, the variance in the spike counts that is independent across neurons 

is identified and removed (Roweis and Ghahramani, 1999; Santhanam et al., 2009; 

Cunningham and Byron, 2014). Thus the method models the trial-to-trial variability in neural 

spike counts. More specifically, the probability distribution of the observed spike counts y  of 

n  neurons for a given stimulus s  is modeled using k  Gaussian distributed independent 

factors (latent components) with zero mean and unit variance x , i.e.    p Nx x;0, I , such 

that  (Santhanam et al., 2009),  

    , ,s s sp s N y | x y;μ C x R  (1.6) 

and the likelihood of the spike counts for the stimulus s  is, 

    ',s s s sp s N y | y;μ C C R  (1.7) 

The latent variables x  are considered to define the state of the population. 
sμ  is the mean 

number of spikes generated for the stimulus s . 
sC  is the n k  matrix that maps the 

observations to the latent components. 
sR  is a diagonal matrix that captures the trial-to-trial 

variability in spike counts that is independent across neurons. This noise is attributed to the 

biophysical spiking noise and other non-shared sources of variability that is private to each 

neuron. The covariance in  y  for the stimulus s  is 
'

s s sC C R . 
'

s sC C  is the shared variability 

across the population of neurons. This shared variability is considered to be due to the firing 

rate variability between neurons. FA is closely related to sensible PCA (Roweis, 1998) or 

probabilistic PCA (Tipping and Bishop, 1999). The difference between the two methods is 

that FA allows the independent noise in 
sR  to vary between neurons while the PCA 

approaches constrain it to be the same for all neurons (Santhanam et al., 2009). In general, 

FA works best when using bin sizes > 150 ms (Santhanam et al., 2009). Both Gaussian and 

Poisson noise models have been evaluated for spike count data and the Gaussian noise model 

achieved higher performance compared to the Poisson model (Santhanam et al., 2009).  

Gaussian process factor analysis (GPFA, (Byron et al., 2009; Yu et al., 2009)) is an extension 

of FA that is essentially a collection of FA models applied as one FA model for each time 

point in a trial. Then the neural states :,tx at different time points t  are related through 

Gaussian processes. The Gaussianity gives rise to smooth trajectories of activity in time. The 

thi  neural state ,:ix  is modeled as    ,: :,i t ip N Kx x ;0, , where the T T  matrix iK  defines 

the covariance of the states between different time points. iK is typically modeled as a 

squared exponential function given by, 
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The covariance of  1 2,iK t t  is defined from its signal variance 
2

,f i  , characteristic time 

scale 
i   and the noise variance in the Gaussian process 

2

,n i  . The prior distribution 

of :,tx  is set to    :, :,t tp Nx x ;0, I  and the temporal smoothness is enforced by selecting the 

noise variance in the Gaussian process to be small  2 3

, 10n i  . Visualization of the model is 

done after a post-processing step in which the columns of 
sC  are orthonomalized.  

FA based models have been used to study low dimensional state trajectories in premotor and 

motor cortical neurons in monkeys and to model the shared firing rate variability of neurons 

in V1, premotor and motor cortical neurons in monkeys (Byron et al., 2009; Yu et al., 2009; 

Churchland et al., 2010; Afshar et al., 2011; Ecker et al., 2014; Sadtler et al., 2014). 

 

Dynamic methods 

Dynamical methods (Radons et al., 1994; Abeles et al., 1995; Seidemann et al., 1996; Byron 

et al., 2005) explicitly model the time progression of the neural activity using a low 

dimensional dynamical process that moves through a state space. State space contains all 

possible states that the linear dynamical model could take. These states are thought to be 

related to different factors. They could relate to the experiment as well as other internal brain 

states. States defined by the experiment will depend on the details of each trial. For example, 

each trial could consists of a fixation period after which a cue is presented that is followed by 

a preparatory period. At the end of the preparatory period, a signal is given to make a 

movement and then the movement is made. Thus the activity of the recorded population 

would change during the trial depending on whether the current time is in the fixation period, 

preparatory period or the period of the movement (Byron et al., 2009). Furthermore, the 

neural activity would also change other internal states that are related to attention, fatigue and 

decreased motivation (Lawhern et al., 2010). Dynamical models aim to model this using a 

collection of hidden states. As the trial progresses the neural activity moves from one state to 

another. Depending on the internal states, the progression of the states could vary from one 

trial to another. Thus such models inherently include non-stationarity in the trial-to-trial 

activity. Dynamical models that analyze neural population activity in this manner include 

hidden Markov models that typically model transitions between states to be discrete events, 

linear and non-linear continuous dynamical models (Yu et al., 2009; Cunningham and Byron, 

2014). These models are data driven unsupervised data analysis methods. Many of them 

contain explicit noise models and are used for single trial analysis. However, in general, they 

have been used at relatively long time scales of tens to hundreds of milliseconds. 
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Hidden Markov models (HMM) 

These models define one possible way in which a dynamical system could evolve across a set 

of unobserved (hidden) states in time, where the subsequent state that the system could take 

depends only on the that the system is currently in (this memorylessness defines the 

Markovian property). According to these models, the spiking activity of N  neurons at any 

time instance t ,
ty , is in one of K  discrete hidden states 

tx  and makes a transition from one 

state to another according to (Escola et al., 2011), 

    
[0: 1][0: 1] 1| , |

tt t t tp p
 x x y x x  (1.9) 

Thus, the future state is dependent only on the current state and is independent of the activity 

in the current point in time and the history of the past states. This memorylessness is a 

Markovian property. Furthermore, the probability of the transition from state m to n , 
mna  

(Figure 1.8),  is constant (homogenous) at each time point with 0 1mna   and 
1

1
k

mn

n

a


 . 

The state transition matrix A  contains the elements 
mna . For the states to be persistent 

across time, the diagonal elements of A  are set close to unity.  

The probability of spiking, or the emission probability is modeled to be dependent only on 

the current state i.e.    
[0: 1][0: ]| , |

tt t t tp p


y x y y x . Then, if the number of spikes range 

between 0 to C , the probability of observing c  spikes in state m ,  ,mc mc  η  is given by, 

 |mc t tp c   y x m , where 0 1mc   and 
1

1
C

mc

n




 . Typically, the spike counts of 

each neuron are assumed to be Poisson distributed (Abeles et al., 1995; Gat et al., 1997).  

This gives the HMM defined by, 

   0 1

1 1

, ( ) ( | ) ( | )
T T

t t t t

t t

p p p p

 

  y x x x x y x  (1.10) 

where 
0x  is the initial state defined by the probability distribution π  such that 

 0m p π x m . The parameters of the model, A , η  and π  are found using maximum 

likelihood estimation. The likelihood of the data is typically estimated using the Baum-Welch 

algorithm (Baum et al., 1970). (Escola et al., 2011) extended the discrete HMMs defined 

using GLMs to continuous HMMs. HMMs have been applied for single trial analysis of 

neural responses in a range of studies including the frontal cortex in monkeys (Abeles et al., 

1995; Seidemann et al., 1996; Ponce-Alvarez et al., 2012), V1 in monkeys (Radons et al., 

1994), premotor cortex in monkeys (Kemere et al., 2008), parietal cortex in monkeys 

(Bollimunta et al., 2012), somatosensory cortex in monkeys (Ponce-Alvarez et al., 2012), 

associative cortex in monkeys (Gat et al., 1997), rat gustatory cortex (Jones et al., 2007; 

Escola et al., 2011; Sadacca et al., 2016), premotor neurons in songbirds (Danóczy and 

Hahnloser, 2006). 
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Figure 1.8: State transition diagram for a model with three hidden states.  The 

state transition probabilities 
mna  are specified by the state transition matrix A . 

 

 

Linear dynamical models 

Kalman filter and autoregressive process are two linear dynamical systems. Many of these 

models are based on Gaussian noise models. We will now look at each of them briefly. 

 

Kalman filter models 

The Kalman filter is a linear dynamical model describing the neural activity in terms of the 

observed variables (such as hand movements in a motor task) and a set of hidden states using 

a Gaussian noise model (Wu et al., 2009; Wu and Liu, 2015). According to this model, the 

neural activity 
ty  at a time t  of N  neurons is related to 

ok  number of observed variables 
tx  

and 
uok  number of unobserved hidden states 

tn  at time t  by the measurement equation 

 
t t t t  y Hx Gn v  (1.11) 

and the state transition is defined by the system equation 

 
1

1

t t

t

t t





   
    

   

x x
A w

n n
 (1.12) 

The oN k  matrix H  and the uoN k  matrix G  are coefficient matrices that respectively 

relate the observed variables and the unobserved variables to the spike counts. A  is the 

   0 0uo uok k k k    state transition matrix similar to that for HMMs. tv  and tw  are 

independent noise terms that are taken to be Gaussian distributed  such that    ,tp Nv 0 Q  
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and    ,tp Nw 0 W  where the N N  matrix Q  and the    0 0uo uok k k k    matrix W  

define the covariance of the noise. The initial state 
0n  is considered to be Gaussian 

distributed according to    0 ,p Nn μ Σ  such that μ  is the 
uok  dimensional vector 

specifying the mean of the initial state and Σ  is the 
uo uok k  dimensional covariance matrix. 

The parameters of the model , , ,H G A W  and Q  are estimated by fitting the model to the 

data using maximum likelihood estimation (Wu et al., 2009). Kalman filter based models 

have been used to study the neural activity of motor neurons with and without the inclusion 

of hidden states (Wu et al., 2004; Wu et al., 2006; Wu et al., 2009). 

 

Autoregressive models 

First-order autoregressive models are typically used to model linear dynamical processes 

(Smith and Brown, 2003; Kulkarni and Paninski, 2007; Lawhern et al., 2010; Buesing et al., 

2012a, b). The initial hidden state 
0x  of a model that has k  states is considered to be 

Gaussian distributed according to    0 ,p Nx μ Σ  such that μ  is the k  dimensional vector 

specifying the mean of the initial state and Σ  is the k k  dimensional covariance matrix 

(Buesing et al., 2012a). The state transition is modeled by a Gaussian process 

    1 | ,t t tp N x x Ax Q  (1.13) 

where the k k  matrix A  models the temporal dependence of the process and Q  is the 

covariance of the state transitions. The hidden state is related to the neural activity through a  

q -dimensional variable 
tz  where 

t t z Cx d . C  is a loading matrix that relates 
tx  to 

tz  

and d  is the mean parameter. The neural activity is related to 
tz  through another Gaussian 

process where 

    | ,t t tp Ny z z R  (1.14) 

R  is the covariance of the observed neural activity at the state 
tz . With sufficient time 

 t  , and when 1,mn mna a A , the model achieves a stationary state (Yu et al., 2009). 

Autoregressive models have been used to incorporate hidden states into the GLMs in 

(Lawhern et al., 2010). They have been useful to analyze population activity in the motor 

cortex in monkeys (Lawhern et al., 2010; Buesing et al., 2012b) and premotor cortex in 

monkeys (Buesing et al., 2012b). 
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Summary 

Advances in multi-electrode recording techniques and spike sorting methods currently allow 

reliable recordings from populations of hundreds of neurons simultaneously (Buzsaki, 2004; 

Buzsáki et al., 2015). Analyzing large ensembles is important because the brain has access to 

millions of neurons at the same time. Furthermore, neuroimaging methods such as fMRI 

allow the study of a variety of cognitive and pathological conditions noninvasively, which is 

often the only option when studying the human brain. However, these methods are based on 

large scale neuronal activity. Predicting the activity at the single cell level that gives arise to 

these large scale measures can only be accomplished if we understand how neurons encode 

information at the level of large populations. 

Neurons can code information in spatial and temporal dimensions concurrently. Thus, ideally, 

we require methods to analyze their responses concurrently in space and time. There is a wide 

range of methods currently developed. However, many methods that require the evaluation of 

conditional probability distributions of the population responses to stimuli are constrained by 

the curse of dimensionality when extending to spatiotemporal analysis of large scale datasets. 

They often employ a range of dimensionality reduction methods to extract meaningful 

features from these datasets. While there is a range of dimensionality reduction methods that 

have been used successfully in neuroscience, it is not easy to interpret the extracted features 

in terms of the original data and not all methods have been used to extract information in 

short time scales of a few milliseconds. This indicates that there is still the need for methods 

that could derive representations that can give intuitively meaningful insights into 

understanding complex activity patterns. 

 

1.6 Overview of the thesis 

We summarized commonly used methods to study neural population coding. As we 

discussed, many methods are constrained by the curse of dimensionality when extending to 

the high dimensional spatiotemporal response space and require dimensionality reduction 

methods. This thesis adapts a new dimensionality reduction method, non-negative matrix 

factorization (NMF, (Lee and Seung, 1999)), to extract meaningful patterns of activity from 

the responses of large populations of neurons concurrently in space and time. NMF is a 

method that has been widely used in many areas within the machine learning community 

(Cichocki et al., 2009), but with very little application in neuroscience (Kim et al., 2005; Wei 

et al., 2015; Pnevmatikakis et al., 2016; Onken et al., In preparation). The thesis is organized 

as follows. 

In chapter 2, we adapt two NMF methods, spatiotemporal NMF and space-by-time NMF, to 

analyze the spiking activity of large neural populations in space and time. We apply these 

methods on three large scale datasets from three sensory modalities; 1) a dataset recorded 

from rat auditory cortex (A1) to long tones and clicks (kindly provided by Shuzo Sakata and 

collaborators at Strathclyde University), 2) a dataset recorded from salamander retinal 

ganglion cells to static images and movies (kindly provided by Tim Gollisch and colleagues 
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from University of Gottingen) and 3) a dataset recorded from rat barrel cortex to whisker 

deflections (Petersen et al., 2001). We explain in detail how our new method represents these 

datasets, its capability to discriminate stimuli and report findings on the spatiotemporal neural 

codes used by the populations. 

In chapter 3, we extend space-by-time NMF to model sub-Poisson, Poisson and supra-

Poisson variability in neural data, thus optimizing the model performance even further. We 

validate our new algorithms rigorously using statistical simulations, network simulations and 

applying them on our somatosensory and auditory datasets. We report the results from 

validation of the new update rules and detail further insight we gained in using space-by-time 

NMF to analyze cortical spike trains.  

Finally, we conclude the thesis in chapter 4 with a discussion that summarizes and discusses 

the main findings from our work and elaborate on implications that our new method has on 

analyzing large scale neural datasets.    
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Chapter 2: Non-negative matrix factorization to extract 

spatiotemporal spike patterns 
 

2.1 Abstract 

Understanding the neural population code requires identification of salient and informative 

patterns of activity from large scale recordings. In this chapter we explore the feasibility of 

using non-negative matrix factorization (NMF) to extract informative spatiotemporal patterns 

of activity from recordings of spike trains from neural populations. We investigate two 

variations of NMF. The first, spatiotemporal NMF that identifies recurrent spatiotemporal 

spike patterns has been used in a few studies to study neural activity (Kim et al., 2005; 

Overduin et al., 2015; Wei et al., 2015). We introduce a new NMF based method space-by-

time NMF (Delis et al., 2014) to study population activity.  

This chapter is structured as follows. It begins with a short introduction to the importance of 

spatial and temporal dimensions for population coding. Next, we present a short introduction 

to NMF and describe the two methodologies that we use to analyze population spike trains. 

This is followed by a comprehensive analysis performed over three sensory datasets 

comprising of auditory, touch and visual modalities. We conclude the chapter with a 

discussion of the insight we gained through our methods and implications of using NMF to 

study neural activity.  

 

2.2 Introduction 

Neural populations from sensory areas (Stopfer et al., 2003; Jones et al., 2007), motor areas 

(Churchland et al., 2012) to higher level regions (Durstewitz et al., 2010; Mante et al., 2013) 

encode sensory stimuli or task-related variables using neuronal population responses with 

complex spatial and temporal dynamics, such as trajectories of population activity evolving 

across time. Understanding how these sensory, motor or task-related variables are encoded in 

neural population activity, that is understanding the neural population code, is a prerequisite 

to understand any brain function. It is important, for example, to understand what parts of 

neural population responses should be plotted and further analyzed in neurocognitive studies, 

or to understand the aspects of neural activity that must be crucially be well explained by 

computational models aiming at describing specific brain functions.  

As we discussed in detail in section 1.3, a neural population can encode information through 

activity patterns across spatial and temporal dimensions. Here, the spatial dimension refers to 

encoding information across groups of neurons by exhibiting differential selectivity between 

groups to different attributes. Such subsets of neurons are often locally organized in specific 

brain region (Hubel and Wiesel, 1962; Petersen, 2007; Schreiner et al., 2011) but concurrent 

coordination of neuronal groups across multiple brain regions are also observed for higher 

level functions (Hoffman and McNaughton, 2002). The temporal dimension involves 
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modulation of spiking activity across time (Petersen et al., 2001; Panzeri et al., 2010b; Onken 

et al., 2014). Spatiotemporal dynamics typically observed in populations require concurrent 

analysis of both dimensions. As we illustrated in section 1.5, the number of parameters that 

has to be estimated for a given analysis method increases exponentially when the 

dimensionality of the response space, as specified by the number of neurons and the duration 

to be analyzed, increases, but is constrained by the limited amount of trials available to 

estimate them (Onken et al., 2014). One common approach to overcome this curse of 

dimensionality is to use a dimension reduction technique (Laubach et al., 1999b; Stopfer et 

al., 2003; Byron et al., 2009; Churchland et al., 2012; Mazzoni et al., 2013; Zuo et al., 2015). 

Dimensionality reduction methods (section 1.5.5, (Cunningham and Byron, 2014)) are 

mathematical procedures that describe a dataset with the smallest number of parameters and 

at minimal information loss. Specifically, they are designed to optimize an objective specific 

to each method and extract a reduced number of latent or hidden components that offer a 

certain viewpoint of the dataset based on the objective that the particular method optimizes. 

Dimension reduction methods such as principal component analysis (PCA), independent 

component analysis (ICA) and factor analysis (FA) have been very useful to study neural 

coding, the patterns they extracts from a dataset are often difficult to interpret in terms of  

spike counts in the original dataset. This is mainly because the patterns contain negative 

values which could be difficult to relate to the spike counts in the dataset.  

We investigated the feasibility of using another dimension reduction method, non-negative 

matrix factorization (NMF), to identify salient spatial and temporal patterns from the spiking 

activity in large populations of neurons. NMF (Lee and Seung, 1999) is a method used in the 

machine learning community (Cichocki et al., 2009) to study large-scale datasets such as 

document and email corpuses (Xu et al., 2003; Berry and Browne, 2005) and microarray data 

(Brunet et al., 2004; Carmona-Saez et al., 2006). However, it is only beginning to be used to 

analyze neural data (Kim et al., 2005; Wei et al., 2015; Pnevmatikakis et al., 2016; Onken et 

al., In preparation) and limited detail is available on the low-dimensional representation with 

which it can represent spike data.  

We conducted a comprehensive study about what type of spatial and temporal patterns NMF 

could extract concurrently from large neural datasets and how well the extracted patterns 

describe stimulus related attributes under a decoding framework. We considered two possible 

variants of NMF that could be used to study population spike trains. Keeping to the 

terminology from (Delis et al., 2014), we refer to these methods as spatiotemporal NMF and 

space-by-time NMF. We used them in three neural datasets; 1) a dataset recorded from rat 

auditory cortex (A1) to long tones and clicks (kindly provided by Shuzo Sakata and 

collaborators at Strathclyde University), 2) a dataset recorded from salamander retinal 

ganglion cells to static images and movies (kindly provided by Tim Gollisch and colleagues 

from University of Gottingen) and 3) a dataset recorded from rat barrel cortex to whisker 

deflections (Petersen et al., 2001). The first two datasets consists of simultaneous 

multielectrode recordings while the latter dataset is a pooling of recordings over multiple 

sessions. These provide an understanding of the low-dimensional representation used by 

NMF to represent large-scale spike trains. 
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This chapter is organized as follows. It starts with a brief general introduction to NMF. Then 

the two methods we use to analyze data, spatiotemporal NMF and space-by-time NMF are 

described in detail. This is followed by findings from the three datasets using NMF to 

identify concurrent low-dimensional spatial and temporal patterns and its ability to 

discriminate stimuli in comparison to using information from only one dimension. The 

discussion at the end summarizes and elaborates our findings and lays out the reasons for the 

series of studies we conducted to improve the method to analyze neural population responses.    

 

2.3 Non-negative matrix factorization 

NMF (Lee and Seung, 1999) is a data-driven dimension reduction method that can be applied 

on large scale datasets containing only non-negative elements. It can extract patterns that are 

reliably present in the dataset at a global scale. Typically, the full dataset is arranged into a 

matrix. NMF can decompose this matrix into one or more matrices that contain patterns 

which are representative of the datasets (we refer to these matrices as module matrices) and 

one matrix that contains a set of weights with which each element in the original dataset 

could be reconstructed as a linearly weighted sum of the extracted patterns (we refer to this 

matrix as the coefficient matrix). The factorization process is performed iteratively where in 

each iteration, the factorized matrices are updated using a set of update rules designed to 

minimize a dissimilarity measure that quantifies the error between the original dataset and the 

linearly reconstructed dataset. The update rules are constrained such that the factorized 

matrices remain non-negative throughout the updating process. This non-negativity constraint 

together with the linear reconstruction give rise to identification of patterns that are sparse 

and part-based (Lee and Seung, 1999). They are often found to have clear and intuitive 

meaning with respect to the original data in many areas that have used NMF as a dimension 

reduction method. A few representative data types include facial images (Lee and Seung, 

1999; Guillamet and Vitria, 2002), document and email corpuses (Xu et al., 2003; Berry and 

Browne, 2005), microarray data (Brunet et al., 2004; Carmona-Saez et al., 2006), 

electromyographic activity (d'Avella et al., 2003; Delis et al., 2013; Delis et al., 2014) and 

music (Smaragdis and Brown, 2003; Févotte et al., 2009).  

NMF in its basic two-factor decomposition (Lee and Seung, 1999) factorizes a N T  matrix 

R  into a N K  module matrix W  and a K T coefficient matrix H  where, 

 R WH  (2.1) 

and  min ,K T N . The module matrix W consists of the low-dimensional patterns 

extracted from the data. These patterns are described based on the full dataset and are item-

independent. The coefficient matrix H  specifies the contribution of each module necessary to 

make a linear reconstruction of an item in the original dataset. Thus, unlike the module 

matrix, the coefficient matrix is item dependent and scales in size according to the number of 

items in the dataset. 
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In the example shown in Figure 2.1, NMF was applied on a facial image dataset (Lee and 

Seung, 1999). The data matrix R  was constructed such that each column in R  contained the 

intensity of the vectorized pixels in one image. Each module extracted into W  matrix is an 

image consisting of a global facial feature in the dataset such as eyes, nose or lips. The 

coefficients in the H  matrix indicate the level of the presence of each facial feature within 

each image. The reconstruction of an image in the dataset 
ir  is obtained as 

1

K

i k

k

h


r W .  

 (Ding et al., 2006) extended the two-factor NMF to a tri-factor decomposition through 

 
1 2R WHW  (2.2) 

with 1 1

T W W I  and 2 2

T W W I . The 
1

N K matrix 
1W  clusters pixels into facial features 

based on pixel co-occurrences in different images and 
2K T  matrix 

2W  clusters images 

into groups based on the presence of similar pixels in the images. A common use of tri-

factorization is for text mining (Ding et al., 2006; Wang et al., 2011). In this case, R  is a 

term-document matrix built using the frequency of words in a document corpus with words as 

its rows and documents as its columns. Then, 
1W  clusters words into topics based on word 

co-occurrence across documents and 
2W  clusters documents into different groups based on 

the presence of similar words in the documents. The ability of the three-factor decomposition 

to co-cluster features from both dimensions of the data matrix into separate matrices makes it 

a natural choice for concurrent identification of spatial and temporal activity patterns from a 

data matrix comprising of spatiotemporal population responses. 

 

2.4 NMF for spatiotemporal spike activity 

When applying NMF for spike data from N  neurons, we first bin each spike train of 

 (1 )s s S   trials into non-overlapping T  timebins creating a N Ts  response matrix R . 

We applied the following two variants of NMF to explore population spike counts 

concurrently in space and time. 

1. Spatiotemporal NMF 

2. Space-by-time NMF 

In both cases, NMF models the population response of each trial using a linear combination 

of trial-invariant modules. 
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Figure 2.1: Illustration of two-factor NMF applied on a facial image dataset and 

the reconstruction of an image using underlying modules.  The dataset consisted of 

2429 facial images of 19 x 19 pixels each. (adapted with permission from (Lee and Seung, 

1999))    

 

 

 

Spatiotemporal NMF 

The spatiotemporal NMF decomposition (d Avella and Tresch, 2002), shown in Figure 2.2A 

is obtained by first arranging the time bins of all neurons in one trial as columns of matrix R  

and then using equation (2.1) to decompose R. The resulting N T  module matrix W

contains spatiotemporal modules as its columns. These are then reshaped appropriately to 

obtain K  spatiotemporal modules. These spatiotemporal modules are trial-invariant. Each 

module describes a time-varying pattern of activity in the population. Trial-to-trial activity is 

described by the T S  coefficient matrix H  containing a weight for each spatiotemporal 

module indicating the contribution of the particular activity pattern in the module to the 

population response of one trial. In this low-dimensional representation, the dimensionality of 

each trial is reduced from NT  parameters to K  parameters.  

 

 

Space-by-time NMF 

This algorithm is a variant of the tri-factor NMF model that (Delis et al., 2014) initially 

proposed as sample-based non-negative matrix tri-factorization (sNM3F) to analyze 

electromyography data (Delis et al., 2014). It concurrently decomposes the spatial and 

temporal dimensions into two trial-invariant matrices; a L N  spatial module matrix and a 

T P  temporal module matrix as shown in Figure 2.2B using, 
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Figure 2.2: Illustration of spatiotemporal NMF and space-by-time NMF models. 

A: Spatiotemporal NMF model. Spatiotemporal NMF decomposes the dataset into a set of 

trial-invariant spatiotemporal modules and a trial-variant coefficient matrix. Each coefficient 

describes the activation level of the respective spatiotemporal module in a trial. B: Space-by-

time NMF model. Space-by-time NMF model decomposes the data matrix into a trial 

invariant spatial module matrix and a temporal module matrix together with a trial-variant 

coefficient matrix. The spatial module matrix consists of groups of neurons that tend to fire 

together. The temporal module matrix consists of temporal activation patterns of neurons. 

Each coefficient of the coefficient matrix indicates the level of activation of the 

corresponding spatial and temporal module combination (i.e. one space-by-time module) in a 

trial. 
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   , , ,

1 1

( )     
P L

s s

tem i i j spa j

i j

t t h
 

r w w  (2.3) 

where ,  spa jw  is the thj  row of the spatial module matrix spaW  and ,  tem iw is the thi  column of 

the temporal module matrix 
temW . The activity of a single-trial is specified by the P L  

coefficient matrix s
h . The value ,

s

i jh  in the coefficient matrix indicates the activation level of 

the thi  temporal module and thj  spatial module in trial s . In the space-by-time 

representation, the dimensionality of each trial is reduced from NT  to PL  parameters. 

The complete space-by-time NMF algorithm is given in Algorithm 1. 

 

 

Algorithm 1: Space-by-time NMF algorithm 

Let 

1

2

s

 
 
 
 
 
 

r

r
R

r

. Define  ' 1 2... SR r r r  to be the block transpose of R , where  
'

' R R  

Initialize 
1

tem W 0 ,        2'
1 1 1 1

1       S   
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k
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k k k
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1k
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
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k
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 a. Get the block transpose k
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1k
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k k
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 c. Obtain the block transpose  
'

k
P  

 d. Update k

temW  to improve the approximation  
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2.5 Representation of spatiotemporal neural responses using NMF 

 

We applied NMF to three large scale neural datasets recorded from neurons coding three 

sensory modalities; a dataset recorded from rat auditory cortex to long tones and clicks, a 

dataset recorded from salamander retinal ganglion cells to static images and movies (Onken 

et al., In preparation) and a dataset recorded from rat barrel cortex to whisker reflections 

(Petersen et al., 2001). The first two datasets consisted of simultaneous multi-electrode 

recordings while the third dataset contained a collection of records from multiple 

experimental sessions.  

 

2.5.1 Using NMF to study population coding of sounds in rat auditory cortex 

 

Experimental details 

The dataset was recorded from the auditory (A1) cortex of an anesthetized adult Sprague-

Dawley rat. Experiments were performed in accordance with the United Kingdom Animals 

(Scientific Procedures) Act of 1986 and were approved by the United Kingdom Home Office 

and the Ethical Committee of Strathclyde University. The experimental procedures were 

similar to that described in (Sakata and Harris, 2009; Kayser et al., 2015). The animal was 

anesthetized with 1.5 g/kg urethane. Lidocaine (2%, 0.1–0.3 mg) was administered 

subcutaneously near the site of incision. A feedback temperature controller was used to 

maintain the body temperature at 37°C. To facilitate acoustic stimulation, a head post was 

fixed to the frontal bone using bone screws, and the animal was placed in a custom head 

restraint that left the ears unobstructed. After reflecting the left temporalis muscle, the bone 

over the left A1 was removed and a small duratomy was performed. Simultaneous activity of 

neurons was recorded with a 8 channel ‘‘silicon probe’’ (NeuroNexus Technologies). The 

brain was covered with 1% agar/0.1 M PBS to reduce pulsation and to keep the cortical 

surface moisturized during recording. There was a waiting period of ∼30 min prior to the 

start of recordings. Broadband signals (0.07 Hz to 8 kHz) were amplified (x 1000) using a 

Plexon system (HST/32V-G20 and PBX3) relative to a cerebellar bone screw and were 

digitized at 20 kHz (PXI; National Instruments). 

Acoustic stimuli were generated through a multi-function data acquisition board (NI-PCI-

6221; National Instruments) and were presented at a sampling rate of 96 kHz using a speaker 

driver (ED1; Tucker-Davis Technologies) and using free-field speakers (ES1; Tucker-Davis 

Technologies) located ∼10 cm in front of the animal. Sound presentation was calibrated 

using a pressure microphone (PS9200KIT-1/4; ACO Pacific) to ensure linear transfer and 

calibrated intensity. Tone stimuli consisted of nine long pure tones (500 ms long with 10 ms 

cosine ramps, 1/2 octave steps, 2 - 32 kHz, 30 and 60 dB SPL). Click stimuli comprised of 1 

s long repetitive click sequences (5 ms broadband noise with 1 ms cosine ramps at 70 dB 

SPL) of frequencies 4, 8, 16, 32 and 64 Hz. Each stimulus was repeated over 100 trials. Spike 

detection and sorting was done offline using freely available software EToS version 3 
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(http://etos.sourceforge.net) and Klustakwik (http://klustakwik.sourceforge.net). Only cells 

with isolation distances   20 were used in the analysis. This gave 85 well-isolated cells. 

 

Data analysis 

We binned spikes of each cell into 5 ms timebins and created a 85 x 180,000 spatiotemporal 

matrix of spike counts in which all trials were concatenated sequentially. We then applied 

space-by-time NMF and spatiotemporal NMF. We identified the ability of the extracted 

modules to describe physiological data. We evaluated the ability of the coefficient matrix 

derived by NMF to describe trial-by-trial activity through a cross validated decoding 

procedure. The performance of the decoder indicates the concurrent contribution of space-

and-time dimensions towards identifying stimuli. To study the contribution of the spatial 

dimension and the temporal dimension separately to the decoding performance, we used a 

permutation procedure (Figure 2.6A). To identify the decoding performance when only spatial 

dimension carry information, we randomly permuted the spikes of each trial while keeping 

the spatial structure intact in each time bin prior to applying NMF. Only stimulus selective 

modulation of the firing rates of the neurons remained after processing the data in this 

manner thus consisting only information available in the spatial dimension. To obtain the 

decoding performance when using only the temporal dimension, we permuted the spike trains 

across neurons in each trial while keeping the order of spikes in each train intact. Only the 

temporal ordering of spikes remain in the data after processing the data in the manner thus 

containing only temporal information.. 

 

Decoding 

We applied the following decoding procedure. First we generated twenty trial-randomized 

datasets and divided each dataset into an equal sized training set and test set. Then we 

extracted the underlying temporal and spatial module structure in the training dataset together 

with the activation coefficients for each trial. We then fixed the derived temporal and spatial 

modules of the training set and updated only the coefficient matrix for the test set. We used 

the estimated training set coefficients to train a linear discriminant classifier and used it to 

decode the test set trials. We identified the optimal decomposition to be the one which gives 

the best test set decoding performance with the least number of modules. 

 

Signal and noise correlations 

We calculated the signal correlation and noise correlation between pairs of neurons grouped 

into spatial modules to better understand the composition of spatial modules in terms of 

measures used to describe neural variability. We assigned neurons to spatial modules using a 

threshold on the weights of the neurons in a spatial module. Then we identified neurons pairs 

that shared one or more spatial modules. We call these pairs of neurons "within module 
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pairs". Then we randomly sampled an equal number of pairs of neurons from all pairs of 

neurons in the dataset. We call these pairs of neurons "across module pairs". We computed 

signal and noise correlations for both neuron groups using the total spike counts in each trial. 

The threshold used to assign neurons to modules is an unknown value. We chose the 

threshold to be 0.4 times the standard deviation of the weights in each module. This threshold 

classified 50% and 37% of all pairs of neurons as within module pairs for responses to click 

sequences and long tones respectively.  

 

Space-by-time NMF module structure 

We first examine the module structure we obtained for the responses of the 85 neurons when 

stimulated with click sequences. Two example population responses to 4 Hz click sequence 

are shown in Figure 2.3A. The population response is inhomogeneous across repeating clicks 

in the sequence during a single trial and also has a large degree of trial-to-trial variability in 

which periods of population activity fluctuates between periods of silence. As described in 

section 1.2, similar fluctuations of activity is observed when the cortex is in a synchronized 

state under anesthesia (Petersen et al., 2003; Curto et al., 2009; Luczak et al., 2009; 

Pachitariu et al., 2015). During this synchronized state, which can last for long time durations 

in the order of seconds, periods of concerted population activity, in the order of hundreds of 

milliseconds, appear between time periods of population silence (Curto et al., 2009). The 

activated periods are called up-states while the inactivated periods are referred to as down-

states. Similar up-down activity states are found in urathene-anesthetized rats when 

stimulated with click trains (Curto et al., 2009). Even though there is a large variability in 

individual trials, the trial-averaged population responses in Figure 2.3A show clear stimulus 

modulation. There is a high degree of synchronized activity in the population for the onset 

response to each click in low frequency click trains. Population onset responses to repeating 

clicks diminish as the frequency of the click train increases, while the onset response to the 

first click in the sequence remains stable across frequencies.  
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Figure 2.3:Space-by-time module structure for responses of 85 A1 neurons to 

click sequences.  A: The population responses for two trials during 4 Hz sequences (top left 

and middle) and the trial-averaged population responses to the five click sequences (top 

right). B: Temporal modules extracted by space-by-time NMF from the responses of the same 

neurons to click sequences are shown at the bottom. C: Spatial modules extracted by space-

by-time NMF. The raster plots below spatial modules show spiking activity of the five 

neurons that are assigned the highest weight in each spatial module for the 4 Hz click 

sequence. D: An example reconstruction (right) of the population response during the second 

trial of the 4 Hz sequence (left) using the low-dimensional description of the trial.  
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Temporal modules describing this population activity are shown in Figure 2.3B. Modules 1 - 3 

represent salient stimulus related activity patterns from the trial-averaged population 

response. The first module that spans 15 - 30 ms of the response with a peak at 25 ms 

describes the initial response of neurons to click trains. The second module mainly describes 

the responses to repeating clicks in the 4 Hz sequence while the third module mainly 

indicates the onset responses to repeating clicks from 8 Hz sequences that are not present in 

the 4 Hz sequences. The temporal differences between the second module and the third 

module indicate that there is a late component in the population response to 8 Hz clicks 

compared to 4 Hz clicks. The allocation of temporal modules in this manner by dividing the 

full response into the response to the first click and to the subsequent clicks appears to enable 

the model to capture common stimulus related variability with the ability to distinguish 

between click sequences. The remaining modules in the decomposition describe the activity 

that occurs between the onset responses to 4 Hz and 8 Hz sequences and capture responses to 

repeating clicks in the 16 Hz sequences that occurred in these periods. They further count 

spikes in these intervals for 32 and 64 Hz sequences. Separate modules are allocated to 

describe the activity in these intervals rather than using a single module that span across all 

intervals because the population activity has a structured trial-to-trial variation.  

Neurons in A1 are usually characterized using parameters such as the characteristic 

frequency, best frequency and the frequency bandwidth of the neuron (Schreiner et al., 2011). 

The characteristic frequency is the frequency in which a neuron produces a response at the 

lowest intensity from all the frequencies used in the experiment. The best frequency of a 

neuron is the frequency at which the maximum response is obtained at a given sound pressure 

level. The frequency bandwidth is the frequency range that produces an excitatory response at 

a given sound pressure level. Neurons in Al are often located as localized groups that have 

similar characteristic frequencies (Kilgard and Merzenich, 1999; Rutkowski et al., 2003). 

When moving along the posterior to anterior direction in the rat A1, the characteristic 

frequency of the neurons change from low frequency to high frequency (Sally and Kelly, 

1988) indicating the tonotopic organization in A1. Figure 2.3C shows spatial modules derived 

from the population responses mapped onto a schematic figure of the eight tetrode 

configuration used during the recording session. Tetrode 1 contained neurons with 

characteristic frequencies in the high frequency regions while tetrode eight contained neurons 

with their characteristic frequencies in low frequency range. The first module consists of 

neurons from the first four tetrodes while the second contains neurons from all tetrodes. The 

two raster plots at the bottom of the panel show the responses of the five neurons that have 

the highest weight in each spatial module for the 4 Hz click sequence. This clearly shows that 

the first spatial module consists of neurons that have short onset responses while the second 

spatial module groups neurons that also display a sustained response. The co-activation of 

neurons across the tonotopic axis is expected when stimulating with clicks since a single click 

contains a large range from the frequency spectrum. Thus we observe that the spatial modules 

obtained with space-by-time NMF groups neurons that tend to fire together and have similar 

firing profiles. We then investigated whether this would give rise to covariations between 

neurons. We quantified signal and noise correlations between pairs of neurons that were 

identified as within modules and between modules. The neurons pairs within modules had a 
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higher positive signal correlation of 0.24   0.63 compared to 0.15   0.62 in pairs of 

neurons between modules (Wilcoxon rank sum test, p<0.001). Noise correlations in neurons 

pairs within modules (0.37   0.22) was slightly, but significantly higher than pairs of 

neurons between modules (0.27   0.23, Wilcoxon rank sum test, p<0.05). This indicates that 

the similarity in the firing profiles of neurons in modules reflect tendency to fire together in 

terms of correlated variability within and across stimuli. 

Next, we analyzed the responses of the same neurons to long pure tones of 500 ms duration.  

Responses to long tones indicated of a state change during the experimental session. During 

the first half of the experiment, the responses of the neurons showed synchronized activity 

consisting of up-down states (Figure 2.4A). However during the second half of the 

experiment, the responses were more desynchronized (Figure 2.4B). When we analyzed the 

power in the multi unit activity (MUA, the details are given in Appendix 2) we found that the 

ratio of power in 0 - 5 Hz frequency range to that in 0 - 50 Hz frequency range was lower in 

trials 61 - 100 compared to trials 1 - 100 (two-tailed t-test, p < 0.005) indicating that the 

synchronization  level decreased during the experiment (Curto et al., 2009). Changes in signal 

and noise correlations accompanied the change in the synchronization level (Figure 2.4B,C, 

(Pachitariu et al., 2015)). However, these changes showed differences between pairs of 

neurons recorded from different tetrodes. Both signal and noise correlations decreased in 

pairs of neurons recorded from tetrodes located in the anterior part of the cortex (two tailed t-

test, p < 0.05) while pairs of neurons recorded from the posterior most two tetrodes did not 

show any changes in their correlation level. 

We applied NMF to the binned responses from all trials, but trials from both states distributed 

across training and test datasets. Typically, the number of modules that give the optimal low-

dimensional structure describing the responses of the neurons is unknown at the start of the 

analysis. Thus we initially apply NMF over all decompositions within a plausible range of 

decompositions suited for the experimental context. In this analysis we obtained 

decompositions that had 1 - 5 temporal modules and 1 - 20 spatial modules. This range of 

decompositions was chosen  for the following reasons. Neurons responding to pure tones 

have temporal profiles that are described as phasic, phasic-tonic or tonic (Chimoto et al., 

2002). Thus the possible range of temporal patterns exhibited by neurons to pure tones is low 

and could be expected to be captured well using 1 - 5 temporal modules. The tonotopic 

organization in A1 could be expected to give rise to spatial modules that groups neurons with 

similar frequency preferences (Sally and Kelly, 1988; Stiebler et al., 1997; Bizley et al., 

2005; Schreiner et al., 2011). This would suggest that the number of spatial modules would 

be in the range of the number of tetrodes used for the recording. Considering that the neurons 

grouped into a single spatial module also have similarity in temporal firing profiles, the 

number of spatial modules could be expected to be in the range 1 - 20. Thus we obtained the 

range of decompositions spanning 1 - 5 temporal modules and 1 - 20 spatial modules. 
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Figure 2.4: Changes observed in the neural responses of auditory neurons 

between the two levels of synchronization.  A: Raster response of the population 

activity in a representative trial during the synchronized state (left) and during the 

desynchronized state (right). B: Signal correlations between pairs of neurons recorded from 

each tetrode. The figure on the left shows signal correlations between neurons in trials 1 - 40 

while the middle figure shows the same for trials 61 - 100. The figure on the right indicates 

the change in signal correlation when the state became desynchronized. * show significant 

changes (two-tailed t-test, p < 0.05). CB: Noise correlations averaged across tones in pairs of 

neurons recorded from each tetrode using the same figure arrangement as in A.  
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The temporal modules extracted by NMF for three temporal modules and 20 spatial modules 

decomposition is shown in Figure 2.5A. The first module spans 15 - 25 ms period after 

application of the stimulus while the second temporal module spans the subsequent 25 - 120 

ms period. Together, these describe the phasic response of a phasic-tonic cell. The temporal 

difference between the peak values of these two modules describes the activity of neurons 

with different onset latencies. The third module describes the sustained component of a 

phasic-tonic cell. The coefficients in the insets of the two figures below describe how the 

shown responses of the two neurons are encoded by the model. There is a high activation 

level in the first temporal module for the response of the neuron 15 representing its short 

onset response during the time window of the module. In contrast, the second and the third 

temporal modules carry high weight for the tonic firing neuron 11. The activation level of the 

coefficients of this neuron is approximately proportional to the number of spikes in the time 

window of the respective module. This give rise to a higher activation level of the third 

temporal module compared to the second temporal module. Thus, the sustained component 

has a role of rate coding while the precise short duration modules signify the contribution 

from precise spikes at the onset. In the two temporal modules, 20 spatial modules 

decomposition shown in Figure 2.5B, the phasic response is extracted as a separate module by 

space-by-time NMF. Therefore, the temporal module structure derived from NMF is suited to 

describe all types of temporal activity patterns observed in auditory neuron responses to 

tones.  

We typically choose the optimal decomposition to be the one which has the optimal decoding 

performance. In this dataset, the number of correctly identified trials initially increased at a 

high rate with the increase in the number of spatial modules for a given number of temporal 

modules (Figure 2.5C). When reaching five spatial modules (which had a decoding 

performance of 45.7 %   1.24 %), the slope changed sharply and the increase in the 

performance occurred at a lower rate. At 20 spatial modules, the performance was 60.11 % 

  2.33%. Previous studies  using NMF to analyze muscle synergies show a change in the 

slope of the performance measure used when the number of modules increases (d'Avella et 

al., 2003; Cheung et al., 2005) and the number of decompositions at which the change in the 

slope occurs is often taken to be the optimal decomposition. However, with regard to tonal 

responses, the difference in the decoding performances between the maximum number of 

spatial modules we extracted and the module at which the slope of the curve changes was 

considerable (close to 15%). When we examined the spatial modules for the five spatial 

module decomposition (Figure 2.5D), we found that the modules had a coarse organization.  

The first three spatial modules composed of neurons mainly from tetrodes 1 - 4, while the last 

spatial module composed of neurons mainly from tetrodes 6 - 8. Five neurons were 

selectively given higher weight in the modules. Four of these neurons (neuron 2, 11, 14 and 

59) are among the five neurons with the highest stimuli-averaged firing rate. The 20 spatial 

module decomposition, which had the highest decoding performance, indicated that the 

weights of the neurons in spatial modules gradually shifted from neurons with characteristic 

frequencies in the high frequency regions to neurons with their best frequencies in the low 

frequency region. However, half of the spatial modules were assigned almost only to one 

neuron (Figure 2.5E) thus implying that the stimuli could be better described with less 
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emphasis on the population activity. When we compared the signal correlations of pairs of 

neurons within modules to pairs of neurons across modules, pairs of neurons within modules 

had a higher positive signal correlation of 0.43   0.38 compared to 0.25   0.39 of pairs of 

neurons between modules (Wilcoxon rank sum test, p<0.001). When we investigated noise 

correlations, we found that noise correlations in pairs of neurons located within modules 

(0.26   0.26) were again positive and higher than those for pairs of neurons located between 

modules (0.14   0.25, Wilcoxon rank sum test, p<0.05). This indicates that although many 

spatial modules derived for this dataset are sparse, pairs of neurons classified into spatial 

modules have similar tendency to fire. We discuss this finding in detail in the discussion. 

 

Contribution of space and time dimensions for discriminability 

Figure 2.6B indicates that the stimulus discriminability is higher for both datasets, when the 

spatial and temporal dimension are taken together in comparison to what can be achieved 

when considering either the spatial dimension or the temporal dimension independently 

(Wilcoxon rank sum test, p < 0.001). For tones, in which nine tones between 2 - 32 kHz 

frequency range with 0.5 octave separation were applied at 30 dB and 60 dB sound pressure 

levels, the loss of structure in the spatial dimension resulted in a large decrease in the ability 

to discriminate compared to when the full spatial and temporal information is present 

(Wilcoxon rank sum test, p < 0.001). This can be understood in the context of the tonotopy in 

the A1 neurons. The characteristic frequency of the neurons in the dataset varied from 40.03 

  23.22 kHz in the first tetrode to 1.76   0.6 kHz in the eight tetrode. Thus, the variation of 

frequencies along the anterior-posterior axis could contribute largely towards encoding tone 

frequencies and intensities. In the click sequences, the temporal dimension gives better 

performance in terms of identifying click trains compared to when only using the spatial 

dimension (Wilcoxon rank sum test, p < 0.001). This could be mainly due to the temporal 

nature of the stimuli; click sequences differ based on the repetition frequency and each click 

contains a large frequency range that evoke activity from a large portion of neurons in the 

population simultaneously. 
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Figure 2.5: Space-by-time module structure for responses of 85 A1 neurons to 

long tones. A: Temporal modules extracted by space-by-time NMF for decomposition with  

three temporal modules and 20 spatial modules (top) and raster plots showing responses of 

two neurons to two tones (middle and bottom). Each raster plot contains spikes of the neuron 

during 100 trials of the indicated tone. Insets in the raster plots show the activation 

coefficients corresponding to each temporal module that describe the activity of the neuron. 

B: Temporal modules extracted by space-by-time NMF for decomposition with  two temporal 

modules and 20 spatial modules  C: The variation of the test set decoding performance for 

two temporal module decompositions when the number of spatial modules increases. D: 

Spatial modules extracted by space-by-time NMF for the decomposition with two temporal 

modules and five spatial modules depicted on a schematic illustration of the eight tetrodes (T) 

used in the recording. Each row shows the weights of the neurons in one spatial module 

(SM). The weight of each neuron in spatial module takes a value between 0 and 1. All 

neurons recorded from one tetrode are shown around the respective tetrode.  E: Spatial 

modules extracted by space-by-time NMF for the decomposition with two temporal modules 

and 20 spatial modules   

. 
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Figure 2.6: Stimulus discrimination capability of the low-dimensional 

representations extracted by NMF. A: An illustration of the permutation procedure we 

implemented to obtain information present only in one dimension. To obtain the information 

present only in the spatial dimension, we randomly permute the spike trains between neurons 

while keeping the temporal structure of each trial intact. To eliminate information in the time 

dimension, we randomly permute the time bins while keeping the spatial relationships in 

spikes intact. B: The decoding performance obtained when using information present in both 

spatial and temporal dimensions, either of the spatial or temporal dimensions for the neural 

responses to tones and clicks. (**: p < 0.001 and *: p<0.05; Wilcoxon rank sum test, erorr 

bars show s.d.) 
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2.5.2 Using NMF to study population coding of stimulus location in rat 

somatosensory cortex 

 

Experimental details 

The dataset recorded from somatosensory neurons was previously analyzed in several studies 

(Panzeri et al., 2001; Petersen et al., 2001) and the experimental methods are fully described 

in (Lebedev et al., 2000). Experiments were performed in accordance with the NIH and 

international standards on the use of experimental animals. Twenty-two adult male Wistar 

rats (weighing ∼350 g) were used. The animal was anesthetized with urethane (1.5 g/kg body 

weight, i.p.). The animal was placed in a stereotactic apparatus (Narishige, Tokyo) and left 

somatosensory cortex exposed by a 4 mm diameter craniotomy. During the experiment, the 

body temperature was maintained near 37.5°C and the depth of anesthesia was held 

consistent by monitoring hindpaw withdrawal, corneal reflex, and respiration rate. The 

animal was perfused with saline followed by 4% paraformaldehyde at the end of the 

experiment. A flattened slab of neocortex was frozen, cut into 40 μm tangential sections after 

postfixation in 20% sucrose. To visualize barrel-columns in layer IV it was processed to label 

nitric oxide synthase activity (Valtschanoff et al., 1993). 

Whiskers C1 – C3, D1 – D3, and E1 – E3 were stimulated independently at 3 mm from their 

base using a piezoelectric wafer (Morgan Matroc, Bedford, OH) that was controlled by a 

voltage pulse generator (A.M.P.I., Jerusalem). The stimulus was a step function of 80 μm 

amplitude and 100 ms duration delivered at a rate of 1 Hz, 50 times for each vibrissa. 

Recording was done with an array of six tungsten electrodes, arranged either as a single row 

or as a 2 × 3 matrix, with 300 ± 50 μm horizontal separation between adjacent electrode tips. 

It was advanced into the cortical barrel field, focused on barrel-column D2 (typically 1–2 

electrodes penetrated barrel D2) in 100 μm steps with an effort to sample recording sites 

throughout the cortical depth although the majority of neurons were likely to have been 

located between 300–950 μm.  

The recorded activity was amplified, band-pass filtered between 300–7500 Hz and were 

digitized at 25 KHz, 32 points per waveform, time-stamped with 0.1 ms precision (Datawave, 

Boulder, CO), and stored on a Pentium PC for offline analysis. A custom template-matching 

algorithm identified spikes using differences in shape and amplitude. Typically 1 – 2 single 

units were identified from each electrode. The full dataset contained 100 neurons each 

recorded from cortical barrel-columns D1 - D3. 

 

Data analysis 

We binned spikes in the 0 - 100 ms period after stimulus onset into 5 ms time bins and 

applied space-by-time NMF and spatiotemporal NMF. We adopted a modified decoding 
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procedure from that used in section 2.5.1 that is better suited for the low number of trials 

available in the somatosensory dataset, which is detailed below. 

We calculated the signal correlation and noise correlation between pairs of neurons grouped 

into spatial modules in a similar procedure as in section 2.5.1. Due to the nature of spatial 

modules obtained in responses to whisker deflections, we chose the threshold such that 

approximately half of all pairs of neurons were assigned as within module pairs to obtain 

conservative estimates of signal and noise correlations.  

 

Decoding 

We first generated twenty trial randomized datasets. We divided each dataset into a training 

dataset with 40 trials and a test with eight trials. We used the training set to identify the 

optimal decomposition with the following procedure. We divided the trials in the training set 

into ten equal sized partitions of four trials each and implemented a ten-fold cross validated 

decoding procedure. For each fold, we kept the four trials of one partition as the test set and  

obtained NMF modules from the 36 trials of the remaining partitions. We used the 

coefficients identified in the training set and test set to train a linear discriminant classifier. 

We repeated this ten times with non-overlapping test set trials during each fold and calculated 

the overall decoding performance to be the mean number of trials correctly assigned to each 

stimulus over the ten folds. Using this performance, we identified the optimal decomposition 

to be the decomposition that gives the highest performance with the least number of modules. 

When multiple decompositions gave similar decoding performance, we selected the 

decomposition that had the lowest number of parameters. Once the optimal decomposition 

was selected, we identified the fold in the optimal decomposition that had a decoding 

performance closest to the mean value. We used the modules obtained in this fold to extract 

coefficients for the eight trials separated as the test set to obtain the decoding performance 

corresponding to the dataset.          

 

Spatiotemporal NMF module structure 

The module structure identified by spatiotemporal NMF is shown in Figure 2.7B where each 

line is the color coded activity pattern of the respective neuron in the module. Spatiotemporal 

NMF identified the first three modules to be the population activity for D1 - D3 stimuli. They 

include neurons from barrel columns of non-principle whiskers that responded in addition to 

neurons from the barrel-column of the principle whisker. In each module, the temporal 

activity to non-principle whisker is delayed with respect to the activity for the principle 

whisker. This is in accordance with the spiking activity in our data (Figure 2.6A, D) and 

previous reports in the literature (Armstrong‐James and Fox, 1987; Petersen and Diamond, 

2000). The last module grouped population activity observed when stimulating non-principle 

whiskers C1 - C3 and E1 - E3. 
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Figure 2.7: Module structure and the decoding performance of spatiotemporal 

NMF and space-by-time NMF on the response of 300 neurons to whisker 

deflections. A: Responses were recorded from 100 neurons each from barrel columns D1 - 

D3 (left). Example responses of four neurons are shown in the raster plots (right) with the 

tuning curves of each neuron shown at the bottom. B: Modules identified by spatiotemporal 

NMF. Each horizontal line shows the color coded temporal pattern of one neuron. Barrel 

columns of neurons are indicated on the right. The activation level of each module for each 

stimulus is shown above each module. C: Temporal module (left) and spatial modules (right) 

extracted from space-by-time NMF. Coefficients show the activation level of each spatial 

module for each stimulus. E: Trial-averaged population responses for each whisker 

deflection. E: Decoding performance. (**: p < 0.001 and *: p<0.05; Wilcoxon rank sum test, 

erorr bars show s.d.)  
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Space-by-time NMF module structure 

Figure 2.7C shows five spatial and one temporal modules extracted by space-by-time NMF. 

Spatial modules identified by space-by-time NMF have clear composition with respect to 

neuron responses. The first three modules correspond to neurons responding mainly to D1 - 

D3 stimulations. Last two modules group neurons responding to non-principle whisker 

deflections in addition to principle whisker deflections. We found that the signal correlations 

in pairs of neurons within modules (0.3   0.39) was positive and higher than pairs of 

neurons between modules (0.18   0.41) (Wilcoxon rank sum test, p < 0.001) indicating that 

the neurons in the same module shared similar tuning to whisker location. However, noise 

correlations between pairs of neurons in the two categories were not significantly different 

for six stimuli. This could be understood because the dataset is a collection of independent 

recordings.        

The temporal module in the optimal decomposition has an elevated activation level at the 

start of the trial. Space-by-time modules are generated using separate temporal and spatial 

modules by multiplying each spatial module with the temporal module (refer to the 

illustration in Figure 2.2B). Space-time modules that correspond to one temporal module and 

five spatial module decomposition are shown in Figure 2.7B. As can be seen in these plots, the 

high initial activation level of the temporal module results in a peak activity in time bins two 

and three in each space-by-time module (corresponding to 5 - 15 ms of the population 

response). Thus, it captures the highly reliable onset response of the neurons responding to 

principle whisker between 5 - 15 ms and the late onset of the responses to the non-principle 

whisker initiating at 10 - 15 ms (Figure 2.7D).  

Two example reconstructions of the population response in two trials are given in Figure 

2.8C-D. Each reconstruction is formed as a weighted linear summation of the space-time 

modules in Figure 2.8B. The weights used for each space-time module, which were obtained 

from the respective trial in the coefficient matrix, are indicated within brackets. Trial 8 of D1 

whisker deflection is reconstructed with the contributions from space-time modules one and 

four that mainly compose of neurons from D1 barrel-column. Late responding neurons from 

D2 and D3 barrel-columns also have their peak activity value during 5 - 15 ms in the 

reconstruction. This is because only one temporal module is available to describe the activity 

of all neurons. However, the weights assigned to the second and the fourth space-time 

modules depict that these late responses are lower than that assigned to the first space-time 

module that describes the principle whisker responses. This indicates that the low-dimension 

description, incorporates information that has been shown to be present in the first spike 

latencies (Panzeri et al., 2001; Petersen et al., 2001) to a certain extent using the shape of the 

temporal module.  

The reconstruction of a trial from C1 whisker deflection is shown in Figure 2.8D. This non-

principle whisker response is mainly formed using fourth and fifth space-by-time modules. In 

the reconstructed trial, neurons from D3 barrel-column that respond to the whisker deflection 

have high values even though the responses occur later in the trial. This is because they 

discharge more spikes during the trial. 
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Figure 2.8: Reconstruction of population responses using space-by-time NMF A: 

Temporal module (left) and spatial modules (right) extracted from space-by-time NMF. B: 

Space-by-time modules that are described by the spatial and temporal modules. C: The 

population response for eighth trial of D1 whisker deflection (left) is reconstructed (right) 

using the five coefficients (indicated within brackets) that correspond to the five space-by-

time modules in B. D: Reconstruction (right) of the population response (left) for 22
nd

 trial of 

C1 whisker deflection. 
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Contribution of space and time dimensions to identification of stimulus location 

From the two NMF methods that use information from both spatial and temporal dimensions, 

space-by-time NMF gave a higher decoding performance compared to spatiotemporal NMF 

(Figure 2.7E, Wilcoxon rank sum test, p < 0.001). This could be mainly attributed to the 

higher flexibility with which the population response could be described when spatial and 

temporal dimensions are separated in space-by-time NMF. Coefficients for the third and the 

fourth spatial modules in the space-by-time NMF have an inverse relationship. When whisker 

deflection moves from C1 to E1, the activation of the third spatial module becomes 

progressively lower (with the exception of E1 whisker) while the activation of the fourth 

spatial module becomes increasingly higher. The separation of the spatial and temporal 

dimensions enables space-by-time NMF to model a range of population responses by 

differentially weighting the space-time modules. However, spatiotemporal NMF requires 

more modules to generate the same range of variability in the population response. We 

limited the total number of modules extracted to seven modules. Increasing the number 

modules can lead to over-fitting. Due to the variability in the firing rates between neurons and 

since NMF update rules are designed to minimize an error measure describing the difference 

between the original dataset and the low-dimensional reconstruction, increasing the number 

of modules could lead to the formation of modules that capture the activity of high firing 

neurons rather than accounting for the population activity as a whole. In this particular case, 

where the dataset contain pooled responses obtained over multiple recording sessions, if there 

is some statistical difference between the responses from different sessions, there is a further 

possibility that the modules could be optimized to fit the trials recorded in a subset of 

recordings rather than the entire dataset. We did not have the details of the recording sessions 

to verify this possibility. Thus, we limited the maximum number of spatiotemporal modules 

and the maximum number of spatial modules to seven to obtain a conservative estimate of the 

decoding performance. 

According to Figure 2.7E, using the information in both space and time gives a performance 

advantage of 14.9   2.51 % compared to using only the spatial dimension (Wilcoxon rank 

sum test, p < 0.05). This indicates that the space-and-time representation has a component 

that cannot be represented only from the firing rates of the neurons alone.  The only form that 

the one temporal module decomposition incorporates temporal information is through the 

temporal weighting of spikes. This mechanism gives higher importance to spikes that occur at 

the beginning of the trial compared to spikes that occur during the latter part of the trial. 

(Petersen et al., 2001) showed that at the level of pairs of neurons in the same dataset, 82-85 

% of the total information in spike timing is contained in the timing of individual spikes and 

about 91 % of this information is contained in the timing of the first spike. This is mainly 

because the responses to principle whisker occurs prior to non-principle whiskers in coding 

stimulus location in somatosensory system (raster plots in Figure 2.6A,(Armstrong‐James and 

Fox, 1987)). Thus, temporally weighing of spikes by space-by-time NMF enables us to 

incorporate this spike timing information with the information in neuron-to-neuron 

differences in firing rates at the population level to increase the ability to discriminate 

whiskers. Since the optimal decoding performance is obtained with only one temporal 
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module rather than using multiple temporal modules, this suggests that for these responses, a 

mechanism that could weigh spikes depending on their time of occurrence during the entire 

response period could discriminate stimuli better than a mechanism that can analyze the 

weighted spike counts in multiple temporal windows separately.   

Figure 2.7E show that the difference in the decoding performance when using only 

information present in the temporal dimension compared to using information in both space-

and-time is 31.73   4.6 % (Wilcoxon rank sum test, p < 0.05). This indicates that the space-

and-time representation has a component that is not represented by time alone and that this 

component is twice as large as that when only using the spatial dimension. However, 

considering that the temporal dimension can alone discriminate more than half the trials 

(decoding performance of 52.2   2.8 %), coding of the stimulus location has a high 

redundancy in space and time in the population. 
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2.5.3 Using NMF to study encoding of visual information by populations of 

retinal ganglion cells 

 

Experimental procedures 

The datasets were recorded from retinal ganglion cells of dark-adapted axolotl salamanders 

(Ambystoma mexicanum; pigmented wild type) of either sex. All experimental procedures 

were performed in accordance with institutional guidelines of the University Medical Center 

Göttingen. Recordings were made at room temperature while supplying the retina with 

oxygenated Ringer’s solution. Spike detection and sorting was carried out by an expectation-

maximization algorithm for a Gaussian mixture model (Pouzat et al., 2002). The receptive 

fields of the cells were identified stimulating with spatiotemporal white noise and using the 

spike-triggered average (Chichilnisky, 2001). The spike-triggered average was separated into 

a spatial and temporal component using singular value decomposition(Gauthier et al., 2009). 

A two-dimensional Gaussian function was fitted to the spatial receptive field component to 

determine the center, size, and shape of the receptive field.  

Visual stimuli were projected onto the photoreceptor layer of the retina using a gamma-

corrected miniature OLED display (600 ⨉ 800 pixels) with monochromatic white light. A 

telecentric lens demagnified the stimuli to a pixel size of 7.5 µm ⨉ 7.5 µm. Average light 

intensity for all stimuli on the retinal surface was approximately 2.6 mW/m2, in the photopic 

range, on the retinal surface. Stimuli were presented with a custom-made software package 

developed with C++ and OpenGL.  

Datasets were recorded for three types of stimuli; flashed natural images, shifted natural 

images and square wave gratings. 

In the experiments in which natural images were flashed on the retina, 60 images were used 

to stimulate the retinal ganglion cells. The images (256 x 256 pixels) were selected from 

“McGill Calibrated Colour Image Database” 

http://tabby.vision.mcgill.ca/html/browsedownload.html (Olmos, 2004) and consisted of 

natural and artificial scenes spanning a field of view of 20° - 40°. RGB values of each image 

were converted to gray scale performing a weighted average across the three color channels. 

They were normalized using the know exposure time of the camera. Then the pixel values 

were linearly related to the absolute luminance values and the standard deviation was set to 

50% of the mean intensity. To ensure that the maximal pixel values are within the physically 

available range of the display, pixel values that deviated > 100% from the mean in either 

direction were clipped. To minimize the artifacts induced by this clipping, we only selected 

images that had only few clipped pixels (i.e., not more than 0.035% of the pixels). Images are 

presented individually for 200 ms each in a pseudo-random sequence, with an inter-stimulus-

interval of 800 ms. The datasets recorded for flashed natural images consisted of two sessions 

from two retinas that had 38 and 49 retinal ganglion cells. 

In the experiments where shifted natural images were used, the image set was constructed by 

taking 9 different natural images from the “McGill Calibrated Colour Image Database” 
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(Olmos, 2004), and then presenting 9 different versions of each image obtained by spatially 

shifting each of them by 90 µm step (much smaller than the typical RF size). This gave us 81 

images and each image was presented 19 times. Images were presented individually for 200 

ms each in a pseudo-random sequence, with an inter-stimulus-interval of 800 ms in which a 

full field gray stimulus was presented. For data analysis, we used the first 300 ms of neural 

activity after stimulus onset. We recorded data from two retinas (n=23 and n=37 cells, 

respectively). 

In different recording sessions, we used square-wave gratings of 900 µm spatial period and 

60% visual contrast. Responses were recorded from 54 neurons to 60 shifted versions of the 

same grating, uniformly covering the complete range of spatial phases of the grating. 

Stimulus presentation and data analysis was done analogous for natural images. 

 

Data analysis 

When analyzing responses to flashed natural images, we used 30 trials from each recording 

and we used all 19 trials when analyzing responses to shifted gratings. In both cases, we used 

the first 300 ms after stimulus onset from the retinal ganglion cell activity and binned the 

responses into 10 ms time bins. To identify the effectiveness with which the concurrently 

extracted low-dimensional structure that contains both spatial and temporal information can 

be used to identify stimuli, we implemented a cross validated decoding procedure similar to 

that used for somatosensory data in section 2.5.2. To quantify the specific contribution of the 

spatial and temporal dimensions separately to the total information, we used the permutation 

procedure described in section 2.5.1. 

To understand whether timing itself carried information, we computed the information 

carried by the first-spike latency of the firing of each neuron in response to the images. To 

compute this information we decoded the spike trains with space-by-time NMF performed 

exactly as above but applied to spike trains in which we deleted all spikes apart from the first 

one for each neuron in each trial.  

 

Decoding 

We divided each dataset into equal sized training dataset and test set with 30 trials each and 

used the training set to identify the optimal decomposition using a procedure similar to that in 

section 2.5.2. Briefly, we used leave-one-out cross validation with a linear discriminant 

classifier to obtain the optimal decomposition using the training set. We selected the optimal 

decomposition to be the one that gave the maximum average decoding performance in the 

leave-one-out decoding procedure. If multiple decompositions gave maximum performance, 

we selected the decomposition that had the maximum performance and the minimum number 

of parameters. 
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In addition to the NMF analysis, we evaluated the performance of a rank order decoder to 

discriminate stimuli. This decoder is based on the relative order of the first-spike latency of 

each neuron (Rullen and Thorpe, 2001; Johansson and Birznieks, 2004; Saal et al., 2009; 

Panzeri and Diamond, 2010). We applied the same procedure that was used in (Panzeri and 

Diamond, 2010) which is also very similar to that of (Johansson and Birznieks, 2004): In 

each trial, we ranked neurons according to their first-spike latency (using the MATLAB’s 

tiedrank function). For each grating phase, we then constructed a template of the population 

rank order. We did this by first calculating the mean rank of each neuron over the training 

trials and then we calculated the tie-corrected rank order of the means. For each test trial, we 

also ranked neurons according to their first-spike latency and then calculated the Spearman 

rank correlations between the test trial rank order and each template. We selected the 

stimulus with the highest correlation as the decoder output. 

 

Space-by-time module structure  

The temporal modules extracted by space-by-time NMF from the neural responses to flashed 

natural images is shown in Figure 2.9A. They consist of two short duration modules centered 

at 140 ms and 160 ms and spanning ~50 ms. These describe the differences in response 

latencies of neurons in the dataset. The third module spans the 140 ms of the sustained 

response. Thus, space-by-time NMF describes the population activity of retinal ganglion cells 

natural images using relatively coarse time scale at the onset and a rate based modulation in 

the sustained response.   

Figure 2.9B shows the eight spatial modules extracted by the algorithm. Each module is 

mapped onto the receptive fields of the respective cells in Figure 2.9C. The same weighting of 

each cell in the module in Figure 2.9B is also used in Figure 2.9C. This shows that the spatial 

modules appear to be composed of neurons that have nearby receptive fields, suggesting that 

similar firing profiles across time arise because nearby neurons receive more common 

stimulation from the natural images and have higher connectivity  (Masland, 2012).  

When full field gratings were flashed with different spatial phases, the first spike latency of 

neural responses depended on the spatial phase. This effect is visible in the three 

representative retinal ganglion cell responses shown in Figure 2.10A. This phase-dependence 

of latency is revealed even more clearly in Figure 2.10B, in which first-spike latencies of 

these neurons are shown in different colors for different grating phases. Figure 2.10C shows 

the temporal modules we obtained by applying space-by-time NMF. There is a clear relation 

between these modules and the spike latencies shown in Figure 2.10B. Temporal modules 

have their peaks at time points that corresponds very well with the first spike latencies of the 

neurons, suggesting that these modules describe latency differences and are suited to describe 

differences in responses to different stimuli. 
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Figure 2.9: Analysis of neural responses of 49 retinal ganglion cells for  flashed 

natural images. A: Responses of four example neurons to four natural images. B: 

Temporal and spatial modules extracted from space-by-time NMF. C: The composition of 

neurons in each spatial module depicted in the receptive field of each neuron where the 

weights of each neuron are set to the same values as in B. E: The decoding performance. 
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Figure 2.10: Analysis of neural responses of 54 retinal ganglion cells for full -

field gratings.A: Responses of three example neurons to full field grating with six spatial 

phases. Each column shows the responses of the respective neuron to different spatial phases 

of the grating (left) B: The first spike latencies of three representative neurons. Trials are 

sorted for each neuron individually and only the period 100 - 200 ms is shown for clarity. C: 

Temporal modules extracted by space-by-time NMF for retinal ganglion cell responses to 

natural images. D: Decoding performance. (***: p < 0.001; two-tailed t-test.  Error bars 

indicate s.e.m.) 
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Figure 2.11: Analysis of neural responses to shifted natural images.  A: The 

receptive fields of two representative neurons are shown in red on two images used (left) the 

raster responses of the neurons (right) showing only 0 - 300 ms of the response. The numbers 

in the ellipse denote the directions from the center of the ellipse in which the image was 

shifted. The responses of the neurons for these shifts are shown in different colours on the 

raster plot. B - D: Comparison of decoding performance when considering full information in 

space and time in all spikes (space and time), when considering only information in all spikes 

in the spatial dimension (space only) and when the responses of each trial contains the first 

spike of each neurons (Latency-code). The performance of decoding image ID and image 

position is shown in B. C shows the performance of decoding image ID for each position, 

averaged over positions while D shows the performance of decoding image position for each 

image id, averaged over images  (***p<0.001; two-tailed t-test. Error bars indicate s.e.m.) 

 

We found that both signal and noise correlations were positive and significantly larger for 

within-modules pairs of neurons than for across-modules pairs of neurons (one-tailed t-test, p 

< 0.001). The stronger signal and noise correlations in the “within modules” group indicate 

that spatial NMF modules represent ensembles of neurons that tend to fire together. 
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Contribution of space and time dimensions to stimulus discriminability 

Using static images flashed on to the retina, we studied how neurons in the retina code image 

detail. We flashed the static images onto the retina for 200 ms after a 800 ms period of 

uniform gray screen. Suddenly flashing these images is an experimental paradigm often used 

to assess how the retina processes new visual information after a saccade or head movement 

(Gollisch and Meister, 2008). The spatial and temporal patterns found from the population 

activity in the retinal ganglion cells have near perfect discrimination of natural images as 

shown in Figure 2.9C. The activity within cells forming the spatial dimension had a 

performance that is only slightly, but significantly, lower (two-tailed t-test, p < 0.05). 

However, eliminating the spatial dimension generates a large decrease in the performance. 

indicating the importance of the spatial organization to code images in retinal ganglion cells. 

However, the brain many not rely only on the spatial dimension for stimulus discrimination. 

We performed two further analyses to identify whether a timing related code could also 

represent stimuli.  

First, we computed the information carried by the first-spike latency of each neuron in 

response to the images. We removed all spikes except the first spike of each neuron in each 

trial and applied space-by-time NMF. For better comparison with the performance we 

obtained when using the full information in space and time, we used the same number of 

spatial and temporal modules that gave the optimal performance for the full dataset. As 

shown in Figure 2.9C, we found that decoding performance in the latency-code is very close 

to the performances when using information in both space-and-time and space-only, 

indicating that, at the population level almost all information is indeed redundantly carried by 

both neuron identity and first-spike latency (5%± 0.3% drop in performance compared to 

when using space-by-time information). 

We then decoded the first-spike latency information using a rank-order decoder, which 

evaluates relative differences of first spike latencies in the population (Johansson and 

Birznieks, 2004; Saal et al., 2009; Panzeri and Diamond, 2010). Rank-order decoding led to a 

slightly higher decoding performance than that obtained with space-by-time NMF (94% vs. 

91%, p < 0.05), suggesting that our approach is competitive with current methods. The 

information in first-spike latencies could be decoded by a downstream neural system that 

does not have independent knowledge of the stimulus time. 

We tested the capability of space-by-time NMF to detect a strong impact of timing by using 

full-field gratings with varying spatial phases that is known to exhibit very strong timing 

dependent information in retinal ganglion cell responses in the form of first spike latencies 

and relative timing (Gollisch and Meister, 2008). We then applied space-by-time NMF and 

the permutation procedure in order to understand the relative importance of space and time in 

the population coding of spatial phase of images. Consistent with the visual inspection of the 

responses, this analysis showed a strong decrease in decoding (performance drop of 42% ± 

1.37%, p < 0.001, Figure 2.10D) when destroying spike timing information. This means that 

the retinal population code of spatial phase contains crucial information on spike timing that 

cannot possibly be recovered from time-average firing rates only. Visual inspection of 
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responses, as well as previous analysis of small populations (Gollisch and Meister, 2008) 

suggests that first-spike latency is a key component of this population code. To test this 

hypothesis at the larger population level of tens of cells, we applied NMF and estimated the 

decoding performance on spike trains that contained only the first spike of each neuron. We 

found that first latencies carried almost all information contained in the full spike trains (27% 

vs. 29%, p < 0.05), demonstrating that the information carried by later spikes about image 

spatial phase is redundant to that already carried by first spikes. Decoding the first-spike 

latency information using a rank-order decoder led to a slightly lower decoding performance 

than that obtained with space-by-time NMF (25% vs. 27%, p < 0.001), demonstrating again 

that our approach is competitive with current methods and that information in first-spike 

latencies could be decoded by a downstream neural system that does not have independent 

knowledge of the stimulus time. 

The importance of spike timing for coding small image differences was tested in the above 

and (to our knowledge) in previous experiments only using artificial grating stimuli. To 

verify this hypothesis in a natural image context, we performed a new experiment in which 

we simultaneously recorded RGC responses for a set of 81 natural images that contained both 

coarse and fine differences in within-RF image features. We first decoded which of these 81 

stimuli was being presented. When decoding the stimulus identity, the discrimination 

between both coarse image features (differences between different images) and fine image 

features (differences between shifts of the same image) is required. As shown in Figure 2.11, 

we found that neglecting spike times and using only the spatial dimension led to a large loss 

of decoding performance (decoding that used only information in the spatial dimension was 

16% less accurate than space-by-time decoding, p < 0.001). To investigate whether spike 

times and spike rates contributed differentially to fine and coarse image coding, we separated 

out their relative contribution to coarse and fine image coding. We first considered a set of 

nine stimuli, obtained by grouping all nine shifts of an image into a single stimulus class. 

Decoding these stimuli required the discrimination between image IDs (using only coarse 

image differences). In full agreement with the previous analysis obtained with the set of 60 

different natural images, we found that this “coarse image decoding” had high performance 

when only using firing rates and not considering spike times(the decrease in the decoding 

performance when using only information in the spatial dimension was only 1% compared to 

when using the full information in space and time, p < 0.001, Figure 2.11C). Then we decoded 

fine image features using a set of nine stimuli, in which we used the nine shifts of a single 

image. This required identification of small shifts in the same image (using only fine image 

differences). In this case, and in agreement with the grating results, we found (Figure 2.11D) 

that this “fine image decoding” required spike timing: neglecting spike times led to a large 

loss of decoding performance (decoding using only information in the spatial dimension 

resulted in a 14% decrease in decoding compared to when using the full information, p < 

0.001). We note that in all cases the latency code (evaluated with space-by-time NMF) 

carried a large fraction of the total information and was larger than spike count information 

for all decoding needing fine discrimination (Figure 2.11). 
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These results confirm that at the population level spike timing and the first spike latency is an 

important component used by retinal cells to code fine spatial differences in image features. 
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2.6 Discussion 

We identified globally visible and recurring spatial and temporal patterns in three different 

large-scale neural datasets using NMF, a dimension reduction method that has been 

successfully used to analyze large-scale datasets in many domains, but has very little 

application in electrophysiological data to date. We investigated the ability of these 

concurrent spatial and temporal patterns to discriminate stimuli in comparison to what can be 

achieved when using either the spatial or the temporal dimensions alone.  

In all three sensory datasets we analyzed; activity of auditory cortical neurons in response to 

long tones and clicks, the activity of somatosensory neurons to whisker deflections and the 

activity of retinal ganglion cells to natural images, NMF extracted physiologically 

meaningful patterns in a data driven manner. We compared two variants of NMF to study 

population responses concurrently in space and time: spatiotemporal NMF and space-by-time 

NMF. As observed for neural activity in the neurons from barrel-columns to whisker 

stimulations, space-by-time NMF gave higher performance in decoding stimuli compared to 

space-by-time NMF.  

We analyzed how information in spatial and temporal dimensions is used by the three neural 

populations to code stimuli. When we analyzed the responses of retinal ganglion cells to 

flashed images, we found that  coarse image features could be discriminated using a rate code 

while discriminating fine features required the availability of timing information above that 

available in the rate code. The temporal dimension and the reliability of onset responses were 

also important for whisker location coding by somatosensory neurons. We further describe 

the analysis of the somatosensory dataset in chapter 3 and discuss these results in detail in 

chapter 4.  

We noted that the organization of spatial modules identified using responses to long tones 

was not completely in line with our expectations drawn from the tonotopy. If the activity of 

auditory neurons to long tones followed the tonotopical structure, we would expect the spatial 

modules to be composed of neurons localized between adjacent tetrodes. However, the spatial 

modules were sparser than expected based on the tonotopy. Neurons with high firing rates 

were allocated high weights and separated into individual spatial modules. The decoding 

performance continued to increase when the number of spatial modules increased. There are 

several properties in the tone dataset that could lead to these results  

First, there is a relatively high degree of firing rate variability between neurons in the 

population (mean firing rate of 5.2   4.48 spikes/s). Many applications that use update rules 

based on the Euclidean distance preprocess the data to minimize the variance in the dataset 

(Cichocki et al., 2009). Separating high firing neurons into individual spatial modules implies 

that the firing rate distribution of the dataset could potentially be a factor that may bias the 

algorithm. Such biasness towards high firing neurons is observed in other dimension 

reduction methods such as principal component analysis, where the responses are often z-

scored in a preprocessing step (Cunningham and Byron, 2014). 
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Second, all NMF algorithms are iterative algorithms. Typically, the working matrices are 

initialized using random values and updated in each iteration using update rules that are 

designed to minimize a specific error measure. The space-by-time NMF algorithm we 

implemented uses the Euclidean distance (the squared error between the original dataset and 

the reconstructed dataset) to iteratively optimize the working matrices. According to the 

probabilistic interpretation of NMF (chapter 3, (Févotte and Cemgil, 2009), NMF update 

rules derived using the Euclidean distance have the implicit assumption that the variability in 

the data is Gaussian distributed. The neural data is more likely to have Poisson distributed 

variability (Koch, 2004) and update rules accounting for other noise models may be more 

appropriate for analyzing spike counts.  

We observed a change in the synchronization level during the experiment, likely due to  

urethane anesthesia used in the experiment (Clement et al., 2008). The structure of the signal 

and noise correlations changed between the two states (Marguet and Harris, 2011; Pachitariu 

et al., 2015) and differentially between pairs of neurons recorded from different tetrodes. As 

detailed in Appendix A2, the relationship between the noise correlations and the geometric 

mean firing rates was also differentially modulated in pairs of neurons recorded from anterior 

tetrodes compared to those recorded from posterior tetrodes.   

In summary, we suggest that the following could be the potential causes that gave rise to the 

high degree of sparsity we observed in spatial modules when analyzing responses to long 

tones; a) update rules of the space-by-time NMF being developed to suit datasets with 

Gaussian distributed variability whereas neural data often show sub-Poisson, Poisson or 

supra-Poisson variability, b) the sensitivity of the current update rules to neurons with high 

firing rates, c) the change in the firing characteristics and the correlation structure between 

neurons during the change in the synchronization state, and d) the firing reliability of neurons 

across tone frequencies.  

In order to understand and improve the mechanisms with which NMF extracts a low 

dimensional structure from neural responses, we changed the update rules of the space-by-

time NMF to suit sub-Poisson, Poisson and supra-Poisson variability present in neural 

responses. We further carried out statistical simulations as well as simulations using a 

conductance-based integrated-and-fire network to understand the influence of the properties 

of the population responses on the performance of space-by-time NMF. The details of this 

work are described in chapter 3.   
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Chapter 3: Extension of space-by-time NMF to model 

variability in neural spike trains 
 

3.1 Abstract 

In the previous chapter, we adapted two variants of NMF, spatiotemporal NMF and space-by-

time NMF (originally proposed as sample-based non-negative matrix tri-factorization 

(sNM3F) (Delis et al., 2014)) to analyze large neural datasets concurrently in space and time. 

As discussed in detail in chapter 2, we found that NMF is able to extract a low-dimensional 

representation of a neural dataset that is intuitive and easy to understand, is representative of 

physiologically relevant details and can naturally account for certain properties such as those 

of onset responses. The space-by-time NMF model we introduced assumes that the spike 

counts are Gaussian distributed. In this chapter we extend it to model sub-Poisson, Poisson 

and supra-Poisson variability observed in experimental recordings from neural populations. 

This chapter is organized as follows. We begin with a brief introduction followed by the 

details of the process through which we obtained the new algorithms. Then we report how we 

validated our new algorithms methodologically through statistical simulations, network 

simulation and by analyzing the auditory and somatosensory datasets. We report the insight 

we gained using our new algorithms and conclude the chapter with a discussion of the 

implications of our findings.  

 

3.2 Introduction 

When using any model to analyze data, a primary requirement is that it should be suited to 

account for the statistical properties of the dataset. Or in other words, the structure of the 

variability in the data should be appropriately captured by the model’s assumptions. NMF is 

an iterative algorithm that typically initializes the working matrices to random values and 

iteratively optimizes them using a set of update rules. These update rules are designed to 

minimize a dissimilarity measure (also referred to as a distance, divergence or cost function) 

between the reconstructed dataset and the original dataset. The choice of the dissimilarity 

measure is based upon explicit assumptions about the nature of the noise in the data. When 

the applied dissimilarity measure optimally matches the noise distribution in the data, NMF 

can be formulated in a probabilistic framework as a composite generative model of the data 

(Lee and Seung, 1999; Févotte and Cemgil, 2009). In this formulation, an item in the original 

dataset is generated by adding noise to the reconstructed element using the probability 

distribution that describes the variability in the data. Furthermore, in this setting, minimizing 

the respective dissimilarity measure through NMF is equivalent to maximum likelihood 

estimation under the corresponding composite generative noise model (Févotte & Cemgil, 

2009). Thus, NMF algorithms can integrate knowledge about the variability in the data into 

the factorization process through the update rules used in each iteration.  
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The initial space-by-time NMF model that we introduced and used in chapter 2 is based on a 

Gaussian generative model. This model assumes that the trial-to-trial variability in spike 

counts is distributed according to a Gaussian distribution that has a mean equal to the 

reconstructed spike count. However, spike counts are discrete quantities, and their variability 

is related to the mean spike counts as typically described using the Fano factor, defined as the 

ratio between the variance of the spike count to the mean spike count. Fano factors observed 

in spike counts of neurons span a continuum ranging from ~0.1 in retinal ganglion cells (Kara 

et al., 2000) to ~2.9 for cortical neurons (Oram et al., 1999). Poisson distribution is closely 

associated with modeling neural variability. This is because it has a variance to mean ratio of 

one and thus could be used to model spike counts that have a Fano factor of one (Figure 3.1). 

Spike counts that have a Fano factor of less than one, i.e. more reliable, are described as sub-

Poisson while those with a Fano factor of greater than one are described as being supra-

Poisson. The Fano factor can dynamically change during a trial, a phenomena often observed 

at the stimulus onset (Churchland et al., 2010). Given the range of heterogeneity present in 

the neural data, the non-negative discrete nature of the spike counts, and considering the 

sparsity we observed in the spatial modules corresponding to population responses for long 

tones, we wondered whether the ability of the space-by-time NMF to represent neural 

population responses could be improved by explicitly incorporating the knowledge about the 

neural variability into the update process. Thus, we optimized space-by-time NMF to model 

the trial-to-trial variability in neural data. We used Bregman divergences as the dissimilarity 

measure and utilized the generalization of update rules proposed by (Dhillon & Sra, 2005; 

Sra & Dhillon, 2006). We evaluated the new update rules with a range of simulations using 

spike counts generated using statistical models, a conductance-based integrate and fire 

network and applied them to somatosensory and auditory data that we analyzed in chapter 2. 

This chapter is organized as follows. It begins with a short introduction to the probabilistic 

formulation of NMF. Then we detail how space-by-time NMF was extended to model neural 

variability. This is followed by the results we obtained from a detailed verification process. 

Finally, we discuss the findings from the new update rules and their implications when using 

space-by-time NMF as an analysis method. 

 

3.3 Extension of space-by-time NMF 

Before detailing how we modified the space-by-time NMF to model neural variability we 

will lay the ground for our work by briefly detailing the probabilistic formulation of NMF. 

We start with an introduction to the dissimilarity measures used in NMF in section 3.3.1 and 

describe how NMF could be interpreted as a generative model under the optimal noise 

distribution in section 3.3.2. We identify noise distributions to model neural variability in 

section 3.3.3. In section 3.3.4, we identify optimal Bregman divergences corresponding to 

these noise distributions. Finally, we derive the new update rules for space-by-time NMF in 

section 3.3.5.  

 



72 

 

 

Figure 3.1: Illustration of space-by-time NMF under different noise models.  

Variability in neural spike counts is described as sub-Poisson, Poisson or supra-Poisson. 

Space-by-time update rules model these using different update rules. 

 

 

3.3.1 Dissimilarity measures used in NMF 

NMF is an iterative algorithm. At the start of the iterative process, the working matrices are 

initialized with uniformly distributed random values or values optimized using a method such 

as singular value decomposition (Boutsidis and Gallopoulos, 2008), spherical k-mean 

clustering (Wild et al., 2004) among others (Xue et al., 2008; Janecek and Tan, 2011). During 

each iteration the working matrices are updated to minimize a dissimilarity measure that 

specifies the difference between the original dataset R  and the reconstructed dataset R̂ . 

Typically, this dissimilarity measure is individually evaluated for each spike count ,t nr  of 

neuron n  in time bin t  in the dataset under the assumption that the total dissimilarity is 

separable.  

    , ,

1 1

ˆ ˆ, ,
n T

t n t n

n t

D d r r
 

R R  (3.1) 
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The most commonly used dissimilarity measure is the Euclidean distance.  

    
2

, ,

1 1

ˆ ˆ,
n T

E t n t n

n t

D r r
 

 R R  (3.2) 

Generalized Kullback-Leibler divergence (I-divergence) is the optimal dissimilarity measure 

when the data is Poisson distributed (Févotte and Cemgil, 2009) such as pixelwise noise in 

image datasets (Lee and Seung, 1999). 

   ,

, , ,

1 1 ,

ˆ ˆ, log
ˆ

N T
t n

KL t n t n t n

n t t n

r
D r r r

r 

  R R  (3.3) 

Itakura-Saito (IS) divergence is used to analyze audio power spectrums (Févotte et al., 2009). 

   , ,

1 1 , ,

ˆ, log 1
ˆ ˆ

N T
t n t n

IS

n t t n t n

r r
D

r r 

  R R  (3.4) 

Many families of divergences such as Csiszár f-divergences, Bregman divergences and Beta-

divergences have been studied as dissimilarity measures for NMF under a variety of 

application settings. A comprehensive review of the properties of these measures are given in 

(Cichocki et al., 2009). We used Bregman divergences for the extension of space-by-time 

NMF to model neural variability. A short introduction to Bregman divergences is given in 

section 3.2.4. 

 

3.3.2 NMF as a generative model 

As summarized in  (Févotte and Cemgil, 2009), NMF is formulated in a probabilistic setting 

when using certain noise models. Typically, each data point 
tnr  is modeled as ,tn k tn

k

r s , 

where ,k tns  is a hidden source identified by NMF such that  , , |k tn k tn ks p s   where ND  is 

the underlying noise distribution and  :, ,:,k k kw h . For noise distributions which are closed 

under summation, this results in a composite generative noise model parameterized by the 

reconstruction , ,n k k t

k

w h . When the appropriate dissimilarity measure is chosen, the 

maximum likelihood estimation of the composite model parameter , ,n k k t

k

w h  under the noise 

model is equivalent to minimizing the respective NMF divergence, up to a multiplicative 

factor and an additive constant.  

For example, performing NMF using the Euclidean distance and the generalized Kullback-

Leibler divergence is equivalent to maximum likelihood estimation of the mean of Gaussian 

and Poisson distributions respectively (Cemgil, 2009; Févotte and Cemgil, 2009). Performing 

NMF using Itakura-Saito divergence corresponds to either the maximum likelihood 

estimation of the variance in a proper complex Gaussian distribution or the maximum 
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likelihood estimation of the intensity under a multiplicative Gamma distribution (Févotte et 

al., 2009). We extended space-by-time NMF to model neural variability by choosing 

appropriate noise distributions to model neural variability and choosing the optimal 

divergences for these noise distributions. 

 

3.3.3 Noise models for neural variability 

Neural variability is typically described as sub-Poisson, Poisson and supra-Poisson. A 

graphical illustration of these regimes is given in Figure 3.1.  

When Fano factor is one, spike counts are often modeled using the Poisson distribution. 

  
, ,

,

, , ,

,

;
!

t n t nr

t n

t n t n t n

t n

e
r p r

r








  (3.5) 

where   is the mean spike count. 

We model supra-Poisson variability using the negative binomial distribution  (Onken et al., 

2009; Scott and Pillow, 2012)  parameterized as a generalized Poisson distribution. 

  
 
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





  
  

 
 (3.6) 

v  is an additional parameter of the model that controls the dispersion of the spike counts. The 

dispersion of the spike counts increases with the decrease in v . The dispersion decreases and 

approaches Poisson variability when v  . 

We model sub-Poisson variability using the binomial distribution (DeWeese et al., 2003). 

  
, ,

, ,

, , ,

,

; ,

t n t nr n r

t n t n

t n t n t n

t n

n n
r p r n

r n n

 



    

     
    

 (3.7) 

n  is an additional parameter of the model that controls the regularity of the spike counts. 

Spike counts become more regular with the decrease in n . They lose regularity and approach 

Poisson variability when n  . 

For negative binomial and binomial models, we assume that the model parameter is the same 

for all neurons and time bins.  

Our choice of distributions stems from the following reasons. First, they have already been 

used to model spike count variability in the literature. Second, all are discrete distributions, 

which suit the discrete nature of spike counts. Finally, both binomial and negative binomial 

distributions converge to Poisson distribution as the model parameters approach infinity. 

Both the negative binomial and the binomial distribution can therefore be understood as 

generalizations of the Poisson distribution. 
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We proceeded to obtain the optimal update rules for each of the distributions using 

appropriate dissimilarity measures. We used dissimilarity measures based on the family of 

Bregman divergences. 

 

3.3.4 Bregman divergences to model neural variability 

Bregman divergences (Bregman, 1967) is a class of directed dissimilarity measures 

introduced in the context of convex optimization. Each Bregman divergence is associated 

with a continuously differentiable strictly convex function defined on a convex set. If 

:         S    is a strictly convex function that has a continuous first derivative, the 

corresponding Bregman divergence :     int( )   D S S    is  

         , , , , , , ,
ˆ ˆ ˆ ˆ,t n n t n t n t n t n t n tD r r r r r r r       (3.8) 

where int( )S  is the interior of the convex set S  and  n̂tr  represents the gradient of   

evaluated at 
n̂tr  (Dhillon and Sra, 2005; Sra and Dhillon, 2006). Bregman divergences are 

non-negative and are zero if and only if ˆ
nt ntr r . There is a unique Bregman divergence for 

every regular exponential family (Banerjee et al., 2005). Both Euclidean distance and 

generalized Kullback-Leibler divergence could be obtained as special cases of Bregman 

divergences by selecting the appropriate convex functions.  Furthermore, the sum of two 

Bregman divergences is also a Bregman divergence (Sra and Dhillon, 2006). This property is 

used to specify the total Bregman divergence of the dataset, i.e. the total dissimilarity, in 

terms of Bregman divergences of each data element. 

      , .

,

ˆ ˆ ˆ, , ,s s s s

t n t n

s s t n

D D D    R R R R r r  (3.9) 

We identified strictly convex functions corresponding to Poisson, binomial and negative 

binomial distributions which result in Bregman divergences such that minimizing the 

respective Bregman divergence is equivalent to the maximum likelihood estimation of the 

mean of the noise distribution.  

For the Poisson distribution,  z  is already known (Dhillon and Sra, 2005). 

   logpoiss z z z   (3.10) 

For the binomial distribution, 

      log logbin z z z n z n z      (3.11) 

Here, n  is the model parameter that describes the regularity of the spike counts and we 

assume that it is the same for all neurons and time bins. Spike counts become increasingly 

regular with the decrease in n .  



76 

 

We find that    ( ) logf x n z n z    has a vertical asymptote at z n and is thus 

undefined for z n . In other words, it is not possible to decrease n  below the maximum 

spike count present in the data. This posed a practical constraint on increasing the regularity 

that the update rules could model. Thus to make  Bin z  continuous for z  , we used an 

extension function    exp 1 2 2 3h z z n z n      for z n .  h z  was designed to ensure 

the continuity of Bregman divergence and update rules for binomial distribution at 1z n  . 

We note that there are other functions which could be used instead of  h z  that would also 

satisfy these criteria. Thus the modified convex function for the binomial distribution is, 

  
   

 

log log                      1

log exp 1 2 2 3      1
Bin

z z n z n z z n
z

z z z n z n z n


    
 

       
 (3.12) 

Next, for the negative binomial distribution, 

    log   log( )NBin z z z z v z v      (3.13) 

Using these functions, we obtained the following Bregman divergences corresponding to 

each noise model. 
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When noise in the data is Poisson distributed, minimizing the Bregman divergence in 

equation 3.15 is equivalent to the maximum likelihood estimation of the mean of the 

respective noise model. This has already been proven for the Poisson distribution (Cemgil, 

2009). We proved that the same also hold for the original binomial distribution and the 

negative binomial distribution. These proofs are given in Appendix 1. 

 

3.3.5 Update rules for space-by-time NMF that model neural variability 

Space-by-time NMF updates the module matrices 
spaW and 

temW using  two-factor 

multiplicative update rules as described in Algorithm 1 of chapter 2. (Dhillon and Sra, 2005). 

derived the following generalization framework, which we use to derive the update rules for 

module matrices. For a two-factor decomposition R XY , the gradients of the Bregman 

divergence  ,D R XY  with respect to X  and Y  are, 

        TD   X R, XY XY XY R Y  (3.17) 

       TD   Y R, XY X XY XY R  (3.18) 

where ( )z  is the second derivative of  z  and  denotes the Hadamard product 

(element-wise multiplication). From Karush-Khun-Tucker (KKT) conditions,  

  D X R, XY Λ  (3.19) 

  D Y R, XY Ω  (3.20) 

 , , , , 0t k t k k n k nx y    (3.21) 

where 0Λ  and 0Ω  are Lagrange multiplier matrices. Then Equations 3.17, 3.19  and  3.21 

give,      , , ,
,

0T

t k t k t k
t k
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Similarly, Equations 3.18, 3.20 and 3.21 give      , , ,
,
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The two factor NMF update rule for Poisson distribution is already available (Lee and Seung, 

1999), which we use for module matrices in space-by-time NMF update rules corresponding 

to the Poisson distribution. We derived the update rules for module matrices for binomial and 

negative binomial distributions using Equations 3.22 and 3.23 and the functions 
 Bin z

 and

 NBin z
  given in Equations 3.12 and 3.13.  

Space-by-time NMF updates the coefficient matrix 
s

H  for each trial s using tri-factorization 

detailed in Algorithm 1 of chapter 2. We use the multi-factor update rules proposed by 

(Dhillon and Sra, 2005) to derive the update rules for coefficient matrix. For tri-factor 

decomposition 
s s

tem spaR W H W , the update rule for 
s

H is derived in a similar way as two 

factor decomposition by minimizing the Bregman divergence  s s

tem spaD R , W H W  under 

the constraint 0s H . This results in the following update rule for the coefficient matrix. 
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(3.24) 

We uses this to derive update rules for the coefficient matrix update for Poisson, binomial 

and negative binomial distributions. All update rules for updating matrices in our neww 

space-by-time NMF algorithms are given in Table 3.1. A generalized version of the complete 

space-by-time NMF algorithm is detailed in Algorithm 2. 

In the following sections we refer to the existing update rules based on the Gaussian noise 

model as Gaussian update rules. Similarly, we refer to the new update rules as Poisson update 

rules, binomial update rules and negative binomial update rules. 
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Algorithm 2: Extended space-by-time NMF algorithm 

Initialize 
1

tem W 0 ,        2'
1 1 1 1

1       S   
  

H H H H 0 , and 
1 0spa W . 

Iterate 

1. Given H  and 
k

temW , update 
k

spaW   

 a. Formulate    ' ' 
k k

k

temG W H  
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4. Estimate the dissimilarity kE  between dataset R  and the total reconstruction 
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Here ( )z  is the second derivative of ( )z  and  denotes the Hadamard product (element-

wise multiplication). 
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Table 3.1: Update rules derived for Poisson, binomial and negative binomial distributions.Update rules for Gaussian distribution 

are also shown for comparison. Binomial and negative binomial update rules include model parameters n  and v  that specify the dispersion 

of the spike counts. Matrices use the same notation as in Algorithm 2. [1] is a matrix of ones with the respective dimensionality.  denotes 

Hadamard product (element-wise multiplication). All divisions are element-wise divisions. 
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3.4  Performance evaluation  

We verified the performance of our new algorithms methodically. We started by generating 

spike counts from statistical models and generated idealistic datasets. Then we proceeded to 

generate more realistic simulations using a conductance based integrate-and-fire network. 

Finally, we applied the new algorithms to experimental data from the auditory cortex, 

recorded in response to long tones and click sequences, which were analyzed using Gaussian 

update rules in chapter 2 section 2.5.1 and chapter 2 section 2.5.2.   

 

3.4.1 Statistical simulations 

Now we explain in detail how we evaluated the performance of the new update rules using 

statistical simulations. First, we describe how we generated the dataset we used for the 

evaluation. Then we describe different ways we used to estimate the model parameters for 

binomial and negative binomial models. Finally we present the results of the statistical 

simulations. 

  

Artificial dataset generation 

We began evaluating our new algorithms using idealistic artificial datasets that had a 

predefined low dimensional modularity, but were representative of neural responses. We 

created these datasets using the low-dimensional structure present in the responses recorded 

from retinal ganglion cells to natural images. The details of the retinal ganglion cell dataset 

we used are fully described in section 2.5.3.  

Figure 3.2A shows an illustration that describes the generation of the datasets. We binned the 

spikes into 100 ms time bins. We generated 25 artificial datasets from each recording by 

sampling at random responses of 30 neurons to 30 images over 30 trials and extracted the 

underlying module structure in the dataset using Gaussian update rules. Each dataset was 

reconstructed using the mean activation coefficient for the trials. Thus, this reconstruction is 

free from trial-to-trial variability. Trial-to-trial variability was added using two methods. In 

the first approach, we sampled spike counts directly from the respective probability 

distribution. In the second approach, we generated spike counts from spike trains that had 

inter-spike intervals (ISIs) distributed according to a gamma process. ISIs of cortical spike 

trains are often modeled using gamma processes (Dayan and Abbott, 2001; Maimon and 

Assad, 2009). An ISI x  following a gamma process is given by,  
1

;  ,
Γ( )

k
x

k

x
p x k e

k







  

where k  is the shape parameter and   is the scale parameter of the distribution. The shape 

parameter controls the level of dispersion in the spike counts. Poisson variability is modeled 

by setting k  to one, while sub-Poisson and supra-Poisson variability are obtained using 1k   

and 1k   respectively. This second series of datasets that had gamma distributed ISIs were 

closer to spike trains recorded from real cortical neurons, while offering the ability to control 

the dispersion in the spike train. The shape parameter was varied between 1.5 - 20 to generate 

sub-Poisson spike counts and in the range 0.1 - 0.9 for supra-Poisson spike counts. 
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Figure 3.2: Performance evaluation of new update rules using statistical 

simulations. A: Generation of idealistic datasets using the neural responses of retinal 

ganglion cells to natural images. B: Decoding performance of space-by-time NMF update 

rules when the trial-to-trial variability is sub-Poisson (left), Poisson (middle) and supra-

Poisson (right). The top row shows the decoding performance when the noise was generated 

by sampling from the respective probability distribution. The bottom row shows the decoding 

performance when spike counts were generated using spike trains that had gamma distributed 

inter-spike intervals and the variability of spike counts was changed using the shape 

parameter of the gamma distribution. (shadings and the error bars show s.e.m.)  
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Parameter estimation 

When applying binomial and negative binomial rules, an additional model parameters   or v  

needs to be specified as an input to the respective space-by-time NMF algorithm. When the 

data is directly sampled from the corresponding probability distribution, the ground truth 

value of the model parameter is known. However, when spike counts are generated from 

spike trains with Gamma distributed ISIs and for emperical data, we require a method to 

estimate them from the data. We investigated several methods of estimation and verified the 

performance of the respective update rule for each method.  

In the first approach, we estimated n  and v  based on the average Fano factor of the data 

matrix avgFF  and the average mean spike count of the full data matrix avg .  

 
1

avg

avg

n
FF





 (3.25) 

 
1

avg

avg

v
FF





 (3.26) 

 

We calculated the mean Fano factor for each dataset by first estimating the Fano factor for 

each neuron, time bin and stimulus and then calculating the average across them. The mean 

spike count was obtained in a similar way.  

In the second approach, we ran a full parameter scan for each of the parameters in binomial 

and negative binomial rules. We selected the parameter value as the value that yielded the 

best decoding performance. Finally, for binomial rules, we used the maximum spike count in 

the data as the value of   (since theoretically the spike count cannot exceed   under the 

binomial model). 

 

Decoding  

We aimed to evaluate whether optimizing space-by-time NMF to model the underlying 

variability would yield a low-dimensional structure to improve stimulus encoding. To achieve 

this, we performed a cross-validated decoding analysis using linear discriminant analysis 

(LDA). The decoding procedure was implemented as described in section 2.5.1. 
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Results 

We generated artificial datasets based on the low-dimensional structure in the responses of 

retinal ganglion cells for natural images. We varied the trial-to-trial variability in these 

datasets using two methods; first by directly sampling the variability from the underlying 

noise distribution and second using spike counts generated from spike trains that had gamma 

distributed ISIs. We used three methods to estimate the model parameters in binomial and 

negative binomial rules when spike counts were generated from spike trains; 1) by using the 

average Fano factor and the average spike count across each neuron, time bin and stimulus, 

2) using a parameter scan across a range of parameters, and 3) using the maximum spike 

count in the dataset as the model parameter in the binomial distribution. We found that the 

first method yielded poor results (not shown). As shown in Figure 3.2, the performance of 

binomial rules when the maximum spike count was used as the model parameter was 

comparable to the performance obtained from the parameter scan.   

We found that the decoding performance was qualitatively very similar when we sampled the 

variability in the datasets directly from the probability distribution as well as when we 

controlled it using ISIs (Figure 3.2B). In general, the performance decreased when the trial-

to-trial variability changed from sub-Poisson to supra-Poisson. The update rule corresponding 

to the underlying data distribution gave a higher performance compared to the existing 

Gaussian update rules in all cases except when the spike counts were directly sampled from a 

Poisson distribution and when the data was sub-Poisson and had gamma distributed inter-

spike-intervals (Wilcoxon rank sum test, p<0.01). This performance advantage was high 

when the data was supra-Poisson. This indicates that there is a gain in stimulus discriminating 

capability when using the optimal space-by-time NMF update rules.  

As the Fano factor decreased and the data became reliable, the performance of the Gaussian 

rules approached and was equal to the performance of binomial and Poisson rules suggesting 

that when the variability in the spike counts is low, the exact noise model does not have a 

large impact on the performance of space-by-time rules. When the variability in the data was 

sub-Poisson, the performance of the negative binomial rules was always lower than that of 

the other rules (Wilcoxon rank sum test, p<0.01). This was expected because we set the 

model parameter v  in negative binomial rules to one (which would normally indicate high 

variability in the data) as a control condition. Finally, we applied the update rules on real 

datasets that we used to generate the artificial datasets (Figure 3.2C). In these datasets, the 

performance of Gaussian rules was similar to that of the binomial rules (Wilcoxon rank sum 

test, p<0.01). Since the mean Fano factor in these datasets were 0.78 0.02  and 0.71 0.03

, this result confirms our findings from the simulations; when the data had higher reliability, 

the performance of the Gaussian rules was similar to Poisson update rules. 

Interestingly, Poisson rules had similar performance for sub-Poisson variability as when 

using binomial rules. This is important for two reasons. First, Poisson rules have less 

computational complexity. Second, they do not require the evaluation of an extra model 

parameter. Both these reasons lead to less computational time for Poisson rules compared to 

binomial and negative binomial rules.  
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3.4.2 Network simulations 

Next, we used a network of conductance-based integrate-and-fire neurons to investigate the 

performance difference between Gaussian and Poisson rules in detail. We modified the 

network model used in (Mazzoni et al., 2008; Cavallari et al., 2014). This network is able to 

generate a range of experimentally observed modulatory effects between spike rate, local 

field potentials and electroencephalographs (Mazzoni et al., 2008; Mazzoni et al., 2010). We 

used the modified network to simulate responses of auditory cortical neurons to tones.  

A graphical representation of the network is given in Figure 3.3A. It contains 4000 excitatory 

neurons with AMPA like synapses and 1000 inhibitory neurons with GABA like synapses. 

Both types of neurons were modeled as leaky integrate and fire neurons (Tuckwell, 1988) 

similar to our previous work (Mazzoni et al., 2008; Mazzoni et al., 2010; Cavallari et al., 

2014). The sub-threshold dynamics of the membrane potential of the  i
th

 neuron  iV t  is 

modeled as, 

 
 

        , , ,

1
rec rec ext

i

m i leak i AMPA i GABA i AMPA

leak

dV t
V t V I t I t I t

dt g
        (3.27) 

where 
m  is the membrane constant (20 ms and 10 ms for excitatory and inhibitory neurons 

respectively), 
leakV  is the leak membrane potential (set to -70 mV), 

leakg  is the leak membrane 

conductance (25 nS and 20 nS for excitatory and inhibitory neurons respectively) (Brunel and 

Wang, 2003) and  , reci AMPAI t ,  , reci GABAI t  and  , exti AMPAI t  are the synaptic input currents from 

recurrent AMPA, recurrent GABA and external AMPA synapses respectively. The neuron 

discharges a spike when the membrane potential crosses a threshold  
thresholdV , -52 mV. The 

membrane voltage is then set to 
resetV , -59 mV for an absolute refractory period of 2 ms for 

excitatory neurons and 1 ms for inhibitory neurons (Brunel and Wang, 2003). Each of the 

synaptic input currents  , reci AMPAI t ,  , reci GABAI t  and  , exti AMPAI t  are modeled as, 

     syn syn syn synI g s t V t V   (3.28) 

syng  is the conductance of the synapse while synV  is the reversal potential of the synapse. Values of 

these parameters are given in Table 3.1. 

Synaptic kinetics of the post-synaptic neuron receiving a spike discharged at time 
*t  are modeled by 

the function  syns t  for both models using a delayed difference of exponentials given by (Brunel and 

Wang, 2003), 

  
* *

exp expm l l
syn

d r d r

t t t t
s t

  

   

       
        

    

 (3.29) 

l  is the latency of the post-synaptic currents, r  and d  are the rise time and decay times of the 

synapse. These parameters were set to the values given in Table 3.2. 
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Figure 3.3: Conductance-based integrate and fire network simulations.  A: An 

illustration of the network structure. B: Firing rate variation with the number of clustered 

excitatory inputs to a neuron C: An example response generated from the network.  

 

Table 3. 2: Synaptic conductances and reversal potentials.  

Synaptic conductances syng  (nS)  

GABA on inhibitory 2.7 

GABA on excitatory 2 

AMPArecurrent on inhibitory 0.233 

AMPArecurrent on excitatory 0.178 

AMPAexternal on inhibitory 0.3 

AMPAexternal on excitatory 0.234 

 

Synaptic reversal potential synV  (mV) 

VGABA -80 

VAMPA 0 
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Table 3. 3: Synaptic time constants. 

 
r  (ms) 

d  (ms) 
l  (ms) 

GABA 0.25 5 1 

AMPA on inhibitory 0.2 1 1 

AMPA on excitatory 0.4 2 1 

 

 

We formed 40 clusters of 100 excitatory neurons and 25 inhibitory neurons each in the 

original network. These clusters had the following properties: 1) a higher connection 

probability within two neurons in a cluster compared to the average connection probability 

between any two neurons in the network (Song et al., 2005), 2) a higher common external 

input to neurons in the same cluster compared to any neuron in the network (Yoshimura et 

al., 2005; Ko et al., 2011) 3) higher synaptic conductance between neurons in the same 

cluster (Song et al., 2005). The connection probability of neurons within a cluster is 0.4 while 

it is 0.2 on average between any two neurons in the network. We further generated firing rate 

variability between neurons in a cluster (Figure 3.3B) by varying the number of excitatory 

connections from one neuron of the cluster to the remaining neurons in the cluster while 

keeping the average connection probability between neurons in the cluster to 0.4. We 

obtained this variability by sampling the number of within cluster connections for each 

neuron from a truncated exponential distribution (truncated between 50% - 250% of the mean 

number of connections). The conductance of the clustered excitatory-excitatory synapses was 

2.5 times that of unclustered excitatory-excitatory synapses and the conductance of the 

remaining clustered synapses was twice that of the respective unclustered synapses.  

Feed-forward input to the network is provided by 40 external clusters. Each of these clusters 

has connectivity to one of the 40 network clusters. Each clustered neuron receive input from 

50 external neurons randomly selected from a pool of 200 neurons that provide input to that 

particular cluster. All external neurons shared the same firing rate, but generated independent 

Poisson distributed spikes..  

We used this network to simulate responses of A1 neurons to long tones. The spikes of 

individual neurons in the network were asynchronous, but the population firing displayed 

synchronous events (Figure 3.3C). This simulation did not model up-down activity states in 

the dataset we analyzed in section 2.5.1. We generated the stimulus using feed-forward 

thalamic inputs modeled through external excitatory cells to the network without 

implementing a detailed model of the network mechanisms such as co-tuning and lateral 

inhibition (de la Rocha et al., 2008; Levy and Reyes, 2011). Stimuli consisted of 30 long 

tones of 500 ms duration that were equally distributed along the log frequency axis. We 

modeled frequency selectivity of the clusters using Gaussian tuning curves. We varied the 

width of the tuning curves between 0.5 - 1.5 octaves. 24 clusters of the network formed eight 

groups, each with a different best frequency. These eight best frequencies were equally 

distributed along the log frequency axis spanning four octaves as shown in the top panel of 

Figure 3.4A. The three clusters with the same best frequency responded with different 
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temporal profiles shown in Figure 3.4A bottom panel; either phasic, phasic-tonic or tonic 

responses (Chimoto et al., 2002). Further two groups, each containing three clusters having 

phasic, phasic-tonic and tonic response profiles, fired for all stimuli and thus carried no 

information about tones. These have a role of outliers in the data. We modeled the phasic and 

phasic-tonic temporal profiles using a difference of exponentials of the form,  

  
1 1

exp exp
2 2

t a t
R t b

 

   
       

   
 (3.30) 

We set parameters a  and b  to 0.154 and -0.002 for phasic firing rate and to -9.974 and 

0.049 for phasic-tonic firing rate. We set 
1  to 500 ms for both cases. These firing rates had a 

maximum amplitude of 3 spikes/ms/cell. The tonic firing rate was set to 1.5 spikes/ms/cell 

and the background spontaneous firing rate was 4 spikes/ms/cell.  

We generated the trial-to-trial variability in the network from two sources. The first is due to 

the independent realization of Poisson spike trains of the external neurons. The effect of this 

was small compared to the second source of variability modeled using an Ornstein-

Uhlenbeck (OU) process ( )n t .  

    ( )
2 ( )n n n

dn t
n t t

dt
       (3.31) 

The time constant 
n  controls the cut-off frequency of the noise spectrum while n  is the 

standard deviation of the noise. 
n  was set to 16 ms while 

2

n  was set to 0.16 spikes/ms as 

used in our previous studies.  

The network was simulated using a finite difference integration scheme based on the second 

order Runge Kutta algorithm  (Press et al., 1996) with a time step of 0.05 ms. 

Analysis of data generated by the network simulations 

We generated 40 samples of 85 neurons each by randomly sampling neurons from the 30 

stimulated clusters and binned the responses into 100 ms time bins. The mean Fano factor of 

the dataset averaged over neurons and time bins was 1.006   0.002. This dataset was 

analyzed using Gaussian and Poisson update rules. The number of temporal modules was set 

to two, the ground truth value, and the number of spatial modules was varied between 1 - 20. 
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Evaluation of clustering quality 

We evaluated the clustering quality of the spatial modules with the sparseness measure used 

in (Hoyer, 2004). 

  
2

1

i

i

n

sparseness
n









x

x
x  (3.32) 

where x  is the vector of NMF coefficients and n  is the number of coefficients. This 

measure evaluates to one if and only if x  consists of only one non-zero component and is 

zero if and only if all components are equal. It interpolates smoothly in between zero and one 

for other values. 

 

 

 

Results 

 

Figure 3.4B-D summarize the results from Gaussian and Poisson space-by-time NMF rules. 

When the tuning curves have a standard deviation of 0.5 octaves, the decoding performance 

reaches a plateau after seven spatial modules (Figure 3.4B). This occurs because there are only 

eight clusters with different tuning profiles although they differ in their temporal profiles.  As 

the tuning curves become broader and the frequency bandwidth increases, the highest 

achievable decoding performance decreases. Compared to Gaussian rules, Poisson rules give 

a higher decoding performance of up to 5% when the standard deviation is 0.5 or 0.75 

octaves and up to 3.2% when the standard deviation is 1 octave (Wilcoxon rank sum test, p < 

0.05). This increase in performance occurs when the number of spatial modules increases 

beyond five clusters when the tuning curve standard deviation is 0.75 or 1 octaves and when 

the number of spatial modules is higher than 7 when the tuning curve standard deviation is 

0.5 octaves. This decrease in the number of spatial modules required to obtain the highest 

performance could be attributed to the broadening of the tuning. 
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Figure 3.4: Simulation of network responses to long tones.  A: Three clusters in the 

network shared the same frequency selectivity (left), but had different firing profiles (right). 

B: Decoding performance when the width of the tuning curves change. C: Comparison 

between the spatial modules (SMs) derived from Gaussian rules and Poisson rules.  
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Figure 3.5: Variation of the weights of neurons in the spatial modules  (SM) with 

the mean firing rates. Neurons were separated into informative (those that show 

frequency selectivity) and uninformative (those that fire to all tones). The first row shows 

how the weights allocated to each neuron in the spatial modules vary with the firing rate of 

the neuron for neurons that show tonic firing profiles. the second and the third rows are 

similar as the first row, but for neurons having phasic-tonic and phasic firing profiles. 

 

There is a qualitative difference in the spatial modules derived from the two rules. As the 

number of spatial modules increases, Gaussian modules tend to assign a single spatial module 

with high weight to an uninformative neuron that responds to all tones. These neurons have a 

role of outliers in the data. An illustrative example of such decomposition is given in Figure 

3.4C. In the example, neurons are sorted such that their best frequencies span the frequency 

axis from low frequencies to high frequencies. Neurons 70 - 85 respond to all stimuli. 

Modules derived using Gaussian rules have assigned the last two spatial modules for 

uninformative neurons that respond to all stimuli while Poisson modules have allocated the 

uninformative neurons to modules that modulate the activation coefficients for different 

tones. To quantify whether this biasness would lead to a quantifiable difference in the quality 

of spatial modules, we quantified the clustering quality using the sparseness measure 

proposed in (Hoyer, 2004). We found that the sparseness of the Gaussian spatial modules (

0.69 0.03 ) was slightly, but significantly higher than the sparseness in Poisson modules (

0.63 0.02 , Wilcoxon rank sum test, p < 0.01).  

In order to identify whether there is a relationship in the weights of neurons in spatial 

modules and their firing rate, we plot the weight against their maximum firing rate. We 

separated neurons in each sample into informative neurons and uninformative neurons 

(neurons that fire for all stimuli) and further classified them into three groups based on their 
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temporal firing profiles. The results in Figure 3.4D show that the relationship between the 

weight and the firing rate is qualitatively similar between the two rules for informative 

neurons. The weight assigned to the neuron increases linearly with an increase in the spread 

when the firing rate increases. However, for uninformative neurons, when the response 

pattern is either tonic or phasic-tonic, there is a supra-linear increase in the weights assigned 

by the Gaussian modules while the weights of the Poisson modules increase linearly. This 

suggests that Gaussian modules could be more biased towards selecting high firing neurons 

into individual spatial modules as compared with modules derived from Poisson rules.  
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3.4.3 Using new update rules to study population coding of sounds in rat 

auditory cortex 

 

Data analysis 

We compared the performance of new space-by-time NMF algorithms on the auditory neural 

responses to long tones and clicks. These datasets are fully described in section 2.5.1. We 

constructed the data matrix, performed space-by-time NMF analysis and decoding similar to 

the procedure described in that section. We evaluated the sparseness of the spatial modules 

using the measure from (Hoyer, 2004) that is described in section 3.4.2.  

We performed an evaluation of the impact of the first spike information by removing the first 

spike from each trial in each neuron prior to applying space-by-time NMF update rules. In 

another analysis, noise correlations were removed from the data by shuffling trials of each 

neuron independently for each stimulus. 

We tested two preprocessing methods on the performance of update rules. In the first method, 

we normalized the spike counts in each time bin with the logarithm of the average spike 

count of the neurons across all tones. In the second method, we computed the cross 

correlation of the spike counts of each neuron in each trial with the trial-and-tone-averaged 

population spike count and used this measure as the data value. 

 

Quantification of the similarity between modules 

We quantified the similarity between two modules 
iw  and jw  (the modules are normalized by 

the algorithm) using cosine similarity (Steinbach et al., 2000) as follows.  

 ,i jsimilarity  w w  (3.33) 

 

The similarity is a value between 0 and 1. When quantifying the similarity between the 

modules first we compute the similarity between each pair of modules. Then we match the 

modules based on this similarity measure and compute the similarity between the two 

decompositions as the mean similarity between the matched modules. 
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Results 

We analyzed the neural responses of 85 auditory neurons recorded for long tones and click 

sequences using the new space-by-time NMF algorithms. The same data was previously 

analyzed for Gaussian update rules in section 2.5.1. The dataset containing the responses to 

long tones had a Fano factor of 0.98 when averaged over neurons, time bins and stimuli. The 

corresponding value for the responses to click dataset was 0.99.  

Gaussian, Poisson, binomial (with n  set to the maximum value in the dataset) and negative 

binomial (with 1r  ) update rules for space-by-time NMF were applied for each dataset. We 

found that binomial and negative binomial results were very similar to those of  Poisson rules 

(Figure 3.8). Since the Fano factors of the datasets were also close to one, we only used 

Gaussian and Poisson update rules for the subsequent analysis. 

First, we will compare the quality of the modules derived from Gaussian and Poisson rules. 

The temporal modules derived from space-by-time NMF for Gaussian and Poisson rules for 

the responses to long tones were highly similar (Figure 3.6A). There are two differences in 

the module that describes the phasic response between the two rules: the module from 

Gaussian rules has a sharper peak, sharper fall off and a shorter duration (0 - 120 ms Vs 0 - 

150 ms). The spatial modules from the two decompositions are shown in Figure 3.6B. The 

similarity between the spatial modules of the two rules was 0.61 0.03 indicating there were 

similarities between modules derived from two rules. We could visually observe that the 

Poisson derived modules have better clustering in terms of the weight distribution across 

neurons in the modules. They are also better localized in closeby tetrodes – a result we 

expected from the tonotopical organization in A1. Some modules derived from Gaussian 

rules were almost entirely allocated to one neuron while Poisson rules derived modules had 

more equalized weight distributions across neurons. To quantify this observation, we 

evaluated the sparseness of the modules derived from the two update rules using the measure 

from (Hoyer, 2004). We found that the Gaussian modules were more sparse compared to 

Poisson modules (sparseness of 0.8±0.01 compared to 0.71 ±0.01, Wilcoxon rank sum test, p 

< 0.001).  

Next we compared the quality of the modules extracted by the two rules for the responses 

recorded from same neurons to click sequences (Figure 3.7A). The temporal modules derived 

from both rules clustered the repetitive clicks of 4 and 8 Hz sequences into separate single 

modules. To compare the spatial modules from the two rules we computed the similarity 

between the two sets of spatial modules using the best two matching pairs.  We found the 

distance to be 0.86  0.03, indicating that the two best matching pairs of modules for the 

click dataset had a higher similarity than the modules derived for long tones. 
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Figure 3.6: The module structure derived from Gaussian and Poisson space-by-

time NMF rules for the neural responses recorded from 85 A1 neurons to long 

tones. A: Temporal modules. B: Spatial modules mapped on to a schematic figure that 

represents the eight tetrode configuration used for the recording (T1: tetrode1, ..., T8: tetrode 

8). Each row shows the weights of the neurons in one spatial module (SM). The weight of 

each neuron in spatial module takes a value between 0 and 1. All neurons recorded from one 

tetrode are shown around the respective tetrode.  
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Figure 3.7: The module structure derived from Gaussian and Poisson space-by-

time NMF rules for the neural responses recorded from 85 A1 neurons to click 

sequences. A: Temporal modules. B: Spatial modules mapped on to a schematic figure that 

represents the tetrode configuration used for the recording (T1: tetrode1, ...,  T8: tetrode 8). 

 

Then we compared the decoding performance of the new rules with that from Gaussian 

update rules. For long tones, Gaussian update rules showed a small performance advantage of 

3.76  3.45 % (Wilcoxon rank sum test, p < 0.001). There was no significant difference 

between the ability to discriminate stimuli by other rules. This result was reversed in the click 

dataset. Poisson update rules had a small gain in decoding performance of 5.24  4.29 % 

compared to Gaussian rules (Wilcoxon rank sum test, p < 0.001). Again, there was no 

performance difference between Poisson, binomial and negative binomial rules. This 

similarity might partly be due to both binomial and negative binomial distributions 

converging to Poisson distribution when the Fano factor approaches one. It could also be due 

to the heterogeneity in the datasets; they contain supra-Poisson distributed spike counts, but 

near the stimulus onset, the spike counts become sub-Poisson (Churchland et al., 2010). We 

note that although there was a performance difference between Gaussian and Poisson rules 

for the two datasets, the difference was small, confirming our observations from simulated 

data. 
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Figure 3.8: Decoding performance of auditory responses using space-by-time 

NMF rules. (*: p < 0.05, **: p < 0.001; Wilcoxon rank sum test, error bars show s.d.) 

 

Many neurons in the dataset display a decrease in the Fano factor below one at the response 

onset indicating that they fire more reliably during the initial response (Figure 3.9A). From 

our previous observations on temporal modules of the two rules, we found that the temporal 

module which describes the phasic response had a sharper peak, sharper fall off  and a shorter 

duration for Gaussian rules. In chapter 2, we found that sharpening of temporal modules 

could lead to enhanced extraction of precise spike timing information from the response 

onset. We performed an analysis using the first spike latencies to identify how the two rules 

would perform when extracting the first spike latency information using two datasets. The 

first dataset contained only the first spike of each neuron in each trial. The second dataset 

contained all spikes except the first spike of each neuron in each trial. In order to compare the 

qualitative differences between the decompositions derived from the two rules we describe 

the decomposition that gave the optimal performance, not the one that corresponds to the 

optimal decomposition obtained using the full information space and time. 

As shown in Figure 3.9B. we found a qualitative difference in the temporal modules extracted 

from the two rules when only the first spike of each neuron in each trial was available. All 

five temporal modules of the Gaussian rules were concentrated at the response onset with 

peaks at the time bins consisting of 15 - 20 ms, 20 - 25 ms, 25 - 30 ms, 35 - 40 ms and 40 - 45 

ms respectively indicating that Gaussian rules identified which tone was played using fine 

temporal differences between the response onset of neurons. In contrast, temporal modules 

extracted by Poisson rules spanned longer time windows with a decline in the value of the 

temporal module with time indicating that the Poisson rules gave more emphasis for spike 

count information in longer time windows than fine differences in spikes at the onset to 

identify which tone was played. Poisson spatial modules were again more dense compared to 
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Gaussian spatial modules (Figure 3.9Figure 3.10A). Interestingly, there was no significant 

difference between the decoding performance of the two rules (Figure 3.9C). Thus, tones 

could be discriminated at a same level using different spatial and temporal patterns from the 

first spike latencies of the auditory cortical neurons. We further used a rank order decoder to 

identify the decoding performance when only the order in which the first spikes arrive is 

available. The performance of the rank order decoder was only 42 % compared to that from 

the Gaussian rules using first spike latency information. (46 % compared to the performance 

of the Poisson rules, Wilcoxon rank sum test, p < 0.001). Thus, about 2.2 - 2.4 times higher 

decoding performance could be obtained when absolute difference in the first spike time 

latencies are used than when only the order in which the neruons send their first spikes is 

available. 

When using only the second and the subsequent spikes, the temporal module describing the 

phasic response was broader in the Poisson module than in the Gaussian module (Figure  

3.9B). The decoding performance shown in Figure  3.9C indicated  that the Gaussian rules 

were able to identify which tone was played slightly better than Poisson rules (54.78  2.86 

% compared to 52.04   2.39 %, Wilcoxon rank sum test, p <  0.05 ). For both rules, the 

performance was slightly below the performance when using all spikes (4.27  3.87 % for 

Gaussian rules and 2.99  3.28 % for Poisson rules, Wilcoxon rank sum test, p < 0.05). Thus, 

the first spike latency information for long tones is highly redundantly coded in the 

subsequent spikes at the population level in our data. 

Next, we applied two preprocessing methods to identify the robustness of the update rules. 

First we normalized the spike counts in each time bin with the logarithm of the average spike 

count of the neurons across all tones. This increases the value of the spike counts for low 

firing neurons (Figure 3.11A). Second, we used computed the cross correlation of the spike 

counts of each neuron in each trial with the trial and tone averaged population spike count. 

We used these cross correlations as our data matrix. Thus, this is also an evaluation of the 

information content in the cross correlation as well. This has the effect of increasing the value 

of spike counts in the onset response compared to the sustained response due to the highly 

reliable responses at the responses compared to sustained responses (Figure 3.11A, (Curto et 

al., 2009)).  

When the spike counts of each time bin were normalized using the average spike count across 

tones, space-by-time NMF rules gave high weights in the spatial modules to low firing 

neurons that had larger amplitude in the time bins after normalization (the Spearman's rank 

correlation between the maximum weight in the spatial module and the averaged firing rate of 

the neuron was -0.66 for Poisson rules derived after preprocessing while the same for data 

without preprocessing was 0.47. Furthermore, Gaussian modules derived from the raw spike 

counts and preprocessed spike counts had a similarity of 0.45   0.04 while the same for 

Poisson modules was 0.55   0.04 indicating that the spatial modules of the two methods did 

not have high similarity). As shown in Figure 3.11B, both space-by-time NMF rules had a 

lower decoding performance after the preprocessing than when unprocessed spike counts 

were used (53.22   1.31 % compared to 59.01   2.61 % for Gaussian rules and 47.1   1.86 

% compared to 55.03   2.25 % for Poisson rules, Wilcoxon rank sum test, p < 0.001). At the 
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population level, the responses of the low firing auditory neurons could also be informative 

about tone frequencies and intensities.  

When using cross correlation values, the spatial modules derived from both update rules were 

qualitatively similar to the spatial modules derived from raw spike counts (Gaussian modules 

derived from the raw spike counts and preprocessed spike counts had a similarity of 0.65   

0.03 while the same for Poisson modules was 0.78   0.03). The decoding performance of 

only Gaussian rules decreased (51.38   0.91 % compared to 59.01   2.61 %, p < 0.001). 

The modules derived from Poisson rules became slightly sparser (0.02   0.02, p < 0.001) 

while those from Gaussian rules increased the sparseness by a larger amount (0.11   0.009, 

p < 0.001). Thus, Poisson space-by-time NMF rules are able to extract information in the 

cross correlations robustly. 

Auditory responses were recorded when the anesthetized cortex was in a synchronized state.  

Noise correlations in the data could be influenced by the up-down activity states as well as 

changes in the level of the synchronization (Curto et al., 2009; Pachitariu et al., 2015). Thus, 

we analyzed the effect of removing noise correlations in the data on the performance of 

space-by-time NMF rules. We removed the noise correlations in the dataset by randomly 

permuting trials of each stimulus independently for each neuron. Figure 3.12A shows the 

decoding results when applying Gaussian and Poisson rules on the responses to click 

sequences and long tones. Removal of noise correlations resulted in an increase in the 

optimal decoding performance (an increase of 6.47   4.86 % for Gaussian rules, p < 0.05, 

and 13.9   4.06 % for Poisson rules, p < 0.001, for tone data while an increase of 24.77   

3.83 % for Gaussian rules, p < 0.05, and 24.78   4.39 % for Poisson rules, p < 0.001) 

indicating that the noise correlations reduce the ability to correctly identify stimuli in the 

recorded population responses. With the trial shuffling, the number of spatial modules 

required to obtain the optimal performance to identify long tones reduced from 20 modules to 

15 modules for Gaussian rule and from 20 modules to 12 modules for Poisson rules 

respectively. For responses to clicks, both rules gave the optimal performance for only one 

spatial module while previously Gaussian rules required two spatial modules and Poisson 

rules required four spatial modules. Obtaining optimal performance using only one spatial 

module to identify clicks is as expected since many neurons across the tonotopic axis would 

be stimulated from a click which has a large frequency bandwidth. When removing the noise 

correlations by trial-shuffling, the spike counts become independent, thus becoming closer to 

a Poisson distribution. Representative temporal modules for a “three temporal modules and 

one spatial module”-decomposition are shown in Figure 3.12B for Gaussian rules and 

Poisson rules. The increase in the decoding performance for lower number of temporal 

modules is likely to have resulted because the structured trial to trial variability that the NMF 

update rules has to account due to up-down activity state changes is reduced when the trials 

are permuted across neurons. 
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Figure 3.9: Analysis of first spike latency. A: Fano factor variation across the trial in 

two representative neurons in the dataset. Each row of the figure correspond to one neuron 

and each column corresponds to one of the two tone intensities of the nine frequencies used 

(30 dB and 60 dB). Decoding performance of space-by-time NMF for Gaussian and Poisson 

update rules for 50 ms bins. B: Temporal modules identified by Gaussian (left) and Poisson 

(right) space-byt-ime NMF update rules. The first row corresponds to modules identified for 

the full dataset containing all spikes. The second and the third rows correspond to the 

conditions where only the first spike of each neuron was used and all spikes except the first 

spike was used respectively. C: Decoding performance for the three conditions. (*: p < 0.05, 

**: p < 0.001, Wilcoxon rank sum test, error bars show s.d.) 
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Figure 3.10: Spatial modules identified by space-by-time NMF for spike latency 

analysis. A: Spatial modules when the dataset contained only the first spike of each neuron 

in each trial. B: Spatial modules when the dataset contained only the second and subsequent 

spikes. 
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Figure 3.11: The performance of space-by-time NMF update rules after 

preprocessing data.  A: An example of how the two methods affected the spike counts. 

Normalizing the spike count of each time bin by the average spike count of the neuron across 

all trials and tones (middle figure) decreased the value in the time bin for high firing neurons 

while increasing it for low firing neurons. The cross correlation with the population template 

increased the value of the spike counts at the trial onset compared to the sustained period. B: 

The decoding performance of the two update rules for the two methods compared to the 

values obtained using unprocessed spike counts. C: The sparsity of the spatial modules from 

each preprocessing method compared to those for unprocessed data. (**: p < 0.001 and *: 

p<0.05; Wilcoxon rank sum test, erorr bars show s.d.) 
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Figure 3.12: Application of space-by-time update rules on trial-shuffled 

responses to long tones and click sequences.  A: Decoding performance for click 

sequences and long tones (**: p < 0.001 and *: p<0.05; Wilcoxon rank sum test, erorr bars 

show s.d.) B: Temporal modules of the 'three temporal modules and one spatial module' 

decompositions extracted by Gaussian rules (left) and trial-shuffled data (right). The top row 

shows the spatial modules of the correlated data while bottom row shows the spatial modules 

of the independent data.  
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3.4.4 Using new update rules to study population coding of stimulus location 

in rat somatosensory cortex  

 

Next we evaluated the performance of the Poisson update rules on the neural responses 

recorded from somatosensory cortical neurons for whisker deflections that we analyzed in 

chapter 2 using Gaussian update rules. 

 

Data analysis 

The details of the dataset are fully described in section 2.5.2. We ran the same analysis for 

two mode datasets; 1) a dataset which contained the first spike of each neuron in each trial 

and 2) a dataset that had all spikes except the first spike of each neuron in each trial. We 

applied the Poisson space-by-time NMF update rules for each dataset in the same way as 

described in section 2.5.2 and used the same decoding procedure to evaluate the stimulus 

discrimination capability. To evaluate the decoding performance for first spike latency 

information, we used a rank order decoder described in the section 2.5.3. We evaluated the 

sparsity of the modules using the sparsity measure from (Hoyer, 2004) that is described in 

section 3.4.2. We compared the similarity of the spatial modules through the procedure 

described in section 3.4.3.   

 

Results  

First, we will look at the module structure derived from the two update rules for the full 

dataset. This is shown in Figure 3.13A. Both update rules gave the best stimulus 

discrimination for five spatial modules. However, Gaussian rules required only one temporal 

module while Poisson rules required two temporal modules. The optimal decomposition for 

Gaussian rules is the same as we discussed in chapter 2 section 2.5.2. Here we will recapture 

the main points when comparing the two rules. Spatial modules have a clear composition 

with respect to neuron responses as could be observed from the coefficient structure. The first 

three modules correspond to neurons responding mainly to D1 - D3 stimulations. Last two 

modules group neurons responding to non-principle whisker deflections in addition to 

principle whisker deflections. The spatial modules of the Poisson rules is broadly similar to 

the spatial modules from Gaussian rules with a similarity between the two sets of spatial 

modules being 0.87  0.03 . 

The temporal module of the Gaussian rules has an elevated activation level at the start of the 

trial between 5 - 15 ms of the response during the highly reliable onset response of the 

neurons. The temporal module decays during the trial. We found that this effect gave rise to a 

temporal weighing of the spikes in the coefficient matrix that code the temporal dimension 

into the low dimensional representation. Poisson rules use two temporal modules to represent 

the temporal dimension. The first module mainly encodes the activity between 0 - 25 ms of 
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the response while the second module mainly encodes the activity between 25 - 100 ms of the 

response. As could be seen from the coefficients, this aids to segregate the early response into 

the principle whisker into the first temporal module and the response to the non-principle 

whisker mainly of the second temporal module. It further shows that neurons in the first 

spatial module (which are mainly from the D1 barrel column) responding mainly to D1 

principle whisker also responds to E1 non-principle whisker. Furthermore, neurons in the 

third spatial module (which are mainly from the D3 barrel column) responding mainly to  D3 

principle whisker also responds to E2 and E3 whiskers. In both cases, the coefficients for the 

non-principle whiskers are smaller because the number of spikes for the non-principle 

whisker is lower compared to the principle whisker and the latency of the response is higher 

for the non-principle whisker than for the principle whisker. The fourth spatial module of 

Poisson rules describes responses to C1 - C3 and E3 whiskers. These responses have an early 

as well as a sustained component. The last spatial module contains sustained responses. A 

neuron such as neuron 263 shown in Figure 2.7B, could belong to a spatial module describing 

onset responses as well as spatial modules that describe sustained responses.  

In terms of the ability to decode whiskers deflections (Figure 3.14), Poisson rules were 

slightly, but significantly better than Gaussian rules (84.72   3.41 % compared to 82.92   

3.82 %, Wilcoxon rank sum test, p<0.05). This could be mainly because the dataset had a 

mean Fano factor of 0.99 averaged over all neurons and time bins which indicates that the 

variability is Poisson distributed. Moreover, the dataset was made by pooling the activity 

recorded over multiple recording sessions and the noise correlations are very small as we 

reported in chapter 2. This would have further contributed to the better performance of 

Poisson rules over Gaussian rules.   

Next we compared the capability of the update rules to represent the first-spike latency 

information. The module structure derived when the data matrix contained only the first spike 

of each neuron in each trial is given in Figure 3.13B. The optimal decompositions that 

represented this information only required one temporal module for both Gaussian and 

Poisson rules. However, the Gaussian module had a narrower peak centered at 5 - 10 ms 

while the Poisson rules extracted a wider module with a peak between 5 - 15 ms. In terms of 

spatial modules, the best performance for Gaussian rules was obtained for six spatial modules 

and that for Poisson rules required five spatial modules. The Gaussian spatial modules were 

sparser than Poisson modules (sparseness of 0.31   0.004 compared to 0.51   0.01, 

Wilcoxon rank sum test, p<0.001). This could be visually observed in Figure 3.13B. 

Although these differences in spatial and temporal modules are present between the two 

rules, both rules had similar capacity to discriminate whiskers using the first spike 

information. Interestingly, the first spike latency has the same or slightly higher ability to 

decode stimuli as when using full information in space and time. It is very slightly but 

significantly (88.06   4.86 % compared to 85.56   4.38 %, Wilcoxon rank sum test, 

p<0.05) higher for Gaussian rules, but there is no difference for Poisson rules. This result has 

to be considered keeping in mind that the effect of noise correlations on the coding is 

minimal because the population has little noise correlations since it is a pooling across 

multiple recording sessions. As we discussed in chapter 2 in detail, the only way that the 
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space-by-time NMF temporal module code temporal information is by modulating the value 

of the temporal module across time giving a higher value to the spikes that occur at the 

response onset and decreasing the importance of spikes as the response progresses. Under 

such conditions, this indicates that if the first spikes of a large population of neurons (300 

neurons in this dataset) are available, the deflected whisker could be identified at the same 

accuracy as when using information about neuron identity and temporal information from all 

spikes if there is a method to weigh the first spikes appropriately. This can be intuitively 

understood from Figure 3.13D. The trial averaged population firing rate when only the first 

spike is available has a similar temporal profile to that of when all spikes are available. 

To compare the effect of the temporal weighting on the performance with the performance 

when we only use the spike arriving order, which is used in many studies to identify the 

coding capability of the first spike latencies (Johansson and Birznieks, 2004; Panzeri and 

Diamond, 2010), we used a rank-order decoder to decode the whiskers. We found that when 

only the first spike order was available to a linear decoder, the ability to discriminate the 

whiskers is 83.8   0.02 %. This is only significantly different from the first spike decoding 

performance of the Gaussian rules (Wilcoxon rank sum test, p < 0.001). Thus, this indicates 

that the temporal weighting method used by space-by-time NMF performs comparable to a 

rank order decoder.  

Since the first spike latency of the population is sufficient to obtain the full decoding of the 

whiskers, we tested the contribution from the remaining spikes on whisker identity. In order 

to do so, we removed the first spike from all neurons in all trials and performed space-by-

time NMF. In order to compare the qualitative differences between the decompositions 

derived from the two rules we describe the decomposition that gave the optimal performance, 

not the one that corresponds to the optimal decomposition obtained using the full information 

carried by space and time. As shown in Figure 3.13C, we found that Gaussian rules required 

much more modules (two temporal modules and seven spatial modules) compared to Poisson 

rules (one temporal module and five spatial modules) to give the best performance. Temporal 

modules derived without using the first spike were broader than when using all spikes. The 

first temporal module extracted by the Gaussian rules ranged between 0 - 35 ms while the 

second temporal module spanned the remaining response duration. The Gaussian derived 

spatial modules were sparser than the modules derived using Poisson rules (sparseness of 

0.79  0.01 compared to a sparseness of 0.64  0.01, Wilcoxon rank sum test, p < 0.001). 

This is mainly because of the dominance of single neurons in spatial modules 5 - 7. All three 

of these neurons have sustained responses. Raster plot and the tuning curve of one of these 

neurons, neuron 278 is shown in Figure 2.7B. It shows that this neuron responds for many 

whiskers. Thus the biasness that we observed in Gaussian rules for long firing neurons when 

performing network simulations in section 3.4.2 could occur in experimental data as well.  

When we compared the decoding performance of the two rules, we found that the loss of the 

first spike information caused relatively large loss of the decoding performance for both rules 

(23.61  4.27 for Gaussian rules and 18.05  4.97 for Poisson rules, Wilcoxon rank sum 

test, p < 0.001). This indicates that while the first spike latency information is redundantly 

coded in the remaining spikes across space and time, it is still an important component in 
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encoding the whisker identity. The loss in the whisker identification capability in the Poisson 

rules was less than in the Gaussian rules (Wilcoxon rank sum test, p < 0.001).  This can be 

explained by the results of our network simulations in section 3.4.2 where we observed that 

Gaussian rules could be sparser due to the long firing neurons in the following way. 

According to Figure 3.13 E, the trial-averaged population firing rate to the second and 

subsequent spikes is less precise at the onset and has less variability between different 

whiskers. This resulted in broader temporal modules that suggest that the coefficients give 

more emphasis for counting spikes rather than indicating the precise spike timing of spikes by 

using a time dependent weight. In this case, when the spatial modules are dense, meaning that 

similar weight is given to spikes of many neurons, the coefficient values would be more 

sensitive to small variations in the population spike counts. This would give an advantage in 

whisker discrimination to Poisson rules over Gaussian rules. Furthermore, Figure 3.13E 

suggests that since the temporal profiles of the trial-averaged responses for different whisker 

deflections are highly similar, the spatial dimension has to contain information that is variable 

across different whiskers. This could be achieved if it is possible to efficiently extract 

differences in the firing rates between different subpopulations of neurons. Thus more 

homogenous weight distributions across neurons would likely to be useful towards this.   
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Figure 3.13: Module structure and the coefficients extracted by Gaussian and 

Poisson update rules from the neural responses of 300 neurons to whisker 

deflections A: Modules and the coefficients for the full dataset (DF). B and C: same as in A but 

for the responses consisting of only the first spike of each neuron in each trial (DFS) and when 

the responses contained all spikes except the first spike of each neuron in each trial (DSS) 

respectively. In all cases, coefficients are grouped according on whiskers. Each row of 

coefficients are related to the spatial module on the side. Each column of coefficients are related 

to the temporal module shown above them.  D: Population average responses for the full dataset 

and for DF (thick lines) and DFS (dashed lines). E: Population average responses for the full 

dataset and for DF (thick lines) and DSS (dashed lines). 
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Figure 3.14: Decoding performance of Gaussian and Poisson space-by-NMF update 

rules for somatosensory neural responses.  Decoding performances were evaluated for the 

following four conditions: when using all spikes in the dataset, using only the first spike of each 

neuron in each trial, using information in all spikes except the first spike in each neuron in each 

trial and when using the information present in the order in which the first spike is discharges by 

neurons. (*: p<0.05; Wilcoxon rank sum test, erorr bars show s.d.) 
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3.5 Discussion 

We extended space-by-time NMF to model neural variability. We modeled sub-Poisson, Poisson 

and supra-Poisson variability using binomial, Poisson and negative binomial noise models. We 

identified Bregman divergences corresponding to these distributions, which enable space-by-

time NMF to be formulated in a probabilistic setting where each observed spike count is a 

sample from the respective noise distribution fit with the reconstructed spike count as its mean. 

Then, the minimization of these Bregman divergences through NMF corresponded to maximum 

likelihood estimation of the mean of the distribution. We used the generalization framework 

proposed by (Dhillon and Sra, 2005) and derived new update rules for space-by-time NMF that 

minimize these optimal Bregman divergences. We evaluated the new update rules methodically 

using statistical simulations, network simulations using a conductance-based integrate-and-fire 

network and investigated the performance of the new rules in neural responses recorded from the 

auditory cortex to long tones and clicks. We now discuss the implications of our findings when 

using space-by-time NMF to analyze neural data. 

 

Choosing appropriate update rules 

The choice of the appropriate update rule to use for space-by-time NMF depends on several 

criteria such as the required accuracy, the computation time and the properties of the neural 

responses. 

Our findings indicate that there is a performance advantage when using the update rule 

corresponding to the underlying noise distribution. This finding is a general observation across 

other types of data corrupted by different noise distributions (Banerjee et al., 2005; Cheung and 

Tresch, 2006; Févotte et al., 2009). The performance advantage over existing Gaussian rules was 

highest when the trial-to-trial variability was supra-Poisson. When the data became increasingly 

regular, the performance difference decreased. Thus, if the data had high variability (Oram et al., 

1999), a higher performance could be obtained using negative binomial rules. However, when 

the data had low variability (Kara et al., 2000), the Gaussian update rules performed similarly to 

the optimal binomial update rule as we observed for responses of retinal ganglion cells to natural 

images. Thus, if the variability in the data is low, Gaussian rules are well suited for space-by-

time NMF. 

The second main factor to consider is the computation time. This is an important aspect because 

NMF algorithms are iterative. In terms of algorithmic complexity, Gaussian update rules are the 

simplest. Poisson update rules come next in terms of complexity. Binomial and negative 

binomial update rules have the highest algorithmic complexity and require more matrix 

multiplications per iteration, thus increasing the overall computing time. Due to the complexity 

of using the extended update rules Binomial rules take the longest to run. Furthermore, both 

binomial and negative binomial rules have an extra model parameter to be evaluated. While we 
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found that the maximum spike count in the data could be used as the model parameter for 

binomial rules, the best performance for negative binomial rules was obtained when the model 

parameter was selected using parameter exploration. The requirement to run parameter 

exploration can increase the computational time considerably. Thus, we suggest that if the data 

have supra-Poisson variability and the purpose of the analysis is exploratory, it would be faster to 

use Gaussian rules as a first pass and then optimize using negative binomial rules. 

Poisson update rules gave comparable performance to binomial rules for sub-Poisson noise 

distributions. From the analysis using the auditory responses and network simulations, we found 

that the difference between Gaussian and Poisson rules resides mainly in the equality of the 

spatial modules and the robustness to outliers. In the datasets we examined, Poisson rules 

showed a lesser propensity to be biased from outliers and led to denser clustering compared to 

Gaussian rules. However, the slightly lower performance of Poisson rules compared to Gaussian 

rules in the tone dataset suggests that the denser clustering in the spatial modules may decrease 

the level of fine detail that the lower-dimensional structure can represent. Thus, the choice 

between Gaussian and Poisson update rules should take into account the statistics of the data to 

be analyzed and the required level of accuracy and detail. 

Finally, if there is structured variability present in the data, similar to up-down state variability, 

in general, more modules will be required to obtain the optimal performance. Since the update 

rules in NMF algorithms are designed to minimize the dissimilarity between the original dataset 

and the reconstructed dataset, they are likely to capture large-scale stimulus independent 

variability when only a small number of modules are used. This will need to be considered when 

deciding on the number of modules to be extracted.  

 

Convergence of update rules 

We did not prove the convergence of our new space-by-time update rules to a stationary solution. 

However, on all datasets we analyzed, the update rules did converge. We also found that results 

obtained with space-by-time NMF were more stable across multiple runs with different random 

initializations compared to two factor NMF. The stability of the modules could be improved 

further by initializing several times using different random values, running the algorithm for 

some iterations and then starting the full iteration process using the initialization that gave the 

lowest Bregman divergence. 

 

Space-by-time NMF to study population coding in space and time 

We gained further insight into the population code used by the somatosensory and auditory 

neurons using the new Poisson space-by-time NMF update rules. To summarize, spike timing, 
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particularly the first spike time latency was found to be an important component for coding 

whisker location by somatosensory neurons at the population level. Spike timing also carried 

information in auditory cortical neurons, but it was found to be redundently coded in the 

information present in the firing rate. We will discuss these in detain in chapter 4. 

 

Extraction of temporal information 

The first-spike latency in somatosensory neurons gives similar whisker discrimination capability 

as when using information in all spikes. The method by which space-by-time NMF extracts this 

temporal information is by weighing the spikes using a weight that varies across time. This 

weight, that is the shape of the temporal module, is determined from the summed population 

activity. This could be observed by comparing the temporal modules in Figure 3.13 A - C with 

the trial-averaged population responses in Figure 3.13 D and E. Deriving the temporal modules 

in this manner has the advantage that they are data driven. In other words, they can dynamically 

change when the stimulus paradigm is changed. An interesting question is whether such a 

mechanism is actually biologically realistic. Here, we speculate on this idea. The dependence of 

the temporal modules on the summed population response is in favor for a possibility of a 

biological implementation since this information is readily available to a downstream neuron. 

Then the question would be whether it would be possible to implement a temporal weighing 

mechanism based on the summed population response using a biologically realistic method. One 

possible way that this may be achieved could be using an appropriate short-term spike timing-

dependent synaptic plasticity (STDP) mechanism (Abbott and Regehr, 2004). According to 

many experimental and modeling studies, the efficiency of synaptic transmission is activity and 

history dependent. When neurons communicate through chemical synapses, pre-synaptic neurons 

release neurotransmitters that get attached to receptors of the post-synaptic neurons. This 

changes the activity of the post-synaptic neurons. This process can change on rapid time-scales 

from milliseconds and can last minutes (Klug et al., 2012). For example, prolonged exposure to 

neurotransmitter could lower the sensitivity of the neuron to the neurotransmitter and can 

decrease the response of the cell to the neurotransmitter (Trussell and Fischbach, 1989; Xu-

Friedman and Regehr, 2004). The decrease of the synaptic efficacy is known as synaptic 

depression and the increase is known as synaptic facilitation. STDP has been suggested as a 

mechanism through which temporal information could be decoded (Buonomano, 2000; Goel and 

Buonomano, 2014), to have a role in processing natural stimuli (Klyachko and Stevens, 2006; 

Kandaswamy et al., 2010), to be a plausible explanation to experimentally observed effects 

(Chance et al., 1998; Carandini et al., 2002) and could change the task performance levels 

(Bourjaily and Miller, 2012). (Masquelier et al., 2008) have shown that STDP could detect early 

patterns from input spike trains. A time dependent learning mechanism through the changes in 

synaptic weights has been proposed in (Rao and Sejnowski, 2003). Thus it may be possible that 

cells could exhibit time dependent changes in synaptic efficacy that may result in a computation 

similar to that of temporal modules used in space-by-time NMF. A related question is whether 
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such a mechanism could be plausible for downstream neurons accessing whisker related 

information from the layer 4 of the barrel cortex. Layer 2/3 neurons in the barrel cortex receive 

afferent input from the layer 4 neurons (Petersen, 2007). Layer 2/3 neurons have been shown to 

display synaptic plasticity (Kim et al., 2016). Further experimental and modeling work is needed 

to verify whether a mechanism such as that used by space-by-time NMF may be used in these 

neurons to decode input from the layer 4. 

.   
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Chapter 4: Discussion 
 

In this thesis, we explored new methods to identify biologically meaningful response 

characteristics on a single trial basis from simultaneously recorded large scale neural datasets. 

Specifically, we introduced space-by-time NMF as a new method that can extract meaningful 

patterns concurrently from spatial and temporal dimensions. Space-by-time NMF identifies 

salient spatial and temporal patterns separately into two modules matrices. A third coefficient 

matrix describes how the population response of each trial is generated through the recruitment 

of the identified spatial and temporal modules. Then secondly, we extended the algorithm to 

model sub-Poisson, Poisson and supra-Poisson variability in spike counts.  

At the end of each chapter we discussed our findings from each analysis. Here we summarize 

and extend those discussions into a broader context elaborating on using NMF as a method for 

spatiotemporal population analysis in a broader context. 

 

4.1 NMF with respect to other methods that can be used to study 

spatiotemporal activity 

Many methods have been proposed as dimension reduction methods to extract representative and 

informative detail from large scale datasets. These methods were summarized in chapter 1 of this 

thesis. Broadly these methods are classified as static dimension reduction methods and dynamic 

dimension reduction methods (Roweis and Ghahramani, 1999; Churchland et al., 2007). 

Commonly used static dimension reduction methods include principal component analysis 

(PCA) (Chapin and Nicolelis, 1999; Hu et al., 2005; Mazor and Laurent, 2005; Peyrache et al., 

2010; Lopes-dos-Santos et al., 2011; Ahrens et al., 2012; Churchland et al., 2012), independent 

component analysis (ICA) (Comon, 1994; Laubach et al., 1999a; Hyvärinen and Oja, 2000; 

Laubach et al., 2000; Brown et al., 2001) and factor analysis (FA) (Byron et al., 2009; 

Santhanam et al., 2009; Yu et al., 2009; Cunningham and Byron, 2014). Commonly used linear 

dynamical methods include hidden Markov models (HMM) (Radons et al., 1994; Abeles et al., 

1995; Seidemann et al., 1996; Gat et al., 1997; Kemere et al., 2008; Escola et al., 2011; 

Bollimunta et al., 2012; Ponce-Alvarez et al., 2012), Kalman filters (Wu et al., 2004; Wu et al., 

2006; Wei et al., 2015; Wu and Liu, 2015) and  autoregressive models (Kulkarni and Paninski, 

2007; Lawhern et al., 2010; Buesing et al., 2012a, b). We now discuss space-by-time NMF as an 

analysis method in relation to these methods. 

Similar to NMF, PCA, ICA and FA are data-driven dimension reduction methods. Often these 

methods are used only along the spatial dimension to describe the population activity using 

neuronal groupings that show simultaneous firing. Variants of PCA, ICA and FA that are similar 

to spatiotemporal NMF can be formulated (Onken et al., In preparation). In these variations, the 
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extracted features are patterns of the population activity over time. Thus, the spatial and temporal 

dimensions are not separated in these methods. Currently, it is unknown how to obtain space and 

time separated representations from these methods. On the other hand, spatial and temporal 

dimensions are the two dimensions that describe the low dimensional representation. This 

naturally gives rise to the extraction of low-dimensional features describing spatial and temporal 

patterns in the population code. It describes neuronal groupings with simultaneous firing as well 

as the patterns of firing rate modulations displayed by these neuronal groups. Furthermore, using 

the permutation based procedure that we used in our work, space-by-time NMF could be used to 

analyze neural responses in a single dimension. We found that space-by-time NMF is able to 

perform equally or with greater performance compared to spatiotemporal versions of PCA, ICA 

and FA (Onken et al., In preparation). Thus, we find that space-by-time NMF is a competitive 

method compared to other dimension reduction methods such as PCA, ICA and FA while 

offering the capability of separating space and time.  

Static dimension reduction methods such as PCA formulate the time progression of neural 

activity by describing how the identified latent components vary across time. Dynamical 

methods such as HMM, Kalman filters and autoregressive models on the other hand explicitly 

model the time progression of activity using a low dimensional dynamical process that moves 

through a state space. Many of these dynamical approaches have modeled neural activity that 

varies on slow time scales. Space-by-time NMF is able to describe the temporal dimension using 

firing patterns that vary either in very small time scales on the order of a few milliseconds or on 

a longer time scales in the order of hundreds of milliseconds or using a combination of fast and 

slow varying patterns. As we saw in our three datasets, the method can specify how these fast 

and slow components are recruited in individual trials. We found that such identified temporal 

patterns can be crucial components of the population code in the retina. Sensory neurons can 

code natural stimuli in very short time scales in the order of milliseconds (Kayser et al., 2010; 

Panzeri et al., 2010b; Luczak et al., 2015) and can use neural codes that multiplex different 

temporal scales (Panzeri et al., 2010b; Zuo et al., 2015).  Thus space-by-time NMF is a 

promising method to describe temporal activity over multiple time scales in sensory populations. 

 

4.2 Background of NMF as a method to study population activity 

NMF has been previously applied as spatiotemporal NMF in a few studies (Kim et al., 2005; 

Overduin et al., 2015; Wei et al., 2015). However, it has not yet been widely used as a method to 

analyze large scale neural datasets. From our work reported in this thesis and from (Onken et al., 

In preparation), we found that spatiotemporal NMF is less data robust than space-by-time NMF, 

spatiotemporal versions of NMF, PCA, ICA and FA. Our contribution to this work is to 

introduce space-by-time NMF as a method that can separate space and time. We found that the 

introduction of the separability in space and time made a great improvement in the ability of 

using NMF as a method to extract salient single-trial information from large scale datasets which 
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may establish NMF as a general method for neural analysis. NMF is a well established method in 

the machine learning community (Cichocki et al., 2009) and our algorithms could be improved 

further using optimization methods available from these studies.     

 

4.3 Modeling neural variability using space-by-time NMF 

The initial space-by-time NMF model we introduced in chapter 2 assumes that the variability in 

the spike counts are Gaussian distributed. Spike counts are often modeled as Gaussian distributed 

in analytical studies mainly for mathematical tractability. In chapter 3, we extended the space-

by-time NMF update rules to model sub-Poisson, Poisson and supra-Poisson variability (Tolhurst 

et al., 1983; van Steveninck et al., 1997; Shadlen and Newsome, 1998; Oram et al., 1999; Kara et 

al., 2000; Maimon and Assad, 2009). This is an important step when introducing a new method 

to analyze population responses. On the one hand a primary requirement of a model is to be able 

to account for the statistical properties of the dataset. On the other hand, the informativeness of 

the low-dimensional representation extracted by a model does not necessarily improve because 

the model has a better capacity to describe the data (Santhanam et al., 2009).  

Our new update rules model spike counts that are in sub-Poisson, Poisson and supra-Poisson 

regimes. However, the neuronal variability is more heterogeneous such that the same neuron 

could change its spiking statistics over a single trial, often decreasing the variability shortly after 

the stimulus onset (Churchland et al., 2010). A single space-by-time NMF update rule may not 

be able to model these changes across a single trial. However, the results from our empirical data 

indicate that the performance difference between the Gaussian update rules and the Poisson 

update rule was small in general, in the range of 5 - 6%. The neural variability in our datasets 

decreased to sub-Poisson range at the stimulus onset (Figure 3.9A), as observed across brain 

regions (Churchland et al., 2010). According to our statistical simulations in chapter 3, the 

performance of both Gaussian and Poisson space-by-time NMF update rules become similar as 

the spike counts become more reliable in the sub-Poisson region. Thus, Poisson rules are 

expected to have comparable or better performance to Gaussian rules when spike counts have 

both Poisson and sub-Poisson variability. This was the case for most of our analyses on auditory 

cortical neurons to click sequences and somatosensory neurons to whisker deflections. However, 

when we analyzed auditory responses to long tones, Gaussian rules performed better than 

Poisson rules. We think that this could be because of the module structure extracted by the two 

rules. Poisson modules had a higher clustering level in the spatial modules and a slightly broader 

peak in the temporal module describing the onset response compared to Gaussian rules. The first 

spike latencies of auditory neurons vary depending on the frequency and the intensity of the tone 

(Schreiner et al., 2011). Our analysis on somatosensory neural responses suggests that the 

temporal module describing the onset response of the Poisson rules for long tones would be less 

sensitive to the precise timing of the first-spike latencies of the neurons grouped into the spatial 

module and would be more sensitive to computing the spike counts of the neurons. Gaussian 
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spatial modules that have a single neuron as a spatial module could be expected to better account 

for the fine differences in first spike latencies to different tones at different intensities. This could 

give rise to a higher performance of Gaussian rules if the spike onsets carry information that is 

not present in the remaining response. 

We further note that by using the decoding performance as the performance measure to compare 

Gaussian and Poisson rules, we do not directly measure how well the update rules model the 

data. Rather, we measure the ability of the extracted low dimensional representations to represent 

stimuli and implicitly assume that by improving the ability of the update rules to model the 

underlying spike count variability, the extracted modules would have a better representation of 

stimuli. Since the representation is low dimensional, this may not necessarily be the case if the 

optimal update rules extract modules that can better account for the global variability in the 

dataset compared to Gaussian rules, while the variability carries less information about the 

stimuli. Thus, whether or not the optimal update rule would perform better than Gaussian update 

rules would depend on the firing characteristics of the neurons and how many of them carry 

information about the stimuli. Our results indicate that both Gaussian and the optimal rule are 

able to extract informative low-dimensional representations and the optimal rule performs 

slightly better in general. As we discussed in chapter 3, considering the performance 

improvement that can be achieved when using the optimal update rule with other factors such as 

computational cost and the purpose of the analysis, we could recommend to first use either 

Gaussian or Poisson rules that have lower computational cost. Decision of whether or not to 

further optimize using binomial and negative binomial rules could be taken based on the 

outcome of the analysis.  

 

4.4 Effect of outliers 

Using the beta family of divergences (Mihoko and Eguchi, 2002; Cichocki et al., 2011) showed 

that KL divergence has a lower dissimilarity for the reconstructed data points with high values 

compared to the Euclidean distance and thus it could be more prone to outliers compared to the 

Euclidean distance. This means that Poisson rules would be more susceptible to be biased by 

outliers compared to Gaussian rules. This is an effect that is opposite to our findings and 

interpretations which indicate that Poisson rules are more robust in terms of the level of 

clustering in the spatial modules compared to Gaussian rules. However, in general NMF 

literature, outliers are defined to be data points that have a low probability of occurrence 

(Fujisawa and Eguchi, 2008; Eguchi and Kato, 2010). In our work we defined outliers as neurons 

that have high firing rates, not isolated time bins that have unusually high spike counts. 

Furthermore, when spike counts are binned into small time bins, the value of the spike counts of 

a high firing neuron in individual time bins can be comparable to those for a low firing neuron. 

High firing neurons tend to bias the spatial modules because they have many time bins with low 

spike counts, not because they have one or more time bins with spuriously high spike counts.  
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4.5 Space-by-time NMF to study population coding in space and time 

We used space-by-time NMF to analyze three datasets containing neurons encoding vision, 

audition and touch.  We found that in all three sensory modalities neural responses in spatial and 

temporal dimensions together carried more information than using either of the dimensions 

separately. Moreover, the temporal dimension played a role in the population code. Now we will 

discuss these results in detail. 

When analyzing responses to flashed images (natural images and gratings differing by spatial 

phase, we found that, while differences in image features on coarser spatial scales could be 

discriminated based on spike rates defined on long windows, both for artificial and natural 

images the information about image details on a finer spatial scale could only be recovered from 

the precise spike times of RGCs on as 10 ms scale, but not from spike rates. Given that the 

flashed images were held fixed for the stimulus presentation time, this represents evidence for 

temporal encoding (Theunissen et al., 1996; Panzeri et al., 2010b), that is, for the conversion of 

non-temporal (spatial) information into a sequence of spike times. This finding is consistent with 

an earlier theory that spike timing information of RGCs reflects local differences in stimulus 

intensities (Rullen and Thorpe, 2001; VanRullen and Thorpe, 2002) and that this could be a 

primary cause of temporal encoding of visual information, complementing other sources such as 

fixational eye movements (Rucci and Victor, 2015). 

Notably, first-spike latencies turned out to be a key part of spike timing information.  Although 

spike rates were sufficient to encode well coarse image information, this coarse image 

information was also almost entirely available in first-spike latencies. Moreover, latencies 

carried more information than spike rates about fine image features, always carried a large 

proportion of the total information contained in population spike trains, and were decodable 

without needing an external stimulus time reference. These results corroborate the idea that 

latencies form a dominant part of the retinal neural code for visual images allowing for rapid 

encoding of large amounts of visual information (Rullen and Thorpe, 2001; VanRullen and 

Thorpe, 2002; Gollisch and Meister, 2008). 

First-spike latencies had been shown to be a key component of the retinal code for fine details of 

artificial stimuli in small populations of few cells (Gollisch and Meister, 2008; Gütig et al., 

2013). Our results extended this previous work in two important ways. First, we showed that 

spike timing and latencies are important also for coding fine spatial information in natural 

images. Second, the demonstration that latencies can be read out from larger populations of tens 

of cells shows that fluctuations of latencies are sufficiently robustly coordinated across tens of 

cells to underlie robust image coding (something that was shown to hold only for cell pairs in 

(Gollisch and Meister, 2008)), and that the information carried by latency of one neuron is not 

redundant with the information carried by rate of another neuron. These results, which are 

important for establishing a key role of latencies in population activity, could be achieved 

because of the data robustness and the effectiveness of space-by-time NMF to capture 
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information from limited datasets. This property was key to accurately compare first-spike 

latency information with the total information carried by this population both along the space and 

time dimensions. 

Spike trains of somatosensory neurons we analyzed consisted of combining recordings carried 

out in different experimental sessions. The same dataset was previously analyzed in several 

studies (Panzeri et al., 2001; Petersen et al., 2001; Panzeri et al., 2003; Panzeri and Diamond, 

2010). (Panzeri et al., 2001) studied responses of single neurons from of neurons recorded from 

the barrel column D2 using an information theoretic framework. They found that the precise 

timing of spikes adds 44% extra information on which whisker was stimulated to the information 

content in the spike counts. The first spike latency information contributed 83% of the total 

information in the spike train. (Petersen et al., 2001) analyzed the how pairs of neurons in all 

three barrel-columns encoded whisker location. They found that 82 - 85 % of the total 

information was coded using spike timing. The first spike latency in pairs of neurons from D2 

was 91   7% from the total information while that of pairs of neurons taken across barrel 

columns was 89   15 %. Neurons within the same barrel column were found to code 

redundantly while neurons in neighboring barrel columns coded independently. Consistent with 

these findings, we found in chapter 3 that at the population level, the first spike-time latency has 

the same or slightly higher level of decoding performance about whisker location as when 

considering the full information available in both spatial and temporal dimensions in the full 

spike trains. Our results further indicated that the information in the first spike lies in relative 

time differences between first spikes of different neurons. This observation has been made using 

the same dataset as in (Panzeri and Diamond, 2010). Our analysis is limited in the sense that the 

neural population was non-simultaneously recorded. The average pair-wise noise correlations 

between any two neurons in the population were very small. We could not estimate the 

correlations between neurons from the same recording session since we did not have the details 

of the recording sessions. However, according to (Petersen et al., 2001), the average noise 

correlation between neurons in the same column is 0.25 and (Panzeri et al., 2002) indicate that 

only less than 2 % of the total information is lost when decoding stimuli using the responses 

recorded from D3 barrel column with a decoder that has no knowledge of the correlations. Thus 

this suggests that the first-spike is a very important component of the neural population code in 

the barrel cortex coding whisker location. Our analysis using the second and subsequent spikes 

indicated that the firing rate of these remaining spikes contain 79% of the full discrimination 

capacity. This suggests that the neural code in the barrel cortex first code whisker locations using 

relative latencies in the first spikes and then redundantly code the stimuli using a rate code. 

When analyzing auditory responses, we found that the spatial dimension is the key contributor to 

code tone frequencies. This is as expected given the tonotopical organization of the auditory 

cortex (Schreiner et al., 2011). Our results also indicated that the first spike latency was 

informative about long tones having 65% as the decoding performance obtained using all spikes. 

We further identified that the absolute times of the first spikes was 2.3 times more informative 
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about tones than the temporal order in which neurons discharge the first spike. Comparing this 

result with the reports from previous studies that have investigated first spike latency is 

complicated because of the differences in the species, anesthetic state and the type of stimuli 

used and these parameters can affect the first spike time latency (Camalier et al., 2012). Our 

finding that the order in which neurons discharge the first spike carries 17% decoding 

performance and thus has a small amount of information about tone frequency and intensity is 

consistent with the frequency selectivity of the first spike latency reported by (Imaizumi et al., 

2004; Carrasco and Lomber, 2011; Scott et al., 2011) where mainly the first spike latency 

increases when moving anterior to posterior along the rostro-caudal axis of the auditory cortex. It 

is also corroborated by (Schreiner et al., 1997; Schreiner et al., 2011) which report that the first 

spike latency decreases when the sound pressure level increases. However, the first spike latency 

also displays variability within a caudo-rostral level. This could because it decreases with the 

firing rate (Kilgard and Merzenich, 1999; Kajikawa et al., 2005; Pienkowski and Harrison, 

2005). Furthermore, the first latency can vary depending on the response duration (whether the 

response is phasic or sustained) as well as the position of the tone frequency in the frequency 

response area of the neuron (Schreiner et al., 2011). These could be the reasons for our finding 

that the absolute first spike latency differences have nearly 2.3 times the ability to discriminate 

long tones compared to just considering the order in which neurons discharge their first spikes. 

We further found that the first spike time information is largely redundantly coded in the later 

spikes. (Kajikawa et al., 2005) makes the same observation about the first spike latency and the 

firing rate in A1 of the Marmoset monkey. Thus our results are consistent with those that have 

been made previously mainly using single neuron analysis. Our findings using space-by-time 

NMF indicate that these modulations of the first spike time also exist in simultaneously recorded 

population of tens of neurons and consistently between two different brain states in rat A1. One 

limitation of our findings could be that they are from only one recording session. Further 

experimental work could verify these results using multiple recordings. 

Finally, we find that the first spike latency is recruited to different extents to code different 

stimuli in different sensory system consistent with previous studies (VanRullen et al., 2005). 

This information is typically redundantly coded in firing rates. Due to the ability of space-by-

time NMF we were able to quantify the information encoded in the full spike trains at the level 

of large populations in order to verify the differential contribution of first spike latencies to the 

neural population code. 

To conclude, we introduced and refined a new method, space-by-time NMF to analyze large 

neural recordings. This method is able to identify biologically meaningful and informative 

patterns from spatial and temporal dimensions. We demonstrated that the method was able to 

give insight into how neurons in the populations we analyzed coded information in space and 

time concurrently as well as separately. These results suggest that this technique may become a 

very useful methodology to analyze the neural population code.  
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4.6 Future directions 

 

NMF is a well established data analysis method in the machine learning community. Thus space-

by-time NMF could be further improved by integrating knowledge available from NMF analysis 

done on other large scale datasets. For example, the sparseness of the derived matrices is 

typically controlled by adding a regularization term to the dissimilarity measure (Cichocki et al., 

2009). The L1 matrix norm is commonly used to enforce regularization. The regularization term 

is weighted by a regularization coefficient that controls the degree of sparseness. The framework 

defined using Bregman divergences supports the inclusion of this term.  

Space-by-time NMF is based on the assumption that the activity of a single trial is a linear 

combination of a set of space-time modules. As we discussed in chapter 2, this is a similar 

concept to that of packet-based communication in cortex where a set of stereotyped spike 

patterns a recruited in the responses to different stimuli  (Luczak et al., 2009; Luczak et al., 2013; 

Luczak et al., 2015). If this is the case, and if the patterns are separable in space and time (Onken 

et al., 2009), then this suggests that space-by-time NMF can be applied to identify the functional 

organization of neurons by means of spatial modules.  
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Appendix 1: Proof of the equivalence of minimization of the 

Bregman divergence and the maximum likelihood estimation of the 

mean for binomial and negative binomial update rules 
 

Binomial rules 

If the spike count 
tnr  of neuron n  in time bin t , 

tnr , is a binomially distributed random variable, 

its probability mass function is given by (Equation 3.7), 
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 (1.1) 

where 
tn is the mean spike count and the parameter n  specifies the regularity of the spike 

counts under the model. We assume that n  is a constant for all N  neurons during all T  time 

bins. 

Assuming that the spike count of each time bin is independent, the negative log likelihood L  of 

the data matrix R  is given by, 

   log log ; , log ; ,tn tn tn tn

NT NT

L p r n p r n       

 log ; , log
tn tnr n r

tn tn
tn tn

tn

n n
p r n

r n n

 


      
        

      

 

It can be shown that, 
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where    contains terms independent of tn . 

Therefore,  
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where   contains terms independent of 
tn . 
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The Bregman divergence  ,
ˆ,Bin tn tnD r r  between 

tnr  and its reconstruction 
t̂nr  (when 1tnr n   

and ˆ 1tnr n   ) is (Equation 3.15), 
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When ˆ
ttn nr  , the maximum likelihood estimation of 

tn using Equation 1.2 is equivalent to 

minimizing the Bregman divergence between 
tnr  and 

tn  using Equation 1.3. 

 

 

Negative binomial rules 

If the spike count 
tnr  of neuron in time bin t , 

tnr , is a binomially distributed random variable, its 

probability mass function is given by (from Equation 3.6), 
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where 
tn is the mean spike count and parameter v  specifies the dispersion of the spike counts 

under the model. We assume that this parameter v  is a constant for all N  neurons during all T  

time bins. 

Assuming that the spike count of each time bin is independent, the negative log likelihood L  of 

the data matrix R  is given by, 
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It can be shown that, 
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where 'K  contains terms independent of tn .  

The Bregman divergence  ,
ˆ,NBin tn tnD r r  between tnr  and its reconstruction t̂nr  is (Equation 3.16), 
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 (1.6) 

When ˆ
ttn nr  , the maximum likelihood estimation of tn using Equation 1.5 is equivalent to 

minimizing the Bregman divergence between tnr  and tn  using Equation 1.6. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

Appendix 2: Changes in response properties of auditory 

cortical neurons to state change 
 

We identified a change in the synchronization state while auditory cortical neurons responded to 

long tones. These neurons were stimulated with long tones that were of 500 ms duration at 1200 

ms intervals. We examined the spontaneous activity of 100 ms period starting 200 ms after the 

previous tone was removed. We first computed the power in the multi unit activity (MUA) in 

these periods using multitaper power spectral analysis. Figure A1.A shows the ratio of the MUA 

power between 0  - 5 Hz to MUA power between 0 - 50 Hz. The mean ratio for trials 1 - 40 was 

significantly higher compared to the ratio for trials 61 - 100 (two tailed t-test, p<0.05). The state 

of the cortex is more synchronized when this ratio is high (Curto et al., 2009), which indicates 

that the early trials were in a higher synchronized state compared to the latter trials in the 

experiment. Next we formed a data matrix that contained the total spike counts of each neuron 

during the 1 s period. Then we applied two factor NMF to extract two spatial modules from the 

spike count matrix (Figure A1.2). The coefficients corresponding to the two spatial modules 

showed a clear change in their activation level between trials 40 - 60. The first spatial module 

declined its activation level while the second module increased  its activation level . Spiking 

response of the population  during each state is shown in Figure A1.C. The activity in the trial 

from the synchronized state shows activity structured with up-down states while the trial from 

the desynchronized state contains unstructured activity. 

Since we found that the neurons grouped together into a spatial module have higher signal and 

noise correlations compared to randomly selected pairs of neurons, we investigated the signal 

and noise correlation structure across states. We computed signal correlation as the Pearson 

correlation coefficient between the mean spike counts (using the total spike count) of neurons 

across tones. Noise correlations were computed as the Pearson correlation coefficient between 

the differences in the spike counts from the mean spike counts for each neuron pair. The 

variation of noise correlations between the two states are shown in Figure A2. Correlation values 

were summarized for pairs of neurons recorded from each tetrode. Signal correlations in pairs of 

neurons recorded from tetrodes one and  two decreased when the state became more 

synchronized while they increased slightly in pairs of neurons recorded from tetrodes seven and 

eight (two tailed t-test, p < 0.05). Noise correlations in pairs of neurons recorded from tetrodes 

one and two also decreased after desynchronization while they were unchanged in tetrode seven 

and increased slightly in tetrode eight. Noise correlations between pairs of neurons recorded 

from tetrodes 1 - 4 increased with the geometric mean firing rate during the synchronized state. 

However, it reversed and the noise correlations decreased with the geometric mean firing rate 

when the state was desynchronized. On the other hand, pairs of neurons recorded from  tetrodes 

6 - 8 mainly decreased  noise correlations with the increase in the geometric mean firing rate. 

This indicate that signal and noise correlations changed across the state change as have been 
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reported previously (Pachitariu et al., 2015). Further, their structure changed differential across 

the cortex when moving from anterior to posterior. 

 

 

Figure A1. 1: Identification of the change in the synchronization state.  A: the ratio of 

the power in the multi unit activity between 0 - 5 Hz to that of 0 - 50 Hz across the experiment. 

The trials are ordered according to the performed sequence. B: Two factor NMF is able to 

identify the change in the synchronization state using two spatial modules. Spatial modules (SM) 

of the decomposition are shown in the top figure and their activation levels are shown in by the 

coefficients in the bottom figure. C: Raster responses of spiking activity in a representative trial 

from the higher synchronized state (left) and the lower synchronized state (right). 
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Figure A1. 2: Changes in the correlation structure with the state change.  A: Signal 

correlations between pairs of neurons recorded from each tetrode. The first figure shows signal 

correlations between neurons in trials 1 - 40 while the middle figure shows the same for trials 61 

- 100. The figure on the right indicates the change in signal correlation when the state became 

desynchronized. * show significant changes (two-tailed t-test, p < 0.05).  B: Noise correlations 

averaged across tones in pairs of neurons recorded from each tetrode in the same layout as in A. 

C: Mean Pearson correlation coefficient between noise correlations averaged between pairs and 

their geometric firing rate.   
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