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Abstract 
 

 

Software is permeating every aspect of our personal and social life. And yet, the cluster of concepts 

around the notion of software, such as the notions of a software product, software requirements, software 

specifications, are still poorly understood with no consensus on the horizon. For many, software is just 

code, something intangible best defined in contrast with hardware, but it is not particularly illuminating. 

This erroneous notion, software is just code, presents both in the ontology of software literature and in 

the software maintenance tools. This notion is obviously wrong because it doesn’t account for the fact 

that whenever someone fixes a bug, the code of a software system changes, but nobody believes that this 

is a different software system. 

Several researchers have attempted to understand the core nature of software and programs in terms 

of concepts such as code, copy, medium and execution. More recently, a proposal was made by Irmak to 

consider software as an abstract artifact, distinct from code, just because code may change while the 

software remains the same. We share many of his intuitions, as well as the methodology he adopts to mo-

tivate his conclusions, based on an analysis of the condition under which software maintains its identity 

despite change. However, he leaves the question of ‘what is the identity of software’ open, and we answer 

this question here. 

Trying to answer the question left open by Irmak, the main objective of this dissertation is to lay the 

foundations for an ontology of software, grounded on the foundational ontology DOLCE. This new ontol-

ogy of software is intended to facilitate the communication within the community by reducing terminolog-

ical ambiguities, and by resolving inconsistencies. If we had a better footing on answering the question 

‘What is software?’, we'd be in a position to build better tools for maintaining and managing a software 

system throughout its lifetime. The research contents of the thesis consist of three results. 

Firstly, we dive into the ontological nature of software, recognizing it as an abstract information ar-

tifact. To support this proposal the first main contribution of the dissertation is demonstrated from three 

dimensions: (1) We distinguish software (non-physical object) from hardware (physical object), and 

demonstrate the idea that the rapid changing speed of software is supported by the easy changeability of 

its medium hardware; (2) Furthermore, we discuss about the artifactual nature of software, addressing 

the erroneous notion, software is just code, presents both in the ontology of software literature and in the 

software maintenance tools; (3)At last, we recognize software as an information artifact, and this ap-

proach ensures that software inherits all the properties of an information artifact, and the study and re-

search could be directly reused for software then.  

Secondly, we propose an ontology founded on the concepts adopted from Requirements Engineering 

(RE), such as the notions of World and Machine phenomena. In this ontology, we make a sharp distinc-

tion between different kinds of software artifacts (software program, software system, and software prod-

uct), and describe the ways they are inter-connected in the context of a software engineering process. Ad-

ditionally, we study software from a Social Perspective, explaining the concepts of licensable software 

product and licensed software product. Also, we discuss about the possibility to adopt our ontology of 

software in software configuration management systems to provide a better understanding and control of 

software changes. 

Thirdly, we note the important role played by assumptions in getting software to fulfill its require-

ments. The requirements for most software systems -- the intended states-of-affairs these systems are sup-

posed to bring about -- concern their operational environment, usually a social world. But these systems 

don’t have any direct means to change that environment in order to bring about the intended states-of-

affairs. In what sense then can we say that such systems fulfill their requirements? One of the main con-

tributions of this dissertation is to account for this paradox. We do so by proposing a preliminary ontolo-

gy of assumptions that are implicitly used in software engineering practice to establish that a system 

specification S fulfills its requirements R given a set of assumptions A, and our proposal is illustrated 

with a meeting scheduling example. 
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Chapter 1 

 

1 Introduction 

1.1 The Context and Motivations 

Software now permeates all aspects of personal and social activities, improving productivity, quality 

of service, and quality of life for billions of people worldwide. This reliance on software means that it is 

essential for users -- be they companies, governments, hospitals, or individuals -- that software is kept 

running. However, the environments of these software applications are continuously changing and so are 

stakeholder requirements. To survive in such a setting, software needs to continuously evolve.  

According to several surveys (Jarzabek, 2007), (Pfleeger & Atlee, 2009), (Kontogiannis, 2010) in 

the literature, the average cost of software maintenance covers more than 50% of the total budget in a 

software project. This is largely due to the fact that design knowledge about a software system is lost or 

forgotten as its developers drift away. Another factor that makes software evolution difficult and expen-

sive is that as software is changed, its quality deteriorates, making it more complex to understand. Hence, 

maintainers usually spend 40% to 60% of their time to understand the software being maintained 

(Gašević, Kaviani, & Milanović, 2009). Making things even worse, stakeholders usually understand a 

software system from their own perspectives. Much of their knowledge is implicit and hard to communi-

cate to the designers. Without making this knowledge explicit, it is hard to answer important questions 

about software maintenance (Kitchenham et al., 1999). 

Although software engineers have been suffering from such kinds of missing knowledge for a long 

time, software maintenance tools such as Concurrent Versions System (CVS) and Apache Subversion 

(SVN), the version control systems of choice for almost 30 years, are used primarily for code manage-

ment and evolution, while requirements, architectural specifications etc. are left out in the cold. It is such 

code-oriented practices of software maintenance that results in so much knowledge about changes being 

left unrecorded.  

To tackle the aforementioned problems, missing knowledge should be captured and made available 

to its maintainers. In order to accomplish this, we must first change our conceptualization of software so 

that it no longer viewed as mere code. This thesis proposes to tackle precisely this problem by exploring 

an ontology of software that accounts for more than its codebase. Specifically, we propose to study three 

fundamental questions in this dissertation: (1) What exactly is software; (2) How we can identify and rec-

ord different kinds of software changes; (3) How can software that operates within a machine change the 

world by, for example, scheduling a meeting? 
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1.2 Research Problems 

1.2.1 What is Software? 

To answer this question through ontological analysis, we need to check the essential properties of 

software. To do so, we need to distinguish the scenario in which software is changed while keeping its 

identity, from the scenario in which new software is created due to the changes. 

For many, both inside and outside the software engineering community, software is just code, some-

thing intangible best defined in contrast with hardware. For example, the Oxford English Dictionary de-

fines software as „the programs and other information used by a computer‟ and other dictionaries adopt 

similar paraphrases. 

The question we have posed as title for this sub-section admits several different answers, such as 

„source code to be executed on a computer‟ or „instructions used for managing tangible objects‟ or some 

other answers. This demonstrates that the meaning of the concept of „software‟ is still under discussion. 

In other words, currently there is no shared common understanding of what software is among researchers 

and practitioners. 

Recently, some researchers have proposed to interpret software as an information object (Oberle, 

2006), (Smith et al., 2013). This is a promising direction for understanding the nature of software. How-

ever, as not enough attention has been paid in this area after decades of study on this topic, it seems that 

there is still ambiguity about the nature of information, of software and the relationship between them. 

As we already mentioned, without a shared understanding of software, it is hard to precisely com-

municate about any serious question relating to the nature of software among researchers and practition-

ers. Fortunately, ontological analysis possesses the capability to capture knowledge explicitly and unam-

biguously, and we propose to use it to understand software as an information artifact. Based on this 

understanding, we propose an ontology of software capturing the essential properties of software. 

1.2.2 How to Identify and Record Different Kinds of Software Changes? 

Software changes all the time. Such changes have huge impacts on the software applications, so 

dealing with software changes is absolutely necessary. In the past, a few researchers have proposed some 

taxonomies intending to describe the different kinds of software changes (Swanson, 1976), (Chapin, Hale, 

Kham, Ramil, & Tan, 2001), (Buckley, Mens, Zenger, Rashid, & Kniesel, 2005), but the very nature of 

software changes  is still unclear: What does it mean for software to change? How do we tell that, after a 

change, it is still the same software or new software is created? The very possibility for software to 

change while maintaining its identity is in practice ignored by most recent studies, which have mainly fo-

cused on the relationships between software code (intended as an abstract information pattern), its physi-

cal encoding, and its execution (Eden & Turner, 2007). 

Unfortunately, treating software as simply code is not very illuminating. Microsoft (MS) Word 

turned 30 years old in 2013. During its lifetime it has been numerously changed, as its requirements, code 

and documentations have continuously evolved. If software is just code, then MS Word of today is not the 

same software as the original MS Word of 1983. But this defies the common sense that views software as 
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a persistent object intended to produce effects in the real world, which evolves through complex social 

processes involving owners, developers, salespeople and users, having to deal with multiple revisions, 

different variants and customizations, and different maintenance policies. Indeed, software management 

systems were exactly intended to support such complex processes, but most of them consider software 

just as code, dealing with software versioning in a way not much different than ordinary documents: the 

criteria underlying the versioning scheme are largely heuristic, and the change rationale remains obscure. 

Yet, differently from ordinary documents, software changes are deeply bound to the nature of the 

whole software development process, which includes both a requirements engineering phase and subse-

quent design and implementation phases. This means that, making a change to a software application may 

be motivated by the need to fix a bug, to adopt a more efficient algorithm or improve its functionality, 

adapt it to a new regulation and so on. As a result, different kinds of software changes are separated from 

each other and treated with different kinds of methodologies and technologies. 

Although the idea of classifying software changes into different kinds is a promising contribution in 

providing guidance for software engineers with different purposes, the ambiguities in the concepts make 

it difficult to be efficiently applied in practice, as researchers and practitioners hold their own criteria in 

classifying software changes, and sometimes no clear distinctions are provided but intuitions are adopted 

as they like. For example, the difference between the terms „software evolution‟ and „software mainte-

nance‟ is usually vague. Sometimes, they are used interchangeably (Chapin et al., 2001); sometimes, 

maintenance subsumes evolution (Bennett & Rajlich, 2000); sometime, evolution subsumes maintenance 

(Godfrey & German, 2008); or more abstract words „change‟ or „aging‟ are used to avoid the misinterpre-

tations (Buckley et al., 2005), (Parnas, 1994). Besides that, the interpretations of other relating concepts, 

such as „software reengineering‟, „software refactoring‟ and „software adaptation‟, are also treated am-

biguously.  

To remedy this situation, as we shall see in the following parts of this dissertation, we recognize dif-

ferent kinds of software changes that affect different kinds of software artifacts created within a software 

development process. As a solution, we shall present an ontology of software that describes what these 

different software artifacts are, and furthermore identify and record the different kinds of software chang-

es according to their effects on different kinds of software artifacts respectively. 

Currently, the tools and methods used to manage software changes are usually designed as file-based, 

and this limits their capability to track the semantics of the changes. Taking the concurrent versions sys-

tem (CVS) as an example, it compares files by lines. In other words, it is only a syntax comparing tool 

without providing any higher semantics. To tackle this problem, this dissertation tries to show the possi-

bility of adopting a suitable language (for the particular purpose of a software engineer) to represent the 

history of the changes based on the ontology of software stated above, and this could be integrated within 

the existing and future tools for managing software changes with higher semantics. We believe that it will 

be will be helpful to provide such knowledge about software during its changes for the software engineers, 

keeping their knowledge about the software updated, or recalling the forgotten knowledge easier.  

1.2.3 How Does Software Change the World? 

In addition to the essential properties of the different kinds of software artifacts recorded during the 

different kinds of software changes aforementioned, there is another kind of knowledge that deserves spe-
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cial attention: these are the assumptions made during the software engineering process. Without explicit 

representations of these assumptions, the description about the software is incomplete, something that can 

result in great difficulties when managing a software system, as argued below.  

Consider a software application that schedules meetings upon request. Its basic requirement, which 

the application is mandated to fulfill, is to bring about a change in the social world within which it oper-

ates that consists of a new meeting that satisfies timetable and other constraints provided by the requester. 

But the software program, by its very nature, can only change the states of the machine within which it 

operates. 

There seems to be a paradox here. The requirements for most software systems, the intended states-

of-affairs these systems are supposed to bring about, concern their operational environment, usually a so-

cial one. But these systems don‟t have any direct means to change that environment in order to bring 

about the intended states-of-affairs
2
. In what sense then can we say that such systems fulfill their require-

ments? 

It seems that a software program possesses a peculiar characteristic compared with other kinds of in-

formation artifacts (e.g. recipes or laws) in that it plays the role of a bridge between the abstract states of a 

machine and the outside world. More specifically, other kinds of information artifacts directly manipulate 

the objects in the world; instead of that, software program directly manipulates the virtual variables in a 

machine, and in turns, the result of this manipulation in the machine affects the outside world.  

A software program is embedded and operates in a machine, and in this sense machines are soft-

ware-driven. However, the purpose of a software program (its requirements) is usually intended to affect 

the phenomena of its environment external to the software-driven machine. This machine monitors and 

controls the environment by means of transducers bridging the gap between symbolic data and physical 

properties. For simplicity, we hereafter refer to the software-driven machine as machine, following 

(Michael Jackson, 2000) and (Axel Van Lamsweerde, 2009). 

In the case of a stand-alone personal computer (PC) such transducers only concern the human-

computer interface and the standard I/O devices; for mobile systems they may also include location and 

acceleration sensors, while in the case of embedded systems they take the form of ad-hoc physical sensors 

and actuators. So, in the general case, the software‟s ultimate purpose is achieved by running a software 

program that produces certain effects inside a computer, which drives a physical machine, which in turn 

produces certain effects on its external environment.  

Understanding this indirect effect of software on the world is essential, as our modern society de-

pends on software for almost every aspect of our lives (e.g. in business, hospital and et al.). A money 

transfer from a person to another through software, becomes a data change in one account and a corre-

sponding data change in another account, even if there is no physical object, in the form of a paper receipt. 

Moreover, in most modern financial systems, only about 3% of the money exists in paper form, while the 

other 97% is just electronic data stored in computers (Ryan-Collins, Greenham, Werner, & Jackson, 

2014). 

                                                 
2
 We are focusing on „pure‟ software systems that consist of software and various interfaces, as opposed to cyber-

physical systems (such as robots, drones, etc.) that consist of software and mechanical/robotic components, which 

do give them the capability to directly change their physical environment. 
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Several researchers, (Lewis, Mahatham, & Wrage, 2004), (Mamun & Hansson, 2011), (Brown, 

2006), (Tun et al., 2015), have emphasized the importance of assumptions, and have proposed techniques 

for capturing them. Our proposal goes further in that direction as it identifies new classes of assumptions 

(notably, the dependence ones) that had not been previously accounted for. 

1.3 Contributions 

1.3.1 Software as an Information Artifact 

To better understand the nature of software, we discuss its ontological nature, interpreting it as a 

special kind of information object. Focusing on informational aspects of software, several researchers, 

(Eden & Turner, 2007), (Oberle, 2006), have addressed the complex relationships among i) software code, 

consisting of a well-formed expression of a set of computer instructions; ii) a software copy, which is a 

physical inscription of the code; and iii) a medium, the hardware medium itself; iv) a process, which is the 

result of executing the software copy. 

These works can be viewed as applications of the semiotic triangle proposed by (Ogden, Richards, 

Malinowski, Constable, & Crookshank, 2001) to express the information communication processes be-

tween agents. For example, as shown in Figure 1, a speaker may say the word “Dog” to denote a concept 

in her mind, and this concept refers to animal dogs in the world; then, this word may invoke a similar 

concept in the listener‟s mind referring to animal dogs, as intended by the speaker. 

Applying this idea to software, during a software engineering process, a software program is usually 

encoded in some programming language and corresponds to the symbol in the triangle, and this symbol 

represents some instructions as the knowledge or concept held in stakeholder minds. This is a simple 

demonstration to present the intuition and flavor of the rationale why we interpret software as an infor-

mation object, further detail and concrete explanations are left as one of our main contributions in Chapter 

4. 

 

Figure 1. The semiotic triangle, adapted from (Ogden et al., 2001) 

Yet, according to (Irmak, 2013), software is synonymous to program and can be understood in terms 

of the concepts of algorithm, code, copy and process, but none of these notions can be identified with 
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software, mainly because, due to its artifactual nature, software has different identity criteria. We share 

many of Irmak‟s intuitions, as well as the methodology he adopts to motivate his conclusions, based on an 

analysis of the condition under which software maintains its identity despite change. 

Hence, another main contribution of this dissertation consists of an argument, supported by ontolog-

ical analysis, that software has a complex artifactual nature, as many artifacts result from a design process, 

each having an intended purpose that characterizes its identity. This is what distinguishes software arti-

facts from arbitrary code: they are recognizable as having purposes, and they are the results of intentional 

acts. Combining the informatical nature and artifactual nature of software, we interpret software as a spe-

cial kind of information artifact, inheriting the essential properties of both an information object and an 

artifact. 

1.3.2 Identify and Record Changes in Different Kinds of Software Artifacts 

Based on the analysis of the ontological nature of software as an information artifact as aforemen-

tioned, we are going to answer the research questions left open by (Irmak, 2013): „work still needs to be 

done on questions such as how software changes, what the identity conditions for software are, and more‟. 

So we shall focus on the identity criteria for software originated by its specific artifactual nature, and mo-

tivated by the need to properly account for software changes. 

We start with studying a peculiar aspect of software with respect to other information artifacts such 

as laws or recipes, as (Eden & Turner, 2007) observe, it is the bridging role of it between the abstract ma-

chine and the concrete world: despite the fact that it has an abstract nature, it is designed to produce spe-

cific results in the world. Therefore, it seems natural to us to adopt a requirements engineering perspec-

tive while analyzing the essence of software, looking at the whole software engineering process, 

including requirements analysis, instead of focusing on its computational aspects only. Our analysis is 

founded on a revisit of Jackson and Zave‟s seminal work on the foundations of requirements engineering 

(Michael Jackson & Zave, 1995), (Zave & Jackson, 1997), (Gunter, Jackson, & Zave, 2000), which clear-

ly distinguishes the external environment that constitutes the subject matter of requirements, the (comput-

er-based) machine where software functions fulfill such requirements, and the interface between the two.  

Jackson and Zave define the terms „requirements‟ and „specification‟ as referring to the intended be-

haviors in the environment and at the interface, respectively. Here we refine their terminology using „re-

quirements‟ to refer to the intended behaviors in the environment independently of the machine, exclud-

ing therefore the interface, „external specification‟ to point to the expected behaviors at the interface, and 

„internal specification‟ referring to the specific behaviors inside the machine, namely that of the system 

that drives the machine. 

As shown in Table 1, we shall rely on these refined notions to determine the essential properties of 

three different kinds of software artifacts: software products, software systems, and software programs. In 

addition, to account for the social nature of software products in the present software market, a further 

kind of software artifact will be introduced, namely licensed software product, whose essential property is 

a mutual pattern of commitments between the software vendor and the software customer.  
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Table 1. Essential properties of software artifacts 

Object Essential Properties 

Licensed Software Product Mutual Vendor-Customer Commitments 

Software Product Requirements 

Software System External Specification 

Software Program Internal Specification 

Code Syntactic Structure 

As an output of the preceding ontological analysis, we propose an ontology of software to capture 

the essential properties of different kinds of software artifacts. This ontology could be used to semantical-

ly annotate the logs of software behaviors, or to document empirical studies so that they can be classified, 

understood and replicated, or serve as a groundwork to develop the evolution oriented model processes, 

requirement engineering, workload assignment and other software engineering activities. 

For instance, traditionally, revisions and variants are managed by means of naming conventions and 

version codes which are usually decided on the basis of the perceived significance of changes between 

versions without any clear criterion (e.g. CVS, SVN). We believe that the classification of different kinds 

of software artifacts introduced in this dissertation can make an important contribution to make this pro-

cess more disciplined by providing a general mechanism to explicitly express what is changed when a 

new version is created. 

1.3.3 Assumptions as a Bridge between the World and Machine 

As mentioned in the research problems, in addition to the essential properties about the different 

kinds of software artifacts, there is another kind of knowledge deserves special attention, and it is the as-

sumptions made during a software engineering process. Any machine designed to solve a problem makes 

assumptions. Some of these assumptions capture expectations about the world that are always supposed to 

be valid, such as natural laws, and can be exploited in the design. Other assumptions circumscribe the 

limits of the solution. For example, for meeting scheduling, we may assume that there are enough rooms 

available for all meeting requests and design a solution that only finds a suitable time slot and selects a 

room. Such an assumption means that our solution may not work when there is no room available (e.g. 

during a busy period with many meeting requests). 

Yet other assumptions may relate the interface behaviors to some expected behaviors in the world. 

For instance, we may assume that, if the computer says (by means of a suitable message on the screen) 

that a certain room is reserved for a certain meeting at a certain time, the room will not be used for any 

other meeting at that time. However, this system doesn‟t have any direct means to change that environ-

ment in order to bring about the intended states-of-affairs, and the paradox aforementioned lies here. 

Hence, without explicit representations of these assumptions to clarify the world, the machine, and the re-

lations between them, the description about the software is incomplete, which could result in the difficulty 

in managing a software application. 

According to the statements above, the main purpose of this contribution is to account for this para-

dox. We do so by proposing a preliminary ontology of assumptions that are implicitly used in software 
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engineering practice to establish that a system specification S fulfills its requirements R given a set of as-

sumptions A. Adopting the formula of the requirements problem proposed by (Michael Jackson & Zave, 

1995), our task is to characterize the assumptions used and needed to establish that 

,A S R
 

given that the requirements are about world states (e.g., meetings, participants, timetables, rooms, 

and etc. ), while the specification is about machine states (database tables, tuples) and manipulations 

thereof. 

Several researchers , (Lewis et al., 2004), (Mamun & Hansson, 2011), (Brown, 2006), (Tun et al., 

2015), have emphasized the importance of assumptions, and have proposed techniques for capturing them. 

Our proposal goes further in that direction, as it identifies new classes of assumptions (notably, the de-

pendence ones) that had not been accounted for, and the specific contributions in this part of the disserta-

tion are listed as follows: 

1) A preliminary ontology of assumptions is proposed, introducing four kinds of assumptions. Two 

of them are proposed based on the literature work, including world assumptions and machine assumptions. 

Taking a further step, two new kinds of assumptions are discovered and integrated into the ontology, in-

cluding world dependence assumptions and machine dependence assumptions respectively. We claim that 

these four kinds of assumptions are the key to solve the aforementioned paradox, and we elaborate the 

role of them in linking the world states and machine states together; 

2) We clarify the concept of „assumption‟, identifying two possible senses of interpretations that are 

both important for software engineering processes, namely the assumptions-used and the assumptions-

needed, and provide an update in Jackson and Zave‟s original formula to capture the software engineering 

activities more precisely; 

3) We discuss how our results can be employed methodologically, suggesting how software devel-

opers should systematically and explicitly manage all the four kinds of assumptions proposed here. We 

suggest that these assumptions should be explicitly identified and systematically guaranteed to hold 

throughout the useful lifetime of their software system. 

1.4 Structure of the Dissertation 

To present the contributions summarized in the preceding sub-chapter, we have arranged the rest 

contents of the dissertation as follows: 

Chapter 2 serves as a survey and review of the related work, including their understanding of soft-

ware, their understanding and management methodologies of software changes, and their understanding 

of assumptions. 

Chapter 3 introduces our research baseline that is taken as the starting point of this dissertation, con-

sisting of the adopted basic ontological concepts, the World and Machine Framework derived from the 

reference model for requirements and specifications proposed by Jackson and et al. (Gunter et al., 2000), 
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and situation calculus adopted as our representation language proposed by (McCarthy & Laboratory, 

1963). 

Chapter 4 discusses the ontological nature of software, distinguishing it from hardware, and also 

demonstrating the idea that the rapid changing speed of software is supported by the easy changeability of 

its medium hardware. Meanwhile, we also discuss about the ontological nature of information artifact, 

and show in what sense software could be recognized as an information artifact.  

Chapter 5 proposes a preliminary ontology of software. Three different kinds of software artifacts 

are identified according to their essential properties, including software products, software systems, and 

software programs. This classification is developed based on the idea of cutting the world and the soft-

ware-driven machine with a clear boundary, we name it as WM framework which is derived from the ref-

erence model for requirements and specifications proposed by Jackson and Zave. Different kinds of soft-

ware artifacts refer to the phenomena in the different parts of WM framework (outside world, interface, 

and inside machine). In addition, there is a fourth kind of software artifact reflecting the social nature of 

software products, whose essential properties are based on the mutual commitments between vendors and 

customers. Besides contributing to clarify concepts and terminologies in the software engineering com-

munity, we also demonstrate the possibility that our work could also be used as a foundation for software 

change management, especially for identifying and recording the changing histories of these different 

kinds of software artifacts.  

Chapter 6 proposes a preliminary ontology of assumptions, illustrating the four kinds of assumptions 

that enable the link between the world and machine crossing the boundary between them. Also, in this 

chapter, we explain our interpretation of the assumptions in the formula „A, S ⊨ R‟ as „assumptions-used‟ 

and „assumptions-needed‟, from which we can derive the importance of making such assumptions explicit, 

and distinguishing these two kinds of interpretations from each other. At the end of this chapter, we pro-

pose a meeting scheduling case study in situation calculus representing the requirements, external specifi-

cation, and internal specification, and meanwhile elaborating on the role of these assumptions in estab-

lishing the link between the world and machine states. 

Chapter 7 summarizes the main contributions of this dissertation and indicates the possible promis-

ing directions of future work. 
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Chapter 2 

 

2 Related Work 

2.1 Understanding Software 

2.1.1 Software Interpreted in a General Sense 

In the literature of Computer Science, the earliest use of the term „software‟ is attributed to (Tukey, 

1958), who was also famous for proposing the term „bit‟ for an atomic data unit (Buchholz, 2000). The 

term „software‟ was incorporated into the Oxford English Dictionary in 1960. Historically, this term was 

used in a more general way, independently of computers. For example, it was used by rubbish-tip pickers 

around 1850 to indicate vegetable and animal matters that are decomposable. 

Many interpretations of the term „software‟ were proposed by researchers, and some of which are 

listed and discussed below. 

Osterweil believes that, in addition to computer software, there are other kinds of software, such as 

processes, recipes, laws, assembly instructions, and driving directions (Osterweil, 2008). He characterizes 

all these kinds of software as follows: 

„While software is itself non-physical and intangible, a principal goal for instances of the type soft-

ware is for them to contain one or more components whose execution effects the management and control 

of tangible entities (Osterweil, 2008)‟. 

Following Osterweil‟s account above, software can be divided into two main categories, computer 

software and other kinds of software. The categorization is intuitive: computer software is intended to be 

executed on a computer, while other kinds of software execute on different physical manifestations other 

than computers. For example, laws are intended to be executed by government bureaucracies, and recipes 

are intended to be executed on cooking devices (Osterweil, 2008) . 

By examining the characteristics of different kinds of software, Osterweil proposes an interesting 

view that computer software engineering can contribute to other forms of software engineering, and op-

positely, computer software engineers can learn a lot from the study of other forms of software. For ex-

ample, software engineering formalisms and approaches could be applied to laws, such as the attempt 

with a workflow language (Georgakopoulos, Hornick, & Sheth, 1995). On the other hand, general project 

process management methods could also be good lessons for computer software development processes. 

Suber interpreted software
3
 as an even more general concept based on his interpretation of the term 

„pattern‟ (Suber, 1988). For him, software is any abstract pattern formulated/stored in a medium, and 

could be the embodied medium itself. In his proposal, „pattern‟ is used in a broad sense that anything „… 

signifying any definite structure, not in the narrow sense that requires some recurrence, regularity, or 

                                                 
3
 Suber used the terms "program" and "software" interchangeably. 



RELATED Work 

12 

symmetry.‟ In a word, whenever there is a difference existing in the current situation, there exists a pat-

tern accordingly. 

Then, based on this definition of pattern, he interprets software as „patterns, readable and executable 

by a machine, and liftable.‟ According to this interpretation, we can derive some extremely counter-

intuitive cases, such as the ones stated by Suber himself that „all circuits deserve the name software, since 

they are physical embodiments of patterns, readable and executable by a machine, and liftable‟ and 

„firmware is one of the most important examples of hardware that is software.‟ 

However, we want to point out that Suber doesn‟t distinguish a „pattern‟ from „the physical embod-

iments of the pattern‟, and this brings about ambiguities in understanding his interpretation of software, as 

it is defined based on the concept of „pattern‟. For him, there is no difference between software and hard-

ware, yet we do not want to mix the boundary to such an extreme scale. For us, to recognize a hard disk 

as software is quite counter-intuitive, and it is more desirable to separate the physical medium as hard-

ware, from the abstract representations (as patterns) which are materialized in the hardware medium. For 

example, in the situation where some sentences are printed on a piece of paper, the writing structure is not 

equal to the ink and the paper, as the same structure could also be shown on a monitor which is a total dif-

ferent hardware medium. 

2.1.2 Software Interpreted in a Limited Sense as Computer Software 

Although the ideas stated in the preceding paragraphs are certainly intriguing, we focus on a proper 

ontological account of computer software, which is still missing in the literature. Focusing on the compu-

tational aspects, several scholars have addressed the complex relationships among i) a software code, un-

derstood as a set of computer instructions; ii) a software copy, which is the embodiment of a set of in-

structions through a hard medium; iii) a medium, the hardware medium itself; iv) a process, which is the 

result of executing the software copy. 

Moor’s Work 

Moor‟s work is a good point to start with, as he believes that to understand software-related notions, 

one needs to understand the conceptual framework of Computer Science, and if the notions are misunder-

stood, sloppy research conclusions might be derived, especially in the realm of Artificial Intelligence (AI) 

(Moor, 1978). 

Moor interprets a computer program from two levels: 1) from the physical level, computer programs 

can be embodied in the form of series of holes in punched cards, configurations on magnetic tape, or in 

any number of other forms; 2) from the symbol level, computer programs could be understood as symbol-

ic representations of instructions to a computer. 

Note that, the computer programs stated above possess both the physical and symbolic characteris-

tics at the same time, as Moor doesn‟t separate the symbolic representation of instructions from the em-

bodiment of the symbolic representation in some physical medium. Hence, according to that, the change-

ability to the instructions is reduced into the changeability to the embodiment of the instructions. 
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Underlying the above understandings of a computer program, Moor proposed his definition of it as 

„a computer program is a set of instructions which a computer can follow (or at least there is an acknowl-

edged effective procedure for putting them into a form which the computer can follow) to perform an ac-

tivity.‟ 

As we can see, this definition is based on an unexplained preliminary term „computer‟, and the task 

of deciding what is a computer is left as a practical question for the software engineers. In other words, to 

judge the identity of a computer program, a context containing a person and a computer should be given 

first. The representations of the instructions as computer programs could be embodied in any forms, as 

long as it could be accepted and processed by the computer, or could be effectively transformed into some 

forms that could be accepted by the computer. 

Besides the understanding of a computer program, there is an orthogonal pair of concepts „software‟ 

and „hardware‟ proposed by Moor. As aforementioned, the changeability to the instructions is reduced in-

to the changeability to the embodiment of the instructions for Moor. Consequently, for a computer pro-

gram as a set of instructions, he interpreted it as software or hardware according to the changeability to 

the instructions possessed by the software engineers or the users of it. For example, in an extreme condi-

tion, a person at a factory who can replace circuits in a computer understands her activity as giving in-

structions, then for her the programmable circuits could be interpreted as software. 

Although Moor‟s idea about software and hardware was clearly explained, according to his view the 

distinction between software and hardware is quite subjective and not stable over time. What is consid-

ered hardware by one person, may be regarded as software by another. 

We accept Moor‟s key point that the boundary between software and hardware is illusive. However, 

we‟d like to avoid subjective definitions of software, as they invariably lead to confusion and misunder-

standings. 

Colburn’s Work 

Colburn launches his argument with an interesting example to show the importance of developing a 

clear and shared set of software-related notions. His example was first presented by (Wallich, 1997), talk-

ing about a book printed in hard copies with related floppy disks attached. One of the algorithms intro-

duced in the book is a powerful encryption algorithm, and this algorithm was printed both on paper and 

stored in the attached floppy disks. The U.S. government prohibited the export of the book because the 

algorithm stored in the floppy disks was so powerful that the government was not able to decrypt the con-

tents encrypted by it. The interesting part is that although the U.S. government recognized the algorithm 

as a dangerous machine stored in the floppy disks, this book would have been freely exportable without 

the floppy disks even with the same algorithm printed in the book. 

From the preceding example, we can derive the conclusion that although we intuitively share the 

idea that there is an abstract representation as the same software, the embodiments of it in different physi-

cal forms could be treated differently. To address this controversy, Colburn suggests interpreting software 

as a „concrete abstraction‟ (Colburn, 1999). As such, software possesses a dual nature that on one hand it 

is concrete because it is encoded in physical memory elements, and on the other hand it is abstract, as it is 

a text representation abstracting itself from any particular physical embodiment. 



RELATED Work 

14 

Colburn cites Hailperin‟s textbook „Concrete Abstractions: An Introduction to Computer Science‟ as 

an example to reinforce his proposal, as this author intentionally switches between the poles of this duali-

ty of software throughout the book (Hailperin, Kaiser, & Knight, 1999). Also, Colburn refers to the dual 

nature of microphenomena asserted by Copenhagen interpretation in the physics field to show the ration-

ality of interpreting software similarly with a dual nature. 

The concrete nature of software proposed by Colburn is intuitive and easy to understand, yet the ab-

stract nature of software was not so clearly explained, as he distinguished software abstraction from  

mathematical abstraction. For him, although both kinds of abstractions are used to hide details (called 

contents by Colburn), mathematical abstraction is used to eliminate empirical details, and only focus on 

the syntactic form transitions, and this is a restriction on their contents. Yet, software abstraction does the 

opposite, by hiding the details, they provide the possibility to replace or modify the details without affect-

ing the abstractions, and this is an enlargement of their contents. For us, this distinction is subtle and 

tricky, as mathematical methods could also be used to guide physical implementations, and the only dif-

ference between the two kinds of abstraction is that one comes with a compiler, and the other does not. 

Hence, we don‟t see the need to distinguish them. 

Colburn‟s proposal is interesting, and might be illuminating. However, the cognitive understanding 

of the world need not be the same as the world. Some social entities only exist in people‟s minds, hence 

making metaphors between different disciplines is not necessarily a useful research method.   

On the other hand, the examples about the encryption algorithm and the textbook interpreting soft-

ware as a concrete abstraction provided by Colburn, could also be used to demonstrate the ambiguities of 

software-related concepts within many communities of research or practice, and this underscores the im-

portance of providing clear criteria for distinguishing among such software-related notions. 

Duncan’s Work 

Similarly with Moor and Colburn, Duncan also recognizes the dual nature of software, although this 

was implicitly stated, we still can find clear proof of this from his definition of software. As he clarifies in 

his paper, the term „software‟ should be interpreted as a concept to refer to „computer programs that are 

encoded on … physical objects‟ (Duncan, 2011), and to avoid producing ambiguities, he coined the term 

„software program‟ to replace the original one. 

Stated more specifically, a software program consists of a set of instructions written in some pro-

gramming language. Moreover, this set of instructions should be encoded in some physical medium as 

patterns, such as holes on a punch card, pattern of 1s and 0s in the magnetic coating of a hard disk, or the 

pits and lands on a CD. 

However, unlike Moor, Duncan‟s „software program‟ should be accepted by a computer directly. 

For Duncan, a software program generally depends on a kind of „computational hardware‟. As we stated 

above, a software program must be encoded on some physical medium, and the physical medium must be 

an instance of the kind of „computational hardware‟. A computational hardware is intentionally designed 

for computation, for example, a hard disk is designed to be used for computations within a computer, and 

a piece of paper with printed symbols may not be recognized as a computational hardware, as it is usually 
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not designed for computations within a computer. This narrows down the range of meanings of a software 

program, excluding the ones that could not be accepted by the computer directly. 

For Moor, a piece of source code printed on a piece of paper could be interpreted as a computer pro-

gram, as it could be translated into a form as an input to a computer; yet for Duncan, it could not be inter-

preted as a software program, because the paper is not designed for computations within the computer, 

and it cannot be accepted by the computer directly. 

Another point on which Duncan disagrees with Moor is that Moor adopts the changeability of an en-

tity as the criterion for deciding if the entity is software or hardware, yet Duncan thought this was implau-

sible, given the general ontological nature of them. However, Duncan made a step in this direction, pro-

posing that the ontological dependency of an entity could be used as the criterion to distinguish software 

from hardware. 

More specifically, Duncan states that „a piece of computational hardware is an ontologically inde-

pendent entity, whereas a software program is an ontologically dependent entity‟. For him, computational 

hardware can exist independently of any other entity, such as a hard disk, it exists by itself; yet, a soft-

ware program cannot exists by itself, it must be encoded on an computational hardware instance. For ex-

ample, a software program could be encoded on many different hard disks, yet when all hard disks are de-

stroyed, the software program ceases to exist. 

Duncan‟s proposals are interesting, yet many issues still need to be dealt with. For example, it might 

be counter-intuitive for many that a piece of source code printed on a piece of paper cannot be interpreted 

as a computer program; or, as he proposes, a software program as an entity generally depends on a kind of 

computational hardware, all the software programs with the same instruction syntax encoded in CDs are 

identical to each other, yet they are different from the software program with the same instruction syntax 

encoded in a hard disk, and this also might be quite counter-intuitive. 

Eden and Turner’s Work 

Different from previously discussed researchers who believed that the dual nature of a computer 

program consisted of an abstract syntax and its physical embodiments, Eden and Turner recognize a simi-

lar but different duality of a computer program including the abstract syntax as program-scripts and the 

executions of the program-scripts as program-processes (Eden & Turner, 2007). 

In other words, for them, the term „program‟ is therefore polysemic in a different way: a program-

script is a well-formed expression based on a Turing-complete programming language
4
, which is static 

(timeless); while a program-process is an execution of a program-script, which is dynamic (extending in 

time). They describe the relation between a program-script and a program-process as that a program-

script is an „abstraction‟ from the program-process, or reversely a program-process is a „concretization‟ 

from the program-script. 

                                                 
4
 The notion of „Turing-completeness‟ was provided by Martin, which requires a computer program supports a non-

trivial set of instructions (Martin, 2010). 
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As shown in Figure 2, the distinction between a program-script and a program-process contributed 

as a small part of an ontology of computer programs consisting of several other inter-related notions, and 

the concept of „abstraction‟ aforementioned is the key criterion to distinguish all these notions from each 

other in the so-called program abstractions taxonomy.  

However, for Eden and Turner, the term „abstraction‟ was interpreted in a very general sense, and 

the meanings of it were not stable, as they stated that any of the combinations of the following interpreta-

tions was acceptable, including I) Intangible (namely un-touchable), II) Generalized (category vs. ele-

ments), III) Underspecified (namely subsumption relationship), IV) Immanently meaningful to humans, V) 

It from bit (namely instances of information), VI) A-temporal (timeless).  

 

Figure 2. The original program abstractions taxonomy adopted from (Eden & Turner, 2007) 

Although there have been many interpretations of the relationship „abstraction of‟, as shown in Fig-

ure 2, they were all represented by a unique diagram legend (linked solid line without direction). We find 

this way of representation is a bit misleading, as the readers may be not capable of distinguishing one link 

from another with a different meaning. To provide a better understanding of Eden and Turner‟s ideas, we 

revised their original diagram into a modified version as shown in the following Figure 3. As you shall 

see, firstly we replace each solid line in the original diagram with an arrowed solid line; then, each of 

them is labeled with a specified interpretation of the concept „abstraction‟. 

For example, a program is abstract from a hardware, as the program is intangible syntax and the 

hardware is the tangible physical storage/execution medium; a metaprogram is abstract from a program, 

as a metaprogram is a specification describing the characteristics which a program should possess, hence 

a possible set of programs could be developed satisfying the specification, and each of these programs be-

comes a member of this metaprogram; similarly but differently, a program is an abstraction from a pro-

gram-script or a program-process, as they are both interpreted as subtypes of program, a program-script is 

a program, and a program-process is also a program.  
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Figure 3. The revised program abstractions taxonomy 

In a word, Eden and Turner recognize the pair of concepts „abstraction and concretization‟ as the key 

to understand the computer program related notions, especially they claim that it is its bridging role link-

ing the abstract and the concrete together that provides the unique philosophical identity of software dis-

tinguishing itself from other kinds of objects. We share this idea that there exists a paradox underlying the 

situations where world phenomena can be affected by a computer program that can only change machine 

states directly, and has no physical means to change the outside world. However, we will try to avoid 

overloading a term with so many different interpretations, and we shall give a detailed explanation of this 

paradox by illustrating the role of assumptions in software engineering processes. 

Oberle’s Work 

Similar as the previous reviewed research, Oberle also spotted the ambiguities in the interpretations 

of software-related notions, and emphasized the importance of clarifying them. According to his view, the 

term „software‟ is heavily overloaded, with at least three different interpretations used in the software en-

gineering community, including the abstract syntax code expression, the physical realization of the code, 

and the execution of the code, and he coined three terms SoftwareAsCode, ComputationalObject, and 

ComputationalActivity to refer to these interpretations respectively. 

For Oberle, a piece of SoftwareAsCode should be the encoding of an algorithm specification. For 

example, the Bubble Sorting algorithm could be encoded in Java, and the abstract source code in Java is 

the so-called SoftwareAsCode which, Oberle believes, deserves the name „software‟ best. This interpreta-

tion of software denies the dual nature view of software, and only recognizing the syntactic side of it. 

The physical side of the dual nature of software was separated out and referred by the term Compu-

tationalObject as the physical realization of the syntactic code in some concrete hardware. The „realiza-

tion‟ mentioned here means the physical inscription or the embodiment of the code, and the supporting 

physical medium of the realization could be a hard disk, a memory card, or et al. Note that Oberle also 
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restricts the scope of suitable realizations, as previous researchers did, to the ones that can be loaded and 

executed by the Central Processing Unit (CPU). 

Finally, he proposes that the term ComputationalActivity which denotes the software execution pro-

cesses. Differently from Eden and Turner‟s view who recognized program-process as a sub-class of pro-

gram, Oberle adopted the relationships of realizes and participantIn to link the different software related 

notions together. As shown in Figure 4, a piece of SoftwareAsCode could be realized by a corresponding 

ComputationalObject, and whenever the ComputationalObject is called and executed in a computer, we 

can say the ComputationalObject participates in a corresponding ComputationalActivity. 

 

Figure 4. Clarifying the polysemy of the term 'software' 

Yet, differently from others, Oberle proposes his own ontology of software based on two specific 

principles: 1) developing the ontology on top of some well-formed foundational and domain ontologies; 2) 

restricting the scope of the ontology as small as possible (Oberle, 2006), (Oberle, Grimm, & Staab, 2009). 

The first principle was chosen because well-formed foundational and domain ontologies usually are 

consisted of preliminary concepts which are well-delimited with clear philosophical analysis. The reliabil-

ity of these ontologies had been examined and proved by many other researchers in the literature, so that 

by referring to them, the newly developed ontology could inherit these well-formed ontological commit-

ments directly from the previous work. 

The second principle was chosen because there were so many notions used in the software engineer-

ing community, and that makes it hard to provide a complete ontology that covers all of them. According 

to that, he tries to capture the core notions only, and calls his new ontology Core Software Ontology 

(CSO). This core ontology can be extended in various directions depending on its intended uses. 

After reviewing Oberle‟s ontology, we would say that he makes a significant step in the direction of 

pinning down different software related notions, separating them from each other, escaping from the trap 

of mixing two contradictory notions into the so-called dual nature of software. 

Final point to notice from Oberle, he recognizes software as an information object based on the work 

of Gangemi‟s work (Gangemi, Borgo, Catenacci, & Lehmann, 2004). We share a similar view on this 

point, yet the ontological nature of information object itself is still under considerable debate, and we will 

try to clarify this concept as a contribution of this thesis in Chapter 4. Still, there is another missing piece 

in the puzzle of an ontology of software: the artifactual nature of software. 

2.1.3 Software Interpreted as an Artifact 

Lando’s Work 

Similarly as Oberle, Lando builds upon some historical foundational and domain ontologies in the 

literature and restricts the scope of his ontology to a limited core, Lando and his colleagues develop their 
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own ontology, named Core Ontology of Programs and Software (COPS). According to this ontology, a 

program
5
 is a Computer Language Expression (similar as SoftwareAsCode). Besides that, Lando makes a 

further step in that direction, as he recognizes a program as an artifact. We believe this opens a door to 

reach a genuine and shared understanding of software (Lando, Lapujade, Kassel, & Fürst, 2007), (Lando, 

Lapujade, Kassel, & Fürst, 2009). 

 

Figure 5. Program as a sub-class of both Computer Language Expression and Artifact of Computation 

As shown in Figure 5, a program is a piece of computer language expression, which in turns is a 

piece of formal expression. By taking this position, similar as previous researchers, a program could be 

interpreted as a piece of abstract syntactic expression encoded in some programming language. This 

choice makes the identity of a program depend on its encoding programming language, and this expres-

sion should be acceptable by some compiler and then executed by a computer. 

More importantly, a program is also interpreted as an artifact of computation by Lando. For him, an 

artifact is an object
6
 to which a function is assigned. A function is some capability assigned by the agent 

who crafted the artifact, and through the function assignment the agent expresses her purpose to use the 

artifact to carry out some actions. The actions could affect the physical world or the non-physical world, 

and Lando believes that a program should be interpreted as an artifact being only capable to modify the 

non-physical world. 

Lando restricted his study within the interpretation of a program as an artifact of computation that 

can only affect corresponding abstract computing activities. Although this choice is clean and tidy, differ-

ently from Lando, we believe it is also important to capture the effects of programs to the physical world. 

After all, most software applications today are developed to solve real-world problems. According to this 

view, as we shall see, different kinds of software artifacts are proposed, considering their intentional ef-

fects to the different parts among a computer and its outside world. 

Irmak’s work 

Similarly as Lando, yet Irmak proposes a different approach to account for the artifactual nature of 

software that distinguishes it from other kinds of objects which were closely related to but totally differ-

ent from software (e.g., algorithm, code, copy, and execution process), yet most of the historical work in 

                                                 
5
 Lando treated the term „software‟ differently from „program‟, as he interprets a program as a piece of Computer 

Language Expression, yet software is a collection or library of programs. This distinction seems counter-intuitive to 

us, and to avoid ambiguity, this distinction is ignored here, and a set of consistent terminology for the software relat-

ed notions will be provided and discussed as a contribution in Chapter 5. 
6
 More precisely, it is an endurant, which is something cannot be instantiated further and can exist in a time point, 

and keeps its identity during time periods. Details are much more complex and left as explanations in our baseline 

chapter. 
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understanding the nature of software fails to capture this point. He disagrees with both the interpretations 

of software in a general sense or in a limited sense presented earlier, denying the proposals about the dual 

nature of software, as he believes that such proposals are self-contradictory. Instead of those interpreta-

tions, for Irmak, software should be interpreted as an abstract artifact (Irmak, 2013). 

Firstly, software is an artifact, and being an artifact it is supposed to be the result of some intentional 

human activities. Irmak defended his proposal by pointing out that any ontology should be developed 

considering the common minds and ideas existing in a community. It is the ontologists‟ job to make the 

implicit and ambiguous notions explicit and clear, but not to study what is the real true nature of the phys-

ical world which is the physicists‟ job. This claim is intuitive to us, because in the modern society soft-

ware is indeed developed by software engineers with specific purposes in mind. Randomly-generated 

source code may be accepted by a compiler by chance, yet it means nothing to human users unless they 

understand what it does. Similarly, a natural stone from a riverbank is not an artifact by itself, yet when-

ever it is used as a paperweight on the table, an artifact comes to exist. 

Furthermore, software is an abstract artifact. Differently from the Platonic view of abstract objects 

that are eternal and independent, software as an artifact depends on the intentions of human beings. Un-

like Platonic abstract objects that lack both spatial and temporal properties, software only lacks spatial 

properties, as it possesses temporal ones, and has in addition intentional properties.  

To make this more intuitive, Irmak illustrates his ideas through a demonstration of the similarities 

between software and music. For him, both software and musical works are abstract artifacts, the former 

is created by software engineers and the latter is created by composers, yet both are created with inten-

tions. Both can be created or destroyed, and when they are destroyed, the following conditions hold: 1) 

their authors cease to exist in the world, 2) all of their physical copies are destroyed, 3) they are not exe-

cuted or performed ever again, and 4) they are forgotten by everyone. 

This idea of interpreting software as an artifact was also acknowledged by (Turner, 2013) in his re-

cent, comprehensive entry on the philosophy of Computer Science published in the Stanford Encyclopae-

dia of Philosophy
7
. We also share very much Irmak‟s intuitions, as well as the methodology he adopts to 

motivate his conclusions, based on the analysis of the conditions under which a software maintains its 

identity despite changes. However, he leaves the question of „what is the identity of software‟ open, and 

we shall answer this question in this dissertation. Making a further step, based upon the understanding of 

software as an abstract artifact, we interpret it as an information artifact, emphasizing both its informa-

tional nature and artifactual nature. Besides that, by checking the effects of these software artifacts to the 

computer states and the world, we classify them into different categories. 

2.2 Understanding Software Change 

As we mentioned in the beginning of the dissertation, software has become an essential and indis-

pensible part of the modern society. To meet the needs of a rapidly changing society, software has to con-

tinuously evolve. (Parnas, 1994) adopted a metaphor to characterize this continuous change of software as 

„software aging‟. For him, programs get old while time passes by, decaying in their efficiency and 
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 The Philosophy of Computer Science, http://plato.stanford.edu/entries/computer-science/ 
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productivity. We cannot prevent this process, and as a consequence, the older the software gets, the more 

it costs to be maintained, until it becomes unaffordable and replaced by new software. 

Considering the importance of software, and the huge cost of its continuous evolution, researchers 

have been trying, for decades, to get better understandings of this phenomenon, and to provide proper 

methods and technologies to manage these changes in software, yet it is still a young and challenging top-

ic because of the undervaluation of it (Mens et al., 2005), (Mens, Gueheneuc, Fernandez-Ramil, & 

D‟Hondt, 2010). In the following, we will go through several representative works in the literature. 

However, as the main purpose of this dissertation is not in the area of software evolution, we only 

discuss how an ontology of software could contribute to better management of software evolution. Specif-

ically, our proposed ontology of software provides the foundation to identify and record different kinds of 

changes in different kinds software artifacts during their life spans. Hence, within this section, we just 

make a brief summary of the literature work on software evolution, without diving into detailed discus-

sions. In other words, the main purpose of this section is to provide a general view of the state of the art 

on software evolution, and locate our work within this framework as a basic and foundational contribu-

tion by capturing rich and clear semantics of the software during the processes of software evolution. 

2.2.1 Laws of Software Evolution 

Lehman was recognized as the „father of software evolution‟ by the editors of the journal „Software 

Evolution and Feedback: Theory and Practice‟ (Canfora et al., 2011), as he founded the principles for 

empirical research on software evolution with his colleague Belady. Together, they studied the evolution 

processes of IBM‟s OS 360 (Belady & Lehman, 1976), and extended this study into the famous eight 

laws of software evolution that profoundly influenced the ways in which software was understood (M. M. 

Lehman, 1980), (M. M. Lehman, 1996), (M. Lehman & Fernandez-Ramil, 2006). 

To start with, Lehman recognized the unexpected and unplanned phenomena occurring during the 

development and evolution processes of IBM‟s OS 360, and used these as resource to study software evo-

lution and propose that software should be studied as a natural phenomenon (analogously to physical 

phenomena). For him, the properties of software are intrinsic and primary, and the effects by human be-

ings are external and secondary. As he stated in an interview, „evolution process and system control the 

managers rather than managers controlling the system‟. 

To nail down the scope of his study, he firstly proposed a classification of software programs, in-

cluding: 1) S-type programs that possess formal specifications which strictly define the problems to be 

solved in terms of some programming language, and the S-type programs serve as their solutions; 2) P-

type programs that are similar as S-type programs, yet the given specifications for the problems are ex-

pressed in terms of the terminology of the problems in the real world instead of the programming lan-

guage scenario; 3) E-type programs, differently from S-type and P-type programs, treat themselves as a 

component of the outside problem world. The interpretation of an E-type program is quite similar as the 

idea of socio-technical system, according to which, an E-type program serves as the technical support 

within a social environment, communicating and interacting with social agents. 
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For Lehman, only the E-type programs were adopted as the research subject, as they are placed into 

a changing environment, and by studying their reactions to the changes in the environments, he developed 

eight general laws of the software evolution as shown the following Figure 6. 

 

Figure 6. Laws of Software Evolution, as proposed by Lehman (M. Lehman & Fernandez-Ramil, 2006) 

These laws are derived from an empirical study of software evolution, and all of them are quite in-

tuitive to understand, such as the Continuing Change Law that indicates an E-type program must be con-

tinually changed to adapt to the changing environment, or the Increasing Complexity Law that indicates 

an E-type program becomes more and more complex as the program grows older. The eight laws now are 

adopted as baseline by many researchers in this field, yet we shall point out that Lehman‟s study was all 

based on an objective view, which must be obeyed by the software engineers. For us, this view underes-

timated the importance of the role played by the software engineers, as the creators of software, it is their 

intentions that decide the properties of software, hence the interpretation of software becomes quite sub-

jective for us, and we adopt it into the requirements engineering domain to study the nature of software, 

as we shall see in Chapter 4 and Chapter 5. 

2.2.2 The Metaphor between Software Evolution and Biological Evolution 

Another interesting branch of the study of software evolution tried to make a metaphor linking it to 

the biology evolution, such as what Godfrey and German did, they proposed a model of software evolu-

tion where source code serves as gene, and software functions are the result of explaining the gene, and a 

version of software is recognized as an individual (Godfrey & German, 2008). 
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Based on this model, they pointed out that software maintenance and software evolution are differ-

ent concepts: software maintenance was a process that keeps software running without changing the gene 

(code) of the software, and software evolution meant adding essential changes to the software by chang-

ing the gene (code) of the software. Although this idea is interesting, yet we shall point out that a biology 

species is usually characterized by a pool of gene serials from multiple creature individuals but not only a 

gene serial from just one software individual. 

Similarly as Godfrey and German, Mens attempts to convey the concept of „software ecosystem‟. 

For him, a software ecosystem is „a collection of software projects developed and used by the same com-

munity‟ (Mens & Grosjean, 2015), and this definition was derived from two older works: 1) Messer-

schmitt and Szyperski‟s definition, „a collection of software products that have some given degree of 

symbiotic relationship‟ (Messerschmitt & Szyperski, 2003); 2) Lungu‟s definition, as „a collection of 

software projects which are developed and evolve together in the same environment‟ (Lungu, 2008). 

Whichever of the aforementioned definition is adopted, the general idea is the same: studying interactions 

between software and its environment. By comparing with biological ecosystems, new strategies can be 

developed to improve the effectiveness and resilience of software. 

For Mens, there are two possible ways to make comparisons, depending on the roles software plays 

in a trophic web (food world), as producer or a consumer: 1) biological species ≈ software components, 

this is a technical view, interpreting all the software and hardware as components of a trophic web (e.g., 

application websites are content producers, and a search engine web site consumes these contents and in-

dexes them as its own products for other possible consumers in a higher level); 2) biological species ≈ 

project contributors, this is a social view, classifying software engineers into different kinds according to 

their roles in a trophic like web (e.g., some engineers develop core library packages acting as producers, 

and some other engineers may develop applications based on such libraries acting as consumers). 

Both Godfrey‟s and Mens‟ work are interesting, and indeed such kinds of comparisons might con-

tribute to a better understanding of software practice. For example, to make a software company efficient 

and robust, the structure of the role arrangement should be carefully designed that the dependency be-

tween the producers and consumers should be balanced well, neither too many producers, nor too many 

consumers. Similar examples could be fund in the bionics field that bats‟ acoustic detection system was 

studied and used as a prototype of the modern radar systems (Bin-bin, Hai, Xiaoping, & Hesheng, 2012). 

However, not all aspects of the two species, software and biology, can be compared to make a com-

plete metaphor. To achieve a shared set of foundational understandings of software evolution, we still 

need to get back to its original nature. Following this view, many researchers proposed taxonomies and 

ontologies for software change, and we shall list out some of their main contributions as follows to delin-

eate an outline of the study in this field. 

2.2.3 Taxonomies and Ontologies for Software Change 

Swanson and Lientz’s Work 

Researchers have been trying, for decades, to unify the concepts and terminologies of software 

maintenance and evolution. Swanson and Lientz are recognized as the pioneers who firstly provided an 

exclusive and exhaustive typology for software maintenance. They divided the maintenance activities of 
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application software into three categories: 1) corrective maintenance, consisting of the activities of fixing 

bugs; 2) adaptive maintenance, referring to the changes made to adapt to the new technical environment 

(e.g. operating system software, frameworks); 3) perfective maintenance, referring to the changes of elim-

inating processing inefficiencies, enhancing performance, improving maintainability and other enhance-

ments on functions (Swanson, 1976), (Lientz & Swanson, 1980). 

Although Swanson and Lientz‟s work has been widely accepted, later works revised the initial 

meanings of these concepts inconsistently sometimes, and even the standards of the IEEE (Institute of 

Electrical and Electronics Engineers) have been revised it in this way. In 1990, a new category called 

„preventive maintenance‟ was added in the main body of the IEEE standard. The new term means 

„maintenance performed for the purpose of preventing problems before they occur‟. Later in 1998, it was 

removed from the main body of the standard and only mentioned in its appendix („IEEE Standard 

Glossary of Software Engineering Terminology,‟ 1990), („IEEE Standard for Software Maintenance,‟ 

1998). 

Chapin’s Work 

Following Swanson and Lientz‟s work, Chapin et al. proposes a classification from a different per-

spective, which is not based on peoples‟ intentions but on the objective observations of the differences 

before and after the changes occur (Chapin et al., 2001). This classification is composed of four main 

clusters and refined into 12 different types, including: 1) support interface cluster (types: training, consul-

tive, evaluative); 2) documentation cluster (types: reformative, updative); 3) software properties cluster 

(types: groomative, preventive, performance, adaptive); 4) business rules cluster (types: reductive, correc-

tive, enhancive). 

Generally speaking, Chapin‟s work constitutes an extension of Swanson‟s work, refining the initial 

classification of software maintenance into a finer granularity. The whole work is based on an objective 

view, identifying different kinds of software changes according to the ascertainable evidences observed, 

and the process of deciding the type of a software change activity is quite intuitive and reliable for the 

software maintainers, including all practitioners, managers, and researchers. However, when we recog-

nize software as an artifact, we cannot understand the true nature of software change without considering 

the intentions of its stakeholders. In this dissertation, we demonstrate this view in further detail in Chapter 

4 and Chapter 5. 

Buckley et al.’s Work 

Buckley et al. proposed another taxonomy in 2005. Compared with previous work, this taxonomy 

focuses more on the technical characteristics rather than on the general concept of software evolution 

(Buckley et al., 2005). The life cycle of software is partitioned into three phases: compile-time, load-time 

and run-time. Furthermore, several other dimensions of software change are proposed which could be 

grouped into two main categories: „characteristics of software change mechanisms and the factors that in-

fluence these mechanisms.‟ 

Generally speaking, these authors view previous works as trying to answer why software changes 

occurred, and their work contributed in answering the how, when, what and where software changes oc-

cur. According to this view, they discuss software changing mechanisms, and the factors that influence 
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these mechanisms. This work was restricted more likely as a list of criteria to justify the qualities of dif-

ferent kinds of software change supporting tools, although this is intuitive and handy for practitioners, the 

research subject was shifted from the software change itself to its supporting tools. Instead of improve-

ment, it was a supplementation of the previous works, and what we do is to provide foundations for all 

such kinds of research and practices. 

Kitchenham, Ruiz and Anquetil’s Work 

Ontology constitutes a more rigorous method to explicitly represent the meanings of concepts than a 

taxonomy. It has been used widely to capture knowledge in many research areas, and several researchers 

have tried to provide ontologies for software maintenance. 

Kitchenham is the researcher who firstly provided a carefully crafted ontology for software mainte-

nance in 1999. For her, software development is different from software maintenance, as the later refers 

about the activities applied to later releases delivered after the software has been deployed. In her paper, 

she identifies several factors that influence software maintenance, and classifies them into four dimen-

sions as shown in Figure 7, including product, peopleware, process organization, and maintenance activi-

ty types (Kitchenham et al., 1999). According to this classification, general questions could be answered, 

such as what is under maintenance (e.g., product with size, age, and etc.), who is maintaining the product 

(a software maintainer with some skills, attitudes, and etc.), under what kind of organization the product 

is maintained (e.g., a maintenance group with some resource, and technologies, and etc.), and finally what 

kind of maintenance activity is taken out (e.g., corrections, new requirements, and etc.). Instead of talking 

about the ontological nature of software maintenance, it is more like a project management oriented work 

for the team members of a maintenance group. 

 

Figure 7. An overview of domain factors affecting software maintenance (Kitchenham et al., 1999) 

Five years later, Kitchenham‟s work was refined and enlarged by Ruiz in 2004. This work extends 

the four dimensions of software maintenance proposed by Kitchenham into four sub-ontologies respec-

tively: Products Sub-ontology, Agents Sub-ontology, Process Sub-ontology, and Activities Sub-ontology. 

Besides these refinements, additional Workflow Ontology and Measure Ontology are introduced in order 
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to support maintenance projects in organizations, as shown in Figure 8 (RUIZ, VIZCAÍNO, PIATTINI, & 

GARCÍA, 2004). These can be used to provide meta-level guidance for managing software maintenance 

projects. 

 

Figure 8. An overview structure of the ontology for software maintenance project (RUIZ et al., 2004) 

Comparing with Kitchenham and Ruiz‟ work, Anquetil and et al. provided a similar ontology in the 

book Ontologies in Software Engineering and Software Technology (Anquetil, de Oliveira, de Sousa, & 

Batista Dias, 2007). They shared the same idea that after the initial development phase, software mainte-

nance phase will follow and will last for a long period of time, and during which lots of changes will be 

adopted to better suit stakeholders‟ needs. Yet, Anquetil deals with these software maintenance activities 

from a knowledge management perspective. In other words, he emphasizes the importance to provide 

suitable knowledge according to a specific maintenance scenario for the proper software maintainers. As 

shown in Figure 9, a software system is implemented to solve some problems in an application domain, 

the knowledge about the application domain and the system itself will be elicited and stored in a 

knowledge base (KB). Additionally, the knowledge about the maintenance project will also be added into 

this KB. Consequently, according to such a KB, a modification process (task) to a software system will be 

assigned to the proper software maintainers who possess the required computer science skills. 

 

Figure 9: An overview of ontology for software maintenance (Anquetil et al., 2007) 

Similarly to Buckley et al.‟s work, Kitchenham, Ruiz and Anquetil‟s work was also a supplementa-

tion of the earlier work, because instead of explaining the nature of software and software evolution, they 

paid more attention to the issues about software project management, clarifying the roles of different 

kinds of stakeholders who took different kinds of software maintenance activities during the life span of a 

software project. In other words, their work was project oriented, and the most possible consumers of 

their work should be software managers instead of software practitioners. 

Tappolet et al.’s Work 
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Similarly, Tappolet and his colleagues lunched the project OntEvo
8
 trying to remedy the problems 

caused by software change. More specifically, they divided the sources of problems into two categories, 

including: 1) the internal source, referring to the difficulty to study or recall the meaning underlying a 

piece of source code without sufficient comments or documents; 2) and the external source, referring to 

the difficulty to manage the dependencies among so many libraries that are developed and maintained by 

different groups or organizations (Tappolet, Kiefer, & Bernstein, 2010). 

For Tappolet at et al., both the two kinds of problem sources are derived from the lack of knowledge 

about the source code, hence they propose a set of ontologies, including a software, version and bug on-

tology. With these ontologies, on one side, software engineers can encode relevant knowledge into shara-

ble files (or repositories); and on the other side, others could query the files (or repositories) to extract 

useful knowledge. As the knowledge is stored in sharable and query-able files, this solution provides help 

for both two kinds of problem sources in the process of software evolution. However, as this approach is 

source-code oriented, it completely ignores the software artifact perspective (e.g., the architectural com-

ponents, behavioural models and requirements ones). To capture more semantics necessary, as demon-

strated in Chapter 5, we propose different kinds of software artifacts at different abstraction layers. 

2.2.4 Identifying and Recording Software Changes 

The Version Control Systems (VCSs) are widely used in the industry to record the development his-

tory of software projects, and according to a survey published by Ohloh
9
 concerning open source software 

projects, 70% of them use Concurrent Versions System (CVS) or Subversions, and over 25% of them use 

Git (Kleine, Hirschfeld, & Bracha, 2012). However, as we stated earlier, most of the literature work in 

understanding of software and software change have been limited to source code level. Consequently, the 

work in identifying and recording software changes was also limited to source code level. 

For instance, all the VCS tools mentioned above were developed on a unique core mechanism, 

checking the syntactic difference between two versions of a file. In this context, a version of a file could 

be understood as a snapshot of the syntactic content of the file with a time stamp. Whenever a program-

mer commits a new version of a file, the syntactic difference between these two versions will be calculat-

ed, and recorded in a repository with some additional limited meta-data (e.g., commit user, commit time, 

and etc.) and some description of the commit (e.g., usually a few nature language sentences). 

As aforementioned, all the information collected is source code oriented, this is because such tools 

are not initially developed to identify and record software changes, but to provide a cooperation platform 

for the project members (some time they are distributed geographically), committing their contributions 

to the project simultaneously, and meanwhile solving the possible conflicts they may encounter among 

each other. For example, if two programmers commit to the same version of a file, rewriting the same line 

of the source code differently, only one of the new commits could be used as the latest version, based on 

which further updates of the file could be made. 

The data collected by such VCS tools could be used to do analysis about the evolution process of the 

software, yet as we stated, this is a subsidiary function we can get from them, and it is not practical to use 
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9
 Ohloh, http://www.ohloh.net 
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them as a main means to study the evolution process of software, especially for the project managers 

without sufficient technical skills to navigate within these tools. To remedy this situation, some software 

change analysis tools were developed, such as (Fischer, Pinzger, & Gall, 2003) and (Ghezzi, Wursch, 

Giger, & Gall, 2012), who provide interfaces for users to query and navigate within a library of software 

changing history. 

To enhance these VCS tools used as software change analysis tools, other technologies were pro-

posed. One of the branches is to detect changes automatically. In other words, the programming activities 

of the programmers are monitored, analyzed, and then recorded by such „change-aware‟ tools. Comparing 

with the history data provided by VCS tools, these new tools adopt the change of software as the center of 

a software developing process, and the collected data about the programmers‟ activities could be used as 

another source to analyze software change processes (Robbes & Lanza, 2008), (Wloka, Ryder, & Tip, 

2009), (Omori & Maruyama, 2008). 

Compared with automatic software change detection, the other branch of software change analysis 

tools tries to visualize the software change history, providing more intuitive ways to examine the way 

software evolves. For example, some of the these tools collect change activities on the software modules 

during a period of time, then create a static figure about the changing path of the modules (Gîrba & 

Ducasse, 2006), (D‟Ambros & Lanza, 2009). Taking a further step, Beyer and his colleagues reused the 

records from CVS to create a dynamic visualization (e.g., an animation/movie of a change process) of 

software changing history (Beyer & Hassan, 2006). 

Although many works attempted to identify and record software changes, they are generally limited 

to the source code level. As such, these tools can process semantic granularities at the file, class, method 

level, but not at a component or requirement level. This limitation in the semantic granularity causes a lot 

of knowledge to go unrecorded and therefore missed during a software change process. This missing 

knowledge constitutes one of the main reasons of the high cost of software change. 

Parnas shares the same idea, and states that the primary cause of a poor state-of-the-art in software 

engineering practice is the failure to produce good documentation to record the multi-faceted knowledge 

that comes with a software system (Parnas, 2011). In his paper Software Aging, several practical reasons 

related to documentation were proposed explaining why software maintenance is costly and may result in 

chaos. Besides that, he emphasizes that although documentation is an unpopular topic which is often ne-

glected, systematic documentation might be essential to ameliorate the current situation (Parnas, 1994). 

But of course, to do proper documentation one needs to decide first what knowledge about a software 

should be identified and recorded. 

Although little work has been done in capturing richer semantics during the process of identifying 

and recording software changes, it seems a promising research topic to provide foundational support for 

software change. Some attempts were made, such as Altmanninger‟s work, in which the changing granu-

larity was extended to the conceptual models about the software instead of source code itself 

(Altmanninger, 2008); or the Semantic Versioning standard provided by OSGi
10

, indicating the depend-

ency status of a version of software (e.g., from v-1.2.3 to v-1.2.4, nothing happened at interface, no need 

to adjust the calls of the interface methods; from v-1.2.4 to v-1.3.0, some changes happened at the inter-
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face, however it is compatible with the old calls of the interface methods; from v-1.3.0 to v-2.0.0, essen-

tial changes happened at the interface, and the old calls of the interface methods won‟t work anymore). 

Different from all the related work stated above, we start our research with studying the ontological 

nature of software, based on which we examine the essential properties of different kinds of software arti-

facts, according to the fact that each of these software artifacts (software program, software system, soft-

ware product, and licensed software product) is constantly dependent on a different intentional entity. 

Each of these intentional entities refers to a kind of expected behaviors involving different parts of a 

complex socio-technical system (namely, the inside machine, the interface, and the outside world), which 

in turn emerges from the interaction between a software-driven machine and a social environment. 

In other words, we extend the interpretation of software from the perspective of source code to the 

perspective of socio-technical system. By recognizing the changes in these different kinds of software ar-

tifacts as different kinds of software changes accordingly, the task of identifying and recording different 

kinds of software changes is reduced to the task of identifying and recording the changes in the different 

kinds of software artifacts. Meanwhile, this approach will help to clarify some terminology ambiguities. 

For example, we may define the following kinds of software changes: 1) refactoring refers to the creation 

of new codes, keeping the identity of the software program; 2) re-engineering refers to the creation of 

new software programs, keeping the identity of the software system; 3) software evolution refers to the 

creation of new software systems, keeping the identity of the software product. 

These changes in different software artifacts happen at different abstraction levels within the socio-

technical system, providing help in understanding the software and software change for different kinds of 

stakeholders who play different roles in a software project (e.g., a company manager may focus on the 

software evolution of software products in the social environment, a project manager may focus on the 

software re-engineering of software systems at the interface, and a programmer may focus on the soft-

ware refactoring of software programs inside a software-driven machine). 

2.3 Understanding Assumptions 

As mentioned in the introduction chapter, in addition to the essential properties about the different 

kinds of software artifacts, there is another kind of knowledge that deserves special attention, and it is the 

assumptions made during a software engineering process. The requirements for most software applica-

tions -- the intended states-of-affairs these applications are supposed to bring about -- concern their opera-

tional environment, usually a social world. But these applications don‟t have any direct means to change 

that environment in order to bring about the intended states-of-affairs. In what sense then can we say that 

such applications fulfill their requirements? One of the main contributions of this dissertation is to ac-

count for this paradox. We do so by proposing a preliminary Ontology of Assumptions. Before diving in-

to the details of this ontology characterizing and making explicit a number of notions that are used implic-

itly in software engineering practice, we illustrate several similar related works as follows. 

2.3.1 Interpretations from Linguistic and Cognitive Science Perspectives 

„Assumption‟ is a severely overloaded term used in many communities (e.g., research, industry, and 

etc.) as well as in our daily lives. The interpretations of this term diverge significantly in different con-

texts. Nkwake authored a chapter named „What are Assumptions?‟ in the book „Working with Assump-
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tions in International Development Program Evaluation‟, in which he discusses the nature of assumptions, 

and grouped assumptions into several categories, including: Ontological Assumptions, Epistemological 

Assumptions, Axiological Assumptions, Cultural Assumptions, Idiosyncratic Assumptions, Legal Pre-

sumptions, Metaphoric Assumptions, Intellectual Assumptions, and Causal Assumptions. (Nkwake, 2013) 

Among so many ways to interpret assumptions, in the sequel, we present a few examples of these possible 

interpretations, relying on the language use of the term (Ennis, 1982): 

Conclusion: e.g. Tom said: „my assumption is that you are going out, since you are wearing your 

cap.‟ The conclusion of „going out‟ is derived from the current situation „wearing your cap‟. 

Less-than-fully established proposition, in an accusation sense: e.g. Mike answers: „that is only your 

assumption, you don‟t know it.‟ Mike‟s reply suggests that it only looks like he‟s going out, and that was 

only Tom‟s guess, with no guarantee that it holds. 

Adopted in order to deceive, fictitious, pretended: e.g. „although bad things did happen, please as-

sume that they never happened.‟ The term assumption is interpreted as a kind of „self-deception‟ here that 

„you can deceive yourself that nothing bad happened‟. 

Another dimension of the work tries to interpret assumptions from the perspective of Cognitive Sci-

ence. More specifically, many researchers try to explain the meaning of an assumption as a proposition 

that is created from a particular kind of mental state. In the literature, mental states are usually classified 

into three categories, including Belief (B), Desire (D), Intention (I), and this understanding of mental 

states is referred as the BDI model. A proposition in a belief is the knowledge of an agent about the world, 

a proposition in a desire represents the states an agent wants to reach (in a derived sense), and a proposi-

tion in an intention represents a desire content that an agent is committed to achieve (Ferrario & Oltramari, 

2005). 

According to this BDI model, Jureta and et al. systematically analyzed the role of assumptions in re-

quirements engineering, which is reported in (Jureta, Mylopoulos, & Faulkner, 2009). Three basic con-

cepts in requirements engineering are matched to those three kinds of mental states respectively: 1) an as-

sumption is matched to a believed proposition; 2) a requirement is matched to a desired proposition; 3) 

and a task is matched to an intended proposition.  

Although it is a promising research direction to address such a detailed ontological analysis of the 

nature of assumptions as well as of their relations to cognitive and social agents, we prefer to leave it as 

another contribution in the future work, and in this dissertation we focus on explaining the bridging role 

of assumptions in software engineering, solving the paradox aforementioned. In other words, when we 

refer to the propositional contents of assumptions, we make them neutral with the discussions about men-

tal states. We simply say that the assumptions are composed of propositions, yet we don‟t discuss which 

kind of propositions is concerned in this dissertation. We believe this topic deserves another specialized 

paper, and we are working on it in parallel. 

2.3.2 van Lamsweerde’s Interpretation of Assumptions in Requirements Engineering 

van Lamsweerde interprets assumptions within the requirements engineering framework proposed 

by (Michael Jackson & Zave, 1995), in which the process of requirements engineering is composed of the 
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following procedures: 1) anchoring the machine in the problem world; 2) characterizing the problem 

world; 3) delimiting and structuring the problem world; 4) chaining satisfaction arguments; and 5) deriv-

ing specifications from requirements. For him, domain assumptions characterize partial properties of the 

problem world, hence a set of domain assumptions should be elicited and expressed as a set of statements 

about the problem world (van Lamsweerde, 2009). 

For Jackson and van Lamsweerde, the basic elements used to characterize the problem world are 

statements about the world. A statement could be understood as a piece of expression in some language, 

and usually statements could be classified into three categories as shown in Figure 10: 1) a prescriptive 

statement states desirable properties of the world in the optative mood (an agent wants to do something); 

2) a descriptive statement states properties about the world in the indicative mood (an agent possesses 

some understanding about the world); 3) and a definition is a statement assigning the precise meanings to 

the terms used in the problem world without mood. 

 

Figure 10. Further distinction among statements in the problem world (vanLamsweerde, 2009) 

As shown in Figure 10, the two kinds of statements rounded by red rectangles represent two kinds of 

domain assumptions proposed by van Lamsweerde. An expectation is a prescriptive statement, it pre-

scribes a specific behavior of the problem world that the machine cannot reach (e.g., a passenger will 

press the buttons when he/she is in an elevator). A domain hypothesis is a descriptive statement about the 

problem world, this hypothesis is an estimation of a behavior of the problem world (e.g., the possible 

temperature of the room is always between 10 degree to 20 degree). Hence, a domain hypothesis is not 

expected to hold invariably, unlike descriptive the domain properties resulting from natural laws. 

According to such statement based characterization of the problem world, and the other procedures 

within a requirements engineering process, van Lamsweerde made an extension of Jackson and Zave‟s 

original formula A, S ⊨ R (A: Assumptions, S: specification, R: Requirements), and refined it into: {Spec-

ification, Assumption, Domain Property} ⊨Requirement. According to this new formula, a requirement 

engineer should ensure that the requirements will be satisfied whenever the specification is met, provided 

the domain assumptions and domain properties hold.  

However, van Lamsweerde‟s discussion focuses only on world assumptions. In this dissertation, in-

stead, we extend it into machine assumptions, and propose two additional kinds of dependence assump-

tions which, as we have mentioned, are essential for explaining how software can affect the social world. 
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2.3.3 Lewis’s Assumption Management System 

Lewis states that „assumptions are made concerning how the software will be used, …, what envi-

ronments it will operate in‟, as well as „the incompatibilities between the assumptions and the assumed 

operation environment will cause failures‟ (Lewis et al., 2004). 

Based upon this understanding, she also emphasizes the importance of making assumptions explicit-

ly represented as we do in this paper. To achieve this goal, she proposes a system called Assumption 

Management System (AMS) to insert and extract assumptions in and from the source code. This system is 

supported by the functions of storing the extracted assumptions in a repository, querying the repository, 

and making management decisions based on the assumptions recorded in the repository. 

 

Figure 11. Syntax structure in Lewis’s assumption management system 

The syntax structure of an assumption assertion is adopted here from Lewis‟s work as shown in Fig-

ure 11. Simply put, assumptions are recorded as comments to the source code, and they are encoded in 

XML. As shown in Figure 11, and following the usual XML convention, the pair of „/* … */‟ indicates 

the comment area, the pair of labels „<assumption>‟ indicates the assumption area, the pair of labels 

„<type>‟ indicates the type of the assumption, and the pair of labels „<description>‟ indicates the natural 

language description of the assumption. 

The idea underlying this work is that assumptions are recorded by software engineers while they are 

writing source code. When the source code is ready, a XML parser can be used to extract the assumptions 

and store them into a repository in a structured way for future queries. This is useful for sharing purposes 

with all members of a software project, reducing the chance of misunderstanding, and helping to ensure 

global consistency of the system. 

Although, as stated by Lewis, recording and parsing of the assumptions as contents of comments in 

source code has been proved very useful in the coding process in a software engineering project, this is 

too late a stage for uncovering possible inconsistencies in the project. This is noted by Lewis  who states 

that „to address interoperability requirements, the use of assumptions management would have to be 

moved to other activities and artifacts of software development, such as requirements analysis, architec-

ture, and design‟. 

The problem pointed out by Lewis is essential to software engineering projects, as the evidence has 

proved that the errors in requirements, such as misinterpreting or neglecting some implicit assumptions, 

are much more expensive to fix at a later stage than in the early stages of a software project (Nuseibeh & 
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Easterbrook, 2000). What we do in this dissertation is to capture and analyze the assumptions in the re-

quirements engineering stage of the process, i.e., in the earliest stages of the software engineering process. 

Instead of dealing with source code, we capture and record assumptions in the process of deriving 

specifications from the requirements. In this stage, requirements are decomposed or refined into specifica-

tions including an external specification and an internal specification. Moreover, we provide here a more 

refined categorization of assumptions that should be discovered by software engineers in the requirements 

engineering stage. Furthermore, and more importantly, we illustrate the key role that such assumptions 

play in linking the world and machine states together. To illustrate these points, in the Chapter 6, we pre-

sent a case study of a meeting scheduler system that demonstrates how and what kinds of assumptions can 

be captured in a requirements engineering process. 
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Chapter 3 

 

3 Baseline 

3.1 DOLCE Adopted as the Foundational Ontology 

Along with the vigorous development in the field of Semantic Web proposed by (Berners-Lee, 

Hendler, & Lassila, 2001), ontology also has been pervasively adopted in many science fields as a means 

of knowledge repository, especially in the fields in which huge amount of information should be classi-

fied and maintained. For example, in the biology field, Gene Ontology Consortium aims at producing on-

tologies covering a set of dynamic and controlled vocabulary as shared knowledge of the roles of gene 

and protein in cells (Ashburner et al., 2000); and in the astronomy field, NASA
11

 launched a project 

called Semantic Web for Earth and Environment (SWEET), in which a collection of ontologies are devel-

oped, including many basic concepts, such as space, time, Earth realms, physical quantities, and etc. 

(Raskin & Pan, 2005). 

Although the term „ontology‟ is widely used in many fields, the meaning of this term itself was not 

clear enough till recent years. Thanks to the work of many ontologists clarifying this terms for many 

years, especially a series of works made by Nicola Guarino, a precise definition is emerged and accepted 

by many researchers in the ontology field (Guarino & Giaretta, 1995), (Guarino, 1995), (Guarino, 1998), 

(Guarino, 2009). Among his works, a paper titled „What Is an Ontology?‟ is published in 2009, in which 

the meaning of the „ontology‟ was thoroughly discussed (Guarino, Oberle, & Staab, 2009). 

For him, the term „ontology‟ could be interpreted in two senses: 1) Ontology
12

 is a philosophical dis-

cipline, a research filed similarly as Physics, Chemistry, Biology, and etc. More precisely Ontology is a 

research discipline studies the nature and structure of objects, as Aristotle defined this term „Ontology‟ in 

his Metaphysics as the science of „being qua being‟. By given a domain, Ontology discusses about the en-

tities and relations existing in it; 2) an ontology
13

 is an special kind of computational artifact, as it is cre-

ated by people with the purpose to represent the understanding of a given domain. In this sense of inter-

pretation, an ontology is a product within the Ontology research discipline. In other words, by studying 

the domain, people can get some knowledge about it, and by representing such knowledge in some form 

of language expressions, they create an ontology about the domain as a result. 

The prevalent use of this term „ontology‟ in Computer Science should refer to the interpretation in 

the second sense. Intuitively, a conceptual model about the domain in concern developed during a soft-

ware engineering process could be understood as an ontology of this kind, according to the definition of 

conceptual modelling proposed by (Mylopoulos, 1992) that „conceptual modelling is the activity of for-

mally describing some aspects of the physical and social world around us for purposes of understanding 

and communication‟.  

                                                 
11

 National Aeronautics and Space Administration (in United States of America) 
12

 Guarino suggested using the capitalized term to refer to this research discipline. 
13

 Accordingly, Guarino suggested using the lowercased term to refer to a product in this research discipline. 
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This interpretation of ontology from the perspective of conceptualization was firstly proposed by 

Gruber in 1993 that an ontology is an „explicit specification of a conceptualization‟ (Gruber, 1993). Later 

on, it was extended into a new expression that an ontology is a „formal specification of a shared concep-

tualization‟ proposed by (Borst, 1997), and again this definition was refined by Stuber et al. that „an on-

tology is a formal, explicit specification of a shared conceptualization‟ (Studer, Benjamins, & Fensel, 

1998). Guarino adopted Studer‟s view, and provided a detailed account of the notions of „conceptualiza-

tion‟ and „specification‟, and emphasized the importance of „sharability‟ of an ontology. 

We adopted Guarino‟s interpretation of ontology as a component of our baseline in this dissertation, 

and based on that we will discuss about the ontological nature of software, and furthermore provide an 

ontology of software which could be used as a foundation for identifying and recording changes in differ-

ent kinds of software artifacts. As an ontology of software, we share similar idea with Irmak, it should be 

in accordance with the common beliefs and practices held by different kinds of stakeholders who share 

the related concepts. It must „be coherent with the way people talk about them, with the things they be-

lieve about them, with their practices that involve those objects‟ (Irmak, 2013). 

To clarify the point here, we are not trying to discover the unique true nature of software, like what 

the physicists do in looking for the true nature of the physical universe. However, we shall say that to 

question the meanings of software is different from questioning the physical laws of the universe. More 

likely, it is a problem from the linguistic and cognitive point of view. People in the community usually 

interpret the terms differently and ambiguously, and what an ontologist should do is to provide definitions 

and explanations of the terms based on some widely shared primitive concepts, then the newly proposed 

interpretations of the terms could be widely shared and used in communications. After all, we believe an 

ontologist is different from a physicist. 

To develop an ontology of software, we start with looking for a suitable set of widely shared primi-

tive concepts for our purpose, and as a result the ontology „Descriptive Ontology for Linguistic and Cog-

nitive Engineering (DOLCE) (Masolo, Borgo, Gangemi, Guarino, & Oltramari, 2003a)‟ is chosen as the 

foundational ontology for our work. On one hand, as a top-level ontology (Guarino, 1997), DOLCE pro-

vides preliminary concepts which are well-delimited with clear philosophical analysis. Hence, referring to 

these finely restricted concepts in DOLCE, our domain ontology could inherit these well-formed ontolog-

ical commitments, and this makes our proposals clearer and easier to discuss in the community (Jureta et 

al., 2009).  

On the other hand, DOLCE has a clear cognitive bias, for that it is intended to capture the ontologi-

cal categories that underlie natural language and human commonsense (Masolo et al., 2003a). This makes 

it more compliant with people‟s intuition, and the concepts could be easier to be understood and accepted 

by stakeholders. For these reasons mentioned above, we choose DOLCE as our foundational ontology, 

and we present a brief introduction of some main concepts in this ontology, and after the introduction 

they will be reused as preliminary concepts many times in the later contents of this dissertation. Note that, 

this introduction is presented in an intuitive way, and for the readers who are interested in the details of 

DOLCE, please refer to the reports D-17 (Masolo, Borgo, Gangemi, Guarino, & Oltramari, 2003b) and 

D-18 (Masolo et al., 2003a) published in the WonderWeb project
14

. 

                                                 
14

 WonderWeb, http://www.istc.cnr.it/project/wonderweb-ontology-infrastructure-semantic-web 
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As shown in Figure 12, the most general concept in DOLCE is called „particular‟, and a particular 

could be informally understood as something has no instance. Oppositely, a „universal‟ is something that 

does have some instances, yet to control the scale of the ontology, only particulars are adopted as the el-

ements in DOLCE. Generally speaking, a particular is in the specific individual level, and a universal is in 

the abstract class or type level. A particular could be a physical thing, like my cat which is an existing 

creature in the world; also it could be a non-physical thing, such as stories, laws, and etc. 

 

Figure 12. A diagram of DOLCE (Masolo et al., 2003a) 

Under the concept particular, there are four specialized sub-concepts of it, including „endurant‟, 

„perdurant‟, „quality‟ and „abstract‟. An endurant is a particular that presents its whole at a time point, 

and as time passing by, it could keep its identity. For example, my cat in last year and the cat in this year, 

they are the same cat growing up, and in this case it is a „physical endurant‟; a law or an economic system 

is „non-physical endurant‟; and putting my hands and my shoes together makes an „arbitrary sum‟. 

A perdurant, on the other hand, is a particular that presents its whole among a time period. Its identi-

ty is associated with this specific time period. For example, a party has its starting part, duration part and 

the ending part. In each of these parts, the party only shows itself partially. Usually in our daily lives, we 

use these two concepts (endurant and perdurant) together: an endurant could participate in a perdurant; 

and meanwhile a perdurant shows itself through some endurants. For example, a „group of people‟ is an 

endurant, a „party‟ is a perdurant, then a group of people could participate in a party, and meanwhile this 

party exists through this group of people. 

Quality and abstract form another pair of basic concepts in DOLCE, generally speaking a quality 

could be understood as an entity that we can perceive or measure, like the „dimension‟ referred in (Gruber, 

1995). For example, the color of a flower and the height of my body are both qualities. On the other hand, 

an abstract may provide a value region for a quality. For example, the value of the color could be red, yel-

low, blue, or any other color which is in this defined color region. 
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3.2 Artifacts 

As we aim at providing an ontology of software, hence the main question we need to answer is 

„what is a software‟. The term „software‟ is usually interpreted as a preliminary concept to refer all the 

non-physical parts of a computer system by computer science communities. However, as aforementioned, 

this general and vague understanding of software might cause many ambiguities, and our ontology of 

software is proposed to remedy this situation. Intuitively, software may be interpreted as a tool. Compar-

ing with a hammer, software is a tool of a different kind which processes different functions. However, 

this brings about another question that „what is a tool then‟. To answer this question, we borrow the con-

cept of artefactual object
15

 introduced by (Guarino, 2014). As shown in Figure 13, software might be 

placed under the node „Artefactual object‟, meaning that if a particular
16

 is a software then it is also a arte-

factual object, as shown in the formula „                                      ‟. 

 

Figure 13. Artefactual objects, artefactual kinds and artefactual roles (Guarino, 2014) 

According to the statement from Guarino, an artefactual object is a physical object which exists ac-

cording to some design specification. In other words, an artefactual object exists only if some rational de-

sign choices have been made. Taking an example of a stone which is collected from a river, it may be 

used as a paperweight, or be used as a hammer, or be used as a piece of material to build a wall, and etc. 

However, the stone itself is not an artefactual object, because there is no design for the stone that it is an 

ordinary nature physical object. On the other hand, a paperweight or a hammer could be recognized as an 

artefactual object because there exist some design specifications for them. Taking the example of a ham-

                                                 
15

 In this dissertation, we treat term „artifact‟ the same as „artefact‟, and „artificial‟ the same as „artefactual‟. 
16

 As Guarino‟s ontology of artifact is based on DOLCE, the basic elements in the ontology are all particulars. 
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mer as an artefactual object, a hammer should contain a hard head, and a handle connecting to the hard 

head. 

On the other hand, we also need to make an explicit distinction between the concepts of artefactual 

kind and artefactual role. An artefactual kind should be rigid, and an artefactual role should be anti-rigid 

according to our understanding
17

. As illustrated in Figure 13, a trunk could be used as a chair when neces-

sary, and it plays the role of a chair, but it is not an artefactual object because there is no design for it, and 

furthermore it could stop playing the role of a chair. In this case, the concept of chair is an anti-rigid arte-

factual role. A chair made by a furniture company is always a chair, because it is built according to an ex-

plicit design. In this case, the concept of chair is an artefactual kind which is rigid. In this dissertation, we 

consider the concept of software as an artefactual kind which is rigid. 

Besides the statements aforementioned, Guarino adopted the so-call „multiplicative approach‟ from 

DOLCE while interpreting the concept of artefact. By taking this view, we allow different entities co-

locate in the same space-time, and we can ascribe to them incompatible essential properties respectively. 

For example, there is a classical discussion about the relationship between a status and the amount of clay. 

The status cannot survive a radical change in its shape, yet the amount of the clay keeps the same accord-

ing to whatever shape changes. Hence, the status and the amount of clay must be different things, mean-

while co-located in space time.  

The relationship between them is called „constitution‟, and we can say that „the status is constituted 

by the amount of clay, but it is different from the clay‟. Through the work on such amount of clay by a 

status master, a set of essential properties (e.g., shape, or topology) could be assigned to it, and then a new 

„status‟ is created. Similar situation occurs to the relationship between an artifact chair and the wooden 

material it made of, namely the artifact chair is constituted by such amount of wood material. This „multi-

plicative‟ interpretation of an artifact is also reflected by the common use of natural language that the 

newly created entity is a genuine different thing. For instance, we can say a status has a head, two hands 

and etc., yet we rarely say the amount of clay has such a head, two hands, and etc. 

As we shall see, we take the similar idea in this dissertation. For example, we interpreted a software 

program as a software artifact, and it is constituted by a piece of syntactic code. Generally speaking, we 

treat software and code as different entities, as they possess several different essential properties. The 

code could be occasionally created by a monkey by typing on a keyboard without any intention, the only 

thing matters is the syntactic structure which could be accepted by a machine, and that‟s all; yet, a soft-

ware program must be created by human intentionally when they are writing code. As the detail discus-

sion will show that this distinction is crucial in clarifying the ambiguities in the computer science com-

munity, and we adopt this view as part of our baseline. 

Only one thing to notify that Guarino restricted his interpretation of artifact as physical object, alt-

hough he also referred the possibility of interpreting an artifact as a social and abstract entity, he left it as 

an open question. Here in this dissertation, we follow Irmak‟s view that software should be interpreted as 

a social and abstract artifact, and more precisely we interpret software as an information artifact, and the 

detail discussion could be found in the contribution part of this dissertation. 

                                                 
17

 For the readers who are interested in the details of rigidity, please refer to (Guarino & Welty, 2009) 
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3.3 World and Machine Framework 

As aforementioned that we interpret software as an artifact, and the stakeholders‟ intentions underly-

ing a software artifact should be explicitly captured by us. We believe that such intentions play the key 

roles in identifying software from the things that are not software, and distinguishing different kinds of 

software artifacts from each other. For example, we can distinguish a software program from a piece of 

code that a program possesses an intention, and a piece of code doesn‟t possess any intention. Therefore, 

it seems natural to us to take a requirements engineering perspective while analyzing the essence of soft-

ware, instead of focusing on computational aspects only.  

According to the statement above, we shall base our further analysis on a revisitation of the seminal 

works by Jackson and Zave on the foundations of requirements engineering (Michael Jackson & Zave, 

1995), (Zave & Jackson, 1997), (Gunter et al., 2000) which clearly distinguish the external environment 

(where the software requirements are typically defined), the system-to-be (a software-driven machine in-

tended to fulfill such requirements), and the interface between the two.  

Initially, the formula „A, S ⊨ R‟
18

 was proposed by Jackson and Zave in 1995 for obtaining a specifi-

cation from a set of requirements which makes explicit use of environment assumptions. In this formula, 

in which requirements, specification, and assumptions are represented by R, S, and A respectively, for a 

given R and A, a specification S needs to be provided such that „A, S ⊨ R‟. In other words, the satisfaction 

of the requirements can be entailed from the satisfaction of the specification together with the assump-

tions. 

As we can see that the scope of the formula „A, S ⊨ R‟ is restricted to the external environment part 

and the interface part, the situation inside the machine is not mentioned in this formula. To extend the 

formula into a more general scale, also covering the inside part of the software-driven machine, a refer-

ence model for requirements and specifications was proposed by Jackson and et al. in 2000. As we try to 

adopt it as a part of our baseline, a brief introduction of their original ideas will be briefly discussed as 

follows, meanwhile accompanied by our understandings of this framework. 

Phenomena: individual/state/event 

The fundamental concepts (e.g. phenomena, individual, state and event) which are used by Jackson 

and et al. are not explained, but adopted as preliminary concepts. In other words, they do not distinguish 

the individual, state and event, by calling all of them phenomena. They simply assume everyone knows 

and shares the same meanings of them, and based on this assumption, a name (e.g. predicate) should be 

created and designated to a phenomenon. The explanation of the designation process is recommended (e.g. 

natural language descriptions) by them, or ambiguities might be derived from these unexplained names. 

By taking this strategy, a solution to create a WRSPM framework (W: Domain Knowledge, R: Re-

quirement, S: Specification, P: Program, M: Programming Platform), as shown in Figure 14, could be 

proposed through a pure logical expression. Although natural language is also an alternative solution, to 

take the advantage of automatic reasoning provided by computers, and to achieve better rationale, the log-

                                                 
18

 This formula was initially written as „S, E ⊢ R‟, here we adjust the entailment symbol and the abbreviation of as-

sumptions according to our interpretation based on their later work. 
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ical expression (e.g. propositional logic, first order logic or description logic) is preferred by them. For 

example, each of the phenomena could be designated with a predicate; then, logic expressions could be 

composed from these predicates, which become the desired WRSPM artifacts as stated by the authors. 

Controllable/Visible 

Again, the meanings of controllable and visible are not explained in their papers, and the authors as-

sume everyone shares the same meanings of them. Then, the task to decide whether a phenomenon is con-

trollable or visible by/to the environment or the machine is assigned to the stakeholders who will design, 

build and use the machine. 

Environment and Machine 

Environment and machine could be understood as two inter-related systems, environment system 

and machine system. This is another basic idea proposed by the authors that usually a new machine is 

embedded into the original environment, and then a new solution emerges from such embedment. For ex-

ample, at one time, there was an environment system es1 in which there was no coffee machine, and we 

make coffee manually from coffee bean. After several days, we thought a coffee machine might save our 

life. We bought a coffee machine ms and embedded it into the original environment system es1, and now 

we have a new environment system es2 which has a coffee machine ms embedded as one of its sub-

systems, and finally we can get our coffee easier than before. 

 

Figure 14. Reference model for requirements engineering (Gunter et al., 2000) 

In the top part of Figure 14, each point in the ovals represents a statement. A simple statement ex-

ample could be „when a coin is inserted, and then a cup of coffee is provided‟, and its alternative first or-

der expression could be                                          . 

In this example, the predicates CoinInserted and CoffeeProvided are used as the names to represent 

the phenomena of „a coin is inserted‟ and ‘a cup of coffee is provided’ respectively. By linking them with 

logic constructors, the logic expressions like the example could be developed and used as elements of 
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WRSPM framework. In other words, each of W, R, S, P, and M represents a set of statements created 

from the names which are designated to the phenomena. 

In the process of developing a WRSPM framework, the statements created from the names are not 

randomly classified as elements of them. Firstly, the names should be assigned a label from eh, ev, sv or sh; 

then, for a statement belongs to any one of W, R, S, P, and M, only specific labeled names could be used 

as its components. For example, for a statement belongs to S, the allowed component names are limited to 

the ones labeled with ev or sv.  

The meanings of the labels (eh, ev, sv and sh) are illustrated in the bottom part of Figure 14, any point 

in the ovals here represents a phenomenon (designated with a name) which is visible to environment 

and/or machine, and controllable to environment and/or machine. The bottom part of Figure 14 is further 

explained in Figure 15 that any one of eh, ev, sv or sh represents a set of phenomena (designated with 

names) which have different visibility and controllability according to environment and machine. In Fig-

ure 15, the composing rules of the statements in a WRSPM framework are also introduced, which could 

be summarized in the list followed. 

 

Figure 15. RWSMP framework composition rules 

 Statements in W: uses names from eh, ev, sv 

 Statements in R: uses names from eh, ev, sv 

 Statements in S: uses names from ev, sv 

 Statements in P: uses names from ev, sv, sh 

 Statements in M: uses names from ev, sv, sh 

Besides the composition rules shown above, the statements created should be kept in consistency as 

the formulas    ⊨      ⊨   indicate: If (i) S properly takes W into account in saying what is 

needed to obtain R, and (ii) P is an implementation of S underlying M, then (iii) P implements R as de-

sired. 
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Till now, we introduced the original diagram proposed by Jackson et al., by admitting most of their 

views we made several modifications to the diagram, and the detail descriptions and revisions of this 

model could be found in the corresponding contribution parts (e.g., Chapter 5, and Chapter 6), and here is 

a brief idea of our understanding and usage of this model. As shown Figure 16, in a software engineering 

scenario, the phenomena of interest could be classified into three categories according to their controlla-

bility and visibility, namely: 

 

Figure 16. World and Machine Framework (WM Framework) 

World Phenomena, which can only be seen and controlled by the world; Interface Phenomena, 

which can be seen both by the world and the machine, and can be controlled either by the world or by the 

machine; Machine Phenomena, which can only be seen and controlled by the machine. In (Wang, 

Guarino, Guizzardi, & Mylopoulos, 2014b) and (Wang, Guarino, Guizzardi, & Mylopoulos, 2014a), we 

proposed the term „internal specification‟ to refer to a specification that only constrains the phenomena 

happening inside the machine; we distinguish it from the „external specification‟ (originally called simply 

„specification‟), which constrains the phenomena happening at the interface; and a requirement only re-

fers to phenomena in the outside world, excluding the phenomena at the interface; for the domain 

knowledge or assumption, we shall ignore it here, and then use a separating chapter (Chapter 6) to discuss 

about it, according to the essential role played by them in software engineering processes. 

3.4 Situation Calculus 

In this dissertation, we show the possibility of recording the requirements, external specification and 

internal specification as the essential properties of different kinds of software artifacts, and furthermore 

recording different kinds of assumptions and demonstrating the important role played by then in a soft-

ware engineering process. To achieve that, we choose Situation Calculus as our representation language. 

Situation Calculus is a logic formalism proposed by McCarthy in 1993 to represent and reason about dy-

namic domains (McCarthy & Laboratory, 1963). It is chosen here because it is a well-known language, 

used in artificial intelligence to capture changes in states. This makes it quite suitable to demonstrate the 

link between state changes in the world and state changes in a software-driven machine. 

We highlight however that, while the formalization in situation calculus may be useful here to better 

understand the nature of software, such formalization is not mandatory in the practice of software design, 

unless you plan to reason on the represented elements (e.g., to check somehow whether the aforemen-

tioned formula A∧S⊨R holds during a software developing or evolution process). In contrast, what is 
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important in software engineering process is to: 1) on one hand, record richer semantics in a software pro-

ject for different kinds of stakeholders; 2) on the other hand, make the assumptions explicit being aware 

of their different kinds (we shall isolate four of them), so that the people who maintain or evolve the sys-

tem can understand the role they play in the proper system's functioning. A brief introduction to Situation 

Calculus is presented as follows. 

A situation (s), intuitively, is the complete state of affairs at some instant of time. In other words, it 

is a snapshot of the world described by a certain configuration of properties, and a property that takes a 

truth-value in a situation is called a fluent. A fluent (e.g., meeting_scheduledW(Mtg, Sn)) is usually repre-

sented by a predicate (e.g., meeting_scheduledW) having a situation (e.g., Sn) as its final argument.  

An action (a) is the only cause of a transition between two situations, resulting in value changes in 

the fluents within them. Similarly to the notion of function in software engineering, an action may have a 

pre-condition described by „precondition axioms‟ and a post-condition described by „effect axioms‟. The 

former indicates the situation in which the action (a) can possibly be executed; the later indicates the 

changes in values of fluents after the execution of the action in the new situation. 

 

Figure 17. An example of a situation transition 

The new situation achieved by executing an action (a) in a certain situation (s) is denoted by „do(a, 

s)‟. Figure 17 shows what happens when an action is executed in a certain situation, resulting in a situa-

tion transition. In this example, in the initial situation S0, the value of the fluent meeting_scheduledW(Mtg) 

is False. By executing the action schedule(Mtg) in that situation, a new situation is achieved denoted by 

do(schedule(Mtg), S0). In this new situation, the value of the fluent meeting_scheduledW(Mtg) becomes 

True, and this can be represented as meeting_scheduledW(Mtg, do(schedule(Mtg), S0)). 

These core concepts in situation calculus provide a foundation to describe the phenomena in the 

World and Machine Framework. As the phenomena in this framework are classified into world phenome-

na, interface phenomena, and machine phenomena, according to the boundary between the world and the 

embedded machine, we can manually assign labels (e.g. W for World, I for Interface, M for Machine) as 

subscripts to the fluents and actions according to their visibility and controllability to the world and the 

machine.  

As shown in Figure 18, this assignment process results in a classification on the fluents (e.g. World 

Fluent, Interface Fluent, and Machine Fluent) and a classification on the actions (e.g. Interface Action, 

and Machine Action). Specifically, the interface phenomena I includes the fluents and actions that are ob-

servable both by the world (e.g., users of the machine) and the machine. For example, a displayed mes-

sage or a message typed in a laptop, both are fluents at interface, yet the former is perpetrated by the ma-

chine, and the latter by some user of the machine. 
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Figure 18. A transition between two situations according to World and Machine Framework 

With the statements above, it becomes possible to compose requirements, external specification and 

internal specification. Requirements
 
should only refer only to World Fluents (e.g. fluentW1, fluentW2), the 

External Specification should only refer to Interface Fluents and Interface Actions (e.g. fluentI1, fluentI2, 

aI), and the Internal Specification should only refer to Machine Fluents and Machine Actions (e.g. flu-

entM1, fluentM2, aM). Besides that, the assumptions can refer to all kinds of fluents and actions, and as we 

shall see in Chapter 6, this provides a clear way to explain how the assumptions play an essential role to 

link the world and machine states together, and consequently explain how these assumptions produce sig-

nificant effects on our social lives that a software-driven machine could affect the outside social world 

without any direct physical means to change it. Before adopting it in the case study, some additional basic 

rules about the usage of situation calculus are summarized as follows: 

 logical symbols used:  

o , , , , ,   ,  , =; 

 second order logic keywords: 

o Poss(a, s): used as the element to compose pre and post conditions. 

o do(a, s): used to indicate the achieved situation by executing the action a. 

 abbreviations rules: 

o PRE: pre-condition, or precondition axioms 

o POS: post-condition, or effect axioms 

 vocabulary rules: 

o variables: lower cased (e.g., meeting) 

o Constants: first letter capitalized (e.g., Meeting, or Mtg) 

 quantification rules: 

o all free variables are implicitly universally quantified, unless stated otherwise. 
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Chapter 4 

 

4 Towards an Ontological Analysis of Software 

4.1 Software Changeability and Hardware Changeability 

As we mentioned in the related work, some researchers tried to adopt the „changeability‟ as the crite-

rion to distinguish a software object from a hardware object. Such as what Moor proposed, for a computer 

program as a set of instructions, he interpreted it as software or hardware according to the changeability 

to the instructions possessed by the software engineers or the users of it (Moor, 1978). For example, in an 

extreme condition, a person at a factory who can replace circuits in a computer understands his/her activi-

ty as giving instructions, then for him/her the programmable circuits could be interpreted as software. 

However, Moor‟s idea is not illuminating for us, as it is counter-intuitive according to the common 

sense, and this common sense is what we are trying to capture in this dissertation. For us, according to the 

most general common understanding of the difference between software and hardware, we interpret a 

software object as a non-physical object, and meanwhile interpreting a hardware object as a physical ob-

ject. Although we reject the idea to adopt the „changeability‟ as the distinguishing criterion, it is indeed a 

property that links software and hardware tightly. By checking the developing history of automatic com-

puters, we can derive the conclusion that the rapid change of software is supported by the changeability of 

the hardware, in which the software is embodied. 

Pascalines 

The first automatic computer dates back to 1642, which was developed by Blaise Pascal to help his 

father‟s calculations in business. This machine is called an automatic computer, which is different from a 

computation assisting tool (e.g. a Chinese abacus), because the user of it does not need to know the addi-

tion or subtraction rules, whenever the numbers are correctly input, the computing result will be provided, 

while the computing process is made transparent
19

 to the user. To memory the name of Pascal, the follow-

ing similar computing machines are called Pascalines, and one of the survivors of these machines is cur-

rently presented at the Musée des Arts et Métiers as shown in Figure 19. 

 

Figure 19. An early Pascaline on display at the Musée des Arts et Métiers, Paris20 

                                                 
19

 We follow the common use of the term „transparency‟, meaning the user cannot see the details inside. 
20

 Image source: https://commons.wikimedia.org/wiki/File:Arts_et_Metiers_Pascaline_dsc03869.jpg 
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As we can see that although a pascaline computer can process some kinds of automatic calculations, 

only one calculation could be processed a time. If the user wants to do the same calculation (e.g., an addi-

tion calculation), he/she needs to input the addend and summand manually again. In other words, the 

command (or instruction) is stored in the user‟s mind, and every time he/she needs to realize his/her 

command through the machine‟s interface. 

At this stage, it costs a long time to test a large series of calculations for an ultimate purpose, for 

every single change in one of these calculations, the user needs to repeat all the calculation inputs manu-

ally again. According to this situation, a program as a set of instructions (here we have calculations) is 

theoretically changeable in the user‟s mind, but technically hardly changeable according to the interface 

provided by the pascalines. 

Charles Babbage’s Computer 

According to the changeability of the medium hardware of the corresponding software, the second 

generation of automatic computers should be the ones that were invented by Charles Babbage around 

1830s. He spent nearly all his working time to design such a machine which is different from Pascal‟s 

computer that a sequence of calculations should be materialized on some medium (e.g., a paper punched 

card), and by reading this punched card, the computers can process the preset series of calculations auto-

matically. 

Following this idea, the change of the sequence of calculations is switched from operating with the 

interface of a pascaline to operating on the corresponding punched cards. As long as these punched cards 

are built or edited, they could be tested on a Babbage‟s automatic computer directly. With some advanced 

punched card editing tools, the easy changeability of the punched cards enables quick changes in a pro-

gram (as a sequence of instructions/calculations). 

John von Neumann’s Computer 

Consequently, the third generation of computers, and also the prototype of the modern computers, 

were designed and developed by John von Neumann around 1952, which was called IAS (Institute for 

Advanced Study). He‟s idea could be summarized as that as the modern computers had been adopting 

electronic devices as components, it is not reasonable to keep the Decimal Notation anymore, and the Bi-

nary Notation should be a better choice, because it matches the status of a circuit better. 

On the other hand, he believed that it is better to store such binarized sequence of calculations (a 

program) within one of the components of a computer, and this component is called the memory of the 

computer later. According to this design, the programmer can call and edit the program directly within the 

computer, without dealing with the punched card anymore. At this stage, the changeability of the program 

is supported by the easily changeable states of the circuits. 

Along with the developments of changeability of the physical mediums, the embodied programs ex-

perienced the progress of technically hard to change, then technically relatively easy to change, and final-

ly till now technically very easy to change. Such progress saves the programmers from the cost of long 

time editing, persuading them to try possible changes as much as possible, and meanwhile developing 

their potential innovations and creativities as much as possible.  
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4.2 Software as an Artifact: from Code to Programs 

From the changeability of software and hardware, we turn back to the genuine nature of software in 

this sub-chapter. In the literature, there are a number of entities that are typically conflated with the notion 

of software. Prominent among them are the notions of program and code. In the sequel, we argue that 

these two notions are distinct. In the next chapter, we argue that other notions are required. 

Let us start with computer code. We take computer code as a well-formed
21

 sequence of instructions 

in a Turing-complete language. Since such instructions are mere sequences of symbols, the identity of 

code is defined accordingly: two codes are identical if and only if they have exactly the same syntactic 

structure. So, any syntactic change in a code c1 results in a different code c2. These changes may include 

variable renaming, order changes in declarative definitions, inclusion and deletion of comments, etc. 

A code implements an algorithm. Following (Irmak, 2013), we take here an algorithm to mean a pat-

tern of instructions, i.e. an abstract entity, a sort of process universal that is then correlated to a class of 

possible process executions. So, two different codes c1 and c2 can be semantically equivalent (e.g., by 

being able to generate the same class of possible process executions) if they implement the same algo-

rithm, while being different codes. For instance, if c2 is produced from c1 by variable renaming, inclusion 

of comments and modularization, c2 can possess a number of properties (e.g., in terms of understandabil-

ity, maintainability, aesthetics) that are lacking in c1. 

As we have seen, there are proposals (Lando et al., 2009) that identify the notions of program and 

computer code, while others (Eden & Turner, 2007), (Oberle, 2006) distinguish program-script (a pro-

gram code) from program-process (whose abstraction is an algorithm). However, we agree with Irmak 

that we cannot identify a program either with a code, a process, or an algorithm. The reason is that this 

view conflicts with common sense, since the same program usually consists of different codes at different 

times, as a result of updates
22

. What these different codes have in common is that they are selected as 

constituents of a program that is intended to implement the same algorithm. To account for this intuition, 

we need the notion of (technical) artifact. 

We are aware that many such notions have been discussed in the literature, but the one proposed by 

(Guarino, 2014) derived from (Baker, 2004) works well for us: Firstly, they make clear that artifacts are 

the results of intentional processes, which, in turn, are motivated by intentions (mental states) of (agentive) 

creators. Moreover, they connect the identity of an artifact to its functions defined in the design, i.e., what 

the artifact is intended to perform. Finally, they recognize that the relation between an artifact and its 

proper function exists even if the artifact does not perform its proper function. In other words, the connec-

tion is established by the intentional act through which the artifact is created. 

In the light of these observations, a code is not necessarily an artifact. If we accidentally delete a line 

of code, the result might still be a computer code. It will not, however, be „intentionally made to serve a 

given purpose‟ according to a design. Moreover, we can clearly conceive the possibility of codes generat-

ed randomly or by chance (for instance, suppose that, by mistake, two code files are accidentally merged 

into one). In contrast, a program is necessarily an artifact. A computer program is created with the pur-

                                                 
21

 So, we do not consider so called „ill-formed code‟ as code, but just as text. 
22

 Irmak also admits that the same program may have different algorithms at different times. 
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pose of playing a particular proper function. But, what kind of function? Well, of course the ultimate 

function of a program is –typically– that of producing useful effects for the prospective users of a com-

puter system or a computer-driven machine, but there is an immediate function which belongs to the very 

essence of a program: producing a desired behavior, when the program is executed, inside a computer en-

dowed with a given programming environment (such as an operating system). We insist on the fact that 

such behavior is first of all inside the computer, as it concerns phenomena affecting the internal states of 

its I/O ports and memory structures, not the external states of its I/O devices. Examples of such behaviors 

can be changes inside a file or a data structure, resulting from the application of certain algorithm. In 

summary, a program has the essential property of being intended to play an internal function inside a 

computer. Such function can be specified by an internal specification consisting of a data structure and 

the desired changes within such data structure
23

. For every program we assume the existence of a unique 

specification of such expected behavior, called internal specification. In order for a program to exist, this 

specification must exist, even if only in the programmer‟s mind.  

Since code and program differ in their essential properties (programs are necessarily artifacts and 

possess essential proper functions; codes are not necessarily artifacts), we have to conclude that a pro-

gram is not identical to a code.  However, if program and code are different entities, what is the relation 

between the two? In general, the relation between an artifact and its material substrata is taken to be one 

of constitution. As noted in (Baker, 2004), the basic idea of constitution is that whenever a certain aggre-

gate of things of a given kind is in certain circumstances, a new entity of a  different kind comes into be-

ing.  

So, when a code is in the circumstances that somebody, with a kind of act of baptism, intends to 

produce certain effects on a computer, then a new entity emerges, constituted by the code: a software 

program
24

. If the code does not actually produce such effects, it is the program that is faulty, not the code.  

Consider now a program, constituted by a certain code. Let us observe first that this is not a physical 

object, as it lacks a location in space. So, in pace with Irmak, we take a program to be a particular kind of 

abstract (non-physical) artifact. On one hand, it behaves like a type (or universal) since it defines patterns 

that are repeatable in a number of copies. On the other hand, unlike a type, a program is not outside space 

and time. A program does not exist eternally like other abstract entities such as numbers and set; in par-

ticular, a program does not pre-date its creator. As previously mentioned, it is in fact historically depend-

ent on an intentional „act of baptism‟ and, hence, on its creator. In addition to such historical dependence, 

we shall assume that a program constantly depends on some substratum in order to exist, in the sense that 

at least a physical encoding (a copy) of its code needs to exist. Finally, we shall also assume that, when-

ever a program exists, its underlying intention to implement the internal specification is recognizable by 

somebody (possibly thanks to suitable annotations in the code). So, a program p is present at time t when-

ever: i) a particular code c is present at t (which means that at least a copy of c exists at t); ii) an internal 

specification s exists at t; and iii) at t, there is somebody who recognizes c as intended to implement s, or 

there is an explicit description of this intention (e.g., via a documentation in the code or in an explicitly 

described internal specification) which is recognizable by someone.  

                                                 
23

 Such specification covers the functional aspects of a program. Although currently not introduced in this work, a 

full specification may also include non-functional aspects, such as time and security constraints. 
24

 We adopt the term „software program‟ to keep the terminology consistent in the following contents of the disserta-

tion, and sometimes mentioned as „program‟ in short if the meaning is clear in the context. 
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In conclusion, a syntactic structure could be used as an identity criterion of a code, and an internal 

specification along with the intentional creation act could be used as the identity criteria of a program. As 

we have seen, one of the interesting aspects distinguishing program from code is the possibility to honor 

the commonsense idea shared among software engineering practitioners that a program can change its 

code without altering its identity.  

4.3 Software as an Information Artifact 

Taking a further step, from interpreting software as an abstract artifact, we interpret it as is an ab-

stract information artifact. Since the famous semiotic triangle was proposed by (Ogden et al., 2001), it has 

been more than 10 years researchers trying to figure out the true nature of information. (Smith, 2004) and 

(Ferrario & Oltramari, 2005) tried to explain what are „mind‟ and „concept‟ respectively. Following them, 

(Maass, Goyal, & Behrendt, 2004), (Gangemi et al., 2004) and (Jureta et al., 2009) provided several pro-

posals about „information object‟. Among the researchers, Fortier and Kassel (F&K hereafter) proposed 

an ontology of Information and Discourse Acts (I&DA) (Fortier & Kassel, 2004), in which a systematic 

ontological analysis was provided about the information and relating concepts. In their paper, three main 

concepts were proposed: Information (called „Content‟ originally), a non-physical object, the mind or 

knowledge itself; Expression (called „ContentBearingObjects‟ originally), a syntactic representation of 

the information, which is also a non-physical object; Inscription, the physical realization of the syntactic 

representation which is the physical support of the information. 

F&K‟s proposal is clear and intuitive enough to explain the information related concepts, and we 

share the similar idea with some terminology modification. An example could make it clearer: I have an 

idea that I love my dog, and this thinking content/knowledge is the information in my mind; then I want 

to express this idea to someone else, then I figure out an sentence as „I love my dog‟. I haven‟t written it 

down anywhere, this syntactic sequence of symbols according to English is called expression; finally, I 

write down the sentence on a piece of paper, the structure of the ink on the paper forms the inscription of 

the information. Note the inscription depends on the physical medium but it is not the medium.  

Recently, by considering both concepts of information and artifact, (Smith et al., 2013) provided a 

definition of Information Artifact (IA) based on their Information Artifact Ontology (IAO)
25

 which was 

proposed for the Human Genome Project, „an information artifact is an entity that has been created 

through some deliberate act or acts by one or more human beings, and which endures through time, po-

tentially in multiple copies.‟ For the case of simplification, we translate this definition with our terminol-

ogies as „an information artifact is an artifact which is constituted by an inscription of the information.‟  

Smith‟s proposal is suitable to deal with the information which is inscribed with physical support, 

such as my passport, and this passport depends on the paper and ink but does not equal to them. Like 

Dublin Core
26

, they try to provide terminologies to describe such kind of artifacts, such as „IA #12345 is-

about some given person, or uses-symbols-from some specified symbology, or links-to some second IA 

#56789 (Smith et al., 2013).‟ Although the „information artifact‟ proposed by Smith is essential is many 

cases, we treat it from a different perspective that an information artifact is an artifact which is constitut-

ed by a syntactic expression of the information. 

                                                 
25

 IAO, https://code.google.com/p/information-artifact-ontology/ 
26

 Dublin Core, http://wiki.dublincore.org/index.php/User_Guide 
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We believe it is also important to independently consider the syntactic expression of information as 

the constituent of IA. Furthermore, as stated by (Kassel, 2010), „we treat information artifact (e.g., espe-

cially software) as non-physical artifact instead of physical artifact‟. Similar view was hold by (Faulkner 

& Runde, 2011) that software is non-material object and which is „a syntactic entity … in consisting of a 

set of well-formed expressions (Lando et al., 2009) written in an appropriate language, and where well-

formed means that these expressions adhere to the syntactic and semantic rules of that language.‟ Conse-

quently, the statements above lead us to our proposal that software is an abstract information artifact. 
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Chapter 5 

 

5 From Software Programs to Software Products 

5.1 Identifying Different Kinds of Software Artifacts 

5.1.1 From Software Programs to Software Systems 

As we have seen, the identity criteria of software programs are bound to the internal behaviors of a 

computer. On the other hand, software is usually intended as an artifact whose ultimate purpose is con-

straining the behaviors of an environment external to the computer, which the computer monitors and 

controls by means of transducers bridging between symbolic data and physical properties. In the case of a 

stand-alone computer such transducers just concern the human-computer interface and the standard I/O 

devices; for mobile systems they may also include position and acceleration sensors, while in the case of 

embedded systems they take the form of ad-hoc physical sensors and actuators. So, in the general case, the 

software‟s ultimate purpose is achieved by executing a software program that produces certain effects in-

side a computer, which drives a physical machine, which in turn produces certain effects on its external 

environment. 

In software engineering, the desired effects the software is intended to have on the environment are 

called requirements. The role of the sub-discipline of software engineering called requirements engineer-

ing is to elicit, make explicit and analyze these requirements in order to produce a specification that de-

scribes the behavior of a (computer-based) machine. We assume that a software specification is a func-

tional specification, as defined in standards such as IEEE-STD-830-1993. From an ontological point of 

view, functions are existentially dependent entities that are intimately related to the ontological notion of 

disposition (capacity, capability) exhibited by an object. Functions and dispositions are potential (realiza-

ble) properties such that when a situation (state of the world) of a particular kind obtains they are mani-

fested through the occurrence of an event, determining in this way the object‟s behavior. 

As we stated in the baseline, this view has been described in several papers by Jackson and Zave 

(Michael Jackson & Zave, 1995), (M Jackson, 2007), (Zave & Jackson, 1997), which draw a clear dis-

tinction between the environment and the computer-driven machine. Their goal is to show that the rela-

tionship between the two, within their WRSPM Framework, can be defined by establishing a logical con-

nection between the intended behaviors at the interface (described by a specification S), the relevant 

world assumptions about environmental properties (described by a body of world knowledge W), and the 

intended environmental behaviors (described by a set of requirements R). Such connection is captured by 

the formula S ∧ W ⊨ R, and in this case that S satisfies R under the world assumptions W. 

As shown in Figure 20, the picture gets clearer in a more recent paper (Gunter et al., 2000), where 

the inside part of the software-driven machine is connected to the interface through a generic program-

ming platform (described as a set of statements in M) which is composed of a physical programming envi-

ronment part (e.g., multiple transducers), as well as a non-physical programming environment part (i.e., 

an operating system). Such a description of the programming platform could be understood as a set of 

machine assumptions, based on which the interface behaviors could be affected by means of a software 
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program (described as a set of statements in P), and this extension of the original model was summarized 

in the formula    ⊨  . 

 

Figure 20. An extract of Jackson and et al.’s WRSPM Framework 

Nowadays, although this model has been adopted as a fundamental model for requirements engi-

neering, for requirements engineers, they usually focus on the role of the specification of interface behav-

iors, and the interactions between the interface and the outside world. Differently from that, by taking the 

view of software engineering, we are interested not only in the interface behaviors, but also in internal 

machine behaviors which drive the interface, and ultimately in the relationship between the machine be-

haviors and the world behaviors. As (Gunter et al., 2000) observe, such a relationship can be obtained as a 

composition of the two aforementioned formulas that    ⊨      ⊨   which indicates: If (i) S 

properly takes W into account in saying what is needed to obtain R, and (ii) P is an implementation of S 

underlying M, then (iii) P implements R as desired. 

 

Figure 21. Cutting the boundary between worlds and machines (according to WM Framework) 

In a word, Jackson and et al.‟s work pay attention to the boundary between worlds and machines, 

drawing a clear distinction between the world and software-driven machine. According to their idea and 

the software engineering scenario, we classify and name the phenomena of interest into three categories 

according to their controllability and visibility as shown in Figure 21, namely: world phenomena, which 

can only be seen and controlled by the world; interface phenomena, which can be seen both by the world 

and the machine, and can be controlled either by the world or by the machine; machine phenomena, 

which can only be seen and controlled by the machine. In (Wang et al., 2014b) and (Wang et al., 2014a), 

we proposed the term „internal specification‟ (Sint) to refer to a specification that only constrains the phe-

nomena happening inside the machine; we distinguish it from the „external specification‟ (Sext) (originally 

called simply „specification‟), which constrains the phenomena happening at the interface.  

In conclusion, while in the previous chapter we focused on the immediate function of software pro-

grams as information artifacts, producing some effects inside a software-driven machine, and here the 
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WM Framework allows us to understand how software programs play their ultimate function, which is 

producing certain effects in the external environment (i.e., satisfying the requirements).  

Such function is realized in two steps: first, the internal computer behavior resulting from running 

the software program generates some effects at the interface (i.e., through the programming platform, in-

cluding the I/O transducers, for instance, a message appears on the screen); second, under suitable as-

sumptions concerning the environment (for instance, there are people able to perceive and understand the 

message), the ultimate effects of the program are produced (e.g., the person who reads the message per-

forms a certain action). 

The presence of these two steps in realizing the ultimate function of a program suggests us to intro-

duce two further artifacts, a software system, whose essential property is being intended to determine the 

intended behaviors at the interface; and a software product, whose essential property is being intended to 

determine some desired effects in the environment by means of the behaviors at the interface, given cer-

tain domain assumptions. So, the Jackson and Zave‟s model can be replicated in our WM Framework at 

three different levels as shown in Figure 21, each corresponding, in our proposal, to a different kind of 

software artifact, based on the different reasons for why a certain piece of code is written, which are 

summarized in the following list: 

 a software program is constituted by some code intended to determine a specific behavior inside 

the computer. Such behavior is specified by an internal specification. 

 a software system is constituted by a software program intended to determine a specific interface 

behavior (between the machine and its outside environment). Such behavior is specified by an 

external specification. 

 a software product is constituted by a software system designed to determine specific effects in 

the environment as a result of the interface behavior, under given domain assumptions. Such ef-

fects are specified by the requirements. 

5.1.2 From Software Systems to Software Products 

Let us now focus on the notion of software product previously introduced. While the essential func-

tion of a software system is to control the interface behaviors between a certain machine and the envi-

ronment (i.e., according to the Jackson et al.‟s approach, that part of the behavior that is „visible‟ to both 

the environment and machine), the essential function of a software product is to control the environment‟s 

behaviors which are not visible to the machine, but can be influenced by it, under given environment 

(domain) assumptions, as a result of the interaction between the interface and the environment. 

It is important to note that a software product is intended to achieve some effects in the external en-

vironment by means of a given machine, and under given world assumptions. So, assuming they have ex-

actly the same high-level requirements, MS Word for Mac and MS Word for PC are different software 

products (may belong to the same product family), since they are intended for different kinds of machines. 

Similarly, country-oriented customizations of Word for Mac may be understood as different products, 

since they presuppose different language skills, unless the requirements already explicitly include the 

possibility to interact with the system in multiple different languages. 
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Consider now one such software product, say MS Word for Mac. Starting with version V1, which 

denotes the specific software system constituting the software product at the time of its first release, this 

product will suffer a number of possible changes in its constituents in order to fix bugs, to include new 

functionalities, to improve performance, security, precision, etc. Each of these changes leads to distinct 

code, but some of them (those that are not just bug fixings) will also lead to a new software program, 

while others (those that concern changes in the interface functions) will also lead to a distinct software 

system, namely to a different version (V2) of the same product. 

To reflect these changes, the code will be marked in order to distinguish itself from the former codes, 

and in order to identify the program, the software system, and the software product. According to the usu-

al conventions, the software system could be identified by the version number, the software program by 

the release number, and the code by the sub-release number. In this way, we see how an ontology of 

software artifacts, based on the WM Framework, can produce a version numbering system which reflects 

the changes in the different kinds of software artifacts. 

 

Figure 22. Different abstract software artifacts induced by different requirements engineering notions. 

In summary, the core ontological distinctions induced by the different requirements engineering per-

spectives we have discussed are illustrated in Figure 22. To the left, we see different software artifacts all 

ultimately constituted by some code (which is a specific syntactic expression). They have different essen-

tial properties, resulting from the fact that each of them is constantly dependent on a different intentional 

entity. Each of these entities refers to an expected behavior involving different parts of a complex socio-

technical system, which in turn emerges from the interaction of a software-driven machine and a social 

environment (namely the WM Framework).  

A brief account of the main relations appearing in the picture is reported below. As usual, the sub-

sumption relation is represented by an open-headed arrow. The closed-headed arrows represent some of 
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the basic relations discussed in the paper. For some of them (constitution and specific constant depend-

ence), the intended semantics is rather standard, while for others we just sketch their intended meaning, 

postponing a formal characterization to the future work. 

constitutedBy: We mean here the relation described extensively by (Guarino, 2014) and (Baker, 

2004). We just assume it being a kind of generic dependence relation that is both asymmetric and non-

reflexive, and does not imply part-hood. We can borrow a minimal axiomatization from the DOLCE on-

tology. 

specificallyConstantlyDependsOn: If x is specifically constantly depending on y, then, necessarily, 

at each time x is present also y must be present. Again, we can borrow the DOLCE axiomatization. When 

this relation holds, being dependent on y is for x an essential property. 

intendedToImplement: This relation links an artifact to its specification or requirement, as a result 

of an intentional act. Note that the intention to implement does not imply that the implementation will be 

the correct one (e.g., bugs may exist). 

intendedToSatisfy and presuppose. These two relations are proposed to capture the structure of the 

formula proposed by Jackson et al. to describe the nature of requirements engineering, A∧S⊨R. S, which 

presupposes W, is intended to satisfy R. Presupposition is a kind of historical dependence on certain 

knowledge states. 

5.1.3 The Social Nature of Software 

In addition to its artifactual nature, discussed in the previous chapter, software –at least software 

used every day in our society– has also a strong social nature, which impacts on the way it is produced, 

sold, used and maintained. There are two main social aspects of software we shall consider under our 

software artifactual perspective: social recognition and social commitment.  

Social Recognition and Software Identity 

We have seen the key role the constitution relation plays in accounting for the artifactual nature of 

software. But how is this constitution relation represented and recognized? In the simplest of cases, we 

can think of a program produced by a single programmer for personal use. In this case, we can imagine 

that the constitution relationship binding a program with its constituting code exists solely in the mind of 

this programmer. Likewise, if this program comes to constitute a software system, then this constitution 

relation, again, exists only in the mind of the programmer. Yet, in order for a software artifact to exist in a 

social context, we shall assume that the constitution relation between the artifact at hand and its constitu-

ent needs to be explicitly communicated by the software author, and recognizable by a community of 

people. As a minimal situation, we consider these communications about constitution and intentions to 

satisfy specifications as true communicative acts that create expectations, beliefs and contribute to the 

creation of commitments, claims and a minimal social structure (possibly reflecting division of labor) be-

tween the software creator(s) and the potential users or stakeholders. Once this social structure exists, the 

creators‟ actions become social actions and are subject to social and legal norms that support expectations 

and rights. To cite one example, we use the motion picture „The Social Network‟ based on the book „Ac-

cidental Billionaires‟ (Mezrich, 2010) reporting on the creation of Facebook. As shown there, the legal 
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battle involving the authorship rights in Facebook was at moments based on the discussion of shared au-

thorship between M. Zuckerberg and E. Saverin regarding an initial program (Saverin was allegedly a 

prominent proposer of the algorithm) and software system, much before the product Facebook existed. At 

other times, the legal battle between Zuckerberg and the Winklevoss brothers was based on a shared sys-

tem specification of another program even if, as argued by Zuckerberg, no lines of the original code had 

been used by Facebook. 

In more disciplined software engineering settings, anyway, the constitution relationships and the in-

tended specifications are documented by program headers and possibly user manuals or separate product 

documentation. Notice that, without the explicit documentation of these relationships, the software arti-

facts will depend on their creators in order to exist, since the constitution relationships are sustained by 

their intentional states. Once these relationships are documented, these artifacts can outlive their creators, 

as long as this documentation can be properly recognized and understood. So, for instance, although Jo-

seph Weizenbaum is no longer alive, by looking to a copy of the ELIZA
27

 code, one can still reconstruct 

the chain of intentions from the informal requirements specification all the way down to the code.  In 

formal ontological terms, this means that software artifacts are just historically (but not constantly) de-

pending on their authors, and in addition they are generically constantly depending on a community of 

people who recognize their essential properties. If such community of people ceases to exist, the artifact 

ceases to exist. 

Social Commitment and Software Licensing 

As we have seen, the different kinds of software artifacts we have discussed are based on a require-

ments engineering perspective. We cannot ignore however another perspective that deeply affects the cur-

rent practice of software engineering, namely the marketing perspective. In the present software market, 

software products do not come alone, since what companies sell are not just software products: in the vast 

majority of cases, a purchase contract for a software product includes a number of rights and duties on 

both parties, including the right to download updates for a certain period of time, the prohibition to give 

copies away, the right to hold the clients‟ personal data and to automatically charge them for specific fi-

nancial transactions, and so on. Indeed, the very same software product can be sold at different prices by 

different companies, under different licensing policies. The result is that software products come to the 

market in the form of service offerings, which concern product-service bundles. According to (Nardi et al., 

2013), a service offering is in turn based on the notion of service, which is a social commitment concern-

ing in our case maintenance actions. Service offerings are therefore meta-commitments, i.e., they are 

commitments to engage in specific commitments (namely, the delivery of certain services) once a con-

tract is signed. So, before the contract is signed we have another software entity emerging: a Licensable 

Software Product. After the contract is signed, we have a Licensed Software Product. Notice that the ser-

vices regulated by the contract may not only concern the proper functioning of software (involving the 

right to updates), but also the availability of certain resources in the environment where the software is 

supposed to operate, such as remote servers (used, e.g., for Web searching, VOIP communication, cloud 

syncing...). So, when Skype Inc. releases Skype, it publicly commits to engage in such kind of commit-

ments. By the way, this means that, when buying Skype from Skype Inc., Microsoft is not only buying 

the software product, but it is also buying all the rights Skype Inc. has regarding its clients.  
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Note that, even in absence of a purchasing contract, when releasing a product as licensable product, 

the owner creates already social commitments and expectations towards a community of users and re-

users of the product. For example, take the Protégé Ontology editor, which is a free open-source product 

released under the Mozilla Public License (MPL
28

). This grants the members of the user community the 

right to change Protégé‟s code and to incorporate it even in commercial products.  

5.2 Recording Different Kinds of Software Artifacts 

5.2.1 Representation of Different Kinds of Software Artifacts 

As we have identified the essential properties of the different kinds of software artifacts, then they 

can be used to record the corresponding software artifacts. Hence, in the remainder of this section, we 

elaborate on how a formalism such as situation calculus could be used to represent these requirements, as 

well as the external and the internal specifications in the sense put forth by the aforementioned classifica-

tion of different kinds of phenomena (according to WM framework). 

Requirements (R) 

We interpret a requirement as a set of (conditional) states of affairs that are intended by stakeholders. 

According to this view, we can represent a set of states of affairs as a set of situations. In an intended situ-

ation, the concerned world fluents have the specific values intended by the stakeholders. If the require-

ment has a conditional nature, a situation transition will be specified. For example, a requirement may be 

„a meeting shall be scheduled after a meeting initiator intends to schedule one‟, meaning that if we start in 

a situation where a meeting has been intended by an initiator, some actions will get us to a situation where 

the intended meeting is scheduled. Following this view, we can represent this requirement in a situation 

calculus expression such as the following one: 
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This formula means that there exists an action a such that, starting from an initial situation s in 

which a meeting is intended by an initiator, then, by executing it, a new situation in which the meeting is 

scheduled is reached. The action a here in the formula refers to an action variable in terms of second or-

der logic representation syntax. Also, note that we use the subscripts w (world), i (interface), and m (ma-

chine) to distinguish among fluents concerning the different kinds of phenomena described in the WM 

Framework. 

In a software engineering process, such an action could be understood as an alias of a function, and 

this decision is adopted by many software engineering standards, such as IEEE-STD-830-1993. Hence a 

set of functions defined in the specifications becomes a solution to the requirements. As previously stated, 
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according to world-machine distinction, we classify specifications into external specification and internal 

specification respectively, and here we introduce the representation of each of them as follows
29

: 

 

External Specification (Sext) 

An external specification contains a set of actions Sext = {aI1, aI2, …, aIn}, that are supposed to occur 

at the interface in order to satisfy the requirements. If the specification is implemented correctly, execut-

ing an interface action will bring about the desired situation transition, resulting in changes of the inter-

face fluents, that (by definition), will be visible both from the machine and outside world. 

Besides that, it is important to highlight that, an action in Sext may be applied several times to get the 

stakeholders to an intended situation, and here the detailed executing order of this series of actions is ig-

nored. For example, for a meeting scheduling system, if Sext includes an interface action „receive timetable 

from a participant‟, this action will have to be applied many times to get the timetables from all the partic-

ipants for a meeting, so that the stakeholders can reach the situation where all timetables have been col-

lected. 

 

Internal Specification (Sint) 

An internal specification contains a set of machine actions Sint = {aM1, aM2, …, aMn}, concerning the 

inside part of the machine (e.g., the variables in I/O registers). Executing a machine action will bring 

about a situation transition, resulting in intended changes in the machine fluents. Although a user of a 

software system may not be interested in the implementation details underlying the interface, software 

engineers care about it, and they need to provide the actions inside the machine supplementing the inter-

face actions. Together with both the external specification and internal specification, we get a complete 

solution to the requirements. Similarly as stated in external specification, the machine actions in an inter-

nal specification are also introduced here without providing the details about their execution orders. 

5.2.2 Ontology-Driven Software Configuration Management 

According to (Dart, 1991), Software Configuration Management (SCM) is „a discipline for control-

ling the evolution of software systems‟, and is considered as a core supporting process for software de-

velopment (Chrissis, Konrad, & Shrum, 2011). A basic notion of any SCM system is the concept of ver-

sion (Estublier et al., 2005). The IEEE Software Engineering Body of Knowledge states (Bourque & 

Fairley, 2014) that „a version of a software item is an identified instance of an item. It can be thought of 

as a state of an evolving item‟. In the past, the same source distinguished, within versions, between revi-

sions and variants (Abran & Moore, 2004): „A revision is a new version of an item that is intended to re-

place the old version of the item. A variant is a new version of an item that will be added to the configu-

ration without replacing the old version‟. In our approach, these two kinds of version can be described as 

follows: 
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Revision Process. Suppose that at time t we have a program p1 constituted by code c1; when at time 

t’ we replace the code c1 as the constituent of p1 by code c2, we are not creating a distinct program p2, 

but we are simply breaking the constitution relation between p1 and c1. Thus, at t’, c1 is not a constituent 

of the program anymore; rather it is merely a code, so that at t’ we are still left with the same program p1, 

but now constituted by a different code c2.  

Variant Process. Suppose that we have a software system s1 („MST
30

-Finder A‟), and we develop a 

software system s2 („MST-Finder B‟) from s1 by adopting a new algorithm. Now s1 and s2 are constitut-

ed by different programs. Of course, s1 will not be identical to s2, since they are constituted by different 

programs at the same time, and by Leibniz‟s Law if two individuals have incompatible properties at the 

same time they are not identical. Indeed, the two software systems may have independent reasons to exist 

at the same time.   

Traditionally, revisions and variants are managed by means of naming conventions and version 

codes which are usually decided on the basis of the perceived significance of changes between versions 

without any clear criterion (e.g. CVS, SVN). We believe that the layered ontology introduced in this dis-

sertation can make an important contribution to make this process more disciplined by providing a gen-

eral mechanism to explicitly express what is changed when a new version is created. This can be simply 

done by pointing to the software artifact that is affected by the change, and can be reflected by a simple 

versioning scheme (e.g. v 1.5.3.2: 1 - software product release number; 5 – software system release num-

ber, 3 – software program release number; 2 – code release number). In addition to this scheme, we can 

document the rationale why a certain software artifact has been changed according to the WM Frame-

work, meanwhile pointing to the specific source of change. 

We believe that this ability to account both for what and why software is changed is essential for 

software engineering, because managing software and software evolution requires much more than man-

aging code. For example, as Licensed Software Products are based on a chain of dependent artifacts cul-

minating with a computer code, a software management system must be able to manage the impact that 

changes in the code ultimately have in terms of legal and financial consequences at the level of licensed 

products. 

  

                                                 
30

 MST: Minimum Spanning Tree 



FROM Software Programs to Software Products 

62 

  



 

 63 

 

Chapter 6 

 

6 How Software Changes the World through Assumptions 

Jackson and et al.‟s work pay attention to the boundary between worlds and machines, drawing a 

clear distinction between the environment, which is where the ultimate effects of software program are 

expected, and the software-driven machine where software program operates. Van Lamsweerde recogniz-

es their work in a paper entitled „from worlds to machines‟(Axel Van Lamsweerde, 2009), which elabo-

rates on how a specification concerning the behavior of the machine could be derived from a set of re-

quirements concerning the external world. In this dissertation, we take the reversed perspective, focusing 

more on how software-driven machines could affect the world. In other words, given a specification and a 

set of requirements, we explain in what sense the requirements can be entailed from the specification. 

As stated in our previous work (Wang et al., 2014a, 2014b), a software program possesses a peculiar 

characteristic when compared to other kinds of information artifacts (e.g. recipes or laws): it plays the 

role of a bridge between symbols in a machine and its outside world. More specifically, while other kinds 

of information artifacts directly refer to the objects in the world (so that executing a recipe or a law im-

plies a manipulation of objects in the world), software programs refer to virtual variables in a machine, 

whose manipulation inside the machine affects the outside world in an indirect way.  

When a software program is embedded in a machine to control its external behavior, we have a soft-

ware-driven machine. The ultimate purpose of a software-driven machine program is to constrain the 

phenomena of its external environment. The machine monitors and controls the environment by means of 

transducers bridging between symbolic data and physical properties of the environment (hereafter the 

software-driven machine will be referred as „machine‟ if the meaning is clear in the context).  

In the case of a stand-alone personal computer (PC) such transducers just concern the human-

computer interface and the standard I/O devices; for mobile systems they may also include position and 

acceleration sensors, while in the case of embedded systems they take the form of ad-hoc physical sensors 

and actuators. So, in the general case, the software‟s ultimate purpose is achieved by running a software 

program that produces certain effects inside a computer, which drives a physical machine, which in turn 

produces physical effects on its external environment.  

However, we may wonder, similarly to what happens to the physical environment, whether soft-

ware-driven machines can also affect the social environment. Indeed, as we have seen for the case of the 

meeting scheduler, in many cases the ultimate purpose of software is to produce such changes in the so-

cial world. But how is this possible, given that the machine has no direct means to affect the social world? 

This is the paradox we mentioned at the beginning of this dissertation. 

To solve this, let us first consider another scenario in which the social world is affected by artifacts 

other than software-driven machines. For example, in the modern monetary system, some kinds of col-

ored paper are used as money in commercial activities. As we are all aware of, giving a piece of such pa-

per to a person produces certain effects in the social world (Ryan-Collins et al., 2014). This happens be-
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cause we share the same assumption that owning one of those pieces of colored paper produces some rel-

evant social effects: that piece of paper counts as money.  

The count-as relationship was proposed by the philosopher John Searle to link what he terms a brute 

physical fact (e.g., presenting a bill) with what he terms an institutional fact (having the right to obtain a 

good in exchange of the bill). As another example, two hands joining in a handshake movement counts as 

an institutional relationship (e.g., an agreement) being created in a given context. We would say therefore 

that the agreement depends on the handshake (Franken, Karakus, & Michel, 2010) if the assumption that 

handshakes count as agreements holds. 

Moving now to software-driven machines, we can observe that, according to the way the monetary 

system evolved after the advent of electronic computers, a new assumption is pervasively made by almost 

all the nations and areas in the world: electronic data in banks‟ databases counts as money. In other words, 

our commercial world is actually controlled by the software-driven machines in the banks, which literally 

have that power of changing the world, thanks to our count-as assumptions (Ryan-Collins et al., 2014). 

Going back to the meeting scheduler example, again we have a case in which symbolic facts count-

as institutional facts, since a meeting record marked as scheduled on the computer counts-as as the collec-

tive belief that the meeting is actually scheduled, with the corresponding beliefs and commitments from 

the meeting participants, as well as the corresponding social (and sometimes legal) consequences.  

6.1 A Preliminary Ontology of Assumptions 

Consider a software system that schedules meetings upon requests. Its ultimate requirement, which 

the system is mandated to fulfill, is not only to produce some information, consisting of a schedule that 

satisfies the given constraints, but also to bring about a change in the social world where the software op-

erates, so that the suggestion made by the software is actually understood and assimilated by the working 

environment, and the proper actions necessary for the meeting organization (such as invitations to the par-

ticipants and room allocation) are effectively undertaken according to the software suggestions. The actu-

al effectiveness of the software will be evaluated on the basis of its impact in the social world; however, a 

software system, by its very nature, can only change the states of the machine within which it operates. 

There seems to be a paradox here. The requirements for most software systems, the intended states-

of-affairs these systems are supposed to bring about, concern their operational environment, usually a so-

cial one. But these systems don‟t have any direct means to change that environment in order to bring 

about the intended states-of-affairs. In what sense then can we say that such systems fulfill their require-

ments? The main purpose of this chapter is to account for this paradox. We do so by proposing an ontolo-

gy of the kinds of assumptions that are implicitly used in software engineering practice, especially the 

newly proposed two kinds of dependence assumptions.  

We explain the key role of these assumptions played in the relationship between the social world and 

a software-driven machine, which solves the paradox mentioned at the beginning of the dissertation. Be-

sides that, we introduce the interpretations of the term „assumption‟ adopted in the software engineering 

community as „assumption-needed‟ and „assumption-used‟ in our ontology of assumptions. As we 

demonstrate in the end of this sub-chapter, these interpretations are corroborated by literature in the legal 

domain. We emphasize that this ontology is a partial attempt in systematizing these notions. In a future 
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paper, we expect to elaborate on the detailed ontological nature of these assumptions, in particular, in as-

pects dealing with the mental states/attitudes. 

6.1.1 A Classification of Assumptions 

As shown in Figure 23, four kinds of assumptions are added into the WM Framework, including 

world assumptions (WA), machine assumptions (MA), world dependence assumptions (WDA), and ma-

chine dependence assumptions (MDA). We introduce each of them in the sequel. 

 

Figure 23. WM Framework with assumptions 

A world assumption is an assumption about and only about the world phenomena that are not visible 

to the machine. It constrains the suitable environment context for the software-driven machine to produce 

the effects specified in the requirements. For example, for a meeting scheduling system, we may assume 

that the system only works if a room is available for the requested meeting, and design a basic solution 

that only finds a suitable time slot and selects a room from the available ones. Such an assumption means 

that our solution does not work when no room is available (e.g. during a busy period with many meeting 

requests). Note that another implicit world assumption related to this is that all meetings have the same 

importance, so that the system does not attempt any special recovery strategy (e.g., re-negotiate previous-

ly scheduled meetings) based on the meeting‟s importance. 

A machine assumption is an assumption about and only about the machine‟s internal phenomena, 

i.e., those that are only visible to the machine. For instance, an action specified at the internal interface 

level (the I/O register) will produce its intended effects only if the assumption that such action is correctly 

implemented holds. It describes the machine conditions that should be ensured by something or some-

body else. In other words, these machine assumptions are usually used to ensure the availability of re-

sources in/for the machine. For example, we main assume that there is always a power supply for the ma-

chine, which means that machine should not be expected to work when there is no power supply. 

Since world assumptions and machine assumptions are either about the world (e.g., the assumption 

of enough rooms for the meetings) or about the machine (e.g., the assumption of the power supply for the 

machine) independently, they are not sufficient to describe the causal connection between the machine 
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states and the world states: how can the machine change the world? To answer this question we need of 

course to focus on the interface and consider another two kinds of assumptions: world dependence as-

sumptions and machine dependence assumptions. 

These two additional kinds of assumption are proposed specifically to constrain the relationship be-

tween worlds and machines, which are different from world and machine assumptions that only constrain 

the world and machine phenomena independently. For example, as dependence assumptions, the value 

reported by a sensor depends on the environment conditions (e.g. the air conditioner can sense the tem-

perature in the environment and translate it into the corresponding value); and, oppositely, the action tak-

en by an actuator depends on the value of a variable in the computer's memory (e.g. the air conditioner 

will make cool air when the value of the variable is bigger than 30 in the memory). 

A machine dependence assumption states that an external world phenomenon depends on some ma-

chine phenomenon. For instance, we may assume that a certain room is reserved for a certain meeting at a 

certain time (and therefore it will not be used for any other purpose at that time) if the computer registers 

that (by means of a suitable message shown on the screen). Another possible example might be that „the 

meeting is considered to be scheduled‟ as soon as all the messages to the participants have been sent. In 

other words, a certain state of world is assumed to exist if a certain phenomenon in the symbolic machine 

world exists (hence, the direction of dependence). 

In contrast to a machine dependence assumption, a world dependence assumption states that a ma-

chine phenomenon depends on some world phenomena. For example, we may assume that whenever a 

certain room appears to be free on the machine, it is because the room is actually free in the external 

world. Similarly, we can assume that whenever a meeting appears to be scheduled on the machine, it is 

because somebody actually intended to schedule such meeting. In other words, a world dependence as-

sumption is an assumption about the truthfulness of the correspondence between states of the machine 

and the phenomena in the world these states are supposed to represent.  

In the case of a machine dependence assumption, the depending phenomenon in the external world 

could be either physical or social. When it is a physical phenomenon, it means that there is a path of phys-

ical interactions connecting the observed phenomenon in the external world with a physical phenomenon 

occurring in the machine. This is the common scenario in cyber-physical systems, which interact with the 

external world by means of actuators and sensors. However we are more interested in the case when the 

depending phenomenon is a social one, which means a social entity is affected in the world „because of‟ 

the existence of a symbolic entity in the machine. In the following we shall explore the nature of such a 

link between the social phenomena and digital variables, which accounts for the paradox of a change in 

the social state being dependent on a change in the machine states without direct physical means. 

6.1.2 The Causal Chain Enabled by these Assumptions 

Four kinds of assumptions were proposed in the preceding subsection. In this sub-chapter, we ex-

plain the key role played by these assumptions in linking the world and machine states. We claim that 

there is a causal chain enabled by these assumptions: some triggering phenomenon occurs in the outside 

world, it propagates through the interface, and reaches the symbolic states inside the machine; then it 

comes back from the inside machine to the outside world by crossing back through the interface. Once 

more, we shall rely on our meeting scheduler case study to explain the causal role of these assumptions.  
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Figure 24. The chaining mechanism underlying software engineering enabled by assumptions 

An instance of a whole meeting scheduling process starts from the initial state S0 in which a meeting 

initiator intends to schedule a meeting, which could be represented as a world fluent meet-

ing_intendedW(Initiator, Mtg, S0). From this state, the initiator will participate in the action aI0 provided 

by the interface to enter the meeting information at the interface, and this is represented by the action‟s 

pre-condition that PRE: WDA0: meeting_intendedW(Initiator, Mtg, S0), and by finishing the execution, the 

action will result in a new situation in which the meeting information is entered, represented by the ac-

tion‟s post-condition as POS: meeting_information_enteredI(Mtg, do(aI0, S0)), and this step can be sum-

marized as a situation transition enabled by the interface action aI0 formalized as follows:  
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The world dependence assumption WDA0, asserted in the pre-condition of the interface action aI0, is 

meant to capture the relation between a state in the machine (representing the possibility of the execution 

of action aI0) and a state of the world (the mental attitude, i.e., the intention of a given human agent). 
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Without this assumption, there is no means to constrain the execution of the action aI0 to depend on a state 

of the human mind (represented here by meeting_intendedW(initiator, meeting, s). In other words, the sit-

uation transition from s to s’ enabled by the action aI0 won‟t work without WDA0 being somehow ensured. 

This transition can be visualized by the single direction arrow between S0 and S1 in Figure 24. 

When the meeting information is entered, the machine can sense this change in meet-

ing_information_enteredI(meeting), provide an machine function aM0 to receive the information from the 

interface, and then insert a corresponding meeting record into the database, resulting in the change in the 

machine fluent meeting_record_insertedM(meeting). Once more, the formalization of the action aM0 could 

be summarized as follows: 

         

       

      

M0

1 M0

I

M0

M

M0

a : Insert_Meeting_Record(meeting)

PRE : WDA : Poss(a , s)

meeting_information_entered (meeting,s)

POS : Poss(a , s)

[meeting_record_inserted (meeting, s')

s' = do(a , s)]






 

The action aM0‟s pre-condition follows aI0‟s post-condition, and this ensures the continuity of the sit-

uation transitions from S0 to S1 and then to S2. No surprise that another world dependence assumption 

WDA1 is made, and asserted into the pre-condition of the action aM0. This assumption indicates that the 

execution of the action depends on the physical framework provided by the interface. In other words, 

when this assumption is fulfilled, the machine could sense the interface fluent and then execute the corre-

sponding action aM0. 

Till now, the route of the changes in fluents has travelled from the outside world into the inside ma-

chine through the interface. Now, it is time to characterize how it can travel back to the outside. To 

achieve that, we need to reach the interface first, and another interface action aI1 is introduced. By sensing 

the value of the machine fluent meeting_record_insertedM (meeting) through the machine dependence as-

sumption MDA0, the action aI1 will be executed resulting in the change in the interface fluent meet-

ing_request_shownI(message) indicating the message of „meeting is successfully requested‟ is shown on 

the screen. As before, the action aI1 can be represented as follows, yet note that a machine assumption 

MA0 is also inserted to ensure the power supply for the whole process of the situation transitions. 

I1

0 I1

M

a : Show_Meeting_Request(meeting)

PRE : MDA : Poss(a , s)

         meeting_record_inserted (meeting,s)



 

I1POS : Poss(a , s)
 

I

I1

       [meeting_request_shown (meeting, s')

      s' = do(a , s)]
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Now, we reach the interface successfully, and there is only one step left to travel back to the outside 

world. To fill this gap, we make to two additional assumptions: 1) MDA1 indicates that as soon as the 

message is shown on the screen in the interface, we assume that the stakeholders all will agree that the 

meeting is requested; 2) WA0 constrains the system is designed for people who are not visually impaired. 

1 I

W

MDA : meeting_requested_message_shown (message, s)

           meeting_requested (meeting, s)
 

 

A brief demonstration of the role of assumptions in a software engineering process is presented in 

this sub-chapter. As one can see, the fluent changes through the situation transitions follow the sequence 

of S1, S2, and S3. It travels from the outside world, crossing the interface, reaches the inside machine, then 

it comes back to the outside world crossing the interface again. This sequence forms a chain-like structure, 

and we claim that the assumptions proposed here play the key role in ensuring this structure, i.e., linking 

the world and machine states together. 

6.1.3 Interpretations of the Concept of Assumption 

„Assumption‟
31

 is a severely overloaded term used in many communities (e.g., research, industry, 

and etc.) as well as in our daily lives. The interpretations of this term diverge significantly in different 

contexts. In the sequel, we revisit the examples of these possible interpretations mentioned in the baseline 

(relying on the natural language use of the term) (Ennis, 1982): 

Conclusion: e.g., Tom said: „my assumption is that you are going out, since you are wearing your 

cap.‟ The conclusion of „going out‟ is derived from the current situation „wearing your cap‟. 

Less-than-fully established proposition, in an accusation sense: e.g., Mike answered: „that is only 

your assumption, you don‟t know it.‟ Mike replied that it might look like he‟s going out, yet that was only 

Tom‟s guess and as such it is not guaranteed to hold. 

Adopted in order to deceive, fictitious, pretended: e.g., „although bad things happened, please as-

sume that they didn‟t ever happen.‟ The term assumption is interpreted as a kind of „self-deception‟ here 

that „you can deceive yourself that nothing bad happened‟. 

The examples aforementioned are only a small part of a full possible list. However, considering the 

importance of the role played by assumptions in software engineering process, it is necessary for the 

stakeholders to achieve an agreement on the interpretation of this term. Fortunately, a clarification of this 

term was proposed by Ennis in 1982, providing clear guidance to interpret this term according to its use in 

practice (Ennis, 1982). More precisely, he classified the assumptions into two main kinds, namely „as-

sumptions-used‟ and „assumptions-needed‟. Assumptions-used are the propositions that a person uses a 

                                                 
31

 The interpretations of assumption mentioned in this subsection are orthogonal with the preceding four kinds of 

assumptions. 

0 MMA : power_supply (Machine)

0 : _ ( )WWA can see people
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priori while constructing a new argument. Usually, assumptions of this kind are adopted by scientists as 

the foundational components of a theory (e.g., the law of gravity). On the other side, assumptions-needed 

are the propositions that are needed a posteriori to support a previous conclusion. In this sense, they cir-

cumscribe the context within which the conclusion is reasonable. 

In what follows, we make use this distinction between assumptions-used (AU) and assumptions-

needed (AN). We use it to elaborate on the aforementioned Jackson and Zave‟s formula. In particular, 

given a set of requirements R and a set of assumptions-used AU, one needs to find a specification S and a 

set of assumptions-needed AN such that AU, AN, S ⊨ R. To use a simple example, suppose one is given a 

requirement R: „Fly to the moon‟ and AU: „laws of gravity‟. This engineer then needs to find a specifica-

tion for a spacecraft S that will fulfill R provided that the following assumption AN: „spacecraft carries 

enough fuel‟ holds. 

The choice of interpreting assumptions as assumptions-used or assumptions-needed has strong prac-

tical effects, which is illustrated by the lawyers who deal with the disputes between the users and product 

providers. As software is usually also an instance of such kind of products, provided by software engi-

neers, and used by the software users, this distinction can also be used to illuminate the disputes between 

software users and software engineers. For instance, with a different terminology, Twerski and his col-

leagues stress the key issue which is to justify a case on either design defect grounds or failure-to-warn 

grounds (Twerski, Weinstein, Donaher, & Piehler, 1975).  

In a case that an assumption
32

 is interpreted as an assumption-used, software engineers observe the 

possible environments and make hypothesizes about the world according to their understanding and 

knowledge of the world. If this assumption doesn‟t match the reality, and leads to malfunction of a system, 

it is usually recognized as a design defect. For example, on 4
th
 June 1996, a flight of the Ariane 5 launcher 

ended in a crash. The crash was simply caused by the value of a particular variable received from a sensor 

exceeded the assumed limit, and this consequently made the computers of the flight cease to work. As 

stated by Lions, the engineers underestimated the possible environment conditions, and „it was not ana-

lyzed or fully understood which values this particular variable might assume‟ (Lions, 1996). 

In contrast, in a case that an assumption is interpreted as an assumption-needed, an assumption is 

adopted as a design component that describes the context in which the design solution is reasonable. This 

interpretation choice grants assumptions the ability to delimit the scope of the solution. This possibility is 

of substantial practical usefulness for the software engineers facing time and resource limitations. For ex-

ample, an intended user assumption falls exactly into this sense of interpretation: there is a group of target 

users assumed by the engineers, and it is only for that target group that the software is expected to be 

guaranteed to work (Schultz et al., 2002). From a legal point of view, as long as the proper disclaimers to 

the target users are made in a clear manner, the engineers of the software are covered in their legal re-

sponsibilities. That is to say that they are not liable for the effects of the software in users outside the as-

sumed target group. 

According to the legal issues above, we can derive the importance of making clear these two inter-

pretations of assumptions in software engineering. Without such a distinction, we don‟t know how to as-

                                                 
32

 Note that we are considering here assumptions just as propositions, ignoring the mental states of the agents that 

hold such propositions. 
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sign responsibility when some undesired consequence is brought about by the software‟s operation. 

Moreover, we defend here that a mature software engineering process should make explicit the involved 

assumptions, analogously to how the requirements, external specification and internal specification are 

made explicit. In that respect, we defend that the role of assumptions in supporting the specifications to 

satisfy requirements should be clearly specified. Only by having access to this information, stakeholders 

could properly estimate the risks involved in the use of the system at hand, as well as decide whether to 

adopt this system or not. 

6.2 The Meeting Scheduler Case Study 

As mentioned in the baseline chapter, instead of dealing with assumptions in the source code level, 

we emphasize the importance of capturing assumptions in requirements engineering process, to detect er-

rors as early as possible. 

Particularly, the requirements engineering process can be further divided into two phases as stated 

by (Yu, 1997), namely, the early-phase and the late-phase. In the early-phase, software engineers collect 

requirements from stakeholders. Usually, in this phase, social activities (e.g., such as interviews, surveys, 

and etc.) are used to gather informal and vague requirements, trying to get the answer to why such a soft-

ware-driven machine should be implemented. The output of this phase is typically a document in natural 

language that summarizes all the relevant information collected. 

Then, in the late-phase, the initial requirements gathered in the early-phase are used as its input, and 

further analysis is carried out to check the feasibility and the consistency of the initial requirements. A 

goal model, such as the one stated by (Yu, 1997), can be adopted in this phase, and within the goal model, 

the requirements are represented as goals, and could be decomposed/refined into sub-goals and then into 

tasks. These tasks are operational at the interface between the world and the machine, and we regard these 

tasks as the interface actions of an external specification. 

We agree that it is important to make clear the boundary between the world and machine. However, 

it is also essential to indicate explicitly the link crossing the boundary, or we will fall into the paradox 

mentioned at the beginning of this dissertation again. As software can only directly manipulate the virtual 

variables in a machine, the sense in which the result of this manipulation affects the outside world is ne-

glected by the view of implementation bias.  

To solve this paradox, we have to explicitly capture this link between the world and the machine. As 

the reader can see in Figure 25, a simple meeting scheduler system is adopted as our case study, and we 

represent it into a goal model. Being different from the literature work (Yu, 1997), in the notation used in 

this model, we capture not only the requirements and external specification with interface actions, but al-

so capture the internal specification with machine actions. Moreover, the four different kinds of assump-

tions are explicitly represented in the model in order to link the world and machine together. 

We choose the meeting scheduler system as our case study in this paper, because it is well-known in 

the requirements engineering literature (Yu, 1997), (Silva Souza, 2012), (A van Lamsweerde, Darimont, 

& Massonet, 1995); and on the other side, it is relatively a simple scenario, and we believe it will make 

the demonstration easier to understand. 
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Figure 25. A goal model of meeting scheduler system 
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Requirements (R): firstly, we start with the requirements. As mentioned in Chapter 5, our single re-

quirement is that „a meeting shall be scheduled after a meeting initiator intends to schedule one‟. This re-

quirement is labeled as R0 in the goal model. The situation calculus formalization of R0 has already been 

shown in Chapter 5, hence, we do not repeat it here. We treat the other expressions in the same way, only 

the newly proposed ones will be encoded into situation calculus in this sub-chapter. 

One should note that the main purpose of this paper is not trying to explain how to translate a goal 

model into situation calculus expressions, but to demonstrate what kinds of information should be cap-

tured in the requirements engineering process, as well as to show the possibility of formalizing them. Ac-

cording to this rationale, we only translate a number of relevant elements from the goal model into situa-

tion calculus expressions. 

The requirement R0 is refined into two alternative sub-goals through „OR decomposition‟ links: 1) 

the meeting initiator can do it manually, asking a secretary to arrange a meeting as indicated by the inter-

face action aI2. This choice of solution needs a world assumption WA3 to ensure the reliability of the sec-

retary who should arrange everything else for the meeting initiator; 2) however, the secretaries might be 

under work overload, such that they cannot be relied to do this work quickly and correctly. If this is the 

case, the second choice of adopting a meeting scheduler system might be preferable. 

The scenario of using this system is briefly summarized as follows: when a meeting initiator wants 

to schedule a meeting, she will make a request to the system. For every request, the meeting initiator en-

ters the meeting information into the system through the interface, including a list of intended participants, 

the title of the meeting, and etc. To schedule a meeting, the system needs to collect timetables from all 

participants, choose a time slot, and then assign a meeting room for the meeting. Finally, the system must 

inform all participants in the provided list. 

External Specification (Sext): according to the scenario aforementioned, the sub-goal „G1: Schedule 

by machine‟ could be refined further into four sub-goals, including „G1-1: Request a meeting‟, „G1-2: 

Collect timetables and choose a time slot‟, „G1-3: Find a suitable room‟, „G1-4: Notify participants‟. To 

simplify the work of the initiator as much possible, it is ideal to design such a solution that the only work 

the initiator would need to do is to make a meeting request to the system with the necessary meeting in-

formation. By receiving that request, the system would do everything else for the initiator. 

In this case, it seems that the newly proposed system is a complete replacement of the secretary for 

scheduling meetings. The system provides two interface actions aI0 and aI1 to implement the sub-goal G1-

1. Through these actions, the initiator can submit a meeting request to the system and get a request con-

firmation message from the system. To ensure the fulfillment of this sub-goal through executing these 

two interface actions, four assumptions are included in the model: WA0, WDA0, MDA0 and MDA1. 

All these elements mentioned here (aI0, aI1, WA0, WDA0, MDA0 and MDA1) have already been trans-

lated into situation calculus in the example that explains the chaining mechanism formed by such actions 

and assumptions as shown the preceding sub-chapter. Here we only show how they could be asserted in a 

goal model, and the corresponding translations to situation calculus are not repeated. As another contribu-

tion, in the sequel, we explain further how the sub-goals (e.g., G1-2, G1-3, and G1-4) in the goal model 

could be decomposed into machine actions (e.g., aM1, aM2, and aM3) with the help of different kinds of as-

sumptions. 
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Internal Specification (Sint): the internal specification of the meeting scheduler system contains 

four machine actions, including aM0, aM1, aM2, and aM3. The first one has already been explained, and we 

here analyze the last three of these.  

_ _ _ _ _

          

       _ _

      

M1

M1

M

M1

M

M1

a : Collect Timetables and Fill Time Slot(meeting)

PRE : Poss(a , s)

meeting_record_inserted (meeting, s)

POS : Poss(a ,s)

[meeting_time slot filled (meeting, s')

s' = do(a , s)]






 

_ _2 WWDA : use system calendar (participant)
 

Firstly, the sub-goal G1-2 is implemented by the machine action aM1. Whenever there is a meeting 

record inserted into the database, this action aM1 will be executed as indicated by its precondition. By exe-

cuting this action, all the participants‟ timetables will be automatically collected, and as a calculating re-

sult, a suitable time slot will be filled into the meeting record (as indicated in this action‟s post-condition). 

However, this action only works in the situations where all the participants use the system calendars, 

so we introduce an assumption WDA2 to constrain the operational situations of this system. This assump-

tion presupposes some interactions between the participants and the machine. In particular, it assumes 

that the operation of the machine depends on some world phenomena, hence we treat it as a world de-

pendence assumption as indicated in the corresponding situation calculus expression.  

_ _

          _ _

       _

      

M2

M2

M

M2

M

M2

a : Assign Meeting Room(meeting)

PRE : Poss(a , s)

meeting_time slot filled (meeting, s)

POS : Poss(a ,s)

[meeting_room filled (meeting, s')

s' = do(a , s)]







 

_1 WWA : enough room (meeting)
 

Then, the sub-goal G1-3 is implemented by the machine action aM2. The post-condition of aM1 is 

used as the pre-condition of aM2 such that whenever the time slot of a meeting record is provided, the ac-

tion aM2 is executed. By executing aM2, a new situation will be reached, in which a room number is as-

signed to the meeting record as shown in its post-condition. 

As mentioned several times in this paper, to simplify the work of the engineers in this modeling case, 

the system only deals with the situations in which there are enough rooms, and it will not work properly 

in a context in which this is not the case. Thus, a world assumption WA1 is introduced such that for every 

meeting that needs to be scheduled, it is assume that there are always rooms available. 
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_

                    

      _ _

      _

M3

M3

M

M

M

a : Notify Particiapnts(meeting)

PRE : Poss(a , s)

meeting_record_inserted (meeting, s)

meeting_time slot filled (meeting, s)

meeting_room filled (meeting, s)

POS : Poss(a







       _ _

      

M3

M

M3

,s)

[notification messages sent (meeting, s')

s' = do(a , s)]




 

_ _2 M

W

MDA : notification messages sent (meeting, s)

           meeting_scheduled (meeting, s)
 

Finally, the sub-goal G1-4 is implemented by the machine action aM3. Whenever the meeting record 

is inserted, filled with a time slot and a room number, the action aM3 is executed as indicated by its pre-

condition. By executing it, the meeting schedule notification message is sent to all the participants as 

shown in its post-condition. 

However, sending messages does not equate to confirming the schedule with the participants, i.e., 

the interface action by itself is not directly equivalent to the social action of creating a meeting (a social 

object) involving all those participants. Once more this gap is filled by a machine dependence assumption 

MDA2, which links the message sending and the schedule confirming. In other words, according to this 

assumption, the solution is simplified, and whenever the messages are sent, we assume the participants 

will receive them, confirm them, and at the same time the meeting is also scheduled. Or put it in yet dif-

ferent terms, the message sending counts as a schedule being confirmed in this context.  

In summary, through the meeting scheduler case study, we have demonstrated how the analysis of 

assumptions can be introduced in the requirement engineering process instead of only in the code writing 

process. Additionally, four different kinds of assumptions are represented in a goal model, linking the 

world and machine together. In this model, we also show how these assumptions can be formally repre-

sented.  
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Chapter 7 

 

7 Conclusions and Future Work 

As we said at the beginning of the dissertation, software has become an indispensable part of our 

lives, and the degree people relay on software applications is still getting deeper and deeper every day. 

However, the environments of these software applications are changing continuously, and the stakehold-

ers‟ requirements are usually unstable and unpredictable. To survive in such a setting, the software appli-

cations have to be changed rapidly accordingly, and as a result, the work of maintaining these changes in 

software applications consumes a large amount of human and financial resources. 

We believe that one of the reasons for this unhappy situation is knowledge missing about the soft-

ware during its life span, which is in turns caused by a lack of consensus on what exactly software is. To 

remedy the aforementioned situation, we proposed our answer to this question from several basic perspec-

tives, including what are software‟s defining traits, its fundamental properties and constituent concepts 

and how do these relate to each other. As a summary, the contributions of this dissertation are presented 

in the sequel, followed by some possible future works: 

In this dissertation, we dive into the ontological nature of software, recognizing it as an abstract in-

formation artifact. To support this proposal the first main contribution of the dissertation is demonstrated 

from three dimensions: (1) We distinguish software (non-physical object) from hardware (physical ob-

ject), and demonstrate the idea that the rapid changing speed of software is supported by the easy change-

ability of its medium hardware; (2) Furthermore, we discuss about the artifactual nature of software, ad-

dressing the erroneous notion, software is just code, presents both in the ontology of software literature 

and in the software maintenance tools; (3)At last, we recognize software as an information artifact, and 

this approach ensures that software inherits all the properties of an information artifact, and the study and 

research could be reused for software then. For instance, an English story is an information artifact, the 

information part is the story content, and the syntax part is the set of English words. Accordingly, soft-

ware is interpreted as an information artifact that its information part is the set of instructions, and the 

syntax part is the source code. 

Then, the second main contribution of this dissertation presented a first attempt to analyze the onto-

logical nature of software artifacts in the light of the Jackson and Zave‟s model, considered nowadays as 

a foundation for requirements engineering. Such a model has helped us to provide an answer to the ques-

tion concerning the identity criteria of software artifacts raised by Irmak. We proposed three different 

kinds of software artifacts, exhibiting different essential properties depending on stakeholders‟ intentions 

to produce effects in different parts of complex software-driven sociotechnical systems (namely, the WM 

Framework). Such different essential properties of the software artifacts are summarized as shown in Ta-

ble 2. 

In addition, we captured the fourth kind of artifact (Licensed Software Product) reflecting the social 

nature of software products, whose essential properties are based on the mutual commitments between 

vendors and customers. In the present software market, software products do not come alone, since what 
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companies sell are not just software products: in the vast majority of cases, a purchase contract for a soft-

ware product includes a number of rights and duties on both parties, including the right to download up-

dates for a certain period of time, the prohibition to give copies away, and so on. Before the contract is 

signed we have another software entity emerging: a Licensable Software Product; and after the contract is 

signed, we have a Licensed Software Product. 

Table 2. Essential Properties of different kinds of software artifacts 

Software Artifact Essential Properties 

Software Product Requirements 

Software System External Specification 

Software Program Internal Specification 

The third main contribution of the dissertation solves the paradox that „in what sense a software-

driven machine can affect the outside social world without any physical means‟, and it is presented in 

three-fold: 1) we propose a preliminary ontology of assumptions classifying four kinds of assumptions. 

Based on this classification, we elaborate on the role of assumptions in explaining how social facts can be 

affected by the manipulation of symbolic structures in a machine; 2) we clarify the concept of „assump-

tion‟ adopted in software engineering literature, and emphasize the importance of clarifying the interpre-

tations of the assumptions as either assumptions-used, or as assumptions-needed; 3) as a methodological 

contribution and, by employing a meeting scheduler case study, we demonstrate how assumptions can be 

explicitly and systematically elicited and represented as part of the requirements engineering process. 

As this case study demonstrates, requirements engineering, in particular, and software engineering in 

general can benefit from the awareness of the existence of these four kinds of assumptions. Assumptions 

are of fundamental importance to software engineering. Therefore, we strongly suggest that more efforts 

should be made to develop a more clear understanding of what assumptions are. So, on the theoretical 

side, we intend to publish a dedicated future paper exploring the ontological nature of assumptions as well 

as systematizing the nature of the relations to other elements of our software ontology (Wang et al., 2014a, 

2014b). 

The current work of this dissertation is mainly presented through natural language expressions, alt-

hough the software related concepts are thoroughly analyzed and clarified, a formalization of our work as 

a future work is still a promising research direction, because whenever it is formalized, it could be accept-

ed and reused by computer systems much easier, and consequently a lot of automatic approaches could be 

proposed. Furthermore, this ontology of software could be extended into an ontology of software changes, 

which could be used as a foundation to solve the problems caused by software aging. 

For instance, on the basis of our analysis, a refined terminology for different kinds of software 

change may be proposed: 1) refactoring refers to the creation of new codes, keeping the identity of the 

software program; 2) re-engineering refers to the creation of new software programs, keeping the identity 

of the software system; 3) software evolution refers to the creation of new software systems, keeping the 

identity of the software product. 

Based on that, a refined versioning methodology and better software versioning control tools dealing 

with revisions and variants could be developed. As noted several times, traditional tools only focus on 
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code changes. According to our work, software should be consistently expressed and tracked in multiple 

abstraction layers. Traditional version codes are usually decided on the basis of the significance of chang-

es between releases, but the decisions of the significances are entirely arbitrary and up to the author. On 

the basis of our approach, versioning numbers can be established in a rigorous standard way. 

By integrating the software configuration management systems and assumptions management sys-

tems together, the work proposed here opens up the possibility of developing a next generation of soft-

ware management systems. In these systems, the management of assumptions could be embedded into the 

requirements engineering process. As a consequence, along with monitoring the changes of software dur-

ing its life span, errors involving assumptions could be identified and addressed in a much earlier stage of 

a software engineering process. Moreover, these systems could also support managers in decision-making 

activities based on such recorded software history. 
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