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Abstract

The World Climate Research Programme (WCRP) has recently reconfirmed the impor-

tance of a better understanding of the Cryosphere for advancing the analysis, modeling

and prediction of climate change and its impact on the environment and society. One of

the most complete collection of information about the ice sheets and glaciated areas is

contained in the data (radargrams) acquired by Radar Sounder (RS) instruments. The

need to better understand the structure of the ice sheets and the availability of enourmous

quantities of radargrams call for the development of automatic techniques for an efficient

extraction of information from RS data. This topic has been only marginally addressed

in the literature. Thus, in this thesis we address this challenge by contributing with four

novel automatic techniques for the analysis of radargrams acquired at the ice sheets.

The first contribution of this thesis presents a system for the automatic classification

of ice subsurface targets in RS data. The core of the system is represented by the ex-

traction of a set of features for target discrimination. The features are based on both

the specific statistical properties of the RS signal and the spatial distribution of the ice

subsurface targets. The second contribution is an unsupervised model-based technique for

the automatic detection and property estimation of ice subsurface targets. This is done by

using the parameters of the RS system combined with the output of an automatic image

segmentation algorithm. The third contribution presents an automatic technique for the

local 3D reconstruction of the ice sheet. It is based on the use of RS and altimeter (ALT)

data, and relies on the use of a geostatistical interpolation method and on several sta-

tistical measures for validating the interpolation results and the quality of interpolation.

The fourth contribution presents a technique for the automatic estimation of radar power

losses in ice as a continuous non-linear function of depth, by using RS and ice core data.

The technique relies on the detection of ice layers in the RS data, the computation of their

reflectivity from the ice core data and the use of the radar equation for loss estimation.

Qualitative and quantitative experimental results obtained on real RS data confirm the

effectiveness of the first three techniques. Also, preliminary results have been obtained

by applying the fourth technique to real RS and ice core data acquired in Greenland.

Due to their advantages over the traditional manual approach, e.g., efficiency, objectiv-

ity, possibility of jointly analyzing multisensor data (e.g., RS, ALT), the proposed methods

can support the scientific community to enhance the data usage for a better modeling and

understanding of the ice sheets. Moreover, they will become even more important in the

near future, since the volume of data is expected to grow from the increase in airborne

and possible Earth Observation spaceborne RS missions.



Keywords: Radar sounder, remote sensing, cryosphere, ice subsurface target identifi-

cation, feature extraction, classification, interpolation, multisensor data processing.

ii



Contents

Table of Contents iii

List of Figures x

List of Tables xii

List of Abbreviations xiv

List of Symbols xv

Introduction 1

Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Objectives and novel contributions of the thesis . . . . . . . . . . . . . . . . . . 3

Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Fundamentals 9

1.1 Radar basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Radar sounder acquisition geometry and process . . . . . . . . . . . . . . . 11

1.3 Geometrical resolution of radar rounder data . . . . . . . . . . . . . . . . . 13

1.4 Examples of radar sounder systems . . . . . . . . . . . . . . . . . . . . . . 17

2 State of the Art in the Development of Automatic Techniques for the

Analysis of Radar Sounder Data Acquired at the Ice Sheets 21

2.1 Automatic identification of ice subsurface targets . . . . . . . . . . . . . . 21

2.2 3D reconstruction of ice subsurface structure . . . . . . . . . . . . . . . . . 24

2.3 Ice power loss estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A System for the Automatic Classification of Ice Subsurface Targets in

Radar Sounder Data 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



3.2 Proposed system: definition of target classes in RS data and general archi-

tecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Proposed system: feature extraction . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Analysis of the statistical properties of the radar signal . . . . . . . 33

3.3.2 Analysis of the properties of the subsurface targets . . . . . . . . . 34

3.3.3 Features that model the statistical properties of the radar signal

and the geometrical distribution of the subsurface targets . . . . . . 35

3.4 Proposed system: automatic classification with Support Vector Machine . . 38

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Results of the statistical analysis of the radar signal . . . . . . . . . 41

3.5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.4 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.5 Analysis of the computational load . . . . . . . . . . . . . . . . . . 56

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 A Model-Based Technique for the Automatic Detection of Earth Con-

tinental Ice Subsurface Targets in Radar Sounder Data 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Detection and estimation of ice subsurface targets properties . . . . . . . . 62

4.2.1 Radargram model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Proposed technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Automatic Local 3D Reconstruction of the Ice Sheet by Using Radar

Sounder and Altimeter Data 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Properties of the radar sounder and altimeter data acquired at the

ice sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Ordinary Kriging: general concept and problem formulation in the

proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Radar sounder data preprocessing . . . . . . . . . . . . . . . . . . . 81

ii



5.3.2 Estimation of the surface elevation map with the highest overall

quality at the most reliable scale . . . . . . . . . . . . . . . . . . . 82

5.3.3 Estimation of the bedrock map with the highest overall quality at

the most reliable scale . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.4 Estimation of the ice thickness map at the most reliable scale . . . 84

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Estimation of Radar Power Losses in Ice by Using Radar Sounder and

Ice Core Data 97

6.1 Introduction and background . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Proposed method for ice loss estimation . . . . . . . . . . . . . . . . . . . 98

6.2.1 Problem formulation and architecture of the proposed method . . . 98

6.2.2 Step 1: Surface and bedrock detection and estimation of reflection

reduction due to surface roughness . . . . . . . . . . . . . . . . . . 101

6.2.3 Step 2: Layer detection . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.4 Step 3: Layer depth and reflectivity estimation at the ice core site . 103

6.2.5 Step 4: Layer depth and corresponding discrete ice power loss esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.6 Step 5: Estimation of power losses as a continuous non-linear func-

tion of depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Conclusions 113

List of Publications 119

Bibliography 132

iii





List of Figures

1.1 Surface scattering for (a) smooth surface, (b) slightly rough surface, and

(c) very rough surface. In the figures ϕ is the angle of incidence and ϕs is

the angle of the scattered wave. . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Acquisition geometry of a RS system. . . . . . . . . . . . . . . . . . . . . . 12

1.3 SAR principle. The target is illuminated during the time in which the real

antenna travels a distance equal to ls, which is the length of the synthetic

antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Schematic representation of the across-track resolution of a RS system. The

across-track resolution cell is (a) Beam-limited for very rough surfaces, (b)

Pulse-limited for slightly rough surfaces, and (c) Fresnel-limited for smooth

surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 (a) Example of SAR processed radargram acquired by MCoRDS in Antarc-

tica, and (b) The same radargram after applying clutter suppression pro-

cessing [1]. Copyright: [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 (a) Qualitative representation of ice sheet target classes typically visible in

radargrams. In the presented work, only the target classes highlighted in

bold, i.e., layers, bedrock, noise, are considered, whereas those highlighted

in italics, i.e., water, freeze-on ice, are intentionally omitted. For details

see Sec. 3.2. (b) Example of backscattering from the layers, bedrock and

noise target classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 (a) Qualitative example of trace t′ for the KLRss
and KLbin measures; and

(b) Corresponding relational feature Rel. . . . . . . . . . . . . . . . . . . . 38

3.3 Location and flightlines for the acquisition of the MCoRDS and MCoRDS2

radargrams investigated in this work. . . . . . . . . . . . . . . . . . . . . . 40

v



3.4 Datasets investigated. (a) MCoRDS [nS = 410 × nT = 27350], and (b)

MCoRDS2 [nS = 1200 × nT = 17093]. Values are in dB. The figures are

stretched (color adjusted) and vertically exagerated in order to highlight the

regions of interest of the subsurface. The upper black region corresponds

to the free space above the surface return surf (for the MCoRDS2 dataset

surf is computed using the radargram acquired by the LGC data). The

white band in the shallow subsurface (first 285 samples ≃ 798 m below

surf ) of the MCoRDS2 dataset corresponds to the data acquired by the

LGC, which is not investigated in our analysis. . . . . . . . . . . . . . . . . 42

3.5 Samples picked manually from each target class on a portion of radargram

from (a) the MCoRDS dataset, and (b) the MCoRDS2 dataset. In the

figures, each color corresponds to a different target class, i.e., blue - layers,

green - EFZ, red - bedrock, yellow - noise. . . . . . . . . . . . . . . . . . . . 44

3.6 Empirical and estimated (with the maximum likelihood technique) distri-

butions for each target class for the (left) MCoRDS, and (right) MCoRDS2

datasets. The color of the (empirical) histograms represent each target

class, i.e., blue - layers, green - EFZ, red - bedrock, yellow - noise. (a) layers

MCoRDS, (b) layers MCoRDS2, (c) EFZ MCoRDS, (d) EFZ MCoRDS2,

(e) bedrock MCoRDS, (f) bedrock MCoRDS2, (g) noise MCoRDS, (h)

noise MCoRDS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Fitted Gamma distributions for (a) all target classes, and (b) the EFZ and

noise classes. Results are shown for the MCoRDS2 dataset. . . . . . . . . 47

3.8 Examples of extracted features. The features at the left side of the figure

are (a) the radargram, (c) the shape parameter of the Gamma distribution,

(e) the Entropy, and (g) the KLRss
measure on a portion of radargram (≈

30 line-km) of the MCoRDS dataset. The features at the right side are (b)

the radargram, (d) the shape parameter of the Gamma distribution, (f)

the Entropy, and (h) the KLRss
measure on a portion of radargram (≈ 60

line-km) of the MCoRDS2 dataset. The radargrams are in dB, stretched

and vertically exagerated to improve visibility. . . . . . . . . . . . . . . . . 48

3.9 Examples of (a) and (b) radargrams, and (c) and (d) corresponding classi-

fication maps generated with the presented algorithm (MCoRDS dataset).

The radargrams are in dB, stretched and vertically exagerated to improve

visibility. In the classification maps, each color represents a different target

class, i.e., black - free space, blue - layers, red - bedrock, yellow - noise. . . . 52

vi



3.10 Examples of (a) and (b) radargrams, and (c) and (d) corresponding classifi-

cation maps generated with the presented algorithm (MCoRDS2 dataset).

The radargrams are in dB, stretched and vertically exagerated to improve

visibility. In the classification maps, each color represents a different target

class, i.e., black - free space, blue - layers, red - bedrock, yellow - noise. . . . 53

3.11 Example of (a) radargram (MCoRDS dataset) showing a particular sub-

surface pattern, i.e., deep and strong backscattering layers and partially

missing bedrock area, (b) corresponding classification map obtained by

training the SVM with all the features presented in this work (i.e., the

vector v = {A,αG, βG,KLRss
, Ent,Distz, Rel}), (c) corresponding clas-

sification map obtained by training the SVM with a subset of the pre-

sented features, i.e., which does not contain the relational feature Rel (i.e.,

v = {A,αG, βG,KLRss
, Ent,Distz}), and (d) portions of radargram and

classification map highlighting the effect of the sliding window approach;

the low-pass filtering effect results in a slight underestimation and overes-

timation of the layers and bedrock classes, respectively, at their interfaces

with the noise region. The radargrams are in dB, stretched and vertically

exagerated to improve visibility. In the classification maps, each color rep-

resents a different target class, i.e., black - free space, blue - layers, red -

bedrock, yellow - noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Classification maps corresponding to (a) the MCoRDS dataset (radargrams

in dB shown in Fig. 3.4(a)), and (b) the MCoRDS2 dataset (radargrams in

dB shown in Fig. 3.4(b)). In the classification maps, each color represents

a different target class, i.e., black - free space, blue - layers, red - bedrock,

yellow - noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Block scheme of the proposed technique. . . . . . . . . . . . . . . . . . . . 63

4.2 (a) Example of aligned radargram (dB data). The portion of radargram

considered [410×3500] represents a segment on the ground of about 50km,

(b) Corresponding KLRss
statistical map, (c) Corresponding KLbin map,

and (d) Results provided by the proposed algorithm. . . . . . . . . . . . . 69

4.3 Example of results provided by the proposed algorithm on three different

portions of the aligned radargram. . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Example of fitting performances for the lastlayers, firstbedrock and lastbedrock

borderlines for the portion of radargram shown in Fig. 4.1(a). . . . . . . . 70

vii



5.1 Qualitative representation of RS and ALT data spacing and resolution in

the horizontal direction. Note the general relationship dRS
x ≪ dALT ≈

δALT ≤ dRS
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Architecture of the proposed technique. . . . . . . . . . . . . . . . . . . . . 80

5.3 Detailed architecture of the second block of the proposed technique. . . . . 82

5.4 Detailed architecture of the third block of the proposed technique. . . . . . 84

5.5 Input ALT and RS data. (a) ALT DEM of the ice surface; the position of

the RS flightlines are highlighted in black. (b) Scatterplot of the ice surface

elevation from the RS data at the original scale sRS
0 = 15m. (c) Scatterplot

of the bedrock elevation from the RS data at the original scale sRS
0 = 15m. 86

5.6 Example of model fitting and associated estimated vector of parameters

of the semivariogram of SRS(500) generated with the parameter set p1 =

{bw,W1}. a) Spherical model, b) Exponential model, c) Gaussian model,

d) Linear model, e) Scatterplot of the residuals obtained by subtract-

ing the values of the fitted surface from the initial SRS(500), f) Fitting

performances on the semivariogram regenerated with the parameter set

p1 = {bw,W1} on the residuals shown in Fig. 5.6(e); quantitatively,

the best fitting model is the Gaussian model with R2 = 0.806 and θ =

(4.14km, 210.97m2, 0m2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Statistical representation of the obtained results. Boxplots of DpSi
(sj), i =

[1..P ] at scales: (a) s1 = 500m, (b) s2 = 750m, (c) s3 = 1000m, (d)

s4 = 1250m, (e) s5 = 1500m, (f) s6 = 1750m, (g) Boxplots of Dp∗S(sj), j =

[1..J ], (h) Boxplots of BRS
pBi

(s∗ = 1250), i = [1..P ]. Each color is associated

to a parameter set. The asterisks ’*’ are placed at the mean value of the

boxplots and linked in order to highlight the mean overall variability of the

analysed maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Statistical representation of the obtained uncertainty maps. Boxplots of

US

pSi
(sj), i = [1..P ] at scales: (a) s1 = 500m, (b) s2 = 750m, (c) s3 =

1000m, (d) s4 = 1250m, (e) s5 = 1500m, (f) s6 = 1750m, (g) Boxplots

of US

p∗S(sj), j = [1..J ], (h) Boxplots of UB

pBi
(s∗ = 1250), i = [1..P ]. Each

color is associated to a parameter set. The asterisks ’*’ are placed at the

mean value of the boxplots and linked in order to highlight the mean overall

variability of the analysed maps. . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



5.9 (a) Scatterplot of the surface samples rescaled at the most reliable scale,

i.e., SRS(1250), (b) Scatterplot of the bedrock samples rescaled at the most

reliable scale, i.e., BRS(1250), (c) Semivariogram best fit of SRS(1250),

using the best parameter set p∗S = p8 = {bs,W5}, (d) Semivariogram best

fit of BRS(1250), using the best parameter set p∗B = p8 = {bs,W5}. . . . . 92

5.10 Estimated maps at s∗ = 1250. (a) Ice surface map, (b) Bedrock map, (c)

Ice thickness map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Two interface model of the ice sheet. . . . . . . . . . . . . . . . . . . . . . 100

6.2 Block scheme of the proposed technique for the ice power loss estimation. . 101

6.3 (a) Geographic position of the input RS data (blue dots), NEEM ice core

(green), closest trace to NEEM t = tc (red), portion of the flightpath

for which the acquired radargram contains 30 continuous layers passing

through tc), and investigated trace (cyan), (b) DEP profile at the NEEM

ice core site, and (c) The portion of radargram (highlighted in black in Fig.

6.3(a)) showing the detected positions of surface, layers and bedrock with

horizontal lines. The closest trace to NEEM and a generic investigated

trace are shown with vertical red and cyan lines, respectively. . . . . . . . . 106

6.4 (a) Depth offset at the NEEM core site calculated as the difference between

the depth estimated with the available DEP and the depth calculated as-

suming a constant dielectric permittivity ε = 3.15. As it can be seen, by

assuming a constant dielectric permittivity of ice, the depth is underesti-

mated along the whole ice column and the depth offset at the layer positions

is in the range [8-13]m. (b) Estimated layer reflectivity; each different color

refers to a different layer, whereas the different markers correspond to: ’o’

- reflectivity computed with (6.2) at the approximated layer depth, ’*’ -

reflectivity computed with (6.2) at the corrected layer depth, and ’△’ -

reflectivity computed as the mean value of reflectivity inside the radar res-

olution cell centered at the corrected layer depth. Note the high variability

in the estimated reflectivities with the three approaches (e.g., depending

on the used approach, the violet layer at about 1500m has estimated re-

flectivities in the range [-80 -50]dB). . . . . . . . . . . . . . . . . . . . . . . 108

ix



6.5 (a) Vertical profile of a generic trace (highlighted in cyan in Fig. 6.3(c))

as a function of 2WTT, and (b) Estimated discrete ice power losses as a

function of corrected layer depths. The markers correspond to: ’*’ - ice

power losses estimated on the basis of the reflectivity computed with (6.2)

at the corrected layer depth, ’△’ - ice power losses estimated on the basis

of the reflectivity computed as the mean value of reflectivity inside the

radar resolution cell centered at the corrected layer depth. Note the high

dependence of the estimated ice power losses on the estimated reflectivity

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

x



List of Tables

1.1 Examples of RS system parameters. . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Theoretical models and their parameters. . . . . . . . . . . . . . . . . . . . 34

3.2 Parameters and characteristics of the investigated datasets. . . . . . . . . . 43

3.3 Number of picked samples per class (corresponding to the regions high-

lighted in Fig. 3.5) used in the statistical analysis. . . . . . . . . . . . . . . 43

3.4 Fitting performances in terms of Kullback-Leibler distance (dimensionless)

of the Rayleigh, Nakagami, K and Gamma distributions to the sample

amplitude data for layers, EFZ, bedrock and noise classes. The best results

(smallest values on each column for each dataset) are highlighted in bold. . 45

3.5 Number of reference samples per class used in the cross-validation and test

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Average (on kf = 11) error matrix of the samples of the cross-validation

folds (MCoRDS dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Average (on kf = 11) error matrix of the samples of the cross-validation

folds (MCoRDS2 dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Error matrix on the test samples (MCoRDS dataset). . . . . . . . . . . . . 51

3.9 Error matrix on the test samples (MCoRDS2 dataset). . . . . . . . . . . . 51

4.1 Accuracy provided by the proposed technique for the detection of layers

and bedrock scattering areas. . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Parameter sets considered in the OK method. . . . . . . . . . . . . . . . . 80

5.2 Properties of the RS and ALT data used in the experiments. . . . . . . . . 85

5.3 Best fitting models and estimated vector of parameters obtained with all

OK parameter sets, at all investigated scales, on the ice surface samples.

The results obtained with the parameter set that provides the lowest mean

uncertainty at a given scale are highlighted in bold. The results obtained

at the best scale are highlighted in bold italics. . . . . . . . . . . . . . . . . 89

xi



5.4 Best fitting models and estimated vector of parameters obtained for the

bedrock samples, with all OK parameter sets, at s∗ = 1250m. The results

obtained with the parameter set that provides the lowest mean uncertainty

are highlighted in italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



List of Abbreviations

2WTT two way travel time

AA Average accuracy

ALT Altimeter

APA Average producer accuracy

AUA Average user accuracy

bs Binsize

bw Binwidth

cpus Computers

CReSIS Center for Remote Sensing of Ice Sheets

DEM Digital Elevation Model

DEP Dielectric permittivity profile

EFZ Echo-Free Zone

EO Earth Observation

ESA European Space Agency

GLACIES GLACiers and Icy Environments Sounding

GLAS Geoscience Laser Altimeter System

GPR Ground Penetrating Radar

GPS Global Positioning System

HGC High gain channel

HiCARS High CApability Radar Sounder

JUICE JUpiter ICy moon Explorer

KL Kullback-Leibler distance

LGC Low gain channel

LRS Lunar Radar Sounder

MARSIS Mars Advanced Radar for Subsurface and Ionosphere Sound-

ing

MCoRDS MultiChannel Coherent Radar Depth Sounder

MEO Mars Express Orbiter

MF Medium Frequency

xiii



MIMOSA Mapping of antarctic Ice and MOnitoring of SubArctic

MLE Maximum Likelihood Estimation

MRO Mars Reconnaissance Orbiter

MVDR Minimum variance distortionless response

NASA National Aeronautics and Space Administration

NN Neural Network

OA Overall accuracy

OAA One against all

OAO One against one

OK Ordinary Kriging

PA Producer accuracy

pdf Probability density function

POLARIS POLarimetric Airborne Radar Ice Sounder

RADAR RAdio Detection and Ranging

RAR Real Aperture Radar

RBF Radial Basis Function

RCS Radar cross-section

RIME Radar for Icy Moon Exploration

RMSH Root mean square height

RS Radar Sounder

SAR Synthetic Aperture Radar

SHARAD SHAllow RADar

STDEV Standard deviation

SV Support Vector

SVA Spatial variability analysis

SVM Support Vector Machine

TO Twin Otter

UA User accuracy

UHF Ultra High Frequency

WCRP World Climate Research Programme

wpl Waveform playlist

xiv



List of Symbols

fc Central frequency

Bw Bandwidth

G Antenna gain

Zst Range sensor-target

χ RCS

c Speed of light in free space

Λ Two way travel time (2WTT)

Prx Received power

Ptx Transmitted power

λ Wavelength

L One way power loss

σh Root mean square height

τ Pulse duration

Atx Amplitude of the transmitted radar pulse

φtx Phase of the transmitted radar pulse

ρz Range resolution

Etx Energy of the transmitted pulse

ρRS
z RS range resolution with pulse compression

kt Windowing factor

δRS,RAR
x Azimuth resolution of a real aperture radar sounder

H Platform height

lx Antenna length in the azimuth direction

ls Synthetic antenna aperture

δRS,SAR
x RS along-track resolution with SAR processing

δRS,SARf

x RS along-track resolution with focused SAR processing

δRS,SARuf

x RS along-track resolution with unfocused SAR processing

δRS,Bl
y RS resolution in the across-track direction in the beam-

limited case
ly Antenna length in the across-track direction

xv



δRS,P l
y RS resolution in the across-track direction in the pulse-

limited case
δRS,F l
y RS resolution in the across-track direction in the Fresnel-

limited case
DF Diameter of the first Fresnel zone

BRP Bedrock returned power

Rpdf Rayleigh pdf

Npdf Nakagami pdf

Kpdf K pdf

Gpdf Gamma pdf

θ Vector of parameters of a theoretical model

I Intensity domain

A Amplitude domain

KL(H,M) Kullbak-Leibler distance between two pdfs H and M
H Real histogram

M Theoretical model pdf

Rss Subsurface region of a radargram containing returns from

all target classes
Rnoise Subsurface region of a radargram containing only noise mea-

surements
θbest Vector of parameters of the best fitting theoretical model

Wz ×Wx Sliding window size in the range and azimuth directions

Ent Entropy feature

Q {·} Quantization operation

nq Number of quantization levels

℘(a) Probability of appearance of a

KLRss
KL distance feature/map of the subsurface region

Distz Distance feature in number of pixels from the surface to the

subsurface targets in the range direction
surf Detected surface samples in the radargram

Rel Relational feature

KLbin Binary version of the KLRss
map

µKLRnoise
Mean value of the KLRnoise

map

KLRnoise
KL distance of the Rnoise region

thrKL User defined value for thresholding the KLRss
map

t′ Generic trace of a radargram

nΨ Number of training (cross-validation) samples

v Feature vector

κi Class label associated to sample i

xvi



£i Lagrange multiplier of the i-th training sample

ς Error penalization (cost) term

K(·) Kernel function

D SVM decision boundary

b Bias term of SVM

nT Number of traces/columns of the radargram

nS Number of samples/rows of the radargram

τps Duration of the pulse used for shallow sounding

τpd Duration of the pulse used for deep sounding

N tiles Number of vertical tiles of the radargram

N tiles
Ψ Number of tiles used in the SVM training (cross-validation)

phase
ϑ Gamma parameter of the RBF kernel

̺ Average distance between each pair of classes

ςΩ Cost for obtaining the highest overall classification accuracy

on the test samples
ϑΩ Gamma parameter of the RBF kernel that provides the high-

est overall classification accuracy on the test samples
kf Number of folds used in the cross-validation

N tiles
Ω Number of tiles used in the SVM test phase

ntile
T Number of traces per tile

nΩ Number of test samples

E {·} Expectation operation

ℵ(·) Gamma function

BβK−1(·) Modified Bessel function of the second kind of order βK − 1

ln(a) Natural logarithm of a

Ξ(·) Di-gamma function

tnbr Trace with no bedrock returns

thicklayers Layer thickness zone in the radargram

thickice Ice thickness zone in the radargram

thickbedrock Bedrock thickness zone in the radargram

dss Length of the pixel in the range direction in the subsurface

region
fr Range sampling frequency of the RS

lastlayers Last return of the layered scattering area

firstbedrock First returns of the bedrock scattering area

lastbedrock Last returns of the bedrock scattering area

KLlayers Binary version of the KL map highlighting only the ice layer

area

xvii



KLbedrock Binary version of the KL map highlighting only the bedrock

area
dRS
x Spacing between two adjacent RS measurements in the az-

imuth direction
dRS
y Spacing between two adjacent RS flightlines/tracks

δALT Horizontal resolution of ALT data

dALT Spacing between two adjacent ALT measurements

δALT
z Vertical resolution of ALT data

x0 Coordinates of a query sample

N0 Number of neighbors of query sample at coordinate x0

e(xn) Random variable e at coordinate xn

γ̂(h) Empirical semivariogram

h Vector of point pair distances hk

k̄ Maximum number of bins of the empirical semivariogram

γCan Candidate semivariogram model

γSph Spherical model of the empirical semivariogram

γExp Exponential model of the empirical semivariogram

γGau Gaussian model of the empirical semivariogram

γLin Linear model of the empirical semivariogram

R2 R2 indicator

γ∗(h; θ̃) Empirical semivariogram best fitting model with the associ-

ated vector of parameters
u(x0) Uncertainty value at query sample coordinate x0

eN0
Vector of N0 observed values surrounding x0

1N0
Column vector of N0 ones

c0, V0 Elements of the full covariance matrix in x0

C0 Full covariance matrix in x0

C(h) Covariogram

P Number of parameter sets considered in the OK method

W1,W2,W3,W4,W5 Weighting functions

s∗ Most reliable scale for interpolation

sRS
0 Original scale of the RS data

SRS Ice surface elevation extracted from the RS data

BRS Bedrock elevation extracted from the RS data

sALT
0 Original scale of the ALT data

SALT Ice surface elevation map from the ALT data

J Number of scales for interpolation

sj Scale for interpolation

xviii



p∗S Best OK parameter set for interpolating the surface samples

SRS
p∗S(s

∗) Ice surface elevation map obtained with the best OK pa-

rameter set at the most reliable scale
US

p∗S(s
∗) Uncertainty map of the surface obtained with the best OK

parameter set at the most reliable scale
D Absolute error map

p∗B Best OK parameter set for interpolating the bedrock sam-

ples
BRS

p∗B(s
∗) Bedrock elevation map obtained with the best OK parame-

ter set at the most reliable scale
UB

p∗B(s
∗) Uncertainty map of the bedrock obtained with the best OK

parameter set at the most reliable scale
∆RS(s∗) Ice thickness map at the most reliable scale

ρ Range of the semivariogram

ξ Sill of the semivariogram

η Nugget of the semivariogram

♭ Slope of the linear model of the semivariogram

tc Ice core position/trace

Pk Received power from layer k

Zk Depth of layer k

εk Dielectric permittivity at layer k

Lk One way power loss at layer k

Γk Reflectivity of the layer k

εk− , εk+ Dielectric permittivities before and after layer k

Υs Transmission coefficient of the surface

ρs Reflection reduction due to surface roughness

Γs Reflectivity of the surface

Ps Ice surface power

L One way power loss as a continuous function of depth

K Number of continuous specular layers visible in the radar-

gram
LC Correlation length

Φ Phase variation due to surface roughness

δDEP
z Vertical resolution of the DEP profile

xix





Introduction

This Chapter introduces the PhD thesis work. In particular, it presents the context in

which Radar Sounders (RS) are employed and an overview of the existing RS systems for

ice subsurface sensing. Afterwards, it describes the challenges related to the analysis of RS

data. This allows us to state the aim of the thesis and to highlight its novel contributions.

At the end of the chapter, the structure of the whole document is outlined.

Background and motivation

The World Climate Research Programme (WCRP) has recently reconfirmed the impor-

tance of a better understanding of the Cryosphere for advancing the analysis, modeling

and prediction of climate change and its impact on the environment and society. In

particular, ”the potential for accelerated melting of various parts of the Greenland and

Antarctic Ice Sheets, which could lead to several meters of sea-level rise, is a matter of

great societal concern, and hence is a high priority research area” [2]. Therefore, the

study of the ice subsurface is of crucial importance. In this thesis we aim to providing

a contribution that can support the scientific community in the study of the ice sheet

subsurface.

An effective way to study the ice subsurface on wide areas is by analysing the data

(radargrams or echograms) acquired by Radar Sounder (RS) instruments [3]. RSs are

airborne or satellite mounted nadir-looking active instruments that transmit a relatively

low-frequency electromagnetic wave towards the surface and measure the reflected power

at each coordinate of the platform. The nadir-looking configuration and the low frequen-

cies employed by the RS ensure a deep penetration of the radar wave, e.g., even 4km in

cold ice. The reflection of the radar wave takes place at interfaces in the subsurface created

by thermal, dielectric and mechanical discontinuities. These interfaces, or targets for the

radar, are highlighted in radargrams with increased amplitude in the direction of the wave

propagation, at each position of the platform. Thus, at the end of the acquisition process,

the radargram shows a representation of the cross-section of the subsurface. Moreover,

the radargram provides information also on the position of the subsurface targets, which
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can be estimated by using the time lapse between wave transmission and reception and

the properties of the subsurface.

Regarding the coverage that can be achieved with a RS instrument, the wave deep

penetation capability contributes to building the vertical coverage of the ice subsurface.

The motion of the platform that carries the RS instrument contributes to building the ice

surface coverage in the horizontal direction. Therefore, the amount of recorded RS data

mainly depends on the RS instrument parameters and platform motion. So far, RSs for

Earth Observation (EO) have been operated only during dedicated airborne campaigns

at the Earth polar regions. Spaceborne RSs have been designed only for the observation

of other planetary bodies, e.g., Moon (Lunar Radar Sounder (LRS) [4]), Mars (SHAllow

RADar (SHARAD) [5], Mars Advanced Radar for Subsurface and Ionosphere Sounding

(MARSIS) [6]), Jovian Icy Moons (Radar for Icy Moon Exploration (RIME) [7], currently

under development). Although the design of Earth orbiting RS instruments is very chal-

lenging (mainly due to physical constraints and frequency allocation issues), the success

of the existing planetary RS instruments have encouraged dedicated studies for defining

EO RS missions from space (e.g., Mapping of antarctic Ice and MOnitoring of SubArctic

(MIMOSA) [8], [9], GLACiers and Icy Environments Sounding (GLACIES) [10]). Once

operative, such EO spacebased RS instruments will acquire data with homogeneous qual-

ity and uniform coverage, both spatially and temporally. This is not the case with the

existing airborne RS data. Science requirements and technological constraints drive data

acquisition strategy plans (e.g., location, coverage) and condition the data quality (e.g.,

maximum penetration, resolution). Therefore, the RS data acquired during different air-

borne campaigns have a limited coverage and heterogeneous quality. However, during

the past decades a large amount of airborne RS data has been acquired and the volume

of data is expected to increase during future airborne and forthcoming satellite EO RS

missions.

Due to the coverage and different types of information that RS data convey (e.g.,

target reflected power, target position), the analysis of radargrams can lead to e great

enhancement in the understanding of the ice sheets. However, during the past decades

the analysis of RS data has been performed mainly by means of manual investigation and

with a limited support of semi-automatic techniques.

Although it is still needed at least in a preliminary phase of the analysis, the traditional

manual analysis of RS data features several problems.

− The manual analysis is time consuming, thus limiting the exploitation of data already

available in archives and the efficient processing of incoming data.

− The manual analysis requires experts for the extraction of information from the data.

This implies the use of experts as tools for extracting the information rather than
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for interpreting the data. Moreover, the manual analysis is based on photointerpre-

tation, which is an extremely subjective process. In fact, the same radargram can be

interpreted in different ways by the same expert at different times. Also, different

experts can interprete the same radargram in different ways. This makes the process

dependent on several factors, resulting in different outputs given the same input.

− The manual analysis does not allow the integration, fusion and generally the joint

analysis of data acquired with different sensors (e.g., altimeter (ALT) data, synthetic

aperture radar (SAR) data). The aggregation of such data could highlight surface

and subsurface features which are typically not visible in the RS data alone.

The abovementioned issues suggest that the manual analysis of RS data limits the scien-

tific return that could be potentially achieved, thus leading to an insufficient understand-

ing of the ice sheets.

Objectives and novel contributions of the thesis

The importance of studying the ice sheets, the availability of large archives of airborne RS

data, the expected increase in data volume from both airborne and possible EO spaceborne

RS missions, and the problems raised by the manual analysis call for the development of

novel automatic techniques for the analysis of radargrams.

There are several advantages in using automatic techniques instead of the traditional

manual analysis.

− The automatic techniques are fast since they rely on the use of computer power and

repositories for the extraction of information, storage and retrieval of the obtained

results. In this sense, one can take advantage of the latest technology, e.g., clusters

of large-storage and high-power computers, for ensuring the resources needed for

automatically proceesing the RS data. This is particularly important for a proper

exploitation of the available data and an efficient processing of incoming data.

− The automatic techniques are objective. This ensures that by repeating the experi-

ment with the same input, one will always obtain the same output. This is extremely

important for a coherent and quantitative analysis of the ice subsurface.

− The automatic techniques allow the joint analysis of multisensor data acquired over

the same region. This is particularly important for an efficient data usage for en-

hancing the knowledge of the ice subsurface.

So far, the development of automatic techniques for the analysis of ice sheet RS data

has been addressed only to a limited extent by the scientific community. Such techniques
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have been mostly designed for the analysis of the subsurface in radargrams acquired

by terrestrial surface-mounted ground penetrating radars (GPR). Recently, increasing

interest has been also shown in the development of automatic techniques for the analysis

of the subsurface in planetary RS data acquired on Mars. The three mentioned types of

radargrams (i.e., ice sheet RS data, terrestrial GPR data, and planetary RS data) have

both common and different characteristics. The two main common properties of these

radargrams are: i) they are acquired with the same nadir-looking geometry, and ii) they

show measurements acquired in the subsurface. However, the instruments that acquire

these radargrams are typically operated on different platforms (i.e., airborne, surface-

mounted, satellite), have different parameters (e.g., central frequency, bandwidth) and are

investigating different types of subsurface (i.e., ice sheet subsurface, ground subsurface,

other planets subsurface). For these reasons, the coverage and resolution, both in the

vertical and horizontal directions, and the patterns highlighted in the three types of data

are different. Thus, the available automatic techniques for the analysis of terrestrial GPR

and planetary RS data acquired on Mars cannot be directly applied to the analysis of the

ice sheet subsurface acquired by airborne RS data. However, the successful application

of automatic techniques to the analysis of GPR and planetary RS data encourage the

development of such techniques specifically tuned to the peculiarities of RS ice sheet

data. Indeed, automatic techniques can support a better usage of airborne RS data for a

better understanding of the ice sheet subsurface.

In this thesis we provide four main novel contributions to fill the gap in the literature

in the development of automatic techniques for the analysis of ice sheet RS data. Such

techniques address three challenges of particular importance in the study of the ice sheets:

i) identification of ice sheet subsurface targets, ii) 3D modeling of the ice sheet, and iii)

understanding the interaction between the radar wave and the ice sheet.

In the context of identification of ice sheet subsurface targets, we contribute with two

automatic methods for the quantitative and large scale analysis of RS data:

1. A system for the automatic classification of ice subsurface targets in radar sounder

data,

2. A model-based technique for the automatic detection of Earth continental ice sub-

surface targets in radar sounder data.

In the context of 3D modeling of the ice sheet, we contribute with one method for the

3D reconstruction of the ice sheet:

3. An automatic technique for the local 3D reconstruction of the ice sheet by using

radar sounder and altimeter data.
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In the context of understanding the interaction between the radar wave and the ice

sheet, we contribute with a technique for the estimation of power losses through ice:

4. Estimation of radar power losses in ice by using radar sounder and ice core data.

These techniques are briefly summarized below.

A system for the automatic classification of ice subsurface targets in RS data

The first contribution of the thesis addresses the problem of identification of ice sheet

subsurface targets. In particular, the main objective of this contribution is the extraction

from the radargrams of a set of features that can help an automatic classifier to accurately

discriminate areas belonging to different subsurface classes, i.e., layers, noise and bedrock.

The technique combines advanced image processing and machine learning techniques with

the knowledge about the physical distribution of the targets and fundamentals on radar

wave backscattering. The system is made up of two main components: i) feature extrac-

tion, and ii) automatic classification based on Support Vector Machine (SVM). In the

first component, we propose a set of features that are able to model and correlate the

backscattering properties of the radar signal with the spatial properties of the subsurface

targets. The extraction of such features is done after a detailed study of the statistical

properties of the radar signal and of the spatial distribution of the ice subsurface targets.

The second component of the system uses the extracted features to perform the automatic

classification of ice subsurface targets by using an SVM classifier. The main properties of

the system are: a) robustness and/or adaptiveness to the heterogeneity of radargrams as

a consequence of both the features used and the learning approach employed; b) capabil-

ity to obtain objective quantitative results (i.e., exactly the same criteria are used for all

radargrams, thus enabling the extraction of targets in a consistent and comparable way

on all radargrams); and c) computational speed and efficiency due to the possibility of

parallelizing the algorithm. For these reasons, the system is suitable for the analysis of

the ice subsurface at large scale from radargrams acquired by RS sensors with different

characteristics (e.g., central frequency, bandwidth).

A model-based technique for the automatic detection of Earth continental ice subsurface

targets in radar sounder data

The second contribution of the thesis addresses again the problem of ice subsurface target

identification. The aim of this contribution is the detection of the ice subsurface targets

and the estimation of their properties (e.g., layered area thickness, bedrock scattering

area). This is done in an unsupervised way by using the parameters of the RS acquisition

system combined with the output of an automatic image segmentation algorithm. The
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segmentation operation is applied to the radargrams after a preliminary processing phase

aimed to emphasize the relevant subsurface targets. The segmentation criterion considers

the radar signal backscattering properties and a model of the spatial distribution of the

investigated targets that takes into account the effects of the wave propagation through

the subsurface.

Automatic local 3D reconstruction of the ice sheet by using radar sounder and altimeter

data

The third contribution of the thesis addresses the problem of 3D modeling of the ice

sheet. In particular, the aim of this contribution is the development of an automatic

technique for the local 3D reconstruction of the ice sheets, by jointly using RS and ALT

data. The technique aims to address two main challenges: i) the reconstruction should be

performed by estimating 3D maps of the ice surface, ice/bedrock and ice thickness at the

most reliable scale, derived automatically given the input RS and ALT data properties,

and ii) the estimated maps should have the highest overall quality, i.e., the lowest overall

uncertainty. To achieve this, the method relies on the ordinary kriging (OK) interpolation

method and on the joint use of RS and ALT data for the optimization of the interpolation.

The automatic identification of the most reliable scale for interpolation, the analysis and

use of the uncertainty maps generated by the OK method, and the joint use of RS and

ALT data are the main novel contributions of this work.

Estimation of Radar Power Losses in Ice by Using Radar Sounder and Ice Core Data

The fourth contribution of the thesis addresses the broad problem of understanding the

interaction between the radar wave and the ice sheet. In particular, the objective of this

contribution is the estimation of power losses through the ice as a continuous non-linear

function of depth and location, rather than the estimation of ice power loss rate, as done

in other works in the related literature. To this aim we use coincident RS and ice core

data. The technique relies on the detection of layers in the radargram. The reflectivity

of the layers is computed from the ice core data and is assumed constant along each

layer. The ice losses at each layer depth are estimated by inverting the radar equation.

Then, at each coordinate of the RS platform, the power losses through the ice column are

estimated as a continuous non-linear function of depth by fitting a theoretical function to

the losses estimated at the layer depths and extrapolating it to the bed. This results in

a more reliable estimation of the power losses on wide areas, which is fundamental for a

better understanding of the radar wave interaction with the ice subsurface and for a better

modeling of the processes taking place within the ice sheet and at the basal interface (e.g.,

reduction of the uncertainties related to the boundary conditions).
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Qualitative and quantitative experimental results obtained on real RS data acquired in

Antarctica confirm the effectiveness of the methods described in the first three contribu-

tions. Also, preliminary results have been obtained by applying the method described in

the fourth contribution to real RS and ice core data acquired in Greenland. Due to their

advantages over the traditional manual approach, e.g., efficiency, objectivity, possibility

of jointly analyzing multisensor data (i.e., RS, ALT, ice core), the proposed methods

can support the scientific community to enhance the data usage for a better modeling

and understanding of the ice sheet. Moreover, the proposed methods will become even

more important in the near future, since the volume of data is expected to grow from the

increase in airborne and possible EO spaceborne RS missions.

Structure of the thesis

This document is divided into 6 chapters. Chapter 1 presents fundamental concepts in

radar and more specifically RS systems, which are needed for understanding the back-

ground notions of the thesis. Chapter 2 presents an overview of the State of the Art

regarding the automatic analysis of radargrams. In particular, the literature on the iden-

tification of subsurface features, on the 3D reconstruction of the ice subsurface, and on

the ice loss estimation are provided in Sec. 2.1, Sec. 2.2 and Sec. 2.3, respectively. In

Chapter 3 and Chapter 4 we present two automatic techniques for the identification of

ice sheet subsurface targets in radargrams, i.e., target classification and target detection,

respectively. An automatic technique for the ice sheet 3D reconstruction by using RS and

ALT data is presented in Chapter 5. Chapter 6 describes an automatic technique for the

estimation of power losses through ice by fusing RS and ice core data. Each Chapter from

3 to 6 is made up of more sections, each presenting a detailed description of the methods

used, experimental results obtained by applying the methods to real data acquired at the

ice sheets and related conclusions. Finally, the conclusions of the thesis are drawn along

with proposals for future research and developments.
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Chapter 1

Fundamentals

This Chapter provides a description of fundamental concepts in radar with focus on specific

aspects of RS systems, useful for understanding the thesis. First, the radar basic principles

are given. Then, the acquisition process and geometry of RS is illustrated. Afterwards,

the geometrical resolution of RS data and common signal processing techniques used for

resolution enhancement are presented. Finally, some examples of RS systems are given.

1.1 Radar basic principles

The acronym ”RADAR” stands for ”RAdio Detection and Ranging”. Indeed, radar in-

struments work by transmitting electromagnetic waves in the radio spectrum toward a

target and are able to detect the presence and compute the range to the target. Moreover,

they are able to measure the scattering properties of the targets, also called radar cross-

section (RCS). Two of the main parameters of a radar system are the central frequency

fc, typically in the range between few MHz and tens of GHz, and the bandwidth Bw of

the transmitted signal. These are design parameters of a radar system and depend on the

type of radar (e.g., GPR, RS, SAR) and on the considered application (e.g., target de-

tection, target characterisation). In the following, we illustrate general concepts of radar

systems, which are related to the understanding of the thesis, i.e., i) the radar equation,

and ii) the fundamentals of scattering and coherent nature of radar signals.

Radar equation

The simplest model of a radar system consists of the same antenna with gain G, both

for transmission and reception (i.e., monostatic system) and a target at range Zst with

unknown RCS χ. By using this model, information about the range to the target Zst is

9



1.1 Radar basic principles

obtained with the time-distance conversion equation, expressed as:

Zst =
cΛ

2
√
ε
, (1.1)

where c is the speed of light in free space, Λ is the time lapse between wave transmission

and reception, or two way travel time (2WTT), and ε is the dielectric permittivity of the

considered media. Also, one can retrieve partial information about χ, by inverting the

radar equation, expressed by:

Prx = Ptx
λ2G2L2

(4π)3Z4
st

χ, (1.2)

where Prx is the power measured by the radar receiver, Ptx is the transmitted signal

power, λ = c/fc is the wavelength, L is the one way power loss through the media. It

is worth noting that (1.2) is a simplified form of the radar equation, which embodies the

main parameters of the radar system. However, the radar equation can become more

complex depending on the application and type of radar (e.g., subsurface radar, side-

looking radar). Besides by using the radar equation, further information about χ can be

retrieved by analysing the coherent nature of the radar signal.

Scattering and coherent nature of radar signals

The signals transmitted by modern radars are waveforms characterized by amplitude and

phase. Their interaction with targets, i.e., scattering, changes both the amplitude and the

phase of the signals. Therefore, the analysis of this interaction can provide information

about the scattering properties of the target, i.e., χ.

The scattering is composed of a mix of specular and diffuse components, depending on

the interface roughness in terms of root mean square height (RMSH) σh with respect to

the wavelength λ. In particular, σh represents the vertical displacement of the surface with

respect to its mean plane. For a smooth surface (σh ≪ λ), the wave is entirely scattered

in the specular direction. This situation, also called coherent scattering, is represented in

Fig. 1.1(a). For a slightly rough surface (σh < λ) the scattering is characterized by a large

specular component, and a diffused component with less power scattered in all directions.

This situation, in which the wave starts losing coherency, is represented in Fig. 1.1(b). A

very rough surface (σh ≫ λ) scatters the wave diffusely in all directions. This situation,

called incoherent scattering, is represented in Fig. 1.1(c). As it can be seen, the rougher

the surface, the weaker are the specular and the stronger are the diffused components.

One of the main effects due to the coherent nature of the radar signal is the speckle.

The radar resolution cell is usually larger than the wavelength (see Sec. 1.3 for RS data

resolution), thus more scatterers are present in each cell. Each scatterer contributes to the

signal received from a resolution cell with its own amplitude and phase. Such contributions
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(a) (b) (c)

Figure 1.1: Surface scattering for (a) smooth surface, (b) slightly rough surface, and (c) very rough

surface. In the figures ϕ is the angle of incidence and ϕs is the angle of the scattered wave.

sum up coherently, resulting in constructive and destructive interference, called speckle.

This has a granular appearence in the radar data, similar to random noise. In reality,

speckle is not random as it depends on the scatterers present in the scene. In the radar

data, the speckle is normally treated as a noise-like quantity multiplying the underlying

χ. Thus, the speckle is usually humpering the interpretation of the data. However, it can

be reduced by means of multilooking techniques. Multilooking can be applied directly

during acquisition of the data [11], or by averaging correlated samples, which in turn

worsens the geometrical resolution by a factor equal to the number of looks.

The abovementioned principles are general to all types of radar systems. In the fol-

lowing we will focus only on RS systems, since they acquire ice subsurface data, which

make the subject of the thesis.

1.2 Radar sounder acquisition geometry and process

Radar sounding is a well-known nonintrusive technique which allows the investigation

of the structural and dielectric characteristics of the subsurface. RSs are nadir-looking

radar systems, see Fig. 1.2, working at low frequencies, more precisely in the range of

the frequency spectrum between few MHz to few hundreds of MHz (MF to UHF). These

frequencies are particularly suitable for deep ice or desert subsurface sounding (e.g., as

deep as 4km in cold ice) because of the transparency of these materials in this range [3]. In

the following we will refer to the ice monitoring radar sounders, although the acquisition

process is analogous for desert subsurface sounding.

As depicted in Fig. 1.2, the RS is mounted on a flying platform. At each position of

the platform, the RS transmits a pulse with duration τ , amplitude Atx and phase φtx,

vertically (at nadir or in the range direction) towards the ice surface. The pulse travels

from the sensor to the surface, penetrates the subsurface, is reflected by the ice subsurface

targets and turns back through the ice and air to the sensor. During the two way prop-
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Figure 1.2: Acquisition geometry of a RS system.

agation (sensor-target-sensor), the pulse experiences geometric spherical losses both in

air and ice, reflection or scatterring losses at the air/ice interface, reflection or scattering

losses through ice, and reflection or scattering losses at the bedrock. The reflection or

scattering takes place at interfaces in the subsurface created by thermal, dielectric and

mechanical discontinuities. The reflected waves measured by the receiving antenna are

recorded as complex signals (amplitude and phase) as a function of 2WTT. Such mea-

surements are registered in the columns (or traces) of a 2D matrix, called radargram.

Therefore, each trace of the radargram contains the information about the ice column

below the platform. Successive traces are then generated by repeating this acquisition

process at each platform position at determined time intervals, called pulse repetition

intervals (PRI). The result is a radargram that represents the cross-section of the ice in

terms of the wave received amplitude and phase for a given range position as a function of

2WTT (or distance) on the vertical axis, and as a function of the instrument along-track

(or azimuth) position on the horizontal axis.

Due to the RS acquistion geometry and to the non-ideal directivity of the antenna, the

received signals can also contain components coming from off-nadir directions at the same

time with the subsurface nadir returns. These returns are called clutter. The amount of

clutter depends on the antenna footprint width and on the surface characteristics. The

wider the antenna footprint and the higher the surface topography, slope and/or rough-

ness, the more relevant the effects of clutter. In the radargram, the clutter returns overlap

on the returns coming from the subsurface, leading to partial or complete masking of the

subsurface features. This can represent an issue for the interpretation of radar signals. In
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the azimuth direction, the clutter can be reduced by using SAR techniques, whereas in the

across-track direction, the clutter can be reduced by using suitable processing techniques,

as explained in Sec. 1.3.

1.3 Geometrical resolution of radar rounder data

The geometrical resolution of a radar is its ability to distinguish between targets that

are very close either in the range or in the along-track or across-track directions. In

the following, we describe how the resolution of a RS system is computed in the three

directions and additional signal processing techniques for resolution enhancement.

Range resolution

The range resolution ρz depends on the length of the transmitted pulse in time domain τ

and on the dielectric properties of the media ε, as expressed by:

ρz =
cτ

2
√
ε
. (1.3)

The above equation states that in order to be resolved, two targets should be separated

in the range direction by at least one-half the pulse length. Thus, the use of (1.3) implies

that short pulses should be used in order to achieve better range resolution. However, the

use of short pulses does not grant sufficient energy to detect small targets at long range.

This is evident by looking at the equation of the transmitted pulse energy Etx:

Etx = Ptxτ. (1.4)

By decreasing τ , the power of the pulse should be increased in order to ensure sufficient

energy. However, increasing the power in a very short time is not always technically

possible. Therefore, in order to improve the range resolution and ensure sufficient en-

ergy, i.e., by keeping a relatively long pulse length, in most RSs range resolution is not

achieved through the transmission of the shortest possible pulse, rather through the use

of a chirp, i.e., a long pulse linearly modulated in frequency. In this case, thanks to

range-compression techniques using matched filters [12], the vertical range resolution of

RS can be calculated as:

ρRS
z =

c

2Bw

√
ε
kt. (1.5)

Therefore, ρRS
z depends on three main terms: the compressed signal bandwidth Bw, the

properties of the media ε and the windowing coefficient kt. As it can be inferred, the use

of a large signal bandwidth can improve the range resolution of a radar system. However,

depending on the application and frequency allocation limitations, there are constraints
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on the bandwidth. For instance, the chosen central frequency along with the maximum

data storage capacity impose limitations on the maximum possible signal bandwidth.

ρRS
z also depends on the material in which the pulse is traveling. More precisely, the

range resolution is always better in materials than in air, since εmaterial > εair = 1 (e.g.,

εice = 3.15). Furthermore, ρRS
z depends on the windowing coefficient kt. The windowing

is a signal processing technique applied to the compressed signal in order to suppress

the sidelobe level generated through range-compression. As a result, the effective range

resolution worsens by a factor kt > 1 that depends on the applied windowing function

(e.g., Hanning, Tuckey).

Along-track resolution

It is important first to make the distinction between a real aperture radar (RAR) system

and a SAR system. In the case of a RAR system, the along-track resolution depends

on the parameters of the system, whereas in the case of a SAR system, the along-track

resolution is achieved by means of signal processing techniques. In more details, the

azimuth resolution of a RAR sounder system δRS,RAR
x depends on the footprint of the

main lobe of the radar beam on the ground in the flight direction, and is expressed by:

δRS,RAR
x =

λH

lx
, (1.6)

where H is the platform height with respect to the surface and lx is the lenght of the

antenna in the azimuth direction. The expression in (1.6) states that in order to be

resolved, two targets in the azimuth direction should be spaced by at least the width

of the antenna footprint in the flight direction, i.e., the real antenna azimuth aperture.

Also, one can see that better azimuth resolution can be achieved by acquiring data at

low altitude and using long antennas. However, in practical airborne and spaceborne

missions, these requirements cannot be satisfied. Instead, the azimuth resolution can be

considerably improved by processing the phase information of the complex signals with

SAR techniques.

Fig. 1.3 shows the principle of SAR. SAR exploits the movement of the platform in the

azimuth direction and the Doppler theory. A point target is illuminated by the SAR beam

during a time interval that depends on the real antenna footprint and the velocity of the

platform. During this time, which is called integration time, a synthetic antenna aperture

ls larger than the aperture of the real antenna is generated, i.e., ls > lx. Within the

integration time, the SAR system records the phase history of the signal, by exploiting the

Doppler shifts of the received complex signals. By processing this information, different

targets can be resolved, even if they are located in the azimuth direction closer than the

real azimuth aperture. For a RS system, the along-track resolution obtained with SAR
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Figure 1.3: SAR principle. The target is illuminated during the time in which the real antenna travels a

distance equal to ls, which is the length of the synthetic antenna.

techniques is:

δRS,SAR
x =

λH

2ls
. (1.7)

The SAR Doppler processing can be focused or unfocused depending on the effective

integration time in which the signals are processed. In the focused case the phase history

of the signal is fully exploited over the whole integration time, and the maximum ideal

along-track resolution that is achievable is given by:

δRS,SARf

x =
lx
2
. (1.8)

On the other hand, the unfocused Doppler processing exploits the part of the integra-

tion time in which the signal phase variation is smaller than π/4. The final along-track

resolution that can be obtained by processing the RS data with the unfocused Doppler

processing is given by:

δRS,SARuf

x =

√

λH

2
. (1.9)

Although the resolution in the unfocused case is worse than the resolution in the focused

case (since δRS,SARuf

x > δRS,SARf

x ), the unfocused processing is simpler. This is because

it requires only a linear phase compensation of the received echoes. For this reason the

unfocused Doppler processing is the prefered SAR processing technique onboard airborne

or satellite platforms, at the cost of reduced resolution.

Note that besides improving the resolution with respect to the real antenna aperture

radar, a main advantage of using SAR techniques is the possibility to partially suppress

the effect of clutter. This is because returns coming from the off-nadir in the azimuth

direction are limited to the resolution cell of the SAR processed data, which is always
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smaller than that of non-processed data, thus the amount of clutter reaching the antenna

receiver is also smaller.

Across-track resolution

For the across-track direction, the SAR principle cannot be exploited since the Doppler

theory is not applicable. This is because in the across-track direction there is no relative

motion of the platform that carries the RS with respect to the targets and thus the

backscattered signals have no Doppler shift. In this case, the across-track resolution

mainly depends on the roughness of the surface σh with respect to the wavelength λ.

For a very rough surface (σh ≫ λ), the across-track resolution of a RS is beam-limited,

and given by:

δRS,Bl
y =

λH

ly
, (1.10)

where ly is the antenna length in the across-track direction. From (1.10) it can be deduced

that in the case of a very rough surface, the RS can resolve two targets in the across-track

direction only if they are spaced by a distance at least equal to the antenna footprint in

that direction.

For a slightly rough surface (σh < λ), the across-track resolution is pulse-limited , i.e.,

is given by the diameter of the circle centered in the nadir point, which intersects the

ground at the moment when the transmitted wave has penetrated into the material to a

depth equal to the range resolution δRS
z , thus is expressed by:

δRS,P l
y = 2

√

Hc

Bw

. (1.11)

For a smooth surface (σh ≪ λ), the across-track resolution is given by the diameter

of the first Fresnel zone DF :

δRS,F l
y = DF =

√
2λH. (1.12)

Fig. 1.4 shows a schematic representation of the resolution in the above-mentioned cases.

As it can be seen, the smoother the surface, the better the resolution capabilities of the

RS in the across-track direction, since δFl
y < δP l

y < δBl
y .

As already mentioned, the use of SAR techniques reduces the clutter coming from

the along-track direction. In the across-track direction, the clutter can be reduced by

increasing the directivity of the antenna, i.e., by increasing its dimension, as it can be

deduced from (1.10). Since, because of physical constraints this is not always feasible, a

common approach to the clutter reduction or identification is the use of suitable signal

processing techniques, e.g., [1], [13]. As an example, Fig. 1.5 shows a SAR processed
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Figure 1.4: Schematic representation of the across-track resolution of a RS system. The across-track

resolution cell is (a) Beam-limited for very rough surfaces, (b) Pulse-limited for slightly rough surfaces,

and (c) Fresnel-limited for smooth surfaces.

radargram acquired by the MultiChannel Coherent Radar Depth Sounder (MCoRDS)

in Antarctica, before (Fig. 1.5(a)) and after (Fig. 1.5(b)) clutter suppression achieved

by using the algorithm presented in [1]. It is worth noting the improved quality of the

processed radargram in Fig. 1.5(b), which highlights bedrock returns which are completely

masked by clutter in Fig. 1.5(a).

1.4 Examples of radar sounder systems

As already mentioned, for the monitoring of the ice sheets and glaciers RSs are operated

on airborne platforms, e.g., MultiChannel Coherent Radar Depth Sounder (MCoRDS)

[14], High CApability Radar Sounder (HiCARS) [15], POLarimetric Airborne Radar Ice

Sounder (POLARIS) [16]. Currently, spaceborne RSs have been used only for the explo-

ration of other planets or moons. Examples are the Lunar Radar Sounder (LRS) of the

Japanese orbiter Kaguya [4], the Mars Advanced Radar for Subsurface and Ionosphere

Sounding (MARSIS) on the ESA’s Mars Express Orbiter [6], and the Shallow Radar

(SHARAD) of the Mars Reconnaissance Orbiter of NASA [5]. The latter two instruments

are currently operating at Mars and are providing high quality data which allow a detailed

study of the subsurface of the North Poles of Mars. The Radar for Icy Moon Exploration

(RIME) [7] is another planetary RS instrument, currently under development. RIME is

devoted to the sounding of the icy moons of Jupiter: Ganymede, Europa and Callisto.

Studies for the definition of an Earth orbiting RS have been also carried out [8], [10], [17].

17



1.4 Examples of radar sounder systems

(a) (b)

Figure 1.5: (a) Example of SAR processed radargram acquired by MCoRDS in Antarctica, and (b) The

same radargram after applying clutter suppression processing [1]. Copyright: [1].

In order to better understand the relation between radar characteristics, platform

height, subsurface penetration capability and geometrical resolution, in the following we

provide some examples of both ice sheet and planetary RS systems.

Examples of airborne RSs

MultiChannel Coherent Radar Depth Sounder (MCoRDS) is a coherent ice

depth sounder system developed at The University of Kansas, Lawrence, KS, USA [14].

MCoRDS is a flexible RS system, capable of operating over the frequency range 160-

230MHz with a multichannel receiver and adjustable bandwidth of 10MHz to 60MHz.

The system has been designed and optimized to sound fast-flowing glaciers and ice sheet

margins and image an ice-bedrock interface covered with ice more than 3km thick in the

interior. Thus, the main objective of MCoRDS is the measurement of ice sheet thickness.

It has been operated in Antarctica and Greenland and integrated onboard three different

platforms: i) the de Havilland DHC-6 Twin Otter (TO) at low altitude with two six ele-

ment folded dipole subarray antenna, ii) the NASA DC-8 turbojet at high altitude with

a collinear antenna array composed of five broad planar dipoles, and iii) the NASA P-3

aircraft at low altitude with an antenna composed of 15 dipoles. A simplified configura-

tion of MCoRDS and the related system parameters are given in Tab. 1.1.

POLarimetric Airborne Radar Ice Sounder (POLARIS) is a polarimetric RS sys-

tem developed by the University of Denmark [16]. POLARIS has quad polarisation capa-

bilities which allow it to measure the anisotropic properties and crystal orientation fabrics

to gain more insight about the stress and strain information of the polar ice sheets [18].

POLARIS has a dual-linear polarization wideband microstrip patch antenna that works at

a central frequency of 435MHz (i.e., P-band) with 3 possible bandwidths (6MHz, 30MHz

and 80MHz). Tab 1.1 reports an example of configuration of POLARIS and the related
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Table 1.1: Examples of RS system parameters.

Parameter Ice sheet RS Planetary RS

Name MCoRDS [14] POLARIS [16] SHARAD [5] on Mars RIME [7] on Jupiter Icy Moons

Platform TO @ 500m DHC6-TO @ 3500m MRO @ 300km JUICE @ <1000km

fc [MHz] 195 435 20 9

Bw [MHz] 30 85 10 3

δRS
z [m] 4.3 1 10 50

Penetration depth [km] 4 3 1 9

parameters.

Examples of planetary RSs

SHAllow RADar (SHARAD) is a planetary RS on the MRO mission on Mars [5].

The scientific objective of SHARAD is to map dielectric interfaces to at least several

hundred meters depth in the Martian subsurface and to interpret these results in terms

of the occurrence and distribution of expected materials, including rock, soil, water, and

ice. SHARAD has a 10m long dipole antenna which works at 20MHz central frequency,

and a bandwidth of 10MHz. The instrument has a horizontal resolution of between 0.3

and 3km and a vertical resolution of 10m in the subsurface. A simplified configuration of

SHARAD is provided in Tab. 1.1.

Radar for Icy Moon Exploration (RIME) is a planetary RS provided by ASI as a

payload on the JUpiter ICy moon Explorer (JUICE) mission [7]. RIME is designed for

studying the subsurface geology and geophysics of the Galilean icy moons (i.e., Ganymede,

Europa and Callisto) and for detecting possible subsurface water. It uses a 16m dipole

antenna that works at a central frequency of 9MHz. RIME is designed to achieve a pen-

etration depth of 9km with a maximum resolution of 50m in the subsurface. A simplified

configuration of RIME is provided in Tab. 1.1.
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Chapter 2

State of the Art in the Development

of Automatic Techniques for the

Analysis of Radar Sounder Data

Acquired at the Ice Sheets

This Chapter provides an overview of the State of the Art regarding the automatic analysis

of RS data acquired at the ice sheet. First, we present a review of the literature regarding

the automatic identification of subsurface targets. Afterwards, a review of the literature

regarding the 3D reconstruction of the ice subsurface structure is given. Finally, we provide

an overview of the literature on the estimation of ice subsurface power losses.

2.1 Automatic identification of ice subsurface targets

The analysis of radargrams is a very challenging task, since the amplitude of the reflec-

tions from the surface and subsurface is typically mixed with noise contributions, e.g.,

thermal noise, speckle, clutter, sidelobes. These noisy contributions may partially or

even completely mask the useful signal, thus leading to wrong interpretation of the infor-

mation contained in radargrams. Despite the advantages that the automatic techniques

could provide, as mentioned in the introduction of this thesis, the related literature in

the analysis of RS data is still limited. An attempt to automatically estimate the po-

lar ice thickness from airborne data is presented in [19]. Here, the authors propose two

techniques for the automatic detection of the ice surface and the bedrock interfaces, i.e.,

i) edge-based, and ii) active contour. In [20], a technique for tracing the depth of the

Holocene in Greenland is presented. The technique is semi-automated and uses image
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processing concepts based on histogram analysis and surface fitting to identify the tran-

sition region between the Holocene and Glacial ice. Besides these works, which deal with

the segmentation of the ice sheet subsurface into different regions, there are a few works

focused on understanding the ice stratigraphy, which is useful for ice flow modeling [21] or

the isochronous characterization of the ice [22]. These objectives have motivated many ef-

forts for developing automated or semi-automated methods (e.g., [23], [24], [25], [26], [27]).

Other methods focus on the detection of water [28] or estimation of water extent at the

ice/bedrock interface [29]. Other related works regard mainly the analysis of the tar-

gets visible in radargrams by comparison with ground truth data collected during drilling

campaigns or using other sensors. As an example, in [30] the authors investigate how

the structure of the ice subsurface affects the wave propagation and its impact on the

radargram acquisition process. They compare RS data, ice core line-scan images (which

display the stratigraphy of high-scattering zones for light), crystal orientation fabrics and

dielectric properties of subsurface samples collected from an ice core for assessing the type

of investigated targets in radargrams. This analysis is extremely useful, as its scientific

output could act as reference knowledge that along with the radargrams allow for further

automatic processing.

The literature regarding the analysis of RS data relevant to this thesis also includes

works related to the study of the subsurface of planetary bodies. Indeed, patterns rela-

tively similar to those characterizing the subsurface features of the Earth polar ice sheets

are shown in radargrams acquired by RSs orbiting around other planetary bodies. For

instance, the subsurface of the North Poles of Mars is characterized by layers of dry and

wet ice. Therefore, the patterns shown in such radargrams are due to echoes coming

from various ice layers interfaces and the underlying basement. Such features have been

detected and investigated only recently by means of automatic analyses. As an exam-

ple, [31] presents a technique for the detection of shallow linear features. Another work

in which the goal is the detection and extraction of layered linear features is presented

in [32]. Here, the authors propose the use of collaborative filtering in order to reduce

the noise and highlight the returns of the target. The extraction of linear features is per-

formed by exploiting the Steger filter. Another work regarding the analysis of the Martian

subsurface, and in particular the detection of basal returns, is presented in [33]. Here,

the authors propose the use of several theoretical models to characterize the statistical

properties of the RS signals. In order to isolate the returns of the basement from other

echoes, the algorithm exploits a region growing technique that combines the results of the

statistical analysis with the geometrical properties of the subsurface features. A technique

for the automatic detection of clutter returns is presented in [13]. Such studies prove a

recent growth in interest in the development of automatic techniques for the analysis of
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orbital RS data.

Automatic methods for the analysis of subsurface features have been also developed for

terrestrial surface-mounted GPR data. Since decades, the aim of the GPR campaigns has

been to provide meaningful information about the shallow underground, by non-intrusive

means. In fact, their use has been devoted to the detection of buried objects (e.g., pipes,

tanks, mines). These targets show specific signatures in radargrams, under the form

of hyperbolas. In order to analyze them, several studies in the literature proposed the

use of automatic techniques. For instance, in [34] after reducing the noise by means of a

wavelet-based procedure, the authors use a fuzzy clustering algorithm for the identification

of hyperbolas. In [35] the authors firstly enhance the useful signal by applying a sequence

of preprocessing steps for noise removal. Afterwards, a buried target detector based

on artificial Neural Networks (NN) is implemented. In [36], the potentiality of NNs is

exploited for detecting hyperbola-like signatures in GPR radargrams affected by different

levels of noise and clutter. Two fast detection algorithms for small underground targets,

one based on NNs, the second based on a template-matching approach are presented

in [37]. The SVM classifier is used in [38] for the recognition of the type of material of

the subsurface target. Such goal is achieved after applying a sequence of operations to

the radargram, i.e., preprocessing for noise removal, image segmentation to discriminate

between background and target, and automatic object detection implemented by means

of genetic algorithms.

Before going deeper into the investigation of the literature regarding the analysis of

GPR radargrams and planetary RS radargrams, we recall some aspects pointed out in

the introduction of the thesis. The three mentioned types of radargrams, i.e., ice sheet

RS data, planetary RS data, and terrestrial GPR data, have both common and different

characteristics. The common aspects regard the fact that these data are acquired with the

same nadir-looking geometry, and that they show the subsurface. However, the coverage,

resolution and the subsurface features typically shown in the three types of radargrams

are different. Thus, the available automatic techniques for the analysis of terrestrial GPR

and planetary RS data acquired on Mars cannot be directly applied to the analysis of the

ice sheet subsurface acquired by airborne RS data. Nevertheless, such works along with

recent advances in the processing of ice sheet RS data, represent a reliable starting point

for the development of novel advanced methods for the investigation of radargrams of the

ice sheets.

23



2.2 3D reconstruction of ice subsurface structure

2.2 3D reconstruction of ice subsurface structure

Understanding the dynamics and processes taking place at the ice sheets requires improved

3D models of the ice sheet structure. An efficient way of achieving this is by using

automatic techniques that integrate and/or exploit different types of data. However,

the development of such techniques is still limited. Two methods to map the global

3D structure of the entire Antactica are presented in [39] and [40], whereas [41] and [42]

present methods for mapping the ice subsurface of the entire Greenland. All these methods

consider most of the available RS data acquired in Antarctica or Greenland at the time

of their publication. Such data are extremely heterogeneous in terms of resolution and

sample density, since they were acquired in different airborne campaigns conducted to

meet different science requirements. However, the 3D maps are generated at a common

single scale determined by empirically analyzing the global density of the data at hand.

This choice has two potential drawbacks. In regions with high data sampling density, the

use of a comparatively small scale results in the generation of a low resolution map, leading

to possible loss of information. On the contrary, in regions with low data sampling density,

the use of a too high scale determines the generation of elevation maps with artifacts or

artificial features. In [43], the bedrock topography is estimated only locally, i.e., for

the Jakobshavn Isbrae in Greenland and Byrd glacier in Antarctica. The work focuses

on the description of a novel RS system used for data acquisition in these regions and

emphasizes on its capability to reach the bedrock even under very thick ice (≈ 3km) below

the flightlines. However, it lacks a detailed description of the methods used to identify the

scale and of the interpolation strategy used to reconstruct the 3D structure of the ice sheet.

In [44], the authors propose a physically-based approach to calculate glacier ice thickness

by using a dynamic model to obtain spatially distributed thickness of individual glaciers.

The method uses two types of data, i.e., a complete inventory of glacier outlines and

digital elevation models (DEM). It calculates glacier-specific distributed thickness based

on the inversion of surface topography by using the principles of ice flow dynamics. The

same method is further developed and adapted to glaciers on the Antarctic Peninsula

in [45]. Another physically-based approach to the interpolation of ice thickness of the

Aurora Subglacial Basin is proposed in [46]. The method is a development of those used

in [39] and [47]. In [48], the basal topography of Bayley/Slessor region of East Antarctica

is obtained by interpolating RS data with the kriging method. A mass conservation

approach to mapping the glacier ice thickness, which exploits RS and interferometric

synthetic aperture radar data, is presented in [49] and further improved and reused in [50]

for the high-resolution ice thickness mapping in South Greenland.

This review of the related literature points out that there are several interpolation
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methods used for the same purpose, i.e., 3D estimation of ice thickness and bedrock

topography. However, it is worth noting that independently on the interpolation method

used, all the above-mentioned techniques use empirically-derived scales for interpolation.

For instance, in [48], [39], [45], the scales used are 20km, 5km, 100m, respectively. These

values represent an acceptable compromise given the different characteristics of the data.

However, none of them has been automatically identified on the basis of the specific

properties of the data and of the characteristics of the investigated surfaces.

2.3 Ice power loss estimation

During the past decades, intensive studies have been carried out for a better estimation of

the radar wave attenuation through ice and consequently for the estimation of ice power

losses. The main goal of such studies is the ultimate unambiguous interpretation of the

ice basal conditions and processes, which is still problematic due to the poor knowledge

of radar power losses through the ice column.

The basic and widely used method for infering the radar attenuation is by using

bedrock-driven approaches, i.e., the relationship between the ice thickness and the power

returned from the bedrock. For instance, in [51] the pattern of reflected power from the

bedrock (BRP) is used to infer the spatial pattern of basal properties. In [52], the authors

improve the BRP concept which is then reused in [53]. Here, ice core data is used for

modeling and estimating the englacial depth-averaged attenuation rate and the result is

compared against radar-derived depth-averaged attenuation rate which is estimated by

adjusting the method presented in [52]. The depth-averaged attenuation rate is also esti-

mated in [54] by assuming constant reflectivity of the bedrock along the radargram. This

assumption is the main weakness of the method, since it is unlikely to hold in a large

scale context. A recent work [55] accounts for this weakness by proposing an improved

empirical attenuation correction by fitting linearly variable attenuation rates along the

radargram. This method also corrects for propagation losses due to rough ice surfaces.

Another recent bedrock-driven approach is presented in [56]. The main advantage of this

technique over most of the previous techniques, which assume either constant bedrock

reflectivity or stationarity in the attenuation rate, is the use of a sliding target window

approach for the local derivation of the depth-averaged attenuation rate.

Another approach to the estimation of ice losses is based on layer-driven methods. The

main advantage of such approaches is that they do not rely on the bedrock reflections

to estimate the radar attenuation rate, since the reflections of the bedrock are more

complex and proven to be spatially variable, e.g., [52], [55]. The layer-driven methods

rely on the assumption that the internal layers visible in the radargrams are isochonous,
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as firstly hypothesized in [57]. The study carried out in [58] investigates the internal

echo reflections by using RS data, ice core data, and two models of subsurface reflections

(i.e., one of which considers only primary reflections, the other one that considers both

primary and multiple reflections). This study reconfirms the hypothesis of the isochronous

character of the internal layers and concludes that such layers can be used to aid studies

of ice sheet dynamics. This has been also established in [53], in which it is stated that the

radar-derived attenuation rates to several reflectors could constrain the depth-averaged

attenuation rate profile and provide additional tests for the attenuation models. Recently,

a method based on this approach has been presented in [59]. The method uses a linear

regression technique to estimate the depth-averaged attenuation rate and relies on the

assumption that the internal layers highlighted in radargrams are specular and that the

reflectivity of the layers is uniform in the range direction. The layer-driven approach

and the assumption of uniform vertical reflectiviy have been also used in [60] to study

the spatial uniformity of the attenuation. As noted in [59], the assumption of uniform

vertical reflectivity does not hold along the entire vertical profile since there are several

radar bright reflections due to higher variations in layer reflectivity.

As it can be seen, there are several methods for the estimation of the radar depth-

averaged attenuation rate and consequently for the ice power loss estimation. However,

most of such methods assume a linear trend of power attenuation along the entire ice

column, although it is well-known that the attenuation depends on the ice temperature

which is variable within the ice sheet. The linear approximation of the power attenuation

is the main weakness of the available techniques. This calls for novel techniques that can

take into account ice temperature variations for estimating the power losses through ice.
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Chapter 3

A System for the Automatic

Classification of Ice Subsurface

Targets in Radar Sounder Data

This Chapter1 provides the first contribution of the thesis in the context of the identifi-

cation of ice sheet subsurface targets in RS data. In particular, it presents a novel and

efficient system for the automatic classification of ice subsurface targets present in radar-

grams. The core of the system is represented by the extraction of a set of features for

target discrimination. The features are based on both the specific statistical properties of

the RS signal and the spatial distribution of the ice subsurface targets. Such features are

then given as input to an automatic classifier based on Support Vector Machine (SVM).

Experimental results obtained on two datasets acquired by airborne-mounted RSs in large

regions of Antarctica confirm the robustness and effectiveness of the proposed classification

system.

3.1 Introduction

Exhaustive investigations of the ice sheet subsurface can be carried out by analyzing the

information contained in the huge archives of RS data. In this Chapter we present an

advanced and effective system for the automatic classification of the whole backscattering

area of the ice subsurface targets visible in the RS data. In brief, from a physical point

of view, the ice subsurface is composed by layers of ice and the underlying bedrock [3].

1Part of this chapter appears in:

[61] Ilisei, A.-M. and Bruzzone, L., “A System for the Automatic Classification of Ice Sheet Subsurface Targets in

Radar Sounder Data,” in IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 6, pp. 3260-3277,

2015.

27



3.1 Introduction

In radargrams, they appear as different patterns that can be recognized by their struc-

ture, continuity, depth location and reflected wave amplitude and phase. Another pattern

present in radargrams corresponds to the measurements of pure noise. Therefore, layers,

bedrock and noise are the targets that we aim to automatically classify (a detailed de-

scription of the ice sheet subsurface targets is given in Sec. 3.2). Identifying these ice

subsurface targets represents a first fundamental step for a subsequent more complete

understanding of the ice sheets, e.g., the computation of the ice thickness, the study of

archeological changes (see Sec. 3.2 for details). The complexity and the large amount of

radargrams call for the development of automatic techniques for the identification of such

targets. However, automatic approaches to the identification of the ice sheet subsurface

targets have not been sufficiently addressed by the scientific community (see Sec. 2.1).

Also, it is worth noting that the few existing techniques only focus on either the detection

of linear features in the ice stratigraphy or the detection of the ice/bedrock interface or the

identification of the basal scattering area. Moreover, they are not designed for addressing

the problem of the heterogeneity of radargrams. The existing RS datasets are often made

up of radargrams characterized by different attributes (e.g., resolution) as they are typi-

cally acquired during several airborne campaigns with different sensors or with the same

sensor operated at different modes (e.g., bandwidth). In this context, it is important to

develop automatic systems that can accurately identify the above-mentioned targets all

together and can be used in a flexible way on different types of radargrams.

The proposed automatic classification system combines advanced image processing and

machine learning techniques with the knowledge about the physical distribution of the

targets and fundamentals on radar wave backscattering. After an initial elevation correc-

tion step applied to the radargrams for removing the effect of fluctuating aircraft altitude,

they are given as input to the system, which is made up of two main components: i) fea-

ture extraction, and ii) automatic classification based on Support Vector Machine (SVM).

The feature extraction is the core of the system and also the main novel contribution of

this work. The objective at this stage is to extract from the radargrams effective pa-

rameters for target discrimination (in this work we call such parameters ”features”, in

accordance with the pattern recognition literature; it is worth to note that a conventional

term used in the glaciological and ice radar communities for ”ice subsurface targets” is

”ice subsurface features”. However, we use the term ”ice subsurface targets” to avoid

possible confusion caused by the same word ”feature” associated with two different fun-

damental concepts). We propose a set of features that are able to model and correlate the

backscattering properties of the radar signal with the spatial properties of the subsurface

targets. The extraction of such features is done after a detailed study of the statistical

properties of the radar signal and of the spatial distribution of the ice subsurface targets.
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The second component of the system uses the extracted features to perform the automatic

classification of ice subsurface targets by using the SVM classifier. The main advantages

of the system are: i) robustness and/or adaptiveness to the heterogeneity of radargrams

as a consequence of both the features used and the learning approach employed; ii) ca-

pability to obtain objective quantitative results (i.e., exactly the same criteria are used

for all radargrams, thus enabling the extraction of targets in a consistent and comparable

way on all radargrams); and iii) computational speed and efficiency due to the possibility

of parallelizing the algorithm. For these reasons, the system is suitable for the analysis of

the ice subsurface at large scale from radargrams acquired by RS sensors with different

characteristics (e.g., central frequency, bandwidth), as it will be proven in the following.

The system has been validated on two real-world datasets [62]: i) a dataset made up

of 8 radargrams acquired in sequence off ≈ 400 line-km in Central Antarctica by the

airborne-mounted MCoRDS instrument [63], and ii) a dataset made up of 14 radargrams

acquired in parallel- and cross-track configurations over an area of about 1000 km2 in SE

Antarctica (Byrd Glacier) by MCoRDS2 [64].

The rest of this Chapter is organized as follows. A complete description of the ice

sheet subsurface targets is given in Sec. 3.2. Sec. 3.3 and Sec. 3.4 present the main

components of the automatic classification system, i.e., the feature extraction technique

and the classification method based on SVM. Experimental results obtained on the two

RS datasets acquired in Antarctica are reported in Sec. 3.5. Finally, Sec. 3.6 discusses

the capabilities and limitations of the system and proposes future developments of this

work.

3.2 Proposed system: definition of target classes in RS data and

general architecture

The classification of target backscattering behavior in RS data requires a very good under-

standing of the structural properties of the ice subsurface and radar wave propagation [65].

As briefly introduced in the previous section, studies of the ice sheets (e.g., [3], [66]) re-

veal that the ice column is made up of a sequence of ice layers, characterized by different

dielectric properties. They have been generated over millennia by snow accumulation

(on the underlying bedrock) alternated by depositions of impurities from volcanic ex-

plosions [67], and ice flow dynamics [68], therefore have an isochronous character [57].

In radargrams they appear as spatially coherent surfaces that generate quasilinear pat-

terns. The brightness of such patterns (which is related to the amplitude of the received

wave) decreases with depth due to the attenuation through the subsurface [65]. Another

physical component of the ice sheet subsurface, which is located below the layers, is the
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bedrock. In radargrams, the bedrock can be identified as the deepest scattering area.

Note that, contrary to the real scenario in which the bedrock interface is expected to be

contiguous, the bedrock scattering area visible in radargrams can be composed of disjunct

regions, i.e., on some traces of the radargram the bedrock returns can be completely ab-

sent. The discontinuities are likely to be due to the loss of transmitted power through the

ice column, to the wave total reflection caused by the supraglacial or englacial water [69],

or to acquisition issues (e.g., clutter returns that can completely mask the return from

nadir [3]). Therefore, the quality of the bedrock scattering area mainly depends on the

type of material, the topography, the conditions at the basal interface and the process-

ing applied to the radar data. The bedrock completely attenuates the transmitted wave.

This implies that at a depth larger than that of the bedrock the radar receiver measures

only noise. This is visible in the bottom part of the radargrams as a homogeneous region

characterized by the absence of relevant reflections. Another noise-like pattern, visible for

a few hundred of meters above the bedrock is called echo-free zone (EFZ). The EFZ has

been firstly identified and studied in [70]. Then, papers like [66], [71], [30] have provided

deeper insight and recently some authors have confirmed the presence of the EFZ [72].

According to such studies, the EFZ is often seen away from the ice domes and ice divides,

but in extensive areas of the ice sheets. Note that the EFZ is not an ice subsurface phys-

ical region (like the layers or bedrock), but rather a consequence of the radar acquisition

process. In [30], it is suggested that at the EFZ corresponding depth the disturbances

introduced by the ice flow caused an increase of the layer roughness. Such large scale

roughness reduces the coherency of the reflecting surfaces, thus generating the echo-free

zone (EFZ). Besides the layers, bedrock and noise regions, which are typically shown in

radargrams (see Fig. 3.0(a)), near-bed reflectors have been recently identified as freeze-on

ice [72]. These reflectors are found primarily along the high ridges at the valley heads and

along the steep valley walls surrounding subglacial mountain peaks. Furthermore, when

present, deep specular and strong reflections are associated with subglacial lakes [73].

Therefore, the freeze-on ice and the liquid water constitute other two subsurface targets

(see Fig. 3.0(a)), which should be considered in the modeling of the subsurface. However,

since by visual interpretation it is difficult to assess with high accuracy the freeze-on re-

gions (if present) and given that in the datasets at hand no liquid water returns could be

identified, in the following we do not consider such regions as target classes for automatic

classification.

The importance of identifying the ice sheet subsurface targets has been often high-

lighted in the literature. In particular, the results obtained from the presented algorithm

can be used for instance in studies that can further focus on the interpretation of the

detected layered area only, by applying other techniques for the identification of individ-
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ual layers. Regarding the EFZ, in [30] the authors state that identifying the EFZ onset

is fundamental since it indicates changing archeology that shall be accounted for in the

modeling of ice sheet dynamics (similar to the identification of the depth of the Holocene

in Greenland [20]). Also, one can analyze the shape of the EFZ for a better understanding

of its formation. Finally, the identification of the whole bedrock backscattering area can

be used in geological studies for assesing the type of material the bedrock is made of [74]

or to understand the reasons for which the bedrock is thicker or thinner or it completely

disappears at some coordinates. Moreover, the detection of the first return of the bedrock

(i.e., the basal interface) helps estimating the topography of the bedrock, computing the

thickness of the ice column and inferring information about the basal boundary condi-

tions and processes (e.g., presence of melted ice at the interface). The last return of the

bedrock marks the depth below which the losses through the subsurface (ice and bedrock)

have completely attenuated the transmitted power. Thus, it can be used to derive the

absorption properties of the bedrock.

In this work we aim to develop a system for the automatic classification of layers,

bedrock and noise (which includes also the EFZ region). An example of backscattering

from these classes is given in Fig. 3.0(b). In order to perform the classification, the radar-

grams are initially altitude corrected for removing the effect of the aircraft fluctuations.

Then they are given in input to the classification system, which consists of 2 main com-

ponents, i.e., i) feature extraction for target description, and ii) automatic classification

based on SVM. As it will be explained later, the system requires a mimimum amount of

human interaction in the training phase, in which the values of the few system parameters

should be tuned to both the characteristics of the data and the scale of the subsurface

targets. However, this not a critical problem, since such parameters are directly related

to properties of the targets and can be easily derived. On the other hand, after the

training, the system is completely automatic. Moreover, it is important to mention the

flexibility and learning capabilities of the system, e.g., depending on the radar frequency

and resolution of the radargrams, different target classes with associated patterns can be

identified (e.g., high resolution data allows the identification of crevasses). Therefore, one

first needs to set the number of classes, appropriately model the properties of the classes

in the feature extraction phase and then train the classifier to automatically recognize

such classes.

3.3 Proposed system: feature extraction

The possibility to measure similar values of reflected power from different targets (e.g.,

returns from deep layers and bedrock can have the same power, see Fig. 3.0(b)) and the
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Figure 3.1: (a) Qualitative representation of ice sheet target classes typically visible in radargrams. In

the presented work, only the target classes highlighted in bold, i.e., layers, bedrock, noise, are considered,

whereas those highlighted in italics, i.e., water, freeze-on ice, are intentionally omitted. For details see

Sec. 3.2. (b) Example of backscattering from the layers, bedrock and noise target classes.

32



Chapter 3 A System for the Automatic Classification of Ice Subsurface Targets in Radar

Sounder Data

noisy character of the radar images make the extraction of significant features for auto-

matic classification a very challenging task. Here we address this problem by presenting

a set of features that we chose after a detailed analysis of the amplitude fluctuation of

the radar signal and of the spatial distribution of the investigated targets. For ensuring

a logical flow, we structure this section in three parts. First, in Sec. 3.3.1 we present the

preliminary analysis that we performed on the statistical properties of the radar signal.

Then, in Sec. 3.3.2 we analyze the spatial distribution of the subsurface targets. Finally,

in Sec. 3.3.3 we describe in detail the procedure for extracting features that model both

the statistical and the spatial properties of the radar signal and of the subsurface targets.

3.3.1 Analysis of the statistical properties of the radar signal

Similarly to [33], we first performed a statistical analysis of the distribution of the radar

signal. We analyzed the distribution of the radar signal by empirically fitting several

probability density functions (pdf), i.e., Rayleigh (Rpdf ), Nakagami (Npdf ), K (Kpdf ),

Gamma (Gpdf ), to the histogram of samples drawn from regions corresponding to the

investigated target classes. The abovementioned pdfs are parametric models, i.e., they

can be described by using a finite number of parameters θ = (θ1, θ2, ...). Tab. 3.1 reports

the parameters describing each of these theoretical distributions. The choice of these pdfs

is motivated by their expected capability to model the amplitude fluctuations of the radar

signal backscattered by different targets and/or processed with different algorithms, as it

has been proven in works like [11], [33]. As such, the Rayleigh pdf (Rpdf ) typically models

the amplitude oscillation of a zero-mean additive Gaussian noise (AWGN) (e.g., this is

the case of thermal noise measured by the radar in the regions with no backscattering).

The Nakagami pdf (Npdf ) generally models amplitude radar data that have been priorly

subjected to multilooking processing (for speckle reduction). The K pdf (Kpdf ) generally

guarantees good performances for fitting data from regions with bunched scatterers (e.g.,

this is the case of layers and bedrock returns). The Gamma pdf (Gpdf ) is generally

employed in the intensity domain (I), for fitting data whose distribution in the amplitude

domain (A) follows a Nakagami pdf (we remind that I ∝ A2). Moreover, due to its

flexibility, the Gamma pdf is likely to model data whose original distribution has been

altered by possible processing. The analytical formulation of these pdfs along with the

procedure for estimating their parameters are reported in Appendix A 3.7 (for further

details refer to [33], [11], [75]).

Among all the investigated distributions, the best fitting model for each class can be

chosen as the one that minimizes the Kullback-Leibler (KL) distance [76] between two
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distributions H and M, defined according to:

KL(H,M) =
∑

Ai

H(Ai) log
H(Ai)

M(Ai)
, (3.1)

where H is the real histogram of the amplitude samples and M is one of the investigated

theoretical models, i.e., M = {Rpdf , Npdf , Kpdf , Gpdf}.
Thus, given a specific RS instrument and the related data, we can select the distribution

that best fits the target classes as the model that empirically minimizes (3.1).

Table 3.1: Theoretical models and their parameters.

Distribution Parameters Parameter name

Rpdf θR = µA2 mean power

Npdf θG = (µA2 , βN ) mean power, shape

Kpdf θK = (µA2 , βN ) mean power, shape

Gpdf θG = (αG, βG) scale, shape

3.3.2 Analysis of the properties of the subsurface targets

In order to properly design the proposed system, we also performed a qualitative analysis

of the ice subsurface representation in radargrams (see Fig. 3.1). This allows obtaining

an approximate knowledge of the location and spatial distribution of the target classes,

which can be then used in the feature extraction for classification. From this analysis we

derived that:

i) The expected order in the range direction of the ice sheet subsurface target classes

visible in radargrams is: layers, noise (EFZ, if present), bedrock and noise. This

statement has general validity, as it could be derived from Sec. 3.2.

ii) The ice subsurface targets visible in radargrams are mostly extended in the along-

track direction, due to the isochronous character of the ice stratigraphy and the

continuous shape of the bedrock.

iii) The ice subsurface targets shown in radargrams present significant variation of

backscattering along the range direction. These variations are caused by reflections

from the layered structure of the ice column and the basal interface.

Before going further, it is important to notice that the radargrams can be partitioned in

two main regions, the subsurface region Rss that contains all the target classes of interest
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(i.e., layers, bedrock, noise) and a region Rnoise at the bottom of the radargrams that

contains exclusively noise measurements. In order to speed-up the processing, we will

focus the following analysis on the Rss region.

3.3.3 Features that model the statistical properties of the radar signal and

the geometrical distribution of the subsurface targets

The analysis on the statistical distribution of the amplitude radar data and the location

and spatial distribution of ice subsurface targets that has been carried out previously

enabled the identification of the features for classification described below.

1. Parameters of the best fitting model. Once the best fitting model for the statistical

characterization of the radar signal has been identified (see Appendix A 3.7 and

(3.1)), we use the values of its parameters θbest as features. In other words, if the

best model is the Kpdf , then θbest = θK = (µA2 , βK), or if the best model is Gpdf ,

then θbest = θG = (αG, βG), and so on. In order to cover the whole radargram

space, for computing these features we employ a sliding window approach, as in

the following. We use a rectangular window inside which we estimate the values of

the desired parameters (by using the appropriate eq. among (3.9), (3.11), (3.13),

(3.15)). The window is moved over the Rss region with a step of one pixel both in

the along-track and range directions. In order to filter out some noisy contributions,

the final value of these features at each step of the sliding window is computed by

averaging the estimated values on overlapping windows. It is worth mentioning that,

from a statistical and image processing point of view, the size of the rectangular

window (Wz × Wx (range × along-track)) should be sufficiently small for avoiding

filtering the information at the borders of the scattering classes, while the number

of samples inside the rectangular window should be sufficiently large for a good

estimation of the parameters of the distributions. The resolution of the radargram,

the spatial distribution and possibly the knowledge of the scale of the subsurface

targets should also be considered when choosing the size of the sliding window. From

the qualitative analysis performed previously regarding the spatial distribution of the

subsurface targets, i.e., they are elongated in the alogn-track direction and present

higher backscattering variation in the range direction, we can derive that an initial

constraint on the choice of the sliding window is Wx > Wz. This constraint allows for

a more consistent averaging when applying the sliding window approach, as it ensures

a high level of affinity among the samples within the window. Such observation on

the choice of the values for Wz and Wx hold for all the features computed on a sliding

window basis.
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2. Texture. As pointed out in Sec. 3.2, a qualitative analysis of the radargrams indicates

that different target classes present distinctive patterns. We convert such qualitative

information into a quantitative measure, by computing a texture feature. Among the

many texture measures used in radar image processing (e.g., [77]), we consider the

entropy Ent, which is a simple but informative measure. The entropy is a statistical

measure of the uncertainty of a random variable, i.e., the more uncertain a random

variable, the higher its entropy value. Accordingly, when computing the entropy of

the samples of the radargram that belong to the layers and bedrock classes, it is

expected to obtain a high value. This is due to the fact that the amplitudes of the

backscattered waves in these regions can have very large dynamic range since they

also depend on the structure and dielectric properties of the investigated targets

which can vary significantly within the ice subsurface. On the other hand, the noise

regions are characterized by relatively similar values (resulting in a less textured por-

tion in the radargram), therefore their entropy is relatively lower. Thus, Ent helps in

differentiating the subsurface targets on the basis of specific patterns that are char-

acterized by the probability of appearance ℘(Ci) computed in a local neighborhood

Wz ×Wx, according to the sliding window approach described previously, i.e.,

Ent = −
∑

Ci∈Wz×Wx

℘(Ci) log2 ℘(Ci), (3.2)

where Ci is a quantized version of the log-amplitude data, i.e., Ci = Q {10 ∗ log10(Ai)}
where Q {·} is the uniform quantization operation on nq levels. Note that the quan-

tization is a common operation used to reduce the very large dynamic range of the

radar data to only nq distinct values (e.g., [78]).

3. Kullback-Leibler distance between the distribution of the samples of the target classes

and of the noise. Using the same sliding window approach and the output of the

statistical analysis, we generate a feature that statistically models the distance be-

tween the measured bakscattering and the background noise. The literature suggests

that a potential such statistical distance measure applicable to RS data is the KL

distance [33]. Accordingly, we computed the KL distance of the radargram KLRss
,

by applying (3.1) to the Rss region. Here, H is the histogram of the amplitude sam-

ples within the sliding window and M is the noise model fitted on the samples of

the window. The values of the noise parameters have been estimated (as explained

in Appendix 3.7) on the Rnoise region. Note that the KLRss
is a smoothed version

of the input radargram, in which the most scatterable subsurface target are high-

lighted. Therefore, KLRss
represents a good measure to discriminate between the

samples belonging to high backscattering areas (i.e., layers and bedrock) and those

of noise.
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4. Range position of the subsurface targets. Intuitively, useful information that could

help in discriminating the different types of backscattering classes is the distance

Distz of the subsurface targets with respect to the air/ice interface surf , see (3.3).

surf is detected automatically for each trace of the radargram as the position of the

maximum return along the trace. This is a fast and simple approach that has been

employed in other works for the analysis of airborne acquisitions (e.g., [25]).

Distz(i, t) = [i− surf(t)], ∀i > surf(t), ∀t. (3.3)

5. Relational feature. A less intuitive feature relates the position of the samples in the

range direction with their backscattering strength. For this reason we call it relational

feature Rel. Its objective is mainly to enable the separation between the returns of

the classes with high backscattering, i.e., layers and bedrock. To this aim, a first

requirement is to isolate in the radargram these high backscattering classes. This is

achieved by exploiting the property of the statistical KLRss
distance measure, i.e.,

the fact that it highlights the most scatterable targets. In particular, we threshold

the KLRss
as follows:

KLbin(i, t) =







1 if KLRss
(i, t) ≥ thrKL · µKLRnoise

,

0 otherwise,

∀i, t,

(3.4)

where KLbin is the resultant thresholded (binary) KLRss
measure, µKLRnoise

is the

mean of the samples of the KLRnoise
(where KLRnoise

has been generated by applying

(3.1) to Rnoise) and thrKL is a user defined threshold that tunes the degree of similar-

ity between the samples of the KLRnoise
and those of the KLRss

measures. Note that,

since the range of possible values of the threshold is thrKL > 0, choosing an optimal

value for the threshold requires a minimum amount of human interaction. In order

to filter out only the regions of the KLRss
corresponding to the class noise in the

amplitude domain, a low value of the thrKL is preferable. Otherwise, by choosing

a too large value, the risk is to filter also high backscattering contributions. After

the thresholding operation, the discrimination between samples belonging to differ-

ent backscattering classes is achieved by taking into account their expected order in

the range direction (see Sec. 3.3.2). In particular, Rel is generated in a columnwise

manner, starting from surf (with the initial condition Rel[surf(t), t] = 1, ∀t), and
computing a constrained cumulative sum while moving downwards over the KLbin

map. The constraint is to sum 0 instead of 1 at the positions where KLbin = 1.

Qualitatively, by looking downwards in the range direction, each trace of the Rel
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feature has monotonically increasing values, with a behavior depending on the mea-

sured backscattering contribution (see Fig. 3.2, which represents the vertical profile

of a generic trace t′ of the Rel feature).

(a)

(b)

Figure 3.2: (a) Qualitative example of trace t′ for the KLRss
and KLbin measures; and (b) Corresponding

relational feature Rel.

In the presented system, all the above-mentioned features are given as input to the clas-

sification algorithm. These features are the amplitude of the backscattering A, the pa-

rameters of the best fitting model θbest, the entropy Ent, the Kullback-Leibler distance

KLRss
, the range position of the subsurface targets Distz and the relational feature Rel.

Therefore, the resulting feature vector v can be defined as:

v = [A, θbest,KLRss
, Ent,Distz, Rel]. (3.5)

3.4 Proposed system: automatic classification with Support Vec-

tor Machine

The feature vector is given as input to a supervised automatic classifier. Based on a

set of labeled training samples, the aim of the automatic classifier is to build a model

(characterized by a set of parameters) which can accurately predict the labels for unknown

(test) target samples. There are several automatic classifiers presented in the literature

among which we chose the SVM [79]. The SVM is currently the state of the art in the
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automatic classification of remotely sensed data [80]. Our choice is also due to the fact

that the SVM has many properties very useful for solving our classification problem.

Among these properties, we mention: i) very good generalization capability (it is able to

avoid overfitting the model on the training samples); ii) capability to solve non-linearly

separable problems in the original feature space; and iii) sparseness and uniqueness of the

solution of the learning problem.

The SVM is a binary classifier. However, multiclass problems can also be solved by

employing architectures made up of different binary SVMs (e.g., one against one (OAO),

one against all (OAA)) [81], [82]. Here, the basic principle of the binary SVM is only

briefly summarized. For solving non-linearly separable problems in the original feature

space, the SVM uses a mapping function to project the samples into a higher dimen-

sional feature space in which they are separable by hyperplanes. The mapping is done

implicitly by a kernel function (e.g., linear, polynomial, gaussian) and the classification is

performed after optimizing a convex objective function during the training phase of the

SVM. The convexity of the objective function guarantees a unique solution, which is the

optimal decision boundary between classes. Such decision boundary is the hyperplane in

the transformed kernel space that maximizes the geometric margin between the training

samples of the two classes taking into account a regularization term. There are several

studies that treat both theoretical and practical aspects related to the use of the SVM

(e.g., [80], [83]). As this kind of analysis is out of the scope of this work, we here provide

only the analytical formulation of the objective function to be optimized in the learning

process of the SVM and the corresponding decision boundary that have been used by the

presented system. The dual formulation used for solving the constrained optimization

problem associated with the training of the SVM is given by:






max£
∑nΨ

i=1 £i − 1
2

∑nΨ

i=1

∑nΨ

j=1 κiκj£i£jK(vi,vj)

subject to:
∑nΨ

i=1 κi£i = 0, 0 ≤ £i ≤ ς, 1 ≤ i ≤ nΨ,
(3.6)

where nΨ is the number of training samples characterized by the pairs (vi, κi). vi is the

feature vector (see (3.5)) and κi is the label associated to the sample i. £i are the Lagrange

multipliers involved in the optimization process and ς, also called error penalization term,

represents the cost associated to a wrong classification. ς and the parameters of the kernel

function K (vi,vj) constitute the set of SVM model parameters that have to be optimized

during the learning process. After the optimization, the final decision boundary (solution)

D of the SVM is given by the following equation:

D(v) =
∑

i∈SV

κi£iK(vi,v) + b, (3.7)

where b is the bias term, which measures the distance of the hyperplane from the origin.
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Figure 3.3: Location and flightlines for the acquisition of the MCoRDS and MCoRDS2 radargrams

investigated in this work.

Note that the sparseness of the solution is explained by the fact that only a subset of

samples i ∈ SV associated to non-zero Lagrange multipliers, i.e., the support vectors, are

necessary in the definition of the separation hyperplane.

3.5 Experimental results

We applied the presented algorithm to two datasets acquired by the MultiCoherent Radar

Depth Sounder instrument (MCoRDS), owned by the Center of Remote Sensing of Ice

Sheets (CReSIS) [62]. The datasets where acquired by the instrument operated with

different bandwidths, i.e., Bw = 9.5MHz and Bw = 30MHz, in different regions of Antarc-

tica. In order to distinguish the data, when operated with Bw = 9.5MHz, the instrument

and the dataset are called MCoRDS, while when operated with Bw = 30MHz, they are

called MCoRDS2. The approximate positions and the paths followed by the aircrafts

carrying the instruments, MCoRDS and MCoRDS2, are shown in Fig. 3.3, in green and

red, respectively. In the following we present: i) the description of the two datasets,

ii) the results of the statistical analysis of the radar signal, iii) the experimental setup

employed in the training phase of the SVM classifier, iv) the classification results, and

v) the computational efficiency obtained by applying the presented technique to the two

datasets.

3.5.1 Dataset description

The first considered dataset (MCoRDS) was acquired during the sounding campaign con-

ducted in Central Antarctica in November 2010 [63]. It is made up of 8 radargrams

acquired in sequence, i.e., from (-86.00◦N, -15.67◦E) to (-86.02◦N, 29.45◦E), over a dis-
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tance of ≈ 400 line-km (which corresponds to nT = 27350 traces). The instrument was

flown on a jet aircraft (DC-8) at high altitude (H ≈ 7000m). The central frequency of

the instrument and the bandwidth are fc = 193.5MHz and Bw = 9.5MHz, respectively.

The second dataset (MCoRDS2) was acquired at fc = 193.5MHz with Bw = 30MHz.

The instrument was flown on a TO aircraft at a relatively low altitude (H ≈ 500m)

in parallel and cross-track configurations over an area of around 1000km2, i.e., within

(-80.93◦N, 145.72◦E) and (-80.40◦N, 148.10◦E), over the Byrd Glacier in Antarctica, in

December 2011 [64]. For obtaining best quality dynamic range, the MCoRDS2 dataset

has been generated by multiplexing in time two types of data: i) signals collected from

the shallow subsurface, acquired by using a waveform playlist (wpl) coupled with low gain

channel (LGC) and a pulse duration τps = 1µs, and ii) signals collected from the deep

subsurface, acquired by using a wpl coupled with high gain channel (HGC) and pulse

duration τpd = 10µs [84], [14]. However, this combination introduces a certain amount of

heterogeneity between the radiometric quality of the data acquired in shallow and deep

modes, which is difficult to handle at data processing level. Considering this and the fact

that the low gain channel acquires data exclusively from the first km within the subsur-

face (i.e., class layers), and given that our purpose is the classification of ice subsurface

targets, in our analysis we investigated data acquired only with the high gain channel,

which contains returns belonging to all target classes, i.e., layers, bedrock, noise.

Regarding the quality of data, several preprocessing techniques have been applied in

order to obtain improved resolution. In particular, pulse compression and windowing

algorithms (e.g., 20% Tuckey window in the time domain, with widening factor kt = 1.53)

have been used to improve the range resolution while suppressing the sidelobe level. SAR

processing has been applied to improve the along-track resolution and for clutter removal,

and multilooking processing (11 looks in the along-track direction and 1 look in the range

direction) for despeckling. Also, a minimum variance distortionless response (MVDR) [1]

algorithm has been applied to data to suppress clutter contributions coming from the

cross-track direction. It is worth noting that all these processing techniques affect the

statistical models to be used for modeling the fluctuation of the investigated amplitude

radar signal (see Sec. 3.3.1 and Appendix A 3.7).

The parameters of the acquisition systems and the main characteristics of the data are

reported in Tab. 3.2. Fig. 3.4 shows the subsurface region Rss of the investigated datasets.

3.5.2 Results of the statistical analysis of the radar signal

In the following, the results of the statistical analysis performed by fitting the Rayleigh,

Nakagami, K and Gamma pdfs to the amplitude radar signal are presented. Fig. 3.5 shows
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(a)

(b)

Figure 3.4: Datasets investigated. (a) MCoRDS [nS = 410 × nT = 27350], and (b) MCoRDS2 [nS =

1200×nT = 17093]. Values are in dB. The figures are stretched (color adjusted) and vertically exagerated

in order to highlight the regions of interest of the subsurface. The upper black region corresponds to the

free space above the surface return surf (for the MCoRDS2 dataset surf is computed using the radargram

acquired by the LGC data). The white band in the shallow subsurface (first 285 samples ≃ 798 m below

surf ) of the MCoRDS2 dataset corresponds to the data acquired by the LGC, which is not investigated

in our analysis.
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Table 3.2: Parameters and characteristics of the investigated datasets.

Parameter MCoRDS MCoRDS2

Location Central Antarctica Byrd Glacier Antarctica

Platform and altitude (H) DC-8 @ H ≈ 7000m TO @ H ≈ 500m

Number of radargrams 8 14

Acquisition strategy sequence parallel and cross-track

Distance / Area 400 line-km 1000km2

Central frequency (fc) 193.9MHz 193.9MHz

Bandwidth (Bw) 9.5MHz 30MHz

Transmitted power (Ptx) 550W 1050W

Acquisition 14 bit ADC @ 111MHz 14 bit ADC @ 111MHz

Dynamic range wpl wpl with LGC and HGC

Range resolution in ice (δRS
z ) 13.6m 4.3m

Along-track resolution (δRS
x ) 25m 25m

Total number of samples (nS) 410 1200

Total number of traces (nT ) 27350 17093

Table 3.3: Number of picked samples per class (corresponding to the regions highlighted in Fig. 3.5) used

in the statistical analysis.

Number of picked samples

Target class MCoRDS MCoRDS2

layers 38351 43979

EFZ 12257 16314

bedrock 9321 22710

noise 21381 32754

the regions that have been selected for the analysis from each target class, from a portion

of the (a) MCoRDS, and (b) MCoRDS2 datasets. Note that in the figures the values are

reported in dB (for visibility), while the statistical analysis has been performed on the

normalized amplitude data. Also, note that we considered the EFZ class individually (i.e.,

not merged with the noise class). This class has been intentionally selected separately,

since another objective in these experiments is to verify also from a statistical point of

view the hypothesis on the noisy character of the EFZ (see Sec. 3.2). In order to ensure

that the results of the statistical analysis are sufficiently representative, in the fitting

process for both datasets we picked a very large number of samples per class (see Tab.

3.3). The fitting performances, which have been evaluated in terms of Kullback-Leibler

distance, [76], are reported in Tab. 3.4, in which the best fitting results for each class

(which have been derived as defined in Sec. 3.3.1) are highlighted in bold. Such results

point out that in almost all the cases, the best fitting model is the Gamma pdf. The
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(a) (b)

Figure 3.5: Samples picked manually from each target class on a portion of radargram from (a) the

MCoRDS dataset, and (b) the MCoRDS2 dataset. In the figures, each color corresponds to a different

target class, i.e., blue - layers, green - EFZ, red - bedrock, yellow - noise.

exceptions are for the classes layers and bedrock of the MCoRDS dataset, where the K

pdf fits slightly better than the Gamma pdf (difference at the third decimal). However,

given the overall very good performances of the Gamma pdf (see also Fig. 3.6) and

the fast computation time in estimating its parameters (i.e., two analytical formulas,

see (3.15), instead of the iterative approach employed for the K pdf, see (3.13)), in the

following, the Gamma pdf is considered as the most suitable fitting model for all classes

for both datasets. Note that this is in disagreement with theoretical grounds in radar

signal distribution [11] and with the results obtained from applying a similar approach to

other RS datasets [33]. For instance, in [11] it is analytically proven that in the regions of

no backscattering, e.g., noise, the histogram of samples follows a Rayleigh distribution,

which is confirmed on a subset of SHARAD radargrams in [33]. However, it is important

to recall that our results have been obtained by applying the statistical analysis to data

that have been preprocessed (for clutter and sidelobe reduction) and the preprocessing

operations changed the data properties with respect to the datasets investigated in other

studies. The qualitative results shown in Fig. 3.6 indicate that this preprocessing has

changed the original Rayleigh distribution into a distribution that can be better modeled

by the Gamma pdf.

It is also worth to analyze the results reported qualitatively in Fig. 3.7, which shows (a)

the summary of the fitted Gamma models to all target classes, and (b) the fitted Gamma

pdfs to the noise and EFZ classes. These results refer to the MCoRDS2 dataset, but

similar results have been obtained on the MCoRDS dataset. The plot in Fig. 3.7(a) indi-

cates the large difference between the distributions of the EFZ/noise and layers/bedrock

classes, and the very large dynamic range characterizing the radar signal. Fig. 3.7(b)

points out the similarity of the two Gamma pdfs modeling the EFZ and noise samples.
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Table 3.4: Fitting performances in terms of Kullback-Leibler distance (dimensionless) of the Rayleigh,

Nakagami, K and Gamma distributions to the sample amplitude data for layers, EFZ, bedrock and noise

classes. The best results (smallest values on each column for each dataset) are highlighted in bold.

Target class

Dataset Distribution layers EFZ bedrock noise

MCoRDS

Rayleigh 0.7097 0.0809 0.6117 0.0815

Nakagami 0.1395 0.0138 0.3257 0.0127

K 0.0212 0.0974 0.1442 0.0990

Gamma 0.0263 0.0025 0.1494 0.0015

MCoRDS2

Rayleigh 0.0840 0.1835 0.1433 0.2691

Nakagami 0.0844 0.0158 0.1357 0.0084

K 0.0062 0.2095 0.0796 0.2995

Gamma 0.0029 0.0017 0.0578 0.0007

This similarity confirms also from a statistical point of view the validity of the hypothesis

that in the EFZ the reflections are buried in thermal noise, therefore very closely matching

the noise distribution. For this reason, in the automatic classification of ice subsurface

targets, the EFZ and noise classes are merged within a single no backscattering target

class, from now on called noise.

3.5.3 Experimental setup

From the considerations made above on the type of data and the scale of the subsurface

features, the values of the system parameters selected in our experiments are: Wx = 14

and Wz = 7 samples, Nq = 256 levels and thrKL = 10. According to our previous

analysis, the Gamma pdf is the best fitting model for all the classes. We therefore extract

as features its parameters, i.e., θbest = θG = (αG, βG), as explained in Sec. 3.3.3. These

are shown along side the amplitude radargrams (which are converted in dB for visibility),

the KLRss
maps, and Ent in Fig. 3.8, for a portion of the MCoRDS dataset at left, and

MCoRDS2 dataset at right.

The set of labeled samples for training and testing the SVM was created by defining

a reference map of the subsurface. This was done by manually selecting, according to

an accurate visual analysis of the radargrams, the regions corresponding to the various

target classes. A subset of the reference samples along with the corresponding features

are given in input to the SVM classifier for training (we recall that a generic sample v is

characterized by seven features, i.e., v = [A,αG, βG,KLRss
, Ent,Distz, Rel]). The subset

of reference samples is chosen in order to take into account the variability of the subsurface

targets in the along-track direction (e.g., at some locations the bedrock is deeper than in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6: Empirical and estimated (with the maximum likelihood technique) distributions for each

target class for the (left) MCoRDS, and (right) MCoRDS2 datasets. The color of the (empirical) his-

tograms represent each target class, i.e., blue - layers, green - EFZ, red - bedrock, yellow - noise. (a)

layers MCoRDS, (b) layers MCoRDS2, (c) EFZ MCoRDS, (d) EFZ MCoRDS2, (e) bedrock MCoRDS,

(f) bedrock MCoRDS2, (g) noise MCoRDS, (h) noise MCoRDS2.
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(a) (b)

Figure 3.7: Fitted Gamma distributions for (a) all target classes, and (b) the EFZ and noise classes.

Results are shown for the MCoRDS2 dataset.

others). We split the dataset (and the reference map) in N tiles vertical tiles, from which

we collect randomly 1% of the samples belonging to each class, to be used in the learning

phase. Then, the samples collected from N tiles
Ψ = 2N tiles/3 tiles are used in a training

k − fold cross-validation algorithm for selecting the SVM model parameters. In our

experiments, we used a Gaussian radial basis function (RBF) kernel for the SVM. This

choice is motivated by the fact that the RBF kernel is typically more flexible than the

linear kernel and it usually outperforms the polynomial kernel in convergence time [83].

Therefore, the SVM model parameters are the penalty error term ς and the gamma

parameter of the RBF kernel, denoted with ϑ. ς and ϑ are tested by performing a

grid-search model selection. ϑ is tested between [10−3..106] with a logarithmic step size,

and ϑ is tested with 10 values in logarithmic scale, with central value ϑc = 1/(2 ∗ ̺2),

where ̺ is the average distance between each pair of classes. Then, for testing the SVM

on unknown samples, we chose the values ςΩ and ϑΩ that provided in average (on the

kf folds) the highest classification accuracy. The test samples are collected from the

remaining N tiles
Ω = N tiles − N tiles

Ψ tiles. N tiles is chosen depending on the number of

traces nT available in the considerend dataset, i.e., N tiles = 99 for the MCoRDS (with

nT = 27350) and N tiles = 66 for the MCoRDS2 dataset (with nT = 17093). This implies

N tiles
Ψ = 66 and N tiles

Ω = 33 tiles for the MCoRDS dataset, N tiles
Ψ = 44 and N tiles

Ω = 22

tiles for the MCoRDS2 dataset, and a number of traces per tile ntile
T ∈ [250..300]. The

number of folds is kf = 11. Tab. 3.5 reports the number of samples per class used for the

cross-validation and included in the test sets for the MCoRDS and MCoRDS2 datasets.

3.5.4 Classification results

In the following, the analysis of the training (k-fold cross-validation) and test results is

given. Tab. 3.6 reports the average error matrix [85] computed after applying the cross-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8: Examples of extracted features. The features at the left side of the figure are (a) the

radargram, (c) the shape parameter of the Gamma distribution, (e) the Entropy, and (g) the KLRss

measure on a portion of radargram (≈ 30 line-km) of the MCoRDS dataset. The features at the right

side are (b) the radargram, (d) the shape parameter of the Gamma distribution, (f) the Entropy, and (h)

the KLRss
measure on a portion of radargram (≈ 60 line-km) of the MCoRDS2 dataset. The radargrams

are in dB, stretched and vertically exagerated to improve visibility.
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Table 3.5: Number of reference samples per class used in the cross-validation and test sets.

Number of reference samples

MCoRDS MCoRDS2

Target class cross-validation test cross-validation test

layers 37685 18930 44267 22290

bedrock 18398 7980 13200 6600

noise 23596 12003 39309 19808

Total nΨ=79679 nΩ=38913 nΨ=96776 nΩ=48698

validation algorithm to kf = 11 folds on the MCoRDS dataset. The average accuracy

(AA), the corresponding standard deviation (STDEV), the average user accuracy (AUA)

and the average producer accuracy (APA) for each class are also reported. The average

accuracy values, i.e., AA, AUA and APA, are computed as the mean values of the overall

accuracy (OA), user accuracy (UA) and producer accuracy (PA), respectively, calculated

on each validation fold. The OA quantifies the overall goodness of the classifier. The UAs

represent the percentage of samples correctly labeled in the classification map for each

class. The PAs provide for a given class in the reference map, the percentage of samples

correctly labeled in the classification map. Tab. 3.7 shows the same information for the

MCoRDS2 dataset. The cross-validation algorithm provides ςΩ = 106 and ϑΩ = 2.08 for

the MCoRDS dataset, and ςΩ = 103 and ϑΩ = 8.88 for the MCoRDS2 dataset. The error

matrices on the test sets along with the correspondent UA, PA and OA are reported in

Tab. 3.8 and in Tab. 3.9, for MCoRDS and for MCoRDS2 dataset, respectively.

By analyzing the tables, one can see that the low values of the standard deviation (i.e.,

0.41 for MCoRDS and 0.73 for MCoRDS2) confirm the robustness of the presented system

to the random choice of the samples used in the kf folds of the cross-validation algorithm.

By comparing Tab. 3.6 and Tab. 3.8, one can see that, for the MCoRDS dataset, the

AUA and the UA, and the APA and PA, respectively, have similar values. This means

that the overall variability of the samples has been well captured in the training phase

and proves that the selected SVM model for testing the system capabilities is not biased.

The same observations hold for the MCoRDS2 dataset (see Tab. 3.7 and Tab. 3.9).

Moreover, we obtained values of OA > 97% (i.e., 99.09% for MCoRDS and 97.93% for

MCoRDS2), which are very satisfactory, especially when considering the type and scale of

the investigated targets, the noisy character of the data, and the fact that after training,

the system is completely automatic. The effectiveness of the system is also proven by the

high values of UA and PA, obtained on both datasets. From the tables one can see that

the few errors are mainly due to a wrong classification of some returns at the interfaces

between the classes (e.g., 193 out of 7980 bedrock samples and 70 out of 8930 layers

samples are labeled as noise samples for the MCoRDS dataset, whereas for the MCoRDS2
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Table 3.6: Average (on kf = 11) error matrix of the samples of the cross-validation folds (MCoRDS

dataset).

Predicted samples

layers bedrock noise Total APA(%)

R
e
fe
r
e
n
c
e

s
a
m
p
le
s layers 3417 0 8 3425 99.75

bedrock 2 1645 25 1672 98.37

noise 7 8 2129 2144 99.27

Total 3426 1653 2162 nΨ/kf=7241

AUA (%) 99.75 99.54 98.54
AA=99.28%

STDEV=0.41

dataset 219 and 109 noise samples out of 19808 are labeled as layers and bedrock samples,

respectively). Such errors are mainly caused by the sliding window approach. Due to its

intrinsic low pass filtering effect, in the layers and bedrock regions, it tends to slightly

overestimate the areas with high backscattering and to underestimate the areas with low

backscattering (where the signal amplitude is close to the measured background noise).

These effects can be seen in the final classification maps in Fig. 3.9 for the MCoRDS

dataset and in Fig. 3.10 for the MCoRDS2 dataset. For a better understanding, they

are also highlighted in Fig. 3.11(d). On the other hand, it is important to note that

in the regions characterized by deep and strongly scattering layers followed in range by

the absence of bedrock returns (see an example of such radargram in Fig. 3.11(a)),

the classifier is able to perform an accurate classification (see Fig. 3.11(b)). In such

cases, the classifier mostly relies on the relational feature, which, by integrating both the

knowledge of the radar signal statistical properties and the position in the range direction

of the subsurface targets, is generally able to correctly discriminate the samples. The

importance and effectiveness of the relational feature in our classification problem has

been confirmed by the unsatisfactory results obtained in initial experiments in which the

relational feature has been omitted from the set of extracted features used in the learning

phase (i.e., v = [A,αG, βG,KLRss
, Ent,Distz]). In particular, we obtained a lower overall

accuracy and poor quality classification maps. An example of such classification map is

shown in Fig. 3.11(c). By comparing this map with that obtained by using all the features

(i.e., v = [A,αG, βG,KLRss
, Ent,Distz, Rel], see Fig. 3.11(b)), one can easily understand

the effectiveness of the proposed relational feature.
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Table 3.7: Average (on kf = 11) error matrix of the samples of the cross-validation folds (MCoRDS2

dataset).

Predicted samples

layers bedrock noise Total APA(%)

R
e
fe
r
e
n
c
e

s
a
m
p
le
s layers 3958 6 61 4025 98.35

bedrock 7 1127 66 1200 94.95

noise 51 20 3502 3573 98.01

Total 4016 1153 3629 nΨ/kf=8798

AUA (%) 98.55 97.78 96.51
AA=97.60%

STDEV=0.73

Table 3.8: Error matrix on the test samples (MCoRDS dataset).

Predicted samples

layers bedrock noise Total PA(%)

R
e
fe
r
e
n
c
e

s
a
m
p
le
s layers 18839 21 70 18930 99.51

bedrock 5 7782 193 7980 97.51

noise 17 46 11940 12003 99.48

Total 18861 7849 12203 nΩ=38913

UA (%) 99.88 99.15 97.84 OA=99.09%

Table 3.9: Error matrix on the test samples (MCoRDS2 dataset).

Predicted samples

layers bedrock noise Total PA(%)

R
e
fe
r
e
n
c
e

s
a
m
p
le
s layers 21918 15 357 22290 98.33

bedrock 17 6290 293 6600 95.30

noise 219 109 19480 19808 98.34

Total 22154 6414 20130 nΩ=48698

UA (%) 98.93 98.07 96.77 OA=97.93%
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(a) (b)

(c) (d)

Figure 3.9: Examples of (a) and (b) radargrams, and (c) and (d) corresponding classification maps

generated with the presented algorithm (MCoRDS dataset). The radargrams are in dB, stretched and

vertically exagerated to improve visibility. In the classification maps, each color represents a different

target class, i.e., black - free space, blue - layers, red - bedrock, yellow - noise.
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(a) (b)

(c) (d)

Figure 3.10: Examples of (a) and (b) radargrams, and (c) and (d) corresponding classification maps

generated with the presented algorithm (MCoRDS2 dataset). The radargrams are in dB, stretched and

vertically exagerated to improve visibility. In the classification maps, each color represents a different

target class, i.e., black - free space, blue - layers, red - bedrock, yellow - noise.
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(a) (b)

(c) (d)

Figure 3.11: Example of (a) radargram (MCoRDS dataset) showing a particular subsurface pattern, i.e.,

deep and strong backscattering layers and partially missing bedrock area, (b) corresponding classification

map obtained by training the SVM with all the features presented in this work (i.e., the vector v =

{A,αG, βG,KLRss
, Ent,Distz, Rel}), (c) corresponding classification map obtained by training the SVM

with a subset of the presented features, i.e., which does not contain the relational feature Rel (i.e.,

v = {A,αG, βG,KLRss
, Ent,Distz}), and (d) portions of radargram and classification map highlighting

the effect of the sliding window approach; the low-pass filtering effect results in a slight underestimation

and overestimation of the layers and bedrock classes, respectively, at their interfaces with the noise region.

The radargrams are in dB, stretched and vertically exagerated to improve visibility. In the classification

maps, each color represents a different target class, i.e., black - free space, blue - layers, red - bedrock,

yellow - noise.
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(a)

(b)

Figure 3.12: Classification maps corresponding to (a) the MCoRDS dataset (radargrams in dB shown in

Fig. 3.4(a)), and (b) the MCoRDS2 dataset (radargrams in dB shown in Fig. 3.4(b)). In the classification

maps, each color represents a different target class, i.e., black - free space, blue - layers, red - bedrock,

yellow - noise.
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3.5.5 Analysis of the computational load

From a computational point of view, an important characteristic of the presented system

is its ability to process in a fast way a large amount of data. This is due to the fact

that the algorithms included in the system can be parallelized. Thus, it is possible to

take advantage of the latest technology (e.g., clusters of large-storage and high-power

computers (cpus)) in order to faster achieve the desired performances. The feature ex-

traction and the training of the classifier can be easily split into several subtasks to be

given to different cpus that can run in parallel. Given that the features are computed

with a sliding window approach (which is characterized by the fact that the computa-

tions within the windows are independent), one can use a cluster of cpus to perform such

computations in parallel. In the grid-search selection of the SVM model parameters with

the cross-validation algorithm, both the operations within each cross-validation fold and

the computations at each intersection point of the grid are independent. This enables

parallelizing the algorithm also in the training phase of the classifier, which otherwise has

a time complexity in the order of O(n3
Ψ) [86]. Moreover, the feature extraction and the

training of the classifier are operations that can be computed only once, in offline mode.

Once the SVM model has been selected, the only online/real-time operation is the classi-

fication of new samples, which can also be performed by several cpus in parallel. In our

experiments, the computational capabilities of the presented system have been proven by

using a cluster of 192 cpus (@2.05 GHz) which performed all the operations per dataset

in ≈ 5 hours. This is a reasonable computation time if we consider the very large amount

of data that has been processed. Moreover, note that the offline computations (feature

extraction and SVM training with cross-validation) require about 98% of this amount

of time, while the generation of the classification maps for the whole datasets (after the

training phase) require only few minutes. In general, we expect to require a new training

of the classifier only when either the acquisition mode or the pre-processing phase of the

data are changed. Another advantage of the presented system is the fact that it can

be easily tuned for analyzing different RS datasets, since it involves a small number of

parameters in the overall classification algorithm (i.e., Wx, Wz, thrKL).

3.6 Conclusion

In this Chapter, as a first contribution of the thesis on the problem of ice subsurface tar-

get identification, we have proposed a novel system for the automatic classification of ice

sheet subsurface targets. The system relies on advanced image processing and machine

learning techniques to efficiently extract the information contained in radargrams. The

presented system is made up of two main components, i.e., i) feature extraction and ii)
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automatic classification based on SVM. The feature extraction for ice sheet subsurface

target description is the main component of the system, which also represents one of the

main contributions of this work. The features extracted take into account both the statis-

tical properties of the measured radar signal and the spatial properties of the subsurface

targets. Along with the original amplitude data, several features have been identified and

extracted, i.e., the parameters of the best fitting model, the entropy, the Kullback-Leibler

distance, the range position of the ice subsurface targets and the relational feature. The

extracted features have been given as input to an automatic classifier based on SVM to

obtain the final classification maps.

The main characteristics of the presented system are: i) robustness and/or adaptive-

ness to the heterogeneity of radargrams as a consequence of the features used and the

learning approach employed; ii) capability to obtain objective and quantitative results

on large amount of data; and iii) capability to process large archives of data due to the

computational efficiency and the possibility of parallelizing the algorithms it is made of.

These have been proven by applying the algorithm to two real-world datasets acquired by

the MCoRDS instrument operated with different parameters (i.e., bandwidth) in different

regions of Antarctica. For both datasets, covering ≈ 400 line-km, the system provided

in few hours (≈ 5 hours per dataset) high quality classification maps with an overall

accuracy greater than 97%. This is a very satisfactory result, considering the type and

scale of the investigated targets, the noisy character of the radar data, and the fact that

the algorithm is nearly completely automatic. More precisely, the system requires a min-

imum amount of user interaction in the training phase of the classifier, wheareas in the

operational phase (classification of new data), it is completely automatic.

The output of the system can be used for estimating the extent of the subsurface tar-

gets both in the range and along-track directions (e.g., ice layered area thickness, bedrock

scattering area distribution). Furthermore, when the spatial sampling allows it (e.g., suf-

ficiently dense grid of tracks followed by the instrument), such output can be used along

with appropriate RS data integration techniques (e.g., based on standard interpolation

algorithms) for generating 3D models of the subsurface, useful for the estimation of the ice

subsurface targets in all dimensions. This can also help to detect critical basal boundary

conditions and study changing archeology or geology. Therefore, the automatic classifi-

cation of the subsurface targets is an initial essential step for the further development of

more elaborate analyses of the ice sheet subsurface.

As future work, we aim to use the output classification maps, in particular at the traces

(and neighborhoods) where more tracks overlap, for defining a reliable postprocessing

technique for removing outliers and finally assessing a unique solution at the corresponding

lat-long coordinates in the range direction. Another objective is to check the applicability
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of the system to radargrams acquired in Greenland. Also, we aim to study the possibility

to tune the presented system in order to adapt it to the detection of subsurface targets

visible in radargrams acquired in other icy regions (e.g., glaciers).

3.7 Appendix A

In this Appendix, the theoretical distributions used in the statistical analysis of the radar

signal are briefly described:

− The analytical equation of the Rayleigh pdf is given by:

Rpdf (A) =
2A

µA2

exp

[

− A2

µA2

]

, (3.8)

where the parameter of the distribution µA2 is the mean power of the signal and can

be estimated using the Maximum Likelihood Estimation (MLE) approach as:

µ̃A2 = E
{

A2
}

, (3.9)

with E {·} denoting the expectation operation.

− The analytical equation of the Nakagami pdf is given by:

Npdf (A) = 2

(

βN

µA2

)βN A2βN−1

ℵ(βN)
exp

[

−βNA
2

µA2

]

, (3.10)

where ℵ(·) denotes the Gamma function. The estimation of the mean power µA2 can

be done with the MLE approach as explained previously for the Rayleigh distribution,

while the shape parameter βN can be estimated by using the estimator presented

in [87], i.e.,

β̃N =



























(0.5000876+0.1648852y−0.0544274y2)
2

,

if 0 < y < 0.5772
8.98919+9.059950y+0.9775373y2

y(17.79728+11.968477y+y2)
,

if 0.5772 < y < 17

(3.11)

where y = ln
(

µ̃
A2

F

)

and F =
(
∏n

i=1 Ai
2
)

1

n , and n is the number of samples considered

in the estimation.

− The analytical equation of the K pdf is given by:

Kpdf (A) =
4

ℵ(µA2)

(

βK

µA2

)

βK+1

2

AβKBβK−1

[

2A

√

βK

µA2

]

, (3.12)
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where BβK−1(·) is the modified Bessel function of the second kind of order βK−1. The

parameters of the K pdf can be estimated with the MLE by maximizing the logarithm

of the likelihood function ln(βK , µA2 ; ∀Ai, i ∈ [1..n]) of the K distribution [76], i.e.,

(β̃K , µ̃A2) = argmax
(βK ,µ

A2)
ln [ln], (3.13)

where ln(·) is the natural logarithm function.

− The analytical equation of the Gamma pdf is given by:

Gpdf (A) =

(

A

αG

)βG−1

· e
− A

αG

αGℵ(βG)
. (3.14)

The values of the scale α̃G and shape β̃G parameters of the Gamma distribution can

be estimated using the MLE as solutions of the simultaneous equations [75]:






α̂G = Ā

β̂G
,

log(β̂G)− Ξ(β̂G) = log [Ā/(
∏n

i=1 Ai)
1/n],

(3.15)

where Ξ(·) is the di-gamma function and Ā = E {A}.
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Chapter 4

A Model-Based Technique for the

Automatic Detection of Earth

Continental Ice Subsurface Targets

in Radar Sounder Data

This Chapter1 provides a second contribution to the identification of ice subsurface fea-

tures in RS data. In particular, we propose an automatic technique for a large scale

detection of the ice subsurface targets and the estimation of their properties (e.g., layered

area thickness, bedrock scattering area) from radargrams acquired by RS operated at the

Earth continental polar caps. Unlike the method described in the previous Chapter, which

is based on a supervised learning algorithm, the model-based technique which we present

in this Chapter is unsupervised. It uses the parameters of the RS acquisition system com-

bined with the output of an automatic image segmentation algorithm. The segmentation

operation is applied to the radargrams after a preliminary processing phase aimed to em-

phasize the relevant subsurface targets. The segmentation criterion considers the radar

signal backscattering properties and a model of the spatial distribution of the investigated

targets that takes into account the effects of the wave propagation through the subsurface.

Experimental results obtained on real radargrams acquired by an airborne RS in Antarctica

confirm the efficiency of the proposed technique.

1Part of this chapter appears in:

[88] Ilisei, A.-M. and Bruzzone, L., “A Model-Based Technique for the Automatic Detection of Earth Continental

Ice Subsurface Targets in Radar Sounder Data,” in IEEE Geoscience and Remote Sensing Letters, Vol. 11, No.

11, pp. 1911-1915, 2014.
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4.1 Introduction

As already mentioned in the previous chapters, the automatic analysis of radargrams of

the ice sheet is essential for an efficient usage of the available RS data in order to better

understand the ice subsurface structure. However, the review of the related literature (see

Sec. 2.1) points out that the development of automatic techniques for the analysis of RS

data has not been sufficiently addressed.

In this Chapter we contribute to the related state of the art with a second approach to

the identification of ice subsurface features. In particular, we propose a novel unsupervised

technique for the automatic detection of ice subsurface targets and the estimation of their

properties, which can guarantee quantitative and large scale analysis of radargrams. The

proposed technique relies on the knowledge of the statistical properties of the radar signal

and the spatial distribution of the subsurface targets. In order to understand the radar

signal fluctuations, a preliminary statistical analysis of the radar signals is carried out.

Based on such an analysis, the technique generates a statistical map which is afterwards

segmented into homogeneous regions corresponding to the different types of targets. The

segmentation criterion involves the strength of the signal with respect to noise and a model

of the spatial distribution of the subsurface targets (which considers the effects of the wave

propagation through the material). The segmentation enables the automatic identification

of both the layers and bedrock scattering areas and thus the analysis of their properties.

The effectiveness of the proposed technique has been confirmed by results obtained by

applying the algorithm to MCoRDS data acquired in Antarctica [62].

The rest of this Chapter is organized as follows. In Sec. 4.2 we present the details

of the proposed technique. Experimental results obtained on a real dataset acquired in

Antarctica are reported in Sec. 4.3. Finally, Sec. 4.4 discusses the capabilities and limi-

tations of the proposed technique and proposes future developments of this work.

4.2 Detection and estimation of ice subsurface targets proper-

ties

The goal of this work is to develop an efficient technique for the automatic analysis of

radargrams, in particular for the detection and properties estimation of the different ice

subsurface targets commonly visible in airborne RS data. The architecture of the proposed

technique is shown in Fig. 4.1 and consists of four main blocks: 1) data preprocessing

(radargram alignment), 2) statistical map generation, 3) statistical map thresholding, and

4) layered and bedrock scattering areas detection. The blocks of the proposed scheme
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Figure 4.1: Block scheme of the proposed technique.

are detailed in the following subsections, after the description of the model of a typical

radargram acquired at the continental polar caps. This model is useful for understanding

the types of investigated targets and drives the development of the proposed algorithm.

4.2.1 Radargram model

As already mentioned in the introduction of the thesis, a radargram is a 2D matrix

showing the cross-section of the ice subsurface. The method in this chapter relies on

the ice sheet subsurface radargram model introduced in Sec. 3.2 and depicted in Fig.

3.1. Recall that the ice subsurface targets are i) layers of ice that are spatially coherent

englacial surfaces, ii) the bedrock scattering area, which represents the portion below the

ice/bedrock interface within which the backscattered wave has still sufficient power to

be measured, and iii) noise regions characterized by the absence of scatterers, which are

present above and below the bedrock. Note that discontinuities can be present in the

bedrock scattering area shown in radargrams (see trace tnbr in Fig. 3.1). This is not

consistent with the real situation in which the bedrock under the ice column is expected

to be continuous. The reason for this discontinuity is either the loss of power through

the ice column or the preprocessing of the radargrams (e.g., which does not completely

remove the surface clutter). The noise region located below the bedrock is due to strong

attenuation through the subsurface which makes it impossible to acquire coherent returns.

Therefore, at the corresponding depth the RS mainly measures noise. According to recent

studies [30], the noise region located above the bedrock, also called echo free zone (EFZ),
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is a consequence of the lack of coherent reflecting surfaces due to the layer disturbances

caused by the ice flow at the basal interface. It is worth mentioning here that the main

assumption considered in the development of our technique is the presence of the EFZ.

This is a reasonable hypothesis as the EFZ is present in extended areas of Antarctica and

Greenland [30].

4.2.2 Data preprocessing

The instability of the platform that carries the RS introduces errors in the radargram

acquisition process, which must be corrected in order to perform accurate analyses of the

subsurface targets. These errors are mainly due to the variable height of the platform,

which causes the surface and subsurface returns recorded in radargram to appear at range

positions that do not correspond to the real air/ice surface and subsurface. In order to

correct these displacements, we apply to the radargram a sequence of standard prepro-

cessing steps that consist in a shift in range of the traces of the original radargram. This

operation generates a corrected/aligned radargram. Notice that the aligned radargram

can be partitioned in two main regions, the subsurface region Rss that contains all the

target classes of interest (i.e., layers, bedrock, noise) and a region Rnoise at the bottom

of the radargrams that contains exclusively noise measurements. In this step we separate

the two regions at a reference depth of 3500m, below which in the investigated radargrams

there is no target backscattering along the whole azimuth track. The referece depth is

computed considering a constant dielectric constant of ice εice = 3.15. In the following,

in order to speed-up the processing, we will focus the analysis on the Rss region.

4.2.3 Proposed technique

The ice subsurface target properties to be estimated by the proposed technique are: the

layer thickness zone thicklayers [m] (see (4.1)), the ice column extension thickice [m] (which

contains both the layer thickness zone and the EFZ) (see (4.2)) and the bedrock scattering

area extension thickbedrock [m] (see (4.3)). Note that the technique is trace-based and

thickice can be computed only for the traces t 6= tnbr, where tnbr indicates the traces with

no bedrock returns (see Fig. 3.1). These properties are estimated as follows:

thicklayers(t) = [lastlayers(t)− surf(t)] · dss, ∀t, (4.1)

thickice(t) = [firstbedrock(t)− surf(t)] · dss, ∀t 6= tnbr, (4.2)
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thickbedrock(t) =







[lastbedrock(t)− firstbedrock(t)] · dss, ∀t 6= tnbr,

0, ∀t = tnbr,
(4.3)

where dss = c/(2·fr ·
√
εice) is the length of the pixel in the range direction in the subsurface

region (with fr denoting the range sampling frequency), lastlayers(t) represents the last

return of the layered scattering area, and firstbedrock(t) and lastbedrock(t) are the first

and the last returns of the bedrock, respectively, on the t-th trace of the radargram. The

borderlines lastlayers, firstbedrock and lastbedrock are identified by combining the knowledge

of the strength of the radar signal with an image segmentation technique that we apply

to a statistical map of the subsurface, as explained in the following subsections.

Statistical map generation

In order to detect the ice subsurface targets we define a segmentation algorithm that can

divide the subsurface region Rss into the three investigated target classes, i.e., layers,

bedrock and noise. Given that the radar signals are typically very noisy, we apply the

segmentation algorithm to a processed version of the aligned radargram, which we call

statistical KLRss
map. The KLRss

has been calculated with a sliding window approach as

described in Sec. 3.3.3, after a detailed statistical analysis of the radar signal, which has

been performed as explained in Sec. 3.3.1. In more details, the KLRss
map is generated

by applying to the Rss region the Kullback-Leibler (KL) divergence [76], which computes

the local statistical difference between two distributions. The KL distance is computed

between the distribution of the amplitude samples H inside windows of size Wz × Wx

(range × azimuth) and the theoretical distribution of the noise M, as in (3.1). M has

been estimated by considering exclusively noise samples, i.e., samples drawn from the

bottom part Rnoise of the radargram (below 3500m), which is free of target returns and

acquisition artifacts (e.g., closure of the acquisition window, double bounce returns of the

wave with the surface and platform). As derived in Sec. 3.5.2, the noise samples are

better modeled by the Gamma theoretical model (see (3.14)) which is characterized by

the parameters scale αG and shape βG estimated with (3.15). Thus, M = Gpdf . The

resulting KLRss
map is of particular interest as it highlights the most scatterable targets,

i.e., whose strength is noticeably higher than that of the noise. This characteristic is

going to be considered in the thresholding step. Note that if the input radargram has not

been preprocessed for surface clutter return suppression, the KLRss
map also highlights

artifacts due to possible clutter returns [33]. Therefore, a postprocessing step is required

to remove clutter.
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Statistical map thresholding

The objective in this step is to extract the regions of the KLRss
map that have high

backscattering, i.e., layers and bedrock, and to distinguish them from the areas that have

low backscattering (only noise). To achieve this, we threshold the KLRss
map on the

basis of the mean µKLRnoise
of the samples of the KLRnoise

(which has been generated by

applying (3.1) to Rnoise). This is done as in (3.4), where thrKL is a user defined threshold

that controls the degree of similarity between the samples of KLRss
map and those of

KLRnoise
map, and KLbin is the binary map (obtained by thresholding the KLRss

map)

that points out the returns corresponding to the layers and bedrock scattering areas.

Layered and bedrock scattering area detection

The aim of this step is to distinguish the returns of the layers from those of the bedrock

region in the KLbin map. In order to perform this operation, we consider the assumption

of the presence of the EFZ in the aligned radargram, and implicitly in the KLRss
and KLbin

maps. Therefore, we take into account the spatial distribution of the subsurface targets

and their relational properties, i.e., the expected order of the ice subsurface targets in the

range direction: layers, noise (EFZ), bedrock and noise. According to this hypothesis, the

KLbin map is composed of at least two main disjunct regions, separated by the EFZ, where

the one just below the surface surf represents the layers, and the remaining represent

the bedrock returns (see Fig. 3.1). It follows that the region of KLbin map that intersects

surf contains the returns of the layers (which we represent in the KLlayers map), while

the remaining regions with value “1” contain only bedrock returns (which we represent in

the KLbedrock map).

At this point, the traces with no bedrock returns tnbr are those for which there is no

value of ”1” on the KLbedrock map. For all other traces t 6= tnbr, the first return of the

bedrock firstbedrock(t) is detected as the position of the first ”1” encountered by moving

downwards over the traces of the KLbedrock map, i.e.,

firstbedrock(t) = arg mini{KLbedrock(i, t) = 1}, ∀t 6= tnbr. (4.4)

Similarly, the last return of the bedrock lastbedrock (see (4.5)) and of the layers lastlayers
(see (4.6)) are detected as the position of the first ”1” found by moving upwards over the

traces of the KLbedrock map and KLlayers map, respectively.

lastbedrock(t) = arg maxi{KLbedrock(i, t) = 1}, ∀t 6= tnbr, (4.5)

lastlayers(t) = arg maxi{KLlayers(i, t) = 1}, ∀t. (4.6)
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It is worth noting that on the traces with no bedrock returns tnbr, the computation of

bedrock thickness provides thickbedrock(tnbr) = 0 (see (4.3)). Moreover, the EFZ and

implicitly the ice thickness thickice(tnbr) (see (4.2)) cannot be reliably computed. Note

that this is not a limitation of the proposed technique, but rather a consequence of the lack

of information in the radargram. Approximate values of thickice(tnbr) could be estimated

by considering further assumptions (e.g., in the real scenario the bedrock is expected to

be continuous) and using the detected borderlines at the nearest adjacent traces t 6= tnbr.

4.3 Experimental results

We applied the proposed unsupervised model-based technique to a dataset made up of 8

MCoRDS radargrams acquired in sequence over an extension of about 400 km in Antarc-

tica [62]. The data are compressed in azimuth with a SAR procedure (for azimuth resolu-

tion improvement) and processed the MVDR technique (for clutter return suppression) [1].

The resolution of the radargram is 13m in range, 25m in azimuth and 70m in the across-

track direction. The range sampling frequency of the instrument is fr = 9.5MHz, implying

dss = 8.9m.

Since the MCoRDS dataset is composed of radargrams acquired in sequence, in order

to align the traces of the radargrams with respect to a single reference trace and to use the

information at the lateral borders of the radargrams, we created an extended radargram

by appending all the 8 radargrams. We applied the preprocessing steps detailed in Sec.

4.2.2 to the extended radargram. Thus we obtained an aligned radargram showing the

Rss regions, which has a size [nS = 410 × nT = 27350]. Fig. 4.1(a) shows a portion

[410×3500] of the aligned radargram. The corresponding statistical KLRss
map generated

with the algorithm presented in Sec. 4.2.3 is shown in Fig. 4.1(b). The size of the sliding

window used in the computation of the related KLRss
statistical map has been chosen by

considering the spatial distribution of the subsurface targets, which are mostly extended

in the azimuth direction and present sharper variations in the range direction. To account

for these variations, we set Wz = 7 and Wx = 14 samples. For the segmentation of the

statistical map we considered values of the threshold thrKL > 0. The choice of such

value strongly affects the output of the thresholding operation. Indeed, thrKL defines the

boundary on the degree of similarity between the samples with high backscattering and

samples of noise. Too high values of thrKL may lead to identify samples belonging to high

backscattering areas as noise samples, whereas too low values of thrKL may lead to confuse

high backscattering samples in the noise regions with layers or bedrock returns. Fig.

4.1(c) shows the corresponding KLbin map generated with the proposed algorithm when

thrKL = 10. Fig. 4.1(d) shows the position of the lastlayers, firstbedrock and lastbedrock
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borderlines detected with the proposed algorithm, for the portion of radargram shown in

Fig. 4.1(a). The output of the proposed algorithm on other three portions of the aligned

radargram is provided in Fig. 4.3.

Table 4.1: Accuracy provided by the proposed technique for the detection of layers and bedrock scattering

areas.

Target Target Missed % Missed Non-target False % False Total % Total

class samples alarms alarms samples alarms alarms error error

layers 111946 1074 0.96 88054 923 1.05 1997 0.99

bedrock 11615 2120 18.25 188385 1344 0.71 3464 1.73

From a quantitative point of view, since no ground truth data are available for our

detection problem, in order to validate the proposed algorithm we created by visual in-

terpretation a reference map of the ice subsurface (i.e., accurate masks of the investigated

target classes), from which we picked randomly 200000 samples (111946 samples of layers,

11615 samples of bedrock and 76439 samples of noise). Tab. 4.1 reports the accuracy in

the detection of layers and bedrock scattering areas, in terms of missed and false alarms.

Fig. 4.4 shows the fitting performances of the detection of the three detected borderlines

with the reference borders (derived manually) for the portion of radargram shown in Fig.

4.1(a).

By analyzing the quantitative and qualitative results one can observe that in most

of the cases the proposed algorithm detects the targets of interest accurately. The few

errors are mainly due to the sliding window approach employed, which tends to filter out

some returns, mainly in the regions with low backscattering (e.g., the bedrock region).

This effect, combined with the thresholding operation, leads to a slight increase in the

missed alarm rate. However, the low values of overall errors confirm the effectiveness of

the proposed technique.

4.4 Conclusion

In this Chapter we have provided a second contribution to the problem of the identification

of ice subsurface targets. In particular, we proposed an unsupervised automatic technique

for the detection of the ice subsurface targets and the estimation of their properties from

radargrams acquired at the Earth continental polar caps. The main novel contributions of

the proposed technique are: i) it is defined on the basis of a realistic model of radargrams

that considers the effects of the wave propagation through the ice subsurface (i.e., the

presence of the EFZ and the discontinuous shape of the bedrock scattering area), and ii)
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Figure 4.2: (a) Example of aligned radargram (dB data). The portion of radargram considered [410 ×
3500] represents a segment on the ground of about 50km, (b) Corresponding KLRss

statistical map, (c)

Corresponding KLbin map, and (d) Results provided by the proposed algorithm.

it involves a segmentation algorithm that enables the detection of both the whole layer

area, the ice column (containing also the EFZ) and the bedrock scattering area. The
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Figure 4.3: Example of results provided by the proposed algorithm on three different portions of the

aligned radargram.
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Figure 4.4: Example of fitting performances for the lastlayers, firstbedrock and lastbedrock borderlines for

the portion of radargram shown in Fig. 4.1(a).

accurate results obtained by applying the proposed technique to real data acquired by

an airborne RS in Antarctica prove its effectiveness for the large scale analysis of ice
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subsurface.

As future development of this work, we aim to include in the proposed technique an

algorithm for the mitigation of surface clutter returns highlighted in the KLRss
map, in

order to improve the final detection results.
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Chapter 5

Automatic Local 3D Reconstruction

of the Ice Sheet by Using Radar

Sounder and Altimeter Data

This Chapter1 provides a contribution to the problem of 3D ice sheet modeling. In partic-

ular, we propose an automatic technique for the local 3D reconstruction of the ice sheet, by

using jointly RS and ALT data. The technique exploits the complementarity of the RS and

ALT data and relies on the use of the ordinary kriging geostatistical interpolation method

and on several statistical measures for validating the interpolation results and the quality

of interpolation. Results obtained on a real RS and ALT dataset acquired in Antarctica

prove the effectiveness of the proposed technique.

5.1 Introduction

During the past decades several studies in glaciology highlighted the importance of better

understanding the ice sheet dynamics and processes. Remote sensing data acquired at

the ice sheets are the main input of such studies. In particular, radar sounder (RS) in-

struments, which acquire radargrams that show the ice sheet cross-section, and altimeters

(ALT), which acquire surface elevation data, represent two of the most important sources

of information on the ice sheets. At the ice sheets, RSs are usually operated using airborne

platforms equipped with a global positioning system (GPS). During the several dedicated

RS airborne campaigns carried out, a huge volume of RS data with heterogeneous quality

1Part of this chapter appears in:

[89] Ilisei, A.-M. and Bruzzone, L. ,“Automatic Local 3D Reconstruction of the Ice Sheet by Using Radar Sounder

and Altimeter Data,” IEEE Transactions on Geoscience and Remote Sensing, Submitted for publication in

February 2016.
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and local coverage has been generated and is now available in archives. On the other hand,

ALTs are Earth orbiting laser or radar instruments that have been providing enormous

quantities of ice surface elevation data. The availability and the complementarity of the

RS and ALT data (see Sec. 5.2.1) and the need for better modeling the ice sheet structure,

call for the development of novel automatic techniques for the generation of improved 3D

maps of the ice sheet surface, ice/bedrock interface and ice thickness. As pointed out in

the review of the related literature, (see Sec. 2.2), the availability of automatic techniques

for the reconstruction of the ice subsurface by using multisensor data is still limited.

In this Chapter we contribute to the related literature by proposing an automatic

technique for the local 3D reconstruction of the ice sheets, which uses jointly RS and ALT

data. The technique aims to address two main challenges: i) the reconstruction should

be performed by estimating 3D maps of the ice surface, ice/bedrock and ice thickness

at the most reliable scale s∗, derived automatically given the input RS and ALT data

properties, and ii) the estimated maps should have the highest overall quality, i.e., the

lowest overall uncertainty. Our choice of focusing on the local rather than the global ice

sheet 3D reconstruction is driven by the importance that some regions have for specific

glaciological analyses. The absence of satellite Earth orbiting RS missions limits the data

acquisition with airborne platforms to relatively small regions of particular glaciological

importance. Our objective is thus to perform a thorough subsurface reconstruction of

such regions, in order to support the glaciological community to improve the use of the

available data for a better understanding of the local structure of the ice sheet. To this

aim, we employ the ordinary kriging (OK) method [90], which along with the estimated

elevation maps, also provides uncertainty interval maps that quantify the overall quality

of the estimation.

The proposed technique relies on data processing techniques and statistical measures

on the basis of which it aims to identify the most reliable scale s∗ for interpolation and the

highest overall quality 3D maps of the ice surface elevation and ice/bedrock interface. The

method is composed of 4 main blocks, i.e., A) RS data preprocessing, B) identification of

the OK parameter set and identification of s∗ for the estimation of the ice surface map with

the highest overall quality at the most reliable scale, C) identification of the OK parameter

set for the estimation of the bedrock elevation map with the highest overall quality at

s∗, and D) estimation of the ice thickness map at s∗. In order to identify s∗, several

candidate scales are investigated. The highest quality map at a certain scale is the one with

the lowest overall uncertainty among different maps generated by interpolating the RS

measurements with the OK method run with different parameter sets. The most reliable

scale is chosen by minimizing the overall absolute error between the highest quality ice

surface elevation map at each scale and consistently rescaled ALT data. The identification
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of s∗ can be viewed as a validation of the interpolation method by considering the rescaled

ALT data as reference. Thus, for the identification of s∗, the complementary properties

of the input RS and ALT data are exploited. The joint use of RS and ALT data for the

optimization of the interpolation, the automatic identification of s∗, and the analysis and

use of the uncertainty maps generated by the OK method are the main novel contributions

of this work with respect to other works in the literature that aim to reconstruct the ice

subsurface with the OK method (e.g., [48], [42]).

Results obtained by validating the method on a subset of RS data acquired by the

MultiChannel Coherent Radar Depth Sounder (MCoRDS) [14] and ALT data acquired

by the Geoscience Laser Altimeter System (GLAS)/ICESat [91] over a portion of the

Byrd Glacier in Antarctica confirm its effectiveness.

The remaining of this Chapter is organized as follows. Sec. 5.2.1 describes the main

properties of the RS and ALT data. Sec. 5.2.2 presents the general description of the OK

method. The proposed technique is presented in Sec. 5.3. Sec. 5.4 illustrates results ob-

tained by applying the technique to real RS and ALT data acquired in Antarctica. Finally,

Sec. 5.5 draws the conclusion of this work and proposes ideas for future developments.

5.2 Background

5.2.1 Properties of the radar sounder and altimeter data acquired at the ice

sheets

Nowadays, there are several archives containing both RS and ALT data acquired at the ice

sheets. In this subsection we describe their general properties and derive the relationships

that exist among them, mainly in terms of sampling and resolution.

Radar Sounder data. RS data, or radargrams, showing the georeferenced vertical profile of

the ice sheet, are acquired during dedicated airborne campaigns at the ice sheets. Orbital

RSs have been designed only for the exploration of other planetary bodies, e.g., LRS [4]),

SHARA) [5]), RIME (currently under development) [7]. The main advantages of orbiting

RSs with respect to airborne RSs are the global coverage, the homogeneous quality of

the radargrams and the capability to perform multitemporal acquisitions over wide re-

gions of interest in different seasons or years. Presently, there are no satellite-mounted

RSs for Earth observation. RS airborne mission science requirements and technological

constraints drive data acquisition strategy plans (e.g., location, flightline spacing) and

affect the data quality (e.g., maximum penetration, resolution). Therefore, the RS data

acquired during different campaigns present different properties. However, there are prop-

erties of the RS data that are common in most acquisitions. For instance, the spacing

between two adjacent measurements in the flightline/azimuth direction dRS
x is typically
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much smaller than the spacing between two adjacent flightlines dRS
y . This results in a

highly irregular sampling pattern in the horizontal direction, with dRS
x (in the order of

few m) ≪ dRS
y (in the order of few km). The vertical resolution δRS

z is generally obtained

through range compression [92] and depends on both the bandwidth of the system and the

type of windowing used to remove the sidelobes generated through compression. Typical

values for δRS
z range between few m and few tens of m. The resolution of the data in the

azimuth direction δRS
x is much finer than the resolution in the cross-track direction δRS

y .

The finer resolution in the azimuth direction is obtained by applying SAR techniques to

the raw or range compressed data, whereas the same cannot be done in the cross-track

direction [93], thus δRS
x (which ranges between few m and few tens of m) ≪ δRS

y (which

ranges between few hundreds of m and few km, depending on the platform height and

the ice surface roughness).

Altimeter data. ALT measurements over the ice sheets are typically acquired from satel-

lite platforms. With respect to the RSs that take georeferenced measurements of the 2D

vertical profile of the ice, the ALTs take georeferenced measurements of the ice surface

elevation only, on wide areas. ALT measurements are subsequently processed to provide

3D maps of the ice surface, called DEMs. The resolution δALT and spacing dALT in the

horizontal direction of the DEMs are uniform and typically have values δALT ≈ dALT ≈
few hundreds of m. Thus, with respect to the RS data, they are typically in the rela-

tionship dRS
x ≪ δALT ≈ dALT ≪ dRS

y . A qualitative representation of the described RS

and ALT data properties in terms of resolution and spacing in the horizontal directions

is given in Fig. 5.1. In the vertical direction, the resolution δALT
z of the ALT data is

generally in the order of few cm to few m, thus much finer than that of the RS data, i.e.,

δALT
z ≪ δRS

z .

The analysis of the general properties of the RS and ALT data points out that they

have complementary attributes that can be exploited together in order to aid for a better

usage and extraction of information from the available measurements.

5.2.2 Ordinary Kriging: general concept and problem formulation in the

proposed method

The proposed technique relies on the use of the OK method. In this subsection we provide

a general description of the parts of the OK method which are relevant for the proposed

technique.

OK is a geostatistical interpolation method that estimates the value of a random vari-

able at an unknown/query position x0, i.e., ê(x0), based on N0 known/observed values

at positions xn, n = [1..N0], i.e., samples e(xn) in the domain of interest. OK relies on

what is called spatial variability analysis (SVA), which is a process that aims to quantify
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dRS
y

dRS
x

δRS
y

δRS
x

dALT

δALT

Figure 5.1: Qualitative representation of RS and ALT data spacing and resolution in the horizontal

direction. Note the general relationship dRS
x ≪ dALT ≈ δALT ≤ dRS

y .

the spatial autocorrelation of the samples through the generation and model fitting of

the empirical semivariogram γ̂(h). In this study we assume an isotropic model of spatial

variability, thus γ̂(h) is a graph generated by computing the squared difference between

all pairs of samples separated by a distance (lag) hk. h is the vector of point pair dis-

tances hk, with k = [1..k̄], where k̄ is the maximum number of bins of the semivariogram.

Several candidate theoretical models γCan can be used to fit the empirical semivariogram.

Appendix 5.6 reports the analytical formulation of the theoretical models used in our anal-

ysis, i.e., the Spherical γSph, Exponential γExp, Gaussian γGau and Linear γLin models. We

chose these models since they are likely to fit elevation data. In particular, the Spherical

model and the Exponential model have a steep behavior near the origin, and therefore are

suitable for representing surfaces with high elevation variability at short range, i.e., with

weak autocorrelation. Among the two models, the Exponential model, with its steeper

behaviour near the origin, is appropriate for representing rougher surfaces. The Gaus-

sian model has a parabolic shape near the origin, therefore it is suitable for representing

smoothly varying surfaces. The Linear model indicates non-stationarity in the data. The

presence of non-stationarity in the data invalidates the intrinsic hypothesis required in

geostatistics. A common approach used to solve the problem of non-stationarity is to

fit a trend surface to the data and to regenerate the semivariogram by using the residu-

als [94], [95]. The vector of parameters θ of each theoretical model can be estimated on

the basis of the weighted least square criterion [96], expressed as follows:

θ̃ = min
θ

k̄
∑

k=1

wk[γ̂(hk)− γCan(hk, θ)]
2, (5.1)
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where wk is the weight associated to bin k. Then, the fitting performances of these models

can be quantified in terms of the R2 indicator; the best fitting model with the associated

vector of parameters γ∗(h; θ̃) is the one that maximizes R2, according to:

γ∗(h; θ̃) = max
γCan

{1−
∑k̄

k=1[γ̂(hk)− γCan(hk; θ̃)]
2

∑k̄
k=1[γ̂(hk)]2

}. (5.2)

γ∗(h; θ̃) is the output of the SVA and is used to interpolate the observed samples in order

to estimate ê(x0) (see (5.3)). Moreover, since OK is a (geo)statistical method, it also

provides an uncertainty value u(x0) (see (5.4)) associated to ê(x0).

ê(x0) =
1′N0

V −1
0 eN0

1′N0
V −1
0 1N0

+ c′0V
−1
0 eN0

− c′0V
−1
0 1N0

1′N0
V −1
0 eN0

1′N0
V −1
0 1N0

, (5.3)

u(x0) = 1.96

√

σ2 − c′oV
−1
0 co +

(1− 1′N0
V −1
0 c0)2

1′N0
V −1
0 1N0

. (5.4)

In (5.3) and (5.4) the superscript ’−1’ denotes the inverse of a matrix, eN0
is the vector of

N0 observed values surrounding x0, 1N0
is a column vector of N0 ones, and the apex ”′”

denotes the vector or matrix transpose operation. c0 and V0 are the elements of the full

covariance matrix C0 in x0, defined as:

C0 =

(

σ2 c′o
co V0

)

. (5.5)

The column vector c0, the submatrix V0 and σ2 can be estimated by employing the

covariogram C(h), as follows:


























ĉ0 = (σ̂0i : i = [1..N0])
′,

with σ̂0i = cov[e(x0), e(xi)] = C(||x0 − xi||),
V̂0 = (σ̂ij , i, j = [1..N0]) = C(||xi − xj||) = C(hij),

σ̂2 = σ̂2
00 = var[e(x0), e(x0)] = C(||x0 − x0||) = C(0),

(5.6)

where var(a, a) denotes the variance of a random variable a, cov(a, b) denotes the covari-

ance of two random variables a and b, and ||xi−xj|| = hij denotes the euclidean distance

between two locations xi and xj. Note that under the assumption of intrinsic stationar-

ity [95], which is required in order to perform the geostatistical interpolation, C(h) can

be best estimated by employing the empirical semivariogram best fitting model with the

estimated parameters γ∗(h; θ̃).

On the basis of the couple of values ê(x0) and u(x0), one can infer with 95% confidence

that the true value e(x0) lies in the interval [ê(x0) ± u(x0)]. Therefore, the lower the
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uncertainty value, the more the estimated value is expected to approach the true value,

i.e., the better the estimation.

SVA can be performed by using different parameter sets pi, i = [1..P ] within the OK

method. Tab. 5.1 reports the parameter sets considered in our analysis. In particular,

note that we consider two possible ways to perform the aggregation of point pairs in

each bin of the empirical semivariogram, i.e., constant binsize (bs) and constant binwidth

(bw). In both cases, hk is computed as the mean value of all the distances inside bin

k. With the bs option, we create bins (of point pair distances) with variable width and

with constant number of point pairs within each bin. In the bw option, the number of

point pairs within each bin can vary, whereas the width of all k̄ bins is the same. This

difference is one of the main drivers of the estimation, therefore we study it by considering

the binning = {bw,bs} as the first subset of parameters within the OK parameter set (see

Tab. 5.1). Furthermore, we consider the choice of the weighting function (see (5.1)) as

the second subset of parameters of the OK method. Several weighting functions have

been proposed in the literature, among which we investigate the following:

− W1 =
{

wk = 1, ∀k = [1..k̄]
}

. This represents the case in which the weights are all

constant, as for the ordinary least squares criterion.

− W2 =
{

wk = |Nk|, ∀k = [1..k̄]
}

. In this case higher weight is given to the bins k

containing a higher number of samples.

− W3 =
{

wk = 1/[γ(hk; θ)]
2, ∀k = [1..k̄]

}

. This is a particular case of inverse distance

weighting, in which the experimental variogram points close to the origin receive

higher weight than experimental variogram points at larger distances.

− W4 =
{

wk = |Nk|/[γ(hk; θ)]
2, ∀k = [1..k̄]

}

. In this case the weights are set to the

inverse of the uncertainty of the semivariogram estimate (or estimation variance).

This is a popular weighting function [96], proven to work in many practical situations

as it represents a good compromise of statistical efficiency and computability.

− W5 =
{

wk = |Nk|/h2
k, ∀k = [1..k̄]

}

. This weighting function gives more weight to

estimates calculated with more point pairs and at short distances [97].

Therefore, weighting = {W1,W2,W3,W4,W5} (see Tab. 5.1). Considering all the

combinations {binning,weighting}, one can deduce that there are 10 possible parameter

sets pi for the semivariogram best model fitting. In fact, note that the number of parameter

sets reduces to P = 8 (see Tab. 5.1), since by definition, the parameter set {bs,W1} ≡
{bs,W2}, and {bs,W3} ≡ {bs,W4}. Given the parameter sets, it is worth to highlight

the dependence of the fit on pi; there are P semivariogram best fitting models γ∗
pi
(h; θ̃), i =

[1..P ] characterized by different values of the vector of parameters θ̃. Consequently, for a
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Figure 5.2: Architecture of the proposed technique.

query point x0, not a single estimate, but a set of P estimates can be generated along with

the corresponding set of uncertainty values, êi(x0) and ui(x0), i = [1..P ], respectively. By

extending this reasoning to all the query points in the domain of interest, the OK method

provides P estimated maps and P corresponding uncertainty maps.

Table 5.1: Parameter sets considered in the OK method.

binning weighting parameter set

bw W1 = {wk = 1} p1={bw,W1}
bs W2 = {wk = |Nk|} p2={bw,W2}

W3 =
{

wk = 1/[γ(hk; θ)]
2
}

p3={bw,W3}
W4 =

{

wk = |Nk|/[γ(hk; θ)]
2
}

p4={bw,W4}
W5 =

{

wk = |Nk|/h2

k

}

p5={bw,W5}
p6={bs,W1}
p7={bs,W3}
p8={bs,W5}

5.3 Proposed method

Fig. 5.2 shows the architecture of the proposed technique, which is made up of 4 main

blocks (the dashed block, which represents an intermediate step to the generation of the

ice surface map from the altimeter data is not developed in this paper). Assuming the

availability of only RS an ALT data, partial (i.e., not fully 3D) information of the ice
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subsurface can be extracted only in the flightline direction from the radargrams. In order

to estimate the 3D structure of the ice subsurface, an efficient interpolation strategy of

these measurements should be adopted. The interpolation should be carried out at a scale

s∗ that is validated by using the ALT data of the ice surface, which can be considered

as reference. Furthermore, the estimated maps should have the highest overall quality.

A detailed description of the processing steps involved in all the blocks of the method is

given in the following subsections.

5.3.1 Radar sounder data preprocessing

The aim of this step is the extraction from the radargrams of the surface and bedrock

elevation along the flightline direction at the original scale sRS
0 of the RS data. sRS

0

is given by the spacing between two adjacent measurements (or columns/traces of the

radargram) in the along-track direction dRS
x , i.e., sRS

0 = dRS
x . Each trace of the radargram

contains the RS measurements of power reflected by the surface and subsurface features

at each platform coordinate (in the flightline/azimuth direction) as a function of radar

wave travel time. We first detect the surface and bedrock reflection positions. This can

be done manually or according to automatic techniques (see [61]). Then, we estimate

the elevation of the ice surface and bedrock for all traces of the radargram, by using the

elevation of the platform (given by the GPS along with the radargram) and a standard

time-distance conversion equation that considers propagation in two media, air and ice.

The output of this step consists of two sets of measurements forming an irregular pattern,

i.e., the surface elevation and the bedrock elevation at the initial along-track scale sRS
0

of the RS data, i.e., SRS(sRS
0 ) and BRS(sRS

0 ), respectively. The set SRS(sRS
0 ) is used in

the second block of the technique (see Sec. 5.3.2 and Fig. 5.3), while the set BRS(sRS
0 ) is

used in the third block (see Sec. 5.3.3 and Fig. 5.4).

It is worth mentioning here that there are a few factors that influence the accuracy

of the above estimations. The clutter is one critical factor. It is due to off-nadir surface

reflections arriving at the RS receiver at the same time as the nadir reflections from the

subsurface. For this reason, the bedrock reflection can be masked by clutter and therefore

incorrectly detected. In order to limit the negative effect of clutter on the estimation of

the ice thickness, we use radargrams processed with the minimum variance distortionless

response (MVDR) algorithm for clutter reduction [1]. Other sources of errors in the

estimation of the ice elevation and thickness are due to the GPS accuracy, the sampling

frequency of the RS in the vertical direction, the accuracy of the automatic detection

method employed (i.e., [61]) and the assumed dielectric permittivity of the ice. In fact,

we here consider a constant dielectric permittivity of pure ice εice = 3.15 along the whole

ice column, neglecting the presence of firn and ice impurities. However, this will result in
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Figure 5.3: Detailed architecture of the second block of the proposed technique.

about 10m error in the ice thickness estimate [43].

5.3.2 Estimation of the surface elevation map with the highest overall quality

at the most reliable scale

This block identifies the scale s∗ at which the irregular pattern of surface elevation sam-

ples SRS(sRS
0 ) can be interpolated in order to obtain a reliable estimate of the ice surface

elevation. At the same time, we require that estimates have the best overall quality with

respect to different parameter sets of the adopted OK method. To address these chal-

lenges, we investigate a) several candidate scales sj, j = [1..J ], and b) for each candidate

scale sj several parameter sets pSi , i = [1..P ]. As depicted in Fig. 5.3, this is accomplished

in 3 main steps: 1) Processing of the surface elevation from the ALT data, 2) Processing

of the surface elevation from the RS data, and 3) Analysis and validation.

Processing of the surface elevation from the ALT data

The ALT data is available only for the ice surface elevation and is provided at the original

scale sALT
0 , i.e., SALT (sALT

0 ). In this step we rescale the map SALT (sALT
0 ) in order to

generate reference maps for validating the interpolation process of the SRS samples at

different scales sj, j = [1..J ]. To this aim we use the bicubic interpolation method [98] at

each scale sj, j = [1..J ]. This operation provides a set of J maps SALT (sj), with decreasing

resolution as sj increases.

Processing of the surface elevation from the RS data

The final goal of this step is the estimation of the set of surface elevation maps obtained

by running the OK method with P different parameter sets at a generic scale sj. In order
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to obtain estimates of the surface elevation maps from the RS data, we use the available

surface elevation measurements SRS(sRS
0 ) (see Sec. 5.3.1). Since we are interested in the

results at scale sj, we first rescale S
RS(sRS

0 ) to obtain SRS(sj). We accomplish this by sim-

ply averaging adjacent RS measurements in the along-track direction on a distance sj and

by collecting one measurement every sj meters to define the set of rescaled measurements

SRS(sj). Note that by increasing sj the pattern of these measurements becomes more reg-

ular, with the along-track spacing of the rescaled measurements dRS
x (sj) = sj approaching

dRS
y . Then, we interpolate SRS(sj) with the OK method (see 5.2.2) by considering for the

interpolation at each query point its N0 = 10 nearest observed neighbors from SRS(sj).

We estimate the ice surface elevation and uncertainty maps at the same query points

used to estimate SALT (sj). As there are P possible parameter sets to be used in the OK

method, for each scale sj we generate P ice surface map estimates SRS
pSi

(sj), i = [1..P ] and

P corresponding uncertainty maps US

pSi
(sj), i = [1..P ].

Analysis and validation

The aim of this step is two-fold, i.e., i) the identification at a generic scale sj of the

best parameter set p∗S and the associated SRS
p∗S(sj) and US

p∗S(sj), and ii) the identification

of the best scale s∗ and the corresponding SRS
p∗S(s

∗) and US

p∗S(s
∗). First, we identify the

parameter set p∗S(sj) at a generic scale sj that provides the ice elevation map most similar

to the reference SALT (sj) and has the highest overall quality. At a certain scale sj this is

obtained by analyzing the statistical properties of the absolute error maps DpSi
(sj) (see

(5.7)) and of the uncertainty maps US

pSi
(sj).

DpSi
(sj) = |SRS

pSi
(sj)− SALT (sj)|, ∀i = [1..P ], (5.7)

where |a| denotes the absolute value of a. The key idea is to choose the parameter set that

minimizes the mean value of DpSi
(sj), i = [1..P ]. In the case in which there are different

parameter sets that provide similar values of DpSi
(sj) (and therefore no parameter set can

be considered better than the others for interpolating the RS measurements), we choose

the best parameter set by minimizing the mean value of US

pSi
(sj), i = [1..P ]. By doing

so we aim to ensure that the OK solution has the highest overall quality (i.e., the lowest

overall uncertainty). This operation provides p∗S(sj) and implicitly SRS
p∗S(sj) and US

p∗S(sj).

The identification of the best parameter set is performed for all the scales sj, j =

[1..J ]. Thus, we obtain a set of J elevation maps SRS
p∗S(sj), j = [1..J ], and a set of J

corresponding uncertainty maps US

p∗S(sj), j = [1..J ]. At this point we identify the scale

s∗ which provides, from a statistical point of view, the ice elevation map most similar to

the reference rescaled ALT data. s∗ is the scale that minimizes the mean value of the
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with different OK parameter sets pBi
Identification of p∗B
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BRS(sRS
0 ) BRS

p∗B(s
∗)

Figure 5.4: Detailed architecture of the third block of the proposed technique.

absolute error maps Dp∗S(sj) (see (5.8)).

Dp∗S(sj) = |SRS
p∗S(sj)− SALT (sj)|, ∀j = [1..J ]. (5.8)

This operation provides s∗ and implicitly SRS
p∗S(s

∗) and US

p∗S(s
∗). It is worth noting that,

although we identify the best parameter set and the most reliable scale based on the

minimization of the first order statistics (mean), more complex criteria could also be

used, e.g., based on second order statistics (variance), R2 indicator, root mean square

error.

5.3.3 Estimation of the bedrock map with the highest overall quality at the

most reliable scale

The processing steps involved in the estimation of the bedrock map are similar to those

performed for the estimation of the ice surface elevation map. The main difference is the

fact that, in the absence of ALT reference data of the bedrock, we choose to investigate

the interpolation results only at scale s∗ (see Fig. 5.4). Thus, we first rescale the RS

bedrock measurements at s∗, as done with the RS ice surface elevation measurements

(see Sec. 5.3.2), in order to obtain BRS(s∗). Then, for each query point, we interpolate

with the OK method its N0 = 10 nearest neighbors, as done for the surface samples.

Since the OK method is run with P parameter sets (see Sec. 5.2.2), we obtain a set of

P estimated bedrock maps BRS
pBi

(s∗), i = [1..P ], and a set of P corresponding uncertainty

maps UB

pBi
(s∗), i = [1..P ]. In the absence of reference data for constructing the bedrock

error maps, we select the best parameter set p∗B as the one that minimizes the mean

value of UB

pBi
(s∗), i.e., which yields the highest overall quality. This operation provides

p∗B and implicitly BRS
p∗B(s

∗) and UB

p∗B(s
∗).

5.3.4 Estimation of the ice thickness map at the most reliable scale

Once the most reliable scale s∗, the surface elevation map and the bedrock elevation map

have been derived as described in Sec. 5.3.2 and in Sec. 5.3.3, the ice thickness map
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∆RS(s∗) can be obtained as:

∆RS(s∗) = SRS
p∗S(s

∗)−BRS
p∗B(s

∗). (5.9)

It is worth highlighting that the thickness map could have been obtained by directly

interpolating the thickness measurements extracted from the RS data rescaled at s∗, i.e.,

by interpolating with the OK method the values SRS(s∗)−BRS(s∗), as it has been done

for the bedrock elevation measurements, (see Sec. 5.3.3). However, that would have

likely introduced more ambiguities in the estimation, which are due to both the surface

and bedrock elevation variability. For this reason, we chose to interpolate the bedrock

measurements, and to subtract the result from the interpolated surface, to get the ice

thickness map. Furthermore, since for computing the thickness map we are subtracting

2 maps, it is important that they are consistent and thus at the same scale. This is the

main reason for which we chose to estimate the bedrock map at scale s∗, which has been

validated for the interpolation of the ice surface samples.

5.4 Experimental results

The proposed technique has been validated on a subset of RS data acquired by the Multi-

Channel Coherent Radar Depth Sounder (MCoRDS) [14] and ALT data acquired by the

Geoscience Laser Altimeter System (GLAS)/ICESat [91] over a portion of about [32km

× 32km] of the Byrd Glacier in Antarctica. Fig. 5.5(a) shows the investigated area and

the positions of the RS flightlines. Tab. 5.2 reports the specific properties of the analyzed

data. According to these properties, the values of the initial parameters of the technique

are: sRS
0 = dRS

x = 15m, sALT
0 = dALT = 500m. Fig. 5.5(b)-(c) show the scatterplots of

the ice surface elevation SRS and bedrock elevation BRS, computed at sRS
0 as described

in Sec. 5.3.1.

Table 5.2: Properties of the RS and ALT data used in the experiments.
Property RS data (MCoRDS) ALT data (GLAS DEM)

Horizontal spacing dRS
x = 15m, dRS

y ≈ 1.8− 12km dALT
x = dALT

y = dALT = 500m

Horizontal resolution

δRS
x = 25m with SAR processing,

δRS
y ∈ [35− 250]m depending on surface roughness

(at a platform height ≈ 500m)

δALT
x = δALT

y = δALT = 500m

Vertical resolution
δRS
z = 4.3m in ice, δRS

z = 7.4m in air

with range compression and windowing factor kt = 1.53
δALT
z = 15cm

The input data properties drive the choice of the range of scales for interpolation. The

minimum scale for interpolation is constrained by the scale of the input ALT data, i.e.,
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(a)

(b) (c)

Figure 5.5: Input ALT and RS data. (a) ALT DEM of the ice surface; the position of the RS flightlines

are highlighted in black. (b) Scatterplot of the ice surface elevation from the RS data at the original scale

sRS
0 = 15m. (c) Scatterplot of the bedrock elevation from the RS data at the original scale sRS

0 = 15m.

s1 = sALT
0 = 500m. In fact, since the highest horizontal resolution of the ALT data (which

is considered as reference in our technique) is 500m, it is worthless to interpolate the RS

measurements at smaller scales; a rescaling of the ALT data at scales smaller than sALT
0 ,

i.e., upsampling, would only introduce artifacts, with no gain in resolution. On the other

hand, the maximum scale for interpolation is imposed by two conditions: i) the number

of rescaled RS samples at large scales becomes insufficient for performing a reliable geo-

statistical analysis (i.e., the fitting performance of the empirical semivariograms suddenly

drops for scales ≥ 2000m), and ii) for large scales the resulting maps become too smooth

and with insufficient degree of detail. For these reasons, we set the maximum scale for

interpolation to be approximately equal to the minimum spacing of the RS data in the

across-track direction, i.e., sJ ≈ min
{

dRS
y

}

. In the above-mentioned range we consider

J = 6 scales, i.e., sj = [500, 750, 1000, 1250, 1500, 1750]m.
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In order to analyze the impact of the different OK parameter sets (see Tab. 5.1), of the

different theoretical models (see Appendix B 5.6) used to fit the empirical semivariograms

and of the different scales sj, in the following we provide a qualitative and quantitative

assessment of a specific case. We analyze the RS ice surface elevation samples rescaled at

s1 = 500m, by considering the first parameter set, i.e., p1 = {bw,W1}. Fig. 5.6(a)-(d)

show the fitting performances of all the 4 investigated theoretical models on the set of

rescaled samples SRS(500) (see Sec. 5.3.2). As one can see, the best fitting model in this

case is the linear model, with R2 = 0.968 and θ = (0.08, 0m2). Thus, the semivariogram is

regenerated as explained in Sec. 5.2.2; we fit a surface to SRS(500) by using a local linear

regression procedure [99] and perform the fitting on the semivariogram of the residuals.

The residuals and the best fit are illustrated in Fig. 5.6(e) and Fig. 5.6(f), respectively.

Quantitatively, the best fitting model in this case is the Gaussian model with R2 = 0.806

and θ = (4.14km, 210.97m2, 0m2).

We apply this algorithm to derive the best fitting model of the semivariograms of

ice surface samples generated with all the parameter sets and rescaled at all the J = 6

scales sj = [500, 750, 1000, 1250, 1500, 1750]m. The obtained best fitting model with the

estimated vector of parameters, for all the investigated cases, are reported in Tab. 5.3. On

the basis of these results, ice surface elevation maps and uncertainty maps are estimated

for all the parameter sets, for all the scales. The statistics of the absolute error maps

DpSi
(sj) and uncertainty maps US

pSi
(sj), for i = [1..P ], j = [1..J ] are shown qualitatively

in Fig. 5.7(a)-(f) and Fig. 5.8(a)-(f), respectively. As it can be seen from Fig. 5.7(a)-(f),

for a certain scale the variability of the mean values of the absolute error maps versus

the parameter set is very low. This means that the OK solution for the estimated value

tends to keep constant the local mean independently on the parameter set. Therefore, the

best parameter set p∗S at each scale sj, and its corresponding OK solution (i.e., estimated

elevation SRS
p∗S(sj) and uncertainty maps US

p∗S(sj)), is derived as the one that minimizes

the mean value of all the uncertainty maps generated at scale sj (see Sec. 5.3.2). The

best fitting model and its associated vector of estimated parameters, which are related

to the identified best parameter set at each scale, are highlighted in bold in Tab. 5.3.

The statistics of Dp∗S(sj) and US

p∗S(sj), j = [1..J ] are shown in the boxplots in Fig.

5.7(g) and Fig. 5.8(g), respectively. As explained in Sec. 5.3.2, we choose s∗ as the one

that minimizes the mean values of the absolute error maps Dp∗S(sj), j = [1..J ]. This is

identified at s∗ = 1250m, see Fig. 5.7(g). From the statistics of the uncertainty maps

US

p∗S(sj), which are shown qualitatively in Fig. 5.8(g), the following can be derived. First,

the mean values of US

p∗S(sj) increase for larger scales. This is due to the fact that at larger

scales the rescaled RS samples used by the OK method, i.e., SRS(sj), are more sparse than

at short scales, thus leading to more uncertain estimates. However, this negative trend
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Example of model fitting and associated estimated vector of parameters of the semivariogram

of SRS(500) generated with the parameter set p1 = {bw,W1}. a) Spherical model, b) Exponential model,

c) Gaussian model, d) Linear model, e) Scatterplot of the residuals obtained by subtracting the values of

the fitted surface from the initial SRS(500), f) Fitting performances on the semivariogram regenerated

with the parameter set p1 = {bw,W1} on the residuals shown in Fig. 5.6(e); quantitatively, the best

fitting model is the Gaussian model with R2 = 0.806 and θ = (4.14km, 210.97m2, 0m2).
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towards large scales is compensated by the smaller standard deviations ofUS

p∗S(sj) towards

large scales. This is due to the fact that, not only the SRS(sj) are sparser, but also the

query points are less at larger scales, leading to more similar uncertainties for neighboring

query points. Therefore, it can be derived that at the most reliable scale s∗, the overall

uncertainty is relatively good (see Fig. 5.8(g)), i.e., with a mean value of 15m. The

parameter set that provides the lowest overall uncertainty at s∗ is p∗S = p8 = {bs,W5}.
The best fitting model of the empirical semivariogram at s∗ is highlighted in bold italics

in Tab. 5.3.

Table 5.3: Best fitting models and estimated vector of parameters obtained with all OK parameter sets,

at all investigated scales, on the ice surface samples. The results obtained with the parameter set that

provides the lowest mean uncertainty at a given scale are highlighted in bold. The results obtained at

the best scale are highlighted in bold italics.

Scale Model
OK parameter set

p1 p2 p3 p4 p5 p6 p7 p8

500

Name gauss gauss gauss gauss gauss gauss gauss gauss

ρ[km] 4.14 3.79 4.44 4.11 4.47 4.10 4.55 4.92

ξ[m2] 210.97 208.37 215.67 212.19 227.63 208.45 212.58 227.83

η[m2] ≈ 0 ≈ 0 4.22 3.00 1.31 ≈ 0 ≈ 0 ≈ 0

750

Name gauss gauss gauss gauss gauss gauss gauss spher

ρ[km] 4.13 3.78 4.49 4.07 4.49 4.10 4.60 6.79

ξ[m2] 210.85 207.66 217.11 212.29 227.33 207.34 212.02 223.02

η[m2] ≈ 0 ≈ 0 3.64 3.01 1.36 ≈ 0 ≈ 0 ≈ 0

1000

Name gauss gauss gauss gauss gauss gauss gauss spher

ρ[km] 4.02 3.74 4.26 4.06 4.38 4.12 4.57 6.70

ξ[m2] 206.17 204.25 211.79 209.04 221.74 204.86 209.70 219.93

η[m2] ≈ 0 ≈ 0 3.80 3.06 1.74 ≈ 0 ≈ 0 ≈ 0

1250

Name gauss gauss gauss gauss gauss gauss gauss spher

ρ[km] 4.12 3.81 4.57 4.16 4.63 4.13 4.65 6.67

ξ[m2] 204.42 201.83 212.03 207.66 222.25 202.48 208.36 217.55

η[m2] ≈ 0 ≈ 0 2.54 1.91 2.97 ≈ 0 ≈ 0 ≈ 0

1500

Name gauss gauss gauss gauss gauss gauss gauss spher

ρ[km] 3.98 3.74 4.14 3.94 4.46 4.14 4.52 6.59

ξ[m2] 200.73 198.26 210.14 205.91 217.28 199.84 206.67 214.23

η[m2] ≈ 0 ≈ 0 1.88 1.63 2.11 ≈ 0 ≈ 0 ≈ 0

1750

Name gauss gauss gauss gauss gauss gauss gauss spher

ρ[km] 4.09 3.80 4.46 4.19 4.53 4.18 4.70 6.71

ξ[m2] 197.71 195.15 206.41 202.69 212.98 197.27 204.74 212.27

η[m2] ≈ 0 ≈ 0 5.58 4.33 0.17 ≈ 0 ≈ 0 ≈ 0

The most reliable scale s∗ is then used for interpolating the bedrock samples BRS(s0)

as explained in Sec. 5.3.3. Tab. 5.4 reports the best fitting model and its associated
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Figure 5.7: Statistical representation of the obtained results. Boxplots of DpS

i

(sj), i = [1..P ] at scales:

(a) s1 = 500m, (b) s2 = 750m, (c) s3 = 1000m, (d) s4 = 1250m, (e) s5 = 1500m, (f) s6 = 1750m, (g)

Boxplots of Dp∗S(sj), j = [1..J ], (h) Boxplots of BRS
pB

i

(s∗ = 1250), i = [1..P ]. Each color is associated to

a parameter set. The asterisks ’*’ are placed at the mean value of the boxplots and linked in order to

highlight the mean overall variability of the analysed maps.

Figure 5.8: Statistical representation of the obtained uncertainty maps. Boxplots of US

pS

i

(sj), i = [1..P ] at

scales: (a) s1 = 500m, (b) s2 = 750m, (c) s3 = 1000m, (d) s4 = 1250m, (e) s5 = 1500m, (f) s6 = 1750m,

(g) Boxplots of US

p∗S(sj), j = [1..J ], (h) Boxplots of UB

pB

i

(s∗ = 1250), i = [1..P ]. Each color is associated

to a parameter set. The asterisks ’*’ are placed at the mean value of the boxplots and linked in order to

highlight the mean overall variability of the analysed maps.
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vector of estimated parameters related to the different OK parameter sets for BRS(s∗).

On the basis of these results, we estimate the bedrock maps BRS
pBi

(1250), i = [1..P ] and

uncertainty maps UB

pBi
(1250), i = [1..P ]. Fig. 5.7(h) and Fig. 5.8(h) show the boxplots

of BRS
pBi

(1250), i = [1..P ] and UB

pBi
(1250), i = [1..P ], respectively. The parameter set that

provides the lowest overall uncertainty is p∗B = p8 = {bs,W5}. The best fitting model

of the empirical semivariogram at s∗ is highlighted in italics in Tab. 5.3.

It is worth analyzing the results obtained for the surface and bedrock in terms of

uncertainty values. As it can be seen from Fig. 5.8(g)-(h), the uncertainties obtained

by interpolating the surface samples at 1250m are in the range [13-17]m, whereas the

uncertainties obtained by interpolating the bedrock samples are in the range [130-200]m.

This is explained by the fact that the variability of the bedrock samples at short range

is very high, i.e., in the same order of magnitude with the scale s∗. The variability

of the surface and bedrock samples can be compared in Fig. 5.9(a) and Fig. 5.9(b),

which show the scatterplots of SRS(1250) and BRS(1250), respectively. Note both the

different dynamic range of values and the different variability in local neighborhoods

of the surface and bedrock samples. This short range variability is captured also by the

semivariograms and best fitting models of SRS(1250) (see Fig. 5.9(c)) and BRS(1250) (see

Fig. 5.9(d)). As it can be seen, SRS(1250) is better modeled by the Spherical model, with

θ = (6.67km, 217.55m2, 0m2), whereas BRS(1250) is better modeled by the exponential

model, with θ = (21.12km, 39623m2, 0m2)(see Appendix B 5.6). Moreover, recall that the

best parameter set for both SRS(1250) and BRS(1250) is p∗S = p∗B = p8 = {bs,W5}.
This means that, given the characteristics of the input RS data (see Tab. 5.2), the

semivariograms that provide the highest overall quality maps of both surface and bedrock

elevation at scale s∗ are generated with the binsize method. This can be explained by

the fact that with the binsize method a sufficient number of RS point pairs falls in each

bin to ensure a consistent statistical analysis. Given the particularity of the RS data, the

same is not necessarily true in the case of the binwidth method. Moreover, different works

have demonstrated the importance of a good semivariogram fit near the origin in order

to ensure good interpolation performances. This result is confirmed also by our study,

i.e., the best fitting model of these semivariograms is determined by using the Zhang [97]

weighting function, W5, which gives more weight to the semivariogram bins near the

origin.

The final estimated surface and bedrock elevation maps at scale s∗ = 1250m, both

obtained with the best parameter set p8 = {bs,W5} are provided in Fig. 5.10(a)-(b).

The thickness map at 1250m is provided in Fig. 5.10(c).
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(a) (b)

(c) (d)

Figure 5.9: (a) Scatterplot of the surface samples rescaled at the most reliable scale, i.e., SRS(1250), (b)

Scatterplot of the bedrock samples rescaled at the most reliable scale, i.e., BRS(1250), (c) Semivariogram

best fit of SRS(1250), using the best parameter set p∗S = p8 = {bs,W5}, (d) Semivariogram best fit of

BRS(1250), using the best parameter set p∗B = p8 = {bs,W5}.
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(a)

(b) (c)

Figure 5.10: Estimated maps at s∗ = 1250. (a) Ice surface map, (b) Bedrock map, (c) Ice thickness map.
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5.5 Conclusion

Table 5.4: Best fitting models and estimated vector of parameters obtained for the bedrock samples, with

all OK parameter sets, at s∗ = 1250m. The results obtained with the parameter set that provides the

lowest mean uncertainty are highlighted in italics.

Scale Model
OK parameter set

p1 p2 p3 p4 p5 p6 p7 p8

1250

Name expon expon expon expon expon spher expon expon

ρ[km] 21.10 20.55 21.10 21.10 20.77 17.17 21.12 21.12

ξ[102m2] 400.48 399.99 398.96 404.19 399.77 374.26 407.12 396.23

η[102m2] 9.40 ≈ 0 23.16 12.98 4.39 55.18 ≈ 0 ≈ 0

5.5 Conclusion

In this Chapter we have provided a contribution to the problem of 3D modeling of the ice

sheet. In particular, we proposed an automatic method for the local 3D reconstruction of

the ice sheet. The method exploits the complementary properties of the RS and ALT data.

It uses the geostatistical OK method to interpolate at different scales and with different

OK parameter sets the elevation measurements extracted from the RS data. It relies on

the use of several statistical measures for investigating the interpolation results and the

quality of interpolation at the considered scales. The highest quality map at a certain

scale is the one with the lowest overall uncertainty among all maps generated at that scale

with different OK parameter sets. The most reliable scale is chosen by comparing the

highest quality ice surface elevation map at each scale against rescaled ALT data, which

are considered as reference. Results obtained by validating the method on a subset of RS

data acquired by MCoRDS and ALT data acquired by the GLAS/ICESat over a portion

of the Byrd Glacier in Antarctica confirm its effectiveness.

According to our results, for the considered datasets the most reliable scale for inter-

polation is at 1250m. This means that at 1250m, we obtained the lowest mean absolute

error between the ice surface elevation map generated by interpolating the rescaled RS

measurements with the OK algorithm and the rescaled reference ALT data. Moreover, the

estimated ice and bedrock elevation maps have the highest overall quality among several

maps generated with different OK parameter sets at 1250m.

The generated maps are a result of a detailed SVA performed on the rescaled ice surface

and bedrock RS samples. We obtained that on our datasets the ice surface and bedrock

interface are best represented by the Spherical and Exponential models, respectively. This

highlights the higher variability (in elevation) of the bedrock samples with respect to the

surface samples. Moreover, the identified Spherical and Exponential models are both fit-

ted on the empirical semivariograms generated with a constant number of samples in each

bin. Given the particularities of the RS data, this ensures that there are enough samples
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in each bin for performing a consistent statistical analysis. The identified Spherical and

Exponential models are fit with the weighting function proposed in [97]. This confirms a

result already derived in the literature, i.e., more accurate estimates are given by theoret-

ical models that provide a good fit of the empirical semivariogram near the origin (indeed

the weighting function proposed in [97] gives more weight to bins close to 0).

As future developments, we plan to study the possibility to refine the estimated 3D

maps by including in the method possible known input data uncertainties and their effects

on the results provided by the adopted geostatistical interpolation strategy. Another

development consists in enlarging the parameter set with a subset that considers different

ways of selecting the samples or the number of samples used in the interpolation. We

recall that in this work for the estimation at a certain query point, we considered its

10 nearest observed samples. However, a different number or another selection criteria

(e.g., quadrant search) can be considered. Moreover, we aim to include in the study the

modeling of possible anisotropic behavior of the ice sheets. Anisotropy is most likely to

appear along the ice streams or in mountainous areas, due to the preferred direction of

snow deposition and accumulation or flow. Therefore, we plan to adapt and apply the

method to the 3D modeling of the ice subsurface also in these particular regions of the

ice sheets.

5.6 Appendix B

In this Appendix, the equations of the theoretical models used for fitting the empirical

semivariogram are given.

− The Spherical model:

γSph(h; θ) =















0, h = 0,

η + (ξ − η)[3
2
· h
ρ
− 1

2
(h
ρ
)3], 0 < h ≤ ρ,

ξ, h > ρ,

(5.10)

− The Exponential model:

γExp(h; θ) =







0, h = 0,

η + (ξ − η)[1− e−
3h
ρ ], h > 0,

(5.11)

− The Gaussian model:

γGau(h; θ) =







0, h = 0,

η + (ξ − η)[1− e
− 3h2

ρ2 ], h > 0.
(5.12)
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θ = (ρ, ξ, η) is the vector of parameters of these models, where the range ρ is the

distance after which the samples lose spatial correlation, the sill ξ is the value that the

semivariogram has at ρ, and the nugget η is associated with measurement errors and

variations at microscales smaller that the distances between the available samples.

− The Linear model:

γLin(h; θ) =







0, h = 0,

η + ♭h, h > 0,
(5.13)

where ♭ is the slope and η is the value of the semivariogram where the line fitted to

the data intersects the y-axis.
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Chapter 6

Estimation of Radar Power Losses in

Ice by Using Radar Sounder and Ice

Core Data

This Chapter1 provides a contribution to the problem of understanding the radar wave

interaction with the ice sheet. In particular, we propose a method for the estimation of

radar power losses in ice by fusing RS and ice core data. The objective of the method is

the estimation of power losses through ice as a continuous non-linear function of depth,

rather than the estimation of the ice power loss rate. The technique uses coincident RS

and ice core data. It relies on the detection of ice layers in the RS data, the computation

of their depth and reflectivity by fusing RS and dielectric permittivity profile (DEP) data

collected at the ice core, and the use of the radar equation for ice power loss estimation

as a discrete function of depth. Then, a continuous non-linear function is fitted to the

discrete power losses and extrapolated to the bedrock in order to estimate the losses through

the whole ice column. Although the method has been defined, at present it has not been

fully implemented and validated. However, the preliminary results obtained by applying

the technique to real RS and DEP ice core data acquired in Greenland encourage further

research.

6.1 Introduction and background

The importance of better understanding the interaction of the radar wave with the ice

sheet has been often highlighted by the scientific community. It is well understood that

1The work has been carried out during a period of 3 months (mid June - mid September, 2014) as visiting PhD student

at the Center for Remote Sensing of Ice Sheets (CReSIS), Lawrence, Kansas, USA, under the supervision of Prof. Prasad

Gogineni and Dr. Jilu Li. At the time of writing the work is still under development.
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6.2 Proposed method for ice loss estimation

the reduction of the wave power is due to geometric spreading losses in air and ice, wave

reflection and scattering at the ice surface, internal layers and underlying bedrock, and

attenuation in the subsurface [3]. The geometric losses depend on the distance between

sensor and target, the reflection and scattering losses depend on the interface roughness,

and the ice attenuation results from ice impurity and conductivity, which is a function

of instrument working frequency and ice temperature [100]. Therefore, at constant RS

central frequency, a variable temperature within the ice sheet implies a variable ice atten-

tuation both as a function of depth and location. However, most works in the literature

(see Sec. 2.3) assume a linear trend of the power attenuation and thus estimate a constant

rate of power attenuation. In this work, we propose a technique for the estimation of ice

power losses as a continuous non-linear function of depth and location, rather than the

estimation of the ice power loss rate. This results in a more reliable estimation of the

losses on wide areas, which is fundamental for a better understanding of the radar wave

interaction with the ice subsurface and for a better modeling of the processes taking place

within the ice sheet and at the basal interface (e.g., reduction of the uncertainties related

to the boundary conditions [55]).

The method fuses RS and dielectric profile (DEP) data that are coincident at the ice

core position, and is based on a layer-driven approach (see Sec. 2.3). This implies the use

of information about the layers visible in the radargram rather than information about

the bedrock reflected power. As already mentioned in the previous Chapters of the thesis,

the ice internal layers have been generated over millennia by snow accumulation on the

underlying bedrock, alternated by depositions of impurities from volcanic explosions [67],

and ice flow dynamics [68], therefore they have an isochronous character [57] (see Sec.

3.2). As stated in [58], an important consequence of the isochronous character of the

ice layers is the fact that it allows the findings at any given drill site to be extrapolated

over a region covered by a RS survey that passes through the drill site. This statement

motivates our choice of fusing the RS and ice core data and the use of the layer-driven

approach to provide additional information about the radar power losses through ice on

wide areas.

6.2 Proposed method for ice loss estimation

6.2.1 Problem formulation and architecture of the proposed method

A radargram is a 2D matrix that contains the power reflected by interfaces in the ice

subsurface and measured by the RS receiver as a function of 2WTT Λ to the interface

(or sample i = [1..nS]) in the range direction, and as a function of platform position (or

trace t = [1..nT ]) in the along-track direction. An ice dielectric profile (DEP) contains
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measurements of the dielectric permittivity of the ice along the ice column. Our technique

fuses RS and DEP data, which we assume coincident at the ice core position t = tc.

The proposed method is a trace-based technique which relies on the use of the radar

equation at each trace and assumes that the ice internal layers visible in the radargram

are dominated by specular reflections. By adapting the general radar equation (see the

simplified form of the radar equation in (1.2)) to a RS (i.e., nadir-looking geometry,

subsurface penetration), the power Pk measured by the RS at trace t from a specular

layer k located at a depth Zk, is given by:

Pk = Ptx ·
(

λ

4π

)2

· G2

[

2
(

H + Zk√
εk

)]2 · L2
k ·Υ2

s · Γk, (6.1)

where Ptx is the transmitted pulse power, λ is the wavelength, H is the height of the RS

platform with respect to the surface, G is the gain of the antenna, εk is the dielectric

permittivity at layer k and Lk is the one way power loss due to the ice attenuation until

layer k. Γk is the reflectivity of the layer k, and is given by the dielectric contrast,

according to the following equation:

Γk =

∣

∣

∣

∣

√
εk− −√

εk+√
εk− +

√
εk+

∣

∣

∣

∣

2

, (6.2)

where εk− and εk+ are the dielectric permittivities before and after the interface. Υs is

the transmission coefficient of the surface and is given by:

Υs = 1− ρsΓs, (6.3)

where ρs is the reflection reduction due to surface roughness and Γs = 0.029 (which is

equivalent to -15.31dB) is the reflectivity of the surface, obtained with (6.2) by setting

εk− = εair = 1 and εk+ = εsnow = 2. It is important to note that by using (6.1) we

implicitly assume an ice sheet simplified model composed of two interfaces, i.e., the ice

surface and the layer k, as depicted in Fig. 6.1. The intermediate k−1 internal layers are

assumed to have a transmission coefficient close to 1, because of their very low reflectivity.

For this reason and for the sake of clarity, the product of transmission coefficients until

layer k is omitted in (6.1).

By expressing the received power from layer k in realtion to the received power from

the surface, the derived power ratio is independent on the parameters of the RS, which is

given by:

Pk

Ps

=
(1− ρsΓs)

2Γk

ρsΓs

·
(

H

H + Zk√
εk

)2

· L2
k, (6.4)
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Figure 6.1: Two interface model of the ice sheet.

where Ps is the received power from the surface, given by:

Ps = Ptx ·
(

λ

4π

)2

· G2

(2H)2
· ρsΓs. (6.5)

Moreover, by inverting (6.4) one can derive Lk:

Lk =





Ps

Pk

· ρsΓs

(1− ρsΓs)2Γk

·
(

H + Zk√
εk

H

)2




1/2

. (6.6)

It is worth noting that Lk can be estimated for all layers k and for all traces t with (6.6)

as a discrete function of layer depths Zk and other properties of the surface and layers,

i.e., surface reflectivity, power and roughness reduction coefficient, and layer power and

reflectivities, which are all unknown quantities, to be estimated from the data.

In this work we aim to estimate the ice power losses for all traces t, as a continuous

non-linear function L of depth, starting from the discrete form expressed by (6.6). To

this aim, we propose a method composed of 5 blocks. The block scheme of the technique

is depicted in Fig. 6.2. In particular, the first block performs the surface and bedrock

detection, and surface roughness estimation from the radargram, in order to provide the

required Ps and ρs at all positions t of the platform. The second block performs the layer

detection and provides the 2WTT Λk and the power Pk of K continuous specular layers

visible in the radargram. The depth of the layers Zk at the position tc of the DEP and

the reflectivity of the layers Γk are estimated in the third block of the technique by fusing

the RS and DEP data. At this point all the unknowns, i.e., Ps, Pk, ρs, Γs, Γk, Zk, εk in

(6.6) are estimated, and thus the discrete losses Lk at the depth of each layer k at the

DEP position tc can be calculated. Moreover, the considered two interface model of the

ice sheet and the assumption that the layers are dominated by specular reflections (i.e.,

the reflectivity Γk of each layer is constant along the layer k) allows us to estimate their

depth and consequently the corresponding power losses Lk for all traces t. We perform

100



Chapter 6 Estimation of Radar Power Losses in Ice by Using Radar Sounder and Ice

Core Data

Figure 6.2: Block scheme of the proposed technique for the ice power loss estimation.

this in the fourth block of the technique. Finally, in the fifth block we estimate the power

losses as a continuous non-linear function L of depth by fitting and extrapolating to the

bedrock a theoretical function to the estimated discrete losses Lk, for all traces t.

In the following subsections, a detailed description of each of the processing steps of

the method is given.

6.2.2 Step 1: Surface and bedrock detection and estimation of reflection

reduction due to surface roughness

The objective of this step is the detection of surface and bedrock positions, and the esti-

mation of the surface power Ps and of the reflection reduction ρs, for the entire radargram.

The surface and bedrock positions can be traced manually or according to automatic

techniques, e.g., see Chapter 3, Chapter 4, [19]. Once the surface position and the related

power Ps are extracted from the radargram, we use them to estimate the surface roughness

parameters, i.e., the root mean square height RMSH σh and the correlation lenght LC,

which are in turn used to estimate ρs. In particular, σh represents the vertical displacement

of the surface with respect to its mean plane, whereas LC is the horizontal length over

which the samples are correlated.
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Under the condition that several surface vertical undulations are simultaneously illu-

minated by the radar (i.e., LC ≪ DF , where DF is the first Fresnel zone (see (1.12)),

the RMSH introduces a phase variation Φ which reduces the specularly reflecting power

by a factor ρs, defined as [101]:

ρs = exp−Φ2

B2
0(Φ

2/2), (6.7)

where B0(·) is the zero-order modified Bessel function, and Φ is given by:

Φ =
4πσh

λ
. (6.8)

Φ can be estimated according to Neal’s approach [102] from the probability distribution

of the received power returns from the surface. Accordingly, we fit a theoretical model

M (derived in [102]) with varying parameter Φ to the real histogram H of the surface

power collected from a statistically sufficient number nt of neighboring traces. The best fit,

which we identify by minimizing the KL measure between the distributions H and M (see

(3.1)), provides Φ. It is worth noting that the Neal’s method is applicable only to small-

scale roughness, i.e., surfaces with a RMSH that generates a phase modulation Φ < 0.3.

If the estimated Φ satisfies this condition, we also verify the condition LC ≪ DF , in

order to apply (6.7) to estimate ρs. LC is estimated with an iterative approach from the

normalized power variance vp [102]:

vp =
E{P 2

s }
(E{Ps})2

− 1 = 2Φ2

[

1

1 + λ2H
2π2LC2τ

− 1

1 + λH
πLC2

]

, (6.9)

where τ is the pulse time and E{·} denotes the expectation operation.

If the two conditions (i.e., Φ < 0.3 and LC ≪ DF ) hold, the surface is characterized

by small-scale roughness and ρs can be estimated with (6.7). Otherwise, the surface is

characterized by large-scale roughness (with respect to the wavelength) and other methods

should be used for the estimation of σh, LC and ρs. Note that at the time of writing such

methods have not been yet investigated and implemented in our technique.

6.2.3 Step 2: Layer detection

The objective of this step is the detection of the well-defined ice internal layers k = [1..K]

and the computation of their power Pk for all the traces t of the radargram. To this aim

we use the method proposed in [26]. The method uses the phase information measured by

the RS and detects the layers based on the analysis of the Doppler spectrum (for further

details on the method the reader is refered to [26]). We apply this method and detect

the power of the layers Pk and their position as a function of 2WTT Λk, along the entire
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radargram. Afterwards, we select only those K layers that are passing through the ice

core site and are continuous over the radargram. The layer continuity is required for the

estimation of the ice power losses on all the traces of the radargram (see Sec. 6.2.5), by

assuming that the layer reflectivity, which can be estimated at the ice core site (see Sec.

6.2.4), is constant along the layer.

6.2.4 Step 3: Layer depth and reflectivity estimation at the ice core site

The aim of this step is the computation of the layer depths and reflectivities. Initially,

we achieve this at the ice core position t = tc by fusing the DEP data with information

extracted from the RS data. Note that the DEP data is available in the depth domain, i.e.,

a measurement of dielectric permittivity is taken every δDEP
z [m], where δDEP

z is the vertical

resolution of the DEP profile. On the contrary, the layers at the ice core are detected in

the time domain, i.e., as a function of 2WTT. Thus, in order to match the layers visible

in the radargram at t = tc to their position in the DEP profile, a conversion from time

to depth should be performed. By doing so both the layer depth and reflectivities can

be computed with high accuracy. This is performed in 3 main steps: i) conversion of

the DEP depth to time domain and matching of Λk extracted from the radargram at

the DEP site, ii) extraction of εk− and εk+ for the computation of Γk with (6.2), and iii)

back conversion from time to depth domain for the estimation of the layer depth Zk, by

considering the whole DEP until layer k. This sequence of operations is done for all layers

k = [1..K] detected in the radargram at the DEP ice core site tc.

It is important to highlight that the layer depths are typically computed by using the

range to target equation (1.1), in which a constant dielectric permittivity of ice εice =

3.15 is assumed. However, with this approximation the layer depths are under- or over-

estimated, leading to an incorrect layer depth matching in the DEP and consequently to an

incorrect layer reflectivity estimation. On the contrary, the availability of the DEP allows

for an improved estimation of the layer depth and reflectivity, as previously explained.

6.2.5 Step 4: Layer depth and corresponding discrete ice power loss estima-

tion

The objective of this step is two-fold: i) the estimation of the layer depths on all the

traces of the radargram, and ii) the estimation of the discrete one way power loss at the

estimated layer depths.

The computation of the layer depths in the whole radargram is done similarly to what

implemented for estimating the layer depths at the DEP site (see Sec. 6.2.4). The only

difference is that for all traces t 6= tc there is no information on the dielectric profile.
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Therefore, in order to estimate the layer depths Zk, we assume that between the surface

and the layer k at traces t 6= tc, the dielectric profile is a scaled version of the DEP

between the surface and the layer k at the ice core tc. It is worth noting that this is a

consequence of the two interface ice sheet model that we are considering (see Sec. 6.2.1).

For a multilayer model, one can assume that between each two adjacent layers k and k+1

at traces t 6= tc, the dielectric profile is a scaled version of the DEP between k and k + 1

at the ice core tc. Furthermore, under the assumption that the layers are characterized

by specular reflections, Γk computed at the DEP site tc (see Sec. 6.2.4) is constant along

the layer, therefore known for all traces t. We verify the assumption on the specularity

of the layers by analyzing the along-track coherence of the layers and their behavior as a

function of incidence angle, as done in [26].

At this stage, the one way power loss Lk, k = [1..K] can be computed as a discrete

function of layer depth for each trace t by using (6.6), in which all the unknowns have

been estimated as previously explained.

6.2.6 Step 5: Estimation of power losses as a continuous non-linear function

of depth

The final aim of the proposed technique is the estimation of ice power losses as a continuous

non-linear function L of depth, starting from the estimated discrete ice power losses at the

layer depths Lk, k = [1..K]. To this aim, we propose the following trace-based approach.

For each trace t, we regard the estimated discrete Lk as samples in the depth-power

domain, to which we fit a theoretical non-linear function. Also, by extrapolating the

function to the depth of the bedrock, we estimate the power losses throughout the ice

column until the bedrock. The depth of the bedrock on all the traces of the radargram is

estimated according to the approach used to estimate the layer depths (see Sec. 6.2.5), i.e.,

between the estimated surface and bedrock positions (see Sec. 6.2.2) at traces t 6= tc, the

dielectric profile is a scaled version of the DEP between the surface and bedrock positions

at the ice core tc. Regarding the fit, it is worth noting the impact of the fitting function

on the estimation given the number K of layers and their distribution along the trace.

In order to ensure a reliable and meaningful fit, a sufficient number K of samples should

be available with an ideal uniform distribution with depth. Thus, the smaller K and

the more complex the distribution of Lk with depth, the worse the fitting performances.

Regarding the fitting function, we are investigating the fitting performances of more non-

linear functions by considering a tradeoff between two main aspects, i.e., i) overfitting

and ii) behaviour of the fitting function in the deep subsurface towards the bedrock.

Indeed, the fitting function should have sufficient generalization capability, thus reduced

sensitivity to outliers. On the other hand, the extrapolation of the fitting function towards
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the bedrock should be constrained by the available temperature models, in order to ensure

a reasonable ice power loss trend, i.e., a trend imposed by the physical characteristics of

the ice.

6.3 Experimental results

At the moment of writing, the proposed ice loss estimation method has been only partially

experimentally validated. In this Section we illustrate the preliminary results obtained so

far.

We applied the proposed technique to RS data acquired by the MCoRDS instrument

[14] and DEP data acquired at the NEEM ice core site [103] in Greenland. The RS

data are acquired at low altitude, i.e., H = 480m above the surface, at central frequency

fc = 195MHz and bandwidth Bw = 30MHz. The data are range compressed and the

range resolution is δRS
z = 4.3m. The DEP data are acquired with a range resolution

δDEP
z = 5mm and are not temperature corrected. The proposed technique assumes RS

and DEP data coincident at the ice core position. However, the investigated RS and

DEP data are not perfectly coincident; the closest trace of the radargram to the ice core

t ≈ tc is at a distance of 1.6km. The geographic position of the input RS data and of

the ice core are shown in Fig. 6.3(a), whereas the NEEM DEP profile is shown in Fig.

6.3(b). In order to ensure a sufficient number of continuous layers passing through the ice

core site, we limit our preliminary analysis to a smaller portion of the input radargram,

highlighted in black in Fig. 6.3(a) and illustrated as a function of 2WTT in Fig. 6.3(c).

In this portion of the radargram a number of K =30 continuous layers passing through

the closest trace to NEEM are detected. The first and last horizontal lines represent

the positions of the surface and bedrock, respectively, whereas the intermediate 30 lines

represent the positions of the specular layers detected as described in Sec. 6.2.3.

An initial analysis that we carried out regards the sensitivity of the method to the layer

reflectivity, which we first estimated at the ice core site in 2 ways: i) reflectivity computed

by assuming an approximate constant dielectric profile of εice = 3.15 to estimate the layer

depths, and ii) reflectivity computed by considering the available DEP to estimate the

layer depths (see Sec. 6.2.4). Fig. 6.4(a) shows the depth offset at the ice core, obtained

as the difference between the above mentioned approaches (i.e., correct depth estimated

from the DEP and depth estimated by assuming constant ε = 3.15). As it can be seen,

by assuming a constant dielectric permittivity of ice, the depth is underestimated along

the whole ice column and the depth offset at the layer positions is in the range [8-13]m.

This difference has a negative impact on the estimation of layer reflectivity, see Fig.

6.4(b). In this figure, the reflectivities of the layers at the estimated approximated depths
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(a)

(b)

(c)

Figure 6.3: (a) Geographic position of the input RS data (blue dots), NEEM ice core (green), closest

trace to NEEM t = tc (red), portion of the flightpath for which the acquired radargram contains 30

continuous layers passing through tc), and investigated trace (cyan), (b) DEP profile at the NEEM ice

core site, and (c) The portion of radargram (highlighted in black in Fig. 6.3(a)) showing the detected

positions of surface, layers and bedrock with horizontal lines. The closest trace to NEEM and a generic

investigated trace are shown with vertical red and cyan lines, respectively.
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(circles) and at the corrected depths (stars) are reported. It is worth noting the very

high variability of the reflectivity profile and consequently the very different values of

reflectivity obtained at the layer depths estimated with the two approaches. This analysis

confirms the importance of calculating the depth based on the available DEP, rather than

using the approximated value of εice = 3.15. Besides the estimation of layer depth, another

important aspect in the fusion of RS and DEP data is the approach to the estimation

the layer reflectivity. The layer reflectivities reported qualitatively in Fig. 6.4(b) have

been estimated by simply using (6.2). However, given the different vertical resolution

of the RS and DEP data, a more complex analysis that takes into account the data

resolution should be carried out. Indeed, a bright reflection in the radargram can be due

to various interfaces in the DEP that lie within the radar resolution cell. As an example,

we estimate the reflectivity of a layer as the mean value of the contributions coming from

all interfaces in the DEP within the radar resolution cell (triangles in Fig. 6.4(b)). It

is again worth to note the high variability in the estimated reflectivities with the three

approaches (e.g., depending on the used approach, the cyan layer at about 1500m has

estimated reflectivities in the range [-50 -80]dB). This high variability in the estimated

layer reflectivity represents one of the main sources of uncertainty of the method.

In order to better understand the effects of the estimated reflectivity and to illustrate

the preliminary results obtained by fusing the RS and DEP data, in the following we focus

on a trace characterized by small-scale roughness (i.e., Φ < 0.3, estimated as described

in Sec. 6.2.2). The position of this trace is highlighted with a cyan star in Fig. 6.3(a)

and with a cyan vertical line in Fig. 6.3(c). The vertical power profile and the positions

of the layers on the investigated trace are shown in Fig. 6.5(a). Fig. 6.5(b) reports the

estimated discrete power losses obtained with (6.6) as a function of corrected depth for the

trace shown in Fig. 6.5(a). The power losses obtained with the reflectivity estimated from

(6.2) are reported with stars in Fig. 6.5(b), whereas those obtained with the reflectivity

estimated as the mean reflectivity value within the radar resolution cells are reported with

triangles in Fig. 6.5(b). There are three main aspects worth to note by analyzing Fig.

6.5(b). First, the power losses estimated with the two approaches have different values and

no sistematic trend over the whole ice column. Second, since in our definition the losses are

a negative quantity (see (6.6)), the positive values of the estimated discrete power losses

in the shallow subsurface (i.e., within the first 700m) are not reasonable from a physical

point of view. We attribute these anomalous values to possible surface slope, aircraft roll

(i.e.,≈ 2◦) and uncertainty in the reflectivity estimation from the DEP. Third, the power

losses in the deep subsurface (i.e., below 1500m) appears to fluctuate around a mean

value, instead of showing a decreasing trend, as expected due to increasing temperature

towards the bedrock. This can be explained by the fact that the DEP profile is not
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(a)

(b)

Figure 6.4: (a) Depth offset at the NEEM core site calculated as the difference between the depth

estimated with the available DEP and the depth calculated assuming a constant dielectric permittivity ε =

3.15. As it can be seen, by assuming a constant dielectric permittivity of ice, the depth is underestimated

along the whole ice column and the depth offset at the layer positions is in the range [8-13]m. (b)

Estimated layer reflectivity; each different color refers to a different layer, whereas the different markers

correspond to: ’o’ - reflectivity computed with (6.2) at the approximated layer depth, ’*’ - reflectivity

computed with (6.2) at the corrected layer depth, and ’△’ - reflectivity computed as the mean value of

reflectivity inside the radar resolution cell centered at the corrected layer depth. Note the high variability

in the estimated reflectivities with the three approaches (e.g., depending on the used approach, the violet

layer at about 1500m has estimated reflectivities in the range [-80 -50]dB).
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(a)

(b)

Figure 6.5: (a) Vertical profile of a generic trace (highlighted in cyan in Fig. 6.3(c)) as a function of

2WTT, and (b) Estimated discrete ice power losses as a function of corrected layer depths. The markers

correspond to: ’*’ - ice power losses estimated on the basis of the reflectivity computed with (6.2) at the

corrected layer depth, ’△’ - ice power losses estimated on the basis of the reflectivity computed as the

mean value of reflectivity inside the radar resolution cell centered at the corrected layer depth. Note the

high dependence of the estimated ice power losses on the estimated reflectivity values.
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temperature corrected. The temperature correction can increase the layer reflectivity

by several dBs [104], leading to estimated discrete power losses shifted downwards by a

proportional amount.

The results obtained and reported for the generic trace shown in Fig. 6.5 should be

considered as statistically representative for the portion of radargram shown in Fig. 6.3(c).

This analysis proves that before going further into the estimation of ice power losses as

a continuous function with depth, the available DEP should be temperature corrected

and a stable and reliable approach should be defined and implemented for the estimation

of layer reflectivity. Afterwards, the fitting performances of more non-linear functions

should be investigated in order to infer the trend of power losses through the ice column

and the power losses at the bedrock on the investigated traces.

6.4 Conclusion

This Chapter addressed the problem of understanding the radar wave interaction with the

ice sheet. In particular, we have presented an automatic technique for the estimation of

radar power losses through ice. The technique fuses RS and DEP ice core data and relies

on a layer-driven approach which assumes that the layers visible in the radargram are

dominated by specular reflections. As main advantages over other available techniques,

the method aims to account for ice power losses due to rough surfaces, and to estimate

the reflectivity and the depth of the layers visible in the radargram by properly fusing the

RS data with the available DEP. This allows a more reliable estimation of power losses

as a discrete function of layer depths and consequently enables a better estimation of the

power losses as a continuous function with depth.

Preliminary results have been obtained by applying the technique to RS data acquired

by MCoRDS and DEP data acquired at the NEEM ice core site in Greenland. In par-

ticular, we performed a sensitivity analysis on the calculation of the depth of the layers

and corresponding reflectivity. We derived that depending on these factors, the discrete

power losses estimated at the layer depths can have a very high variability, which can

significantly affect the trend of any non-linear continuous fitting function. Thus, before

analyzing the performance of such non-linear functions, a stable approach to the estima-

tion of layer reflectivity should be defined and implemented. Such an approach should

also take into account the temperature correction of the available DEP. Moreover, an

analysis of the sensitivity of the method to other factors (i.e., aircraft attitude control,

surface slope, number of layers) should be carried out. Afterwards, we will investigate the

fitting perfomances of more ice temperature/physically constrained non-linear functions

in order to understand both the global and the local trend of the ice attenuation. Finally,
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we plan to apply the method to an extended dataset that covers a larger area of the ice

sheet, or a more complex ice subsurface scenario in which the RS survey is closer to the

border of the ice sheet, potentially both in Greenland and Antarctica.
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This Chapter concludes the thesis by recalling the context of our research and by providing

a summary of the novel contributions and a critical discussion of the related experimental

results presented in the document. Finally, we provide ideas for future developments of

the proposed methods.

Research context and summary of novel contributions

The impact of Cryosphere in the evolution of climate change requires enhanced studies of

the ice sheets. Such studies are of great economical and societal importance, since they

allow predictions of the future behavior of the global climate and an improved planning

and use of available resources and technologies [105]. In this context, the aim of this thesis

was to providing a contribution that can support the scientific community in the study

of the ice sheet subsurface.

Radargrams acquired by radar sounder instruments operated on airborne platforms at

the Earth polar regions and glaciated areas represent one of the most complete sources of

information about the ice subsurface. Radargrams are georeferenced 2D profiles of the ice

sheet that highlight the ice subsurface targets. Currently, there are huge archives of RS

data collected during several airborne campaigns conducted at the ice sheets. Due to the

wide coverage and different types of information that RS data convey (e.g., target reflected

power, target position), the analysis of radargrams can lead to e great enhancement in

the understanding of the ice sheets. However, during the past decades, the analysis of

radargrams has been carried out mainly by means of manual investigation with limited

support of semi-automated techniques. These approaches present several problems, e.g.,

the manual analysis is slow, intrinsically subjective and does not allow the fusion of

different types of data (e.g., RS data, ALT data, ice core data). These issues suggest

that the manual analysis limits the scientific return that could be potentially achieved by

analysing the radargrams with more sophisticated approaches.

The importance of studying the ice sheets, the availability of large archives of airborne

RS data, the expected increase in data volume from future RS missions, and the problems
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raised by the manual analysis call for the development of novel automatic techniques for

the analysis of radargrams. Although the automatic techniques present several advantages

over the traditional manual approach, e.g., they are fast, objective and quantitative, and

allow the joint integration of more types of data, so far the development of automatic

techniques for the analysis of ice sheet RS data has been addressed only to a limited

extent by the scientific community.

In this thesis we have provided four main novel contributions to fill the gap in the

literature on the development of automatic techniques for the analysis of ice sheet RS

data. In particular, the proposed methods are: 1) an automatic classification system

and 2) an automatic detection technique of the ice subsurface targets, 3) an automatic

method for the 3D reconstruction of the ice sheet, and 4) an automatic method for the

estimation of radar power losses through ice. Such techniques address three challenges of

great importance in the study of the ice sheets. In particular the first two methods regard

the identification of ice sheet subsurface targets, the third method addresses the problem

of 3D modeling of the ice sheet, and the fourth method regards the understanding the

interaction between the radar wave and the ice sheet.

In the first contribution of the thesis, we developed an automatic classification system

of the ice subsurface targets typically present in radargrams, i.e., layers, bedrock and

noise (including the EFZ). The system is made up of two main components: i) feature

extraction and ii) automatic classification based on SVM. The main focus of the system

is the extraction of informative features from the radargrams, useful for discriminating

the samples belonging to the investigated targets. To this aim, we initially carried out

a detailed study of the statistical properties of the radar signal and of the spatial distri-

bution of the ice subsurface targets. Based on such a study, a set of seven features that

model and correlate the backscattering properties of the radar signal with the spatial

properties of the subsurface targets has been generated. Such features were then given as

input to an automatic classifier based on SVM. The effectiveness of the proposed system,

both in terms of computational efficiency, classification accuracy, and robustness to the

spatial variability of the subsurface targets and heterogeneous quality of the data, has

been proven on two real datasets of radargrams, with different characteristics, acquired

by MCoRDS in two different regions in Antarctica. In particular, we obtained a classifica-

tion accuracy greater than 97% on both datasets, which is satisfactory given the amount

of data, the spatial variability of the subsurface in the investigated areas, and the fact

that the system is almost completely automatic. In fact, the system requires a minimum

amount of human interaction, only in the training phase of the classifier, in which the

values of the few parameters are tuned to the characteristics of the data and the scale of

the subsurface targets. On the other hand, after the training, the system is completely
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automatic. Another advantage of the system is the fact that the algorithms composing it

can be parallelized, leading to a reduced computational time, e.g., about 5 hours for the

investigated datasets. Moreover, it is worth highlighting the flexibility and the learning

capabilities of the system, e.g., depending on the radar frequency and resolution, different

target classes with associated patterns can be identified in radargrams (e.g., high resolu-

tion data allows the identification of crevasses) and the system can be tuned to recognize

them; one first needs to set the number of classes, appropriately model the properties

of the classes in the feature extraction phase and then train the classifier to recognize

such classes. Finally, the presented system can be easily tuned for analyzing different

RS datasets, since it involves a small number of parameters in the overall classification

algorithm, i.e., the dimension of the sliding window for the computation of the features

and the value of the threshold used for extracting the relational feature.

In the second contribution of the thesis, we developed an unsupervised automatic

technique for the detection and the estimation of ice subsurface target properties. The

technique is based on a model of the ice sheet subsurface which assumes the presence

of the EFZ. This is a reasonable assumption since several studies have confirmed the

presence of the EFZ in extensive areas of the ice sheets. The technique relies on an

algorithm for emphasizing the strong backscattering subsurface targets, and on an image

segmentation algorithm for the detection of the borderlines of the ice surface, the last

returns of the layers, and the first and last returns of the bedrock. This output combined

with the parameters of the RS acquisition system help in estimating the properties of the

subsurface targets, e.g., layered area thickness, bedrock scattering area, EFZ extension.

The effectiveness of the proposed automatic detection technique has been proven on a

real dataset acquired by MCoRDS in Antarctica. Satisfactory results have been obtained

both quantitatively in terms of missed and false alarms, and qualitatively in terms of

fitting perfomances of the detected borderlines to manually derived borders of the layers

and bedrock areas.

As it can be seen, the two above-mentioned techniques regard the identification of

ice subsurface targets. One common aspect of the proposed methods is their efficiency

for the analysis of the ice subsurface at large scale. Also, both techniques rely on the

analysis of the statistical properties of the radar signal. According to this analysis, in the

investigated datasets the samples belonging to all target areas (i.e., layers, EFZ, bedrock,

noise) follow a Gamma distribution. Moreover, the Gamma distributions of the EFZ and

noise areas are very similar. This result confirms also from a statistical point of view

the absence of targets in the EFZ, as hypothized and then demonstrated in the literature

by analysing different types of subsurface data (e.g., RS, line-scan data, DEP). On the

other hand, the main difference between the proposed methods is the flexibility and the
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robustness of the automatic classification system to the variability of data. This is due

to both the effectiveness of the extracted features and the employed learning approach.

The automatic detection algorithm is conceptually simpler at the cost of less flexibility.

In fact, the detection performance is ensured only if the assumption of EFZ existence

holds for the entire along-track extension of the radargram. As a main advantage of the

automatic detection algorithm, we recall the fact that, unlike the classification system, it

is an unsupervised method, thus requiring very limited human intervention.

In the third contribution of the thesis, we developed an automatic technique for the

local 3D reconstruction of the ice sheet. With respect to other works which regard the 3D

modeling of the ice sheets, the proposed method jointly uses RS and ALT data to estimate

3D maps of the ice surface, bedrock interface and ice thickness, with the highest overall

quality and at the most reliable scale, derived and validated automatically given the

input data. The method relies on the use of the OK method for interpolating the surface

and bedrock elevation extracted from the RS data. The overall quality of interpolation

is verified by investigating the uncertainty maps provided by the OK method, which is

run with different parameter sets. The most reliable scale is identified by comparing

interpolated surface elevation maps at different scales against consistently rescaled ALT

data, considered as reference. Such scale is then used to interpolate the bedrock elevation

samples, and finally to estimate the ice thickness by subtracting the estimated surface

and bedrock elevation maps. The main contribution of this work with respect to the

related literature is the joint use of the RS and ALT data for the optimization of the

interpolation, the automatic identification of the most reliable scale, and the analysis and

use of the uncertainty maps provided by the OK method. The proposed technique has

been validated on a subset of RS data acquired by MCoRDS and ALT data acquired

by the GLAS/ICESat instrument over a portion of the Byrd Glacier in Antarctica. The

results obtained point out that the most reliable scale is at 1250m. This means that

at 1250m, we obtained the lowest mean absolute error between the ice surface elevation

map generated by interpolating the rescaled RS measurement with OK algorithm and

the rescaled reference ALT data. Moreover, we obtained that at this scale the ice surface

and bedrock interface are best represented by the Spherical and Exponential models,

respectively. This confirms the higher variability in elevation of the bedrock samples with

respect to the surface samples, which can be verified also qualitatively by inspecting the

corresponding rescaled bedrock and surface elevation scatterplots in local neighborhoods.

This analysis is very usefull for understanding the presence of complex scenarious in the

subsurface, e.g., relevant bedrock topography. Also, the defined approach can be used for

the 3D reconstruction of the ice internal layers or of the EFZ.

In the fourth and last contribution of the thesis, we developed an automatic technique
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for the estimation of power losses through ice. This method regards the broad context of

understanding the interaction between the radar wave and the ice sheet. With respect to

other available works in the literature, which estimate the ice loss rate by assuming an

approximated linear trend of the ice losses versus depth, the proposed technique aims to

estimate the ice power losses as a continuous non-linear function of depth and location,

accounting thus for temperature variations in the ice subsurface. The method fuses coin-

cident RS and DEP ice core data and initially estimates the ice power losses as a discrete

function of ice layer depth. Then, a theoretical continuous non-linear function is fitted

to the discrete losses and extrapolated to the bedrock. The choice of the fitting function

takes into account both the distribution of the estimated discrete losses in the depth-power

domain and constraints imposed by available ice subsurface temperature models. This

results in a more reliable estimation of the losses on wide areas, which is fundamental for a

better understanding and modeling of the processes taking place within the ice sheet and

at the basal interface. Although the method has been defined, at the moment of writing it

has not been fully implemented and validated. However, the preliminary results obtained

by applying the technique to real RS data and DEP core data acquired at the NEEM ice

core in Greenland encourage further research. In particular, we performed a sensitivity

analysis of the method to the estimation of layer depth and corresponding layer reflectiv-

ity. We derived that depending on these factors, the discrete power losses estimated at the

layer depths can have a very high (e.g., even ≈30dB) variability, which can significantly

affect the trend of any non-linear continuous fitting function. Thus, before analyzing the

performance of such non-linear functions, a stable approach to the estimation of layer

reflectivity should be defined and implemented. Such an approach should also take into

account the temperature correction of the available DEP. Moreover, an analysis of the

sensitivity of the method to other factors (i.e., aircraft attitude control, surface slope,

number of layers) should be carried out. Only afterwards, the fitting performance of more

ice temperature/physically constrained non-linear functions can be investigated in order

to derive both the global and the local trend of the ice attenuation.

Concluding remarks and future developments

The studies and the methods along with the results described in this thesis regard the

analysis of ice sheet RS data. The use of such techniques can become an efficient connec-

tion between two communities, i.e., the radar sounding and the glaciological community,

which address the analysis of ice subsurface from different perspectives.

In particular, the first two proposed automatic methods for the identification of the ice

subsurface targets, i.e., layers, bedrock, noise (including the EFZ), can be used for instance
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in studies that can further focus on the interpretation of the detected layered area only,

by applying other techniques for the identification of individual layers. Furthermore, the

information about the EFZ onset in the radargrams can indicate changing archeology that

shall be accounted for in the modeling of ice sheet dynamics. Also, one can analyze the

shape of the EFZ for a better understanding of its formation. Finally, the identification

of the whole bedrock backscattering area can be used in geological studies for assessing

the type of material the bedrock is made of, or to understand the reasons for which the

bedrock is thicker and thinner or it completely disappears at some coordinates. Moreover,

the detection of the first return of the bedrock (i.e., the basal interface) helps estimating

the bedrock topography, as done in the third method described in the thesis (i.e., the

3D reconstruction of the ice sheet subsurface), or inferring information about the basal

conditions and processes, e.g., by using the fourth method described in the thesis (i.e.,

estimation of radar power losses through ice). The last return of the bedrock marks the

depth below which the losses through the subsurface (ice and bedrock) have completely

attenuated the trasmitted power. Thus it can be used to derive the absorption properties

of the bedrock.

Future developments regarding the methods described in this thesis should address the

following points:

− Definition of an approach to the unsupervised and adaptive selection of the parame-

ters of the presented techniques and use of adaptive rather than rectangular windows

for denoising and computation of features, for better taking into account the pecu-

liarities of the data.

− Definition and extraction of more discriminative features for radargram classifica-

tion and development of an appropriate postprocessing technique for removing the

misclassified samples.

− Incorporation in the 3D reconstruction method of possible input data uncertainty

values and modeling of possible anisotropic trends of the surfaces.

− Definition and implementation of a stable approach to the reliable estimation of

layer reflectivity by fusing RS and DEP data, and consequently study of physically

constrained models for ice power loss estimation and validation on larger and more

complex datasets.

− Further tuning and validation of the proposed techniques by applying them to

datasets with different characteristics, acquired both in Antarctica and Greenland.
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