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Abstract

This dissertation is divided into three different parts.

In the first part we analyse collected data on the occurrence of influenza-like
illness (ILI) symptoms regarding the 2009 influenza A/H1N1 virus pandemic
in two primary schools of Trento, Italy. These data were used to calibrate a
discrete-time SIR model, which was designed to estimate the probabilities of
influenza transmission within the classes, grades and schools using Markov Chain
Monte Carlo (MCMC) methods. We found that the virus was mainly transmitted
within class, with lower levels of transmission between students in the same grade
and even lower, though not significantly so, among different grades within the
schools. We estimated median values of R0 from the epidemic curves in the two
schools of 1.16 and 1.40; on the other hand, we estimated the average number of
students infected by the first school case to be 0.85 and 1.09 in the two schools.
This discrepancy suggests that household and community transmission played
an important role in sustaining the school epidemics. The high probability of
infection between students in the same class confirms that targeting within-class
transmission is key to controlling the spread of influenza in school settings and,
as a consequence, in the general population.

In the second part, by starting from a basic host-parasitoid model, we study
the dynamics of a 2 hosts-1 parasitoid model assuming, for the sake of sim-
plicity, that larval stages have a fixed duration. If each host is subjected to
density-dependent mortality in its larval stage, we obtain explicit conditions for
coexistence of both hosts, as long as each 1 host-parasitoid system would tend to
an equilibrium point. Otherwise, if mortality is density-independent, under the
same conditions host coexistence is impossible. On the other hand, if at least
one of the 1 host-parasitoid systems has an oscillatory dynamics (which happens
under some parameter values), we found, through numerical bifurcation, that
coexistence is favoured. It is also possible that coexistence between the two hosts

xiii
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occurs even in the case without density-dependence. Analysis of this case has
been based on methods of approximation of the dominant characteristic multi-
pliers of the monodromy operator using a recent method introduced by Breda
et al. Models of this type may be relevant for modelling control strategies for
Drosophila suzukii, a recently introduced fruit fly that caused severe production
losses, based on native parasitoids of indigenous fruit flies.

In the third part, we present a starting point to analyse raw data collected by
Stacconi et al. in the province of Trento, Italy. We present an extensions of the
model presented in Part II where we have two hosts and two parasitoids. Since
its analysis is complicated, we begin with a simpler one host-one parasitoid model
to better understand the possible impact of parasitoids on a host population.
We start by considering that the host population is at an equilibrium without
parasitoids, which are then introduced as different percentages of initial adult
hosts. We compare the times needed by parasitoids to halve host pupae and
we found that the best percentage choice is 10%. Thus we decide to fix this
percentage of parasitoid introduction and analyse what happens if parasitoids are
introduced when the host population is not at equilibrium both by introducing
always the same percentage or the same amount of parasitoids. In this case, even
if the attack rate is at 1

10
of its maximum value, parasitoids would have a strong

effect on host population, shifting it to an oscillatory regime. However we found
that this effect would require more than 100 days but we also found that it can
faster if parasitoids are introduced before the host population has reached the
equilibrium without parasitoids. Thus there could be possible releases when host
population is low. Last we investigate also what happens if in nature mortality
rates of these species increase and we found that there is not such a big difference
respect to the results obtained using laboratory data.



The essence of mathematics is not to make simple things complicated, but to
make complicated things simple.

— S. Gudder
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Introduction

T
his Ph.D dissertation summarizes the results of two different works.
The research of the first topic during my Ph.D program originates from
a result first presented in my Master thesis and presented here in a

developed version, the analysis of collected data on the 2009 influenza A/H1N1
virus pandemic in two primary schools of Trento, Italy, using Markov Chain
Monte Carlo (MCMC) methods.
The choice of the second topic is due to an offer that was made to me less than
two years ago that has intrigued me. This offer consisted in a collaboration with
the Edmund Mach Foundation to the Lexem Project that aims at producing new
strategic knowledge and innovative tools useful for supporting decision-making for
what concerns the crop pest Drosophila suzukii. In fact, since its first detection
in 2008, D. suzukii has provoked serious damages to orchards causing significant
economic losses and this has revived the interest in understanding multi-hosts
multi-parasitoids interactions.

Even if the two parts that constitute this thesis are very different one from
the other, we can find a leitmotiv that links their topics, mathematical modelling.
Mathematical models are in fact a useful tool to simulate epidemic spread
scenarios or dynamics that result from the interactions of different species, and
can be a significant help for public health policies decisions. Formulation of a
model depends indeed on the aspects chosen by the modeller, and, for this reason,
it can easily be used to analyse different real-life situations and can be applied to
different fields of study such as biology, epidemiology, demography, finance . . .

Part I focusses on the study of a discrete-time SIR model.

This part has been inspired by a real outbreak that occurred in two primary
schools in the province of Trento, Italy, in 2009. Parameters estimation

xvii



xviii INTRODUCTION

in such a situation is a key part of the modelling process and Bayesian
inference has been performed in this thesis.

The modelling framework presented here constitutes a novel approach that
can be applied to different infections detected in many countries.

In this Part we present a brief overview of mathematical models used
in epidemiology and on Markov Chain Monte Carlo methods. Then we
analyse data collected in two primary schools in the province of Trento,
Italy, with an epidemic discrete-time SIR model, where the transmission
parameters are estimated via Markov chain Monte Carlo methods. Last, we
apply different parameters estimations. We start with a basic concept that
characterize epidemiology, the basic reproduction number, and then we
apply a developed model that is based on three different kinds of interactions:
within class, grade and school. The first test on simulated data that we
have performed refers to a simple case of a single class with different class
sizes, aiming at the estimate of the probabilities to remain infectious for
two days and to be infected from someone inside the class. Then we test
the model and the estimation algorithm under different parametrizations.
We compare three variants of the model using an adapted version of the
deviance information criterion. Finally, we validate the presented model
and estimate model parameters in the two selected primary schools.

Part II of this dissertation looks at the dynamics that result from the interac-
tions of different species.

In particular we take into account a recently introduced fruit fly, Drosophila
suzukii, whose main characteristic that differentiate this species from most
other species of Drosophilidae is its ability to lay eggs in healthy, ripening
fruits that may become unmarketable causing significant economic losses.

To reduce D. suzukii populations several approaches have been attempted:
chemical control, trap control or natural enemies control. The control
method that is taken into account in this thesis is the use of natural
enemies as possible biocontrol agents against D. suzukii. These natural
enemies are generally parastoids that induce a high rate of mortality in
their host populations due to high natural average rate of parasitism.

We establish conditions for species coexistence and for competitive exclusion
by considering a 2 host- parasitoid model. It begins with a brief overview
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on biological motivations for our study and on classical population models
that provide the model prototype of host-parasitoid models. Then we
introduce a 2 host-parasitoid model based on delay differential equation
that is an extension of a model already presented in the literature. In this
model we consider that adult parasitoids can attack only host larvae (adult
hosts are invulnerable to parasitism) whose mortality can depend or not
on their density at time t. We give coexistence condition of the presented
model that are found by linearising the system around the equilibria with
only one host species present. We show that, when no density-dependence
is present, the two hosts cannot coexist but, once density-dependence is
introduced, we can find some conditions for hosts coexistence. Last, we
discuss also what happens if we are in periodic conditions using numerical
approximations and we give a mathematical proof of what we have found
through the analysis.

Part III summarizes the first results of a topic that we started working on
recently, application of the model to raw data.

In particular, we present the experiments conducted by Tochen et al. and
Stacconi et al. that can be considered useful to apply the presented model
to raw data. However, we have to keep in mind that field and semi field
experiments were performed late in the season and thus the obtained value
are not reliable and are not use in these preliminary simulations.

To apply data extrapolated from the studies of Tochen et al. and Stacconi
et al., we first introduce an extended version of the model presented in Part
II in which we add a new class in host life stages and a different parasitoid.
In this way, we obtain a model that can describe more realistically what
happens in the fields of the province of Trento, Italy. However, since the
analysis and the application of this model are very complicated and require
a lot of unknown parameters, we start with a simpler situation to try to
understand parasitoids impact on host populations. In this Part we consider
different situations in which parasitoids are introduced at different time
and under different conditions regarding their amount respect to the host
population. In particular, we start from laboratory data and we suppose
that there is a fixed amount of pupae at equilibrium and then we study
what happens if the actual attack rate is smaller or if the mortality rates
are greater than the one obtained under laboratory conditions.





Part I

Estimating transmission
probability in schools for the

2009 H1N1 influenza pandemic
in Italy
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Chapter 1

Introduction

I
n this chapter we give an introduction to epidemic models. These mod-
els are in fact being extensively used to understand the main pathways
of spread of infectious diseases, and thus to assess control methods. In

particular, we present a brief overview of what has been done and used in this
work.

Generally, epidemic models are fitted to rather aggregated datasets reporting
number of new cases (possibly stratified by age or other variables of interest) in
each time interval (often a week, although sometimes daily reports are available,
especially at the initial outbreak of an infection). In some cases, data on all
individuals of a small community have been available [1], and this has allowed to
obtain a better understanding of the person-to-person spread. Still, the question
rises of whether small isolated communities are representative of disease spread
in more usual contexts.

The attention that was given to the A/H1N1 2009 flu pandemic has made it
possible to collect detailed data on the epidemic spread in more typical contexts.
Schools are well known to represent hot spots for epidemic spread, as can be
seen in [2–13]. Contact rates within schools are generally higher than outside,
as was also noticed in [3, 14, 15]. Using detailed data on an outbreak of 2009
pandemic influenza in a school, Cauchemez et al. [16] estimated the different
infection probabilities within each class, or grade, and in the whole school, as
well as quantified the spread through other household members, and were also
able to assess the role of heterogeneities in contact rates.

In this work we provide estimates for transmission rates of 2009 A/H1N1
pandemic influenza at the three levels of class, grade and school by analysing

3



4 CHAPTER 1. INTRODUCTION

data on the occurrence of influenza-like illness (ILI) symptoms among pupils of
two primary schools in Trento (Italy). The data were collected retrospectively in
December 2009, a few weeks after the epidemic peak, through a questionnaire
delivered to the parents of the pupils attending the two primary schools. As
far as we know, this is the first case in Italy, and one of the first in Europe, in
which influenza transmission is estimated in a school. The estimates appear
consistent between the two schools and with the general understanding of influenza
transmission.

We developed a discrete-time SIR model to analyse the collected data, where
the transmission parameters were then estimated via Markov chain Monte Carlo
methods, appropriate to make parameter inference in presence of missing data
[17,18].

In order to understand the power of the method, we applied the algorithm
also to synthetic data, generated to reproduce a school structure, under several
hypotheses on the transmission dynamics. This work on synthetic data made us,
on the one hand, get a better interpretation of the results obtained, showing for
instance to which degree parameters are identifiable; on the other hand, assess
the loss in accuracy resulting from missing data and other sources of error.

A background on stochastic systems, on some methods for parameters es-
timation and on MCMC methods are presented in Chapter 2. In Chapter 3
we introduce the data and the model to analyse them, while results, model
comparison and validation are presented in Chapter 4 and discussed in Chapter
5. Last, we give details on the algorithm used and on parameters updating in
Appendix A.



Chapter 2

Background on mathematical
models

T
his chapter summarizes some preliminaries on mathematical models gen-
erally used in epidemiology and on Markov Chain Monte Carlo methods
that would be useful for the analysis of the transmission probabilities

in schools for the 2009 H1N1 influenza pandemic in Italy. This is in fact one of
the main characteristic of epidemiology that wants to understand the complex
mechanisms behind an observed outbreak to try to control it using mathematical
models [19–21].

When we consider epidemics within a population, traditionally we focus on
the dynamics among individuals of the population and not on the process that
occurs within a single component of the community at a pathogen level. In fact,
since we are interested in the number of infected individuals and in the infection
spread, we can disregard the mechanisms inside an individual that make him sick.
Hence, when we describe an epidemic at the population level, we can distinguish
three main categories in which to divide the population: susceptibles (healthy
and infectable individuals), infectives (infected and infectious individuals) and
removed (usually immune individuals after recovery). The first mathematical
models appeared at the beginning of the 20th century [22–28]. In particular,
Kermack and McKendrick in [26–28] laid the foundations of one of the most
relevant mathematical frameworks for epidemic description in this field, the SIR
model. In their paper that differs in the interpretation from the one present
in this dissertation, Kermack and McKendrick includes into the removed not
only immune individual but also dead or quarantined individuals because of the

5



6 CHAPTER 2. BACKGROUND ON MATHEMATICAL MODELS

infection.

By following the description of the epidemic given in these papers, the state
of the population can be identified by three basic variables: S(t), the number
of susceptibles at time t, I(t), the number of infectives at time t and R(t),
the number of removed at time t. As we have said previously, these are only
the foundations to describe an epidemic. In fact, actually, there may be other
characterizing classes, for instance exposed (infected individual that are not
infectious) or differently infectious infectives. However a general understanding of
the problem can be obtained by considering only the three main class introduced
above.

After the division of the population into epidemiological classes, both deter-
ministic or stochastic models can be used. The choice between them follows from
the size of the population taken into account. In fact, one of the main assumption
in deterministic population models is that the population has to be very large,
otherwise epidemic models fail to catch the random nature of transmission events.
In the following Section we present and discuss briefly similarities and differences
between these two different models. However, generally, when an epidemic is
described, we have to distinguish if the disease taken into account impart lifelong
immunity or not. In the first case we have the so called SIR models, in the latter
SIS or SIRS (according to the presence of a transitory immunity or not).

2.1 Deterministic models

A deterministic model is characterized by the fact that, once initial conditions
and parameter values are fixed, its evolution is uniquely determined. This kind
of models has been used to understand a huge variety of situations such as
parameters estimation and surveillance data fitting [29–31], control measures
impact assessment [32], antibiotic use investigation [33] or transmission dynamics
analysis [34–37].
Even if deterministic models are easy to simulate and analyse, when low levels of
infections or small populations are present or when the whole epidemic outbreak is
not observed, this kind of model fails to catch the random nature of transmission
events.

Thus, since we analyse a pandemic in two primary schools that represent
small communities, it is easy to understand that a deterministic model in not
really useful. Instead a stochastic model can be used.
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2.2 Stochastic models

Differently from deterministic models, stochastic models are based on prob-
abilities on the occurrence of a certain event. Thus, the study of temporal
evolution of such a model is more complex than the study of a deterministic
model and, for this reason, computer simulations are very useful.

2.2.1 Background on stochastic systems

In this dissertation we analyse a pandemic that occurred in two primary
schools of Trento, Italy. Analysing data from infectious diseases is a non-standard
problem and the inference problems are complicated because these data are
highly dependent, incomplete data that come from only partially observable
real-life situations. However it is possible to develop a simple stochastic model
that has to be a close approximation of the real system considered. The model
that we take into account and that can be used as a starting point for inference
tries to imitate the behaviour of this system by studying the interactions among
the pupils of a primary school. These interactions can be divided into internal
relationships that connect pupils within the school, and external relationships
that connect pupils with the world outside the school.
The importance of a model to study a system has been discussed by Rosenbluth
and Wiener [38], who wrote:

No substantial part of the universe is so simple that it can be grasped
and controlled without abstraction. Abstraction consists in replacing
the part of the universe under consideration by a model of similar but
simpler structure. Models . . . are thus a central necessity of scientific
procedure.

After model formulation it is usual to perform a lot of simulations that can be
regarded as statistical experiments, to keep track of parameters of interest and,
at the end, to ensure that there is enough confidence in the results. Naylor et
al. [39] wrote that:

The fundamental rationale for using simulation is man’s unceasing
quest for knowledge about the future. This search for knowledge and
the desire to predict the future are so old as the history of mankind.
But prior to the seventeenth century the pursuit of predictive power
was limited almost entirely to the purely deductive methods of such
philosophers as Plato, Aristotele, Euclid, and others.
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A model that can describe the epidemic process in a real-life situation is the
chain binomial model.

2.2.2 A chain binomial model

By following the previous assumptions on population division into epidemio-
logical classes, we assume that the probability that a susceptible escapes infection
when exposed to the i infectives of a generation is qi, i = 1, 2, . . . . For the sake
of simplicity, assume that there are no sub clinical infections (all infectives can
be recognized) and that after the infection each individual acquires immunity.
These assumptions led us to deduce that the number of individuals that remain
susceptible is St+1 = St − It+1, by knowing the initial values I0 = i0 and S0 = s0.
Thus, the probability of having x infectives at time t + 1, by knowing that at
time t there are s susceptibles and i infectives, is

P (It+1 = x|St = s, It = i) =
s!

x!(s− x)!
pxi q

s−x
i (2.1)

where pi = 1− qi.
Reed-Frost (related to [40]) and Greenwood [41] formulated two particular

cases of the chain binomial model by making different assumptions on the way
in which qi depends on i.
In 1928 in a biostatistic lecture, Reed and Frost assumed that, when the disease
transmission occurs through close person-to-person contacts, qi = qi1 that means
that the probability of escaping infection when exposed to i infectives of one
generation is equivalent to escaping infection when exposed to a single infective
in each of i separate generations.

On the other side, in 1931 Greenwood assumed that, when the probability of
infection depends more on the behaviour of one individual than on the environ-
ment, qi = q, i = 1, 2, . . . and q0 = 1. Thus the chance of infection is the same
when exposed to one infective as when more than one infective is present.

2.2.3 Methods

Parameters of these models can be estimated both via likelihood maximization
that maximize the probability to observe what has been noticed in the dataset,
and Bayesian inference that tries to summarize the posterior distribution of
parameters given observations [42,43]. In the latter methods, model parameters
are regarded as random variables. Thus, the posterior density, which contains
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all the informations about the parameters, is defined via Bayes’ Theorem as the
normalized product of the prior density and the likelihood.
To summarize briefly this method, denote with D observed data and with ϑ
model parameters and missing data.
Formal inference requires a joint probability distribution P (D,ϑ) given by

P (D,ϑ) = P (D|ϑ)P (ϑ). (2.2)

Thus, through Bayes theorem, by having observed D, the posterior distribution
is

P (ϑ|D) =
P (ϑ)P (D|ϑ)

P (D)
=

P (ϑ)P (D|ϑ)∫
P (ϑ)P (D|ϑ)dϑ

. (2.3)

Since the integral at denominator can be regarded as a normalising constant to
ensure that P (ϑ|D) is a proper density, (2.3) can be written as

P (ϑ|D) ∝ P (D|ϑ)P (ϑ). (2.4)

2.3 Introduction to Monte Carlo Markov Chain

One of the most important methodology to analyse real-life situations is the
methodology of Monte Carlo Markov Chain (MCMC). Its name comes from
the generation of a Markov chain using the previous sample value to randomly
generate the next one. It was first described by Metropolis et al. [44] and later
refined by other people including Hastings [45], Geman and Geman [46], Gelfand
and Smith [47], Gelman and Rubin [48,49], and Green [50].
MCMC methods try to solve the problem in obtaining samplers from some
complex probability distribution that we can face with the integration. This
would seem to provide the solution to our problem, but first we need to discover
how to construct a Markov chain such that its stationary distribution π(.) is our
distribution of interest. Constructing such a Markov chain is surprisingly easy.

2.3.1 The Metropolis-Hastings algorithm

The form due to Hastings in 1970 is a generalization of the method of
Metropolis et al. using an arbitrary transition probability function q(Y |X) =
P (X → Y ).

At each time t, the next state Xt+1 is chosen sampling Y from a proposal
distribution q(.|Xt) and the acceptance probability is given by

α(X, Y ) = min

(
1,
π(Y )q(X|Y )

π(X)q(Y |X)

)
(2.5)
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If Y is accepted, the next state will be Xt+1 = Y , if it is rejected Xt+1 = Xt.

To implement successfully this algorithm, we have to keep in mind that initial
simulations, the so called burn-in period, have to be discarded since it would
be unlikely that they come from the stationary distribution of interest. After
that we have to decide if the chain is a well mixing chain by considering an
acceptance probability A that will say us if the chain mixes well or not. This
is defined as the number of iterations where new values are accepted out of a
batch of iterations. By following [16,51], the acceptance probability value for a
good mixing is between 10% and 40%. However, it should be borne in mind that
an optimal A does not necessary imply convergence to a stationary distribution,
although poor A could be due to a lack of mixing and convergence. It is also
possible to have high acceptance and very low convergence [52].

Another problem when analysing epidemic outbreaks is the missingness
of some data that can cause a distorted or inefficient analysis. To overcome
this difficulty we can simply impute missing data by substituting them with
alternative plausible values obtained from the data [16]. Thus, in a Bayesian
approach, missing data become simply extra parameters to be evaluated.



Chapter 3

Methods

T
his chapter presents the collected data of two primary schools in the
province of Trento, Italy, and the epidemic discrete-time SIR model
used to analyse these data, where the transmission parameters were

then estimated via Markov chain Monte Carlo methods.

3.1 Data

In December 2009 we delivered a questionnaire to the parents of the pupils of
two primary schools in Povo (A) and Villazzano (B) in the province of Trento
(Italy). School A consisted of 307 students divided into 14 classes of 5 different
grades, while school B consisted of 214 students divided into 10 classes of 5
different grades. The questionnaire reported a description of ILI symptoms, asked
the parents to report whether any member of the family had experienced ILI
symptoms in the preceding months and, if that was the case, to report the date
of symptoms onset (or an estimate of it) for each member of the family, similarly
to what was done in [3, 4, 53]. Table 3.1 and Figure 3.1 summarize the data
collected concerning the students of the two primary schools. The information
provided on all the other members of the families were scarce and for this reason
they were excluded from our study.

11
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School A School B

School size 307 214
Number of classes 14 10
Number of responses 260 168
Number of ILI cases 121 103
Response rate 85% 79%
Reported Attack rate 46% 61%

Table 3.1: Collected data. Summary of the main features emerging from the question-

naires collected in schools A and B in Trento, Italy in 2009.

The overall response rate to the questionnaire was 82% (428/521) and the
reported ILI cases were 224 (52%) (Table 3.1). In school A, the first two cases
were reported on 16 October 2009 and the last case was reported 56 days later.
In school B, the first case was reported on 10 October 2009 and the last case
occurred 64 days later.
Figure 3.1 represents the number of new cases in the two schools and shows that
most cases occurred within the central 30 days in school A, and even 20 days in
school B.
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Figure 3.1: Daily number of new cases in school A (panel a) and in school B (panel

b), as derived from the collected data.
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3.2 Epidemic model

The epidemic process is described using a discrete-time SIR model, with a
time step of 1 day. Following [54], we assume that the incubation period (time
from infection to symptom occurrence) is on average 2 days and varies between 1
and 3 days, and that the infectiousness profile is as described in [55]. This led us
to do the following assumptions: if a child is infected at school on day t, he/she
will be at school and infectious on day t+ 1; on day t+ 2 he/she will be infectious
and either kept at home, or still at school with probability γ: from Figures 1b)
and 1d) of [54] we estimate γ = 0.1. Hence, we assume that the school population
can be divided into: susceptible individuals S, infectious individuals I (infected
children who can transmit the disease, divided into two sub-compartments I1

and I2 depending on them being in the first or second day of infectiousness,
respectively) and recovered subjects R (including both recovered children and
children kept at home after symptoms onset).

The model is a Markov chain where the individual transitions are given by

S → I1, I1
γ→ I2 I1

1−γ→ R I2
1→R.

The transition S → I1 depends on the infectious population. For the sake of sim-
plicity, we assume that I1 and I2 individuals are equally infectious. Furthermore,
by following [16], we assume different probabilities of infection: within-class (qc),
in the same grade but in a different class (qg), in the same school but in a different
grade (qs) and in households or in the general community (ε). We define

• Ij,ht the number of infectious students (either in their first or second day of
infectiousness) in grade j, class h at time t;

• I ′j,ht =
∑

k 6=h I
j,k
t the number of infectious students in the classes of grade j

other than h at time t
= Ijt (number of infectious students in all classes of grade j) −Ij,ht ;

• I ′′jt =
∑

i 6=j,h I
i,h
t the number of infectious students in grades other than j

at time t
= It (number of infectious in all classes of the school) −Ijt ,

The probability for a susceptible student in grade j, class h to remain susceptible
is

pj,ht = (1− qc)I
j,h
t (1− qg)I

′j,h
t (1− qs)I

′′j
t (1− ε) (3.1)
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and 1− pj,ht is the probability of becoming I1 at time t+ 1.
Then the probability of having Sj,ht+1 susceptibles at time t + 1, by considering
the school at time t, can be obtained as

P (Sj,ht+1|S
j,h
t , Ij,ht , Ijt , It) =

(
Sj,ht
Sj,ht+1

)
(pj,ht )S

j,h
t+1(1− pj,ht )(Sj,ht −S

j,h
t+1) (3.2)

The full list of variables and parameters of the model is reported in Table 3.2.
Model parameters have been estimated using MCMC methods, as described
in [17, 56]. The estimated parameters are the infection probabilities within-class
qc, within the same grade qg, among different grades of the schools qs and from
outside the schools ε and the augmented data are all unobserved events such as
the infection dates and the infection state of the children whose questionnaires
were not filled (see Appendix A for further details).

Symbol Description

qc within-class infection probability
qg same grade infection probability
qs within-school infection probability
ε outside-school infection probability
γ probability to remain infective for two days
It number of infective subjects at time t in the whole school

Ijt number of infective subjects at time t in grade j

Ij,ht number of infective subjects at time t in grade j and class h

Sj,ht number of susceptible individuals at time t of grade j and class h
nj number of classes of grade j

Table 3.2: Model parameters and variables. Description of the notation used.



Chapter 4

Parameters estimation

W
e summarize in this part of the dissertation some different parameters
estimations. We start with a basic concept that characterize epidemi-
ology, the basic reproduction number and then we apply the model

presented in Section 3.2, CGS (Class-Grade-School) model, to simulated data.
The first test on simulated data in this chapter refers to a simple case of a
single class with different class sizes, aiming at the estimate of the probabilities
to remain infectious for two days and to be infected from someone inside the
class. Then we test the model and the estimation algorithm under different
parametrizations. We compare three variants of the model using an adapted
version of the deviance information criterion and, finally, we estimate model
parameters in schools A and B and we validate it.

4.1 Basic reproduction number

A typical summary indicator of an epidemic is its basic reproduction number
R0, which represents the expected number of secondary cases generated by a
single typical infection in a completely naive population. The reproduction
number estimated in this work is school-specific. R0 can be estimated through
the rate of initial epidemic growth r using the formula R0 = 1 + rTI [57], where
TI represents the mean generation time; r has been estimated through the fit of a
linear model either to the incidence data (grouped by 3 days) or to the cumulative
number of cases (see [58] for a statistical analysis of the consequences of either
choice) in the log-scale (Figure 4.1 shows the fit to the curve of cumulative cases
over a specific time window).

15
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Figure 4.1: Linear regression on cumulative infection data in school A (panel a) and

in school B (panel b). Black points were used in the linear regression

procedure for estimating the epidemic growth rate.

We estimated the initial growth rate r both from the (grouped) incidence
curve and from the cumulative curve (Figure 4.1), selecting those time windows
in the growing part of the epidemic for which R2 was sufficiently high (> 0.95 for
the cumulative curve, > 0.7 for the incidence curve); assuming that the infectious
period at school TI is 1.1 day, we obtained a median R0 of 1.16 for school A and
1.40 for school B; the overall range of confidence intervals (obtained from the
different time windows) is 0.93-1.43 for school A; 1.08-1.76 for school B using
the fit from incidence curves. The intervals obtained from cumulative curve are
much narrower, but may be deceivingly so [58].

The classical definition of R0 in a finite population stochastic model is generally
based on the limit as the population grows to infinity (see, for instance, [59]).
Instead of doing this, we rely on a simple operational definition, namely we define
R0 as the average number of students infected by the first infected student in
the school. By assuming to have ns grades (5 in Italian primary schools), each
with ng classes with n students, then we obtain

R0 = (qc(n− 1) + qgn(ng − 1) + qsnng(ns − 1))(1 + γ). (4.1)

4.2 Tests on simulated data

We tested the model and the estimation algorithm on simulated data obtained
using model CGS under different parametrizations.
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We started with the simple case of a single class, aiming at the estimate of
the probabilities to remain infectious for two days, γ, and to be infected from
someone inside the same class, qc. We performed a series of simulations varying γ
from 0.1 (the probability to remain infective for two days is very low) to γ = 0.9
(the probability to become an I2 is very high) with a step of 0.1; correspondingly,
qc is changed in such a way that R0 (in this case nqc(1 + γ)) remains constant.
In Table 4.1 the parameters values from which we started are shown, both for a
class of n = 25 children and for a (fictional) case of a class of 250 children.
Figure 4.2 shows the results obtained in the case of a class of n = 25 children or
in the (fictional) case of a class of 250 children.

Simulation n = 25 n = 250
set γ qc qc

1 0.1 0.054 0.0054
2 0.2 0.049 0.0049
3 0.3 0.046 0.0046
4 0.4 0.042 0.0042
5 0.5 0.039 0.0039
6 0.6 0.037 0.0037
7 0.7 0.035 0.0035
8 0.8 0.033 0.0033
9 0.9 0.031 0.0031

Table 4.1: Parameter values for the probability of remaining infective for two days γ,

and the class infection probability qc used in the 9 sets of simulations as to

have R0 ≈ 1.48 with a class of n = 25 students and the fictional case of a

class of n = 250 students.
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Figure 4.2: Estimates of γ (panels a and c) and of qc (panels b and d) in 9 sets of

simulations performed by varying γ and qc while keeping R0 ≈ 1.48 (in

Table 4.1). Panels a) and b) have n = 25, c) and d) have n = 250. The

reference values used in the simulations are represented as white dots,

while the means of the posterior distribution are represented as black dots,

with the bars representing 95%-credible intervals.

It may be noticed that the mean value of estimated γ is always close to
0.5, independently of the value of γ used in simulations. Increasing n reduces
the width of credible intervals, but does not remove the bias. Also the mean
estimated value of qc is almost constant, independently of the value used in the
simulations, at the value that would be correct for γ = 0.5.
Because of this problem, in all the following simulations we set γ equal to 0.1
without estimating it. The following simulations are based on the same school
structure, similar to the one of school A: a total of 15 classes, 3 for each of the 5
different grades, and each class composed of 25 children (according to the Italian
primary schools structure).
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We generated data under different parameter values, ranging from the case where
qc, qg and qs are approximately equal (transmission homogeneous among all
students in a school) to another one where qc = 10qs and qg is intermediate
(transmission is higher to students in the same class, then to those in the
same grade, and lowest to all other students of the school). The parameter
values have been chosen so as to have (using formula (4.1) of the main text)
R0 ≈ 1.48 [54,60–62].
Precisely, we performed 10 sets (labelled 1 to 10) of 50 simulations with the
parameter values shown in Table 4.2, and for each simulation we ran the MCMC
algorithm to obtain a posteriori distribution of the parameters qc, qg, qs and ε.
The results are shown in Figure 4.3 (panel a)).
It can be seen that the estimates are reasonably correct, with the mean of the
posterior distributions around the reference values. It may be noticed, however,
that, when the three parameters qc, qg and qs are close to each other, the algorithm
tends to overestimate qc, the transmission rate in the same class.

Simulation qc qg qs
set

1 0.0037 0.0029 0.0037
2 0.0066 0.0037 0.0033
3 0.009 0.0042 0.003
4 0.011 0.0044 0.0028
5 0.013 0.0046 0.0026
6 0.015 0.0047 0.0024
7 0.016 0.0048 0.0023
8 0.018 0.0049 0.0022
9 0.019 0.00497 0.0021
10 0.02 0.005 0.002

Table 4.2: Parameter values of the class infection probability qc, the grade infection

probability qg and the school infection probability qs used in the 10 sets of

simulations.
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An interesting question is whether the 95%-credible intervals for the three
parameters intersect each other. The answers are shown in Figure 4.3 (panel b)).
It can be seen that, when the parameters are indeed equal, around 5% of the
times one obtains non-intersecting 95%-credible intervals, something close to
expectations.
On the other hand, a difference is picked up almost always between qc and qs
from set 4 onwards (i. e. when the ratio qc/qs ≈ 3.8) and between qc and qg
from set 8 onwards (i. e. when the ratio qc/qg ≈ 3.7), while the ratio qg/qs
never reaches such values, and thus a difference between qg and qs is seen only
occasionally in the simulations. We found that the infection probabilities qc, qg,
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Figure 4.3: (a) Ten sets of 50 simulations starting from reference values represented

as white dots (in Table 4.2) and ε = 10−3. The estimated values are

represented as black dots with the 95%-credible intervals (b) Fraction of

simulations for which the 95%-credible intervals for the different parame-

ters do not intersect.

qs and ε were successfully identified .

4.2.1 Test with missing data

To test the behaviour of the algorithm when dealing with missing data, as in
the case of actual data, we looked again at previous simulations, but we assumed
that a random 20% of the data of each class is not reported and thus cannot
be used in the estimation procedure. The results obtained are shown in Figure
4.4 (panels a) and b)).The results can be considered almost as satisfactory as in
the case without missing data. As expected, the credible intervals are somewhat



4.3. MODEL VARIANTS 21

wider than in the case without missing data, and thus they intersect somewhat
more often. It can also be remarked that, with missing data, the transmission
rate inside the class qc is on average overestimated in all simulation sets.

4.2.2 Test with missing data and errors

To see if the algorithm works also in the most general case in which some
reported data are wrong, we consider that 20% of the data of each class are not
regarded and that only the 70% of the data that we have are correct, the 20%
of them correspond to a ±1 and the remaining 10% to a ±2 and we report the
results in Figure 4.4 (panels c) and d)). Also in this case the estimation of the
data is reasonably correct and this indicates that we have obtained a robust
result, although the absolute value of qc is somewhat overestimated when the
parameters are close to each other.

4.3 Model variants

We considered the following two simplifications of the CGS model presented in
Section 3.2: model CS (Class-School) where we differentiate between within-class
transmission and within-school transmission only, without considering a separate
probability of transmission within the same grades and model S (School only),
where we assume that the probability of transmission is the same for all students
in the school. We explore a further variant of model CGS (CGS-var), where the
probability of infection from outside the school, instead of being constant over
time, is assumed to be proportional (through a constant ε) to the ILI incidence at
the corresponding week in the province of Trento, as reported by the surveillance
system InfluNet of the Italian Institute of Health [63].
We compare the model variants using an adapted version of the deviance infor-
mation criterion (DIC) described in [64, 65]. Specifically, distinguishing between
actual model parameters (ϑ) and unobserved events (Y ), we computed a marginal-
ized DIC as

DIC = −4E(ϑ,Y ) log (L(X, Y |ϑ)) + 2EY log
(
L(X, Y |ϑ̄)

)
where X are observed data, while L(·|ϑ) is the likelihood of the complete data
under the Markov chain with parameters ϑ. DIC values for the four different
models considered in this study (see Section 4.3) are presented in Table 4.3. In
school A, CGS model clearly is preferred to the others because its DIC value is
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Figure 4.4: Fifty simulations (panels a and c) starting from reference values repre-

sented by white dots (in Table 4.2) and ε = 10−3 by assuming that a

20% of the data of each class is not reported. The estimated values are

represented as black dots with the 95%-credible intervals. Fraction of sim-

ulations in which the 95%-credible intervals for the different parameters

do not intersect in panels b) and d). In panels a) and b) 20% of the data

are considered to be missing. In panels c) and d) 20% of the data of each

class are not regarded and only the 70% of the data are correct, the 20%

of them correspond to a ±1 and the remaining 10% to a ±2.

much lower. In School B CGS with constant ε is, according to DIC value, only
slightly better than CG model, and both are definitely preferred to S; on the
other hand, the model with varying probability of infection from outside is much
better than all others.
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Model School A School B

CGS (qc, qg, qs, ε) 702.8314 757.9087
S (qc = qg = qs, ε) 799.9111 779.3803
CS (qc, qg = qs, ε) 774.9074 761.1634
CGSvar (qc, qg, qs, εvar) 751.2 426.21

Table 4.3: DIC values of the different models considered. Model CGS has three

different transmission rates inside the school (qc, qg and qs) . Model S

has a homogeneous infection rate inside the school (qc). Model CS has a

transmission rate for the class (qc) and a different transmission rate in

the remaining part of the school (qg). Model CGSvar is the same as CGS

but with with a non-constant ε.

4.4 Estimates of transmission probabilities

Table 4.4 summarizes the estimated infection probabilities within-class qc, in
the same grade qg, in different grades, within the schools qs and from outside
the schools for schools A and B, and Figure 4.5a presents a comparison of the
estimates obtained for the two schools.

Parameters School A School B

mean of qc [95% CI] 1.39× 10−2 1.96× 10−2

[8.1× 10−3 − 2.03× 10−2] [1.11− 2.89× 10−2]

mean of qg [95% CI] 4.36× 10−3 4.61× 10−3

[9.61× 10−4 − 8.34× 10−3] [2.98× 10−4 − 1.15× 10−2]

mean of qs [95% CI] 9.52× 10−4 2.96× 10−3

[2.87× 10−4 − 1.82× 10−3] [1.64− 4.45× 10−3]

mean of ε [95% CI] 3.70× 10−3 2.65× 10−3

[1.95− 5.69× 10−3] [1.37− 4.2× 10−3]

Table 4.4: Mean and 95%-credible intervals of the estimates for the infection proba-

bilities in schools A and B, when considering model CGS.

The most evident feature of these results is that, for both schools, the
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Figure 4.5: Estimated values of the transmission parameters for school A and B.

White and black dots represent the mean of the posterior distribution for

school A and school B respectively, bars represent 95%-credible intervals.

(b) Estimated values of the basic reproduction number R0 inside schools

A and B. Thick line and bars represent means and 95%-credible intervals.

estimated class infection transmission probability is the highest of all settings.
Grade transmission probability is estimated in both schools to be higher than
school transmission; however the respective 95%-credible intervals overlap (just
barely in school A, largely in school B).
As for comparisons between schools, estimates of class and grade transmission
probability are similar, as is the probability of transmission from outside the
school. On the other hand, estimates of school transmission probability differ
between the two schools (95%-credible intervals barely overlap).

Using these estimates for transmission probabilities, we obtain from (4.1) the
values of R0 shown in Figure 4.5b, with an average of 0.8503 in school A and
1.094 in school B. Note that (4.1) is based only on within-school transmission and
does not include transmissions to household members or acquaintances; on the
other hand, the estimates based on Figure 4.1 depend on all infected students,
whatever their source of infection.

4.5 Model validation

In order to assess whether the CGS model is compatible with the data, we
performed 400 simulations (for each school) having randomly drawn the parameter
values from the relative posterior distributions. The model was compared with
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Figure 4.6: The plot of the total number of infectious individuals (panel a) and the

duration of the epidemic (panel b) in 400 simulations. The black dot

indicates the observed number of infectious individuals and the observed

length of the epidemic in the two schools. Thick line and bars represent

means and 95%-credible intervals.

the data (see Figure 4.6) through two different indicators: the total number of
infected children and the total length of the epidemic.





Chapter 5

Discussion

I
n this chapter we summarize and discuss the main results obtained by
analysing the epidemic model introduced in Section 3.2 and we show
how our results can be compared with the ones obtained in other works.

We stress the limitations and introduce some possible improvements for this
particular model such as explicit household transmission, school closure during
weekends or asymptomatic cases.

We estimated influenza transmission probabilities in a school setting, using
the (incomplete) data collected through a retrospective survey conducted in
December 2009 in two primary schools and we found that, in both schools,
influenza was mainly transmitted within-class (Figure 4.5). Same- and different-
grade transmission, as well as outside-school transmission, were all significantly
lower than within-class transmission, with no significant differences between them
(Figure 4.5).

We found that for both primary schools model CGS (that distinguishes
within-class, same-grade and different-grade transmission) has the lowest DIC,
i.e. is the favourite model overall. According to the DIC, models CGS and
CS (that distinguishes within-class transmission from the general within-school
transmission only) are equivalently good for school B, which reflects the similarity
observed in the estimated same-grade and different-grade transmissions (Figure
4.5).

Similar results were obtained by Cauchemez et al. [16], where the transmission
probability between students of the same class was five times greater than the
transmission probability between students of the same grade and, in turn, this was
five times higher than the transmission probability between students of different
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grades. The estimates we obtained are similar, with factors of 3-4 instead of 5,
except for the grade-school ratio in school B, which is just above 1. These results
are also consistent with the studies presented in [66, 67], where children used
wearable sensors: in these studies it was found that children spent on average
three times more time with children of the same class than with children of other
classes. The fact that within-class transmission is estimated to be higher than
within-school transmission can have implications on the design of school closure
policies aimed at mitigating the spread of influenza, especially on evaluating the
effectiveness of gradual closures (where single classes close first, then grades and
finally the entire school) [66,68,69].

Another interesting result emerges from the comparison between the two
schools involved in the study: while the estimates for within-class qc and within-
grade qg transmission probabilities are similar for the two schools, the estimate
for school-wide transmission qs is remarkably different, as 95%-credible intervals
barely overlap. This result can bear on the issue on whether infection transmission
should depend on the density or the frequency of infectious individuals [70,71].
In the model, we have assumed that transmission probability per individual is a
constant. Alternatively, we could have adhered to the more usual assumption that
transmission probability is inversely proportional to the number of individuals in
that setting [72]; in case of school transmission, we should have used qs(A) =
c/ns(A) and qs(B) = c/ns(B). As ns(A) ≈ 1.5ns(B), this results into qs(B) ≈
1.5qs(A). The mean estimated qs for school B is about 3 times the estimated
mean for school A, but 1.5 sits well inside the ratios of values in the 95%-
credible intervals. Thus we can conclude that a frequency-dependent transmission
probability is compatible with our findings, whereas density-dependent is not.
It is remarkable that, while the estimates of transmission probabilities obtained
in [16] are somewhat higher than ours, as for within-class and within-grade
transmission, those of within-school transmission are similar to those of school
A; this pattern appears to confirm that indeed larger school size (436 in the
school studied in [16]) decreases per person transmission probability within school,
although the social context may be very different, and there is no reason why
contact patterns should be similar in Pennsylvania as in Italy. More studies
comparing infection patterns in schools of different size but in a homogeneous
social system, would be needed for such a conclusion.

One could have used frequency-dependent transmission probability also for
within-class and within-grade transmission probabilities, but, as class size is
approximately constant, results could not have changed remarkably. One could
improve a model with frequency-dependent transmission by taking into account
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the actual number of students in class each day; unfortunately such data was not
available to us.

The estimates of the school R0 [School A mean and 95% CI 0.8503 (0.5859-
1.1353) and School B 1.094 (0.845-1.372) ] lie in the low end of the spectrum
of values estimated from influenza spread in schools [60]. In particular, our
model provides estimates of R0 lower than 1 for school A, which highlights the
importance of outside transmission (with a likely strong role of households) in
maintaining the school outbreak, consistently with the findings of [16].

As information on household cases was scarce, we had to rely on two simple
models for outside transmission: either a constant probability ε or a probability
proportional to influenza incidence in the population (variable ε). Concerning
the latter, we could use only the weekly ILI incidence estimated through the
surveillance system InfluNet; we used it at the Trento province level, that, on the
one hand, is probably much larger than the territory where students of the two
schools live, and, on the other hand, is smaller than the recommended aggregation
level of sentinel data that makes them statistically significant. Despite these
limitations, we deem that it yields the best available alternative to a constant
probability of outside infection. The results of the comparison between the two
model variants are not unequivocal: in School A model CGS with varying ε
yields a larger DIC than model CGS with a constant ε, while in School B the
model with varying ε is much better than the model with constant ε.

An explanation for this contrasting result can be found in Figure 3.1. In
School A, many scattered cases occur before infection takes off, while in School B
almost no cases are recorded before the infection peak. Thus, to fit the pattern of
infection observed in school A, the probability of infection from outside the school
must have been non-negligible already from the second half of October, when
overall ILI incidence was very low; if the probability of outside-school infection
were proportional to ILI incidence,this would have forced it to become extremely
large in November, which is hardly compatible with observed data. On the other
hand, the infection trend school B is quite aligned with overall ILI incidence;
thus, a model with outside-transmission proportional to overall incidence fits
data very well. Clearly, this is an explanation for the statistical result, but does
not clarify the reason (a localized epidemic in the community?) for the many
scattered cases in School A before the epidemic start.

The robustness of the results obtained has been supported by the analysis of
simulated data. Indeed, the tests show that very seldom 95%-credible intervals
do not intersect without an actual difference in the transmission probabilities in
the different contexts: precisely, when qc = qs (simulation 1 of Figure 4.3) only 4
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times out of 50, it is found that 95%-credible intervals do not intersect, although,
when it occurs, qc is always larger than qs. On the other hand, when qc is at least
3 times larger than qs (simulations 3-10 of Figure 4.3) a difference is picked up in
at least 85% of the cases. Furthermore, the algorithm produces correct estimates
even in presence of missing data (we assumed 20% of those, similarly to actual
data) and with errors in the reported dates (we assumed 30% of these), with the
only visible effect of yielding somewhat wider credible intervals, relatively to the
case of no missing data and no errors.

The choice of γ = 0.1 for the probability that the effective (at school) infectious
period lasts 2 days has been extrapolated from limited data presented in [54])
may appear questionable, and one may ask whether γ could have been estimated
as well from data. However, we show (Figure S1) that the algorithm we used is
not capable on simulated data of estimating the probability γ of being infectious
(at school) for 2 days, whatever is population size and the value of γ used
for simulating data. Indeed, in most cases length of the infectious period and
generation time are estimated from household studies or other cases where dates
of infections can be independently established [70,73]. As far as we know, the
only exception is the study by White et al. [74], who were able to obtain an
estimate of the serial interval from a detailed epidemiological curve. Our study
shows that it is generally very difficult to do so.

Although the value of γ used in the study may be somewhat arbitrary, the
main conclusions obtained on the differences between transmission probabilities
in the different contexts and between two different schools do not depend on
the exact value of γ; changing its value simply results in changing the numerical
estimates of qc, qg and qs but not their relative features.

Similar identifiability problems led us to assume the simplified assumption
that each student infected at school is infectious at school the following day, while
it can be argued from the results in [54] that some will be infectious only in their
second day after infection, and others will show symptoms before the first day
and will be already kept home. Allowing for such possibilities would introduce
other parameters that are difficult to estimate, without relevant effects on the
main results.
There are several other aspects that we did not consider in our model, such as
explicit household transmission, school closure during weekends or asymptomatic
cases.

It has been estimated [75] that school closures during weekends contributes
to decrease the effective reproduction number of about 8%. Since the generation
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time in the school setting is short, weekends can break the transmission chain
at school thus having an impact on the transmission pattern, as can be seen
in [66,67,72,75]. On the other hand, household and outside transmission is likely
to increase during weekends, as often assumed in modelling studies [72,76]. Again,
for the sake of simplicity, we preferred to avoid the introduction of parameters
that may not be easily estimated, but in principle the model could be extended
to distinguish between weekdays and weekends.

Our model assumes that all infections are symptomatic and lead to the same
level of infectiousness. Indeed, using raw data, the estimate of children showing
influenza symptoms is 52%. This value is comparable to the estimate of 56.9%
infection rate for 2009H1N1v in primary-school children in Italy, that was derived
from serological data [77]; thus, it seems likely that only a small number of
children in those schools got infected with influenza without showing symptoms.
Indeed, it is possible that the fraction of children of the schools considered in
our study that got infected was much higher than the national average of 56.9%.
Alternatively, it is possible that some of the children that reported symptoms
were not actually infected with influenza virus, while others were infected but did
not show symptoms. The lack of serological data prevents from a choice between
different alternatives. Accordingly, we decided to use the most parsimonious
alternative, namely to neglect asymptomatic infections.

Despite these limitations, our analysis provides evidence of different influenza
transmission in class and grade. We have shown that the MCMC algorithm used
can yield plausible results even starting from incomplete and possibly inaccurate
data (such as those derived from questionnaires); further and more detailed
data (including also serology) would be useful to improve the model and the
corresponding estimates.





Appendix A

Algorithm used to estimate
transmission probability in
schools for the 2009 H1N1
influenza pandemic in Italy

T
he available data are the knowledge on whether students have acquired
infection or not, as well as the days of symptom onset (all this infor-
mation will be named Z, where Zi is the day of symptom onset for

individuals i having acquired infection, while Zi = ∞ for the others). For the
moment, we neglect the problem of missing data.
We wish to obtain a posteriori distributions for the parameters qs, qA, qB and γ
(collectively named ϑ). As computing the likelihood of the data Z would be very
complex, we include in the parameters to be estimated the dates Y of infection
of the individuals that have become infected.
Then, through Bayes’ formula

fpost(ϑ, Y ) ∝ P (Z|ϑ, Y )fprior(ϑ, Y ) =
P (Z, Y |ϑ)

P (Y |ϑ)
P (Y |ϑ)π(ϑ) = P (Z, Y |ϑ)π(ϑ).

(A.1)
where

P (Z, Y |ϑ) =
∏
j,h

Tmax−1∏
t=tmin

γ
Ij,h2t+1 (1− γ)

(Ij,h1t
−Ij,h2t+1

)
P (Sj,ht+1|S

j,h
t , Ij,ht , Ijt , It). (A.2)

P (Sj,ht+1|S
j,h
t , Ij,ht , Ijt , It) can be obtained from (3.2) , and the quantities Sj,ht , Ij,ht , Ijt , It

can all be easily computed from Y and Z.
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The transition probabilities pj,ht used in (3.2) can be written in a computationally
more efficient way, by introducing the quantities qA and qB as

1− qA =
1− qc
1− qg

1− qB =
1− qg
1− qs

as
pj,ht = (1− qA)I

j,h
t (1− qB)I

j
t (1− qs)It(1− ε) (A.3)

using the quantities

Ijt =

nj∑
l=1

Ijlt (total number of infectious in grade j)

It =
5∑

m=1

nm∑
l=1

Imlt (total number of infectious in the school)

Missing data can be handled very easily in this framework: it is enough including
in the vector of added parameters Y the state (eventually infected or not) and,
if so, the dates of infection and removal for all students whose information is
missing.
The posterior distribution is estimated as the stationary distribution of the
Markov chain resulting from Metropolis-Hastings algorithm [42,56].

A.1 Parameters updating

To update the parameters we use a Single Component Metropolis-Hastings
(see [56]) because, instead of updating all the parameters at once, it is often
computationally convenient to do that in different steps.
If we consider one of the infection rates qc, qg, qs, ε, the new state x is obtained
in the following way

x =
yera

1− y + yera
→


1 r →∞
y r = 0
0 r → −∞

where a is from a multivariate normal and so, by changing r, we can find a chain
with a good mixing and a good convergence.
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So, by simple calculations, we obtain that,

q(y|x) =
1

y(1− y)
√

2πr
e−

1
2r2

[log(x)+log(1−y)−log(y)+log(1−x)]2

q(x|y) =
1

x(1− x)
√

2πr
e−

1
2r2

[log(x)+log(1−y)−log(y)+log(1−x)]2

and then q(y|x)
q(x|y)

is equal to

q(y|x)

q(x|y)
=
x(1− x)

y(1− y)
.

To update the day of infection we use a different method. We choose randomly
the grade and the class to be updated and, by considering that we can have only
two choices for the infection days, we simply change −1→ −2 or −2→ −1 so
to have a different day of infection.
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Dynamics of Host-Parasitoid
Interactions and Coexistence of

Different Hosts
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Chapter 1

Introduction

P
opulation models are being extensively used to describe the dynamics
that result from the interactions between different species. In this
part of the thesis we establish conditions for species coexistence and

for competitive exclusion by considering a 2 host-parasitoid model that can be
applied to relevant problems in agriculture.

Parasitoids are a widespread group of insects often employed as a tool for
biological control, and thus have been subjected to many modelling efforts [78].

Many parasitoid species are generalist [79] that are capable of attacking
different host species. Conversely, often host species are attacked by different
parasitoids. Several modelling papers have addressed this latter phenomenon,
which at first sight may appear in contrast with the competitive exclusion
principle [80, 81]; indeed, Briggs [82] has been able to prove that two parasitoid
species can coexist at equilibrium on a single host species, as long as they attack
different host-stages, and the length of each stage is sufficiently variable.

On the other hand, very little attention has, to our knowledge, been paid to
the interactions of one or more parasitoid species with multiple hosts species. It
must be remarked that several models have been devoted to the evolution of host
choice by parasitoids; however, in this approach host densities are simply taken
as given without considering the dynamics of species interactions.

The recent invasion from Eastern Asia of Drosophila suzukii, spotted-wing
fruit-fly [83], into Europe and North America has revived the interest in un-
derstanding multi-hosts multi-parasitoids interactions and the evolution of host
choice. In fact, since its first detection in 2008 [84–89] it has provoked serious
damages to orchards causing significant economic losses [90–94] and control
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through insecticides is difficult and risks leaving significant residues in the fruit.
While the introduction into Europe and North America of native parasitoids

would require careful studies and a long protocol for authorizations, it has been
found out that D. suzukii is attacked by several indigenous parasitoids of other
Drosophila spp. in particular a larval koinobiont and solitary endoparasitoid,
Leptopilina heterotoma and a generalist pupal ectoparasitoid, Pachycrepoideus
vindemiae.

In order to simplify the problem, we limit ourselves to consider the case of a
single parasitoid species. We will develop a model based on the scheme proposed
by [95] (earlier by [96] and generalized by [82,97]) where time is continuous and
delays (fixed or distributed) occur between host stages.

To our knowledge, this model has never been extended to a two host species
model. Thus, by starting from [82], we keep only the larval-stage parasitoid that
can however attack two different host species. The developed 2 host-parasitoid
model analyses the interactions between two different hosts and one parasitoid
and determines whether the parasitoid has a preference not only for the life stage
but also for the host species.

A background on historical population model is presented in Chapter 2.
In Chapter 3 we describe the model studied and discuss the assumptions. In
Chapter 4 we compute the equilibria and their stability, and find the conditions
for equilibrium coexistence of the host species. We extend the analysis to the case
where the one-host model exhibits attracting periodic solutions; the analysis of the
stability with respect to the complete system of such periodic solutions requires
the use of numerical methods recently developed to approximate the dominant
multiplier(s) of linear delay-differential equations with periodic coefficients; it is
also necessary to approximate the periodic solutions, and to use a continuation
algorithm to track them when varying model parameters. It turns out that the
periodicity induced by host-parasitoid interactions makes it easier for more host
species to coexist, up to the point that species can coexist even when no density-
dependence exists and their densities are controlled only by the parasitoids.
Finally, in Chapter 5 we discuss the implications and the limitations of the results
obtained, while longer computations are left to Appendix A.



Chapter 2

Background on population
models

T
his chapter summarizes some preliminaries on population models useful
for the analysis of the interactions between D. suzukii and its predators.
The aim of these models is in fact to study population dynamics and

to establish conditions for species coexistence or for competitive exclusion.

2.1 Classical models

When we consider dynamics between populations we usually refer to the
classical Lotka-Volterra model that describes prey-predator interactions. This
model was formulated about the same time both by Vito Volterra in 1926 [98] to
explain the fluctuations in the Adriatic sea fish population that were of great
concern to fishermen in times of low fish populations and by Alfred J. Lotka in
1925 [99]. This model is a simple and unrealistic model that is able to explain
the essential mechanisms behind the interactions of two different populations. In
fact, it considers two species in the same habitat of which one of these species is
the main resource for the other. The main assumption of this model is that the
survival of the predator depends on the abundance of the prey and the prey is
uniquely controlled by the predator.

By following the description of the interactions between species, the state
of the population can be identified by H(t) and P (t) that are the numbers of
preys and predators at time t. This description provides a basic framework
to explain periodic variations in nature and it may be variated by considering
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Verhulst-logistic growth in absence of predators, the effect of harvesting on the
ecosystem, the Gauss-type model or the Rosenzweig-MacArthur model [100].

Obviously in nature competition among species is not reserved only to two
single population but it can involve also other populations that can share the same
resource, H(t), or have common predators, P (t). Moreover prey and predators,
in the absence of the other class in which the population in divided, can compete
among them for the habitat. By following this principle, Volterra in 1926 provided
the mathematical basis for the exclusion principle [101]:

two different species cannot indefinitely occupy the same ecological
niche, but one of the two necessarily goes extinct, while the other
saturates the niche.

This principle is a fundamental principle in Ecology but has also to be balanced
by the fact that competition among species may have more complex outcomes
than exclusion.

2.2 Delay differential equations

Classical models can be extended by taking into account that events, lost in
the past, can still influence events in the present or future time. Thus a more
realistic model should include some of the past history of the system and delay
differential equations are an important key to describe real situation. In fact,
when we describe the status of an ecosystem at a certain time, we should keep in
mind that some past events may have influenced the status of the population
at the time taken into account. The simplest example is represented by the
reproduction of a species since the present birth rate depends on the population
abundance in the past. Thus, by considering delay differential equations, we can
include into the population model all the needed informations that can help us
to better understand present and future dynamics.

By following this concept, we can introduce another concept of delays in
population modelling, the age structure of the population.

2.2.1 Age structure models

The age structure of a population is what differentiate living organisms. In
fact, generally, relevant parameters that characterize a population, such as fertility
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and mortality, depends on age and change during individuals life. Thus, when
we describe a population, we should consider not only the time but also the age
distribution of the population at that time. According to that, all individuals of
a population can be considered identical except for their age. This is in contrast
with the classical models considered in the previous Section because in those
cases all the individuals were considered interchangeable. Thus, more complex
models that try to describe in a more realistic way a population add a structure
that can depend on spatial location or age. As we have said, age is one of the
most important parameter that distinguish individuals in a population because
individuals of different ages can have different reproduction or mortality rates.
The characteristic of the fecundity or of the mortality rate as a function of
age is significant to the resulting dynamical growth and age distribution of the
population.

The first age structured model was presented in 1910 by McKendrink [102]
and it is the base for further models in this field. In this dissertation, we are
interested in particular in maturation periods as a delay and instability causing
mechanism. Delays in mortality rates are considered less important [103–109]
and are equivalent to the assumption that the survivor ship is exponentially
decreasing.





Chapter 3

Model

I
n this chapter we introduce a 2 host-parasitoid model based on delay
differential equations that is an extension of the model presented in [95],
and then extended in [82] and [97]. In particular, we consider here that

adult parasitoids can attack only host larvae (adult hosts are invulnerable to
parasitism) whose mortality can depend or not on their density at time t.

We introduce a 2 host-parasitoid model to study the interaction between
different species as was done by Murdoch et al. [95] and by Briggs et al. [82, 97].
We assume that the life cycle of the host can be divided into three developmental
stages: eggs E, larvae L (including also pupae, for D. suzukii) and adults A. We
assume that the two hosts considered do not compete and that an interspecific
competition is present at the larval stage so that, in absence of parasitoids, it
leads the two host species to a carrying capacity.
According to the results obtained by [110], we assume that adult parasitoids
P can attack only the larval stage of the host (adult hosts are invulnerable to
parasitism) and that they can lay a single egg inside the host. Juvenile parasitoids
develop then inside the larvae using them as food and emerge from them after a
fixed host-depending time TiP , i = 1, 2 [95, 97, 110]. For the sake of simplicity,
we assume that hosts can not survive to parasitoids attack by encapsulating
them (see [110] for general details on encapsulation) and that parasitoids attack
and death rates and host birth and death rates (except for the larval stage) and
stages duration are kept constant and density-independent. In [97], Briggs et
al. introduced into the model also other developmental delays by considering
different weighting functions w(x), where x is the time spent in a stage and the
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mean delay would have been

T =

∫ ∞
0

w(x)xdx. (3.1)

Furthermore, we suppose that

dLi(Li(t)) = µLi + νLiLi(t), (3.2)

where µLi is a constant background mortality and νLi is the quantity for which
the pro capita mortality changes by adding a new individual.

Thus, the 2 host-parasitoid model is given by

E ′i(t) = REi(t)−MEi(t)− dEiEi(t)
L′i(t) = MEi(t)−MLi(t)− αiP (t)Li(t)− dLi(Li(t))Li(t)
A′i(t) = MLi(t)− dAiAi(t)

P ′(t) =
2∑
i=1

αiP (t− TiP )Li(t− TiP )siP − dPP (t)

(3.3)

where
REi(t) = ρidAiAi(t)

MEi(t) = ρidAiAi(t− TEi)e−dEiTEi

MLi(t) = MEi(t− TLi)e
−

∫ t
t−TLi

(αiP (y)+dLi (Li(y)))dy

(3.4)

The host birth rate, βi = ρidAi , for simplicity in the analysis, is defined as the
product between the mortality dAi = 1/TAi that can be seen as the velocity of
the species i (TAi is the average duration of the adult host stage) and a parameter
ρi that represents the mean number of eggs produced per adult lifetime.
The maturation rate from eggs to larvae, MEi(t), is given by the sum of all the
hosts recruited after a fixed time TEi and survived to mortality until the larval
stage. Instead, the maturation rate from larvae to adults, MLi(t), is given by
the sum of all the hosts coming from the larval stage after a fixed time TLi and
survived both to mortality and to the attack of the parasitoids.

All model parameters are described in Table 3.1.
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Symbol Description

ρi Total lifetime host fecundity

dEi Mortality of host eggs
dLi(Li(t)) Mortality of host larvae

µLi Constant background mortality of host larvae
νLi The quantity for which the pro capita mortality

changes by adding a new individual
dAi Mortality of host adults
dP Mortality of adult parasitoids

αi Attack rate of adult parasitoids on host larvae

siP Survival of juvenile parasitoids

TEi Duration of egg host stage
TLi Duration of larva host stage
TiP Duration of juvenile parasitoid stage

Table 3.1: Model parameters present in the 2 host-parasitoid model. All parameters

are kept constant and density-independent except the larval death rate

dLi(Li(t)) = µLi + νLiLi(t) that depends on a constant background mortal-

ity, µLi , and on the quantity for which the pro capita mortality changes by

adding a new individual, νLi.





Chapter 4

Invasibility conditions

T
his chapter summarizes the coexistence conditions of two host species
of the model presented in Chapter 3. These are found by linearising the
system around the equilibria with only one host species present. We

show that, when no density-dependence is present, the two hosts cannot coexist
but, once density dependence is introduced, we can find some conditions for hosts
coexistence. In this chapter we discuss also what happens if we are in periodic
conditions using numerical approximations and by giving a mathematical proof
of what we have found through the approximation of the dominant eigenvalue of
monodromy operator with arbitrary delay and its application to host-parasitoid
models.

4.1 Single host equilibria

Coexistence conditions of the two host species for the model presented in
Chapter 3 are determined by a linearisation of system (3.3) around the equilibria
with only one host present. To find these equilibria (Eq1, the equilibrium with
only host 1, and Eq2, with only host 2), we put all the equations of (3.3) equal
to zero.

Let us find, for instance, the equilibrium when only host 1 is present. Thus,
from the last equation of (3.3), by considering P constant and different from
zero, we can obtain L̄1.

α1s1PPL1 − dPP = 0

Once we have obtained the value for L̄1, from the third equation, by considering
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A1 constant and different from zero, we can obtain P̄1.

ρ1dA1A1e
−dE1

TE1
−(α1P+dL1

(L̄))TL1 − dA1A1 = 0

After that, from equation two and one of (3.3), it is easy to find the values of Ā1

and Ē1 respectively.

ρ1dA1e
−dE1

TE1 (1− e−(α1P̄1+dL1
(L̄1))TL1 )A1 − (α1P̄1 + dL1(L̄1))L̄1 = 0

ρ1dA1Ā1(1− e−dE1
TE1 )− dE1E1 = 0

The equilibrium when only host 1 is present, Eq1, is thus given by

Ē1 =
ρ1dA1Ā1(1− e−dE1

TE1 )

dE1

L̄1 =
dP

α1s1P

Ā1 =
(α1P̄1 + µL1 + νL1L̄1)L̄1

ρ1dA1e
−dE1

TE1 (1− e−(α1P̄1+µL1
+νL1

L̄1)TL1 )

P̄1 =
ln(ρ1)− dE1TE1 − (µL1 + νL1L̄1)TL1

α1TL1

(4.1)

In a similar way, we can find Eq2, the equilibrium when only the host species 2
is present.

It is convenient to define P̂i as the value of P̄i when νLi = 0, i.e.

P̂i =
ln(ρi)− dEiTEi − µLiTLi

αiTLi
(4.2)

and similarly L̂i = L̄i.
In this way we obtain the equilibria without density-dependence, Êq1 and Êq2.

Note that P̄i = P̂i−
νLi L̄i
αi

, so that the equilibrium (Eqi) has all its components
positive if and only if

P̂i >
νLiL̄i
αi
≡ ρi exp

{
−
(
dEiTEi + (µLi +

νLidP
αisiP

)TLi

)}
> 1. (4.3)

In what follows, we will implicitly assume that (4.3) holds for i = 1, 2.

Proposition 4.1.1 summarizes the outcome of the linearisation of the system
at the equilibria when only one host is present.
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Proposition 4.1.1. Equilibria Eq1 and Eq2 are both unstable if and only if
P̂1 < P̂2 +

νL1

α1
L̂1 and P̂2 < P̂1 +

νL2

α2
L̂2.

Proof. The outcome of the linearisation of (3.3) around equilibrium Eq1 (4.1)
can be reduced to a single equation

A′2(t) ≈ M̄L2(t)− dA2A2(t)

= ME2(t− TL2)e
−

∫ t
t−TL2

(α2P̄1+µL2
)dy − dA2A2(t)

= ρ2dA2A2(t− TE2 − TL2)e−dE2
TE2e

−
∫ t
t−TL2

(α2P̄1+µL2
)dy − dA2A2(t)

= ρ2dA2A2(t− TE2 − TL2)e−dE2
TE2e−µL2

TL2
−α2TL2

P̄1 − dA2A2(t)

= ρ2dA2A2(t− TE2 − TL2)e−dE2
TE2e

−µL2
TL2
−α2TL2

ln(ρ1)−dE1
TE1
−(µL1

+νL1
L̄1)TL1

α1TL1

− dA2A2(t)
(4.4)

Thus, by following for instance [111], A2 increases if

ρ2e
−dE2

TE2
−µL2

TL2
−α2TL2

ln(ρ1)−dE1
TE1
−(µL1

+νL1
L̄1)TL1

α1TL1 − 1 > 0

ln(ρ1)− dE1TE1 − (µL1 + νL1L̄1)TL1

α1TL1

<
ln(ρ2)− dE2TE2 − µL2TL2

α2TL2

(4.5)

In the same way, A1 increases if

ln(ρ2)− dE2TE2 − (µL2 + νL2L̄2)TL2

α2TL2

<
ln(ρ1)− dE1TE1 − µL1TL1

α1TL1

(4.6)

For the sake of simplicity, from (4.1) and by considering Êq1 and Êq2, the
coexistence conditions (4.5) and (4.6) can be written as

P̂1 < P̂2 +
νL1

α1

L̂1

P̂2 < P̂1 +
νL2

α2

L̂2

(4.7)

This condition can be seen as a double invasibility condition that has often
been considered to grant species coexistence [112].
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Corollary 4.1.2. If νL1 = νL2 = 0, it is impossible to have mutual invasibility
of Eq1 and Eq2.

Proof. The two equations in (4.7) are incompatible if νL1 = νL2 = 0.

Proposition 4.1.3 ensures the existence of an equilibrium where both the host
species are present under density-dependence conditions when equilibria Eq1 and
Eq2 are both unstable. Let us name this equilibrium Eq12.

Proposition 4.1.3. Equilibrium Eq12 exists if and only if equilibria Eq1 and
Eq2 are unstable.

Proof. An equilibrium where both the host species are present is given by setting
equal to zero both the equations for adult hosts and for the parasitoid in (3.3).
Thus, we obtain { ρ1e

−dE1
TE1
−(α1P ∗+dL1

(L∗1))TL1 = 1
ρ2e
−dE2

TE2
−(α2P ∗+dL2

(L∗2))TL2 = 1
α1L

∗
1s1P + α2L

∗
2s2P − dP = 0

(4.8)

By solving (4.8), keeping in mind Êq1 and Êq2, we have

{ P ∗ = P̂1 −
νL1

α1
L∗1

P ∗ = P̂2 −
νL2

α2
L∗2

L∗1 = L̂1 − α2s2P
α1s1P

L∗2

(4.9)

Since the equilibrium value of the parasitoid with both the hosts has to be equal,
we have

P̂1 −
νL1

α1

L∗1 = P̂2 −
νL2

α2

L∗2

This equation, together with the last of (4.9) is a linear system in the unknowns
L∗1 and L∗2 that can be easily solved yielding to simple algebraic calculations, and
obtaining

L∗1 = α1L̂1

(
α2(P̂1 − P̂2) + νL2L̂2

α2νL1L̂1 + α1νL2L̂2

)
L∗2 = α2L̂2

(
α1(P̂2 − P̂1) + νL1L̂1

α1νL2L̂2 + α2νL1L̂1

)
P ∗ =

α1νL2L̂2P̂1 − νL1νL2L̂2L̂1 + α2νL1L̂1P̂2

α1νL2L̂2 + α2νL1L̂1

(4.10)
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The values of L∗1 and L∗2 are both positive if and only if (4.7) holds. As for P ∗,
the numerator in the third of (4.10) can be rewritten as

νL2L̂2(α1P̂1 − νL1L̂1) + α2νL1L̂1P̂2

which is positive because of (4.3).

Using (4.7) in (4.10), we obtain

L∗1 < L̂1

(
α2νL1L̂1 + α1νL2L̂2

α2νL1L̂1 + α1νL2L̂2

)
= L̂1.

Similarly

L∗2 < L̂2

(
α1νL2L̂2 + α2νL1L̂1

α1νL2L̂2 + α2νL1L̂1

)
= L̂2.

In other words, the equilibrium value for each host species in presence of the other
is always lower than in absence. Hence, the presence of the common parasitoid
always causes an indirect competition between the two species.

As for the parasitoid density at equilibrium, using the relation between P̂i
and P̄i, we can rewrite

P ∗ =
νL2L̂2α1P̄1 + α2νL1L̂1P̂2

α1νL2L̂2 + α2νL1L̂1

showing that P ∗ is a weighted mean between P̄1 and P̂2. Symmetrically, one can
also write

P ∗ =
α1νL2L̂2P̂1 + νL1L̂1α2P̄2

α1νL2L̂2 + α2νL1L̂1

showing that P ∗ is a weighted mean between P̂1 and P̄2.

If, as often will be the case, min{P̂1, P̂2} ≥ max{P̄1, P̄2}, it follows that
equilibrium parasitoid density in presence of both hosts is higher than with either
alone, but we cannot prove that this intuitive feature always holds.

In any case, the above computation show that P ∗ is always positive, as
required.

It is clear also from (4.10) that, when νL1 = νL2 = 0, coexistence between two
hosts is not possible.
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4.2 Invasibility under periodic conditions

Conditions for invasibility and host coexistence may change if periodic solu-
tions are considered. Indeed, it has been shown [95] that (4.1) can be destabilized
via Hopf bifurcation with the emergence of a stable periodic solution. In particu-
lar, Murdoch et al. show that this happens when the adult stage is infinitesimally
short (dA →∞). Thus, in order to see whether the double invasibility condition
holds, it becomes necessary studying the stability of periodic solutions with only
one host present.

The complexity of the proposed model hinders such a general achievement
with analytical means. Resorting to linearisation leads to rather cumbersome
characteristic equations whose analysis, in general, is unattainable (see Appendix
A for further details). However, the recent literature on DDEs furnishes efficient
numerical routines to tackle the several tasks required in this regard. In particular,
in this section we make use of four reliable tools, namely:

M1 the method in [113] to approximate the rightmost eigenvalue(s) of the
linearisation around given equilibria;

M2 the method in [114] to approximate the dominant multiplier(s) of the
linearisation around given periodic orbits;

M3 (an adaptation of) the method in [115] to compute periodic solutions of
non-linear problems;

M4 the Matlab built-in function dde23 to integrate in time Cauchy problems
for non-linear equations, see [116].

The four methods are often combined in a framework of parameter continuation,
i.e., results for a certain parameter value are obtained starting from results
previously computed for a different but close parameter value. Aside, note that
an updated and complete presentation of M1 and M2 can be found in [117], with
user-friendly and freely available Matlab codes.

In order to have a model with a small number of parameters, we let only
parameters related to fecundity and adult mortality of the two hosts vary, i.e.,
ρ1, ρ2, dA1 and dA2 . All the other parameters are kept fixed at the values listed
in Table 4.1.

The first goal is to see when 1-host periodic solutions are possible, say host
1 without loss of generality. To this aim, we fix e.g., ρ1 = 5, and consider the
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Parameter Value

dEi 0.2
µLi 0.1
νLi 0.1
siP 1
αi 1
TEi 1
TLi 1
TiP 1
dP 1.1

Table 4.1: Parameter values used in the computation. We analyse the case when two

hosts are identical except for the adult host mortality dA and the fecundity

ρ.

non-trivial equilibrium of (3.3) without host 2 for varying dA1 . Based on the use
of M1, we found that the equilibrium is asymptotically stable as far as dA1 < dHB1

with dHB1 ≈ 0.3089. At this value the associated rightmost complex-conjugate
pair of eigenvalues crosses the imaginary axis left-to-right in a Hopf bifurcation,
Figure 4.1. The equilibrium loses stability and a periodic solution arises. The
latter is computed as follows. M3 is applied for dA1 slightly above dHB1 , with
initial guess the equilibrium itself. Indeed, the method converges to a periodic
solution, with rather small amplitude. To obtain a more pronounced periodic
behaviour, we increase dA1 incrementally, each step starting the solution from the
previously computed one. This way we are able to compute a distinct periodic
solution for dA1 = 0.35 with period Ω ≈ 18.5938, Figure 4.1 right and Table 4.2.

Such solution, call it (E†1, L
†
1, A

†
1, P

†
1 ), is confirmed by using M4: integration

forward in time leaves it unchanged.

The next step is to see whether host 2 can invade under the above determined
periodic conditions. So we keep ρ1 = 5 and dA1 = 0.35 fixed and linearise (3.3)
around (E†1, L

†
1, A

†
1, 0, 0, 0, P

†
1 ). It is not difficult to realize that the stability of

host 2 can be inferred by analysing only the equation for its adults, i.e.,

A′2(t) ≈ ρ2dA2A2(t− TE2 − TL2)e−dE2
TE2e

−µL2
TL2
−α2

∫ t
t−TL2

P †(y)dy − dA2A2(t).
(4.11)

This is a linear non autonomous DDE with periodic coefficients, periodicity
essentially due to the behaviour of the parasitoid. According to Floquet theory
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Figure 4.1: Eigenvalues at Hopf bifurcation for dA1 = dHB1 ≈ 0.3089 and ρ1 = 5

(left) and periodic solutions for dA1 = 0.35 and ρ1 = 5 (right) of Host 1

for the parameters values in Table 4.2.

(see, e.g., [118]), the stability of its null solution depends on whether the dominant
multiplier lies inside or outside the unit circle in the complex plane. Thus we
compute the modulus of this quantity by using M2 for varying ρ2 and dA2 . In
this way we construct a surface R2 → R, whose curve of level 1 divides the
(dA2 , ρ2)-plane into stable and unstable regions.

Figure 4.2 shows this boundary (thick line), obtained with Matlab contour.

A simple verification let us conclude that host 2 can invade when (dA2 , ρ2)
is above this curve, otherwise coexistence is not possible. For comparison, in
the same figure we add also the straight (dashed) line representing the first
invasibility condition (4.7). If the equilibrium Eq1 was stable, invasion of host 2
would be possible for ρ2 above the line and would not depend on the value of
dA2 . We then see that the invasibility of the equilibrium Eq1 and the presence of
the periodic solution (E†1, L

†
1, A

†
1, 0, 0, 0, P

†
1 ) makes easier the invasion of host 2 if

dA2 is small and harder if dA2 is large.

The effect of fluctuations on host coexistence can be illustrated more specifi-
cally in Figure 4.3.

In it we study both invasibility conditions in the (dA, ρ2)-plane having assumed
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Parameter Value

ρ1 5
dE1 0.2
µL1 0.1
νL1 0.1
dA1 0.35 (0.3089)
s1P 1
α1 1
TE1 1
TL1 1
T1P 1
dP 1.1

Table 4.2: Parameter values used to compute a distinct periodic solution for dA1 =

0.35.

host 2 invades

host 2 does not invade

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

dA2

ρ
2

Figure 4.2: The thick line represents the boundary that divides the (dA2 , ρ2)-plane

into stable and unstable regions by having fixed ρ1 = 5, dA1 = 0.35. The

straight dashed line represent instead the value ρ1e
− νLdP TL

αsP that comes

from (4.7).
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mutual
invasibility
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dHB1
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Figure 4.3: For ρ1 = 5, and dA1 = dA2 = var, when dA > dHB, host 2 can invade

for ρ2 > ρ̄(dA), a decreasing function of dA, and host 1 can invade for

ρ1 < ρ̂(dA), an increasing function of dA.

dA1 = dA2 =: dA while keeping ρ1 = 5 fixed. The shaded region of mutual
invasibility is obtained as follows. The straight lines for lower values of dA
account for (4.7), i.e.,

ρ1e
− νLdP TL

αsP < ρ2 < ρ1e
νLdP TL
αsP .

The lower straight line ends at the Hopf bifurcation value dHB1 as previously
determined. For greater values of dA we repeat the same arguments above: we
compute the periodic solution in absence of host 2 and we study its local stability
by searching for the value of ρ2 giving the dominant multiplier on the unit circle
for (4.11). By repeating the procedure over all values of dA > dHB1 , we obtain
the lower curve of Figure 4.3. As before, host 2 can invade when introduced in
a system where host 1 coexists with the parasitoid, if the parameter values are
above the curve so computed; it will be excluded if they are below.

For the increasing part of the upper bound of the shaded region, we repeat
the reasoning by exchanging the roles of the two hosts. More precisely, for a
fine mesh of points in that region of the (dA, ρ2)-plane we compute a periodic
solution of (3.3) in absence of host 1.

For each point, we linearise the equation of host 1 around the computed
periodic solution and determine the dominant multiplier. The curve is then
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obtained by selecting those points with dominant multiplier on the unit circle.
Notice that this curve joins the upper straight line at a value dA = dHB2 < dHB1 .
Indeed, this is correct since ρ2 > 5 and hence the Hopf bifurcation for host 2 (in
absence of host 1) occurs at a lower value of dA than that of host 1 (in absence
of host 2), which was found for ρ1 = 5. Figure 4.3 shows clearly that with larger
values of dA that cause each host alone to fluctuate with the parasitoid, there is
an ampler region in (ρ1, ρ2) where invasibility conditions are satisfied, presumably
leading to coexistence.

More surprisingly, this procedure shows that, when periodic solutions arise,
double invasibility (and thus presumably coexistence) is possible even without
density-dependence, a case where it has been seen (Corollary 4.1.2) that double
invasibility of equilibria is impossible.

In this case, it is easy to show that, if dA1 = dA2 , host 2 will invade a periodic
solution with only host 1 if ρ1 > ρ2 and vice versa; double invasibility is then
impossible when dA2 = dA1 . In order to explore possible coexistence, we fix
therefore the values of ρ1 and dA1 and let ρ2 and dA2 vary. Precisely, we set
ρ1 = 5, dA1 = 0.3 and νL1 = νL2 = 0, and repeat the procedure used for Figure
4.2 to construct the solid thick curve in Figure 4.4, below which host 1 excludes
host 2 and coexistence is not possible.

The dashed thick curve represents the condition for invasibility of the host 2
periodic solution (or equilibrium). For larger values of dA2 , this second curve is
computed by exchanging the roles of the two hosts, i.e., by following the same
procedure used to obtain the upper bound of the dashed region of Figure 4.3. For
lower values of dA2 , instead, there cannot be periodic solutions of (3.3) without
host 1, since dA2 is below the Hopf bifurcation point. To the left of this value, the
dashed thick curve corresponds to the straight line obtained from (4.7). Indeed,
the dotted thin curve is the bifurcation curve of the equilibrium Eq2: the right
curve part is the locus of the Hopf bifurcations leading to periodic solutions;
the bottom segment is the locus of trans critical bifurcation with the trivial
equilibrium. Both segments are obtained by using M1: the former searching for
the rightmost eigenvalue in zero, the second for the rightmost conjugate pair on
the imaginary axis.

Double invasibility conditions hold when (ρ2, dA2) belong to the shaded region
enclosed between the two curves. We then see that, thanks to the periodicity
induced by instability of the single-species equilibria, coexistence becomes possible
even when both host populations are regulated by the parasitoid, in absence of
density-dependence.
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Figure 4.4: The thick curve represents the condition for invasibility of the host 2

periodic solution with ρ1 = 5, dA1 = 0.3 and νL1 = νL2 = 0. The solid

thick curve represents instead the boundary that divides the (dA2 , ρ2)-plane

into stable and unstable regions, below which coexistence is not possible.

The dotted thin curve is the bifurcation curve of the equilibrium Eq2: the

right curve part is the locus of the Hopf bifurcations leading to periodic

solutions; the bottom segment is the locus of trans critical bifurcation with

the trivial equilibrium.

In Section 4.3 and 4.4 we give a heuristic explanation of host coexistence
without density-dependence, using an approximation of the threshold coefficient
for a scalar linear periodic delay-differential equation [119].

4.3 Approximation of dominant eigenvalue of

monodromy operator with arbitrary delay

Several authors have studied the linear delay equation with periodic coefficients
(see i.e. [119]).

Let the equation be

x′(t) = α (βf(t)x(t− τ)− x(t)) (4.12)

Chen and Wu [119] have shown that exists a β∗ ∈ (0,∞) such that the zero
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solution is stable if β < β∗ and unstable if β > β∗.

Here we show how to approximate β∗ by assuming that f is a 1-periodic
sinusoidal of small amplitude. In order to make explicit computations, assume

f(t) = 1 + ε cos(2πt)

and expand in order of ε.
Hence, the problem is to find β such that

x′(t) = α (β(1 + ε cos(2πt))x(t− τ)− x(t)) (4.13)

has 1-periodic solutions.
Let

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · ·
β = β0 + εβ1 + ε2β2 + · · ·

(4.14)

At zero order, the solution is β0 = 1, x0(t) ≡ c, that we set equal to 1.
At first order

x′1(t) = α (β1 + cos(2πt) + x1(t− τ)− x1(t)) (4.15)

Assuming that x1(t) is 1-periodic, we immediately have

0 =

∫ 1

0

x′1(t) dt = α

(
β1 +

∫ 1

0

cos(2πt) dt+

∫ 1

0

x1(t− τ) dt−
∫ 1

0

x1(t) dt

)
(4.16)

As the integral of cosine is zero and
∫ 1

0
x1(t− τ) dt =

∫ 1

0
x1(t) dt, β1 = 0.

Thus, equation (4.15) becomes

x′1(t) = α (cos(2πt) + x1(t− τ)− x1(t)) (4.17)

for which we search for a periodic solution.
If we assume that

x1(t) = KCt + LSt (4.18)

where Ct = cos(2πt) and St = sin(2πt). Then (4.18) becomes

x′1(t) = −2πKSt + 2πLCt

On the other hand after simple algebraic computations, by considering A =
cos(2πτ) and B = sin(2πτ), it follows that

x1(t− τ) = KACt +KBSt + LASt − LBCt.
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By equating the terms of (4.17), we obtain

Ct(2πL− α− αAK + αBL+ αK) = St(2πK + αBK + αAL− αL) (4.19)

from which we get the system in K and L,{
K(2π + αB)− Lα(1− A) = 0
Kα(1− A) + L(2π + αB) = α

(4.20)

From which {
K = α2(1−A)

(2π+αB)2+α2(1−A)2

L = α(2π+αB)
(2π+αB)2+α2(1−A)2

(4.21)

Using (4.18) with (4.21) the required periodic solution of (4.17) is easily obtained.
By considering the second order, as β1 = 0, the equation is given by

x′2(t) = α(β2 + Ctx1(t− τ) + x2(t− τ)− x2(t)). (4.22)

By assuming that a periodic solution is present, and using the fact that
∫ 1

0
x2(t−

τ) dt =
∫ 1

0
x2(t) dt, it is possible to obtain

0 =

∫ 1

0

x′2(t) dt = α

(
β2 +

∫ 1

0

Ctx1(t− τ) dt

)
(4.23)

i.e.

β2 = −
∫ 1

0

Ctx1(t− τ) dt = −K
∫ 1

0

cos(2πt) cos(2π(t− τ)) dt+

−L
∫ 1

0

cos(2πt) sin(2π(t− τ)) dt

(4.24)

This can be written in a simpler way by considering that∫ 1

0

cos(2πt) cos(2π(t− τ)) dt =
1

2
cos(2πτ) =

A

2∫ 1

0

cos(2πt) sin(2π(t− τ)) dt = −1

2
sin(2πτ) = −B

2

thus (4.24) becomes

β2 =
−α2(1− A)A+ α(2π + αB)B

2 ((2π + αB)2 + α2(1− A)2)
=

=
α2(1− A) + 2παB

2 (2α2(1− A) + 4π(π + αB))

(4.25)
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using that A2 +B2 = 1.
This shows that β2 is always positive, consistently with the previous result in
case τ = 1/2.

Let us consider β2 = G(α). It is immediate to see that G(0) = 0 and G(∞) =
1

4
.

Moreover

G′(α) =
(1− A)π2α + π3B

(α2(1− A) + 2π(π + αB))2 . (4.26)

G′ > 0 in (0, ᾱ) and G′ < 0 on (ᾱ,∞) where ᾱ is the root of a quadratic equation,
that does not seem to have a simple expression.

4.4 Application to host-parasitoid model

In the case without density-dependence, assume that host 1 coexists with
the parasitoid along an (attractive) T -periodic solution (L†1(t), A†1(t), P †1 (t)). The
equation for adult hosts is

A†1
′
(t) = dA1

(
ρ1e
−dETE−dLTL−α1

∫ t
t−TL

P †1 (y) dy
A1(t− TE − TL)− A1(t)

)
. (4.27)

For the sake of simplicity, by following Section 4.2, we assume that different hosts
share the values of dE, dL, TE, TL.
By considering P †1 (t) as a given function, the monodromy operator corresponding
to equation (4.27) has dominant eigenvalue equal to 1.
By changing the time (t̄ = t/T ), P †1 becomes 1-periodic, and (4.27) is equal to

A†1
′
(t) = dA1T

(
ρ1e
−dETE−dLTL−α1T

∫ t
t−TL/T

P †1 (y) dy
A1(t− τ)− A1(t)

)
(4.28)

where τ = (TE + TL)/T and the functions have been rescaled.
Set

α1 = dA1T

β1 = ρ1/K

f1(t) = Ke
−dETE−dLTL−α1T

∫ t
t−TL/T

P †1 (y) dy

(4.29)

where

K =
edETE+dLTL∫ 1

0
e
−α1T

∫ t
t−TL/T

P †1 (y) dy
dt
.

so to have
∫ 1

0
f1(t) dt = 1.

We assume that f1(t) ≈ 1 + εcos(2πt), thus, by considering Section 4.3

ρ1 ≈ (1 + ε2G(α1))K.
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The invasion by a second host sharing all parameter values as in Section 4.2 will
succeed if and only if the linearised equation

A†2
′
(t) = dA2T

(
ρ2e
−dETE−dLTL−αT

∫ t
t−TL/T

P †1 (y) dy
A2(t− τ)− A2(t)

)
(4.30)

has dominant monodromy eigenvalue greater than 1. The equation can be written
as

A†2
′
(t) = α2 (β2f1(t)A2(t− τ)− A2(t)) (4.31)

with α2 = dA2T and β2 = ρ2/K.
The eigenvalue is larger than 1 if and only if

ρ2 > (1 + ε2G(α2))K.

If α1 is in the region where G is increasing, this will be possible for ρ2 < ρ1 if
α2 < α1. Vice versa, in the region where G is decreasing.
This mechanism gives presumably rise to mutual invasibility. However, when the
roles of host 1 and host 2 are switched, also the period will in principle change
as well as fi, so G does not remain the same.
It easier showing that, if we assume that for α2 < α1, solutions are attracted to
a stable equilibrium (this is certainly true if α2 is small enough).
Then as all other parameters are the same, and the value of dAi does not matter,
the invasion condition is easy to read as host 1 invades host 2 if and only if
ρ2 > ρ1.
Thus mutual invasibility occurs if we find a pair (dA1 , ρ1) and (dA2 , ρ2) such that
the first gives rise to periodic solutions and the second to stable equilibrium with

dA2 < dA1

1+ε2G(dA2
T )

1+ε2G(dA1
T )
< ρ2

ρ1
< 1

(4.32)

where G and T refer to 1-parameters. Clearly this is only possible if G is increasing
between dA2T and dA1T . This result can be compared with Figure 4.4 and it can
be noticed that it corresponds to what is seen in the left wedge of the Figure. Of
course, this argument is purely heuristic as it is based on the unlikely assumption
that f1(t) is exactly a sinusoidal function. However, we believe it gives some
intuition on why coexistence may occur even without density-dependence.



Chapter 5

Discussion

T
his chapter summarizes and discusses the main results obtained by
analysing the interactions between two different hosts and a common
parasitoid. We compare our results with what was found in other

studies. We discuss also the limitations of this model and introduce some possible
improvements such as different stage duration, multiple parasitoids that can
attack different host life stages or evolutionary dynamics.

In this part of the dissertation we have provided the first, as far as we know,
analysis of a continuous-time model for a system consisting of a parasitoid species
attacking two different host species.

The model is built on the framework proposed by [95] assuming that de-
velopmental time in all stages is fixed, while other authors [97] have allowed
for distributed lengths of developmental stages, and have shown that such an
assumption is crucial for the possibility of equilibrium coexistence of several
parasitoid species on a single host species.

The other assumption used is that the two host species do not compete directly
but are regulated by independent resources, acting through a density-dependent
mortality in the larval stage. Under this assumption, it is possible to find an
explicit condition for the existence of an equilibrium where both host species
coexist with the parasitoid. This condition is equivalent, as it often occurs in
population model, to the double invasibility condition, i.e. that both equilibria
with a single host species are unstable relatively to the invasion of the other host
species. Although the two host species do not compete directly, they are subject
to apparent competition (see i.e. [120,121]) through the shared parasitoid.

In the special case without density-dependence in the hosts, the condition for
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coexistence is never satisfied, so that necessarily one host species will exclude the
other. When host regulation occurs only because of the parasitoid, the species
more strongly regulated by the parasitoid will get extinct, because the parasitoid
will be able to reach even higher densities at which the host species with a weaker
regulation gets under control.

However, it is well known that host-parasitoid system can exhibit cycles, as
usual in systems of predator-prey type, but more easily because of the delays
built in the stage structure. The previous analysis holds if each system with
a single-host tends to an equilibrium, but becomes irrelevant when a single
host-parasitoid system converges to a periodic solution. In this case, in order
to assess the double invasibility condition [112], it is necessary to analyse the
stability of the periodic solution in the complete system.

While finding explicit conditions for the stability of periodic solutions in sys-
tems of delay-differential equations is probably hopeless (it is generally impossible
already in systems of two ordinary differential equations), recent advancements in
the methods for the approximation of multipliers of the monodromy operator of
linear delay-differential equations with periodic coefficients provide a fundamental
tool for being able to numerically study the stability of a periodic solution. These
methods have been coupled to a method to approximate periodic solutions of such
systems, and to a continuation algorithm that allows for efficiently tracking the
periodic solutions as a parameter is varied, and applied to the 2 host-1 parasitoid
system in some cases that appear biologically significant.

A discussion of the results that have been obtained is that conditions for
invasibility and host coexistence can be favoured by considering periodic solutions,
where periodicity is due to the behaviour of the parasitoid and is not forced from
the outside. In fact, periodicity favours host coexistence, up to the extreme case
without density-dependence: even then, if at least one of the single host-parasitoid
system converges to a periodic solution, coexistence of the two hosts is possible,
albeit under rather stringent conditions on the parameters. Li and Smith [122]
found that coexistence of multiple host species and multiple parasitoid species
needs existence of a periodic solution, while Murdoch et al. [95] discussed instead
this possibility for an infinitesimally short invulnerable adult stage and constant
fecundity.

It has been known for several decades, since the seminal work by De Mottoni
and Schiaffino [123] and by Cushing [124] that coexistence of competitors is easier
if the environment fluctuates periodically (see also [125]). This system is different,
in that periodicity is not forced from outside but is generated intrinsically by host-
parasitoid interactions. While the result may not be surprising, it is worthwhile
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noticing that the effect is the same; it can be said that fluctuations in one
host-parasitoid system improve the chances of a second host species to coexist.

Host-parasitoid systems can be considered just as predator-prey system in
which the predator has a specialized life cycle. It can be noted that in predator-
prey systems without density-dependence (i.e. the classical Volterra system
with neutral cycles) a simple computation shows that it is impossible to satisfy
the double invasibility. In this sense, host-parasitoid systems based on delay-
differential equations are more stable than predator-prey systems and may be
more suitable for examining general ecological principles.

In the presented model, it is assumed that there is no dependence of attack rate
on parasitoid density but it is well known [126–128] that if density-dependence is
included, results on coexistence and the effect on host abundance can be altered.
Moreover, consumer species adaptively adjust their consumption behaviour when
they are in presence of more host species [129–133]. In [134], Abrams and
Kawecki studied parasitoid trade-off in its ability to exploit two different hosts.
In particular, they modelled the dynamics of two independent host populations
that share a common parasitoid and examined different types of adaptation
in parasitoid attack rate. They found that adaptive behaviour and evolution
frequently destabilize population dynamics and increase the difference between
host densities. Thus, it would be a great improvement to see what happens if we
apply adaptive dynamics to our model. By considering [110], we can see that the
parasitoids taken into account have a preference for D. melanogaster but, using
what was found in [134], we could maybe say something more on their preference
for different host species from a mathematical point of view.

Another point that can be improved is to consider different parasitoid species
that can attack different host stages. In fact, according to [110], different
species of parasitoids can attack different species of hosts at different life stages.
Stacconi et al. found that D. suzukii can be attacked and parasitized by several
indigenous parasitoids of D. melanogaster, in particular a larval koinobiont and
solitary endoparasitoid, L. heterotoma, and a generalist pupal ectoparasitoid,
P. vindemiae. These parasitoids can be somewhat included in this model by
considering that we merged these two life stages into the larval stage present
in (3.3) but we can also extend the presented model by considering [97], where
an one host-two parasitoid model is studied. In this way, we could not only see
coexistence conditions of different host species when a parasitoid is present but
also study what happens when a new parasitoid is introduced into this system.

Despite these limitations, our analysis provides evidence of different conditions
of host coexistence and model like the one presented in this dissertation may be
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relevant for modelling control strategies for D. suzukii based on native parasitoids
of indigenous fruit flies.



Appendix A

Characteristic equation for
dynamics of host-parasitoid
interactions and coexistence of
different hosts

L
et us find the characteristic equation for the dynamics of host-parasitoid
interactions to find stability conditions. To investigate local stability,
imagine that the system has remained at steady state for all t ≤ 0

and is perturbed from this steady state at some time t > 0. We consider small
perturbations from equilibrium, linearise both the balance equations and the
vital-rate definitions about the steady state, and derive a ’characteristic equation’,
whose roots must have negative real parts for local stability.

We define
e(t) =E(t)− E∗

l(t) =L(t)− L∗

a(t) =A(t)− A∗

p(t) =P (t)− P ∗

(A.1)

Denote with

γL = µL + αP ∗ + νLL
∗

The first thing that we want to do is a simplification of both ME and ML.
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Since

ME =ρdAA(t− TE)e−dETE

ML =ME(t− TL)e
−

∫ t
t−TL

(αP (y)+νLL(y)+µL)dy
(A.2)

and, by considering the perturbations (A.1), we can easily obtain

ME(t) =ρdA(A∗ + a(t− TE))e−dETE

ML(t) =ρdA(A∗ + a(t− TE − TL))e−dETEe
−γLTL−

∫ t
t−TL

αp(y)+νLl(y)dy
(A.3)

Consider now the Taylor expansion. We can find the final form of the
linearisation of ML

ML =ρdAA
∗e−dETE−γLTL + ρdAa(t− TE − TL)e−dETE−γLTL+

− ρdAA∗e−dETE−γLTL
∫ t

t−TL
αp(y) + νLl(y)dy

(A.4)

Finally, after some algebra, we can obtain

ė(t) =ρdAa(t)− ρdAa(t− TE)e−dETE − dEe(t)
l̇(t) =ρdAa(t− TE)e−dETE − ρdAa(t− TE − TL)e−dETE−γLTL + ρdAA

∗e−dETE−γLTL∫ t

t−TL
αp(y) + νLl(y)dy − αP ∗l(t)− αp(t)L∗ − (dL + 2νLL

∗)l(t)

ȧ(t) =ρdAa(t− TE − TL)e−dETE−γLTL+

− ρdAA∗e−dETE−γLTL
∫ t

t−TL
αp(y) + νLl(y)dy − dAa(t)

ṗ(t) =αP ∗l(t− TP )sP + αL∗p(t− TP )sP − dPp(t)
(A.5)

We are looking for a solution of the form x(t) = xeλt where the x on the rhs is a
constant.
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Let define, for simplicity of notation

Π1
E =e−dETE

Π2
E =e−(λ+dE)TE

Π1
E =e−γLTL

Π2
E =e−(λ+γL)TL

(A.6)

From (A.5) using (A.6), we obtain

λe =ρdAa(1− Π2
E)− dEe

λl =ρdA

[
a(1− Π2

L)Π2
E + (αp+ νl)A∗Π1

E

Π1
L − Π2

L

λ

]
+

− α(P ∗l + pL∗)− (dL + 2νL∗)l

λa =ρdA

[
aΠ2

EΠ2
L − (αp+ νl)A∗Π1

E

Π1
L − Π2

L

λ

]
− dAa

λp =αsP e
−λTP (P ∗l + pL∗)− dPp

(A.7)

From the last equation we can express p in terms of l writing p = P (λ)l where

P (λ) =
αsPP

∗e−λTP

λ+ dP − αsP e−λTPL∗
(A.8)

Using this form into the second equation we have that also l can be expressed in
terms of a as l = L(λ)a, where

L(λ) =
ρdA(1− Π2

L)Π2
E

λ+ dL + 2νL∗ + α(P ∗ + L∗P (λ))− ρdAA∗Π1
E(αP (λ) + ν)

Π1
L−Π2

L

λ

(A.9)

If we substitute them into the third equation we obtain the characteristic equation
in the form G(λ) = 1

G(λ) =
ρdA
λ+ dA

[
Π2
EΠ2

L − (αP (λ)L(λ) + νL(λ))A∗Π1
E

Π1
L − Π2

L

λ

]
(A.10)
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A.1 Density-dependence two hosts present

In this case the only things that will change are the equations for p, l and a
but they will do it in an easy way.

λei =ρidAiai(1− Π2
Ei

)− dEiei

λli =ρidAi

[
ai(1− Π2

Li
)Π2

Ei
+ (αip+ νili)A

∗
iΠ

1
Ei

Π1
Li
− Π2

Li

λ

]
− αi(P ∗li + pL∗i )− (dLi + 2νiL

∗
i )li

λai =ρidAi

[
aiΠ

2
Ei

Π2
Li
− (αip+ νili)A

∗
iΠ

1
Ei

Π1
Li
− Π2

Li

λ

]
− dAiai

λp =
2∑
i=1

αisiP e
−λTP (P ∗li + pL∗i )− dPp

(A.11)

We can express ai in terms of li and p writing ai = Ai(λ)(αip+ νili) where

Ai(λ) =
−Xi

Π1
Li
−Π2

Li

λ

λ+ dAi − ρidAiΠ2
Ei

Π2
Li

(A.12)

Using this form into the previous equations we have that l can be expressed
in terms of p as li = Li(λ)p, where

Li(λ) =
αiρidAiΠ

2
Ei

(1− Π2
Li

)Ai(λ) +Xiαi
Π1
Li
−Π2

Li

λ
− αiL∗i

λ+ αiP ∗ + dLi + 2νiL∗i − ρidAiΠ2
Ei

(1− Π2
Li

)Ai(λ)ν −Xiν
Π1
Li
−Π2

Li

λ

(A.13)

If we substitute them into the third equation we obtain the characteristic equation
in the form G(λ) = 1

G(λ) =

∑2
i=1 αisiP e

−λTP (P ∗Li(λ) + L∗i )

λ+ dP
(A.14)
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Chapter 1

Introduction

T
his chapter gives a brief biological introduction on D.suzukii and the
parasitoids that can attack it. Then are presented the experiments
conducted by Tochen et al. and Stacconi et al. that can be considered

useful to apply the model presented in Part II to raw data. We have to keep in
mind that, since experiments were conducted late in the season, obtained results
are not reliable.

1.1 Biological background

Drosophila suzukii, the spotted-wing drosophila (described by [83]) is a recently
introduced pest fruit fly coming from South-east Asia. It was detected the first
time in European and North American fruit production regions [84–89] during
2008 and has been recently discovered also in South America [135].

The main characteristic that differentiate this species from most other species
of Drosophilidae is its ability to lay eggs in healthy, ripening fruits [136] that may
become unmarketable causing significant economic losses [90–94].

To reduce D. suzukii populations several approaches have been attempted:
chemical control, trap control or natural enemies control. The main tool that is
currently used by growers are insecticides, even if they can be inefficient [137,138].
Also mass trapping techniques result useful to reduce populations of D. suzukii [89]
but the method that is taken into account in this paper is the use of natural
enemies as possible biocontrol agents against D. suzukii [139–141].

These natural enemies are generally parastoids that induce a high rate of mor-
tality in their host populations due to high natural average rate of parasitism [142].
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By following the preliminary surveys of [139] and [143], it emerges that D. suzukii
can be attacked mostly by a larval koinobiont and solitary endoparasitoid, Lep-
topilina heterotoma (associated both with D. suzukii and D. melanogaster), and
by a generalist pupal ectoparasitoid, Pachycrepoideus vindemiae.
The fact that these parasitoids can be associated with both D. suzukii and D.
melanogaster lead us to develop a model that describes this situation. It has to
be taken into account that, from a general point of view, a lot of different host
and parasitoid species are present and that there can be a preference and an
adaptation between the species as in [134] but this is the simplest setting from
which to start.
In host-parasitoid models, many host species can be attacked by different par-
asitoids. Murdoch et al. [95] considered a model of populations with discrete
generations with a single host and a single parasitoid. They assumed that there
are two developmental stages, immature and mature, in both the host and the
parasitoid, and then investigated the effects that overlapping generations and
invulnerable stages produce on the stability of the system to find that an invul-
nerable age class, a shorted adult parasitoid life span and lower host fecundity
tend to stabilize a model with overlapping generations. Briggs et al. [82, 97]
generalized their model by adding another parasitoid species and by developing
a general model in which different parasitoid species attack the same host at
different developmental stages. They showed that coexistence of two parasitoids
is not guaranteed by their preference for different host developmental stages and
even that, with a fixed host stage duration, coexistence between parasitoids is
not possible.

A background on the experiments conducted by Tochen et al. [144] and
Stacconi et al [110] is presented in Section 1.2. In Chapter 2 we describe the
models studied (two hosts-two parasitoid model and one host-one parastoid
model) and present the data extrapolated from the studies of Tochen et al. and
Stacconi et al.. In Chapter 3 we show preliminary results of the application of
the one host-one parasitoid model to raw data. We test the impact of different
choices for the attack rate and increased death rates to reduce parasitoid effective
fecundity respect to laboratory conditions. Moreover we show what happens
if parasitoids are introduced into the system before the hosts have reached the
equilibrium. It turns out that even if the attack rate is small, parasitoids have a
significant impact on host population even if, under this condition, it takes a lot
of time. Finally, in Chapter 4 we discuss the obtained results.
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1.2 Experiments

To apply the model presented in Part II we need data both for the hosts
and the parasitoids. For this reason we take into account the studies of Tochen
et al. [144] and Stacconi et al. [110] that performed experiments both under
laboratory conditions and field conditions.

Tochen et al. studied in fact D. suzukii under different temperature conditions
to analyse its developmental period, survival and fecundity. [144] shows that
temperature has a significant influence on the fruit fly since, as it increases,
developmental periods decreases. However they noticed also that at 30◦C, the
highest temperature tested, development periods of D. suzukii increased. This
demonstrate that above this temperature the developmental extremes for the
species were approached. In their studies, fruit was exposed to D. suzukii females
for 30 minutes at a temperature around 22◦C. Fruit was then removed and
examined to see how many eggs there were laid in. Results show that the highest
reproductive rate for D. suzukii was recorded at 22◦C. This made us able to
compare extrapolated data from this paper with results obtained by Stacconi et
al.

Stacconi et al. performed a series of experiments both under laboratory and
fields conditions to evaluate the presence and the efficacy of natural enemies that
can be associated with D. suzukii. Their studies involved one larval parasitoid
(Leptopilina heterotoma) and two pupal parasitoids (Pachycrepoideus vindemiae
and Trichopria drosophilae). To analyse parasitoids behaviour and their effect
on D. suzukii, they used three indices: the degree of infestation (DI, proportion
of host larvae or pupae successfully parasitized), the success rate of parasitism
(SP, probability that a host larva or pupa yields an adult parasitoid) and the
total encapsulation rate (TER). Their results show that P. vindemiae and L.
heterotoma are able to attack and develop on D. suzukii even if they are indigenous
parasitoids of D. melanogaster where both the degree of infestation and the success
rate of parasitism were higher.
In addition, they studied parasitoids preference for medium and Drosophila’s life
stages and their fecundity and life duration, parameters that we were not able
to find in literature. They found that P. vindemiae can produce and lay eggs
throughout life until a sharp decline before death, while Trichopria’s fecundity is
higher in the first part of its life and then decrease rapidly and L. heteroma is an
unknown factor since their experiments were conducted late in the season and
thus host larvae could have been to small or too big for this parasitoid.

By considering life duration of these parasitoids, it results that P. vindemiae
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has a longer life if it is in presence of parasitization, while for Trichopria it is
longer without it. Last, the case of L. heterotoma is different because it seems
that its life duration is independent from parasitization.

The second kind of experiments that Stacconi et al. performed is field and
semi field experiments.

Results from field experiments assure that a population of Trichopriae has
established after its introduction while it has never been collected where it was
not previously introduced. In semi field experiments, they noticed a decrement
in host population when parasitoids where introduced. However, since these
experiments, were performed late in the season, these results are not reliable. For
this reason, we analyse only the data extrapolated from [110,144].



Chapter 2

Methods

T
he aim of this chapter is to introduce an extended version of the model
presented in Chapter 3 in which we add a new class in host life stages and
a different parasitoid. In this way, we obtain a model that can describe

more realistically what happens in the fields of the province of Trento, Italy.
Thus we start with a two hosts-two parasitoids model and then we concentrate
on a one host-one parasitoid model to use it as a starting point to analyse data
extrapolated from [110,144].

2.1 Two hosts-two parasitoids model

Since Stacconi et al. performed experiments on two different Drosophilidae
species and on different indigenous parasitoid species, we extend the model
presented in Chapter 3 including two different parasitoids and a new host stage,
the pupae. The choice to consider only two parasitoid species is due to the fact
that in [110] was found that Trichopria drosophilae females produced only males
in Italy and thus no further replications have been performed.

Under this assumptions, host species life cycle is now divided into four
developmental stages: eggs, E, larvae, L, pupae, P and adults, A. We assume
that host larvae are attacked by adult parasitoid of species 1, Q, while pupae by
adult parasitoid of species 2, R. All the assumptions of this model are the same
as in Chapter 3. Thus we assume that hosts can not survive to parasitoids attack
and death and birth rates (except for the larval stage) and stage durations are
constant and density-independent.
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Thus, the two hosts-two parasitoid model is given by

E ′i(t) = ρidAiAi(t)−MEi(t)− dEiEi(t)
L′i(t) = MEi(t)−MLi(t)− αQiQ(t)Li(t)− dLi(Li(t))Li(t)
P ′i (t) = MLi(t)−MPi(t)− αRiR(t)Pi(t)− dPiPi(t)
A′i(t) = MPi(t)− dAiAi(t)

Q′(t) =
2∑
i=1

αQiQ(t− TiQ)Li(t− TiQ)siQ − dQQ(t)

R′(t) =
2∑
i=1

αRiR(t− TiR)Pi(t− TiR)siR − dRR(t)

(2.1)

where

βi = ρidAi
dLi(Li(t)) = µLi + νLiLi(t)

MEi(t) = ρidAiAi(t− TEi)e−dEiTEi

MLi(t) = MEi(t− TLi)e
−

∫ t
t−TLi

(αQiQ(y)+dLi (Li(t)))dy

MPi(t) = MLi(t− TPi)e
−

∫ t
t−TPi

(αRiR(y)+dPi )dy

(2.2)

All model parameters are described in Table 2.1.

2.1.1 Equilibria Coexistence

Coexistence conditions for (2.1) are determined as in Chapter 3 by a lineari-
sation of the system around the equilibrium.
The equilibrium when only host 1 (H1) and Q are present is

Ê1Q =
ρ1dA1Â1Q(1− e−dE1

TE1 )

dE1

L̂1Q =
dQ

αQ1s1Q

P̂1Q =
ρ1dA1e

−(αQ1Q̂1TL1
+dL1

(L̂1Q)TL1
+dE1

TE1
)(1− e−dP1

TP1 )Â1Q

dP1

Â1Q =
(αQ1Q̂1 + dL1(L̂1Q))L̂1Q

ρ1dA1e
−dE1

TE1 (1− e−(αQ1Q̂1+dL1
(L̂1Q))TL1 )

Q̂1 =
ln(ρ1)− dE1TE1 − dP1TP1 − dL1(L̂1Q)TL1

αQ1TL1

(2.3)
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Parameter Description

β Host birth rate

dE Host egg death rate
dL(L) Host i larva death rate
dP Host i pupa death rate
dA Host adult death rate
dQ Adult parasitoid death rate of parasitoid Q
dR Adult parasitoid death rate of parasitoid R

αQ Attack rate of adult parasitoids on host larvae
αR Attack rate of adult parasitoids on host pupae

sQ Survival rate of juvenile parasitoids Q
sR Survival rate of juvenile parasitoids R

TE Duration of egg host stage
TL Duration of larva host stage
TP Duration of pupa host stage
TQ Duration of adult parasitoid Q stage
TR Duration of adult parasitoid R stage

Table 2.1: Model parameters present in the two hosts-two parasitoids model. All

parameters are kept constant and density-independent except of the larval

death rate that depends on larvae density.

Instead the equilibrium when only R is present with host 1 is

Ê1R =
ρ1dA1Â1R(1− e−dE1

TE1 )

dE1

0 = ρ1dA1Â1Re
−dE1

TE1 (1− e−dL1
(L̂1R))− dL1(L̂1R)L̂1R

P̂1R =
dR1

αR1s1R

Â1R =
(αR1R̂1 + dP1)P̂1R

ρ1dA1e
−(dE1

TE1
+dL1

(L̂1R)TL1
)(1− e−(αR1R̂1+dP1

)TP1 )

R̂1 =
ln(ρ1)− dE1TE1 − dL1(L̂1R)TL1 − dP1TP1

αR1TP1

(2.4)



82 CHAPTER 2. METHODS

By considering [97], we can see that, when only one host is present, Q can invade
when

L̂1R >
dQ

αQ1s1Q

and R can invade when

P̂1Q >
dR

αR1s1R

.

However, since data on both hosts and both parasitoids are not reliable
because of experiments performed late in the season, we decide to start with a
simpler model with only one host and one parasitoid.

2.2 One host-one parasitoid model

Since raw data on L. heteroma were scattered, we decided to apply the model
with one host (D. suzukii) and one pupal parasitoid (P. vindemia). Thus we
assume that the life cycle of the host can be divided into four developmental stages:
eggs, E, larvae, L, pupae, P and adults, A. We assume that an interspecific
competition is present at the larval stage so that, in absence of parasitoids, the
host population reach a carrying capacity.

By following the stage preference of P. vindemiae, we assume that adult
parasitoids, R, can attack only the pupal stage of the host and that they can lay
a single egg inside the host. As a starting point, we assume that hosts can not
survive to parasitoids attack by encapsulating them and that attack and death
rates (except for the larval stage) are constant and density-independent. Since
data on the percentage of female offspring, πH , are available, we assume here
that host birthrate is

β = πHρdA =
πHρ

TA
, (2.5)

and juvenile parasitoid survival rate is

sR = exp (−dJRTJR). (2.6)
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Thus, the one host-one parasitoid model is given by

E ′(t) = βA(t)−ME(t)− dEE(t)

L′(t) = ME(t)−ML(t)− dL(L(t))L(t)

P ′(t) = ML(t)−MP (t)− αRR(t)P (t)− dPP (t)

A′(t) = MP (t)− dAA(t)

R′(t) = αRR(t− TR)P (t− TR)sRπR − dRR(t)

(2.7)

where
ME(t) = βA(t− TE)e−dETE

ML(t) = ME(t− TL)e
−

∫ t
t−TL

dL(L(t))dy

MP (t) = ML(t− TP )e
−

∫ t
t−TP

(αRR(y)+dP )dy

(2.8)

All model parameters are described in Table 2.2.

2.2.1 Equilibrium with no parasitoids

To analyse extrapolated data, we start by considering that the host popula-
tion is at an equilibrium without parasitoids and then we add a percentage of
parasitoids to see their impact on the host population. This means that initial
host values must satisfy

Ê =
βÂ(1− e−dETE)

dE

L̂ =
ln(ρπH)− dETE − dLTL − dPTP

TLνL

P̂ =
βe−(dL(L̂)TL+dETE)(1− e−dPTP )Â

dP

Â =
dL(L̂)L̂

βe−dETE(1− e−dL(L̂)TL)

(2.9)

2.3 Parameters extrapolation

To obtain parameter values to use in our simulations, we can look at [110,144].
Tochen et al. studied in fact D. suzukii developmental period, survival, and
fecundity under different temperature conditions. In Table 1 of [144], they found
that, under optimal temperature conditions (22− 26◦C), a Drosophila’s egg has
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Parameter Description

β Host birth rate

dE Host egg death rate
dL(L) Host larva death rate
dP Host pupa death rate
dA Host adult death rate
dR Adult parasitoid death rate

α Attack rate of adult parasitoids on host pupae

sJR Survival rate of juvenile parasitoids

TE Duration of egg host stage
TL Duration of larva host stage
TP Duration of pupa host stage
TR Duration of adult parasitoid stage

πH Percentage of female offspring in hosts
πR Percentage of female offspring in parasitoid

Table 2.2: Model parameters present in the one host-one parasitoid model. All pa-

rameters are kept constant and density-independent except of the larval

death rate that depends on larvae density.

the 70% of probabilities to survive and to become an adult, and that the time
spent to become an adult is around 14 days (3 as eggs, 5 as larvae and 6 as
pupae). Since we do not know anything about the survivor ship in intermediate
states, we assume that

dE = µL = dP = − ln 0.7

14
= 0.025.

By considering (2.2), Tables 1 and 3 of [144], where host fecundity rate at 22◦C
is equal to 62 and adult host stage duration is of 10.5 days, and [145] where host
female offspring results equal to 0.5, we obtain that

β =
ρπH
TA

=
62× 0.5

10.5
= 2.95.
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From this we can also obtain dA = 1
TA

= 0.095.

In the same way, by following [110], we have that at 23◦C females of P.
vindemiae produce a similar number of offspring throughout their life, until a
sharp decline before their death. They survive for more or less 21.5 days and
parasitized a mean lifetime total of 78.4 pupae with 68.4 offspring successfully
emerging as adults, of which 80% were female. Since sex ratio decreased with
maternal age, we fix it prudently to 75%. From these data we obtain that the
86.8% of juvenile parasitoids survives until adulthood. Thus, as we have done
for the host, juvenile death rate is given by

dJR = − ln 0.87

TJR
= 0.0067.

where TJR = 21 (value extrapolated from Figure 4 of [110]), and adult death rate
is equal to 0.047.

Table 2.3 summarizes data extrapolated from [110,144].
It is easy to notice that, in Table 2.3, two parameters are missing: the attack

rate, αR, and νL, the quantity for which the pro capita mortality changes by
adding a new individual.

Actually, these two parameters can be considered as one parameter since we
can use an arbitrary scaling to measure host density. Thus, we decide to fix the
density-dependence as to have for instance 100 pupae at equilibrium.
By considering (2.9) and Table 2.3, via simple algebraic calculations, we obtain

νL = 0.00092.

Since we have obtained νL, we can put the attack rate at its maximum value
as to have that, at that value, parasitoids can lay all the eggs that they can lay
under laboratory conditions, 78.4.
Under these conditions, the attack rate is given by

αR =
78.4

100× 21.5
= 0.036.
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Parameter Description Value

β Host birth rate 2.95

dE Host egg death rate 0.025
µL Host larva death rate 0.025
dP Host pupa death rate 0.025
dA Host adult death rate 0.095
dJR Juvenile parasitoid death rate 0.0067
dR Adult parasitoid death rate 0.047

sJR Survival rate of juvenile parasitoids 0.87

TE Duration of egg host stage 3
TL Duration of larva host stage 5
TP Duration of pupa host stage 6
TJR Duration of juvenile parasitoid stage 21
TR Duration of adult parasitoid stage 21.5

πH Probability of female host 0.5
πP Probability of female parasitoid 0.75

Table 2.3: Parameter extrapolated from [110, 144] used to see parasitoids impact on a

host population at equilibrium.



Chapter 3

Preliminary results

T
he aim of this chapter is to show preliminary results of the applica-
tion of the presented model to raw data. We run simulations using
parameters extrapolated from [110, 144] and by considering the one

host-one parasitoid model (2.7) presented in the previous Chapter. We decide
to test the impact of different choices for the attack rate and increased death
rates because it reduces parasitoid effective fecundity respect to laboratory values.

3.1 Simulations

3.1.1 Laboratory conditions

Hosts at equilibrium

We start by considering that the host population has reached an equilibrium
without parasitoid. By considering (2.9), values extrapolated from [110,144] and
the obtained value of ν, it is possible to find that at equilibrium we have 1399
eggs, 671 larvae, 101 pupae and 164 adults. From this we decide to introduce
different parasitoid percentages of adult hosts (1%, 5%, 10%, 50%) to analyse
their impact on host population.

We run simulations for 500 days even if it is not a realistic time choice since, in
this preliminary model, we do not take into account temperatures and seasonality
but it is mathematically interesting.

To start we fix four different values for the attack rate ( 1
10
αR, 1

4
αR

1
2
αR and α)
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since probably attack rates in the field will be such that fecundity is quite lower
than what found in the laboratory experiments. We want now to compare the
times at which host pupae are halved when we introduce the different percentages
of parasitoids.
Table 3.1 summarizes the times needed by parasitoids to halve host pupae under
different combinations of attack rates and percentage of introduced parasitoids.

1
10
αR

1
4
αR

1
2
αR αR

1% 130.4 67.28 46.9 25.35

5% 94.68 47.88 25.15 22.6

10% 79.78 29.07 23.78 1.64

50% 47.22 1.05 0.46 0.27

Table 3.1: Time needed by parasitoids to halve host pupae under different combinations

of attack rate and percentage of introduced parasitoids.

It is easy to see in Table 3.1 that, by increasing the attack rate, the time
needed to halve host pupae decrease rapidly. Since the introduction of 50% of
parasitoids is presumably not achievable in nature without collateral effects for
the environment or too high cost for farmers, we decide to exclude it from the
choice of the best percentage value and we tested it only for a modelling curiosity.
It can be noticed that, excluding the last case, the best case is obtained when
a 10% of parasitoid is introduced since it is the only case where host pupae
are halved in less than 20 days at maximum attack rate. Thus, it seems that
the control would be effective only with an high percentage of introduced para-
sitoids or a sufficiently high attack rate. In fact, if the right attack rate is for
instance α

10
, we would never be able to control the host population in a short time.

Figure 3.1 shows different attack rates under the best choice of parasitoids
introduction according to Table 3.1.
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Figure 3.1: Under laboratory conditions simulations. Panel (a), (b), (c) and (d)

represent the case with an initial adult parasitoid value equal to 10% of

adult hosts, in 500 days with attack rates α
10 ,

α
4 ,

α
2 , α respectively.

It can be seen that, even if initially parasitoids have a strong effect on host
population, they then shift it to an oscillatory regime.

By considering the choice made on introduction parasitoid percentage, an
interesting question to ask is what could happen if parasitoids introduction occurs
before the equilibrium is reached.

Hosts not at equilibrium

Since at the beginning of the season only a small number of adult hosts is
present, we decide to test what happens if we introduce parasitoids under these
conditions.
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Since we know that, at equilibrium we have 164 adults, we decide to start
from an initial situation with 5 adults, and no hosts at any other stage.

Figure 3.2 shows that, when no parasitoids are present, host population
reaches values close to equilibrium at time x around 65 days.
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Figure 3.2: Under laboratory conditions simulations when no parasitoids are intro-

duced and we start with only five adult hosts.

Different percentages of introduced parasitoids

According to what was found previously, we know what happens if we intro-
duce a certain amount of parasitoids after time x. We now want to know what
could happen if we introduce always the same percentage of parasitoids at times
smaller than x. We chose to take into consideration x = 0, 12, 20, and 65. The
choice of x = 0 is due to the fact that it is possible to know how many hosts
there are at the beginning of the season. Values x = 12 and x = 20 are instead
chosen to see if the impact of the parasitoids is different if we take an initial
value respectively below or above 50 pupae (half of the pupae at equilibrium).
Figure 3.3 shows what happens when the host population is not at equilibrium
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when no parasitoids are present, and parasitoids with attack rate α
10

are intro-
duced at time x = 20.
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Figure 3.3: Under laboratory conditions simulations with an initial adult parasitoid

value equal to 10% of adult hosts introduced at time x = 20, in 500 days

with attack rates α
10 .

It can be seen that hosts decrease rapidly even when the attack rate is at
1
10

of its maximum value. Thus, parasitoids can be possibly released when host
population is low.

A different way to introduce parasitoids that could be useful for farmers is to
introduce always the same quantity of parasitoids.

Constant quantity of introduced parasitoids

We decide to introduce always 0.5 parasitoids that is the 10% of initial adult
host at time 0, since it is possible to know how many hosts there can be at the
beginning of the season. Then, as we have done before, we want to know what
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could happen if we introduce parasitoids at different times.
For instance, let us see what happens in the worst case when there is a huge
difference in the value of introduced parasitoids and the host population values.
Figure 3.4 shows thus what happens when the host population is at equilibrium
when no parasitoids are present, and a constant amount of parasitoids (equal to
0.5 parasitoids) is then introduced.
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Figure 3.4: Under laboratory conditions simulations. Panel (a), (b), (c) and (d)

represent the case with an initial adult parasitoid constant value equal to

0.5, in 500 days introduced when host population is at equilibrium with

attack rates α
10 ,

α
4 ,

α
2 , α respectively.

In this figure can be seen that, even with attack rate at 1
10

of its maximum
value, parasitoids would have a strong effect on host population, even if the initial
quantity of introduced parasitoids is very low compared to the host population.
However, under these conditions, an effect would require more than 100 days.
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3.1.2 Increased death rates

The last case that we take into account is a case in which we decide to keep
the attack rate constant and equal to 0.036 and we vary the mortality rates
both of hosts and parasitoids to reduce parasitoid effective fecundity respect to
laboratory values. Since we do not have notions on how much the mortality of
hosts and parasitoids increases outside laboratory conditions, we decide that the
new death rates are obtained by doubling previous adult host and parasitoid
death rates and by adding a 0.001 to the death rate of juvenile parasitoids.
Table 3.2 shows the new death rate values.

Parameter Value

dA 0.19
dJR 0.0077
dR 0.095

Table 3.2: Parameters obtained by considering that probably in nature death rates

both of hosts and of parasitoids can be higher than the rates obtained under

laboratory conditions.

As we have done under laboratory conditions, Table 3.3 summarizes the times
needed by parasitoids to obtain 50 host pupae under different combinations of
percentages of parasitoids and times of parasitoid introduction.

Also in this case we decide not to consider the 50% of parasitoid introduction
and thus the best percentage choice seems to be 10% as before. By comparing
the last column of Table 3.3 and the last column of Table 3.1, it can be notice
that parasitoids need a bit more time to obtain 50 host pupae even if the values
are really closed.
Thus, we want to see if an increased death rate both in hosts and parasitoids
does not matter or if it improves the control even if the time needed to halve the
pupae is similar to the one with laboratory death rates.

Figure 3.5 compares the cases when the host population is at equilibrium and
10% of parasitoids with maximum attack rate α are introduced under laboratory
conditions on death rates and with increased death rates.

It can be noticed that, even if the times to halve host pupae are similar under
both conditions (a bit larger with increased death rates), when we increase both
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0 12 20 65

1% 82.67 7.88 43.35 27

5% 70.2 44.42 24.03 23

10% 60.9 25.31 22.54 1.76

50% 49.01 22.27 0.24 0.34

Table 3.3: Time needed by parasitoids to obtain 50 host pupae under different combi-

nations of attack rate and percentage of introduced parasitoids when the

attack rate is at its maximum value 0.036.
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Figure 3.5: Increased death rates. Panel (a) and (b) represent the case with fixed

α = 0.036 and an initial adult parasitoid value equal to 10%, in 500 days

introduced when host population is at equilibrium. Laboratory death rates

in panel a), and increased death rates in panel b)

the death rates of hosts and parasitoids, the total host population decreases
more rapidly than in the other case. Thus, it can be seen that presumably in
nature, if the parasitoids are introduced at the equilibrium, they can have a more
significant impact on host population than in laboratory.
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Discussion

T
his chapter summarizes and discusses the main results obtained by
analysing the interactions between one host and one parasitoid under
different attack rate conditions, percentages of parasitoid introduction

and times of parasitoid introduction.

In this part of the dissertation, we start from the studies of [110,144] from
which we extrapolated data useful to apply a changed version of the model
presented in Part II to raw data. We decide to change our model since, by
considering [110], we noticed that D. suzukii can be attacked by parasitoids with
different host stage preferences. We introduced a two hosts-two parasitoids model
with an additional host life stage, the pupae. However, since its analysis was
too complicated and needed a lot of unknown parameters, we decided to use
a simplified version of it. Thus, by analysing the studies of Tochen et al. and
Stacconi et al., we chose to consider D. suzukii as the host and P. vindemiae as
the parasitoid. This choice was due to the fact that data on L. heterotoma were
scattered and that Tricophria’s females produced only males and thus no further
replications have been performed.

Once data on these species were extrapolated, we analysed different conditions
on the attack rate and parasitoids presence to see the impact of parasitoid
introduction on host populations. We found that, using different values of the
attack rate until it reaches its maximum value, the control would be effective only
with an high percentage of introduced parasitoids or a sufficiently high attack
rate. In fact, if the attack rate is at 1

10
of its maximum value, we would never

be able to control the host population in sufficiently short time. From these
results it can also be noticed that, even if under these conditions the parasitoids
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can initially have a strong impact on host population, they them shift it to an
oscillatory regime.

We found also that, if we want to simulate what happens at the beginning of
the season by adding a fixed percentage of parasitoids, under high introduction
of parasitoids (10% of initial adult host population), their effect on the host
population is fast even if the attack rate is at 1

10
of its maximum value. From

these simulations, we can conclude that growers can possibly release parasitoids
when host population is low and see a significant impact on it.

In the third case that we have taken into account, we have decided to keep
constant the amount of parasitoids introduced in the system. This choice is
interesting because at the beginning of the season it is easy to obtain values of the
total amount of hosts present by considering what can be found into traps or in
particular places. In this case, we found that, if we introduce the 0.5 parasitoids
at all times (the 10% of adult hosts at time x = 0) even when hosts are at
equilibrium and the attack rate is at 1

10
of its maximum value, parasitoids would

have a strong effect on host population. However, from a practical point of view,
this effect would not be satisfactory since it would require more than 100 days.

Finally, we considered that maybe in nature mortality rates could be higher
than those obtained in laboratory. Thus, we decided to keep the attack rate
at the maximum obtained value and we increased the mortality rates both of
hosts and parasitoids. Since we do not know how much these rates increase
outside laboratory conditions, our choices are arbitrary and can be also totally
or partially wrong. We found that, the time needed by parasitoid to halve host
pupae increases a bit respect to the values found under laboratory conditions but
the total host population decreases more rapidly in this case. Thus, presumably
in nature, if parasitoids with a maximum attack rate are introduced when the
host population is at equilibrium, they can have a more significant impact on
host population than under laboratory conditions.

Thus, even if these are only preliminary results, our analysis provides evidence
of a great impact of parasitoid introduction on host population and assures that
parasitoids can by effective biocontrol agents.







Bibliography

[1] Camacho A, et al. Explaining rapid reinfections in multiple-wave influenza
outbreaks: Tristan da Cunha 1971 epidemic as a case study. P R Soc Ser B
2011; 278: 3635-3643.

[2] Calatayud L, et al. Pandemic (H1N1) 2009 virus outbreak in a school in
London, April-May 2009: an observational study. Epidemiol Infect 2010; 138:
183-191.

[3] Guinard A, et al. Outbreak of influenza A(H1N1)v without travel history
in a school in the Toulouse district, France, June 2009. Eurosurveillance 2009;
14: 2335-2346.

[4] Health Protection Agency West Midlands H1N1v Investigation
Team. Preliminary descriptive epidemiology of a large school outbreak of
influenza A(H1N1)v in the West Midlands, United Kingdom, May 2009.
Eurosurveillance 2009; 14: pii=19264.

[5] Kar-Purkayastha I, et al. The importance of school and social activi-
ties in the transmission of influenza A(H1N1)v: England, April-June 2009.
Eurosurveillance 2009; 14: pii=19311.

[6] Lessler J, et al. Outbreak of 2009 pandemic influenza A(H1N1) at a New
York City school. N Engl J Med 2009; 361: 2628-2636.

[7] Smith A, et al. An outbreak of influenza A(H1N1)v in a boarding school in
South East England, May-June 2009. Eurosurveillance 2009; 14: pii=19263.

[8] Gurav YK, et al. Pandemic influenza A(H1N1) 2009 outbreak in a residen-
tial school in Panchgani, Maharashtra, India. Indian J Med Res 2010; 132:
67-71.

99



100 BIBLIOGRAPHY

[9] Marchbanks TL, et al. An outbreak of 2009 pandemic influenza A (H1N1)
virus infection in an elementary school in Pennsylvania. Clin Infect Dis 2011;
52: S154-S160.

[10] Centers for Disease Control and Prevention (CDC). Performance of
rapid influenza diagnostic tests during two school outbreaks of 2009 pandemic
influenza A (H1N1) virus infection - Connecticut, 2009. MMWR 2009; 58:
1029-1932.

[11] Zhao H, Joseph C, Phin N. Outbreaks of influenza influenza-like illness
in schools in England and Wales, 2005/06. Eurosurveillance 2007; 12: E3-4.

[12] Centers for Disease Control and Prevention. Swine-Origin influenza
A (H1N1) virus infections in a school-New York City, April 2009. MMWR
2009; 58: 470-472.

[13] Baguelin M, et al. Assessing Optimal Target Populations for Influenza
Vaccination Programmes: An Evidence Synthesis and Modelling Study. PLoS
Med 2013; 10: e1001527.

[14] Mossong J, et al. Social Contacts and Mixing Patterns Relevant to the
Spread of Infectious Diseases. PLoS Med 2008; 5: e74.

[15] Fumanelli L, et al. Inferring the Structure of Social Contacts from Demo-
graphic Data in the Analysis of Infectious Diseases Spread. PLoS Comp Biol
2012; 8: e1002673.

[16] Cauchemez S, et al. Role of social networks in shaping disease transmission
during a community outbreak of 2009 H1N1 pandemic influenza. P Natl Acad
Sci USA 2011; 7: 2825-2830.

[17] O’Neill PD, et al. Analyses of infectious disease data from household
outbreaks by Markov chain Monte Carlo methods. J R Stat Soc Ser C 2000;
49: 517-542.

[18] O’Neill PD, Roberts GO. Bayesian inference for partially observed
stochastic epidemics. J R Stat Soc Ser A 1999; 162: 121-129.

[19] Anderson R, May R. Infectious Diseases in Humans. Oxford University
Press, Oxford, 1992.



BIBLIOGRAPHY 101

[20] Dieckmann O, Heesterbeek J. Mathematical Epidemiology of Infectious
Diseases. Wiley, Chichester, New York, 2000.

[21] Fraser C, et al. Factors that make an infectious disease outbreak control-
lable. PNAS 2004; 101: 6146-6151.

[22] Hamer WH. Epidemic disease in England. Lancet 1906; 1: 733-739.

[23] Ross R. An application of the theory of probabilities to the study of a
priori pathometry. Part i. P Roy Soc Lond A Mat 1916; 92: 204-230.

[24] Ross R, Hudson H. An application of the theory of probabilities to the
study of a priori pathometry. Part ii. P Roy Soc Lond A Mat 1917a; 93:
212-225.

[25] Ross R, Hudson H. An application of the theory of probabilities to the
study of a priori pathometry. Part i. P Roy Soc Lond A Mat 1917b; 93:
225-240.

[26] Kermack WO, McKendrick AG. A contribution to the mathematical
theory of epidemics. P Roy Soc A 1927; 115: 700-721.

[27] Kermack WO, McKendrick AG. Contributions to the mathematical
theory of epidemics-II. The problem of endemicity. P Roy Soc A 1932; 138:
55-83

[28] Kermack WO, McKendrick AG. Contributions to the mathematical
theory of epidemics-III. Further studies of the problem of endemicity. P Roy
Soc A 1933; 141: 94-122.

[29] Chowell G, et al. SARS outbreaks in Ontario, Hong Kong and Singapore:
the role of diagnosis and isolation as a control mechanism. J Theor Biol 2003;
224: 1-8.

[30] Wang W, Ruan S. Simulating the sars outbreak in Beijing with limited
data. J Theor Biol 2004; 227: 369-379.

[31] Nishiura H, et al. Pros and cons of estimating the reproduction number
from early epidemic growth rate of influenza A (H1N1) 2009. Theor Biol Med
Model 2010; 7: 1.

[32] Lipsitch M, et al. Transmission dynamics and control of severe acute
respiratory syndrome. Science 2003; 300: 1966-1970.



102 BIBLIOGRAPHY

[33] Austin D, Kakehashi M, Anderson R. The transmission dynamics of
antibiotic-resistant bacteria: the relationship between resistance in commensal
organisms and antibiotic consumption. P Roy Soc Lond B Bio 1997; 246:
1629-1638.

[34] Gupta S, et al. Parasite virulence and disease patterns in plasmodium
falciparum malaria. P Natl Acad Sci USA 1994; 91: 3715-3719.

[35] Gupta S, Ferguson N, Anderson R. Chaos,persistence, and evolution
of strain structures in antigenically diverse infectious agents. Science 1998;
280: 912.

[36] Ferguson N, Donnelly CA, Anderson RM. Transmission dynamics and
epidemiology of dengue: insights from age-stratified sero-prevalence surveys.
Philos T Roy Soc B 1999; 354: 757-768.

[37] Minayev P, Ferguson N. Improving the realismn of deterministic multi-
strain models: implications for modelling influenza A. J R Soc Interface 2009;
6: 509-518.

[38] Rosenblueth, Wiener N.The Role of Models in Science. Philos Sci 1945;
12: 316-321.

[39] Naylor TJ, et al. Computer Simulation techniques. Wiley, New York, 1966.

[40] Abbey H. An examination of the Reed-Frost theory of epidemics. Hum
Biol 1952; 24: 201.

[41] Greenwood M. On the statistical measure of infectiousness. J Hyg Camb
1931; 31: 336.

[42] O’Neill PD. A tutorial introduction to Bayesian inference for stochastic
epidemic models using Markov chain Monte Carlo methods. Math Biosci
2002; 180: 103-114.

[43] Zeng D, et al. Infectious Disease Informatics and Biosurveillance. Springer
Science & Business Media, 2010.

[44] Metropolis N, et al. Equation of state calculations by fast computing
machines. J Chem Phys 1953; 21: 1087-1092.

[45] Hastings, W. Keith. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 1970; 57: 97-109.



BIBLIOGRAPHY 103

[46] Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the
Bayesian restoration of images. IEEE T Pattern Anal 1984; 6: 721-741.

[47] Gelfand AE, Smith AFM. Sampling-based approaches to calculating
marginal densities. J Am Stat Assoc 1990; 85: 398-409.

[48] Gelman A, Rubin DB. A single series from the Gibbs sampler provides
a false sense of security. B-Statistics 1992; 4: 625-631.

[49] Gelman A, Rubin DB. Inference from iterative simulation using multiple
sequences. Stat Sci 1992; 7: 457-472.

[50] Green PJ. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika 1995; 82: 711-732.

[51] Roberts GO, Gelman A, Gilks WR. Weak convergence and optimal
scaling of random walk Metropolis Algorithms. Ann Appl Probabb 1997; 7:
110-120.

[52] Gamerman D, Lopes HF. Markov chain Monte Carlo: stochastic simu-
lation for Bayesian inference. CRC Press, 2006.

[53] Park S, et al. Outbreak of 2009 pandemic influenza A (H1N1) at a school
- Hawaii, May 2009. MMWR 2009; 58: 1440-1444.

[54] Ghani AC, et al. The Early Transmission Dynamics of H1N1pdm Influenza
in the United Kingdom. PLoS Curr 2009; 1: RRN1 130.

[55] Suess T, et al. Shedding and Transmission of Novel Influenza Virus A/H1N1
Infection in Households-Germany, 2009. Am J Epidemiol 2010; 171: 1157-
1164.

[56] Gilks WR, Richardoson S, Spiegelhalter DJ. Markov Chain Monte
Carlo in practice. Chapman & Hall/CRC, London, 1996.

[57] Wallinga J and Lipsitch M. How generation intervals shape the relation-
ship between growth rates and reproductive numbers. P R Soc Lond B 2007;
274: 599-604.

[58] King AA, et al. Avoidable errors in the modelling of outbreaks of emerging
pathogens, with special reference to Ebola. Proc R Soc London B Biol Sci
2015; 282: 20150347.



104 BIBLIOGRAPHY

[59] Smith DL, et al. Revisiting the Basic Reproductive Number for Malaria
and Its Implications for Malaria Control. PLoS Biol 2007; 5: e42.

[60] Yang Y, et al. The transmissibility and control of pandemic influenza
A(H1N1) virus. Science 2009; 326: 729-733.

[61] Fraser C, et al. Pandemic potential of a strain of influenza A (H1N1):
early findings. Science 2009; 324: 1557-1561.

[62] Pourbohloul B, et al. Initial human transmission dynamics of the pan-
demic (H1N1) 2009 virus in North America. Influenza Other Respir Viruses
2009; 3: 215-222.

[63] Italian Institute of Health. InfluNet. (http://www.iss.it/iflu/).

[64] Spiegerlhalter DJ, et al. Bayesian measures of model complexity and fit
(with discussion). J R Stat Soc Ser B 2002; 64: 583-639.

[65] Van der Linde A. DIC in variable selection. Stat Neerl 2005; 59: 45-56.

[66] Gemmetto V, Barrat A, Cattuto C. Mitigation of infectious disease at
school: targeted class closure vs school closure. BMC Infect Dis 2014; 14:
695.

[67] Stehle J, et al. High-resolution measurements of face-to-face contact pat-
terns in a primary school. PloS ONE 2011; 271: 166-180.

[68] Fumanelli L, et al. Model-based Comprehensive Analysis of School Closure
Policies for Mitigating Influenza Epidemics and Pandemics. PLoS Comp Biol
2016; 12: e1004681.

[69] Cauchemez S, et al. School closures during the 2009 influenza pandemic:
national and local experiences. BMC Infect Dis 2014; 14: 207.

[70] Cauchemez S, et al. A Bayesian MCMC approach to study transmission
of influenza: application to household longitudinal data. Stat Med 2004; 23:
3469-3487.

[71] Jong MCM, Diekmann O, Heesterbeek H. How does transmission of
infection depend on population size. Epidemic models: their structure and
relation to data. Cambridge University Press, Cambridge, United Kingdom,
1995, 84-94.

http://www.iss.it/iflu/


BIBLIOGRAPHY 105

[72] Ajelli M, et al. Model predictions and evaluation of possible control
strategies for the 2009 A/H1N1v influenza pandemic in Italy. Epidemiol Infect
2011; 139: 68-79.
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