
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Holistic Security Requirements Engineering for

Socio-Technical Systems

Tong Li

Advisor:

Prof. John Mylopoulos

University of Trento

April 2016

Abstract

Security has been a growing concern for large organizations, especially financial and gov-

ernmental institutions, as security breaches in the systems they depend have repeatedly

resulted in losses of billions per year, and this cost is on the rise. A primary reason for

these breaches is the “socio-technical” nature of today’s systems that consist of an amal-

gam of social and human actors, processes, technology and infrastructure. We refer to

such systems as Socio-Technical Systems (STSs). Finding secure solutions for STSs is a

difficult and error-prone task because of their heterogeneity and complexity.

The thesis proposes a holistic security requirements analysis framework which catego-

rizes system security concerns into three layers, including a social layer (social actors and

business processes), a software layer (software applications that support the social layer)

and an infrastructure layer (physical infrastructure, hardware, and devices). Within each

layer, security requirements are elicited, and security mechanisms are designed to satisfy

the security requirements. In particular, a cross-layer support link is defined to capture

how security mechanisms deployed at one layer influence security requirements of the next

layer down, allowing us to systematically and iteratively analyze security for all three

layers and eventually produce holistic security solutions for the systems.

To ensure the quality of the analysis of our approach and to promote practical adop-

tion of the three-layer approach, the thesis includes two additional components. Firstly,

we propose a holistic attack analysis, which takes an attacker’s perspective to explore re-

alistic attacks that can happen to a system and thus contributes to the identification of

critical security requirements. This approach consists of an attack strategy identification

method which analyzes attacker’s alternative malicious intentions, and an attack strategy

operationalization method which analyzes realistic attack actions that can be performed by

attackers. Secondly, the thesis proposes a systematic approach for selecting and applying

security patterns, which describe proven security solutions to known security problems.

As such, analysts with little security knowledge can efficiently leverage reusable security

knowledge to operationalize security requirements in terms of security mechanisms. This

approach also allows us to systematically analyze and enforce the impact of deployed se-

curity mechanisms on system functional specifications.

We have developed a prototype tool, which implements the formalized analysis methods

of our three-layer framework and enables the semi-automatic application of our proposal.

With the help of the tool, we apply our framework to two large-scale case studies so as to

validate the efficacy of our approach.

Keywords[Security Requirements Engineering, Socio-Technical Systems, Goal Models,

Security Patterns, Security Attacks]

4

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor John My-

lopoulos, who has provided terrific on my research and have helped me to uncover my

interests in research. In particular, I am much impressed with the way he carries out

research, patient, rigorous, open-minded, for all of which I have been endeavoring to train

myself. Moreover, I would like to thanks Professor John Mylopoulos for providing me

many opportunities to participate various conferences and summer schools, in which I am

able to communicate with excellent researchers in my field of research.

I am grateful for Professor Fabio Massacci, not only because of serving on my thesis

committee but also because of co-supervising the early stage of my PhD study. He has

provided me many insightful comments on my research, which have been rooted in my

mind and guide my research all the time. Especially, I appreciate and have been influenced

by his empirical and rigorous perspective on security research.

I would like to sincerely thank Professor Lin Liu and Professor Diego Calvanese for

being my committee members. They have provided excellent comments and advice on

my thesis, based on which I am able to further improve the thesis. In addition they have

helped me to uncover additional limitations of my work, shedding light on my future

research directions.

Many thanks to Jennifer Horkoff for her tremendous help on my work. I have learned

a lot from our discussions and from all your detailed comments on my work. Thanks

for showing me how to be an excellent postdoctoral researcher, which is important for a

late-stage PhD student.

I would also like to extend my thanks to all my colleagues in Trento. It is a great

opportunity for me to work and exchange ideas with all of you. All the talks, discussions,

and seminars are invaluable experiences for me. Especially, I so much appreciate the

friendships with all of you, which make my life joyful.

Special thanks to my parents for their continuous support throughout my PhD stage,

helping me to easily concentrate on my research.

Lastly, I would like to share all my achievements with my wife, Nan Yang, who defi-

nitely deserves half of them, if not more than that.

Tong (童)

The work compiled in this thesis has been supported by the ERC advanced grant 267856,

titled “Lucretius: Foundations for Software Evolution”.

i

ii

Contents

1 Introduction 1

1.1 Complexity of Socio-Technical Systems . 1

1.2 Challenges in Designing Secure STSs . 2

1.3 Research Objectives and Research Questions 4

1.4 Research Overview and Contribution . 6

1.4.1 A Three-Layer Security Requirements Modeling Framework 6

1.4.2 A Three-Layer Security Requirements Analysis Framework 8

1.4.3 Prototype Tool . 11

1.4.4 Case Studies . 12

1.5 Structure of the Thesis . 13

1.6 Published Work . 14

2 State of the Art 17

2.1 Security Requirements Engineering . 17

2.1.1 Security Requirements Engineering Processes 18

2.1.2 Security Requirements Engineering Approaches 21

2.2 Holistic Security . 28

2.2.1 Security Analysis beyond Software Systems 28

2.2.2 Holistic Security Analysis Approaches 30

2.3 Security Attack Analysis . 31

2.3.1 Attacker-oriented Analysis . 31

2.3.2 Attack Pattern-based Analysis . 32

2.3.3 Multistage Attack Analysis . 33

2.4 Security Patterns . 34

2.4.1 Security Pattern Collections . 35

2.4.2 Security Pattern Selection . 36

2.4.3 Impact of applying security patterns 38

2.5 Chapter Summary . 39

iii

3 Baselines 41

3.1 Requirements Problem . 41

3.2 Goal Modeling Languages . 42

3.2.1 i* . 43

3.2.2 Techne . 44

3.2.3 A Contextual Goal Modeling Language 45

3.3 Security Patterns . 45

3.3.1 Pattern Templates . 46

3.4 CAPEC . 48

3.4.1 CAPEC Schema . 48

3.5 Chapter Summary . 50

4 A Three-Layer Security Requirements Analysis Framework 51

4.1 A Three-Layer Structure for STSs . 52

4.2 A Three-Layer Requirements Modeling Language 54

4.2.1 Conceptual Model . 54

4.2.2 Formal Definitions . 60

4.3 A Holistic Security Requirements Analysis Process 64

4.3.1 Security Goal Refinement . 65

4.3.2 Security Goal Simplification . 69

4.3.3 Security Goal Operationalization 71

4.3.4 Cross-Layer Security Analysis . 73

4.3.5 Holistic Security Solution Generation 75

4.4 Discussions . 77

4.5 Related Work . 80

4.6 Chapter summary . 83

5 A Holistic Security Attack Modeling and Analysis Approach 85

5.1 Approach Overview . 86

5.2 Analyzing Attack Strategies via Anti-Goal Refinement 88

5.2.1 Real Attack Scenario Examination 88

5.2.2 An Anti-Goal Refinement Approach 92

5.2.3 Evaluation . 95

5.2.4 Discussion . 101

5.3 Operationalizing Anti-Goals with Attack Patterns 102

5.3.1 Model Attack Patterns as Contextual Goal Model 103

5.3.2 Attack Pattern Selection and Application 108

5.4 Validation . 112

iv

5.5 Discussion and Related Work . 115

5.6 Chapter Summary . 119

6 Integrating Security Patterns with Security Requirements Analysis 121

6.1 Security Patterns Complement Security Requirements Operationalization . 122

6.2 Model Security Patterns as Contextual Goal Models 123

6.2.1 A Contextual Goal Modeling Language 123

6.2.2 A Process for Creating Contextual Goal Models from Security Pat-

terns . 124

6.2.3 Empirical Observations . 128

6.3 Selecting and Applying Security Patterns to Operationalize Security Re-

quirements . 128

6.3.1 Generate Security Pattern Candidates 130

6.3.2 Security Pattern Selection . 131

6.3.3 Security Pattern Application . 132

6.4 Related Work . 133

6.5 Chapter Summary . 134

7 Analyzing the Impact of Security Mechanisms 137

7.1 Impact of Security Mechanisms . 138

7.2 Scenario: The Healthcare Collaborative Network (HCN) 139

7.3 An Enriched Requirements Specification 140

7.4 An Enriched Security Mechanism Specification 141

7.5 A Systematic Process for Analyzing the Impact of Security Mechanisms . . 144

7.6 Evaluation . 149

7.7 Related Work . 154

7.8 Chapter Summary . 156

8 A Prototype Tool 157

8.1 Architecture . 157

8.2 Features . 159

8.3 Use Cases . 163

8.4 Chapter Summary . 168

9 Validation 169

9.1 Case Study 1: A Smart Grid Real-Time Pricing Scenario 170

9.1.1 Scenario Description . 171

9.1.2 Building Three-Layer Requirements Models 171

v

9.1.3 Analyze Security Requirements in Three Layers 174

9.1.4 Threats to Validity . 181

9.2 Case Study 2: Medical Emergency Response System 183

9.2.1 Scenario Description . 183

9.2.2 Modeling the Medical Emergency Response System 184

9.2.3 Security Requirements Analysis Results 188

9.3 Chapter Summary . 193

10 Conclusions and Future Work 195

10.1 Conclusions . 195

10.2 Discussion . 197

10.2.1 Limitations . 198

10.2.2 Ongoing Work and Future Research Directions 201

Appendix A Attack Scenario Studies 205

Appendix B Attack Pattern Hierarchy 209

Appendix C Goal Models Built from Attack Patterns 215

Appendix D Context Inference Rules for Attack Patterns 231

Appendix E Attack Pattern Validation Results 247

Appendix F Goal Models Built from Security Patterns 251

Bibliography 267

vi

List of Tables

2.1 A comparison of security requirements engineering processes 20

2.2 A comparison of security requirements engineering techniques 27

2.3 A comparison of security pattern selection techniques 37

3.1 An exemplary security pattern in [Fernandez-Buglioni, 2013] 47

3.2 An exemplary CAPEC attack pattern . 49

4.1 Formal predicates of the three-layer requirements modeling language 63

4.2 Formal predicates for related constructs . 64

4.3 Inference rules for refinement methods . 66

4.4 Inference rules of applicability analysis . 70

4.5 Inference rules of threat analysis . 71

4.6 Inference rules of cross-layer analysis . 74

5.1 The EBNF syntax of the structured description language 91

5.2 Summarized refinement patterns . 92

5.3 Pattern-related conceptual mappings . 103

5.4 Mappings between attack pattern impact and STRIDE threats categories . 105

5.5 Typical targets of attack domains . 105

5.6 Inference rules for attack operationalization 110

6.1 The specification of the Intrusion Detection System pattern [Fernandez-

Buglioni, 2013] . 125

7.1 Security constraint rules . 143

7.2 Enforcement measures for the six security constraints 148

7.3 Statistics of applying the conceptual model to 20 security mechanisms . . . 149

8.1 The use case specification for refining security goals 163

8.2 The use case specification for identifying critical security goals 164

8.3 The use case specification for identifying security pattern candidates 164

vii

8.4 The use case specification for checking applicability of security pattern

candidates . 165

8.5 The use case specification for propagating security requirements across layers165

8.6 The use case specification for generating holistic security solutions 166

8.7 The use case specification for operationalizing anti-goals 166

8.8 The use case specification for checking applicability of attack pattern can-

didates . 166

8.9 The use case specification for generating alternative (multistage) attacks . 167

8.10 The use case specification for identifying constrained requirements tasks . . 167

8.11 The use case specification for enforcing impact of security constraints . . . 167

9.1 Statistics of the three-layer requirements model (smart grid) 174

9.2 Statistics of the three-layer requirements model (medical emergency) . . . 187

9.3 Two exemplary holistic security solutions 192

viii

List of Figures

1.1 An overview of our holistic security requirements analysis framework . . . 7

3.1 An illustration of the requirements problem from [Zave and Jackson, 1997] 42

3.2 Goal models with contexts . 45

4.1 The requirements problem extended for STSs 52

4.2 An overview of the three-layer security requirements analysis framework . . 53

4.3 Meta-model of the three-layer security requirements framework 54

4.4 An excerpt of the three-layer requirements model of the smart grid scenario 56

4.5 Hierarchy of security properties . 59

4.6 Overview of assets . 59

4.7 An overview of the three-layer security requirements analysis process . . . 65

4.8 Security goals refinements . 67

4.9 Exhaustive refinements for the root security goal 68

4.10 Selected security patterns in three layers 72

4.11 An example of the operationalization of critical security goals 73

4.12 Security mechanisms cross-layer analysis 75

4.13 Cross-layer security analysis for security goals 75

4.14 Partial view of a holistic security goal model 76

5.1 An overview of the holistic attack analysis framework 87

5.2 Anti-goal models that are built from the “Easy Money” attack scenario . . 90

5.3 An analysis process of anti-goal refinement 93

5.4 Applying anti-goal refinement analysis to the scenario of credit card theft

(excerpt) . 97

5.5 Apply the attacker strategy to the credit card stolen scenario (full) 99

5.6 An example attack pattern model . 104

5.7 A systematic process for attack strategy operationalization 108

5.8 Operationalize a leaf anti-goal using attack patterns 109

5.9 An excerpt of the final attack model . 114

ix

6.1 Concept mappings between contextual goal models and security patterns . 124

6.2 The contextual goal model of the IDS pattern 126

6.3 Security pattern analysis process . 129

6.4 A part of the security goal model of the smart grid scenario 130

6.5 Applying IDS pattern to the goal model of the smart grid scenario 132

7.1 A snippet of requirements goal model of HCN 140

7.2 An example of the enriched requirements elements 141

7.3 Modeling security mechanism — virtual private network (VPN) 142

7.4 The process for analyzing impact of security mechanisms 145

7.5 Impact of the application of VPN (part) 146

7.6 Examples of knowledge models . 147

7.7 The complete three-layer requirements goal model of the HCN scenario . . 151

7.8 Impact of the application of VPN over HCN scenario 152

8.1 An overall architecture of MUSER . 158

8.2 The modeling interface of MUSER . 160

8.3 Perform analysis using MUSER control panel 162

9.1 The requirements model in the social layer 172

9.2 A three-layer requirements model of the smart grid realtime pricing scenario173

9.3 A full resource schema considered in this case study 175

9.4 Refine security goals in the social layer . 176

9.5 The entire security goal model across three layers 178

9.6 The business process model of the medical emergency scenario 185

9.7 The three-layer requirements goal model for the medical emergency scenario186

9.8 The resource model related to the medical emergency system 189

9.9 The entire holistic security goal model for the medical emergency system . 190

E.1 Attack strategy model . 248

E.2 Operationalize attack strategies into relevant attack patterns 249

E.3 Final attack model . 250

x

Chapter 1

Introduction

Security is a chain; it’s only as secure as the weakest link.

Bruce Schneier

Security has been a growing concern for large organizations, especially financial and

governmental institutions, as security breaches in the systems they depend have repeat-

edly resulted in losses of billions per year, and this cost is on the rise. According to

Ponemon Institute, the average total cost of a data breach for the 350 companies partici-

pating in their study was 3.79 million dollars in 2015 [Ponemon, 2015]. The breaches are

caused by a broad scope of factors, including trusted insiders (inadvertent or malicious),

malware, SQL injections, and hijacked devices, etc. A primary reason for these breaches

is the “socio-technical” nature of today’s systems that consist of social and human actors,

processes, technology and infrastructure. We refer to such systems as Socio-Technical

Systems (STSs). In this chapter, we discuss the complexity of STSs, as well as the chal-

lenges which arise when designing secure STSs. Then, we present a three-layer security

requirements analysis framework, which addresses those challenges and eventually gener-

ates holistic security solutions that satisfy security requirements of STSs.

1.1 Complexity of Socio-Technical Systems

Socio-Technical Systems (STSs) are an amalgam of people and technology. In contrast to

vanilla software systems, STSs extend their system boundary to include additional com-

ponents, such as social and human actors, business processes and physical infrastructure,

to better support the achievement of strategic and tactical objectives.

Consider a smart grid advanced metering infrastructure as a typical STS. In order

to dynamically regulate the energy price according to the energy load, we need not only

an energy management application, but also an effective business process for generating

2 Introduction

and distributing energy prices, as well as a well-deployed physical infrastructure. Incorrect

design of any of these components will impair the satisfaction of stakeholder requirements.

In addition to a broader scope of concerns, the design of an STS must not ignore

interactions among different components, since the design of one system component can

influence another. In the smart grid example, the design of the price generation process

determines the features of the energy management application, and which physical devices

should be deployed according to the applications they host (e.g., if an application needs to

communicate with other applications, then the host device should be deployed to connect

to a network).

1.2 Challenges in Designing Secure STSs

Expanded system boundary. Thanks to an expanded system boundary, STSs are able

to provide advanced functionality catering to more challenging requirements. However,

on the security side, an expanded system boundary actually presents a larger attack

surface than before, and thus introduces more challenges to the protection of STSs. A

common cause for many breaches in STSs is that security solutions are not designed

in a holistic fashion. Rather, they are dealt with in a piecemeal fashion, by different

analysts, using different analysis techniques, and focusing on different components of STS

(e.g., processes, software, hardware). For example, Mitnick and Simon [2005, 2011] focus

on analyzing social attacks and corresponding countermeasures; Jürjens [2002] proposes

UMLsec for designing secure software applications; Weingart [2000] surveys and discuss

known physical attacks and present corresponding security methods. Such approaches

cannot guarantee the overall security of an STS, and may lead to security gaps and

vulnerabilities for parts of the system. It is worth noting that providing holistic protection

for STSs does not imply putting all related security mechanisms into the system design,

although such design can probably satisfy the system security requirements. Security is

not free: the more security mechanisms a system applies, the more expensive the system

is, with system performance and usability likely suffering as well. Regarding information

security, good enough always beats perfect, and the big challenge is determining what is

good enough [Sandhu, 2003]. Consequently, the challenges are not only producing security

specifications for each component of STSs, but also orchestrating them in an appropriate

way in order to produce a cost-effective security solution.

Dealing with security issues during the requirements phase has been recognized as

an efficient way of reducing security cost, as the earlier security flaws are detected, the

less money is paid for security remedies. In particular, Hoo et al. [2001] have reported

that introducing security analysis in the early stage of the system development cycle

Challenges in Designing Secure STSs 3

can reduce costs related to software development and maintenance from 12-21%. Security

Requirements Engineering, as a research branch, has been founded on the need to analyze

security requirements early on, along with other requirements, instead of as an after-

thought. Over the last two decades, many approaches have been proposed to model,

elicit, and evaluate security requirements. Some of these approaches focus on the social

and organizational aspect of a system [Liu et al., 2003; Giorgini et al., 2005a; Mouratidis

and Giorgini, 2007a; Paja et al., 2013]; some others investigate security requirements

regarding the business processes of a system [Herrmann and Herrmann, 2006; Rodŕıguez

et al., 2011; Salnitri et al., 2014a]; most of these approaches analyze software security

requirements [Sindre and Opdahl, 2005; Van Lamsweerde et al., 2007; Haley et al., 2008;

Hatebur et al., 2006] However, when designing secure STSs, we need a holistic approach

that spans all layers of an STS, rather than just one.

Multistage attacks. Multistage attacks have been recognized as a growing threat for

any complex systems, including STSs. Multistage attacks are comprised of less dangerous

attack actions (or even harmless ones) and are difficult to be detected, imposing their

challenges to system security [Ourston et al., 2003]. Due to their complex nature, STSs

have become the ideal target of multistage attacks. As a result, there has been a sub-

stantial increase of multistage attacks on STSs [Mitnick and Simon, 2011, Ch. 11]. For

example, to break into an intranet of a company, an attacker might first harvest employee

email addresses via social information gathering attacks (dumpster diving, pretexting,

etc.); then the attacker sends emails to employees to convince them to install malware in

their computers; with the malware, the attacker is able to penetrate into the intranet of

the company. To deal with such multistage attacks in STSs, we need to not only capture

all attack techniques to different components of STSs, but also analyze all potential attack

strategies that present specific ways of composing atomic attack actions.

Much work has been done to analyze multistage attacks for network security by using

attack graphs [Phillips and Swiler, 1998; Sheyner et al., 2002]. In particular, such ap-

proaches leverage model checking techniques to automatically examine all possible pene-

tration paths that attackers may have. A key factor to the success of these approaches is

that computers in the network have homogeneous settings. As such, the states of the com-

puters (nodes in the attack graph) and the atomic attacks on these computers (transitions

in the attack graph) can be enumerated. Similarly, a recent proposal applies the attack

graph approach to analyze multistage attacks of social engineering, where the states of

people are modeled as nodes and social engineering attacks are captured as transitions

between nodes [Beckers et al., 2015]. However, as the attack graph approach only applies

to systems that have simple and homogeneous components, it is inappropriate for security

4 Introduction

analysis of complex STSs that have heterogeneous components.

Availability of security knowledge. As the components of STSs are by their nature

heterogeneous, each one of them raises different security concerns. This implies that

designers need to have considerable security knowledge. For example, in order to design

a secure business process, analysts should ensure safe task assignment, no conflicts of

interest, etc.; while for a secure software application, analysts should consider software

technical phenomena, e.g., encryption, suitable access controls, regular software patches;

when designing secure infrastructure, analysts should take into account physical issues

(e.g, locks, uninterrupted energy suppliers) . Ensuring that such broad security knowledge

is available during the design process constitutes yet another challenge.

Failing to solve this challenge will render the holistic security analysis too time con-

suming and laborious, preventing the practical adoption of our framework. A recent study

acknowledges such a challenge, especially because security knowledge is hard to acquire

for software designers in reality [Souag et al., 2015]. As a result, the authors of the study

advocate for reuse of provable security knowledge, which can make security requirements

analysis much easier, more in-depth, and faster. In addition, the authors also emphasize

that the knowledge sources have to be of high quality and must be applied in a correct

and effective manner. Otherwise, the security analysis results may not be reliable, and

may even introduce new security problems.

1.3 Research Objectives and Research Questions

Based on the context and challenges we have discussed in the previous sections, we now

present the overall research objective of this thesis.

Research Objective : develop a comprehensive framework that assists security ana-

lysts in analyzing security requirements and generating security solutions for socio-technical

systems in a holistic manner.

We decompose this research objective into the following specific research questions, all

of which are addressed by this thesis.

RQ1: How can we holistically analyze the security requirements of STSs?

The holistic analysis needs to appropriately deal with the challenges concerning com-

plexity and heterogeneity. Due to the increased system boundary of STSs, analyzing

security requirements of STSs becomes much more complex. For one thing, analysts

have to take into account all components of STSs, and their heterogeneity, in order

to provide comprehensive protection. For another, analysts also need to appropri-

ately orchestrate security requirements of different components to obtain the most

Research Objectives and Research Questions 5

cost-effective solution. Moreover, the heterogeneity of STSs entails that different

system components involve different security concerns. Thus, a general conceptual

framework is required to unify security requirements analysis for all the components.

RQ2: How can we identify realistic threats to an STS?

Threat identification has been recognized as an important step for engineering se-

curity requirements by many researchers [Mead and Stehney, 2005; Mellado et al.,

2007], because it helps analysts to determine the criticality of security requirements,

so that they can design suitable security solutions.

As any single vulnerability or exposure of any component of an STS can lead to

serious security breaches, identifying all potential threats to an STS becomes more

important and at the same time challenging. This challenge is exacerbated by the in-

creasing prevalence of multistage attacks, which adopt more sophisticated strategies

and consist of multiple attack actions, exploiting vulnerabilities of different system

components. Moreover, a lack of knowledge about impending attacks introduces an-

other challenge to threat analysis, which can result in unrealistic threats and further

introduce false positives or false negatives into security analysis [Barnum and Sethi,

2007].

RQ3: How can we efficiently operationalize security requirements?

Once obtaining critical security requirements and corresponding threats, we further

investigate how to operationalize the security requirements in terms of security mech-

anisms which can tackle the threats. Since such analysis requires intensive security

knowledge, we base our analysis on security patterns, which document proven secu-

rity solutions to known security problems. Specifically, we leverage security patterns

from different repositories which contain more than 100 security patterns, accommo-

dating security analysis in different layers [Asnar et al., 2011a; Yskout et al., 2006;

Fernandez-Buglioni, 2013]. However, such security patterns are normally specified

in text which can only be manually selected and applied by analysts. Given the large

number of patterns, a systematic methodology is required to efficiently leverage se-

curity patterns to operationalize security requirements. In addition, after a security

requirement has been operationalized by one or several security mechanisms, a subse-

quent challenge is to efficiently identify and enforce the impact of these mechanisms

imposed on system functional requirements, otherwise the resulting requirements

specification is incomplete.

RQ4: Can we apply the developed approach to effectively analyze security

requirements of STSs in realistic settings?

6 Introduction

As a design artifact, our proposal needs to be appropriately validated, which is

an imperative part of achieving methodological soundness [Wieringa and Heerkens,

2006]. As our framework is intended to provide automated reasoning support for

the holistic security requirements analysis, we need to first implement corresponding

analysis methods in a prototype tool. With the support of the tool, we need to collect

empirical evidence to validate the efficacy of our framework when it is applied to

realistic large-scale STSs. In particular, we focus on evaluating whether the entire

approach can effectively identify holistic security requirements of STSs and efficiently

deal with the complexity of large-scale STSs. Furthermore, we should also evaluate

the utility of the supporting tool.

1.4 Research Overview and Contribution

This thesis proposes a three-layer security requirements analysis framework, which can

holistically analyze security requirements of STSs and eventually generate holistic security

solutions that satisfy the security requirements. The contributions of the thesis consist of

four parts, shown schematically in Fig. 1.1. Specifically, we propose a three-layer security

requirements modeling framework to holistically capture phenomena of STSs and a com-

panion analysis framework which analyzes security requirements across all three layers.

We have developed a prototype tool to implement the proposed analysis methods so as

to semi-automate the overall analysis process. Finally, we perform two comprehensive

cases studies to validate our proposal. In the remaining part of this section, we describe

the above contributions in detail. For each contribution, we list relevant publications and

research questions addressed.

1.4.1 A Three-Layer Security Requirements Modeling Framework

In order to deal with the inherit complexity of STSs, we structure an STS into three con-

ceptual layers, each of which accounts for particular artifacts that need to be designed in

the STS. At the most abstract level, we consider a social layer that conceptualized in terms

of social actors, social dependencies, and business process activities. At the next layer,

we consider software applications that support the social layer, conceptualized in terms

of architectural components. Finally, we consider an infrastructure layer which focuses

on physical infrastructure that supports deployment of software applications and business

processes. We argue that each layer involves specific security solutions that deal with

particular security requirements of that layer. For example, separation of duty ensures

the service integrity in the social layer, while secure pipe is deployed to tackle confiden-

tiality issues in the application layer. Thus, a holistic security requirements analysis of

Research Overview and Contribution 7

Three-Layer
Security

Requirements
Modeling

Framework

Three-Layer Security Requirements
Analysis Framework

Case studies

Holistic Security
Attack Analysis

Attack strategy
analysis

Attack strategy
operationalization

Refine security
goals

Simplify
security goals

Operationalize
security goals

Transfer security
concerns across layers

Security Pattern
Analysis

Select security
patterns

Apply security
 patterns

Generate holistic
security solutions

Evaluate

Prototype

Modeling module

Inference module
Implement

Support

Support

Smart grid advanced
metering infrastructure

Medical emergency
response systems

Use

Model

Attack
Patterns

Security
Patterns

Figure 1.1: An overview of our holistic security requirements analysis framework

STSs requires us to identify security requirements and generate security solutions in all

the three layers.

To deal with the requirements of STSs, we base our framework on the requirements

problem defined by Zave and Jackson [1997], i.e., finding a collection of specifications,

which can satisfy all requirements under certain domain assumptions. In particular, we

extend the Zava and Jackson’s requirements ontology and re-formulate the requirements

problem to account for requirements of STSs based on the three-layer structure. Thus,

each layer has its own requirements, which are satisfied by layer-specific specifications un-

der corresponding domain assumptions. To model and analyze the extended requirements

problem of STSs, we propose a three-layer security requirements modeling language based

on existing goal modeling languages i* [Yu, 1997] and Techne [Jureta et al., 2008]. The

proposed language can model not only the layer-specific security requirements and secu-

rity solutions, but also the dependencies across layers. As such, it provides the foundation

for holistically analyzing security requirements throughout three layers.

Contributions to literature. Existing requirements modeling languages, such

as [Dardenne et al., 1993; Yu, 1997; Jureta et al., 2008], do not explicitly account for

8 Introduction

requirements of different artifacts of STSs (business processes, physical infrastructures,

etc.). We extend Zave and Jackson’s core RE ontology [Zave and Jackson, 1997] and

re-formulate the requirements problem, providing the theoretical foundation for dealing

with requirements of STSs. The proposed modeling language can be used to model secu-

rity requirements and security mechanisms for various artifacts involved in STSs, while

capturing the interrelationships among them. As such, the modeling language enables us

to deal with requirements of STSs using a divide and conquer approach [Knuth, 1998,

p.159], which can reduce the complexity of security requirements analysis of STSs.

Publications: Li and Horkoff [2014].

Addressed research questions: RQ1.

1.4.2 A Three-Layer Security Requirements Analysis Framework

Based on the three-layer requirements modeling framework, we propose a comprehensive

set of analysis methods to holistically analyze security requirements of STSs in three layers.

In the top-left part in Fig. 1.1, an overall process of the three-layer analysis framework is

presented, which iteratively refines, simplifies, operationalizes security goals in each layer,

and transfers security concerns from one layer to the next layer down. In subsequent

work, two analysis steps have been further elaborated to tackle particular challenges that

we encountered during the evaluation of the holistic analysis framework. Firstly, a holistic

attack analysis approach is proposed to holistically identify all potential attacks that are

related to security goals. Secondly, we propose a security pattern-based analysis approach

to support security goal operationalization. This framework takes security goals as input,

then effectively selects and applies appropriate security patterns to operationalize the

security goals. In the rest of this section, we introduce the overall analysis process and

the two supporting analysis approaches, respectively.

Holistic security requirements analysis process

Based on the three-layer structure, we propose a systematic process and a set of analysis

methods to guide security analysis both within one and across layers. Within each layer,

we first iteratively refine and concretize security goals so as to identify critical security

goals, which need to be satisfied. After that the identified critical security goals are

operationalized in terms of security mechanisms. After the operationalization analysis, we

propagate security concerns from one layer to the next layer down based on the connections

between layers. After iteratively performing such security analysis for all layers, finally,

we can generate a collection of alternative security solutions, which satisfy critical security

requirements across all the three layers. A set of formal predicates and inference rules

Research Overview and Contribution 9

have been defined to (semi-)automate the above analysis. We have implemented such

rules in Disjunctive Datalog [Eiter et al., 1997].

Contributions to literature. As different artifacts involve different security issues,

existing approaches focus on analyzing security requirements of specific artifacts, e.g.,

Lamsweerde [2004] analyzes software security requirements, while Rodŕıguez et al. [2007b]

investigate security requirements for business processes. Our approach, built on top of the

three-layer structure, holistically analyzes the security requirements of various artifacts of

STSs in a divide-and-conquer manner. In this way, our approach is able to appropriately

deal with the inherent complexity of STSs.

Publications: Li and Horkoff [2014].

Addressed research questions: RQ1.

Holistic attack analysis

During the three-layer security requirements analysis, in order to identify critical security

goals, we need to know possible attacks on the target systems. However, compared to typ-

ical software systems, STSs suffer from a broader scope of attacks due to their complexity

and heterogeneity. Especially, the increasing types of attacks can lead to exponentially

more multistage attacks which compose atomic attack actions from different parts of

STSs. Precisely detecting all the possible attacks on an STS is essential for determining

the criticality of security goals during the holistic security requirements analysis.

We propose a holistic attack analysis approach to detect (multistage) attacks on STSs

from an attacker’s viewpoint. In particular, this approach takes the three-layer security

requirements goal model as input and holistically detect attacks related to the security

requirements. As indicated in the top-left corner in Fig. 1.1, the approach consists of

two parts: firstly, we identify an attacker’s strategies by systematically elaborating an

attacker’s malicious intentions. To this end, we systematically examine three real com-

prehensive attack scenarios, through which we investigate how attackers elaborate their

malicious intentions to produce attack strategies. Grounded in such real evidence, we pro-

pose an attacker strategy analysis framework which supports systematic exploration of

attack strategies. Secondly, we analyze how attackers implement identified attack strate-

gies in terms of realistic attack behaviors. For this purpose, we depend on the CAPEC

attack patterns [Barnum and Sethi, 2007] for realistic attack knowledge, which helps us

to operationalize attackers’ malicious intentions in terms of realistic attack behaviors.

Specifically, we propose to model attack patterns in terms of contextual goal models, al-

lowing us to semi-automatically identify applicable attack patterns with tool support. We

have pragmatically processed and modeled 102 attack patterns in the CAPEC repository,

and have seamlessly integrated such attack knowledge into our holistic attack analysis.

10 Introduction

Once we finish the attack operationalization analysis, the resulting identified attacks will

be used in the three-layer security requirements analysis for identifying critical security

goals.

Contributions to literature. Many approaches have advocated for analyzing se-

curity requirements from an attacker’s viewpoint [Elahi et al., 2010; Lin et al., 2003b].

However, due to the knowledge gap between attackers and defenders [Mansourov and

Campara, 2010], it is very difficult for analysts to realistically analyze attacker’s inten-

tions and behaviors. Our approach deals with this challenge by practically examining

realistic attack scenarios and leveraging reusable attack patterns. In the meantime, our

approach contributes to the detection of multistage attacks, as we are able to understand

how an attacker composes atomic attack behaviors based on the attacker’s intentional

model. Lastly, our proposal not only serves our attack analysis, but also contributes to

the practical adoption of attack patterns. We have pragmatically followed our method

to model 102 real attack patterns, which can thus be semi-automatically selected and

applied by analysts in our attack analysis.

Publications: Li et al. [2015a], Li et al. [2015d], [Li et al., 2015c], [Li et al., 2016]

(accepted).

Addressed research questions: RQ2.

Security pattern analysis

Operationalizing security requirements in terms of security mechanisms is a laborious and

knowledge-intensive process for large-scale systems, e.g., STSs. Such operationalization

analysis plays an imperative role in the holistic security requirements analysis, as the

results of this analysis (i.e., security mechanisms) at one layer can affect security require-

ments in the next layer down. Therefore, if the operationalization results are incomplete,

the subsequent security analysis in lower layers will be affected accordingly.

In order to enhance the efficacy of the operationalization analysis, we practically lever-

age reusable security patterns to bridges the knowledge gap between security requirements

(i.e., security problems) and security mechanisms (i.e., security solutions). In particular,

we model security patterns in terms of the contextual goal model [Ali et al., 2010] in order

to seamlessly integrate security patterns analysis with our goal-oriented security require-

ments analysis. To this end, we have first defined a conceptual mapping between the

primary concepts of security patterns and contextual goal models, as well as a process for

building contextual goal models from security patterns. Moreover, we propose a detailed

analysis process, which helps analysts to systematically and semi-automatically select and

apply security patterns to operationalize security requirements. To promote the practical

adoption of this approach, we have pragmatically modeled 20 security patterns in the

Research Overview and Contribution 11

repository [Fernandez-Buglioni, 2013].

During the application of security patterns, i.e., operationalizing security goals into

security mechanisms, we noticed that the deployed security mechanisms can affect not only

security requirements in the next layer down, but also the system functional requirements.

Ignoring such impact will result in incomplete requirements specifications. As such, we

have proposed a systematic method to capture and enforce the impact of deployed security

mechanisms.

Contributions to literature. Compared to existing approaches [Araujo and Weiss,

2002; Mouratidis et al., 2006; Asnar et al., 2011a], our approach first contributes to the

practical integration of security patterns and goal-based security requirements analysis.

Specifically, we propose a systematic guideline for modeling security patterns in terms

of the contextual goal model, and have pragmatically modeled 20 security patterns from

existing pattern repository. with the tool support, our approach can be semi-automatically

applied to select and apply security patterns. Lastly, our approach can capture the impact

that security mechanisms imposed on functional requirements, and can semi-automatically

enforce such impact.

Publications: [Li and Mylopoulos, 2014], [Li et al., 2014a], [Li et al., 2015b].

Addressed research questions: RQ3.

1.4.3 Prototype Tool

We have developed a prototype tool MUSER in order to semi-automate our proposal in

this thesis, facilitating its practical adoption. The tool was initially designed to support

the three-layer security requirements modeling and analysis, and has been incrementally

enhanced to support the elaborated holistic attack analysis and security pattern analysis.

In particular, this tool consists of two modules, as indicated in Fig. 1.1. The modeling

module supports constructing different analysis models used by our framework, while the

reasoning module (semi-)automates analysis methods that are defined in the framework.

As the complexity of STSs imposes challenges on both the modeling module and the

reasoning module, we have purposely optimized the prototype to tackle such challenges. In

particular, we developed the prototype tool on top of a powerful diagramming application

OmniGraffle1, allowing us to easily build large-scale models and avoid pragmatic problems

of graphical modeling, such as mentioned in [Massacci and Paci, 2012]. Moreover, we

implemented the inference module of the prototype tool based on the DLV inference

engine, which can efficiently reason over large amounts of data2.

1http://www.omnigroup.com/omnigraffle
2http://www.dlvsystem.com

http://www.omnigroup.com/omnigraffle
http://www.dlvsystem.com

12 Introduction

Contributions to literature. The prototype tool plays an important role in dealing

with the complexity of security requirements analysis of STSs. On one hand, the tool

allows us to realistically apply our proposal to analyze security requirements of STSs,

serving as the precondition for conducting large-scale case studies. On the other hand,

the tool contributes to the practical adoption of our approach.

Publications: [Li et al., 2014b].

Addressed research questions: RQ4.

1.4.4 Case Studies

To validate our approach, we need to evaluate the efficacy of the approach when applying

it to realistic systems. As such, we need to first choose appropriate methods to collect

and analyze empirical data. Easterbrook et al. [2008] summarize five empirical methods

for software engineering research, including controlled experiments, case studies, survey

research, ethnographies, and action research. Due to the complexity of STSs, a full

application of our approach requires analysts to have comprehensive knowledge about

phenomena in all three layers of STSs and perform a series of analysis steps using such

knowledge (as indicated in Fig. 1.1), which can take several person-months. Considering

the amount of time required to apply our approach, we choose to use case studies to

validate our approach, as “case study research is most appropriate for cases where effects

are expected to be wide ranging, or take a long to appear” [Easterbrook et al., 2008].

When performing case studies, it is essential to select appropriate cases that are most

relevant to our research problem, because the properties of our approach that are validated

by such case studies are likely to hold for many other cases. We have purposely selected

two representative large-scale STSs to perform case studies, which intensively involve

phenomena across all the three layers of STSs and have high demand for security.

Firstly, I applied our approach (by myself) to smart grid advanced metering infrastruc-

ture based on realistic specifications [NIST, 2012; Cuellar and Suppan, 2013], and holis-

tically analyzed security requirements for protecting the metering data. In this study, we

focus on evaluating the efficiency and expressiveness of the proposed modeling language,

as well as the efficiency and effectiveness of the proposed analysis framework.

Secondly, we applied our approach to a large-scale medical emergency response system,

which is enriched from an European project case study [Serenity-Consortium, March

2007], and address the system’s holistic security concerns. This study is grounded on a

Master thesis [Robin, 2015]. The Master student was first taught the three-layer security

requirements modeling language, and then used the prototype to perform the holistic

security requirements analysis under the supervision of Prof. Mylopoulos and myself.

Different from the first case study which focuses on evaluating the efficacy of our approach,

Structure of the Thesis 13

this study is intended to preliminarily assess whether our approach has the potential to be

adopted in reality by people who were not involved in the development of the approach.

Contributions to literature. The two case studies validate the efficacy of our

approach when applied to realistic large-scale systems. In addition, they help us to better

understand the advantages and limitations of our approach.

Addressed research questions: RQ4.

1.5 Structure of the Thesis

• Chapter 2 presents the state of art of this thesis. We first review approaches for

engineering security requirements and designing holistic security. Then, we examine

research in the area of security attack analysis, which plays an important role in

identifying security requirements. Finally, we survey the subject of security patterns

which bridge the knowledge gap between security problems and security solutions.

• Chapter 3 describes baseline approaches, which have been used or extended in this

thesis, including the requirements problem, the goal modeling languages, security

patterns and attack patterns.

• Chapter 4 first introduces the three-layer security requirements modeling framework

which can model phenomena in different layers of STSs. Based on the three-layer

model, we then describe the overall analysis framework that is used to holistically

analyze security requirements of STSs. Finally, we compare the three-layer security

requirements modeling and analysis framework with the state of the art.

• Chapter 5 presents the holistic attack analysis approach, which supports the security

goal simplification analysis during the three-layer security requirements analysis. We

first introduce an attacker strategy analysis method which explores potential attack

strategies, and then describe an attack pattern-based approach that operationalizes

those attack strategies. Lastly, we discuss the related work of this attack analysis

approach.

• Chapter 6 presents the security pattern-based operationalization analysis, which

integrates security patterns into our three-layer framework and assists analysts with

little security knowledge in operationalizing security goals. We first present the

conceptual mapping between security patterns and contextual goal models. Then we

describe the systematic process for selecting and applying security patterns. Finally,

we discuss related security pattern analysis approaches.

14 Introduction

• Chapter 7 describes the analysis framework for analyzing and enforcing the impact

of security mechanisms. We first describe the proposed enriched requirements spec-

ification and security mechanism specification, respectively. Then, we introduce the

systematic analysis process for detecting and analyzing the impact. Finally, we

compare our proposal with approaches related to the security impact analysis.

• Chapter 8 describes the prototype tool MUSER we have developed to support mod-

eling and analyzing security requirements of STSs in three layers. In particular,

We not only present the architecture and features of the prototype tool, but also

describe detailed use case specifications for each feature in order to guide potential

users.

• Chapter 9 presents the two case studies we have performed for validation of our

approach. For each case study, we first introduce the scenario, and then describe

the three-layer model we have built based on the scenario, and finally present and

evaluate the analysis results.

• Chapter 10 concludes the thesis, discusses limitations of the holistic security require-

ments analysis framework, and clarifies subsequent work that needs to be done to

improve the approach. As inspired by the proposal in this thesis, we have identified

a number of future research directions, which are introduced at the end of this thesis.

1.6 Published Work

All the publications related to this thesis are listed here, which are divided into three

categories: journals, conferences, workshops and demos. All the publications are refereed.

Journals

• Horkoff, Jennifer; Li, Tong; Li, Feng-Lin; Salnitri, Mattia; Cardoso, Evellin; Giorgini,

Paolo, and Mylopoulos, John. Using goal models downstream: A systematic roadmap

and literature review. International Journal of Information System Modeling and

Design (IJISMD), 6(2):1–42, 2015

Conferences

• Li, Tong; Horkoff, Jennifer; Paja, Elda; Beckers, Kristian, and Mylopoulos, John.

Security attack analysis using attack patterns. In The IEEE Tenth International

Conference on Research Challenges in Information Science (RCIS). IEEE, 2016 (ac-

cepted)

Published Work 15

• Li, Tong; Horkoff, Jennifer; Paja, Elda; Beckers, Kristian, and Mylopoulos, John.

Analyzing attack strategies through anti-goal refinement. In The Practice of Enter-

prise Modeling (PoEM 2015), pages 75–90. Springer International Publishing, 2015c

• Li, Tong; Horkoff, Jennifer, and Mylopoulos, John. Analyzing and enforcing security

mechanisms on requirements specification. In Requirements Engineering: Foundation

for Software Quality (REFSQ 2015). Springer International Publishing, 2015b

• Li, Tong and Horkoff, Jennifer. Dealing with security requirements for socio-technical

systems: A holistic approach. In Advanced Information Systems Engineering (CAiSE

2014), pages 185–200. Springer International Publishing, 2014

• Li, Tong; Horkoff, Jennifer, and Mylopoulos, John. Integrating security patterns

with security requirements analysis using contextual goal models. In The Practice

of Enterprise Modeling (PoEM 2014), pages 208–223. Springer Berlin Heidelberg,

2014a

• Horkoff, Jennifer; Li, Tong; Li, Feng-Lin; Salnitri, Mattia; Cardoso, Evellin; Giorgini,

Paolo; Mylopoulos, John, and Pimentel, João. Taking goal models downstream: A

systematic roadmap. In Research Challenges in Information Science (RCIS), 2014

IEEE Eighth International Conference on, pages 1–12. IEEE, 2014b

• Horkoff, Jennifer; Aydemir, Fatma Başak; Li, Feng-Lin; Li, Tong, and Mylopoulos,

John. Evaluating modeling languages: An example from the requirements domain. In

Conceptual Modeling (ER 2014), pages 260–274. Springer International Publishing,

2014a

Workshops and Demos

• Li, Tong; Paja, Elda; Mylopoulos, John; Horkoff, Jennifer, and Beckers, Kristian.

Holistic security requirements analysis: An attacker’s perspective. In Requirements

Engineering Conference (RE), 2015 IEEE 23rd International, pages 282–283. IEEE,

2015d

• Li, Tong; Horkoff, Jennifer; Beckers, Kristian; Paja, Elda, and Mylopoulos, John.

A holistic approach to security attack modeling and analysis. In Proceedings of the

Eighth International i* Workshop, pages 49–54, 2015a

• Li, Tong and Mylopoulos, John. Modeling and applying security patterns using

contextual goal models. In The 7th International i* Workshop (iStar14), pages

208–223, 2014

16 Introduction

• Li, Tong; Horkoff, Jennifer, and Mylopoulos, John. A prototype tool for modeling

and analyzing security requirements from a holistic viewpoint. In The CAiSE’14

Forum at the 26th International Conference on Advanced Information Systems En-

gineering, pages 185–192, 2014b

Chapter 2

State of the Art

If I have seen further it is by standing on the shoulders of giants.

Isaac Newton

In this chapter, we first review the state of the art in the area of security requirements

engineering which deals with security requirements elicitation and analysis in the early

phase of software development (Section 2.1). Moreover, we survey several related research

areas that contribute to the security requirements analysis of STSs, corresponding to the

research challenges we have introduced in Section 1.2. In particular, we review the ap-

proaches that deal with security beyond software systems and holistically analyze system

security (Section 2.2); the approaches that identify and analyze attacks (Section 2.3); and

the approaches that select and apply security patterns (Section 2.4). Note that in this

chapter we review and discuss the advantages and disadvantages of existing approaches

according to the research questions and challenges we have described in the last chapter.

Detailed comparison between our proposal and the existing approaches will be presented

in the following chapters after introducing our proposal.

2.1 Security Requirements Engineering

Security requirements engineering is motivated by the fact that analyzing security in the

early stage of the system development cycle can significantly save costs for later system

development and maintenance [Hoo et al., 2001], which has been investigated for more

than two decades. Many approaches have been proposed to produce high-quality security

requirements. In this section, we first review and compare approaches that define pro-

cesses for systematically engineering security requirements, based on which we summarize

a generic process of security requirements engineering that cover all important analysis

steps of security requirements engineering. After that we review existing typical security

18 State of the Art

requirements engineering approaches on the basis of several detailed survey papers [Nhla-

batsi et al., 2010; Fabian et al., 2010; Elahi et al., 2011; Souag et al., 2015]. All the

reviewed approaches are then systematically compared based on the topics of this thesis

presented in Section 1.1, e.g., focused system layers.

2.1.1 Security Requirements Engineering Processes

Although analyzing security requirements upfront has been widely accepted, Mead and

Stehney [2005] have argued that without a systematic process of engineering security re-

quirements the obtained security requirements can be ambiguous and incomplete. Specif-

ically, the ad hoc way of analyzing security requirements is tended to simply describe

general security mechanisms instead of analyzing what stakeholders need for their sys-

tems’ security [Firesmith, 2003a; Mead, 2006b]. In order to help analysts to engineer

high quality security requirements, Mead [2006b] has developed the SQUARE (Security

QUAlity Requirements Engineering) methodology, which provides a nine-step security

requirements elicitation and analysis process (shown in Table 2.1). This process involves

stakeholders, requirements engineers, risk experts, and inspection teams, and eventually

delivers a collection of categorized and prioritized security requirements. Specifically, the

author has developed a prototype tool to support such analysis process. In subsequent

research, [Chen et al., 2004] iteratively evaluated and improved the SQUARE process

through several case studies, which involved real-world clients that were developing large-

scale IT projects. Moreover, with the aim of improving the effectiveness of SQUARE,

Mead et al. [2008] propose a method to fit the SQUARE methodology into the Ratio-

nal Unified Process (RUP) [Kruchten, 2004]. Note that the SQUARE process presents

general steps that need to be performed by security analysts, while does not limit itself

to specific techniques. Thus, analysts should select appropriate techniques to implement

each step of the process. In particular, Mead [2006a] compared difference security re-

quirements elicitation techniques, shedding light on how such techniques can be used in

the SQUARE process.

Mellado et al. [2007] propose a Common Criteria (CC) centered and reuse-based Se-

curity Requirements Engineering Process (SREP), which is partially based on SQUARE.

CC is an international security standard (ISO/IEC 15408) for evaluating the security

properties of information systems, and it has been incorporated in SREP to facilitate se-

curity requirements analysis in two ways: first, it contains a collection of well-documented

security functional requirements, assisting analysts in eliciting and specifying security re-

quirements. Secondly, CC includes assurance requirements which can be used to evaluate

the security of the system and thus help to inspect the elicited security requirements.

The reusability of SREP is derived from a Security Resources Repository (SRR). The

Security Requirements Engineering 19

repository stores reusable artifacts (e.g., threat specifications and security requirements

specifications) that are specified using different techniques, such as Misuse cases [Sindre

and Opdahl, 2005] and UMLsec [Jürjens, 2002]. The entire analysis process of SREP

consists of nine steps (as shown in Table 2.1), which account for the two new features

of SREP as introduced above. Note that SREP is an iterative and incremental process,

which is built on top of the Unified Process (UP) [Jacobson et al., 1999]. Mellado et al.

[2006] have performed a case study to demonstrate how the security requirements for a

security critical system can be systematically obtained by applying SREP.

Another related piece of work is carried out by Wang et al. [2009], who propose a more

fine-grained process for dealing with security requirements in the early stage of system

development. The process consists of nine steps (Table 2.1), which has an emphasis on

the threat and risk analysis but does not consider the prioritization and inspection of

security requirements after they have been elicited.

A recent study proposes a dedicated security requirements engineering process for web

applications (MOSRE-WebApp) [Salini and Kanmani, 2012]. MOSRE-WebApp involves

16 specific analysis steps (Table 2.1), which are presented using a spiral process model in

order to cover all phases of RE. The authors have performed a comprehensive case study

for an e-voting system, and the evaluation results of this study shows that the effectiveness

and performance of this process are comparatively better than existing approaches [Salini

and Kanmani, 2015].

Comparison of processes

Given the four security requirements engineering processes we have reviewed above, we

summarize a generic process which sheds light on detailed and important analysis steps

that should be performed in order to systematically engineer security requirements. Based

on such insights, we further discuss similarities and differences among the four reviewed

processes. Note that this generic process we presented here serves as a theoretical foun-

dation for our holistic security requirements analysis framework.

Basically, we identify 11 generic steps of security requirement engineering, which are

derived from elaborating two steps of SQUARE. Firstly, we add a step “Identify assets”

before the second step of SQUARE “Identify security goals”. This new step is a non-trivial

step, which is an imperative precondition for identifying security goals and has been rec-

ognized by the other three proposals. Secondly, we elaborate the third steps of SQUARE

“Develop artifacts to support security requirements definition” into two sub-steps “Do-

main analysis” and “Identify threats/vulnerabilities”. The former sub-step focuses on

developing functional models that character the system, while the latter one identifies

threats and vulnerabilities in the system. Apart from these two modifications, the rest of

20 State of the Art

Table 2.1: A comparison of security requirements engineering processes
Generic

Steps

SQUARE SREP Wang et al. [2009] MORSE-WebApp

(1) Agree on

definition

(1) Agree on definitions (1) Agree on definitions (1) Consistency of Def-

initions

(2) Identify

assets

(2) Identify vulnerable

and critical assets

(3) Identify critical as-

sets and process

(3) Identify the assets

(3) Iden-

tify security

goals

(2) Identify security

goals

(3) Identify security

objectives and depen-

dencies

(6) Security goals and

dependencies

(8) Identify security

objectives/goals

(4) Domain

analysis

(3) Develop artifacts

to support security re-

quirements definition

(2) Analyzing charac-

ters of system

(1) Identify the objec-

tive of the software sys-

tem

(2) Identify the stake-

holder

(5) Obtain high level

architecture diagram

(6) Elicit non-security

goals and requirements

(7) Generate use cases

diagram

(5) Identify

threats/vul-

nerabilities

(3) Develop artifacts

to support security re-

quirements definition

(4) Identify threats and

develop artifacts

(4) Identify system vul-

nerability

(5) Identify threats

(7) Generating threat

model

(9) Identify threats and

vulnerabilities

(6) Perform

risk analysis

(4) Perform risk assess-

ment

(5) Risk assessment (8) Risk assessment (10) Perform risk anal-

ysis

(11) Categorize and

prioritize threats and

vulnerabilities for mit-

igation

(12) Generate misuse

case diagram

(7) Select

elicitation

techniques

(5) Select elicitation

techniques

(4) Select elicitation

techniques

(8) Elicit

security

requirements

(6) Elicit security re-

quirements

(6) Elicit security re-

quirements

(9) Elicit security re-

quirements

(13) Identify security

requirements

(14) Generate use cases

diagram considering

security requirements

(9) Catego-

rize require-

ments

(7) Categorize require-

ments as to level and

whether they are re-

quirements or other

kinds of constraints

(7) Categorize and pri-

oritize requirements

(10) Priori-

tize require-

ments

(8) Prioritize require-

ments

(7) Categorize and pri-

oritize requirements

(11) Re-

quirements

inspection

(9) Requirements in-

spection

(8) Requirements in-

spection

(9) Repository im-

provement

(15) Generate struc-

tural analysis models

(16) Develop UML dia-

grams

Security Requirements Engineering 21

the generic analysis steps are the same with corresponding steps in SQUARE.

In Table 2.1, we presented the 11 generic steps of security requirement engineering in

the first column. From the second column to the fifth column, we list detailed analysis

steps of the four security requirements engineering processes, which have been categorized

into corresponding generic steps. As SREP is proposed partially based on SQUARE, there

are only a few differences between them. Specifically, SREP emphasizes the step of asset

identification, while omits the step of selecting elicitation techniques. Moreover, SREP

has a particular step “Repository improvement” as it proposes to reuse analytical artifacts.

As shown in Table 2.1, the process which is proposed by Wang et al. [2009] covers the first

8 generic analysis steps except for step 7. This process proposal has an emphasis on the

threat and vulnerability analysis, but does not further process security requirements after

they are elicited. For MOSRE-WebApp, it has a strong focus on both domain analysis

and risk analysis. However, similar to [Wang et al., 2009], MOSRE-WebApp does not

categorize nor prioritize elicited security requirements. To be noted that the last two

steps of MOSRE-WebApp have stepped into system security design and thus are beyond

our discussion.

2.1.2 Security Requirements Engineering Approaches

Goal-oriented approaches

Chung [1993] proposes to treat security requirements as a class of Non-Functional Require-

ments (NFRs), which are used for selecting among system design decisions and justifying

the overall design. The author also defines a process-oriented approach to analyze se-

curity requirements, which is adapted from the work done by Mylopoulos et al. [1992].

This approach emphasizes the importance of reusing security design knowledge. In par-

ticular, the approach incorporates reusable taxonomies of security properties and security

goal satisficing methods, so as to support security goal refinement and operationalization.

Oladimeji et al. [2006a] extend NFR framework with the notations of negative softgoals for

representing threats and inverse contributions in order to model and analyze threats. In

addition, another extension of NFR proposes to unify security goals and their associated

security policies with UML functional models [Oladimeji et al., 2006b], which can discover

conflicts and inconsistencies in security policies at the early stage of system development.

Lamsweerde extends KAOS by introducing the notions of obstacle [Van Lamsweerde

and Letier, 2000] and anti-goal [Lamsweerde, 2004] to analyze security requirements of

a system. KAOS obstacles capture undesired states of affairs that prevent stakeholder

goals from being satisfied, while anti-goals analyze obstacles that are intentionally im-

posed by attackers. KAOS leverages formal methods to systematically refine (security)

22 State of the Art

goals that are specified in Linear Temporal Logic (LTL), using a set of predefined refine-

ment patterns [Darimont and Van Lamsweerde, 1996]. After identifying specific threats

via the anti-goal refinement, security requirements (i.e., countermeasures to the threats)

are elicited accordingly. In addition, De Landtsheer and Van Lamsweerde [2005] have pro-

posed a collection of KAOS specification patterns that codify families of confidentiality

requirements, enabling automatic check of confidentiality violation.

Liu et al. [2003] propose a methodological framework for dealing with security and pri-

vacy requirements, which extends the i* framework [Yu, 1997]. This approach places an

emphasis on the security of organizational settings. In particular, their proposal can de-

tect vulnerabilities in organizational relationships, can identify potential system abusers,

and eventually can generate countermeasures so as to protect the system. Elahi et al.

[2009] also advocate for incorporating vulnerability into security requirements analysis.

They have proposed a vulnerability-centric security analysis approach [Elahi et al., 2010],

which is also built on the i* framework. This approach links empirical knowledge of vul-

nerability to system requirements models, and proposes a method to assess system risks.

Specifically, the authors propose to take advantage of available vulnerability knowledge,

such as CWE [MITRE-CWE] and CVE [MITRE-CVE]. In addition, Elahi and Yu [2007]

have also developed an approach for analyzing security trade-offs and selecting the best

design alternative once risk assessment results are available.

Mouratidis and Giorgini [2002] extend Tropos [Castro et al., 2001, 2002] with security

concepts in order to integrate security concerns into the entire life cycle of system devel-

opment, especially the early requirements stage. The resulting approach, Secure Tropos,

has been continuously elaborated and extended for more than ten years, such as reported

in [Mouratidis et al., 2004; Mouratidis and Giorgini, 2007b; Matulevičius et al., 2008;

Mouratidis and Jurjens, 2010]. Recently, Mouratidis [2011] summarizes Security Tropos

as an approach, which can be used to identify security requirements, transform the se-

curity requirements to design, and validate the designed system. In particular, a series

of security concepts have been proposed and used to model security enhanced diagrams,

including security enhanced actor diagram, security enhanced goal diagram, architectural

style selection diagram, security attack scenarios diagram, and security reference diagram.

A computer-aided tool (SecTro) has been developed to support graphical modeling of the

above diagrams and to automatically generate some templates and diagrams that are re-

quired by the methodology [Pavlidis and Islam, 2011]. In addition, Mouratidis et al. [2006]

use the extended security concepts to model security patterns, encapsulating reusable se-

curity knowledge. In another recent work, Mouratidis et al. [2013] enrich Secure Tropos

with new concepts (e.g., cloud actor) to support the selection of cloud providers based on

security and privacy requirements.

Security Requirements Engineering 23

Giorgini et al. [2005b, 2006] emphasize the importance of analyzing organizational se-

curity requirements without getting into security protocols or security techniques. They

have proposed a formal modeling framework SI* to capture the such security concerns,

which extends Tropos [Bresciani et al., 2004] with notions of trust, permission, and owner-

ship. On the basis of this modeling framework, they define a collection of formal reasoning

rules for automatically checking security properties at the organizational level, e.g., need-

to-know policies and conflicts of trust. A CASE tool (ST-Tool) has been developed to

support modeling and verifying security requirements at the organizational level. This

approach has been revised according to experiences gained from several industry case

studies, the latest version of the SI* modeling framework and the Secure Tropos method-

ology1 are presented in [Massacci et al., 2010]. Based on the SI* framework, Dalpiaz

et al. [2011] propose SecCo, which explicitly models security needs via commitments and

relates them to security requirements. Such commitment specifications are then used for

designing secure business processes [Paja et al., 2012]. Paja et al. [2013] also propose

a formal framework to automatically detect conflicts among security requirements that

have been captured in SecCo. Another related work is performed by Asnar et al. [2011b],

which extends SI* with a reasoning technique that identifies potential security threats on

system assets.

UML-based approaches

Sindre and Opdahl [2005] extend traditional use cases to cover misuse cases, which de-

scribe behaviors that stakeholders do not want to occur. Based on the extended concept,

the authors propose a systematic process for eliciting security requirements. To facili-

tate the analysis process, the authors have also defined an approach that constructs and

reuses a repository of generic misuse cases [Sindre et al., 2003]. Similar to this approach,

McDermott and Fox [1999] use abuse cases to capture harmful interactions to a system.

As compared in [Wei, 2005], misuse cases can model a wider range of threats than abuse

cases. In addition, misuse cases are modeled together with use cases instead of modeling

separately like abuse cases. Lastly, misuse cases have been used by Firesmith [2003b] to

identify security use cases. Several approaches have extended or applied misuse cases, such

as executable misuse cases [Whittle et al., 2008], combining misuse cases with security

goals [Okubo et al., 2009], and combining misuse cases with the Common Criteria [Ware

et al., 2005].

UMLsec extends UML with security constructs (stereotypes, constraints, and tagged

values), allowing analysts to express security concerns within the UML diagrams (e.g.,

use case diagram and activity diagram) [Jürjens, 2002, 2005]. As such, security can be

1This is different from the Secure Tropos approach proposed by Mouratidis et al.

24 State of the Art

designed and evaluated throughout the entire software development process. In partic-

ular, the author has defined formal semantics for each security construct in order to

automatically verify security in a given specification. Although this approach mainly

focuses on engineering security design rather than security requirements, it has been in-

tegrated with Secure Tropos so as to support the entire secure software development

lifecycle [Mouratidis and Jurjens, 2010]. Similarly, another model-driven security design

approach, SecureUML, has defined a security modeling language to formally design and

verify role-based access control policies in UML diagrams [Lodderstedt et al., 2002].

Problem frame-based approaches

Crook et al. [2002] introduce the concept of anti-requirements, which are the requirements

of malicious users and subvert existing system requirements. The authors then incorporate

such anti-requirements into abuse frames [Lin et al., 2003b,a], which represent a set of

undesirable phenomena (i.e., security threats) in Problem Frames [Jackson, 2001]. As

such, analysts can elicit security requirements according to the threats captured in the

abuse frames.

Hatebur et al. [2006] specialize Problem Frames into two kinds: Security Problem

Frame (SPF) and Concertized Security Problem Frame (CSPF), in order to engineer sys-

tem security. In particular, SPFs document general security problems, which are selected

and instantiated to identify security requirements; CSPFs specify general security solu-

tions to the security problems, which are selected and instantiated to design appropriate

security mechanisms that satisfy the identified security requirements. In such a way,

this approach explicitly distinguishes security problems from their solutions and leverage

reusable security knowledge to facilitate analysis in both parts. On the basis of such

extended frames, Hatebur et al. [2007] propose a systematic process for analyzing secu-

rity requirements and solutions. Later on Schmidt [2010] further elaborates this analysis

process by incorporating threat and risk analysis.

Haley et al. [2008] present a Security Requirements Engineering Framework (SREF)

for security requirements elicitation and analysis. The authors use problem frames to

represent system functional requirements, and model security constraints on top of the

problem diagrams. The elicited security requirements are verified by using both outer

(formal) and inner (informal) satisfaction arguments. Note that this framework clearly

distinguishes security goals from security requirements, where the security goals are stake-

holder’s security concerns (e.g., confidentiality, integrity, etc.) and the security require-

ments are constraints on system functions. As the authors acknowledge the mutual impact

between requirements and architecture, they define their security requirements analysis

as an iterative process.

Security Requirements Engineering 25

Summary of techniques

Table 2.2 summarizes and compares the security requirements engineering techniques we

have reviewed. Although the approaches are designed for analyzing security requirements

of software applications, some of them have already pointed out the importance of design-

ing security at the organizational level. In particular, the approaches that are designed

based on i*/Tropos inherit the capability of modeling social interactions and thus are suit-

able for analyzing organizational security. Apart from organizational security, UMLsec

can analyze infrastructure security using the extended UML deployment diagram. To deal

with security of STSs, we need to take into account security concerns of all components

of STSs and to holistically select the best solution, which cannot be accommodated by

existing approaches.

Most of the existing approaches incorporate threat analysis, but none of them can

systematically analyze multistage attacks, which are an emerging challenge in designing

secure STSs. By further examining existing approaches, we find out that goal-oriented

approaches have inherent advantages in analyzing multistage attacks. In particular, their

hierarchical AND/OR refinement structure allows analysts to capture different steps of

multistage attacks. In other words, goal-oriented approaches are able to model multistage

attacks when corresponding knowledge is available. However, currently there is limited

knowledge about multistage attacks on STSs, especially since there are no approaches can

analyze multistage attacks in a socio-technical setting. Therefore we need an approach

that can not only import and represent multistage attacks in the threat analysis, but can

also systematically discover all possible multistage attacks on STSs. As indicated in

Table 2.2, the KAOS anti-goal approach can be used to identify multistage attacks via

anti-goal refinement using requirements refinement patterns. However, as those refinement

patterns are not initially designed for refining malicious intentions from an attacker’s

viewpoint, they cannot guarantee the completeness of the analysis results.

Reusing security knowledge has recently received a substantial increase of attention, as

it can significantly ease the knowledge-intensive security analysis, such as threat identifica-

tion and security requirement elicitation. As shown in Table 2.2, various ways for reusing

security knowledge have been proposed. For example, Mouratidis et al. [2006] propose to

reuse security requirements knowledge via security patterns; Sindre et al. [2003] propose

to construct and reuse a repository of generic misuse cases for security requirements anal-

ysis. Although these proposals contribute to the methods of reusing security knowledge,

less efforts have been made to promote the practical use of such methods. The Source col-

umn in Table 2.2 shows knowledge sources to be reused by each approach. In particular,

most reuse-based approaches rely on literature in general for security knowledge, but do

not investigate how to effectively use the knowledge. Instead, researchers normally make

26 State of the Art

assumptions to simplify the problem, e.g., “the proposed framework assumes that analysts

have knowledge about vulnerabilities, potential attacks, and proper countermeasure or can

obtain such information”[Elahi et al., 2010]. However, comprehensive security knowledge

repositories normally have an impressive scale, e.g., CAPEC has 504 attack patterns [Bar-

num and Sethi, 2007] and CWE include 719 weaknesses [MITRE-CWE]. Given the large

body of security knowledge, analysts are reluctant to adopt them in practice without an

efficient method [Shostack, 2014, p.106]. Thus, we argue that a systematic method and

automated support are required in order to practically reuse security knowledge, which

has also been concluded from a mapping study [Souag et al., 2015].

Because of the complexity of STSs, a holistic security analysis can result in large-scale

models, consisting of hundreds of elements. As such, manual analysis is time-consuming

and error-prone, and there is a strong need for automated reasoning and analysis. Al-

though the surveyed existing approaches all have tool support for graphically modeling

analysis models, only half of them can automate the security analysis on top of the mod-

els. In addition, the usability of tools remains as a challenge to the practical adoption of

security analysis techniques [Massacci and Paci, 2012].

Table 2.2: A comparison of security requirements engineering techniques

Technique
Analyzed

Formal
Tool Support

Threat
Multistage Attack Security Knowledge Reuse

Artifact Model Infer Rep. Ide. Proposal Source Support

NFR Software X X X 1) Reuse taxonomy of security

properties to support security goal

refinement

2) Reuse taxonomy of security goal

satisficing methods

1-2) Literature 1-2) The tool

can support

the applica-

tion of the

taxonomies

KAOS Software X X X X X X

Secure i* Organization;

Software

X X X X X

Elahi et al. [2010] Organization;

Software

X X X X Reuse empirical knowledge of vul-

nerabilities

CVE, CWE,

SANS list

Secure Tropos Organization;

Software

X X X 1) Define reusable security pat-

terns using the secure tropos mod-

eling language

2) Develop a security catalog that

can be reused to identify security

requirements and security mecha-

nisms

1) Four specific

security pat-

terns

2) Literature

1) Guidelines

for applying

the patterns

2) A tool for

graphically

model social

settings secu-

rity reference

catalog

Secure Tropos

(SI*)

Organization;

Software

X X X

Misuse Cases Software X X Construct and reuse a repository

of generic misuse cases for security

requirements analysis

Literature Guidelines for

reusing the

repository

UMLsec Software;

Infrastruc-

ture

X X X X

SecureUML Software X X X

Abuse Frame Machine X X X Abuse frame diagrams can be

reused for threat analysis

Literature

SEPP Machine X X X Security problem frames and con-

cretized security problem frames

can be reused for security require-

ments analysis

Three specific

security prob-

lem frames

Guidelines

for applying

the security

problem frames

SREF Machine X X X

28 State of the Art

2.2 Holistic Security

To holistically design secure STSs, security requirements of all components of STSs should

be elicited and analyzed. As we have reviewed in the last section, typical security require-

ments analysis techniques focus on analyzing security requirements of software, some of

which can also analyze security requirements of organizational settings. In this section, we

first review approaches that focus on designing secure business processes and secure phys-

ical infrastructure, which are beyond the software-oriented security requirements analysis

approaches. To be noted that some software-oriented approaches, e.g., Misuse cases, can

also be applied in general to analyze security for different artifacts. However, we here

focus on specialized approaches that can provide in-depth understanding about security

in business processes and physical infrastructure. After that we examine approaches that

holistically deal with system security.

2.2.1 Security Analysis beyond Software Systems

Business process security

Providing security in business process design has been recognized as important [Herrmann

and Pernul, 1998]. Different researchers have been investigating what kind of security

requirements need to be enforced during business management, what are the semantics of

those security requirements, and how to verify and enforce those requirements. However,

none of these approaches can capture alternative security requirements and perform trade-

off analysis.

Rodŕıguez et al. [2007a] extend BPMN [Group, 2011] with security notations so as to

model security requirements within business processes. The authors define seven security

requirements, which can be annotated to specific BPMN constructs. In particular, they

use OCL (Object Constraint Language) to unambiguously specify restrictions imposed by

the security requirements. In subsequent research [Rodŕıguez et al., 2011], the authors ex-

tends UML 2.0 activity diagrams with similar security requirements concepts. Moreover,

they propose a model-driven approach M-BPsec, which transforms the extended activity

diagrams (Computation Independent Model – CIM) into a set of UML artifacts used in

software development (Platform Independent Model – PIM).

Altuhhova et al. [2012] analyze BPMN with respect to Information System Security

Risk Management (ISSRM) model [Dubois et al., 2010], investigating how to express

security concepts (e.g., assets, threats) with original BPMN constructs. The authors

provide an alignment of the ISSRM concepts and the BPMN constructs, allowing them

to annotate security issues on top of BPMN models. As such, they are able to analyze

and design secure business processes by following the ISSRM process.

Holistic Security 29

Meland and Gjære [2012] emphasize the need of expressing threats and unwanted

incidents on BPMN 2.0 models. They propose a process-centric threat modeling approach

that can analyze which threat events trigger a deviation from the typical business process

flow. A triggered threat will provoke a re-composition and/or reduced functionality of

the composite services. To keep the number of BPMN constructs to a minimum, they use

existing constructs to define unwanted events in business processes instead of inventing

new constructs.

Salnitri et al. [2015] propose SecBPMN-ml as an extension of BPMN for modeling secu-

rity aspects in business processes. Several security annotations are included in SecBPMN-

ml, the semantics of which have been formally specified. In addition, the authors define

the SecBPMN-Q query language for representing security policies, which can be automat-

ically checked against SecBPMN-ml specifications.

Physical infrastructure security

Physical security protections highly depend on the specific physical devices. Different de-

vices involve different vulnerabilities and thus can be attacked in different ways, such as

attacks against smart meters [Flick and Morehouse, 2010, Chap.12] and advanced meter-

ing infrastructure [Carpenter et al., 2009]. As such, instead of modeling and abstracting

common features of different physical devices, most physical security analysis is performed

in an ad-hoc way that focuses on analyzing particular devices.

There are a few model-based approaches that model and analyze the infrastructure

security. Jürjens [2002] considers physical layer in UMLsec, in which the author specifies

and verifies secure concerns in deployment diagrams. Specifically, this work focuses on

the dependencies between components deployed in different nodes, as well as the location

of the nodes.

Ustun et al. [2006] propose an agent-based conceptual design of a physical system se-

curity simulation, which allows analysts to identify potential threats to physical security

systems. According to the simulation results, a security configuration will be generated

to minimize risks, which includes the physical structure of the facility, the set of sen-

sors included in the facility, and the set of guards and their respective operating/patrol

strategies.

Fernandez et al. [2007b] examined existing systems, industry standards and govern-

ment regulations, based on which they have summarized a core set of features that a

physical access control system should have. Such knowledge is specified in terms of secu-

rity patterns, which can be reused to develop physical security. In particular, they have

created and illustrated three specific patterns: Alarm Monitoring, Relays, Access Control

to Physical Structures.

30 State of the Art

2.2.2 Holistic Security Analysis Approaches

Mouratidis and Jurjens [2010] analyze security from both organizational and technical

perspectives by combining existing approaches Secure Tropos and UMLsec. The authors

provide a systematic process to transfer the elicited organizational security requirements

(i.e., Security Tropos models) to secure software design models (i.e., UMLsec class dia-

grams and deployment diagrams). Salnitri et al. [2014b] propose an incremental and iter-

ative process to align business process policies with organizational security requirements.

By automatically verifying such policies, this approach ensures the organizational security

requirements are preserved in the business layer. Other approaches [Menzel et al., 2009;

Rodŕıguez et al., 2010] apply model-driven techniques to transform security requirements

captured in business processes into concrete security configurations in software design.

All the above approaches cover multiple aspects of system security and align security re-

quirements in a top-down manner. However, these approaches do not holistically analyze

alternative security requirements across different aspects. As such, the analysis result

may not be the optimal solution.

Apart from the alignment-based approach, several studies have been done to structure

information systems into multiple conceptual layers. May and Dhillon [2010] propose a

holistic conceptual framework to identify security issues from both social and technical

perspectives. The authors contend that information security is becoming a multidimen-

sional discipline, where particular models can only address part of the security issues and

a meta-theoretical basis is required to achieve a holistic understanding of information

security. As such, they base their framework on the theory of semiotics, which consists

of six layers of abstraction. By mapping information security issues into these six layers,

their framework can theoretically and intuitively guide holistic security analysis process.

Similarly, Wimmer and Von Bredow [2002] propose a holistic approach to generate secu-

rity solutions in e-government. This proposal consists of four levels, including community

level, process level, interaction level, and infrastructure level. The authors argue that

each of these four levels has different security requirements, and they exemplify security

solutions at each level. However, these approaches do not systematically analyze inter-

actions among different layers. In addition, the approaches do not have any automated

analysis support, and thus cannot be pragmatically used to analyze large-scale systems.

Zuccato [2004] introduces a holistic security requirements engineering approach for

electronic commerce. The approach synthesizes three paradigms that are commonly used

to elicit security requirements in order to have a complete set of requirements. In such

a way, the author claims this approach can analyze holistic security requirements. In

particular, the approach first collects security requirements from risk analysis, business

process analysis, and workshops with stakeholders, respectively; and then compiles such

Security Attack Analysis 31

requirements by solving conflicts among them. The author provides detailed instructions

for performing this holistic security requirements analysis. Instead of analyzing differ-

ent components of a system, this approach implements holistic analysis from another

dimension, i.e., using multiple elicitation paradigms.

Spears [2005] describes a systematic process for holistically analyzing security risks.

This proposal starts from identifying business functions, and then consecutively identifies

corresponding critical business processes, information systems, and supporting infrastruc-

ture. After that the author proposes to analyze threats and vulnerabilities and to develop

risk scenarios for each of the critical assets, in order to perform a holistic analysis. Al-

though this approach can cover different security concerns pertain to the information

systems, it cannot holistically select the best security solution. In addition, this approach

does not have any automated analysis support.

2.3 Security Attack Analysis

In this section, we review approaches that analyze security attacks from three perspectives.

Firstly, we focus on approaches that are based on attacker analysis. Secondly, we review

papers that leverage reusable attack patterns. Thirdly, we survey approaches that are

designed to analyze multistage attacks.

2.3.1 Attacker-oriented Analysis

Steele and Jia [2008] leverage User-Centered Design techniques to develop personas, de-

scribing the archetypal behavior of possible attackers. Apart from this speculative pro-

posal, Atzeni et al. [2011] propose a grounded approach for developing attacker personas.

They collect realistic data from people who have been known to attack systems, based

on which they develop personas. In addition, their approach includes an argumentation

model, which associates grounded arguments to specific characteristics of attackers. As

such, the attacker personas can be better understood by analysts and can be revised in

light of different contexts. These personas-based approaches help to easily comprehend

attackers and identify attack scenarios, especially for non-security analysts.

Another branch of attacker analysis advocates analyzing attacks from an attacker’s

viewpoint. Several approaches have been proposed to analyze attacks at the operational

level, i.e., modeling behaviors of attackers. Such as the attack tree [Schneier, 1999],

misuse cases [Sindre and Opdahl, 2001, 2005], and abuse cases McDermott and Fox [1999].

Beyond the operational level, later studies capture intention of attackers in order to

understand why the malicious behaviors are performed by attackers. Crook et al. [2002]

32 State of the Art

capture the requirements of a malicious user that subvert an existing requirement as anti-

requirements. Later on, Lin et al. [2003a,b] incorporate such anti-requirements into abuse

frames to represent threats and analyze security requirements.

Lamsweerde [2004] proposes to use anti-goals to model an attacker’s malicious in-

tention, by refining which alternative attacks can be identified. Specifically, the author

leverages formal goal refinement patterns [Darimont and Van Lamsweerde, 1996], which

were initially designed for refining requirements goals, to refine anti-goals. By opera-

tionalizing each leaf anti-goal in terms of specific attack actions, the approach eventually

can discover alternative attack scenarios. This approach is developed in the context of

the goal modeling approach KAOS, and it has been formalized with automated analysis

support. Similar approaches have also been proposed to model an attacker’s intention

using goal modeling languages [Liu et al., 2003; Mouratidis et al., 2004; Elahi et al.,

2010]. Instead of identifying attacks, these approaches focus on analyzing the influences

of modeled alternative attacks on a system using goal satisfaction analysis techniques.

However, all of these intention-oriented approaches are not grounded in realistic security

knowledge, which requires analysts to have in-depth understanding about attackers in

order to effectively apply these approaches.

2.3.2 Attack Pattern-based Analysis

Moore et al. [2001] emphasize the importance of reusing known attack knowledge, which

significantly affects the practicality of attack analysis methods (e.g., attack tree). As

such, they first define attack patterns to support the knowledge reuse. In particular, each

pattern consists of four sections: goal, precondition, attack steps, and post-condition. In

subsequent research, Bozic and Wotawa [2014] use this structure to define attack patterns

and formalize the malicious actions of the attack patterns. In this way, the approach

can automate the execution of attack patterns and test system security. Apart from

this attack pattern template, several researchers have defined attack patterns using their

own templates. Gegick and Williams [2005] define software attack patterns in term of a

sequence of events, using regular expressions. Specifically, each event is expressed by its

associated component, such as user, server, hard disk, etc. By automatically matching

such patterns with system design, the approach can assist analysts in identifying system

vulnerabilities. Fernandez et al. [2007a, 2009] specify attack patterns (i.e., misuse pattern)

based on POSA template [Buschmann et al., 1996]. The POSA template includes much

more sections than the initial one defined in [Moore et al., 2001], such as context, known

uses, countermeasures, etc., which contribute to the practicality of attack pattern-based

analysis. Although the above approaches contribute to the theoretical foundation of

attack patterns, they have not been pragmatically applied to develop attack patterns.

Security Attack Analysis 33

For example, Moore et al. [2001] illustrate their approach with four patterns and we are

unaware of subsequent work has been done for developing patterns; Fernandez-Buglioni

[2013] has only developed three misuse patterns, as reported in his recent book.

Compared to the above theoretical approaches, the Common Attack Pattern Enu-

meration and Classification (CAPEC) is initiated as a baseline catalog of attack patterns

along with a comprehensive schema and classification taxonomy [Barnum and Sethi, 2007].

CAPEC was launched in 2007 and has been consecutively developed, which currently in-

cludes 504 attack patterns2. Since CAPEC provides a significant amount of practical

security knowledge, it is receiving an increase of attention from both academia and in-

dustry. Especially, a main research question is how to effectively use CAPEC, given its

impressive size. Kaiya et al. [2014] define term-maps, which link terms in requirements

specifications to specific security terms used in CAPEC. As such, this approach can auto-

matically identify related attack patterns based on requirements specifications, and thus

further obtains corresponding security requirements. Engebretson and Pauli [2009] enrich

the CAPEC attack patterns with the concepts parent threat and parent mitigation in

order to facilitate the navigation among the large number of attack patterns. Yuan et al.

[2014] map CAPEC patterns to STRIDE [Shostack, 2014], based on which they develop

a tool to facilitate the retrieval of CAPEC patterns. However, all the above approaches

do not use context to check the applicability of attack patterns. In addition, the CAPEC

patterns focus on documenting operational attack knowledge, and currently there are

no approaches that associate such patterns with attacker intention analysis, limiting the

utility of CAPEC patterns.

2.3.3 Multistage Attack Analysis

An attack graph shows all paths through a system that end in a state where an attacker

achieves his malicious intention. Each attack path indicates a potential attack that con-

sists of one or several steps, allowing analysts to analyze multistage attacks. Different

techniques have been proposed to automatically generate such graphs. Phillips and Swiler

[1998] first use attack graphs to analyze network security. Because of the homogeneous

settings of machines in the network, the states of machines (i.e., nodes in the attack

graph) and the atomic attacks on machines (i.e., transitions in the attack graph) can be

enumerated. As such, it is possible to automatically generate all the attack paths by

following a comparatively simple attack strategy. Take the approach of [Sheyner et al.,

2002], for example: an attacker starts from a machine with the root permission, he then

iteratively detects the next vulnerable machine in the network, logs into that machine,

and gets the root permission of that machine until reaching his target machine. In a

2https://capec.mitre.org

https://capec.mitre.org

34 State of the Art

recent study, Beckers et al. [2015] apply the attack graph technique to analyze social en-

gineering attacks, where the states of people are modeled as nodes and social engineering

attacks are captured as transitions between nodes. However, the attack graph approach

only applies to systems that have simple and homogeneous components, where the states

of components and relevant actions can be enumerated, i.e., without combinatorial ex-

plosions. Thus, it is not suitable for security analysis of STSs which can involve a large

number of heterogeneous components, such as people, software, and hardware.

Attack trees are a typical way of representing alternative attacks, which can also

capture multistage attacks due to their hierarchical tree structure. Thus, the systematic

construction of such trees contributes to the identification of multistage attacks. Although

there is no unique way of creating attack trees, different researchers have proposed several

guidelines/methods. Morais et al. [2013] advocate a guideline for creating attack trees,

which starts from modeling the general attack description; and then identifies the violated

security properties and the security mechanisms to be exploited, respectively; and finally

models the concrete attack actions. Paul [2014] proposes a layer-per-layer approach to

automatically generate skeletons of attack trees using information derived from system

architecture, risk assessment study, and related security knowledge base. However, as the

attack tree approaches only focus on operational attack actions and do not capture an

attacker’s malicious intentions, they fail to identify the variety of attacks at the strategic

level.

Several studies have been proposed to capture attacker’s malicious intentions as (anti-

)goals using goal-oriented modeling language, e.g., [Lamsweerde, 2004; Liu et al., 2003;

Mouratidis et al., 2004]. As such, analysts can well understand both how and why attacks

are performed, and thus better explore the space of attack alternatives. In addition, the

tree structure of goal models allows analysts to capture multistage attacks. However,

these approaches are not grounded in realistic security knowledge, requiring analysts to

have a strong security background in order to effectively model and analyze attacks.

2.4 Security Patterns

Security patterns encapsulate reusable security knowledge which can assist analysts with

little security knowledge in identifying security solutions to satisfying security require-

ments. We here first review existing security pattern repositories with the aim of under-

standing the situation of security pattern development. In particular, we try to know the

total number of security patterns that have been developed. After that we survey ex-

isting techniques to investigate how to effectively select the best security pattern among

alternatives. Finally, we review approaches that analyze the impact of applied security

Security Patterns 35

mechanisms (i.e., solutions of security patterns).

2.4.1 Security Pattern Collections

Yoder and Barcalow [1997] wrote the first paper on security patterns, which includes

seven patterns. The authors specify these patterns in a structured manner using the GoF

template [Gamma et al., 1994] and describe interactions among patterns in order to fit

the seven patterns all together. After that different researchers have been working on

the discovery, documentation, and application of security patterns, resulting in several

security pattern collections that include a significant number of patterns.

Schumacher et al. [2006] published a book in 2006, which advocates using security pat-

terns to integrate security and software engineering. In particular, the authors introduce

44 security patterns in details, which are specified using the POSA template [Buschmann

et al., 2007], and illustrate the usage of security patterns via case studies. In a recent

textbook, Fernandez-Buglioni [2013] summarizes in total 68 security patterns that have

been written by himself, which are also specified with the POSA template. Some of these

patterns have appeared in [Schumacher et al., 2006], but have been revised by Fernandez

based on his experiences and security knowledge.

Yskout et al. [2006] gather a collection of security patterns based on an extensive

survey of security patterns in literature in order to form a system of security patterns. The

collected patterns are screened based on their complexity, quality, and abstraction level,

leading to 35 core security patterns that concentrate on software architecture and detailed

design. The authors document the patterns in a specific security pattern template, which

is extended from the GoF template.

Asnar et al. [2011a] present a process-oriented approach for capturing, validating, and

applying security and dependability organizational patterns. By applying this approach

within an industry lead EU project, an organizational pattern library has been established

based on a number of case studies of the project. The library covers a broad spectrum of

security management issues, e.g., legality, privacy, security, etc., totally including 49 orga-

nizational patterns. Each pattern is defined as a triple <Context; Requirement; Solution>,

the elements of which are specified by using the SI* framework [Massacci et al., 2010].

Given the different collections of security patterns, it is difficult to tell the exact number

of security patterns that have been developed. For one thing, the above reviewed security

pattern repositories cannot be exhaustive. For another thing, as existing security patterns

can cover different levels of abstraction, there is no consensus on the definition of security

pattern. For example, Heyman et al. [2007] argue that some existing security patterns

are too abstract to be considered as actual patterns (e.g., Asset Valuation), which are

closer to security guidelines or principles. They have performed an extensive survey over

36 State of the Art

220 patterns, among which 55% are classified as core patterns, 35% are guidelines and

principles, and 10% are process activities. However, the definition of security patterns is

out of the scope of this thesis. Apart from this survey, in a recent mapping study, Ito

et al. [2015] acknowledge that currently there are more than 200 security patterns.

2.4.2 Security Pattern Selection

Scandariato et al. [2008] propose a methodology which can help analysts to systematically

select security patterns to develop secure systems. This methodology is built on 35 well-

documented security patterns [Yskout et al., 2006]. In particular, the 35 patterns have

been classified in two ways: development phases (architecture, design, etc.) and security

objectives (confidentiality, availability, etc.). Using such classifications, analysts are able

to navigate among the 35 patterns and identify candidates for application. Moreover,

the authors also associate quality labels with each security pattern, in order to assist

analysts in selecting the best security patterns among candidates, if there are more than

one. Lastly, the approach captures interrelations among patterns, such as depend and

impair, etc., which further complement the selection of security patterns. However, there

is no tool has been developed to support the application of this methodology, requiring

analysts to manually go through the entire analysis process.

Araujo and Weiss [2002] argue that selecting the best security patterns among all the

applicable ones is a knowledge-intensive process, as analysts have to thoroughly read and

understand all the alternative patterns. Therefore, the authors apply the Non-Functional

Requirement (NFR) framework as a complementary representation for security patterns

in order to help analysts to analyze trade-offs among candidate patterns. Their approach

captures forces of security patterns with contribution links to softgoals. In particular,

they have defined force hierarchy to capture the interactions among forces at different

level. As the root force is imposed on the entire system, analysts are able to compare

forces of all candidate security patterns within a particular force hierarchy, and assess

the total satisfaction of the root force so as to choose the best alternative. The authors

have practically applied their approach to enrich 14 security patterns with the force hi-

erarchy. In subsequent research, Mussbacher et al. [2006] formalize this approach and

enable automatic trade-off analysis with tool support. However, this approach does not

support analyzing the application context of security patterns, and thus analysts have to

first manually identify applicable patterns among a large number of security patterns.

Hafiz and Johnson [2006] survey existing security patterns and their classification

schemata. Specifically, the authors compare different classification schemata (e.g., log-

ical tiers, system viewpoint, and security concepts, etc.), and discuss their advantages

and disadvantages. Considering the evidence from the comparison, the authors construct

Security Patterns 37

Table 2.3: A comparison of security pattern selection techniques

Technique
Pattern Identify Applicable Patterns Trade-off

Number Classification Interrelationship Applicability Tool Method Tool

[Scandariato

et al., 2008]

35 1) development phase

2) security objective

five inter-pattern

relationships

manual assess-

ment

no quality trade-

off labels

no

[Araujo

and Weiss,

2002]

14 – – – – NFR trade-

off analysis

yes

[Hafiz

et al., 2012]

96 1) threat

2) system levels

a full pattern lan-

guage for all pat-

terns

manual assess-

ment

no – –

[Fernandez-

Buglioni,

2013]

68 multiple-dimensional

classification

separate pat-

tern diagrams for

specific patterns

manual assess-

ment

no incorporate

risk analysis

techniques

no

an organization of security patterns based on threat model (STRIDE) and system lev-

els, [Hafiz et al., 2007]. In subsequent work, Hafiz et al. [2012] further improve their

pattern schema by defining a comprehensive pattern language, involving all the 96 pat-

terns in the pattern organization. A pattern language describes the interrelations among

patterns and offers analysts a guidance in selecting the next pattern to consider.

Fernandez-Buglioni [2013] has proposed a systematic process for selecting and applying

security patterns during the entire lifecycle of software development. To select appropri-

ate patterns to apply, he leverages a multi-dimensional classification schema to categorize

patterns, e.g., via architectural levels, lifecycle stages, and domains, etc. [VanHilst et al.,

2009]. In addition, the approach also captures interactions among security patterns using

pattern diagrams, in order to facilitate the pattern selection. Specifically, the abstract/in-

stantiate relations among security patterns have been emphasized to play an important

role when building pattern diagrams [Fernandez et al., 2008].

Summary

Table 2.3 summarizes and compares the four approaches that we reviewed before. To select

the best security pattern, we have identified two main steps: firstly, identify applicable

patterns from the pattern catalog; secondly, perform trade-off analysis on all the applicable

patterns in order to select the best one.

In the first step of analysis, all the approaches rely on pattern classifications to navigate

through the entire pattern catalog. In addition, the interrelationships among patterns

have been investigated to different extents, assisting analysts in identify relevant patterns

that can be applied. The above two types of support can help to reduce the range of the

pattern catalog, as they actually capture part of context of security patterns. However,

38 State of the Art

such supporting techniques cannot include all kinds of context, and thus analysts still

have to manually assess the applicability of security patterns. In addition, none of the

reviewed approaches has tool support for identifying applicable patterns.

In the second step of analysis, the NFR-based approach is dedicated to analyze trade-

offs among candidate patterns, which can be automated with a support tool. On the

contrary, other approaches acknowledge the need of performing such trade-off analysis,

but do not specify analysis methods nor have tool support.

2.4.3 Impact of applying security patterns

The application of a security pattern amounts to applying a security mechanism (i.e.,

the solution of the security pattern) to fulfill a security requirement (i.e., the problem of

the security pattern). However, as a side effect of such application, the applied security

mechanism will inevitably impact the original system requirements (both security and

non-security requirements), which has been acknowledged and taken into account by

several security analysis approaches. For example, Hatebur et al. [2007] deal with the

impact of security mechanisms by iteratively performing the security requirements analysis

and security mechanism analysis. In particular, if the precondition of an applied security

mechanism (encapsulated in concretized security problem frames) cannot be satisfied,

then new security requirements are derived from that precondition, demanding a new

round of security analysis.

Nuseibeh [2001] first proposes a requirements Twin Peaks model to demonstrate the

interactions between requirements and architecture at an abstract level. Heyman et al.

[2011] specialize the twin peaks model in the security area, leading to a Security Twin

Peaks model that emphasizes the bi-directional impact between security requirements

and security architectural design. Building on this conceptual model, the authors pro-

pose a constructive process for co-developing secure software architectures and security

requirements using security patterns. In particular, they identify three key notations for

co-development, which should be incorporated in the specification of security patterns:

firstly, the components and behavioral requirements that are introduced by a security

pattern; secondly, the roles and expectations that explain how the newly introduced com-

ponents interact with existing ones; thirdly, the residual goals that are considered by a

security pattern and need to be taken into account when instantiating the pattern.

Similarly, built on the Twin Peaks model, Okubo et al. [2012] propose a method

TMP-SA (Twin Peaks model Application for Security Analysis) which elicits security

requirements during the elaboration of software architecture. In particular, the authors

implement the mutual refinement process on top of their previous security analysis frame-

work MASG (Misuse case with Assets and Security Goals) [Okubo et al., 2009], which in-

Chapter Summary 39

volves security concepts asset, security goal, threat, attack, and countermeasure. To unify

the analysis within both peaks, the authors consider not only architecture-independent

artifacts but also architecture-specific artifacts. For example, the approach can detect

architecture-specific threats, from which countermeasures are derived.

Although the above reviewed approaches contribute to the analysis of impact of se-

curity mechanisms, they focus on only the impact imposed on security requirements and

omit the impact on non-security requirements (either functional or non-functional require-

ments). In addition, all theses proposals are performed manually, which cannot be applied

to analyze large-scale systems.

2.5 Chapter Summary

In this chapter, we first present an in-depth survey on the state of the art in the area

of security requirements engineering in Section 2.1, from which we disclose several gaps

in analyzing security requirements of STSs. In light of such gaps, we specifically survey

related techniques. In Section 2.2 we review security analysis techniques beyond software

which can be incorporated in the holistic approach in order to tackle security issues

for particular artifacts, as well as approaches that are intended to holistically analyze

system security. Next, we examine existing approaches which profile attackers, reuse

attack knowledge, or deal with multistage attacks in Section 2.3. Such examination

helps us to get a deep understanding of the challenges in holistically analyzing attacks

of STSs. Finally, in Section 2.4, we survey existing security pattern repositories, as well

as techniques that select security patterns, shedding light on how to effectively reuse

existing knowledge. We also pay attention to the impact of security mechanisms imposed

on system requirements and discuss related approaches.

40 State of the Art

Chapter 3

Baselines

Creation always involves building upon something else. There is

no art that doesn’t reuse. And there will be less art if every reuse

is taxed by the appropriator.

Lawrence Lessig

In this chapter, we describe existing techniques, based on which we develop our frame-

work. We first introduce the requirements problem, which specifies fundamental tasks

that need to be addressed during requirements analysis (Section 3.1). Then, we describe

the goal-oriented requirements modeling languages i* [Yu, 1997] and Techne [Jureta et al.,

2010], based on which we develop the three-layer requirements modeling language (Sec-

tion 3.2). In addition, we also introduce a contextual goal modeling language [Ali et al.,

2010], which is used for modeling attack patterns and security patterns. After that we

present existing security pattern repositories, which help analysts to reuse provable secu-

rity knowledge (Section 3.3). Lastly, we describe CAPEC attack patterns which we use

to identify realistic attacks (Section 3.4).

3.1 Requirements Problem

Zave and Jackson [1997] define a Requirements Engineering (RE) ontology in order to

specify the requirements problem. Their definition consists of three concepts: a Require-

ment is an optative property that specifies stakeholder needs, expected to be satisfied by

the system-to-be; a Domain Assumption is an indicative property that is relevant to the

system-to-be; a Specification is an optative property, which can be directly implemented

by the system-to-be in order to satisfy stakeholder needs. On the basis of these three

concepts, the requirements problem amounts to finding a collection of specifications S,

which can satisfy all requirements R under domain assumptions D. Thus, the requirements

42 Baselines

problem is represented as D,S ` R, meaning that domain assumptions and specifications

together entail the requirements.

World Machine

S-specD-domain
assumption

R-requirement
Program,

algorithm etc.

Figure 3.1: An illustration of the requirements problem from [Zave and Jackson, 1997]

As illustrated in Fig. 3.1, requirements are phenomena in the problem world, and

specifications offer a way for phenomena in the system-to-be to satisfy the requirements.

Due to the complexity of STSs, the requirements problem needs to be extended to account

for phenomena in all the three conceptual layers. We will describe such extensions in detail

in Chapter 4.

3.2 Goal Modeling Languages

Goal-Oriented Requirements Engineering has received much attention in RE research, as

an intuitive means of capturing stakeholder goals and understanding underlying motiva-

tions for system requirements [Horkoff and Yu, 2011]. Over the last two decades, many

Goal Modeling Languages (GML) have been proposed to model and analyze requirements,

such as NFR [Chung, 1991], i* [Yu, 1997], KAOS [Dardenne et al., 1993], Techne [Jureta

et al., 2010], etc. Specifically, several advantages are offered by such GMLs, which fit well

our needs of dealing with holistic security requirements of STSs.

• GMLs capture stakeholder requirements as goals which can be and/or refined to

detailed ones. Such and-or tree structure can capture alternative solutions that

satisfy stakeholder requirements. In particular, many satisfaction analysis techniques

have been proposed in order to select the best alternative for fulfilling root level

goals [Horkoff and Yu, 2013]. By inheriting such a feature from GMLs, we are able

to capture and analyze alternative holistic security solutions for STSs.

• The social aspect of security requirements analysis has been paid an increasing at-

tention in the past fifteen years, which is particularly important for STSs. The i*

modeling language [Yu, 1997] has emphasized the need of social modeling in require-

ments analysis. In particular, it offers concepts and relations to model social actors

and their dependency. Many security requirements analysis approaches have been

Goal Modeling Languages 43

proposed based on i* so as to analyze social and organizational security issues, such

as [Mouratidis and Giorgini, 2002; Liu et al., 2003; Giorgini et al., 2005b]. In this

thesis, we also base our approach on such social modeling constructs.

• Techne [Jureta et al., 2010] is a recently proposed requirements modeling language,

which maps Zave and Jackson’s requirements ontology into goal model concepts. As

such, it provides the theoretical foundation of using GMLs to solve the requirements

problem. In addition, it extends the requirements problem with priorities among

stakeholder requirements, which further enhance the selection among alternative

requirements specifications [Horkoff et al., 2014a]. Since we intend to tackle the

requirements problem of STSs, we adopt the mapping and corresponding constructs

defined in Techne.

In the remainder of this section, we first introduce the two particular GMLs (i.e., i*

and Techne), on the basis of which we develop our three-layer requirements modeling

language (Chapter 4). After that, we introduce a contextual goal modeling language,

which extends a goal modeling language (Tropos[Bresciani et al., 2004]) with notions of

context in order to model and analyze requirements in different contexts [Ali et al., 2010].

In particular, we leverage this extended modeling language to model attack patterns

(Chapter 5) and security patterns (Chapter 6) in terms of goal models with context,

enabling semi-automatic context analysis for those patterns.

3.2.1 i*

i* was developed by Yu [1997] as a goal- and agent-oriented modeling and reasoning

framework. Different from other GMLs, such as NFR or KAOS, i* promotes the notion of

actor as a first-class citizen, where an actor is an active and autonomous entity involved

in a system. In particular, i* can model and analyze requirement goals for system actors

from their perspectives via Strategic Rationale (SR) diagrams, as well as capture the

social interactions among actors via Strategic Dependency (SD) diagrams.

In order to model an actor’s strategic rationale, four intentional elements have been

defined, i.e., goal, task, softgoal, and resource, which are essential to the i* modeling

language. A goal is a state of affairs that is desired by an actor and has clear-cut criteria

of achievement; a softgoal is similar to a goal but does not have clear-cut criteria for its

satisfaction; a task represents an action that is executed by an actor in order for achieving

some goal; a resource is an entity (either physical or informational) that is required by

an actor in order to perform a task. In particular, the achievement of such intentional

elements is captured using means-end links, which shows how a means (i.e., a task) can

be used to reach an end. In particular, the end can be a goal to achieve, a task to

44 Baselines

accomplish, a resource to produce, or a softgoal to satisfice. In addition, a task can be

decomposed into one or several sub-elements via the task decomposition links. Lastly, all

such intentional elements can be linked to a softgoal using contribution links, indicating

to what extent the intentional element contributes to the fulfillment of the softgoal. Such

contribution links are typically used to evaluate and compare alternative requirements

specifications.

An actor’s goals can be fulfilled either by herself or by other actors. The former case

is captured by using the decomposition and means-end links described above, while the

later case is modeled by using dependency links. In particular, i* defines four types of

dependencies, each of which corresponds to one particular intentional element, such as

goal-dependency. The i* strategic dependency diagram is intended to capture such depen-

dency relationships among actors, presenting the interaction network in an organization.

The i* models are typically developed during early requirements stage, helping to

understand why a new system is needed. In addition, on top of the i* models, techniques

have been developed to capture and select solutions in goal models, such as [Horkoff and

Yu, 2010]. The i* framework has been widely adopted by the research community in fields

such as requirements engineering and business modeling. Specifically, Tropos [Bresciani

et al., 2004], as an agent-oriented software engineering methodology, has been built on

the i* meta-model and supports the entire system development lifecycle using intentional

goal models.

3.2.2 Techne

Jureta et al. [2010] propose Techne as a new generation of requirements modeling lan-

guage, which is defined based on a revised requirements core ontology [Jureta et al.,

2008]. The concepts defined in Techne can not only represent the requirements problem

defined by Zave and Jackson [1997] (introduced in Section 3.1), but also extend it with

quality and preference in order to better compare alternative solutions. In particular,

stakeholder’s requirements R is captured as goals and softgoals, while system specifica-

tion S includes tasks and quality constraints which operationalize goals and softgoals,

respectively. Moreover, Techne explicitly captures domain assumptions D.

To better deal with the selection of alternatives, stakeholder’s preferences are taken

into account, which are modeled by preference relations between requirements. Specifi-

cally, a preference relation means one requirement is strictly more desirable than another.

As reported in [Horkoff et al., 2014a], by capturing stakeholder’s preferences, Techne rea-

soning is able to choose between alternatives in more cases than i* reasoning, providing

enhanced reasoning power.

It is worth noting that Techne does not include graphical modeling notations but

Security Patterns 45

an abstract requirements modeling language, which provides the formal foundations for

new modeling languages applicable during early phases of the requirements engineering

process. Thus, when defining our modeling framework in Chapter 4, we borrow concepts

from Techne and define corresponding graphical notations by ourselves (mainly based on

the i* modeling notations).

3.2.3 A Contextual Goal Modeling Language

Ali et al. [2010] argue that requirements should be analyzed in a way that reflects context

settings, as stakeholder’s requirements can vary from context to context. As such, they

have proposed a goal-based framework for contextual requirements modeling and analysis,

in which they relate goals and contexts. In particular, contexts are treated as labels that

can be attached to specific goal model elements, such as shown in Fig. 3.2. Moreover,

they define semantics for contexts that are modeled within goal models. For example, in

the first case of Fig. 3.2, goal G represents a requirement if and only if context C holds.

In the other two parts of the figure, a link between two goals is part of the goal model

only when context C holds.

G
C G

G1

SG

T

help

Legend

Task

Decomposition

Contribution

Goal

Softgoal

C
Context

OR

......
(1) (2) (3)

CC

Figure 3.2: Goal models with contexts

In this thesis, we use this contextual goal modeling language to model attack patterns

and security patterns. More specifically, we follow their approach to model contexts, as

illustrated in the Fig. 3.2. It is worth noting that this modeling language extends Tropos,

which is built on the i* meta-model. Since we have decided to also base our three-layer

requirements modeling language on i*, the constructed contextual goal models can be

easily and seamlessly integrated with the three-layer requirements models.

3.3 Security Patterns

Security patterns consist of <security requirement (problem), security mechanism (solution)>

pairs that capture particular ways of solving known security problems. Since patterns

constitute an effective way to encapsulate security expertise, they can significantly help

46 Baselines

analysts who have little security knowledge to perform security analysis. As introduced

in Section 2.4.1, many security patterns have been proposed at different abstraction levels

and several pattern repositories have been established, such as the work done by Asnar

et al. [2011a] and Fernandez-Buglioni [2013].

In this thesis, we propose to make use of security patterns to operationalize security

goals in terms of security mechanisms within each of the three layers. In particular, our

approach not only refers to the security pattern repositories, but seamlessly integrates

those patterns as part of our framework in order to practically apply such patterns in

an effective manner. In this section, we describe existing security patterns in detail.

Specifically, we describe essential concepts of security patterns, which play an important

role in our security requirements analysis.

3.3.1 Pattern Templates

Patterns are structured documents that capture proven solutions for recurring problems.

Different templates have been proposed for documenting patterns. Alexander et al. [1977]

first define a pattern as “a three-part rule, which expresses a relation between a certain

context, a problem, and a solution”. In the same spirit of Alexander’s proposal, Gamma

et al. [1994] develop design patterns to support software design, in which they define

Gang of Four (GoF) template for specifying patterns. Similarly, Buschmann et al. [1996]

propose pattern-oriented software architecture and define POSA template; Coplien [1996]

define software patterns with his own template (i.e., Coplien template), which has been

further used for specifying organizational patterns [Coplien and Harrison, 2004]. These

subsequent approaches have enriched the initial pattern templates (defined by Alexander)

with specific sections according to their own purposes. For example, the POSA template

has an Implementation section to support the downstream application of a pattern, while

Coplien template has a Resulting Context section which describes the influences of a

pattern in detail.

As different templates have their own focuses, they are used by different security pat-

tern developers for particular purposes. For example, Fernandez-Buglioni [2013] specifies

security patterns based on the POSA template, while Scandariato et al. [2008] use the

GoF template and extend it with security aspects. As pointed out by Mowbray and

Malveau [1997], the core concepts of a pattern include Name, Context, Problem, Forces,

and Solution, which should be specified in all patterns. In particular, Context describes

the situations in which the pattern may apply; the Problem presents the problem for which

the pattern offers a solution; Forces are concerns, often contradictory, which have to be

taken into account when determining the applicability of a pattern; Solution describes

fundamental principles underlying the pattern, which address the problem of the pattern.

Security Patterns 47

Table 3.1: An exemplary security pattern in [Fernandez-Buglioni, 2013]

Name: Abstract Intrusion Detection System

Context:

Nodes for local systems that need to communicate with each other using the Internet.

Problem:

An attacker may try to infiltrate our system through the Internet. We need to know when an

attack is happening and take appropriate response.

Force:

• Communication. The system is usually more secure if we have a closed network. However, in

today’s world it is better and more realistic to use the Internet or other insecure network to reduce

costs, which may subject our network to security threats.

• Real time behavior. Attacks should be detected before the attack completes its purpose, so that

we can preserve our assets and save time and money. It is difficult to detect an attack when it is

happening, but such detection is imperative if we are to react timely and appropriately.

• Incomplete security. Security measures such as encryption, authentication and so on may not

protect all our systems, because they do not cover all possible attacks.

• Non-suspicious users. Request coming from a non-suspicious address (permitted by a firewall)

could still be harmful and should be monitored further.

• Flexibility. Hard-coding the type of attack can be done easily. But it will be hard and time-

consuming to adapt to attack patterns that change constantly.

Solution:

Each request to access the network is analyzed to check whether it conforms to the definition of

an attack. If we detect an attack, an alert is raised and some countermeasures may be taken.

In this thesis, when integrating security patterns into our framework (Chapter 6), we

exclusively focus on analyzing and reusing knowledge related to these core concepts.

Table 3.1 shows the Abstract Intrusion Detection System pattern [Fernandez-Buglioni,

2013], which has been specified with these core concepts. Specifically, this pattern is in-

tended to prevent attacker from infiltrating into the target system (Problem), which com-

municates with other nodes via Internet (Context). Additionally, a list of considerations

should be taken into account when dealing with this security problem, e.g., detecting at-

tacks when it is happening is imperative for timely reactions, but it is difficult to achieve

(Forces). After balancing such forces for the problem in this context, one solution can be

checking each request to access the network whether it conforms to the definition of an

attack (Solution).

48 Baselines

3.4 CAPEC

Attack patterns document reusable attack knowledge, helping analysts with attack anal-

ysis. CAPEC (Common Attack Pattern Enumeration and Classification) is a compre-

hensive and well-documented attack knowledge repository, which has been incrementally

built starting from 2007 and includes 504 attack patterns thus far1. In this thesis, we pro-

pose to leverage the reusable attack knowledge of CAPEC in order to practically identify

possible attacks for STSs. Specifically, we consider the following advantages of CAPEC:

• CAPEC involves a wide range of attack categories, from social engineering attacks,

to software attacks, to physical attacks, perfectly meeting our needs for holistic

security analysis of STSs.

• CAPEC attack patterns are well-documented in a structural way, covering different

aspects of an attack. Such detailed and comprehensive information can help ana-

lysts to better understand and apply attack patterns. We will further describe and

illustrate the essential parts of an attack pattern in the following subsection.

• Apart from attack patterns, CAPEC also offers useful pattern categories (e.g., mech-

anisms of attack and domains of attack) that help to navigate through the large

number of patterns.

Similar to the security patterns, instead of only referring to the CAPEC knowledge

repository, we intend to seamlessly integrate the CAPEC attack patterns into our holistic

security analysis framework and promote their practical adoption. As such, in the next

subsection, we describe in detail the specific attack knowledge that is concerned by our

framework.

3.4.1 CAPEC Schema

Attack patterns, as a specific type of pattern, are specified in the same spirit of design

patterns [Gamma et al., 1994], but from an attacker’s viewpoint. Thus, an attack pattern

also specifies the three primary pattern concepts that are proposed by Alexander et al.

[1977], i.e., Context, Problem, Solution. It is worth noting that such pattern concepts are

described from an attacker’s perspective, i.e., what an attacker wants to attack (Problem),

how does the attacker perform the attack (Solution), under what situation (Context).

Beyond these concepts, a CAPEC attack pattern also includes a lot of detailed attack-

related information, such as Mitigations, Severity, Likelihood of Exploit, etc. A full schema

of the CAPEC attack pattern can be found online2.
1https://capec.mitre.org
2https://capec.mitre.org/data/xsd/apschemav2.7.xsd

https://capec.mitre.org
https://capec.mitre.org/data/xsd/ap schema v2.7.xsd

CAPEC 49

Table 3.2: An exemplary CAPEC attack pattern

Name: SQL Injection (CAPEC-66)

Attack Motivation-Consequences:

• Integrity. Modify application data

• Confidentiality. Read application data

• Confidentiality/Integrity/Availability. Execute unauthorized code or commands

• Confidentiality/Access Control/Authorization. Gain privileges / assume identity

Attack Prerequisites:

• SQL queries used by the application to store, retrieve or modify data

• User-controllable input that is not properly validated by the application as part of SQL queries

Technical Context:

• Architectural Paradigms. All

• Frameworks. All

• Platforms. All

• Languages. All

Attack Execution Flow:

• Survey application

• Determine user-controllable input susceptible to injection

• Experiment and try to exploit SQL Injection vulnerability

Table 3.2 presents the SQL Injection pattern (CAPEC-66), showing the attack knowl-

edge that is related to the primary pattern concepts. A full specification of this pattern can

be found online3, which also contains other detailed attack knowledge. In particular, this

attack pattern can be used to gain privileges to an application (Problem) which use SQL

queries to operate data (Context). To this end, an attacker should first survey the appli-

cation and then determine user-controllable input susceptible to injection, based on which

she can experiment and conduct SQL injection attacks (Solution). Note that this pattern

can also deal with other Problems as specified in the Attack Motivation-Consequences

section, i.e., modify application data.

In our framework, we mainly focus on identifying and selecting attack patterns. Thus,

we exclusively concern the attack knowledge that can be mapped to the three primary pat-

tern concepts. Specifically, we extract the context of an attack from two pattern sections,

Attack Prerequisite and Technical Context ; we analyze the problem of an attack based

on section Attack Motivation-Consequences ; and the solution of an attack is described

in section Attack Execution Flow. In Chapter 5, we will describe a detailed approach to

3https://capec.mitre.org/data/definitions/66.html

https://capec.mitre.org/data/definitions/66.html

50 Baselines

process CAPEC patterns and effectively make use of the corresponding attack knowledge

to support our analysis.

3.5 Chapter Summary

In this chapter, we describe several existing techniques, based on which we develop our

holistic security requirements analysis framework. We also explain the reasons why we

choose such techniques, and associate them with specific parts of our framework. In

particular, we introduce the Requirements Problem as the theoretical foundation of our

holistic requirements framework (Section 3.1). We base our modeling language on two

goal-oriented modeling languages, i.e., i* and Techne, the advantages and core concepts

of which are introduced in Section 3.2. Moreover, we also introduce a contextual goal

modeling language, which is used for modeling attack patterns and security patterns. In

Section 3.3, we introduce existing security patterns, which we intend to integrate into our

framework in order to practically support analysts with little security knowledge. Espe-

cially, we present different templates that have been used by existing security patterns, on

top of which we have described and illustrated the essential concepts of security patterns

that are used by our approach, including Context, Problem, Forces, and Solution. In line

with the integration of security pattern, we aim to seamlessly incorporate practical attack

knowledge into our framework, helping analysts to identify realistic attacks. Specifically,

we choose CAPEC attack patterns as the attack knowledge source because of their wide

coverage and detailed documentation, and introduce such patterns in detail in Section 3.4.

We also introduce the CAPEC pattern schema and highlight the sections that are used

in our framework.

Chapter 4

A Three-Layer Security

Requirements Analysis Framework

The most fundamental problem in software development is

complexity. There is only one basic way of dealing with

complexity: divide and conquer.

Bjarne Stroustrup

In this chapter, we present a holistic security requirements analysis framework which

divides an STS into three layers: a social layer (business processes and social actors), a

software layer (software applications that support the social layer) and an infrastructure

layer (physical and technological infrastructure). Within this framework, each layer fo-

cuses on particular concerns and has its own requirements and specifications, which are

captured by goal-oriented requirements models. In particular, specifications in one layer

dictate requirements in lower layers, and we use cross-layer links to capture such depen-

dencies. As such, the framework not only performs security requirements analysis at each

of the three layers, but also takes into account the connections among layers. Eventually,

the framework generates holistic security solutions that can satisfy security requirements

at all layers, achieving holistic security protection.

Specifically, we first describe the rationale of having such a three-layer structure and

how it supports the analysis of the requirements problem in Section 4.1. Next, we propose

a goal-oriented modeling language based on existing techniques (i* and Techne) in Sec-

tion 4.2, which models requirements of STSs based on the proposed three-layer structure.

In Section 4.3, we introduce a systematic process which guides holistic security require-

ments analysis across three layers. The process takes a system’s functional requirements

and high-level security requirements as inputs, iteratively performs security requirements

analysis throughout the three layers in order to generate holistic security solutions. In

52 A Three-Layer Security Requirements Analysis Framework

particular, we have proposed a collection of analysis methods that have been formalized

so as to (semi-)automate each analysis step in the process. After that we discuss several

aspects of the proposed framework in more detail, such as potential and applicability,

in Section 4.4. In the meanwhile, such discussions shed light on the motivation of other

parts of the thesis (i.e., Chapter 5-7). In the end, we compare our three-layer framework

with related work (Section 4.5).

4.1 A Three-Layer Structure for STSs

When dealing with STSs, compared to traditional software systems, there is a plethora

of artifacts that need to be accounted for in order to make the entire system work effec-

tively. In particular, we focus on three important aspects of STSs which have received

much attention from the security community, and structure them into three layers. At

the most abstract level, we consider a social layer that conceptualized in terms of social

actors, social dependencies, and business processes. At the next layer, we consider soft-

ware applications that support the social layer, conceptualized in terms of architectural

components. Finally, we consider an infrastructure layer that focuses on the technolog-

ical and physical infrastructure that supports deployment of software applications and

business processes.

Software
Application

Infrastructure

Business
Process

Si
Ri

World Artifacts

Di

Sa
Ra

Da

Ss
Rs

Ds

Figure 4.1: The requirements problem extended for STSs

Once structuring STSs into the three layers, we argue that each layer involves specific

phenomena, which compose solutions to deal with security requirements of STSs. Thus,

each layer has its own requirements, which are satisfied by layer-specific specifications

under corresponding domain assumptions. We contend that the original requirements

problem, which was described in Fig. 3.1 (Section 3.1), cannot accommodate the require-

A Three-Layer Structure for STSs 53

ments analysis of STSs, as it exclusively focuses on how a machine interacts with the world.

Therefore, we extend the original requirements problem to deal with the requirements prob-

lem of each layer, respectively (as shown in Fig. 4.1). In particular, the Machine in the

original requirements problem has been generalized into Artifacts. Each of these Artifacts

is designed by layer-specific phenomena and satisfies corresponding requirements under

specific domain assumptions in the World. For example, the social-layer requirements

(Rs) are satisfied by business process specifications (Ss) under the social-layer domain as-

sumptions (Ds), i.e., Ss, Ds ` Rs, and other layers have their own requirements problem,

likewise.

Given the three-layer structure, the specifications of one layer determine the require-

ments of lower layers. In particular, as shown in Fig. 4.1, social-layer specifications (Ss)

determine the requirements of software applications (Ra), while application specifications

(Sa) affect the requirements of the infrastructure (Ri) . The semantics of these depen-

dencies is that the achievement of the specification in one layer requires the satisfaction

of requirements in its lower layer. Such dependencies are captured manually, through

which we are able to connect security requirements across layers and analyze them from

a holistic viewpoint.

Social layer
security analysis

Software layer
security analysis

Infrastructure layer
security analysis

Social Goal Model
[Ds, Ss ⊢ Rs]

Security-Enhanced
Social Goal Model

Software Goal Model
[Da, Sa ⊢ Ra]

Infrastructure Goal Model
[Di, Si ⊢ Ri]

Security-Enhanced
Software Goal Model

Stakeholder's high-level
security needs

Holistic security
solutions

Figure 4.2: An overview of the three-layer security requirements analysis framework

The three-layer structure and the extended requirements problem serve as the basis for

holistically dealing with security requirements of STS. As shown in Fig. 4.2, our approach

starts with stakeholder security requirements, and analyzes them across layers with regard

54 A Three-Layer Security Requirements Analysis Framework

to layer-specific goals and specifications, resulting in a set of holistic security solutions

encompassing security issues in all three layers. We will present details of the entire

analysis process in Section 4.3.

4.2 A Three-Layer Requirements Modeling Language

In this section, we propose a three-layer requirements modeling language, which we use

to model requirements of STSs in three layers. We first describe the meta-model of

this language. In particular, we focus on explaining the extended concepts used in this

language. After that, we provide the formal definition of each concept, based on which we

define inference rules that support security analysis (we will describe in the next section).

4.2.1 Conceptual Model

We base our modeling language on i* and Techne, and extend them from two dimensions.

Firstly, we extend goals and tasks in order to model requirements of STSs in three layers.

Secondly, we define security concepts that can be used to model and analyze security

requirements. Fig. 4.3 shows an overview of the meta-model of the proposed language,

where the newly introduced concepts are highlighted with dashed rectangles. For the

original concepts, we reuse their definitions as presented in [Yu, 1997; Jureta et al., 2010],

which have been introduced in Section 3.2. For the new concepts, we describe each of

them in detail below.

Goal

Domain
Assumption

Task

Resrouce
operationalize

Softgoal

refine,
and-refine

Requirement
Element

Security
Goal

Security
Mechanism

contribute

Business
Goal

Actor has

depend

support

Software
Goal

Infrastructure
Goal

Business
Activity

Software
Function

Infrastructure
Deployment

Legend

Extended
Concept

Imported
Concept

operationalize

Figure 4.3: Meta-model of the three-layer security requirements framework

A Three-Layer Requirements Modeling Language 55

Illustrative Example

In a smart grid real-time pricing scenario, the energy supplier collects real-time energy

consumption data and balance loads on the power grid. This scenario presents a typical

STS. Firstly, it includes a business process for price generation. Specifically, the energy

supplier will periodically collect load information about the power grid, and generate

appropriate energy prices accordingly in order to regulate the load of the power grid. On

the other side, the energy consumers will adjust their energy usage based on the real-

time price. Secondly, a number of applications are involved in this scenario to support

the interactive process. In particular, a home energy management system is used by

the energy consumer to communicate with the energy supplier and control the smart

appliances in her apartment. Thirdly, physical devices (e.g., energy management server)

are required to deploy the software applications, and networks need to be appropriately

configured to support communications.

We here use a part of the scenario as an example to illustrate our three-layer framework,

the full details of this scenario will be presented in Section 9.1, where we report the case

study performed based on this scenario. In particular, Fig. 4.4 presents the part of scenario

we use for illustration, which focuses on Energy Supplier and related applications and

infrastructure. This figure shows how requirements of STSs are structured and modeled

in three layers, and will be used for demonstrating relevant concepts of the three-layer

requirements modeling language, as indicated in Fig. 4.3.

Extended Requirement Concepts

As we build goal models for different layers capturing different concerns, we specialize Goal

into layer-specific goals that focus on a particular aspect of stakeholder needs. Specifically,

in the social layer, Business Goals represent a stakeholder’s high-level requirements for

his business. For example, the energy supplier has a business goal about applying real-

time pricing strategy to regulate loads on the power grid (i.e., BG1 in Fig. 4.4). Software

Goals represent stakeholder requirements in respect of software applications that are used

to perform corresponding business activities. For example, the energy control application

needs to implement functions to support price calculation (i.e., AG1 in Fig. 4.4). Infras-

tructure Goals represent stakeholder requirements on technical and physical infrastructure

that supports the execution of software applications. For example, the energy supplier

server needs to set up a channel to enable communications between the energy control

application and the smart meter firmware (i.e., IG2 in Fig. 4.4).

Accordingly, we assign Tasks at different layers with specific operational definitions

reflecting the layer. In particular, a task amounts to a Business Activity in the social layer,

56 A Three-Layer Security Requirements Analysis Framework

Real-time
price is

obtained

Load info is
available

Receive energy
consumption

 data from SM

Customer is
notified about

the price

ES sends price
to customer

Real-time
pricing is
applied

Calculate
price

New price
is available

Measure energy
consumption

D

D

Smart
Meter
(SM)

Energy
Supplier

(ES)

D

Support
calculate

price Price can
be sent to
customer

Communicate
with SMF

 Historical
price is

obtained New price is
generated

Generate
 price

D

D

Energy
Supplier

Database
(ESD)

Energy
Supplier
Server

Application
(ESSA)

Smart
Meter

Firmware
(SMF)

Retrieve
data from
Database

Be able to
communicate

with SM

Send
measurement

requests
to SMF

Receive energy
consumption data

from SMF

Send price info
to HEMS D

D

D

D

Support
communication
between ECA

and SMF
Deploy ESSA

to ESS

Support
ESSA

Connection between
ESS and SMD is

established

Connect ESS to
DCN

Connect PC to
HAN

D
D

Connect HG to
HAND

D

Connect HG to
DCN DD

Connect ESS to
DCN

D
D

Energy
Supplier
Server
(ESS)

Smart
Meter
Device
(SMD)

Home
Area

Network
(HAN)

Home
Gateway

(HG)

Data
Communic

ation
Network
(DCN)

Support
communication
between ECA

and HEMS

Connect ESS to
Internet

Connection
between ESS and
PC is established

BG1

BG2

BG3
BG4

BG5

BT1 BT2
BT3

BT4

AG1

AG2
AG3

AG4

AG5

AT3

AT1

AT2

AT4

AT5

AT6

Send energy
consumption

 data to ESSA

AT7

Send
measurement

requests
to SMF

AT8

IG1

IG2

IG3

IG4

IG5

IT1

PT2

PT3

IT4

IT5 IT6

IT7

Social
Layer

Application
Layer

Infrastructure
Layer

legend

Goal

Task

Resource

and-refine

refine

operationalize

(S)
Security

Goal

Actor

support

D
Dependency

(S)
High Integrity

[energy consumption
 data, interval(BG1)]

SG1

Energy
consumption

data

D

Historical
price data D

Energy
consumption

data
D

Figure 4.4: An excerpt of the three-layer requirements model of the smart grid scenario

A Three-Layer Requirements Modeling Language 57

while in the software layer it is a Software Function, and in the infrastructure layer it is

a Deployment setting. For example, in the social layer, to satisfy the business goal BG1,

a collection of business activities should be performed (e.g., BT1-3), which are captured

as tasks in this layer. Note that when identifying and modeling tasks in the social,

analysts should only focus on layer-specific phenomena, while ignore lower-layer concerns.

In this example, analysts only consider what business activities are required to achieve

the business goal, regardless of whether and how software applications are used within the

activities. The benefits of assigning the operational definitions to tasks at different layers

are twofold. Firstly, the operational definitions can help analysts to distinguish tasks

among layers and determine the granularity of tasks; secondly, tasks with operational

definitions can be connected to concepts within additional design models, such as the tasks

of the social layer correspond to the business process activities of BPMN (Business Process

Modeling Notation). As such, the layer-specific goal models are easy to be transformed

into corresponding design models by using available techniques (e.g., [Pimentel et al.,

2012; Halleux et al., 2008]), facilitating system development in later lifecycle stages. To

simplify the modeling constructs, we use the same notion (ellipse/hexagon) to model

goals/tasks in different layers, the layer-specific meaning of these concepts is implied by

the layer to which they belong.

Apart from the above concepts, two relations are also included in the proposed frame-

work. Operationalize is a relation that relates a goal to a task that operationalizes it

within the same layer. For example, in Fig. 4.4, business goal Customer is notified about

the price (BG5) is operationalized by business activity ES sends price to customer (BT3).

Support is a cross-layer relation, which indicates that a goal in one layer supports a task

in the above layer. Thus, the satisfaction of the task requires the achievement of the

goal, while the achievement of the goal cannot imply the satisfaction of the task. For-

mally speaking, the satisfaction of the goal is a necessary condition for satisfying the task,

which is defined below:

support(G, T) ∧ satisfied(T)→ satisfied(G)

Take business activity BT1 as an example, to execute the activity calculate price, it re-

quires support from Energy Supplier Server Application (ESSA), where the application

goal AG1 must be satisfied. On the other hand, the satisfaction of AG1 is not enough

to guarantee the successful execution of BT1, as it also depends on how Energy Supplier

(ES) use the application to perform the task, i.e., it can also be affected by specific phe-

nomena in the social layer. The support relation is used likewise between the application

layer and the physical layer.

When determining whether a task requires support from the next layer down, analysts

should take into account the layer-specific operational definition of the task. In particular,

58 A Three-Layer Security Requirements Analysis Framework

as a task is a business activity in the social layer, analysts should determine whether the

execution of the activity involves any software applications. If so, a support link should be

added to capture such relation. For example, in Fig. 4.4, as ES intends to send price data

to the customer using the application ESSA, the requirements goal AG5 is introduced

to the application layer which supports the business activity BT3, i.e., the satisfaction of

the task in the business layer requires the satisfaction of the goal in the application layer.

The application will, in turn, refine the goal into more detailed tasks and goals within

the application layer.. At some point in the application layer refinement, tasks, which

are application functions, will require support from the physical hardware that deploys

the software application. As shown in Fig. 4.4, to deal with the modeling scalability

problem, instead of modeling the support link for each task in the application layer from

the infrastructure layer, we graphically model the support link from the lower-layer goal

IG1 to the application agent ESSA. Semantically, that support link indicates that all

the tasks of the application ESSA are supported by the goal IG1. In addition to this

default support link, for each application task, within or out of the ESSA actor, analysts

also need to identify whether the task requires additional support from the infrastructure

layer. For instance, the application task Receive and store energy consumption data from

SMF (AT5) requires the Energy Supplier Server to be connected with SMF, otherwise

this function cannot be correctly executed. This is captured in Fig. 4.4 via the supports

link from IG2 to AT5.

Extended Security Requirement Concepts.

Security goals have been treated as a specialization of softgoal in several goal-oriented

security analysis approaches, such as [Chung, 1993; Oladimeji et al., 2006b; Elahi et al.,

2010]. We follow such paradigm and express more detailed and specific security require-

ments. In particular, we define a security goal as a specialization of softgoal, which

represents stakeholder’s security needs with regard to specific assets and time intervals.

Since security requirements can interact notoriously with system functional require-

ments, we denote security goals with a graphical separation from their functional coun-

terparts, as shown in Fig. 4.4. However, security goals are semantically connected with

the goals/tasks via an Interval attribute (explained below). Each security goal is rep-

resented by a template: <importance><security property>[<asset>, <interval>]. Take

security goal SG1 as an example (Fig. 4.4), High Integrity [energy consumption data,

interval(BG1)] represents the security requirement “protecting integrity of energy con-

sumption data during the execution interval of BG1 to a high degree”. We describe the

four attributes of a security goal in detail as follows:

A Three-Layer Requirements Modeling Language 59

Security

Confidentiality

ISA

Integrity

ISA
Availability

ISA

Data
Confidentiality

ISA Data
Integrity

ISA

Application
Integrity

ISA

Hardware
Integrity

ISA

Application
Availability

ISA
Hardware
Availability

ISA

Service
Integrity

ISA

Service
Availability

ISA

Data
Availability

ISA

Figure 4.5: Hierarchy of security properties

Service Data

Application

Hardware

execute

involve

deploy

Social
 Layer

Software
 Layer

Infrastructure
 Layer

process Data

Datastore

Figure 4.6: Overview of assets

• The Security Property specifies a characteristic of security. In this paper, we exclu-

sively focus on confidentiality, integrity, and availability, which are the three main

dimensions of information security ISO [2012]. In addition, we detail sub-properties

of these three security properties based on the taxonomy defined by Firesmith Fire-

smith [2004], as shown in Fig. 4.5. For example, under the security property integrity,

there are four sub-properties data integrity, service integrity, application integrity,

and hardware integrity. Note that the security properties we consider in our work

constitute a starting point and that can be extended in the future.

• The Asset is anything that has value to an organization, such as data or services.

Fig. 4.6 shows an overview of types of assets accommodated by our framework, as

well as the interrelationships among them. In particular, we consider services as

assets at the social layer; applications that execute services are considered as assets

in the software layer; in the infrastructure layer, we analyze hardware as an asset

which deploys applications. Moreover, data is an asset that is considered in all three

layers.

• The Interval of a security goal indicates the time period when the security goal

applies. Haley et al. have pointed out that “Threats can have a ‘time’ element,

stating that the harm will occur only if the violation occurs before or after some point,

or within some interval” Haley et al. [2004]. We agree that the time dimension does

affect system security requirements analysis. In particular, we specify an interval in

terms of the execution period of a task, i.e., interval(task). Note that a goal can

also be used to represent an interval, which is the execution period of all tasks that

operationalize this goal. In this way, the security goals are implicitly connected with

the system functional requirements.

• The Importance of a security goal indicates the priority of a security goal. Possible

values include {very low, low, medium, high, very high}.

60 A Three-Layer Security Requirements Analysis Framework

A Security Mechanism is a method that operationalizes a security goal. We define the

security mechanism as a specialization of task. The operationalization relation between

security mechanisms and security goals is a many-to-many relation, i.e., one security

mechanisms can satisfy multiple security goals, and one security goal may require more

than one security mechanisms. In our framework, security mechanisms are also applied

in different layers, and become part of the specification of the corresponding layer. For

example, Auditing is a security mechanism which can be applied in the social layer to

ensure the integrity of a business activity, while Input Guard is a software-specific security

mechanism, which checks all inputs of a software application. It is worth noting that we

import the layer-specific security mechanisms from existing security patterns, which will

be presented in the next section.

4.2.2 Formal Definitions

Based on the above explanation of concepts of our modeling language, we present their

formal definitions. In particular, the formal predicates we defined here will be used

for specifying inference rules which (semi-)automate security requirements analysis (in

Section 4.3).

Concepts

• Definition 1. An Actor denotes an entity of an STS, which has goals and should

perform tasks to satisfy those goals. In particular, an actor can be a social agent

(human), a software agent (application), or a physical agent (hardware), formally,

Actor = Human ∪ Application ∪Hardware. We define A = {a1, ..., an} is a set of

Actors. If a ∈ A, we write actor(a).

• Definition 2. A Requirement is an abstract concept which represents stakeholder’s

needs, including goals, softgoals, tasks, resources, and domain assumptions. For-

mally, Requirement = Goal ∪ Softgoal ∪ Task ∪Resource ∪DomainAssumption.

We define RE = {re1, ..., ren} is a set of Requirements. If re ∈ RE, we write

req(re).

• Definition 3. A Goal represent an actor’s desire, which has clear-cut criteria for

its satisfaction. For our three-layer requirements language, a goal can be a business

goal, a software goal, or a infrastructure goal, formally, Goal = BusinessGoal ∪
SoftwareGoal ∪ InfrastructureGoal. We define G = {g1, ..., gn} is a set of Goals.

If g ∈ G, we write goal(g).

A Three-Layer Requirements Modeling Language 61

• Definition 4. A Softgoal is an actor’s desire, which does not have clear-cut crite-

ria for its satisfaction. Usually, a softgoal is used to capture stakeholder’s quality

requirements. We define S = {s1, ..., sn} is a set of Softgoals. If s ∈ S, we write

softgoal(s).

• Definition 5. A Task represents an intention to perform actions, by accomplishing

which an actor can achieve her goals. For our three-layer requirements language, a

task can be an intention to perform business activities, software functions, or infras-

tructure deployments, formally, Task = BusinessActivity ∪ SoftwareFunction ∪
InfrastructureDeployment. We define T = {t1, ..., tn} is a set of Tasks. If t ∈ T ,

we write task(t).

• Definition 6. A Resource is a physical or informational entity that an actor requires

in order to perform a task. We define R = {r1, ..., rn} is a set of Resources. If r ∈ R,

we write resource(r).

• Definition 7. A DomainAssumption is an indicative statement that describes

phenomena that are considered to be unchanged during system development, within

which tasks are performed to achieve the goals. We define DA = {da1, ..., dan} is a

set of DomainAssumptions. If da ∈ DA, we write d assumption(da).

• Definition 8. A SecurityGoal is a specialization of softgoal that focuses on security

concerns, i.e., SecurityGoal ⊂ Softgoal. We define SG = {sg1, ..., sgn} is a set

of SecurityGoals. If sg ∈ SG, we write sec goal(sg). Specifically, we define a

security goal as a four-tuple, which expresses stakeholder’s security needs with regard

to an asset and time interval. ∀sg ∈ SG, sg = (imp, sp, as, int), where imp ∈
Importance, sp ∈ SecurityProperty, as ∈ Asset, int ∈ Interval.

• Definition 9. A SecurityMechanism is a specialization of task which opera-

tionalizes a security goal, i.e., SecurityMechanism ⊂ Task. We define SM =

{sm1, ..., smn} is a set of SecurityMechanisms. If sm ∈ SM , we write sec mechanism(sm).

Relations

• Definition 10. We define REF ⊂ RE×RE is a set of refinement relations. If re1 ∈
RE, re2 ∈ RE, such that re1 can be refined into re2, we write refine(re2, re1) ∈
REF . This relation indicates that requirement re1 can be satisfied as long as re-

quirement re2 is satisfied.

• Definition 11. We define AND REF ⊂ RE × RE is a set of and-refinement

relations. If re1 ∈ RE, . . . , ren ∈ RE, such that re1 can be and-refined into

62 A Three-Layer Security Requirements Analysis Framework

{re2, . . . , ren}, we write and refine(re2, re1), . . . , and refine(ren, re1) ∈ AND REF .

Such relations indicate that requirement re1 can only be satisfied when all its and-

refinements (i.e., requirement re2, . . . , ren) are satisfied.

• Definition 12. We define OPE ⊂ T × G is a set of operationalization relations,

which represent how goals can be achieved by tasks. If t ∈ T, g ∈ G, such that g

can be operationalized as t, we write operationalize(t, g) ∈ OPE. Based on this

relation, goal g can be satisfied as long as task t is satisfied.

• Definition 13. We define SUP ⊂ G×T is a set of support relations, which capture

interactions between tasks in one layer and goals in the next layer down. If g ∈
G, t ∈ T , such that t is supported by g, we write support(t, g) ∈ SUP . Based on

this relation, the satisfaction of g is a necessity condition for the satisfaction of task

t, i.e., satisfied(t)→ satisfied(g)

• Definition 14. We define DEL ⊂ A×R×R×A×R is a set of dependency relations,

which represent interactions among actors. If a1 ∈ A, re1 ∈ RE, re ∈ RE, a2 ∈
A, re2 ∈ RE, such that actor a1’s requirement re1 depends on actor a2’s requirement

re2 for requirement re, we write depend(a1, re1, re, a2, re2). In this case, a1 is a

depender who depends for something to be provided; re1 is the requirement of the

depender, which explains why the dependency exists; re is the dependum, which is

the object of the dependency; a2 is the dependee who should provide the dependum;

re2 is the requirement of the dependee, which explains how the dependee intends

to provide the dependum. It is worth noting that both the depender’s requirement

and the dependee’s requirement can be omitted in a dependency relation, which is

in line with the strategic dependency diagram of i*.

• Definition 15. We define CON ⊂ RE×V alue×S is a set of contribution relations,

which represent the influences of requirement elements on softgoals. If re ∈ RE, v ∈
V alue, s ∈ S, such that re contributes to the satisfaction of s to the extent of

v, we write contribute(re, v, s) ∈ CON . In particular, we consider four types of

contributions links, each of which represents a particular extent of contributions,

V alue = {Make,Help,Hurt, Break}.

• Definition 16. We define HAS ⊂ A×RE is a set of has relations, which associate

an actor with her requirements. If a ∈ A, re ∈ RE, such that actor a requires

requirement re, we write has(a, re) ∈ HAS.

Table 4.1 summaries the predicates of all the concepts and relations we have defined

above. Such predicates are used for specifying formal inference rules which support our

security requirements analysis. More details will be presented in the next section.

A Three-Layer Requirements Modeling Language 63

Table 4.1: Formal predicates of the three-layer requirements modeling language

Concepts

actor(Actor : a)

req(Requirement : re)

goal(Goal : g)

softgoal(Softgoal : s)

task(Task : t)

resource(Resource : r)

d assumption(DomainAssumption : da)

sec goal(SecurityGoal : sg)

sec mechanism(SecurityMechanism : sm)

Relations

refine(Requirement : re2, Requirement : re2)

and refine(Requirement : re2, Requirement : re2)

operationalize(Task : t, Goal : g)

support(Goal : g, Task : t)

depend(Actor : a1, Requirement : re1, Requirement : re,Actor : a2, Requirement : re2)

contribute(Requirement : re, V alue : v, Softgoal : s)

has(Actor : a,Requirement : re)

Apart from the above three-layer requirements constructs, a number of related concepts

and relations will also be used in defining inference rules, which are shown in Table 4.2.

Specifically, the concepts data, service, application, and hardware represent four types

of assets, as shown in Fig. 4.6. The concept threat specifies a threat to systems, which is

used for determining critical security goals. We will describe how to discover threats in

detail in Chapter 5.

For the relations in Fig. 4.6, sg attributes shows all the detailed attributes of a security

goal, such as importance, concerned security properties, etc. The predicate interval of

associates a task with corresponding time interval during which the task is performed.

The predicate is a describes a specialization relation between two entities. The predicate

part of describes the part-of relation between two assets. The predicates has input and

has output present the data flow information of a task. The unary predicates is applicable

and is critical are assertions on security goals. Finally, th attributes details the attributes

of a threat, while threaten presents a security goals is threatened by a threat.

64 A Three-Layer Security Requirements Analysis Framework

Table 4.2: Formal predicates for related constructs

Concepts

data(Data : d)

service(Service : se)

application(Application : app)

hardware(Hardware : hd)

threat(Threat : TH)

Relations

sg attributes(SecurityGoal : sg, Importance : imp, SecurityProperty : sp,Asset : as, Interval : int)

interval of(Requirement : re)

is a(Entity : e1, Entity : e2)

part of(Asset : as1, Asset : as2)

has input(Task : t,Data : d)

has output(Task : t,Data : d)

is applicable(SecurityGoal : sg)

is critical(SecurityGoal : sg)

th attributes(Threat : th, ThreatType : ty, Asset : as, Interval : int)

threaten(Threat : th, SecurityGoal : sg)

4.3 A Holistic Security Requirements Analysis Process

In this section, we propose a systematic process and a set of security requirements analysis

methods to guide security analysis both within one and across layers. Fig. 4.7 shows an

overview of the analysis process, which starts from security requirements analysis at the

social layer and follows to analyze security requirements at the software layer and the

infrastructure layer, respectively. Specifically, within each layer, we refine and concretize

security goals to identify possible operationalizations in terms of security mechanisms.

Cross-layer analysis aims to propagate the security concerns from one layer to the next

layer down. After security analysis has been performed for all layers, we will obtain a

holistic security goal model, based on which we can obtain a collection of textual alter-

native security solutions that are the final output of our approach. A set of inference

rules is defined to (semi-)automates the security analysis, which has been implemented

in Disjunctive Datalog [Eiter et al., 1997]. All such rules can be automatically inferred

by our prototype tool, which will be introduced in Chapter 8. In the remainder of this

section, we will go through each analysis step and explain corresponding security analysis

methods we have proposed.

A Holistic Security Requirements Analysis Process 65

Legend

User
Task

Computer-
aided Task

Sequence Flow

Data
Object

Data Flow

Single-Layer Security Analysis

Refine
security goals
(Sect.4.3.1)

Simplify
security goals
(Sect.4.3.2)

Operationalize
security goals
(Sect.4.3.3)

Transfer security
concerns across layers

(Sect.4.3.4)

Reference
models

Data flow

Security
patterns

Detailed
security goals

Three-layer
requirements models

Critical
security goals

Obtain global
security solutions

(Sect.4.3.5)

Holistic
security
solutions

Figure 4.7: An overview of the three-layer security requirements analysis process

4.3.1 Security Goal Refinement

Having stakeholder’s initial security needs as input, analysts should iteratively refine them

into more concrete counterparts in order to capture more precise needs of stakeholders and

eventually operationalize such needs. Our framework supports three refinement methods,

which operate on the three attributes of security goals, respectively. The refinement

methods have been formalized as inference rules to better support analysis, as shown in

Table 4.3.

Fig. 4.8 presents a series of examples of security goal refinements based on security

goal High Integrity [energy consumption data, interval(BG1)] (Fig. 4.4), involving all three

refinement methods. The type of each refinement is explicitly annotated in the figure,

and the reference models that are used for corresponding refinements are presented in the

left part of the figure. Using this example, we explain the three refinements methods and

their corresponding inference rules (Table 4.3) in detail below.

It is worth noting that Table 4.3 specifies the formal semantics of the proposed inference

rules, but does not show the exact implementation in Disjuctive Datalog. This is because

Disjuctive Datalog has a couple of restrictions on the representation of rules, and thus not

all the proposed inference rules can be directly implemented. For example, it does not

allow disjunction expressions in the body part of a rule. Instead, we create an individual

66 A Three-Layer Security Requirements Analysis Framework

rule for each of those disjunctive expressions. Therefore, showing all such specific rules

may introduce extra difficulties for understanding the overall semantics of our rules.

Table 4.3: Inference rules for refinement methods

No. Content

REF.P #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, SP2, AS, INT) ∧ and refine(SG2, SG1)

← is a(SP2, SP1) ∧ sg attributes(SG1, IMP, SP1, AS, INT)

REF.A #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, SP,AS2, INT) ∧ and refine(SG2, SG1)

← part of(AS2, AS1) ∧ sg attributes(SG1, IMP, SP,AS1, INT)

REF.I.1 #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, SP,AS, INT2) ∧ and refine(SG2, SG1)

← interval of(INT1, G1) ∧ interval of(INT2, G2)

∧and refine(G2, G1) ∧ sg attributes(SG1, IMP, SP,AS, INT1)

REF.I.2 #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, SP,AS, INT2) ∧ refine(SG2, SG1)

← interval of(INT1, G1) ∧ interval of(INT2, G2)

∧refine(G2, G1) ∧ sg attributes(SG1, IMP, SP,AS, INT1)

REF.I.3 #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, SP,AS, INT2) ∧ refine(SG2, SG1)

← interval of(INT1, G) ∧ interval of(INT2, T)

∧operationalize(T,G) ∧ sg attributes(SG1, IMP, SP,AS, INT1)

Security property-based refinement. Refining security goals via security properties

helps the security analysis to cover all possible aspects of security. The rule REF.P means:

if the security property SP2 is a specialization of the security property SP1 (according

to the hierarchy of security properties shown in Fig. 4.5), then the security goal SG1 that

concerns the security property SP1 will be and-refined into a sub security goal SG2, which

concerns SP2 and inherits all other attributes from SG1. For example, in Fig. 4.8, security

goal SG1 that concerns security property Integrity is refined into four sub-security goals

by applying rule REF.P. In particular, in accordance with the reference model Fig. 4.8-a,

the derived security goal SG2, SG3, SG4, SG5 concern security properties Application

Integrity, Data Integrity, Service Integrity, Hardware Integrity, respectively.

Asset-based refinement. Refinements of security goals can also be done by refining

assets according to the corresponding part-of relations. Thus, a security goal can be

and-refined to sub-security goals, each of which concerns part of the asset of the original

security goal and remains other attributes unchanged (i.e., rule REF.A). Note that the

part-of here stands for an abstract relation, which can apply to various objects, such as

A Holistic Security Requirements Analysis Process 67

data schema, software architecture etc. As shown in Fig. 4.8, security goal SG3 that

concerns asset Energy consumption data is refined by applying the rule REF.A according

to the part-of relations (shown in the reference model Fig. 4.8-b). Thus, the derived secu-

rity goals SG6, SG7 concern assets Water consumption data and Electricity consumption

data, respectively.

Reference Models
Integrity

Data
Integrity

ISAApplication
Integrity

ISA

Hardware
Integrity

ISA

Service
Integrity

ISA

Energy
consumption

data

Water
consumption

data

part-of
Electricity

consumption
data

part-of

(S)
High Data Integrity

[electricity consumption
data, interval(BG2)]

Real-time
price is

obtained

Load info
is available

Customer is
notified about

the price

Real-time
pricing is
applied

New price
is available

BG1

BG2

BG3 BG4

BG5

Property-based

Asset-based

Interval-based

Interval-based
Interval-based

Interval-based

(S)
High Integrity

[energy consumption
 data, interval(BG1)]

SG1

(S)
High Application Integrity

[energy consumption
 data, interval(BG1)]

SG2

(S)
High Data Integrity

[energy consumption
 data, interval(BG1)]

SG3
(S)

High Service Integrity
[energy consumption
 data, interval(BG1)]

SG4

(S)
High Hardware Integrity

[energy consumption
 data, interval(BG1)]

SG5

(S)
High Data Integrity
[water consumption
data, interval(BG1)]

SG6
(S)

High Data Integrity
[electricity consumption

data, interval(BG1)]

SG7

(S)
High Data Integrity
[water consumption
data, interval(BG2)]

SG8 (S)
High Data Integrity
[water consumption
data, interval(BG5)]

SG9

SG10

(a)

(b)

(c)

(S)
High Data

Integrity [electricity
consumption

data, interval(BG5)]

SG10

(S)
High Data Integrity
[water consumption
data, interval(BG3)]

SG11 (S)
High Data Integrity
[water consumption
data, interval(BG4)]

SG12

(S)
High Data Integrity
[water consumption
data, interval(BG3)]

SG13 (S)
High Data Integrity
[water consumption
data, interval(BG4)]

SG14

Figure 4.8: Security goals refinements

Interval-based refinement. Since an interval specifies the temporal period for which

a security goal is concerned, a security analyst can put more detailed constraints on a

particular time interval by refining a long interval into short ones. As we use the execution

period of requirement goals/tasks to specify intervals, the interval-based security goal

refinements are carried out based on the structure of the system requirements model.

Specifically, the rules REF.I.1 and REF.I.2 say if interval INT1 of security goal SG1

can be (and-)refined into INT2, then we can obtain a new security goal SG2 which

(and-)refines SG1 via its interval. Rule REF.I.3 has similar meaning but focuses on the

68 A Three-Layer Security Requirements Analysis Framework

high data integrity
[water consumption

data, ES has the
realtime load info]

high data integrity
[water consumption
data, Sends energy
consumption data to

ES]

high data integrity
[water consumption

data, Measure
energy

consumption]

high data integrity
[water

consumption data,
Support smart

gird]

high data integrity
[water consumption
data, Realtime load

info is available]

high data integrity
[water consumption
data, New price is

available]

high data integrity
[water

consumption data,
Calculate price]

high data integrity
[water consumption

data, ES sends
price to customer]

high data integrity
[water consumption
data, Customer is
notified about the

price]

high data integrity
[water consumption

data, Receive energy
consumption data

from SM]

high data integrity
[water consumption
data, Load info is

available]

high data integrity
[water consumption

data, Realtime
pricing is applied]

high data integrity
[water consumption

data, Realtime
price is obtained]

high data integrity
[energy

consumption data,
ES has the realtime

load info]

high data integrity
[energy consumption
data, Sends energy
consumption data to

ES]

high data integrity
[electronic

consumption data,
ES has the realtime

load info]

high data integrity
[electronic

consumption data,
Sends energy

consumption data to
ES]

high data integrity
[energy

consumption data,
Support smart gird]

high data integrity
[energy

consumption data,
Measure energy

consumption]

high data integrity
[electronic

consumption data,
Measure energy

consumption]

high data integrity
[energy

consumption data,
Realtime load info is

available]

high data integrity
[electronic

consumption data,
Support smart gird]

high data integrity
[electronic

consumption data,
Realtime load info is

available]

high data integrity
[energy

consumption data,
New price is

available]

high data integrity
[energy

consumption data,
Calculate price]

high data integrity
[electronic

consumption data,
New price is

available]

high data integrity
[electronic

consumption data,
Calculate price]

high data integrity
[energy

consumption data,
Realtime pricing is

applied]

high data integrity
[energy

consumption data,
ES sends price to

customer]

high data integrity
[electronic

consumption data,
ES sends price to

customer]

high data integrity
[energy consumption

data, Customer is
notified about the

price]

high data integrity
[electronic

consumption data,
Customer is notified

about the price]

high data integrity
[energy consumption
data, Receive energy

consumption data
from SM]

high data integrity
[electronic

consumption data,
Receive energy

consumption data
from SM]

high data integrity
[energy

consumption data,
Load info is
available]

high data integrity
[electronic

consumption data,
Load info is
available]

high data integrity
[energy

consumption data,
Realtime price is

obtained]

high data integrity
[electronic

consumption data,
Realtime pricing is

applied]

high data integrity
[electronic

consumption data,
Realtime price is

obtained]

high service integrity
[water consumption

data, ES has the
realtime load info]

high service integrity
[water consumption
data, Sends energy
consumption data to

ES]

high service
integrity [water

consumption data,
Measure energy

consumption]

high service
integrity [water

consumption data,
Support smart gird]

high service integrity
[water consumption
data, Realtime load

info is available]

high service
integrity [water

consumption data,
New price is

available]

high service
integrity [water

consumption data,
Calculate price]

high service
integrity [water

consumption data,
ES sends price to

customer]

high service integrity
[water consumption
data, Customer is
notified about the

price]

high service integrity
[water consumption

data, Receive energy
consumption data

from SM]

high service
integrity [water

consumption data,
Load info is
available]

high service
integrity [water

consumption data,
Realtime pricing is

applied]

high service
integrity [water

consumption data,
Realtime price is

obtained]

high service integrity
[energy

consumption data,
ES has the realtime

load info]

high service integrity
[energy consumption
data, Sends energy
consumption data to

ES]

high service integrity
[electronic

consumption data,
ES has the realtime

load info]

high service integrity
[electronic

consumption data,
Sends energy

consumption data to
ES]

high service
integrity [energy

consumption data,
Support smart gird]

high service
integrity [energy

consumption data,
Measure energy

consumption]

high service integrity
[electronic

consumption data,
Measure energy

consumption]

high service integrity
[energy consumption
data, Realtime load

info is available]

high service
integrity [electronic
consumption data,
Support smart gird]

high service integrity
[electronic

consumption data,
Realtime load info is

available]

high service
integrity [energy

consumption data,
New price is

available]

high service
integrity [energy

consumption data,
Calculate price]

high service
integrity [electronic
consumption data,

New price is
available]

high service
integrity [electronic
consumption data,

Calculate price]

high service integrity
[energy

consumption data,
Realtime pricing is

applied]

high service integrity
[energy

consumption data,
ES sends price to

customer]

high service integrity
[electronic

consumption data,
ES sends price to

customer]

high service integrity
[energy consumption

data, Customer is
notified about the

price]

high service integrity
[electronic

consumption data,
Customer is notified

about the price]

high service integrity
[energy consumption
data, Receive energy

consumption data
from SM]

high service integrity
[electronic

consumption data,
Receive energy

consumption data
from SM]

high service
integrity [energy

consumption data,
Load info is
available]

high service
integrity [electronic
consumption data,

Load info is
available]

high service
integrity [energy

consumption data,
Realtime price is

obtained]

high service integrity
[electronic

consumption data,
Realtime pricing is

applied]

high service integrity
[electronic

consumption data,
Realtime price is

obtained]

high integrity [water
consumption data,
ES has the realtime

load info]

high integrity [water
consumption data,

Sends energy
consumption data to

ES]

high integrity
[water

consumption data,
Measure energy

consumption]

high integrity
[water

consumption data,
Support smart

gird]

high integrity [water
consumption data,
Realtime load info

is available]

high integrity
[water

consumption data,
New price is

available]

high integrity
[water

consumption data,
Calculate price]

high integrity [water
consumption data,
ES sends price to

customer]

high integrity [water
consumption data,

Customer is notified
about the price]

high integrity [water
consumption data,

Receive energy
consumption data

from SM]

high integrity
[water

consumption data,
Load info is
available]

high integrity [water
consumption data,
Realtime pricing is

applied]

high integrity
[water

consumption data,
Realtime price is

obtained]

high integrity
[energy

consumption data,
ES has the realtime

load info]

high integrity
[energy

consumption data,
Sends energy

consumption data to
ES]

high integrity
[electronic

consumption data,
ES has the realtime

load info]

high integrity
[electronic

consumption data,
Sends energy

consumption data to
ES]

high integrity
[energy

consumption data,
Support smart

gird]

high integrity
[energy

consumption data,
Measure energy

consumption]

high integrity
[electronic

consumption data,
Measure energy

consumption]

high integrity
[energy

consumption data,
Realtime load info

is available]

high integrity
[electronic

consumption data,
Support smart

gird]

high integrity
[electronic

consumption data,
Realtime load info is

available]

high integrity
[energy

consumption data,
New price is

available]

high integrity
[energy

consumption data,
Calculate price]

high integrity
[electronic

consumption data,
New price is

available]

high integrity
[electronic

consumption data,
Calculate price]

high integrity
[energy

consumption data,
Realtime pricing is

applied]

high integrity
[energy

consumption data,
ES sends price to

customer]

high integrity
[electronic

consumption data,
ES sends price to

customer]

high integrity
[energy

consumption data,
Customer is notified

about the price]

high integrity
[electronic

consumption data,
Customer is notified

about the price]

high integrity [energy
consumption data,

Receive energy
consumption data

from SM]

high integrity
[electronic

consumption data,
Receive energy

consumption data
from SM]

high integrity
[energy

consumption data,
Load info is
available]

high integrity
[electronic

consumption data,
Load info is
available]

high integrity
[energy

consumption data,
Realtime price is

obtained]

high integrity
[electronic

consumption data,
Realtime pricing is

applied]

high integrity
[electronic

consumption data,
Realtime price is

obtained]

I A

I A

I A

IA

IA

A

IA

IA

I A

I A

I A

IA

IA

I

I

I

I

I

I

I

I

I

I

I

I

AI

AI

AI

A I

A I

A

AI

AI

AI

AI

AI

AI

AI

SI A

SI A

SI A

S IA

S IA

SA

S IA

S IA

SI A

SI A

SI A

SIA

S IA

SI

SI

SI

S I

S I

S

SI

S I

SI

SI

SI

SI

S I

S AI

S AI

S AI

S A I

S A I

S A

S AI

S AI

S AI

S AI

S AI

S AI

S AI

SI A

SI A

SI A

S IA

S IA

SA

SIA

SIA

SI A

SI A

SI A

SIA

SIA

SI

SI

SI

S I

S I

S

SI

SI

SI

SI

SI

SI

S I

S AI

S AI

S AI

S A I

S A I

S A

S AI

S AI

S AI

S AI

S AI

S AI

S AI

Figure 4.9: Exhaustive refinements for the root security goal

operationalization relation. As shown in Fig. 4.8, the security goals SG6 and SG7 have

been and-refined via the interval attribute according to the reference model (Fig. 4.8-c).

Refinement strategies. Note that a refinement process can be flexible in the sense

that different refinement methods can be applied in any sequence and to any extent.

In particular, there are two strategies for refining security goals. Firstly, a step-by-step

refinement strategy. After each time of security goal refinement, analysts should check

with stakeholders whether all the refined security goals are needed. If a refined security

goal is not required by stakeholders, analysts must exclude it from subsequent refinement.

In such a way, analysts are able to capture stakeholder’s precise security needs which

normally cannot be easily expressed during the initial stages of security analysis. Pruning

uninteresting goals allows analysts to reduce the refinement space. With the support of

our prototype tool (Chapter 8), once analysts choose a refinement dimension for a selected

security goal, the tool can automatically perform the refinement analysis and graphically

create sub-security goals. For example, the security goal model that is shown on the

right side of Fig. 4.8 is derived from a step-by-step refinement analysis, representing one

possible way to refine the root security goal SG1.

Secondly, an exhaustive refinement strategy, which is intended to explore all the pos-

sible refinements of one security goal. Such refinement can be automated by using the

prototype tool. For example, considering the same root security goal SG1 and correspond-

ing reference models in Fig. 4.8, we have created an exhaustive refinement model to show

all the possible refinement paths, which contains 117 security goals and 264 refinement

links in total (Fig. 4.9). This strategy contributes to the completeness of analysis, but

the exhaustive refinements will result in many redundant security goals and complicate

the subsequent analysis. Some form of pruning is necessary to manage such complexity.

Considering the advantages and disadvantages of these two strategies, we propose to

adopt a hybrid strategy to refine security goals. In particular, analysts should first apply

the step-by-step strategy to identify stakeholder’s exact security needs, and then perform

A Holistic Security Requirements Analysis Process 69

exhaustive refinement to explore all security goal refinements.

4.3.2 Security Goal Simplification

To release analysts from scrutinizing all the detailed security goals, we define simplification

methods to identify critical security goals that need to be further analyzed, allowing us

to exclude others. In particular, we perform applicability analysis and threat analysis to

determine the criticality of security goals, which will be introduced in detail, respectively.

Based on the results of the two types of analysis, we then present how to determine the

criticality of a security goal, finishing the simplification analysis.

Applicability analysis. By saying that a security goal is applicable, we mean it is sen-

sible with regard to the meaning of its attributes (security property, asset etc.), otherwise

it is inapplicable. To determine the applicability of security goals, firstly, we consider

whether the security property is applicable to the type of asset. For example, if a security

goal aims to protect the Application Integrity of a Data asset, then it is inapplicable.

Secondly, we check the data-related security property (e.g, Data Integrity) based on the

involvement of the data during the target interval. For example, if a security goal concerns

the Data Integrity of a data asset during a specific time interval, but the data is actually

not involved in that time interval, then the security goal is inapplicable. To accommodate

this analysis, we specify data flow information for each task, i.e., the input and output of

each task.

On the basis of the above rationales, we have proposed five inference rules to facilitate

the applicability analysis, which are shown in Table 4.4. Take rule APP.1 as an example:

given a security goal SG, which considers data-related security properties for an asset

AS during the execution interval of a task T, if the asset is a data asset and it is an

input/output of the task T, then this security goal is determined as applicable. According

to these rules, in Fig. 4.8, security goal High Data Integrity [water consumption data, new

price is available (BG3)] is inapplicable, because the asset water consumption data is not

involved in the execution period of BG3.

Threat analysis. For each applicable security goal, we identify threats that impair the

satisfaction of the goal, which helps us to determine its criticality. To this end, we need

to either incorporate existing threat analysis approaches (e.g., [Sindre and Opdahl, 2005;

Asnar et al., 2011b]), or import threat knowledge about the target system from existing

reports, if available. Regarding this need, in our subsequent research, we have proposed

a systematic security attack analysis approach which can holistically identify attacks on

70 A Three-Layer Security Requirements Analysis Framework

Table 4.4: Inference rules of applicability analysis

No. Content

APP.1 is applicable(SG)← (sg attributes(SG, , data confidentiality, AS, INT)

∨sg attributes(SG, , data integrity,AS, INT)

∨sg attributes(SG, , data availability, AS, INT))

∧interval of(INT, T) ∧ data(AS)

∧(has input(T,AS) ∨ has output(T,AS))

APP.2 is applicable(SG)← service(AS) ∧ (sg attributes(SG, , service integrity,AS,)

∨sg attributes(SG, , service availability, AS,))

APP.3 is applicable(SG)← application(AS)∧(sg attributes(SG, , application integrity,AS,)

∨sg attributes(SG, , application availability, AS,))

APP.4 is applicable(SG)← hardware(AS)∧(sg attributes(SG, , hardware integrity,AS,)

∨sg attributes(SG, , hardware availability, AS,))

STSs (detailed in Chapter 5). We will explain the rationale of having this holistic attack

analysis approach in Section 4.4.

Each identified threat is specified with name, type, threatened asset, and threatened

interval, based on which we can automatically identify security goals that are threatened

by the threat. Note that we specify the threat type using the STRIDE threat categories,

as each of these categories is matched to a particular type of security property [Hernan

et al., 2006], e.g., the threat type Tampering is mapped to the security property In-

tegrity. We have defined a series of rules TH.1-3 to automate such threat analysis. For

example, as specified in TH.1, if a security goal SG concerns a security property SP

which is a type of confidentiality, and there is a threat TH that belongs to the type of

information disclosure and targets the same asset AS and interval INT of SG, then we

identify that TH threatens SG.

Simplification analysis. The applicability analysis and the threat analysis can be au-

tomated by our prototype tool. Based on the analysis results, we determine whether or

not a security goal is critical: 1) if a security goal is applicable and is threatened by

certain threats, then it is a critical security goal; 2) if a security goal is applicable but

has not been associated with any threats, then the analyst needs to manually determine

the criticality of the security goal. Note that in the second case, for analysts with lit-

tle security knowledge, a conservative solution is to treat all applicable security goals as

critical, which ensure the completeness of the analysis but will increase the complexity of

A Holistic Security Requirements Analysis Process 71

Table 4.5: Inference rules of threat analysis

No. Content

TH.1 threaten(TH, SG)← sg attributes(SG, , SP,AS, INT) ∧ is a(SP, confidentiality)

∧th attributes(TH, information disclosure,AS, INT)

TH.2 threaten(TH, SG)← sg attributes(SG, , SP,AS, INT) ∧ is a(SP, integrity)

∧th attributes(TH, tampering,AS, INT)

TH.3 threaten(TH, SG)← sg attributes(SG, , SP,AS, INT) ∧ is a(SP, availability)

∧th attributes(TH, denial of service,AS, INT)

subsequent analysis.

As with two strategies for security goal refinements, the simplification analysis can

also be applied in two ways. Firstly, analysts can apply the simplification analysis to-

gether with the step-by-step security goal refinements, which helps to determine whether

a security goal needs to be further refined. In particular, if a refined security goal is not

applicable, then it will be excluded from subsequent refinements. Moreover, if a refined

security goal is identified as critical, then it does not need to be further refined and will

be analyzed for operationalization in the next step of analysis. For a refined security

goal which is applicable but not critical, analysts can keep refining it to further evaluate

its refinements; if this goal cannot be refined anymore, then analysts have to manually

determine whether it is critical.

Secondly, analysts can apply such analysis to all the exhaustively refined security goals

with the help of the prototype tool. For example, by applying the simplification analysis

to the the aforementioned exhaustively refined security goal model, which contains 117

security goals and 264 refinement links, we identify two critical security goals (i.e., both

applicable and threatened) and seven applicable security goals (that have not been threat-

ened). Although this analysis helps to quickly identify critical security goals, the analysts

need to manually evaluate all other applicable security goals in order to determine their

criticality, which is non-trivial task. Note that since we have proposed to adopt a hybrid

refinement strategy, the simplification analysis should be performed accordingly.

4.3.3 Security Goal Operationalization

For each identified critical security goal, we propose operationalization methods to gen-

erate possible security mechanisms that can satisfy the critical security goal. In partic-

ular, we leverage existing security patterns to help analysts with few security knowledge

to operationalize security goals. The security patterns are taken from existing pattern

72 A Three-Layer Security Requirements Analysis Framework

Input
Guard

Data
Confidentiality

Data
Integrity

Application
Integrity

Server
sandbox

Replicated
System

Application
Availability

Access
Control

Service
Integrity

Auditing

Hardware
Availability

Hardware
Integrity

Physical
Entry Control

Equipment siting
and protection

Supporting
Utility

Full View
with Errors

Limited
View

Service
Availability

Alternative
service

Load
Balancer

Data
Confidentiality

Data
Integrity

Secure
Access
Layer

Firewall

Data
Confidentiality

Data
Integrity

Certification
authority

Separation
of Duty

Client
Checking

Cabling
security

Social
 Layer

Software
 Layer

Infrastructure
 Layer

Data
Availability

Data
Availability

Data
Availability

Supervision
Relation

Secure
Pipe

Storage
Encryption

Legend

Protect

Security
Property

Security
Pattern

Figure 4.10: Selected security patterns in three layers

repositories [Asnar et al., 2011a; Scandariato et al., 2008; Fernandez et al., 2007b], each

of which fits a particular layer in our framework. Fig. 4.10 shows the selected security

patterns we used in three layers, as well as the corresponding security properties achieved

by those patterns. As indicated by Fig. 4.10, one pattern can be applied to multiple

security goals and one security goal can have multiple patterns. In total, we include 21

security patterns in our framework thus far, where 7 patterns are at the social layer, 10

patterns are at the software layer, and 4 patterns are at the infrastructure layer. Note

that the selection of security patterns is not intended to be exhaustive, and can evolve

and expand over time.

To operationalize a security goal, we first identify all candidate security patterns based

on the protected security property of the pattern. For example, as shown in Fig. 4.11, two

critical security goals SG2 and SG3 concern security property data integrity, according

to which two candidate security patterns are identified for each security goal (reference to

Fig. 4.10). This analysis can be automated by our prototype tool. Having the candidate

security patterns, analysts then need to manually check the applicability of such patterns.

In particular, the analysts should check the target system and environment against the

context and forces of the candidate patterns, and then determine which pattern to apply.

A Holistic Security Requirements Analysis Process 73

(S)
high data integrity

[energy consumption
data, interval(measure
energy consumption)]

(S)
high data integrity

[energy consumption
data, interval(sends
energy consumption

data to es)]

(S)
High Integrity

[energy consumption data,
interval(Realtime pricing

is applied)]

……

(S)
Auditing

(S)
Auditing

(S)
Access
Control

(S)
Access
ControlX X X

SG1

SG2 SG3

Figure 4.11: An example of the operationalization of critical security goals

In our example (Fig. 4.11), we have determined that Auditing is applicable to achieve

security goal SG2, while others are inapplicable (indicated by red crosses). Note that if a

security goal cannot be operationalized in one layer using layer-specific security patterns,

there may be two possible reasons. Firstly, potential threats to the security goal may

not exist in the current layer, and thus the security goal will be further elaborated and

analyzed in lower layers, which will be shown in the next subsection. Secondly, the selected

security patterns (shown in Fig. 4.10) may not be sufficient to satisfy the security goal,

indicating our current set of patterns is not complete. We will further discuss completeness

in Section 4.4.

It is worth noting that, in our subsequent research, we have proposed a systematic

and tool-supported approach in Chapter 6-7 in order to facilitate the practical application

of security patterns. We will further discuss the rationale of that piece of research in

Section 4.4.

4.3.4 Cross-Layer Security Analysis

After finishing the security analysis within one layer, we switch the focus of our security

analysis to the next layer down, i.e., generating a set of security goals at the next layer

based on the analysis results of this layer. Then, a new round of security analysis will

be performed for the next layer using the newly available information there, as indicated

in Fig. 4.7. In particular, the cross-layer analysis focuses on analyzing the influences of

applied security mechanisms and critical security goals in one layer.

Influences of applied security mechanism When a security goal has been operational-

ized into a specific security mechanism in one layer, the analyst first needs to manually

74 A Three-Layer Security Requirements Analysis Framework

Table 4.6: Inference rules of cross-layer analysis

No. Content

CRO.1 #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, security, A, INT)

∧support(SG2, SM)← operationalize(SM,SG1) ∧ sg importance(SG1, IMP)

∧support(G,SM) ∧ has(A,G) ∧ interval of(INT,G)

CRO.2 #create(sec goal(SG2)) ∧ sg attributes(SG2, IMP, SP,AS, INT2)

∧#create(sec goal(SG3)) ∧ sg attributes(SG3, IMP, security, A, INT2)

∧and refine(SG2, SG1) ∧ and refine(SG3, SG1)← interval of(INT1, T)

∧sg attributes(SG1, IMP, SP,AS, INT1) ∧ support(G,T)

∧has(A,G) ∧ interval of(INT2, G)

check whether this security mechanism needs support from the lower-layer artifacts based

on the specification of the security mechanism. If so, the security mechanism, as a spe-

cialization of Task, will introduce a functional requirement in the next layer down. Such

support analysis is performed based on the instructions we have described in Section 4.2.1.

As shown in the left part of Fig. 4.12, in the illustrating example, the applied security

mechanism Auditing is determined to be implemented by an Auditing Application in the

software layer. Thus, a new software goal Measurement is audited (G1) is introduced to

the application correspondingly.

When it comes to cross-layer analysis, a security mechanism is different from a general

task for its satisfaction; it requires not only functional support but also security support

from the next layer down for its satisfaction. Otherwise, the security mechanism can be

impaired and thus fails to protect the system. As such, given the functional support we

have identified above, our analysis will also cover security support, introducing a security

goal refinement, possibly within another layer, to protect corresponding artifacts. As

illustrated in Fig. 4.12, security goal SG2 is introduced into the software layer in order to

ensure the Security of the Auditing Application. Thus, SG2, together with G1, supports

security mechanism SM1 in the social layer. The inference rule CRO.1 (in Table. 4.6)

has been defined to automate this analysis.

Note that the above analysis should be performed for all security mechanisms that

operationalize security goals. If a security goal is operationalized into several alternative

security mechanisms, all of them need to be analyzed. Thus, we are able to holistically

analyze alternative security solutions once the security analysis has been performed in all

layers.

A Holistic Security Requirements Analysis Process 75

(S)
Auditing

(S)
High Data Integrity

[Energy consumption
 data, Measure energy

consumption]

Social
 Layer

Software
 Layer

Measurement
is audited

(S)
High Security

[Auditing application,
interval(G1)]

Auditing
Application

Legend

Goal

(S)
Security goal

support

operationalize

(S)
Security

Mechanism

and-support

(S)
Critical

security goal

SG1

SM1

SG2
G1

Figure 4.12: Security mechanisms cross-

layer analysis

Smart
Meter

Smart
Meter

Firmware
(SMF)

(S)
High Security

[SMF, interval(G1)](S)
High data integrity

[energy consumption
data, interval(G1)]

Social
 Layer

Software
 Layer

Sends energy
consumption data

to ES

Be able to send
messages to ES

(S)
high data integrity

[energy consumption
data, interval(T1)]

SG1

T1

SG3

SG2
G1

Figure 4.13: Cross-layer security analysis for se-

curity goals

Influences of critical security goals For each critical security goal that has been iden-

tified in one layer, we check whether it involves security issues in the lower layer. If

a critical security goal concerns an interval which involves support from the next layer

down, then we further elaborate the critical security goal to cover corresponding secu-

rity issues. Firstly, we want to analyze layer-specific threats to the original asset in next

layer; secondly, we need to take into account security of the supporting artifacts in the

next layer (e.g., software applications and hardware devices), as attackers can indirectly

impair the original asset by exploiting vulnerabilities of the supporting artifacts. For

example, as shown in Fig. 4.13, SG1 is concerned during the execution interval of T1,

which is supported by software goal G1 owned by Smart Meter Firmware (SMF). Thus,

SG1 is and-refined to SG2 and SG3 : SG2 concerns the same asset and security property

of SG1 but focuses on the execution interval of G1, while SG3 concerns security of SMF.

We have defined rule CRO.2 which can be used to automate such analysis.

Once this cross-layer analysis is performed for one layer, iterative security analysis will

be performed for the next layer down until reaching the bottom layer.

4.3.5 Holistic Security Solution Generation

Once security analysis has been performed in all three layers, we can derive a holistic

security goal model that involves various security concerns regarding the system. By

performing backwards analysis on the model, we can automatically generate a set of

holistic security solutions, each of which consists of a number of security mechanisms that

vary from the social layer to the infrastructure layer.

An example of a holistic security goal model is presented in Fig. 4.14, which only

presents the related security goals and security mechanisms due to space limitation. In

76 A Three-Layer Security Requirements Analysis Framework

(S)
High Integrity

[energy consumption data,
interval(realtime pricing

 is applied)]

(S)
high data integrity

[energy consumption
data, interval(measure
energy consumption)]

(S)
high data integrity

[energy consumption
data, interval(sends
energy consumption

data to es)]

……

(S)
auditing

(S)
Firewall

(S)
Secure

access layer

……

AP.2 AP.3

Social
 Layer

Software
 Layer

Infrastructure
 Layer

SMF is
deployed

Smart
Meter
Device

support
firewall

Home
Gateway

(S)
Equipment
siting and
protection

(S)
Physical

Entry
Control

Measurement
is audited

Energy
Supplier
Server

Application
(ESSA)

(S)
Input
Guard

Physical
Entry

Control

Equipment
siting and
protection

SG1

SG2

SG3

(S)
high security

[ESSA,
interval(Measure
ment is audited)]

SG4
(S)

high application
integrity [smart meter

application, interval(be
able to send messages

to ES)]

SG5
(S)

high data integrity
[energy consumption
data, interval(send

energy consumption
data to essa)]

SG6

(S)
high hardware availability

[Home Gateway,
interval(Integrate firewall

component)]

SG7

(S)
high hardware integrity

[Home Gateway,
interval(Integrate

firewall component)]

SG8
(S)

high hardware availability
[Smart meter device,
interval(deploy SMF)]

SG9 (S)
high hardware integrity
[smart meter device,
interval(deploy SMF)]

SG10

AP.1……

…… ……

*AP = Alternative Point

SM1

SM2 SM3 SM4

SM5
SM6

SM7 SM8

……

Figure 4.14: Partial view of a holistic security goal model

Discussions 77

particular, each alternative point (AP) in the figure indicates that there are alternative

security mechanisms can be applied to satisfy a security goal. Note that choosing security

mechanism SM2 over SM3 at AP.1 leads to different influences on security analysis of the

infrastructure layer, further resulting in different holistic solutions. In this example, by

performing the backwards analysis, we derive in total four holistic security solutions which

can achieve the root security goal. For example, one holistic solution is to have auditing at

the social layer for ensuring the integrity of the energy consumption data when measuring

energy consumption, to use firewall at the software layer to protect the integrity of the

smart meter application, and to place physical entry control at the infrastructure layer in

order to protect the home gateway.

Overall, our approach eventually produces a collection of alternative holistic security

solutions that is specified in text, which will be passed to later stages of system develop-

ment. Note that our approach currently does not deal with the selection among alternative

security solutions, instead, we propose to use existing goal-oriented satisfaction analysis

techniques to infer the best solution [Horkoff and Yu, 2013].

4.4 Discussions

In this section, we discuss several aspects of the proposed framework in more detail.

Motivations and benefits. The essence of our framework is to separate (security)

requirements analysis of STSs into three different layers, each of which is associated with

a specific solution domain. In particular, each layer corresponds to specific artifacts that

are involved in STSs, such as business processes, software applications, and physical in-

frastructure etc., all of which constitute the entire STSs. Especially, the different domains

of artifacts involve their own phenomena, which are normally analyzed by different peo-

ple who have the specific knowledge background. Such phenomena motivate us to apply

the Divide and Conquer paradigm [Knuth, 1998] to deal with the complexity of the re-

quirements analysis of STSs, i.e., dealing with the requirements problem of each layer

separately and merging the analysis results based on the cross-layer relations. As a re-

sult, we are able to capture alternative security solutions in individual layers, and analyze

them together in a holistic manner and generate holistic security solutions.

Mappings between the three-layer framework and enterprise architecture

framework. Enterprise architecture frameworks were first investigated by Zackman with

the aim of efficiently aligning business requirements with IT systems. In particular, the

Zackman framework provides a comprehensive taxonomy of artifacts of an enterprise,

which is specified in terms of an user’s perspective (e.g., business owner) and a descrip-

tive focus (e.g., function), forming 36 intersecting cells [Zachman, 1987]. Based on this

78 A Three-Layer Security Requirements Analysis Framework

taxonomy, The Open Group Architectural Framework (TOGAF) is proposed by the open

group, which divides an enterprise architecture into four categories, i.e., business archi-

tecture, data architecture, application architecture, technical architecture [Haren, 2011].

Although these enterprise architecture models connects enterprise artifacts at different

layers, they do not capture and analyze alternative security solutions across layers.

We argue that our framework and TOGAF framework can complement each other.

On one hand, the architecture categories defined in TOGAF can be intuitively mapped

to our three-layer requirements framework, facilitating the construction of the three-layer

requirements framework. In particular, the business architecture can be mapped to the

social layer, each business activity in the business architecture will be modeled as a busi-

ness task; the application architecture corresponds to the software application layer, an

application function is then modeled as an application task; the technical architecture is

mapped to the infrastructure layer, helping analysts to identify deployment tasks in this

layer. On the basis of such mappings, when TOGAF architecture models are available

for use, analysts are able to build the three-layer functional requirements models in a

bottom-up fashion by asking “why” questions [Yu, 1997]. On the other hand, the holistic

security solutions identified by our three-layer framework can be easily updated in the

enterprise architecture model via the mappings. It is worth noting that, as The Open

Group has provided detailed mappings between the TOGAF architectures and the Zack-

man framework [TOG, 2002], we can thus indirectly establish the mappings between our

three analysis layers and the Zackman framework.

Application. Our approach is applied in the requirements analysis stage of system

development lifecycle, which analyzes stakeholder’s security needs and holistically gener-

ates a set of security solutions across three layers that satisfy the security needs. Such

security solutions will be designed and implemented in later system development stages,

which are out of the scope of this paper. Our approach aims at decomposing the com-

plicated requirements problem into small pieces, each of which is tackled by a specialized

person or team. In other words, our approach offers a framework of collaborative anal-

ysis, involving business analysts, software architects, and infrastructure designers. As a

result, to exert the power of our approach, a group of people with specialized domain and

security knowledge of all three layers are required.

Security knowledge reuse. As security knowledge is difficult to acquire Souag et al.

[2015], our framework proposes to incorporate security patterns from existing repositories.

As such, the security analysis results depend on the range of selected security patterns.

Although reusing existing security patterns can facilitate our knowledge-intensive security

analysis, analysts are still required to grasp a full understanding of a security pattern

before applying it, as reported in Araujo and Weiss [2002]. We have noticed this challenge.

Discussions 79

In particular, when selecting a security pattern, we need to manually check the context

of each candidate security pattern in order to determine whether it can be applied in

current system settings. Furthermore, when apply a security pattern, we also need to

first understand how the corresponding security mechanism works.

As a result, although there are more than 100 security patterns available from the

repositories we use [Scandariato et al., 2008; Fernandez-Buglioni, 2013; Asnar et al.,

2011a], our approach does not incorporate all of them. Instead, we currently incorpo-

rate 21 patterns from those repositories (as shown in 4.10), covering different layers and

different security concerns, which serve as the baseline of our approach. When applying

our approach, practitioners can further customize the set of security patterns according

to their security expertise. For example, if practitioners have in-depth understanding of a

specific set of the security patterns in the repositories, they can expand the set of selected

security patterns with this set in order to produce more comprehensive security analysis

results.

Regarding the above challenge, we were motivated to dedicatedly develop a systematic

and semi-automatic approach to further facilitate the application of security pattern. In

particular, we have proposed to model a significant number of security patterns in terms

of contextual goal models, which can semi-automatically check the context of security

patterns and can be seamlessly integrated into our three-layer framework. More details of

this approach will be presented in Chapter 6. In addition, as a security mechanism (i.e.,

the solution of a security pattern) functions over existing system components, the appli-

cation of the mechanism inevitably influences existing system functional requirements.

Such influences have to be captured and enforced in order to correctly analyze system

requirements. In Chapter 7, we will present a novel method which efficiently enforces the

impact of security mechanisms imposed on system functional requirements, completing

the last step of the application of security patterns.

Holistic threat analysis. As presented in Section 4.3.2, our framework relies on

external threat analysis approach to identify threats to STSs. Because the threat analysis

results can significantly influence the overall quality of the results of our holistic security

analysis, it is important to continuously update our framework with regard to the recent

advances in the corresponding research fields in order to timely deal with new challenges.

For the security of STSs, it is important to analyze threats from a holistic viewpoint,

covering different system components. In particular, multistage attacks which assemble

individual attacks from different parts of STSs are imposing a new research challenge,

which has not been tackled by existing approaches.

As such we have developed a holistic security attack analysis approach as part of our

holistic security requirements framework in order to deal with this particular challenge.

80 A Three-Layer Security Requirements Analysis Framework

This approach takes an attacker’s perspective to analyze attack strategies, and then op-

erationalizes the strategies into specific attack actions based on a collection of attack

patterns. Details of this approach will be presented in Chapter 5.

Scalability. [Estrada et al., 2006] have acknowledged the scalability problem of the i*

modeling language based on their empirical evaluation. In particular, they have identified

that the lack of mechanisms for modularization is the main cause to this problem. Our

framework, as an extension of i*, also needs to deal with this scalability problem. To

relieve this problem, we have produced interventions which optimize the modularity of

the entire analysis model. Firstly, the division of the three layers appropriately separates

concerns related to different artifacts, and each layer can be modeled separately. With

the prototype tool, analysts can determine the visibility of each layer, and thus can either

browse the entire three-layer model or focus on a particular layer.

Secondly, we visually separate the security requirements model from the functional

requirements model, while maintain the semantic connection between them. Many ap-

proaches have proposed to model and analyze security requirements together with func-

tional requirements, e.g., misuse cases [Sindre and Opdahl, 2005] and Secure Tropos [Moura-

tidis, 2011]. However, considering the complexity of STSs, putting all these models to-

gether can further exacerbate the scalability problem. As such, we semantically connect

the functional requirements model with the security requirement model via the interval

attribute of security goals. In other words, each security goal actually targets a particular

element in the functional requirements model. Such connections can be easily maintained

and analyzed with the support of our prototype tool.

In addition to the above methodological designs, we have also implemented our proto-

type tool with specific features that contribute to relieving the scalability problem, details

of which will be presented in Chapter 8.

4.5 Related Work

In this section, we compare the proposed three-layer security requirements analysis frame-

work with the state of the art we have reviewed in Chapter 2.

NFR-based requirements analysis. Chung [1993] proposes to treat security re-

quirements as a class of NFRs, and apply a process-oriented approach to analyze security

requirements. In a subsequent work, Chung and Supakkul [2006] integrate NFRs with

FRs in the UML use case model, which enable NFRs to be refined through functional re-

quirement models. Another complementary approach introduced by Gross and Yu [2001]

proposes to connect NFRs to designs via patterns. However, all of these NFR-based ap-

proaches mainly focus on information system analysis, and do not support requirements

Related Work 81

analysis in the business layer and the physical layer.

Security requirements analysis. A large number of security requirement analysis

approaches have been proposed over last two decades. Most of these approaches focus on

analyzing security requirements with regard to a particular aspect of information system.

In particular, there are many approaches that focus on the social and organizational

aspect: Mouratidis and Giorgini [2002] capture security intentions of stakeholders and

interdependence among stakeholders; Giorgini et al. [2005b] investigate social relationships

by integrating trusts and ownership into security analysis; Paja et al. [2013] capture and

analyze security requirements of STSs in terms of commitments, using three views; Liu

et al. [2003] analyze organizational risks by analyzing dependencies among social actors.

Another branch of work deals with security requirements for business processes. Rodŕıguez

et al. [2011] propose an extension of UML activity diagram to model security requirements

as part of the business process model, while Altuhhova et al. [2012] use BPMN constructs

to represent security-related concepts and model secure business process models. Her-

rmann and Herrmann [2006] propose a systematic process to elicit and analyze security

requirements from business processes models.

Most work is dedicated to analyzing security requirements of software, such as At-

tack Tree [Schneier, 1999], Misuse case [Sindre and Opdahl, 2005], and obstacle/anti-goal

analysis [Van Lamsweerde and Letier, 2000; Lamsweerde, 2004]. All of these approaches

are complementary to our proposal, as each of them can be fitted into one layer of the

proposed framework. However, none of these approaches take the broad, holistic view

of our framework, dealing with security dependencies between the social, software, and

infrastructure layers.

Security pattern-based analysis. As security patterns have been recognized as

an efficient way of designing system security, over a dozen security methodologies have

been proposed based on security patterns [Uzunov et al., 2012]. As a representative of

these methodologies, Uzunov et al. [2015] propose a comprehensive pattern-driven security

methodology designed for general distributed systems, which is based on a significant num-

ber of well-documented security patterns [Fernandez-Buglioni, 2013]. This methodology

covers both the requirements analysis stage and the design stage of software development

lifecycle. In the requirements analysis stage, they first elicit secure use cases based on

misuse activities. To satisfy these secure use cases, they then identify corresponding secu-

rity solutions by using security patterns. After passing the security solutions to the design

phase, they apply security solution frames, which consist of architectural level security

patterns and micro process patterns, to generate security system design.

Compared to their methodology, our framework exclusively focuses on the require-

ments analysis stage and has several advantages. Firstly, our analysis targets STSs,

82 A Three-Layer Security Requirements Analysis Framework

which involve more heterogeneous components and are more complicated than general

distributed systems. In particular, both social and physical security concerns are taken

into account in our methodology. As such, our analysis can provide more comprehensive

security protections. Moreover, building on goal modeling languages, our approach can

capture and analyze alternative security solutions from a holistic viewpoint, and thus

generates solutions whose effectiveness can be evaluated, helping to select the best pos-

sible solution. Lastly, our methodology is supported by a prototype tool, enabling us to

deal with the complexity of large-scale STSs; while their methodology is performed man-

ually, and they “believe it can be used without tool-support on at least small- to mid-size

projects” [Uzunov et al., 2015].

Security requirements transformation. Many approaches have been proposed

to transform security requirements captured in a high-abstraction level to the security

design in a low-abstraction level in order to maintain security requirements throughout

the entire life-cycle of system development. Mouratidis and Jurjens [2010] connect se-

curity requirements and security designs by integrating Security Tropos with UMLsec.

In particularly, they provide guidelines to transfer Security Tropos models to UMLsec

class diagrams and deployment diagrams. Menzel et al. [2009] propose a model-driven

approach that transfers security requirements, which are captured at the business process

layer, to concrete security implementations/configurations by using patterns. Similarly,

Rodŕıguez et al. [2010] apply MDA techniques to transform secure business process model

into analysis class diagram and use case diagram .

The above approaches focus on maintaining security requirements identified in the

early stage during later design stages. Orthogonally, our framework looks at security

requirements not in terms of development stages, but different solution domains (business,

software, infrastructure), each of which will produce specific artifacts that constitute

STSs. In addition, these approaches focus on aligning security requirements in a top-

down manner, but not analyze all security requirements in different layers together. On

the contrary, our approach captures alternative security solutions in each of the three

layers and connect them across layers. As such, we are able to generate the best holistic

security solutions, taking into account all security concerns in the three layers together.

Multilayer requirement analysis. A number of approaches have been proposed

to analyze requirements in multiple levels. Lankhorst et al. [2009] provide an integrated

view for enterprise architecture, consisting three layers, to enable impact and change

analysis covering all relevant aspects. Within each of the three layers, they consider

both external services that are delivered by one layer and internal services that specify

how the layer is implemented. Cui and Paige [2012] propose an integrated framework for

system requirement developments, which consists of six levels and aligns requirements with

Chapter summary 83

business motivations. Specifically, their framework is intended to cover organizational

requirements, product requirements, and hardware/software requirements. Ranjan and

Misra [2006] argue that the goal-based analytic technique should be applied to different

level of abstraction in order to better understand requirements of specific domains.

Although these approaches have conceptually presented the multilayer structure, none

of them have pragmatically developed analysis methods for analyzing (security) require-

ments of STSs. Our approach acknowledges the intention to capture requirements in

different layers of STSs. In addition to the above approaches, we delve into influences of

security requirements in different layers, and have proposed a systematic process and cor-

responding analysis methods to pragmatically analyze security requirements in a holistic

manner.

4.6 Chapter summary

In this chapter, we present a three-layer security requirements analysis framework, which

is the essential part of this thesis. We have introduced the full details of this framework,

starting from explaining the rationale of the three-layer structure (Section 4.1). Based

on such a structure, we propose a three-layer requirements modeling language which can

capture requirements of STSs in three layers, while maintaining connections across layers

(Section 4.2). Given a three-layer requirements goal model, we have defined a system-

atic security requirements analysis process, which iteratively performs security analysis

in each of the three layers and eventually generates holistic security solutions that satisfy

stakeholder’s security requirements. In particular, we propose a set of security require-

ments analysis methods and define a collection of inference rules to (semi-)automate those

analysis methods. In Section 4.4, we discuss a number of issues of the proposed three-

layer framework, such as the rationale and the potential of the framework. Specifically,

we discuss the challenges in holistic threat analysis and the reuse of security patterns,

based on which we explain how other parts of this thesis (i.e., Chapter 5-7) contribute

to this three-layer framework. Finally, we compare our framework with related work in

Section 4.5.

84 A Three-Layer Security Requirements Analysis Framework

Chapter 5

A Holistic Security Attack Modeling

and Analysis Approach

Know your enemies and know yourself, you will not be imperiled

in a hundred battles.

Sun Tzu

In this chapter, we present a holistic security attack analysis framework, which comple-

ments our holistic security requirements analysis framework (in Chapter 4). The proposed

attack analysis approach is performed from an attacker’s perspective, taking the three-

layer security requirements goal model as input and exploring possible attacks on the

target system. In particular, our attack analysis consists of two parts: firstly, we identify

an attacker’s strategies by systematically elaborating an attacker’s malicious intentions;

secondly, we leverage CAPEC attack patterns to analyze how attackers implement an

identified attack strategy in terms of realistic attack behaviors. The output of the holis-

tic attack analysis is a set of alternative (multistage) attacks, which are required by our

holistic security requirements analysis framework for identifying critical security goals (as

described in Section 4.3.2).

In the remaining part of this chapter, we first provide the overview of our approach,

explaining the rationale of our approach and presenting challenges that are solved by

the approach (Section 5.1). Then we present the two parts of our approach in detail

in Section 5.2 and Section 5.3, respectively. In Section 5.4, we evaluate this holistic

attack analysis approach using a smart grid scenario. It is worth noting that we here

exclusively focus on evaluating this attack analysis approach, while in Chapter 9 we focus

on validating the holistic security requirements analysis framework. Lastly, we present

related approaches and compare them with our proposal in Section 5.5.

86 A Holistic Security Attack Modeling and Analysis Approach

5.1 Approach Overview

Security breaches in STSs have repeatedly resulted in multi-million dollar losses per year

to large organizations, and this cost is on the rise [Ponemon, 2015]. A primary reason for

these breaches is the complexity and heterogeneity of STSs, consisting of people, processes,

technology and infrastructures. All of these heterogeneous components raise a plethora

of security concerns and present a larger attack surface compared to more homogeneous

software systems. In addition, given the increased number of attacks, STSs have become

the ideal target of multistage attacks, as attackers can compose atomic attack actions

associated with different components to perform more dangerous attacks [Mitnick and

Simon, 2011]. Failing to consider such diverse attacks while designing STSs can result in

vulnerable systems.

Many approaches have been proposed to analyze attacks, but focusing on a specific

layer of STSs. For example, Mitnick and Simon [2011] analyze social engineering attacks;

Sindre and Opdahl [2005] propose Misuse Cases to capture attacker’s malicious behaviors

on the business process level; Weingart [2000] surveys and discusses known physical at-

tacks and presents corresponding security methods. However, there is no approach that

takes into account all layers of STSs and holistically identifies attacks. Moreover, a lack

of knowledge about impending attacks introduces another challenge to attack analysis, as

analysts cannot realistically identify how attackers might attack a system and thus have

either false positives or false negatives during security analysis. Although the security

community has summarized practical attack knowledge in terms of 504 CAPEC attack

patterns1, there are no methods which efficiently incorporate such knowledge into attack

analysis. As such, analysts are reluctant to use such patterns in practice, as “the impres-

sive size and scope of CAPEC may make it intimidating for people to jump in” [Shostack,

2014].

Regarding such challenges, we propose a holistic attack analysis framework, which

can holistically analyze the security attacks on STSs. As shown in Fig. 5.1, three-layer

requirements goal models (as introduced in Chapter 4) are taken as input of the attack

analysis framework to provide domain information about the target system. On the

other hand, the outcome of our holistic attack analysis is a set of alternative (multistage)

attacks on the system, which are transferred back to the three-layer security requirements

framework, helping us to analyze critical security requirements (Section 4.3.2). Note

that such final outcomes (i.e., all the attack alternatives) are specified in text, while the

established attack models (i.e., the left part of Fig. 5.1) are only middle products which

are produced by our holistic attack analysis approach. In such a way, this holistic attack

1
https://capec.mitre.org

https://capec.mitre.org

Approach Overview 87

Malware
Propagation
via USB U3

Autorun

Malicious Logic
Insertion via
Inclusion of

Counterfeit Hardware
Components

Modification of
Existing

Components with
Counterfeit
Hardware

Malware
Propagation via

Infected
Peripheral

Device

Malware
Propagation via

USB Stick
Malicious Logic

Insertion into Product
Software via Inclusion

of 3rd Party
Component
Dependency

Malicious Logic
Insertion into

Product Software
via Configuration

Management
Manipulation

Flash
Memory
Attacks

USB Memory
Attacks

Malicious Logic
Insertion via
Counterfeit
Hardware

Malware
Infection into

Product
Software

Malicious Logic
Inserted Into

Product Software by
Authorized
Developer

Malicious Logic
Insertion into

Product Software
during Update

Malicious Logic
Insertion into

Product Software via
Externally

Manipulated
Component

Malicious Logic
Insertion into

Product Memory

Malicious Logic
Insertion into

Product
Hardware

Malicious Logic
Inserted Into

Product
Software

Open Source
Libraries
Altered

ASIC With
Malicious

Functionality

Malicious
Logic

Inserted
Into

Product

Attack Strategy
Analysis

(Section 5.2)
Real-time price

is obtained

Load info is
available

Receive energy
consumption

 data from SM

Customer is
notified about

the price

ES sends price
to customer

Real-time
pricing is
applied

Calculate
price

New price is
available

Measure energy
consumption

D

D

Smart
Meter
(SM)

Energy
Supplier

(ES)

Send energy
consumption
 data to ES

D

D

Support
calculate

price Price can be
sent to

customer

Communicate
with SMF

 History price
is obtained New price is

generated

Generate
 price

Provide database
service

D

D

Energy
Supplier

Database
(ESD)

Energy
Supplier
Server

Application
(ESSA)

Smart Meter
Firmware

(SMF)

Retrieve
data from
Database

Be able to
communicate with

SM

Send measurement
requests
to SMF

Receive energy
consumption data from

SMF

Send price info
to HEMS

Send energy
consumption

 data to ESSA

D

D Send measurement
requests
to SMF

D

D

Support
communication

between ECA and
SMF

Deploy ESSA to
ESS

Support
ESSA

Connection between
ESS and SMD is

established

Connect ESS to DCN

Connect PC to HAN

D

D

Connect HG to HAND

D

Connect HG to DCN D
D

Connect ESS to DCN

D
D

Energy
Supplier
Server
(ESS)

Smart
Meter
Device
(SMD)

Home Area
Network
(HAN)

Home
Gateway

(HG)

Data
Communicati
on Network

(DCN)

Support
communication

between ECA and
HEMS

Connect ESS to
Internet

Connection between
ESS and PC is

established

BG1

BG2

BG3
BG4

BG5

BT1
BT2

BT3
BT4

BT5

AG1

AG2

AG3

AG4

AG5

AG6 AT3

AT1

AT2

AT4

AT5

AT6

AT7

IG1

IG2

IG3

IG4

IG5

IT1

PT2

PT3

IT4

IT5 IT6

IT7

Social
Layer

Application
Layer

Physical
Layer

(S)
High Integrity

[energy consumption
 data, BG1]

SG1

(Disclose,
Asset: CC,

Target: company
database)

(Access,
Asset: company

database)

Elaborate threat

(Access,
Asset: company database,
Target: company database)

(Access,
Asset: company database,
Target: company server)

(Penetrate,
Asset: company

database)

(Penetrate,
Asset: company database
Target: Acme network)

(Access,
Asset: company

server)

Elaborate threat

(Penetrate,
asset: company

server

(Penetrate,
Asset: company server,
Target: Acme network)

(Access,
Asset: company server,
Target: company server)

(Defeat,
Asset: server access
control mechanism)

Identify protection

(Defeat,
Asset: server access
control mechanism,
Target: server access
control mechanism)

(Access,
Asset: Acme network

(Penetrate,
Asset: Acme network)

Elaborate threat

(Penetrate,
Asset: Acme network
Target: store server)

(Access,
Asset: Acme network,
Target: store server)

Identify exploitable target

(Control,
Asset: store server)

Elaborate threat

(Control,
Asset: store server
Target: store server)

(Access,
Asset: Acme network

(Penetrate,
Asset: Acme network)

(Access,
Asset: store server)

Elaborate threat

(Access,
Asset: store server)

(Penetrate,
Asset: store server)

Identify exploitable target
Identify exploitable target

Identify exploitable target

(Penetrate,
Asset: company database,
Target: company server)

Identify exploitable target

(Penetrate,
Asset: company

server)

Elaborate threat

Identify exploitable target

Identify exploitable target

Identify exploitable target

(Penetrate,
Asset: company server,
Target: server room)

Elaborate threat

(Access,
Asset: server room)

(Defeat,
Asset: server room,
Target: server room)

Identify exploitable target

Attack
Operationalisation

Analysis
(Section 5.3)

Three-Layer Requirements Goal Model
 as Domain Model (Chapter 4)

Figure 5.1: An overview of the holistic attack analysis framework

analysis fills the vacancy of threat analysis for our holistic security requirements analysis

framework (as discussed in Section 4.4).

Our proposal takes an attacker’s perspective to analyze security breaches, which has

been advocated as an effective approach [Schneier, 1999; Sindre and Opdahl, 2005]. In

particular, our attack analysis consists of two parts, as shown in the left part of Fig. 5.1.

Each of these two parts addresses a particular challenge of attack analysis, contributing

to the state-of-the-art.

Firstly, we contend that it is important to explicitly analyze the rationale behind an

attacker’s actions, which we call attack strategies. Such strategies can include alternative

attack plans, each of which may consist of multiple steps. For example, to disclose a

data asset, one attack strategy can be finding out all software applications that process

the data and then hacking the applications to disclose the data, or directly hacking the

hardware that stores the data. Several existing approaches can model attack strategies

based on external security knowledge sources, e.g., [Lamsweerde, 2004; Mouratidis et al.,

2004; Elahi et al., 2010]. However, when analyzing holistic and multistage attacks on

STSs, it is very difficult to find available knowledge sources that provide such attack

strategies. Thus, as the first contribution of our holistic attack analysis framework, we

propose to generate an attacker’s strategies by systematically elaborating the attacker’s

malicious intentions (i.e., the top-left part of Fig. 5.1).

88 A Holistic Security Attack Modeling and Analysis Approach

Secondly, after generating the attack strategies which describe what and when to

attack, analysts need to know how an attacker behaves to achieve the attack. In order to

bridge the knowledge gap between attackers and defenders, we leverage CAPEC attack

patterns for realistic attack knowledge. In particular, beyond the existing CAPEC-related

approaches2, we propose a method to semi-automatically select the best attack pattern

among the large number of candidates (CAPEC includes 504 patterns thus far). Therefore,

the second contribution of our holistic attack analysis framework is operationalizing attack

strategies in terms of realistic attack behaviors, based on which we can identify alternative

(multistage) attacks on the target systems (i.e., the bottom-left part of Fig. 5.1).

5.2 Analyzing Attack Strategies via Anti-Goal Refinement

In this section, we present the first part of our holistic attack framework, which generates

attack strategies by iteratively refining an attacker’s high-level anti-goals. In particular,

we focus on how to systematically refine anti-goals in order to obtain comprehensive attack

strategies. Thus, our primary goal is to develop an approach, grounded in real evidence, to

support systematic exploration of attack strategies, producing strategies which are more

complete. To achieve this goal, we perform the following steps.

1. perform a grounded study on three real attack scenarios [Mitnick and Simon, 2011]

in order to investigate how attackers elaborate their malicious intentions in reality,

from which we identify five anti-goal refinement patterns.

2. propose an anti-goal refinement approach, which systematically refines anti-goals

using the identified anti-goal refinement patterns, and eventually reveals attack sce-

narios.

3. evaluate the proposed refinement framework by applying it to a different credit

card theft scenario [Skoudis and Liston, 2005], the result of which shows that our

framework is able to generate a comprehensive attack strategy, which not only covers

the reported attack scenarios, but also reveals new attack scenarios.

5.2.1 Real Attack Scenario Examination

In this section, we examine three real attack scenarios in order to understand attack strate-

gies that have been applied in reality. In particular, we apply the anti-goal modeling to

real attack scenarios, and then investigate the rationale behind each anti-goal refinement

within the modeled scenarios, and finally extract five anti-goal refinement patterns. We

2https://capec.mitre.org/community/citations.html

https://capec.mitre.org/community/citations.html

Analyzing Attack Strategies via Anti-Goal Refinement 89

first briefly introduce the real attack scenarios that we examine, and then present our

examination on these scenarios in detail.

Sample attack scenarios. To reveal sophisticated attack strategies from the examina-

tion, we define three criteria for selecting the attack scenarios to be examined. Firstly,

the attacks should cover a wide spectrum of attack techniques, from social engineering

to software/hardware hacking. Secondly, we look for multistage attacks that consist of

a sequence of steps, rather than an atomic attack that is launched with a single exploit.

Thirdly, the description of the attacks should present not only attack actions performed

by attackers, but also the intentions motivating the actions.

According to the above criteria, we select three attack scenarios that are documented

in Mitnick’s book [Mitnick and Simon, 2011, Ch. 11]. Each of these attack scenarios

involves both social and technical issues, and consists of multiple attack steps. In this

case, the author narrates the entire attack process in detail, shedding light on both the

why and how for each attack step. The general problems and contexts of these attack

scenarios are as follows:

• Easy Money : Two attackers aim to defeat a security product that is designed for

access control in order to get prize money. The product applies terminal-based

security technique, which identifies system users based in part on the particular

computer terminal being used.

• Dictionary as an Attack Tool : An external attacker intends to steal the source code

of a new electronic game, which is developed by a global company. The source code

is stored on an unknown server of the company.

• The Speedy Download : An external attacker wants to obtain some confidential files

of an accounting firm in order to affect the stock price of publicly traded companies.

The confidential files are stored on the workstation, which can only be accessed from

the company’s local network.

In this section, we illustrate the examination process using the “Easy Money” scenario.

The complete set of examination results can be found in Appendix A.

Construct initial anti-goal models. We first build initial anti-goal models according

to the textual description of the attack scenarios. The construction of anti-goal models

is carried out by combining top-down and bottom-up analysis. The content of each

node is described in natural language, using a particular part of the scenario description.

Fig. 5.2(a) presents the entire anti-goal model that is built from the “Easy Money” attack

90 A Holistic Security Attack Modeling and Analysis Approach

scenario. Note that we capture the attack actions as tasks so as to provide a full view of

the scenario, but our analysis focuses on the anti-goal refinement rather than the anti-goal

operationalization. To easily reference to the elements of the anti-goal model, we annotate

each element with regard to the type of the element. In particular, G stands for Goal, T

stands for Task, and D stands for Domain Assumption.

The LOCK-11
protection system

is defeated

 The terminal-
based protection

is defeated

 Get access
to the

admin server

 Human guard
protection is

defeated

 The admin
server is protected

by physical lock

 The admin server
is protected by
human guard

 Physical
configuration
is changed

 Physical
lock protection

is defeated

 Chat with
the guard Lock-picking

 Plug the cable
 leading from the
console port into
a public terminal

 The Password
protection is

defeated

 The defender
voluntarily discloses

credentials The admin server of
the protection

mechanism is hacked

 The protection
mechanism is

controlled by an
admin server

 The LOCK-11
protection system

consists of a terminal-
based protection and a

password protection

 The guard is
manipulated to
be distracted

 The
physical lock
is attacked

 (Defeat,
Asset: LOCK-11

protection system)

 (Defeat,
Asset: Terminal-
based protection)

 (Access,
Asset: Admin

server)

 (Defeat,
Asset: Human

guard protection)

 The admin
server is protected

by physical lock

 The admin server
is protected by
human guard

 (Defeat,
Asset: Physical
lock protection)

 (Defeat,
Asset: Password

protection system)

 The defender
voluntarily discloses

credentials

 (Defeat,
Asset: Terminal-based

protection,
Exploitable Target:

Admin server)

 The protection
mechanism is

controlled by an
admin server

 The LOCK-11
protection system

consists of a terminal-
based protection and a

password protection

 (Tamper,
Asset: Admin Server,
Exploitable Target:

Admin server)

 (Defeat,
Asset: Physical lock

protection,
Exploitable Target: Lock)

 (Defeat,
Asset: Human guard

protection,
Exploitable Target:

Human)

R1-P1

R2-P2

R3-P3

R4-P4

R6-P2
R5-P2

(a) (b)

Legend

Goal Domain AssumptionTask
and-refine refine operationalize

G1

D1

D2

G2

G3

D3

G4

G5 G6

D4
D5

G7 G8 T3

G9
G10

T1
T2

G1

D1

D2

G2

G3

D3G4

G5
G6

D4
D5

G7
G8

G9
G10

Remark: the label Rx-Py means the refinement Rx falls into the pattern Py (Table 5.2)

Figure 5.2: Anti-goal models that are built from the “Easy Money” attack scenario

Characterize anti-goals. It is our goal to capture anti-goals and their refinements, such

as in Fig. 2(a), in a more structured and abstract way. Thus we characterize each anti-

goal with a structured description language, which is specified in Table 5.1 by using EBNF

syntax.

Each anti-goal is characterized by one threat and one or several attributes (Rule 1).

A threat presents an undesired state that an attacker wants to impose on the targeting

system. We classify threats using an existing, established threat categorization, STRIDE,

provided by Microsoft [Shostack, 2014]. STRIDE is an acronym that stands for six threat

Analyzing Attack Strategies via Anti-Goal Refinement 91

Table 5.1: The EBNF syntax of the structured description language

Rule 1: <anti-goal> ::= <threat>, <attribute-description>+

Rule 2: <threat> ::= ‘tamper’ | ‘disclose’ | ‘spoof’ | ‘repudiate’ | ‘deny’ | ‘reach’ |‘access’

|‘control’ | ‘defeat’

Rule 3: <attribute-description> ::= <attribute>, <descriptor>

Rule 4: <attribute> ::= ‘asset’ | ‘exploitable target’ | ‘interval’

categories: Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,

and Elevation of privilege. These threat categories provide comprehensive coverage of

security threats and have been adopted and investigated in both academia and indus-

try [Shostack, 2014; Scandariato et al.]. Note that we describe the threat categories in

terms of their essential actions rather than the full description (Rule 2), as the threat ac-

tions are more succinct and intuitive when combined with other attributes. For example,

instead of specifying information disclosure, we represent this type of threat using disclose.

For the threat Elevation of privilege, we specifically consider three threat actions reach,

access, and control, each of which implies a particular level of privilege. When comparing

the available categories in STRIDE to the anti-goals collected from the real cases, we find

the need to add an additional threat category, specifically, “defeated security mechanism”

which captures the attacker intention to break system protections.

Moreover, we characterize anti-goals with three other attributes (Rule 4): an asset is

anything of value to stakeholders, it is normally the object of a threat; an exploitable

target is a component of a system, which involves assets and has vulnerabilities that are

exploitable by attackers; an interval represents the time period, during which attackers

carry out attacks. Note that values of these attributes are described in text (Rule 3).

By using the structured description language, we characterize the anti-goals in the initial

anti-goal model, resulting in a characterized model as shown in Fig. 5.2(b).

Identify refinement patterns. Once the characterized anti-goal model is obtained, we

investigate each refinement relation in detail, on the basis of which we can identify refine-

ment patterns.

We first investigate the influences of refinement relations on the refined anti-goals, i.e.,

what have been changed from the refined anti-goals to their sub-goals. For example, as

shown in Fig. 5.2(b), the influence of refinement R1 is that the asset of the anti-goals G2

and G3 have been modified from their parent goal G1. After performing such analysis on

all 25 refinement relations in the three attack scenarios, we cluster refinement relations

92 A Holistic Security Attack Modeling and Analysis Approach

Table 5.2: Summarized refinement patterns

No. Pattern Name Pattern Influences Occurrence

P1 Asset-based refinement Modify asset 2

P2 Target-based refinement Add exploitable target 7

P3 Threat-based refinement
Modify asset; modify threat;

remove exploitable target
10

P4 Protection-based refinement
Modify threat; modify asset;

remove exploitable target
4

P5 Interval-based refinement Modify interval 2

with similar influences, based on which we summarize five refinement patterns. Table 5.2

presents the identified refinement patterns, as well as their influences and number of

occurrence in the three attack scenarios. Examples of the application of the refinement

patterns can be found in Fig. 5.2(b), where each refinement relation is annotated with its

corresponding refinement pattern.

5.2.2 An Anti-Goal Refinement Approach

The extracted five anti-goal refinement patterns shed light on different ways to refine an

anti-goal, based on which we propose an anti-goal refinement approach. This approach

efficiently leverages the proposed refinement patterns to refine an attacker’s high-level

anti-goals and to generate comprehensive attack strategies, the analysis process of which

is shown in Fig. 5.3. Note that the output of this analysis process is a set of attack

strategies which are specified in terms of anti-goal models. Such models are not the final

output of the entire holistic attack analysis approach, but middle products, which are

used by the attack operationalization analysis that will be described in the next section.

Each of these steps makes use of one particular refinement pattern, and the detailed

guidelines for performing these steps are presented below. It is worth noting that we

describe the anti-goal refinement framework from an attacker’s perspective to clearly

show the rationale of the strategy, but the corresponding analysis is actually performed

by security analysts with a complete set of system information in order to discover all

potential attack scenarios. In particular, the description of each analysis step focuses on

addressing the following issues:

• Rationale. We first describe the rationale of each analysis step, which explains the

design of the analysis process (Fig. 5.3). Note that the proposed anti-goal refinement

Analyzing Attack Strategies via Anti-Goal Refinement 93

framework is a specific way to analyze attack strategies, and does not exclude other

possible ways.

• Input. We then specify the inputs that are required for performing the analysis step.

It is worth noting that our proposal is a general framework, which is not associated

with specific models. Thus, for inputs, we only describe the types of information

that are required, and all models that capture the corresponding information can be

used.

• Sanity check. Our framework is intended to cover various attacks and thus provides

a comprehensive security analysis. As a result, a single anti-goal can lead to a very

large model. To deal with this complexity, we propose to prune the model as part

of its construction, i.e., performing sanity checks after each analysis step in order to

reduce the refinement space.

• Stop criteria. Finally, we describe the stop criteria of each analysis step.

System information
(orgrainzation structure,

software architecture etc.)

Step 1:
Refine attack

interval

Step 2:
Refine asset

Step 3:
Identify

exploitable target target is
different

from asset

No

Yes
Step 5:
Defeat

protection
Step 4:

Elaborate threat

there is a
protection

Yes
No

Root anti-
goal

Attack
strategy

Intervel
division

Resource
schema

STRIDE
threat trees

System
protection
information

Figure 5.3: An analysis process of anti-goal refinement

Step 1: Refine attack interval. System security settings can change over time, affecting

an attacker’s anti-goals. As the first step, an attacker applies the interval-based refinement

pattern in order to concentrate on specific time intervals. Thus, this analysis step requires

specific domain knowledge about the division of time intervals. In particular, for each

interval-based refinement, the analyst should check whether system security settings have

been changed from the original interval to its sub-intervals. If the security settings remain

the same, this refinement will not contribute to disclosing new attack scenarios and should

be pruned. The interval refinement analysis is completed once the finest-grained intervals

have been reached via refinements.

94 A Holistic Security Attack Modeling and Analysis Approach

Step 2: Refine asset. Given a composite asset, it is easier for an attacker to attack a

fine-grained part of the asset rather than attacking the composite asset as a whole. An

attacker can leverage the asset-based refinement pattern to generate sub-goals that focus

on more specific sub-assets. The asset-based analysis takes the system resource schema as

input, which documents “part-of” relations between system resources. To identify system

assets among system resources, we refer to the asset identification process that is specified

in ISO27005:2011 [ISO and Std, 2011, Annex B], which deals with both the primary assets

and the supporting assets. In particular, the primary assets include business processes

and activities and information; the supporting assets include hardware, software, network,

personnel, site, and organization’s structure. This analysis step is completed when all

identified assets in the resource schema are analyzed.

Step 3: Identify exploitable target. Once an attacker has determined the assets he

intends to impair, he needs to find out corresponding vulnerable system components

(a.k.a. exploitable targets), by exploiting which the assets will be damaged. In particular,

an asset can be involved in system components in different ways according to the type

of the components, e.g., an information asset can be accessed by people, processed by

software, or stored in hardware. Note that the asset and the exploitable target of an

anti-goal can be the same, if the asset itself is a vulnerable system component.

We here consider the types of vulnerable system components in line with the list of

supporting assets presented in ISO27005:2011 [ISO and Std, 2011, Annex B.1.2]. As

such, corresponding system information is required, e.g., information of system infras-

tructure, software architecture, and organization structures. When identifying the ex-

ploitable target, analysts should check the risk of exploiting the target, e.g., using the

CORAS approach [Lund et al., 2010]. If the risk is under certain threshold, determined

by the analysts, the target is assumed to be secure and is excluded from this refinement

step. After using the target-based refinement pattern to identify all potential exploitable

targets, this analysis step is complete.

Step 4: Elaborate threat. If an attacker aims to impose a threat to an asset by ex-

ploiting a target, which is different from the asset, then the attacker should identify new

threats that he wants to impose on the exploitable target in order to successfully im-

pose the original threat to the asset. For example, if an anti-goal is intended to disclose

(threat) confidential files (asset) that are stored in a database (exploitable target), then it

can be refined to getting access to (new threat) the same database (new asset) by using

the threat-based refinement pattern.

When applying the threat-based refinement pattern, the system information and re-

Analyzing Attack Strategies via Anti-Goal Refinement 95

lated security knowledge are required to support the threat elaboration. Specifically, we

refer to 19 STRIDE threat trees as the security knowledge sources, which describe al-

ternative ways about how a threat category can be refined to other categories. As we

specify the threats of anti-goals using the STRIDE threat categories, the application of

the STRIDE threat trees can be seamlessly integrated into this analysis step. In order to

discover all potential attack scenarios, once we identify the new threats to the exploitable

target that can lead to the original threat to the asset, we iteratively analyze the new

threats to the exploitable target through the analysis step 2 and 3, i.e., we treat the

exploitable target as a new asset. Such as in the aforementioned example, the newly

introduced sub-goal “getting access to (new threat) the database (new asset)” concerns

the database as a new asset, which was the exploitable target in the parent anti-goal.

Step 5: Defeat protection. From an attacker’s perspective, security protections are

obstacles to his attacks. If the attacker targets a system component which is protected by

some security mechanisms, such as encryption and firewalls, then he needs to first defeat

the mechanisms in order to achieve their anti-goals. According to the knowledge about

system security design, the attacker can use the protection-based refinement pattern to

generate anti-goals against related security protection mechanisms.

Each of the newly generated anti-goals concerns a specific protection mechanism as

its asset and is intended to defeat it. Similar to the last analysis step, as long as new

assets have been identified in the new anti-goals, subsequent analysis will iteratively refine

assets and identify targets for the new anti-goals, i.e., going back to the analysis step 2.

It is worth noting that during the anti-goal refinement, we focus on identifying which

protection mechanisms need to be defeated by exploiting which targets, not answering

which specific attack techniques to be used to defeat the mechanisms. Once there are no

further security protections to be defeated, i.e., there are no new assets have been found,

the analysis reaches an end as all potential attack scenarios have been obtained.

5.2.3 Evaluation

In order to evaluate the proposed anti-goal refinement approach, we applied it to a realistic

credit card theft scenario, which is documented in a textbook [Skoudis and Liston, 2005,

Ch.12]. In this section, we first introduce the evaluation scenario, and then illustrate the

application of this approach to the scenario. Finally, we evaluate the resulting anti-goal

model. Fig. 5.4 presents part of the resulting model, which is used for illustrating the

application of our approach. In particular, we focus on evaluating the usability of our

anti-goal refinement approach and the quality of the analysis results, which are detailed

in the following research questions:

96 A Holistic Security Attack Modeling and Analysis Approach

• RQ1: Can our approach be easily used?

– RQ1.1: How long does it take to apply our approach?

– RQ1.2: Are there any difficulties in applying our approach?

• RQ2: Can our approach effectively identify attack strategies?

– RQ2.1: Can our approach identify realistic attack strategies documented in the

textbook?

– RQ2.2: Can our approach identify additional attack strategies beyond the

strategies documented in the textbook?

Credit card theft scenario. This scenario presents a complicated multistage attack in

reality, which is documented in Skoudis’s hacking book [Skoudis and Liston, 2005, Ch.12]

and is different from the source of the previous three real attack scenarios. Specifically, in

this scenario, there is a widgets corporation which operates more than 200 retail stores.

Each retail store communicates with the central corporate network by using a VPN, and

all credit card transactions are seamlessly moved from individual stores back to the central

database. Each store has several Point-of-Sale (POS) terminals, which access the local

store network using wireless access points. Each store also has a store server, which

processes credit card transactions and forwards the transactions back to the company

server.

Applying the anti-goal framework. As a pre-step, we first processed the scenario de-

scription to extract information that was required by the analysis. Specifically, we cap-

tured the attacker’s high-level malicious intention, i.e., steal customer’s credit card infor-

mation, and modeled it as his root anti-goal (G1 in Fig. 5.4). In addition, we captured

related domain information, such as asset relations and system infrastructure, which was

used to refine anti-goals. Having the root anti-goal and related domain information as

input, we applied the proposed approach (Fig. 5.3) to refine the root anti-goal into op-

erational anti-goals and thus generated a comprehensive attack strategy. We summarize

this process as follows.

1. As the scenario only dealt with the credit card system in a general time span and

did not describe any particular time interval, we opted not to apply the first step.

In other time-sensitive cases, this step would be applied.

2. We refined the asset of the root anti-goal G1 according to the composition relations

among assets. As the entire set of credit card information was composed of informa-

tion of credit cards that were processed in different retailer stores, the root-goal G1

Analyzing Attack Strategies via Anti-Goal Refinement 97

Refine assets

(Disclose,
Asset: CC)

(Disclose,
Asset: CCA)

(Disclose,
Asset: CCZ)

(Disclose,
Asset: CC,

Target: company
database)

Elaborate threat

Identify exploitable target

(Disclose,
Asset: CCA,

Target: store server A)

Identify exploitable target

(Access,
Asset: store server A)

Elaborate threat

(Access,
Asset: store server A,
Target: store server A)

(Reach,
Asset: store server A)

(Reach,
Asset: store server A,
Target: local network)

(Access,
Asset: local network A,
Target: local network A)

(Defeat,
Asset: local server access

control mechanism)

(Defeat,
Asset: local server access

control mechanism
Target: local server access

control mechanism)

(Defeat,
Asset: MAC address
filtering protection)

(Reach,
Asset: local network A,
Target: local network A)

Identify protection

……

(Reach,
Asset: store server A,
Target: store server A)

Identify exploitable target Identify exploitable target

(Defeat,
Asset: MAC address
filtering protection,

Target: MAC address
filtering protection)

Elaborate threat

Identify exploitable target

Identify protection

Identify exploitable target

(Reach,
Asset: store server A,
Target: POS terminal)

Elaborate threat

(Control,
Asset: POS

terminal)

(Access,
Asset: POS

terminal)

(Access,
Asset: POS terminal,
Target: store A)

Identify exploitable target

(Access,
Asset: store A)

Elaborate threat

(Access,
Asset: store A,
Target: store A)

Identify exploitable target

(Access,
Asset: POS terminal,
Target: POS terminal)

Identify exploitable target

……

G1

G2
G3

G4

G5

G6
G7

G8

G9

G10

G11 G12

G13

G14

G15 G16

G17

G18

G19

G20

G21

G22

G23

Figure 5.4: Applying anti-goal refinement analysis to the scenario of credit card theft (excerpt)

should be and-refined to more than 200 sub-goals, each of which was intended to

disclose credit cards of one particular store. Since all the retailer stores had homoge-

neous design and configuration, the attack scenarios about these retailer stores were

the same, i.e., the more than 200 anti-goals were refined in the same way. Thus, as

shown in Fig. 5.4, we only focused on the first sub-goal G2 in later analysis.

3. We identified exploitable threats to the assets. According to the domain knowledge

that the information of credit cards which were used in store A (i.e., CCA) was kept

98 A Holistic Security Attack Modeling and Analysis Approach

in the store server A, G2 was refined to G5, targeting the store server A. In addition,

we refined G1 to G4 because the entire set of credit card information as a whole

was stored in the company database. Note that we will skip the illustration of this

branch in the later analysis steps, which can be found in the full model (Fig. 5.5).

4. As the asset and the exploitable target of G5 were not the same object, we elaborated

G5 to identify which threats should be imposed to the store server A in order to

disclose the CCA. According to the threat knowledge, G5 was and-refined to G6

and G7, which were intended to reach the server and to access into the server,

respectively.

5. As G6 and G7 introduced a new asset store server A, iterative analysis was per-

formed to these two goals from the secondly step until the analysis no longer intro-

duced new assets. As shown in Fig. 5.4, the longest refinement paths {G6, G10,

G15, G17, G18, G19} iterated such analysis three times.

6. After identifying an exploitable target, we checked whether there were security mech-

anisms that were applied to protect the target. Take G21 for example, it was refined

to G22 as an access control mechanism was applied to protect the store server A.

Because G22 promoted the access control mechanism as a new asset, another round

of analysis started from the second step.

7. Performing the iterative analysis on G13 and G22 resulted in the anti-goals G14

and G23, respectively. As the iterative analysis did not introduced new assets, the

anti-goal refinement reached an end.

Results and analysis. The application of our approach finally resulted in an anti-goal

model with 46 anti-goals and 48 refinements (Fig. 5.5), which took me 5 hours to build

(RQ1.1). In particular, during the application of our approach, we noticed several

issues. Firstly, the retrieval and application of domain information was time-consuming,

which may raise the scalability problem when applying our approach to large-scale and

complicated scenarios (RQ1.2). In our study, we extracted domain information from

the scenario specification, which was then used by different anti-goal refinement methods.

As we did not formalize such information, we had to retrieve and apply it manually,

which was time-consuming. Therefore, in the future, we plan to capture (part of) the

required domain information in our three-layer requirements goal model, allowing us to

automatically retrieve corresponding information when refining anti-goals.

Secondly, we realized that the manual sanity check was important for pruning the

model, relieving the scalability problem. As discovered in our examples, there were cases

Analyzing Attack Strategies via Anti-Goal Refinement 99

Refine assets

(Disclose,
Asset: CC)

(Disclose,
Asset: CCA)

(Disclose,
Asset: CCZ)

(Disclose,
Asset: CC,

Target: company
database)

(Access,
Asset:

company
database)

Elaborate threat

(Access,
Asset: company database,

Target: company
database)

(Access,
Asset: company database,
Target: company server)

Identify exploitable target

(Reach,
Asset: company

database)

(Reach,
Asset: company

database
Target: Acme network)

(Access,
Asset: company

server)

Elaborate threat

(Reach,
asset: company

server

(Reach,
Asset: company server,
Target: Acme network)

(Access,
Asset: company server,
Target: company server)

(Defeat,
Asset: server access
control mechanism)

Identify protection

(Defeat,
Asset: server access
control mechanism,
Target: server access
control mechanism)

(Disclose,
Asset: CCA,

Target: store server
A)

Identify exploitable target

(Access,
Asset: store server A)

Elaborate threat

(Reach,
Asset: store server A)

(Access,
Asset: Acme network

(Reach,
Asset: Acme network)

Elaborate threat

(Reach,
Asset: Acme network
Target: store server)

……

(Access,
Asset: Acme network,
Target: store server)

Identify exploitable target

(Control,
Asset: store

server)

Elaborate threat

(Control,
Asset: store server

Target: store
server)

Elaborate threat

(Access,
Asset: store server)

(Reach,
Asset: store server)

Identify exploitable target

Identify exploitable target

Identify exploitable target

(Reach,
Asset: company database,
Target: company server)

Identify exploitable target

Elaborate threat

Identify exploitable target

Identify exploitable target

Identify exploitable target

(Reach,
Asset: company server,
Target: server room)

Elaborate threat

(Access,
Asset: server room)

(Defeat,
Asset: server room,
Target: server room)

Identify exploitable target

(Access,
Asset: store server A,
Target: store server A)

(Defeat,
Asset: local server

access control
mechanism)

(Defeat,
Asset: local server access

control mechanism
Target: local server access

control mechanism)

Identify exploitable target

Identify protection

Identify exploitable target

(Reach,
Asset: store server A,
Target: local network)

(Access,
Asset: local network A,
Target: local network

A)

(Defeat,
Asset: MAC

address filtering
protection)

(Reach,
Asset: local network A,
Target: local network

A)

Identify protection

(Reach,
Asset: store server A,
Target: store server A)

Identify exploitable target

(Defeat,
Asset: MAC address
filtering protection,
Target: MAC address
filtering protection)

Elaborate threat

Identify exploitable
target

(Reach,
Asset: store server A,
Target: POS terminal)

Elaborate threat

(Control,
Asset: POS

terminal)

(Access,
Asset: POS

terminal)

(Access,
Asset: POS terminal,
Target: store A)

Identify exploitable target

(Access,
Asset: store A)

Elaborate threat

(Access,
Asset: store A,
Target: store A)

Identify exploitable target

(Access,
Asset: POS terminal,
Target: POS terminal)

Identify exploitable target

√
√

√

√

√

√

√

√

√

√

√

√

√

√

√

√ √

√ √

√

√

√

√ √

√

√

X

X

X

X

X

?√
√

√

?

?

?

?

??

? ?
?

?

√

IP space
Reconnaissance

for Acme Scanning Acme
network

Scan server
vulnerabilities

Directly attack
company server

Launch password
guessing tool

exploit SQL
injection flaws

X

√

Walk to the store
nearby his home

Passively monitor
 network Fake MAC

address

√ √

√

Scan local network
structure Run THC

Hydra tool

Execute
malicious

scripts
√

X

√ √

√
√

X

Figure 5.5: Apply the attacker strategy to the credit card stolen scenario (full)

that one asset can be refined into different but homogeneous sub-parts (i.e., the entire set

of credit card information consists of credit card information from different retailers, and

all the retailers were assumed to have the same IT infrastructure in this scenario). Thus,

each of these sub-parts was targeted by a particular anti-goal, and all such anti-goals can

actually be attacked using the same attack strategies. In other words, the refinement

100 A Holistic Security Attack Modeling and Analysis Approach

analysis performed over such anti-goals resulted in the same refinement structure, and

there was no need to perform repeated analysis over each of these anti-goals; As such,

we only focused on one of those anti-goals, and reused the results for all other goals. We

argue that such a decision has to be manually made during the sanity check, as it is very

difficult to automatically determine whether the sub-parts of an assets are homogeneous.

Thirdly, we noticed that it was possible to obtain repeated anti-goals from different

refinement branches, which needed to be merged in order to reduce the scalability problem

(details about this situation will be further discussed in the next section). However, such

checks were performed manually in our study, which was time-consuming and error-prone

(RQ1.2). As for future work, we plan to automate such checks and thus further improve

our approach.

By analyzing the and/or refinement operators, we identified that the final model con-

tains a total of 11 alternative attack scenarios. To evaluate the effectiveness of the pro-

posed approach, we carried out a bottom-up analysis to check whether the realistic credit

card theft scenarios (documented in the book) can be covered by the attack scenarios that

were identified by our approach. Specifically, we identified all specific attack actions that

are performed by the attacker based the scenario description, including both successful

and failed attack actions. Then, we checked whether the intention of these actions can

be matched with the leaf goals in the anti-goal model. Our examination turned out that

all the attack actions documented in the scenario can be associated with the leaf goals,

i.e., the identified attack scenarios completely covered the real attack scenarios (RQ2.1).

Specifically, among all the 11 attack scenarios discovered by our approach, 6 of them

were reported in the scenario description (2 successful, 4 failed), while the other 5 poten-

tial attack scenarios were not mentioned in the scenario description, revealing previously

unconsidered attacks (RQ2.2).

Overall, considering the time and encountered difficulties, we argue our approach can

be easily applied to a middle-scale scenario (RQ1). In the meantime, we have identified

a number of issues that need to be improved in our future work. In addition, based on the

comparison between our analysis results and the realistic attack scenario reported in the

textbook, we contend that our approach can effectively identify realistic attack strategies

(RQ2).

Threats to validity of the evaluation. A major threat to the conclusion validity is

that the study was only applied to one middle-scale scenario. In the future, we need

to evaluate our approach with more real attack scenarios. In addition, the evaluation

was performed by one of the method designers (i.e., myself), imposing a threat to the

external validity. As such the conclusion we have made before (i.e., the approach is easy

Analyzing Attack Strategies via Anti-Goal Refinement 101

to apply) is based on a strong assumption that the practitioner has already gained a full

understanding of our approach. As such, we need to further evaluate our approach with

practitioners who were not involved in the method development. Finally, as the entire

evaluation is performed by only one person (i.e., myself), there is threat to reliability. To

tackle such threat, we need to involve more people in our future evaluation.

5.2.4 Discussion

Diversity of anti-goal refinement. As our proposal is based on the examination of

three real attack scenarios that come from the same book [Mitnick and Simon, 2011], and

we acknowledge that examining other scenarios from different sources may have different

results. In addition, the examination process reflects our specific interpretation of attack

strategies, and the outcome of the examination can vary from person to person. Conse-

quently, we acknowledge that the proposed anti-goal refinement framework is a particular

way of refining anti-goals, while there can be other ways for performing such analysis.

Based on the study we have performed over a middle-size credit card theft scenario, we

argue our approach is effective to analyze attacker’s malicious intentions. Moreover, we

will continue to evaluate this method as part of our entire security analysis framework.

Security knowledge sources. We analyze attack strategies by examining three real at-

tack scenarios that are documented in a security textbook [Mitnick and Simon, 2011].

Apart from this book, we have found other potential security knowledge sources. At-

tack patterns were first proposed by Moore et al. [2001] to summarize reusable attack

knowledge from repeated attacks in support of system security analysis. In particular,

CAPEC (Common Attack Pattern Enumeration and Classification) is a comprehensive

attack pattern repository, which was first released in 2007 and has accumulated 504 at-

tack patterns [Barnum and Sethi, 2007]. However, these attack patterns indeed describe

low-level attack knowledge about how to use specific attack techniques and tools to per-

form a particular attack, such as “exploit user-controllable input to perform a format

string injection”. Thus, CAPEC attack patterns do not fit our need of analyzing high-

level attack strategies in this paper, but they can be used to operationalize anti-goals and

support security analysis, which will be presented in Section 5.3. Another security threat

knowledge source is the STRIDE threat trees [Shostack, 2014], which focuses on how one

threat can be refined into other threats. However, these threat trees only capture a single

step of threat elaboration and cannot account for multistage attacks. As a result, we do

not examine these threat trees for analyzing attack strategies, but use them as an exter-

nal security knowledge source to support the threat elaboration analysis in our anti-goal

refinement framework.

102 A Holistic Security Attack Modeling and Analysis Approach

Scalability. Our framework is designed to provide a comprehensive anti-goal refinement

analysis, i.e., covering all potential attack scenarios. As such, the scalability issues are

raised due to the large refinement space. To deal with this problem, we have proposed

sanity checks for each analysis step in Section 5.2.2, in order to prune the model as part of

its construction. In addition to the checks, we also observe a further phenomenon which

helps to mitigate scalability. During the anti-goal refinement, it is possible to obtain

repeated anti-goals, i.e., different anti-goals can be refined into the same anti-goals. This

is because one anti-goal can have different influences, e.g., accessing to the server of a

retailer store not only discloses credit card information stored in that server but also

enables the attacker to penetrate the company internal network. As such, it is important

to detect and merge the repeated anti-goals during the anti-goal analysis as new anti-goals

are generated. Otherwise, the repeated anti-goals will be further refined separately and

the size of the model can grow exponentially. Note that merging repeated anti-goals is

performed by adding all refinement links of these anti-goals to one anti-goal and removing

other anti-goals. As such, the derived model is not a tree but a directed acyclic graph

(DAG).

Thus far our attack strategy analysis is performed manually, and we are planning to

extend our prototype tool in order to semi-automate such analysis, especially reducing

the efforts of graphical modeling. We intend to define formal inference rules based on the

five anti-goal refinement patterns that are proposed in Section 5.2.1. By executing those

rules, the tool will be able to automatically perform anti-goal refinement in a step-by-step

manner. To guarantee the correctness of the analysis and to reduce model complexity, the

tool should interact with analysts in order to support manual revision after each analysis

step, allowing the analyst to, for example, perform sanity checks over the refinements.

5.3 Operationalizing Anti-Goals with Attack Patterns

In this section, we present a systematic approach which can efficiently operationalize the

identified attack strategies using CAPEC attack patterns. Based on the operationaliza-

tion results, we can automatically identify alternative (multistage) attacks on the target

system. To this end, we first describe a systematic method to model CAPEC attack pat-

terns as contextual goal models. The benefits of constructing contextual goal models are

twofold: firstly, we are able to semi-automatically check attack context and select suitable

attack patterns to operationalize attack strategies with the support of our prototype tool

(which will be detailed in Chapter 8). Secondly, the contextual goal models can be seam-

lessly integrated with the goal-based attack model, as they share the same core constructs

(e.g., goals, tasks, and domain assumptions). We have pragmatically applied this method

Operationalizing Anti-Goals with Attack Patterns 103

Table 5.3: Pattern-related conceptual mappings

Primary Pattern Concept Attack Pattern Attribute Goal Model Element

Context
Attack Prerequisites;

Technical Context

Context;

Domain Assumption

Problem

Attack Motivation-

Consequences;

Domains of Attack

Goals

Solution Attack Execution Flow Tasks

to model 102 CAPEC attack patterns, which can be reused for operationalizing attack

strategies. Built on such patterns, we then define a systematic process and a collection

of formal inference rules to efficiently select attack patterns for operationalizing attack

strategies in terms of practical attacks.

5.3.1 Model Attack Patterns as Contextual Goal Model

A pattern consists of three primary pattern concepts: Context, Problem, and Solu-

tion [Alexander et al., 1977], which specify a proven solution can be applied to solve

a problem in certain context. Attack patterns, as a specific type of pattern, are specified

in the same spirit, but from an attacker’s viewpoint, i.e., what an attacker wants to attack

(problem), how does the attacker perform the attack (solution). Based on the semantics

of attack pattern attributes3, we have identified relevant attack pattern attributes that

specify problem, context, solution, and indirectly map them to the contextual goal model

elements, as shown in Table 5.3.

On the basis of these mappings, we propose a systematic method to model attack

patterns as contextual goal models. Specifically, we take the attack pattern CAPEC-66:

SQL Injection as an example to illustrate each modeling step in detail (shown in Fig. 5.6).

The complete specification of this pattern can be found online4.

It is worth noting that the method we proposed here is in line with the method for

modeling security patterns (Section 6.2), but has been adjusted to accommodate specific

concepts in attack patterns.

3A full CAPEC schema, https://capec.mitre.org/data/xsd/ap_schema_v2.7.xsd
4
https://capec.mitre.org/data/definitions/66.html

https://capec.mitre.org/data/xsd/ap_schema_v2.7.xsd
https://capec.mitre.org/data/definitions/66.html

104 A Holistic Security Attack Modeling and Analysis Approach

C1

(T1)
Perform SQL

Injection

(T3)
Sniff network

communications with
application using a utility

 such as WireShark

(T14)
Experiment and try

to exploit SQL Injection
vulnerability

(T9)
Determine user-

controllable input susceptible
to injection:

C1 C1C1 C1 = use_technique(target_application,
sql_query)

(G4)
Threat: Information

Disclosure
Target: software

(G3)
Threat: Tampering
Target: software

(G2)
Threat: Elevation of

Privilege
Target: software

(G1)
Threat: Spoofing,
Target: software

(T2)
Spider web
sites for all

available links

(T5)
Use web browser to

inject input through text
fields or through HTTP

GET parameters

(T6)
Use a web application

debugging tool to
modify HTTP POST

parameters etc.

(T8)
Use network-level
packet injection

tools such as netcat
to inject input

(T7)
Use modified client

(modified by reverse
engineering) to

inject input.

(T10)
Use public
resources

(T11)
Add logic to query, and

use detailed error
messages from the server

to debug the query

(T13)
Try stacking

queries

(T12)
Use "Blind

SQL Injection

Legend

Goal

Domain
Assumption

Task

and-refine

refine

operationalize

(T4)
Obtain an

 inventory of application
functionality

Problem

Context

Solution

Figure 5.6: An example attack pattern model

Modeling Attack Pattern Problems

A Problem solved by an attack pattern is actually the malicious intention that an attacker

wants to achieve, which will be modeled as a Goal in the goal model. Specifically, we

identify such malicious intentions from the attack pattern attributes Attack Motivation-

Consequences and Domains of Attack.

To seamlessly integrate the attack pattern analysis with previous attack strategy anal-

ysis, we specify the malicious intention of each attack pattern using structured anti-goals

(which was introduced in Section 5.2.1). In particular, we focus on the Threat that is

imposed by an attack pattern and the Target that is exploited by an attack pattern,

which are important for automatic pattern matching (which will be described in the next

subsection). The threat information is elicited based on the attack impact specified in

Attack Motivation-Consequences. As the CAPEC schema enumerates a total of 18 types

of attack impacts, we map these impacts to STRIDE threat categories (Table 5.4), using

these categories as the Threat attribute in the resulting anti-goal. We elicit the target

information with respect to Domains of Attack of an attack pattern. In particular, the

CAPEC schema includes six specific domains, and we identify typical attack targets for

each of these domains, as shown in Table 5.5. In the attack pattern example (Fig. 5.6),

the pattern has an impact “Read application data”, which is mapped into the threat In-

formation Disclosure as modeled in the anti-goal G4. In addition, as this pattern is under

the software domain, we specify the Target attribute of G4 as software.

Operationalizing Anti-Goals with Attack Patterns 105

Table 5.4: Mappings between attack pattern impact and STRIDE threats categories

STRIDE Attack Impact

Information

Disclosure

Read application data

Read memory

Read files or directories

Tampering

Modify application data

Modify application data memory

Modify application data files or directories

Unexpected states

Alter execution logic

Denial

of Service

DoS: instability

DoS: resource consumption (CPU)

DoS: resource consumption (memory)

DoS: crash / exit / restart

DoS: amplification

DoS: resource consumption (other)

Elevation

of Privilege

Gain privileges / assume identity

Execute unauthorized code or commands

Bypass protection mechanism

Spoofing Gain privileges / assume identity

Repudiation Hide Activities

Table 5.5: Typical targets of attack domains

Attack

Domain
Target

Social Engineering People

Supply Chain Software; Hardware

Communication People; Software; Hardware

Software Software

Physical Security Hardware

Hardware Hardware

Modeling Attack Pattern Context

The context of an attack pattern specifies under which situation the attack can be applied

to achieve an attacker’s malicious intention. Thus, we model such context and associate

106 A Holistic Security Attack Modeling and Analysis Approach

it with the operationalization link between goals and tasks in the goal model, where the

goals can only be operationalized into the tasks if the context holds (e.g., context C1

shown in Fig. 5.6).

We obtain the context information of an attack pattern by looking at the attack pat-

tern attributes Attack Prerequisites and Technical Context. As the context information

is specified in natural language, analysts have to manually check such context during the

application of attack patterns. After reviewing the context information of 102 attack

patterns, we propose a set of formal predicates for specifying context, which can be au-

tomatically checked against the three-layer requirements goal model (Section 4.2). Such

predicates include protected by, communicate, use technique, use data from, and accept

user input, detailed reasoning with these predicates will be presented in Section 5.3.2.

It is worth noting that the proposed predicates do not express contexts that cannot be

captured and checked in the three-layer requirements goal model. Such contexts are nor-

mally too detailed to capture in the domain model, for example, “The targeted application

runs with elevated OS privileges”. These cases will require manual analyst intervention

via an interactive pop-up in the tool.

In our example, the SQL Injection pattern has an attack prerequisite “SQL queries

used by the application to store, retrieve or modify data”, which is then formalized using

the predicate use technique as shown in Fig. 5.6. Note that if there are several pieces of

context information, they are specified in a conjunctive way, i.e., all of them have to hold

in order to apply the corresponding attack pattern.

Modeling Attack Pattern Solutions

Solutions of attack patterns are specific attack actions that are performed by attackers

using concrete attack techniques. We elicit such information from the attack pattern

attribute Attack Execution Flow, and model each attack action as a task in the goal model.

In particular, we focus on capturing the alternative attack actions for implementing the

attack.

When modeling the solution section of the pattern, we first create a general task to

summarize the overall attack that achieves the previously modeled anti-goals, such as T1:

Perform SQL Injection shown in Fig. 5.6. The Attack Execution Flow is specified in terms

of a sequence of attack steps that are required to fulfill the attack, thus, we capture this

information as sub-tasks, and-refining the general task. In our example, the tasks T4, T9,

and T14 are individual attack steps specified in the Attack Execution Flow. Moreover,

within each attack step, the attack pattern also describes alternative attack techniques

that can be used for performing the attack step. Thus, we model each of these techniques

as a refinement to the corresponding attack step. For example, in Fig. 5.6, the tasks T2

Operationalizing Anti-Goals with Attack Patterns 107

and T3 present two alternative attack techniques that can be applied to perform taskT4.

Note that when specifying the tasks, we reuse the original description provided by attack

patterns, maintaining their security expertise in the model.

Applying the Modeling Method

I have spent three person-days pragmatically applying the proposed method to model

102 (out of 504) attack patterns. In particular, during the modeling practice, I noticed

that this modeling task requires modelers to first thoroughly understand the rationale

of the pattern to be modeled. On average, each pattern costs me 10-20 minutes to

model, depending on the complexity of the pattern. The obtained models can be (re-

)used to operationalize attack strategies in a semi-automatic way, using our prototype

tool (Chapter 8). A full list of modeled attack patterns can be found in Appendix C.

These attack patterns are selected under the following criteria: first, the select patterns

should cover all attack pattern domains (as shown in Table 5.5) in order to assist our

attack analysis with comprehensive attack knowledge. Secondly, the pattern specifications

need to be complete, i.e., all the attack pattern attributes that are required to build the

contextual goal model should be well documented. In particular, each CAPEC pattern

has been specified with an attribute Completeness, valuing from Hook, Stub, to Complete,

and thus we focus on patterns that have complete specification.

It is worth noting that most attack patterns under the Social Engineering and Physical

domains have only incomplete specifications. In order to preserve the comprehensive

coverage of the selected patterns, instead of dropping all such incomplete patterns, we

identify the required pattern attributes in accordance with the overall description of those

patterns. As such, the constructed models for these patterns are comparatively simple.

In some extreme cases, an attack pattern model may only consist of one goal with task

operationalizes the goal. Such phenomena, on one hand, disclose the needs for the pattern

community to further develop the incomplete patterns. On the other hand, as the analysis

results of our approach are affected by such attack patterns, we should keep revising the

established models in accordance with the recent advances in the field of attack patterns.

In the CAPEC repository, each attack pattern has been documented with related

patterns that are more abstract or more detailed to it, using ChildOf relations. We also

capture such relations among the modeled 102 patterns, establishing pattern hierarchies,

which can help us to reduce the complexity of the attack operationalization analysis. Such

attack pattern hierarchies are presented in Appendix B.

108 A Holistic Security Attack Modeling and Analysis Approach

5.3.2 Attack Pattern Selection and Application

In this section, we present a tool-supported systematic process for operationalizing attack

strategies and eventually generating a collection of realistic attack alternatives that can

satisfy an attacker’s root anti-goal. The overall attack operationalization process is shown

in Fig. 5.7, each analysis step is detailed below. In particular, this analysis process takes

the attack strategy model (i.e., the anti-goal model generated in Section 5.2) as input,

while eventually produces a set of alternative attacks that are specified in text. It is worth

noting that all inference rules defined for the the attack pattern analysis (e.g., Table 5.6)

have been implemented by our prototype tool (Chapter 8), thus can be automatically

inferred.

Attack strategy
model

Relevant
attack

patterns

Applicable
attack patterns

Three-
layer goal

models

Find
relevant attack

patterns

Identify
applicable
patterns

 Generate
alternative

attacks

No

Yes

All leaf anti-
goals have

been analyzed Select a
leaf anti-goal

to analyze

Attack Knowledge Pre-processing

Model
attack patterns

Alternative
attacks

Legend

Input/
Output

Data Flow

Sequence Flow

Automatic
Activity

User
Activity

CAPEC
Attack pattern

models
Textual CAPEC
Attack patterns

Figure 5.7: A systematic process for attack strategy operationalization

Select A Leaf Anti-Goal

The operationalization analysis takes the attack strategy model as an input, which is

obtained from our attack strategy analysis (as presented in Section 5.2). An example

of the attack strategy model is shown at the top of Fig. 5.8, which specifies what an

attacker intends to attack and why. To operationalize different attack strategies, we need

to iteratively perform operationalization analysis for each leaf anti-goal in the attack

strategy model (i.e., G8-G11). As highlighted in Fig. 5.8, we select anti-goal G10 for

illustration.

Find Relevant Attack Patterns

To select appropriate attack patterns that operationalize the given anti-goal, we first

identify all relevant attack patterns according to the problem we have modeled for each

Operationalizing Anti-Goals with Attack Patterns 109

attack pattern. Since the problem of an attack pattern has also been modeled as structured

anti-goals, we can identify relevant patterns by matching the threat and target specified

in the structured anti-goals. Such match is automated using the inference rule REV

(Table 5.6): given an anti-goal G1 which imposes a threat TH to a target TA1, if an

attack pattern AP has an anti-goal G2 (as its problem), where G2 imposes the same

threat TH to a category of target TA2 that TA1 belongs to, then the attack pattern AP

is relevant to the anti-goal. For example, as shown in Fig. 5.8, we identify CAPEC pattern

SQL Injection is relevant to G10, as G10 can be matched with the problem G2 of SQL

Injection according to rule REV . Similarly, the other two patterns CAPEC-186 Malicious

Software Update and CAPEC-100 Overflow Buffers are also identified as relevant to the

anti-goal G10. Note that, in Fig. 5.8, we use pentagons to represent collapsed attack

pattern models in order to provide a better overview of the operationalization analysis

(an excerpt of an uncollapsed pattern model is indicated in the bottom left corner).

Attack Strategy
(G5)

Threat: Elevation of privilege,
Asset: Energy management

application,
Interval: Generate bill (G7)

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

(G6)
Threat: Elevation of privilege,

Asset: Energy management application,
Target: Energy supplier server,

Interval: Generate bill

Target-based refinement

Threat-based refinement

(G8)
Threat: Elevation of privilege

(Reach),
Asset: Energy supplier server,
Threat: Energy supplier server,

Interval: Generate bill

(G9)
Threat: Elevation of privilege

(Access),
Asset: Energy supplier server,
Threat: Energy supplier server,

Interval: Generate bill

Protection-based refinement
(G11)

Threat: Defeated security mechanism,
Asset: Energy management application,

Target: Firewall,
Interval: Generate bill

(G10)
Threat: Elevation of privilege,

Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

CAPEC-66
SQL Injection

(T1)
Perform SQL

Injection

C1C1 C1=use_technique(target_
application, sql_query)

(G2)
Threat: Elevation of

Privilege
Target: software

(G1)
Threat: Spoofing,
Target: software

CAPEC-100
Overflow Buffers

CAPEC-186
Malicious Software

Update

CAPEC-7
Blind SQL
Injection

CAPEC-108
Command Line

Execution through SQL
Injection

CAPEC-109
Object Relational
Mapping Injection

CAPEC-110
SQL Injection through

SOAP Parameter
Tampering

C1 C2

C3

C4 C5 C6

C7

X X
X

X
X

(T14)
Experiment and try

to exploit SQL Injection
vulnerability

(T9)
Determine user-

controllable input susceptible
to injection:

(T4)
Obtain an

 inventory of application
functionality

Figure 5.8: Operationalize a leaf anti-goal using attack patterns

When performing the attack pattern selection analysis, we take into account the pat-

tern hierarchies in order to select the most appropriate patterns. For example, as the SQL

Injection pattern has four children patterns which are also relevant to G10, we model them

as refinements of SQL Injection, as shown in Fig. 5.8. According to such a hierarchy, a

pattern and its ascendants represent only one operationalization alternative rather than

110 A Holistic Security Attack Modeling and Analysis Approach

Table 5.6: Inference rules for attack operationalization

REV relevant to(AP,G1)← has threat(G1, TH) ∧ has target(G1, TA1) ∧ has(AP,G2)

∧has threat(G2, TH) ∧ has target(G2, TA2) ∧ isa(TA1, TA2)

CR1 communicate(A,B)← depend(A, ,B)

CR2 communicate(A,B)← depend(B, ,A)

CR3 use technique(A,R)← has(A,R) ∧ resource(R)

CR4 use data from(A,B)← depend(A,R,B) ∧ data(R)

CR5 accept user input(A)← depend(A,R,B) ∧ data(R) ∧ human(B)

CR6 protected by(A,SM)← sec goal(SG) ∧ has asset(SG,A) ∧ operationalize(SM,SG)

APP applicable to(sql injection,G)← relevant to(sql injection,G) ∧ has target(G,TA)

∧use technique(TA, sql query)

ALT1 achieved(G1) ∨ ... ∨ achieved(Gn)← refine({G1...Gn}, G0) ∧ achieved(G0)

ALT2 achieved(G1)← and refine(G1, G0) ∧ achieved(G0)

multiple alternatives.

Identify Applicable Attack Patterns

After finding attack patterns that are relevant to an anti-goal, we further check their

context to determine whether these patterns are applicable in current system context.

We import the three-layer requirements goal model as the domain model that captures

system context, against which we can automatically check the attack pattern context. To

this end, we have defined a number of inference rules that specify the implication relation

between the formal context predicates and the goal model predicates, which are shown

as CR1-6 in Table 5.6. In particular, the formal context predicates are put in the left

hand side (i.e., the head of the rule), while the right hand side (i.e., the body of the

rule) presents the corresponding facts in the three-layer requirements goal model. For

instance, rule CR1 and CR2 express that if there is a dependency relation between two

actors, it implies the context that the two actors are communicating with each other.

Detailed information about the formal predicates of the three-layer goal model can be

found in Section 4.2. Overall, given a three-layer goal model, we can automatically apply

the above context rules to infer system context.

On top of these context check rules (i.e., CR1-6), we have defined specific applicability

rules for each attack pattern, as different patterns require different contexts. For example,

the rule APP shown in Table 5.6 is specifically defined for the pattern SQL Injection.

Operationalizing Anti-Goals with Attack Patterns 111

This rule says if the sql injection pattern has been identified as relevant to an anti-goal

G, and the target of G uses the technique sql query, then the sql injection pattern is

applicable to operationalize G. The entire set of pattern-specific applicability rules, which

we have defined for all the 102 attack patterns, can be found in Appendix D. All these

inference rules can be automatically inferred to assess the applicability of attack patterns.

It is worth noting that the context check rules (i.e., CR1-6) only apply to context that

can be captured in by our three-layer requirements goal model (i.e., the domain model).

For contexts that cannot be captured in the domain model, we define specific predicates

for each of them. In particular, such predicates are manually checked using question rules,

which let our prototype tool interact with analysts for checking the corresponding context.

For example attack pattern CAPEC-10: Buffer Overflow via Environment Variables has

a context “The application uses environment variables”, which cannot be captured in

our three-layer requirements goal model. Thus, we describe such context the predicate

use detailed technique, and define a corresponding question rule as below:

question(use detailed technique, TA, environment variables)←

relevant to(capec 10, AG), has target(AG, TA),

not use detailed technique(TA, environment variables),

not no use detailed technique(TA, environment variables)

The above rule means that when the attack pattern capec 10 (i.e., Buffer overflow via

environment variables) is relevant to an anti-goal AG which targets TA, if there is neither

positive nor negative evidence about TA uses environment variables, then a question will

be presented to analysts for checking that context. Based on the answers from analysts,

our prototype tool will automatically update context specification using corresponding

predicates (i.e., use detailed technique and no use detailed technique in this case). As

such, the same context does not need further check, i.e., one such context only needs to

be manually check once. Overall, with the support of our prototype tool, analysts are

able to semi-automatically identify applicable attack patterns.

When identifying the applicable pattern, we also consider the hierarchy among pat-

terns. As “parent” patterns focus on a more abstract problem, concerning a more general

context, we first check the parent patterns. If a parent pattern is identified as inappli-

cable, then all its children patterns will be identified as inapplicable without additional

checking; if a parent pattern is applicable, then we will further check each of its children

patterns. For example, as shown in Fig. 5.8, we first check the context of SQL Injection,

Malicious Software Update, Overflow Buffers, (i.e., C1, C2, C3), which turns out that

only SQL Injection is applicable (i.e., C1 holds). Then, we further check the context of

112 A Holistic Security Attack Modeling and Analysis Approach

children patterns of SQL Injection, and identify that only pattern Blind SQL Injection is

applicable.

Generate Alternative Attacks

Once identifying all applicable attack patterns to an anti-goal, we unfold the collapsed

applicable attack patterns (i.e., the pentagon notations in Fig. 5.8) and show detailed

attack behaviors (i.e., the solution part of an attack pattern model in Fig. 5.6). As such,

we complete the entire attack model, including both the attack strategies and attack

behaviors.

Once the entire attack model is obtained, we want to answer the question “Is the root

anti-goal achievable?”, “If so, how many different combinations of attack behaviors can

be performed to achieve the goal?”. To this end, we define inference rules to exhaustively

explore the space of alternatives, which has been implemented in Disjunctive Datalog

and can be inferred by our prototype tool using the DLV inference engine5. As shown in

Table 5.6, the rule ALT1 means if a goal G0 is alternatively refined by sub-goals G1...Gn,

then the achievement of each sub-goal serves as an alternative to achieve G0. On the

other hand, if a goal G0 is and-refined by sub-goals G1...Gn, then the achievement of all

the sub-goals is required to achieve G0, i.e., no more alternatives are introduced. This

rationale is implemented as the rule ALT2. By applying these two rules to the root

anti-goal of the attack model, we are able to obtain all the alternative attacks.

All the identified alternative attacks will be specified in text, which will be used to

assess the criticality of security goals as specified in our holistic security requirements

analysis (Section 4.3.2). It is worth noting that before using the identified attacks for

criticality analysis, risk assessments over such attacks are required in order to prioritize

them. Specifically, only attacks that are at high risk to damage systems will be used to

in the criticality analysis. As a result, the holistic attack analysis currently has not been

fully integrated with the three-layer security requirements analysis, which will be further

discussed in Chapter 10.

5.4 Validation

In this section, we focus on validating the entire holistic attack analysis approach, in

particular, whether the approach can help analysts to effectively identify attacks. To this

end, we applied it to a smart grid scenario, which was first described in Section 4.2.1

and will be presented in more details in Section 9.1. Since we have evaluated the attack

5www.dlvsystem.com

www.dlvsystem.com

Validation 113

strategy analysis in Section 5.2.3, in this case study, we place an emphasis on the opera-

tionalization of attack strategies. In particular, we exclusively evaluate the effectiveness

of the operationalization results, i.e., whether our approach is able to identify realistic

attack actions. To this end, we reference to a comprehensive security analysis performed

on the same smart grid case [Suleiman and Svetinovic, 2013], this study took a total of 16

person-months to identify threats, vulnerabilities and security requirements, the results

of which have been evaluated as realistic and effective.

We took the three-layer requirements goal model of the smart grid scenario as the

domain model, and applied our holistic attack analysis approach to identify alternative

attacks on this scenario. Note that all models that have been built and analyzed during

this study can be found in Appendix E. As some of these figures are too large (containing

more than 1000 elements), we make the vector file of these models online6.

Generate attack strategy. As the first part of our holistic attack framework, we

identified alternative attack strategies following our systematic approach (presented in

Section 5.2). In particular, we started from determining an anti-goal to analyze, which

attacked the integrity of energy consumption data, i.e., {Threat: Tampering, Asset: En-

ergy consumption data, Interval: Real-time pricing is applied}. Having this anti-goal as a

root goal, we manually applied anti-goal refinement patterns based on the domain model

to systematically refine the anti-goal from an attacker’s viewpoint and generated alter-

native attack strategies. The resulting attack strategy model included 53 anti-goals, 39

refinement links, and 20 and-refinement link, implying 12 alternative attack strategies.

Operationalize attack strategy. Once alternative attack strategies were obtained,

we operationalized them in terms of realistic attacks, using the attack pattern approach

presented in Section 5.3. Using the 102 attack patterns we have modeled, we first au-

tomatically identified relevant attack patterns for all the 14 leaf anti-goals in the attack

strategy model, resulting in 368 attack patterns in total. Each of the leaf anti-goals, on av-

erage, was matched with 26 relevant patterns. The full model is presented in Appendix E.

All the identified relevant patterns were automatically organized in a hierarchical manner

to facilitate the applicability analysis. After semi-automatically checking the context of

all the relevant attack patterns, we derived 28 applicable attack patterns for all of the 14

anti-goals, covering social, software, and physical attacks.

Take Fig. 5.9 as an example, which shows an excerpt of the final attack model. A

wide spectrum of attack patterns were identified, varying from social attacks (e.g., rogue

integration procedures), to software attacks (e.g., rainbow table password cracking), to

physical attack (e.g., lock picking). In particular, according to the attack model, we can

identify alternative (multistage) attacks that achieve the root anti-goal, i.e., imposing

6http://disi.unitn.it/~li/ap/validation.zip

http://disi.unitn.it/~li/ap/validation.zip

114 A Holistic Security Attack Modeling and Analysis Approach

rogue
integration
procedures

malicious
software

implanted

integrity
modification

during
distribution

authentic
ation

bypass
authentic

ation
abuse

try common
usernames

and
passwords

rainbow
table

password
cracking

brute
force

password
brute

forcing dictionary
based

password
attack

accessing
functionality
not properly
constrained

by acls

physical
destruction
of device or
component

using a
snap gun

lock to
force a

lock

lock
picking

bypassin
g

physical
locks

bypassing
physical
security

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,

Interval: Generate bill
Threat: Elevation of privilege (Reach),

Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate billThreat: Defeated security mechanism,
Asset: Physical access control,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,
Target: Physical access control,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Target: Authorization,
Interval: Generate bill

No additional attacks
are required

Figure 5.9: An excerpt of the final attack model

the elevation of privilege threat to the energy management application. For instance, an

attacker can first perform the lock picking attack to reach the energy supplier server and

then perform the rainbow table password cracking attack to gain access into the energy

supplier server.

Based on the complete attack model, including both high-level attack strategies and

realistic attacks behaviors, we automatically generate 108 realistic attack alternatives,

each of which consists of one or multiple attacks. To validate the analysis results, we

compared them with a comprehensive security analysis performed on the same smart

grid case [Suleiman and Svetinovic, 2013], the results of which showed that our approach

was able to effectively identify realistic. In particular, we found out that our identified

attack alternatives can cover all the threats to the integrity of energy consumption data

that are reported in [Suleiman and Svetinovic, 2013]. In addition, our results discovered

detailed attack behaviors that can be performed by attackers, and showed how such attack

Discussion and Related Work 115

actions were composed to form multistage attacks. For example, the comparison study

discovered a high-level threat “Tampering with SM’s firmware” (Table 4, T.5 in [Suleiman

and Svetinovic, 2013]), while our results yielded a corresponding multistage attack which

first performed CAPEC-16: Dictionary-based Password Attack (consisting of four detailed

attack steps) to defeat the password-based authorization and gained access to the smart

meter firmware, and then performed CAPEC-186: Malicious Software Update to tamper

with the smart meter firmware.

Overall, we contend that our approach can be applied to effectively identify realistic

attacks. In the meantime, we acknowledge that additional empirical studies should be

performed to evaluate different aspects of this approach, such as usability and scalability.

5.5 Discussion and Related Work

Attack modeling and analysis techniques. Attack trees are a typical way of represent-

ing attack scenarios. Although there is no unique way of creating attack trees, different

researchers have proposed their own ways to build attack trees, which are related to our

anti-goal refinement framework. Morais et al. [2013] advocate to first build the overall

attack, and then identify the violated security properties and the security mechanisms to

be exploited, respectively, and finally model the concrete attack actions. Paul [2014] pro-

poses a layer-per-layer approach to generate skeletons of attack trees using information

comes from system architecture, risk assessment study, and related security knowledge

base. However, these approaches do not capture the attacker’s malicious intentions and

cannot analyze attack strategies as we define them.

Apart from the attack trees, attack graphs are another way for representing attack

scenarios. An attack graph shows all paths through a system that end in a state where

an attacker achieves his malicious intentions. Phillips and Swiler [1998] first use attack

graphs to analyze network security. Due to the homogeneous settings of machines in the

network, the states of machines (i.e., nodes in the attack graph) and the atomic attacks on

machines (i.e., transitions in the attack graph) can be enumerated. As such, it is possible

to fully automate the generation of attack graphs using a comparatively simple attack

strategy. Take the approach of Sheyner et al. [2002], for example: an attacker starts

from a machine with the root permission, he then iteratively detects a new machine in

the network, logs into that machine, and gets the root permission of that machine until

reaching his target machine. In a recent study, Beckers et al. [2015] propose to apply the

attack graph approach to analyze social engineering attacks, where the states of people

are modeled as nodes and social engineering attacks are captured as transitions between

nodes. However, the attack graph approach only applies to systems that have simple and

116 A Holistic Security Attack Modeling and Analysis Approach

homogeneous components, and is therefore inappropriate for security analysis of complex

socio-technical systems that have heterogeneous components, such as people, software,

and hardware.

Attacker-oriented analysis. Inspired by the Art of War philosophy, i.e.,“Know your

enemies and know yourself, you will not be imperiled in a hundred battles.” [Tzu, 2011],

several approaches have been proposed to model and analyze security attacks from an

attacker’s viewpoint. Lin et al. [2003b] capture the requirements of a malicious user

that subverts an existing requirement as anti-requirements, which are incorporated into

abuse frames to represent threats and analyze security requirements. Lamsweerde [2004]

proposes to use anti-goals to model attacker’s malicious intention, and then exploit al-

ternative attacks by systematically refining such anti-goals. Sindre and Opdahl [2005]

extend traditional use cases to cover misuse cases, which describe harmful behaviors to

a system performed by adversaries . Building on the misuse cases, they propose a sys-

tematic process for eliciting security requirements. Elahi et al. [2010] extend goal models

to model attacker templates which consist of malicious goals and tasks, based on which

they assess system risks and identify countermeasures. All of theses approaches require

attacker knowledge as input, based on which they can analyze the influences of attacks

on systems and identify corresponding countermeasures. In particular, these approaches

make a strong assumption about the availability of relevant knowledge, e.g., “The proposed

framework assumes that analysts have knowledge about vulnerabilities, potential attacks,

and proper countermeasure or can obtain such information” [Elahi et al., 2010].

We argue that performing the attack analysis from an attacker’s viewpoint is a knowledge-

intensive task, where the body of attack knowledge plays an important role. However,

as pointed out by Souag et al. [2015], security knowledge is hard to acquire for software

designers in reality. Without bridging the knowledge gap, the assumptions made in the

above approaches become unrealistic, preventing the real adaption of those attack analy-

sis approaches. Our approach tackles this challenge by building on realistic and reusable

knowledge from existing attack knowledge repository, and can complement the above

attacker-oriented analysis approaches. In particular, our approach identifies alternative

attacks based on realistic attack knowledge, which can be used by those approaches to

perform particular analysis, e.g., analyzing the impact of the attacks.

Attack pattern-based knowledge reuse. Moore et al. [2001] first emphasize the impor-

tance of reusing known attack knowledge, which significantly affects the practicality of

attack analysis methods. Therefore, they define attack patterns, which encapsulate attack

knowledge, in order to facilitate knowledge-intensive attack analysis. In particular, each

Discussion and Related Work 117

pattern consists of four sections: goal, precondition, attack steps, and post-condition.

Other researchers have been inspired by Moore’s work, and have defined various types

of attack patterns. Gegick and Williams [2005] define software attack patterns in term of

a sequence of events, using regular expressions. Specifically, each event is expressed by

its associated component, such as user, server, hard disk, etc. By automatically matching

such patterns with system design, the approach can assist analysts in identifying system

vulnerabilities. Fernandez et al. [2009] specify attack patterns (i.e., misuse patterns)

using POSA template [Buschmann et al., 2007]. The POSA template includes much

more sections than the initial one defined by Moore et al. [2001], such as context, known

uses, countermeasures, etc., which contribute to the practicality of attack pattern-based

analysis. Although the above approaches contribute to the theoretical foundation of

attack patterns, they have not been pragmatically applied to develop attack patterns.

For example, Moore et al. [2001] illustrate their approach with four patterns, and we are

unaware of subsequent work to develop further patterns; Fernandez has only developed

three misuse patterns, as presented in his recent book[Fernandez-Buglioni, 2013].

Compared to the above theoretical approaches which focus on defining attack patterns,

CAPEC emphasizes the pragmatic development of security patterns, which is initiated as

a baseline catalog of attack patterns along with a comprehensive schema and classification

taxonomy and has accumulated 504 attack patterns thus far. Since CAPEC provides a

significant amount of practical security knowledge, it is receiving an increase in atten-

tion from both academia and industry. Thus, we choose CAPEC as the realistic attack

knowledge source used in our approach.

One of the challenges of using the CAPEC repository is dealing with it’s considerable

size. Kaiya et al. [2014] define term-maps, which link terms in requirements specifications

to specific security terms used in CAPEC, so as to automatically associate attack patterns

to requirements specifications and further derive security requirements. Engebretson and

Pauli [2009] enrich the CAPEC attack patterns with the concepts parent threat and parent

mitigation in order to facilitate the navigation among the large number of attack patterns.

Yuan et al. [2014] map CAPEC patterns to the STRIDE threat categories and develop

a tool to facilitate the retrieval of CAPEC patterns based on such categories. However,

all the above approaches do not check the applicability of attack patterns in terms of

context required by the patterns. Thus, the patterns retrieved by these approaches may

still include many non-applicable patterns, which need to be further checked by analysts

to determine their applicability.

Our approach contributes to the context-based pattern selection by clearly modeling

the context, problems, and solutions of each attack pattern in terms of contextual goal

models, which can be semi-automatically analyzed based on domain models. As such,

118 A Holistic Security Attack Modeling and Analysis Approach

our proposal can help analysts to identify applicable attack patterns in a more effec-

tive manner. Apart from the retrieval and selection issues of CAPEC patterns, existing

approaches only focus on reusing the knowledge of attack behaviors from the CAPEC

patterns, without mining the intention of attacks. For example, Kim and Kim [2014]

extract possible attack behaviors from CAPEC, and specify such behaviors using formal

language in order to simulate attacks within specific system settings. However, their ap-

proach cannot analyze combined behaviors from different attack patterns, and thus can

only detect a limited number of attacks. Our proposal not only analyzes the realistic

attack behaviors but also concerns attacker’s intention as described in Section 5.2. As

such, by associating the CAPEC patterns with an attacker’s high-level intention, we are

able to capture multistage attacks which consist of several attack patterns, revealing a

larger space of attacks.

Practical challenges in reusing attack patterns. Encapsulating knowledge as struc-

tural patterns is an effective way of reusing knowledge. Various patterns have been pro-

posed to relieve knowledge-intensive analysis in different domains, such as requirements

patterns, design patterns, security patterns, attack patterns, etc. Souag et al. [2015] sur-

vey reusable knowledge-based security requirements engineering approaches over the last

20 years, which shows that 9 out of 95 surveyed papers represent reusable knowledge in

the form of patterns (other forms include catalogs, taxonomies, etc.). Although patterns

can be reused in a comparatively easy manner, Araujo and Weiss [2002] have pointed out

that analysts need first to have a thorough understanding of available patterns in order

correctly select and apply them. This issue has been confirmed by us when applying

our approach to the CAPEC patterns. When dealing with a small number of patterns,

this issue will not be a challenge, as the analysts can afford the learning costs. However,

we argue that such issue can impose practical challenges when analyzing a large number

of patterns, e.g., the 504 CAPEC attack patterns. Facing this challenge, our approach

formalizes the context of attack patterns and semi-automates the context-based attack

pattern selection analysis, relieving analysts from scrutinizing the detailed context of all

patterns. We have applied the approach to pragmatically process 102 (out of 504) attack

patterns. Such processing must be performed only once, and the resulting models can be

directly used by our prototype tool.

Security risk assessment. Our attack analysis approach exclusively addresses the chal-

lenge of holistically identifying (multistage) attacks in STSs. All the attacks that are

identified by our approach can possibly happen to a system, however, we do not mean all

of them have to be treated by certain security mechanism. Instead, according to the secu-

Chapter Summary 119

rity requirements engineering process we have surveyed in Section 2.1.1, all the identified

realistic attacks should be further assessed for risks. In particular, only the attacks that

raise unacceptable risks will eventually be treated by corresponding security mechanisms.

Currently, our holistic attack analysis cannot assess risks for the identified attacks. As

a result, when practitioners leverage our approach to analyze security attacks, they are

always encouraged to perform a risk assessment step afterwards. In addition, as a po-

tential extension of our approach, we also intend to incorporate existing risk assessment

approaches (e.g., CORAS [Lund et al., 2010] and OCTIVE [Alberts and Dorofee, 2002])

to accommodate such analysis.

5.6 Chapter Summary

In this chapter, we present a holistic attack analysis approach, which complements our

holistic security requirements framework. In Section 5.1, we provide the overview of

this approach, which takes security requirements and domain models (i.e., three-layer

requirements goal models) as input and eventually produces a set of realistic (multistage)

attacks for STSs, assisting analysts in determining critical security goals (as described in

Section 4.3.2). In particular, we take an attacker’s perspective to discover possible attacks,

and divide our approach into two parts. Firstly, we aim to capture attacker’s high-level

attack strategies, which shed light on what and when an attacker wants to attack. To

this end, we examine three real attack scenarios, based on which we propose an approach

to systematically generate attack strategies (Section 5.2). Secondly, we investigate how

to efficiently operationalize the identified attack strategies in terms of realistic attack

actions, which is reported in Section 5.3. Specifically, we propose a systematic method

to construct contextual goal models from CAPEC attack patterns, and have practically

applied this method to model 102 patterns. Based on these models, we further propose

a systematic analysis process and a collection of formal inference rules so as to semi-

automatically leverage the attack pattern models to operationalize attack strategies. In

Section 5.4, we validate the utility of the holistic attack analysis approach by applying it

to a smart grid scenario, the result of which shows our approach is able to not only identify

realistic threats but also to disclose detailed multistage attacks. Finally, we discuss our

proposal from several aspects, comparing it with corresponding state-of-the-art.

120 A Holistic Security Attack Modeling and Analysis Approach

Chapter 6

Integrating Security Patterns with

Security Requirements Analysis

Good programmers know what to write. Great ones know what to

rewrite (and reuse).

Eric S. Raymond

In Chapter 4 we have proposed to leverage existing security patterns to operationalize

security requirements in terms of security mechanisms. However, several challenges were

revealed during that work, hindering the application of security patterns. Firstly, there are

normally more than one security pattern candidates that can potentially operationalize

one security requirement, and analysts have to manually choose the best pattern to apply,

which a non-trivial task as analysts need to manually compare all candidates. Specifically,

the complexity of such task grows with the number of security requirements. Secondly,

applying security patterns in terms of goal models is laborious and time-consuming, re-

quiring analysts to have a full understanding of a security pattern they are about to

use.

In this chapter, we propose a systematic and tool-supported approach to integrate

existing security patterns into our three-layer framework, facilitating the application of

security patterns. Note that the approach is an extension of the security goal operational-

ization analysis we have introduced in Section 4.3.3, which can be applied in an easier

and more efficient way. As a result, the final output of this approach is an operational-

ized security goal model, which is specific to our holistic security requirements analysis

approach.

Specifically, we define a collection of concept mappings between the constituent con-

cepts of security patterns and contextual goal models, and provide a detailed process

for practically constructing contextual goal models from existing security pattern speci-

122 Integrating Security Patterns with Security Requirements Analysis

fications. Following this modeling process, we have pragmatically built contextual goal

models for 20 security patterns documented in [Fernandez-Buglioni, 2013]. On the ba-

sis of such contextual goal models, a systematic process has been proposed for selecting

the most appropriate security pattern and applying it to our three-layer security goal

models (introduced in Chapter 4). Both the construction of security pattern models and

the selection and application analysis are supported by our prototype tool, which will be

presented in Chapter 8.

In the remainder of this chapter, we first describe the rationale of integrating security

patterns with security requirements analysis in detail (Section 6.1). Then, we present how

to establish contextual goal models based on textual security patterns in Section 6.2. In

Section 6.3, we introduce a systematic process for selecting and applying security patterns.

Finally, in Section 6.4, we compare our proposal with related work.

6.1 Security Patterns Complement Security Requirements Op-

erationalization

Requirements Engineering (RE) has been increasingly focusing on security-specific issues,

arguing for an upfront treatment of security in software system design. Goal-oriented

modeling techniques constitute an effective way to capture and analyze stakeholder inten-

tions. Proposals such as Secure Tropos [Mouratidis and Giorgini, 2007a], Secure-i* [Liu

et al., 2009], and STS analysis [Paja et al., 2013], have been used by many researchers to

analyze security requirements. In particular, our three-layer security requirements analy-

sis framework, presented in Chapter 4, aims to holistically analyze security requirements

for STSs. However, dealing with security concerns for complex software systems is a labo-

rious and knowledge-intensive process, especially during the operationalization of security

requirements.

Security patterns encapsulate reusable security knowledge that can support analysts

with little security knowledge. Much work has been done to collect and document such

patterns, resulting in several security pattern repositories, such as [Hafiz et al., 2007; Scan-

dariato et al., 2008; Fernandez-Buglioni, 2013]. According to a recent mapping study [Ito

et al., 2015], currently there are more than 200 security patterns have been proposed.

However, among 30 recent security pattern approaches surveyed by Ito et al. [2015], only

13% of these approaches (i.e., four approaches) involve tooling. More specifically, these

four tool-supported approaches deal with either the selection of security patterns or the

application of security patterns, but none of them can support both topics. In addition,

these tool-supported approaches only involve a limited number of security patterns (no

more than six patterns). As summarized by Ito et al. [2015], “security pattern research

Model Security Patterns as Contextual Goal Models 123

is still in its infancy in terms of automation”. As such, security patterns are handled

largely by human, hindering the practical adoption of security patterns in large-scale sys-

tems (e.g., STSs). Especially when selecting security patterns from the large number of

candidates, manual analysis becomes almost impossible.

Regarding the above challenges, we argue that integrating goal-oriented security re-

quirements analysis with security pattern analysis can benefit both types of analysis. On

one hand, goal models capture the rationale for applying security patterns and facilitate

selection among alternatives. On the other hand, since security patterns encapsulate

a large body of security knowledge, they can help to efficiently operationalize security

requirements into specific security solutions.

6.2 Model Security Patterns as Contextual Goal Models

In this section, we first present a contextual goal modeling language, used to define con-

textual goal models for security patterns. In addition, we define mappings between con-

stitutes of security pattern and the contextual goal modeling language, and present a

detailed process for creating a contextual goal model based on security pattern speci-

fications. Finally, we summarize some empirical observations derived from practically

modeling 20 security patterns.

6.2.1 A Contextual Goal Modeling Language

We extend our three-layer goal modeling language described in Section 4.2 with domain

properties in order to model and analyze context within a goal model. A domain property

is a fact related to a particular domain, while a design-time domain property is a domain

property that can be verified at design time by related analysts. For example, “Computer

systems on a local network connected to the Internet” is a design-time domain property,

and analysts can verify this fact during design time according to the designed system

infrastructure. For another example, “The number of users increases significantly” is not a

design-time domain property, as it can only be verified at run-time. Since security pattern

analysis is carried out at design-time, we only capture design-time domain properties to

analyze design-time contexts. A particular context can be arbitrarily complex, consisting

of either a single domain property or could be an aggregation of domain properties of any

complexity, typically, via and/or operators.

It is worth noting that the concept design-time domain property should be distin-

guished from the concept domain assumption. A domain assumption is always assumed

to be true during system designs and does not need to be checked. For instance, in

124 Integrating Security Patterns with Security Requirements Analysis

Fig. 6.2, “other security measures do not cover all possible attacks” is a domain assump-

tion. As introduced before in Section 3.2, we follow the method defined in [Ali et al.,

2010] to model context within goal models. In particular, each context that is attached to

a goal model element serves as a variation point, with the semantics that the goal model

element is required if and only if the context holds.

Apart from the design-time domain property, we also include two unary relations

mandatory and preferred (nice-to-have) in the contextual goal modeling language. Such

relations were defined by Jureta et al. [2010], where mandatory indicates that a require-

ment must be satisfied and preferred indicates that a requirement is nice-to-have. In

particular, we define the context that is attached to mandatory requirement is a primary

context, while define the context that is attached to preferred requirements is a secondary

context. Such differentiation helps us to select applicable security patterns, which will be

introduced in Section 6.3.2.

6.2.2 A Process for Creating Contextual Goal Models from Security Patterns

To build contextual goal models that capture contents of security patterns, we focus

on analyzing the five essential predefined sections of security patterns, as exemplified in

Table. 6.1. For each of the five sections of the security patterns, we map the content

of the section to concepts of the contextual goal modeling language by considering the

definitions of those concepts. Our analysis results in a concept mapping, shown in Fig. 6.1.

Apart from the concept mapping, we further provide detailed guidelines that constitute

a systematic process for creating a contextual goal model for a given security pattern.

The Intrusion Detection System pattern (Table. 6.1) is used throughout this section to

illustrate the mappings and guidelines, with the corresponding contextual goal model

shown in Fig. 6.2.

Context Problem Force Solution Consequence

Goals SoftgoalsDesign-Time
Domain Property Task ContributionDomain

Assumption

0...*1...*

1 1 1 1 1 1 1111111

1...* 1...*0...* 0...* 0...*0...* 0...* 0...* 1...* 1...* 1...*

Security Pattern
Sections

Contextual
Goal Model
Concepts

Figure 6.1: Concept mappings between contextual goal models and security patterns

Context section analysis. This section describes the initial context of the security

pattern, in which the security problem occurs and is being solved. We model the context

with one or multiple design-time domain properties. For example, the context C1 in

Model Security Patterns as Contextual Goal Models 125

Table 6.1: The specification of the Intrusion Detection System pattern [Fernandez-Buglioni,

2013]

Name: Abstract Intrusion Detection System

Context:

Nodes for local systems that need to communicate with each other using the Internet.

Problem:

An attacker may try to infiltrate our system through the Internet. We need to know when an

attack is happening and take appropriate response.

Force:

• Incomplete security. Security measures such as encryption, authentication and so on may not

protect all our systems, because they do not cover all possible attacks.

• Non-suspicious users. Request coming from a non-suspicious address (permitted by a firewall)

could still be harmful and should be monitored further.

• Flexibility. Hard-coding the type of attack can be done easily. But it will be hard and time-

consuming to adapt to attack patterns that change constantly.

Solution:

Each request to access the network is analyzed to check whether it conforms to the definition of

an attack. If we detect an attack, an alert is raised and some countermeasures may be taken.

Consequence:

• Non-suspicious users. A request coming from a non-suspicious address (permitted by a firewall)

is further inspected and analyzed.

• Flexibility. The detection information can be modified to include new attacks.

• There is some overhead in the addition of IDSs to a system.

Fig. 6.2 is the initial context, which is represented by one design-time domain property

DTDP1 extracted from the context section. Note that the context C1 is attached to

the root goal of the security pattern model, which is extracted from the problem section

(introduced below).

Problem section analysis. A problem is a description of a situation, for which

stakeholders do not have a solution. We use one or several goals or softgoals to capture

stakeholder needs concerning such a problem. As the problem is essential to a security pat-

tern, we model the goals/softgoals that capture the problem as mandatory requirements,

which have to be satisfied by security patterns.

We analyze this section sentence by sentence, each of which usually leads to the inclu-

sion of a goal/softgoal. If there are several goals/softgoals, we need to consider the rela-

tions between sentences and determine the refinement structure of these goals/softgoals.

It is worth noting that the description of the problem section may also involve domain

126 Integrating Security Patterns with Security Requirements Analysis

Analyse each
access request

Detect attacks and
take appropriate

response
Flexibility

Real time
behaviour

Make

Make Context Specification

Raise alter when
detect attacks

Context:
C1 = DTDP1
C2 = C1 ^ DTDP2
C3 = C1^ DTDP3

Design-Time Domain Property:
DTDP1: Nodes for local systems that need
to communicate with each other using the
Internet.
DTDP2: request coming from a non-
suspicious address could be harmful
DTDP3: Have sufficient and appropriate
information

Apply countermeasures

Detect attack

Other security
measures do not
cover all possible

attacks

Monitor non-
suspicious

users

C2

C3

Make

Performance

Hurt

Apply Intrusion
Detection System

(IDS) pattern

Application
Security

C1

An attacker can
infiltrate our system
through the Internet

Legend

Task

And-refine

Contribution

refineGoalSoftgoal

Domain
Assumption

C
Context

Mandatory
Softgoal

Preferred
Softgoal Operationalize

Figure 6.2: The contextual goal model of the IDS pattern

assumptions, which should be identified and modeled within the refinement structure,

such as “An attacker may infiltrate a system through the internet” shown in Fig. 6.2. The

root element of a goal model constructed through this process must be mandatory.

To integrate the security patterns with security requirements analysis, we extract not

only the specific problems that are solved by the security pattern, but also the high-

level security requirements that lead to those detailed problems. If the high-level security

requirements are not explicitly specified in this section, we need to do further analysis.

In the IDS example, the first sentence presents a domain assumption “Attacker may

infiltrate a system through internet”, which also implicitly presents a high-level security

requirement, i.e., the security of the software application should be protected. The next

sentence “We need to know when an attack is happening” specifies a detailed problem,

which is a refinement of the high-level security requirement. Thus, we obtain a model

fragment as shown in the upper-right corner of Fig. 6.2.

Force section analysis. Forces are considerations, often contradictory, which have

to be taken into account to determine the applicability of a pattern. These considerations

are often related to non-functional requirements (NFRs), such as performance and cost.

We model such forces as preferred softgoals, where stakeholders want to satisfy as many

of such goals as possible. Other forces may belong to domain assumptions, which are

always assumed to be true during the security analysis. For instance, the force Existing

security measures cannot cover all attacks, shown in Fig. 6.2, is a domain assumption,

Model Security Patterns as Contextual Goal Models 127

under which the IDS security pattern operationalizes the security goals.

This section is specified in an itemized manner. Each item starts with a key word,

based on which we decide whether the force is a preferred softgoal (e.g., Flexibility) or

a domain assumption (e.g., Incomplete Security). It is worth noting that some preferred

softgoals are context-dependent, only needing to be considered in particular context.

For example, the softgoal “Monitor non-suspicious users” only holds under the context

“requests from non-suspicious address could be harmful”. If this context does not hold,

the force does not need to consider. Therefore, we identify another context C2 and add

it to this softgoal.

Solution section analysis. This section describes actions that are carried out by

a security pattern. We model them as tasks, which specify how the “system-to-be” im-

plements a security pattern. Similar to the analysis in the Problem section, the relations

between tasks should also be identified and modeled in an appropriate structure. As shown

in Fig. 6.2, we identify four sub-tasks, which are siblings, for applying the IDS pattern.

Note that, the granularity of solutions varies from pattern to pattern. If the information

provided in this section is too general, we can optionally extract additional information

from other non-essential sections, such as the Structure, Dynamic, and Implementation

sections.

Consequence section analysis. This section describes the consequences of a secu-

rity pattern, which indicates both benefits and liabilities of the pattern. We capture these

influences using contribution links. This section is also documented in an itemized way,

and each item should correspond to one force, documented in the Force section. However,

the correspondence between the Force section and the Consequence section may not be

strict. The Consequence section may introduce NFRs in addition to those described in the

Force section. These NFRs should also be taken into account, via inclusion as preferred

softgoals, when choosing a security pattern. For example, the consequence description

“There is some overhead in the addition of IDSs to a system” (Table. 6.1) indicates the

IDS pattern hurts the performance of a system. The NFR (performance), which is not

initially specified in the Force section, should be added into our model. In other cases,

the preferred softgoals from the Force section may not be mentioned in the Consequence

section. Thus, we need to infer the pattern’s influences on those softgoals based on our un-

derstanding of the pattern, or search for related knowledge from other reliable knowledge

bases.

Some influences on preferred softgoals are also context-dependent. As shown in Fig. 6.2,

the task “Detect attack” can only make the softgoal “Real time behaviour” under the con-

text that there are sufficient and appropriate information about attacks. It is worth noting

that the influences of a security pattern may also depend on its detailed implementations.

128 Integrating Security Patterns with Security Requirements Analysis

For example, as described in the Authenticator pattern, the consequence “The overhead

depends on the protocol used” cannot be directly modeled. We need to first model two

alternative tasks “Apply a simple protocol” and “Apply a complex protocol”, which refines

the task “Apply an appropriate protocol” and then examine their influences respectively.

6.2.3 Empirical Observations

Thus far we have constructed contextual goal models for 20 security patterns described

in [Fernandez-Buglioni, 2013]. All the pattern models are listed in Appendix F. During

this exercise, we observed several issues, which may affect the quality of resulting models.

1. The specifications of some security patterns are incomplete, such as missing a section.

2. Not all security patterns are specified in a consistent way. For example, some pat-

terns are specified in a threat-oriented manner, while others are in a function-oriented

manner.

3. The granularity of descriptions may vary greatly among patterns. For instance, the

solution section of some security pattern only describes general idea of the pattern

in one sentence, while some other pattern uses several paragraphs to explain related

security mechanisms.

These observations disclose that processing and modeling textual security patterns are

time-consuming, and additional knowledge related to security patterns is usually required

during this process. This fact further explains why security patterns are not widely

applied. In the meanwhile, it justifies the value of our work, i.e. constructing reusable

contextual goal models for 20 security patterns. In addition, the above observations

also expose the shortcomings in existing security pattern specifications, which should be

tackled by the security pattern community.

6.3 Selecting and Applying Security Patterns to Operationalize

Security Requirements

Take the modeled security patterns as input, we propose a systematic process to select and

apply them to operationalize critical security goals. It is worth noting that the proposed

analysis process can be seen as an extended version of the security goal operationalization

analysis (as presented in Section 4.3.3), which systematically leverages security patterns

that have been modeled as contextual goal models to operationalize security goals. In

this sense, we seamlessly integrate security patterns with security requirements analysis.

Selecting and Applying Security Patterns to Operationalize Security Requirements 129

Note that we have implemented a prototype tool, which supports the application of our

approach and will be described in detail in Chapter 8.

Get a critical
security goal

(IN1)

Generate
security pattern
candidates (IN3)

Check
primary context

(IN2, IN3)

candidates
found?
Y

N

Check
secondary

context check
(IN2, IN3)

Apply
security pattern
(IN1, IN2, IN3)

 Select the
best security
pattern (IN3)

all
security goals are

treated?

N

Do not apply
security pattern

End

Start

Y

(IN1)
Security Goal Model

(IN3)
Contextual Goal Model

(Security Patterns)

(IN2)
Context Specification

Legend

Activity

Decision

Input/Output

Start/End

(OUT)
Security Goal Model

with applied contextual
goal models

Figure 6.3: Security pattern analysis process

The entire security pattern analysis process is shown in Fig. 6.3, which requires three

types of information as input:

1. The security goal model, which captures functional requirements and security re-

quirements of the target domain. In particular, we use the three-layer requirements

goal models (introduced in Chapter 4) for this purpose. The security requirements

captured in the model are the objects that to be operationalized, while the functional

requirements describe the domain.

2. The context specification describes the environments of the domain, which is com-

posed of a list of design-time domain properties. This specification does not need to

be complete at the beginning of the analysis, and it can be incrementally enriched

during the application of security patterns. In particular, the initial context speci-

fication is derived from the three-layer requirements goal models. Then, during the

context analysis, our prototype tool will interact with users for checking undecidable

context, based on which the tool will update the context specification.

3. A collection of security patterns, which have been modeled in terms of contextual

goal models (follow the method described in the last section). In particular, we here

leverage the 20 security patterns we have pragmatically modeled (Section 6.2.3).

Note that, in Fig. 6.3, each input is assigned a tag, such as IN1. If the input is required

by one activity, the tag of that input will be specified at the end of the description

of that activity. The overall analysis process selects the best security pattern for each

critical security goal, and applies the selected pattern to the security goal model, as well

as updating the context specification. In particular, the final output of this analysis

process is a security goal model with applied security patterns, i.e., solutions modeled in

130 Integrating Security Patterns with Security Requirements Analysis

contextual goal models. Such a security goal model will be further used and analyzed in

our holistic security requirements analysis, specifically, taking as the input of cross-layer

analysis (Section 4.3.4). In the rest of this section, we describe each step of the process

in detail, and finally illustrate the entire process with the smart grid scenario.

We here take part of a smart grid real-time pricing scenario as an example to illustrate

the security pattern analysis process. This scenario has been briefly described before

(Section 4.2.1), the full description of which will be presented in Section 9.1. Fig. 6.4

shows the exact part of the scenario, which we use for illustration.

Flexible

Low cost

(S)
high application integrity

[energy management system,
 database access function]

(S)
high application integrity

[energy management system,
 support calculate price]

......

Legend

Task

And-refine

Operationalization

Refine

Goal

Preferred
Softgoal

Actor

(S)
Security

Goal

(S)
Critical

Security
Goal

Support
calculate

price

Support Energy
supplier

communicates
with smart meter

Support
send price to

customer

Communicate
with smart meter

firmware

Communication
function

Obtain
history price

Retrieve data
from Database

Generate
new price

Price
calculation

function
Database access

function

Communicate
with HEMS

Energy
Manage

ment
System

Use
internetUse dedicate

data communication
 network

Hurt

Help

Contribution

Figure 6.4: A part of the security goal model of the smart grid scenario

6.3.1 Generate Security Pattern Candidates

The security goal model contains a number of critical security goals, which are analyzed

one by one in our analysis process. To operationalize a critical security goal, we first

identify security pattern candidates, which can potentially treat the security goal. In

particular, we match the security property of the security goal with the root goal of the

contextual goal model of each security pattern (e.g. Application Security in Fig. 6.2) to

determine whether a security pattern can be a candidate solution to the critical security

goal. The results of this analysis reveal an initial set of security pattern candidates. Such

analysis can be automated by our prototype tool.

It is worth noting that the match process takes the hierarchy of security property into

account, such as described in [Firesmith, 2004; Scandariato et al., 2008]. For example, the

security property Application Integrity is a specialization of Application Security. Thus,

a security pattern which can tackle Application Security can also be applied to tackle the

Application Integrity problem, such as the IDS pattern.

Selecting and Applying Security Patterns to Operationalize Security Requirements 131

6.3.2 Security Pattern Selection

Once we have an initial set of the security pattern candidates, which typically contains

more than one pattern, we carry out context-based selection to choose the most appro-

priate security pattern. To this end, we need to check each context to determine whether

it holds within a particular domain.

The primary context, which is attached to mandatory requirements, is essential to the

applicability of a security pattern. Such as shown in the IDS pattern (Fig. 6.2), the root

goal is a mandatory requirement, which is valid when the primary context C1 holds. If

the primary context C1 does not hold, the root goal will be deactivated, i.e., the pattern

becomes inapplicable. In contrast to the primary context, the secondary context mainly

affects the quality of the security pattern in terms of its contributions to the preferred

softgoals. For instance, in the IDS pattern example, if the context C2 does not hold,

its corresponding preferred softgoal will be deactivated, as well as the contribution links

connected to the softgoal.

Having the two types of contexts, we propose two steps for selecting security patterns.

As shown in Fig. 6.3, we first check the primary contexts of security pattern candidates

to filter inapplicable security patterns. After that, if there is more than one applicable

security pattern left, we check the secondary contexts to determine the quality of each

security pattern, based on which we select the best pattern. In particular, we quantify

contribution links {make, help, hurt, break} as {2, 1, -1, -2} respectively to evaluate the

influences a pattern has on the satisfaction of preferred softgoals, aiding in selection of

patterns. Note that other more complicated goal satisfaction analysis techniques can also

be used for this selection, such as those compared and evaluated in Horkoff and Yu [2013]

As manual checking whether a context holds is a non-trivial task, especially for complex

and large models, we propose an interactive process that semi-automates this task. We

propose to formalize the context of security pattern in Disjunctive Datalog rules, allowing

us to automatically check them against the context specification using our prototype tool.

For example, the context C1 (in Fig. 6.2) can be formalized as below:

R1 hold(c1)← node(N1) ∧ node(N2) ∧ communicate(N1, N2, internet)

R2 not hold(c1)← node(N1)∧node(N2)∧no communicate(N1, N2, internet)

R3 undecidable(c1)← not hold(c1) ∧ not not hold(c1)

If neither hold nor not hold can be inferred for a context, then the context is unde-

cidable, and our prototype tool turns to users for manual check. On the basis of users’

answers to a list of yes/no questions, our prototype tool can automatically update the

context specification.

132 Integrating Security Patterns with Security Requirements Analysis

For each of the 20 security patterns we have modeled (shown in Appendix F), we have

formalized its context expressions. In particular, during our formalization practice, we

noticed that the contexts of security patterns are typically described in a very detailed

manner, e.g., “Enterprise applications in an organization’s internal network are accessed

by a broad spectrum of users that may attempt to abuse its resources”. Such detailed

contexts cannot be captured in our three-layer requirements goal model, and thus most of

them need to be checked by analysts. Although manual checks are still required, our pro-

totype tool can facilitate such checks. In particular, if a context cannot be automatically

checked, the tool can actively pop up dialog to analysts with corresponding questions.

Based on the analysts’ answer, the tool can automatically update the context specifica-

tion. In such a way, one context only needs to be manually check at most once, as the

check results have been updated in the the context specification. Another observation we

have obtained is that contexts of different security patterns have little overlap. As such,

we have almost defined particular predicates for each security pattern.

6.3.3 Security Pattern Application

Security Goal Model Security Pattern Goal Model

Analyse each
access request

Detect attacks and
take appropriate

response

Flexible

Real time
behaviour

Make

Make

Apply
countermeasures

Other security
measures do not
cover all possible

attacks Monitor non-
suspicious

users

C3

Make

Performance
Hurt Apply Intrusion

Detection System
(IDS) pattern

An attacker can
infiltrate our system
through the Internet

Detect
attack

(S)
high application integrity

[energy management system,
support calculate price]

Communicate
with smart

meter firmwire

communication
function

use
internet

use dedicate
data communicate

network

Energy
Management

System
Low cost

Hurt

Help

Hurt

Help

X

Application
Security

Figure 6.5: Applying IDS pattern to the goal model of the smart grid scenario

Thanks to the reusable goal models we have constructed for security patterns, analysts

do not need to manually construct the goal model of a security pattern each time they

want to apply it. Thus, after selecting the best security pattern, the analyst can directly

insert the goal model of the security pattern to the security requirements goal model, as

illustrated in Fig. 6.5. Note that the red cross indicates the context C3 does not hold,

and the corresponding contribution link is deactivated.

To correctly integrate the goal model of a security pattern into the security goal model,

firstly, the analyst needs to merge the softgoals newly introduced by the security pattern

Related Work 133

with the original softgoals by following the techniques proposed by Niu and Easterbrook

[2007]. For example, in Fig. 6.5, the new softgoal Flexibility has been merged with the

original softgoal Flexible. Secondly, the analyst should do a pairwise comparison of all

the old elements with all the new elements to find what new contributions should be

present. As shown in Fig. 6.5, two new contributions links are identified with regard to

the new softgoal Performance. The model shown in Fig. 6.5 is the final output of our

security pattern analysis, which is then used and analyzed in the cross-layer analysis of

our holistic framework (Section 4.3.4).

Impact of security solutions. Once the above steps have been performed, we

realized that the solutions offered by security patterns (i.e., tasks in Fig. 6.5) do not

function by themselves but interact with existing system functions. For example, the

task “Analyze each access request” requires each function that sends access requests to

be recorded. Such impact of security solutions should be captured and reflected in the

functional requirements, otherwise the system specification is incomplete. To this end,

we propose a systematic approach to identify and enforce the impact imposed by security

solutions in Chapter 7.

6.4 Related Work

There are several approaches that model security patterns as goal models. Mouratidis

et al. [2006] extend their security analysis approach Secure Tropos by integrating four

security patterns. Yu et al. [2008] propose to formally specify role-based access control

as a security pattern in terms of i* models, and implement a tool to automatically detect

contexts and apply security patterns. These approaches do not address the pattern selec-

tion issues, while our proposal has a main focus on the context-based pattern selection

analysis. In addition, only a limited number of security patterns are presented in their

work, and no details are provided on how to model security patterns as goal models. In

contrast, we pragmatically target security patterns in existing pattern repositories. We

not only provide a detailed method for modeling security patterns, but also practically

follow the method to model 20 security patterns in [Fernandez-Buglioni, 2013].

Araujo and Weiss [2002] apply the Non-Functional Requirement (NFR) framework as a

complementary representation for security patterns, which helps to analyze the tradeoffs

between forces. In particular, they define the force hierarchy to represent interactions

between forces, and model such hierarchy for 14 security patterns. Our approach is in line

with this work, while further incorporates context-based analysis to facilitate the selection

of security patterns. Asnar et al. [2011a] propose a method to design organizational

patterns from SI* models, which deals with system security and dependability. Their

134 Integrating Security Patterns with Security Requirements Analysis

approach proceeds in the opposite way of ours, they aim to extract security patterns from

goal models, while we aim to apply security patterns in the context of goal model analysis.

Security patterns have been applied downwards. Shiroma et al. [2010] focus on apply-

ing security patterns in the context of UML diagrams. In particular, they have defined

transformation rules to automate this application, rewriting UML diagrams based on the

specification of security patterns. Sánchez-Cid and Maña [2008] argue that security pat-

terns should not only be used in the early software engineering stage to represent abstract

security solutions, but also need to be applied throughout the entire lifecycle of software

development. As such, they provide a language which describe security solutions to assist

software engineers in implementing security patterns into software applications. These

approaches focus on the development stage of SDLC (Software Development Lifecycle),

which contributes to the implementation of security solutions (included in security pat-

terns). Different from them, our approach applies security patterns in the requirements

stage of SDLC, focusing on identifying and applying the best security solutions that op-

erationalize security requirements.

Hafiz et al. [2007] have presented and discussed several dimensions for classifying secu-

rity patterns, such as security properties, logic tiers, security concepts, system viewpoints

and so on. Such dimensions play an important role in navigating through security pat-

terns, indirectly aiding the selection of security patterns. Our approach uses security

properties for pattern classification, which serves as the first step for identifying relevant

security patterns. After that, our approach further analyze the context of each relevant

pattern in order to determine their applicability.

Other work has also been done on systematically analyzing textual patterns. Gross

and Yu [2001] specify a systematic way to represent, analyze and apply design patterns

by using NFR framework. They illustrate their method based on the study on several

design patterns, and report their experiences in applying their method. However, their

approach does not analyze the context of a pattern and provide no tool support for

pattern selections. Supaporn et al. [2007] focus on generating security grammars, which

are specified in extended-BNF formats, by analyzing descriptions of security patterns. In

particular, they propose to build grammar trees to represent the semantics of security

patterns. We argue such grammar trees can complement our approach, helping us to

better understand and process the textual security patterns.

6.5 Chapter Summary

In this chapter, we propose to integrate security patterns with security requirements

analysis by modeling security patterns as contextual goal models. We argue that our

Chapter Summary 135

approach contributes to both the operationalization of security requirements and the

adoption of security patterns (Section 6.1). In particular, we define concept mappings

between security patterns and contextual goal models, and provide a detailed process for

establishing contextual goal models based on security pattern specifications (Section 6.2).

We have followed such method to pragmatically model 20 security patterns from a security

pattern textbook [Fernandez-Buglioni, 2013]. On the basis of such security patterns, we

propose a systematic process to select and apply security patterns and illustrate the

process with a smart grid scenario (Section 6.3). The proposed analysis process can

be seamlessly integrated into our holistic security requirements analysis framework (as

presented in Chapter 4), enhancing the security goal operationalization analysis. Finally,

we compare our proposal with related work (Section 6.4).

136 Integrating Security Patterns with Security Requirements Analysis

Chapter 7

Analyzing the Impact of Security

Mechanisms

As part of our holistic security requirements analysis framework, we propose to opera-

tionalize security requirements in terms of security mechanisms by using security patterns

(Section 4.3.3), which has been further expanded and detailed in Chapter 6. During such

operationalization analysis, we have identified that the derived security mechanisms do

not function on their own, but impose impact on existing functional requirements. Al-

though related work has acknowledged that the application of security mechanisms can

affect system requirements specifications, there is no systematic approach to describe and

analyze this impact.

In this chapter, we propose to capture and enforce the impact that security mech-

anisms impose over system requirements in order to completely and correctly account

for their integration. Specifically, we investigate in depth a collection of security mecha-

nisms that are well documented in security pattern repositories [Scandariato et al., 2008;

Fernandez-Buglioni, 2013] in order to better understand what they are and how they

function. Based on this study, we propose a conceptual model for security mechanisms,

apply and evaluate this model against 20 security mechanisms. On the basis of the

conceptual model, we propose a systematic process for analyzing and enforcing security

mechanisms on system requirements. In particular, given system requirements specifica-

tions and the security mechanisms to be applied, our approach can systematically and

semi-automatically rewrite the requirements specifications, producing security-enhanced

requirements specifications.

In Section 7.1, we detail the impact of security mechanisms and explain why it is

important to capture and enforce such impact. Then, in Section 7.2, we present a Health-

care Collaborative Network (HCN) scenario, part of which is used for illustrating our

138 Analyzing the Impact of Security Mechanisms

approach. To analyze such impact, we first present an enriched requirements specification

in Section 7.3, and then define a conceptual model which characterizes security mecha-

nisms from a requirements viewpoint in Section 7.4. On the basis of such specifications,

we propose a systematic way to analyze and enforce the impact of a security mechanism

imposed on system requirements in Section 7.5. In particular, a set of inference rules

have been defined to describe the impact of security mechanisms, semi-automating the

analysis process. In Section 7.6, we evaluate the expressiveness of the proposed concep-

tual model by applying it to 20 security mechanisms (selected from [Scandariato et al.,

2008; Fernandez-Buglioni, 2013]). Moreover, using these modeled security mechanisms,

we further evaluate the proposed impact analysis by applying it to the full HCN scenario,

which is presented in Section 7.2. Lastly, we compare our proposal with related work in

Section 7.7.

7.1 Impact of Security Mechanisms

Dealing with security requirements in the early stages of the system development has

become an important topic in Requirements Engineering (RE) and Security research, as

software companies have grown tired of spending millions to fix system flaws downstream.

Security requirements analysis techniques, such as misuse cases [Sindre and Opdahl, 2005],

obstacle analysis [Van Lamsweerde and Letier, 2000], Secure Tropos [Mouratidis and

Giorgini, 2007a], involve eliciting security requirements and identifying security mech-

anisms to fulfill those requirements. For example, confidentiality requirements can be

operationalized by the security mechanism encryption. However, security mechanisms do

not function independently but interact with and constrain parts of the target system

in specific ways. As such, when applying a security mechanism, it requires to not only

introduce new functional requirements, but also to modify existing system requirements.

Some approaches have claimed that the application of security mechanisms can influ-

ence system requirements specifications [Heyman et al., 2011; Haley et al., 2008]. How-

ever, these proposals only focus on new functional requirements that are introduced by

a security mechanism and omit their impact on existing functional and non-functional

requirements. In other words, their approaches operationalize security requirements into

only functional requirements. In addition, there are neither systematic methods nor sup-

porting tools available for analyzing and enforcing the impact of security mechanisms on

system requirements.

We argue that system requirements specifications are not be complete unless they

precisely capture such impact. For example, when applying an access control mechanism

to protect a data asset stored in a server, this mechanism imposes global constraints on all

Scenario: The Healthcare Collaborative Network (HCN) 139

functional requirements that access a server, which should be reflected in the requirements

specification in order to correctly develop a secure system. Moreover, the quality of the

system functions is affected by the application of security mechanisms, which should be

captured and taken into account in order to select the best functional alternatives. For

instance, applying the access control mechanism to a specific system function will impair

the usability and performance of all related functions provided by the system. Thus, we

believe that a security mechanism is not a localized solution that can be independently

decided upon over other elements of a requirements specification.

In Chapter 6, we have proposed to seamlessly integrate security patterns into security

requirements analysis by modeling security patterns as contextual goal models, which

facilitates the context-based selection among alternative security patterns. After choos-

ing the best security pattern, we apply its corresponding security mechanism (i.e. the

solution of the security pattern), which is modeled using tasks, domain assumptions, and

softgoals. Specifically, the application of a security mechanism amounts to directly at-

taching the security mechanism model into the requirements model via refinement and

contribution links. However, that approach does not consider the impact of the mech-

anism on existing functional and non-functional requirements, capturing and analyzing

which is a non-trivial task. Take the security mechanism VPN (Virtual Private Network)

as an example, which requires endpoints to communicate via a cryptographic tunnel. To

correctly apply the mechanism, all the functional requirements that communicate confi-

dential information should be constrained by this mechanism, and these requirements are

not easy to identify. Moreover, as the VPN mechanism impairs system performance, all

the functional requirements that are constrained by VPN will have a negative influence

on system performance. Such influences have to be taken into account when selecting the

best requirements specification among alternatives.

As a result, we propose to capture and enforce the impact that security mechanisms

impose over system requirements in order to completely and correctly account for their

integration.

7.2 Scenario: The Healthcare Collaborative Network (HCN)

The HCN is a system that enables the exchange of healthcare messages and documents

between and within organizations. The essential parts of the HCN include an admin

server and a message flow server, which communicate with gateways deployed at both

the publisher side and the subscriber side. A full description of the HCN can be found

online1. It is worth noting that this scenario is independently used in this chapter for

1http://www.redbooks.ibm.com/redbooks/SG246779

140 Analyzing the Impact of Security Mechanisms

illustrating and evaluating this impact analysis approach.

Fig. 7.1 shows part of the requirements goal model of the HCN, which captures the

publisher gateway application, modeled using our requirements modeling language (Sec-

tion 4.2). We assign unique identifiers to each node in the figure in order to facilitate the

references in the remaining part of this chapter.

t3: Receive the
clinical information from

its IT system

g4: Data exchange
between HCN and

Publisher IT system
is enabled

g2: Clinical
information is transferred

 to data reviewers

t8: Send
clinical publications to

HCN hub

t2: Filter
unrelated

topics

t1: Define
publication

topics

g1: Relevant
 information can

be found and
aggregated

t4: Generate
 publications

g3: Publications are
anonymous

t9: Assign a unique
identifier to each

message

t10: Use internal
AGPI service

t5: Choose
a topic

t6: Specify
subscription
authorization

t7: Create a
publication

(S)
sec1:High data
confidentiality

[Clinical information]

(S)
Virtual Private

Network

sg1: Low cost

t13: Use third-party
AGPI service

t14: Send
patient information to

the third-party
t15: Receive a

unique identifier
from the

third-party

t11: Setup an
internal server that

provide AGPI
function

t12: Generate a
unique identifier
from the internal

server

Legend

Task

Goal

Softgoal

Refine

And-refine

(S)
Security

Goal

(S)
Security

Mechanism

Contribution

Domain
Assumption

g0: Clinical
information is Published
via publisher Gateway

sg3: High
reliable

sg2: High
performance

help

make

help

da1: there
are available

servers

Figure 7.1: A snippet of requirements goal model of HCN

7.3 An Enriched Requirements Specification

To analyze the impact of security mechanisms imposed on system requirements, we first

define an enriched requirements specification. Such specifications consist of not only goals

(G), softgoal (SG), task (T) (i.e., function), domain assumption (DA) refinement (REF)

and contribution (CON) (as we have defined in Section 4.2.1), but also a new concept task

constraint (TC) which reflects the impact of security mechanisms on tasks. In particular,

a task constraint is specified in terms of task invariants and pre/post-conditions. The

invariants describe properties that have to be true during the entire execution of the task.

The pre/post-conditions describe properties that have to hold before/after the execution

of the task. The value of a task constraint can be either a constant (e.g., user data) or

a predicate (e.g., encrypted(user data)). Thus, an enriched requirements specification is

defined as a 7-tuple, i.e.,

An Enriched Security Mechanism Specification 141

R = {G,SG, T,DA,REF,CON, TC}
Fig. 7.1 presents an example of a requirements specification, including all these con-

cepts except for task constraints. Note that the notation of the security mechanism shown

in this figure (i.e., tasks with (S) annotation) is only used as a placeholder, which indicates

a security mechanism is applied to operationalize a security goal. In Section 7.4, we will

describe concepts of a security mechanism in detail, replacing such placeholders.

Apart from the enriched requirements specification, we also detail a task with three

additional attributes (i.e., subject, object, and operation) in order to better analyze the

semantics of the task. For example, as shown in Fig. 7.2, we detail the selected task

with a subject publisher gateway application, an object clinical publications, and an op-

eration send. During the requirements elicitation phase, there are two ways to obtain

such expanded attributes: firstly, interactively asking users when needed; secondly, auto-

matically extracting the information from textual descriptions of tasks which have been

elicited from stakeholders (with manual verification). For the second means, we propose

to leverage Nature Language Processing (NLP) techniques, such as proposed in [Li et al.,

2011], to identify the roles of phrases in a sentence and thus to automatically extract the

subjects, operations and objects of the sentence.

Operation: send
Subject: publication_gateway_application
Object: clinical_publication

t3: Receive the
clinical information from

its IT system

g4: Data exchange
between HCN and

Publisher IT system
is enabled

t8: Send
clinical publications to

HCN hub

t4: Generate
 publications

Figure 7.2: An example of the enriched requirements elements

7.4 An Enriched Security Mechanism Specification

In this section, we propose a conceptual model to characterize security mechanisms from

a requirements perspective. In particular, a security mechanism is specified in terms of

security tasks, assumptions, security constraints, and quality influences. Since we exclu-

sively focus on analyzing the impact of security mechanisms imposed on the requirements

specification (as introduced in Section 7.3), we intend to map the concepts of the secu-

rity mechanism to the requirements specification concepts as much as possible. In the

remainder of this section, we describe each of the concepts that we use to model a security

mechanism. An example of the VPN security mechanism is used for illustration, which

142 Analyzing the Impact of Security Mechanisms

st1: Apply
Virtual Private

Network

st2: Establish a
cryptographic tunnel
between endpoints

st6: Choose
the cryptography

algorithm

st9: Authenticate
users that access
the cryptographic

tunnel

st8: Use a
simple algorithm for

 encryption

st7:Use a
complex algorithm for

encryption

st3: Choose the layer
of the communication

protocol

st4:Establish a
cryptographic tunnel

in the IP layer

st5:Establish a
cryptographic tunnel
in the Transportation

layer

sg3: High
performance

help

sg4:
Low cost

hurt helphurthurt

sg5: High
transparency

make

sg1: Good
scalability

help

sg2: Good
usability

help

da1: All endpoints
share the same

public key system st10: Add
authentication at
each endpoint associate

Legend

Domain
Assumption

Security
Task

refine

and-refine

Softgoal

contribution

Security
Constraint

Encryption
Constraint

Authentication
Constraint

Figure 7.3: Modeling security mechanism — virtual private network (VPN)

is shown in Fig. 7.3. Note that the textual specification of this mechanism can be found

in [Fernandez-Buglioni, 2013].

Security tasks. A security task is a detailed action performed by a system to achieve

certain security goals. We define the security task as a specialization of task, and use TS

to represent the set of security tasks of a security mechanism. Each security task has

an additional attribute asset, beyond the 3 attributes of regular tasks we have described

before (Section 7.3). This attribute specifies the asset that is protected by a security

task, from which we can infer the impact of the security task. As the target asset of a

security task depends on the application scenario of the security task, the acquisition of

this attribute is specified during the analysis process, described in Section 7.5.

As with all tasks, a composite security task can be decomposed into detailed security

tasks, and we define the set of refinement relations between security tasks as REFS. Note

that we use the root security task to indicate the overall security mechanism, which can

be repeatedly refined till reaching leaf security tasks, as shown in Fig. 7.3.

Assumptions. An assumption specifies an expected state of affairs, under which the

security mechanism can be applied correctly. Normally, these assumptions are captured

during the refinements of security tasks, such as the assumption “All endpoints share the

same public key system”, presented in Fig. 7.3. We map this concept to domain assump-

tion, and use DAS to represent the set of assumptions made in a security mechanism.

Security constraints. A security mechanism does not exist independently, but in-

teracts and constrains existing system tasks in order to ensure that security requirements

are satisfied. Thus, we explicitly capture such interactions between security tasks and

tasks in the requirements model by using security constraints. We use SC to present the

An Enriched Security Mechanism Specification 143

Table 7.1: Security constraint rules

Global impact of security constraints

Rule 1: constrain(ST, T)← has operation(T, F) ∧ transfer operation(F)

∧has object(T,O) ∧ protect(ST,O)

∧has constraint(ST, encryption constraint)

Rule 2: constrain(ST, T)← has operation(T, F) ∧ (protect(ST, F)

∨(access operation(F) ∧ has object(T,O) ∧ protect(ST,O)))

∧has constraint(ST, authentication constraint)

Rule 3: constrain(ST, T)← has operation(T, F) ∧ (protect(ST, F)

∨(access operation(F) ∧ has object(T,O) ∧ protect(ST,O)))

∧has constraint(ST, authorization constraint)

Rule 4: constrain(ST, T)← has operation(T, F) ∧ protect(ST, F)

∧has constraint(ST, centralization constraint)

Rule 5: constrain(ST, T)← has operation(T, F) ∧ access operation(F)

∧has object(T,O) ∧ protect(ST,O)

∧has constraint(ST, protection constraint)

Rule 6: constrain(ST, T)← ((has function(T, F) ∧ protect(ST, F))

∨(has object(T,O) ∧ protect(ST,O)))

∧has constraint(ST, auditing constraint)

set of security constraints imposed by a security mechanism.

As an initial effort towards such impact analysis, we summarize six security constraints

after investigating more than 40 reusable security mechanisms that are documented in

a security pattern textbook [Fernandez-Buglioni, 2013] and a security pattern reposi-

tory [Yskout et al., 2006]. The six security constraints include Encryption Constraint,

Authentication Constraint, Permission Constraint, Centralization Constraint, Protection

Constraint, and Auditing Constraint. Each of these security constraints implies that a se-

curity task constrains specific tasks which have certain properties. Thus, according to the

meaning of each security constraint, we define security constraint rules for each particular

security constraint to identify tasks that are constrained by a security task. The full list

of security constraint rules are shown in Table 7.1. Take the Rule 1 as an example: if a

security task ST has an encryption constraint, which targets the asset O, and there is

144 Analyzing the Impact of Security Mechanisms

a task T that has an operation F , which transfers the asset O, then the task T is con-

strained by the security task ST . Once having a list of security constraints, we need to go

through each security task modeled before to identify whether it imposes certain security

constraint. For example, as shown in Fig. 7.3, we identify that the security tasks st2 and

st9 impose the Encryption Constraint and Authentication Constraint, respectively.

The proposed security constraints are not intended to be complete, but provide good

coverage when considering the content of the 40 investigated security patterns. Additional

constraints, together with their corresponding constraint rules (e.g., Table 7.1), can be

incrementally integrated into our work.

Quality Influences. Each security task not only changes functions of a system, but

may also influence the qualities of the system, either positively or negatively. We use

a set of contribution links to capture such quality influences, which are represented as

CONS. A contribution link is a triple, which specifies the influence imposed by a security

task over system related quality (captured as a softgoal). We define the set of softgoals

affected by a security mechanism as SGS. Thus, the quality influences are defined as:

CONS ⊆ TS × {make, help, hurt, break} × SGS

For example, in Fig. 7.3, security task st4:Establish a cryptographic tunnel in the IP layer

makes softgoal sg5:High transparency, while hurts another softgoal sg3:High performance.

7.5 A Systematic Process for Analyzing the Impact of Security

Mechanisms

In this section, we propose a systematic process to analyze and enforce the impact security

mechanisms impose on the existing system requirements specification, which is shown in

Fig. 7.4. We take the enriched requirements specificationR and the to-be-applied security

mechanism specification M as the input of our analysis, i.e.,

Input: R = {G,SG, T,DA,REF,CON, TC}, M = {TS, REFS, DAS, SC, SGS, CONS}
By systematically analyzing the impact of the security mechanism, our approach will

generate an updated requirements specification, R′, which reflects all the impacts of the

security mechanisms imposed on the requirements specification, i.e.,

Output: R′ = {G′, SG′, T ′, DA′, REF ′, CON ′, TC ′}
We illustrate the analysis process by analyzing the impact of the VPN mechanism

(Fig. 7.3) imposed on the piece of requirements specification of the HCN scenario (Fig. 7.1).

It is worth noting that if there are multiple security mechanisms need to be applied, all

of them will be analyzed iteratively using the same approach.

Step 1: Integrate Security Tasks. All security tasks, as a specialization of tasks,

are directly incorporated into the initial requirements specification, as well as the refine-

A Systematic Process for Analyzing the Impact of Security Mechanisms 145

Step 3:
Recheck Mechanism

assumption

Step 1:
Integrate security

tasks
Start

Step 4:
Identify constrained

tasks

Step 5:
Enforce security

constraints

Step 6:
Apply quality

influences
End

Step 2:
Contextualize
security task

Figure 7.4: The process for analyzing impact of security mechanisms

ments relations among them (if they exist). As such, the integration is defined as follows:

T = T ∪ TS , REF = REF ∪REFS

As a security mechanism is applied to operationalize a security goal, the root security

task of the security mechanism will replace the placeholder described in Fig. 7.1, and is

directly linked to the security goal. In the illustrating example, the result of integrating

security tasks of the VPN mechanism to the requirements specification is shown in the

right part of Fig. 7.5 (st1-st10).

Step 2: Contextualize Security Tasks. Once security tasks are integrated into

the requirements and linked to a particular security goal, the target assets of security

tasks should be determined in order to support the identification of constrained tasks in a

later step. Each security goal in the requirements specification has already been specified

an asset, such as the security goal sec1 is specified with an asset clinical information

(Fig. 7.5). Thus, the security tasks that are applied to satisfy a security goal will inherit

the asset from that security goal. In the illustrating example (Fig. 7.5), all the applied

security tasks have the asset clinical information, automatically derived from security goal

sec1.

Step 3: Recheck Assumptions. When applying a security mechanism to a system

within a particular domain, assumptions made in the mechanism should be further checked

about whether or not it is still an assumption in the domain. Thus, a heuristic question

can be asked, “Is the assumed phenomenon inside the boundary of system design now?” If

so, we need to replace this assumption with a security task which realizes the assumption,

and then add this security task to the set of tasks, i.e.,

T = T ∪ {a|∀a ∈ DAS, inside design boundary(a)}
In this case, the newly added security tasks should be appropriately performed to ensure

that the security mechanism is executed correctly. If the answer to the question is No, the

properties in the assumption keep being assumed to be held, and we add the assumption

to the set of domain assumptions, i.e.,

146 Analyzing the Impact of Security Mechanisms

Updated PartOriginal Part (S)
sec1: High data
confidentiality

[Clinical information]
st1:Apply

Virtual Private
Network

st2:Endpoints
communicate via a

cryptographic tunnel

st6:Choose
the cryptography

algorithm

st8: Use a
simple algorithm for

 encryptionst7:Use a
complex algorithm for

encryption

st3:Choose the layer
of the communication

protocol

st4:Establish a
cryptographic tunnel

in the IP layer
st5:Establish a

cryptographic tunnel
in the Transportation

layer

g3: Publications are
anonymous

t9: Assign a unique
identifier to each

message

t10: Use internal
AGPI service

sg1:
Low cost

t13: Use third-party
AGPI service

t14: Send
patient information to

the third-party

t15: Receive a
unique identifier

from the
third-party

t11: Setup an
internal server that

provide AGPI
function t12: Generate a

unique identifier
from the internal

server

sg3: High
reliability

sg2: High
performance

help

make

help

da1: there
are available

servers

hurt

make

sg4: High
transparency

hurt
hurt

help

help

st9:Authenticate
users that access
the cryptographic

tunnel

st11:Share
 the same public

key system at
all endpoints

st10:Add
authentication at
each endpoint

Encryption
Constraint

Authentication
Constraint

Figure 7.5: Impact of the application of VPN (part)

DA = DA ∪ {a|∀a ∈ DAS, outside design boundary(a)}
In our example, the assumption of the VPN mechanism “All endpoints share the same

public key system” is determined to be inside the system design boundary. So we create

a security task based on this assumption (i.e., the st11 in Fig. 7.5), and add this security

task to the set of tasks.

Step 4: Identify Constrained Tasks. After security tasks have been contextual-

ized with the asset information, we now apply the security constraint rules (Table 7.1)

to automatically identify interactions between security tasks in the security mechanism

specification and tasks in the requirements specification, i.e., identifying which tasks are

constrained by a security task.

During the above impact identification, we are concerned about not only the infor-

mation derived from the two specifications (i.e., R and M), but also additional domain

knowledge models, such as data schemes (Fig. 7.6 (a)) and semantic hierarchies of words

(Fig. 7.6 (b)). These models provide auxiliary rules to facilitate the analysis, e.g., the

following rules:

Rule 7: protect(ST,A2)← protect(ST,A1) ∧ part of(A1, A2)

Rule 8: transfer opertiona(O)← send operation(O)

Rule 7 indicates that if an asset needs to be protected, all the parts of this asset also

should be protected. Rule 8 indicates that if an operation is of the type of send, then it

is also of the type of transfer.

In our example, we apply Rule 1 and identify three tasks {t3, t8, t14} (Fig. 7.1), which

are constrained by security task st2. Note that, for illustration purposes, Fig. 7.5 only

A Systematic Process for Analyzing the Impact of Security Mechanisms 147

represents part of the original requirements model that is related to t14.

Involve

Transfer Access

Send Receive

Add

Delete Modify

Query

imply imply

imply imply
imply

imply imply
implyClinical publication

Patient
info

part-of

Health info

part-of

(a) Data Schema (b) Semantic Hierarchy

Clinical
information

part-of

Figure 7.6: Examples of knowledge models

Step 5: Enforce Security Constraints. After identifying all tasks that are con-

strained, we further enforce security constraints on those tasks. In particular, we propose

specific enforcement measures for each of the six security constraints in accordance with

their meanings, which are detailed in Table 7.2. In this table, we first present the impact

introduced by each security constraint. After that we describe the concrete enforcement

measures, which are either adding task constraints or replacing tasks. For example, the

Encryption Constraint adds a new pre-condition to the constrained task, the Protection

Constraint adds a new invariant to the constrained task, and the Auditing Constraint

adds a new post-condition to the constrained task. Apart from imposing task constraints,

the Centralization Constraint replaces the constrained task with the corresponding secu-

rity task. In this case, all the refinement relations that were linked to the constrained

task are now redirected to the security task, and then the constrained task is removed.

According to the proposed enforcement measures, in our example, we enforce the en-

cryption constraint on the constrained task t14 (Fig. 7.5), i.e., adding a new pre-condition

performed(st2) to this task.

Step 6: Apply Quality Influences. Many requirements analysis techniques rely on

qualities, which are normally captured as non-functional requirements (NFRs), to select

alternative requirements [Horkoff and Yu, 2013]. Due to the interactions between security

tasks and tasks, the quality influences introduced by security tasks may affect system

requirements decisions, which need to be re-evaluated.

As the first step of applying quality influences, we correlate the softgoals in SGS with

the softgoals in SG, i.e. checking whether they are the same softgoals. As the same

concept may be presented by different terms in different ways, this correlation analysis

may require additional techniques, such as the Repertory Grid Technique (RGT) [Niu and

Easterbrook, 2007]. In the illustrating example (Fig. 7.3), SGS of the VPN mechanism

involves several softgoals among which sg4: Low cost and sg3: High performance have

148 Analyzing the Impact of Security Mechanisms

Table 7.2: Enforcement measures for the six security constraints

Security

Constraints
Impact Enforcement

Encryption Con-

straint

The encryption security task should be done before

the constrained task

add(performed(st),

t.precondition)

Authentication

Constraint

The authentication security task should be done be-

fore the constrained task

add(performed(st),

t.precondition)

Permission

Constraint

The authorization security task should be done before

the constrained task

add(performed(st),

t.precondition)

Centralization

Constraint

The constrained task is replaced by the centralized

security task
replace(t, st)

Protection Con-

straint

The protection security task should be enforced to

cover the whole execution period of the constrained

task

add(cover by(st),

t.invariant)

Auditing

Constraint

The auditing security function should be done after

the execution of the constrained task

add(need to perform(st),

t.postcondition)

Remark: the st indicates the corresponding security task of a security constraint, while the t stands for

the constrained task.

been correlated with softgoals in SG (in this particular case, the correlated softgoals have

the same contents). For the softgoals in SGS that are not correlated, the analyst needs to

re-evaluate stakeholders’ non-functional requirements to decide whether to include these

softgoals. In our example, after evaluating the uncorrelated softgoal High traceability, we

decided to consider this software for the entire system, i.e., adding it to the SG (shown

in Fig. 7.5). This integration is defined below,

SG = SG ∪ {sg|∀sg ∈ SGS, uncorrelated(sg) ∧ decide include(sg)}
However, the other uncorrelated softgoals, such as sg2: Good usability, are evaluated and

are determined to not fit in with the current scenario. Once the above correlated softgoals

and newly added softgoals are determined, all their corresponding contribution links in

CONS will be integrated into the requirements specification, i.e.,

CON = CON ∪ {contribute(st, inf, sg)|∀contribute(st, inf, sg) ∈ CONS,∃sg ∈ SG}
After correlating softgoals, we analyze the quality influences of a security task to its

constrained tasks. Specifically, if a security task constrains a task, then all the quality

influences introduced by this security task should be taken into account when evaluating

the constrained task, especially if the constrained task is part of a requirements alterna-

tive. In the example (Fig. 7.5), since t14 is constrained by st2, the correct execution of

t14 requires the appropriate interactions with st2. Thus, when evaluating the require-

ments alternatives that involve t14, such as the alternative tasks {t11,t12} vs. {t14,t15},

Evaluation 149

Table 7.3: Statistics of applying the conceptual model to 20 security mechanisms

Security

Task
Assumption

Security

Constraint

Quality

Influence

Total 89 15 27 148

Average 4.45 0.75 1.35 7.4

the influences st2 imposed on the qualities (i.e., sg1, sg2, sg4) have to be taken into

consideration.

7.6 Evaluation

In this section, we focus on answering two questions related to the proposed impact

analysis approach. Firstly, we intend to evaluate the expressiveness of the proposed

conceptual model of security mechanisms by applying it to model 20 existing security

mechanisms. In particular, we concern whether the conceptual model can capture specific

semantics of such security mechanisms, and how long does it take for such practical

conceptualization. Secondly, we evaluate the effectiveness of our impact analysis approach

by applying it to a medium-scale HCN scenario, where we report our experiences in the

practical application of our proposal.

Evaluating the Conceptual Model of Security Mechanisms. We applied the proposed

conceptual model to 20 security mechanisms, which are specified as reusable security

solutions in the security pattern textbook [Fernandez-Buglioni, 2013]. These 20 security

mechanisms are taken from the solution part of the 20 security patterns we have modeled

in Chapter 6. In particular, we focus on capturing and modeling the security constraints

imposed by such security mechanisms. On average, each mechanism cost me 20-30 minutes

to model, and the statistics of the overall results is summarized in Table 7.3.

During this practical modeling session, we found that the six types of security con-

straints (proposed in Section 7.4) were able to capture specific semantics of the 20 security

mechanisms. We captured 27 security constraints in total for the 20 security mechanisms,

on average 1.35 constraints per mechanism. In particular, we contend that each security

mechanism must impose at least one security constraint, indicating the major feature

of the security mechanism. On the other hand, a complex security mechanism can im-

pose multiple security constraints that function together to deliver particular security

features. Such as the VPN example shown before (in Fig. 7.3), which imposes not only

authentication constraints to the communication tunnel, but also encryption constraints.

150 Analyzing the Impact of Security Mechanisms

In our modeling practice, once we modeled all security tasks, we followed a bottom-up

process to identify the security constraints imposed by each security tasks. Specifically,

we first checked each leaf security task whether it imposed a security constraint, and then

we moved forwards to check the parents of such security tasks. If we had identified that

one security task imposed a security constraint, we would not model such a constraint

for the parent of that security task. In this way, we kept the security constraints at the

detailed level of granularity as much as possible.

From the statistics of other elements of security mechanisms, we observed several

issues. Firstly, on average each mechanism had more than four security tasks, which

implies that security mechanisms are normally described at high abstraction level and

can be further refined into detailed security tasks. Also, this further explains why one

security mechanism may impose multiple security constraints. Secondly, the number

of quality influences we have modeled for the 20 security mechanisms was significantly

larger than any other concepts (e.g., assumptions). Such phenomenon strongly justifies

that security mechanisms can heavily affect the quality of systems, emphasizing the need

of capturing and analyzing the quality influences of security mechanisms.

On the whole, by applying the conceptual model, a single security mechanism had

around 14 nodes on average. Thus, we argue that the conceptual model is scalable to

model a larger number of security mechanisms. In particular, such modeling work is

performed once for all, i.e., the modeled security mechanisms can be reused in our impact

analysis. In this sense, the 20 modeled security mechanisms can serve as the initial

mechanism repository that is used by our impact analysis approach, while additional

mechanisms can be incrementally added to this repository either by ourselves or by other

researchers who have followed our modeling approach. It is worth noting that in this

study we exclusively focus on evaluating the expressiveness of the proposed conceptual

model. In particular, the study was performed by the conceptual model designer and we

did not yet evaluate whether other people are able to model security mechanisms using

our conceptual model. Such study is left for future work.

Evaluating the Impact Analysis Approach. We applied the proposed analysis ap-

proach to the full requirements model that we have built for the HCN scenario, as intro-

duced in Section 7.2. In particular, we adopted our three-layer requirements modeling

language to establish a comprehensive requirements model for the entire scenario, which

contained 66 goals, 7 softgoals, 163 tasks, and 198 refinement links. The complete model

is shown in Fig. 7.7, while the vector file of this model is available online2. In this study,

we exclusively analyzed the impact of a VPN mechanism (Fig. 7.3), which had been de-

2http://disi.unitn.it/~li/SoSyM/model_hcn.pdf

http://disi.unitn.it/~li/SoSyM/model_hcn.pdf

Evaluation 151

Health
Data

Publisher

Health
Data

Subscrib
er

Pandemic
disease can
be detected

Critical health
information is received Critical health

information is reviewed
for pandemic detection

Receive health
information from
data publisher

Filter out
non-critical
information

Analyze critical
health information

Pandemic
disease can be

detected

Related clinical
messages can be correlated

and aggregated

Clinical information
can be transferred
to data reviewers in
the required format

Find similar
clinical information Aggregate

clinical information

Transform clinical
information into the

required format

Transfer the clinical
information to data

reviewers

Clinical information
can be collected

Collect clinical
information

Transfer the clinical
information to data

reviewers
D

D

Publisher
Gateway

Application

Subscriber
Gateway

Application

Publisher
IT system

Support
collect clinical

information

Collect clinical
information

Send the clinical
information to its

publisher gateway

Gateways
can be managed

Create
gateway

Disable
gateway

Enable
gateway

Edit
gateway

Delete
gateway

View
gateway

Topics can
be managed

Administrat
ion

Application

Message
Flow

Application Message can be exchanged
between publisher gateway

and subscriber gateway

Receive the published
information from publisher

gateway

Relevant
information can

be managed

Gateways
can be managed

D

D

Topics
can be managed

D

D

Send clinical
publications to

HCN hub

D

D

AGPI
Application Messages cannot

be identified

Receive patient
information

Generate a unique
anonymous identifier

De-identify health
messages

Send the unique
identifier back

Send patient
information to AGPI

application
D

D

Send the unique
identifier back

D

D

Receive the clinical
information from its

IT system

Data exchange
between HCN and Publisher

IT system is enabled

Support
transfer the clinical
information to data

reviewers

Send clinical
publications to

HCN hub

Filter unrelated
topics

Define
publication topics

Related information
can be found and

aggregated

Generate
 publications

Gateway
can be managed

Publications are
anonymous

Assign a unique
identifier to each

message

Send patient
information to AGPI

application

Obtain a unique
identifier

Use AGPI
service

Choose a topic

Specify
subscription
authorization Create a

publication

Duplicate
topics

Create
topics Delete

topics

View
topics

Subscription can
be managed

Edit
subscriptions

Create
subscriptions

Delete
subscriptions

View
subscriptions

Publications can
be managed

Edit
publications

Create
publications

Delete
publications

View
publications

Subscription can
be authorized Edit

authorizations

Create
authorizations

Delete
authorizations

View
authorizations

Send the critical
publications to its

IT system

Data exchange
between HCN and Subscriber

IT system is enabled

Support
receive health

information from
data publisher

Obtain
critical

publications

Gateway
can be managed

Match publications
according to
critical topics

Receive
publications

from message
application

Get matched
publications

By emailBy data
transmission

Publications
can be managed

D

D

Subscription can
be authorized

D

D

Subscriptions
can be managed

DD

Send the published
information to desired
subscriber gateway

D

D

Support filter
out non-critical

information

Subscribe
critical topics

Gateways
can be managed

DD

Send the clinical
information to its

publisher gateway
D

D

Support
analyze critical

health information

Analyze
the critical

publications Receive the critical
publications from the
subscriber gateway

Subscriber
IT system

Send the critical
publications to its

IT system

D

D

Administration
application

can be used by
stakeholders

Authenticate and
authorize users

Use the application

Internet
Web
Client

Application can
be used by

stakeholders

Administration
application

can be used by
stakeholders

D

D

Patient
Data

Repository
Patient data

can be managed

Retrieve
patient
data

Update
patient data

Delete patient
data

Insert the
patient data and
its anonymous

identifier

Insert
patient data

Insert
patient data

D

D

Subscriber
Database Publication data

can be managed

Retrieve
publication

data
Update

publication
data

Delete
publication

data

Insert
publication

data

Store the critical
publications in
local database

Publication data
can be managed

D

D

Operate
database cache

Retrieve
information

Store
information

Administration
application
is deployed

 Prerequisite
software applications

are installed

Install
Windows 2000

Server

Install
IBM DB2

Install
IBM Tivoli

Admin server
is physically

installed
Install the

admin server
step-by-step

Determine
installation location

Integrate
required
hardware

144 GB
hard disk

4 GB
memory

2.4 GHz
processor

Deploy the
administration

application

Install the admin
server at a specific

 location

Support
administration

applicationPublisher
Gateway

Publisher
gateway application

is deployed
 Prerequisite

software applications
are installed

Install
IBM WebSphere

Business Integration
Server Express

Install
iNTERFACEWARE

Install
Python

Publisher gateway
is physically installed

in the publisher's
organization

Install the gateway
step-by-step

Determine
installation location

Integrate
required
hardware

108 GB
hard disk

2 GB
memory

2.4 GHz
processor

Deploy the
publisher gateway

application

Install the gateway
at a specific location

Connect the gateway
with networks

Connect
the gateway
with the PIN

Connect the gateway
with HCN via the Internet

Publisher
Internal
Network

(PIN)
Connect

internal devices to
the PIN

Connect the
publisher server

with the PINConnect the
publisher gateway with

the PIN

Publisher
Server

Publisher
IT system

is deployed

Deploy the
publisher IT

system

Publisher
Server is connected

to PIN

Connect the
publisher server

with the PIN

Network is
established

Establish
PIN

Connect
the gateway
with the PIND DConnect the

publisher server
with the PIN

DD

Support publisher
gateway application

Support publisher
IT system

Admin
Server

Install
Windows 2000

Server

Support
AGPI

application

AGPI
application
is deployed

Deploy the
AGPI

application

Message flow
application
is deployed

 Prerequisite
software applications

are installed

Install
Windows 2000

Server

Install
IBM DB2

Install
IBM WebSphere

MQ

Message flow
 server is physically

installed
Install the

admin server
step-by-step

Determine
installation location

Integrate
required
hardware

144 GB
hard disk

4 GB
memory

2.4 GHz
processor

Deploy the
message flow

application

Install the
message flow

server at a specific
 location

Connect the
message flow

server with
the Internet

Support
message flow

application

Message
Flow

Server

Install
IBM WebSphere

Business Integration
Message Broker

Install
Perl

Install
IBM WebSphere

MQ

Install
IBM WebSphere

Business Integration
Message Broker

Subscriber
Gateway

Subscriber
gateway application

is deployed

 Prerequisite
software applications

are installed

Install
IBM WebSphere

Business Integration
Server Express

Install
iNTERFACEWARE

Install
Python

Subscriber gateway
is physically installed

in the subscriber's
organization

Install the gateway
step-by-step

Determine
installation location

Integrate
required
hardware

108 GB
hard disk

2 GB
memory

2.4 GHz
processor

Deploy the
subscriber gateway

application

Install the gateway
at a specific location

Connect the gateway
with networks

Connect
the gateway
with the SIN

Connect
the gateway
with HCN via
the Internet

Support subscriber
gateway application

Install
Windows 2000

Server

Network is
established

D

D

Subscriber
Internal
Network

(SIN)

Connect
internal devices to

the SIN
Connect the

subscriber server
to the SIN

Connect the
subscriber gateway to

the SIN

Subscriber
Server

Subscriber
IT system

is deployed

Deploy the
subscriber IT

system

Subscriber
server is connected

to SUB

Connect the
subscriber server

with the SIN

Network is
established

Establish
 SIN

Connect the
subscriber server

with the SIN
D

D

Connect
the gateway
with the SIN

D

D

Support subscriber
IT system

Connect the admin
server with
the Internet

D

D

Connect the
message flow server with

the Internet

D

D

Support web
client

Deploy the
web client to the

computer

Connect the web
client computer with
admin server via the

Internet

Web
Client

Computer

Admin server
can be accessed
by the web client

computer
Web client is

deployed

Connect the admin
server with
the Internet

D

D

Match publications
with predefined topics

Health
Care

Network
(HCN)

Connect internal
devices to the HCN

Connect the
message flow server

to the HCN

Connect the
admin server to

the HCN

Network is
established

Establish
HCN

Support patient
data repository

Deploy the
data repository
to the serverConnect the data

repository server
to the HCN

Data
Repository

Server

Data repository
 server can be accessed

by the admin server

Patient data
repository is

deployed

Prerequisite
software applications

are installed

Install IBM
DB2

Connect HCN to
the Internet Connect the

data repository server
 to the HCN

Connect the data
repository server

to the HCN

D
D

Connect the data
repository server

to the HCN
D

D

Connect the
admin server
to the HCN

D

D

Connect the
admin server
to the HCN

Support
subscriber
database

Deploy the
subscriber database

to the serverConnect the
subscriber database

to the SIN

Subscriber
Database

Server

Data repository
 server can be

accessed by the
subscriber server

Subscriber
database is
deployed

Prerequisite
software applications

are installed

Install IBM
DB2

Connect PIN to
the Internet

Connect SIN to
the Internet

Connect the
subscriber database

server to the SIN

Connect the
subscriber server

with the SIN

D

D

Send the matched
published information to desired

subscriber gateway

Social Layer

Software Layer

Infrastructure
 Layer

Figure 7.7: The complete three-layer requirements goal model of the HCN scenario

termined to operationalize a security goal high data confidentiality [Clinical information,

Data exchange between HCN and Publisher IT system is enabled]. Since the VPN mecha-

nism is a software security mechanism, the impact analysis was performed in the software

layer of the three-layer requirements model, which contains 23 goals, 7 softgoals, 67 tasks,

and 75 refinement links (as shown in Fig. 7.8). To be noted that we here exclusively

report our experience in applying the impact analysis approach, and do not involve issues

such as how to select a security mechanism to operationalize security goals (which is part

of Chapter 6).

With the support of our prototype tool (Chapter 8), we were able to not only graph-

ically model the requirements model and the security mechanism model, but also to

automatically infer the tasks that were constrained by specific security tasks based on the

proposed rules (Table 7.1) and thus to enforce such constraints. In addition, we leveraged

another NLP tool to facilitate generating enriched requirements specification, which can

automatically extract the subject, object, and operation from the description of a task

by using NLP techniques [Li et al., 2011]. However, we encountered practical challenges

when using the tool to automatically extract task attributes, and had to manually specify

many task attributes. This was because the NLP tool extracts the task attributes by

processing the content of each task, requiring the task description to be complete and

152 Analyzing the Impact of Security Mechanisms

Publisher
G

ateway
Application

Subscriber
G

ateway
Application

Publisher
IT system

Support
collect clinical

inform
ation

Collect clinical
inform

ation

Send the clinical
inform

ation to its
publisher gateway

G
ateways

can be m
anaged

Create
gateway

Disable
gateway

Enable
gateway

Edit
gateway

Delete
gateway

View
gateway

Topics can
be m

anaged

Adm
inistrat
ion

Application

M
essage
Flow

Application
M

essage can be exchanged
between publisher gateway

and subscriber gateway

Receive the published
inform

ation from
 publisher

gateway

Relevant
inform

ation can
be m

anaged

G
ateways

can be m
anaged

D

D

Topics
can be m

anaged

D

D

Send clinical
publications to

HCN hub

D

D

AG
PI

Application
M

essages cannot
be identified

Receive patient
inform

ation

G
enerate a unique

anonym
ous identifier

De-identify health
m

essages

Send the unique
identifier back

Send patient
inform

ation to AG
PI

application
D

D

Send the unique
identifier back

D

D

Receive the clinical
inform

ation from
 its

IT system

Data exchange
between HCN and Publisher

IT system
 is enabled

Support
transfer the clinical
inform

ation to data
reviewersSend clinical

publications to
HCN hub

Filter unrelated
topics

Define
publication topics

Related inform
ation

can be found and
aggregated

G
enerate

 publications

G
ateway

can be m
anaged

Publications are
anonym

ous

Assign a unique
identifier to each

m
essage

Send patient
inform

ation to AG
PI

application

O
btain a unique

identifier

Use AG
PI

service

Choose a topic

Specify
subscription
authorization

Create a
publication

Duplicate
topics

Create
topics

Delete
topics

View
topics

Subscription can
be m

anaged

Edit
subscriptions

Create
subscriptions

Delete
subscriptions

View
subscriptions

Publications can
be m

anaged

Edit
publications

Create
publications

Delete
publications

View
publications

Subscription can
be authorized

Edit
authorizations

Create
authorizations

Delete
authorizations

View
authorizationsSend the critical

publications to its
IT system

Data exchange
between HCN and Subscriber

IT system
 is enabled

Support
receive health

inform
ation from

data publisher

O
btain

critical
publications

G
ateway

can be m
anaged

M
atch publications

according to
critical topics

Receive
publications

from
 m

essage
application

G
et m

atched
publications

By em
ail

By data
transm

ission

Publications
can be m

anaged
D

D

Subscription can
be authorized

D

D

Subscriptions
can be m

anaged

D

D

Send the published
inform

ation to desired
subscriber gateway

D

D
Support filter

out non-critical
inform

ation

Subscribe
critical topics

G
ateways

can be m
anaged

D

D

Send the clinical
inform

ation to its
publisher gateway

D

D

Support
analyze critical

health inform
ation

Analyze
the critical

publications
Receive the critical

publications from
 the

subscriber gateway

Subscriber
IT system

Send the critical
publications to its

IT system

D

D

Adm
inistration

application
can be used by

stakeholdersAuthenticate and
authorize users

Use the application

Internet
W

eb
Client

Application can
be used by

stakeholders

Adm
inistration

application
can be used by

stakeholders D

D

Patient
Data

Repository
Patient data

can be m
anaged

Retrieve
patient
data

Update
patient data Delete patient

data

Insert the
patient data and
its anonym

ous
identifier

Insert
patient data

Insert
patient data

D

D

Subscriber
Database

Publication data
can be m

anaged

Retrieve
publication

data
Update

publication
data

Delete
publication

data

Insert
publication

data

Store the critical
publications in
local database

Publication data
can be m

anaged

D

D

O
perate

database cache

Retrieve
inform

ation
Store

inform
ation M

atch publications
with predefined topics

Send the m
atched

published inform
ation to desired

subscriber gateway

Use internal
AG

PI service

Receive a
unique identifier

from
 the

third-party

Setup an
internal server that

provide AG
PI

function

G
enerate a

unique identifier
from

 the internal
server

there are
available
servers

st1: Apply
Virtual Private

Network

st2: Establish a
cryptographic tunnel
between endpoints

st6: Choose
the cryptography

algorithm

st9: Authenticate
users that access
the cryptographic

tunnel

st8: Use a
sim

ple algorithm
 for

 encryption
st7:Use a

com
plex algorithm

 for
encryption

st3: Choose the layer
of the com

m
unication

protocol

st4:Establish a
cryptographic tunnel

in the IP layer

st5:Establish a
cryptographic tunnel
in the Transportation

layer

sg3: High
perform

ance

help

sg4:
Low cost

hurt
help

hurt
hurt

sg5: High
transparencym

ake

st10: Add
authentication at
each endpoint

st11: All endpoints
share the sam

e
public key system

VPN
application

(S)
high data confidentiality

[Clinical inform
ation, Data

exchange between HCN and
Publisher IT system

 is enabled]

F
igu

re
7
.8

:
Im

p
act

of
th

e
ap

p
lication

of
V

P
N

over
H

C
N

scen
ario

Evaluation 153

grammatically correct. However, when building the requirements goal model, we did not

specify the full description of a task but the essential part which made sense to most

readers. For example, within the actor boundary of Publisher Gateway Application, we

typically specify a task without claiming its subject as this is implied by the actor model.

As such, the NLP cannot fully automate the extraction of task attributes and required

additional manual effort for specifying such information. Similar challenges have also

been reported by Casagrande et al. [2014], where the authors applied NLP techniques to

process goal models. To tackle this challenge, we plan to improve the NLP tool by taking

into account more semantics of the requirements goal model. Alternatively, we can choose

to always specify the full details of each task.

After specifying the three attributes for each task in the scenario, I spent one hour

to perform the impact analysis for the VPN mechanism. We report and evaluate such

application of our approach in detail below:

• Step 1: We integrated all the security tasks of the VPN mechanism into the re-

quirements model in order to operationalize the security goal high data confidentiality

[Clinical information, Data exchange between HCN and Publisher IT system is en-

abled]. In particular, our prototype tool has good usability which allows us to easily

copy-paste the established security mechanism models into the requirements model.

• Step 2: After inserting the security tasks to operationalize the security goal, the

asset concerned by the security goal were then propagated to the security tasks we

just inserted. This step was automatically executed by our prototype tool.

• Step 3: We then checked the assumption made by the VPN security mechanism.

As we determined that the assumption was inside the system design boundary, it

should be achieved by the system. Thus, we reformed it as a security task, replacing

the previous assumption. This step was performed manually, requiring a through

understanding of the target system, especially on the system boundary.

• Step 4: Since the VPN mechanism contains two security constraints, i.e., the au-

thentication constraint and the encryption constraint associated with two different

security tasks (as previously shown in Fig. 7.3), we then identified constrained re-

quirements tasks by applying corresponding inference rules (Rule 1 and Rule 2 in

Table 7.1). In particular, with the tool support we instantly identified 12 tasks that

were constrained by the two security constraints, which have been highlighted in

Fig. 7.8.

• Step 5: Once contained tasks had been identified, we then followed the enforcement

measures (Table 7.2) to rewrite the specification of those tasks. In particular, we

154 Analyzing the Impact of Security Mechanisms

added two preconditions to each of the 12 constrained tasks, indicating that before

performing these tasks a cryptographic tunnel must be first established and users

who access the tunnel mush be authenticated.

• Step 6: As the last step, we processed the quality influences of the security mecha-

nism. In particular, we manually checked all the qualities (i.e., softgoals) influenced

by the VPN mechanism against seven qualities required by stakeholders. Eventu-

ally, two qualities were matched with existing qualities, while other three were not.

Among the three unmatched qualities, one was determined to be required by the

stakeholder and thus added to the requirements model, while the other two were

decided to be excluded.

After going through the impact analysis process, the final security enhanced require-

ments specification is shown in Fig. 7.8. In particular, compared to the initial requirements

specification, this rewritten specification comprehensively captured all the functional tasks

that were introduced by the security mechanisms and their impact over initial functional

and non-functional requirements specifications. Overall, we conclude that the proposed

impact analysis approach can be applied to a medium-scale scenario to identify and en-

force impact of security mechanisms within a reasonable amount of time. Beyond this

study, we intend to apply our approach to larger scenarios in order to further assess the

scalability of our approach. In addition, apart from the effectiveness, we want also to

further evaluate other aspects of our impact analysis approach, especially, whether it can

be adopted in reality by other practitioners (i.e., usability).

7.7 Related Work

The interaction between requirements and architecture was first emphasized by Nuseibeh

[2001], where he proposes a twin peaks model to show these interactions at an abstract

level. Heyman et al. [2011] and Okubo et al. [2012] specialize the twin peaks model in

the security area, respectively. They all outline a constructive process for co-developing

secure software architectures and security requirements, but do not consider the impact

imposed by security architecture on other non-security requirements. In addition, none

of these approaches has formalized the interactions between the twin peaks, and there is

no tool has been developed to support the analysis process.

In Goal-Oriented Requirements Engineering (GORE), stakeholder’s requirements, i.e.,

goals and softgoals should be operationalized into specific functions. As summarized

by Dalpiaz et al. [2014], there are several types of operationalization among existing

GORE approaches, namely: functional requirements operationalization, qualitative op-

Related Work 155

erationalization, adaptation requirements operationalization, and behavior operational-

ization. Most of the existing work about security requirements operationalization falls

into the first category, i.e., operationalizing security requirements into particular func-

tions [Mouratidis and Giorgini, 2002; Haley et al., 2008; Li and Horkoff, 2014]. However,

in this paper, we argue that any single category summarized above is not enough to char-

acterize the operationalization of security requirements. Instead, our proposal aims to

provide a new category of requirements operationalization, which focuses on capturing

various changes on existing requirements specification.

Apart from the type of requirements operationalization, the means of doing the op-

erationalization is also an essential step of the analysis. Letier and van Lamsweerde

[2002] have proposed to leverage operationalization patterns to guide the operationaliza-

tion analysis, while Alrajeh et al. [2009] leverage machine learning techniques to oper-

ationalize goals. As these approaches help to guarantee the correctness of the obtained

operational specification, they can complement our work during the step of enforcing

security constraints, specifically, validating the enforcement rules.

Security, as a cross-cutting concern, has been investigated in an aspect-oriented man-

ner. Gunawan et al. [2009] model both system functional designs and security mechanisms

by using the collaboration-oriented behavior model, and propose to treat each security

mechanism as a security aspect that can be inserted into different places of the system de-

sign. de Sousa et al. [2003] adapt the NFR framework to support aspect-oriented analysis.

Specifically, they illustrate their approach with a security requirements example, as they

treat security requirements as a NFR. However, the above approaches do not consider the

quality influences imposed by security mechanisms.

The impact of security mechanisms has been enforced by using model transformation

techniques. Shiroma et al. [2010] focus on applying security mechanisms onto UML class

diagrams. They automatically enforce the security mechanism by defining transformation

rules in ATLAS transformation language. However, this work focuses on the design phase

and does not consider the impact on the system requirements. Yu et al. [2008] use

i* constructs to model the context, problem, and solution of a security pattern, and

automate the problem matching and application of the security solution by using ATL.

However, their approach highly depends on the semantics of the constructs of i*, such as

dependencies and roles, and cannot be generalized for all security mechanisms, such as

encryption.

156 Analyzing the Impact of Security Mechanisms

7.8 Chapter Summary

In this chapter, we focus on dealing with a particular challenge which we encountered

during the application of our holistic security requirements framework. In particular, we

propose to capture and enforce the impact that security mechanisms impose over system

requirements in order to completely and correctly account for their integration. To this

end, we first described an enriched requirements specification which can reflect the im-

pact imposed by security mechanisms (Section 7.3). Then we propose a conceptual model

in Section 7.4, which characterizes security mechanisms as security tasks, assumptions,

security constraints, and quality influences. Built on such conceptual model, we propose

a systematic way to analyze and enforce the impact that security mechanisms impose

over the system requirements, which helps analysts to rewrite the initial requirements

specification into a security-enhanced version (Section 7.5). In particular, a set of rea-

soning rules have been proposed in order to semi-automatically identify the exact part

of the requirements specification constrained by security mechanisms. In Section 7.6, we

have evaluated the expressiveness of our conceptual model against 20 security mecha-

nisms documented in existing security pattern repositories. Moreover, we have applied

the proposed impact analysis process to a HCN scenario, the results of which show that

our proposal can help analysts to capture and enforce the impact of a security mechanism

over a medium-scale scenario within reasonable time. Lastly, we compare our proposal

with related work in Section 7.7.

Chapter 8

A Prototype Tool

Give us the tools, and we will finish the job.

Winston Churchill

In this chapter, we present a prototype tool MUSER (MUltilayer SEcurity Require-

ments analysis tool), which is developed to support our analytical methods proposed in

Chapter 4-7, semi-automating holistic security requirements analysis. Generally speaking,

this tool allows analysts to graphically model different models and perform reasoning on

top of such models. We first introduce the architecture of the tool in Section 8.1, based

on which we present a list of features that are offered by the tool in Section 8.2. After

that we describe detailed use cases for each primary feature, shedding light on how to use

the tool to perform holistic security requirements analysis (Section 8.3).

8.1 Architecture

MUSER is a Java-based program, which is developed on top of a professional diagramming

application OmniGraffle1 in order to leverage its powerful modeling features and thus

efficiently model requirements models in three separate layers. The graphical models are

automatically transformed into formal expressions (i.e., Disjunctive Datalog), which can

be inferred using the inference engine DLV2. Specifically, upon the requests from analysts,

the tool passes the models together with the analysis requests to the inference engine,

which performs corresponding reasoning tasks. The inference results are then interpreted

as corresponding graphical models in the canvas, presenting to users. In particular, the

architecture of the tool consists of four components: control, view, model, and inference,

as shown in Fig. 8.1. We introduce each of them in detail below.

1http://www.omnigroup.com/omnigraffle
2http://www.dlvsystem.com/

http://www.omnigroup.com/omnigraffle

158 A Prototype Tool

Inference

Datalog
Rules

View

Model

Control

OmniGraffle

User

Modeling

Reasoning

Model
Information

Updated
Model

Formal Model
Specification

Formal Model
Specification

Inference
Request

Inference
Result

DLV Inference
Engine

Figure 8.1: An overall architecture of MUSER

Control component controls the logic of the prototype tool and coordinates other com-

ponents in order to deliver inference functions to users. When receiving user’s inference

requests, it imports related graphical models from the view component, and automati-

cally generates a formal model specification using the formal predicates we have defined

in Chapter 4-5. Then, the control component automatically calls the inference component

to carry out corresponding inference tasks based on the formal model specification. Once

receiving the inference results from the inference component, the control component au-

tomatically updates related model information and graphically presents them in the view

component.

View component supports users with graphical modeling and can graphically show in-

ference results to users. The major requirements for this component include: 1) support

goal-oriented modeling and allow customized notations; 2) support multilayer modeling,

i.e. modeling in different views while keeping connections among them; 3) be connected

with the inference component to support reasoning. We choose a professional diagram-

ming application OmniGraffle as the view component of our prototype, meeting all the

above requirements. Especially, this application has many useful modeling features, such

as automatic layout, outline view, and various export formats. In particular, we have

defined a collection of interfaces for the view component, through which the control com-

ponent can interact with graphical models in the canvas. In such a way, the prototype

tool is flexible in the sense that the view component can be replaced by other applications

that comply with the interfaces.

Features 159

Inference component implements the inference rules proposed in our approach, and au-

tomates corresponding analytical tasks. In particular, we leverage DLV inference engine3

to carry out inference based on the rules and facts. This component receives requests

from the control component, performs corresponding inference tasks, and then returns

results back to the control component.

Model component is responsible for storing the formal models, which are used by

the inference component. Such formal models are automatically derived from graphical

models built in the view component, and are then stored in text files. Note that if our

analysis involves very complex and large models in the future, the model component can

be upgraded and incorporate specialized database application.

8.2 Features

In this section, we summarize all the features provided by MUSER, which support the

holistic security requirements analysis. In particular, we introduce modeling features and

analysis features, respectively.

Modeling features. Since MUSER is built on top of OmniGraffle, it inherits many pow-

erful modeling features from that professional diagramming application, such as automatic

layout, outline view, and various export formats. Apart from such shared features, we

have further customize OmniGraffle in order to provide two particular features for the

holistic security requirements analysis. Firstly, we have produced a stencil including all

the modeling constructs proposed in Section 4.2, assisting analysts in building all ana-

lytical models we have proposed in the thesis. Secondly, we have customized the model

canvas to including three different layers. In particular, the visibility of each of these

three layers is configurable, allowing users to view any of the three layers. As such, the

tool can perfectly implement the modularity we advocate in this thesis.

Take Fig. 8.2 as an example for illustration. The modeling canvas is set in the middle,

where users can build their models by leveraging all the modeling features offered by

OmniGraffle. In the right part presents, users can find the stencil we have customized

according to our modeling language. Moreover, there is an outline view provided in the

left part, through which analysts can navigate modeling in different layers.

Analysis features. Using the modeling features described above, users can produce

various analytical models required by our holistic security requirements analysis. Based

3http://www.dlvsystem.com/dlv/

http://www.dlvsystem.com/dlv/

160 A Prototype Tool

Application Layer

Business Layer

Physical Layer

Canvas

Layer List

Customized
Stencil

Figure 8.2: The modeling interface of MUSER

on such models, our prototype tool offers a collection of features to perform reasoning

over the models, (semi-)automating corresponding analytical methods we have proposed

in this thesis (Chapter 4-7). In particular, we list all the features below, which are

grouped based on the analysis methods they implement.

Thus far, MUSER has been implemented with the following features:

• Holistic security requirements analysis.

– Refine security goals. The tool can automatically perform both step-by-step re-

finement and exhaustive refinement, completing security goal refinement anal-

ysis (Section 4.3.1).

– Identify critical security goals. The tool can automatically check the applica-

bility of security goals and identify threats that are related to security goals.

Features 161

Based on such analysis results, analysts can semi-automatically identify critical

security goals (Section 4.3.2).

– Operationalize security goals. The tool can help analysts to semi-automatically

operationalize critical security goals in terms of corresponding security mecha-

nisms using security patterns, facilitating the analysis described in Section 4.3.3.

In particular, this feature includes the following sub-features, assisting elabo-

rated analysis methods that are introduced in Chapter 6.

∗ Identify security pattern candidates. Given a critical security goal, the tool

can first identify all the relevant security patterns that may be applied

to operationalize the security goal, assisting the analysis described in Sec-

tion 6.3.1.

∗ Check applicability of security pattern candidates. The tool can help ana-

lysts to determine the applicability of each security pattern candidate by

checking the context required by the candidate. If certain context cannot

be checked, the tool will interact with users to obtain corresponding con-

text information. In such a way, analysts can semi-automatically select

applicable security patterns from candidates, as described in Section 6.3.2.

– Propagate security requirements across layers. The tool can automate the cross-

layer analysis described in Section 4.3.4, i.e., generating security requirements

in the next layer down and enabling iterative security requirements analysis in

that layer.

– Generate holistic security solutions. Once having the entire security goal model

that covers security concerns in all three layers, our tool can generate all the

alternative security solutions that satisfy the root security goal, automating the

analysis described in Section 4.3.5.

• Holistic security attack analysis.

– Operationalize anti-goals into attack pattern candidates. Given an anti-goal,

the tool can identify all the relevant attack patterns that may be able to oper-

ationalize this anti-goal, automating the analysis presented in Section 5.3.2.

– Check applicability of attack pattern candidates. The tool can automatically

determine the applicability of an attack pattern by checking the context required

by the pattern. If some context cannot be checked, the tool will ask for manual

check via pop-up dialog. In such a way, analysts are able to semi-automatically

select applicable attack patterns to operationalize anti-goals, as described in

Section 5.3.2.

162 A Prototype Tool

– Generate of alternative (multistage) attacks. Once a complete attack model is

established, our tool can automatically generate all the alternative (multistage)

attacks, supporting the analysis introduced in Section 5.3.2.

• Security mechanism impact analysis.

– Identify constrained requirements tasks. The tool can automatically identify

all the requirements tasks that are affected by a particular security constraint,

assisting the impact analysis described in Section 7.5.

– Enforce impact of security mechanisms. Once the constrained requirements

tasks have been identified, our tool can automatically enforce the impact of the

security constraints on such requirements tasks, based on corresponding rules

introduced in Section 7.5.

Figure 8.3: Perform analysis using MUSER control panel

Since MUSER is developed on top of OmniGraffle, all the above analysis features

are executed via the MUSER control panel, as shown in the right part of Fig. 8.3. In

particular, analysts should first select elements from the canvas, which they want to

analyze. After that, they can perform specific analysis by clicking corresponding buttons

in the control panel. Once the analysis is completed, our tool will update the canvas in

order to show the analysis results.

Use Cases 163

8.3 Use Cases

In this section, we present detailed use case specifications for each analysis feature we

have introduced in the last section in order to guide potential users. In particular, we

specify the following attributes for each use case: Name, Actors, Preconditions, Basic

Flow, Post-conditions. Note that we here only present the basic execution flow of each

use case, and ignore the alternative flows. This is because the tool currently is not robust

enough to tackle different exceptions, and thus the users are expected to follow the basic

execution flow. In the future, we will keep improving the tool to deal with exceptions.

Table 8.1: The use case specification for refining security goals

Name: Refine security goals

Actors: Analysts, Stakeholders

Preconditions:

• Stakeholder’s initial security needs (i.e., the root security goals) have been elicited

• The three-layer requirements goal model has been built

• The resource schema has been imported

• The security property hierarchy has been specified

Basic Flow:

1. Select one or multiple security goals from the canvas, which are intended to be refined

2. Choose the refinement dimension in the control panel (e.g., asset-based refinement)

3. Choose the refinement type in the control panel (e.g., one-step refinement)

4. Click the refinement button in the control panel

Post-conditions:

• The selected security goals as been refined into expected sub-goals

164 A Prototype Tool

Table 8.2: The use case specification for identifying critical security goals

Name: Identify critical security goals

Actors: Analysts, Security experts

Preconditions:

• The data flow information has been specified

• The threat information has been imported

• The resource schema has been imported

Basic Flow:

1. Select one or multiple security goals from the canvas

2. Click the simplification button in the control panel

3. Manually determine the criticality for each security goal that is applicable but non-critical.

Post-conditions:

• The criticality of the selected security goals has been determined

Table 8.3: The use case specification for identifying security pattern candidates

Name: Identify security pattern candidates

Actors: Analysts

Preconditions:

• Critical security goals have been identified

Basic Flow:

1. Select one or multiple critical security goals from the canvas

2. Click the operationalization button in the control panel

Post-conditions:

• The selected security goals are operationalized into a list of security pattern candidates

Use Cases 165

Table 8.4: The use case specification for checking applicability of security pattern candidates

Name: Checking applicability of security pattern candidates

Actors: Analysts, Domain experts

Preconditions:

• Security pattern candidates have been generated

• The context specification has been loaded

Basic Flow:

1. Select one or multiple security pattern candidates from the canvas

2. Click the operationalization button in the control panel

3. For contexts that cannot be automatically checked, users need to manually check them via

pop-up dialog

Post-conditions:

• The applicability of the selected security pattern candidates have been determined

Table 8.5: The use case specification for propagating security requirements across layers

Name: Propagate security requirements across layers

Actors: Analysts

Preconditions:

• Critical security goals have been operationalized

• The three-layer requirements goal model has been built

Basic Flow:

1. Select one or multiple security mechanisms or critical security goals from the canvas

2. Click the cross-layer analysis button in the control panel

Post-conditions:

• The selected security mechanisms or critical security goals have propagated their corresponding

security concerns into the next layer down

166 A Prototype Tool

Table 8.6: The use case specification for generating holistic security solutions

Name: Generate holistic security solutions

Actors: Analysts

Preconditions:

• The three-layer security goal model has been built

Basic Flow:

1. Select the entire three-layer security goal model from the canvas

2. Click the holistic analysis button in the control panel

Post-conditions:

• All holistic security solutions are generated and listed in the control panel

Table 8.7: The use case specification for operationalizing anti-goals

Name: Operationalize anti-goals into attack pattern candidates

Actors: Analysts

Preconditions:

• The goal-oriented attack strategy model has been established

Basic Flow:

1. Select one or multiple leaf anti-goals from the canvas

2. Click the attack operationalization button in the control panel

Post-conditions:

• The selected anti-goals have been operationalized into a list of relevant attack patterns

Table 8.8: The use case specification for checking applicability of attack pattern candidates

Name: Check applicability of attack pattern candidates

Actors: Analysts, Domain experts

Preconditions:

• Attack pattern candidates have been generated

• The three-layer requirements goal model has been built

Basic Flow:

1. Select one or multiple attack pattern candidates

2. Click the attack context analysis button in the control panel

3. For contexts that cannot be automatically checked, users need to manually check them via

pop-up dialog

Post-conditions:

• The applicability of the selected attack pattern candidates have been determined

Use Cases 167

Table 8.9: The use case specification for generating alternative (multistage) attacks

Name: Generate of alternative (multistage) attacks

Actors: Analysts

Preconditions:

• The goal-oriented attack model has been established

Basic Flow:

1. Select the entire goal-oriented attack model from the canvas

2. Click the attack generation button in the control panel

Post-conditions:

• All attack alternatives are generated and shown in the control panel

Table 8.10: The use case specification for identifying constrained requirements tasks

Name: Identify constrained requirements tasks

Actors: Analysts

Preconditions:

• The enriched requirements model has been built

• The applied security tasks have been contextualized

Basic Flow:

1. Select one or multiple security constraints from the canvas

2. Click influence analysis button in the control panel

Post-conditions:

• All the requirements tasks that are impacted by the selected security constraints are identified

Table 8.11: The use case specification for enforcing impact of security constraints

Name: Enforce impact of security constraints

Actors: Analysts

Preconditions:

• The requirements tasks that are constrained by the security constraints

Basic Flow:

1. Select one or multiple security constraints from the canvas

2. Click the enforce impact button in the control panel

Post-conditions:

• The impact of the security constraints has been enforced on the constrained requirements tasks

168 A Prototype Tool

8.4 Chapter Summary

In this chapter, we introduce a prototype tool (MUSER), which was developed to support

various analysis methods we have proposed in Chapter 4-7. The prototype tool is imple-

mented in Java, its architecture has been introduced in detail in Section 8.1. We then

present a list of features that are accommodated by the tool in Section 8.2. In order to

facilitate users to easily use the tool, in Section 8.3, we have described detailed use cases

for each analysis feature of the tool.

Chapter 9

Validation

We need science. We need empirical evidence. We can’t just use

mathematical reasoning to deduce the nature of the world.

Rebecca Goldstein

In this Chapter, we validate our holistic security requirements framework by applying

it to two case studies. The first case study was performed by myself based on a smart

grid scenario, in which I focused on evaluating the efficiency of both the three-layer re-

quirements modeling language and the holistic analysis framework. The detailed research

questions are described in Section 9.1. In particular, we first describe this scenario in

detail in Section 9.1.1. After that we evaluate the modeling of the three-layer require-

ments goal model in Section 9.1.2, and report our experiences in performing the holistic

security requirements analysis and evaluate the analysis results in Section 9.1.3. It is

worth noting that, during this case study, we adopt the approaches proposed in Chap-

ter 5 and Chapter 6 (i.e., holistic attack analysis and security pattern analysis) to produce

models/information required by the holistic security requirements framework, supporting

corresponding analysis. Lastly, we discuss the threats to validity in this case study.

The second case study was performed by a Master student based on a large-scale

medical emergency response system. The focus of this case study is to evaluate whether

our approach has the potential to be adopted in reality by people who were not involved in

the development of the approach. We first describe the scenario in detail in Section 9.2.2

Then, we present the three-layer requirements model constructed by the student and

evaluate usability of our modeling language in Section 9.2.2. Based on that model, in

Section 9.2.3, we describe and evaluate the holistic security requirements analysis results.

170 Validation

9.1 Case Study 1: A Smart Grid Real-Time Pricing Scenario

In this section, we validate our approach by applying it to a real-time pricing scenario

of smart grid advanced metering infrastructure, which is a typical STS. In particular, we

intend to investigate scalability and efficacy of our approach, each of which corresponds

to one research question as presented below. In addition, we have further decomposed

these questions into fine-grained ones, which can be measured and answered during the

case study.

• RQ1: Is our approach scalable for large-scale STSs?

– RQ1.1: Can we efficiently construct three-layer requirements models for large-

scale STSs?

∗ RQ1.1.1: Is it easy to collect domain information for constructing the

models?

∗ RQ1.1.2: How much effort is required to build the models?

– RQ1.2: Can we efficiently perform holistic security analysis for large-scale

STSs?

∗ RQ1.2.1: Is additional security knowledge/expertise required?

∗ RQ1.2.2: Are there any difficulties in applying the analysis methods?

∗ RQ1.2.3: How much effort is required to perform the security analysis?

• RQ2: To what extent can our approach is effective for holistic security protection?

– RQ2.1: Can holistic security solutions be identified?

– RQ2.2: How many security solution alternatives are identified?

This case study was performed based on the information of the scenario we have

collected from literature [NIST, 2012; Cuellar and Suppan, 2013], which is detailed in

Section 9.1.1. In particular, we first constructed a three-layer requirements model, which

captured requirements of different artifacts involved in this scenario, as well as connec-

tions among them (Section 9.1.2). On the basis of this three-layer requirements model,

we applied our holistic security analysis framework step by step, establishing a three-layer

security goal model. On the basis of this model, we explored alternative security solu-

tions that can provide comprehensive protections to the entire system (Section 9.1.3). It

is worth noting that, at the end of Section 9.1.2 and Section 9.1.3, we also evaluate corre-

sponding research questions. Finally, we discuss the threats to validity and corresponding

countermeasures in Section 9.1.4.

Case Study 1: A Smart Grid Real-Time Pricing Scenario 171

9.1.1 Scenario Description

Real-time pricing is a scenario based on the smart grid advanced metering infrastructure,

in which the energy supplier collects real-time energy consumption data and balances

loads on the power grid. This scenario presents a typical socio-technical system. Firstly,

it includes a business process for price generation. Specifically, the energy supplier pe-

riodically collects load information of the power grid, and generates appropriate energy

prices accordingly in order to regulate the load of the power grid. On the other side, the

energy consumers will adjust their energy usage based on the real-time prices. Secondly,

a number of applications are involved in this scenario to support the interactive process.

In particular, a home energy management system is used by the energy consumer to com-

municate with the energy supplier and control the smart appliances in her apartment.

Thirdly, physical devices (e.g., personal PC) are required to deploy the software applica-

tions, and the network needs to be appropriately configured to support communications.

Detailed information of this scenario can be found in [Cuellar and Suppan, 2013]. As our

approach requires particular information of the smart grid scenario across different layers,

we also refer to other complementary sources of information (e.g., [NIST, 2012]).

As this system involves a wide range of artifacts that vary from business processes to

physical devices, it is difficult to carry out a thorough security analysis to protect the

entire system. As reported by the National Vulnerability Database, on average, 15 new

vulnerabilities of the Supervisory Control And Data Acquisition (SCADA, a system for

remotely monitoring and controlling power grids) are publicly disclosed each day. Not

surprisingly, the presence of these vulnerabilities leads to many attacks on smart grid

systems [Flick and Morehouse, 2010]. As such, our approach aims to provide a systematic

and holistic way to analyze security requirements for all parts of the system.

9.1.2 Building Three-Layer Requirements Models

As the first step of the case study, we built the three-layer requirements model for the

smart grid by following the conceptual model proposed in Section 4.2.

We constructed the requirements models layer by layer, starting from the social layer.

Since we have separated concerns into different layers, in this first layer, we exclusively fo-

cused on the social and business aspects of the scenario, while ignored technical issues. In

particular, we modeled three social actors Energy Supplier, Customer, and Smart Meter,

where Customer depends on Energy Supplier for sending the real-time price of energies,

and Energy Supplier depends on Smart Meter for measuring energy consumption infor-

mation. Fig. 9.1 shows the requirements model we have built for the social layer. When

elaborating the requirements model inside each actor, we respected the operational def-

172 Validation

Realtime
price is

obtained

Load info is
available

Receive energy
consumption data

from SM

Customer is
notified about

the price

ES sends price
to customer

Realtime
pricing is
applied

Calculate
price

New price
is available

Realtime price
info is known

Energy usage is
adjusted according
to the realtime price

Energy usage
is adjusted in

real time

Apply policy
based

adjustment

Current
energy usage

is known

Collect smart
appliance info

ES sends price
to customer

Control smart
appliances

Execute
adjustment

policy

Realtime
load info is
available

Measure energy
consumption

Support
smart gird

Sends energy
consumption data to

ES

ES sends price
to customer

D

D

Smart
Meter

Custom
er

Energy
Supplier

ES has the
realtime
load info

DD

Sends energy
consumption data to

ES

Figure 9.1: The requirements model in the social layer

inition we have assigned to the social layer. For example, we iteratively elaborated the

business goal Realtime pricing is applied until obtaining concrete business process activi-

ties that are performed within this scenario, such as Calculate price. Benefiting from the

operational definition, we are able to know when to finish the requirements modeling in

the social layer. It is worth noting that we here followed a top-down process to create

the requirements model, however, it can also be performed in a bottom-up manner (or a

hybrid way) by using existing business process models, if available. In particular, we can

first model each business process activity as a task in the social layer, and then identify

goals achieved by such tasks by asking “why” questions.

Once the requirements model in the social layer was finished, we then analyzed sup-

port links between the social layer and the to-be-created application layer, following the

instructions we presented in Section 4.2.1. Specifically, we checked whether each leaf-task

is purely performed by people. If not, we then identified the software applications involved

in this activity, based on which we modeled elements of the application layer including

supporting links relating the two layers. For example, based on the domain specification,

we identified that the task Receive energy consumption data from SM is executed by using

Energy Supplier Server Application. Thus, we modeled this application as an actor in the

software application layer, and further identified a requirements goal of the application,

i.e., Be able to communicate with SM, which supports the task in the social layer.

By analyzing the support links between layers, we obtained a list of application ac-

tors, each of which has one or several requirements goals. Based on such models, we then

elaborated requirements for each actor in the software layer, until reaching detailed appli-

cation functions (i.e., the operational definition of software tasks). Similar to the analysis

Case Study 1: A Smart Grid Real-Time Pricing Scenario 173

in the social layer, the construction of requirements model in this layer can be done via a

bottom-up manner, if there are software architecture models available for use as inputs.

Once the requirements model in the software layer was finished, we then moved to the

infrastructure layer, building this requirements model in a similar way. Eventually, we

obtained the complete three-layer requirements model of the smart grid scenario, shown

in Fig. 9.21.

Realtime
price is

obtained

Load info is
available

Receive energy
consumption data

from SM

Customer is
notified about

the price

ES sends price
to customer

Realtime
pricing is
applied

Calculate
price

New price
is available

Realtime price
info is known

Energy usage is
adjusted according
to the realtime price

Energy usage
is adjusted in

real time

Apply policy
based

adjustment

Current
energy usage

is known

Collect smart
appliance info

ES sends price
to customer

Control smart
appliances

Execute
adjustment

policy

Realtime
load info is
available

Measure energy
consumption

Support
smart gird

Sends energy
consumption data to

ES

ES sends price
to customer

D

D

Smart
Meter

Custom
er

Energy
Supplier

ES has the
realtime
load info

DD

Sends energy
consumption data to

ES

Support
calculate

price Be able to send
messages to ES

Price can
be sent to
customer

Communicate
with SMA

 History
price is

obtained New price is
generated

Generate
 price

Database
service is
provided

Provide database
service

D DEnergy
Supplier
Databas

e

Energy
Supplier
Server

Application Support measure
energy

consumption

Store energy
consumption

data

Energy
consumption

data is obtained

Energy
consumption
data is stored

Measure energy
consumption

Support customer
communicates with

ES

Be able to
communicate with

SAA

Communicate
with ESSA

Manage
policies

Policy can be
executed

Policies can
be created and

edited

Execute
policies

Support execute
adjustment policy

Status
information
is obtained

SAA are
controled

Remote control
component

Can be remotely
monitored and

controlled

Be able to be
controlled by HEMS

Execute remote
control command

Appliance info is
monitored by HEMS

Send appliance
info to HEMS

D

DSmart
Meter

Firmware

Home
Energy

Manageme
nt System Smart

Appliance
Application

Communicate
with ESSA

Receive
requests from

ESSA
Send energy

consumption data
to ESSA

Retrieve
data from
Database

Store data

Respond to
request from

ESSA

Storage
service is
provided

Query
service is
provided

Be able to
communicate

with SM

Send
measurement

requests
to SMA

Receive energy
consumption data

from SMA

Send price info
to HEMS

Send energy
consumption

 data to ESSA

D

D

Send
measurement

requests
to SMA

D

D

Collect
appliance info

Remote control
component

Send appliance
info to HEMS

D

D

Send price info to
HEMS

D

D

Deploy SAA

Support SAA

Deploy HEMS

Support HEMS
Support

communications
between SMA

and ESSA

Deploy SMA to
SMD

Support SMA

Connection
between SMD

and ESS is
established

Connect SMD to
HAN

Connection
between home
devices and HG
is established

Home area
devices are

in HAN

Connect HG to
HAN

Connect home
devices to HAN

Support
communication
between ESSA

and SMADeploy ESSA to
ESS

Support ESSA

Connection between
ESS and SMD is

established

Connect ESS to
DCN

Connect SMD to
HAN

Connect SA to
HAN

Connect PC to
HAN

Connect PC to
HAN

D

D

Connect SA to
HAN

D

D

Connect PC to
HAN

D

D

HAN is available

D

D

HAN is available

D

D

HAN is available

D

D

Support
communications
between DCN

and HAN

Connect HAN
with DCN

Connect HG to
DCN Connect HG to

HAN

Connect HG to
HAND D

Connect
devices

Connect devices to
DCN

Connect ESS to
DCN

Connect HG to
DCN

Connect HG to
DCN

DD

Connect ESS to
DCN

D

D

Energy
Supplier
Server

Smart Meter
Device

Personal
Computer Smart

Appliance

Home Area
Network

Home
Gateway

Data
Communicati
on Network

Support
communication
between ESSA

and HEMS

Connect ESS to
Internet

Connection
between ESS and
PC is established

Connect
devices

Connect devices to
Internet

Connect ESS to
Internet

Connect HG to
Internet

Internet

Connect ESS to
Internet

D

D

Support
communications
between HEMS

and ESSA

Connection
between PC and

ESS is
established

Connect PC to
HAN

Support
communications
between HEMS

and SAA

Connection
between PC and
SA is established

Connect SA to
HAN

Support
communications

between SAA and
HEMS

Connection
between SA and
PC is established

HG is in
HAN

Support
communications
between HAN
and Internet

Connect HAN
with DCN

Connect HG to
Internet

Connect HG to
DCN D

D

Set up
Wireless HAN

HAN is
available

Set up
wireless

DCN

DCN is
available

Internet is
available

DCN is available

D

D

DCN is
available

D D

Install HG
inside home

HG is
installed

Social
Layer

Application
Layer

Infrastructure
Layer

(S)
High Confidentiality

[customer personal info,
Energy usage is

adjusted in real time]

Figure 9.2: A three-layer requirements model of the smart grid realtime pricing scenario

Evaluation. I spent around four days gathering information from different sources. Most

available specifications do not provide information required for all of the layers, as they

were not originally developed for holistic analysis. Therefore, we have to synthesize such

information in order to gather a complete understanding of the system. Additional effort

is required in order to make information from different sources consistent. Overall, in this

1The full model file, http://disi.unitn.it/~li/SoSyM/model_rtp.pdf

http://disi.unitn.it/~li/SoSyM/model_rtp.pdf

174 Validation

Table 9.1: Statistics of the three-layer requirements model (smart grid)

Layer Actor Goal Task (and)Refine Operationalize Dependency

All 16 60 57 44 43 21

Social 3 12 9 11 8 2

Software 5 22 20 14 16 6

Infrastructure 8 26 28 19 19 13

case study, it was not easy to collect related domain information (RQ1.1.1).

The main reason for this difficulty is the method of data collection. According to Leth-

bridge et al. [2005], data collection technique can be classified into three levels: directly

interacting with subjects to collect data in real time; directly collecting raw data without

interacting with subjects; reusing available information from other independent studies.

Our data collection belongs to the third level, which leads to the difficulties that we have

to synthesize information from different sources while make them consistent We argue

the other two levels can avoid those difficulties and simplify the data collection, which we

plan to adopt in subsequent studies.

After collecting and understanding sufficient information for this scenario, I took one

day to construct the three-layer requirements model (RQ1.1.2), as shown in Fig. 9.2.

The statistics of the model is presented in Table 9.1, which shows the entire model con-

tains 133 nodes and 108 links. Thanks to the conceptually divided layers, the modeler

only needed to take into account layer-specific concerns when constructing models for a

particular layer. In addition, the prototype tool can easily show/hide particular layers,

enabling us to quickly switch views between a specific layer and the entire model. In

particular, as we build our tool on top of a professional diagramming tool, our prototype

tool inherits good usability of that tool and thus easily facilitates the graphical model-

ing task. Overall, because of both the conceptually separated layers and the prototype

tool, we believe a typical analyst is able to tackle the complexity of STSs and build the

three-layer requirements model once related information has been collected and available

(RQ1.1).

9.1.3 Analyze Security Requirements in Three Layers

Having the above three-layer requirements model as input (Fig. 9.2), we applied our

approach step by step to generate the holistic security goal model, starting from the

root security goal. In particular, we started from analyzing a high-level security need

of stakeholders, i.e., protecting confidentiality of customer information during the time

Case Study 1: A Smart Grid Real-Time Pricing Scenario 175

interval of applying realtime pricing. We iteratively performed security requirements

analysis throughout all three layers in order to construct a holistic security goal model,

based on which we generated a collection of holistic security solutions that satisfy the root

security goal. In the remaining part of this subsection, we report our experiences about

the application of our approach, as well as evaluate our approach based on the research

questions.

Customer personal
information

Customer
information

Water consumption
data

Energy production
data

Energy consumption
data

Part of
Part of

Part of

Part of

Electronic
consumption data

Part of

Price information

Billing information

Part ofPart of

Smart
appliance

information

Part of

Figure 9.3: A full resource schema considered in this case study

Security goal refinement and simplification. Given a high-level security goal, we need

to refine it until we are able to identify critical security goals. We applied a hybrid

refinement strategy (as described in Section 4.3.1), leveraging the advantages of both

the step-by-step strategy and the exhaustive strategy. We first adopt the step-by step

strategy to elaborate an initial security goal into more fine-grained goals, in order to

better understand the exact security needs of stakeholders. In particular, we followed

an intuitive order for performing the refinement analysis, i.e., first refine via security

properties (reference to the taxonomy in Fig. 4.5), then via assets (reference to a full

resource schema shown in Fig. 9.3), and finally via interval (reference to Fig. 9.2). Our

prototype tool can automate such refinement and pop up an alert if one dimension cannot

be refined anymore, i.e., achieving the bottom elements in the reference model.

After each refinement, we evaluated the results by asking “are all the elaborated secu-

rity goals needed by stakeholders?”. If a refined security goal is not needed by stakeholders,

then it was excluded from subsequent analysis. In particular, we here used our collected

knowledge of the case to answer the above question from stakeholder’s perspective. As

shown in the top part of Fig. 9.4, after elaborating security goal SG2 via the asset dimen-

sion, we found out the stakeholder’s exact security need is to protect the confidentiality

176 Validation

of customer personal information, and the stakeholder does not care about other parts

of customer information, e.g., smart appliance information. Thus, in the subsequent

refinement analysis, we exclusively focus on elaborating the security goal SG4.

Exhaustive
refinement

(S)
high data

confidentiality
[customer personal

information,
interval(Execute

adjustment policy)]

(S)
high data

confidentiality
[customer personal

information,
interval(Control smart

appliances)]

(S)
high data

confidentiality
[customer personal

information,
interval(Apply policy
based adjustment)]

(S)
high data

confidentiality
[customer personal

information,
interval(ES sends

price to customer)]

(S)
high data

confidentiality
[customer personal

information,
interval(Obtain price

info from ES)]

(S)
high data

confidentiality
[customer personal

information,
interval(Current
energy usage is

known)](S)
high data confidentiality

[customer personal
information,

interval(Energy usage is
adjusted according to the

realtime price)]

(S)
high data

confidentiality
[customer personal

information,
interval(Realtime

price info is known)]

(S)
high data

confidentiality
[customer personal

information,
interval(Energy usage

is adjusted in real
time)]

(S)
high data

confidentiality [energy
production data,

interval(Energy usage
is adjusted in real

time)]

(S)
high data

confidentiality [energy
consumption data,

interval(Energy usage
is adjusted in real

time)]

(S)
high data

confidentiality [smart
appliance information,
interval(Energy usage

is adjusted in real
time)]

(S)
high data

confidentiality
[customer

information,
interval(Energy usage

is adjusted in real
time)]

(S)
High Confidentiality

[customer information,
interval(Energy usage is

adjusted in real time)]

SG1

SG2

SG3

SG4 SG5

SG6

SG7

SG8

SG9

SG10

SG11

SG12 SG13 SG14

(S)
high data

confidentiality
[customer personal

information,
interval(Collect smart

appliance info)]

SG15

Step-by-step
refinement

Figure 9.4: Refine security goals in the social layer

As we decided that the security goal SG4 can reflect the stakeholder’s needs, we

performed exhaustive refinement analysis to explore all possible refinements of SG4. Once

the exhaustive refinements were obtained, we then performed the simplification analysis

over all the exhaustively refined security goals (Section 4.3.2), which was automated by

Case Study 1: A Smart Grid Real-Time Pricing Scenario 177

the prototype tool. It is worth noting that the simplification analysis requires threat

knowledge about the smart grid system, which we imported from our holistic attack

analysis as introduced in Chapter 5.

The results of the simplification analysis are shown in the bottom part of Fig. 9.4,

where SG12 was identified as a critical security goal (highlighted in red), SG14 was iden-

tified as an applicable one (highlighted in green) that requires manual assessment for its

criticality, and all other security goals are not applicable and should be excluded from

subsequent analysis. As SG14 expresses the security need for protecting data confiden-

tiality of customer personal information during the energy usage adjustment, we assessed

that it is very likely to be threatened by threats originate from lower-layers and thus

classified it as a critical security goal.

Security goal operationalization. Once critical security goals are identified, we per-

formed the security pattern-based operationalization analysis (as elaborated in Section 6.3)

to operationalize the critical security goals. We first automatically generated a list of se-

curity pattern candidates for each critical security goal, and then check the context of

each candidate in order to determine whether they are applicable. In particular, among

the current collection of the selected security patterns in the social layer (see Fig. 4.11

in Chapter 4), there was only one security pattern (i.e., access control) can be applied

for tackling data confidentiality. As such, each of the two critical security goals identified

from the last step (as shown in Fig. 9.4) was first operationalized by an access control

mechanism. Then, we checked the context of access control which is “Any environment in

which we have resources whose access needs to be controlled” [Asnar et al., 2011a]. Note

that for our approach, such context holds by default, which can be inferred by the par-

ticular attributes of security goals (i.e., security property and asset). As such, according

to our pattern analysis method, this access control pattern was applicable.

Cross-layer analysis. Once we finished operationalization analysis in one layer, we then

performed the cross-layer analysis (Section 4.3.4). Based on cross-layer links modeled in

the three-layer functional goal model, we automatically performed such analysis which

transferred security concerns to lower layers, targeting corresponding system components

there (e.g., software applications, physical devices). In particular, the critical security goal

SG12 high data confidentiality [customer personal information, interval(ES sends price

to customer)] (Fig. 9.4) was and-refined into two security goals in the application layer:

one goal concerned the same asset and security property with SG12, but focused on a

particular interval when the supporting application sends the price to customer; the other

security goal exclusively concerned the security of the supporting application (i.e., energy

178 Validation

supplier server application) instead of the original asset (i.e., customer personal informa-

tion). Similarly, we performed such cross-layer analysis for another critical security goal

SG14 (Fig. 9.4). We did not encounter any difficulties at this step.

Holistic security solution analysis. By iteratively performing the security analysis in

each of the three layers, we finally ended up with an entire holistic security goal model,

which is shown in Fig. 9.5 (The full model file can be found online2). We performed the

backwards satisfaction analysis over this holistic security goal model in order to identify

all possible holistic security solutions for the entire system (Section 4.3.5), resulting in 21

holistic security solutions in total.

(S)
high integrity [ESS

Gateway, interval(support
ESS firewall)]

(S)
high availability [ESS

Gateway, interval(support
ESS firewall)]

Social
Layer

Software
Layer

Infrastructure
Layer

(S)
access control

to energy
adjustment

Layer-specific
protection is

applied

(S)
high data

confidentiality
[customer personal

information, Execute
adjustment policy]

(S)
high data

confidentiality
[customer personal
information, Control
smart appliances]

(S)
high data

confidentiality
[customer personal
information, Apply

policy based
adjustment]

(S)
high data

confidentiality
[customer personal

information, ES sends
price to customer]

(S)
high data

confidentiality
[customer personal
information, Obtain
price info from ES]

(S)
high data

confidentiality
[customer personal
information, Current

energy usage is
known]

(S)
high data confidentiality

[customer personal
information, Energy
usage is adjusted

according to the realtime
price]

(S)
high data

confidentiality
[customer personal

information, Realtime
price info is known]

(S)
high data

confidentiality
[customer personal
information, Energy
usage is adjusted in

real time]

(S)
high data

confidentiality [energy
production data,
Energy usage is

adjusted in real time]

(S)
high data

confidentiality [energy
consumption data,
Energy usage is

adjusted in real time]

(S)
high data

confidentiality [smart
appliance information,

Energy usage is
adjusted in real time]

(S)
high data

confidentiality
[customer

information, Energy
usage is adjusted in

real time]

(S)
High Confidentiality

[customer information,
Energy usage is

adjusted in real time]

support
access
control

Home
Energy

Manageme
nt System

(S)
high security

[HEMS,
interval(support
access control)]

Control
access to all
the functions

of HEMS

(S)
high data confidentiality

[energy consumption
data, interval(price can
be sent to customer)]

(S)
high security [ESSA,
interval(price can be
sent to customer)]

(S)
high integrity [ESSA,
interval(price can be
sent to customer)]

(S)
high availability [ESSA,

interval(price can be
sent to customer)]

This security goal and
its potential refinements

are not critical

(S)
high application integrity

[ESSA, interval(price
can be sent to

customer)]

(S)
high data confidentiality

[energy consumption data,
interval(Send price info

to HEMS)]

(S)
Security Pipe

(between
ESSA and

HEMS)

(S)
Firewall
(Server)

(S)
Input Guard
(to ESSA)(S)

Server
sandbox

(S)
Firewall
(Home)

(S)
high integrity [HEMS,

interval(support access
control)]

(S)
high availability [HEMS,
interval(support access

control)]

This security goal and
its potential refinements

are not critical(S)
high application integrity
[HEMS, interval(support

access control)]

Layer-specific
protection is

applied

(S)
high data confidentiality
[customer billing data,
interval(Support apply

policy based
adjustment)]

(S)
high security [HEMS,
interval(Support apply

policy based
adjustment)]

(S)
high integrity [HEMS,
interval(Support apply

policy based
adjustment)]

(S)
high availability [HEMS,
interval(Support apply

policy based
adjustment)]

This security goal and
its potential refinements

are not critical(S)
high application integrity
[HEMS, interval(Support

apply policy based
adjustment)]

(S)
high data confidentiality
[customer billing data,

interval(Be able to
communicate with SAA)] (S)

high data confidentiality
[customer billing data,

interval(Support viewing
energy consumption

data)]

(S)
high data confidentiality
[customer billing data,

interval(Support execute
adjustment policy)]

This security goal and
its potential refinements

are not critical

This security goal and
its potential refinements

are not critical
(S)

high data confidentiality
[customer billing data,

interval(Show
energy data)]

(S)
Limited View

(HEMS)

(S)
Full View with

Errors
(HEMS)

Layer-specific
protection is

applied

Layer-specific
protection is

applied

Layer-specific
protection is

applied

Layer-specific
protection is

applied

(S)
Security

Access Layer
(on ESSA2)

support ESS
firewall

ESS
Gateway

(S)
high security

[ESS Gateway,
interval(support
ESS firewall)]

Integrate
 ESS firewall
component support home

firewall

Home
Gateway

(S)
high security

[Home Gateway,
interval(support

firewall)]

Integrate
home firewall
component

(S)
high data confidentiality

[energy consumption
data, interval(Support

communication between
ESSA and HEMS)]

(S)
high security [ESS,

interval(Support
communication between

ESSA and HEMS)]

(S)
high application integrity
[ESSA, interval(Support
communication between

ESSA and HEMS)]

This security goal is not
applicable in this layer

(S)
high application
integrity [HEMS,
interval(Support

HEMS)]

This security goal is not
applicable in this layer

(S)
high security [PC,
interval(Support

HEMS)]

(S)
high application integrity
[HEMS, interval(Support

communications
between HEMS and

SAA)]

This security goal is not
applicable in this layer

(S)
high security [PC,
interval(Support
communications

between HEMS and
SAA)]

(S)
high data confidentiality
[customer billing data,

interval(Support HEMS)]

(S)
high data confidentiality
[customer billing data,

interval(Deploy HEMS)]

(S)
high integrity [PC,
interval(Support
communications

between HEMS and
SAA)]

(S)
high availability [PC,

interval(Support
communications

between HEMS and
SAA)]

This security goal and
its potential refinements

are not critical
(S)

high hardware integrity
[PC, interval(Support

communications
between HEMS and

SAA)]

(S)
Physical entry

control (to
home)

(S)
Cabling
security
(Home)

(S)
Equipment
sitting and
protection

(PC)

(S)
high integrity [Home

Gateway,
interval(support firewall)]

(S)
high availability

[Home Gateway,
interval(support

firewall)]

This security goal and
its potential refinements

are not critical(S)
high hardware integrity

[Home Gateway,
interval(support firewall)]

(S)
Equipment sitting

and protection
(Home Gateway)

(S)
high integrity [PC,
interval(Support

HEMS)]

(S)
high availability [PC,

interval(Support
HEMS)]

This security goal and
its potential refinements

are not critical

(S)
high hardware integrity
[PC, interval(Support

HEMS)]

(S)
Physical entry

control (to
ESS)

(S)
Equipment
sitting and
protection

(ESS)

This security goal and
its potential refinements

are not critical

(S)
high hardware integrity

[ESS Gateway,
interval(support ESS

firewall)]

(S)
Physical entry
control (to ESS

Gateway)(S)
Equipment sitting

and protection
(ESS Gateway)

(S)
high integrity [ESS,

interval(Support
communication between

ESSA and HEMS)] (S)
high availability [ESS,

interval(Support
communication between

ESSA and HEMS)]

This security goal and
its potential refinements

are not critical

(S)
high hardware integrity
[ESS, interval(Support

communication between
ESSA and HEMS)]

(S)
high data confidentiality
[customer billing data,
interval(Connection

between ESS and PC is
established)]

(S)
high data confidentiality
[customer billing data,

interval(Connect ESS to
Internet)]

(S)
Cabling
security

(Company2)

Figure 9.5: The entire security goal model across three layers

2http://disi.unitn.it/~li/thesis/validation_hsgm.pdf

http://disi.unitn.it/~li/thesis/validation_hsgm.pdf

Case Study 1: A Smart Grid Real-Time Pricing Scenario 179

Each of these holistic security solutions consists of specific solutions from different

layers, covering different system components. For example, we list one holistic security

solution below, which consists of ten security mechanisms (each mechanism is a solution

introduced by a security pattern). In particular, there is one security mechanism in the

social layer, four security mechanisms in the software layer, and five security mechanisms

in the infrastructure layer. It is worth noting that the satisfaction of the stakeholder’s root

security goal requires all these ten security mechanisms to be implemented, which may

cost a large amount of money. This is mainly because we have taken a holistic viewpoint,

considering all the related systems components.

An exemplary solution (10 mechanisms):

• Social Layer: Access control to energy adjustment

• Software Layer: Firewall (Home), Security Pipe (between ESSA and HEMS),

Server sandbox, Limited View (HEMS)

• Infrastructure Layer: Cabling security (Home), Equipment sitting and pro-

tection (PC), Equipment sitting and protection (Home Gateway), Equip-

ment sitting and protection (ESS), Cabling security (Company2)

Given the alternative holistic security solutions, we need to select the best alternative

in subsequent analysis. To this end, we can elicit both the positive and negative influences

of security patterns from their specification (e.g., [Fernandez-Buglioni, 2013]), as detailed

in Chapter 6. Based on such information, different goal model selection algorithms can be

applied to evaluate the solutions against desired system goals and qualities, allowing us

to choose the best alternative [Horkoff and Yu, 2013]. This part of analysis is not covered

in this case study.

Evaluation and reflection. Throughout the entire case study, we realized that addi-

tional security expertise was required in several places (RQ1.2.1). Firstly, during the

simplification analysis, for security goals that have been classified as applicable but not

critical by our inference rules, analysts need to manually assess their criticality. In par-

ticular, analysts should assess whether the security goal might be threatened by threats

originate from lower-layers, in which the expertise of analysts can affect the assessment

results. If an analyst has little security knowledge, she can adopt a conservative strategy,

i.e., treating all applicable security goals as critical and further analyze them in the lower

layers. However, as a result, the complexity of subsequent analysis can be increased.

Secondly, during the security pattern analysis, we noticed the need of manual check over

the pattern analysis results, requiring additional security knowledge. Specifically, when

180 Validation

determining whether a security pattern is applicable to operationalize a security goal, we

should take into account the interval of the security goal which is normally not captured

in the pattern context. For example, in our case (Fig. 9.4), security goal SG12 focuses

on protecting the data confidentiality of customer personal information during the time

interval ES sends price to customer, during which the access control mechanism is inap-

propriate to apply. It is worth noting that the need of performing manual check over the

pattern analysis results is due to the incomplete context description of security patterns.

Thus, such problem can be relieved along with the improvements of security patterns.

During the case study, we discovered two difficulties in performing our analysis (RQ1.2.2).

Firstly, when performing the security goal refinement, we noticed that refining a security

goal in the social layer is more complicated compared to the analysis in other layers, as it

involves more manual analysis. In the social layer, we started from a high-level security

goal, which is by nature broad and may not reflect the stakeholder’s real needs. Thus,

we needed to adopt a hybrid refinement strategy, which first uncovers the stakeholder’s

security needs more precisely. In the software layer and the infrastructure layer, the root

security goals were derived from the security concerns in the upper layers, which had al-

ready captured stakeholder’s more precise security needs. As such, we can directly apply

the exhaustive refinement strategy, which is fully automated by our tool. Secondly, we

have realized that our current collection of security patterns were not enough to cover all

threats we analyzed in the case study. Specifically, in our case study, the critical security

goal SG12 we identified in the social layer (Fig. 9.4) was threatened by a social threat

“Inappropriately post customer data to public media”, which should be tackled by security

solutions, such as security training. However, our set of security patterns (Fig. 4.10) only

included access control as a candidate solution to this problem, which is not applicable in

this case. Considering this challenge, we plan to further enrich the collection of selected

security patterns in the future.

After collecting all required information and constructing the three-layer requirement

goal model, with the support of our tool, I spent six hours to perform the holistic security

analysis (RQ1.2.3). Regarding the scale of this scenario (Table 9.1), the time span is

reasonable. Although there were several difficulties we encountered during the case study

(as discussed above), overall, we argue that our approach can be efficient for dealing with

holistic security requirements analysis (RQ1.2).

As we have specified and illustrated before, our case study finally resulted in 21 holis-

tic security solutions in total (RQ2.2), each of which consists of specific solutions from

different layers, covering different system components (RQ2.1). Thus, we argue our se-

curity analysis results have a good coverage of security concerns and effectively contribute

to holistic security protection.

Case Study 1: A Smart Grid Real-Time Pricing Scenario 181

An important advantage of our approach is systematically guiding analysts through a

comprehensive security analysis process, covering different layers of an STSs. During this

process, we have observed that the support links modeled in the three-layer requirements

model are especially important for connecting security analysis across layers. With the

tool support, the entire analysis can be performed in a fast and reliable way. In addition,

by capturing and arranging security requirements in a holistic security goal model, we can

identify alternative security solutions. Since implementing holistic security solutions is

likely to be expensive, it is particularly important to identify and evaluate all the possible

alternatives upfront, among which analysts can select the most appropriate solution within

their budget.

Due to the intrinsic complexity and heterogeneity of STSs, the holistic security analy-

sis involves a wide spectrum of security issues, which requires a large amount of security

knowledge and thus makes the analysis even more complicated. As a response to this chal-

lenge, our approach has a particular focus on knowledge reuse, facilitating this knowledge-

intensive analysis. Firstly, we have encapsulated part of required security knowledge into

corresponding inference rules, which can be automatically inferred by the prototype tool.

It is worth noting the inference rules we defined in this paper are domain-independent,

which can be applied to all types of systems. In the future, we can incrementally define

more inference rules to capture domain-specific knowledge in order to facilitate analy-

sis in the corresponding domains. Secondly, we leverage reusable security patterns to

help analysts to effectively generate proved security solutions that operationalize security

goals. Although the entire analysis still requires some security expertise (most of which

is domain-specific), this is difficult to avoid all together. Based on our case study, we

argue that analysts with basic security knowledge are able to apply the security analysis

within a reasonable time. As a future work, we plan to perform case studies with more

participants to further evaluate this claim.

Through the case study, we have identified factors that can affect the quality of the

analysis results, which should be carefully improved in future work. In particular, the

collection of selected security patterns directly determines the holistic security solutions

we can produce at the end of our security analysis. We have identified in the case study

that the current set of security patterns used by our approach is not enough for tackling

some threats identified in the case study, in the future, we will incorporate more patterns

so as to have a better coverage.

9.1.4 Threats to Validity

As there are different ways of classifying validity in the literature, we here adopt the clas-

sification used by Runeson and Höst [2009], which has an focus on case study research

182 Validation

in software engineering. In particular, we discuss interval validity, external validity, con-

struct validity, and reliability, respectively.

Internal validity. Internal validity considers the causal relations between factors

investigated in the case study. When evaluating the difficulty of modeling three-layer

requirements models, we focused on whether the modeler is able to conceptually build

the three-layer requirements model. However, in practice, both the utility of the modeling

tool and the analyst’s modeling experiences with the tool can affect the overall difficulty

of this modeling task, which introducing a threat to internal validity. Although our tool

is developed on top of a professional diagramming tool which has very good usability,

people who are not familiar with this tool or have little experiences with modeling may

encounter difficulties when building the three-layer requirements model. In the future, we

intend to evaluate the difficulty of conceptually modeling the three-layer model and the

difficulty of graphically modeling the three-layer model, respectively.

In addition, as our approach relies on external security knowledge (i.e., security pat-

tern) for generating security solutions, the effectiveness of our analysis results is not only

determined by our approach, but also by the security patterns used by our approach.

Although we have already incorporated 21 security patterns in our approach, covering

security solutions in different layers, we have already noticed that current selection of se-

curity patterns is not enough for dealing with threats that we have identified in this case

study. As a result, in subsequent research, we will incrementally incorporate additional

security patterns in our approach, keeping the reused security knowledge with the recent

advances in security patterns.

External validity. External validity is concerned with to what extent it is possible

to generalize the findings of our case study. Because of the inherent complexity of STSs

(e.g., our analysis model contains more than two hundred elements), a holistic security

requirements analysis takes a considerable amount of effort. As a result, in this case

study we only focus on one particular security goal, imposing a threat to external validity.

To tackle this threat, in the future, we plan to analyze more security goals concerning

the same scenario. In addition, considering the reason of this threat (i.e., the overall

complexity of the case study), we plan to separate the validation into two parts in order to

reduce the inherent complexity of the holistic security requirements analysis. Specifically,

the first part will focus on constructing the three-layer requirements model of STSs, i.e.,

the validation described in Section 9.1.2; and the second part will focus on performing

holistic security requirements based on the three-layer requirements model, as described

in Section 9.1.3.

Another threat concerns the security background of the analyst. The case study

reported in this paper is performed by me, who is the method developer and has related

Case Study 2: Medical Emergency Response System 183

security expertise. However, we have not evaluated our approach with participants with

little security knowledge. As such we do not have practical evidence yet that shows

our approach can be applied by those who are not experts in security, although our

approach does incorporate security patterns to help analysts to reuse security knowledge.

Therefore, we intend to further evaluate our approach with people who is not involved in

the method development and has limited security knowledge, observing differences in their

performance when compared to this case study. Driven by this need, in our subsequent

research, we have further evaluates our approach with a Master student who meets the

above criteria. We will report our subsequent study in detail in the next section.

Construct validity. Construct validity concerns to which degree a test measures

what it claims to be measuring. In our case study, we measure both the number and

coverage of holistic security solution alternatives, based on which we determine the ef-

fectiveness of our analysis results. We acknowledge the quality of the obtained security

solutions is a further factor, which may play a role in assessing the effectiveness of our

approach. As a countermeasure to this threat, we intend to have security experts to assess

the quality of the generated holistic security solutions.

Reliability. Reliability is concerned with to what extent the data and the analysis

are dependent on the specific researchers. Since the case study is performed by only one

person, there is a threat to reliability of the analysis results. To tackle this issue, in the

future, we first plan to have peer researchers to evaluate the analysis results. In addition,

we will plan to include more than one analysts who work together to apply our approach.

9.2 Case Study 2: Medical Emergency Response System

In this section, we report another case study in which we applied our holistic security

requirements framework to a medical emergency response system. This case study is

grounded on a Master thesis [Robin, 2015]. The Master student was first taught the three-

layer security requirements modeling language, and then used the prototype to perform

the holistic security requirements analysis under the supervision of Prof. Mylopoulos and

myself. In particular, the focus of this case study is preliminarily assessing whether our

approach can be adopted by people who were not involved in the development of our

approach and has limited security knowledge.

9.2.1 Scenario Description

The medical emergency response system we analyzed in this study is based on the technical

report Serenity-Consortium [March 2007], taken from an EU project SERENITY 3. The

3http://eu-serenity.sourceforge.net/

http://eu-serenity.sourceforge.net/

184 Validation

essential components of this system are smart items, which can measure data and exchange

it with other smart equipments. For example, a smart item equipped with an infrared

thermometer measures the temperature of a patient and transmits such information to

medical emergency system via its communication interfaces. In such a way, different

smart items that monitor particular parameters (such as temperature, sound, vibration,

pressure, and motion) can be connected in a flexible network, delivering real-time data of

patients to the medical emergency system.

The medical emergency system is subject to an increasing number of attacks, e.g.,

illegal disclosure of information, transmission of false data, authentication and/or autho-

rization violations, and a holistic security protection is required. In particular, vulner-

abilities originate from different layers, all of which should be taken into account when

analyzing security requirements. For example, users may misuse the smart items and

make it function incorrectly; the communication among smart items are in plain text; the

smart item devices may be exposed to the public and be manipulated or destroyed.

In this case study, we focused on a particular healthcare scenario, in which patients are

continuously monitored after hospitalization (e.g., after cardiac infarction), the system is

responsible to react to abnormal situations, which are determined based on the monitored

data. A patient must be kept constantly in contact with her doctor and hospital and

transfers information about her cardiac activity to the medical emergence system. In

addition, both the patient’s personal information (e.g., age, sex, and family history)

and his body condition information (e.g., asleep or awake, walking or sit down) are also

collected and passed to the system. As such, there is a strong security need that the

confidentiality of such information should be protected from disclosure.

Such a scenario involves a multitude of social actors (patients, doctors, social workers,

etc.), software applications (e-health application, control station application, etc.), physi-

cal devices (PDAs, computers, smart items, etc.), existing in different layers. In addition,

the scenario requires the integration of different medical services, such as remote diagnosis

and first-aid services.

9.2.2 Modeling the Medical Emergency Response System

In this section, we report the modeling practices performed by the Master student. In

particular, different from the previous case study, we decided to follow a bottom-up man-

ner to construct the three-layer requirements goal model in the social layer, helping us to

grasp the overall understanding of the scenario.

Modeling business process. Fig. 9.6 shows the business process that was built for the

medical emergency scenario. In particular, this process starts from the event that the pa-

Case Study 2: Medical Emergency Response System 185

tient feels dizzy and request for assistance. Once MERC (Medical Emergency Response

Center) received the request from the patient, she needs to check the availability of desig-

nated doctors and social workers. The doctor then asks patients for related medical data

through his e-health terminal and analyzes them to determine appropriate treatments.

After that the doctor writes an e-prescription and uploads it to the system, which can be

accessed by the patient.

Figure 9.6: The business process model of the medical emergency scenario

In case that the designated doctor is not available, MERC obtains a list of qualified

doctors from the database and check their availability by sending them a message. Then,

MERC selects the doctor who first replies the message and assigns him the emergency

task. All the medical data of the patient is passed to that doctor in the meantime.

Once receiving all the patient data, the doctor should determine appropriate treatments

and issue an e-prescription. In case the doctor needs additional information, she can

interrogate the patient through her e-health terminal.

After the patient receives the e-prescription via her e-health terminal, she can either

go to pharmacy in person to buy the prescribed medicines or ask MERC to deliver such

medicines to her home. In the later case, MERC should check the availability of social

workers. After selecting the most suitable social worker, MERC needs to notify that so-

cial worker and authorizes her to access the patient’s e-prescription. Once a social worker

received the task assignment from MERC, she then goes to the nearest pharmacy to buy

all the required medicines. In particular, when the social worker reaches pharmacy, the

186 Validation

pharmacy worker needs to authenticate the social worker through her personal terminal.

If and only if the authentication is successful, the social worker can get the prescribed

medicines. Otherwise an error report will be generated and sent to MERC. When deliv-

ering the medicines to the patients, the patient and the social worker should authenticate

each other via their personal terminals.

Connect e-health terminal
with MERC

Connect to PDA

Assume that the first aid
team is always connected

to the framework

Support send message to
first aid worker

Support pharmacy
computer communicate
with patient index server

Support pharmacy
computer communicate
with e-health terminalSupport pharmacy

computer communicate
with MERC

Receive e-prescription

Send treatment instruction

Write treatment
 instruction

Write diagnosis report

Provide access to PDA

Login to PDA

Write e-prescription

Provide patient with PDA

Establish connection
between e-health terminal

and MERC

Connect control station
with patient terminal

Connect patient terminal

Send emergency alarm

Establish connection with
smart t-shirt

Establish connection with
smart home sensors

Establish connection with
e-health terminals

Establish connection with
MERC

Support select first aid
team component

Connect e-health terminal
with HNConnect PDA with sensor

controller

Establish connection
between e-health terminal

and HNEstablish sensor controller
connection with PDA

Support send emergency
alarm

Place PDA in doctors
possession

Connect PDA to MERC

Establish connection between
PDA and MERC

Place PDA in doctors
possession

Support writing
e-prescription component

Connect control station
application and PDAConnect PDA to MERC

Establish connection
between control station

application and PDA
 Establish connection between

PDA and MERC

Support add digital
signature of doctor

component

Connect with PDA

Establish connection with
PDA

Support receive request
from first aid team

Connect with PDA GSM transceiver placed in
PDA

Establish GSM FacilityEstablish connection with
PDA

Support dispatch first aid
team component

Connect PDA to GSM
Connect control station

with MERC

Establish GSM in PDA

Establish connection
between control station

and MERC Support communication
with first aid team

Support deploy first aid
team

Connect MERC with
terminals

Connect control station
with central DB

Connect MERC with
control station

Connect PDA to GSM

Establish connection with
terminals

Should also use GSM
technology of the PDA to
send message to the first

aid team

Establish connection
between MERC and

control station Establish Connection
with DB

Support select first aid
team component

Support select first aid
team component

MERC server

Connect control station
with monitoring devices

Establish connection
between control station
and monitoring devices

Support monitoring
devices

place computer

Place computer in
pharmacy

Place PDA in patient
possession

Connect e-health terminal
with internet Connect to database

GSM transceiver placed in
PDA

Connect e-health terminal
with control station

Establish connection
between e-health terminal

and control station

Connect with patient index
identifier

Connect control station with
Smart t-shirt

Connect control station with
smart home(sensors)

Connect control station with
E-health terminal(PDA),

Connect control station with
service locator server

Connect control station
with PDA

Connect control station
with MERC

Connect HNS with
MERC

Connect control station with
MERC

Connect e-health terminal
to MERC

Connect pharmacy
computer with MERC

Connect LS [Localization
server] with MERC Connect LS with HAN

Connect with patient
index server

Connect pharmacy
computer with e-health

terminal

Connect with PDA

Connect LS with
satellite data

receiver

Connect with internet

Connect with internetConnect service locator
server with MERC

Connect with CSConnect ARS with e-health
terminal

Connect ARS [activity
recognition server] with

HAN
Connect with e-health

terminal system

GSM transceiver placed in
PDA

Connect MERC to PDA

PDA

Establish connection between
HNS[Home network system]

and MERC

Establish connection with PDA
Establish connection with

service locator server

Setup connection with
HAN

Setup connection with e-
health terminal

Setup connection with
CS[control station]

Setup internet connectionSetup connection with
MERC

Setup connection with E-
health terminal system

Setup connection with
MERC Setup internet connection

Setup connection with
satellite data receiver

Setup connection with
HAN

Setup connection with
MERC

Setup
connection with

patient index
serverEstablish connection with

MERC

Establish connection with
pharmacy computer and

e-health terminal
Place PDA in

doctors
possession

Establish GSM facility Support loggin in to PDA
(smart health terminal)

Establish connection
between e-health terminal

and MERC

Establish connection with
MERC

Establish connection with
the internet

Establish access to
database

Establish connection with
MERC

Patient index identifier

GSM Facility

Establish connection with
PDA

Establish connection with MERC

Establish connection with
control station and PDA

PDA

Activity
recognition

server

Service locator
serverSupport LA(Localisation

app) communication with
others

Support receiving satellite
data

Support access to service
providers database Support receive sensor

data

Localization
server

Health directory
server

Support receive e-
prescription component

Support obtain specific
setting for patient

Support getting diagnosis
report component

Support writing diagnosis
report component

Support write treatment
instruction component

Support send treatment
instruction component

E-health
terminal

Support get patient
medical history

component

Support receive request
component

Support ACK sending
component

Support communication
component

Support terminal access
component

Support sensor
communication

component

Support get patient
specific configuration

Control station
server

Support PDA(GSM
functionality)

Support provide PDA
facilities to patient

Supper access to patient
terminal

Support control station
communication

component

Support access to patient
terminal

Support processing query
from MERC

D

D
D

D

D

D

D

D

D

D

Localisation
application

Patient index
application

Control Station
application

Activity
recognition
application

E-health
application

Process query from
MERC

Communicate with MERC

Support retrieving position
of location device

Receive incoming
message

Communicate with
patients mobile device

Communicate with
satellites

Receiving satellite
data

Support receive
request from patient

Support authentication
and authorisation of user

Support authentication
and authorization

Support billing the patient

Support communication
with health directory

Support communication
with patients insurance

Support providing patient
medical data

Support monitoring vital
functions and behaviours

Support deploying first aid
team

Send billing information to
patients insurance

Obtain customers bill

Support logging of actors

Support obtaining
patients unique identifier

Obtain master patient
index

Support getting patients
bills

Query to find unique
patient identifier

Input taking component

Send billing information to
patient insurance

Send billing information to
patient

Communicate with E-
health application

Database access component

Check data with database

Support taking input from
user

Provide authentication of
credentials

Providing authentication and
authorisation component

Support authentication of
credentials

Support communicating
with MERC

Support running e-health
application

Use PDA

Service locator
application

Obtain pharmacy location

Database access
component

Support authentication
of credentials

Support provide patients
medical data Support send abnormal

behaviour to MERC

Support obtain specific
setting for patient

Communicate with MERC

Obtain patients medical
data

Database(Patient) access
component

Communicate with MERC

Support obtaining patients
configuration

Get patient specific
configuraton

Communicate with MERC

Support communicate
with sensors

Component to communicate
with sensors

Support receive
emergency alarm

Support assign first aid
team

Support send ack to
MERC

Support get e-prescription

Support write e-
prescription

Support check patient
recent medical history

Support write diagnosis
report

Support get diagnosis
reportSupport deploy first aid

team

Support respond to alarm

Support communication
with E-health terminal

Support communication
with smart t-shirt

Receive emergency
alarm componenet

Support communication
with patient e-health

terminal

Support communication
with control station

Component to
communicate with control

station

Support authenticating
and authorising first aid

team

Getting diagnosis report
component

Select first aid team

Support writing diagnosis
report

Support finding out
available first aid team

Support get patient
medical data

Support communicate
with MERC

Obtain patients
medical data

patient terminal access
component

support communicate with
patient e-health terminal

Writing diagnosis report
component

Support get patient
medical data

Support receive request
for treatment

Receiving request
component

E-prescription writing
component

Support provide treatment
instruction

Write treatment
instruction component

Send treatment
instruction component

Receive e-prescription
component

Support Access to e-
health terminal

Support receive e-
prescription

Access e-health terminal
component

Support access to e-
health terminal Send ACK to MERC

Access e-health terminal
component

ACK sending component

Retrieve pharmacy
location from database

The hospital
application

system

Health directory
system

application

Support searching in
master patient index

Component to create
actor logComponent to add digital

signature of doctor

Support adding signature
in prescription

Receive request for
first aid team

Dispatch first aid team
component

Support communication
with home sensor netowrk

Receive sensor data

Support authentication of
credentials

Authentication
and

authorisation
application

D

Get patient recent medical
data

Get patient medical
history component

Access to PDA

Master patient index
access component

Obtain unique patient
identifier

Query to find unique
patient identifier

Support get patient
medical data

Configure system
component

Support receive advice
from doctor

GSM component

Support send ACK to
MERC

Support receive e-
prescription

Support obtain specific
setting for patient

Configure system
component

Support obtain
specific setting

for patient

Support configure setting
for patient

Assign first aid team

Support get patient
medical data

Support authentication
and authorization

Deploy first aid team

D

D

D

D

D D

D

D

D

D

D

D

D

D
D

D
D

D

D

Responded to all
emergency

Provide medical
services

Emergency first aid
service providedOn demand

service provided
Specialised health
service providedPatient monitored

Request created
by system

acknowledged

Request created
by patient

acknowledged

Respond to alarmReceive emergency
alarm

Respond to request
from patient

Receive request for
assistance

Administer medicine Deliver medicine Provide physical therapy Provide doctors
instructionAssign first aid team

Provide patient
medical data

MERC

Operation
performed

Specialised health
service provided

Emergency first aid
services provided

Medication
prescribed

Diagnosis
performed

Get diagnosis report

Perform post
operative checks

Perform operation

Get patients
medical data

Write e-prescription

Provide treatment
instructionDeploy first aid team

Doctor

Check patient recent
medical history

Write diagnosis report

Make diagnosisGet patient
medical data

Analyse patient
medical data

Call patient for additional
information if needed

First aid team
deployed

First aid
worker

Get location of patient

Provide first aid services

Deploy first aid team

Get patients
medical data

Get treatment instruction

Provide
medicine

Get e-prescription

Dispense
medicine to

patient

Staying wellPatient

Visit from social
worker received

Human assistance
received

Advice from
doctor received

Emergency medical
service received

Get visited by
social worker

Receive advice
 from doctor

Request assistance Receive emergency
medical services

Request MERC to
deliver medicine Medicine administered Physical therapy

services received

Deliver medice to
patientSocial

worker

Get e-prescription

Send ACK to MERC

Take medicine

Give medicine to patient

E-prescription
received

Medicine dispensed
to patient

Smart
home

system

Important information
monitored

Study monitored
vital statistics

No sleep detected

Monitor presence of
movement

Monitor blood pressure

Undesirable
behavioural pattern

monitored

Vital statistics
monitored

Monitor sugar level

Monitor heart rate No movement monitored

No breakfast taken

Device customised
for patient

Configure system

Set designated doctor

Get specific setting
for patient

Initiate emergency
alarm

Send abnormal
behaviour to MERC

Send abnormal
behaviour to doctor

Emergency first aid
service provided

Deliver medicine

Specialised health
service provided

D

D

On demand
service provided

Receive request for
assistance

Patient monitored

Receive emergency
alarm

Emergency medical
service received

Deploy first aid team

Get e-prescription

Dispense
medicine to

patient

Get e-prescription

Pharmacy

Give medicine
to patient

Business Layer

Application Layer

Physical Layer

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D
D

D
D D

D
D

Go to pharmacy

Figure 9.7: The three-layer requirements goal model for the medical emergency scenario

Build the three-layer requirements goal model. Based on the above business process

model, the student then built the requirements goal model in the social layer. In par-

ticular, each business process activity was mapped into a business task, from which he

established the goal model following a bottom-up manner, i.e., asking “why a business

task is required”. Once he built the goal model in the social layer, he then analyzed the

cross-layer links between the social layer and the to-be-created application layer, based on

which the requirements goal model in the application layer was established. By further

analyzing the cross-layer links between the application layer and the infrastructure layer,

he then finished the requirements goal model in the infrastructure layer. Eventually, a

full model was obtained, as shown in Fig. 9.74.

Specifically, Table 9.2 shows the detailed statistics of the entire model, which is even

larger than the full model of the previous case study. We here briefly describe the strategic

dependencies and cross-layer support relations within this model. In the business layer,

MERC ’s primary goal Provide medical services depends upon all other actors in this

layer. For example, MERC has a business goal Specialized health service provided, the

satisfaction of which depends on Doctor who further depends on First Aid Worker to

4The vector model file can be found at, http://disi.unitn.it/~li/thesis/validation_model_mers.pdf

http://disi.unitn.it/~li/thesis/validation_model_mers.pdf

Case Study 2: Medical Emergency Response System 187

Table 9.2: Statistics of the three-layer requirements model (medical emergency)

Layer Actor Goal Task (and)Refine Operationalize Dependency

All 24 182 166 117 157 20

Social 7 29 56 19 55 12

Software 9 64 46 43 47 6

Infrastructure 8 89 64 55 55 2

execute some tasks. Other social actors also depend on MERC for certain goals, such as

Patient depends on MERC for medical services.

In the application layer, e-Health Application is used by many social actors, including

Doctor, Social Worker, Pharmacy and Patient. As such, the corresponding business

tasks of such actors are supported by e-Health Application. In the meantime, e-Health

Application further depends on Control Station Application, which is mainly used by

MERC, for fulfilling a couple of goals.

In the physical layer, MERC Server and Control Station Server depends on each other,

functioning together to support Control Station Application. In addition, e-Health Ter-

minal depends on Control Station Server for several goals so as to support the functions

of e-Health Application.

Evaluation and discussion. As reported by the Master student, the overall modeling

practice is time-consuming. In particular, he spent around a month in collecting data

for the case study and comprehending the entire scenario. There are several reasons for

such a long time: firstly, this medical emergency system is a large STS and the analyzed

scenario has more complex business logic than the smart grid scenario we described in

the first case study. Secondly, similar with the previous case study, we did not have

the opportunity to directly interview stakeholders and collect data from them. Instead,

we can only indirectly search for existing reports or documents from different sources

to complete the entire picture of the system. Especially, the Master student has little

background knowledge about this scenario before. Overall, this result further emphasizes

the need of involving different experts in the modeling practice, from whom the analyst

can directly and easily obtain required information.

Once all the information has been collected, the Master student spent another month

in building the three-layer model:“it took me approximately 2 months to complete the

three-layer holistic model for our case with numerous revisions”. Compared to the first

case study, the modeling time has sharply increased. For one thing, we realized that the

difficulty of modeling can grow very fast when the scenario became complicated. For

188 Validation

another thing, as the student was unfamiliar with the modeling tool (i.e., OmniGraffle),

we found out afterwards that he did not exert the full power of the tool, which we believe

affected his modeling performance. For example, the tool offers the feature to select all

similar objects (i.e., goals), without using this feature the student has to manually operate

on each individual object one-by-one. As a result, in the future study, we should spend

more time in teaching the powerful features of our modeling tool.

Although the modeling is time-consuming, as acknowledged by the student:“The pro-

cess became a lot easier because of the framework and its three layer approach, as the

multilayer security requirement analysis framework was easy to understand and as I had

to model in different layers the process became intuitive after the first layer”. As such,

we argue that the complexity of the model is inherited from the scenario itself, and our

framework can contribute to the modularity of such complex systems.

Lastly, within this modeling practice, we have discovered that building the require-

ments model in a bottom-up manner is an efficient strategy. This is because that we have

assigned layer-specific operational definitions to tasks in each layer. In particular, for this

study, the student first built a business process model for this scenario, the benefits of

which are twofold: firstly, by modeling the business process, the student was able to have

a better understanding of the scenario, facilitating his subsequent modeling tasks. Sec-

ondly, the activities of the business process model can be mapped to tasks in social layer,

directly facilitating the modeling in the social layer. Especially, as the student mentioned

that “the modeling in social layer is most difficult part of the three-layer modeling”, we

should pay more attention to support the social layer modeling. As such, we propose to

follow such bottom-up process to construct requirements goal model in the social layer.

9.2.3 Security Requirements Analysis Results

Build reference models. In order to perform security requirements analysis for the

medical emergency system, the student was asked to collect additional information and to

build corresponding models, which were used in refining and simplifying security patterns

(as introduced in Section 4.3). In particular, the student generated a resource model,

shown in Fig. 9.8. Each resource presented in this figure is involved in a particular part

of the scenario. Moreover, the student produced a data flow model, which was described

in terms of the input and output of requirements tasks. Thanks to the business process

model built before, this data flow information can be easily obtained. As our analysis

needs to know potential threats to the system, the student was asked to collect the threat

information, and eight possible threats were eventually identified from literature. In

particular, each of the eight threats was classified and specified in terms of threat type,

threatened asset, and threatened interval, as introduced in Section 4.3.2. It is worth noting

Case Study 2: Medical Emergency Response System 189

that we here did not require the student to adopt our holistic threat analysis approach

(Chapter 5) to identify system threats, because the focus of this case study is evaluating

the practical adoption of the holistic security requirements analysis approach. Also, the

full application of our attack analysis approach (including the learning period) may require

another considerable amount of time, which cannot be afforded in this case study. As

future work, we definitely need to further evaluate the attack analysis approach, which

we will discuss in Chapter 10.

Patient information

MERC Information

Patient billing
information

Patient login
credentials

Patient medical data

Prescribed medicine
information

Social worker
personal information

Social worker
information

patient activities
data

Doctor informationHealth directory data E-prescriptions Diagnosis report
informationSensor data patient localization

information
Pharmacy
information

First aid team
information

Doctor billing
information

Part of
Part of Part of

Part of

Social worker login
credentials

Part of Part of

Doctor login
credentials

Part of Part of

Part of Part of Part of Part of
Part of

Part of

Part of
Part of

Part of Part of

Part of
First aid worker

personal information

First aid worker
billing information

First aid worker login
credentials

Part of

Part ofPart of

Pharmacy inventory
infomation

Pharmacy login
credentials

Part of

Part ofDoctor personal
information

Patient personal
information

Sensor data

Part of Part of

Part of

Patient insurance
information

Part of

Part of

Pharmacy location
information

Part of

Part of

Doctor personal
information

Part of

Patient personal
information

Part of

Instructions given by
doctors

Part of

Figure 9.8: The resource model related to the medical emergency system

Holistic security requirements analysis. Once all reference models have been built, the

student performed holistic security requirements analysis, following the analysis process

described in Section 4.3. In particular, the student iteratively refined and concretized

security goals with the aim of identifying security mechanisms to operationalize such

security goals. When using our prototype tool to semi-automate the analysis, the student

strictly followed the use cases we have specified in Section 8.3. During the analysis process,

the student was asked to perform the analysis by himself. In case he had questions or

doubts about the analysis process, he turned to me for clarification and help.

Overall, the student spent one week going through the entire analysis process and es-

tablished the complete holistic security goal model as shown in Fig. 9.9 (the corresponding

model file can be found online5). This model was much more complicated than the one

we obtained in the first case study. Especially, by performing the holistic security solution

analysis, it ended up with more than 73000 alternatives. For example, Table 9.3 shows two

exemplary holistic security solution alternatives, both of which provided security solutions

in all three layer. Note that these two alternatives had the same solutions in the social

and software layers and only differed in the infrastructure layer. This was a common case

among all the alternatives, i.e., different alternatives may share most of their solutions

5http://disi.unitn.it/~li/thesis/validation_case2_hsgm.pdf

http://disi.unitn.it/~li/thesis/validation_case2_hsgm.pdf

190 Validation

Tackle layer-specific
security issue

Tackle layer-specific
security issue

Tackle layer-specific
security issue

(S)
Control

access to
M

ERC

(S)
very high data

confidentiality [patient
inform

ation, Request
created by patient

acknowledged]

(S)
very high data

confidentiality [patient
inform

ation, Request
created by system

acknowledged]

(S)
very high data

confidentiality [patient
inform

ation, Receive
request for
assistance]

(S)
very high data

confidentiality [patient
inform

ation, Respond
to request from

patient]

(S)
very high data

confidentiality [patient
personal inform

ation,
Receive request for

assistance]

(S)
very high data

confidentiality [patient
insurance inform

ation,
Receive request for

assistance]

(S)
very high data

confidentiality [patient
activities data,

Receive request for
assistance]

(S)
very high data

confidentiality [patient
m

edical data,
Receive request for

assistance] (S)
very high data

confidentiality [patient
login credentials,

Receive request for
assistance]

(S)
very high data

confidentiality [patient
billing inform

ation,
Receive request for

assistance]

(S)
very high data

confidentiality [patient
personal inform

ation,
Respond to request

from
 patient]

(S)
very high data

confidentiality [patient
insurance inform

ation,
Respond to request

from
 patient]

(S)
very high data

confidentiality [patient
activities data,

Respond to request
from

 patient]

(S)
very high data

confidentiality [patient
m

edical data,
Respond to request

from
 patient]

(S)
very high data

confidentiality [patient
login credentials,

Respond to request
from

 patient]

(S)
Very high Confidentiality

[Patient inform
ation,

Provide m
edical services]

(S)
very high data
confidentiality

[patient inform
ation,

Provide m
edical

services]

(S)
very high data
confidentiality

[patient inform
ation,

Patient m
onitored]

(S)
very high data

confidentiality [patient
inform

ation,
Specialised health
service provided]

(S)
very high data
confidentiality

[patient inform
ation,

O
n dem

and service
provided]

(S)
very high data

confidentiality [patient
inform

ation,
Em

ergency first aid
service provided]

(S)
very high data
confidentiality

[patient inform
ation,

Responded to all
em

ergency]

(S)
very high data

confidentiality [patient
inform

ation, Provide
patient m

edical data]

(S)
very high data
confidentiality

[patient inform
ation,

Assign first aid
team

]

(S)
very high data
confidentiality

[patient inform
ation,

Provide doctors
instruction]

(S)
very high data

confidentiality [patient
inform

ation,
Em

ergency first aid
services provided]

(S)
very high data
confidentiality

[patient inform
ation,

To deploy first aid
team

]

(S)
very high data

confidentiality [patient
inform

ation, Provide
treatm

ent instruction]

(S)
very high data
confidentiality

[patient inform
ation,

Provide physical
therapy]

(S)
very high data
confidentiality

[patient inform
ation,

Deliver m
edicine]

(S)
very high data
confidentiality

[patient inform
ation,

Adm
inister

m
edicine]

(S)
very high data
confidentiality

[patient inform
ation,

Provide m
edicine]

(S)
very high data

confidentiality [patient
inform

ation,
Dispense m

edicine
to patient]

(S)
very high data
confidentiality

[patient inform
ation,

G
et e-prescription]

(S)
Control

pharm
acy

access to
doctor e-

prescription

Tackle layer-specific
security issue

Tackle layer-specific
security issue

(S)
very high security

[E-health
application,

Support access
control]

(S)
very high data
confidentiality

[patient inform
ation,

Support get e-
prescription]

(S)
very high security

[E-health
application, Support
get e-prescription]

(S)
very high

confidentiality [E-
health application,

Support access
control]

(S)
very high integrity

[E-health
application,

Support access
control]

(S)
very high

availability [E-health
application, Support

access control]

(S)
very high data

integrity [E-health
application, Support

access control]

(S)
very high application

integrity [E-health
application, Support

access control]

(S)
very high application

integrity [Authentication
and authorisation

application, Support
authentication and

authorization]
(S)

very high application
integrity [Authentication

and authorisation
application, Support

taking input from
 user]

(S)
very high application

integrity [Authentication
and authorisation

application, Provide
authentication of

credentials]

(S)
very high

confidentiality [E-
health application,

Support get e-
prescription]

(S)
very high integrity

[E-health
application, Support
get e-prescription]

(S)
very high availability

[E-health
application, Support
get e-prescription]

(S)
very high data

integrity [E-health
application, Support
get e-prescription]

(S)
very high application

integrity [E-health
application, Support
get e-prescription]

(S)
very high application

integrity [E-health
application, Support
Access to e-health

term
inal]

(S)
very high application

integrity [E-health
application, Support

receive e-
prescription]

(S)
very high application

integrity [Authentication
and authorisation

application, Input taking
com

ponent]

(S)
very high data

confidentiality [patient
inform

ation, Support
Access to e-health

term
inal]

(S)
very high data

confidentiality [patient
inform

ation, Support
receive e-

prescription]

(S)
input guard

for authorisation
application

(S)
input guard
for e-health
application

(S)
firewall for
controlling

access to e-
health

application

(S)
lim

ited view
for e-health

term
inal

access

(S)
full view with
errors for e-

health
term

inal
access

(S)
secure

access layer
for e-health
application

(S)
secure pipe

between Control
Station application

and e-health
application

Tackle layer-specific
security issue

Tackle layer-specific
security issue

Tackle layer-specific
security issue

(S)
very high data

confidentiality [patient
inform

ation, Support
receiving satellite

data]

(S)
very high security

[M
ERC server,

Support select first
aid team

com

ponent]

(S)
very high security

[M
ERC server,

Support deploy first
aid team

]

(S)
very high

confidentiality
[M

ERC server,
Support deploy first

aid team
]

(S)
very high

availability [M
ERC

server, Support
deploy first aid

team
]

(S)
very high data

confidentiality [patient
inform

ation, Support
retrieving position of

location device]

(S)
very high data

confidentiality [patient
inform

ation, Support
deploy first aid team

]

(S)
very high security
[Control Station

application, Support
deploy first aid team

]

(S)
very high confidentiality

[Localisation
application, Support
retrieving position of

location device]

(S)
very high integrity

[Localisation
application, Support
retrieving position of

location device]

(S)
very high availability

[Localisation
application, Support
retrieving position of

location device]

(S)
very high data

confidentiality [patient
inform

ation, Support
authenticating and
authorising first aid

team
]

(S)
very high data

confidentiality [patient
inform

ation, Support
finding out available

first aid team
]

(S)
very high

confidentiality
[Control Station

application, Support
deploy first aid team

]

(S)
very high integrity
[Control Station

application, Support
deploy first aid team

]

(S)
very high availability

[Control Station
application, Support
deploy first aid team

]

(S)
very high data

integrity [Control
Station application,
Support deploy first

aid team
]

(S)
very high application

integrity [Control
Station application,
Support deploy first

aid team
]

(S)
very high data
confidentiality

[patient inform
ation,

Com
m

unicate with
M

ERC]

(S)
very high data

confidentiality [patient
inform

ation,
Com

m
unicate with

patients m
obile

device]

(S)
very high data integrity

[Localisation
application, Support
retrieving position of

location device]

(S)
very high application
integrity [Localisation
application, Support
retrieving position of

location device]

(S)
very high application
integrity [Localisation

application,
Com

m
unicate with

M
ERC]

(S)
very high application
integrity [Localisation

application,
Com

m
unicate with

patients m
obile device]

(S)
input guard
for control

station
application

(S)
firewall for

control
station

application

(S)
server

sandbox
for control

station
application

(S)
input guard

for
localisation
application

(S)
firewall for
localisation
application

(S)
lim

ited view
for control

station
application

(S)
full view with

errors for
control
station

application

(S)
secure

access layer
for control

station
application

(S)
secure pipe

between
M

ERC and
control station

application

(S)
secure pipe

between patient
m

obile and
control station

application

(S)
very high data

confidentiality [patient
personal inform

ation,
Support receive

request from
 patient]

(S)
very high security

[The hospital
application system

,
Support receive

request from
 patient]

(S)
very high data

confidentiality [patient
m

edical data, Support
receive request from

patient]

(S)
very high security

[The hospital
application system

,
Support receive

request from
 patient]

(S)
very high data

confidentiality [patient
personal inform

ation,
Com

m
unicate with E-

health application]

(S)
very high security

[The hospital
application system

,
Com

m
unicate with E-

health application]

(S)
very high

confidentiality [The
hospital application

system
, Com

m
unicate

with E-health
application]

(S)
very high integrity

[The hospital
application system

,
Com

m
unicate with E-

health application]

(S)
very high availability

[The hospital
application system

,
Com

m
unicate with E-

health application]

(S)
very high data integrity

[The hospital
application system

,
Com

m
unicate with E-

health application]

(S)
very high application
integrity [The hospital
application system

,
Com

m
unicate with E-

health application]

(S)
very high

confidentiality [The
hospital application

system
, Support

receive request from

patient]

(S)
very high integrity

[The hospital
application system

,
Support receive

request from
 patient]

(S)
very high availability

[The hospital
application system

,
Support receive

request from
 patient]

(S)
very high data integrity

[The hospital
application system

,
Support receive

request from
 patient]

(S)
very high application
integrity [The hospital
application system

,
Support receive request

from
 patient]

(S)
very high application
integrity [The hospital
application system

,
Com

m
unicate with E-

health application]

(S)
very high data

confidentiality [patient
m

edical data,
Com

m
unicate with E-

health application]

(S)
input guard
for hospital
application

system

(S)
firewall for
hospital

application
system

(S)
server

sandbox for
hospital

application
system

(S)
secure

access layer
for hospital
application

system

(S)
secure pipe
between for

hospital application
system

 and e-
health system

(S)
very high data
confidentiality

[patient inform
ation,

G
et location of

patient]

(S)
very high data
confidentiality

[patient inform
ation,

Provide first aid
services]

(S)
very high data
confidentiality

[patient inform
ation,

Deploy first aid
team

]

(S)
very high data
confidentiality

[patient inform
ation,

G
et patients m

edical
data]

(S)
very high data
confidentiality

[patient inform
ation,

G
et treatm

ent
instruction]

(S)
very high data
confidentiality

[patient inform
ation,

First aid team

deployed]

(S)
very high data

confidentiality [patient
billing inform

ation,
Respond to request

from
 patient]

(S)
very high security

[Localisation
application, Support
retrieving position of

location device]

(S)
cabling security

between
localisation

server and M
ERC

(S)
physical entry

control to
localisation

router

(S)
very high data

confidentiality [patient
inform

ation, Connect
LS [Localization

server] with M
ERC]

(S)
very high data

confidentiality [patient
inform

ation, Connect
LS with satellite data

receiver]
(S)

very high data
confidentiality

[patient inform
ation,

Connect with
internet]

(S)
physical entry

control to
localisation

server

(S)
equipm

ent siting
and protection for

localisation
server

(S)
very high hardware

integrity [Localization
server, Support

receiving satellite
data]

(S)
very high data

integrity [Localization
server, Support

receiving satellite
data]

(S)
physical

entry control
for M

ERC
server

(S)
equipm

ent
siting and
protection
for M

ERC
server

(S)
very high hardware

integrity [M
ERC

server, Support
deploy first aid

team
]

(S)
very high data

integrity [M
ERC

server, Support
deploy first aid

team
]

(S)
very high hardware

integrity [M
ERC

server, Support
select first aid team

com

ponent]

(S)
very high data

integrity [M
ERC

server, Support
select first aid team

com

ponent]

(S)
very high integrity

[M
ERC server,

Support deploy first
aid team

]

(S)
very high availability

[M
ERC server,

Support select first
aid team

com

ponent]

(S)
very high integrity

[M
ERC server,

Support select first
aid team

com

ponent]

(S)
very high

confidentiality
[M

ERC server,
Support select first

aid team
 com

ponent]

(S)
very high availability
[Localization server,
Support receiving

satellite data]

(S)
very high integrity

[Localization server,
Support receiving

satellite data]
(S)

very high
confidentiality

[Localization server,
Support receiving

satellite data]

(S)
equipm

ent
siting and
protection

for e-health
term

inal

(S)
very high hardware
integrity [E-health
term

inal, Login to
PDA]

(S)
very high hardware
integrity [E-health
term

inal, Establish
connection between

PDA and M
ERC]

(S)
very high hardware
integrity [E-health

term
inal, Receive e-
prescription]

(S)
very high hardware
integrity [E-health
term

inal, Support
writing e-prescription

com
ponent]

(S)
very high data

integrity [E-health
term

inal, Support
writing e-prescription

com
ponent]

(S)
very high hardware
integrity [E-health

term
inal, Support add

digital signature of
doctor com

ponent]

(S)
very high data integrity

[E-health term
inal,

Support add digital
signature of doctor

com
ponent]

(S)
very high hardware
integrity [E-health
term

inal, Support
receive e-prescription

com
ponent]

(S)
very high data

integrity [E-health
term

inal, Support
receive e-prescription

com
ponent]

(S)
very high availability
[E-health term

inal,
Support writing e-

prescription
com

ponent]
(S)

very high integrity [E-
health term

inal,
Support writing e-

prescription
com

ponent]

(S)
very high

confidentiality [E-
health term

inal,
Support writing e-

prescription
com

ponent]

(S)
very high availability
[E-health term

inal,
Support add digital
signature of doctor

com
ponent]

(S)
very high integrity [E-

health term
inal,

Support add digital
signature of doctor

com
ponent]

(S)
very high

confidentiality [E-
health term

inal,
Support add digital
signature of doctor

com
ponent]

(S)
very high availability
[E-health term

inal,
Support receive e-

prescription
com

ponent]

(S)
very high integrity [E-

health term
inal,

Support receive e-
prescription
com

ponent]

(S)
very high

confidentiality [E-
health term

inal,
Support receive e-

prescription
com

ponent]

(S)
very high availability

[Control station
server, Establish
connection with

PDA]

(S)
very high integrity
[Control station

server, Establish
connection with

PDA]

(S)
very high

confidentiality
[Control station

server, Establish
connection with PDA]

(S)
very high hardware
integrity [E-health
term

inal, W
rite e-

prescription]

(S)
equipm

ent
siting and
protection
for PDA

(S)
very high hardware
integrity [E-health
term

inal, Login to
PDA]

(S)
very high hardware
integrity [E-health
term

inal, Establish
connection between

PDA and M
ERC]

(S)
very high hardware
integrity [E-health

term
inal, Receive e-
prescription]

(S)
very high hardware
integrity [E-health

term
inal, Place PDA
in doctors

possession]

(S)
very high hardware
integrity [E-health
term

inal, Support
writing e-prescription

com
ponent]

(S)
very high data

integrity [E-health
term

inal, Support
writing e-prescription

com
ponent]

(S)
very high hardware
integrity [E-health

term
inal, Support add

digital signature of
doctor com

ponent]

(S)
very high data integrity

[E-health term
inal,

Support add digital
signature of doctor

com
ponent]

(S)
very high hardware
integrity [E-health
term

inal, Support
receive e-prescription

com
ponent]

(S)
very high data

integrity [E-health
term

inal, Support
receive e-prescription

com
ponent]

(S)
very high availability
[E-health term

inal,
Support writing e-

prescription
com

ponent]

(S)
very high

confidentiality [E-
health term

inal,
Support writing e-

prescription
com

ponent]

(S)
very high integrity [E-

health term
inal,

Support writing e-
prescription
com

ponent]

(S)
very high availability
[E-health term

inal,
Support add digital
signature of doctor

com
ponent]

(S)
very high

confidentiality [E-
health term

inal,
Support add digital
signature of doctor

com
ponent]

(S)
very high integrity [E-

health term
inal,

Support add digital
signature of doctor

com
ponent]

(S)
very high availability
[E-health term

inal,
Support receive e-

prescription
com

ponent]

(S)
very high integrity [E-

health term
inal,

Support receive e-
prescription
com

ponent]

(S)
very high

confidentiality [E-
health term

inal,
Support receive e-

prescription
com

ponent]

(S)
physical

entry control
to control

station
server

(S)
equipm

ent
siting and

protection for
control station

server

(S)
cabling
security
between
PDA and
M

ERC

(S)
physical

entry control
to M

ERC
router

(S)
physical

entry control
to e-health

term
inal

(S)
physical

entry control
to PDA

(S)
physical

entry control
to control

station
router

(S)
very high hardware

integrity [Control
station server,

Establish connection
with PDA]

(S)
very high data

integrity [Control
station server,

Establish connection
with PDA]

(S)
very high availability

[Control station
server, Establish
connection with

PDA]

(S)
very high integrity
[Control station

server, Establish
connection with

PDA]

(S)
very high

confidentiality
[Control station

server, Establish
connection with PDA]

(S)
very high security
[Control station

server, Establish
connection with

PDA]

(S)
very high security
[Control station

server, Establish
connection with

PDA]

(S)
very high data
confidentiality

[patient inform
ation,

Login to PDA]
(S)

very high data
confidentiality [patient
inform

ation, Establish
connection between

control station application
and PDA]

(S)
very high data

confidentiality [patient
inform

ation, Establish
connection between

PDA and M
ERC]

(S)
very high data
confidentiality

[patient inform
ation,

Connect with PDA]

(S)
very high data
confidentiality

[patient inform
ation,

Setup connection
with M

ERC]

(S)
very high data
confidentiality

[patient inform
ation,

Setup internet
connection]

(S)
very high data

confidentiality [patient
inform

ation, Setup
connection with

satellite data receiver]
(S)

very high data
confidentiality

[patient inform
ation,

Receive e-
prescription]

(S)
very high data

confidentiality [patient
inform

ation, Place
PDA in doctors

possession]

(S)
very high data

confidentiality [patient
inform

ation, Establish
connection with PDA]

(S)
very high security [E-

health term
inal,

Support writing e-
prescription
com

ponent]

(S)
very high security [E-

health term
inal,

Support add digital
signature of doctor

com
ponent]

(S)
very high security [E-

health term
inal,

Support receive e-
prescription
com

ponent]

(S)
very high security
[Control station
server, Support
receive request

com
ponent]

(S)
very high security

[Localization server,
Support receiving

satellite data]

(S)
very high security [E-

health term
inal,

Support writing e-
prescription
com

ponent]
(S)

very high security [E-
health term

inal,
Support add digital
signature of doctor

com
ponent]

(S)
very high security [E-

health term
inal,

Support receive e-
prescription
com

ponent]

(S)
very high security
[Control station
server, Support
receive request

com
ponent]

(S)
very high data

confidentiality [patient
inform

ation, Support
writing e-prescription

com
ponent]

(S)
very high data

confidentiality [patient
inform

ation, Support
add digital signature of

doctor com
ponent]

(S)
very high data

confidentiality [patient
inform

ation, Support
receive e-prescription

com
ponent]

(S)
very high data

confidentiality [patient
inform

ation, Support
receive request

com
ponent]

(S)
cabling security
between PDA

and control
station server

(S)
cabling security

between
localisation
server and

internet

F
igu

re
9
.9

:
T

h
e

en
tire

h
olistic

secu
rity

goal
m

o
d

el
for

th
e

m
ed

ical
em

ergen
cy

sy
stem

Case Study 2: Medical Emergency Response System 191

and only differ in some particular parts. Given such a huge amount of alternatives, there

was a strong need of selecting the best solution, which will be implemented in our future

work.

Evaluation. Overall, the Master student was able to carry out the entire approach with

the tool support, including both the modeling of the three-layer requirements goal model

and the holistic security analysis over that model. However, the time spent for performing

the approach was much longer than the first case study performed by myself, especially

in the modeling session. There are several reasons account for this result: firstly, this case

study is concerned with a large-scale STS, which is more complicated than the first case

study. Secondly, the student was not familiar with the modeling tool, while the proficiency

for using the modeling tool does matter the modeling performance. Especially, such a

problem was further exacerbated by the complexity of the case study. As a result, in

the future study, we should spend more time teaching analysts to exert the full power of

the modeling tool. Thirdly, similar to the first case study, the Master student collected

domain information of all three layers from different sources and then synthesized them

all together, which was a non-trivial task. As we have discussed about the framework in

Section 4.4, the ideal case for applying our approach is interacting with stakeholders in

specific layers (e.g., business analysts, software architects, etc.) and directly extracting

necessary domain information from them.

Although the application of our approach was time-consuming in this study, we argue

this is due to the inherent complexity of the large-scale system, which cannot be avoided

altogether. As reported by the student, on one hand, the student acknowledged the

complexity of performing holistic security requirements analysis on such a complicated

STS; on the other hand, the student did appreciate the (semi-)automation of analysis

supported by our tool, without which the corresponding analysis task is impossible to

complete. Therefore, we conclude that our approach did help the student to deal with

such complexity.

Discussion. During the analysis process, we observed several issues, based on which we

further discuss our approach as below.

Firstly, during the security goal refinement analysis in the social layer, the student

tried to use the exhaustive refinement feature offered by the tool. Due to the high com-

plexity of this scenario, the exhaustive refinement results in more than 800 security goals.

After performing the simplification analysis over such security goals, 9 critical security

goals were identified and another 58 security goals were identified as applicable (but non-

critical). Then, the student went through all the applicable security goals to determine

192 Validation

Table 9.3: Two exemplary holistic security solutions

Layer Alternative 1 Alternative 2

Social

Control pharmacy access to doctor e-

prescription;

Control access to MERC

Control pharmacy access to doctor e-

prescription;

Control access to MERC

Software

Input guard for authorization application;

Limited view for e-health terminal access;

Secure access layer for e-health application;

Firewall for controlling access to e-health

application;

Server sandbox for control station applica-

tion;

Firewall for localization application;

Limited view for control station applica-

tion;

Secure access layer for control station ap-

plication;

Server sandbox for hospital application

system;

Secure access layer for hospital application

system

Input guard for authorization application;

Limited view for e-health terminal access;

Secure access layer for e-health application;

Firewall for controlling access to e-health

application;

Server sandbox for control station applica-

tion;

Firewall for localization application;

Limited view for control station applica-

tion;

Secure access layer for control station ap-

plication;

Server sandbox for hospital application

system;

Secure access layer for hospital application

system

Infrastructure

Physical entry control to PDA;

Physical entry control to e-health termi-

nal;

Cabling security between PDA and

MERC;

Cabling security between PDA and control

station server;

Physical entry control to control station

server;

Physical entry control for MERC server;

Physical entry control to localization

server;

Physical entry control to localization

router

Physical entry control to PDA;

Physical entry control to e-health termi-

nal;

Cabling security between PDA and

MERC;

Cabling security between PDA and control

station server physical entry control to

control station server;

Physical entry control for MERC server;

Physical entry control to localization

server;

Cabling security between localization

server and MERC;

Cabling security between localization

server and internet

Number of

mechanisms
20 21

Chapter Summary 193

their criticality, which was a time-consuming task. Such scale of analysis complexity was

due to the complicated domain model (Fig. 9.7) and resource model (Fig. 9.8). As we

have proposed in Section 4.3.1, it is advisable to adopt a hybrid refinement strategy to

deal with such complexity, which can avoid analyzing security goals that were actually

not desired by stakeholders.

Secondly, during the security goal operationalization analysis, we noticed that some de-

tailed security goals, which were concerned with the same security property and asset but

differed in their concerned interval, may share the same security mechanisms. Therefore,

once such security goals were operationalized into corresponding security mechanisms, the

obtained security mechanism instances should be merged as one single instance. In other

words, such phenomena require a manual check after the operationalization analysis.

Lastly, the security analysis results of this case study turned out to be over 73000

alternative security solutions. Intuitively, such a huge amount of alternatives is due to

the complicated scenario. In order to have a better understanding of the scalability

of our approach, We delveed into the holistic security goal model (Fig. 9.9) to further

examine where the alternatives come from, . In particular, by looking at the syntax of

the holistic security goal model, we identified that some security goals were and-refined

into multiple sub-goals (up to eight), which was the main cause of the complexity. For

example, if each of the eight sub-goal is operationalized into two security mechanisms, only

this branch of model can have 28 alternatives, which can exponentially grow when other

branches of models are taken into account. By having a close look at the semantics of the

holistic security goal model, the above complex and-refinement structure is reasonable

and does need to be captured and analyzed. For example, one business activity involved

multiple stakeholders and software applications, among which confidential information

was transferred. As such, it was reasonable to identify all such related actors and to

impose corresponding security requirements on each of them (one security goal per actor),

which then lead to the complex and-refinement structure.

9.3 Chapter Summary

In this chapter, we present two case studies that we have performed to validate our holistic

security requirements framework. The first case study was performed by myself, focusing

on evaluating the expressiveness of the three-layer requirements modeling language and

the efficacy of the holistic analysis framework, which is reported in Section 9.1. The

results of the study show that our approach is able to be applied to large-scale STSs and

to generate holistic security solutions to satisfy system security requirements. Based on

the threats to validity we have discussed for the first case study (Section 9.1.4), we have

194 Validation

carried out the second case study, which was performed by a Master student under the

supervision of Prof. Mylopoulos and myself. This case study is presented in Section 9.2,

the results of which shows our approach can be adopt by people who were not involved

in the development of our approach and has limited security knowledge.

Chapter 10

Conclusions and Future Work

This chapter summarizes the entire thesis and sheds light on our future work. In Sec-

tion 10.1 we conclude the contributions of each part of this thesis. In Section 10.2 we

discuss the limitations of our proposal and envision future research topics we intend to

investigate.

10.1 Conclusions

The main objective of this thesis is to develop a comprehensive framework that assists

security analysts in analyzing security requirements and generating security solutions for

STSs in a holistic manner. To this respect, instead of dealing with security in a piecemeal

fashion, we proposed a three-layer security requirements analysis framework, which takes

into account the security concerns in different parts of STSs. Also, this framework can

deal with the inherent complexity of STSs by dividing them into three conceptual layers,

and thus tackles the original problem in a divide-and-conquer manner. In particular,

we consider a social layer, a software layer, and an infrastructure layer. Each of these

layers accounts for particular artifacts that need to be designed in STSs. Based on such

division, we concern specific security requirements and solutions in each layer while take

into account the connections among layers. In such a way, we eventually generate holistic

security solutions which provide comprehensive protection for STSs. The proposed frame-

work consists of a three-layer requirements modeling language and a systematic analysis

process for holistically analyzing security requirements across three layers. Specifically,

different analysis methods have been formalized in Disjunctive Datalog, based on which

we have implemented semi-automated support for the entire analysis process.

An important input required by the above holistic security requirements analysis

framework is a collection of threats to the system, which are used to determine the crit-

icality of security requirements. Because of the complexity of STSs, it is challenging

196 Conclusions and Future Work

to identify all potential attacks, especially multistage attacks which assemble individual

attacks from different parts of STSs. The identification of multistage attack within a

socio-technical setting has not not been addressed by existing approaches, imposing a

new research challenge. Therefore, we have developed a holistic security attack analysis

approach as part of our holistic security requirements framework in order to deal with

this particular challenge. This approach takes an attacker’s perspective to analyze attack

strategies, and then operationalizes the strategies into specific attack actions based on a

collection of attack patterns. In particular, we not only advocate taking the attacker’s

perspective but pragmatically analyze attacker’s intentions via realistic attack scenarios.

Moreover, driven by the same pragmatic thought, we leverage practical attack knowledge

from existing attack patterns to operationalize attacker’s anti-goal in terms of concrete

attack behaviors. Specifically, we have modeled 102 existing attack patterns as contextual

goal models, enabling semi-automatic selection among such attack patterns.

One important analysis step of our holistic security requirements analysis is to op-

erationalizing security requirements in terms of security mechanisms. However, such

analysis is a laborious and knowledge-intensive process, especially for large-scale STSs.

This challenge has been further exacerbated by the fact that security knowledge is nor-

mally hard to acquire for system analysts. As a response to such a challenge, we have

developed a systematic approach to efficiently leverage security patterns to accomplish

the operationalization analysis, constituting another important part of the holistic secu-

rity requirements framework. Similar to the attack pattern analysis, we have proposed

to model textual security patterns as contextual goal models in order for semi-automatic

analysis. In particular, we have delved into the practical details about the modeling of

security patterns, and have provided systematic instructions about how to establish con-

textual goal models from textual security patterns. In addition, we have pragmatically

followed such instructions to model 20 reusable security patterns.

During the operationalization analysis, we have realized that two typical operational-

ization methods (i.e., function operationalization and quality operationalization) are not

enough to support the operationalization of security requirements. Specifically, opera-

tionalizing security goals into security mechanisms not only introduces new functions to

the system specification, but also influences existing system functions. Ignoring such im-

pact will result in incomplete or even faulty requirements specifications. As such, we have

proposed a conceptual model for security mechanisms, based on which we have defined

a systematic analysis process to capture and enforce the impact of security mechanisms

imposed on existing system functions.

We have developed a prototype tool to provide semi-automated support for the holistic

security requirements analysis, facilitating the practical adoption of our framework. The

Discussion 197

tool was initially designed to support the three-layer security requirements modeling and

analysis, and has been incrementally enhanced to support the subsequent holistic attack

analysis and security pattern analysis. In particular, the tool helps analysts to deal with

the scalability issues in two ways: firstly, the tool is built on a professional diagramming

application and can well separate the modeling tasks in terms of layers, perfectly imple-

menting the modularity feature provided by our approach. In addition, the prototype tool

inherits many useful modeling features from the diagramming application, relieving the

scalability problem, especially when modeling large-scale STSs. Apart from the modeling

support, our prototype tool also provides useful analysis support, i.e., (semi-)automating

different analysis methods proposed in this thesis. Our tool performs automatic analy-

sis over target models, and then reflects the analysis results in the graphical canvas. In

particular, the prototype tool can automatically generate part of the analytic models,

relieving analysts from manually creating the models.

Apart from the above proposals, we have also performed two case studies with the

aim of collecting empirical evidence about the efficacy of our approach. Specifically, the

first case study was performed by myself on a real smart grid scenario, in which I adopted

the entire proposal in this thesis to holistically analyze security requirements in order for

protecting the metering data. The results of the study show that our approach can identify

holistic security solutions across three layers, and it is scalable to large-scale STSs. In

addition, we have also observed several issues that help us to improve our approach. For

the second case study, we applied our approach to another large-scale STS (i.e., medical

emergency response system). In particular, we adapted our study design from the first

study and had a Master student to apply the holistic analysis approach, who was not

involved in the development of our approach and has limited security knowledge. The

student was first taught the three-layer security requirements analysis framework, and

then used the prototype tool to perform the holistic security requirements analysis under

the supervision of Prof. Mylopoulos and myself. According to the evidence we collected

from this case study, we contend that our approach can be applied by people other than

the method developers.

10.2 Discussion

In this section, we first discuss limitations of the approaches we have proposed in different

parts of the thesis. Next, inspired by our current proposal, we envision a number of future

research directions,

198 Conclusions and Future Work

10.2.1 Limitations

We discuss the limitations of our current proposal from three different aspects: security

knowledge, empirical evaluations, and tool supporting.

Security Knowledge. Since our approach relies on external security/attack knowledge

to perform corresponding analysis, the analysis results are affected by such external knowl-

edge sources. As identified by our case study, the current selection of security patterns

is not enough to cover all threats we have analyzed in the case study; and of course,

there can be further threats that turn out to be not covered by selected security pattern.

Therefore, we need to continuously incorporate additional security patterns into our ap-

proach, reacting to emerging threats. Apart from the coverage of the external knowledge

sources, the quality of the external knowledge sources can also affect our analysis results.

When practically processing existing security patterns and attack patterns, we have al-

ready identified that some of the patterns are incomplete, failing to accommodate all the

required knowledge. To deal with this limitation, we should keep updating our processed

security/attack patterns with regard to the recent advances in the corresponding research

fields.

On the other hand, we argue that this limitation is not specific to our approach, but

is generally applied to all the security analysis approaches that propose to reuse existing

knowledge. As reported in [Souag et al., 2015], the research about knowledge reuse is still

immature, especially lacks automation support. Different from most existing approaches

that only mention the idea of knowledge reuse, our approach has delved into the practical

adoption of knowledge reuse, and thus has encountered the above limitations.

Empirical Evaluations. Although we have performed case studies to evaluate each part

of the thesis, we have acknowledged the needs of collecting further empirical evidence in

regard to the follow aspects: firstly, the case study we have performed with a Master

student provides preliminary evidence that our approach can be adopted in reality by

people that were not involved in the design of the approach. However, we need to further

evaluate our approach with a significant number of participants. To this end, controlled

experiments would be the ideal empirical method to collect such empirical evidence. For

this thesis, the reason of choosing case study as the empirical evaluation method (instead

of controlled experiment) is that the full application of our approach is difficult to control

in terms of time. This argument has also been further verified by our second case study,

in which the student took around three months to completely apply the entire approach.

The main reason of this challenge is because our approach is intended to solve a very

complex and difficult problem, i.e., holistically analyzing security requirements for large-

Discussion 199

scale STSs. To address this challenge, we have planned to first divide the entire approach

into independent parts, and then perform controlled experiments for each of these parts.

For example, we can separate the modeling session from the analysis session. In addition,

a more practical solution is to combine the evaluation of the approach with a security

course, in which students are required to step-by-step adopt the approach during the

entire semester.

Secondly, we need more empirical evidence to account for the quality of our analysis

results. To this end, we plan to have experienced security experts to revise and vali-

date the holistic security solutions produced by our approach. In addition, by involving

security experts in the empirical evaluation of our approach, we also want them to pro-

vide comments and suggestions from a practical perspective, helping us to improve our

approach to tackle more practical problems. In such a way, we want to promote the

practical adoption of our approach.

Thirdly, we have encountered problems of information collection in both of the two case

studies (to different extents). We argue that by involving corresponding domain experts

and directly interacting with them, we are able to collect the information required by

our approach with much less effort. Consequently, we need to collect more empirical

evidence to support such an argument. Ideally, we want to perform further case studies

or action research over a realistic project, in which we are able to directly interact with

corresponding domain experts.

Integration. In this thesis, we have first proposed the three-layer security requirements

analysis framework as an essential contribution (Chapter 4), and then incrementally pro-

pose several approaches that support the application of the three-layer framework (Chap-

ter 5-7). As specified in corresponding chapters, such supporting approaches are applied

to a particular analysis step of the holistic security requirements analysis. In particular,

for each of such supporting approaches, we have demonstrate and evaluate its utility, as

presented in corresponding chapters. However, due to a number of theoretical and practi-

cal gaps, such supporting approaches cannot be fully integrated with the holistic security

requirements analysis, indicating limitations of this thesis.

Specifically, the holistic security attack analysis (Chapter 5) identifies alternative at-

tacks on systems, which are an important input required for identifying critical security

goals. However, beyond such alternative attacks, analysts also need to know the risk level

caused by such attacks. In other words, risk assessment should be performed based on the

alternatives attacks, which is currently not included in our holistic security attack anal-

ysis. As a result, in order to fully integrate the holistic attack analysis into the holistic

security requirements analysis, we need to further extend our current proposal with an

200 Conclusions and Future Work

additional risk assessment module.

For the security pattern analysis (Chapter 6), our proposal targets software security

patterns Fernandez-Buglioni [2013], which has been specified in POSA templates. How-

ever, the organizational security patterns Asnar et al. [2011a] are documented in a different

template, which does not specify the Force section. In order to apply our approach, we

need to manually complement such information, which is a non-trivial task. Moreover, at

the infrastructure layer, currently there are little security patterns have been proposed,

and thus we have to turn to other knowledge sources (e.g., ISO27002) to tentatively cre-

ate security patterns by ourselves, which are incomplete and require for verification. Such

practical obstacles hinder the full application of our security pattern analysis in social

and infrastructure layers, which should be addressed in the future.

Automated Tool Support. In this thesis, we have developed a prototype tool to semi-

automate a number of proposed methods, supporting corresponding analysis. However,

we have acknowledged that part of thesis is able to be (semi-)automated but has not yet.

Specifically, for the attack strategy analysis, which was introduced in Section 5.2, we have

learned and summarized a number of anti-goal refinement methods from realistic attack

scenarios. Currently, we manually follow those methods to refine attacker’s malicious

intentions, but we believe this analysis can be automated to further simplify the holistic

attack analysis. The challenge for automating such analysis is about the sanity check,

which is performed after each step of refinement. This is because such check does require

specific domain knowledge and is normally performed by people. Therefore, a semi-

automatic support can be an appropriate solution, i.e., the tool first helps analysts to

automate one step of anti-goal refinement and then asks for manual check afterwards.

Moreover, as we developed our prototype tool on top of a commercial diagramming

tool, our tool cannot be widely distributed because of permission issues. As a result, for

people who do not have the permission of the diagramming tool, our prototype tool is

unusable. To solve this limitation, a possible solution is to base our prototype tool on

other non-commercial diagramming tool. As introduced in Chapter 8, we have specified a

collection of interfaces in our prototype tool for interacting with graphical models. Thus,

as long as a non-commercial diagramming tool can provide similar interfaces, we are

able to easily plant our prototype tool onto that diagramming tool. We argue that this

is actually a trade-off between usability and availability. On one hand, the commercial

diagramming tool offers very good usability which is important in large-scale modeling; On

the other hand, the non-commercial tool can be widely distributed, although its usability

might not be good. The reason why we choose to use the commercial tool is because in

this thesis we intend to exclusively focus on the efficacy of our holistic analysis approach

Discussion 201

without bothering to deal with the distribution of the tool. Once our approach has been

proven as efficient and useful, then we will start concerning the public availability of our

prototype tool.

10.2.2 Ongoing Work and Future Research Directions

Inspired by the proposal in this thesis, we have identified some additional research direc-

tions that we intend to investigate. In the remainder of this section, we first introduce a

piece of ongoing research about operationalizing requirements with aspectual mechanisms.

Apart from this work, we introduce a number of future research lines.

Operationalizing Requirements with Aspectual Mechanism. Requirements opera-

tionalization amounts to transforming a problem into corresponding solution space, i.e.,

from stakeholder requirements to a specification of the system-to-be. Typically, there are

two complementary ways of performing such operationalization as specified in [Dalpiaz

et al., 2014], targeting functional requirements and quality requirements, respectively.

Firstly, a functional requirement is operationalized into a function, which makes the re-

quirement operational and is able to be implemented by the system-to-be. Secondly, a

quality requirement is operationalized as a constraint on a metric that makes the quality

requirement measurable at runtime. In particular, the functions and quality constraints

that have been used to operationalize stakeholder requirements together constitute a

specification, which are in the same spirit of IEEE standard for requirements specifica-

tions [Committee and Board, 1993].

However, these two ways of operationalization are not enough to represent the oper-

ationalization practices in the real world. In particular, we argue that such operational-

ization methods can be applied to deal with “standalone” requirements that function by

themselves instead of functioning over other requirements. For example, “The system

should measure energy load” can be operationalized into a measurement function, i.e.,

applying the functional operationalization. On the other hand, apart from the standalone

requirements, there are requirements that interact with other requirements, as introduced

by Robinson et al. [2003]. We argue that these two operationalization methods are not

enough for operationalizing such “interactive” requirements. For example, considering a

persistence requirement “a website should remember the states of user activities (e.g.,

adding items into the shopping cart)”. If we apply HTTP cookies as a solution to satisfy

this requirement problem, we not only need to add functions such as read/write cookies,

but should also modify existing functions that affect the states of user activities, i.e.,

constraining such existing functions in the specification to appropriately operate cookies

once changed the user states.

202 Conclusions and Future Work

We propose mechanisms as a complementary operationalization method to tackle the

above challenge. A mechanism is a system of causally interacting parts and processes

that produce one or more effects. In this respect, mechanisms are aspectual in that they

require several elements of a specification to work together to fulfill a requirement, unlike

their functional and quality cousins. In particular, we have observed many requirements

operationalization instances that fall into the category of mechanisms, such as security,

performance, and usability requirements, etc.

Currently, we are investigating a specification language for describing mechanisms.

On one hand, we intend to specify a mechanism as a set of rewrite rules over specifica-

tions. As such, the requirements operationalization amounts to a specification rewriting

problem. On the other hand, we want to preserve the Church-Rosser property during the

specification rewriting.

Runtime Adaptive Security Design. Our proposal in this thesis focuses on designing

secure STSs at the design time, which constitutes an important step in achieving system

security. As contended by Bruce Schneier that “Security is a process, not a product”, we

want to move to the next step of the security process, i.e., designing adaptive security at

runtime. In particular, we want to achieve two objectives: firstly, adjust security designs

in a real-time manner to protect the system from different attacks. Secondly, as security

is not free, the security mechanisms should be switched off whenever possible.

In order to achieve such research objectives, we want to adopt control theory, estab-

lishing a feed-back loop to constantly check the system environment and to react corre-

spondingly. To this end, we need to first precisely capture the system context, based on

which we can determine the security situation. We argue that our holistic attack analysis

approach (Chapter 5) can contribute to this task. Specifically, as we analyze attacker’s

intentions via anti-goal models and associate them with concrete attack actions, we are

able to detect the attack progress of multistage attacks, and thus take countermeasures in

time. Next, for the countermeasures, we should be able to specify a collection of options

of security mechanism reconfiguration, which will be applied at runtime to deal with

particular security situation. For this part, we need to grasp more security knowledge

regarding this task, and we intend to start from a particular application domain, such as

cloud computing.

Flexible Multilayer Security Requirements Framework. Our three-layer requirements

framework is an initial effort to deal with complicated (security) requirements problems

via a multilayer manner, which can be further extended in the future. In particular, the

number and content of layers can be flexible, depending on the scope and the complexity

Discussion 203

of the system. For instance, if the target system is a technical-oriented system and does

not involve the design of the business process, then the framework can only focus on

the application layer and the physical layer. For another example, if the target system

not only deals with the software applications, but also intensively involves issues about

operating systems, then it is better to add an additional operating system layer between

the software layer and the infrastructure layer. Regardless of the structure of layers, we

argue that the analysis of the multilayer framework stays the same.

As such, we intend to propose a flexible multilayer framework based on our current

proposal in order to accommodate holistic security requirements analysis in different do-

mains. Specifically, we want to define a systematic process for adding or removing a

layer to the framework, by following which analysts are able to customize and obtain

their particular multilayer framework that help them to deal with security requirements

analysis in particular domains. Furthermore, although the current three-layer framework

analyzes the influences between layers via a top-down manner, we acknowledge that the

influences can also be propagated in bottom-up manner. For example, an infrastructure

task can create software or social requirements. As such, we also aim to define appropri-

ate mechanisms to allow analysts to perform influence analysis via a bottom-up manner.

Note that after enabling the bottom-up analysis, the overall analysis can be much more

complicated, as there can be an analysis loop among layers. Thus, a criterion for ending

the analysis is required.

Agent-Oriented Attack Simulation. The essence of our holistic attack analysis ap-

proach (Chapter 5) is to pragmatically take an attacker’s perspective and analyze poten-

tial attacks that can be performed by the attacker. In particular, the proposed approach

is intended to reflect how an attacker refines her malicious intentions and operationalizes

it into concrete attack actions. Currently, we manually follow the approach to analyze

one single attacker. As the next step of research, we intend to automate such analysis by

formalizing the proposed anti-goal refinement methods. Therefore, in line with the agent-

oriented paradigm that has been applied in Software Engineering (SE), we can also treat

each attacker as an intelligent agent and thus explore alternative attacks by simulating

different attackers’ behaviors. In particular, each attacker can automatically refine her

malicious goals by using our proposed anti-goal refinement methods and then operational-

ize her malicious intentions into attack actions based on attack patterns. In this way, we

can better explore the space of attack alternatives. Especially, we contend it is important

to take into account the interactions among attackers. This means one attacker can also

communicate/negotiate with other attackers and endeavor to deliver more complicated

and damaging attacks via appropriate collaborations.

204 Conclusions and Future Work

Appendix A

Attack Scenario Studies

The LOCK-11
protection system is

defeated

The terminal-
based protection

is defeated

Get access
to the

admin server

 Human guard
protection is

defeated

The admin server
is protected by
physical lock

The admin server
is protected by
human guard

Physical
configuration
is changed

 Physical
lock protection

is defeated

Chat with
the guard to
distract him

Lock-picking

Plug the cable leading
from the console port
into a public terminal

The Password
protection is

defeated

The defender
voluntarily discloses

credentials
The admin server
of the protection
mechanism is

hacked

The protection
mechanism is

controlled by an
admin server

The LOCK-11 protection
system consists of a

terminal-based protection
and a password protection

(Defeat,
Asset: LOCK-11

protection system)

(Defeat,
Asset: Terminal-
based protection)

(Access,
Asset: Admin

server)

(Defeat,
Asset: Human

guard protection)

The admin server
is protected by
physical lock

The admin server
is protected by
human guard

(Defeat,
Asset: Physical
lock protection)

(Defeat,
Asset: Password

protection system)

The defender
voluntarily discloses

credentials(Defeat,
Asset: Terminal-based

protection,
Exploitable Target:

Admin server)

The protection
mechanism is

controlled by an
admin server

The LOCK-11 protection
system consists of a

terminal-based protection
and a password protection

(Tamper,
Asset: Admin Server,
Exploitable Target:

Admin server)

(Defeat,
Asset: Physical lock

protection,
Exploitable Target:

Lock)

(Defeat,
Asset: Human guard

protection,
Exploitable Target:

Human)

Initial model Characterized model Identified refinement pattern

(Defeat,
Asset: LOCK-11

protection system)

(Defeat,
Asset: Terminal-
based protection)

(Access,
Asset: Admin

server)

(Defeat,
Asset: Human

guard protection)

The admin server
is protected by
physical lock

The admin server
is protected by
human guard

(Defeat,
Asset: Physical
lock protection)

(Defeat,
Asset: Password

protection system)

The defender
voluntarily discloses

credentials
(Defeat,

Asset: Terminal-based
protection,

Exploitable Target:
Admin server)

The protection
mechanism is

controlled by an
admin server

The LOCK-11 protection
system consists of a

terminal-based protection
and a password protection

(Tamper,
Asset: Admin Server,
Exploitable Target:

Admin server)

(Defeat,
Asset: Physical lock

protection,
Exploitable Target:

Lock)

(Defeat,
Asset: Human guard

protection,
Exploitable Target:

Human)

P1

P2

P3

P4

P2 P2

Gain money from a
hacking challenge

The guard is
manipulated

The physical
lock is

attacked

Easy Money

Access the server
that stores the
source code

Penetrate into
the internal

network

Passward protection
is applied to the system

Find out the
server that stores
the information

Use social engineering
to elicit the server information

from IT technical support
personnel

Apply Dictionary-based
Password Attack

Obtain the
credentials for
logging in the

servers

Set the target
 system as

dual-home host

Use rainbow
table to crack

password

Apply password
brute forcing

Get source
code of an

electronic game

Reach the server
via network Bypass the

password
protection

(Disclose,
Asset: source code,

Exploitable Target: server)

(Access,
Asset: internal

network)

Passward protection
is applied to the system

(Disclose,
Asset: server

location information)
(Disclose,

Asset: credentials)

(Disclose,
Asset: source

code)

(Access,
Asset: server,

Exploitable Target:
internal network) (Defeat,

Asset: password
protection)

The source code is stored
in a company’s server

The source code is stored
in a company’s server

(Disclose,
Asset: source code,

Exploitable Target: server)

(Access,
Asset: internal

network)

Passward protection
is applied to the system

(Disclose,
Asset: server

location information)
(Disclose,

Asset:
credentials)

(Disclose,
Asset: source

code)

(Access,
Asset: server,

Exploitable Target:
internal network) (Defeat,

Asset: password
protection)

The source code is stored
in a company’s server

P2

P3

P4

P3

P3

Initial model Characterized model Identified refinement patternDictionary as
an attack tool

Obtain confidential
files of an

accounting firm

Keep watching the
offices of the company

Know the working
and non-working

hours of the
company

Get into the
company office

during non-working
hours

Obtain the
confidential document

stored in the
company’s intranet

Find user credentials
on a post-it note stuck to

the display

User credential is
known

Bypass the network
access control

The intranet is
protected by an access

control mechanism

The documents are
stored in the server

located inside the company

Get into the
intranet

Get physical access
to an internal

computer

Find the intranet

The intranet can
only be accessed from

internal computers

Internal computer is put
inside the company office Get into the

company office

Manipulate the cleaning
crew to let him go into

the company

The cleaning people can
enable the access to the

company during
non-working

Pretend to be an
employee to manipulate
cleaning people to open

the door for him

(Disclose,
Asset: confidential

files)

Keep watching the
offices of the company

(Disclose,
Asset: non-working

hours)

(Access,
Asset: company office
Interval: non-working

hours)

(Disclose,
Asset: confidential files

Exploitable Target:
intranet)

Find user credentials
on a post-it note stuck to

the display

(Disclose,
Asset: user
credential)

(Defeat,
Asset: access

control)

The intranet is
protected by an access

control mechanism

The documents are
stored in the server

located inside the company

(Access,
Asset: intranet)

(Access,
Asset: internal

computer)

(Disclose,
Asset: intranet)

The intranet can
only be accessed from

internal computers

Internal computer is put
inside the company office (Access,

Asset: company
office)

(Access,
Asset: company office,

Exploitable Target: cleaning people
Interval: non-working hours)

The cleaning people can
enable the access to the

company during
non-working

Pretend to be an
employee to manipulate
cleaning people to open

the door for him

(Disclose,
Asset: confidential

files)

Keep watching the
offices of the company

(Disclose,
Asset: non-working

hours)

(Access,
Asset: company office
Interval: non-working

hours)

(Disclose,
Asset: confidential files

Exploitable Target:
intranet)

Find user credentials
on a post-it note stuck to

the display

(Disclose,
Asset: user
credential)

(Defeat,
Asset: access

control)

The intranet is
protected by an access

control mechanism

The documents are
stored in the server

located inside the company

(Access,
Asset: intranet)

(Access,
Asset: internal

computer)

The intranet can
only be accessed from

internal computers

Internal computer is put
inside the company office

(Access,
Asset: company

office)

(Access,
Asset: company office,

Exploitable Target: cleaning people
Interval: non-working hours)

The cleaning people can
enable the access to the

company during
non-working

Spoof as an
employee to manipulate
cleaning people to open

the door for him

(2)

(3)

(4)

(2,3)

(5)

(3)

(3)

(2)

Initial model Characterized model Identified refinement pattern

The Speedy
Download

Appendix B

Attack Pattern Hierarchy

CAPEC-55
Rainbow Table Password

Cracking
(Standard, Complete)

CAPEC-70
Try Common(default)

Usernames and Passwords
(Detailed, Complete)

CAPEC-16
Dictionary-based Password

Attack
(Detailed, Complete)

CAPEC-97
Cryptanalysis

(Meta, Complete)

CAPEC-49
Password Brute Forcing
(Standard, Complete)

CAPEC-20
Encryption Brute Forcing

(Standard, Complete)

CAPEC-112
Brute Force

(Standard, Complete)

ChildOf ChildOf

ChildOf ChildOfChildOf ChildOf

CAPEC-187
Malicious Automated

Software Update
(Standard, Complete)

CAPEC-186
Malicious Software Update

(Standard, Complete)

CAPEC-56
Removing/short-circuiting

'guard logic'
(Standard, Complete)

CAPEC-185
Malicious Software

Download
(Meta, Complete)

CAPEC-207
Removing Important

Functionality from the Client
(Standard, Complete)

CAPEC-184
Software Integrity Attacks

(Meta, Complete)

ChildOfChildOf

ChildOfChildOf

ChildOf

CAPEC-399
Cloning RFID Cards or

Chips
(Standard, Stub)

CAPEC-398
Magnetic Strip Card Brute

Force Attacks
(Standard, Stub)

CAPEC-397
Cloning Magnetic Strip

Cards
(Standard, Stub)

CAPEC-400
RFID Chip Deactivation or

Destruction
(Standard, Stub)

CAPEC-396
Bypassing Card or Badge-

Based Systems
(Standard, Stub)

CAPEC-394
Using a Snap Gun Lock to

Force a Lock
(Standard, Stub)

CAPEC-392
Lock Bumping
(Meta, Stub)

CAPEC-393
Lock Picking

(Standard, Stub)

CAPEC-395
Bypassing Electronic Locks

and Access Controls
(Standard, Stub)

CAPEC-391
Bypassing Physical Locks

(Meta, Stub)

CAPEC-547
Physical Destruction of
Device or Component

(Meta, Stub)

CAPEC-507
Physical Theft
(Meta, Stub)

CAPEC-390
Bypassing Physical

Security
(Meta, Stub)

ChildOfChildOf

ChildOfChildOfChildOfChildOf

ChildOfChildOfChildOfChildOf

CAPEC-69
Target Programs with
Elevated Privileges

(Standard, Complete)

CAPEC-14
Client-side Injection-induced

Buffer Overflow
(Detailed, Complete)

CAPEC-46
Overflow Variables and

Tags
(Detailed, Complete)

CAPEC-47
Buffer Overflow via

Parameter Expansion
(Detailed, Complete)

CAPEC-44
Overflow Binary Resource

File
(Detailed, Complete)

CAPEC-45
Buffer Overflow via

Symbolic Links
(Detailed, Complete)

CAPEC-67
String Format Overflow in

syslog()
(Detailed, Complete)

CAPEC-10
Buffer Overflow via

Environment Variables
(Detailed, Complete)

CAPEC-24
Filter Failure through Buffer

Overflow
(Detailed, Complete)

CAPEC-42
MIME Conversion

(Detailed, Complete)

CAPEC-8
Buffer Overflow in an API

Call
(Detailed, Complete)

CAPEC-9
Buffer Overflow in Local
Command-Line Utilities

(Detailed, Complete)

CAPEC-100
Overflow Buffers

(Standard, Complete)

ChildOfChildOf ChildOfChildOf

ChildOf

ChildOfChildOfChildOfChildOfChildOfChildOf

ChildOfChildOf ChildOf ChildOfChildOf

CAPEC-438
Integrity Modification During

Manufacture
(Meta, Stub)

CAPEC-520
Counterfeit Hardware

Component Inserted During
Product Assembly
(Standard, Stub)

CAPEC-521
Hardware Design

Specifications Are Altered
(Standard, Stub)

CAPEC-516
Hardware Component

Substitution During
Baselining

(Standard, Stub)

CAPEC-517
Documentation Alteration to

Circumvent Dial-down
(Standard, Stub)

CAPEC-518
Documentation Alteration to
Produce Under-performing

Systems
(Standard, Stub)

CAPEC-519
Documentation Alteration to

Cause Errors in System
Design

(Standard, Stub)

CAPEC-511
Infiltration of Software

Development Environment
(Standard, Stub)

CAPEC-537
Infiltration of Hardware

Development Environment
(Standard, Stub)

ChildOf
ChildOf

ChildOfChildOfChildOfChildOf
ChildOf

ChildOf

CAPEC-69
Target Programs with
Elevated Privileges

(Standard, Complete)

CAPEC-9
Buffer Overflow in Local
Command-Line Utilities

(Detailed, Complete)

CAPEC-76
Manipulating Input to File

System Calls
(Standard, Complete)

CAPEC-57
Utilizing REST's Trust in the

System Resource to Register
Man in the Middle

(Detailed, Complete)

CAPEC-219
XML Routing Detour

Attacks
(Standard, Complete)

CAPEC-10
Buffer Overflow via

Environment Variables
(Detailed, Complete)

CAPEC-13
Subverting Environment

Variable Values
(Standard, Complete)

CAPEC-31
Accessing/Intercepting/

Modifying HTTP Cookies
(Detailed, Complete)

CAPEC-56
Removing/short-

circuiting 'guard logic'
(Standard, Complete)

CAPEC-94
Man in the Middle

Attack
(Standard, Complete)

CAPEC-77
Manipulating User-
Controlled Variables

(Standard, Complete)

CAPEC-39
Manipulating Opaque

Client-based Data Tokens
(Standard, Complete)

CAPEC-207
Removing Important
Functionality from the

Client
(Standard, Complete)

CAPEC-22
Exploiting Trust in Client

(aka Make the Client
Invisible)

(Meta, Complete)

ChildOfChildOfChildOfChildOf

ChildOfChildOfChildOfChildOf
ChildOf ChildOf

ChildOfChildOf
ChildOf

ChildOf CAPEC-58
Restful Privilege Elevation

(Detailed, Complete)

CAPEC-17
Accessing, Modifying or

Executing Executable Files
(Standard, Complete)

CAPEC-180
Exploiting Incorrectly Configured
Access Control Security Levels

(Standard, Complete)

CAPEC-1
Accessing Functionality Not

Properly Constrained by ACLs
(Standard, Complete)

CAPEC-122
Privilege Abuse

(Meta, Stub)

ChildOf ChildOf

ChildOfChildOf

CAPEC-237
Calling Signed Code From
Another Language Within A

Sandbox Allow This
(Standard, Complete)

CAPEC-90
Reflection Attack in

Authentication Protocol
(Standard, Complete)

CAPEC-14
Client-side Injection-induced

Buffer Overflow
(Detailed, Complete)

CAPEC-115
Authentication Bypass

(Standard, Stub)

CAPEC-114
Authentication Abuse

(Standard, Stub)

ChildOfChildOf

CAPEC-439
Integrity Modification During

Distribution
(Meta, Stub)

CAPEC-523
Malicious Software

Implanted
(Standard, Stub)

CAPEC-524
Rogue Integration

Procedures
(Standard, Stub)

CAPEC-522
Malicious Hardware

Component Replacement
(Standard, Stub)

ChildOfChildOfChildOf

CAPEC-108
Command Line Execution

through SQL Injection
(Detailed, Complete)

CAPEC-109
Object Relational Mapping

Injection
(Standard, Complete)

CAPEC-110
SQL Injection through SOAP

Parameter Tampering
(Detailed, Complete)

CAPEC-7
Blind SQL Injection

(Detailed, Complete)

CAPEC-66
SQL Injection

(Standard, Complete)

ChildOfChildOfChildOfChildOf

CAPEC-59
Session Credential
Falsification through

Prediction
(Detailed, Complete)

CAPEC-102
Session Sidejacking

(Standard, Complete)

CAPEC-61
Session Fixation

(Standard, Complete)

CAPEC-60
Reusing Session IDs (aka

Session Replay)
(Standard, Complete)

CAPEC-62
Cross Site Request Forgery

(aka Session Riding)
(Standard, Complete)

CAPEC-31
Accessing/Intercepting/

Modifying HTTP Cookies
(Detailed, Complete)

CAPEC-196
Session Credential

Falsification through Forging
(Standard, Complete)

CAPEC-21
Exploitation of Session Variables,
Resource IDs and other Trusted

Credentials
(Standard, Complete)

ChildOf ChildOf
ChildOfChildOfChildOfChildOf

ChildOf

CAPEC-430
Target Influence via Micro-

Expressions
(Meta, Hook)

CAPEC-432
Target Influence via Voice

in NLP
(Meta, Hook)

CAPEC-431
Target Influence via Neuro-

Linguistic Programming (NLP)
(Meta, Hook)

CAPEC-434
Target Influence via

Interview and Interrogation
(Meta, Hook)

CAPEC-433
Target Influence via The
Human Buffer Overflow

(Meta, Stub)

CAPEC-435
Target Influence via Instant

Rapport
(Meta, Hook)

CAPEC-424
Target Influence via Perception
of Consensus or Social Proof

(Meta, Hook)

CAPEC-425
Target Influence via

Framing
(Meta, Stub)

CAPEC-422
Target Influence via Perception

of Commitment and
Consistency
(Meta, Hook)

CAPEC-423
Target Influence via
Perception of Liking

(Meta, Hook)

CAPEC-420
Target Influence via

Perception of Scarcity
(Meta, Hook)

CAPEC-421
Target Influence via

Perception of Authority
(Meta, Stub)

CAPEC-428
Target Influence via Modes

of Thinking
(Meta, Stub)

CAPEC-429
Target Influence via Eye

Cues
(Meta, Hook)

CAPEC-426
Target Influence via

Manipulation of Incentives
(Meta, Hook)

CAPEC-427
Target Influence via

Psychological Principles
(Meta, Hook)

CAPEC-419
Target Influence via

Perception of Concession
(Meta, Hook)

CAPEC-416
Target Influence via Social

Engineering
(Meta, Stub)

CAPEC-417
Target Influence via

Perception of Reciprocation
(Meta, Hook)

CAPEC-418
Target Influence via

Perception of Obligation
(Meta, Stub)

ChildOf

ChildOf

ChildOf

ChildOf
ChildOf

ChildOf
ChildOf

ChildOfChildOfChildOf
ChildOf

ChildOfChildOf

ChildOfChildOfChildOf

ChildOf

ChildOf

ChildOf

214 Attack Pattern Hierarchy

Appendix C

Goal Models Built from Attack

Patterns

Use
dictionary to

crack
passwords.

Determine
username(s)

to target
Select

dictionaries

Determine
application's

/system's
password

policy

Context=protected_by(target, password_based_authentication) &
other_context(The system does not have a sound password
policy that is being enforced) &
other_context(The system does not implement an effective
password throttling mechanism)

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Dictionary-
based

Password
Attack

Run rainbow
table-based
password

cracking tool

Obtain
password
hashes

Determine
application's

/system's
password

policy

C o n t e x t = p r o t e c t e d _ b y (t a r g e t ,
password_based_authentication) &
other_context(Salt was not used to
create the hash of the original
password)

Rainbow
Table

Password
Cracking

Brute force
password

Determine
application's

/system's
password

policy

Con tex t=p ro tec ted_by (ta rge t ,
password_based_authentication) &
other_context(An application does
not have a password throttling
mechanism in place),

Password
Brute

Forcing

Threat: information
disclosure

Target: application

Encryption
Brute

Forcing

Gather
information so
attack can be

performed
independently

.

Expand
victory

conditions

Reduce
search
space

Determine
secret
testing

procedure

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: information
disclosure

Target: application

Brute Force

Threat:
defeated_mechanism

Target: application

Obtain
username(s)
by sniffing
network
packets

Obtain
username(s)
by querying
application/

system

Obtain
usernames

from
filesystem

C C
C

Threat: spoofing
Target: application Threat: elevation of

privilege
Target: application

Threat:
defeated_mechanism

Target: application

C C C

Obtain copy of
database table or
flat file containing
password hashes

Obtain password
hashes from

platform-specific
storage locations

Sniff network
packets

containing
password
hashes

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat:
defeated_mechanism

Target: application

C C C

Determine
the

ciphertext
and the

encryption
algorithm

Perform an
exhaustive
brute force
search of
the key
space

Threat:
defeated_mechanism

Target: application

C C
Context = protected_by(target,
encryption)

Threat:
defeated_mechanism

Target: application

determine
how the

secret was
selected

social
engineering and

simple espionage
can indicate

patterns in their
secret selection

apply
cryptanalysis

Context = protected_by(target,
password_based_authentication)

Threat: spoofing
Target: application Threat: elevation of

privilege
Target: application

Try
Common(de

fault)
Usernames

and
Passwords

Context = use_technique(target_app,
cryptographic_algorithm)

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Cryptanalysis

Threat:
defeated_mechanism

Target: application

CCC C C C C

Threat:
defeated_mechanism

Target: application

C

Malicious
Automated
Software
Update

Threat: tampering
Target: application

Software
Integrity
Attacks

Malicious
Software
Download

Threat: tampering
Target: application

Threat: tampering
Target: application

Malicious
Software
Update

Threat: tampering
Target: application

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Threat: defeated
mechanism

Target: application

Threat: elevation of
privilege

Target: application

Removing/
short-

circuiting
'guard logic'

Determine
the location
and logic of
the guard
element

Determine
the

mechanism
to

circumvent
the guard

proceeds to
access the
protected

functionality

Disable or
remove the

critical
functionality

from the
client code

Determine
which

functionality
to disable or

remove

Probing

Threat: defeated
mechanism

Target: application

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: information
disclosure

Target: application

Threat: tampering
Target: application

Removing
Important

Functionality
from the
Client

Context=
other_context(The target
application use client
server paradigm)

C CC C C

reverse
engineers client-

side code to
identify the
functionality

Exploring an
application's

functionality and its
underlying mapping

to server-side
components

Reverse engineers
the client-side code
to determine which

functionality to
disable or remove

Disables or
removes the

functionality from
the client-side code

to perform
malicious action

CAPEC-66
SQL Injection

(Standard, Complete)

C

SQL
Injection

Sniff network
communications with

application using a utility
 such as WireShark

Experiment and try
to exploit SQL Injection

vulnerability

Determine user-
controllable input

 susceptible to injection:

C CC

Context = use_technique(target_application,
sql_query)

Threat: Information
Disclosure

Target: application
Threat: Tampering
Target: application

Threat: Elevation of
Privilege

Target: application
Threat: Spoofing,
Target: application

Spider web
sites for all

available links

Obtain an inventory of the
functionality exposed by the

application

Use web browser to
inject input through text
fields or through HTTP

GET parameters

Use a web application
debugging tool to

modify HTTP POST
parameters etc.

Use network-level
packet injection

tools such as netcat
to inject input

Use modified client
(modified by reverse

engineering) to
inject input.

Use public
resources

Add logic to query, and
use detailed error

messages from the server
to debug the query

Try
stacking
queries

Use "Blind
SQL Injection

Exploit SQL
Injection

vulnerability

Extract
information

about
database
schema

Determine
database

type

Determine
user-

controllable
input

susceptible
to injection

Determine
how to inject
information

into the
queries

Hypothesize
SQL queries

in
application

Threat: elevation of
privilege

Target: application

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

Blind SQL
Injection

Context = use_technique(target_application,
sql_query)

CC C

Research types of
SQL queries and
determine which

ones could be used
at various places in

an application
Add clauses to the
SQL queries such
that the query logic
does not change

Add delays to the
SQL queries in case

server does not
provide clear error

messages

Use web browser to
inject input through

text fields or through
HTTP GET
parameters

Use a web
application

debugging tool

Use network-
level packet

injection tools

Use modified
client

Automatically
extract

database
schema

Manually
perform the
blind SQL
Injection

Use the information
obtained in the

previous steps to
successfully inject

the database

Inject SQL
via SOAP

Parameters

Probe for
SQL

Injection
vulnerability

Detect
Incorrect

SOAP
Parameter
Handling

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: information
disclosure

Target: application

Threat: tampering
Target: application

SQL
Injection
through
SOAP

Parameter
Tampering

Context = use_technique(target_application, soap) &
other_context(The target application use SOA
paradigm)

Tampers with the
SOAP message
parameters via

injection

C
C C

C

Perform SQL
Injection

through the
generated

data access
layer

Probe for
ORM

Injection
vulnerabilities

Determine
Persistence
Framework

Used

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: information
disclosure

Target: application

Threat: denial of
service

Target: application
Threat: tampering
Target: application

Object
Relational
Mapping
Injection

Context = accept_user_data(target_application) &
other_context(The target application use client
server paradigm) &
other_context(The target application uses data
access layer generated by an ORM tool or
framework)

CC CC C

induce an error
screen that

reveals framework
information

Trigger
command

line
execution

with injected
arguments

Inject
malicious
data in the
database

Achieve arbitrary
command execution

through SQL Injection
with the

MSSQL_xp_cmdshell
directive

Probe for
SQL

Injection
vulnerability

Command
Line

Execution
through SQL

Injection

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: information
disclosure

Target: application

Threat: denial of
service

Target: application
Threat: tampering
Target: application

CC CC C

Context = other_context(target application
implicitly trusts the data stored in the database)

Threat: denial of
service

Target: application
Threat: spoofing

Target: application
Threat: elevation of

privilege
Target: application

Target
Programs

with
Elevated
Privileges

Threat: spoofing
Target: application

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

Buffer
Overflow via
Environment

Variables

Context = use_data_from (target_application, _) &
other_context(The targeted program runs with
elevated OS privileges) &
other_context(The targeted program is giving
away information about itself)

C CC

The attacker
probes for
programs

running with
elevated
privileges

The attacker finds a
bug in a program

running with
elevated privileges

The attacker
exploits the
bug that she
has found

Threat: Information
Disclosure

Target: software

C

Client-side
Injection-induced
 Buffer Overflow

Creates a custom
 hostile service

feeds malicious
data to the client to
exploit the buffer

overflow vulnerability

Acquires
information about the
 client to determine

its vulnerability

Threat: Tampering
Target: software

Threat: Elevation of
Privilege

Target: software

C C

Threat: DoS,
Target: software

C

Context = other_context(The targeted
application apply client server paradigm) &
other_context(The targeted application
communicate with external server)

leverages the exploit to
execute arbitrary code

or to cause a denial
of service

C
C CC C

Context = other_context(The application uses
environment variables)

 leverages
the buffer

overflow to
inject

maliciously
crafted code manipulates the

environment
variable to cause a

buffer overflow

find an
environment

variable
which can be
overwritten

String
Format

Overflow in
syslog()

Threat: spoofing
Target: application

Threat: tampering
Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

C
C

C C

Context = other_context(target application is
implemented using C or C++) &
other_context(The format string argument of the
Syslog function can be tainted with user
supplied data)

Craft a malicious
input and inject it

into the format
string parameter

Find syslog()
to inject

MIME
Conversion

Threat: spoofing
Target: application

Threat: tampering
Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application
C

C

C C

Context = other_context(The target system
uses a mail server) &
other_context(The format string argument of
the Syslog function can be tainted with user
supplied data)

Determine
whether the

mail server is
unpatched Identify vulnerable

MIME conversion
routines

Send e-mail
messages to the

target system with
specially crafted

headers that trigger
the buffer overflow

Abuse the
system

through filter
failure

Monitor
responses

Attempt
injections

Survey

Threat: denial of
service

Target: application

Threat: defeated
mechanism

Target: application

Threat: elevation of
privilege

Target: application
Threat: tampering
Target: application

Filter Failure
through
Buffer

Overflow

Context = other_context(target application is
implemented using C or C++)

C
CC C

Spidering
web sites for
inputs that

involve
potential
filtering

Brute force
guessing of

filtered
inputs

Fuzzing of
communicati

ons
protocols

Brute force
attack

through
black box

penetration
test tool

Manual
testing of
possible

inputs with
attack dataBoron

tagging
Check

Log
files

Malicious
code

execution

use the filter
failure to
introduce
malicious

data into the
system

DoS through
filter failure

Buffer
Overflow in

Local
Command-
Line Utilities

Threat: spoofing
Target: application

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

C
C CC C

Context = other_context(The target host
exposes a command-line utility to the user)

Identifies
command

utilities
exposed by the

target host
Interacts with the
command utility

and observes the
results of its input

Finds a buffer
overflow

vulnerability in the
command utility

and exploit it

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

Buffer
Overflow in
an API Call

C CC C

Context = other_context(The target host
exposes an API to the user)

Call an API

Injects malicious
code using the API
call and observes

the results

finds a buffer
overflow

vulnerability and
exploit

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

Threat: denial of
service

Target: application
Threat: spoofing

Target: application
Threat: elevation of

privilege
Target: application

Buffer
Overflow via
Parameter
Expansion

C C CC C

Context = accept_user_input(target_application) &
other_context(the application is implemented in C
or C++)

Find a buffer
overflow

vulnerability

Explore the
vulnerability

Use a disassembler
and other reverse

engineering tools to
find expandable user

input

Buffer
Overflow via

Symbolic
Links

Context = other_context(the application is
implemented in C or C++) &
other_context(The attacker can create
symbolic link on the target host) &
other_context(The target host does not
perform correct boundary checking while
consuming data from a resources)

Creates or
modifies a

symbolic link
pointing to a
resources

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

C CC C
Threat: elevation of

privilege
Target: application

Threat: denial of
service

Target: application

Overflow
Binary

Resource
File

Context = other_context(the application is
implemented in C or C++) &
other_context(Target software processes
binary resource files)

CC

Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

Overflow
Variables
and Tags

C CC C

Context = accept_user_input(target_application) &
other_context(the application is implemented in C
or C++)

Modifies a tag or
variable from a

formatted
configuration data to
cause buffer overflow

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Threat: denial of
service

Target: application

Overflow
Buffers

Context = other_context(the application is
implemented in C, C++, AJAX, PERL, PHP,
Visual Basic, or Ruby) &
other_context(Targeted software performs buffer
operations)

Identify a
buffer to
target

Crafts the
content to
be injected

Identifies an
injection
vector

Inject the
content into

targeted
software

Threat: spoofing
Target: application

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

Threat: elevation of
privilege

Target: application

Accessing,
Modifying or
Executing

Executable
Files

Iterate over
access

capabilities
Identify

Functionality

Survey

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Accessing
Functionality
Not Properly
Constrained

by ACLs

Access the
function or

data
bypassing
the access

control

Identify
weak points

in access
control

configuratio
ns

Survey

Threat: denial of
service

Target: all

Threat: defeated
mechanism
Target: all

Threat: spoofing
Target: all

Threat: elevation of
privilege

Target: all

Threat: information
disclosure
Target: all

Threat: tampering
Target: all

Exploiting
Incorrectly
Configured

Access Control
Security Levels

Context = other_context(The targeted
application allow user to directly access
executable files or upload files to execute)

C C C C

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application Threat: tampering
Target: application

Restful
Privilege
Elevation

Context = other_context(The targeted
application applies SOA paradigm) &

Context = use_technique(targeted_application, acl)

Threat: defeated
mechanism

Target: application

C C C

C C C

Brute force
guessing of

function
names /
actions

Brute force
guessing of

resource
names

Brute force
guessing of

user
names /

credentials

Spidering
web sites for
all available

links

Execute the
software in a
debugger and

record API calls into
the operating

system or important
libraries

Use the web
inventory of all

forms and inputs
and apply attack

data to those
inputs

Use a packet
sniffer to capture

and record
network traffic

Fuzzing of
API

parameters

Context = protected_by(targeted_application,
access_control)

C C C C C C

Spider the web
site for all

available links
Brute force to

guess all
function names/

action with
different

privileges

attempts
authenticated

access

attempts
unauthenticat

ed access

attempts
indirect and
side channel

access

Privilege
Abuse

Context = protected_by(targeted_application,
access_control)

Threat: defeated
mechanism
Target: all

Threat: elevation of
privilege

Target: all

C C

Manipulate
files

accessible
by the

application Vary inputs,
looking for
malicious

results

Survey the
Application
to Identify

User-
controllable

Inputs

Fingerprintin
g of the

operating
system

Threat: tampering
Target: application

Threat: spoofing
Target: application Threat: elevation of

privilege
Target: application

Manipulating
Input to File

System
Calls

Context = accept_user_data(targeted_application) &
other_context(User controlled variables can be
applied directly to the filesystem)

Induce errors to
find informative
error message

TCP/IP
Fingerprinting

Port mapping.

Spider web sites
for all available

links Manually explore
application and

inventory all
application inputs

using network
packet injection

tools

using web test
frameworks

Inject context-
appropriate malicious

file system control
syntax

Launch an
XML routing

detour
attack

Identify SOAP
messages
that have

multiple state
processing.

Survey the
target

Threat: defeated
mechanism

Target: application
Threat: spoofing

Target: application
Threat: elevation of

privilege
Target: application

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

XML
Routing
Detour
Attacks

Context = other_context(the targeted application
apply client server paradigm) &
other_context(The targeted system must have
multiple stages processing of XML content)

C C C C C
C

C
C

Use automated
tool to record all

instances to
process XML

requests or find
exposed WSDL

Use tools to
crawl WSDL

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Utilizing
REST's Trust
in the System
Resource to
Register Man
in the Middle

Context = other_context(The targeted
application applies SOA paradigm) &

Modify
cookie to
subvert
security
controls.

Obtain
sensitive

information
from cookie

Obtain copy
of cookie

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application
Threat: tampering
Target: application

Threat: information
disclosure

Target: application

Accessing/
Intercepting/

Modifying
HTTP

Cookies

Context = other_context(the targeted application
apply client server or n-tier paradigm) &
other_context(Target server software must be a
HTTP daemon that relies on cookies)

Sniff cookie
using a network
sniffer such as

Wireshark

Obtain
cookie from

local
filesystem

Obtain cookie
from local
memory or
filesystem

Steal cookie
via a cross-
site scripting

attack Guess cookie
contents if it

contains
predictable
information

C C

C C C C Threat: information
disclosure

Target: application
Threat: spoofing

Target: application
Threat: elevation of

privilege
Target: application

Exploiting
Trust in

Client (aka
Make the

Client
Invisible)

Context = accept_user_data(targeted_application) &
other_context(The targeted application applies client-
server or n-tier paradigm)

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

Threat: defeated
mechanism

Target: application
Threat: elevation of

privilege
Target: application

Subverting
Environment

Variable
Values

Context = accept_user_data(targeted_application) &
other_context(An environment variable is accessible
to the user)

Modifies the
environment
variable to
abuse the

normal flow
of processes

Gains
control of an
environment

variable

Probe the
application

for
information

C C C C

Context = communicate(targeted_application, _) &
not protected_by (target_application, encryption)

Man in the
Middle
Attack

Probes to determine
the nature and mechanism

 of communication Acting as a routing
proxy between the two
targeted components

C
C C

Observes, filters or alters
passed data of its choosing
 to gain access to sensitive
information or to manipulate

 the actions of the two
 target components

C

Threat: Spoofing
Target: all

Threat: Information
Disclosure
Target: all

Threat: Tampering
Target: all

Threat: Elevation
of Privilege
Target: all

Cycle
through

values for
each

parameter.

Modify
parameter/

token values

Determine
protection

mechanism
for opaque

token

Enumerate
information
passed to
client side

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application
Threat: tampering
Target: application

Manipulating
Opaque

Client-based
Data Tokens

Examine URL to
see if any

opaque tokens
are in it

Use
WebScarab to
reveal hidden

fields while
browsing

Use a sniffer
to capture
packets

View source of
web page to

find hidden field

Use debugging
tools such as
File Monitor

Disassemble or
decompile
client-side
application

Look for signs
of well-known

character
encodings

Look for
cryptographi
c signatures

Look for
delimiters or

other indicators
of structure

Use modified
client

Use network-
level packet

injection tools

Use application-
level data

modification
tools

Use
debugging

tools to modify
data in client

Use
matched

Session ID
Match

issued IDs
Characterize

IDs

Find
Session IDs

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Session
Credential

Falsification
through

Prediction

Abuse the
Victim's
Session

Credentials
Create

Session IDs.

Analyze and
Understand
Session IDs

Threat: defeated
mechanism

Target: application
Threat: spoofing

Target: application
Threat: elevation of

privilege
Target: application

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

Session
Credential

Falsification
through
Forging

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Reusing
Session IDs

(aka
Session
Replay)

Context = other_context(The targeted
application applies client-server paradigm) &
other_context(The targeted application applies
J2EE or .NET framework) &
other_context(The targeted application use
session id to track users) &
other_context (The targeted application use
session IDs to control access to resources)

Make many
anonymous
connections
and records
the session

IDs assigned

Make authorized
connections and

records the
session tokens
or credentials

issued

Cryptanalysis

Pattern
tests

Comparison
against time

Context = other_context(The targeted application
applies client-server or SOA paradigm) &
other_context(The targeted application use
session credentials to identify legitimate users)

Make many
anonymous
connections
and records
the session

IDs assigned Make authorized
connections and

records the
session tokens
or credentials

issued

The attacker
manipulates the HTTP
request message and

adds his forged session
IDs in to the requests or

cookies

Context = other_context(The targeted application
applies client-server) &
other_context(The targeted application use J2EE
or .NET framework) &
other_context(The targeted application use
session id to track users) &
other_context (The targeted application use
session IDs to control access to resources)

C C C C C

C C

C C

Use the
stolen

session ID
to gain

access to
the system

Steal a
session ID
from a valid

user

Interact with the
target host and

finds that session
IDs are used to

authenticate users

Threat: spoofing
Target: application

Threat: information
disclosure

Target: application

Threat: elevation of
privilege

Target: application
Threat: tampering
Target: application

Manipulating
User-

Controlled
Variables

Context = accept_user_data(targeted_application) &
other_context(A variable consumed by the application
server is exposed to the client)

Override the
variable and

influences the
normal behavior
of the application

serverFind a
variable to
override

Communicat
e with the
application

server using
a thin client
(browser)

C C C C

Abuse the
Victim's
Session

Attract a
Victim

Setup the
Attack

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Session
Fixation

Session
Token

Exploitation

Insert
captured
session
token

Capture
session
token

Detect
Unprotected

Session
Token

Transfer

Threat: denial of
service

Target: application

Threat: information
disclosure

Target: application
Threat: tampering
Target: application

Threat: spoofing
Target: application

Threat: elevation of
privilege

Target: application

Session
Sidejacking

Convince
user to click

on link
Create a link

that when
clicked on, will

execute the
interesting

functionality.

Explore
target

website

Threat: tampering
Target: application

Threat: information
disclosure

Target: application
Threat: spoofing

Target: application

Threat: elevation of
privilege

Target: application

Cross Site
Request

Forgery (aka
Session
Riding)

Spoofing

ImpersonateFetch
samples

Survey the
application

for
Indicators of
Susceptibilit

y

Threat: tampering
Target: application

Threat: information
disclosure

Target: application
Threat: spoofing

Target: application
Threat: elevation of

privilege
Target: application

Exploitation of
Session

Variables,
Resource IDs

and other
Trusted

Credentials

Threat: information
disclosure
Target: all

Threat: defeated
mechanism
Target: all

Threat: spoofing
Target: all

Threat: elevation of
privilege

Target: all

Reflection
Attack in

Authenticati
on Protocol

Context = other_context(The targeted application applies client-server) &
other_context(The targeted application use J2EE or .NET framework) &
other_context(The targeted application use session identifiers that
remain unchanged when the privilege levels change) &
other_context (The targeted application use permissive session
management mechanism that accepts random user-generated session
identifiers)

C C

Choose a
known

predefined
identifier

Create a trap
session for the

victim

Put links on
web sites

Establish rogue proxy
servers for network

protocols that give out
the session ID and then
redirect the connection
to the legitimate service

email attack
URLs to

potential victims
through spam
and phishing
techniques

Context = not protected_by(target_application,
secure_communication_mechanism) &
use_technique(targeted_application, AJAX) &
other_context(The victim has an active session with a target system) &
other_context(The targeted application applies client server paradigm)

Use a
network

sniffer tool

C

C C C

C

Context = other_context(The targeted application applies client-server) &
other_context(The targeted application use J2EE or .NET framework)

C C C

C

Use web
application
debugging

tool

Use network
sniffing tool

View HTML
source of web

pages that contain
links or buttons

that perform
actions of interest

Create a GET
request

containing all
required

parameters

Create a form
that will submit

a POST request

Include the
malicious link on

the attackers' own
website where the
user may have to
click on the link

Execute a
phishing attack

Execute a
stored XSS

attack

Context = other_context(The targeted application applies client-server) ||
other_context(The targeted application applies n-tier) ||
other_context(The targeted application applies SOA)

Spider all
available

pages

Attack known
bad interfaces

Make many
anonymous

connections and
records the session

IDs assigned

Make authorized
connections and

records the
session tokens or
credentials issued

Gain access to
(legitimately or
illegitimately) a
nearby system

C C C C

Context = other_context(The targeted
application applies client-server) ||
other_context(The targeted application
applies SOA)

C
C C

C

Target
Influence via

Voice in
NLP

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Neuro-
Linguistic

Programmin
g (NLP)

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Modes of
Thinking

Threat: Information
Disclosure

Target: people

Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
The Human

Buffer
Overflow

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception

of Obligation

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Threat: defeated
mechanism

Target: application

Authenticati
on Abuse

Exploit the
security

weaknesses in
the standard

libraries

Verify the
exploitable

security
weaknesses

Analysis

Probing

Threat: spoofing
Target: application

Threat: defeated
mechanism

Target: application

Threat: elevation of
privilege

Target: application

Calling Signed
Code From Another
Language Within A
Sandbox Allow This

Authenticati
on Bypass

Threat: spoofing
Target: application

Threat: defeated
mechanism

Target: application
Threat: spoofing

Target: application

Context =
protected_by(target_application,
authentication)

C C
Context = other_context(The targeted
application is implemented using (Java||
ASP.NET || C# || JSP)) &
other_context(The targeted application
has its deployed code signed by its
authoring vendor)

C C C

Context =
protected_by(target_application,
authentication)

C C

Target
Influence via

Micro-
Expressions

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Eye Cues

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Instant
Rapport

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Manipulation
of Incentives

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception
of Authority

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception
of Scarcity

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception
of Liking

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception

of
Commitment

and
Consistency

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception

of
Consensus

or Social
Proof

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Interview
and

Interrogation

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception

of
Concession

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Psychologic
al Principles

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via
Perception of
Reciprocation

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Framing

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people

Target
Influence via

Social
Engineering

Threat: Information
Disclosure

Target: people
Threat: Tampering
Target: people

Threat: Elevation of
Privilege

Target: people

Threat: DoS,
Target: people

Threat: Spoofing
Target: people Threat: Defeat protection

mechanism Target: people

Threat:
Repudiation,
Target: people Physical

Theft

Threat: Defeated
mechanism,

Target: hardware

Physical
Destruction
of Device or
Component

Threat: Defeated
mechanism

Target: hardware

RFID Chip
Deactivation

or
Destruction

Threat: Defeated
mechanism

Target: hardware

Cloning
Magnetic

Strip Cards

Threat: Defeated
mechanism

Target: hardware

Magnetic
Strip Card

Brute Force
Attacks

Threat: Elevation of
Privilege,

Target: hardware

Threat: Information
Disclosure,

Target: hardware

Threat: Tampering,
Target: hardware

Threat: Denial of
service,

Target: hardware

Threat: Elevation of
Privilege mechanism,

Target: hardware

Threat: Defeated
mechanism

Target: hardware

Cloning
RFID Cards

or Chips

Threat: Defeated
mechanism

Target: hardware

Lock Picking

Threat: Defeated
mechanism

Target: hardware

Using a
Snap Gun

Lock to
Force a

Lock

Threat: Defeated
mechanism

Target: hardware

Bypassing
Card or
Badge-
Based

Systems

Threat: Defeated
mechanism

Target: hardware

Bypassing
Physical
Locks

Threat: Defeated
mechanism

Target: hardware

Bypassing
Electronic
Locks and

Access
Controls

Threat: Defeated
mechanism

Target: hardware

Bypassing
Physical
Security

Threat: Tampering
Target: hardware

Malicious
Hardware

Component
Replacemen

t

Threat: Tampering
Target: all

Rogue
Integration
Procedures

Malicious
Software
Implanted

Infiltration of
Hardware

Developmen
t

Environment

Threat: Tampering
Target: application,

hardware

Integrity
Modification

During
Distribution

C
Context = other_context(Target can
be physically accessed after it has
left the manufacturer but before it is
deployed at the victim location)

Context = other_context(Target can be
physically accessed after it has left the
manufacturer but before it is deployed at
the victim location)

C

Context = other_context(Target can be
physically accessed after it has left the
manufacturer but before it is deployed at
the victim location)

Threat: Defeated
mechanism

Target: hardware

C

Threat: Defeated
mechanism
Target: all

C

Threat: Defeated
mechanism

Target: application,
hardware

Threat: Tampering
Target: application

C

Threat: Defeated
mechanism

Target: application

C

Context = other_context(Target use email
or removable media from systems running
the IDE)

Threat: Tampering
Target: hardware

C

Threat: Defeated
mechanism

Target: hardware

C

Integrity
Modification

During
Manufacture

Threat: Tampering
Target: application,

hardware

Threat: Defeated
mechanism

Target: application,
hardware

Infiltration of
Software

Developmen
t

Environment

Documentati
on Alteration

to Cause
Errors in
System
Design

Context = other_context(Target use email
or removable media from systems running
the IDE)

Threat: Tampering
Target: application

C

Threat: Defeated
mechanism

Target: application

C

Threat: Tampering
Target: application

Threat: Defeated
mechanism

Target: application

Hardware
Component
Substitution

During
Baselining

Hardware
Design

Specification
s Are Altered

Counterfeit
Hardware

Component
Inserted
During
Product

Assembly

Context = other_context(Target can either
be physically accessed or supplied by
malicious hardware)

Threat: Tampering
Target: hardware

C

Threat: Defeated
mechanism

Target: hardware

C

Threat: Tampering
Target: hardware Threat: Defeated

mechanism
Target: hardware

Context = other_context(Target can either
be physically accessed or supplied by
malicious hardware)

Threat: Tampering
Target: hardware

C

Threat: Defeated
mechanism

Target: hardware

C

Documentati
on Alteration
to Produce

Under-
performing
Systems

Documentati
on Alteration

to
Circumvent
Dial-down

Threat: Tampering
Target: application

Threat: Defeated
mechanism

Target: application

Threat: Tampering
Target: application,

hardware

Threat: Defeated
mechanism

Target: application,
hardware

230 Goal Models Built from Attack Patterns

Appendix D

Context Inference Rules for Attack

Patterns

%%%%%%%%%%%%%%%%%%%%%%%%%%
% Attack Pattern Context %
%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%
% CAPEC-20 Encryption Brute Forcing
%%%%%%%%%%
applicable_to(20,AG) :- relevant_to(20,AG), has_target(AG,TA), protected_by(TA,
encryption).

%%%%%%%%%%
% CAPEC-97 Cryptanalysis
%%%%%%%%%%
applicable_to(97,AG) :- relevant_to(97,AG), has_target(AG,TA), use_technique(TA,
cryptographic_algorithm).

%%%%%%%%%%
% CAPEC-49 Password Brute Forcing
%%%%%%%%%%
applicable_to(49,AG) :- relevant_to(49,AG), has_target(AG,TA), protected_by(TA,
password_based_authentication), use_detailed_technique(TA,
password_throttling_mechanism).
%%%%
% question uncheckable context
%%%%
question(use_detailed_technique, TA, password_throttling_mechanism) :- relevant_to(49,
AG), has_target(AG,TA), not use_detailed_technique(TA, password_throttling_mechanism),
not no_use_detailed_technique(TA, password_throttling_mechanism).
%%% new generated facts can be generated based on the answer to the question
% use_detailed_technique(TA, password_throttling_mechanism) :- question(use_technique,
TA, password_throttling_mechanism), yes
% no_use_detailed_technique(TA, password_throttling_mechanism) :-
question(use_technique, TA, password_throttling_mechanism), no

%%%%%%%%%%
% CAPEC-55 Rainbow Table Password Cracking
%%%%%%%%%%
applicable_to(55,AG) :- relevant_to(55,AG), has_target(AG,TA), protected_by(TA,
password_based_authentication), use_detailed_technique(TA, salt).
%%%%
% question uncheckable context
%%%%
question(use_detailed_technique, TA, salt) :- relevant_to(49, AG), has_target(AG,TA),
not use_detailed_technique(TA, salt), not no_use_detailed_technique(TA, salt).

%%%%%%%%%%
% CAPEC-16 Dictionary-based Password Attack
%%%%%%%%%%
applicable_to(16,AG) :- relevant_to(16,AG), has_target(AG,TA), protected_by(TA,
password_based_authentication), no_use_detailed_technique(TA, sound_password_policy),
no_use_detailed_technique(TA, password_throttling_mechanism).
%%

% question uncheckable context
%%
question(use_detailed_technique, TA, password_throttling_mechanism) :- relevant_to(16,
AG), has_target(AG,TA), not use_detailed_technique(TA, password_throttling_mechanism),
not no_use_detailed_technique(TA, password_throttling_mechanism).
question(use_detailed_technique, TA, sound_password_policy) :- relevant_to(16, AG),
has_target(AG,TA), not use_detailed_technique(TA, sound_password_policy), not
no_use_detailed_technique(TA, sound_password_policy).

%%%%%%%%%%
% CAPEC-70 Try Common(default) Usernames and Passwords
%%%%%%%%%%
applicable_to(70,AG) :- relevant_to(70,AG), has_target(AG,TA), protected_by(TA,
password_based_authentication).

%%%%%%%%%%
% CAPEC-56 Removing/short-circuiting 'guard logic'
%%%%%%%%%%
applicable_to(56,AG) :- relevant_to(56,AG), has_target(AG,TA), use_paradigm(TA,
client_server).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(56, AG), has_target(AG,TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).

%%%%%%%%%%
% CAPEC-66 SQL Injection
%%%%%%%%%%
applicable_to(66,AG) :- relevant_to(66,AG), has_target(AG,TA), use_technique(TA,
sql_query).

%%%%%%%%%%
% CAPEC-7 Blind SQL Injection
%%%%%%%%%%
applicable_to(7,AG) :- relevant_to(7,AG), has_target(AG,TA), use_technique(TA,
sql_query).

%%%%%%%%%%
% CAPEC-110 SQL Injection through SOAP Parameter Tampering
%%%%%%%%%%
applicable_to(110,AG) :- relevant_to(110,AG), has_target(AG,TA),
use_technique(TA,soap), use_paradigm(TA,soa).
%%%%
% question uncheckable context
%%%%
question(use_paradigm,TA,soa) :- relevant_to(110,AG), has_target(AG,TA), not
use_paradigm(TA,soa), not no_use_paradigm(TA,soa).

%%%%%%%%%%
% CAPEC-109 SQL Injection through SOAP Parameter Tampering
%%%%%%%%%%
applicable_to(109, AG) :- relevant_to(109, AG), has_target(AG, TA), use_technique(TA,
soap), accept_user_data(TA), use_paradigm(TA, client_server),
use_detailed_technique(TA, data_access_layer_by_orm_tool).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(109, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).
question(use_detailed_technique, TA, data_access_layer_by_orm_tool) :- relevant_to(109,
AG), has_target(AG, TA), not use_detailed_technique(TA, data_access_layer_by_orm_tool),
not no_use_detailed_technique(TA, data_access_layer_by_orm_tool).

%%%%%%%%%%
% CAPEC-108 Command Line Execution through SQL Injection
%%%%%%%%%%
applicable_to(108, AG) :- relevant_to(108, AG), has_target(AG, TA), trust(TA,
data_in_the_database).
%%%%
% question uncheckable context
%%%%
question(trust, TA, data_in_the_database) :- relevant_to(108, AG), has_target(AG, TA),
not trust(TA, data_in_the_database), not no_trust(TA, data_in_the_database).

%%%%%%%%%%
% CAPEC-69 Target Programs with Elevated Privileges
%%%%%%%%%%
applicable_to(69, AG) :- relevant_to(69, AG), has_target(AG, TA), use_data_from(TA, _),
technical_context(TA, run_with_elevated_OS_privileges), technical_context(TA,
give_away_information_about_itself).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA, run_with_elevated_OS_privileges) :- relevant_to(69,
AG), has_target(AG, TA), not technical_context(TA, run_with_elevated_OS_privileges),
not no_technical_context(TA, run_with_elevated_OS_privileges).
question(technical_context, TA, give_away_information_about_itself) :- relevant_to(69,
AG), has_target(AG, TA), not technical_context(TA, give_away_information_about_itself),
not no_technical_context(TA, give_away_information_about_itself).

%%%%%%%%%%
% CAPEC-14 Client-side Injection-induced Buffer Overflow
%%%%%%%%%%
applicable_to(14, AG) :- relevant_to(14, AG), has_target(AG, TA), use_paradigm(TA,
client_server).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(14, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).

%%%%%%%%%%
% CAPEC-42 MIME Conversion
%%%%%%%%%%
applicable_to(42, AG) :- relevant_to(42, AG), has_target(AG, TA), technical_context(TA,
use_a_mail_server).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA, use_a_mail_server) :- relevant_to(42, AG),
has_target(AG, TA), not technical_context(TA, use_a_mail_server), not
no_technical_context(TA, use_a_mail_server).

%%%%%%%%%%
% CAPEC-10 Buffer Overflow via Environment Variables
%%%%%%%%%%
applicable_to(10, AG) :- relevant_to(10, AG), has_target(AG, TA),
use_detailed_technique(TA, environment_variables).
%%%%
% question uncheckable context
%%%%
question(use_detailed_technique, TA, environment_variables) :- relevant_to(10, AG),
has_target(AG, TA), not use_detailed_technique(TA, environment_variables), not
no_use_detailed_technique(TA, environment_variables).

%%%%%%%%%%
% CAPEC-24 Filter Failure through Buffer Overflow
%%%%%%%%%%
applicable_to(24, AG) :- relevant_to(24, AG), has_target(AG, TA), use_language(TA,
c_or_c_plus_plus).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus) :- relevant_to(24, AG), has_target(AG,
TA), not use_language(TA, c_or_c_plus_plus), not no_use_language(TA, c_or_c_plus_plus).

%%%%%%%%%%
% CAPEC-67 String Format Overflow in syslog()
%%%%%%%%%%
applicable_to(67, AG) :- relevant_to(67, AG), has_target(AG, TA), accept_user_data(TA),
use_language(TA, c_or_c_plus_plus).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus) :- relevant_to(67, AG), has_target(AG,
TA), not use_language(TA, c_or_c_plus_plus), not no_use_language(TA, c_or_c_plus_plus).

%%%%%%%%%%
% CAPEC-9 String Format Overflow in syslog()
%%%%%%%%%%
applicable_to(9, AG) :- relevant_to(9, AG), has_target(AG, TA), technical_context(TA,
expose_a_command_line_utility_to_users).
%%%%

% question uncheckable context
%%%%
question(technical_context, TA, expose_a_command_line_utility_to_users) :-
relevant_to(9, AG), has_target(AG, TA), not technical_context(TA,
expose_a_command_line_utility_to_users), not no_technical_context(TA,
expose_a_command_line_utility_to_users).

%%%%%%%%%%
% CAPEC-8 Buffer Overflow in an API Call
%%%%%%%%%%
applicable_to(8, AG) :- relevant_to(8, AG), has_target(AG, TA), technical_context(TA,
expose_an_api_to_users).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA, expose_an_api_to_users) :- relevant_to(8, AG),
has_target(AG, TA), not technical_context(TA, expose_an_api_to_users), not
no_technical_context(TA, expose_an_api_to_users).

%%%%%%%%%%
% CAPEC-45 Buffer Overflow via Symbolic Links
%%%%%%%%%%
applicable_to(45, AG) :- relevant_to(45, AG), has_target(AG, TA), use_language(TA,
c_or_c_plus_plus).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus) :- relevant_to(45, AG), has_target(AG,
TA), not use_language(TA, c_or_c_plus_plus), not no_use_language(TA, c_or_c_plus_plus).

%%%%%%%%%%
% CAPEC-44 Overflow Binary Resource File
%%%%%%%%%%
applicable_to(44, AG) :- relevant_to(44, AG), has_target(AG, TA), use_language(TA,
c_or_c_plus_plus), technical_context(TA, processes_binary_resource_files).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus) :- relevant_to(44, AG), has_target(AG,
TA), not use_language(TA, c_or_c_plus_plus), not no_use_language(TA, c_or_c_plus_plus).
question(technical_context, TA, processes_binary_resource_files) :- relevant_to(44,
AG), has_target(AG, TA), not technical_context(TA, processes_binary_resource_files),
not no_technical_context(TA, processes_binary_resource_files).

%%%%%%%%%%
% CAPEC-46 Overflow Variables and Tags
%%%%%%%%%%
applicable_to(46, AG) :- relevant_to(46, AG), has_target(AG, TA),
accept_user_input(TA), use_language(TA, c_or_c_plus_plus).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus) :- relevant_to(46, AG), has_target(AG,

TA), not use_language(TA, c_or_c_plus_plus), not no_use_language(TA, c_or_c_plus_plus).

%%%%%%%%%%
% CAPEC-47 Buffer Overflow via Parameter Expansion
%%%%%%%%%%
applicable_to(47, AG) :- relevant_to(47, AG), has_target(AG, TA),
accept_user_input(TA), use_language(TA, c_or_c_plus_plus).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus) :- relevant_to(47, AG), has_target(AG,
TA), not use_language(TA, c_or_c_plus_plus), not no_use_language(TA, c_or_c_plus_plus).

%%%%%%%%%%
% CAPEC-100 Overflow Buffers
%%%%%%%%%%
applicable_to(100, AG) :- relevant_to(100, AG), has_target(AG, TA),
technical_context(TA, perform_buffer_operation), use_language(TA,
c_or_c_plus_plus_or_ajax_or_perl_or_php_or_vb_or_ruby).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, c_or_c_plus_plus_or_ajax_or_perl_or_php_or_vb_or_ruby) :-
relevant_to(100, AG), has_target(AG, TA), not use_language(TA,
c_or_c_plus_plus_or_ajax_or_perl_or_php_or_vb_or_ruby), not no_use_language(TA,
c_or_c_plus_plus_or_ajax_or_perl_or_php_or_vb_or_ruby).
%
question(technical_context, TA, perform_buffer_operation) :- relevant_to(100, AG),
has_target(AG, TA), not technical_context(TA, perform_buffer_operation), not
no_technical_context(TA, perform_buffer_operation).

%%%%%%%%%%
% CAPEC-22 Exploiting Trust in Client (aka Make the Client Invisible)
%%%%%%%%%%
applicable_to(22, AG) :- relevant_to(22, AG), has_target(AG, TA),
accept_user_input(TA), use_paradigm(TA, client_server_or_ntier).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server_or_ntier) :- relevant_to(22, AG),
has_target(AG, TA), not use_paradigm(TA, client_server_or_ntier), not
no_use_paradigm(TA, client_server_or_ntier).

%%%%%%%%%%
% CAPEC-77 Manipulating User-Controlled Variables
%%%%%%%%%%
applicable_to(77, AG) :- relevant_to(77, AG), has_target(AG, TA),
accept_user_input(TA), technical_context(TA, a_variable_is_exposed_to_client).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA, a_variable_is_exposed_to_client) :- relevant_to(77,
AG), has_target(AG, TA), not technical_context(TA, a_variable_is_exposed_to_client),

not no_technical_context(TA, a_variable_is_exposed_to_client).

%%%%%%%%%%
% CAPEC-39 Manipulating Opaque Client-based Data Tokens
%%%%%%%%%%
applicable_to(39, AG) :- relevant_to(39, AG), has_target(AG, TA),
accept_user_input(TA).

%%%%%%%%%%
% CAPEC-94 Man in the Middle Attack
%%%%%%%%%%
applicable_to(94, AG) :- relevant_to(94, AG), has_target(AG, TA), communicate(TA, _),
not protected_by(TA, encryption).

%%%%%%%%%%
% CAPEC-13 Subverting Environment Variable Values
%%%%%%%%%%
applicable_to(13, AG) :- relevant_to(13, AG), has_target(AG, TA), accept_user_data(TA),
technical_context(TA, an_environment_variable_is_accessible_to_the_user).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA, an_environment_variable_is_accessible_to_the_user) :-
relevant_to(13, AG), has_target(AG, TA), not technical_context(TA,
an_environment_variable_is_accessible_to_the_user), not no_technical_context(TA,
an_environment_variable_is_accessible_to_the_user).

%%%%%%%%%%
% CAPEC-31 Accessing/Intercepting/Modifying HTTP Cookies
%%%%%%%%%%
applicable_to(31, AG) :- relevant_to(31, AG), has_target(AG, TA), use_paradigm(TA,
client_server_or_ntier), technical_context(TA, a_http_daemon_that_relies_on_cookies).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server_or_ntier) :- relevant_to(31, AG),
has_target(AG, TA), not use_paradigm(TA, client_server_or_ntier), not
no_use_paradigm(TA, client_server_or_ntier).
%
question(technical_context, TA, a_http_daemon_that_relies_on_cookies) :-
relevant_to(31, AG), has_target(AG, TA), not technical_context(TA,
a_http_daemon_that_relies_on_cookies), not no_technical_context(TA,
a_http_daemon_that_relies_on_cookies).

%%%%%%%%%%
% CAPEC-57 Utilizing REST's Trust in the System Resource to Register Man in the Middle
%%%%%%%%%%
applicable_to(57, AG) :- relevant_to(57, AG), has_target(AG, TA), use_paradigm(TA,
soa).
%%%%

% question uncheckable context
%%%%
question(use_paradigm, TA, soa) :- relevant_to(57, AG), has_target(AG, TA), not
use_paradigm(TA, soa), not no_use_paradigm(TA, soa).

%%%%%%%%%%
% CAPEC-219 XML Routing Detour Attacks
%%%%%%%%%%
applicable_to(219, AG) :- relevant_to(219, AG), has_target(AG, TA), use_paradigm(TA,
client_server), technical_context(TA, have_multiple_stages_processing_of_XML_content).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(219, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).
%
question(technical_context, TA, have_multiple_stages_processing_of_XML_content) :-
relevant_to(219, AG), has_target(AG, TA), not technical_context(TA,
have_multiple_stages_processing_of_XML_content), not no_technical_context(TA,
have_multiple_stages_processing_of_XML_content).

%%%%%%%%%%
% CAPEC-76 Manipulating Input to File System Calls
%%%%%%%%%%
applicable_to(76, AG) :- relevant_to(76, AG), has_target(AG, TA), accept_user_data(TA),
technical_context(TA, user_controlled_variables_is_applied_directly_to_the_filesystem).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA,
user_controlled_variables_is_applied_directly_to_the_filesystem) :- relevant_to(76,
AG), has_target(AG, TA), not technical_context(TA,
user_controlled_variables_is_applied_directly_to_the_filesystem), not
no_technical_context(TA,
user_controlled_variables_is_applied_directly_to_the_filesystem).

%%%%%%%%%%
% CAPEC-122 Privilege Abuse
%%%%%%%%%%
applicable_to(122, AG) :- relevant_to(122, AG), has_target(AG, TA), protected_by(TA,
access_control).

%%%%%%%%%%
% CAPEC-180 Exploiting Incorrectly Configured Access Control Security Levels
%%%%%%%%%%
applicable_to(180, AG) :- relevant_to(180, AG), has_target(AG, TA), protected_by(TA,
access_control).

%%%%%%%%%%
% CAPEC-1 Accessing Functionality Not Properly Constrained by ACLs
%%%%%%%%%%

applicable_to(1, AG) :- relevant_to(1, AG), has_target(AG, TA), use_technique(TA, acl).

%%%%%%%%%%
% CAPEC-58 Restful Privilege Elevation
%%%%%%%%%%
applicable_to(58, AG) :- relevant_to(58, AG), has_target(AG, TA), use_paradigm(TA,
soa).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, soa) :- relevant_to(58, AG), has_target(AG, TA), not
use_paradigm(TA, soa), not no_use_paradigm(TA, soa).

%%%%%%%%%%
% CAPEC-17 Accessing, Modifying or Executing Executable Files
%%%%%%%%%%
applicable_to(17, AG) :- relevant_to(17, AG), has_target(AG, TA), technical_context(TA,
user_can_directly_access_executable_files_or_upload_files_to_execute).
%%%%
% question uncheckable context
%%%%
question(technical_context, TA,
user_can_directly_access_executable_files_or_upload_files_to_execute) :-
relevant_to(17, AG), has_target(AG, TA), not technical_context(TA,
user_can_directly_access_executable_files_or_upload_files_to_execute), not
no_technical_context(TA,
user_can_directly_access_executable_files_or_upload_files_to_execute).

%%%%%%%%%%
% CAPEC-115 Authentication Bypass
%%%%%%%%%%
applicable_to(115, AG) :- relevant_to(115, AG), has_target(AG, TA), protected_by(TA,
authentication).

%%%%%%%%%%
% CAPEC-237 Calling Signed Code From Another Language Within A Sandbox Allow This
%%%%%%%%%%
applicable_to(237, AG) :- relevant_to(237, AG), has_target(AG, TA), use_language(TA,
java_or_asp_net_or_c_sharp_or_jsp), technical_context(TA,
deployed_code_signed_by_its_authoring_vendor).
%%%%
% question uncheckable context
%%%%
question(use_language, TA, java_or_asp_net_or_c_sharp_or_jsp) :- relevant_to(237, AG),
has_target(AG, TA), not use_language(TA, java_or_asp_net_or_c_sharp_or_jsp), not
no_use_language(TA, java_or_asp_net_or_c_sharp_or_jsp).
%
question(technical_context, TA, deployed_code_signed_by_its_authoring_vendor) :-
relevant_to(237, AG), has_target(AG, TA), not technical_context(TA,
deployed_code_signed_by_its_authoring_vendor), not no_technical_context(TA,
deployed_code_signed_by_its_authoring_vendor).

%%%%%%%%%%
% CAPEC-114 Authentication Abuse
%%%%%%%%%%
applicable_to(114, AG) :- relevant_to(114, AG), has_target(AG, TA), protected_by(TA,
authentication).

%%%%%%%%%%
% CAPEC-90 Reflection Attack in Authentication Protocol
%%%%%%%%%%
applicable_to(90, AG) :- relevant_to(90, AG), has_target(AG, TA), use_paradigm(TA,
client_server_or_soa).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server_or_soa) :- relevant_to(90, AG), has_target(AG,
TA), not use_paradigm(TA, client_server_or_soa), not no_use_paradigm(TA,
client_server_or_soa).
%

%%%%%%%%%%
% CAPEC-21 Exploitation of Session Variables, Resource IDs and other Trusted
Credentials
%%%%%%%%%%
applicable_to(21, AG) :- relevant_to(21, AG), has_target(AG, TA), use_paradigm(TA,
client_server_or_soa_or_ntier).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server_or_soa_or_ntier) :- relevant_to(21, AG),
has_target(AG, TA), not use_paradigm(TA, client_server_or_soa_or_ntier), not
no_use_paradigm(TA, client_server_or_soa_or_ntier).

%%%%%%%%%%
% CAPEC-62 Cross Site Request Forgery (aka Session Riding)
%%%%%%%%%%
applicable_to(62, AG) :- relevant_to(62, AG), has_target(AG, TA), use_paradigm(TA,
client_server), use_framework(TA, j2ee_or_dot_net).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(62, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).
%
question(use_framework, TA, j2ee_or_dot_net) :- relevant_to(62, AG), has_target(AG,
TA), not use_framework(TA, j2ee_or_dot_net), not no_use_framework(TA, j2ee_or_dot_net).

%%%%%%%%%%
% CAPEC-102 Session Sidejacking
%%%%%%%%%%
applicable_to(102, AG) :- relevant_to(102, AG), has_target(AG, TA), not
protected_by(TA, secure_communication_mechanism), use_paradigm(TA, client_server),
use_language(TA, ajax), technical_context(TA,

has_an_active_session_with_a_target_system).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(102, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).
%
question(technical_context, TA, has_an_active_session_with_a_target_system) :-
relevant_to(102, AG), has_target(AG, TA), not technical_context(TA,
has_an_active_session_with_a_target_system), not no_technical_context(TA,
has_an_active_session_with_a_target_system).

%%%%%%%%%%
% CAPEC-61 Session Fixation
%%%%%%%%%%
applicable_to(61, AG) :- relevant_to(61, AG), has_target(AG, TA), use_paradigm(TA,
client_server), use_framework(TA, j2ee_or_dot_net), technical_context(TA,
use_session_identifiers_that_remain_unchanged_when_the_privilege_levels_change),
technical_context(TA,
use_permissive_session_management_mechanism_that_accepts_random_user_generated_session_
identifiers).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(61, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).
%
question(use_framework, TA, j2ee_or_dot_net) :- relevant_to(61, AG), has_target(AG,
TA), not use_framework(TA, j2ee_or_dot_net), not no_use_framework(TA, j2ee_or_dot_net).
%
question(technical_context, TA,
use_session_identifiers_that_remain_unchanged_when_the_privilege_levels_change) :-
relevant_to(61, AG), has_target(AG, TA), not technical_context(TA,
use_session_identifiers_that_remain_unchanged_when_the_privilege_levels_change), not
no_technical_context(TA,
use_session_identifiers_that_remain_unchanged_when_the_privilege_levels_change).
%
question(technical_context, TA,
use_permissive_session_management_mechanism_that_accepts_random_user_generated_session_
identifiers) :- relevant_to(61, AG), has_target(AG, TA), not technical_context(TA,
use_permissive_session_management_mechanism_that_accepts_random_user_generated_session_
identifiers), not no_technical_context(TA,
use_permissive_session_management_mechanism_that_accepts_random_user_generated_session_
identifiers).

%%%%%%%%%%
% CAPEC-60 Reusing Session IDs (aka Session Replay)
%%%%%%%%%%
applicable_to(60, AG) :- relevant_to(60, AG), has_target(AG, TA), use_paradigm(TA,
client_server), use_framework(TA, j2ee_or_dot_net), technical_context(TA,
use_session_id_to_track_users), technical_context(TA,
use_session_id_to_control_access_to_resources).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(60, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).

%
question(use_framework, TA, j2ee_or_dot_net) :- relevant_to(60, AG), has_target(AG,
TA), not use_framework(TA, j2ee_or_dot_net), not no_use_framework(TA, j2ee_or_dot_net).
%
question(technical_context, TA, use_session_id_to_track_users) :- relevant_to(60, AG),
has_target(AG, TA), not technical_context(TA, use_session_id_to_track_users), not
no_technical_context(TA, use_session_id_to_track_users).
%
question(technical_context, TA, use_session_id_to_control_access_to_resources) :-
relevant_to(60, AG), has_target(AG, TA), not technical_context(TA,
use_session_id_to_control_access_to_resources), not no_technical_context(TA,
use_session_id_to_control_access_to_resources).

%%%%%%%%%%
% CAPEC-196 Session Credential Falsification through Forging
%%%%%%%%%%
applicable_to(196, AG) :- relevant_to(196, AG), has_target(AG, TA), use_paradigm(TA,
client_server_or_soa), technical_context(TA,
use_session_credentials_to_identify_legitimate_users).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server_or_soa) :- relevant_to(196, AG),
has_target(AG, TA), not use_paradigm(TA, client_server_or_soa), not no_use_paradigm(TA,
client_server_or_soa).
%
question(technical_context, TA, use_session_credentials_to_identify_legitimate_users)
:- relevant_to(196, AG), has_target(AG, TA), not technical_context(TA,
use_session_credentials_to_identify_legitimate_users), not no_technical_context(TA,
use_session_credentials_to_identify_legitimate_users).

%%%%%%%%%%
% CAPEC-59 Session Credential Falsification through Prediction
%%%%%%%%%%
applicable_to(59, AG) :- relevant_to(59, AG), has_target(AG, TA), use_paradigm(TA,
client_server), use_framework(TA, j2ee_or_dot_net), technical_context(TA,
use_session_id_to_track_users), technical_context(TA,
use_session_id_to_control_access_to_resources), technical_context(TA,
use_session_ids_that_are_predictable).
%%%%
% question uncheckable context
%%%%
question(use_paradigm, TA, client_server) :- relevant_to(59, AG), has_target(AG, TA),
not use_paradigm(TA, client_server), not no_use_paradigm(TA, client_server).
%
question(use_framework, TA, j2ee_or_dot_net) :- relevant_to(59, AG), has_target(AG,
TA), not use_framework(TA, j2ee_or_dot_net), not no_use_framework(TA, j2ee_or_dot_net).
%
question(technical_context, TA, use_session_id_to_track_users) :- relevant_to(59, AG),
has_target(AG, TA), not technical_context(TA, use_session_id_to_track_users), not
no_technical_context(TA, use_session_id_to_track_users).
%
question(technical_context, TA, use_session_id_to_control_access_to_resources) :-
relevant_to(59, AG), has_target(AG, TA), not technical_context(TA,
use_session_id_to_control_access_to_resources), not no_technical_context(TA,
use_session_id_to_control_access_to_resources).
%

question(technical_context, TA, use_session_ids_that_are_predictable) :-
relevant_to(59, AG), has_target(AG, TA), not technical_context(TA,
use_session_ids_that_are_predictable), not no_technical_context(TA,
use_session_ids_that_are_predictable).

%%%%%%%%%%
% CAPEC-522 Malicious Hardware Component Replacement
%%%%%%%%%%
applicable_to(522, AG) :- relevant_to(522, AG), has_target(AG, TA), other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location).
%%%%
% question uncheckable context
%%%%
question(other_context, TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location) :- relevant_to(522, AG), has_target(AG, TA), not
other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location), not no_other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location).

%%%%%%%%%%
% CAPEC-524 Rogue Integration Procedures
%%%%%%%%%%
applicable_to(524, AG) :- relevant_to(524, AG), has_target(AG, TA), other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location).
%%%%
% question uncheckable context
%%%%
question(other_context, TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location) :- relevant_to(524, AG), has_target(AG, TA), not
other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location), not no_other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location).

%%%%%%%%%%
% CAPEC-523 Malicious Software Implanted
%%%%%%%%%%
applicable_to(523, AG) :- relevant_to(523, AG), has_target(AG, TA), other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location).
%%%%
% question uncheckable context
%%%%
question(other_context, TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location) :- relevant_to(523, AG), has_target(AG, TA), not
other_context(TA,

can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location), not no_other_context(TA,
can_be_physically_accessed_after_it_has_left_the_manufacturer_but_before_it_is_deployed
_at_the_victim_location).

%%%%%%%%%%
% CAPEC-537 Infiltration of Hardware Development Environment
%%%%%%%%%%
applicable_to(537, AG) :- relevant_to(537, AG), has_target(AG, TA), other_context(TA,
use_email_or_removable_media_from_systems_running_the_ide).
%%%%
% question uncheckable context
%%%%
question(other_context, TA, use_email_or_removable_media_from_systems_running_the_ide)
:- relevant_to(537, AG), has_target(AG, TA), not other_context(TA,
use_email_or_removable_media_from_systems_running_the_ide), not no_other_context(TA,
use_email_or_removable_media_from_systems_running_the_ide).

%%%%%%%%%%
% CAPEC-511 Infiltration of Hardware Development Environment
%%%%%%%%%%
applicable_to(511, AG) :- relevant_to(511, AG), has_target(AG, TA), other_context(TA,
use_email_or_removable_media_from_systems_running_the_ide).
%%%%
% question uncheckable context
%%%%
question(other_context, TA, use_email_or_removable_media_from_systems_running_the_ide)
:- relevant_to(511, AG), has_target(AG, TA), not other_context(TA,
use_email_or_removable_media_from_systems_running_the_ide), not no_other_context(TA,
use_email_or_removable_media_from_systems_running_the_ide).

%%%%%%%%%%
% CAPEC-520 Counterfeit Hardware Component Inserted During Product Assembly
%%%%%%%%%%
applicable_to(520, AG) :- relevant_to(520, AG), has_target(AG, TA), other_context(TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware).
%%%%
% question uncheckable context
%%%%
question(other_context, TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware) :-
relevant_to(520, AG), has_target(AG, TA), not other_context(TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware), not
no_other_context(TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware).

%%%%%%%%%%
% CAPEC-516 Hardware Component Substitution During Baselining
%%%%%%%%%%
applicable_to(516, AG) :- relevant_to(516, AG), has_target(AG, TA), other_context(TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware).
%%%%
% question uncheckable context

%%%%
question(other_context, TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware) :-
relevant_to(516, AG), has_target(AG, TA), not other_context(TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware), not
no_other_context(TA,
can_either_be_physically_accessed_or_supplied_by_malicious_hardware).

Appendix E

Attack Pattern Validation Results

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Realtime pricing is

applied

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Generate bill

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Collect load info

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy management

application,
Interval: Generate bill

Target-based refinement

Threat: Tampering,
Asset: Energy management

application,
Interval: Generate bill

Threat: Elevation of privilege
Asset: Energy management

application,
Interval: Generate bill

Threat-based refinement

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Target-based refinement

Threat-based refinement

Interval-based refinement

Threat: Elevation of privilege (Reach),
Asset: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,

Interval: Generate bill

Threat: Reach,
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Target-based refinement Target-based refinement

Threat: Defeated security mechanism,
Asset: Physical access control,

Interval: Generate bill

Protection-based refinement

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Communicate with smart

meter

Interval-based refinement

Threat: Tampering,
Asset: Energy consumption data,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy management

application,
Interval: Communicate with smart

meter

Target-based refinement

Threat: Tampering,
Asset: Energy management

application,
Interval: Communicate with smart

meter

Threat-based refinement

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Target-based refinement

Protection-based refinement

Threat: Defeated security mechanism,
Asset: Firewall,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Target-based refinement

Threat: Defeated security mechanism,
Asset: Firewall,
Target: Firewall,

Interval: Generate bill

Protection-based refinement

Threat-based refinement

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,
Interval: Communicate with smart meter

Target-based refinement

Threat: Defeated security mechanism,
Asset: Encryption,

Interval: Communicate with smart meter

Protection-based refinement

Target-based refinement

Threat: Defeated security mechanism,
Asset: Encryption,
Target: Encryption,

Interval: Communicate with smart meter

Threat: Tampering,
Asset: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege
Asset: Smart meter firmwire,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat-based refinement

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter device,

Interval: Communicate with smart
meter

Target-based refinement

Threat: Elevation of privilege (Reach),
Asset: Smart meter device,

Interval: Communicate with smart meter

Threat: Elevation of privilege (Access),
Asset: Smart meter device,
Interval: Calculating new price

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter device,

Interval: Communicate with smart
meter

Target-based refinement

Target-based refinement

Threat: Elevation of privilege (Reach),
Asset: Smart meter device,
Target: Smart meter device,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Physical lock,

Interval: Communicate with smart meter

Protection-based refinement

Target-based refinement

Threat: Defeated security mechanism,
Asset: Physical lock,

 Target: Physical lock,
Interval: Communicate with smart meter

Protection-based refinement

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,
Target: Physical access control,

Interval: Generate bill

Target-based refinement

Threat: Defeated security mechanism,
Asset: Authorization,
Target: Authorization,
Interval: Generate bill

Target-based refinement

Target-based refinement

Threat: Elevation of privilege (Access),
Asset: Smart meter device,
Target: Smart meter device,

Interval: Communicate with smart meter

Threat-based refinement
Protection-based refinement

Threat: Defeated security mechanism,
Asset: Password-Based authorization,
Interval: Communicate with smart meter

Protection-based refinement
Threat: Tampering,

Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Defeated security mechanism,
Asset: Password-Based authorization,
Target: Password-Based authorization
Interval: Communicate with smart meter

Target-based refinement

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy supplier database,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy supplier database,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy supplier database,
Target: Energy supplier database,

Interval: Generate bill

Threat-based refinement

Target-based refinement

Protection-based refinement

Threat: Defeated security mechanism,
Asset: Firewall,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Input Guard,
Interval: Generate bill

Target-based refinement Target-based refinement

Threat: Defeated security mechanism,
Asset: Firewall,
Target: Firewall,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Input Guard,
Target: Input Guard,
Interval: Generate bill

Figure E.1: Attack strategy model

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

sql injection
through

soap
parameter
tampering

object
relational
mapping
injection

command
line

execution
through sql

injection

session
sidejacking

cryptanalysi
s

manipulating
input to file

system calls

try common
usernames

and
passwords

target
programs

with
elevated
privileges

string format
overflow in

syslog

cross site
request

forgery aka
session
riding

session
fixation

reusing
session ids
aka session

replay

session
credential

falsification
through
forging

session
credential

falsification
through

prediction

restful
privilege
elevation

utilizing rests
trust in the

system
resource to
register man
in the middle

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

buffer
overflow via
parameter
expansion

overflow
variables
and tags

buffer
overflow via

symbolic
links

overflow
binary

resource file

mime
conversion

manipulating
opaque

clientbased
data tokens

accessing
intercepting
modifying

http cookies

filter failure
through
buffer

overflow

exploitation
of trusted

credentials

accessing
modifying or

executing
executable

files

brute force

password
brute forcing

dictionaryba
sed

password
attack

clientside
injectionindu

ced buffer
overflow

subverting
environment

variable
values

exploiting
trust in client

aka make
the client
invisible

manipulating
usercontroll
ed variables

buffer
overflow via
environment

variables

buffer
overflow in

local
commandlin

e utilities

overflow
buffers

buffer
overflow in
an api call

sql injection

blind sql
injection

accessing
functionality
not properly
constrained

by acls

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

session
credential

falsification
through
forging

authenticatio
n bypass

authenticatio
n abuse

cryptanalysi
s

try common
usernames

and
passwords

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

filter failure
through
buffer

overflow

encryption
brute forcing

brute force

password
brute forcing

dictionaryba
sed

password
attack

subverting
environment

variable
values

accessing
functionality
not properly
constrained

by acls

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

xml routing
detour
attacks

session
credential

falsification
through
forging

malicious
automated
software
update

malicious
software
update

malicious
software
download

sql injection
through

soap
parameter
tampering

object
relational
mapping
injection

command
line

execution
through sql

injection

session
sidejacking

cryptanalysi
s

manipulating
input to file

system calls

string format
overflow in

syslog

cross site
request

forgery aka
session
riding

restful
privilege
elevation

software
integrity
attacks

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

buffer
overflow via
parameter
expansion

overflow
variables
and tags

buffer
overflow via

symbolic
links

mime
conversion

manipulating
opaque

clientbased
data tokens

accessing
intercepting
modifying

http cookies

filter failure
through
buffer

overflow

exploitation
of trusted

credentials

accessing
modifying or

executing
executable

files

clientside
injectionindu

ced buffer
overflow

subverting
environment

variable
values

manipulating
usercontroll
ed variables

buffer
overflow via
environment

variables

buffer
overflow in

local
commandlin

e utilities

buffer
overflow in
an api call

sql injection

blind sql
injection

physical
destruction
of device or
component

physical
theft

physical
destruction
of device or
component

infiltration of
hardware

developmen
t

environment

rogue
integration
procedures

malicious
hardware

component
replacement

hardware
design

specification
s are altered

counterfeit
hardware

component
inserted
during
product

assembly

documentati
on alteration

to
circumvent
dialdown

hardware
component
substitution

during
baselining

integrity
modification

during
distribution

integrity
modification

during
manufacture

rfid chip
deactivation

or
destruction

cloning rfid
cards or

chips

magnetic
strip card

brute force
attacks

cloning
magnetic
strip cards

bypassing
card or

badgebased
systems

bypassing
electronic
locks and
access
controls

using a snap
gun lock to
force a lock

lock picking

bypassing
physical

locks

bypassing
physical
security

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

session
credential

falsification
through
forging

authenticatio
n bypass

authenticatio
n abuse

cryptanalysi
s

try common
usernames

and
passwords

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

filter failure
through
buffer

overflow

encryption
brute forcing

brute force

password
brute forcing

dictionaryba
sed

password
attack

subverting
environment

variable
values

accessing
functionality
not properly
constrained

by acls

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

sql injection
through

soap
parameter
tampering

object
relational
mapping
injection

command
line

execution
through sql

injection

session
sidejacking

cryptanalysi
s

manipulating
input to file

system calls

try common
usernames

and
passwords

target
programs

with
elevated
privileges

string format
overflow in

syslog

cross site
request

forgery aka
session
riding

session
fixation

reusing
session ids
aka session

replay

session
credential

falsification
through
forging

session
credential

falsification
through

prediction

restful
privilege
elevation

utilizing rests
trust in the

system
resource to
register man
in the middle

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

buffer
overflow via
parameter
expansion

overflow
variables
and tags

buffer
overflow via

symbolic
links

overflow
binary

resource file

mime
conversion

manipulating
opaque

clientbased
data tokens

accessing
intercepting
modifying

http cookies

filter failure
through
buffer

overflow

exploitation
of trusted

credentials

accessing
modifying or

executing
executable

files

brute force

password
brute forcing

dictionaryba
sed

password
attack

clientside
injectionindu

ced buffer
overflow

subverting
environment

variable
values

exploiting
trust in client

aka make
the client
invisible

manipulating
usercontroll
ed variables

buffer
overflow via
environment

variables

buffer
overflow in

local
commandlin

e utilities

overflow
buffers

buffer
overflow in
an api call

sql injection

blind sql
injection

accessing
functionality
not properly
constrained

by acls

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

session
credential

falsification
through
forging

authenticatio
n bypass

authenticatio
n abuse

cryptanalysi
s

try common
usernames

and
passwords

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

filter failure
through
buffer

overflow

encryption
brute forcing

brute force

password
brute forcing

dictionaryba
sed

password
attack

subverting
environment

variable
values

accessing
functionality
not properly
constrained

by acls

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

xml routing
detour
attacks

session
credential

falsification
through
forging

malicious
automated
software
update

malicious
software
update

malicious
software
download

sql injection
through

soap
parameter
tampering

object
relational
mapping
injection

command
line

execution
through sql

injection

session
sidejacking

cryptanalysi
s

manipulating
input to file

system calls

string format
overflow in

syslog

cross site
request

forgery aka
session
riding

restful
privilege
elevation

software
integrity
attacks

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

buffer
overflow via
parameter
expansion

overflow
variables
and tags

buffer
overflow via

symbolic
links

mime
conversion

manipulating
opaque

clientbased
data tokens

accessing
intercepting
modifying

http cookies

filter failure
through
buffer

overflow

exploitation
of trusted

credentials

accessing
modifying or

executing
executable

files

clientside
injectionindu

ced buffer
overflow

subverting
environment

variable
values

manipulating
usercontroll
ed variables

buffer
overflow via
environment

variables

buffer
overflow in

local
commandlin

e utilities

buffer
overflow in
an api call

sql injection

blind sql
injection

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

session
credential

falsification
through
forging

authenticatio
n bypass

authenticatio
n abuse

cryptanalysi
s

try common
usernames

and
passwords

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

filter failure
through
buffer

overflow

encryption
brute forcing

brute force

password
brute forcing

dictionaryba
sed

password
attack

subverting
environment

variable
values

accessing
functionality
not properly
constrained

by acls

physical
destruction
of device or
component

physical
theft

physical
destruction
of device or
component

infiltration of
hardware

developmen
t

environment

rogue
integration
procedures

malicious
hardware

component
replacement

hardware
design

specification
s are altered

counterfeit
hardware

component
inserted
during
product

assembly

documentati
on alteration

to
circumvent
dialdown

hardware
component
substitution

during
baselining

integrity
modification

during
distribution

integrity
modification

during
manufacture

rfid chip
deactivation

or
destruction

cloning rfid
cards or

chips

magnetic
strip card

brute force
attacks

cloning
magnetic
strip cards

bypassing
card or

badgebased
systems

bypassing
electronic
locks and
access
controls

using a snap
gun lock to
force a lock

lock picking

bypassing
physical

locks

bypassing
physical
security

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

session
credential

falsification
through
forging

authenticatio
n bypass

authenticatio
n abuse

cryptanalysi
s

try common
usernames

and
passwords

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

filter failure
through
buffer

overflow

encryption
brute forcing

brute force

password
brute forcing

dictionaryba
sed

password
attack

subverting
environment

variable
values

accessing
functionality
not properly
constrained

by acls

rogue
integration
procedures

malicious
software

implanted

documentati
on alteration

to cause
errors in
system
design

documentati
on alteration
to produce
underperfor

ming
systems

documentati
on alteration

to
circumvent
dialdown

infiltration of
software

developmen
t

environment

integrity
modification

during
distribution

integrity
modification

during
manufacture

calling
signed code
from another

language
within a
sandbox
allow this

xml routing
detour
attacks

session
credential

falsification
through
forging

authenticatio
n bypass

authenticatio
n abuse

cryptanalysi
s

try common
usernames

and
passwords

removing
important

functionality
from the

client

removing
shortcircuitin

g guard
logic

rainbow
table

password
cracking

filter failure
through
buffer

overflow

encryption
brute forcing

brute force

password
brute forcing

dictionaryba
sed

password
attack

subverting
environment

variable
values

accessing
functionality
not properly
constrained

by acls

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Realtime pricing is

applied

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Generate bill

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Collect load info

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy management

application,
Interval: Generate bill

Threat: Tampering,
Asset: Energy management

application,
Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management

application,
Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Threat: Elevation of privilege (Reach),
Asset: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,

Interval: Generate bill

Threat: Reach,
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,

Interval: Generate bill

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Communicate with smart

meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy management

application,
Interval: Communicate with smart

meter

Threat: Tampering,
Asset: Energy management

application,
Interval: Communicate with smart

meter

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,
Target: Firewall,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,
Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Encryption,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Encryption,
Target: Encryption,

Interval: Communicate with smart meter

Threat: Tampering,
Asset: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter device,

Interval: Communicate with smart
meter

Threat: Elevation of privilege (Reach),
Asset: Smart meter device,

Interval: Communicate with smart meter

Threat: Elevation of privilege (Access),
Asset: Smart meter device,
Interval: Calculating new price

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter device,

Interval: Communicate with smart
meter

Threat: Elevation of privilege (Reach),
Asset: Smart meter device,
Target: Smart meter device,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Physical lock,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Physical lock,

 Target: Physical lock,
Interval: Communicate with smart meter

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,
Target: Physical access control,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Target: Authorization,
Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Smart meter device,
Target: Smart meter device,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Password-Based authorization,
Interval: Communicate with smart meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Defeated security mechanism,
Asset: Password based authorization,
Target: Password based authorization,
Interval: Communicate with smart meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy supplier database,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy supplier database,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy supplier database,
Target: Energy supplier database,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Input Guard,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,
Target: Firewall,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Input Guard,
Target: Input Guard,
Interval: Generate bill

Figure E.2: Operationalize attack strategies into relevant attack patterns

try common
usernames

and
passwords

rainbow
table

password
cracking

brute force

password
brute forcing

dictionaryba
sed

password
attack

malicious
software
update

malicious
software
download

software
integrity
attacks

No additional attacks are
required

physical
destruction
of device or
component

bypassing
physical

locks

bypassing
physical
security

encryption
brute forcing

brute force

utilizing rests
trust in the

system
resource to
register man
in the middle

exploitation
of trusted

credentials

overflow
bufferssql injection

malicious
software

implanted

integrity
modification

during
distribution

malicious
software
download

session
sidejacking

software
integrity
attacks

removing
important

functionality
from the

client

exploitation
of trusted

credentials
sql injection

blind sql
injection

rogue
integration
procedures

malicious
software

implanted

integrity
modification

during
distribution

authenticatio
n bypass

authenticatio
n abuse

try common
usernames

and
passwords

rainbow
table

password
cracking

brute force

password
brute forcing

dictionaryba
sed

password
attack

accessing
functionality
not properly
constrained

by acls

physical
destruction
of device or
component

using a snap
gun lock to
force a lock

lock picking

bypassing
physical

locks

bypassing
physical
security

malicious
software

implanted

integrity
modification

during
distribution

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Realtime pricing is

applied

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Generate bill

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Collect load info

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy management

application,
Interval: Generate bill

Threat: Tampering,
Asset: Energy management

application,
Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management

application,
Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Threat: Elevation of privilege (Reach),
Asset: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,

Interval: Generate bill

Threat: Reach,
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,

Interval: Generate bill

Threat: Tampering,
Asset: Energy consumption data,

Target: Undetermined,
Interval: Communicate with smart

meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy management

application,
Interval: Communicate with smart

meter

Threat: Tampering,
Asset: Energy management

application,
Interval: Communicate with smart

meter

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,
Target: Firewall,

Interval: Generate bill

Threat: Tampering,
Asset: Energy management application,
Target: Energy management application,
Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Encryption,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Encryption,
Target: Encryption,

Interval: Communicate with smart meter

Threat: Tampering,
Asset: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter device,

Interval: Communicate with smart
meter

Threat: Elevation of privilege (Reach),
Asset: Smart meter device,

Interval: Communicate with smart meter

Threat: Elevation of privilege (Access),
Asset: Smart meter device,
Interval: Calculating new price

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter device,

Interval: Communicate with smart
meter

Threat: Elevation of privilege (Reach),
Asset: Smart meter device,
Target: Smart meter device,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Physical lock,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Physical lock,

 Target: Physical lock,
Interval: Communicate with smart meter

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,
Target: Physical access control,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Target: Authorization,
Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Smart meter device,
Target: Smart meter device,

Interval: Communicate with smart meter

Threat: Defeated security mechanism,
Asset: Password-Based authorization,
Interval: Communicate with smart meter

Threat: Tampering,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Elevation of privilege,
Asset: Smart meter firmware,
Target: Smart meter firmware,

Interval: Communicate with smart
meter

Threat: Defeated security mechanism,
Asset: Password based authorization,
Target: Password based authorization,
Interval: Communicate with smart meter

Threat: Tampering,
Asset: Energy consumption data,
Target: Energy supplier database,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy supplier database,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy supplier database,
Target: Energy supplier database,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Input Guard,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Firewall,
Target: Firewall,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Input Guard,
Target: Input Guard,
Interval: Generate bill

authenticatio
n bypass

authenticatio
n abuse

No additional attacks are
required

Figure E.3: Final attack model

Appendix F

Goal Models Built from Security

Patterns

14

Bibliography

Iso/iec 27000:2012 information technology – security techniques – information security management systems –

overview and vocabulary. Online: http://www.27000.org/, 2012.

Alberts, Christopher J and Dorofee, Audrey. Managing information security risks: the OCTAVE approach.

Addison-Wesley Longman Publishing Co., Inc., 2002.

Alexander, Christopher; Ishikawa, Sara, and Silverstein, Murray. A pattern language: towns, buildings, construc-

tion, volume 2. Oxford University Press, 1977.

Ali, Raian; Dalpiaz, Fabiano, and Giorgini, Paolo. A goal-based framework for contextual requirements modeling

and analysis. Requirements Engineering, 15(4):439–458, 2010.

Alrajeh, Dalal; Kramer, Jeff; Russo, Alessandra, and Uchitel, Sebastin. Learning operational requirements from

goal models. In Proceedings of the 31st International Conference on Software Engineering, pages 265–275,

2009.

Altuhhova, Olga; Matulevičius, Raimundas, and Ahmed, Naved. Towards definition of secure business processes.

In Advanced Information Systems Engineering Workshops, pages 1–15. Springer, 2012.

Araujo, Ivan and Weiss, Michael. Linking patterns and non-functional requirements. In Proceedings of the Ninth

Conference on Pattern Language of Programs (PLOP 2002), September 8-12, 2002, 2002.

Asnar, Yudis; Massacci, Fabio; Saidane, Ayda; Riccucci, Carlo; Felici, Massimo; Tedeschi, Alessandra; El-Khoury,

Paul; Li, Keqin; Séguran, Magali, and Zannone, Nicola. Organizational patterns for security and dependability:

From design to application. Int. J. Secur. Softw. Eng., 2(3):1–22, 2011a.

Asnar, Yudistira; Li, Tong; Massacci, Fabio, and Paci, Federica. Computer aided threat identification. In

Commerce and Enterprise Computing (CEC), 2011 IEEE 13th Conference on, pages 145–152. IEEE, 2011b.

Atzeni, Andrea; Cameroni, Cesare; Faily, Shamal; Lyle, John, and Fléchais, Ivan. Here’s johnny: A methodology

for developing attacker personas. In Availability, Reliability and Security (ARES), 2011 Sixth International

Conference on, pages 722–727. IEEE, 2011.

Barnum, Sean and Sethi, Amit. Attack patterns as a knowledge resource for building secure software. In OMG

Software Assurance Workshop: Cigital, 2007.

Beckers, Kristian; Krautsevich, Leanid, and Yautsiukhin, Artsiom. Analysis of social engineering threats with

attack graphs. In Data Privacy Management, Autonomous Spontaneous Security, and Security Assurance,

pages 216–232. Springer, 2015.

268 Bibliography

Bozic, Josip and Wotawa, Franz. Security testing based on attack patterns. In Software Testing, Verification and

Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on, pages 4–11. IEEE, 2014.

Bresciani, Paolo; Perini, Anna; Giorgini, Paolo; Giunchiglia, Fausto, and Mylopoulos, John. Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter, and Stal, Michael. A system of patterns:

Pattern-oriented software architecture. Wiley New York, 1996.

Buschmann, Frank; Henney, Kelvin, and Schimdt, Douglas. Pattern-oriented Software Architecture: On Patterns

and Pattern Language, volume 5. John Wiley & Sons, 2007.

Carpenter, M; Goodspeed, T; Singletary, B; Skoudis, E, and Wright, J. Advanced metering infrastructure attack

methodology. InGuardians white paper, 2009.

Casagrande, Erik; Woldeamlak, Selamawit; Woon, Wei Lee; Zeineldin, Hatem H, and Svetinovic, Davor. Nlp-kaos

for systems goal elicitation: smart metering system case study. Software Engineering, IEEE Transactions on,

40(10):941–956, 2014.

Castro, Jaelson; Kolp, Manuel, and Mylopoulos, John. A requirements-driven development methodology. In

Advanced Information Systems Engineering, pages 108–123. Springer, 2001.

Castro, Jaelson; Kolp, Manuel, and Mylopoulos, John. Towards requirements-driven information systems engi-

neering: the tropos project. Information systems, 27(6):365–389, 2002.

Chen, Peter; Dean, Marjon; Ojoko-Adams, Don; Osman, Hassan, and Lopez, Lillian. Systems quality require-

ments engineering (square) methodology: Case study on asset management system. Technical report, DTIC

Document, 2004.

Chung, Lawrence. Representation and utilization of non-functional requirements for information system design.

In Advanced Information Systems Engineering, pages 5–30. Springer, 1991.

Chung, Lawrence. Dealing with security requirements during the development of information systems. In Advanced

Information Systems Engineering, volume 685 of LNCS, pages 234–251. Springer Berlin Heidelberg, 1993.

Chung, Lawrence and Supakkul, Sam. Representing nfrs and frs: A goal-oriented and use case driven approach.

In Dosch, Walter; Lee, RogerY., and Wu, Chisu, editors, Software Engineering Research and Applications,

volume 3647 of LNCS, pages 29–41. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-32133-0.

Committee, IEEE Computer Society. Software Engineering Standards and Board, IEEE-SA Standards. Ieee

recommended practice for software requirements specifications. Institute of Electrical and Electronics Engineers,

1993.

Coplien, James O. Software patterns. SIGS, 1996.

Coplien, James O and Harrison, Neil B. Organizational patterns of agile software development. 2004.

Crook, Robert; Ince, Darrel; Lin, Luncheng, and Nuseibeh, Bashar. Security requirements engineering: When

anti-requirements hit the fan. In Requirements Engineering, 2002. Proceedings. IEEE Joint International

Conference on, pages 203–205. IEEE, 2002.

Cuellar, Jorge and Suppan, Santiago. A smart metering scenario. Network of Excellence on Engineering Secure

Future Internet Software Services and Systems, eRISE 2013, 2013.

Bibliography 269

Cui, Xiaofeng and Paige, R. An integrated framework for system/software requirements development aligning

with business motivations. In Computer and Information Science (ICIS), 2012 IEEE/ACIS 11th International

Conference on, pages 547–552, May 2012. doi: 10.1109/ICIS.2012.32.

Dalpiaz, Fabiano; Paja, Elda, and Giorgini, Paolo. Security requirements engineering via commitments. 2011 1st

Workshop on Socio-Technical Aspects in Security and Trust (STAST), pages 1–8, September 2011.

Dalpiaz, Fabiano; Souza, Vı́tor E Silva, and Mylopoulos, John. The many faces of operationalization in

goal-oriented requirements engineering. In Proceedings of the Tenth Asia-Pacific Conference on Conceptual

Modelling-Volume 154, pages 3–7, 2014.

Dardenne, Anne; Van Lamsweerde, Axel, and Fickas, Stephen. Goal-directed requirements acquisition. Science

of computer programming, 20(1):3–50, 1993.

Darimont, Robert and Van Lamsweerde, Axel. Formal refinement patterns for goal-driven requirements elabora-

tion. ACM SIGSOFT Software Engineering Notes, 21(6):179–190, 1996.

De Landtsheer, Renaud and Van Lamsweerde, Axel. Reasoning about confidentiality at requirements engineering

time. In Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 41–49. ACM, 2005.

de Sousa, Geórgia Maria C; da Silva, Ismênia GL, and de Castro, Jaelson Brelaz. Adapting the nfr framework to

aspect-oriented requirements engineering. In Proceeding of XVII Brazilian Symposium on Software Engineering,

pages 83–98, 2003.

Dubois, Éric; Heymans, Patrick; Mayer, Nicolas, and Matulevičius, Raimundas. A systematic approach to de-

fine the domain of information system security risk management. In Intentional Perspectives on Information

Systems Engineering, pages 289–306. Springer, 2010.

Easterbrook, Steve; Singer, Janice; Storey, Margaret-Anne, and Damian, Daniela. Selecting empirical methods for

software engineering research. In Guide to advanced empirical software engineering, pages 285–311. Springer,

2008.

Eiter, Thomas; Gottlob, Georg, and Mannila, Heikki. Disjunctive datalog. ACM Transactions on Database

Systems (TODS), 22(3):364–418, 1997.

Elahi, Golnaz and Yu, Eric. A goal oriented approach for modeling and analyzing security trade-offs. In Conceptual

Modeling-ER 2007, pages 375–390. Springer, 2007.

Elahi, Golnaz; Yu, Eric, and Zannone, Nicola. A modeling ontology for integrating vulnerabilities into security

requirements conceptual foundations. In Conceptual Modeling-ER 2009, pages 99–114. Springer, 2009.

Elahi, Golnaz; Yu, Eric, and Zannone, Nicola. A vulnerability-centric requirements engineering framework: ana-

lyzing security attacks, countermeasures, and requirements based on vulnerabilities. Requirements Engineering,

15(1):41–62, 2010.

Elahi, Golnaz; Yu, Eric; Li, Tong, and Liu, Lin. Security requirements engineering in the wild: A survey of common

practices. In Computer Software and Applications Conference (COMPSAC), 2011 IEEE 35th Annual, pages

314–319. IEEE, 2011.

Engebretson, Patrick Henry and Pauli, Joshua J. Leveraging parent mitigations and threats for capec-driven

hierarchies. In Sixth International Conference on Information Technology: New Generations, 2009. ITNG’09.,

pages 344–349, 2009.

270 Bibliography

Estrada, Hugo; Rebollar, Alicia Mart́ınez; Pastor, Oscar, and Mylopoulos, John. An empirical evaluation of the i*

framework in a model-based software generation environment. In Advanced Information Systems Engineering,

pages 513–527. Springer, 2006.

Fabian, Benjamin; Gürses, Seda; Heisel, Maritta; Santen, Thomas, and Schmidt, Holger. A comparison of security

requirements engineering methods. Requirements engineering, 15(1):7–40, 2010.

Fernandez, Eduardo; Pelaez, Juan, and Larrondo-Petrie, Maria. Attack patterns: A new forensic and design tool.

In Advances in digital forensics III, pages 345–357. Springer, 2007a.

Fernandez, Eduardo B; Ballesteros, Jose; Desouza-Doucet, Ana C, and Larrondo-Petrie, Maria M. Security

patterns for physical access control systems. In Data and applications security XXI, pages 259–274. Springer,

2007b.

Fernandez, Eduardo B; Washizaki, Hironori, and Yoshioka, Nobukazu. Abstract security patterns. In Proceedings

of the 15th Conference on Pattern Languages of Programs, pages 41–42. ACM, 2008.

Fernandez, Eduardo B; Yoshioka, Nobukazu, and Washizaki, Hironori. Modeling misuse patterns. In 2009

International Conference on Availability, Reliability and Security, pages 566–571. IEEE, 2009.

Fernandez-Buglioni, Eduardo. Security patterns in practice: designing secure architectures using software patterns.

John Wiley & Sons, 2013.

Firesmith, Donald. Engineering security requirements. Journal of Object Technology, 2(1):53–68, 2003a.

Firesmith, Donald. Specifying reusable security requirements. Journal of Object Technology, 3(1):61–75, 2004.

Firesmith, Donald G. Security use cases. Journal of object technology, 2(3), 2003b.

Flick, Tony and Morehouse, Justin. Securing the smart grid: next generation power grid security. Elsevier, 2010.

Gamma, Erich; Helm, Richard; Johnson, Ralph, and Vlissides, John. Design patterns: Elements of reusable

object-oriented software, 1994.

Gegick, Michael and Williams, Laurie. Matching attack patterns to security vulnerabilities in software-intensive

system designs. ACM SIGSOFT Software Engineering Notes, 30(4):1–7, 2005.

Giorgini, Paolo; Massacci, Fabio; Mylopoulos, John, and Zannone, Nicola. Modeling security requirements through

ownership, permission and delegation. In Requirements Engineering, 2005. Proceedings. 13th IEEE Interna-

tional Conference on, pages 167–176. IEEE, 2005a.

Giorgini, Paolo; Massacci, Fabio, and Zannone, Nicola. Security and trust requirements engineering. In Founda-

tions of Security Analysis and Design III, volume 3655 of LNCS, pages 237–272. Springer Berlin Heidelberg,

2005b.

Giorgini, Paolo; Mouratidis, Haralambos, and Zannone, Nicola. Modelling security and trust with secure tropos.

Integrating Security and Software Engineering: Advances and Future Vision, pages 160–189, 2006.

Gross, Daniel and Yu, Eric. From non-functional requirements to design through patterns. Requirements Engi-

neering, 6(1):18–36, 2001. ISSN 0947-3602.

Group, Object Management. Notation (bpmn) version 2.0. OMG Specification, Object Management Group, 2011.

Bibliography 271

Gunawan, Linda Ariani; Herrmann, Peter, and Kraemer, Frank Alexander. Towards the integration of security

aspects into system development using collaboration-oriented models. In Security Technology, pages 72–85.

Springer, 2009.

Hafiz, Munawar and Johnson, Ralph E. Security patterns and their classification schemes. University of Illinois

at Urbana-Champaign Department of Computer Science, Tech. Rep, 2006.

Hafiz, Munawar; Adamczyk, Paul, and Johnson, Ralph E. Organizing security patterns. IEEE Software, 24(4):

52–60, 2007.

Hafiz, Munawar; Adamczyk, Paul, and Johnson, Ralph E. Growing a pattern language (for security). In Proceed-

ings of the ACM international symposium on New ideas, new paradigms, and reflections on programming and

software, pages 139–158. ACM, 2012.

Haley, Charles B; Laney, Robin C, and Nuseibeh, Bashar. Deriving security requirements from crosscutting threat

descriptions. In Proceedings of the 3rd international conference on Aspect-oriented software development, pages

112–121. ACM, 2004.

Haley, Charles B; Laney, Robin; Moffett, Jonathan D, and Nuseibeh, Bashar. Security requirements engineering:

A framework for representation and analysis. Software Engineering, IEEE Transactions on, 34(1):133–153,

2008.

Halleux, Pierre; Mathieu, Ludovic, and Andersson, Birger. A method to support the alignment of business models

and goal models. Proceedings of BUSITAL, 8:121, 2008.

Haren, Van. TOGAF Version 9.1. Van Haren Publishing, 2011.

Hatebur, Denis; Heisel, Maritta, and Schmidt, Holger. Security engineering using problem frames. In Emerging

Trends in Information and Communication Security, pages 238–253. Springer, 2006.

Hatebur, Denis; Heisel, Maritta, and Schmidt, Holger. A security engineering process based on patterns. In

Database and Expert Systems Applications, 2007. DEXA’07. 18th International Workshop on, pages 734–738.

IEEE, 2007.

Hernan, Shawn; Lambert, Scott; Ostwald, Tomasz, and Shostack, Adam. Threat modeling-uncover security design

flaws using the stride approach. MSDN Magazine-Louisville, pages 68–75, 2006.

Herrmann, Gaby and Pernul, Gunther. Towards security semantics in workflow management. In System Sciences,

1998., Proceedings of the Thirty-First Hawaii International Conference on, volume 7, pages 766–767. IEEE,

1998.

Herrmann, Peter and Herrmann, Gaby. Security requirement analysis of business processes. Electronic Commerce

Research, 6(3-4):305–335, 2006. ISSN 1389-5753.

Heyman, Thomas; Yskout, Koen; Scandariato, Riccardo, and Joosen, Wouter. An analysis of the security patterns

landscape. In Proceedings of the Third International Workshop on Software Engineering for Secure Systems

(SESS), pages 3–10. IEEE Computer Society, 2007.

Heyman, Thomas; Yskout, Koen; Scandariato, Riccardo; Schmidt, Holger, and Yu, Yijun. The security twin

peaks. In Engineering Secure Software and Systems, pages 167–180. Springer, 2011.

Hoo, Kevin Soo; Sudbury, Andrew W, and Jaquith, Andrew R. Tangible roi through secure software engineering.

Secure Business Quarterly, 1(2):Q4, 2001.

272 Bibliography

Horkoff, Jennifer and Yu, Eric. Finding solutions in goal models: an interactive backward reasoning approach. In

Conceptual Modeling–ER 2010, pages 59–75. Springer, 2010.

Horkoff, Jennifer and Yu, Eric. Analyzing goal models: different approaches and how to choose among them. In

Proceedings of the 2011 ACM Symposium on Applied Computing, pages 675–682. ACM, 2011.

Horkoff, Jennifer and Yu, Eric. Comparison and evaluation of goal-oriented satisfaction analysis techniques.

Requirements Engineering, 18(3):199–222, 2013.

Horkoff, Jennifer; Aydemir, Fatma Başak; Li, Feng-Lin; Li, Tong, and Mylopoulos, John. Evaluating modeling

languages: An example from the requirements domain. In Conceptual Modeling (ER 2014), pages 260–274.

Springer International Publishing, 2014a.

Horkoff, Jennifer; Li, Tong; Li, Feng-Lin; Salnitri, Mattia; Cardoso, Evellin; Giorgini, Paolo; Mylopoulos, John,

and Pimentel, João. Taking goal models downstream: A systematic roadmap. In Research Challenges in

Information Science (RCIS), 2014 IEEE Eighth International Conference on, pages 1–12. IEEE, 2014b.

Horkoff, Jennifer; Li, Tong; Li, Feng-Lin; Salnitri, Mattia; Cardoso, Evellin; Giorgini, Paolo, and Mylopoulos,

John. Using goal models downstream: A systematic roadmap and literature review. International Journal of

Information System Modeling and Design (IJISMD), 6(2):1–42, 2015.

ISO, ISO and Std, IEC. Iso 27005: 2011. Information technology–Security techniques–Information security risk

management. ISO, 2011.

Ito, Yurina; Washizaki, Hironori; Yoshizawa, Masatoshi; Fukazawa, Yoshiaki; Okubo, Takao; Kaiya, Haruhiko;

Hazeyama, Atsuo; Yoshioka, Nobukazu, and Fernandez, Eduardo B. Systematic mapping of security patterns

research. In Proceedings of the 22nd Conference on Pattern Languages of Programs Conference 2015 (PoLP

2015), 2015.

Jackson, Michael. Problem frames: analysing and structuring software development problems. Addison-Wesley,

2001.

Jacobson, Ivar; Booch, Grady; Rumbaugh, James; Rumbaugh, James, and Booch, Grady. The unified software

development process, volume 1. Addison-wesley Reading, 1999.

Jureta, I.J.; Borgida, A.; Ernst, N.A., and Mylopoulos, J. Techne: Towards a new generation of requirements

modeling languages with goals, preferences, and inconsistency handling. In Proc. of RE’10, pages 115–124,

2010.

Jureta, Ivan J; Mylopoulos, John, and Faulkner, Stephane. Revisiting the core ontology and problem in require-

ments engineering. In International Requirements Engineering, 2008. RE’08. 16th IEEE, pages 71–80. IEEE,

2008.

Jürjens, Jan. Umlsec: Extending uml for secure systems development. In ≪UML≫2002—The Unified Modeling

Language, pages 412–425. Springer, 2002.

Jürjens, Jan. Secure systems development with UML. Springer Science & Business Media, 2005.

Kaiya, Haruhiko; Kono, Sho; Ogata, Shinpei; Okubo, Takao; Yoshioka, Nobukazu; Washizaki, Hironori, and

Kaijiri, Kenji. Security requirements analysis using knowledge in capec. In Advanced Information Systems

Engineering Workshops, pages 343–348. Springer, 2014.

Bibliography 273

Kim, Ji-Yeon and Kim, Hyung-Jong. Defining security primitives for eliciting flexible attack scenarios through

capec analysis. In Information Security Applications, pages 370–382. Springer, 2014.

Knuth, Donald Ervin. The art of computer programming: sorting and searching, volume 3. Pearson Education,

1998.

Kruchten, Philippe. The rational unified process: an introduction. Addison-Wesley Professional, 2004.

Lamsweerde, Axel Van. Elaborating security requirements by construction of intentional anti-models. In Proceed-

ings of the 26th International Conference on Software Engineering, pages 148–157. IEEE Computer Society,

2004.

Lankhorst, Marc M; Proper, Henderik Alex, and Jonkers, Henk. The architecture of the archimate language. In

Enterprise, Business-Process and Information Systems Modeling, pages 367–380. Springer, 2009.

Lethbridge, Timothy C; Sim, Susan Elliott, and Singer, Janice. Studying software engineers: Data collection

techniques for software field studies. Empirical software engineering, 10(3):311–341, 2005.

Letier, Emmanuel and van Lamsweerde, Axel. Deriving operational software specifications from system goals. In

Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 119–128,

2002. doi: 10.1145/587051.587070.

Li, Jin-Biao; Li, Tong, and Liu, Lin. Chinese requirements analysis based on class diagram semantics. Acta

Electronica Sinica, pages 94–98, 2011.

Li, Tong and Horkoff, Jennifer. Dealing with security requirements for socio-technical systems: A holistic approach.

In Advanced Information Systems Engineering (CAiSE 2014), pages 185–200. Springer International Publishing,

2014.

Li, Tong and Mylopoulos, John. Modeling and applying security patterns using contextual goal models. In The

7th International i* Workshop (iStar14), pages 208–223, 2014.

Li, Tong; Horkoff, Jennifer, and Mylopoulos, John. Integrating security patterns with security requirements

analysis using contextual goal models. In The Practice of Enterprise Modeling (PoEM 2014), pages 208–223.

Springer Berlin Heidelberg, 2014a.

Li, Tong; Horkoff, Jennifer, and Mylopoulos, John. A prototype tool for modeling and analyzing security require-

ments from a holistic viewpoint. In The CAiSE’14 Forum at the 26th International Conference on Advanced

Information Systems Engineering, pages 185–192, 2014b.

Li, Tong; Horkoff, Jennifer; Beckers, Kristian; Paja, Elda, and Mylopoulos, John. A holistic approach to security

attack modeling and analysis. In Proceedings of the Eighth International i* Workshop, pages 49–54, 2015a.

Li, Tong; Horkoff, Jennifer, and Mylopoulos, John. Analyzing and enforcing security mechanisms on require-

ments specification. In Requirements Engineering: Foundation for Software Quality (REFSQ 2015). Springer

International Publishing, 2015b.

Li, Tong; Horkoff, Jennifer; Paja, Elda; Beckers, Kristian, and Mylopoulos, John. Analyzing attack strategies

through anti-goal refinement. In The Practice of Enterprise Modeling (PoEM 2015), pages 75–90. Springer

International Publishing, 2015c.

274 Bibliography

Li, Tong; Paja, Elda; Mylopoulos, John; Horkoff, Jennifer, and Beckers, Kristian. Holistic security require-

ments analysis: An attacker’s perspective. In Requirements Engineering Conference (RE), 2015 IEEE 23rd

International, pages 282–283. IEEE, 2015d.

Li, Tong; Horkoff, Jennifer; Paja, Elda; Beckers, Kristian, and Mylopoulos, John. Security attack analysis using

attack patterns. In The IEEE Tenth International Conference on Research Challenges in Information Science

(RCIS). IEEE, 2016.

Lin, Lun-Cheng; Nuseibeh, Bashar; Ince, Daniel; Jackson, Michael, and Moffett, Jonathan. Analysing security

threats and vulnerabilities using abuse frames. ETAPS-04, 2003a.

Lin, Luncheng; Nuseibeh, Bashar; Ince, Darrel; Jackson, Michael, and Moffett, Jonathan. Introducing abuse

frames for analysing security requirements. In Requirements Engineering Conference, 2003. Proceedings. 11th

IEEE International, pages 371–372. IEEE, 2003b.

Liu, Lin; Yu, E, and Mylopoulos, John. Security and privacy requirements analysis within a social setting. In

Proc. of RE’03, volume 3, pages 151–161, Monterey, California, 2003.

Liu, Lin; Yu, Eric S. K., and Mylopoulos, John. Secure-i*: Engineering secure software systems through social

analysis. Int. J. Software and Informatics, 3(1):89–120, 2009.

Lodderstedt, Torsten; Basin, David, and Doser, Jürgen. Secureuml: A uml-based modeling language for model-

driven security. In ≪UML≫2002—The Unified Modeling Language, pages 426–441. Springer, 2002.

Lund, Mass Soldal; Solhaug, Bjørnar, and Stølen, Ketil. Model-driven risk analysis: the CORAS approach.

Springer Science & Business Media, 2010.

Mansourov, Nikolai and Campara, Djenana. System assurance: beyond detecting vulnerabilities. Elsevier, 2010.

Massacci, Fabio and Paci, Federica. How to select a security requirements method? a comparative study with

students and practitioners. In Secure IT Systems, pages 89–104. Springer, 2012.

Massacci, Fabio; Mylopoulos, John, and Zannone, Nicola. Security requirements engineering: the si* modeling

language and the secure tropos methodology. In Advances in Intelligent Information Systems, pages 147–174.

Springer, 2010.

Matulevičius, Raimundas; Mayer, Nicolas; Mouratidis, Haralambos; Dubois, Eric; Heymans, Patrick, and Genon,

Nicolas. Adapting secure tropos for security risk management in the early phases of information systems

development. In Advanced Information Systems Engineering, pages 541–555. Springer, 2008.

May, Jeffrey and Dhillon, Gaurpreet. A holistic approach for enriching information security analysis and security

policy formation. In European Conference on Information Systems (ECIS), 2010.

McDermott, J. and Fox, C. Using abuse case models for security requirements analysis. In 15th Annual Computer

Security Applications Conference, (ACSAC’99) Proceedings., pages 55–64. IEEE, 1999.

Mead, Nancy R. Experiences in eliciting security requirements. Technical report, DTIC Document, 2006a.

Mead, Nancy R and Stehney, Ted. Security quality requirements engineering (square) methodology. SIGSOFT

Softw. Eng. Notes, 30(4), 2005.

Bibliography 275

Mead, Nancy R; Viswanathan, Venkatesh, and Zhan, Justin. Incorporating security requirements engineering into

the rational unified process. In 2008 International Conference on Information Security and Assurance, pages

537–542. IEEE, 2008.

Mead, NR. Identifying security requirements using the security quality requirements engineering (square) method.

Integrating Security and Software Engineering, pages 44–69, 2006b.

Meland, Per H̊akon and Gjære, Erlend Andreas. Representing threats in bpmn 2.0. In Availability, Reliability

and Security (ARES), 2012 Seventh International Conference on, pages 542–550. IEEE, 2012.

Mellado, Daniel; Fernández-Medina, Eduardo, and Piattini, Mario. Applying a security requirements engineering

process. In Computer Security–ESORICS 2006, pages 192–206. Springer, 2006.

Mellado, Daniel; Fernández-Medina, Eduardo, and Piattini, Mario. A common criteria based security requirements

engineering process for the development of secure information systems. Computer standards & interfaces, 29

(2):244–253, 2007.

Menzel, Michael; Thomas, Ivonne, and Meinel, Christoph. Security requirements specification in service-oriented

business process management. In Proceedings of International Conference on Availability, Reliability and

Security, 2009. ARES’09, pages 41–48. IEEE, 2009.

Mitnick, Kevin D and Simon, William L. The Art of Intrusion: The real stories behind the exploits of hackers,

intruders and deceivers. John Wiley & Sons, 2005.

Mitnick, Kevin D and Simon, William L. The art of deception: Controlling the human element of security. John

Wiley & Sons, 2011.

MITRE-CVE, . Common vulnerabilities and exposures. URL https://cve.mitre.org/.

MITRE-CWE, . Common weakness enumeration. URL https://cwe.mitre.org/.

Moore, Andrew P; Ellison, Robert J, and Linger, Richard C. Attack modeling for information security and

survivability. Technical report, CMU-SEI-2001-TN-001., 2001.

Morais, Anderson; Hwang, Iksoon; Cavalli, Ana, and Martins, Eliane. Generating attack scenarios for the system

security validation. Networking science, 2(3-4):69–80, 2013.

Mouratidis, Haralambos. Secure software systems engineering: the secure tropos approach. Journal of Software,

6(3):331–339, 2011.

Mouratidis, Haralambos and Giorgini, Paolo. A natural extension of tropos methodology for modelling security.

In Proc. of the Agent Oriented Methodologies Workshop (OOPSLA 2002). Citeseer, 2002.

Mouratidis, Haralambos and Giorgini, Paolo. Secure tropos: a security-oriented extension of the tropos method-

ology. International Journal of Software Engineering and Knowledge Engineering, 17(02):285–309, 2007a.

Mouratidis, Haralambos and Giorgini, Paolo. Security attack testing (sat) - testing the security of information

systems at design time. Information Systems, 32(8):1166–1183, 2007b.

Mouratidis, Haralambos and Jurjens, Jan. From goal-driven security requirements engineering to secure design.

International Journal of Intelligent System, 25(8):813–840, 2010.

https://cve.mitre.org/
https://cwe.mitre.org/

276 Bibliography

Mouratidis, Haralambos; Giorgini, Paolo, and Manson, Gordon. Using security attack scenarios to analyse security

during information systems. In Proceedings of the International Conference on Enterprise Information Systems,

pages 10–17, 2004.

Mouratidis, Haralambos; Weiss, Michael, and Giorgini, Paolo. Modeling secure systems using an agent-oriented

approach and security patterns. International Journal of Software Engineering and Knowledge Engineering,

16(3):471, 2006.

Mouratidis, Haralambos; Islam, Shareeful; Kalloniatis, Christos, and Gritzalis, Stefanos. A framework to support

selection of cloud providers based on security and privacy requirements. Journal of Systems and Software, 86

(9):2276–2293, 2013.

Mowbray, Thomas J and Malveau, Raphael C. CORBA design patterns. John Wiley & Sons, Inc., 1997.

Mussbacher, Gunter; Weiss, Michael, and Amyot, Daniel. Formalizing architectural patterns with the goal-oriented

requirement language. In Nordic Pattern Languages of Programs Conference, 2006.

Mylopoulos, John; Chung, Lawrence, and Nixon, Brian. Representing and using nonfunctional requirements: A

process-oriented approach. Software Engineering, IEEE Transactions on, 18(6):483–497, 1992.

Nhlabatsi, Armstrong; Nuseibeh, Bashar, and Yu, Yijun. Security requirements engineering for evolving software

systems: A survey. IJSSE, 1(1):54–73, 2010.

NIST, . Roadmap for smart grid interoperability standards, release 2.0. NIST special publication, 1108R2, 2012.

Niu, Nan and Easterbrook, Steve. So, you think you know others’ goals? a repertory grid study. Software, IEEE,

24(2):53–61, 2007.

Nuseibeh, Bashar. Weaving together requirements and architectures. Computer, 34(3):115–119, 2001.

Okubo, Takao; Taguchi, Kenji, and Yoshioka, Nobukazu. Misuse cases+ assets+ security goals. In Computational

Science and Engineering, 2009. CSE’09. International Conference on, volume 3, pages 424–429. IEEE, 2009.

Okubo, Takao; Kaiya, Haruhiko, and Yoshioka, Nobukazu. Mutual refinement of security requirements and

architecture using twin peaks model. In Computer Software and Applications Conference Workshops (COMP-

SACW), pages 367–372. IEEE, 2012.

Oladimeji, Ebenezer; Supakkul, Sam, and Chung, Lawrence. Security threat modeling and analysis: A goal-

oriented approach. In Proc. of the 10th IASTED International Conference on Software Engineering and Ap-

plications (SEA 2006), pages 13–15. Citeseer, 2006a.

Oladimeji, Ebenezer A; Supakkul, Sam, and Chung, Lawrence. Representing security goals, policies, and objects.

In 1st IEEE/ACIS International Workshop on Component-Based Software Engineering, pages 160–167. IEEE,

2006b.

Ourston, Dirk; Matzner, Sara; Stump, William, and Hopkins, Bryan. Applications of hidden markov models

to detecting multi-stage network attacks. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii

International Conference on, pages 334–343. IEEE, 2003.

Paja, Elda; Giorgini, Paolo; Paul, Stéphane, and Meland, Per H̊akon. Security requirements engineering for secure

business processes. In Workshops on Business Informatics Research, pages 77–89. Springer, 2012.

Bibliography 277

Paja, Elda; Dalpiaz, Fabiano, and Giorgini, Paolo. Managing security requirements conflicts in socio-technical

systems. In Conceptual Modeling, pages 270–283. Springer, 2013.

Paul, Stéphane. Towards automating the construction & maintenance of attack trees: a feasibility study. arXiv

preprint arXiv:1404.1986, 2014.

Pavlidis, Michalis and Islam, Shareeful. Sectro: A case tool for modelling security in requirements engineering

using secure tropos. In CAiSE Forum, pages 89–96, 2011.

Phillips, Cynthia and Swiler, Laura Painton. A graph-based system for network-vulnerability analysis. In Pro-

ceedings of the 1998 workshop on New security paradigms, pages 71–79. ACM, 1998.

Pimentel, João; Lucena, Márcia; Castro, Jaelson; Silva, Carla; Santos, Emanuel, and Alencar, Fernanda. De-

riving software architectural models from requirements models for adaptive systems: the stream-a approach.

Requirements Engineering, 17(4):259–281, 2012.

Ponemon, L. Cost of data breach study: Global analysis. Technical report, Poneomon Institute sponsored by

IBM, 2015.

Ranjan, Prabhat and Misra, Arun Kumar. Agent based system development: a domain-specific goal approach.

ACM SIGSOFT Software Engineering Notes, 31(6):1–6, 2006.

Robin, Kazi Asad. Evaluation of a multilayer security requirements analysis framework. Master’s thesis, University

of Trento, 2015.

Robinson, William N; Pawlowski, Suzanne D, and Volkov, Vecheslav. Requirements interaction management.

ACM Computing Surveys (CSUR), 35(2):132–190, 2003.

Rodŕıguez, Alfonso; Fernández-Medina, Eduardo, and Piattini, Mario. A bpmn extension for the modeling of

security requirements in business processes. IEICE transactions on information and systems, 90(4):745–752,

2007a.

Rodŕıguez, Alfonso; Fernández-Medina, Eduardo, and Piattini, Mario. M-bpsec: a method for security require-

ment elicitation from a uml 2.0 business process specification. In Advances in Conceptual Modeling–Foundations

and Applications, pages 106–115. Springer, 2007b.

Rodŕıguez, Alfonso; de Guzmán, Ignacio Garćıa-Rodŕıguez; Fernández-Medina, Eduardo, and Piattini, Mario.

Semi-formal transformation of secure business processes into analysis class and use case models: An mda

approach. Information and Software Technology, 52(9):945 – 971, 2010.

Rodŕıguez, Alfonso; Fernández-Medina, Eduardo; Trujillo, Juan, and Piattini, Mario. Secure business process

model specification through a uml 2.0 activity diagram profile. Decision Support Systems, 51(3):446–465, 2011.

Runeson, Per and Höst, Martin. Guidelines for conducting and reporting case study research in software engi-

neering. Empirical software engineering, 14(2):131–164, 2009.

Salini, P and Kanmani, S. Security requirements engineering process for web applications. Procedia Engineering,

38:2799–2807, 2012.

Salini, P and Kanmani, S. Effectiveness and performance analysis of model-oriented security requirements engi-

neering to elicit security requirements: a systematic solution for developing secure software systems. Interna-

tional Journal of Information Security, pages 1–16, 2015.

278 Bibliography

Salnitri, Mattia; Dalpiaz, Fabiano, and Giorgini, Paolo. Modeling and verifying security policies in business

processes. In Enterprise, Business-Process and Information Systems Modeling, pages 200–214. Springer, 2014a.

Salnitri, Mattia; Paja, Elda, and Giorgini, Paolo. Preserving compliance with security requirements in socio-

technical systems. In Cyber Security and Privacy, pages 49–61. Springer, 2014b.

Salnitri, Mattia; Dalpiaz, Fabiano, and Giorgini, Paolo. Designing secure business processes with secbpmn.

Software & Systems Modeling, pages 1–21, 2015.

Sánchez-Cid, Francisco and Maña, Antonio. Serenity pattern-based software development life-cycle. In 19th

International Workshop on Database and Expert Systems Application, 2008, pages 305–309, Sept 2008.

Sandhu, Ravi. Good-enough security: Toward a pragmatic business-driven discipline. IEEE Internet Computing,

7(1):66–68, 2003.

Scandariato, Riccardo; Wuyts, Kim, and Joosen, Wouter. A descriptive study of microsoft’s threat modeling

technique. Requirements Engineering, 20(2):163–180.

Scandariato, Riccardo; Yskout, Koen; Heyman, Thomas, and Joosen, Wouter. Architecting software with security

patterns. Technical report, KU Leuven, 2008.

Schmidt, Holger. Threat-and risk-analysis during early security requirements engineering. In ARES, pages 188–

195, 2010.

Schneier, B. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

Schumacher, Markus; Fernandez-Buglioni, Eduardo, and Hybertson, Duane. Security Patterns: Integrating Secu-

rity and Systems Engineering. John Wiley & Sons, 2006.

Serenity-Consortium, . Smart items–medical emergency response. Technical report, March 2007.

Sheyner, Oleg; Haines, Joshua; Jha, Somesh; Lippmann, Richard, and Wing, Jeannette M. Automated generation

and analysis of attack graphs. In Security and privacy, 2002. Proceedings. 2002 IEEE Symposium on, pages

273–284. IEEE, 2002.

Shiroma, Y.; Washizaki, H.; Fukazawa, Y.; Kubo, A, and Yoshioka, N. Model-driven security patterns application

based on dependences among patterns. In International Conference on Availability, Reliability, and Security,

2010, pages 555–559, Feb 2010. doi: 10.1109/ARES.2010.103.

Shostack, Adam. Threat Modeling: Designing for Security. John Wiley & Sons, 2014.

Sindre, Guttorm and Opdahl, Andreas L. Capturing security requirements through misuse cases. In Norsk

Informatikkonferanse, NIK 2001, 2001.

Sindre, Guttorm and Opdahl, Andreas L. Eliciting security requirements with misuse cases. Requirements

Engineering, 10(1):34–44, 2005.

Sindre, Guttorm; Firesmith, Donald G, and Opdahl, Andreas L. A reuse-based approach to determining security

requirements. In Proceedings of the 9th international workshop on requirements engineering: foundation for

software quality (REFSQ’03), Klagenfurt, Austria. Citeseer, 2003.

Skoudis, Ed and Liston, Tom. Counter hack reloaded: a step-by-step guide to computer attacks and effective

defenses. Prentice Hall Press, 2005.

Bibliography 279

Souag, Amina; Mazo, Raúl; Salinesi, Camille, and Comyn-Wattiau, Isabelle. Reusable knowledge in security

requirements engineering: a systematic mapping study. Requirements Engineering, pages 1–33, 2015.

Spears, Janine L. A holistic risk analysis method for identifying information security risks. In Security Manage-

ment, Integrity, and Internal Control in Information Systems, pages 185–202. Springer, 2005.

Steele, Adam and Jia, Xiaoping. Adversary centered design: Threat modeling using anti-scenarios, anti-use cases

and anti-personas. In Proc. of Information and Knowledge Engineering, IKE’08, pages 367–370, 2008.

Suleiman, Husam and Svetinovic, Davor. Evaluating the effectiveness of the security quality requirements en-

gineering (square) method: a case study using smart grid advanced metering infrastructure. Requirements

Engineering, 18(3):251–279, 2013.

Supaporn, Kawin; Prompoon, Nakornthip, and Rojkangsadan, Thongchai. An approach: Constructing the gram-

mar from security pattern. In Proc. 4th International Joint Conference on Computer Science and Software

Engineering, 2007.

TOG, . Mapping the togaf adm to the zachman framework, 2002. URL http://www.opengroup.org/

architecture/0210can/togaf8/doc-review/togaf8cr/c/p4/zf/zf_mapping.htm.

Tzu, Sun. The art of war. Shambhala Publications, 2011.

Ustun, Volkan; Yilmaz, Levent, and Smith, Jeffrey S. A conceptual model for agent-based simulation of physical

security systems. In Proceedings of the 44th annual Southeast regional conference, pages 365–370. ACM, 2006.

Uzunov, Anton V; Fernandez, Eduardo B, and Falkner, Katrina. Engineering security into distributed systems:

A survey of methodologies. J. UCS, 18(20):2920–3006, 2012.

Uzunov, Anton V; Fernandez, Eduardo B, and Falkner, Katrina. Ase: a comprehensive pattern-driven security

methodology for distributed systems. Computer Standards & Interfaces, 41:112–137, 2015.

Van Lamsweerde, A. and Letier, E. Handling obstacles in goal-oriented requirements engineering. IEEE Trans-

actions on Software Engineering, 26(10):978–1005, Oct 2000.

Van Lamsweerde, Axel and others, . Software System Reliability and Security, volume 9, chapter Engineering

requirements for system reliability and security, page 196. IOS PRESS, 2007.

VanHilst, Michael; Fernandez, Eduardo B, and Braz, Fabŕıcio. A multi-dimensional classification for users of

security patterns. Journal of Research and Practice in Information Technology, 41(2):87, 2009.

Wang, Hui; Jia, Zongpu, and Shen, Zihao. Research on security requirements engineering process. In Industrial

Engineering and Engineering Management, 2009. IE&EM’09. 16th International Conference on, pages 1285–

1288. IEEE, 2009.

Ware, Michael S; Bowles, John B, and Eastman, Caroline M. Using the common criteria to elicit security

requirements with use cases. In SoutheastCon, 2006. Proceedings of the IEEE, pages 273–278. IEEE, 2005.

Wei, Chun. Misuse cases and abuse cases in eliciting security requirements, 2005.

Weingart, Steve H. Physical security devices for computer subsystems: A survey of attacks and defenses. In

Cryptographic Hardware and Embedded Systems — CHES 2000, pages 302–317. Springer, 2000.

http://www.opengroup.org/architecture/0210can/togaf8/doc-review/togaf8cr/c/p4/zf/zf_mapping.htm
http://www.opengroup.org/architecture/0210can/togaf8/doc-review/togaf8cr/c/p4/zf/zf_mapping.htm

280 BIBLIOGRAPHY

Whittle, Jon; Wijesekera, Duminda, and Hartong, Mark. Executable misuse cases for modeling security concerns.

In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on, pages 121–130. IEEE,

2008.

Wieringa, RJ and Heerkens, JMG. The methodological soundness of requirements engineering papers: a concep-

tual framework and two case studies. Requirements engineering, 11(4):295–307, 2006.

Wimmer, Maria and Von Bredow, Bianca. A holistic approach for providing security solutions in e-government.

In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference on, pages

1715–1724. IEEE, 2002.

Yoder, Joseph and Barcalow, Jeffrey. Architectural patterns for enabling application security. Fourth Conference

on Patterns Languages of Programs (PLoP’97), 1997.

Yskout, Koen; Heyman, Thomas; Scandariato, Riccardo, and Joosen, Wouter. A system of security patterns.

Technical report, KU Leuven, 2006.

Yu, Eric. Towards modelling and reasoning support for early-phase requirements engineering. In Proceedings of

the Third IEEE International Symposium on Requirement Engineering, 1997, pages 226–235. IEEE Computer

Soc. Press, 1997.

Yu, Yijun; Kaiya, Haruhiko; Washizaki, Hironori; Xiong, Yingfei; Hu, Zhenjiang, and Yoshioka, Nobukazu.

Enforcing a security pattern in stakeholder goal models. In Proceedings of the 4th ACM Workshop on Quality

of Protection, pages 9–14, 2008.

Yuan, Xiaohong; Nuakoh, Emmanuel Borkor; Beal, Jodria S, and Yu, Huiming. Retrieving relevant capec attack

patterns for secure software development. In Proceedings of the 9th Annual Cyber and Information Security

Research Conference, pages 33–36. ACM, 2014.

Zachman, John A. A framework for information systems architecture. IBM systems journal, 26(3):276–292, 1987.

Zave, Pamela and Jackson, Michael. Four dark corners of requirements engineering. ACM Trans. Softw. Eng.

Methodol., 6(1):1–30, 1997. ISSN 1049-331X.

Zuccato, Albin. Holistic security requirement engineering for electronic commerce. Computers & Security, 23(1):

63–76, 2004.

	Introduction
	Complexity of Socio-Technical Systems
	Challenges in Designing Secure STSs
	Research Objectives and Research Questions
	Research Overview and Contribution
	A Three-Layer Security Requirements Modeling Framework
	A Three-Layer Security Requirements Analysis Framework
	Prototype Tool
	Case Studies

	Structure of the Thesis
	Published Work

	State of the Art
	Security Requirements Engineering
	Security Requirements Engineering Processes
	Security Requirements Engineering Approaches

	Holistic Security
	Security Analysis beyond Software Systems
	Holistic Security Analysis Approaches

	Security Attack Analysis
	Attacker-oriented Analysis
	Attack Pattern-based Analysis
	Multistage Attack Analysis

	Security Patterns
	Security Pattern Collections
	Security Pattern Selection
	Impact of applying security patterns

	Chapter Summary

	Baselines
	Requirements Problem
	Goal Modeling Languages
	i*
	Techne
	A Contextual Goal Modeling Language

	Security Patterns
	Pattern Templates

	CAPEC
	CAPEC Schema

	Chapter Summary

	A Three-Layer Security Requirements Analysis Framework
	A Three-Layer Structure for STSs
	A Three-Layer Requirements Modeling Language
	Conceptual Model
	Formal Definitions

	A Holistic Security Requirements Analysis Process
	Security Goal Refinement
	Security Goal Simplification
	Security Goal Operationalization
	Cross-Layer Security Analysis
	Holistic Security Solution Generation

	Discussions
	Related Work
	Chapter summary

	A Holistic Security Attack Modeling and Analysis Approach
	Approach Overview
	Analyzing Attack Strategies via Anti-Goal Refinement
	Real Attack Scenario Examination
	An Anti-Goal Refinement Approach
	Evaluation
	Discussion

	Operationalizing Anti-Goals with Attack Patterns
	Model Attack Patterns as Contextual Goal Model
	Attack Pattern Selection and Application

	Validation
	Discussion and Related Work
	Chapter Summary

	Integrating Security Patterns with Security Requirements Analysis
	Security Patterns Complement Security Requirements Operationalization
	Model Security Patterns as Contextual Goal Models
	A Contextual Goal Modeling Language
	A Process for Creating Contextual Goal Models from Security Patterns
	Empirical Observations

	Selecting and Applying Security Patterns to Operationalize Security Requirements
	Generate Security Pattern Candidates
	Security Pattern Selection
	Security Pattern Application

	Related Work
	Chapter Summary

	Analyzing the Impact of Security Mechanisms
	Impact of Security Mechanisms
	Scenario: The Healthcare Collaborative Network (HCN)
	An Enriched Requirements Specification
	An Enriched Security Mechanism Specification
	A Systematic Process for Analyzing the Impact of Security Mechanisms
	Evaluation
	Related Work
	Chapter Summary

	A Prototype Tool
	Architecture
	Features
	Use Cases
	Chapter Summary

	Validation
	Case Study 1: A Smart Grid Real-Time Pricing Scenario
	Scenario Description
	Building Three-Layer Requirements Models
	Analyze Security Requirements in Three Layers
	Threats to Validity

	Case Study 2: Medical Emergency Response System
	Scenario Description
	Modeling the Medical Emergency Response System
	Security Requirements Analysis Results

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Discussion
	Limitations
	Ongoing Work and Future Research Directions

	Appendix Attack Scenario Studies
	Appendix Attack Pattern Hierarchy
	Appendix Goal Models Built from Attack Patterns
	Appendix Context Inference Rules for Attack Patterns
	Appendix Attack Pattern Validation Results
	Appendix Goal Models Built from Security Patterns
	Bibliography

