
 
 

 

                                                  

 

 

Doctoral School in Cognitive and Brain Sciences XXVIII cycle 

 

 

 

 

 

 

The influences of preparation and brain states on the time-course of oculomotor 
control in visual selection 

 

 

 

 

 

Davide Paoletti 

 

 

 

 

 

Advisor: Wieske van Zoest  

Co-advisor: Heinrich Christoph Braun



1 
 

  



2 
 

“..Imagine for a moment that we are nothing but the product of billions of years of molecules coming 

together and ratcheting up through natural selection, that we are composed only of highways of fluids 

and chemicals sliding along roadways within billions of dancing cells, that trillions of synaptic 

conversations hum in parallel, that this vast egg like fabric of micron-thin circuitry runs algorithms 

undreamt of in modern science, and that these neural programs give rise to our decision making, 

loves, desires, fears, and aspirations. To me, that understanding would be a numinous experience, 

better than anything ever proposed in anyone's holy text.” 

 

 

 

David Eagleman 
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Preface 

Every day our eyes are overflowed by a constant stream of visual information, however, we 

have the innate capacity of selecting any subset of it that is relevant for our purposes. We may scan 

familiar visual scenes for searching what we need: it can be a key, a lighter, our glasses or a 

smartphone on a probably messy desktop. Maybe we are in a hurry for our meeting, and our eyes 

spasmodically jump from one object to the other, without having success in the visual search. Why 

are we selecting certain objects instead of the one we are looking for? For example, we may want to 

find the small white piece of paper on which we noted down the details of a very important meeting 

we need to attend. However, the natural blue fluorescent lamp that our colleague bought is way too 

attractive for our eyes, and we may also feel kind of tired that morning. In the end, we usually find 

what we need, but in different ways. I am sure you agree with me that often, during searches, it 

happens that things other than the object of search capture your attention. Often sudden things are 

particularly salient and your eyes are kind of involuntary captured, and this mostly happens when you 

are in hurry. This search modality is known as stimulus-driven. If instead you take your time, you will 

realize that avoiding salient items can be extremely easy and after a while your eyes will succeed in 

finding what you were looking for. In this latter case you are adopting the so-called goal-driven 

strategy. Although there have been many studies on the influences of stimulus- and goal-driven 

control of attention, only few investigate the role of time in stimulus-driven and goal-driven visual 

selection. Moreover, as expressed above, the strategy you want to adopt may not solely depend on 

your intentions. It may be the case that one of the most important organ of your body that day does 

not feel like helping just before starting to search. In more scientific words, it can be the case that 

preparatory mechanisms occurring before the beginning your search may influence the search 

modality itself.  

The goal of present thesis is twofold. Firstly, we aim to investigate if observers are able to 

consciously regulate the trade-off between stimulus-driven and goal-driven strategies of visual 

selection. Secondly, we aim to uncover how brain processes occurring before the display presentation 

may affect visual search modalities both in terms of response time and performance. 
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Chapter 1 

General Introduction 

 

Stimulus-driven and goal-driven  

At any given time, the visual field is full of information that cannot be processed at once. An 

essential property of our brain is the capacity of selecting subsets of information that is important for 

us, and discard the irrelevant ones. Visual search occurs whenever we are scanning the environment 

to find a specific element, pattern or even a group of object. This process can be accomplished mostly 

in two ways: by covertly selecting the relevant subset of information, or by overtly deploying an eye 

movement to the target location. Thus, it becomes clear how attention and eye movement are closely 

connected. By means of eye movements and shifting attention individuals are able to visually explore 

the environment according to their needs. Attention and eye movement may be controlled by the 

properties of the stimulus field or by goals and intentions of the observers. Theories and models of 

visual search refer to these search modalities as stimulus-driven and goal-driven (Connor, Egeth, & 

Yantis, 2004; Corbetta & Shulman, 2002; Shipp, 2004). Bottom-up mechanisms are considered to 

control the selection when visual search is stimulus driven; that is, when the winner of selection 

corresponds to the more salient element present in the visual field. Visual saliency here refers to the 

physical, distinctiveness of an element, and is a relative property that is contextually dependent (Itti, 

Koch & Niebur, 1998). Top-down processes, instead, grant attention to those elements that match the 

observer’s target settings and lead to goal driven selection behaviors. In the past, some researchers 

have argued that stimulus-driven processes dominate visual selection, (Banich et al., 2000; Nothdurft, 

2002; Theeuwes, 1992, 2004) resulting in an attentional control predominantly driven by stimulus 

saliency. According to this bottom-up model, selection is only influenced by stimulus-driven control 

while goal-driven processes may only play a role in the process after an element is selected on the 

basis of stimulus-driven activity (Nothdurft, 2002; Jan Theeuwes, Atchley, & Kramer, 2000). In other 

words, endogenous modulation can only contribute to visual selection processes only after an 
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element is identified. Goal-driven control is assumed to occur after, and to be contingent to stimulus-

driven control (Itti, L., Koch, C., Niebur, 1998; Koch & Ullman, 1987; Nothdurft, 2002; Theeuwes & 

Burger, 1998; VanRullen, 2003). On the other hand, other researchers have claimed that it is the goal-

driven processes which control visual selection (Bacon & Egeth, 1994; Chen & Zelinsky, 2006; Folk, 

Remington, & Johnston, 1992). According to this top-down view of attentional selection, initial search 

is determined by observers’ goals and intentions. However, while selection may sometimes be more 

stimulus driven than goal driven or vice versa, most researchers agree that stimulus-driven and goal-

driven factors interact to ultimately control the allocation of attentional selection (Connor et al., 

2004; Duncan & Humphreys, 1989; Serences et al., 2005; Treisman & Sato, 1990).  

Evidence for stimulus-driven and goal-driven saccadic programming can be readily observed in 

visual search tasks in which eye movements are recorded (Hunt, von Mühlenen, & Kingstone, 2007; 

Wieske van Zoest, Donk, & Theeuwes, 2004). In a standard visual search task, participants are 

required to respond or to fixate a target item among a number of non-targets items. When saccades 

in these tasks are stimulus-driven, they are involuntary driven by stimulus-properties of the visual 

field, irrespective of the goals and intentions of the participants. Stimulus-driven saccades are also 

referred to as exogenous saccades and depend on an items’ saliency, that is, the greater is the 

saliency of an object and the bigger is the amount of exogenous stimulation (Desimone & Duncan, 

1995; Godijn & Theeuwes, 2002; Wolfe, 1994). The idea that oculomotor responses occurring early in 

time are more likely to be made to the most physically salient stimuli regardless of task-relevance is 

supported by recent studies on visual selection (Godijn & Theeuwes, 2002; Mulckhuyse, van Zoest, & 

Theeuwes, 2008). When saccades are instead goal-driven, they are voluntarily directed to those items 

that are in line with a current set of goals or intentions. Goal-driven eye movements are also referred 

to as endogenous saccades. Stimulus-driven and goal-driven saccadic selections are not mutually 

exclusive. Both stimulus-driven and goal-driven processes may contribute to drive the eyes to a 

certain location. For example, if the pre-specified target is the most salient element item in a display, 

both stimulus-driven and goal-driven processes may influence the saccade toward the target. In 

summary, goal- and stimulus-processes ultimately interact to control the allocation of attention, 

however, one factor that is underrated in the above cited studies, is the role of time. 
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Evidence for time-course 

Recent studies (van Zoest et al., 2004; van Zoest & Donk, 2006) provide support for the view 

that stimulus-driven and goal-driven strategies influence the processing of the same visual stimuli and 

the executed saccade but do so  via different time windows. The design adopted in these studies is 

based on the additional-singleton paradigm (Theeuwes, 1992). In this task, participants perform a 

visual search and are instructed to execute a fast saccade toward a unique target presented amongst 

a number of identical non-targets. A singleton distractor that differs from the target in the same 

dimension (i.e., orientation) is presented concurrently with the search display. This distractor can be 

more or less salient than the target. To analyze the time course, the oculomotor responses are 

vincentized (divided into bins) according to the saccadic reaction times. For each bin the correct 

proportion of eye movements are computed by dividing the number of eye movement that landed on 

the target by the total number of eye movement that observers made. Splitting the saccadic eye 

movements of observers on the basis of reaction time allows for a better understanding the of the 

relative contribution of stimulus-driven and goal-directed control in a variety of response latencies. 

The typical pattern of results shows that early oculomotor responses are frequently directed toward 

the most salient element on the screen (i.e., singleton target or distractor) and that the effect of 

stimulus-salience transiently decreases with time, even if it concerns the target. This shows that the 

influence of saliency and goal-directed control are independent (van Zoest & Donk, 2008) and that 

saccadic visual selection is initially completely saliency-driven, whereas goal-driven control dominates 

visual selection later in time. The findings of van Zoest and Donk are in line with former studies that 

have shown how stimulus-driven activity is fast and transient, while goal-driven activity arises later 

and is more sustained (Cheal & Chastain, 2002; Cheal & Lyon, 1991; Müller & Rabbitt, 1989; 

Nakayama & Mackeben, 1989). While bottom-up models of attention selection are able to account 

for the early effects of saliency, top-down models of attention are able to account for the absence of 

an effect of saliency later during selection. In turn, a bottom-up account fails to explain the absence of 

a saliency effect in case of slow eye movements, while a top-down control model fails to explain the 

large saliency effect in case of fast saccades. As a result, one or the other account per se cannot 

explain stimulus-driven and goal-driven control influence selection independently. This further 

suggests that both stimulus-driven and goal-driven selections occur, but in different time windows.  
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Neural correlates of visual oculomotor selection 

The neural circuitry that is responsible for visual selection and saccades generation has been 

intensely investigated in the past decade. Researchers, employing different type of imaging technique 

were able to reveal a wide network underlying generation and execution of saccades (Leigh & Zee, 

1982; Moschovakis, Scudder, & Highstein, 1996; Scudder, Kaneko, & Fuchs, 2002; Wurtz & Goldberg, 

1989).  

 

 

Fig. 1: Brain areas responsible for saccadic control in humans. Abbreviations: LIP, lateral intraparietal cortex; DLPFC, dorsolateral 

prefrontal cortex; FEF, frontal eye field; Th, thalamus; SC, superior colliculus; CB, cerebellum; RF, reticular formation. Adapted from 

Munoz, 2002. 

 

Critical nodes of this extended network have been identified in the human brain and include regions 

in the lateral intraparietal cortex (LIP), the dorsolateral prefrontal cortex (DLPFC), the frontal eye field 

(FEF), the thalamus (Th), the superior colliculus (SC), the cerebellum (CB) and the brainstem reticular 

formation (RF).  
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Recent studies have accounted some of these brain areas not solely responsible for the generation of 

saccades. For example, Miller and Buschman (Miller & Buschman, 2013) found evidence for the 

involvement of the LIP in guiding observers attention in a stimulus-driven fashion. When LIP neurons 

respond to highly salient stimuli, the oculomotor selection seems to be biased toward the salient 

location. When instead the cascade of processes originates from frontal cortices such as the FEF and 

the DLPFC, the visual search seems to be more guided by internal values and goals. Further evidence 

from others studies of Buschman & Miller (Buschman & Miller, 2007, 2013) where they used a pop-

out display (homogenous display with one unique singleton) and a search display (heterogeneous 

display with no unique singleton) to investigate the time course of bottom-up and top-down 

processes in the brain of primates. They concurrently recorded monkeys’ eye movements and 

neuronal activity from multiple electrodes placed in frontal and parietal cortices. The behavioral 

results showed that when deploying fast saccades, the monkeys were unable to inhibit the salient 

distractors. On the contrary, slower saccades were characterized by more control and top-down 

behavioral hallmarks. When looking at neural activity, they found that fast and bottom-up signals 

appear first in the LIP while the signals generated from longer latency saccades and associated to 

more top-down control were recorded from electrodes located in the frontal cortex. 

More evidence, in line with the theory of Buschman & Miller proposing an overlap between 

the saccade-generating network and the brain circuitry of goal-directed and stimulus-driven attention 

comes from the intensive work of Corbetta & Shulman (Corbetta & Shulman, 2002; Corbetta et al., 

1998). According to their theory, two partially segregated systems are responsible for goal- and 

stimulus-driven attentional processes in the human brain. The first one, which includes parts of the 

intraparietal cortex and superior frontal cortex, is involved in preparing and controlling goal-directed 

selection for stimuli and responses (Maurizio Corbetta & Shulman, 2002). The second one instead, 

which includes the temporoparietal cortex and the inferior frontal cortex, is more responsible for the 

detection of salient and unexpected stimuli. Corbetta and Shulman, in their theory, propose that the 

stimulus- and the goal-driven networks interact recursively. Specifically, their idea is that the default 

operandi mode is based on goal-driven network, and only when highly salient stimuli appear the 

stimulus-driven network kicks in, granting attention to the incoming salient stimuli.  
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Fig. 2: Schematization of top-down and stimulus-driven control in the brain. TPJ: temporoparietal junction, IPL/SGT: inferior parietal 

lobule/superior temporal gyrus, VFC: ventral frontal cortex, IPs: intraparietal sulcus, FEF: frontal eye field. The IPs-FEF network is 

involved in the top-down control of visual processing (blue arrows). The TPJ-VFC network is involved in stimulus-driven control (orange 

arrows). Picture taken from Corbetta & Shulman, 2002. 

 

The attentional oculomotor network that results from the comprehensive review of Corbetta 

& Shulman (Corbetta & Shulman, 2002), is derived from many experiments that implied mostly fMRI 

(functional magnetic resonance), PET (positron emission tomography) techniques and visual tasks 

where participants had to discriminate colors or motion (Corbetta, Shulman, Miezin, & Petersen, 

1995; Corbetta, 1998; Shulman, D’Avossa, Tansy, & Corbetta, 2002). In summary, the above-discussed 

work suggests that stimulus- and goal-driven processes are controlled by different interacting 

networks. However, the fact that different displays have been used to make assessments regarding 

search strategies adopted by primates and humans (i.e., pop-out vs. serial search, color manipulation, 

motion discrimination, etc.) could have in principle affected the true nature of the visual search. In 

other words, drastic changes across conditions may also correlated with changes in reaction times, 

which in turn affect the relative contribution of the processes at stake. Also, in the first and second 

paragraph of this general introduction, we underlined the importance of time when referring to 

stimulus- and goal-driven processes. The question is then what could be the best technique to 

understand the underpinning of such phenomena as visual search is, in the brain. fMRI and PET are 



15 
 

not certainly optimal for their temporal resolution. After presenting and discussing the first study we 

are going to propose the magnetoencephalography (MEG) as a better neuroimaging tool to 

investigate the role of prestimulus oscillatory activity that may influence stimulus- and goal- driven 

processes.  

 

Motivation experimental work: Study 1 

In the first and second section of the general introduction we have outlined how the 

relationship between effects of stimulus salience and time course of responses seems to be critical for 

the understanding of the relative contribution of stimulus- and goal-driven processes in visual 

selection. When observers take little time to make an eye movement following the presentation of a 

search display, results show they are strongly driven by stimulus-salience, independent of identity of 

the salient item. In contrast, when people are slower to initiate the saccade, selection can be guided 

by the target, in line with task instructions. However, it remains unclear as to what factors determine 

whether observers respond fast or slow on any particular trial, resulting in the respective adoption of 

either stimulus-driven or goal-driven dominant strategies to produce the task-demanding behavioral 

output. While potentially random fluctuations in cognitive control state may contribute (Esterman, 

Noonan, Rosenberg, & DeGutis, 2013; A. Leber, Lechak, & Tower-Richardi, 2013), another factor that 

may determine response speed is individual differences in response biases. For instance, more 

conservative participants may be relatively slower to respond, thereby increasing the accumulation of 

visual evidence to allow for better discrimination of the target. More liberal participants may instead 

respond faster, resulting in saccades that would tend to land on the most salient element in a display. 

Moreover, the balance between conservative and liberal response strategies can also occur within an 

individual over the course of an experiment. Observers, on the basis of performance and feedback 

while accomplishing a visual task, can exert on-line adaptive changes in their speed of selectivity to 

maximize performance. This means that the accumulation of sensory evidence will vary along a 

continuum and lead to different outcomes in terms of accuracy. With study 1, we aim to investigate 

whether observers are able to control the timing of saccadic selection and, if so, whether this then 

regulates the trade-off between stimulus-driven and goal-driven influences. Study 2 will instead focus 
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on the possible difference between brain states as observed by the mean of 

magnetoencephalography (MEG) occurring before the stimulus onset. In details, we are going to 

investigate how prestimulus oscillatory activity in the alpha range (8-12 Hz) may affect visual search 

modalities in respect to performance and saccadic reaction times. 
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Chapter 2 

Study 1: Trading off stimulus salience for identity: a cueing 

approach to disentangle visual selection strategies 

 

Abstract 

Recent studies show that time plays a primary role in determining whether visual selection is 

influenced by stimulus salience or guided by observers’ intentions. Accordingly, when a response is made 

seems critically important in defining the outcome of selection. The present study investigates whether 

observers are able to control the timing of selection and regulate the trade-off between stimulus- and goal-

driven influences. One experiment was conducted in which participants were asked to make a saccade to the 

target, a tilted bar embedded in a matrix of vertical lines. An additional distractor, more or less salient than the 

target, was presented concurrently with the search display. To manipulate when in time the response was 

given we cued participants before each trial to be either fast or accurate. Participants received periodic 

feedback regarding performance speed and accuracy. The results showed participants were able to control the 

timing of selection: the distribution of responses was relatively fast or slow depending on the cue. Performance 

in the fast-cue condition appeared to be primarily driven by stimulus salience, while in the accurate-cue 

condition saccades were guided by the search template. Examining the distribution of responses that 

temporally overlapped between the two cue conditions revealed a main effect of cue. This suggests the cue 

had an additional benefit to performance independent of the effect of salience. These findings show that 

although early selection may be constrained by stimulus salience, observers are flexible in guiding the ‘when’ 

signal and consequently establishing a trade-off between saliency and identity. 
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Introduction 

The amount of visual information available in real world scenes goes far beyond the 

computational capacities of our visual system (Tsotsos, 1989, 1990). Everyday life, however, points 

out the innate ability of selecting from the visual stream subsets of information that are behaviourally 

relevant, filtering out those that are unnecessary. Information gating and distribution of attentional 

resources are therefore fundamental in allowing visually guided behaviour. Theories and models of 

visual search generally assume that two major attentional mechanisms are at the basis of visual and 

oculomotor selection processes (Connor et al., 2004; Corbetta & Shulman, 2002; Shipp, 2004). 

Bottom-up mechanisms are considered to control selection when visual search is stimulus driven (SD); 

that is, when the winner of selection corresponds to the more salient element present in the visual 

field. Visual saliency here refers to the physical, bottom-up distinctiveness of an element, and is a 

relative property that is contextually dependent (Itti, Koch, Niebur, 1998). Top-down processes, 

instead, grant attention to those elements that match the observer’s target settings and lead to goal 

driven (GD) selection behaviours. In the past, some researchers have argued that SD processes 

dominate visual selection (Nothdurft, 2002; Theeuwes, 1992, 2004), resulting in an attentional control 

predominantly driven by saliency. On the other hand, other researchers have claimed that it is GD 

processes which control visual selection (Bacon & Egeth, 1994; Chen & Zelinsky, 2006; Folk, 

Remington, & Johnston, 1992). However, while selection may sometimes be more stimulus driven 

than goal driven or vice versa, most researchers agree that SD and GD factors interact to ultimately 

control the allocation of attentional selection (Connor, Egeth, & Yantis, 2004; Duncan & Humphreys, 

1989;  Serences et al., 2005; Treisman & Sato, 1990).   

 Moreover, recent findings (van Zoest, Donk, & Theeuwes, 2004; van Zoest & Donk, 2006) have 

accumulated evidence for the view that SD and GD strategies influence the processing of the same 

visual stimuli via different time windows. The design adopted in these studies was based on the 

additional-singleton paradigm (Theeuwes, 1992). In this task, participants perform a visual search and 

execute a fast saccade toward a unique target presented amongst a number of identical non-targets. 

A singleton distractor that differs from the target in the same dimension (i.e., orientation) is 

presented concurrently with the search display. This distractor can be more or less salient than the 

target. When saccadic eye movements are measured in this type of task, the typical pattern of results 
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shows that early oculomotor responses are frequently directed toward the most salient element in 

the screen (i.e., singleton target or distractor) while late saccades are more driven by the correct 

identification of the target. This suggests that both SD and GD control occur, but in different time 

windows. Further support for this view can be found in studies on attention and eye movements 

(Hunt,von Muhlenen, & Kingstone, 2007; van Zoest, Donk, & Theeuwes, 2004).  

 The entwined relationship between effects of stimulus salience and time course of responses 

seems critical for the understanding of the relative contribution of SD and GD processes in visual 

selection. However, it remains unclear as to what factors determine whether observers respond fast 

or slow on any particular trial, resulting in the respective adoption of either SD- or GD-dominant 

strategies to produce the task-demanding behavioural output. While potentially random fluctuations 

in cognitive control state may contribute (e.g., Leber, 2010; Esterman et al., 2013), another factor that 

may determine response speed is individual differences in response biases. For instance, more 

conservative participants may be relatively slower to respond, thereby increasing the accumulation of 

visual evidence to allow for better discrimination of the target. More liberal participants may instead 

respond faster, resulting in saccades that would tend to land on the most salient element in a display. 

Moreover, the balance between conservative and liberal response strategies can also occur within an 

individual over the course of an experiment. Observers, on the basis of performance and feedback 

while accomplishing a visual task, can exert on-line adaptive changes in their speed of selectivity to 

maximize performance. This means that the accumulation of sensory evidence will vary along a 

continuum and lead to different outcomes in terms of accuracy. Eventually each participant will 

develop a balance between speed and accuracy in order to achieve the task. With the present study, 

we aim to investigate whether observers are able to control the timing of saccadic selection and, if so, 

whether this then regulates the trade-off between stimulus-driven and goal-driven influences.   

 The general idea of the speed-accuracy trade-off (SAT) has been studied in the field of 

cognitive science for a long time (Pew, 1969; Wickelgren, 1977) and lately has been reconsidered and 

investigated in neuroimaging studies (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; 

Forstmann et al., 2008) and in monkey physiological studies (Heitz & Schall, 2012). Even though the 

models underpinning these studies diverge on the individual dynamics of information gathering, they 

share the idea that sensory evidence accumulates over time from a baseline level until a certain 

threshold (Ivanoff, Branning, & Marois, 2008). Moreover, stimulus strength has been demonstrated to 
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directly affect the functions underlying such dynamics, leading to different outcomes in terms of time 

and accuracy (Palmer, Huk, & Shadlen, 2005). 

 However, psychophysiological tasks in SAT studies consider fast responses to range from ~300 

to ~500 ms (Forstmann et al., 2008; van Veen, Krug, & Carter, 2008). In this regard, the general idea of 

SAT does not easily translate to the trade-off found between stimulus- and goal-driven controls in 

studies of oculomotor visual selection. Oculomotor responses that occur before ~300 ms are not 

necessarily less accurate. For example, when the target is the most salient element on the screen in a 

visual search task (van Zoest et al., 2004) early saccades driven by the high stimulus saliency can reach 

performance level of ~80% accuracy (van Zoest & Donk, 2006). In fact, accuracy in target selection 

decreases over response time instead of increasing as described in the typical accumulator models of 

SAT (Donk & van Zoest, 2008). Accumulator models of SAT are able to explain performance only when 

the salient element is presented as irrelevant distractor; in this case performance steadily increases 

with time. 

 As already outlined, performance and efficiency in visual tasks that rely on saccadic responses 

depend mostly on the interaction between stimulus saliency and the selection strategies that 

observers adopt. However, the degree to which differing selection strategies can be voluntarily 

adopted by observers is still an open question. Moreover is not clear yet if observers are able to 

control and regulate the trade-off between speed and accuracy in oculomotor selection tasks that 

involve differing levels of saliency. Finding that observers are able to control the extent to which 

selection is saliency-driven or guided by goal-directed intentions is in line with the general idea that 

overall performance depends on observer strategies. Recent evidence for early strategic influences 

has been reported in manual reaction time (Geyer, Müller, & Krummenacher, 2008; Thomson, 

Willoughby, & Milliken, 2014), eye tracking (Moher, Abrams, Egeth, Yantis, & Stuphorn, 2011) and 

electrophysiology (Tollner, Muller, & Zehetleitner, 2012) studies. For example, Moher et al. (2011) 

explored suppression of salient capture by manipulating the probability of distractor presence in the 

search array. They found that the degree of distractor interference decreased as distractor 

appearance probability increased, arguing that this was due to participants having greater incentive 

to apply suppression. Taken together, these studies suggest that distractor interference is under 

volitional control, supporting the idea that top-down expectancies can alter observer’s strategies at 



21 
 

early stages of perceptual attentional selection. However, findings from these studies are rarely ever 

directly related to the time-course of performance. 

The current study aimed to examine whether observers could utilize cues to produce different 

SAT strategies in oculomotor selection. Recent SAT studies have shown that the use of explicit cues 

emphasizing speed or accuracy can induce specific behavioral strategies both in humans (van Veen et 

al., 2008) and non-human primates (Heitz & Schall, 2012). Van Veen et al. (2008) demonstrated that, 

in line with cued instructions provided before a block of trials, participants could alter their manual 

response performance in a Simon task to emphasize speed at the cost of accuracy and vice versa. 

Heitz and Schall (2012) manipulated central fixation color to instruct primates to make either a fast, 

neutral or accurate saccadic response in a visual search task. Their findings show that primates can 

also proficiently adjust their behavior in line with cue instructions. The main question then is how the 

potential flexibility regarding when to make an eye movement may interact with the dynamic 

influence of stimulus salience in visual selection.  

 

Experiment 

In order to investigate whether observers are able to modulate and control visual selection 

strategies efficiently, trial-wise instructions emphasizing task speed or accuracy were given. 

Specifically, participants were cued to either make a fast or an accurate saccade to the target. The 

target was a uniquely oriented line element surrounded by a series of homogeneously oriented non-

targets. Together with the target and non-targets an additional distractor of unique orientation was 

presented. The distractor was always tilted to the opposite direction of the target and could vary in 

orientation to be more or less salient than the target (as determined by orientation relative to the 

non-targets).  

 If it is the case that observers are able to control the timing of visual selection, we expect to 

find a difference in saccadic reaction times (SRTs) between the two cue conditions. More specifically, 

in the fast condition observers should be able to make rapid saccades and consequently be more 

influenced by the relative salience of the unique elements displayed. On the other hand, in the 

accurate condition we expect participants to slow down and so be more likely to avoid fast salient 
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capture, allowing them to direct a greater proportion of saccades to the target. The cue may 

furthermore influence the time-course of selection. In this case we expect that the entire distribution 

of selection responses will shift to a later moment in time in the accurate cue condition compared to 

the fast cue condition. The main question then, is how this shift in time will affect the time-course of 

accuracy performance. It may be the case that an overall slower time-course will not affect the 

underlying trade-off processing between stimulus- and goal-driven controls. That is, the cue will affect 

SRTs, but the underlying function will be same in both cue conditions: the only difference between 

the cues being the result of observers accessing the function at different moments in time. 

Alternatively, it may be that the cue has an additional effect on the time-course function. 

Independent of the delay in the distribution of responses, the cue may qualitatively change the 

information sensitivity that guides the responses. This may increase performance in the accurate-cue 

condition relative to the fast-cue condition, above and beyond what is to be expected on the basis of 

time alone.  

 

Methods 

i. Participants 

Twenty young adults (11 females, average age 23.5 years, range 20-28 years) participated as 

paid volunteers. All subjects reported having normal or corrected-to-normal vision. Two participants 

were excluded from the analyses due to a high percentage of errors (> 30%, error specification in the 

results section). The study was conducted in accordance with ethical standards codified by the World 

Medical Association in the Declaration of Helsinki and written informed consent was obtained from 

participants before the experiment. 
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ii. Apparatus 

A tower mount PC, (Dell Precision T1600) based on Intel Xeon (3.10 Ghz) technology with 8.00 

GB of RAM coupled with a high performance 19’’ monitor (ViewSonic E96f+SB, display area 360 × 270 

mm, refresh rate 100 Hz) were used for stimulus presentation. The experimental design was realized 

with Psychtoolbox 3 (Psychophysics Toolbox Version 3; Brainard, 1997; Pelli, 1997) in combination 

with MATLAB R2010b. Eye movements were recorded with the Eyelink® 1000 (SR research). All 

participants were sitting at a distance of approximately 600 mm in front of the monitor with the head 

supported by a chinrest. The experiment took place in a sound-attenuated lab with suffused light. 

 

ii. Stimuli 

Participants were asked to perform a visual search task (figure 1) in which they had to make a 

saccade to a target. For half of the participants, the target consisted of a right-tilted bar (i.e., a line 

segment tilted 45° to the right of a vertical axis), while the other half looked for a left-tilted bar (i.e., a 

line segment tilted 45° to the left). The target was embedded within a raster of non-targets (i.e., 

vertically oriented line segments). Together with the target and the raster of singleton non-targets, an 

additional distractor was presented. The distractor was always tilted to the opposite direction of the 

target and could vary in orientation to be more (67.5°) or less (22.5°) salient than the target, 

henceforth referred to as MS and LS conditions, respectively. All elements (1 target, 1 distractor, and 

287 non-targets) were arranged in a 17 × 17 matrix display with a raster width of 290 × 210 mm (27.2° 

× 19.9° of visual angle). The target and unique distractor could appear at four different locations set 

on the corners of an imaginary square such that, embedded within the matrix of non-targets, targets 

and distractors were always presented at equal distance from fixation (7.6° of visual angle) and 

separated by an angular distance of 90°. All line elements had an approximate height of 0.65° and 

width of 0.12° of visual angle. All elements were white and superimposed on a black background. 
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iv. Design and Procedures 

Each trial started with a drift correction whereby participants pressed the space bar while 

fixating a central point. A display with a central cue (“fast” or “accurate”) then appeared for 1000 ms, 

indicating whether participants should aim to be as fast or as accurate as possible in their response. 

After the cue, a display with a central fixation point was presented for 1000 ms followed by the 

stimulus array. The stimulus array was presented for 1500 ms. Participants were instructed to keep 

fixation until the appearance of the stimulus. 

 

Fig. 1: Trial sequence. Participants executed a saccade to the uniquely oriented target element, depicted here as the 45° tilted segment 

to the right relative to vertical non-target elements. Together with the target and the raster of non-targets an additional distractor of 

unique orientation was presented. The distractor was always tilted to the opposite direction of the target and could vary in orientation 

to be more or less salient than the target. Before the stimulus array, a display with the cue (“fast” or ”accurate”) was shown, indicating 

whether participants should be as fast or as accurate as possible in their responses. Note, stimuli not drawn to scale. 

 

To make sure that the task was fully understood by the participants, oral and written instructions 

were given and a practice session of 32 trials conducted before the beginning of the experiment. 
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Visual feedback on SRTs and accuracy was given to participants every 32 trials to reinforce the 

manipulation and to keep participants motivated throughout the experiment. Participants were 

instructed to be faster if the SRT mean was below 300 ms and to be more accurate if accuracy was 

less than 70%. A factorial design was used; cue (fast vs. accurate), target positions (4), distractor 

orientation (LS vs. MS) and distractor positions (2, constrained by target position) were equally 

counterbalanced and presented in random order. The experiment consisted of 576 trials divided into 

three blocks of 192 trials and lasted approximately 50 minutes. The eye tracker was recalibrated after 

each block. 

 

Results 

i. Error and data validation criteria 

Saccades were defined on the basis of minimum eye-movement velocity and acceleration 

thresholds (30°/s and 8000°/s2, respectively). SRT was defined as the time between the onset of the 

stimuli and the moment in which a saccade of at least 3° of visual angle was made from the fixation 

point. If the first saccade landed within a distance of 4° of visual angle from target or distractor the 

trial was considered valid for analyses. Trials were excluded if the initial saccade went neither to the 

target nor to distractor (trials rejected = 6.61%, mean SRT = 325 ms), started from more than 3° of 

visual angle from central fixation at the onset of the search display (trials rejected = 3.12%), initiated 

within 80 ms of the onset of the stimuli display (trials rejected = 0.65%), or if the SRT was larger than 

2.5 standard deviations from individual participant means (trials rejected = 0.23%). These 

specifications led to the rejection of 10.61% of trials from the 18 participants that were included in 

the primary analyses.  

 

ii. SRT’s and proportions to target 

A two-by-two repeated measures ANOVA design was used to test the effects of the within-subject 

factors (cue: fast or accurate and distractor orientation: LS or MS) on the dependent variables 
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(proportion to target and SRTs).  Figure 2 displays the overall mean proportion of saccades made to 

the target1 and the average SRT as a function of cue and distractor orientation. 

 

Fig. 2: Main effect of the cue on the mean proportion to target (a) and SRTs (b) as a function of distractor saliency manipulation. 

Error bars reflect standard errors of the mean.   

 

The results of the ANOVA revealed a significant main effect of the cue on proportion to target, 

F (1, 17) = 61.71, MSE = .011, p < .001, partial η² = .78. Participants were more precise in the accurate 

cue condition (M = .80) compared to the fast cue condition (M = .60). A significant main effect was 

found for distractor orientation F (1, 17) = 21.02, MSE = .010, p < .001, partial η² = .55; saccades were 

directed more toward the target in the LS distractor condition (M = .76) when compared with the MS 

distractor condition (M = .65). A significant two-way interaction was found between cue and 

distractor orientation F (1, 17) = 34. 21, MSE = .004, p < .001, partial η² = .67. In the fast cue condition 

the orientation manipulation led to a large behavioral difference in proportion to target between the 

MS (M = .51) and LS (M = .71) distractor conditions. In contrast, for the accurate cue condition the 

difference in performance between the LS (M = .79) and MS (M = .81) distractor orientations tested 

with Bonferroni post-hoc analyses did not show any significant difference. The ANOVA conducted on 

                                                             
1  The proportion to target is computed by dividing the number of saccades landed on target by the   total number of     
saccades that went to either the target or distractor 
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SRTs revealed a significant main effect of cue, F (1, 17) = 59.38, MSE = 8461, p < .001, partial η² = .78. 

SRTs were shorter in the fast cue condition (M = 280 ms) than in the accurate cue condition (M = 447 

ms). However, the average SRT in the MS distractor condition (M = 367 ms) did not significantly differ 

from the LS condition (M = 361 ms), F (1, 17) < 2.46. 

 

iii. Time course analyses  

1. Proportion to Target 

To explore the relative contribution of the cue in stimulus- and goal-driven control in visual 

search as a function of time, mean SRTs and proportions to target were computed separately for each 

type of cue, distractor orientation, and for each quartile of the initial SRT distributions. Figure 3 shows 

the mean proportions of correct saccades across participants as a function of quartile time bin 

separately for cue type and distractor orientations. A within-subject three-way repeated measures 

ANOVA was conducted on the proportion of correct saccades, with cue (fast, accurate), distractor 

orientation (LS, MS) and quartiles (1-4) as factors. All main effects (cue, distractor orientation, and 

quartiles) were significant, together with the three two-way interactions (cue × distractor orientation, 

cue × quartiles, and distractor orientation × quartiles; all Fs (1, 17) and (3, 51) > 8.93, ps < .001). 

Moreover, as observable in figure 3 and crucial for the current analyses, these effects were qualified 

by a significant three-way interaction (cue × distractor orientation × quartiles), F (3, 51) = 6.41, MSE = 

.008, p < .001, partial η² = .27. To test for significant differences between distractor orientations in 

each quartile, post-hoc analyses using Bonferroni-corrected criterion were conducted for the time-

course of the accurate and fast cue condition. In the fast cue condition, distractor orientation mostly 

modulated the responses. In the first quartile, the saccadic behavior conveyed by proportion to target 

between the two distractor conditions showed a significant difference (Ms MS = .36 vs. LS = .81, p < 

.001). The second and third quartiles indicated decreasing, but still significant, differences in 

proportion to target between distractor conditions (2nd quartile: Ms MS  = .42 vs. LS = .70; 3rd quartile: 

Ms MS = .54 vs. LS = .63, ps < .001).  
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Fig. 3: Proportion of eye movements correctly directed toward the target as a function of time. Saccade latencies were divided 

according to cue type (fast/accurate). Fast and accurate SRT distributions were further plotted separately for each distractor 

condition (MS/LS) and vincentized in 4 time bins. Error bars reflect standard errors of the mean. 

 

This difference was not significant by the fourth quartile (Ms MS = .67 vs. LS = .65, p > .05). The 

accurate cue condition, characterized by slower responses, shows initially the same (albeit minor) 

significant difference in proportion to target between distractor conditions for the first quartile (Ms 

MS = .57 vs. LS = .75, p < .05). In the second quartile no significant difference was found in 

performance between distractor orientations (Ms MS = .75 vs. LS = .75, p > .05). Intriguingly, the third 

and fourth quartiles appear to be characterized by an opposite tendency: participants were better 

able to discriminate the target when in presence of the MS distractor (3rd quartile M = .85; 4th quartile 

M = .92) than compared to when the LS distractor was present (3rd quartile M = .80; 4th quartile M = 

.87). However, these differences were not reliable (ps > .05).  
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2. Saccade latency 

A within-subject three-way repeated measures ANOVA was conducted on SRTs with cue (fast, 

accurate), distractor orientation (LS, MS) and quartiles (1-4) as main factors. Of the main effects (cue, 

distractor orientation, quartiles), cue: F (1, 17) = 49.10, MSE = 36221, p < .001, partial η² = .74, and 

quartiles: F (3, 51) = 229.24, MSE = 3751, p < .001, η² = .93, were significant, while distractor 

orientation effect was not (F (1, 17) < 2.90). The significant interaction of cue × quartiles (F (3, 51) = 

18.27, MSE = 2686, p < .001, partial η² = .51) shows that the distribution of latencies in the fast cue 

condition was narrower compared to the accurate cue condition (from 179 ms to 372 ms following 

fast cues vs. 274 ms to 588 ms following accurate cues). The significant interaction between distractor 

orientation and quartiles was significant (F (3, 51) = 5.28, MSE = 101, p < .05, partial η² = .24), with 

post-hoc comparisons indicating a significant difference only for the fourth quartile (M MS = 474 vs. M 

LS = 486, p < .001). The interaction between cue and distractor orientation (F (1, 17) < 1.00) was not 

significant, showing that there were no differences in SRT to the target in the LS or in the MS 

distractor as a function of the cue manipulation. Moreover, time did not modulate this pattern as 

evidenced from the absence of a significant three-way interaction (cue × distractor orientation × 

quartiles, F (3, 51) < 1.00).  

An additional analysis assessed whether the large influence of salience was a common feature 

of rapid responding across (vs. solely within) individual SRT distributions. A correlation was performed 

on the relationship between an individual’s ‘Saliency Effect’ (proportion to target in the LS – MS 

distractor orientation condition) and mean SRTs for each participant in the two cue conditions. If the 

time-course of performance also affects selection generally between participants, it was predicted 

that observers that were fast to respond should have a larger Saliency Effect than observers who 

were on average slow to respond. In contrast, if the time-course was primarily restricted to within-in 

subject variability, this pattern of results should not be present. The analyses revealed a negative 

trend between the size of the Saliency Effect and latency of SRTs in the fast-cue condition (r(18) = -

0.44, p = .065) and a significant negative correlation in the accurate-cue condition (r(18) = -0.53, p < 

.05). These results provide partial support for the hypothesis that generally, the faster a participant is, 

the more likely they will be influenced by salience. 
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iv. Interim discussion 

These results demonstrate that participants were able to utilize the cue to modulate their 

oculomotor responses in time and accuracy domains. Specifically, in line with the cue, the fast cue 

responses were faster and less accurate overall than the accurate cue responses, which were slower 

and more accurate. Observers were able to guide the ‘when’ signal (see also, Findlay & Walker, 

1999).As predicted by the time-course of selection, performance in the fast-cue condition was 

primarily driven by stimulus salience. Early responses in time, as expressed in the time-course 

analyses, were mainly directed to the most salient element, which was the target (45°) in presence of 

the less salient distractor (22.5°). In contrast, when the distractor was more salient (67.5°) than the 

target (45°), oculomotor responses landed most frequently on the distractor. This effect slowly 

disappeared over response time: in the last quartile, despite a general decrease of accuracy when the 

target was the most salient element there were no differences in proportion to target as a function of 

distractor saliency. The accurate-cue condition, on the other hand, was characterized by overall 

slower oculomotor RTs and an increase in performance accuracy. Visual search was guided to a 

greater extent by observers’ intentions even though relatively fast responses were still affected by the 

distractor saliency manipulation. These results demonstrate the cue effectiveness as a top-down 

modulator used by participants to regulate the speed-accuracy trade-off in performing the visual 

search task. 

         However, we also observed a vast difference in the SRT distributions between the two cue 

conditions. The responses in the accurate-cue condition showed overall slower latencies and a wider 

distribution while the fast-cue condition was characterized by relatively quicker oculomotor 

responses and a narrower distribution. Such observations were supported by a chi-square test 

comparing the proportion of responses in each quadrant between the two distributions (χ2 (3, N = 

4634) = 1375, p < .001). Despite these differences, there was an overlap in SRT between responses of 

fast and accurate distributions. Thus, the question that remains is to what extent does the cue affect 

performance, independently of time-course differences? That is, if we match for SRT across both cue 

conditions, is performance qualitatively different between cue conditions? Or instead, is performance 

solely based on the time-course of selection? If the cue has a distinct contribution to performance, we 

would expect to find an overall difference in accuracy between the two cue conditions when matched 
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for SRT. Alternatively, if the cue no longer affects performance, the outcome of selection would be 

completely determined by when in time the saccade is executed. 

 

1. Further analyses 

a. Methods 

For each participant, we first extracted the distribution of saccadic responses that temporally 

overlapped across both fast- and accurate-cue conditions. Because SRTs in the fast-cue condition 

occurred earlier in time than in the accurate-cue condition, this was accomplished by taking the 

fastest (i.e., lower limit) of the accurate cue responses and the slowest (i.e., upper limit) of the fast 

cue responses. This initial trimming created two response distributions within the same time range. 

Because the frequency distributions of trials within the selected time window were not equivalent 

across both cue conditions, we equalized the frequencies in each cue condition using a histogram 

function. Histograms (each with 10 bins) were created separately for the fast-cue and accurate-cue 

overlap distributions and the frequencies in each bin were then matched across cue condition, such 

that both had equal number of trials in each of the 10 bins. Participants were only included if they had 

at least 140 trials across the 10 bins; this led to the exclusion of one more participant from the further 

analyses. A two-tailed paired-samples t-test comparing extracted SRT means for fast- versus accurate-

cue conditions was not significant (t (16) = 1.40, p = .18), allowing for the subsequent comparison of 

performance accuracy between the two cue conditions. The new SRTs, matched for time and trial-

frequency, were then used to calculate the new vincentized time-course of performance (three bins, 

see figure 4).  
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b. Results 

The effect of cue on performance for the SRT intersecting distributions was tested with a 

three-way repeated measure ANOVA (factors: cue × distractor orientation × tertiles) as shown in 

figure 4. The analyses revealed a significant main effect of cue (F (1, 16) = 14.93, MSE = .017, p < .002, 

partial η² = .48): overall performance accuracy benefited from the accurate cue (M = 0.71) compared 

to the fast cue (M = 0.63). The significant main effect of distractor orientation (F (1, 16) = 9.37, MSE = 

.044, p < .008, partial η² = .37) followed the direction of the previous analyses: despite an equivalent 

time-course the MS distractor (67.5°) elicited generally worse performance (M = 0.61) than the LS 

distractor (22.5°; M = 0.71). In the significant two-way interaction between cue × distractor 

orientation (F (1, 16) = 6.43, MSE = .008, p < .05, partial η² = .29) a greater difference was observed 

between distractor conditions in the fast-cue (Ms MS = 0.57 vs. LS  = 0.69) compared to the accurate-

cue condition (Ms MS = 0.67 vs. LS = 0.73). As expected, the increase in proportion to target as a 

function of tertiles was also significant (F (2, 32) = 15.36, MSE = .020, p < .001, partial η² = .49).  

 

Fig. 4: New vincentized time-course of performance (3 bins) computed on the basis of the oculomotor responses that overlap in time. 

Error bars reflect standard errors of the mean. 
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There was a significant two-way interaction between distractor orientation and tertiles (F (2, 32) = 

26.52, MSE = .018, p < .001, partial η² = .62). Neither the cue × tertiles interaction (F (2, 32) < 2.20) or 

the three-way interaction between cue, distractor orientation, and tertiles (F (2, 32) < 0.20) were 

significant. 

 

Discussion 

Our results show that independent of the cue, short-latency saccades were driven by stimulus 

salience and long latency responses were primarily goal directed. Importantly, for the aims of the 

present study, we found evidence that observers are able to control the timing of saccadic visual 

selection by following the trial-wise instructions. Selection in the fast cue condition was characterized 

by rapid saccades while the accurate cue condition was characterized by overall slower oculomotor 

responses. Looking at the overall performance as a function of time-course, the trade-off in the fast 

cue primarily showed stimulus-driven selection based on saliency early in time; evidence for goal-

driven control was only found in the final time bin, where stimulus salience no longer influenced 

selection. Instead, goal-driven processes predominantly guided the trade-off in the accurate cue 

condition; stimulus salience only influenced performance for the fastest responses. It appeared that 

observers’ timing of responses based on the cue influenced this trade-off between stimulus- and goal-

driven strategies. In sum, guided by the cue, observers were able to elicit faster or slower eye 

movements thereby consequently exerting adaptive changes in their visual search strategies, making 

selection relatively more stimulus- or goal-driven. 

The present results suggest that the ability to elicit either a fast or slow response is flexible: 

participants are able to adopt a ‘fast’ or ’accurate’ strategy before each trial, depending on the task 

instructions. This has a consequent effect on whether search processes are primarily stimulus- or 

goal-driven. Specifically in the fast-cue condition participants may have been prompted into a 

cognitive state that allowed rapid attentional deployment characterized by fast and salient captures; 

goal-driven control was severely limited in this case. On the other hand, in the accurate-cue condition, 

participants appeared to refrain from fast responding and so were able to avoid salient capture; 

observers were more accurate in making correct eye movements to the designated target. These 
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results indicate that while performing the task, participants were able to optimize their internal states 

to guide behavior, that is, observers were able to enter a state of cognitive control in which 

performance was optimized to accomplish the task in the given situation (Miller, 2000). Our results 

thus illustrate an important role of an observer’s preparedness in solving a task. Interestingly, a 

negative association between the magnitude of the Saliency Effect and individual SRTs suggests that 

the trade-off between stimulus- and goal-driven selection as a function of response time is not solely 

explained by intra-subject variability. Observers who were faster overall to respond showed a larger 

effect of saliency than those who were generally slower. 

Critically, however, when SRTs were matched between cue conditions, while there were no 

longer any differences in the trade-off between stimulus-driven and goal-driven selection, overall 

performance accuracy in the accurate-cue condition was better than in the fast-cue condition. This 

finding suggests that the cue may have qualitatively changed the sensitivity related to the accrual of 

information that guided the visual selection process. The performance enhancement in the accurate-

cue condition relative to the fast-cue condition suggests that mechanisms of selection can alter 

sensitivity prior to saccadic execution depending on a given strategy. 

         The present findings are in line with a SAT study on monkey physiology (Heitz & Schall, 2012) 

where primates were instructed to perform a visual search task where they had to saccade to a 

specific target (L or T shapes) presented concurrently with distractors (L or T shapes). Before each 

trial, monkeys were cued to either make a fast, neutral, or accurate saccade. Monkeys were able to 

produce saccades in line with the cue and moreover, Heitz and Schall found that activity for visual 

salience neurons started to differ 300 ms before the onset of the stimuli for fast and accurate cues. 

Specifically, the neuron discharge rate was significantly greater and increased more rapidly over time 

in the fast, than in the accurate, cue condition. These results suggest that fast saccades are rapidly 

engaged from pools of visually responsive neurons that encode stimulus salience. Visually responsive 

neurons in the frontal eye field (FEF), superior colliculus (SC), and posterior parietal cortex (PPC) can 

modulate their firing rate according to top-down guidance instructions (i.e., cue and stimuli’s physical 

properties). 



35 
 

The overall performance benefit that we observed in the accurate cue condition when SRTs 

were matched between cue conditions, suggest that mechanisms of selection can be more sensitive 

prior to saccadic execution. Pre-stimulus effects of preparation have also been reported for feature-

specific instructions in a recent fMRI study from Serences and Boynton (Serences & Boynton, 2007) 

and in a monkey physiology study (Hayden & Gallant, 2005). The results of these studies suggest that 

feature-based attention can be enhanced before the stimulus presentation by increasing sensitivity to 

certain features (i.e., orientation, color) facilitating the perception of behaviorally pertinent stimuli. 

Although the above studies do not directly refer to saccadic selection, these mechanisms seem to 

affect the oculomotor system as well. A recent study (Weaver, Paoletti, & van Zoest, 2014) reported 

an increase of performance in very early saccades when a feature-informative cue (color) regarding 

the target was given to participants rather than a neutral cue. However, the results of the present 

study differ in that the enhancement concerned a general feature-independent improvement in 

performance. As far as we are aware, this study is the first to show that this type of aspecific 

information can affect saccadic efficiency in humans. However, unlike the feature-specific preparation 

benefit apparent from the fastest saccadic responses under 200 ms (Weaver, Paoletti, & van Zoest, 

2014), the general benefit in the present study seemed to take more time to be established. The 

benefit from the accurate cue was only observable after 250 ms, the time it typically takes for goal-

driven strategies in orientation search to be expressed (van Zoest, Donk, & Theeuwes, 2004). Still, the 

present data are limited to this respect because of the absence of data before 250 ms in the accurate-

cue condition. Based on the present data, it cannot be determined whether the general enhancement 

following the cue can also be established for the fastest oculomotor responses. 

However, while not necessarily related to the speed of saccadic selection, Moher et al. (2011) 

showed that advanced a specific information concerning the likelihood of distractor appearance 

affects oculomotor performance. In their study, the proportion of distractor to no-distractor trials was 

manipulated while participants performed an additional-singleton task. Their results showed that the 

degree of distractor interference varied as a function of distractor appearance probability: 

oculomotor capture was reduced when the probability of distractor appearance was increased. This 

finding was taken to suggest that distractor interference is under volitional control, in that observers 

could voluntarily and flexibly adopt top-down attentional control settings to ignore rapidly salient 
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distractors. However, one caveat to consider when probabilities of conditions are varied is that 

intertrial repetitions co-vary with probability. Specifically, intertrial priming is more likely to occur 

when the probability of distractor presence is increased. This then may have affected the ability to 

ignore the distractor and reduce oculomotor capture (see also Theeuwes, 2013). Moreover, it is 

unclear how this type of cueing is related to the time-course of performance. For example, in relation 

to the potential intertrial priming, it may be the case that observers were relatively slow to respond 

when the probability of distractor appearance was high. This SRT decrease could have increased the 

relative goal-driven control compared to a situation where observers were relatively fast to respond 

when distractor probability was low. 

The time window between the cue presentation and the stimulus appearance, also known as 

pre-stimulus phase, has recently gained importance among the scientific community and has been 

shown to impact stimuli perception not only in psychophysiological experiments (Hanslmayr et al., 

2007), but also in the specific context of visual search studies (Mazaheri, DiQuattro, Bengson, & Geng, 

2011). Interestingly, a recent study by Leber (2010) revealed that different degrees of distraction 

could be predicted by specific pre-trial activity in the middle frontal gyrus (MFG) as recorded by fMRI. 

Non-invasive physiology techniques with better temporal resolution than fMRI such as 

electroencephalography (EEG) and magnetoencephalography (MEG) may be able to provide more 

insight on the mechanisms that underlie changes in sensitivity before stimulus presentation. 

Irrespective of any cue, it may be that brain states themselves could also impact the strategy that 

participants adopt on any particular trial. Future investigation on visual selection strategies based on 

brain-state dependent stimulation (Jensen et al., 2011; Silvanto, Muggleton, & Walsh, 2008) may 

open new ways to assess how brain signatures proper of specifics and different attentional states 

affect saccadic control in humans. 

The present results differ in an important way from traditional SAT studies that typically 

account for a linear relation between accuracy and speed with which a task is solved. Based purely on 

stimulus saliency, performance does not need to be inaccurate when responses are speeded. 

Specifically, performance was initially very accurate when the target was salient and the distractor not 

salient (accuracy > 80%). As control increased, performance decreased as a function of saccade 

latency. It is presently poorly understood how neurons that encode stimulus-salience are related to 
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this negative slope found in the fast-cue condition (see also, Donk & van Zoest, 2008; van Zoest & 

Donk, 2008). A possible explanation is that independent of stimulus identity, observers suppress 

salience activity. While this strategy is counterintuitive when the target is the most salient element, it 

eventually leads to selection that is in accordance with the required task. Based on this explanation, 

stimulus-driven processes would impact oculomotor responses only when the responses are made 

before the active inhibitory processes take place (Godijn & Theeuwes, 2002; McSorley, 2006). 

Alternatively, it may be the case that independent of goal-driven strategies, saliency related activity 

rapidly decays over time in a passive fashion (Cheal & Lyon, 1991; Donk & van Zoest, 2008; Nakayama 

& Mackeben, 1989; Nothdurft, 2002). As a consequence, later selection would become less and less 

influenced by the early stimulus-driven activity elicited by highly salient targets. 

 In order to distinguish between these accounts using data from the present study, we 

conducted an additional analysis to test whether active suppression of the target occurred when 

appearing at a former distractor location. If there is an active suppression of saliency, then we would 

expect that the location of suppressed distractor saliency would inhibit selection of a target presented 

at the same location on a subsequent trial. Alternatively, if saliency rapidly (i.e., within a trial) and 

passively fades, then we would not expect previous location of a salient distractor to influence 

performance on a subsequent trial. Participants were observed to be significantly slower and less 

accurate to select a target when it was presented in the same location as a distractor on a previous 

trial2. This finding is consistent with that of a recent study showing that singleton distractors elicit 

location-specific inhibition (Gaspar & McDonald, 2014). Although these results do not rule out the 

account that stimulus influence rapidly and passively fades out, the analysis provides evidence 

supporting an active suppression of distractor location from one trial to the next. 

                                                             
2  A two-way ANOVA was conducted on proportion to target and SRT, using within-participants factors of Cue and Previous Location (target at previous 

distractor location vs. target at previous neutral location; TD vs TN). Previous trial location only included subsequent trials of an identical cue condition 

and the neutral location referred to a location containing a vertically oriented non-target line. The analyses revealed a significant main effect of previous 

trial location for both SRT (F (1,17) = 14.79, MSE = 569, p < .01, partial η² = .47) and accuracy (F (1,17) = 19.87, MSE = .007, p < .001, partial η² = .54) 

performance. Participants were slower (Ms TD = 370 ms vs. TN  = 348 ms) and less accurate (Ms TD = 0.59 vs. TN  = 0.68) to select a target when it was 

presented in the same location as a distractor on a previous trial. There was no significant interaction between previous trial location and cue (Fs < 3.80). 
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The present study revealed that individual observers are relatively flexible regarding the extent 

to when a response is triggered. This ‘when’ signal in turn, determined the degree to which 

participants were more or less driven by stimulus salience or identity. Thus, when investigating 

whether visual selection is primarily stimulus or goal driven, the present work demonstrates the 

critical importance of taking into account the trade-off between the influence of stimulus salience and 

target identity over time. 
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2.1 Motivation experimental work: Study 2 

 

In summary, the results of study 1 suggest that the time window before the stimulus onset 

plays an important role in defining the timing of response, which in turn become crucial for the 

behavioral outcome of the visual search. Our first study demonstrates that participants were able to 

adopt a ‘fast’ or ’accurate’ strategy before each trial, depending on the task instructions. This had a 

consequent effect on whether search processes were primarily stimulus- or goal-driven. Specifically in 

the fast-cue condition participants may have been prompted into a cognitive state that allowed rapid 

attentional deployment characterized by fast and salient captures; goal-driven control was severely 

limited in this case. On the other hand, in the accurate-cue condition, participants appeared to refrain 

from fast responding and so were able to avoid salient capture; observers were more accurate in 

making correct eye movements to the designated target. These results indicate that while performing 

the task, participants were able to optimize their internal states to guide behavior, that is, observers 

were able to enter a state of cognitive control in which performance was optimized to accomplish the 

task in the given situation (Miller, 2000). This preparatory period, in the following also referred to as 

prestimulus phase and consisting of a time window between the cue presentation and the stimulus 

appearance has recently gained interest within the scientific community. It has been shown to impact 

stimulus perception not only in psychophysiological experiments (Hanslmayr et al., 2007), but also in 

the context of visual studies (Jensen, Bonnefond, & Van Rullen, 2012; Thut, Miniussi, & Gross, 2012; 

Mazaheri, DiQuattro, Bengson, & Geng, 2011). The results of these studies suggest that neural 

oscillations occurring in the prestimulus period may be functionally important for visual control and 

processing (Jensen, Bonnefond, & Van Rullen, 2012; Thut, Miniussi, & Gross, 2012). Neural oscillatory 

activity comes from rhythmic spikes of neuronal populations at the level of post-synaptic potentials, 

and can be easily recorded by the means of electroencephalogram (EEG) or magnetoencephalography 

(MEG). For example, prestimulus oscillations in the alpha band (8-12 Hz) have been proposed to play 

a functional role in stimulus perception. General increases in alpha power have been associated with 

lower probabilities of consciously processing visual stimuli close to perception thresholds (Babiloni, 

Vecchio, Bultrini, Romani, & Rossini, 2006; Lange, Keil, Schnitzler, van Dijk, & Weisz, 2014; Linkenkaer-

Hansen, Vadim, Palva, Ilmoniemi, & Palva, 2004) and poor perceptual performance (Hanslmayr et al., 
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2007; van Dijk, Schoffelen, Oostenveld, & Jensen, 2008). Alpha modulations have additionally been 

associated to spatial control of attention, where it is has been suggested that different patterns of 

alpha power modulations over posterior brain areas may provide an index of voluntary shifting or 

maintenance of attention (Rihs, Michel, & Thut, 2009; Thut, Nietzel, Brandt, & Pascual-Leone, 2006). 

However, most of these studies focus on covert and spatial attention and uses different designs other 

than visual search displays. We propose to makes use of concurrent eye movement and MEG 

recordings to investigate the role of prestimulus oscillatory activity in the context of oculomotor overt 

selection and especially in the study of stimulus- and goal-driven control time-course. 

In the paragraph “Neural correlates of visual selection” we outlined how Buschman & Miller 

and Corbetta & Shulman (Buschman & Miller, 2007,2013; Corbetta, Shulman, Miezin, & Petersen, 

1995; Corbetta, 1998; Shulman, D’Avossa, Tansy, & Corbetta, 2002) mostly utilized fMRI and PET to 

study the neural underpinning of stimulus- and goal-driven processes. However, in the General 

introduction we pointed out the importance of time when studying the interaction between these 

competing visual strategies. We find that fMRI and PET techniques lack of the right temporal 

resolution to investigate processes where time plays such an important role. This is why in study 2 we 

propose to combine the eye tracking device with the MEG to investigate how possible different brain 

states may impact on oculomotor selection strategies. A certain brain state, as for example expressed 

by alpha oscillatory activity in a specific brain area, may be a signature of a certain type of oculomotor 

control. The good spatial resolution of MEG may give us the possibility to identify the source of 

activity in the brain that is determinant of a more goal-driven strategy rather than stimulus-driven. In 

addition, the MEG temporal resolution of milliseconds, combined with the high temporal resolution of 

the eye tracking, may allow us to follow the cortical stages of visual processing just before the saccade 

is deployed. In visual search experiments where eye movements are recorded, saccadic reaction times 

range usually between 100 to 300 ms. Given his high temporal and spatial resolution, to us MEG is the 

best neuroimaging method to combine with the eye tracking for the study of oculomotor selection in 

visual search.  

One drawback of a concurrent eye tracking and MEG recordings can derive from spikes and 

artifacts generated by eye movement and blinks. However latest advance in the Independent 

Component Analyses (ICA) method may help to identify the artifactual features of blinks and eye 
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movement (Bell & Sejnowski, 1995; Makeig, Bell, Jung, & Sejnowski, 1996). Once identified, ICA would 

allow removing them from the recordings without any threat for subsequent data analyses. 
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Chapter 3  

Study 2: The effect of pre-stimulus neural oscillatory activity 

on saccadic reaction times and oculomotor selection 

performance 

 

Abstract 

When in time a response is made seems critically important in defining whether visual selection is 

driven by physical stimulus-salience or goal-driven control. In study 1 we investigated whether 

observers are able to control the timing of selection and regulate the trade-off between stimulus- and 

goal-driven influences. Participants were instructed to make a saccade to an orientation target while a 

cue instructed them to do so either ‘fast’ or ‘accurate’. Relative salience of the target and an 

irrelevant distractor was manipulated. Performance in the fast-cue condition appeared to be driven 

by stimulus salience, while in the accurate-cue condition saccades were guided by the search 

template. A main effect of cue suggests that preparation can bias mechanisms of selection prior to 

saccadic execution. In study 2, using spontaneous response time variability, we tested the hypothesis 

that alpha-oscillations (8-12 Hz) occurring in the prestimulus period may influence performance and 

saccadic reaction times in a visual search task. Using a similar design, MEG and eye movements were 

measured concurrently. Results revealed that slow oculomotor reaction times in the non-salient 

target condition were predicted by an overall increase of power in the alpha range. Additionally, 

higher alpha pre-stimulus activity seems to predict erroneous response similarly for fast and slow 

saccadic reaction times. When further decomposing the source of the difference between correct and 

incorrect responses for fast and slow saccadic reaction times, analyses revealed two main sources of 

activity. Wrong responses for fast saccadic reaction times were anticipated by higher alpha activity 

occurring in the parietal regions, with sources located in the lateral intraparietal area. The source of 
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alpha activity for the errors occurring in the slow responses was instead located more in the frontal 

lobes and specifically around the dorsolateral prefrontal cortex.  

 

Introduction 

Picture yourself arriving late in a busy conference hall, searching for a free seat. Suddenly, the 

presenter announces that the talk is going to start, and you need to rapidly find among the crowded 

room a free seat. To succeed in this situation, your brain needs to select and process task-relevant 

sensory information required to find the free spot, filtering out the unnecessary. In this example, goal-

related mechanisms needed to find the desired seat are in competition with interfering processes 

related to task-irrelevant salient information, like perceiving the bright yellow shirt of a colleague, or 

the starting up of the presentation on the big screen. The literature refers to these competing 

mechanisms of visual control as goal-driven, when top-down processes grant attention to those 

stimuli that are in line with the intention of the observer (Bacon & Egeth, 1994; Chen & Zelinsky, 

2006; Folk et al., 1992); and stimulus-driven, when instead bottom-up mechanisms lead to the 

selection of salient information (Nothdurft, 2002; Theeuwes, 1992, 2004). However, whether these 

mechanisms are available might also depend on the brain state of the observer and on how much in a 

hurry he or she is moving through the auditorium. The present work aims to investigate how brain 

states influence control and timing of responses in visual selection.  

According to Corbetta & Shulman, goal-driven and stimulus-driven mechanisms are organized 

into two distinct and partially segregated brain networks (Maurizio Corbetta & Shulman, 2002). One 

system, composed by the intra parietal and superior frontal cortex is supposed to be mostly 

responsible for goal-driven processes. Stimulus-driven control instead engage a secondary network 

composed by the temporoparietal and the inferior frontal cortex.  

In addition to the idea that different brain areas are responsible for different functions, neural 

oscillations occurring in the prestimulus period may be functionally important for visual control and 

processing (Jensen, Bonnefond, & Van Rullen, 2012; Thut, Miniussi, & Gross, 2012).  Neural oscillatory 

activity is generated by rhythmic spikes of neuronal ensembles at the level of post-synaptic potentials, 

and can be easily recorded by the means of electroencephalogram (EEG) or magnetoencephalography 
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(MEG). For example, prestimulus neural oscillations in the alpha band (8-12 Hz) have been proposed 

to play a functional role in stimulus perception. General increases in alpha power have been 

associated with lower probabilities of consciously processing visual stimuli close to perception 

thresholds (Babiloni, Vecchio, Bultrini, Romani, & Rossini, 2006; Lange, Keil, Schnitzler, van Dijk, & 

Weisz, 2014; Linkenkaer-Hansen, Vadim, Palva, Ilmoniemi, & Palva, 2004) and poor perceptual 

performance (Hanslmayr et al., 2007; van Dijk, Schoffelen, Oostenveld, & Jensen, 2008). Alpha 

modulations have additionally been associated to spatial control of attention, where it is has been 

suggested that different patterns of alpha power modulations over posterior brain areas may provide 

an index of voluntary shifting or maintenance of attention (Rihs, Michel, & Thut, 2009; Thut, Nietzel, 

Brandt, & Pascual-Leone, 2006). 

More directly relevant for the present work is the finding that prestimulus alpha power as 

recorded by EEG could predict performance in a task that directly investigated stimulus-driven and 

goal-driven control. Mazaheri & al. designed a visual search paradigm in which they concurrently 

measured eye movements and EEG (Mazaheri et al., 2011). Participants were instructed to make an 

eye movement to a lateralized target that could appear alone or together with a lower or higher 

contrast distractor. The EEG recordings showed that goal-driven and stimulus-driven strategies could 

be predicted by prestimulus neural activity. Specifically, frontal oscillations in the alpha band (8-12 Hz) 

timed to the presentation of the display were higher when a salient distractor captured attention, 

reflecting the adoption of a stimulus-driven behavior. Trials in which observers were able to correctly 

detect the target, ignoring the salient distractor, were instead characterized by a transient pre-

saccadic increase in the posterior-parietal low alpha band (7-8 Hz). This latter finding depended on 

saccade-locked analysis of the data. These results show that the combination between oscillations 

and their location is critically important in the distinction between stimulus- and goal-driven 

selections. However, the lack of spatial resolution of EEG sensor space analyses made it hard to assess 

which specific brain network could account for one or the other selection strategy. Moreover, the 

saliency of the distractor was predictive of the target location, potentially benefitting the selection 

and discrimination of the target. In addition, differences between saccadic response times to the 

target and distractor may have been directly related to stimulus- and goal-directed processes, making 

ambiguous the subsequent alpha power comparisons.     
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Specifically, response time has been shown to be critically important in determining whether 

selection is stimulus- or goal-driven (van Zoest, Hunt, & Kingstone, 2010; van Zoest, Donk, & 

Theeuwes, 2004; Van Zoest & Donk, 2006). When observers take little time to make an eye 

movement following the presentation of a search display, results show they are strongly driven by 

stimulus-salience, independently from the identity of the salient item. In contrast, when people are 

slower to initiate the saccade, selection can be guided by the target, in line with task instructions.  

Moreover, recent evidence suggests that although early selection may be constrained by stimulus 

salience, observers are flexible in guiding the ‘when’ signal and consequently establishing a trade-off 

between saliency and identity (Paoletti, Weaver, Braun, & van Zoest, 2014). In this study, participants 

were instructed to respond either ‘fast’ or ‘accurate’ in the prestimulus period. Depending on the cue, 

the results showed people responded fast and driven by saliency or responded much more slowly 

guided by the target features. In other words, observers may be prompted into a state of preparation 

that allows rapid deployment to salient elements or a state that results in slower selection that 

optimizes the use of goal-driven control. The idea that we want to investigate in the present work is 

to what extent the variations in timing and consequent control are driven by variations in prestimulus 

alpha oscillations. Whereas our previously discussed work employed an explicit cue to prompt these 

different strategies (Paoletti et al., 2014), the present study will rely on the natural variation of the 

distribution of oculomotor selection. Indeed, using spontaneous response time variability, Bompas 

and colleagues have demonstrated a relationship between oculomotor reaction times and 

prestimulus alpha power, presenting evidence that broadband higher prestimulus oscillatory 

amplitude in occipital, parietal and temporal areas is a predictor of slower reaction times (Bompas, 

Sumner, Muthumumaraswamy, Singh, & Gilchrist, 2015). Thus, the contribution of the present 

investigation is to further detail how alpha prestimulus oscillatory mechanisms are related to 

response time and importantly to consequent oculomotor performance. This potential interaction 

between saccade reaction time, control of strategies and oscillatory activity may come about in two 

different ways. First, an increase in alpha power in specific frontal and parietal brain regions may 

increase reaction times and consequently leave more time for goal-directed visual search. Second, an 

increase in alpha may induce a shift towards goal directed search, which in turn takes longer to 

implement and thus leads to longer reaction times. In order to differentiate between these two 
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possibilities we concurrently record of eye movements and MEG brain activity while subjects will 

perform a visual search task.  

Based on the idea that increased alpha band modulations reflect functional inhibition or a 

specific task disengagement (Hanslmayr, Gross, Klimesch, & Shapiro, 2011; Klimesch, Sauseng, & 

Hanslmayr, 2007) we expect stronger frontal alpha activity being related to less control, such that 

performance will be driven by stimulus salience. Vice versa, stronger alpha in posterior areas should 

be related to the inhibition of the salient distractor, reflecting more control and better oculomotor 

performance. At the same time, based on the idea that stronger alpha activity is related to slower 

oculomotor reaction times (Bompas et al., 2015), we expect to find different levels of alpha 

modulations depending on whether participants will respond quickly or more slowly following the 

presentation of the search display. Note that these predictions based on previous literature are 

seemingly in contrast with each other when stronger alpha predicts both poor performance and 

slower reaction times. Slower reaction times for the most part imply more accurate performance.  

  

Methods and Materials 

i. Participants 

Sixteen healthy participants (9 females, average age 24.7 years, range 21-28 years) 

participated as paid volunteers. All subjects reported having normal or corrected-to-normal vision. 

The study was conducted in accordance with ethical standards codified by the World Medical 

Association in the Declaration of Helsinki and written informed consent was obtained from 

participants before the experiment. 

ii. Design 

Participants were asked to perform a visual search task (see Figure 1) in which they had to 

make a saccade to a target. For half of the participants, the target consisted of a right-tilted bar (i.e., a 

line segment tilted to the right of a vertical axis), while the other half looked for a left-tilted bar (i.e., a 

line segment tilted to the left). The target was always embedded within a raster of non-targets 
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singleton elements (i.e., vertically oriented line segments). Together with the target and the raster of 

singleton non-targets an additional distractor was present on the screen. The distractor was always 

tilted to the opposite direction of the target. Elements were either tilted 67.5° or 22.5°. Relative to 

the vertical background items, the larger difference in the degree of tilt of the 67.5° element made it 

perceptually more salient than the 22.5° element. The experiment comprised 4 sessions: in the 1st and 

3rd session the target was tilted by 67.5° while the distractor consisted in a 22.5° tilted bar, i.e., salient 

target, non-salient distractor condition. In the 2nd and 4th sessions the target bar was tilted by 22.5° 

and the distractor by 67.5°, i.e., non-salient target, salient distractor condition.  For half of the 

participants the sessions order was reversed. All elements (1 target, 1 distractor, and 287 non-targets) 

were arranged in a 17 × 17 matrix display with a raster width of 290 × 210 mm (height × width, 

corresponding to 27.2° × 19.9° of visual angle). Target and distractor could be placed at four different 

locations set on the corners of an imaginary square such that, embedded within the matrix of non-

targets, targets and distractors were always presented at equal distance from fixation (7.6° of visual 

angle) and separated by an angular distance of 90°. To avoid potential inter-hemifield effects, the 

distractor was always presented to the opposite visual hemifield in respect to the target. All line 

elements had an approximate height of 0.65° and width of 0.12° of visual angle. All elements were 

white and superimposed on a grey background. The experimental design was realized using 

Psychtoolbox 3 (Brainard, 1997; Pelli, 1997) in combination with MATLAB R2010b (The MathWorks, 

Inc., Natick, MA). 

 

iii. Procedure 

Each trial began with a drift correction of the eye tracking signal to ensure that participant’s 

gaze was at the fixation point before stimuli onset. A display with a central fixation point was 

presented for 1800 ms plus a jittering interval of ~200 ms (total fixation duration: min 1800 ms, max 

2000 ms) to avoid possible expectancy effects. The stimulus array was then presented for 1500 ms. 

Participants were instructed to make a saccade to the tilted element defined as the target as soon as 

the search display was presented. To make sure that the task was understood by the participants, oral 

and written instructions were given and a practice session of 32 trials was conducted before the 
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beginning of the experiment. A factorial design was used: target positions (4) and orientations (2) 

were equally counterbalanced and presented in random order. Distractor position was always 

constrained by target location. The experiment consisted of 448 trials divided into four blocks of 112 

trials each and lasted approximately 50 minutes. The eye tracker was re-tuned at the beginning of 

each session. 

 

 

Fig. 1: Trial sequence. Participants executed a saccade to the singleton target element, depicted here as the 67.5° or the 22.5° tilted 

segment to the right relative to vertical non-target elements. Additionally, a uniquely oriented distractor line element was presented 

together with the target and the raster of non-targets. The unique distractor was always tilted to the opposite direction of the target 

and was more or less salient in dependence of the target orientation Note, stimuli not drawn to scale. 
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iv. Eye movement and MEG recordings 

Eye movements and magnetic fields were recorded simultaneously in a magnetically shielded 

room while participants were performing the task comfortably seated on the height-adjustable chair 

of the MEG unit. To minimize head movements and to maintain participants in the focal range of the 

eye-tracking camera, subjects were resting their head on an MEG compatible chin support. 

Participant’s head position relative to the MEG sensors was monitored at the beginning and at the 

end of each recording session. Eye movements were recorded using an Eyelink 1000 (SR research Ltd., 

Mississauga, ON, Canada) in combination with the MEG compatible Long Range Mount (remote 

infrared camera) and the Fiber Optic Camera Upgrade. The non-ferromagnetic remote infrared 

camera was connected through the optic fiber directly to the MEG acquisition console and was 

intended to reduce electromagnetic noise that would adulterate the MEG recordings. Neuromagnetic 

brain activity was recorded continuously by a 275-channel MEG system (CTF MEG by MISL, Coquitlam, 

BC). Electromagnetic activity and eye movement data were sampled at 1171 Hz. In order to avoid 

aliasing magnetic brain signals, data were filtered with a hardware low-pass filter at 293 Hz. 

 

Analyses strategy 

i. Eye movement analyses 

During offline analyses, saccades were defined on the basis of minimum eye-movement speed 

and acceleration threshold (30°/s and 8000°/s2 respectively). Saccade reaction time (SRT) was 

measured as the time between the onset of the stimuli and the moment in which the eye moved at 

least 3° of visual angle from fixation point. Trials were considered valid if the first saccade landed 

within 4° of visual angle from target or distractor. Trials were instead excluded when the initial 

saccade went neither to the target nor to distractor (trials rejected = 5.27%), started from more than 

3° of visual angle from central fixation at the onset of the search display (trials rejected = 2.23%), was 

anticipative (<80 ms, trials rejected 0.33%) or if the SRT was larger than 2.5 standard deviations from 

individual participant means (trials rejected = 3.82%). Combined, these criteria led to the rejection of 

11.65% of trials from the 16 participants that were included in the primary analyses. For each 
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participant an individual distribution of SRTs was calculated and split into two bins (fast and slow), 

containing an equal number of trials. For each bin, we then computed the percentage of initial eye 

movements correctly directed to target and the average SRTs. Repeated measurement ANOVA was 

used to test the effect of saliency on performance and SRTs.  

 

ii. MEG data analyses 

1.  Preprocessing 

All MEG recordings were analyzed using Matlab R2014a (The MathWorks, Inc., Natick, MA) in 

combination with the Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). Firstly, data 

were band-pass filtered between 1 and 45 Hz. Artifact rejection related to muscle activity, eye-

movements and outlier channels was managed by a semi-automatic procedure individually for each 

subject.  Specifically, eye-movements and cardiac activity were identified and removed using 

Independent Component Analyses (ICA) technique (Bell & Sejnowski, 1995; Makeig, Bell, Jung, & 

Sejnowski, 1996). Additionally, the identification of artifactual components deriving from eye 

movement was facilitated by comparing ICA time courses with saccades reaction time information 

coming from the eye-tracking device. Lastly, data were visually inspected to find any residual eye 

movement or muscular artifact that was not correctly identified and removed in the previous steps. 

MEG data were then epoched starting from 2000 ms before the stimulus onset to 1500 ms after for a 

total epoch time of 3500 ms. Stimulus onset timing, target position and target saliency were obtained 

from the triggering system of the MEG acquisition console. Additional information on single trial SRTs 

bin and first saccade landing position was derived from the analyses of the eye tracking data. With 

this process we finally categorized and split the MEG data into four different conditions: target salient 

and target not-salient, each one having a fast and slow condition according to SRT bin and correct (to 

target) or incorrect (to distractor) saccades.  

2.  Time-frequency analyses 

For each of these conditions we computed the time-frequency representations (TFRs) applying 

nonparametric Morlet wavelets between 5 and 40 Hz with an adaptive sliding time window in steps of 
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50 ms between -500 ms and 0 ms with respect to the stimulus onset. Before computing the TFRs, we 

calculated the planar gradiometer representation of the data using a nearest-neighbor approach 

(Bastiaansen & Knösche, 2000). This method, by showing maximal activity over the neural sources, 

simplifies the interpretation of sensor-level data. Spectral power was then estimated firstly across 

trials for each participant and then grand-averaged across participants. For the Target salient 

condition and Target not-salient condition separately, we compared the TFRs maps between fast and 

slow SRTs and correct and incorrect responses respectively to investigate different predictive 

neuronal oscillatory mechanisms that could occur in the prestimulus period. 

 

3.  Statistical test of TFRs 

After sorting the trials, changes in power between the above-descripted conditions were statistically 

assessed using a cluster-based permutation test. This nonparametric randomization method 

effectively corrects for errors deriving from multiple comparison over sensors in within-subject 

comparisons (Maris & Oostenveld, 2007; Nichols & Holmes, 2002). When comparing two different 

conditions, clusters are identified by grouping adjacent sensors that show a t statistics exceeding p < 

.05. Since this comparison is only used to identify sensors for the subsequent cluster analyses, the 

power values are not required to be normally distributed. The clusters of channels that survive this 

first step are then forwarded to the cluster-level statistic, defined as the sum of t statistics of the 

sensors in a cluster. To control Type-I error rate for the complete set of 272 MEG channels, cluster-

level test statistic is checked under the randomization null distribution of the maximum cluster-level 

statistic. This process is accomplished by randomly permuting the data coming from the two-

experimental conditions within every participant. In our analyses, we created a reference distribution 

from 1000 random sets of permutations and the p values were defined as the proportion of elements 

exceeding the observed maximum cluster-level statistical test in the null randomized distribution. 
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4.  Frequency-domain source analyses 

The reconstruction of sources for the pre-selected frequency bands based on the results of 

sensor level analyses was performed applying a frequency–domain beamforming technique called 

dynamic imaging of coherent sources (DICS). This technique, using an adaptive spatial filters, has been 

demonstrated to be particularly capable of localizing oscillatory neuronal sources originating from 

specific frequency bands in the whole brain (Gross et al., 2001; Liljeström, Kujala, Jensen, & Salmelin, 

2005). Since individual MRIs could not be obtained, head sensors positions of each participant were 

used to match individual brain to a standard structural MRI template (Steinstraeter et al., 2009). The 

resulting brain volume was then discretized to a 0.5 grid resolution and lead fields were evaluated for 

each grid point. To estimate the source of the difference, we calculated common filters for all the 

conditions, and then applied it to the data separately for the individual conditions. The estimated 

source location were plotted on a standard MNI brain template. 

 

Results 

i. Behavioral 

1.  Time-course analyses, proportion to target 

In order to examine performance as a function of time, for each participant an individual 

distribution of SRTs was calculated and split into two bins (fast and slow) containing an equal number 

of trials. For each bin we then computed the percentage of initial eye movements correctly directed 

to target and the average SRTs (see Figure 2). A two-ways repeated measurement ANOVA was 

conducted on the proportion of correct eye movement using within-participants factors of target 

saliency (salient and not-salient), and SRT bin (fast and slow). All main effects (target saliency and SRT 

bin) were significant (target saliency: F(1, 15) = 12.13, MSE = .015, p < .001, partial ƞ2 = .46; SRT bin: 

F(1, 15) = 28.56, MSE = .017 , p < .001, partial ƞ2 = .67), together  with the two-way interaction target 

saliency × SRT bin: F(1, 15) = 38.86, MSE = .005 , p < .001, partial ƞ2 = .74. These results showed that 

fast bin responses were mostly driven by target saliency (mean correct target salient = .69, mean 

correct target not-salient = .39): participants were better able to select the target when it was salient 
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compared to when it was not-salient. Slow bin responses were instead characterized by equal 

performance in both target saliency condition (mean correct target salient = .68, mean correct target 

not-salient = .62). 

 

2. Time course-analyses, saccadic reaction times 

A two-ways repeated measurement ANOVA was performed on saccade latencies with target 

saliency (67.5° and 22.5°) and SRT bin (fast and slow) as within factors. The result disclosed a 

significant main effect of SRT bin (F(1, 15) = 119,17, MSE = 1147, p < .001, partial ƞ2 = .89). Target 

saliency effect showed instead to be not significant (F(1, 15) < 1.00) as well as the interaction between 

target saliency and SRT bin (F(1, 15) < 1.00): there were no differences in SRT to the target in the 67.5° 

and 22.5° condition as a function of fast and slow time bins. 

 

 

Fig. 2. Proportion of saccades correctly deployed on the target as a function of fast and slow SRT. Error bars reflect standard errors of 

the mean.  
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ii. MEG results 

1. Time-frequency results and source analyses 

In order to investigate how alpha modulation influenced saccadic performance as a function of 

time we computed the TFR of power for all the MEG sensors time courses after calculating the planar 

gradiometer representation of the data. We then compared these TFR maps between fast and slow 

responses, based on SRTs information and separately for salient and non-salient target conditions 

(see methods). In the salient target condition, there was no evidence to suggest that alpha 

modulation influenced differences between fast and slow SRTs (Figure 3A). This result was in line with 

the behavioral result showing no modulation in performance as a function of time in presence of a 

salient target. On the contrary, the not-salient target condition showed vast differences in alpha 

power level depending on whether responses were fast or slow (Figure 3C). The whole brain cluster-

corrected permutation test disclosed a significant alpha modulation between fast and slow trials 

(main effect collapsed over correct/incorrect trials, p = .002). 

 

 

Fig. 3. Prestimulus averaged spectra of the 275 MEG CTF channels (planar gradiometers) for fast and slow SRTs respectively for A. 

salient target and B. non salient target condition. C. Cluster of  significant channels in the prestimulus period (t = -0.5 to 0 s) for slow 

SRTs compared to fast SRTs (p = 0.002, corrected for multiple comparison) in the power alpha range (8-12 Hz). 
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Specifically, overall alpha power was stronger for slower responses compared to fast 

responses (Figure 3B). In addition, to investigate how alpha mechanisms specifically interact with 

performance under non-salient target condition, we divided the fast and slow trials as a function of 

correct (i.e., when the eye movement was directed toward the non-salient target) and incorrect 

selection (i.e., when saccade landed on the salient distractor). We then conducted separate contrasts 

comparing incorrect to correct for the fast (Figure 4A) and slow responses (Figure 4B). For fast 

responses, alpha power was higher for incorrect compared to correct responses. A whole brain 

cluster-corrected permutation test disclosed a significant alpha modulation in the fast responses 

between incorrect and corrects trials (main effect trials, p = .002). 

 

 

Fig. 4. Separate contrast for slow and fast SRTs in the non salient target condition. Average spectra for correct and incorrect saccades in 

A. fast SRTs and B. slow SRTs. C. Topographic plot showing prestimulus (t = -0.5 to 0 s) alpha power (8-12 Hz) and significant cluster 

respectively for C. fast and D. slow SRTs. Bar graph showing alpha power intensity.   
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This contrast was also reliable for the slower responses (main effect trials, p = .003). To 

identify the sources producing the oscillatory activity that modulates timing of responses and 

performance in the non-salient target condition, we applied a beamforming technique. We 

subtracted the source activity of incorrect and correct saccades in the fast and slow SRTs condition.  

 

  

Fig. 5. Neuronal sources of alpha power differences between incorrect and correct saccades for slow and fast SRTs in the non-salient 

target condition.  A. fast SRTs and B. slow SRTs. C. Projection of the difference between incorrect and correct responses for slow SRTs on 

the cortex. Bar graph showing Neural Activity Index as computed by the DICS beamformer. 

 

Consistently with the topographic maps in figure 4C, the sources representing the alpha power 

difference in the fast responses were identified in posterior areas, around the lateral intraparietal 
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cortex and intraparietal sulcus (LIP/IPS), with stronger activity lateralized to the left side of the brain 

(Figure 5A).  The source of alpha modulations accounting for the difference between correct and 

incorrect in slow SRTs was instead located more in frontal regions, and specifically around the 

dorsolateral prefrontal cortex (DLPFC; Figure 5B, 5C). Also in this condition there was a tendency 

toward a left lateralization. 

 

Discussion 

In line with our previous study (Paoletti et al., 2014), we showed that short-latency saccades 

are primarily driven by stimulus salience while long latency saccade are mainly directed to the target, 

strengthening the idea that performance and SRTs are strongly related to each other. Looking at alpha 

prestimulus oscillatory power, the results showed that in presence of a salient target, prestimulus 

alpha power did not affect saccadic SRTs. This is in line with the behavioral results showing no 

modulation in performance for fast and slow responses. Instead, when participant were asked to find 

the non-salient target we observed reliable differences in broadband alpha power depending on 

oculomotor response time. Specifically, slower SRTs were predicted by overall stronger alpha power 

in the 500 ms time window preceding the stimulus onset, while weaker alpha power was a signature 

of faster responses.  

We then looked at alpha power separately for the fast and slow responses to see whether 

different levels of alpha power helped to further explain correct and more goal-driven performance. 

The follow-up analyses showed that relative stronger alpha power predicted incorrect responses 

similarly for fast and slow oculomotor reaction times. In other words, the relationship between alpha 

power for correct and incorrect was alike irrespective of saccadic response time and irrespective of 

the overall proportion of eye movements directed to the target.  

Thus, we find evidence for two main influences of prestimulus alpha power on selection 

performance. First, stronger alpha power found in frontal and parietal areas helped to predict overall 

slower response time. Second, when this overall activity was further decomposed, we found evidence 

for specific alpha activity from two different sources that predicted correct versus incorrect responses 
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independent of time. Specifically, topographic maps revealed an alpha power difference for correct 

and incorrect saccades in fast responses that appeared to be more posterior in contrast to slow 

responses that appeared to be more in frontal areas. In more detail, the source analyses disclosed 

that the ~ 10 Hz difference for the fast saccades was located around the LIP/IPS areas. In contrast, the 

source for the slow responses was located close to the DLPFC.  

These results are line with existing works concerning control of goal-directed and stimulus-

driven attention in the brain. For instance, Miller and Buschman (Miller & Buschman, 2013) have 

suggested that  LIP and DLPFC are part of the oculomotor network that control bottom-up and top-

down attentional processes (see also Buschman & Miller, 2007; Corbetta & Shulman, 2002). 

Specifically, The LIP is known to be involved in saccadic preparation (Andersen, Bracewell, Barash, 

Gnadt, & Fogassi, 1990; Curtis & Connolly, 2008; Platt & Glimcher, 1997; Wardak, Olivier, & Duhamel, 

2002) and in resolving competition between stimulus elicited activity and endogenous saccade 

planning (Anderson, Husain, & Sumner, 2008). Instead, many studies have identified the left DLPFC as 

a key structure for top-down attentional control that dynamically adjust performance and control 

according to contextual demands (Banich et al., 2000; MacDonald, Cohen, Stenger, & Carter, 2000; 

Milham, Banich, & Barad, 2003; Silton et al., 2010). 

More importantly for the present study is the notion that the DLPFC play a crucial role in 

saccadic inhibition, helping to prevent reflexive eye movements toward distracting stimuli (McDowell, 

Dyckman, Austin, & Clementz, 2008; C. Pierrot-Deseilligny et al., 2003; Charles Pierrot-Deseilligny, 

Milea, & Müri, 2004; Ptak, 2012). For example in their study Buschman & Miller (Buschman & Miller, 

2007) used a pop-out display and a search display to investigate the time course of bottom-up and 

top-down processes in primates brain. They concurrently recorded monkey’s eye movements and 

neuronal activity from multiple electrodes placed in frontal and parietal cortices. The behavioral 

results showed that when deploying fast saccades, the monkey were unable to inhibit the salient 

distractors. On the contrary, slower saccades were characterized by more control and top-down 

behavioral hallmarks. When looking at neural activity, they found that fast and bottom-up signals 

appear first in the LIP while the signals generated from longer latencies saccades and associated to 

more top-down control were recorded from electrodes located in the frontal cortex. 
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Though this previously discussed work did not directly look a prestimulus brain state, our 

results suggests that alpha power occurring in the prestimulus period in those same areas may 

influence the forthcoming visual process and the subsequent oculomotor behavior. For example, an 

increase of alpha power in LIP/IPS may reflect a preparatory mechanism mostly responsible for fast 

deployment of overt attention toward salient stimuli. Vice versa, prestimulus increases of alpha 

power in the DLPFC may match a preparatory set more prone for a better oculomotor control, leading 

to a more goal-directed behavior. This idea is in line with the hypothesis proposed from Buschman 

and Miller (Miller & Buschman, 2013), suggesting that parietal areas are mostly responsible for fast 

and stimulus-driven target selection, whereas longer latency top-down selection occurs in the frontal 

cortex. In this present work, these ideas are supported by looking at the overall behavioral difference 

in the proportion of eye movements.  Figure 2 shows that when people made a quick saccades in the 

presence of a salient distractor they were much more likely to end up incorrectly at the location of 

the salient item. When people instead took more time, they were more likely to make a goal-driven 

saccade to the target. Based on the overall proportion eye movements in fast and slow eye 

movements, we can infer the relative contribution of stimulus-driven and goal-directed control. 

However, when considering the subset of quick saccades and comparing them to the subset of slow 

saccades, we found no evidence for an interaction between SRT and correct versus incorrect eye 

movements. Stronger alpha power predicted incorrect saccades similarly for fast and slow saccades, 

suggesting that alpha power did not directly relate to the overall proportion of stimulus-driven 

selection in our study.  

In the introduction, we outlined two ways in which the interaction between saccade reaction 

time, control of strategies and oscillatory activity could come about.  First, an increase in alpha power 

in specific frontal and parietal brain regions may increase reaction times and consequently leave more 

time for goal-directed visual search; second, an increase in alpha may induce a shift towards goal 

directed search, which in turn takes longer to implement and thus leads to longer reaction times. Our 

results are in line with the former hypothesis suggesting that prestimulus alpha power does not 

directly predict stimulus- or goal-driven selections. Specifically, the relationship between alpha power 

for correct and incorrect was comparable irrespective of response time and irrespective of the overall 

proportion of eye movements directed to the salient distractor. Instead, a general alpha increase was 
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related to a slowing down of responses, which indirectly predicted better control and a more accurate 

selection behavior.  

 Our general results of finding that alpha power predicts slower saccadic reaction times is in 

line with Bompas et al. study (Bompas et al., 2015). However, we found a relationship between alpha 

power and saccadic reaction time only when the task was difficult, i.e.: when the target was more 

difficult to select because of distractor competition. Our results are in contrast with Mazaheri et al. 

(Mazaheri et al., 2011) where stronger prestimulus frontal alpha was found under bottom-up salient 

captures and pre-saccadic posterior transient alpha reflected salient distractor inhibition. In the 

present study, stronger alpha in frontal areas was related to slower overall responding, allowing 

observers to have more control in line with goal-driven behaviors. Stronger posterior alpha was 

instead a signature of faster response that promoted salient captures and led to more stimulus-

oriented behaviors. The discrepancy between the results of Mazaheri et al. and the present study may 

be partly explained by differences in the design and methods. Specifically in Mazaheri et al. study, 

because the target was presented either in isolation or accompanied by one sole distractor, the 

question is whether the task adopted was a true visual search task. Because the target and distractor 

always appeared at one of two locations, the salient distractor location could predict the target 

location. In other words, when a salient distractor was presented, it automatically cued the location 

of target item where the target discrimination was to be made. In the present study target and 

distractor position were unpredictable. Furthermore, analyses in the Mazaheri et al. study were based 

on saccadic responses that were averaged over all trials; correct saccade to the target were much 

slower than incorrect saccades to the salient distractor. However the role of time in establishing this 

control and its relationship to alpha power was unclear. The present study was designed to enable 

investigation of selection performance and alpha power separately for quick and slow responses, 

making it possible to look at prestimulus brain state in relation to response time and selection 

performance together.  
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General conclusions  

In our first study we showed that independently from a pre-given cue, short-latency saccades 

were driven by stimulus salience and long latency responses were primarily goal directed. More 

importantly, we showed that participants were capable of following the cue instructions and 

therefore to control the timing of saccadic visual selection. The fast cue condition visual search was 

characterized by short timing saccades while in the accurate cue condition we observed slower 

oculomotor responses. The overall performance as a function of time-course showed that the trade-

off in the fast cue was mainly stimulus-driven, thus selection was based on saliency early in time. 

Goal-driven control was only found in the final time bin, where stimulus salience no longer influenced 

selection. Instead, goal-driven strategies mostly directed the trade-off in the accurate cue condition; 

stimulus salience only influenced performance for the fastest responses. It appeared that observers’ 

timing of responses based on the cue influenced this trade-off between stimulus- and goal-driven 

strategies. Following the cue, observers were able to elicit faster or slower eye movements and 

consequently exerting adaptive changes in their visual search strategies, making selection relatively 

more stimulus- or goal-driven. These results suggest that the ability to elicit either a fast or slow 

response is flexible: participants are able to adopt a ‘fast’ or ’accurate’ strategy before each trial, 

depending on the task instructions. This has a consequent effect on whether search processes are 

primarily stimulus- or goal-driven. Specifically in the fast-cue condition participants may have been 

prompted into a cognitive state that allowed rapid attentional deployment characterized by fast and 

salient captures; goal-driven control was severely limited in this case. On the other hand, in the 

accurate-cue condition, participants appeared to refrain from fast responding and so were able to 

avoid salient capture; observers were more accurate in making correct eye movements to the 

designated target. These results indicate that while performing the task, participants were able to 

optimize their internal states to guide behavior, that is, observers were able to enter a state of 

cognitive control in which performance was optimized to accomplish the task in the given situation 

(Miller, 2000). Our results thus illustrate an important role of an observer’s preparedness in solving a 

task. The prestimulus effects of preparation have also been reported for feature-specific instructions 

in a recent fMRI study from Serences and Boynton (2007) and in a monkey physiology study (Hayden 

& Gallant, 2005). The results of these studies suggest that feature-based attention can be enhanced 
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before the stimulus presentation by increasing sensitivity to certain features (i.e., orientation, color) 

facilitating the perception of behaviorally pertinent stimuli. Although the above studies do not 

directly refer to saccadic selection, these mechanisms seem to affect the oculomotor system as well. 

A recent study (Weaver, Paoletti, & van Zoest, 2014) reported an increase of performance in very 

early saccades when a feature-informative cue (color) regarding the target was given to participants 

rather than a neutral cue. Study one revealed that individual observers are relatively flexible 

regarding the extent to when a response is triggered. This ‘when’ signal in turn, determined the 

degree to which participants were more or less driven by stimulus salience or identity. Thus, when 

investigating whether visual selection is primarily stimulus or goal driven, the present work 

demonstrates the critical importance of taking into account the trade-off between the influence of 

stimulus salience and target identity over time. 

 In our second study, we aimed to investigate how prestimulus brain state could influence 

oculomotor visual search in relation to saccadic reaction times and performance. In line with study 1 

(Paoletti et al., 2014), we showed that short-latency saccades were primarily driven by stimulus 

salience while long latency saccades were mainly directed to the target, strengthening the idea that 

performance and SRTs are strongly related to each other. Looking at alpha prestimulus oscillatory 

power, the results showed that in presence of a salient target, prestimulus alpha power did not affect 

saccadic SRTs. This is in line with the behavioral results showing no modulation in performance for 

fast and slow responses. Instead, when participant were asked to find the non-salient target we 

observed reliable differences in broadband alpha power depending on oculomotor response time. 

Specifically, slower SRTs were predicted by overall stronger alpha power in the 500 ms time window 

preceding the stimulus onset, while weaker alpha power was a signature of faster responses. 

We then looked at alpha power separately for the fast and slow responses to see whether 

different levels of alpha power helped to further explain correct and more goal-driven performance. 

The follow-up analyses showed that relative stronger alpha power predicted incorrect responses 

similarly for fast and slow oculomotor reaction times. In other words, the relationship between alpha 

power for correct and incorrect was alike irrespective of saccadic response time and irrespective of 

the overall proportion of eye movements directed to the target. Thus, we find evidence for two main 

influences of prestimulus alpha power on selection performance. First, stronger alpha power found in 
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frontal and parietal areas helped to predict overall slower response time. Second, when this overall 

activity was further decomposed, we found evidence for specific alpha activity from two different 

sources that predicted correct versus incorrect responses independent of time. Specifically, 

topographic maps revealed an alpha power difference for correct and incorrect saccades in fast 

responses that appeared to be more posterior in contrast to slow responses that appeared to be 

more in frontal areas.  When people made a quick saccades in the presence of a salient distractor 

they were much more likely to end up incorrectly at the location of the salient item. When people 

instead took more time, they were more likely to make a goal-driven saccade to the target. Based on 

the overall proportion of eye movements to the target in fast and slow eye movements, we can infer 

the relative contribution of stimulus-driven and goal-directed control. However, when considering the 

subset of quick saccades and comparing them to the subset of slow saccades, we found no evidence 

for an interaction between SRT and correct versus incorrect eye movements. Stronger alpha power 

predicted incorrect saccades similarly for fast and slow saccades, suggesting that alpha power did not 

directly relate to the overall proportion of stimulus-driven selection in our study. As stated in the 

paper reported above, we proposed two ways in which the interaction between saccadic reaction 

time, control of strategies and oscillatory activity could come about.  First, an increase in alpha power 

in specific frontal and parietal brain regions may increase reaction times and consequently leave more 

time for goal-directed visual search; second, an increase in alpha may induce a shift towards goal 

directed search, which in turn takes longer to implement and thus leads to longer reaction times. Our 

results are in line with the former hypothesis suggesting that prestimulus alpha power does not 

directly predict stimulus- or goal-driven selections. Specifically, the relationship between alpha power 

for correct and incorrect was comparable irrespective of response time and irrespective of the overall 

proportion of eye movements directed to the salient distractor. Instead, a general alpha increase was 

related to a slowing down of responses, which indirectly predicted better control and a more accurate 

selection behavior. One drawback of the present work is that we didn’t find a clear direct relationship 

between alpha power and stimulus-driven and goal-directed control. Whereas one might be inclined 

to associate the correct eye movement selection of the non-salient target to goal-directed control and 

incorrect selection of salient distractor to stimulus-driven selection, this reductionist approach does 

not seem to fit with our results. Previous work that has suggested that stimulus- and goal-driven 

processes are controlled by different networks, have typically used different displays to make 
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assessments regarding search strategies adopted by observers  (i.e., pop-out vs. serial search, salient 

distractor absent vs. salient distractor present). However, these drastic changes across condition are 

also correlated with changes in reaction times, which in turn affects the relative contribution of the 

processes at stake. The strength of the current work is that we used the exact same display and 

employing saccadic reaction time at the behavioral level to disentangle stimulus-driven from goal-

directed responses.  

Previous works on alpha prestimulus role primarily concerned studies of covert spatial 

attention and temporal attention. Our second study is the first to look at alpha power in relation to 

overt selection and dynamic control in saccadic eye movements. We have demonstrated how an 

overall increase of alpha power in the prestimulus period can be a predictor of slow responses that 

consequently allows more time for goal-directed control. Stronger alpha power also was found to 

predict incorrect performance, but was not directly related to stimulus-driven or goal-directed 

selection. Again, we have demonstrated that reaction times, oculomotor performance and 

prestimulus oscillatory mechanisms are interacting. Addressing these topics in a dichotomist way (i.e.: 

interaction between performance and prestimulus period) and looking at different dimensions in 

isolation (saliency, prestimulus period, performance and reaction times) does not tell the whole story. 

Future studies investigating possible implications of prestimulus oscillatory mechanisms in 

oculomotor strategies will need to consider the tangled relation between saccadic reactions time and 

performance. 
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