
ENERGY ADAPTIVE INFRASTRUCTURE
FOR SUSTAINABLE CLOUD DATA

CENTRES

Corentin Dupont

International Doctorate School

in Information and Communication Technologies

University of Trento

April 2016

Prof. Renato lo Cigno, jury president

Prof. Hermann de Meer, jury member

Prof. Jean-Marc Pierson, jury member

Prof. Imrich Chlamtac, advisor

Mr. Raffaele Giaffreda, advisor

Prof. Fabien Hermenier, advisor

New technologies provide benefit only if you drop the rules that were designed to overcome

the shortcomings of the old technology.

– Dr Eliyahu Goldratt

Wings are a constraint that makes

it possible to fly.

– Robert Bringhurst

To my parents, Sylvie and Jean-Luc,

to my brother Nicolas and my sister Marie,

and to my beloved Anna.

Acknowledgements
Making a PHD is a once in a life time experience. It’s a long journey, however the journey often

is more important than the destination. I am very grateful to have been given the opportunity

to make it, and I feel that I have learnt a lot on the way. I thank Raffaele Giaffreda that fought for

allowing me to do this thesis within the research centre Create-Net. I thank Fabien Hermenier

for his support all along this process. His advices were invaluable. I thank Imrich Chlamtac

and Create-Net for the support and for providing me with a good work environment. I thank

my family for their continuous love and support.

I would also like to thank all the consortium members of the EU FP7 projects FIT4Green and

DC4Cities. A special thanks goes to the trial teams of these projects. I thank the research teams

RIOT and Smarti of Create-Net. Scaling experiments presented in this thesis were carried

out using the Grid’5000 experimental testbed 1, being developed by INRIA with support from

CNRS, RENATER and several universities as well as other funding bodies. My last thanks goes

to my life partner Anna, which supported me during those long and tense months of writing!

1https://www.grid5000.fr

i

Abstract
With the raising concerns about the environment, the ICT equipments have been pointed out

as a major and ever rising source of energy consumption and pollution. Among those ICT

equipments, data centres play obviously a major role with the rise of the Cloud computing

paradigm. In the recent years, researchers have focused on reducing the energy consumption

of data centres. Furthermore, future environmentally friendly data centres are also expected

to prioritize the usage of renewable energies over brown energies. However, managing the

energy consumption within a data centre is challenging because data centres are complex

facilities which supports a huge variety of hardware, computing styles and SLAs. Those may

evolve through time as user requirements can change rapidly. Furthermore, differently from

non-renewable energy sources, the availability of renewable energies is very volatile and time

dependent: e.g. solar power is obtainable only during the day, and is subject to variations

due to the meteorological conditions. The goal in this case is to shift the workload of running

applications, according to the forecasted availability of the renewable energy. In this thesis

we propose a flexible framework called Plug4Green able to reduce the energy consumption

of a Cloud data centre. Plug4Green is based on the Constraint Programming paradigm,

allowing it to take into account a great number of constraints regarding energy, hardware and

SLAs in data centres. We also propose the concept of an energy adaptive software controller

(EASC), able to augment the usage of renewable energies in data centres. The EASC supports

two kind of applications: service-oriented and task-oriented applications; and two kind of

computing environments: Infrastructure as a Service and Platform as a Service. We evaluated

our solutions in several trials executed in the testbeds of Milan and Trento, Italy. Results show

that Plug4Green was able to reduce the power consumption by 27% in the Milan trial, while

the EASC was able to augment the renewable energy percentage by 7.07pp in the Trento trial.

Key words: Data Centre, Renewable Energy, VM consolidation, Job Scheduling, Constraint

Programming, Platform as a Service, Infrastructure as a Service

iii

Publications

We list here the publications by the author that are related to this thesis:

• Sonja Klingert, Florian Niedermeier, Corentin Dupont, Giovanni Giuliani, Thomas

Schulze, and Hermann de Meer. Introducing Flexibility into Data Centers for Smart

Cities. Communications in Computer and Information Science, 2016

• Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Fabien Hermenier. An

energy aware application controller for optimizing renewable energy consumption in

cloud computing data centres. In 8th IEEE/ACM International Conference on Utility and

Cloud Computing, 2015

• Corentin Dupont and Fabien Hermenier. DC4Cities: Better usage of the renewable

energies in data centres. In ICT4S 2015, 2015

• Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Silvio Cretti. Energy

efficient data centres within smart cities: Iaas and paas optimizations. In 2015 EAI

International Conference on Smart Grids for Smart Cities, Toronto, Canada, 2015

• Sonja Klingert, Florian Niedermeier, Corentin Dupont, Giovanni Giuliani, Thomas

Schulze, and Hermann de Meer. Renewable energy-aware data centre operations for

smart cities - the DC4Cities approach. In SMARTGREENS 2015. ACM, 2015

• Corentin Dupont, Fabien Hermenier, Thomas Schulze, Robert Basmadjian, Andrey

Somov, and Giovanni Giuliani. Plug4green: A flexible energy-aware vm manager to fit

data centre particularities. Ad Hoc Networks, pages 505–519, 2014

• Corentin Dupont. Building application profiles to allow a better usage of the renewable

energies in data centres. In Energy-Efficient Data Centers, Lecture Notes in Computer

v

Publications

Science, 2014

• Corentin Dupont. Energy aware infrastructure for green cloud data centres. University

of Trento Doctoral School, 2014

• Corentin Dupont. Renewable energy aware data centres: The problem of controlling the

applications workload. In Sonja Klingert, Xavier Hesselbach-Serra, MariaPerez Ortega,

and Giovanni Giuliani, editors, Energy-Efficient Data Centers, volume 8343 of Lecture

Notes in Computer Science, pages 16–24. Springer Berlin Heidelberg, 2013

• Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien Her-

menier. An energy aware framework for virtual machine placement in cloud federated

data centres. In Proceedings of the 3rd International Conference on Future Energy Systems:

Where Energy, Computing and Communication Meet, e-Energy ’12, pages 4:1–4:10. ACM,

2012

• Dang Minh Quan, Robert Basmadjian, Hermann de Meer, Ricardo Lent, Toktam Mah-

moodi, Domenico Sannelli, Federico Mezza, Luigi Telesca, and Corenten Dupont. Energy

efficient resource allocation strategy for cloud data centres. In Erol Gelenbe, Ricardo

Lent, and Georgia Sakellari, editors, Computer and Information Sciences II, pages 133–

141. Springer London, 2012

• Dang Minh Quan, Andrey Somov, and Corentin Dupont. Energy usage and carbon

emission optimization mechanism for federated data centers. In Proceedings of the First

International Conference on Energy Efficient Data Centers, E2DC’12, pages 129–140, 2012

Submitted articles:

• Corentin Dupont, Mehdi Sheikhalishahi, and Michele Santuari. Improving renewable

energy consumption in iaas/paas hybrid data centres. Submitted to Futur Generation

Computer Systems, 2016

vi

Contents

Acknowledgements i

Abstract iii

Publications v

List of figures xi

List of tables xiii

1 Introduction 1

1.1 IaaS optimization . 2

1.2 PaaS optimization . 3

1.3 Application optimization . 3

1.4 Thesis organization . 4

2 Research problem and objectives 5

2.1 Research problem . 5

2.2 Objectives . 6

2.2.1 Objective 1: save energy . 7

2.2.2 Objective 2: increase the usage of renewable energies 7

2.3 Methodology . 7

2.3.1 Research models and algorithms . 8

2.3.2 Requirement elicitation . 8

2.3.3 Architecture . 8

2.3.4 Implementation . 9

2.3.5 Evaluation . 9

2.4 Contributions . 10

2.4.1 Plug4Green contributions . 10

2.4.2 EASC contributions . 10

vii

Contents

I Part one: Use less energy 11

3 Heuristics for virtual machine consolidation 15

3.1 Introduction . 16

3.2 Related works . 16

3.3 Problem formulation . 17

3.4 Single Allocation algorithm . 18

3.5 Global Optimisation algorithm . 19

3.6 Evaluation . 21

3.6.1 Simulation scenario . 21

3.6.2 Numerical results . 23

3.6.3 Performance comparison . 25

3.7 Conclusion . 26

4 Plug4Green, an energy-aware VM placement framework 27

4.1 Introduction . 28

4.2 Related Work . 29

4.2.1 Extensible and flexible frameworks . 29

4.2.2 Server power models . 31

4.3 Design . 31

4.3.1 Architecture . 32

4.3.2 Constraints . 33

4.4 Implementation . 35

4.4.1 The constraint programming family . 35

4.4.2 The Plug4Green model . 36

4.4.3 From SLA to constraints . 37

4.4.4 Optimisation objectives . 38

4.4.5 Reducing the solving duration . 43

4.5 Framework Evaluation . 44

4.5.1 Extensibility of Plug4Green . 44

4.5.2 Experiments on Cloud Testbed . 45

4.5.3 Scalability of Plug4Green . 48

4.6 Conclusion . 52

viii

Contents

II Part two: Use better energies 53

5 The EASC, an energy adaptive software controller 57

5.1 Introduction . 58

5.2 Related work . 59

5.3 Energy Aware Software Controller . 61

5.3.1 Overview and context . 61

5.3.2 Architecture . 61

5.4 EASC instantiations . 63

5.4.1 EASC for task oriented applications . 63

5.4.2 EASC for service oriented applications . 66

5.5 Experimentations and evaluation . 68

5.5.1 Trento trial . 68

5.5.2 Milan trial . 70

5.6 Conclusion and Future Work . 75

6 Energy optimizations within the PaaS and IaaS paradigms 77

6.1 Introduction . 77

6.2 Related Work . 79

6.2.1 IaaS/PaaS coordination . 79

6.2.2 PaaS and containers energy management 80

6.3 PaaS architecture . 81

6.3.1 Overview and context . 81

6.3.2 Architecture & implementation . 82

6.4 PaaS energy model . 83

6.4.1 Evaluation of the power consumed by the applications 84

6.4.2 Prediction of the power of an application scaling up/down 88

6.5 Experimentations and evaluation . 89

6.5.1 Hardware infrastructure . 89

6.5.2 Cloud infrastructure and technologies . 89

6.5.3 Application scenario . 90

6.5.4 Energy mix . 91

6.5.5 Evaluation . 91

6.5.6 Scaling process analysis . 95

6.6 Conclusion and Future Work . 95

ix

Contents

7 Conclusions and future directions 97

7.1 Conclusions . 97

7.2 Discussion . 98

7.2.1 Heuristics vs meta-heuristics . 99

7.2.2 Analytical power models vs black-box power models 99

7.2.3 Technology transfer . 100

7.2.4 Renewable energies adoption . 100

7.3 Future research directions . 101

7.3.1 Usage of energy accumulators in DCs . 101

7.3.2 Energy management with Unikernels . 101

7.3.3 Warm data centres . 103

7.3.4 Service migrations & edge computing . 103

A Implementation of the classical VM packing problem with SMT/Haskell 105

Bibliography 117

x

List of Figures

1.1 Adapting applications for a better usage of renewable energies 2

3.1 Single Allocation diagram . 19

3.2 Global Optimization diagram . 20

3.3 Energy savings for a federated data centre . 24

3.4 CO2 savings for a federated data centre . 25

4.1 Plug4Green architecture . 32

4.2 Translation of the SLA contract into technical SLAs and then to constraints . . . 33

4.3 Server UML class diagram . 39

4.4 Schematic view on the weekly load patterns . 46

4.5 Energy consumption of two data centres with different PUE values 47

4.6 Energy consumption of two data centres with different CUE values 47

4.7 Impact of constraints on the global energy consumption 49

4.8 Solving duration to compute the improved configurations 50

4.9 Energy consumption of the improved configurations 51

4.10 Number of migrations to reach the improved configurations 52

5.1 The EASC architecture . 62

5.2 EagerAgg algorithm overview . 64

5.3 MinMaxAgg algorithm overview . 66

5.4 Trento trial execution behaviour . 70

5.5 SLA and measured performance for each day . 71

5.6 Business Performance (Req/min) versus power consumption (W) for each work-

ing mode . 72

5.7 HP trial execution behaviour with the EASC . 73

6.1 IaaS-PaaS deployment . 82

6.2 EASC-PaaS architecture . 82

xi

List of Figures

6.3 six days trial overview . 92

6.4 Adaptation to renewable energies . 93

6.5 Power of activities . 94

6.6 PaaS-IaaS Cloud infrastructure orchestration . 94

6.7 Front-end following the SLA . 94

7.1 Evolution of virtualization vehicules: VMs, containers, Unikernels 102

xii

List of Tables

3.1 Server configuration . 21

3.2 DC resource scenarios . 22

3.3 Federation resource scenarios . 22

3.4 PUE/CUE configurations . 22

3.5 Simulation results for energy consumption . 23

3.6 Simulation results for CO2 . 24

3.7 Performance comparison simulation result . 25

4.1 SLA constraints . 34

4.2 Model variables . 36

4.3 Characteristics of the racks/enclosures . 45

5.1 Trento trial working modes . 69

5.2 Trento trial results . 70

5.3 HP experiment trial results. 74

5.4 HP experiment trial: power and performance comparison 74

6.1 Hardware information . 89

6.2 IaaS and PaaS infrastructure information . 90

6.3 Profiles mapping to a full year . 91

6.4 Trial results . 92

xiii

1 Introduction

Data centres are large facilities which purpose is to host information processing and telecom-

munication services for scientific and/or business applications. The energy consumed by

them in 2010 accounted for between 1.1% and 1.5% of the total electricity consumed world-

wide [14], making of data centre energy management an important challenge for researchers.

A large amount of research on data centres has been focused on improving metrics like perfor-

mance, reliability, and availability. However, due to the rise in service demands together with

energy costs, the energy efficiency has now been added as a new key metric for data centres.

Indeed, the prices for electricity are constantly getting higher and carbon emissions to the

environment are increasing every year. Energy-aware strategies are beginning to be integrated

inside the data centre resource manager. As an example, Virtual Machine (VM) placement

algorithms consider the data centre and the workload characteristics to place the VMs among

the servers in the most efficient way, considering performance and energy consumption. This

placement must be done respecting the requirements of the Service Level Agreement (SLA)

existing between the data centre and its clients.

Furthermore, with the recent adoption of renewable energies to power data centres [15], the

research community enlarges its vision to associate with purely quantitative energy consump-

tion reduction, the notion of quality of the energy consumed, i.e. the capacity to rely as much

as possible on sustainable power sources. Differently from non-renewable energy sources,

the availability of renewable energies is very volatile and time dependent: e.g. solar power is

obtainable only during the day, and is subject to variations due to the meteorological condi-

tions. The goal in this case is to shift the workload of running applications, according to the

forecasted availability of the renewable energy (see Figure 4.7).

This thesis presents the usage of heuristics and meta-heuristics for the management of energy

1

Chapter 1. Introduction

Energy
Adaptive
App

Resource

Time

Energy
Adaptive
App

Resource

Time

Figure 1.1: Adapting applications for a better usage of renewable energies

in data centres. It aims at achieving two goals:

• save energy in data centres,

• increase the usage of renewable energies in data centres.

Those two objectives were pursued within two typical layers of modern Cloud computing

data centres: the Infrastructure as a Service (IaaS) service model and the Platform as a Service

(PaaS) service model.

1.1 IaaS optimization

Infrastructure as a Service (IaaS) is a service model that delivers computer infrastructure on

an outsourced basis to support enterprise operations. In order to save energy in data centres,

numerous studies showed that it is most efficient to use the IaaS layer infrastructure in order

to consolidate virtual machines on the most efficient servers, and then switch off the unused

servers. This technique is allowed due to the paradigm of virtualization. Virtualization is an old

concept, which allows to simulated the behavior of some system, within another system. Such

a system can be an operating system, a physical server, a storage device or network resources.

The initial success of the Cloud paradigm is due to the possibility to embed practically any

legacy applications within VMs, which are managed by an external stakeholder. This permits

to relieve the application owner from managing physical infrastructures. The virtualization

had the side effect that easy workload consolidation is now possible: several VMs can be

hosted on a single physical server. This consolidation is solving a long-standing problem in

traditional data centres: the under-utilization of servers. Additional consolidation is possible

in environments that permits VM migrations. This consolidation also allows to save energy, by

emptying and switching off under-utilized servers. We present in this thesis several algorithms

and a framework called Plug4Green able to perform an energy-aware consolidation under a

2

1.2. PaaS optimization

great number of constraints.

1.2 PaaS optimization

Platform as a Service (PaaS) is a category of cloud computing service that provides a platform

allowing customers to develop, run, and manage applications without the complexity of build-

ing and maintaining the infrastructure typically associated with developing and deploying an

application. We found out that the PaaS paradigm offers additional opportunities for energy

management. Specifically, at PaaS level the framework has additional knowledge about the ap-

plications being run than at IaaS level. Typically, a PaaS framework will compile an application

from its source code, and then deploy it inside light weight virtual machines, or containers.

This compilation and deployment is done with the help of a manifest file, which describes

the configuration and resource needs for the application. Furthermore, PaaS environments

usually offers an interface to scale up or down applications, or to schedule various tasks within

the applications. This uniform interface offers us a great opportunity with respect to the

energy management. In this thesis, we propose to instrument the PaaS framework in order

to increase the usage of renewable energies, by using this additional flexibility offered by the

framework.

1.3 Application optimization

In order to further increase the usage of renewable energies, we can directly control some key

applications and processes of a data centre. This includes applications such as virus scanning,

database cleaning and video processing. Those applications are captured in two different

models: task-oriented and service-oriented applications. In the first case, the workload of

the application is performed within different tasks that are scheduled, such as off-line video

transcoding or web crawling. In some cases, those tasks can be post- or pre-poned. We

take advantage of this possibility to schedule tasks at the best moment (obviously compliant

with the underlying contract). Our prototype then monitors the progress of the task and

its KPIs and modifies the schedule if necessary. Service-oriented applications, on the other

hand, have a continuous service to perform, such as serving web pages. In this case, we tune

the performance of the application within an identified range while respecting the SLA. For

example, in the case of a web server, we increase/decrease the number of client threads within

the boundaries of the SLA.

3

Chapter 1. Introduction

1.4 Thesis organization

After this introduction, the chapter 2 will be stating our research problem and objectives.

This thesis is then articulated in four technical chapters divided in two parts. The first part is

aiming at finding techniques for reducing the energy consumption of data centres, while the

second part is aiming at increasing the usage of the renewable energies. The first chapter in the

first part, entitled "Heuristics for virtual machine consolidation", presents heuristics able to

migrate and consolidate VMs in federated data centres. The objective being to minimize both

energy consumption and CO2 emissions. The second chapter, "Plug4Green, an energy-aware

VM placement framework", goes beyond those techniques and proposes an energy aware

framework called Plug4Green, able to cope with the complex and changing nature of data

centres. Plug4Green is based on a meta-heuristic called Constraint Programming, allowing it

to take into account a great number of constraints regarding Energy, hardware and SLAs in data

centres. In the second part, the chapter "The EASC, an energy adaptive software controller"

acknowledges the transition of the current objectives to use better energies. We present in

this chapter a framework and algorithms able to increase the use of the renewable energies in

Cloud data centres, for two kinds of applications: service-oriented and task-oriented. The last

chapter, "Energy optimizations within the PaaS and IaaS paradigms", shows the opportunities

that the modern Cloud data centres can provide regarding the usage of renewable energies.

Specifically, we demonstrate how the Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS) paradigms can interact to provide a better control of the energy consumption.

Finally the chapter 7 will conclude this thesis, summing up the research results and suggesting

future research directions.

The study of the related works is located within each of the chapters (instead of having

one related work section for the full thesis). This allows to present related works that are

more focused on the specific topics addressed by each of the chapters, namely related works

on heuristics for VM positioning (in Section 3.2), energy aware extensible frameworks (in

Section 4.2), server power models (in Section 4.2), renewable energy scheduling systems (in

Section 5.2) and finally PaaS/IaaS optimizations and energy models (in Section 6.2).

4

2 Research problem and objectives

2.1 Research problem

This thesis tackles the research challenges in relation with the green management of energy in

Cloud data centres. In particular, the research problems tackled are:

• How to optimize the placement of virtual machines in order to reduce the energy

consumption of the DC,

• How to cope with the great number of constraints that exists in data centres, including

infrastructure, SLA and energy constraints,

• How to cope with the extensibility needed by the optimization engine in order to include

new constraints that may arise,

• How to optimize the workload of applications in order to maximize the usage of renew-

able energies in DCs,

• How to use the specific opportunities offered by PaaS and IaaS data centres for the usage

of renewable energies,

• How to evaluate the energy consumption of applications in a shared infrastructure.

A great challenge of efficiently using the renewable energies in a data centre is to be able to

schedule correctly the workload of the applications. Indeed, the availability of renewable

energy can have a great variation in time, with comparison to brown energies. To increase the

use of renewable energies with respect to brown energies, it is necessary to shift in time the

workload of some applications in the data centre. This shows the importance of being able

to know the workload that an application will have to run at a certain point of time, in order

5

Chapter 2. Research problem and objectives

to understand under what conditions it can be shifted or delayed, and in fine to schedule it

correctly.

A current trend is to make the applications running in data centres more and more aware

of their self workload. Those applications should be able to predict how much computing

power they will require and when. A recent terminology for such applications is Cloud-native1.

However in data centres, the knowledge of the requirements of an application in terms of

resources is still “meta-knowledge”, i.e. the knowledge of the data centre operator/application

owner. It is the role of the data centre operator to provision sufficient resources for an applica-

tion, and this provision is often done in a static way. For example, in data centres, database

indexing maintenance operations are usually performed at night, to minimize the impact on

the overall performance. However, in a data centre using primarily solar power, it would be

interesting to shift this task during the lunch break, when the sun is shining. The knowledge

that this particular task, “database indexing”, can cope with a 12 hour shift, and that it takes

approximately half an hour, belongs to the operator’s knowledge. It is a very coarse grained

and subjective knowledge. This advocates the need for:

• a standardized format and protocol for applications to advertise in real-time their own

needs in term of resources, including possible performance trade-offs and uncertainty

ranges,

• a data centre management framework and algorithms able to read the application

profiles and use them to consolidate and schedule the applications on the servers in the

appropriate way, in order to minimize a given utility function,

• a library and programming methodology to allow an external process to control the

application load to some extent.

2.2 Objectives

The objective of this thesis is to tackles the research challenges in relation to energy efficient

and energy adaptiveness in Cloud data centres. We define two main research objectives with

regard to energy management in data centres:

1. save energy,

2. increase the usage of renewable energies.

1https://cncf.io/

6

2.3. Methodology

2.2.1 Objective 1: save energy

The goal of saving energy in data centres have been tackled in a great number of research

works [16][17]. In this thesis, we will try to place this goal within the complexity of current

data centres. The following research problems are investigated:

• How to design scalable VM consolidation algorithms, based on a high number of con-

straints.

• How to capture the complexity of the data centre within a specific language, as input of

the consolidation algorithm.

• How to find VM placement solutions in a short amount of time.

2.2.2 Objective 2: increase the usage of renewable energies

Relative to the second objective, the following research problems are investigated:

• How to make applications workload more flexible via an extended SLA.

• How to control the performance level of the applications.

• How to tune the PaaS and IaaS infrastructures to make sure that a performance change

at application level translates into an energy consumption change.

• How to modelize the energy consumption of PaaS infrastructures.

• How to design workload scheduling algorithms, that increase the usage of renewables.

The crucial aspect of this objective is to identify the flexibility offered by an application. This

flexibility need to be encoded in an extended SLA. For example, some workload have the

possibility to be post-poned to match the availability of solar energy. Modern data centres

uses advanced management infrastructure such as IaaS and PaaS. These layers should also be

investigated in order to make sure that the workload management will effectively translate

into energy savings.

2.3 Methodology

The research took place within the FP7 European projects FIT4Green2 and DC4Cities 3. The

research presented in this thesis was performed following the steps below:

2http://www.fit4green.eu/
3http://www.dc4cities.eu/en/

7

Chapter 2. Research problem and objectives

• Study of the literature and technology evaluation.

• Elicitation of the requirements.

• Creation of the architecture of the prototypes.

• Implementation of the prototypes in Java.

• Evaluation of the prototypes in real-life trials and simulations.

2.3.1 Research models and algorithms

After a study of the literature, open problems are identified and described. Various candidate

technologies are evaluated (such as simulated annealing, genetic algorithms for optimiza-

tion problems). Following this study, several solutions are proposed and the corresponding

algorithms are designed.

2.3.2 Requirement elicitation

The requirement elicitation is a process were we list what exactly the prototype should do.

There is a strict formalism to respect. Specifically, the requirements should be consistent, non

redundant, complete, unambiguous, testable, clear, correct, understandable, feasible, inde-

pendent, atomic, necessary and finally implementation-free 4. Furthermore, the requirements

are separated in functional and non-functional requirements. A functional requirement is

feature oriented, whereas a non-functional requirement is quality and performance oriented.

Requirements are also grouped by the prototype component that they address.

2.3.3 Architecture

The architecture is created after the requirements elicitation process has terminated, and

should fulfil every of them. We first define the actors that interact with the prototype. Those

actors are either end-user humans, or external components. Then a list of detailed use cases

shows examples or usage of the prototype by the various actors. Class diagrams shows the

internal components and their interactions. Finally detailed APIs are produced to define the

format of the data exchanges between the internal components and also with the external

components.

4http://www.ibmpressbooks.com/articles/article.asp?p=1152528&seqNum=4

8

2.3. Methodology

2.3.4 Implementation

The implementation was done with Java as a primary language for development. Maven5 is

used to control the development life-cycle. It’s an open source tool that allows to formalise the

development process and software life-cycle. Git is used as a source configuration manager

and GitHub/Gitlab6 to manage and share the Git repositories. To avoid developing a massive

monolithic repository, it was decided to rely on multiple ones. In practice, each software

component that has its own life-cycle will have its dedicated repository. Jenkins7 and Travis8

are used as continuous integration servers. Continuous integration is an important task in

modern development processes, consisting in regularly running test suites on the source code,

based on a controlled and reproducible environment. Sonar9 is used to analyse the source

code quality against common development rules for Java projects.

2.3.5 Evaluation

Evaluation of the prototype was performed in two complementary environments: trial and

simulation. The prototypes were evaluated in the trial setup by the projects FIT4Green and

DC4Cities. Those two projects defined and built several trial labs located in different sites. For

example, DC4Cities trials were performed in Barcelona, Milan and Trento. The algorithms

presented in this thesis were evaluated within each of the trials, and then integrated inside

the project full prototypes. The simulations, on the other hand, were used to validate the

prototypes with a larger scale that what could be achieved in trials: large number of servers,

VMs and applications. As the target system is a Cloud computing environment that is intended

to create a view of infinite computing resources to the users, it is essential to evaluate the pro-

posed algorithms on a large-scale virtualized data centre infrastructure. However, conducting

repeatable large-scale experiments on a real infrastructure is extremely difficult. Therefore, to

ensure the repeatability and reproducibility of experiments, as well as carry out large-scale

experiments, simulation is used as the initial way to evaluate the performance of the proposed

algorithms.

5http://maven.apache.org
6http://maven.apache.org
7http://jenkins.org
8https://travis-ci.org/
9http://www.sonarqube.org/

9

Chapter 2. Research problem and objectives

2.4 Contributions

The contributions of this thesis are articulated around the two objectives above. Two Open

Source software are contributed: Plug4Green10 and EASC11. Plug4Green aims at reducing the

power used in data centres while the EASC aims at optimizing the renewable energy usage.

Both of them are available on Github.

2.4.1 Plug4Green contributions

Plug4Green is an energy-aware VM placement algorithm and platform that can be easily spe-

cialized and extended to fit the data centres specificities. Plug4Green computes the placement

of the VMs and state of the servers depending on a large number of constraints, extracted

automatically from SLAs. The main contribution is an energetic model based on Constraint

Programming, and a list of typical constraints. The main advantage of Plug4Green is its flexi-

bility. It is achieved by allowing the constraints to be formulated independently from each

other but also from the power models. This flexibility is validated through the implementation

of 23 SLA constraints and 2 objectives to reduce either power consumption or greenhouse gas

emission.

2.4.2 EASC contributions

The EASC role is to control one application, so as to make it “energy adaptive”, and responsive

to external energetical requests. The EASC will plan the activity and control the performance

levels of a specific application so as to follow energy budgets. To enable this, the EASC also has

to monitor and to predict the energy consumption and activity levels of the application. We

contribute the algorithms for two instances of the EASC: EASC for batch processing, and EASC

for web services. The batch processing EASC manages applications that have typically a fixed

amount of work to do during a certain time, such as generating a certain number of reports or

applying a virus scan every day. On the contrary, the web services EASC manages applications

that must deliver constantly a service, with various levels of performance. Furthermore, we

contribute a Cloud architecture composed of IaaS and PaaS cloud services able to respond to

external factors like applications SLAs and renewable energy availability. We present a power

prediction model able to predict the power consumption of applications running within a

PaaS-IaaS infrastructure.

10https://github.com/Plug4Green/Plug4Green
11https://github.com/dc4cities/easc

10

Part IUse less energy

11

The first two chapters of this thesis address our first objective: reducing the energy consump-

tion in data centres. The first chapter work was performed from 2010 to 2012 as a preliminary

study on the heuristics for VM placement. We show that the heuristics selected can be very

efficient and fast for the problem of the VM placement. We propose two new algorithms able

to allocate VMs and to migrate them in order to lower the data centre energy consumption

on the one hand, and to lower the carbon emissions on the other hand. However, this work

showed us that one drawback of such algorithms is that they are very specific to a particular

use case. The hardware refreshing, the workload characteristics but also the wide variety

of SLAs make each data centre unique. Data centres are indeed environments that evolves

quickly, in order to accommodate new user requirements. As a result, the original algorithm

may not be appropriate anymore, while its ad-hoc nature may prevent it from being upgraded

according to the new data centre properties.

This work on the heuristics triggered the research on meta-heuristics, presented in the second

chapter. We present Plug4Green, an energy-aware VM placement framework that can be easily

specialized and extended to fit the new specificities of the data centres. Plug4Green computes

the placement of the VMs and state of the servers depending on a large number of constraints,

extracted automatically from SLAs. The flexibility of Plug4Green is achieved by allowing the

constraints to be formulated independently from each other but also from the power models.

The main advantage of heuristic based methods is that they are fast and easy to configure.

However, in many situations they cannot lead to the optimal solution if the data centre is

heterogeneous. Furthermore they will be hard to extend if new uses cases appear in the data

centre. We propose a larger framework that can cope with an arbitrary number of constraints

user-defined which ensure the flexibility of the framework and its extensibility regarding new

constraints that may come in the future.

13

3 Heuristics for virtual machine consoli-

dation

This work addresses the problem of high energy consumption and carbon emissions induced

by data centres. To address this problem, workload consolidation has been proposed to lower

the overall energy consumption. The consolidation of VMs on the most efficient servers allows

to switch off the less efficient servers. We consider two allocation scenarios: single allocation

(SA) and global optimization (GO) of available resources and propose the corresponding

algorithms. The optimization algorithms use the Power Usage Effectiveness (PUE) and Carbon

Usage Effectiveness (CUE) in order to evaluate the site efficiency. The evaluation of the

algorithms have been performed in a simulation with a federation of data centres with several

different configurations. The simulation results shows that the proposed algorithms enable

the saving in energy consumption from 10% to 31% and in carbon emission from 10% to 87%.

This chapter is adapted from the papers:

• Dang Minh Quan, Robert Basmadjian, Hermann de Meer, Ricardo Lent, Toktam Mah-

moodi, Domenico Sannelli, Federico Mezza, Luigi Telesca, and Corenten Dupont. Energy

efficient resource allocation strategy for cloud data centres. In Erol Gelenbe, Ricardo

Lent, and Georgia Sakellari, editors, Computer and Information Sciences II, pages 133–

141. Springer London, 2012

• Dang Minh Quan, Andrey Somov, and Corentin Dupont. Energy usage and carbon

emission optimization mechanism for federated data centers. In Proceedings of the First

International Conference on Energy Efficient Data Centers, E2DC’12, pages 129–140, 2012

15

Chapter 3. Heuristics for virtual machine consolidation

3.1 Introduction

Until recently, the key performance indicator of a data centre was its performance. How-

ever, the growing number of IT services, resulting in higher power consumption and carbon

emission, have forced the ICT community to consider the energy efficiency of data centres

carefully. Several energy-aware approaches and resource management techniques have been

introduced to tackle power consumption problems in the data centre domain from different

points of view.

The objective of this research work is twofold: to reduce both the power consumption and

carbon emission of a federation of data centres. To achieve this objective we propose two opti-

mization algorithms for the single allocation of virtual machines and for the global resources

optimization.

The chapter is organized as follows: Section 3.2 discusses the related works. Section 3.3

describes the problem formulation. Sections 3.4 and 3.5 present the algorithms for single

allocation request and global optimization respectively. The simulation results based on

different scenarios and data centres configurations are shown in Section 3.6. Finally, we

conclude the chapter in Section 3.7.

3.2 Related works

In order to reduce the energy consumption in data centres, many approaches focus on work-

load consolidation. The goal is to decrease the number of servers by switching them off or

putting them into sleep mode and therefore reduce the power consumption [18, 19]. The

biologically-inspired algorithm in [20] determines more power efficient servers within a data

centre facility and moves workload on them.

Some research, in contrast, put efforts in minimizing the cooling systems energy consumption

with optimized workload [21]. For example [22] uses energy-aware scheduling of workload.

[23] tries to find the optimal temperature point of cold air. In [24], the authors study the impact

of load placement policies on cooling and maximum data centre temperatures throughout

geographically distributed data centres. They propose dynamic load distribution policies that

consider all electricity-related costs as well as transient cooling effects.

Several other works use algorithms similar to the First Fit Decreasing algorithm which has

been used in previous works [25, 26, 27], with the addition of power-awareness for choosing

16

3.3. Problem formulation

the server. In [28], the authors proposed the Modified Best Fit Decreasing, which will allocate

a new VM to an active physical machine that would take the minimum increase of power

consumption. [29] also proposes algorithms for VM reconfiguration and (re)allocation. A

technique for dynamic consolidation of VMs based on adaptive utilization thresholds is

proposed in [30]. Those VM utilization thresholds are updated dynamically, which ensures a

high level of meeting of the Service Level Agreements. Compared to these works, our work

proposes to add explicitly power-awareness in order to choose the appropriate server for VM

allocation.

On the other hand, [31] and [32] offers some critical view on VM consolidation techniques. [31]

questions how the resource utilization and performance aggregates when VMs are co-hosted,

trying to identify bottlenecks that might have adverse impacts on consolidation. Their main

insight is that consolidation of cache-sensitive and storage-intensive VMs is likely to lead to

severely degraded performance. Yet, they point that heuristics that have simplistic methods of

treating multi-dimensional resource requirements are reasonably effective in many common

practical situations. [32] analyzed large enterprise workloads with the goal of understanding

how effective are the VM consolidation variants in real world. They found out that highly bursty

and predictable workloads with high CPU contention can benefit from dynamic consolidation.

However, there are many workloads with high memory contention and they recommend

semi-static consolidation for such workloads. Semi-static consolidation avoids live migration

and associated performance issues making it suitable for critical applications.

3.3 Problem formulation

We assume that we have a set of servers S. Each server si ∈ S is characterised with number of

cores, amount of memory and amount of storage (si .nrCor e, si .nr R AM , si .nr Stor). Each

server si has a set of running virtual machine Vi including ki virtual machines. Each virtual

machine v j ∈Vi is characterised with required number of virtual CPU, amount of memory,

amount of storage (v j .r V C pu, v j .r Ram, v j .r Stor) and the average CPU usage rate computed

in percentage, amount of memory, amount of storage (v j .aU Rate, v j .aRam, v j .aStor).

Because the load in each VM is quite stable , we assume that those values do not change

through time.

With each server si the constraints 3.1, 3.2, 3.3, 3.4 have to be met. The total usage rate of a

certain number of CPUs on a certain number of VMs can not exceed the safe performance

17

Chapter 3. Heuristics for virtual machine consolidation

factor for this certain number of cores:

ki∑
j=1

v j .r V C pu ∗ v j .aU Rate ≤ k ∗ si .nrCor e (3.1)

where k is the safe performance factor, k <1. The average total memory used by the VMs on

one server cannot exceed the amount of total available memory of the server:

∑
j=1

v j .aRam ≤ si .nr Ram (3.2)

The total number of VMs with required number of virtual CPUs is less or equal to number of

cores with predefined maximum number of virtual CPUs on board:

∑
v j .r V C pu ≤ si .nrCor e ∗maxV C puPCor e (3.3)

where maxV C puPCor e is maximum number of virtual CPUs per Core. The number of the

server’s VMs can not exceed the maximum number of VMs, maxV mPSer ver , allowed for the

server:

ki ≤ maxV mPSer ver (3.4)

When there is a new resource allocation request, the new VM must be allocated to a server in a

way that total usage of VMs does not exceed the capacity of the server and the added energy

usage is minimum. For the global optimisation request, the VMs must be arranged in a way

that total usage of VMs does not exceed the capacity of the server and the energy usage is

minimum.

3.4 Single Allocation algorithm

When a new VM is requested by a client, the presented algorithm will check all computing

nodes in order to find the suitable node using the least amount of energy. The proposed

algorithm will go through each server of the data centre and evaluate its power consumption,

18

3.5. Global Optimisation algorithm

taking into account the impact of the new VM. Based on this evaluation, we select the server

having the smallest energy consumption. The algorithm for single allocation request (see

Figure 3.1) is presented in Listing 3.1. The power consumption of each server is evaluated by

an external component using the power model described in section 4.4.4.

Figure 3.1: Single Allocation diagram

Listing 3.1: Single Allocation algorithm

1

2 Input : the model of all servers in the data centres , constraints ,

characteristics of the incoming VM

3 Ouput : the server where to allocate the VM

4 Step 0: Determine all servers meeting the constraints and store them in array A

5 Step 1: If the array A is empty , stop the algorithm and return no solution

6 Step 2: Set index i at the beginning of the array A

7 Step 3: Calculate energy consumption Ei of the data centre if the VM is

deployed on the server at array index i

8 Step 4: Store (i, Ei) in a list L

9 Step 5: Increase i to the next index of A

10 Step 6: Repeat from Step 3 to Step 5 until i goes out of the scope of A

11 Step 7: Determine min Ei in the list L

12 Step 8: Assign the VM to the server at the corresponding index

13 Step 9: If server at index imin is OFF , put action turn ON to the action list

It is noted that Ei is calculated for servers having workload. The server without workload will

be shutdown.

3.5 Global Optimisation algorithm

The Global Optimization algorithm has two main phases, as shown in Figure 3.2. In the first

phase, we will move the VMs from low load servers to higher load servers if possible in order

to empty the low load server. The emptied server can be turned off. The algorithm for phase 1

is given in Listing 3.2.

19

Chapter 3. Heuristics for virtual machine consolidation

Figure 3.2: Global Optimization diagram

In the second phase, we will move the VMs from the old servers to the modern servers. The

emptied server can be turned off as well. As one modern server can handle the workload of

many old servers, the energy consumed by the modern server is smaller than the total energy

consumed by those many old servers. The algorithm is given in Listing 3.3.

Listing 3.2: Global Optimisation algorithm phase 1

1 Step 0: Forming the list LS of running servers

2 Step 1: Find the server having the smallest load rate.The load rate of a server

is defined as the maximum (CPU load rate , Memory load rate , Storage load rate)

3 Step 2: Sort the VMs in the low load server according to the load level in

descending order list LW

4 Step 3: Remove the low load server out of running server list

5 Step 4: Use Single Allocation algorithm to find the suitable server in LS for the

first VM in the list LW

6 Step 5: If Singe Allocation finds a suitable server , update the load of that

server , remove the VM out of LW

7 Step 6: Repeat from Step 4 to Step 5 until LW is empty of F4G-CS cannot find out

the suitable server

8 Step 7: If Single Allocation cannot find a suitable server , reset the state of

found servers and mark Stop=true

9 Step 8: Repeat from Step 1 to Step 7 until Stop=true

Listing 3.3: Global Optimisation algorithm phase 2

20

3.6. Evaluation

1 Step 0: Sort free servers into a descending order list LFS according to resource

level .

2 The resource level of a server is defined as the minimum (si.nr_Core/max_Core ,si.

nr_RAM/max_RAM , si.nr_Stor/max_Stor) with max_Core , max_RAM , max_Stor are the

maximum number of Cores , memories , storages of the server in the pool.

3 Step 1: Sort running servers into an ascending order list LRW according to load

rate.

4 The load rate of a server is defined as the maximum (CPU load rate , Memory load

rate , Storage load rate)

5 Step 2: Set m_ count =0

6 Step 3: Remove the first server s out of LFS

7 Step 4: Remove the first server w out of LRW

8 Step 5: If we can move workload from w to s m_ count +=1

9 Step 6: Repeat from Step 4 to Step 5 until we cannot move workload from w to s

10 Step 7: If m_ count <= 1, reset the state of moved w,s and mark Stop=true

11 Step 8: Repeat from Step 2 to Step 7 until Stop=true

3.6 Evaluation

In this section, we study in simulation the saving rates of the resource allocation mechanisms

presented.

3.6.1 Simulation scenario

We created different resource configuration scenarios in order to evaluate our algorithms

in different conditions. We use 4 server classes with single core, dual cores, quad cores and

six cores, respectively. The main parameter for each server class are presented in Table 3.1.

Furthermore, the algorithms are evaluated in various settings with a federation of data centres.

Table 3.1: Server configuration

Server
type (i)

Nr.
Cores

Pidle
CPU (W)

CPU
freq.
(GHz)

RAM
(GB)

Disk
(MB)

Pmax
(W)

1 1 7.57 2.0 1 400 102.22
2 2 9.88 2.0 2 500 103.38
3 4 20.14 2.2 4 800 171.70
4 6 22 2.4 6 1000 229

We generated 3 different kinds of data centres: modern data centre, normal data centre and

old data centre as shown in Table 3.2. In the normal data centre the percentage of different

server classes is balanced. In the old data centre, the percentage of server classes with less

cores is predominant. In the modern data centre, most servers have high performance servers.

21

Chapter 3. Heuristics for virtual machine consolidation

Table 3.2: DC resource scenarios

Scenario Nr. servers
type 1

Nr. servers
type 2

Nr. servers
type 3

Nr. servers
type 4

1 - Modern DC 50 100 150 200
2 - Medium DC 100 100 100 100
3 - Old DC 200 150 100 50

With each resource configuration, we generated a raw set of jobs. Each simulation is divided

in 1000 timeslots, each timeslot simulating 5 minutes of real time. The jobs are submitted ran-

domly to the system during the simulation run. The parameters for each job are determined by

random selection. The duration of each job can be for 5 minutes to 500 minutes. We generated

3 kinds of data centres federations: federation with many old data centres, federation with

balanced types of data centre, federation with many modern data centres. The detail of each

federated data centres configuration is presented in Table 3.3.

Table 3.3: Federation resource scenarios

Federated ID Nr. old DC Nr. normal DC Nr. modern DC
1 - Old DCs 6 3 1
2 - Balanced DCs 3 4 3
3 - Modern DCs 1 3 6

We use 3 PUE/CUE configurations as presented in Table 3.4.

Table 3.4: PUE/CUE configurations

Type Energy source PUE ESC CUE
Low Oil 20%, Hydro 40%, Nuclear 40% 1.3 0.13 0.16
Average Coal 50%, Nuclear 30%, Hydro 20% 1.5 0.46 0.67
High Coal 80%, Oil 20% 1.8 0.85 1.53

To assign PUE/CUE to each data centres, we use 3 configurations as presented below:

• Energy mix 1: Old data centre high PUE/CUE, average data centre normal PUE/CUE,

modern data centre low PUE/CUE

• Energy mix 2: Old data centre normal PUE/CUE, average data centre normal PUE/CUE,

modern data centre normal PUE/CUE

• Energy mix 3: Old data centre low PUE/CUE, average data centre normal PUE/CUE,

modern data centre high PUE/CUE

We run the simulation for each federated data centres configuration using each of the energy

22

3.6. Evaluation

mix. Several scenarios are run: first we perform the allocation of VMs only within its own

preselected data centre. We then run the simulation again, allowing VMs to be allocated within

the full federation of data centres. Finally we run again the simulation allocating VMs in the

federation, this time running also the global optimization algorithm every 5 timeslot. For each

scenario, we calculate the energy consumption and CO2 emissions for the 1000 timeslots.

3.6.2 Numerical results

The simulation results in terms of energy consumption (in MW*timeslot) are presented in

Table 3.5.

Table 3.5: Simulation results for energy consumption

Federated ID-energy mix ID SA
Energy

SA federated SA + GO federated

Energy Saving Energy Transfer
Energy

Saving

1-1: Old Fed., mostly high PUE 385.79 277.05 28% 265.66 0.003442 31%
1-2: Old Fed., average PUE 354.12 329.68 7% 313.75 0.003736 11%
1-3: Old Fed., mostly low PUE 338.59 289.33 15% 275.35 0.003646 19%
2-1: Aver. Fed., mostly high PUE 395.18 314.60 2% 301.75 0.049073 24%
2-2: Aver. Fed., average PUE 396.13 369.25 7% 354.16 0.033214 11%
2-3: Aver. Fed., mostly low PUE 413.55 326.03 21% 312.71 0.004585 24%
3-1: Mod. Fed., mostly high PUE 412.09 357.49 13% 343.61 0.068402 17%
3-2: Mod. Fed., average PUE 445.99 418.37 6% 402.13 0.003558 10%
3-3: Mod. Fed., mostly low PUE 502.17 367.96 27% 353.68 0.004252 30%

The simulation result presented in figure 3.3 shows the efficiency of the energy aware algo-

rithms for the federated data centres. Depending on the configuration, the energy saving

compared to the single allocation case spans from 10% to 31%. We can see that the federated

optimization algorithm is most effective when the values of PUE of each data centre in the

federation greatly differ from each other. A federation gathering data centres with different

PUE will allow for more opportunities for allocating VMs in the most effective place. On the

opposite, with the simulation configurations 1-2, 2-2 and 3-2, where the PUE values are the

same for each data centre, the saving rate is much smaller. Furthermore, we can see that

the global optimization, performed regularly, offers an additional 3.6% of energy saving. It

allows to re-consolidate the VMs when the DC situation is changing (i.e. when old VMs are

terminating).

The simulation result in terms of CO2 emission (in Ton*timeslot/h) is presented in Table 3.6

23

Chapter 3. Heuristics for virtual machine consolidation

0%

10%

20%

30%

O
ld

 F
ed

er
at

io
n,

 m
os

tly
 h

ig
h

PUE

O
ld

 F
ed

er
at

io
n,

 a
ve

ra
ge

 P
UE

O
ld

 F
ed

er
at

io
n,

 m
os

tly
 lo

w P
UE

Av
er

ag
e

Fe
de

ra
tio

n,
 m

os
tly

 h
ig

h
PUE

Av
er

ag
e

Fe
de

ra
tio

n,
 a

ve
ra

ge
 P

UE

Av
er

ag
e

Fe
de

ra
tio

n,
 m

os
tly

 lo
w P

UE

M
od

er
n

Fe
de

ra
tio

n,
 m

os
tly

 h
ig

h
PUE

M
od

er
n

Fe
de

ra
tio

n,
 a

ve
ra

ge
 P

UE

M
od

er
n

Fe
de

ra
tio

n,
 m

os
tly

 lo
w P

UE

ID

S
av

in
g

pe
rc

en
ta

ge

"Singe + Global optimimization"

Singe + Global optimimization

Single allocation

Figure 3.3: Energy savings for a federated data centre

and displayed in Figure 3.4.

Table 3.6: Simulation results for CO2

Federated ID-energy mix ID
SA CO2 SA federated SA + GO federated

CO2 Saving CO2 Transfer
CO2

Saving

1-1: Old Fed., mostly high PUE 252.81 34.36 86% 32.95 0.00279 87%
1-2: Old Fed., average PUE 162.83 151.59 7% 144.27 0.005537 11%
1-3: Old Fed., mostly low PUE 124.12 40.41 67% 38.46 0.008822 69%
2-1: Aver. Fed., mostly high PUE 183.24 37.32 8% 35.80 0.005822 80%
2-2: Aver. Fed., average PUE 182.15 169.79 7% 162.85 0.003441 11%
2-3: Aver. Fed., mostly low PUE 233.33 45.11 81% 43.27 0.00734 81%
3-1: Mod. Fed., mostly high PUE 117.63 41.04 65% 39.44 0.007853 66%
3-2: Mod. Fed., average PUE 205.08 192.38 6% 184.91 0.00496 10%
3-3: Mod. Fed., mostly low PUE 363.22 49.27 86% 47.36 0.006843 87%

The saving rate spans from 10% to 87% in CO2 emissions. The saving in term of CO2 is

potentially very high. This is because the CUE differences between two data centres can

be huge, depending on the local energy source mix (see Table 3.4. Similar to the energy

consumption case, we can see that the federated optimization algorithm is most effective

when the values of CUE of each data centre in the federation greatly differ from each other.

The global optimization, performed regularly, offers an additional 1.9% of emissions saving.

24

3.6. Evaluation

0%

25%

50%

75%

O
ld

 F
ed

er
at

io
n,

 m
os

tly
 h

ig
h

PUE

O
ld

 F
ed

er
at

io
n,

 a
ve

ra
ge

 P
UE

O
ld

 F
ed

er
at

io
n,

 m
os

tly
 lo

w P
UE

Av
er

ag
e

Fe
de

ra
tio

n,
 m

os
tly

 h
ig

h
PUE

Av
er

ag
e

Fe
de

ra
tio

n,
 a

ve
ra

ge
 P

UE

Av
er

ag
e

Fe
de

ra
tio

n,
 m

os
tly

 lo
w P

UE

M
od

er
n

Fe
de

ra
tio

n,
 m

os
tly

 h
ig

h
PUE

M
od

er
n

Fe
de

ra
tio

n,
 a

ve
ra

ge
 P

UE

M
od

er
n

Fe
de

ra
tio

n,
 m

os
tly

 lo
w P

UE
ID

S
av

in
g

pe
rc

en
ta

ge

"Singe + Global optimimization"

Singe + Global optimimization

Single allocation

Figure 3.4: CO2 savings for a federated data centre

3.6.3 Performance comparison

In this section we evaluate our algorithm Single Allocation (SA) and Global Optimization

(GO) in comparison with other algorithms. The legacy algorithms round robin, load balance

and greedy have been selected for this study. We perform again the scenario presented in

the previous section, within the modern, balanced and old DC. We evaluated the energy

consumption of each data centre for each scenario, during the full simulation. The Table 3.7

presents the average power consumed over each scenario trial.

Table 3.7: Performance comparison simulation result

Modern DC Normal DC Old DC
Round robin (KW) 61.23 48.45 41.89
Round robin + GO (KW) 47.64 40.83 37.21
Load balance (KW) 60.46 47.87 41.15
Load balance + GO (KW) 46.56 39.67 36.85
Greedy (KW) 50.74 40.35 35.78
Greedy + GO (KW) 45.67 37.78 33.47
SA (KW) 46.58 36.13 32.18
SA + GO (KW) 44.76 34.47 30.7

Our energy aware VM allocation algorithm performed better than the Greedy algorithm, which

is the most energy efficient between the legacy algorithms. On average, it consumed 9.44% less.

25

Chapter 3. Heuristics for virtual machine consolidation

This improvement is mainly due to the selection of the most energy efficient server performed

by our algorithm before allocating the VMs. It consumed 24.20% less energy compared to

a non energy efficient legacy algorithm such as round robin, which is still widely used in

the data centres. Adding the global optimization algorithm on top of each legacy algorithm

allows to save an additional amount of energy: 11.73% on average. This additional energy

saving is mainly to the consolidation affect applied by GO in the data centre when VMs are

finishing. This shows that existing frameworks using legacy VM allocation algorithm can still

be optimized using the global optimization in order to consolidate the VMs.

3.7 Conclusion

This chapter presented a method that potentially reduces the energy consumption of the IaaS

data centre. To save energy, we allocate the resources on the most efficient servers. In the

global optimization algorithm, we take advantage of the fact that new generation computer

components have higher performance and consume less energy than the old generation. Thus,

we move the heavy load applications to the new servers with larger number of cores while

moving light load applications to the old servers with smaller number of cores, and finally

switch off as many old servers as possible. The evaluation shows that our algorithms can

enhance the performance further when the data centre consists of a larger number of old

servers, and also in the case when many old servers are working with heavy load rate and

many modern servers are working with light load rate.

26

4 Plug4Green, an energy-aware VM

placement framework

To maintain an energy footprint as low as possible, data centres manage their VMs according

to conventional and established rules. Each data centre is however made unique due to its

hardware and workload specificities. This prevents the ad-hoc design of current VM managers

from taking these particularities into account to provide additional energy savings. In this

chapter, we present Plug4Green, an energy-aware VM placement algorithm that can be easily

specialized and extended to fit the specificities of the data centres. Plug4Green computes the

placement of the VMs and state of the servers depending on a large number of constraints,

extracted automatically from SLAs. The flexibility of Plug4Green is achieved by allowing

the constraints to be formulated independently from each other but also from the power

models. This flexibility is validated through the implementation of 23 SLA constraints and 2

objectives aiming at reducing either the power consumption or the greenhouse gas emissions.

On a heterogeneous test bed, Plug4Green specialization to fit the hardware and the workload

specificities allowed to reduce the energy consumption and the gas emission by up to 33%

and 34%, respectively. Finally, simulations showed that Plug4Green is capable of computing

an improved placement for 7,500 VMs running on 1,500 servers within a minute.

This chapter is derived from the papers:

• Corentin Dupont, Fabien Hermenier, Thomas Schulze, Robert Basmadjian, Andrey

Somov, and Giovanni Giuliani. Plug4green: A flexible energy-aware vm manager to fit

data centre particularities. Ad Hoc Networks, pages 505–519, 2014

• Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien Her-

menier. An energy aware framework for virtual machine placement in cloud federated

data centres. In Proceedings of the 3rd International Conference on Future Energy Systems:

27

Chapter 4. Plug4Green, an energy-aware VM placement framework

Where Energy, Computing and Communication Meet, e-Energy ’12, pages 4:1–4:10. ACM,

2012

4.1 Introduction

Cloud data centres provide powerful ICT facilities to host a large spectrum of applications.

Originally, data centre operation management has been focused on improving metrics like

performance, reliability, and service availability. Furthermore, due to the rise of service de-

mands, data centres have to constantly evolve in size and complexity. This and the continuous

increase of energy cost have prompted the ICT community to add energy efficiency as a new

key metric for improving data centres facilities.

VM consolidation is the norm to improve energy efficiency. In practice, an ad-hoc VM place-

ment algorithm considers the data centre and the workload properties to allocate the VMs

among the servers according to energy objectives [33, 34, 27, 35, 28]. However, the hardware re-

freshing, the workload characteristics but also the wide variety of SLAs make each data centre

unique. As a result, the original algorithm may not be appropriate anymore, while its ad-hoc

nature may prevent it from being upgraded according to the new data centre properties.

These evolutions are calling for a VM allocation approach that is flexible enough to address

data centres complex and changing nature. In other words, a VM placement algorithm

has to take into account a large spectrum of tuning possibilities and constraints associated

with data centre specificities. As an example, an energy-aware algorithm should be able

to provide additional energy savings by being fine-tuned according to multiple particular

hardware and SLAs. We define the following requirements on flexibility that have to be met

by a VM placement algorithm: i) be extensible with users and operator’s new constraints and

requirements, especially in the case of new SLA definitions associated with new services. ii)

be adaptable to any data centre and its particularities, and be adaptable to new hardware

installed.

To satisfy the requirements, we propose to use the Constraint Programming (CP) [36] paradigm.

This paradigm and its associated algorithms have already been applied to address common

users requirements such as performance and fault tolerance [29, 37]. However, the lack of

energy models prevented it to explicitly address the energy related concerns which become of

vital importance in upgraded and consolidated data centres with improved capacity.

In this chapter we present Plug4Green, an energy aware VM manager based on CP, with a

28

4.2. Related Work

special focus on extensibility. We show how the flexibility realized in our framework can

address new requirements arriving in a data centre. Furthermore, we show that an increased

flexibility, by allowing to fine-tune the algorithms, allows better energy savings. We validate

our approach by implementing a use case on energy efficient VM management in data centres

while meeting the requirements on performance. Our main contribution, in terms of its

practical value, is threefold:

• Flexibility: We propose and implement 23 VM placement constraints to address com-

mon concerns such as hardware compatibilities, performance, security issue, and work-

load instability. We also propose 2 objectives: the first one reduces the overall energy

consumption while the second one reduces the greenhouse gas emission. The usage of

CP makes placement constraints, objectives, and algorithms independent from each

other, which is crucial for extensibility: new concerns can be added in the VM manager

without changing the existing implementation.

• Efficiency: We show that using our framework in a realistic cloud data centre environ-

ment allows to reduce the overall energy consumption up to 33% and the gas emission

up to 34%. These savings are achieved by considering the servers’ hardware heterogene-

ity, their different energy-efficiency and different compositions of SLAs.

• Scalability: We show by simulation how such an approach can be scalable. In particular,

we were able to compute the improved placement of 7,500 VMs on 1,500 servers, while

respecting their SLA.

This chapter is organized as follows: Section 4.2 introduces related works Section 4.3 presents

the design of Plug4Green. Its implementation is discussed in Section 4.4. Section 4.5 evaluates

its practical benefits, and Section 4.6 concludes the chapter.

4.2 Related Work

This section discusses recent advances in the area of energy-aware frameworks for data centres.

We survey the literature related to existing flexible and extensible frameworks, and the power

consumption prediction models.

4.2.1 Extensible and flexible frameworks

A few flexible and extensible frameworks for VM allocation have been proposed recently.

For example, BtrPlace [37] is a CP-based flexible consolidation manager. As detailed in Sec-

29

Chapter 4. Plug4Green, an energy-aware VM placement framework

tion 4.4.4, Plug4Green leverages on Btrplace [29, 38]. BtrPlace does not take into consideration

energy related problems and does not provide an operator with the opportunity of setting

optimization objectives. In contrast to BtrPlace, Plug4Green directly addresses energy con-

sumption problem. In this work, Plug4Green proved the practical benefits of flexibility to

address energy related problems. This required numerous extensions: the development of a

power model and different model extensions, two objectives with their associated heuristics, 7

energy-related constraints, and a domain-specific language to directly exhibit energy concerns

and metrics such as PUE, CUE and Watts, to the end-users.

Similar modular consolidation manager adopting CP paradigm is presented in [39]. The

authors ensure high availability for VM placement by guaranteeing at any time a certain

number of vacant servers to allocate VMs with regards to placement constraints. The authors

ensure high availability for VM placement by guaranteeing at any time a certain number

of vacant servers to allocate VMs with regards to placement constraints. The scalability is

demonstrated with 32 servers and 128 VMs only.

In [40], the authors propose an hybrid approach based on a Business Rules Management

System (BRMS) and CP to manage VMs. The BRMS monitors and analyses the servers’ state at

a period of time to detect overloaded servers and bottlenecks. Once a problem is identified the

BRMS models its instance and sends it to the CP solver. A user can express constraints through

the BRMS but the resulting specialization cannot be deterministic contrary to Plug4Green.

In contrast to our manager, both the systems presented in [39] and [40] are not addressing

energy-efficiency problems.

Some preliminary theoretical and practical aspects of Plug4Green were investigated in [10].

Energy-aware VM allocation was the primary goal while this work focuses on flexibility. For

this purpose, we created seven new SLA constraints, notably energy-oriented, and a new

power objective model has been included. Three new heuristics has been developed, allowing

finding good solutions quickly. A complete experimentation has been carried out with new

prototype, evaluating the impact of several popular SLA constraints on the energy saving. In

this work, we demonstrate an energy saving of 33% while it was 18% in federated cloud data

centre experiment in [10], due to new energy-aware constraints and heuristics. The scalability

of the framework has been also greatly improved. Plug4Green is about 30 to 40 times faster

which makes it capable of managing larger data-centres.

Nefeli [41] is a cloud gateway that places VMs with regard to user preferences called "hints".

Nefeli expects that the users are aware of the role each VM plays in the infrastructure and

30

4.3. Design

communicate this information to the cloud as a hint. The VM placement is computed using

simulated annealing. A hint is then implemented as a scoring function that evaluates the

quality of the placement with respect to its concern. This approach makes Nefeli flexible:

Nefely can be extended by programming new hints. As a difference with Plug4Green, the

approach does not separate the model from its resolution method. The specialization made

by the hints is also not composable as each score is, by nature, relative to the others. Despite

the authors discuss some energy-related hints, their system as a whole does not make a special

emphasize on energy efficiency. Finally, Nefely has not been evaluated in terms of scalability.

4.2.2 Server power models

In [42], the authors propose a model to predict the average power consumption of a server

regardless of its utilisation. The two main benefits are the followings: (i) it is simple to compute

and no dynamic information is required, and (ii) it is similar to the method of estimating a

system’s power consumption based on the manufacturer’s specifications. However, it provides

very rough predictions especially for heterogeneous software and hardware environments.

In [35], a linear model estimates the power consumption according to the server’s CPU utilisa-

tion. This approach is not suitable for not CPU-intensive workloads. The model in [43] follows

a similar approach while taking into account the utilisation of the hard disk. Authors in [44]

extend the CPU and disk utilisation model by looking at performance counters of the system

such as the amount of instruction-level parallelism, the activity of the cache, or the utilisation

of the floating-point unit. However, performance counters are accessed differently on each

processor type. As a matter of fact, this model is not usable across heterogeneous systems. In

contrast to the above-mentioned models, which provide one linear model for the whole server,

our approach aggregates different models for different components based on their behaviour.

In addition, our approach does not need any calibration phase. Consequently, our models are

suitable not only for homogeneous, but also for heterogeneous environments like cloud data

centres.

4.3 Design

Plug4Green is extensible. The architecture (Section 4.3.1) allows to extend the engine by adding

new concerns, without modifying the underlying algorithms. In particular, new constraints

(Section 4.3.2) can be added easily.

31

Chapter 4. Plug4Green, an energy-aware VM placement framework

4.3.1 Architecture

Figure 4.1: Plug4Green architecture

Figure 4.1 depicts the architecture of Plug4Green. Plug4Green considers a set of SLA con-

straints along with the data centre configuration to compute a reconfiguration plan as an

output. The data centre configuration captures all the relevant ICT resources of a data centre

with their energy-related attributes and interconnections in an XML format. The reconfigu-

ration plan is a set of actions (powering on or off a server, migrating a VM, . . .) that satisfies

all the constraints and minimizes the current objective. The objective can be to minimize

either the power consumption of a federation of data centres, or the CO2 emissions. The

diagram shows the clear separation between the Constraints part (“what” we want to do) and

the Models part (“how” to solve the problem), which is fundamental for extensibility.

Plug4Green is called by the Data Centre Infrastructure Management (DCIM) for two different

events: Single Allocation or Global Optimisation. The Single Allocation event is triggered when

a new VM have to be allocated. Plug4Green will compute and return the best server to allocate

the VM on, taking into account the characteristics of the VM, the current state of the data

centre, the SLAs and the current objective. The Global Optimisation event is itself triggered

regularly and Plug4Green will return a reconfiguration plan. In manual mode, the data centre

operator validate or decline this reconfiguration plan, while in automatic mode, it is enacted

automatically. Plug4Green will then execute the plan to reduce the overall data centre power

consumption or gas emission while also respecting the SLAs. The Com/Prox layer ensures

32

4.3. Design

that Plug4Green can be plugged to different existing DCIM. Its the only part that must be

updated to connect to a new DCIM. Currently, Plug4Green can be integrated into VMWare1,

Eucalyptus2, and HP Matrix Operating Environment3 infrastructures.

4.3.2 Constraints

Numerous SLAs exists in a data centre. Furthermore those are more and more extended with

energy concerns Our framework provides a language to express SLAs based on CP, that also

takes into account energy constraints. To show the flexibility of our approach, we prepared an

extensive number of SLA and energy constraints using this language, as showed in Table 4.1.

SLAs are usually provided as part of an English-written contract between a client and an IT

service provider. Upon receiving this contract, the Capacity Planning Team (CPT) of a data

centre have to translate it into our SLA schema. The SLA schema is a format allowing the CPT

to use the pre-defined constraints detailed in Table 4.1. Once the SLA file is ready, it can be

submitted to Plug4Green. The SLA constraints will then be translated automatically to lower

level CP constraints and processed by a CP engine, with the process shown in Figure 4.2.

insert

 information

Technical

SLA

constraints
CP

Constraints
SLAs

Data Centre

Operator and

CPT

Other

BtrPlace

Constraints

BtrPlace

Placement

Constraints

Energy

Related

Constraints

Translate

Figure 4.2: Translation of the SLA contract into technical SLAs and then to constraints

Depending on the topology of the data centre, a different SLA contract can be applied to

different groups of servers in the data centre: in this way it is possible to have several SLA

contracts active within the same data centre.

1http://www.vmware.com
2http://eucalyptus.com
3http://h18004.www1.hp.com/products/solutions/insightdynamics/overview.html

33

http://www.vmware.com
http://eucalyptus.com
http://h18004.www1.hp.com/products/solutions/insightdynamics/overview.html

C
h

ap
ter

4.
P

lu
g4G

reen
,an

en
ergy-aw

are
V

M
p

lacem
en

tfram
ew

o
rk

Cat Constraint Restriction

Hardware

HDDCapacity minimum amount of hard disk space available for a VM
CPUCores minimum number of CPU cores available for a VM
CPUFreq minimum CPU frequency available for a VM
MemorySpace minimum amount of memory space available for a VM
GPUCores minimum number of GPU cores available for a VM
GPUFrequency minimum GPU frequency available for a VM
RAIDLevel minimum Raid level available for a VM

QoS

MaxVMperServer maximum number of VMs per server
MaxCPULoad maximum load of CPUs for a server
MaxVLoadperCore maximum virtual load associated to a CPU core
MaxVCPUperCore maximum number of virtual CPU associated to a CPU core
MaxVRAMperPhyRAM maximum amount of virtual RAM per physical RAM
MaxServerAvgVCPUperCore Same as MaxVCPUperCore but averaged for all cores of a server (not

Core per Core)
MaxServerAvgVRAMperPRAM Same as MaxVRAMperPRAM but on a server basis
Bandwidth minimum network bandwidth available for a VM

Security
DedicatedServer a VM will be hosted on a server with no other VMs
Access a certain secure access possibility for a VM (e.g. VPN)

Energy
MaxServerPower maximum power consumption for a server
DelayBetweenVMMigrations minimum delay between two successive VM migrations
DelayBetweenServerOnOffs minimum delay between two state changes for a server
VMPaybackTime allow a VM migration only if the energy spent for the migration is ‘paid

back’ within the given time interval.
SpareNodes minimum amount of servers that are kept free (spare capacity) in the

data centre
SpareCPUs minimum amount of CPUs that are kept free in the data centre

Table 4.1: SLA constraints

34

4.4. Implementation

4.4 Implementation

In this section we provide details on the model that allowed us to easily build the constraints

presented earlier. We then present the power objective model and the heuristics we used to

increase the scalability of our framework and the quality of the computed configurations.

4.4.1 The constraint programming family

In practive, Plug4Green extends the flexible consolidation manager BtrPlace [37]. The flexibil-

ity of BtrPlace (and consequently of Plug4Green) comes from the usage of CP [36]. CP allows

modelling and solving combinatorial problems where the problem is modelled by stating

constraints (logical relations) that must be satisfied by its solution. To use CP, a problem is

modelled as a Constraint Satisfaction Problem (CSP), comprising a set of variables, a set of

domains representing the set of possible values for each variable and a set of constraints

that represent the required relations between the values of the variables. A solver computes

a solution for a CSP by assigning each variable to a value that simultaneously satisfies all

the constraints. A CSP can be augmented to a Constraint Optimisation Problem (COP) by

stating an objective that requires to minimize or maximize the value of a given variable. The

algorithm used to solve a CSP or a COP is independent of the constraints composing the

problem and the order in which they are provided. When no timeout is specified, the CP solver

computes and returns the solution that lead to the best solutions according to the objective

and the constraints. Otherwise, it returns the best solution computed so far that still satisfies

the constraints. By using CP, we achieve the important goal of separating two concerns: the

development of a placement objective and the development of constraints that specialise the

objective.

As an alternative to CP, we explored briefly Satisfiability Modulo Theories (SMT) [45]. A

SMT problem is to determine the satisfiability of ground logical formulas with respect to

background theories expressed in classical first-order logic with equality. Modern SMT solvers

integrate a Boolean satisfiability (SAT) solver with specialized solvers for a set of literals

belonging to each theory. The problem consists in finding an assignment to the variables that

satisfy all constraints. We also surveyed the feasibility of using purely functional languages

such as Haskell4 as the base language for the constraint engine of Plug4Green. Programs in

Haskell tend to be much less verbose than in Java (in the order of ten time less lines). It is also

a declarative language, like Constraint Programming is, so the expression of constraints is

4https://www.haskell.org/

35

Chapter 4. Plug4Green, an energy-aware VM placement framework

more clear and natural. Furthermore, Haskell is pure, which combined with its strong type

system allows to reduce drastically the number of bugs. An implementation of the classical

VM packing problem is shown in annexA.

4.4.2 The Plug4Green model

In practice, BtrPlace embeds the CP solver Choco5 and provides a core CSP, called the VM

Repacking Scheduling Problem (VRSP) that only models the memory and CPU demands of

the VMs, the server’s state and the future VM placement. By default, BtrPlace does not provide

variables, constraints and objectives that are related to energy concerns. These variables are

then provided by Plug4Green, as an extension of the VRSP. We use the VRSP as a pivot model

to solve energy-efficient VM placement and server management problems.

Energy related variables
P Future global power consumption of the data centre federation
P (s) Future power consumption of a server s
Er econ f Energy spent by the reconfiguration plan
Emove (v) Energy spent for the migration of VM v
Eono f f (s) Energy spent for switching on or off a server s

Variables used from BtrPlace model
hosters Association array VM/Server of the resulting configuration
car d(s) Number of VMs that a server s will host
nC PU (s) Future CPU load of a server s
nR AM (s) Future RAM usage of a server s
nHDD (s) Future HDD usage of a server s

Table 4.2: Model variables

Table 4.2 is summarizing the energy variables that we created, and the variables that were

reused from BtrPlace. As an example, Listing 4.1 presents the definition of the constraint

MaxServerPower is term of these variables:

Listing 4.1: Definition of constraint MaxServerPower

1 public void injectMaxServerPower (VRSP model , int maxServerPower) {

2 model .post(eq (P, plus(mult(card , $\ beta $) , $\ alpha $)));

3 model .post(leq (P, maxServerPower));

4 }

As a reminder, maxSer ver Power ensures a maximum power consumption for a server. Using

the CP operators eq , pl us and mul t we first define the power of a server P (one of the variables

5Choco: http://www.emn.fr/z-info/choco-solver/

36

4.4. Implementation

in Table 4.2). α and β are defined in the Section 4.4.4. We then create the constraint that this

power P must be less or equal than a threshold maxSer ver Power . This constraint is then

injected into the model. The constraint definition is declarative. It does not state how we want

to solve it but only what we desire. This is a clear separation of concerns: we were not obliged

to revise the solving algorithm to define this constraint.

4.4.3 From SLA to constraints

As can be seen in [46], SLAs commonly contain metrics related to the hardware infrastructure

the customer is guaranteed to be provided with. They define for example a certain amount

of memory, hard disk space, CPU frequency or a certain RAID level. In addition to this first

category, the technical SLA contains also QoS-related constraints. Within the third category

we capture constraints concerning security issues, such as secure access possibilities (e.g.

VPN) or the guarantee that one VM will only be hosted on one server. The fourth category

include energy related constraints: constraint on the energy consumption for servers, the time

between VM movements, and the amount of free resources that must be kept available in the

data centre.

In order to be included in Plug4Green the constraints need to be mapped into rules under-

standable by the CP engine. The constraint can be either implemented over pre-existing

constraints in BtrPlace or using the low-level constraints provided by the Choco library. For

instance, the constraints related to hardware metrics are usually implemented using the Fence

constraint provided by BtrPlace to restrict the VM placement to a given group of servers. In

a pre-selection process, a set of servers having a satisfying hardware is computed. A Fence

constraint is then instantiated with this set, allowing an allocation to be performed only on

this set of servers. In practice, 17 of the 23 constraints bundled currently inside Plug4Green

were developed without relying on pre-existing constraints in BtrPlace.

The output of Plug4Green is also dependent on energy-related constraints. The simplest

of these constraints is MaxServerPower: it allows the data centre operator to specify the

maximum power that a server or a group of servers can consume. This constraint takes into

account the fact that Plug4Green does not work with perfect information. Indeed, despite

Plug4Green aims explicitly at reducing the energy of the overall federation of data centres, it

may not be aware, for example, that the cooling system of a specific group of servers is not

efficient, or that its power feed is weak. This information may not be included in the power

model of Plug4Green, showing the usefulness of the constraint. In practice, to satisfy this

constraint Plug4Green will limit the number of VMs hosted by the servers, to keep the overall

37

Chapter 4. Plug4Green, an energy-aware VM placement framework

power under the threshold.

The energetic and performance costs of a VM movement itself are also considered. Plug4Green

provides the data centre operator three ways of acknowledging those costs. The first and

preselected possibility is to take the VM life-time into account, if available. If we know in

advance the remaining time that a VM will be online before being shut down, it’s easy to

compute whereas it’s worthwhile to migrate it. We simply compare the energy saved by the VM

if we move it to the energy cost of the move, as shown in Section 4.4.4. However, especially in

Cloud computing, the remaining life-time of VM may not be available. The DelayBetweenMove

provides a second opportunity to control the migrations by stating a minimal delay between

migrations of given VMs. This simple solution can be used whenever no information about

the remaining life-time is available. Finally, a more advanced version considers the migration

as an investment that must be worthy. This management opportunity is granted through the

VMPaybackTime. For this constraint, the data centre operator defines a mean life time for VMs,

depending on the data centre typology. This time will be used to compute if it’s worthwhile to

move a VM. For example, the operator can define that the average VM life time in the overall

data centre is one hour. Using the same algorithm as described above, we can then compute if

it’s worthwhile migrating the VM.

In addition to the acknowledgement of energy consumed for the movement of VMs, a data

centre operator needs to deal with the problem of rapid fluctuations of workload. One solution

is to ensure a specific amount of resources is always available to absorb the variations. We

implemented the constraints SpareNodes and SpareCPUs to allow the operator to define the

associated values as a function of time. In this way the best trade-off between reliability and

energy efficiency is achieved. If, for instance, the historical load pattern of the data centre

shows that during night time there is only a low variation of the number of VMs but in the

time between eight and nine rapid rise of number of VMs occurs (e.g. due to the start of the

working day), the SpareNodes or SpareCPUs parameter values are kept small during night-time

and is increased before office hours.

4.4.4 Optimisation objectives

In this section, we first introduce the power prediction models that estimate the power

consumption of a server. We then present two objectives implemented as a proof of con-

cept to optimise a data centre usage: mi nEner g y to reduce the energy consumption, and

mi nGasEmi ssi on to reduce the CO2 emission.

38

4.4. Implementation

Power consumption prediction

In order to derive the optimisation objectives mentioned, we need to design appropriate power

consumption prediction models. In this section, we provide models for idle and dynamic

power consumption estimations. We introduce the corresponding models for servers by

breaking down into their constituent components (e.g., processor, memory, hard disk, see

Figure 4.3).

When a Single Allocation or a Global Optimisation is triggered, the framework collects all

the necessary information from the data centre management framework, in particular the

dynamic parameters. This information is passed to Plug4Green using the schema described

in [47]. The prediction models described in this section are then used by Plug4Green to build

an objective function, adapted for the current configuration and state of the data centre. The

built objective function (either minEnergy or minGasEmission) is thus recomputed and may

be different for each call of Plug4Green.

CoreHard Disk CPU

RAM

Mainboard
Server

Blade

Server

voltage: double

size: double

type: enum

frequency: double

powerIdle: double

readRate: double

maxReadRate: double

writeRate: double

maxWriteRate: double

voltage: double

frequency: double

frequencyMin: double

frequencyMax: double

coreLoad: double

DVFS: boolean

architecture: enum

transistorNumber:

Integer

powerIdle: double

totalFreeMemory:

double

name: String

Figure 4.3: Server UML class diagram

Idle power A server is in idle state when all of its constituent components are inactive but

still powered. To this end, the major contributors to the idle power consumption of a blade

server are the processor, memory, and hard disk. The idle power consumption of a multi-

core processor i is given by equation (4.1) where t denotes the total number of cores, νs the

total number of transistors of the s th core, Ius and Vus the current and the voltage of the uth

transistor of the s th core, respectively.

PC PU (i) =
t∑

s=1

νs∑
u=1

Ius ×Vus (4.1)

In [48], an approach is presented to model the current Ius in terms of the voltage Vus , by taking

39

Chapter 4. Plug4Green, an energy-aware VM placement framework

into account the processor frequency. Hence, the most relevant energy-related parameters are

the architecture (e.g., Intel, AMD), the number of transistors (in the order of millions), voltage

as well as the corresponding C-states6 with which the processor is operating. Concerning the

memory modules, they consume power during the idle state while refreshing the memory

ranks holding stored data. The idle power consumption of a memory module j is given by:

PR AM (j) =
r∑

ν=1
sν× fν× c ×V 2

ν (4.2)

where sν denotes the size (GB), fν indicates the frequency (MHz), and Vν represents the

voltage of the v th memory module, whereas c is a constant. In [48], values for c where derived

based on the type (e.g., DDR2, DDR3) of the memory modules. Consequently, the most

relevant energy-related attributes are the size, frequency, voltage, and type of the memory

modules. All the above-mentioned attributes are static ones and can be found within the

manufacturers’ data sheets. A hard disk is in idle state when neither read nor write operations

take place. Moreover, during the idle state, most of the mechanical parts of the disk are

stopped. Consequently, manufacturers provide in their data sheets the average idle power

consumption for hard disks which can be used as a best estimate.

Given a blade server s composed of processors, memory modules and hard disks, its idle

power consumption is estimated by the equation (4.3). l , m, and n denote respectively the

total number of processors, memory modules as well as hard disk drives. c represents the

power consumption of the mainboard which can be estimated from observation data7.

Pi dle (s) =
l∑

i=1
PC PU (i)+

m∑
j=1

PR AM (j)+
n∑

k=1
PHDD (k)+ c (4.3)

Dynamic power The dynamic power denotes the power that is consumed by a server to

carry out operations of the running VMs such as accessing the memory or the hard disk as

well as executing instructions by the processor. As in the idle part, the major contributors to

the dynamic power consumption of blade servers are the processor, memory and hard disk.

Equation (4.4) models the dynamic power consumption of a multi-core i processor based on

the following well known CMOS circuit formula. t denotes the total number of cores, Ce f f the

6Technology enabling for a processor to choose from a set of power related saving modes.
7For the blade servers of the evaluated testbed, c takes a value between 70-85 W .

40

4.4. Implementation

effective capacitance (i.e. activity factor), f the frequency, and V the voltage of the core.

P
′
C PU (i) =

t∑
s=1

Ce f f (s)× f (s)×V 2(s) (4.4)

In [49], the authors showed that the power consumption of a multi-core processor is not

the pure summation of the consumption of its constituent cores. Consequently, the authors

modelled the power consumption of the processor by dividing it into different levels and

identified the contribution of each level to the overall power consumption. For a processor,

its frequency, voltage, utilization rate but also its specific energy efficient mechanism such as

Intel SpeedStep [50] play a major role in the computation of the dynamic power consumption.

DDR3 memory modules have a constant power consumption (in average 9.5 W) regardless

read or write operations are carried out. Since in cloud computing data centres, the availability

of an application profile of VMs in terms of number of accesses to the memory for read/write

is challenging, the most relevant energy-related attribute is the total available free memory

space (GB) of the system. This dynamic parameter helps at defining when a memory access

is probable: the more free memory space the system has, the less probable will be access to

the memory. Finally, the hard disk consumes power when its mechanical as well as electrical

parts are used to perform read or write operations. Furthermore, an additional start up power

is induced whenever the disk changes its state from idle to accessing modes. As in the case

of memory, since it’s not possible to have a detailed profile of the application, then the most

relevant energy-related attributes for the hard disk are the read and maximum read rates

as well as write and maximum write rates all expressed as MB/s. Those parameters help in

providing guesses with respect to one of the three states (e.g., idle, start up, accessing) the hard

disk could be. Additionally, the power to access the hard disk is in average 1.4 times greater

than the one of the idle state. Further details on the probabilistic approaches adopted for

memory and hard disk can be found in [51]. As a result, the overall power consumption of

a blade server is the summation of the Pi dle and the dynamic powers of its CPUs, RAM and

HDDs.

Power objectives elaboration

Having the power consumption prediction models described in the previous section at the

disposal of Plug4Green, we are now able to compute the power objectives. However, using

directly the power consumption prediction models at each step of the optimisation process

would be too costly in terms of computation time and resources. Furthermore, this approach

41

Chapter 4. Plug4Green, an energy-aware VM placement framework

would not take advantage of the CP, where the objective function must be stated as a constraint

programming variable that must be minimized, and thus cannot be written as a simple Java

function. Our approach to solve this problem is the following: In a first step, Plug4Green groups

the servers into families that share similar hardware characteristics (e.g., processor, memory,

hard disk), and similarly the VMs are grouped into families that share similar characteristics

according to the SLA (e.g., small, medium, large). Note that such an assumption is possible

since it is common for a data centre to have families of similar equipment and because VMs

often share similar run-time characteristics as well. Plug4Green will then generate for each

server its idle and dynamic power consumption patterns under several usage conditions, using

the VMs families to simulate the load, and store them in two vectors α and β. This means

that the necessary values are retrieved and stored in vectors before and not during the search

process which results in a much faster search. We can obtain the pre-computed version of the

power consumption for the server i in family k by using the following equation:

P (sk
i) = Xi ×αk +

p∑
j=1

hi j ×βkl (4.5)

where αk denotes the idle power of the family of servers k, and βkl denotes the power con-

sumption of the VM l if running on a server from family k. hi j = 1 if the node sk
i is hosting the

VM νl
j and 0 otherwise. Xi is a variable with a value of 1 if there is at least one VM in a server

sk
i , and 0 otherwise. We assume that, if a server contains no VMs, it can be switched off by

Plug4Green and then consumes no energy. We denote as PU E d the Power Usage Effectiveness

of the data centre d from a federation of D data centres. The global power consumed by this

federation is computed by Plug4Green as:

P =
D∑

d=1
(PU E d ×

n∑
i=1

P (sk
i)) (4.6)

To reduce energy consumption, consolidation through VM migration is a common solution.

This operation has however an energy cost that is integrated in the power objective function

of Plug4Green. This way, Plug4Green will not migrate a VM if the cost of the move is too high

compared to the expected energy gain. We compute the energy needed for the migration of

a VM Emove (i) based on the characteristics of the source server, the destination server and

the VM itself, as detailed in the power consumption evaluations in [52]. We also include an

energy penalty Eono f f (j) for switching on and off a server. Indeed, a certain amount of time

42

4.4. Implementation

is needed to switch on or off a server and during this time, no workload can be carried out

despite a certain energy consumption.

As an approximation, we assume that the energetic situation in the data centre is stable

between two reconfigurations during a delay Tr econ f (in seconds). At the next reconfiguration

and to take into account changes in the data centre like VM termination, Plug4Green will

recompute the power objective. Using equation (4.6), Plug4Green computes Pbe f and Pa f t , the

power of the federation before and after application of the reconfiguration plan, respectively.

The global energy saved by the reconfiguration plan, at federation level is therefore:

Etot = (Pbe f −Pa f t)×Tr econ f −
p∑

i=1
Emove (i)−

n∑
j=1

Eono f f (j) (4.7)

Similarly, Plug4Green is computing Qtot al , which is the total quantity of carbon emissions

saved by the reconfiguration plan, by replacing “PUE” by “CUE” in the equations. As stated

at the beginning of this section, our objectives minEnergy or minGasEmission consists of

minimizing Etot or Qtot , respectively.

4.4.5 Reducing the solving duration

Computing a configuration according to an objective may be time consuming for large in-

frastructures as selecting a satisfying server for each running VM is NP-Hard [29]. To solve a

COP, the constraints are used by the solver to remove inconsistent variable assignments, while

the power objective variable is used to select values that are relevant to save energy. However,

this can be a very time-consuming process. To help reduce this duration, so-called search

heuristics are used to indicate to the solver the variables to focus on in priority, and supposed

good values to try first. A search heuristic is thus attached to each objective (minEnergy or

minGasEmission). The objective is to find good solutions as soon as possible in the search

tree. A search heuristic is tightly coupled to an objective but completely independent from the

stated constraints to maintain the composability of Plug4Green. This way, an arbitrary number

of constraints can be used with the same search heuristics. In Plug4Green, the heuristics are

typically guiding the solver into finding values for the variables related to the position of the

VMs on the servers and the state of the servers.

For each objective, its search heuristic suggests to migrate the VMs from the least loaded, or

least energy-efficient servers, to highly-loaded and energy-efficient servers. The algorithm

43

Chapter 4. Plug4Green, an energy-aware VM placement framework

is similar to the well-known Best Fit Decreasing, used for example in [28]. The notion of

efficiency depends on the objective: The PUE is used for the minEnergy objective and the CUE

is used for the minGasEmission objective. Once the new placement for each VM is computed,

the heuristics makes the solver try to turn off unused servers.

4.5 Framework Evaluation

As stated before, the goal of Plug4Green is to improve data centres energy efficiency through

placement algorithms that are easy to specialize. In this section, we first discuss the exten-

sibility of Plug4Green. We then demonstrate the impact of its specializations to reduce the

power consumption or the gas emission on a heterogeneous data centre federation running

an industrial workload. We finally evaluate its scalability within a simulator for a data centre

with up to 2500 servers.

4.5.1 Extensibility of Plug4Green

The design of Plug4Green allows the integration of new concerns. Each constraint and objec-

tive is a plug-in composed by a XML Schema and a Java implementation. A developer can

then develop a new constraint or objective as a plug-in and integrate it to Plug4Green with an

automatic and deterministic specialization process. Contrary to methods derived from Linear

Programming, the developer must not provide a linear model for his constraint. This eases

tremendously the expertise that is required to express constraints. In practice, it took only a

few hours for an engineer to create and test a new constraint.

To demonstrate this flexibility, we developed 23 placement constraints and 2 objectives. They

have been developed to match a large range of expectations from the clients and data centre

operators in terms of hardware compatibilities, performance level, resource sharing or energy

capping. Plug4Green exposes a core set of variables and relations to manipulate VMs and

servers. In the case those core variables would not be sufficient to express a user’s problem,

new variables can be added to express meaningful information, and then be linked with

low-level relations to the Plug4Green variables. These low-level relations consist of either

basic constraints in VM placement problem such as assignment, scheduling, or counting

constraints, but also arithmetic, logic and domain constraints.

As an example, Plug4Green does not currently support the thermal-aware management of VMs.

Current approaches [33, 34, 53] propose heuristics derived from thermal models to estimate

44

4.5. Framework Evaluation

the impact of the VMs management on the server temperature. To integrate a thermal model

inside Plug4Green, the knowledge-specific information would be defined with new variables,

linked to Plug4green variables with arithmetic constraints. Once these links established, the

temperature variables would be available to express new concerns: for example, capping the

server temperature to disallow hotspot, or performing a thermal load balancing to reduce the

cooling costs.

4.5.2 Experiments on Cloud Testbed

To evaluate the practical efficiency of Plug4Green in an environment as realistic as possible,

a trial has been set inside a private cloud with a state-of-the-art cloud stack running two

workloads derived from industrial traces.

Environment Setup

The cloud simulates an heterogeneous data centre federation. It is composed of two racks (see

Table 4.3), each embedding a HP C7000 blade enclosure. The first data centre (DC1) has 4 BL

460c to host VMs using VMWare ESX v4.0 native hypervisor. 3 additional blades are used to

manage the cloud, to schedule the workloads using the open-source scheduler JobScheduler8,

and to run Plug4Green. The second data centre (DC2) has 3 BL 460c to host VMs also using

VMWare ESX. 2 additional blades are used to manage the cloud and to monitor the system

and the energy usage of the federation using Collectd. The racks are connected to a single LAN

and a SAN device stores all the datas, including the VMs images. For the whole duration of the

experiments, we monitored the energy consumed on every nodes running an hypervisor

Enclosure 1 Enclosure 2
Processor model Intel Xeon E5520 Intel Xeon E5540
CPU frequency 2.27GHz 2.53GHz
CPU & Cores Dual CPU -– Quad core Dual CPU -– Quad core
RAM 24 GB 24GB

Table 4.3: Characteristics of the racks/enclosures

Plug4Green has been evaluated against 2 synthetic workloads derived from real traces within

the private cloud of a corporation in Italy9. Figure 4.4 depicts a weekly load pattern. The first

workload reproduces this trace, compressed into 24 hours. The second workload focuses on a

single work day (depicted by the black frame), compressed into 12 hours. The first workload

8http://sourceforge.net/projects/jobscheduler/
9due to privacy issue, we cannot disclose the corporation name and the workload details.

45

http://sourceforge.net/projects/jobscheduler/

Chapter 4. Plug4Green, an energy-aware VM placement framework

considers a week-end with a low load and therefore more energy saving possibilities. The

second workload is more challenging since the load is higher on average.

Time

N
u

m
b

e
r

o
f
V

M
s

Figure 4.4: Schematic view on the weekly load patterns

Specializing Plug4Green to fit an heterogeneous federation

We evaluate here the practical efficiency of Plug4Green at managing a federation of data

centres having different PUE and CUE. The experiments have been run using different data

centre configurations.

In a first experiment, we evaluate the effectiveness of the minEnergy placement objective

using 3 scenarios. In the “No P4G” scenario, Plug4Green is not used. An ad-hoc heuristic

deploys the VMs on servers with a load-balancing placement objective. Idle servers are not

turned off and VMs are not migrated. In the “P4G same PUE” scenario, Plug4Green is used

and all the servers expose the same PUE. This is equivalent to ignoring the PUE parameter.

Finally, in the “P4G different PUE” scenario, the servers in DC1 and DC2 have a PUE set to

1.5 and 2.5, respectively. Plug4Green can then benefit from the servers in DC1 that are more

energy-efficient.

Figure 4.5 shows the result. The savings in the total federated sites energy increases to over 33%

compared to the “No P4G” scenario, with an improvement of over 13% due to the consideration

of the different PUE efficiency. In practice, we observed Plug4Green allocated more VMs in

the first DC which was more energy-efficient overall with its lower PUE. During the peak of

activity, we obtained an allocation of 46 VMs in DC1 and 18 VMs in DC2.

The second experiment evaluates the effectiveness of the minGasEmission placement objective

using three scenarios similar to those used in the previous experiment. In the “No P4G”

scenario, Plug4Green is not used. In the “P4G same CUE” scenario, Plug4Green is used and

all the servers have the same CUE. Finally, in the “P4G different CUE” scenario, the servers

in DC1 and DC2 have a CUE of 0.400 g/Wh and 0.250g/Wh, respectively. Figure 4.6 shows a

reduction of the gas emissions by 34% in the “P4G same CUE” scenario with respect to “No

P4G” with an increase of over 9% due to the consideration of the CUE differences. Again, the

46

4.5. Framework Evaluation

Two Sites – No

P4G
P4G (same PUE) P4G (different PUE)

Total Energy DC1 Total Energy DC2

T
o

ta
l
E

n
e

rg
y
 (

k
W

h
)

21.720

20

15

10

5

16.753
14.483

-22.86%
-13.55%

Figure 4.5: Energy consumption of two data centres with different PUE values

behaviour of Plug4Green was to run more VMs on DC2, the most efficient data centre from

the emission perspective. During the peak of activity, we obtained an allocation of 26 VMs in

DC1 and 32 VMs in DC2.

Two Sites – No

P4G
P4G (same PUE) P4G (different PUE)

Total Emissions DC1 Total Emissions DC2

T
o

ta
l
E

m
is

s
io

n
s
 (

g
C

O
2

) 3,804.5

1'

2'

3'

4'

2,771.85
2,503.4-27.14%

-9.68%

Figure 4.6: Energy consumption of two data centres with different CUE values

Specializing Plug4Green to fit the particularities of the workload

We evaluate here the practical benefits of Plug4Green when it is specialized to fit the workload.

In practice, we measure the data centre energy consumption depending on different variations

of a set of constraints.

The first experiment evaluates the savings when Plug4Green controls the aggressiveness of

the VM consolidation. Frequent arrival of VMs may lead to a scheduling delay as additional

servers may need to be booted on emergency to host them. One solution consists in ensuring

at all time a certain amount of free resources (such as idle servers) in the data centre to be able

to boot the VMs faster. This number should, however, be considered carefully. A too small

47

Chapter 4. Plug4Green, an energy-aware VM placement framework

value will be ineffective while a high value would augment the overall power consumption.

With Plug4Green, this fine grain tuning is done easily through a spareCPU constraint. A

CPU is considered "spare" when it is not associated with any VCPU. Figure 4.7a shows the

energy savings when the number of spare cores varies from 8 to 4 cores. This confirms that

the number of spares resources should be set to a minimum to improve energy efficiency.

Maintaining at most 4 cores available instead of 8 allowed an extra 10% saving.

The second experiment evaluates the savings when Plug4Green controls the frequency of the

migrations. A VM migration is indeed costly in terms of energy but also in terms of perfor-

mance. It is then useful to disallow to migrate too frequently the same VMs. With Plug4Green,

this parameter is controlled easily through a DelayBetweenMove constraint. Plug4Green will

then consider as candidate for migration only the VMs that have been last migrated at least the

required amount of time ago. Figure 4.7b shows the energy saving depending on the migration

time interval. With a 30-minute timeout, Plug4Green saved an extra 20% of energy compared

to the 1 minute timeout, because it prevented unnecessary VM migrations.

The last experiment evaluates the savings when Plug4Green is used to control the resource

sharing. Its objective is to assess to which extent we can improve the achievable energy saving,

when an energy relevant SLA parameter constraint is relaxed with respects to its standard value.

Based on observations from the testbed, MaxVCPUperCore constraint has been identified

as the most important one of this category. Figure 4.7c demonstrates the impact of this

parameter on the overall energy consumption. If we relax the constraint up to 2.5 VCPU/core,

we reduce the energy consumption by up to 45%. This is not a surprise as with a factor of 2.5

it’s possible to consolidate twice as much VMs on a server than with factor of 1.2. This means

that Plug4Green used only one half of the servers to run the workload and can switch off the

other half.

4.5.3 Scalability of Plug4Green

Placing VMs on servers with regard to their resource requirements is a NP-Hard problem.

The scalability of Plug4Green is then determined by the size of the configurations (number

of VMs and servers) and their associated constraints that Plug4Green is able to solve in a

reasonable time. To evaluate this scalability, we generate 5 sets of configurations that are

composed of 500 up to 2,500 servers. Each set is composed of 50 configurations, with different

VM templates and different initial placements. We run Plug4Green on each configuration with

the constraints evaluated in Section 4.5. The solving process stops once the first solution is

computed. We then analyse the solving process and the estimated energy savings.

48

4.5. Framework Evaluation

8 spare

Cores

6 spare

CoresT
o

ta
l
F

e
d

e
ra

ti
o

n
 S

it
e

 E
n

e
rg

y
 W

h
)

2'

4'

8'

10'
9,441

8,474

-2.99%

6'

8,736
-7.46%

4 spare

Cores

(a) SpareCPUs constraint impact

1 Min. 10 Min.

T
o

ta
l
F

e
d

e
ra

ti
o

n
 S

it
e

 E
n

e
rg

y
 W

h
)

2'

4'

8'

10'
10,019

7,933
-15.97%

6'

9,441

-5.76%

30 Min.

(b) DelayBetweenMove constraint impact

vCPU/Core=1.2 1.5T
o

ta
l
F

e
d

e
ra

ti
o

n
 S

it
e

 E
n

e
rg

y
 (

W
h
)

2'

4'

8'

10'

7,914

5,123
-25.52%

6'

6,879
-13.07%

2.0

4,125

-19.48%

2.5

(c) MaxVCPUperCore constraint impact

Figure 4.7: Impact of constraints on the global energy consumption

49

Chapter 4. Plug4Green, an energy-aware VM placement framework

To provide a realistic evaluation with simulation data, configurations are generated from

the testbed described in Section 4.5.2 and common practices. Servers are identical to those

used in the cloud testbed with an equal repartition between the models used in the two

enclosures. Each VM instantiates a template randomly selected among the three available

in the testbed. These templates, namely m1.small,m1.large,m1.xlarge mimics standard EC2

template10 with regards to their allocated amount of RAM and VCPU. The amount of VMs in

each configuration equals five times the number of servers, according to a consolidation ratio

observed in industry [54]. Finally, the initial VM placement is computed randomly but ensures

that their SLA is initially satisfied.

Figures 4.8, 4.9 and 4.10 depict the results. “P4G” denotes the usage of Plug4Green without any

additional constraints. The “+spare” label denotes the addition of one SpareCPUs constraint

to keep 1% of all the PCPUs directly available. The “+vcpu” label denotes the addition of a

MaxVCPUperCore constraint to restrict to at most 2, the number of VCPU attached to a single

PCPU. Finally, the “+delay” label denotes the addition of a DelayBetweenMove constraint to

prevent the migration of any VMs migrated less than 30 minutes ago. We consider for the

simulation that 5% of the VMs, randomly selected, are in this state.

500 1000 1500 2000 2500

1

2

3

4

5

6

7

Servers

T
im

e
 (

m
in

u
te

s
)

P4G P4G + spare P4G + spare + vcpu P4G + spare + vcpu + delay

Figure 4.8: Solving duration to compute the improved configurations

Figure 4.8 shows that the solving time increases exponentially with regard to the data centre

size. This is expected as the problem addressed by Plug4Green is NP-hard. Without additional

constraints, 30 seconds are required to compute an improved configuration for a data centre

with 1,000 servers. Doubling the size of the data centre requires 4 times more time. We however

observe that Plug4Green is able to compute an improved configuration in one minute in a data

centre with up to 1,500 servers running 7,500 VMs. At this scale, we observe that the addition

of constraints does not alter significantly the solving process. Above that limit, the solving

10https://aws.amazon.com/ec2/instance-types/

50

https://aws.amazon.com/ec2/instance-types/

4.5. Framework Evaluation

time gets more dependent on the constraints. The DelayBetweenMove constraint reduces the

computation time as it reduces the number of VMs that have to be considered by Plug4Green

in each time slot. However, the SpareCPUs and the MaxVCPUperCore constraints increase the

computation time by 25% each. With a 1,500 servers, this adds a 15 seconds overhead. With

2,500 servers, the overhead equals one minute. This overhead is explained by the constraints

implementation: each of these constraints extends BtrPlace to expose the mapping of the

VCPUs to the PCPUs. This extension injects one bin packing [55] constraint into the CP solver

that cannot scale linearly with the data centre size. By default extensions of Plug4Green, even

identical, are not shareable. This includes a redundancy that alters the performance. Providing

a sharing mechanism for the extensions would lower this overhead.

100

200

300

400

500 1000 1500 2000 2500

Servers

E
n

e
rg

y
 i
n

 K
W

/h

P4G P4G + spare P4G + spare + vcpu P4G + spare + vcpu + delay

Figure 4.9: Energy consumption of the improved configurations

Figure 4.9 shows the energy consumption of the improved configurations. This value was com-

puted using the power consumption prediction model. We first observe that the SpareCPUs

and the MaxVCPUperCore constraints do not alter the quality of the improved configurations.

For the SpareCPUs constraint, Plug4Green was able to keep free the requested amount of

PCPU capacity without having to turn on additional servers. We also observe that the Delay-

BetweenMove constraint is reducing the saving opportunities by 10%. This is explained by the

particular setting of this experiment: the VMs that are not allowed to be migrated due to the

constraint have been selected randomly. The selected VMs are spread over numerous servers

which prevented Plug4Green to turn them off.

Figure 4.10 shows the number of migrations to execute to reach the improved configurations.

We observe the SpareCPUs and the MaxVCPUperCore constraints did not alter the number of

migrations. This shows Plug4Green was able to consider these constraints without having to re-

arrange additional VMs. The DelayBetweenMove constraint reduces the amount of migrations

by 5% which is the number of VMs considered by the constraint.

51

Chapter 4. Plug4Green, an energy-aware VM placement framework

1

2

3

4

500 1000 1500 2000 2500

Servers

M
ig

ra
ti
o

n
s
 (

p
e

r
1

.0
0

0
)

P4G P4G + spare P4G + spare + vcpu P4G + spare + vcpu + delay

Figure 4.10: Number of migrations to reach the improved configurations

4.6 Conclusion

Trends in application design, workload volatility, but also hardware heterogeneity make each

data centre unique. However, the ad-hoc design of current energy-aware VM managers prevent

them to take these particularities into account to provide additional savings. In this chapter,

we presented a flexible energy-aware VM manager named Plug4Green. Thanks to Constraint

Programming, Plug4Green can be easily specialized to support various combinations of SLAs,

power models and energy policies. Its flexibility has been verified through the implementation

of 23 meaningful SLAs and 2 energy policies. Its practical effectiveness has been evaluated on

an industrial testbed. While the default version of Plug4Green reduced the power consumption

and the gas emission by 27% and 23% respectively, its specialization to fit the hardware

heterogeneity improved the saving by up to 34%. Furthermore, additional specializations to

fit the workload particularities reduced the power consumption from 9% up to 50%. Finally,

scalability experiments on simulated data have shown that Plug4Green is able to compute

an improved placement for 7,500 VMs running on 1,500 servers in a minute, while respecting

their SLA.

In future works, we will focus on data centres powered by renewable energies. This requires

indeed a new look on the energy efficient management of VMs as the nature and the availability

of the energy is varying over time.

52

Part IIUse better energies

53

This part introduces several techniques aiming at augmenting the renewable energy consump-

tion in data centres. The problem of increasing the usage of renewable energy in data centres

is mainly a scheduling problem. The renewable energies being often volatile and variable in

time, it thus makes sense to try to schedule the workload during the hours when the maximum

renewable energy is available. Furthermore, this renewable energy availability is relatively

predictable. Electrical companies provides predictions of their production for the next days11.

However, to schedule the workload of the applications with respect to the renewable energy

availability, we need a way to declare their flexibility. We also need to have an insight into their

energy consumption. The first chapter introduces the Energy Adaptive Software Controller

(EASC), a generic software controller and interface able to schedule application workload ac-

cording to energy constraints and SLA. The EASC introduces a methodology and tools allowing

developers to make their application adaptive to renewable energy availability. We introduce

several scheduling algorithms adapted to several application types, namely task-oriented and

service-oriented applications.

The second chapter extends and generalizes the techniques presented to modern Cloud

data centre paradigms, and in particular to the PaaS paradigm. At PaaS level the framework

has additional knowledge about the application being run. Typically, a PaaS framework will

compile an application from its source code, and then deploy it inside light weight virtual

machines, or containers. Most modern PaaS frameworks also have the possibility to scale up or

down applications, and to schedule various tasks within the applications. We take advantage

of this existing interface to perform the renewable energy aware workload scheduling. This

enhanced PaaS framework then facilitates the programming and deployment of energy aware

applications.

11http://clients.rte-france.com/lang/an/clients_producteurs/vie/prod/prevision_production.jsp

55

http://clients.rte-france.com/lang/an/clients_producteurs/vie/prod/prevision_production.jsp

5 The EASC, an energy adaptive soft-

ware controller

Sustainable energy sources such as renewable energies are replacing dirty sources of energy in

order to address the environmental challenges of the century. In order to operate data centres

with renewable energies we have to mitigate their volatile and variable nature. In this chapter,

we present the Energy Adaptive Software Controller (EASC), a generic software controller and

interface that developers can use to make their application adaptive to renewable energy

availability. Adaptivity is realized through the concept of working modes which allows to run

an application under various performance levels. We advocate for a collaborative approach

involving the developers of the applications in order to use the renewable energies more

efficiently. The notion of EASC allows to abstract away the details of application scheduling,

execution, and monitoring. We demonstrate the applicability and genericity of the EASC

concept through four different instantiations. These instantiations cover two types of ap-

plications: task-oriented and service-oriented; and two kind of computing environments:

Infrastructure-as-a-Service, and Platform-as-a-Service. The EASC has been trialled in the data

centre of the healthcare agency of Trento, Italy and in the laboratory of HP Milan, Italy, with

a mix of energy sources: national grid and local solar panels. The experimental results show

how the EASC allowed to increase the renewable energies usage of 14% and 4.73% for Trento

and HP Labs trials, respectively.

This chapter is derived from the paper:

• Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Fabien Hermenier. An

energy aware application controller for optimizing renewable energy consumption in

cloud computing data centres. In 8th IEEE/ACM International Conference on Utility and

Cloud Computing, 2015

57

Chapter 5. The EASC, an energy adaptive software controller

• Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Silvio Cretti. Energy

efficient data centres within smart cities: Iaas and paas optimizations. In 2015 EAI

International Conference on Smart Grids for Smart Cities, Toronto, Canada, 2015

• Sonja Klingert, Florian Niedermeier, Corentin Dupont, Giovanni Giuliani, Thomas

Schulze, and Hermann de Meer. Renewable energy-aware data centre operations for

smart cities - the DC4Cities approach. In SMARTGREENS 2015. ACM, 2015

5.1 Introduction

The rise of the energy consumption in data centres, and the high share of their electricity

consumption around the world [14] induced data centres owners to take actions. Energy

efficiency measures has been introduced in order to reduce the energy consumption of data

centres, and now we move towards sustainable energy sources such as renewables [15] [56]

[57] in order to address the current environmental challenges. For example, Google’s data

centres are currently operated with a 35% share of green energy1, whereas 87% of energy

consumption of Apple’s data centres comes from renewables2.

With the recent adoption of renewable energies to power data centres [15], the research

community enlarges its vision to associate with purely quantitative energy consumption

reduction, the notion of quality of the energy consumed, i.e. the capacity to rely as much as

possible on sustainable power sources. Differently from brown energy sources, the availability

of renewable energies is very volatile and time dependent: e.g. solar power is obtainable only

during the day, and is subject to variations due to the meteorological conditions. The goal is

then to schedule the workload of running applications according to the forecasted renewable

energy availability.

The problem is, however, that data centres are rather heterogeneous environments with

many different kind of applications with different kind of computing styles: for example

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service

(SaaS). The applications running on those platforms do not cooperate to provide a scheduling

of the workload that matches the times where the renewable energies are available.

In this chapter, we advocate for a generic and a collaborative approach that involves developers

of applications thanks to the notion of Energy Aware Software Controller (EASC). The EASC

is a generic software controller that application developers/administrators can use to make

1http://www.google.com/green/energy/
2https://www.apple.com/environment/

58

5.2. Related work

their application adaptive to renewable energy availability. A data centre can support a mix of

task-oriented and service-oriented applications that are made adaptive to renewable energy

availability. The EASC abstracts away the details of application scheduling, execution, and

monitoring. The EASC constitutes the southbound subsystem of a prototype implementation

of the EU project DC4Cities3.

We make the following contributions:

• The EASC, a software controller allowing to develop renewable energy adaptive applica-

tions of any type. Software developers can integrate it into their applications to make

them adaptive to the current energetic situation.

• An API, the Energy Adaptive Software Control Interface, allowing applications to receive

energy related instructions.

• Four different EASC instantiations to demonstrate the genericity and the applicability of

our concept. These instantiations cover two types of applications: task-oriented and

service-oriented; and two kind of computing environments: IaaS and PaaS.

• An practical validation of the task-oriented and the service-oriented EASCs inside two

data centres in Italy. The task-oriented EASC was trialled in the data centre of the

healthcare agency of Trentino that is powered by the national grid, while the service

oriented EASC was trialled in the lab of HP Milan that is also powered by local solar

panels, in addition to the national grid. These experiments confirmed that the EASC

concept allows to increase the renewable energy usage of both kinds of applications.

The renewable energy percentage improvement are 14% and 4.73% for Trentino and HP

Labs trials, respectively.

The remainder of the chapter is organized as follows. Section 5.2 is a review of prior work.

Section 5.3 describes the EASC concept and architecture. Section 5.4 describes the various

EASC instances. Section 5.5 presents the experimental results. Finally, Section 5.6 describes

next steps and concludes the chapter.

5.2 Related work

A survey of the literature shows many researches addressing high energy consumption of data

centres and energy adaptive approaches in applications, for example [58, 15, 57, 56] and [59].

The emergence of cloud computing provided the users with the ability to scale their services

3http://www.dc4cities.eu

59

Chapter 5. The EASC, an energy adaptive software controller

horizontally or vertically according to the demands [60]. In addition, the notion of adaptive

applications has been introduced in [61].

iSwitch [57] adapts the infrastructure itself. Servers are either powered through the grid

or a local source of renewable energy. VMs are deployed by default on servers powered by

renewable energy. When this source becomes scarce, the workload is migrated to servers

powered by the grid and the idle servers are turned off. In order to adapt to renewables energy

availability, in [62] the authors argue for either pausing VM executions or migrating VMs

between sites based on local and remote energy availability.

In [15] and [56] the authors adapt the workload to renewables when it is composed by de-

ferrable jobs. According to forecasts, the jobs are delayed to periods where renewable sources

are available. The work in [58] makes a step forward by adapting map/reduce applications.

The number of workers and the number of servers hosting them is adapted according to the

amount of available energy. In [56], Goiri et al. proposed GreenSlot, as a solar power-sensitive

scheduling algorithm for data centre workloads. GreenSlot was shown to reduce data centre

costs and increase green power consumption. In [59], authors exploited workload shifting

in combination with local generation as an adaptation technique for two purposes: to avoid

the coincident peak, and to save energy cost. In all these papers, workloads are task-based

applications.

In addition, there are similar approaches to minimize energy costs, and carbon emissions.

In order to reduce electricity costs in SCs, power-aware resource management without de-

grading utilization has been proposed in [63, 64]. The novelty of the proposed job scheduling

mechanism is its ability to take the variation in electricity price into consideration as a mean

to make better decisions about job start times. In [65], authors explored the opportunities

for HPC clusters to adapt to dynamic electrical prices, variation in carbon emissions within

an electrical grid, and the availability of local renewables. They showed that adaptation to

the renewables availability and dynamic pricing lead to significant gains. On the other hand,

adaptation to the variation in the electrical grid did not led to significant gains.

By comparison with aforementioned approaches and solutions, the EASC approach allows

to bring together different environments with a mix of deferrable (task-oriented) and non-

deferrable (service-oriented) applications, running over IaaS or PaaS paradigms. In EASC we

advocate for a generic approach that involves the infrastructure and the resource manager as

well as the developers of applications.

60

5.3. Energy Aware Software Controller

5.3 Energy Aware Software Controller

In this section, we describe the EASC architecture and its context.

5.3.1 Overview and context

For each application in a data centre, the EASC role is to build a workload scheduling plan

according to a power budget, to enact the plan and finally to monitor its activities and energy

consumption. Each EASC in the data centre is able to receive a power budget for its application

and will perform the scheduling accordingly. This is done through the interface called the

Energy Adaptive Software Control Interface. This interface defines a standardized communi-

cation mean for all energy related information toward the applications of a data centre. The

power budget transmitted consists in a recommended power consumption for each time of

the day.

The power budget for each application is computed by an external component called the

CTRL. It is computed using informations from the data centre and from the energy provider,

such as the energy availability and source mix forecasts. This information will be used to

determine the reference consumption levels for each applications, in order to meet the energy

and power goals set at data centre level.

5.3.2 Architecture

This section describes the EASC architecture, its components and APIs. Figure 5.1 illustrates a

high-level architecture of the EASC components, including its API interface toward the CTRL.

The EASC implements workload scheduling techniques that can reconfigure the applications

according to the power budgets. The power budget is expressed as a series of time slots,

covering a full day, with a power associated to each slot. Each slot denotes a recommended

amount of power that the application should consume. We assume a time slot is a 15 minute

period in our experimentation. The EASC selects the possible working modes (WMs) for the

application according to the power budgets, the energy profiles of the working modes, and the

SLAs.

The EASC allows the application operator to define the KPIs of his application, its SLA and

its working modes. The KPIs are measured in term of a number of business items per unit of

time. For example, the operator can define the business item to be the number of web pages

served by his application, a number of files processed or a number of reports generated. The

61

Chapter 5. The EASC, an energy adaptive software controller

Figure 5.1: The EASC architecture

SLA are defined as a threshold on the KPIs that the EASC must guaranty. Depending on the

type of application, the objectives of the SLA can be cumulative (task-oriented application) or

instantaneous (service-oriented application). A working mode consists of:

• an actuator able to start and stop the working mode,

• an estimated power consumption,

• a maximum attainable performance for the KPI defined,

• a certain number of resources associated to that working mode.

Based on this information, the EASC computes a scheduling for the application called the

working mode plan. A working mode plan is composed of a working mode for each time slot.

The EASC shall be able to reconfigure the application according to the working mode plan

selected. For example, the EASC will send to the cloud manager reconfiguration actions in

order to instantiate or stop VMs, boot or stop nodes. In addition, the EASC monitors the work

done by its application in term of business items processed. We can then deduce a work left

to do: it is the difference between the guaranteed number of business items (SLA) and the

work done. This work left to do is what we have to schedule within the working mode plans.

62

5.4. EASC instantiations

In terms of monitoring, the EASC shall be able to measure the KPI of the application at any

moment. The EASC calls a so-called Energy Service to compute the expected energy profile for

each working mode. This service predicts the consumption of the various components of the

infrastructure (servers, VMs, containers). For each component of the data centre, a regression

analysis is performed by the Energy Service on historical data in order to find a model of its

consumption.

5.4 EASC instantiations

This section introduces the implementations of the EASC concept for the two application

types.

5.4.1 EASC for task oriented applications

Task oriented applications are characterized by a certain amount of tasks to perform. Those

tasks have a minimum start time, a deadline, and a wall-time. Some of those tasks are de-

ferrable: for example an anti-virus scan have to be performed every day, but can be scheduled

at various time of the day. Other examples of task oriented applications include video conver-

sion services or report generation applications.

When generating the working mode plan, the EASC can follow the following policies:

• Proportional: this policy schedules the tasks in such a way that the expected energy

consumption profile is similar to the power budget profile.

• Aggressive: this policy schedules all the tasks during the hours where there is the maxi-

mum renewable energy availability. In a typical day with solar energy available, the EASC

will use the most powerful working modes during the central hours in order to complete

the tasks. However, it is relatively risky; if the renewable energy forecast changes through

time there is a risk that the SLA will not be met.

• Eager: this policy schedules all tasks at the earliest possible. This policy is more appeal-

ing when there is uncertainty over the future availability of renewable energy; therefore

it is rather conservative.

The algorithm presented in Figure 5.2 schedules the tasks of the application so as to follow

the policies presented. It presents two parameters: the aggressiveness and the eagerness. The

aggressiveness controls the possibility for the application to consume more or less aggressively

63

Chapter 5. The EASC, an energy adaptive software controller

the renewable energies. For example, at a high aggressiveness level the application will run

at the highest performance level when renewable energies are available, and at the lowest

performance when they are not. On the other hand, the eagerness controls the necessity for

an application to complete its tasks more or less early. A low eagerness allows to be more

flexible with regard to the scheduling of the applications tasks during the period of availability

of the renewable energies.

Figure 5.2: EagerAgg algorithm overview

In the algorithm 1, the function Ag g Tr ans f or m transforms a power budget by favoring the

times of the day where there is more renewable energy. The resulting power consumption

plan consumes the same amount of energy that the input power budget, but it presents

more power in the maxima of the curve, and conversely less power in the minima of the

curve. This allows the function WMAllocation to select more powerful working modes when

renewable energy is available, and thus complete more quickly the tasks to perform. A high

ag g F actor makes the application consumes the renewable energies more aggressively. The

function E ag er Tr ans f or m, on the other hand, transforms a power budget by favouring

the first time slots in the power budget. It uses a vector de f E ag er V ector , which have the

same size than the power budget. This vector de f E ag er V ector defines a simple descending

array of powers, for example [100W, 99W .. -99W, -100W]. It represents the preference for

the early time slots in the power budget. The transformation defined in E ag er Tr ans f or m

then transforms the power budget so as to allocate more power to the early time slots. The

input factor eag er F actor allows to tune this operation according to the preference of the

64

5.4. EASC instantiations

Algorithm 1 EagerAgg algorithm

1: constant workingModes : List of WorkingMode

2: function AGGTRANSFORM(pb : Li sto f (T i meSlot ,Pow), ag g F act : F loat)
3: for all (t i meSl ot , power) ∈ pb do
4: power ← power ∗ag g F act
5: . normFactor is computed so that the total energy of the final power budget remains the same than the initial one
6: power ← power ∗nor mF actor
7: end for
8: return pb
9: end function

10: function EAGERTRANSFORM(pb : Li sto f (T i meSlot ,Power),eag er F actor : F loat)
11: ∆BP ← max(pb)−mi n(pb)
12: eag er V ector ← de f E ag er V ector ∗∆BP ∗eag er F actor
13: . sum of two vectors of equal length
14: eag er BP ← pb +nor mE ag er V ector
15: return eag er BP
16: end function

17: function SLATRANSFORM(pb : Li sto f (T i meSlot ,Power), sl a : F loat)
18: . normFactor is computed so that the total energy of the final power budget allows to run the correct working modes

during enough time to cover the full SLA
19: nor mF actor ← f (wor ki ng Modes.maxBi zPer f , sl a)
20: for all (t i meSl ot , power) ∈ pb do
21: power ← power ∗nor mF actor
22: end for
23: return pb
24: end function

25: function WMALLOCATION(pb : Li sto f (T i meSlot ,Power))
26: . sort BP by power
27: sor tedBP ← sor t (pb))
28: for all (t i meSl ot , power) ∈ pb do
29: . select the WM that have the power closest to the current power budget power
30: pl an(t i meSl ot) ← near est (wor ki ng Modes, power)
31: end for
32: return pl an
33: end function

65

Chapter 5. The EASC, an energy adaptive software controller

application for running its tasks eagerly or not. Like for Ag g Tr ans f or m, this transformation

allows the function W M All ocati on to select more powerful working modes at early time

slots, and thus complete earlier the tasks to perform. The SL ATr ans f or m ensures that the

power budget has enough energy to allow the application to complete its full SLA. If it is

not the case, a normalization factor is applied to the power budget to augment it or reduce

it accordingly. The complete E ag er Ag g algorithm is the simple composition of these four

functions.

5.4.2 EASC for service oriented applications

Service oriented applications, by contrast with the task oriented applications, do not define

specific tasks with a start and a stop dates. On the contrary, they have to maintain a certain

level of performance all the time, to serve clients. Typical examples of such applications

include Web servers, database services and mail servers. The services are characterized by

one or several KPIs together with their mandatory levels for each time-slot. For this type of

application we created an algorithm called the MinMaxAgg presented in algorithm 2 and

Figure 5.3. To allow a certain flexibility of the application, a system of reward/penalty is

included in the SLA. In accordance with the client, if the application is running slightly under

the SLA, a reward/discount is paid by the data centre.

Figure 5.3: MinMaxAgg algorithm overview

In this algorithm, the function BestT S selects the X timeslot of the day where there is more

power in the power budget. Those timeslots are generally corresponding to the best hours for

renewable energy availability. The factor X is computed relative to the aggressiveness factor.

66

5.4. EASC instantiations

Algorithm 2 MinMaxAgg algorithm
1: constant SLA: List of (TimeSlot, BusinessPerf)
2: constant workingModes : List of WorkingMode

3: function MINMAXAGG(pb : Li sto f (T i meSlot ,Power),numT S : Int)
4: return Mi nM ax(BestT S(bp,numT S))
5: end function

6: function MINMAX(f i l ter edBP : Li sto f (T i meSlot ,Power))
7: . for the best timeslots
8: for all (t i meSl ot , power) ∈ f i l ter edBP do
9: . select the WM closest to the power budget, without violating the SLA
10: pl an(t i meSl ot) ← g etW M(SL A(t i meslot).busi nessPer f , power)
11: end for
12: . for the rest of the timeslots
13: for all (t i meSl ot ,busi nessPer f) ∈ (SL A \ f i l ter edBP) do
14: . select the WM that have the business performance just above to SLA business performance
15: pl an(t i meSl ot) ← above(wor ki ng Modes,busi nessPer f)
16: end for
17: return pl an
18: end function

19: function BESTTS(pb : Li sto f (T i meSlot ,Power),numT S : Int)
20: . sort BP by power
21: sor tedBP ← sor t (pb))
22: . get the numTS first timeslots
23: f i l ter edBP ← t ake(sor tedBP,numT S))
24: return f i l ter edBP
25: end function

26: function GETWM(mi nBusi nessPer f : F loat , power : Power)
27: . get only the WM that have a sufficient performance
28: f i l ter edW M ← f i l ter (wor ki ng Modes, wor ki ng Mode.busi nessPer f > mi nBusi nessPer f)
29: . get the WM that have a power closest to the reference power
30: f i l ter edW M2 ← near est (f i l ter edW M .power, power)
31: return f i l ter edW M2
32: end function

67

Chapter 5. The EASC, an energy adaptive software controller

During those best times, a working mode allowing a better performance than requested by the

SLA is selected. During the rest of the hours, a working mode slightly under the SLA is applied.

Reward and penalty apply correspondingly, they are calculated so that they cancel each other.

5.5 Experimentations and evaluation

In this section, we present the experimentations within two trial sites in Trento and Milan.

We have measured RenPercent metric in order to evaluate the proposed solution in terms of

renewable energy usage. RenPercent expresses the percentage of renewable energy consumed

by a DC in a certain period of time (1 day, 1 week, etc.). This metric is the main metric to assess

the achievement of the EASC. With this metric we can compare the coverage of the DC energy

consumption of renewable energy before and after implementing the EASC.

5.5.1 Trento trial

In this trial, an EASC encapsulates a real application producing medical reports, within the

data centre of the healthcare agency of the Trentino province.

Application specification

Trento trial application is a compute-intensive task-oriented application. Users need to

wait some minutes to get the report generation done. The report generation process can be

scheduled in advance; thus, the idea is to prepare a cached copy of each report and have

it ready once the user asks for it. This leaves an opportunity for EASC to shift the report

generation in time during a day. The only constraint (as per SLA) that EASC planning has to

respect is that 780 reports have to be generated within a day, from midnight to midnight.

The application business unit for this trial is the Report and the business performance (BizPerf)

unit is the number of reports generated per minute. Table 5.1 defines five working modes based

on the number of parallel processes that run simultaneously to generate reports; minimum

corresponds to execution of one process at a time (sequentially); medium1 corresponds to

execution of 4 parallel processes, etc. ServersOff working mode was defined for referring to

the case of no activity execution (main production servers off). The baseline has been chosen

with the application producing reports continuously until the SLA is reached, at a low level of

performance using the working mode minimum.

In this trial, hardware resources include two IBM rack servers as compute nodes to run trial

68

5.5. Experimentations and evaluation

Table 5.1: Trento trial working modes

WM Processes BizPerf Power (Watt)
ServersOff 0 0 19,5
minimum 1 0,53 665,8
medium1 4 1,88 761,9
medium2 7 3,0 844,4
maximum 10 3,33 864,2

application: IBM xSeries 366 8863-3RG: 4 Intel® Xeon® Processor 7020 (2M Cache, 2.66 GHz,

667 MHz FSB) 4 cores, RAM 32 GB, HDD 30GB-RAID1, HDD 200GB-RAID5.

Energy mix

The trial has a single power source from the Italian national grid. We followed a Measurement

& Verification (M&V) methodology4 and built six days profile that reflects typical days in

various seasons in Italy. This methodology allowed us to simulate an entire year trial run with

just 6 different profiles, one per day.

Evaluation

Figure 5.4a shows the renewable energy percentage in the Italian grid for the six profiles

consecutively. Figure 5.4b represents power budget, real power consumption, and baseline

power consumption. This graph shows that the baseline power (blue curve) is flat as expected,

it also shows that the real power (grey curve) follows closely the power budget (orange curve).

The peaks in the renewable energy percentage are always accompanied by peaks in the power

budget and real power curves. Comparing Figures 5.4a and 5.4b we can observe that the EASC

is able to follow the renewable energy percentage curve. In sum, the graphs show that the

EASC tries to exploit the peaks in renewable energy by switching to powerful working modes

in order to perform all the tasks in the shortest time possible.

Table 5.2 presents the numerical results of RenPercent metric for all six days. In addition, this

table presents average results of all six days. The last row presents results for a simulation of

the entire year (six days spread on an entire year).

Considering all six days together the renewable energy percentage went from 43.1% up to

57.9%, an absolute improvement of 14%. The renewable energy usage improvement is greater

than 10% for all days. Moreover, the renewable energy usage is very close to the maximum

4http://www.evo-world.org/en/

69

Chapter 5. The EASC, an energy adaptive software controller

(a) Renewable energy percentage in national grid

(b) Power actual vs power baseline vs power planned

Figure 5.4: Trento trial execution behaviour

Table 5.2: Trento trial results

Profile RenPercent RenPercent
baseline

Day 1 37.65% 30.03%
Day 2 58.30% 49.24%
Day 3 49.73% 39.19%
Day 4 66.56% 45.98%
Day 5 77.94% 57.27%
Day 6 56.29% 37.06%
All days 57.88% 43.13%
A year 48.22% 37.39%

percentage of renewable energy available in the grid; this difference is always less than 5%.

5.5.2 Milan trial

In this section, we describe Milan trial that presents a service-based application. The experi-

ment takes place in HP Italy Innovation Center lab-grade resources hosted at HP premises in

Milan, Italy.

70

5.5. Experimentations and evaluation

Application specification

HP trial workload is based on a Web application called HP Life. It is a testing lab for a worldwide

service offered by HP. This application needs to be always available to the users (24 hours

per 7 days) as it offers a Web based e-learning platform for entrepreneurs spread over the

globe. Due to this type of SLA, this trial is quite different from the Trento trial; furthermore the

workload cannot be shifted in time. The KPI for this service is the total number of requests

served per minute (Requests/minute). There is a specific SLA value for each timeslot of the

day expressing the expected business performance during that time interval. The red curve

in Figure 5.5 presents the SLA. The other coloured curves represent the trial performance for

each day.

Figure 5.5: SLA and measured performance for each day

In this trial, a working mode can span over distributed data centre resources around the world,

i.e. Region US West, Region US East, Region Europe. Working modes definition are aligned to

the concept of active region (data centres sites) balancing the workload of the system:

• WM3SF: All 3 sites work at full capacity (WM-ID: 30).

• WM2SF1SM: 2 sites work at full capacity, 1 site works at minimum capacity (WM-ID:

25).

• WM2SF: 2 sites work at full capacity (WM-ID: 20).

• WM1SF1SM: 1 site works at full capacity, 1 site works at minimum capacity (WM-ID:

15).

• WM1SF: 1 site works at full capacity (WM-ID: 10).

• WM1SM: 1 site works at minimum capacity (WM-ID: 5).

71

Chapter 5. The EASC, an energy adaptive software controller

WM-ID is proportional to the amount of used resources and corresponds to the working mode

power. The WM-ID are numerical values when displaying working modes in the daily graphs.

Figure 5.6 represents the overall power consumption of the system when running in a certain

working mode (on the Y axis) while delivering a certain business performance (on the X axis).

It is visible on this graph that each successive working mode allows to reach a bigger business

performance, but at a bigger energetic cost overall: the curve for a given working mode is

practically always above the one of the previous working mode.

Figure 5.6: Business Performance (Req/min) versus power consumption (W) for each working
mode

The baseline has been measured on default system configuration, i.e. when all servers are

turned on and operational (a trial run with working mode WM3SF).

Energy Mix

The HP experiment has a dual power source: one from Italian national grid, and the other from

local renewable generation. On top of the roof of the lab premises, 4 dedicated photo-voltaic

(PV) panels have been installed. Each panel provides a maximum power of 250W; thus with 4

PVs configuration, the maximum power generation is 1KW. This energy context offers a unique

combination of energy sourcing.

Following M&V methodology, we recorded 4 profiles for the PV production on typical days.

With its aggregation with the Italian national grid we built four days profile that reflect a

full-year behaviour of energy ecosystem for HP Experiment in Milan.

72

5.5. Experimentations and evaluation

Evaluation

HP trial has been run for each 4 day profiles once with the baseline, and once with the EASC.

(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

Figure 5.7: HP trial execution behaviour with the EASC

Figure 5.7 represents an in depth view of trial run for each day. The X axis is the hour of the day;

the yellow area represents the PV power (primary Y axis is power in Watt) while the light green

area is the renewable percentage of the grid (secondary Y axis on the right). The light blue line

is the planned power (power budget in terms of EASC) and the red line is the actual power.

The purple line in the bottom part is just a qualitative indication of the selected working mode

(numerical WM-ID), ranging from 5 (1SM) to 30 (3SF) in steps of 5 units (see previous WM-ID

table).

Similar to the Trento trial, the graphs in Figures 5.5 and 5.7 show that the working mode power

and business performance curves follow the planned power curve (power budget). The peaks

in the light blue line (the planned power) are always accompanied by peaks in the purple line

(working mode power), and the red line (actual power). Overall, the graphs demonstrate how

the EASC exploits the peaks in renewable energy by switching to powerful working modes,

and vice versa to lower performance working modes when there are less power budget while

still respecting the SLA (the red curve in Figure 5.5).

Table 5.3 presents the numerical results for RenPercent metric. The average improvement for

73

Chapter 5. The EASC, an energy adaptive software controller

Table 5.3: HP experiment trial results.

Profile RenPercent
baseline

RenPercent
EASC

RenPercent
increase (pp)

RenPercent
increase (%)

Day 1 68.20% 70.34% 2.14pp 3.13%
Day 2 61.85% 64.68% 2.83pp 4.57%
Day 3 58.57% 61.65% 3.08pp 5.25%
Day 4 53.99% 57.26% 2.27pp 6.05%

Trial Days 60.65% 63.52% 2.87pp 4.73%

the RenPercent metric is 4.73%. We observe that the improvement is less than the Trento trial.

This is due to the demanding SLA of HP trial, and being a service-based application.

Table 5.4: HP experiment trial: power and performance comparison

Profile Total Power Cons.
(KWh)

Total BizPerf (req.
served)

Efficiency (Req/W)

SLA 479K (ref)
Baseline 10.91 (ref) 480K (100.0%) 43.98 (ref)
Day 1 9.42 (-13.60%) 484K (101.0%) 51.40 (+16.87%)
Day 2 9.28 (-13.14%) 474K (98.87%) 51.14 (+16.28%)
Day 3 9.46 (-13.24%) 471K (98.25%) 49.80 (+13.23%)
Day 4 9.43 (-13.51%) 466K (97.22%) 49.43 (+12.29%)

Table 5.4 summarizes the total power consumption, the total amount of work done (requests

served during the day), and the "requests served/energy consumed" for each day of the trial

and for the baseline. In terms of energy efficiency (second column in the table), this trial

presented a significant amount of energy saving (over 13% energy consumption reduction). In

addition, the Figure 5.5 illustrates that EASC optimization is not causing significant violations

of the SLAs during the trials. The total work done (BizPerf) ranges between +1% to -2.78% with

respect to SLA, as shown by numerical results presented in the Table 5.4 (third column). This

demonstrates that work done is not significantly affected. Overall, the energy efficiency of

the whole application is increased: the improvement in terms of BizPerf per Power, i.e. Work

done/Watt, ranges between 12.29% and 16.87% (fourth column).

74

5.6. Conclusion and Future Work

5.6 Conclusion and Future Work

The recent adoption of renewable energies to power data centres brings new challenges. While

strong efforts are continuously made to reduce the energy consumption, the intermittent

nature of the renewable sources imposes also to align the performance of the applications

with the energy availability periods.

We presented the notion of Energy Adaptive Software Controller (EASC), a generic software

controller that developers can use to make their application adaptive to renewable energy

availability. To integrate the notion of EASC into a legacy application, a developer only needs

to identify its various KPIs, working modes and to declare the commands to use to enact

a working mode. The EASC then provides different scheduling algorithms to continuously

choose the most appropriate working mode to use for the controlled application with regards

to its SLAs and a power budget.

We validated the portability of the notion of EASC through the complete implementation of

two legacy applications. The first one is a task-oriented application used to generate reports

in the healthcare domain. The second one is HP Life, an international eLearning lab available

through a Web application. We also confirmed the practical benefits of the developed EASCs

on two different testbeds: one only powered by the Italian national power grid, and the

other that is the case of HP life, through a dual power sources from photovoltaic arrays, and

national power grid. Experiments over a week also proved that the EASCs increased the usage

of renewable energies by aligning the application performance with the energy availability

periods.

75

6 Energy optimizations within the PaaS

and IaaS paradigms

In this chapter, we expand on the notion of EASC and show that IaaS/PaaS hybrid data centres

offer specific opportunities in order to increase their usage of renewable energy. We present

an infrastructure able to make PaaS applications adaptive to renewable energy availability.

Furthermore, we created an energy model able to evaluate simply the power consumption of

applications in a shared infrastructure such as PaaS. Our prototype has been trialled in the

data centre of the healthcare agency of Trento, Italy. The experimental results show how the

EASC allowed to increase the renewable energies usage by 7.07 percentage points, while the

error rate of the power model was 16.58%.

This chapter is adapted from the paper (submitted):

• Corentin Dupont, Mehdi Sheikhalishahi, and Michele Santuari. Improving renewable

energy consumption in iaas/paas hybrid data centres. Submitted to Futur Generation

Computer Systems, 2016

6.1 Introduction

As introduced in the previous chapter, the recent adoption of renewable energies to power

data centres opens new research challenges. In particular, it is necessary to schedule the

workload of the running applications in order to mitigate the volatile nature of the renewable

energies.

On the other hand, data centres are rather heterogeneous environments with different kind

of computing styles: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and

77

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

Software-as-a-Service (SaaS). In addition, the applications running on those platforms do not

cooperate to provide a scheduling of workloads that matches the times where the renewable

energies are available.

Hosting a PaaS infrastructure inside a IaaS is a common practice. The IaaS layer is providing

the hardware abstraction, such as VMs. The PaaS layer is then deployed inside those VMs and

provides the applications and developers abstractions1. For example, IBM Bluemix uses this

hybrid infrastructure, PaaS supported by IaaS. This allows to decouple the concerns while

keeping the advantages brought by both worlds. However current hybrid cloud infrastructures

are most of the time not adaptive to energy constraints. For example Cloud Foundry2, one

of the biggest Open Source PaaS platform, does not support automatic Droplet Execution

Agent3 (DEA) scaling. IaaS and PaaS Cloud services require to put in place mechanisms able

to achieve consolidation of resources at both IaaS and PaaS infrastructures.

Some other PaaS providers, on the other hand, do provide auto-scaling. For example Amazon

Elastic Beanstalk will boot new VMs 4 based on user defined thresholds. Heroku provides

some possibility for auto-scaling5 Dynos (which are custom Linux containers), however it is

not known if the underlying infrastructure is scaled up and down too.

In this chapter, we present an adaptive and reactive cloud infrastructure composed of IaaS

and PaaS Cloud services capable of minimizing the amount of infrastructure resources usage

according to applications Service Level Agreements (SLAs) and to optimize the usage of re-

newable energy consumption. We design and implement a coordination mechanism between

PaaS and IaaS able to achieve consolidation of resources at both levels. This hybrid cloud

architecture has been trialled in a real data centre within APSS6, the healthcare agency of

Trento in Italy.

In order to schedule correctly the PaaS applications in the data centre according to energy

constraints, we first need to predict the power consumption of those applications running

in certain execution levels. We present an energy prediction model able to predict simply

the energy consumption of each application within a shared infrastructure, e.g. PaaS. This

research finding is another contribution in which to the best of our knowledge has not been

explored in the literature. For instance, in [66], authors mentioned that PaaS has no means to

1http://www.ibm.com/cloud-computing/bluemix/
2https://www.cloudfoundry.org/
3https://docs.cloudfoundry.org/concepts/architecture/execution-agent.html
4http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
5https://elements.heroku.com/addons/adept-scale
6https://www.apss.tn.it

78

6.2. Related Work

estimate the energy consumption of applications; however they did not provide any insight

for this problem.

This chapter makes the following contributions in the field:

• We design and implement a cloud architecture for an adaptive and reactive cloud

infrastructure composed of IaaS and PaaS cloud services able to respond to external

factors like applications’ SLAs and renewable energy availability.

• We present a power prediction model able to predict the power consumption of applica-

tions running within a PaaS-IaaS infrastructure.

• We experimentally validated the cloud architecture within such a hybrid Cloud infras-

tructure. It has been trialled in a real data centre within healthcare agency of Trento in

Italy with proof-of-concept results.

The remainder of the chapter is organized as follows. Section 6.2 is a review of prior work.

Section 6.3 presents the Cloud architecture. Section 6.4 presents the energy sharing prediction

model. Section 6.5 presents the trial and the experimental results. Finally, Section 6.6 describes

the future works and concludes the chapter.

6.2 Related Work

In this section, we review the works on PaaS/IaaS coordination and on containers energy

management.

6.2.1 IaaS/PaaS coordination

As introduced in previous chapters, there has been a lot of research on VM consolidation

approach to reduce energy consumption at IaaS layer [67, 68, 38, 69, 6]. However, in cases in

which a PaaS is deployed within a IaaS the consolidation mechanism becomes more complex

and it requires a mechanism to coordinate PaaS resource fluctuations with IaaS consolidation.

At present, little research exists to address the optimization needs of a hybrid cloud infrastruc-

ture, e.g. PaaS inside IaaS, through an adaptive and reactive cloud architecture. On this front,

[66] proposes a co-design of IaaS and PaaS layers for energy optimization in the cloud. For

that, two complementary approaches for establishing such cooperation, namely cross-layer

information sharing, and cross-layer coordination, have been proposed. Significant energy

gains could be obtained by creating a cooperation API between the IaaS layer and the PaaS

79

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

layer. However, as a position paper they do not provide any blueprint of an architecture for

their proposal. The architecture that we propose envision a very minimal communication

between the IaaS and PaaS layers: the PaaS layer is only triggering the IaaS layer for reconsoli-

dation, with no other information being transmitted between the two. This allows to keep the

separation of concerns between the IaaS and PaaS paradigms.

Regarding multi layer coordination, a related research domain is Autonomic Computing.

Autonomic Computing has been exploited in the design of cloud computing architectures in

order to devise autonomic loops aiming at providing coordinated actions among cloud layers

for efficiency measures, turning each layer of the cloud stack more autonomous, adaptable

and aware of the runtime environment [70, 71].

In order to reach a global and efficient state due to conflicting objectives, autonomic loops

need to be synchronized. In [70], authors proposed a generic model to synchronize and

coordinate autonomic loops in cloud computing stack. The feasibility and scalability of

their approach is evaluated via simulation-based experiments on the interaction of several

self-adaptive applications with a common self-adaptive infrastructure.

In addition to elasticity, scalability is another major advantage introduced by the cloud

paradigm. In [72], automated application scalability in cloud environments are presented.

Authors highlighted challenges that will likely be addressed in new research efforts and present

an ideal scalable cloud system.

6.2.2 PaaS and containers energy management

Although VM performance have considerably improved over time, containers have several

advantages over them [73, 74]. Overall, they are faster to boot: in the order of 50ms while it is

several seconds for VMs. Their RAM footprint is smaller than the VMs, due to the absence of

kernel redundancy. However both virtualization forms introduce negligible overhead for CPU

and memory performance. This small RAM footprint and fast boot time makes them ideal

candidates for the scheduling of renewable energies.

Regarding energy management, in a very recent work [75], the authors propose a framework

and algorithm for energy efficient container consolidation. Their proposed deployment is

very similar to ours, with VMs hosting containers. This type of deployment is sometime

called Containers as a Service (CaaS). As a difference, our work goes further by also using the

capacities of the PaaS to describe the application capacities in term of scalability and flexibility,

in order to increase the use of the renewable energies.

80

6.3. PaaS architecture

According to [42], approaches to real-time power modeling fall into two categories: detailed

analytical power models, and high-level black-box models. With difference with the analytical

power model proposed in Chapter 4 (and the related works), the power model proposed in

this section behaves as a "black box". This allows to simplify drastically its configurations.

6.3 PaaS architecture

In this section, we will present the concept of EASC adapted for the PaaS context.

6.3.1 Overview and context

The EASC role is to build a workload scheduling plan for each application in a data centre

according to a power budget, to enact the plan and finally to monitor its activities and energy

consumption. The complete description of the EASC is provided in the Chapter 5. The EASC

design has been extended to support Platform-as-Service based applications with EASC-PaaS.

PaaS provides services to easily provision, scale, and monitor applications with a limited

user/administrator intervention. In EASC-PaaS the concept of working mode is mapped to

the scaling operation services provided by PaaS infrastructures.

However in a traditional PaaS environment, scaling up and down an application will not nec-

essarily have a big impact on energy consumption. The reason is that most PaaS architectures

have static provisioning: scaling down an application or a group of applications will not result

in the switching off of physical servers. In the Cloud Foundry7 PaaS environment for example,

a certain number of VMs8 able to host application containers are provisioned when the infras-

tructure is initially deployed, and does not change afterwards unless an operator redeploys the

infrastructure manually. The applications are in turn embedded inside so-called containers

hosted on the VMs, as can be seen in Figure 6.1. In this figure the red boxes represent the

containers that run the apps. Those applications can be scaled up and down using the EASC.

The blue boxes are VMs. Some of the VMs contains Cloud Foundry services (such as databases

or HTTP servers). Other VMs are instrumented so that they can contain Linux Containers:

such VMs are called DEAs in the Cloud Foundry context. Finally the grey boxes are physical

nodes. This type of deployement is sometime called Containers as a Service (CaaS).

The energy management must then necessarily take place in the three layers:

7https://docs.cloudfoundry.org
8https://docs.cloudfoundry.org/concepts/architecture/execution-agent.html

81

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

Figure 6.1: IaaS-PaaS deployment

DEA1

IaaS
Cloud Controller

Cloud Foundry
VMs

DEA1

Cloud Foundry
VMs

DEA VM

DEA1
DEA1 DEA1

DEA1
DEA1

DEA
DEA1

DEA1
DEA1

DEA1
DEA1

DEA
DEA1

DEA1
DEA1

DEAApp App

Node

• application layer: The EASC will scaling up and down the number of containers owned

by an application based on the renewable energy availability,

• PaaS layer: the containers must be consolidated inside the minimum number of VMs,

• IaaS layer: the VMs must be consolidated inside the minimum number of physical

servers. The freed-up servers should then be switched off to save energy.

In the following, we show how to implement this reactive consolidation in each of the layers,

together with the communication mechanims.

6.3.2 Architecture & implementation

Figure 6.2: EASC-PaaS architecture

CTRL

EASC sched
PaaS
Ext.

PaaS FW
(CF)

Auto
scaler

PaaS
Cons.

PaaS pred.
model

Power
Predictor

IaaS FW
(OS)

VMM
(P4G)

EASC PaaS

IaaS

PB, option
plans

Power containers,
servers

Power of
WMs

Position of
containers

Position of VMs

Monitor,
Scale

The Figure 6.2 provides a high-level view of the EASC-PaaS interactions with its environment.

82

6.4. PaaS energy model

In this figure, the EASC-Scheduler module is a legacy scheduler for task and service oriented

applications such as the one presented in Chapter 5. Based on this scheduling, the scaling

of the application is performed through the PaaS Extension module, that connects to the

PaaS infrastructure. We created en external component called the PaaS Consolidator able to

perform the consolidation of the containers in the DEAs. This component is also in charge of

augmenting or reducing the number of VMs as needed.

In practice, Cloud Foundry is used as the PaaS platform. The PaaS Consolidator is able to

collect monitoring information through BOSH9 and Cloud Foundry. BOSH is a tool used for

the deployement of Cloud Foundry. If the resource usage reaches a configured threshold, the

PaaS Consolidator will trigger BOSH in order to changes the CF deployment. This change

will increase/decrease the number of deployed DEAs based on the new configuration. The

changes applied to the infrastructure are deployed incrementally without service interruption.

In addition, BOSH evacuates all applications installed on a DEA by migrating them to new

DEAs before destroying it. In this way, we achieve both scaling and consolidation at container

level.

In order to provide an energy efficient VM consolidation mechanism at IaaS level, we extended

Plug4Green (presented in Chapter 4). The VM consolidation and server state management are

achieved using live migration of VMs and powering off/on the servers. In practice, we selected

the OpenStack platform to provide IaaS virtualization, together with block and object storage

services. However, OpenStack does not provide any dynamic consolidation mechanism to

provision/consolidate VMs based on the resource usage. Plug4Green was then extended to

provide VM consolidation in OpenStack.

The final objective of this tool-chain is to make sure that the scheduling operations at appli-

cation level performed by the EASC results effectively in energy consumption optimization.

Finally, the EASC-PaaS contains a component called PaaS Prediction model able to predict the

behaviour of the underlying infrastructure and to compute the power consumption of each

working mode accordingly, so as to permit an accurate scheduling.

6.4 PaaS energy model

In order to allow an energy aware application scheduling algorithm to take sound decisions,

we need a model to evaluate and predict the energy consumption of an application deployed

in a PaaS setting. The algorithms described in Chapter 5 try to follow an input power curve

9https://bosh.io/

83

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

in order to maximize the renewable energy consumption. To perform this scheduling, such

algorithm need to have an estimation of the power consumption of each application in the

data centre. This will allow them to choose which activity to postpone in the data centre in

order to match the input power curve.

However, estimating the power consumption of an application in a PaaS environment is

not trivial because the architecture is shared between a great number of applications. Each

application thus share a part of the infrastructure physical servers, and sometime a single

server can host several different applications as can be seen on Figure 6.1. It is thus necessary

to find a way to split the power of the infrastructure between the various applications in a

fair yet simple way, allowing the energy aware scheduling algorithm to function correcly. The

model presented is in two parts:

• Evaluation of the power consumed by the applications,

• Prediction of the power of an application scaling up/down.

The first model is concerned with finding an adequate splitting of the power of the data centre

among the applications currently running. The second model is concerned with finding what

will be the power of a specific application if this application scales up/down.

6.4.1 Evaluation of the power consumed by the applications

The objective of the model is to find a good approximation for Papp , the power of a certain

application in the data centre. This power must be calculated using only measurable activity

of the application and of the data centre infrastructure.

Model requirements and criteria

The study of the energy aware algorithms in Chapter 5 shows that the following criteria are

necessary for a well behaved energy model.

• Summation criteria: the sum of the power yielded by the model for each application

must be equal to the total power of the data centre ICT:

∑
i∈A

Pi = PtotDC (6.1)

where A is the set of all applications in the DC, Pi is the power of an application and

84

6.4. PaaS energy model

PtotDC is the total power of the data centre ICT, as can be measured by power meters.

• Convergence criteria: on a small infrastructure with few nodes and few applications,

adding a new application will obviously change the splitting of the power between

the applications. However when there are a lot of applications, the power yielded by

the model for the contribution of each application to the total power idle should not

vary any more with the number of applications. For example, in a big infrastructure,

adding a new application should change only marginally the power calculated for the

applications already deployed. We can derive this equation:

∀i ∈ A, lim
car d(A)→∞

Pi = γ (6.2)

where car d(A) is the number of applications in the DC, i is an application and γ is a

constant.

• Monotonicity criteria: the order of the applications sorted by their calculated power

should not change when adding a new application in the infrastructure.

∀i , j ∈ A, (Pi > P j)S1 ⇒ (Pi > P j)S2 (6.3)

where S1 and S2 are two different states of the infrastructure, A in the set of all appli-

cations. (Pi)S1 is the power consumption of application i in infrastructure state S1 .

This criteria is necessary in order to ensure that the underlying scheduling algorithm

consistently prioritizes the same applications, even if the infrastructure state changes.

For that, the ranking of existing applications should not change when new applications

are added.

Infrastructure settings

We consider that the infrastructure consolidates applications and DEAs on the minimal num-

ber of servers. At PaaS level, the application containers are consolidated onto the minimum

number of DEAs. Empty DEAs are removed. At IaaS level, the DEAs (which are simple VMs)

are consolidated on a minimum amount of servers. The empty nodes are switched off.

85

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

Power distribution

We need to distribute the power of the nodes among the applications in a reasonable way. In

this section we will consider that all nodes are equivalent. The node power is divided in two

categories: dynamic power and idle power.

Ptot Node = Pd ynNode +Pi dleNode (6.4)

where Pi dleNode is the constant power idle of the node. The Pd ynNode , on the other hand, is

variable. According to several previous studies, for CPU intensive activities a linear model

based on CPU levels provides a good approximation [42][35][76]. The authors shows that

those high-level, "black box" power models sacrifice some accuracy in order to avoid relying

on detailed knowledge of the hardware’s implementation. The power measurements shows a

high corelation between the CPU level and the power consumption.

Pd ynNode = (PmaxNode −Pi dl eNode)∗C PUnode (6.5)

where PmaxNode is the maximum power of the node. C PUnode is the CPU level of the node

at a given time, expressed in percentage. Likewise, the power contribution of an application

should be the sum of its contribution to the dynamic power and the idle power:

Ptot App = Pd yn App +Pst ati c App (6.6)

Dynamic power

The fraction of the dynamic power attributed to an application will be proportional to its

measured CPU level. This choice is reasonable because the CPU is the main contributor to the

dynamic power of a node :

Pd yn App1 =
∑

Pd ynNode ∗
C PUApp1∑

C PUApps
(6.7)

where C PUApp1 is the CPU level of the application and
∑

C PUApps is the sum of the CPU

levels of all the applications.

86

6.4. PaaS energy model

Total power idle

In order to determine the total power idle Ptot I dle to be split among the applications in the

data centre, we need to determine the number of nodes that are active:

Ptot I dl e = n ∗Pi dleNode (6.8)

where Pi dleNode is the power idle and n is the number of nodes necessary.

Having more applications in the data centre implies having to boot additional nodes. The

decision to boot an additional node in the data centre is mainly based on the limitation of the

RAM . We then need to estimate the number of nodes that are necessary taking into account

their RAM size, the DEA RAM size and the applications container RAM size. The number

of active nodes n can be calculated with a modified bin packing algorithm as presented in

Chapter 3. Another technique is to retrieve the number of active nodes from the infrastructure.

Static power

Taking into account the considerations above, it is reasonable to distribute the contribution of

each application to the total power idle in the following way:

Pi dle App1 = Ptot I dl e ∗
R AMApp1∑

R AMApps
(6.9)

where R AMApp1 is the total RAM used by an application and
∑

R AMApps is the total RAM

used by all applications.

Summary

Using the previous equations, we can write:

Ptot App = Pd ynNode ∗
C PUApp1∑

C PUApps
+Pi dleNode ∗

R AMApp1∑
R AMApps

(6.10)

We showed in the above that the power contribution of an application to the total power of the

data centre ICT should be:

• proportional to its RAM footprint for the idle power sharing,

87

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

• proportional to its CPU footprint for the dynamic power sharing.

Model inputs

We can deduce from the previous equations the inputs of the model:

• The nodes available RAM,

• The nodes idle power,

• The nodes max power,

• The containers RAM demand,

• The containers CPU demand,

• The current location of the application containers,

• The current location of the DEAs.

The first three points can be retrieved from the nodes specification, the following three can be

retrieved from the PaaS manager, while the last one can be retrieved from the IaaS manager.

6.4.2 Prediction of the power of an application scaling up/down

The objective of this section is to present the extension of the previous model with the ability

to predict the power of an application under a workload change. In a PaaS setting, a significant

workload change will usually trigger a scale up or down of the application. PaaS environments

that are relying on containers will launch more containers for the same application, for

example. The previous algorithm can be reused for the purpose of predicting the power of

the application in its new configuration. In particular for equation 6.10, the RAM footprint

of a container is usually known in advance, so it can be added to the application RAM total.

However, the CPU usage of the new containers that will need to be launched need to be

predicted. We propose to use statistical data gathered on the CPU usage of containers of the

same type over a period of time to evaluate the CPU usage of the new container.

Limitations of the model

Predicting the power consumption of the scaling up/down of an application assumes that

the rest of the applications running in the data centre will not scale up or down in the same

time frame. If other application do scale up or down at the same moment, the number of

88

6.5. Experimentations and evaluation

active nodes calculated by the model will of course be erroneous. However this effect is only

transitory, as shown in Section 6.5, since the prediction is corrected as soon as the rest of the

system is stabilized.

6.5 Experimentations and evaluation

In this section we evaluate the EASC-PaaS and the power prediction model. The experimenta-

tion is focused on the collection, elaboration, storage and finally presentation of healthcare

data in the e-health context. The trial is hosted in the data centre of the healthcare agency of

Trento, Italy.

During each day the load of the data centre is about 3000 exams to be collected, elaborated and

stored, and about 20000 reports presented, after a further elaboration, to the users/doctors.

The load pattern is distributed over a day with high activity in the morning, medium activity

in the afternoon and very low activity during evening and night.

6.5.1 Hardware infrastructure

The hardware infrastructure is composed of 6 servers, table 6.1 presents their specification.

The state (on/off) of the servers are managed by Plug4Green as mentioned in section 6.5.2.

During low load condition, the system is able to consolidate the number of servers down

to two (OS controller and Compute 8). On the other hand, during periods of high load, the

infrastructure is using all the servers.

Table 6.1: Hardware information

Server name Role vCPU RAM Power Idle Power Max
(#) (GB) (W) (W)

OS controller Controller 4 10 465 530
Compute 8 Compute 8 32 132 238
Compute 9 Compute 4 16 430 529
Compute 11 Compute 8 16 436 606
Compute 12 Compute 16 32 607 902
Compute 13 Compute 8 16 465 634

6.5.2 Cloud infrastructure and technologies

The infrastructure of Cloud Foundry is deployed on top of OpenStack. It uses 14 VMs for the

various CF services and 1 VM for the BOSH Director, while the number of DEAs can vary from

89

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

1 to 8. Those DEAs can be scaled up/down by the PaaS Consolidator specifically. Table 6.2

is giving the characteristics of PaaS components. Disk space is ignored because it is not a

limiting factor. From this table it is visible that each DEA can host up to 4 containers, while

each Compute node can host from one up to four DEAs.

Table 6.2: IaaS and PaaS infrastructure information

vCPUs RAM (GB) Idle Power (W)

DEA 4 6 3.2
Container 1 1.5 neg.

The deployment includes CloudFoundry version 21410 on top of Openstack installed with

Fuel Juno 6.011. OpenStack provides a virtualization platform, together with block and object

storage services. The VM consolidation and server state management are achieved using live

migration of VMs and powering off/on the servers.

6.5.3 Application scenario

The application selected is a three-tier application composed of the following elements:

• front-end (FE): a web server able to collect and present the medical exam images from

doctors,

• back-end (BE): a CPU-intensive task able to elaborate the images received,

• a database able to store the data to be processed and the results when ready.

In addition, the scenario considers two SLA requirements: BE should elaborate all the exams

stored by FE until the next midnight, and FE should respect the load pattern during a day time

period.

The whole application is controlled by an EASC, and each tier, i.e. FE and BE, are implemented

as separate activities of that application. The BE is a task oriented application: the elaboration

of each exam is identified as a separate task. This task can be postponed during the day,

however it need to be processed before midnight as per the SLA. On the other hand, the FE is a

service oriented application. The web server need to be running at all time, while making sure

to match the minimal performance required by the SLA at any given time.

10https://bosh.io/releases/github.com/cloudfoundry/cf-release?version=214
11https://www.mirantis.com/products/mirantis-openstack-software/openstack-deployment-fuel/

90

6.5. Experimentations and evaluation

Both BE and FE tiers are deployed as separate Cloud Foundry containers, with the flexibility

to increase/decrease the instances of each layers independently and easily using the Cloud

Foundry interface. As a consequence EASC is able to adjust the number of instances using CF

APIs not only based on the renewable energy availability, but also to respect the SLA/SLO of

each single application layer.

6.5.4 Energy mix

The trial has a single power source from the Italian national grid. We followed a Measurement

& Verification (M&V) methodology12 and built six profile that reflects the energy mix of typical

days in various seasons throughout a year in Italy. This methodology allowed us to simulate

an entire year trial run with just 6 different profiles, one per day. Table 6.3 shows the mapping

of each profiles on the full year.

Table 6.3: Profiles mapping to a full year

Month
Normal Exceptional

Profile Number of days Profile Number of days
January Profile 1 29 Profile 6 2

February Profile 1 23 Profile 6 5
March Profile 1 23 Profile 6 8
April Profile 3 28 Profile 4 2
May Profile 2 30 Profile 5 1
June Profile 2 23 Profile 5 7
July Profile 3 23 Profile 4 8

August Profile 3 19 Profile 4 12
September Profile 1 24 Profile 6 6

October Profile 1 26 Profile 6 5
November Profile 1 26 Profile 6 4
December Profile 1 21 Profile 6 10

6.5.5 Evaluation

The Figure 6.3 shows the power consumed by the infrastructure during the 6 days trial. The

renewable percentage curve (in green) is super-impressed so as to show that the peaks of

consumption of the trial has been aligned as much as possible with the corresponding maxi-

mum availability of renewable energies. However only task oriented activities that presented

shiftable workload could be aligned on the maximum renewable percentage. Service ori-

ented activities, on the contrary, were not necessarily aligned with the maximum renewable

12http://www.evo-world.org/en/

91

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

percentage.

Figure 6.3: six days trial overview

Table 6.4: Trial results

Profile RenPercent RenPercent
baseline

Profile 1 35.37% 30.19%
Profile 2 55.75% 49.24%
Profile 3 47.24% 39.41%
Profile 4 61.28% 47.00%
Profile 5 58.02% 56.49%
Profile 6 50.19% 37.68%

The Table 6.4 presents the improvements in the percentage of renewable energy consumed,

for each profile of the trial. Using our M&V methodology, we can map each profile to a number

of days during the year. This allows to compute an improvement on renewable consumption

of 7.07 percentage points for the full year.

The Figure 6.4 presents the renewable percentage and the total power consumption of the

trial, during the first day of trial (using profile 1). It shows how the trial power consumption

becomes adaptive to renewable energy availability. We observe that the workload has been

scheduled during high RenPercent periods, considering however that front-end SLA should be

met. The minimum power is around 150 Watt, corresponding to minimum working mode of

front-end; this workload cannot be shifted because it is a service-oriented activity that should

be available 24 hours.

The Figure 6.5 presents the total actual power, planned power, and the actual power of each

activity during the first day profile. The figure shows how the power consumption is distributed

92

6.5. Experimentations and evaluation

(a)

(b)

Figure 6.4: Adaptation to renewable energies

between the two activities according to their resource consumption at any point in time. This

effect is particularly visible when back-end activity has no load, and therefore all power is

allocated to the front-end activity. However, when the activity of the back-end increases, the

power distribution changes and therefore the power allocated to the front-end decreases. In

addition, the graphic shows that the planned power is reasonably close to the total actual

power. The mean absolute percentage error between the planned power and the actual power

measured in the system over the 6 days of trial is 16,58%.

The Figure 6.6 shows the PaaS and IaaS orchestration during the trial run. This figure shows

that when front-end scales up more containers (red curve) in order to meet front-end load,

the number of PaaS runners VMs (green curve) increases to host front-end containers, and

consequently IaaS powers on more servers (dark orange curve) in order to host PaaS’s runners

VMs. Similarly, this happens when back-end scales up (blue curve). In addition, when back-

end or front-end scales down, the PaaS scales down the number of PaaS’s runners VMs, and

IaaS powers off some servers.

93

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

Figure 6.5: Power of activities

Figure 6.6: PaaS-IaaS Cloud infrastructure orchestration

Figure 6.7 presents the front-end actual business performance compared to its SLO. The Figure

shows that the front-end business performance follows quite exactly the SLO, with however a

small delay corresponding to the time to scale up or down the number of containers.

Figure 6.7: Front-end following the SLA

94

6.6. Conclusion and Future Work

6.5.6 Scaling process analysis

The full scale up process, when scaling from 0 to 13 containers, takes 24 minutes. This number

includes the consolidation of the VMs at IaaS level. When the command for scaling up the

number of containers is launched, a first container is launched on the only available DEA. The

PaaS Consolidator will then detect that more DEAs need to be created, and will reconfigure

BOSH in order to do so. We configured BOSH to instantiate the VMs in parallel, four at a time.

This setting allowed to optimize the DEA scale up time: four at a time was the optimal number,

allowing to use the available nodes in parallel. Instantiating the VMs is done by triggering

OpenStack. The VMs were up an running 6 minutes after being instantiated.

Once the VMs are ready, the longest process is to configure them. This configuration, done by

BOSH, takes up to 10 minutes on our infrastructure. This process consists in the installation of

DEA software inside the VMs launched by OpenStack. After the DEAs are ready, instantiating

the containers inside them is fast: from 55 seconds to 1 minute 50 seconds when the system is

more loaded.

After the PaaS scaling is finished, the ultimate step is to trigger the re-consolidation of the IaaS

infrastructure. For this, Plug4Green migrates the DEAs created in order to consolidate them

on the same server. This process took 4 minutes on our infrastructure.

This scale up process could be shortened using more recent hardware. Secondly, using VM

images already containing the DEA software would allow faster instantiation.

The scale down process, on the other hand, is much faster. Scaling down from 13 containers

to zero took 4 minutes 18 seconds. This is due to the fact that destroying VMs take a very

small amount of time. Furthermore, on an empty infrastructure, Plug4Green doesn’t need to

consolidate the VMs.

6.6 Conclusion and Future Work

Using the renewable energies to power data centres is challenging. This is due to both the

intermittent nature of the renewable sources and the complex nature of data centres.

In this chapter, we expend on the notion of Energy Adaptive Software Controller (EASC),

using the opportunities offered by the PaaS paradigm when it comes to energy management.

We showed how a PaaS infrastructure, itself based on a IaaS, can be used to respect energy

constraints. The complete scaling operations happens at three different levels: application,

95

Chapter 6. Energy optimizations within the PaaS and IaaS paradigms

PaaS containers and finally IaaS VMs. We presented an energy model able to evaluate simply

the energy consumption of application within a shared infrastructure such as PaaS.

We validated the notion of EASC through the complete implementation of a legacy applications

running in the PaaS layer. The energy model was used in order to make the decisions on the

scaling operations. Experiments over a week showed that the EASC was able to increase

the usage of renewable energies by aligning the application performance with the energy

availability periods.

96

7 Conclusions and future directions

This section summarizes the research exposed in this thesis and discuses the possible future

directions.

7.1 Conclusions

Data centres are power-hungry facilities that host ICT services and consumed from 1.1% to

1.5% of the global electricity consumption, as of 2010 [14]. Consequently, in the last years,

research trends in the field focused on mechanisms able to reduce the overall consumption

of a data centre so as to reduce its energy footprint. Moreover, new interests toward aspects

such as green footprint demands for more than just reducing energy consumption. Aiming at

reducing energy consumption in data centres becomes part of a larger equation: being able to

consume energy in a better way, prioritizing the consumption of green energies. This thesis

presented several energy management techniques in data centres. The first goal, reducing

the energy consumption in data centres, has an obvious ecological and economical impact.

However, over the course of this research, a secondary goal appeared: to prioritize renewable

energies over brown energies. The renewable energy is drawn from a local power source or

from the grid.

Regarding the energy saving goal, we presented a preliminary work on heuristics for VM conso-

lidation. This work on the heuristics showed us that, although they are usable in some specific

cases, they are not generic enough to cope with the constant evolution of data centres. In

order to address this flexibility need, we proposed Plug4Green, an energy-aware VM manager.

Thanks to Constraint Programming, Plug4Green can be easily specialized to support various

combinations of SLAs, power models and energy policies. Its flexibility has been verified

97

Chapter 7. Conclusions and future directions

through the implementation of 23 meaningful SLAs and 2 energy policies. Its practical effec-

tiveness has been evaluated on an industrial testbed. While the default version of Plug4Green

reduced the power consumption and the gas emission by 27% and 23% respectively, its special-

ization to fit the hardware heterogeneity improved the saving by up to 34%. Finally, scalability

experiments on simulated data have shown that Plug4Green is able to compute an improved

placement for 7,500 VMs running on 1,500 servers in a minute, while respecting their SLA.

We also presented the notion of Energy Adaptive Software Controller (EASC), a generic software

controller that developers can use to make their application adaptive to renewable energy

availability. To integrate the notion of EASC into a legacy application, a developer only needs to

identify its various KPIs, working modes and to declare the commands to use to enact a working

mode. The EASC then provides different scheduling algorithms to continuously choose the

most appropriate working mode to use for the controlled application with regards to its SLAs

and power budget. We showed how a PaaS infrastructure, itself based on a IaaS, can be used to

respect energy constraints. The complete scaling operations happens at three different levels:

application, PaaS containers and finally IaaS VMs. We presented an energy model able to

evaluate simply the energy consumption of applications within a shared infrastructure such as

PaaS. We validated the portability of the notion of EASC through the complete implementation

of two legacy applications. The first one is a task-oriented application used to generate reports

in the healthcare domain. The second one is HP Life, an international eLearning lab available

through a Web application. We also confirmed the practical benefits of the developed EASCs

on two different testbeds: one powered only by the Italian national power grid, and the other

through a dual power sources using photovoltaic arrays and national power grid. Experiments

over a week also proved that the EASCs increased the usage of renewable energies by aligning

the application performance with the energy availability periods. Results showed that the

EASC was able to augment the renewable energy usage percentage by 7.07pp in the Trento

trial with a PaaS infrastructure.

7.2 Discussion

In this section we put into perspective the main findings of the research presented in this

thesis.

98

7.2. Discussion

7.2.1 Heuristics vs meta-heuristics

The most efficient technique to save energy in data centres so far has definitely been the con-

solidations possibilities offered by virtualization techniques. we explored various technologies

in order to consolidate the VMs, among them Constraint Programming. This meta-heuristic

offers clear advantages regarding the flexibility and evolvability of the solver. However, we

noticed two drawbacks: first, it adds a significant overhead in terms of engineering. The

qualifications required in term of software engineering are relatively high, in domains such

as modelization and operational research. This limits the impact in term of adoption of the

technology. One solution could be the automatic generation of constraints and test cases

using a specification language. Such a specification language is usually closer to the end user

needs. Secondly, the solving duration is relatively high. For example, it took around 3 minutes

to solve the problem with 2000 nodes with Plug4Green (see section 4.5). This prevents to run

the solver too often. Empirically, we found that a good delay between consolidations is 10-15

minutes.

As hinted in chapter 3, VM consolidation techniques are working, but they should be applied

with care. Consolidation of cache-sensitive and storage-intensive VMs is likely to lead to

severely degraded performance. However, heuristics that have simplistic methods of treating

multi-dimensional resource requirements are reasonably effective in many common practical

situations. In complex situations, we showed that using a meta-heuristic such as Constraint

Programming allows to take into account much more particular cases.

7.2.2 Analytical power models vs black-box power models

Analytical power models, such as the one presented in Chapter 4, can be very accurate. Their

error rate is usually about 5% [49]. However our experience showed that they can prove very

difficult to configure. A lot of different components in the data centre are modelized and should

be configured according to data sheets or real time metering, such as CPU voltage or number

of transistors. Furthermore, they become obsolete very fast because the hardware evolves and

is replaced regularly within data centres. This is why, in recent versions of Plug4Green, the

analytical model has been replaced with a simpler, linear model similar to the one presented in

Chapter 6. These kind of models are less accurate: our evaluation showed a mean percentage

error of 16.58% between the planned power and the actual power consumed in the data

centre. However, the advantage is that they depend on very few configuration and real-time

parameters, such as power idle and CPU levels. In the case of our scheduling algorithms, this

proved to be enough to guarantee a reasonable scheduling, as shown by the results obtained

99

Chapter 7. Conclusions and future directions

in term of renewable energy percentage improvement.

7.2.3 Technology transfer

Regarding the integration of our solutions into real Cloud solutions, we witness also a certain

gap. While some ideas from the research community gets adopted over time in Open Source

or commercial solutions, most of them are not. A product like OpenStack, for example, still

doesn’t support VM consolidation by default. A problem of the proposed solution is their

complexity. Some complex algorithms sometimes find commercial applications: for example

Google search engine embeds a very complex algorithm. However the visible part of it should

be extremely simple, in the case of Google the user interface is a simple string. In our case

the problem is that the complexity of our models leaks on the end-users. For example the

Constraint Programming model defines a big quantity of new concepts that the user needs

to learn. This complexity also makes the system more fragile and prone to corner cases.

The scheduling solutions calculated by system, while maybe correct, can be also prove to be

difficult to interpret by the end-user due to the high quantity of interacting parameters. This,

in our opinion, is the main parameter holding back the adoption of complex algorithms for

energy aware systems. Very simple algorithms, such as round robin, are sometime preferred

over more efficient algorithms, for the sake of simplicity and predictability.

The new project Watcher1 is an effort for integrating a resource optimization service in Open-

Stack. This optimization includes the reduction of data centre operating costs, increased

system performance and increased energy efficiency. Plug4Green concepts and technology

are currently being discussed within the Watcher community for integration.

7.2.4 Renewable energies adoption

This thesis showed several techniques aimed at increasing the renewable energy usage in

data centres. We showed that, with an adequate scheduling, it is possible to increase the

renewable percentage used in the data centre, even if only the grid power is available (no local

generation). However a major problem, albeit out of scope of this thesis, is to incentivize the

data centre owners to deploy such techniques. A system of bonuses should be put in place at

the city or national level, in order to reward data centre owners that optimize their usage of

the renewable energies. Moreover, data centre owners can put in place a billing policy that

rewards application owners that implements flexibility mechanisms such as the EASC.

1https://wiki.openstack.org/wiki/Watcher

100

7.3. Future research directions

7.3 Future research directions

7.3.1 Usage of energy accumulators in DCs

Energy accumulators such as batteries are currently used in data centres mainly for emergency

energy backups. Accumulating energy for optimizing renewable usage appears to be a good

idea. However at the time when this thesis was started, energy accumulators were not deemed

mature enough. Batteries are still expensive, and acquiring enough batteries to power a full DC

for a significant number of hours every day represents a big capacity. Furthermore batteries

manufacturing, maintenance and disposal have a significant economic and ecological impact.

However the recent advances in battery conception, mainly due to the automotive market

research, may have changed the deal. Indeed batteries are getting cheaper and cheaper,

allowing to use more of them. Other kinds of energy accumulator could be used, such as

pumped storage hydroelectricity systems.

This evolution could have a major impact on this research topic. The accumulators can store

energy and deliver it latter, however they have an inherently limited capacity. Furthermore,

the batteries need maintenance time, when they are remove and replaced. A number of areas

of this research need to be updated consequently. First of all, the algorithm need to take into

account that the renewable energy percentage present in the energy source mix might need to

be adjusted when using the batteries. Indeed the batteries allows to change the renewable

energy percentage used in the data centre at a given point in time by delivering energy stored

before. Secondly, the algorithm needs to take into account the possibility to command and

control the batteries. This control need to be coordinated with the availability of renewable

energy, but also with the status of the applications controlled, in order to obtain an optimum

usage of energy and performance of applications. The correct modelization of the battery

behavior when charging or discharging is also an important challenge.

7.3.2 Energy management with Unikernels

This thesis showed the usage of virtualization to manage energy. We used two different

supports for virtualization: virtual machines (running in hypervisors) and Linux containers. A

third virtualization vehicle is currently emerging: the Unikernel [77].

In the current IaaS implementations, several VMs are running on top of an hypervisor, as

shown in Figure 7.1. Those VMs embed a complete Operating System (in grey in the figure, for

example Windows or Linux). However, a lot of features of the host OS appear to be redundant

101

Chapter 7. Conclusions and future directions

Figure 7.1: Evolution of virtualization vehicules: VMs, containers, Unikernels

with the hypervisor: the hypervisor is already providing isolation between application and

resource scheduling between the various VMs. Furthermore, each VM on a server embeds

its own kernel (the core of the OS), and a modern server can host up to 50 VMs. Container

technologies, used in this thesis, allows to remove a part of those redundancies. Containers

use OS APIs to create separate environments, each with their own file system, memory space

and processes. This means that the amount of replicated resources for each container on

the same server is greatly reduced with respect to virtual machines, which implies smaller

footprint, higher per-host density and faster start times.

The next, ultimate step in this progression is the Unikernel. A Unikernel is an application

compiled together with a so-called "Library OS". The result of this compilation is not an

executable than should run on top of an OS: it is itself an OS. The compiled Unikernel runs

directly on Xen2. As such, Unikernels can be viewed as single-purpose bare-bone VMs. The

advantages of this technology are multiple:

• Extremely reduced size (a Unikernel can be in the order of magnitude of 10Mo, where a

VM is 1Go), due to the elimination of many redundancies.

• Fast boot-up speed: the Unikernel being single-purpose, it has a very reduced kernel

with no useless drivers.

• Security: a reduced attack surface, due to its small size and elimination of useless drivers.

• Reliability: Unikernels are traditionally based on the functional programming paradigm,

which is known to produce more reliable programs.

2http://www.xenproject.org

102

7.3. Future research directions

Unikernels are still a new technology. However their characteristics could have a significant

impact on the research domain of this thesis. The reduced granularity (low RAM space, low

start up time) of the Unikernel suggests the necessity to develop new scheduling algorithms.

Their positioning can be more dynamic than for VMs (which have a high start up time).

Migrating them between two different sites, for the sake of energy management, can also be

faster. Furthermore, Unikernels might find a development avenue with the rise of the micro-

service architectures [78]. In micro-service architectures, each component of an application is

located in a separate VM/Container/Unikernel and exposes an API to the other components.

This implies a high number of VMs that share specific relations with each others. Those

relations should be modelized and taken into account in our future research.

7.3.3 Warm data centres

° Since the end of the silicon road, the CPU clock frequency of manufactured computers re-

mained relatively stable. However, huge progresses have been made in the power management

of CPUs, allowing them to run at much higher temperatures. Data centres typically operate in

a temperature range between 20°C and 22°C, some are as cold as 13°C degrees. However recent

studies suggests a much higher temperature. Some investigations, such as in [79], suggests

that increasing the room temperature set point in data centres by just one degree could save

2–5% of the energy consumption. How does our research is affected by this evolution? The

PUE is the ratio between the power spent in IT equipment divided by the total energy spent in

the data centre, including the cooling systems. Raising the temperature set point in the DC will

then mechanically lower the PUE. In an environment with low PUE, energy saving techniques

then have a lower final impact. On the other hand, a high data centre temperature render the

problems of "hot spots" more critical. It then makes sense to include a modelization of the

hot spots of the data centre in the VM placement model and in the scheduling system, such as

in [80].

7.3.4 Service migrations & edge computing

With the development of the Internet of Things, a lot more objects and sensors will get

connected to Internet. Those objects usually have limited computational power, has well as

limited energy resources. This is why they use the computing power of the Cloud in order

to process CPU intensive tasks. However, moving some key computations in the opposite

direction, from the Cloud to the device, also makes sense. For example, if a temperature

sensor is only used by an application that need an average temperature value computed every

103

Chapter 7. Conclusions and future directions

hour, it makes sense to relocate the algorithm that performs the averaging on the device

itself. This allows to lower the transmission rate and to save energy. Other tasks, such as data

anonymization and encryption, need to be performed on the device before being sent to the

Cloud. However, the full virtualization of most IoT devices is not achieved yet. The Raspberry

PI, that can be viewed as a rather high-end IoT device platform, has only recently received

attention in this direction 3. The virtualization of the "edge" devices will allow to migrate

virtual machines directly on them, for example for energy reasons. This development could

have an impact on the VM positioning algorithms presented in this thesis.

3http://blog.flexvdi.es/?p=139

104

A Implementation of the classical VM

packing problem with SMT/Haskell

To show the usability of both SMT and pure functional languages to tackle energy efficiency

problems in a flexible way, we implemented the classical problem of packing VMs on servers

using the library SBV1, with only one dimension for the sake of simplicity. In the example2

showed in Listing A.1, each VM has a demand in term of CPU, and each server has a certain

CPU capacity to offer. The objective is to find the placement of the VMs on the servers that

minimizes the number of servers needed. The only constraint applied is that the total CPU

consumption of the VMs that will be running on a server must not exceed the capacity of that

server.

Listing A.1: Example of VM placement problem solved using SMT

1

2 --concrete IDs for VMs and servers

3 type VMID = Integer

4 type SID = Integer

5

6 --symbolic IDs of the servers

7 type SSID = SBV SID

8

9 --A VM is just a name and a cpuDemand

10 data VM = VM { vmName :: String ,

11 cpuDemand :: Integer }

12

13 --a server has got a name and a certain amount of free CPU

14 data Server = Server { serverName :: String ,

15 cpuCapacity :: Integer }

16

17 --list of VMs

18 vms :: Map VMID VM

1http://leventerkok.github.io/sbv
2The full implementation can be seen at https://github.com/cdupont/Plug4Green-design

105

Appendix A. Implementation of the classical VM packing problem with SMT/Haskell

19 vms = fromList $ zip [0..] [VM "VM 1" 100 , VM "VM 2" 50, VM "VM 3" 15]

20

21 --list of servers

22 servers :: Map SID Server

23 servers = fromList $ zip [0..] [Server " Server 1" 100 , Server " Server 2" 100 ,

Server " Server 3" 200]

24

25 --number of servers ON (which we ’ll try to minimize)

26 numberServersOn :: Map VMID SSID -> SInteger

27 numberServersOn = count . elems . M.map (./= 0) . vmCounts

28

29 --computes the number of VMs on each servers

30 vmCounts :: Map VMID SSID -> Map SID SInteger

31 vmCounts vmls = M. mapWithKey count servers where

32 count sid _ = sum [ite (mysid .== literal sid) 1 0 | mysid <- elems vmls]

33

34 --All the CPU constraints

35 cpuConstraints :: Map VMID SSID -> SBool

36 cpuConstraints vmls = bAnd $ elems $ M. mapWithKey criteria (serverCPUHeights vmls

) where

37 criteria :: SID -> SInteger -> SBool

38 criteria sid height = (literal $ cpuCapacity $ fromJust $ M. lookup sid servers

) .> height

39

40 --computes the CPU consummed by the VMs on each servers

41 serverCPUHeights :: Map VMID SSID -> Map SID SInteger

42 serverCPUHeights vmls = M. mapWithKey sumVMsHeights servers where

43 sumVMsHeights :: SID -> Server -> SInteger

44 sumVMsHeights sid _ = sum [ite (sid ’ .== literal sid) (literal $ cpuDemand $

fromJust $ M. lookup vmid vms) 0 | (vmid , sid ’) <- M. assocs vmls]

45

46 --solves the VM placement problem

47 vmPlacementProblem :: IO (Maybe (Map VMID SID))

48 vmPlacementProblem = minimize ’ numberServersOn cpuConstraints

49

50 main = do

51 s <- vmPlacementProblem

52 putStrLn $ show s

When run, this program returns the placement for the VMs that minimizes the number of

necessary servers. In this case, it will place all three VMs on the third server. While it is difficult

to compare, it is anyway striking that this program is shorter than its equivalent in Java/Choco3.

The definition of a constraint takes only a few lines (for example number Ser ver sOn takes 2

lines) and flows with the program definition. Furthermore, as it is usually the case in Haskell,

the type signature of the functions are carrying a lot of information that can be used both

3for example this implementation of bin packing: http://www.dcs.gla.ac.uk/ pat/cpM/jchoco/binPack/CPBin-
Pack.java

106

by the programmer to understand and reason about the program, and by the compiler to

prove its correctness. For example, the type signature numberServersOn :: Map VMID SSID

-> SInteger makes it clear that the function number Ser ver sOn is a constraint that takes the

positions of all the VMs on the servers (denoted as a mapping between the VM ids and the

server symbolic ids) and returns a symbolic integer representing the necessary number of

servers.

Furthermore, programming at the symbolic level, as it is required when designing a CSP,

is not very different than programming in concrete Haskell. This is because a lot of the

Haskell standard functions, like the function sum in our example program, can be reused

in a constraint programming program. The definition of sum in the standard library of

Haskell is generic enough to be able to be used also at the symbolic level. On the other hand,

programming in Choco is completely different than programming in concrete Java: all the

operators are necessarily different, due to the low genericity of Java. Therefore, the intuition of

the Java programmer cannot be completely reused.

SBV is also a theorem prover, and that can be used to prove properties of the constraints

expressed. For example, we might want to prove some properties about our constraint

vmCount s. This function counts the number of VMs present on each servers. We want

to prove the property that the count of VMs on a server has for absolute maximum the total

numbers of VMs present in the data centre.

Listing A.2: Example of proof about a constraint

1

2 *Main > prove $ \x y -> bAll (. <= 2) $ vmCounts ’ [x, y]

3 Q.E.D.

The listing A.2 show how we can ask SBV to prove that the number of VMs per server computed

by the constraint vmCount s cannot exceed the total number of VMs (in this simplified

example with only 2 VMs and a version of vmCounts defined for lists instead of maps). SBV

simply replies with Q.E .D, showing that it found a proof of our property (this proof can be

exhibited if needed).

107

Bibliography

[1] Sonja Klingert, Florian Niedermeier, Corentin Dupont, Giovanni Giuliani, Thomas

Schulze, and Hermann de Meer. Introducing Flexibility into Data Centers for Smart

Cities. Communications in Computer and Information Science, 2016.

[2] Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Fabien Hermenier. An

energy aware application controller for optimizing renewable energy consumption in

cloud computing data centres. In 8th IEEE/ACM International Conference on Utility and

Cloud Computing, 2015.

[3] Corentin Dupont and Fabien Hermenier. DC4Cities: Better usage of the renewable

energies in data centres. In ICT4S 2015, 2015.

[4] Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Silvio Cretti. Energy

efficient data centres within smart cities: Iaas and paas optimizations. In 2015 EAI

International Conference on Smart Grids for Smart Cities, Toronto, Canada, 2015.

[5] Sonja Klingert, Florian Niedermeier, Corentin Dupont, Giovanni Giuliani, Thomas

Schulze, and Hermann de Meer. Renewable energy-aware data centre operations for

smart cities - the DC4Cities approach. In SMARTGREENS 2015. ACM, 2015.

[6] Corentin Dupont, Fabien Hermenier, Thomas Schulze, Robert Basmadjian, Andrey So-

mov, and Giovanni Giuliani. Plug4green: A flexible energy-aware vm manager to fit data

centre particularities. Ad Hoc Networks, pages 505–519, 2014.

[7] Corentin Dupont. Building application profiles to allow a better usage of the renewable

energies in data centres. In Energy-Efficient Data Centers, Lecture Notes in Computer

Science, 2014.

[8] Corentin Dupont. Energy aware infrastructure for green cloud data centres. University of

Trento Doctoral School, 2014.

109

Bibliography

[9] Corentin Dupont. Renewable energy aware data centres: The problem of controlling the

applications workload. In Sonja Klingert, Xavier Hesselbach-Serra, MariaPerez Ortega,

and Giovanni Giuliani, editors, Energy-Efficient Data Centers, volume 8343 of Lecture

Notes in Computer Science, pages 16–24. Springer Berlin Heidelberg, 2013.

[10] Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien Her-

menier. An energy aware framework for virtual machine placement in cloud federated

data centres. In Proceedings of the 3rd International Conference on Future Energy Systems:

Where Energy, Computing and Communication Meet, e-Energy ’12, pages 4:1–4:10. ACM,

2012.

[11] Dang Minh Quan, Robert Basmadjian, Hermann de Meer, Ricardo Lent, Toktam Mah-

moodi, Domenico Sannelli, Federico Mezza, Luigi Telesca, and Corenten Dupont. Energy

efficient resource allocation strategy for cloud data centres. In Erol Gelenbe, Ricardo Lent,

and Georgia Sakellari, editors, Computer and Information Sciences II, pages 133–141.

Springer London, 2012.

[12] Dang Minh Quan, Andrey Somov, and Corentin Dupont. Energy usage and carbon

emission optimization mechanism for federated data centers. In Proceedings of the First

International Conference on Energy Efficient Data Centers, E2DC’12, pages 129–140, 2012.

[13] Corentin Dupont, Mehdi Sheikhalishahi, and Michele Santuari. Improving renewable

energy consumption in iaas/paas hybrid data centres. Submitted to Futur Generation

Computer Systems, 2016.

[14] Jonathan Koomey. Growth in data center electricity use 2005 to 2010. Oakland, CA:

Analytics Press. August, 1:2010, 2011.

[15] Íñigo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo Bianchini. Parasol

and greenswitch: Managing datacenters powered by renewable energy. SIGPLAN Not.,

48(4):51–64, March 2013.

[16] Cheikhou Thiam. Anti Load-Balancing for Energy-Aware Distributed Scheduling of Virtual

Machines. Thèse de doctorat, Université de Toulouse, Toulouse, France, juillet 2014.

(Soutenance le 03/07/2014).

[17] Anton Beloglazov. Energy-Efficient Management of Virtual Machines in Data Centers for

Cloud Computing. Doctorate thesis, University of Melbourne, 2013.

[18] D. Bradley, R. Harper, and S. Hunter. Workload based power management for parallel

computer systems. IBM, 47:703–718, 2003.

110

Bibliography

[19] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: Eliminating server idle

power. SIGARCH Comput. Archit. News, 37(1):205–216, March 2009.

[20] Donato Barbagallo, Elisabetta Di Nitto, Daniel J. Dubois, and Raffaela Mirandola. A bio-

inspired algorithm for energy optimization in a self-organizing data center. In Proceedings

of the First International Conference on Self-organizing Architectures, SOAR’09, pages

127–151, Berlin, Heidelberg, 2010. Springer-Verlag.

[21] Ray Carroll, Sasitharan Balasubramaniam, Dmitri Botvich, and Willie Donnelly. Dynamic

optimization solution for green service migration in data centres. In ICC, pages 1–6. IEEE,

2011.

[22] Josep Ll. Berral, Íñigo Goiri, Ramón Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà, and

Jordi Torres. Towards energy-aware scheduling in data centers using machine learning.

In Proceedings of the 1st International Conference on Energy-Efficient Computing and

Networking, e-Energy ’10, pages 215–224, New York, NY, USA, 2010. ACM.

[23] Qinghui Tang, Sandeep Kumar S. Gupta, and Georgios Varsamopoulos. Energy-efficient

thermal-aware task scheduling for homogeneous high-performance computing data

centers: A cyber-physical approach. IEEE Trans. Parallel Distrib. Syst., 19(11):1458–1472,

November 2008.

[24] Kien Le, Ricardo Bianchini, Jingru Zhang, Yogesh Jaluria, Jiandong Meng, and Thu D.

Nguyen. Reducing electricity cost through virtual machine placement in high perfor-

mance computing clouds. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’11, pages 22:1–22:12, New

York, NY, USA, 2011. ACM.

[25] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for man-

aging sla violations. In Integrated Network Management, 2007. IM ’07. 10th IFIP/IEEE

International Symposium on, pages 119–128, 2007.

[26] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-box

and gray-box strategies for virtual machine migration. In Proceedings of the 4th USENIX

conference on Networked Systems Design & Implementation, NSDI’07, pages 229–242,

Berkeley, CA, USA, 2007. USENIX Association.

[27] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: Power and migration cost

aware application placement in virtualized systems. In Middleware 2008, volume 5346 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008.

111

Bibliography

[28] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource alloca-

tion heuristics for efficient management of data centers for cloud computing. Future

Generation Computer Systems, 28(5):755–768, May 2012.

[29] Fabien Hermenier, Sophie Demassey, and Xavier Lorca. Bin repacking scheduling in

virtualized datacenters. In Proceedings of the 17th international conference on Principles

and practice of constraint programming, CP’11, pages 27–41, Berlin, Heidelberg, 2011.

Springer-Verlag.

[30] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based approach for energy-

efficient consolidation of virtual machines in cloud data centers. In Proceedings of the 8th

International Workshop on Middleware for Grids, Clouds and e-Science, MGC ’10, pages

4:1–4:6, New York, NY, USA, 2010. ACM.

[31] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Ramasubramanian,

Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Validating heuristics for virtual machines

consolidation. Technical Report MSR-TR-2011-9, January 2011.

[32] Akshat Verma, Juhi Bagrodia, and Vimmi Jaiswal. Virtual machine consolidation in the

wild. In Proceedings of the 15th International Middleware Conference, Middleware ’14,

pages 313–324, New York, NY, USA, 2014. ACM.

[33] Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D. Patel, Richard J. Friedrich, and

Jeffrey S. Chase. Balance of power: Dynamic thermal management for internet data

centers. IEEE Internet Computing, 9(1), January 2005.

[34] Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Making

scheduling "cool": temperature-aware workload placement in data centers. In Proceed-

ings of the annual conference on USENIX Annual Technical Conference, ATEC ’05, pages

5–5, Berkeley, CA, USA, 2005. USENIX Association.

[35] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a

warehouse-sized computer. In Proceedings of the 34th annual international symposium

on Computer architecture, ISCA ’07, New York, NY, USA, 2007. ACM.

[36] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming.

Elsevier Science Inc., New York, NY, USA, 2006.

[37] Fabien Hermenier, Julia Lawall, and Gilles Muller. Btrplace: A flexible consolidation

manager for highly available applications. IEEE Transactions on Dependable and Secure

Computing, 10(5), 2013.

112

Bibliography

[38] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall.

Entropy: a consolidation manager for clusters. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, VEE ’09, pages

41–50. ACM, 2009.

[39] E. Bin, O. Biran, O. Boni, E. Hadad, E.K. Kolodner, Y. Moatti, and D.H. Lorenz. Guarantee-

ing High Availability Goals for Virtual Machine Placement. In International Conference

on Distributed Computing Systems, 2011.

[40] Roman Krogt, Jacob Feldman, James Little, and David Stynes. An integrated business

rules and constraints approach to data centre capacity management. In David Cohen,

editor, Principles and Practice of Constraint Programming, volume 6308 of Lecture Notes

in Computer Science. Springer Berlin Heidelberg, 2010.

[41] K. Tsakalozos, M. Roussopoulos, and A. Delis. Hint-based execution of workloads in

clouds with nefeli. Parallel and Distributed Systems, IEEE Transactions on, 24(7):1331–

1340, 2013.

[42] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A comparison

of high-level full-system power models. In Proceedings of the 2008 conference on Power

aware computing and systems, HotPower’08. USENIX Association, 2008.

[43] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira, Jr., and Ricardo Bianchini.

Energy conservation in heterogeneous server clusters. In Proceedings of the tenth ACM

SIGPLAN symposium on Principles and practice of parallel programming, PPoPP ’05,

pages 186–195, New York, NY, USA, 2005. ACM.

[44] Dimitris Economou, Suzanne Rivoire, and Christos Kozyrakis. Full-system power analysis

and modeling for server environments. In In Workshop on Modeling Benchmarking and

Simulation, 2006.

[45] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction

and applications. Commun. ACM, 54(9):69–77, September 2011.

[46] Adrian Paschke and Elisabeth Schnappinger-Gerull. A categorization scheme for sla

metrics. In Multi-Conference Information Systems, MKWI’06, 2006.

[47] Robert Basmadjian, Hermann de Meer, Ricardo Lent, and Giovanni Giuliani. Cloud

computing and its interest in saving energy: the use case of a private cloud. Journal of

Cloud Computing, 1(1), 2010.

113

Bibliography

[48] R. Basmadjian, F. Niedermeier, and H. De Meer. Modelling and analysing the power

consumption of idle servers. In Sustainable Internet and ICT for Sustainability (SustainIT),

2012, pages 1–9, 2012.

[49] Robert Basmadjian and Hermann de Meer. Evaluating and modeling power consumption

of multi-core processors. In Proceedings of the 3rd International Conference on Future

Energy Systems: Where Energy, Computing and Communication Meet, e-Energy ’12, New

York, NY, USA, 2012. ACM.

[50] Venkatesh Pallipadi. Enhanced intel speedstep technology and demand-based switching

on linux. Intel Developer Service, 2009.

[51] Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer, and Giovanni

Giuliani. A methodology to predict the power consumption of servers in data centres.

In Proceedings of the 2nd International Conference on Energy-Efficient Computing and

Networking, e-Energy ’11, New York, NY, USA, 2011. ACM.

[52] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of

virtual machine live migration in clouds: A performance evaluation. In Proceedings of the

1st International Conference on Cloud Computing, CloudCom ’09. Springer-Verlag, 2009.

[53] Jing Xu and Jose A. B. Fortes. Multi-objective virtual machine placement in virtualized

data center environments. In Proceedings of the 2010 IEEE/ACM Int’l Conference on

Green Computing and Communications & Int’l Conference on Cyber, Physical and Social

Computing, GREENCOM-CPSCOM ’10, pages 179–188, Washington, DC, USA, 2010. IEEE

Computer Society.

[54] Virtualization penetration rate in the enterprise. Technical report, Veeam Software, 2011.

[55] Paul Shaw. A constraint for bin packing. In Mark Wallace, editor, Principles and Practice

of Constraint Programming – CP 2004, volume 3258 of Lecture Notes in Computer Science,

pages 648–662. Springer Berlin Heidelberg, 2004.

[56] Íñigo Goiri, Ryan Beauchea, Kien Le, Thu D. Nguyen, Md. E. Haque, Jordi Guitart, Jordi

Torres, and Ricardo Bianchini. GreenSlot: scheduling energy consumption in green

datacenters. In High Performance Computing, Networking, Storage and Analysis (SC),

2011 International Conference for, pages 20:1–20:11, New York, NY, USA, 2011. ACM.

[57] Chao Li, A. Qouneh, and Tao Li. iSwitch: Coordinating and optimizing renewable energy

powered server clusters. In 2012 39th Annual International Symposium on Computer

Architecture (ISCA), pages 512–523, June 2012.

114

Bibliography

[58] Íñigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and Ricardo Bianchini.

GreenHadoop: Leveraging Green Energy in Data-processing Frameworks. In Proceedings

of the 7th ACM European Conference on Computer Systems, pages 57–70, New York, NY,

USA, 2012. ACM.

[59] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun Chen. Data

center demand response: avoiding the coincident peak via workload shifting and local

generation. pages 341–342, New York, NY, USA, 2013. ACM.

[60] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,

Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. Technical Report

UCB/EECS-2009-28, EECS Department, University of California, Berkeley, February 2009.

[61] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,

36(1):41–50, January 2003.

[62] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and Andy Hopper. Free

Lunch: Exploiting Renewable Energy for Computing. In Proceedings of the 13th USENIX

Conference on Hot Topics in Operating Systems, pages 17–17, Berkeley, CA, USA, 2011.

USENIX Association.

[63] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan Coghlan, and Michael E.

Papka. Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for

HPC Systems. In Proceedings of SC13: International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 60:1–60:11, New York, NY, USA, 2013.

ACM.

[64] Zhou Zhou, Zhiling Lan, Wei Tang, and Narayan Desai. Reducing Energy Costs for IBM

Blue Gene/P via Power-Aware Job Scheduling. October 2013.

[65] D. Aikema and R. Simmonds. Electrical cost savings and clean energy usage potential

for HPC workloads. In 2011 IEEE International Symposium on Sustainable Systems and

Technology (ISSST), pages 1–6, 2011.

[66] Alexandra Carpen-Amarie, Djawida Dib, Anne-Cecile Orgerie, and Guillaume Pierre.

Towards energy-aware IaaS-PaaS co-design. In SMARTGREENS 2014, pages 203–208,

2014.

115

Bibliography

[67] Michael Cardosa, Madhukar R. Korupolu, and Aameek Singh. Shares and utilities based

power consolidation in virtualized server environments. In Proceedings of the 11th

IFIP/IEEE Integrated Network Management (IM 2009), Long Island, NY, USA, June 2009.

[68] Kiril Schröder and Wolfgang Nebel. Behavioral model for cloud aware load and power

management. In Proc. of HotTopiCS ’13, 2013 international workshop on Hot topics in

cloud services, pages 19–26. ACM, May 2013.

[69] Mehdi Sheikhalishahi, Richard M. Wallace, Lucio Grandinetti, José Luis Vazquez-Poletti,

and Francesca Guerriero. A multi-capacity queuing mechanism in multi-dimensional

resource scheduling. In Florin Pop and Maria Potop-Butucaru, editors, Adaptive Resource

Management and Scheduling for Cloud Computing, Lecture Notes in Computer Science,

pages 9–25. Springer International Publishing, January 2014.

[70] Frederico Alvares de Oliveira, Jr. and Thomas Ledoux. Self-management of cloud appli-

cations and infrastructure for energy optimization. SIGOPS Oper. Syst. Rev., 46(2):10–18,

July 2012.

[71] F.A. de Oliveira, T. Ledoux, and R. Sharrock. A framework for the coordination of multiple

autonomic managers in cloud environments. In 2013 IEEE 7th International Conference

on Self-Adaptive and Self-Organizing Systems (SASO), pages 179–188, September 2013.

[72] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling appli-

cations in the cloud. SIGCOMM Comput. Commun. Rev., 41(1):45–52, January 2011.

[73] Roberto Morabito. Power consumption of virtualization technologies: an empirical

investigation. In IEEE/ACM UCC 2015 (SD3C Workshop), 2015.

[74] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance

comparison of virtual machines and linux containers. Technical report, IBM Research

Division, 2014.

[75] Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar Buyya.

A framework and algorithm for energy efficient container consolidation in cloud data

centers. Proceedings of the 11th IEEE International Conference on Green Computing and

Communications (GreenCom 2015, IEEE CS Press, USA), 2015.

[76] Frank Bellosa. The benefits of event: Driven energy accounting in power-sensitive

systems. In Proceedings of the 9th Workshop on ACM SIGOPS European Workshop: Beyond

the PC: New Challenges for the Operating System, EW 9, pages 37–42, New York, NY, USA,

2000. ACM.

116

Bibliography

[77] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,

Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library

operating systems for the cloud. In Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’13, pages 461–472, New York, NY, USA, 2013. ACM.

[78] Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services architecture. Interna-

tional Journal of Open Information Technologies, 2014.

[79] Nosayba El-Sayed, Ioan A. Stefanovici, George Amvrosiadis, Andy A. Hwang, and Bianca

Schroeder. Temperature management in data centers: Why some (might) like it hot. In

Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pages 163–174,

New York, NY, USA, 2012. ACM.

[80] Muhammad Tayyab Chaudhry, Teck Chaw Ling, Atif Manzoor, Syed Asad Hussain, and

Jongwon Kim. Thermal-aware scheduling in green data centers. ACM Comput. Surv.,

47(3):39:1–39:48, February 2015.

117

	Acknowledgements
	Abstract
	Publications
	List of figures
	List of tables
	Introduction
	IaaS optimization
	PaaS optimization
	Application optimization
	Thesis organization

	Research problem and objectives
	Research problem
	Objectives
	Objective 1: save energy
	Objective 2: increase the usage of renewable energies

	Methodology
	Research models and algorithms
	Requirement elicitation
	Architecture
	Implementation
	Evaluation

	Contributions
	Plug4Green contributions
	EASC contributions

	I Part one: Use less energy
	Heuristics for virtual machine consolidation
	Introduction
	Related works
	Problem formulation
	Single Allocation algorithm
	Global Optimisation algorithm
	Evaluation
	Simulation scenario
	Numerical results
	Performance comparison

	Conclusion

	Plug4Green, an energy-aware VM placement framework
	Introduction
	Related Work
	Extensible and flexible frameworks
	Server power models

	Design
	Architecture
	Constraints

	Implementation
	The constraint programming family
	The Plug4Green model
	From SLA to constraints
	Optimisation objectives
	Reducing the solving duration

	Framework Evaluation
	Extensibility of Plug4Green
	Experiments on Cloud Testbed
	Scalability of Plug4Green

	Conclusion

	II Part two: Use better energies
	The EASC, an energy adaptive software controller
	Introduction
	Related work
	Energy Aware Software Controller
	Overview and context
	Architecture

	EASC instantiations
	EASC for task oriented applications
	EASC for service oriented applications

	Experimentations and evaluation
	Trento trial
	Milan trial

	Conclusion and Future Work

	Energy optimizations within the PaaS and IaaS paradigms
	Introduction
	Related Work
	IaaS/PaaS coordination
	PaaS and containers energy management

	PaaS architecture
	Overview and context
	Architecture & implementation

	PaaS energy model
	Evaluation of the power consumed by the applications
	Prediction of the power of an application scaling up/down

	Experimentations and evaluation
	Hardware infrastructure
	Cloud infrastructure and technologies
	Application scenario
	Energy mix
	Evaluation
	Scaling process analysis

	Conclusion and Future Work

	Conclusions and future directions
	Conclusions
	Discussion
	Heuristics vs meta-heuristics
	Analytical power models vs black-box power models
	Technology transfer
	Renewable energies adoption

	Future research directions
	Usage of energy accumulators in DCs
	Energy management with Unikernels
	Warm data centres
	Service migrations & edge computing

	Implementation of the classical VM packing problem with SMT/Haskell
	Bibliography

