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SUMMARY

Water resources availability and its variability is one of the most pressing global problems.
Hydrological models are useful to understand the water balance of a basin, providing in-
formation for water resource forecast, assessment, and management. The effectiveness of
the models in estimating the freshwater space-time availability and variability, however,
depends on concurrent and explicitly modeling of all water budget components instead of
a single component estimation and optimization. The whole water budget modelling at
basin scale requires a combined solution from hydrological and spatial information tools,
in-situ and remote sensing data. The present dissertation describes an effort to improve
estimation of each water budget component, and water budget closure at various spatial
and temporal scales, by combining JGrass-NewAge model system, GIS spatial toolbox,
in-situ and remote sensing data.

JGrass-NewAge is a system which deploys modern informatics to facilitate models
maintainability and reproducible research. It integrates advanced GIS features and the
Object Modelling System version 3 infrastructures, which allow for a component-based
modelling experience. This means that JGrass-NewAGE is not actually a model, but a
set of elements (the components) that can be combined just before runtime to produce
various modelling solutions. Topics like calibration of processes, the interpolation forcing
and the assessment of forecasting errors can therefore be faced with consistent and solid
approaches. In this context also the use of some remote sensing resources can be inserted
appropriately and with new techniques. For all the analysis, two significantly different
basins, in terms of size and hydrological processes, are considered as case studies. These
are Posina river basin in northeast Italy (small size basin) and Upper Blue Nile basin
(large size basin) are used as case study.

The uDig Spatial Toolbox (uST) GIS infrastructure that is used for generating the
hydromorphological parameters is described in the second chapter. A large number of
tools are included in uST for terrain analysis, river network delineation, and basin
topology characterization. In addition, the geomorphological settings necessary to run
JGrass-NewAGE are shown.

The third chapter studies the effect of spatial discretization and the hillslope size
on basin responses. The possible epistemic uncertainty exerted by the use of subbasin
spatial discretization of topographic information in the semi-distributed hydrological
modelling has been studied. The use of different spatial representation in hydrological
modelling context has been also studied by comparing JGrass-NewAGE with a model
configuration called PeakFlow. The latter is an implementation of the geomorphological
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unit hydrograph based on the width function. The experiment indicates that the Peak-
Flow model, with a more accurate spatial representation, reproduce the storm events
slightly better than the JGrass-NewAGE model.

In the fourth chapter, the thesis set-up JGrass-Newage modelling solution for the
estimation of hydrological modelling inputs (rainfall, snow, temperature data) and esti-
mates them, as well as with their errors. Regards to the meteorological forcings (mainly
temperature and precipitation), in Posina river basin where there are relatively dense
meteorological stations, the effects of different interpolation schemes were evaluated.
Since the hydrological processes from rainfall is different from snowfall, a new method
of separating rainfall and snowfall was introduced using MODIS imagery data.

In the fifth chapter, JGrass-NewAGE was used to estimate the whole set of water
balance components. For evapotranspiration (ET) estimation, the Priestley-Taylor com-
ponent of JGrass-NewAGE is used. In order to calibrate its parameter a new method
based on the water budget was implemented. This method uses two different hypothesis
on available data (budget stationarity "Budyko hypothesis", and local proportionality of
actual evapotranspiration to soil moisture availability). Finally the spatial and temporal
dynamics of water budget closure of Posina river basin is presented.

The sixth chapter concerns about the inputs data, particularly precipitation, for
water balance modeling in a region where ground-based gauge data are scarce. Five high-
resolution satellite rainfall estimation (SRE) products were compared and analysed using
the available rain gauge. The basin rainfall is investigated systematically, and it was
found that, at some locations, the difference in mean annual rainfall estimates between
these SREs very high. In addition to the identification of the best performing products,
the chapter shows that a simple empirical cumulative distribution (ecdf) mapping bias
correction method can provide a means to improve the rainfall estimation of all SREs,
and the highest improvement is obtained for CMORPH.

In the seventh chapter, using the capability of JGrass-NewAGE components and
different remote sensing data, the spatio-temporal water budget of Upper Blue Nile basin
is simulated. The water budget components (rainfall, discharge evapotranspiration, and
storage) were analyzed for about 16 years at daily time step using the modeling solution
and remote sensing data set. For the verification of the approaches followed, wide ranges
of remote sensing data (MODIS ET product MOD16, GRACE, and EUMETSAT CM SAF
cloud fractional cover) are used.
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INTRODUCTION

1.1 Introduction

Water is essential for survival of life on earth, and is also the major determining factor

for society economic growth, health, quality of life. Nevertheless, globally, it is under

unprecedented pressure. The demands for freshwater resource are increasing due to

growing requirement for agriculture, industry and increasing population growth. How-

ever, its availability is hampered by many recent problem such as climate and land

use change, water pollution and economic growth. Besides, the competition in water

use by different economic sectors (i.e. for drinking, agriculture, hydropower, domestic,

industry) and ecosystems escalates the water scarcity (Jury and Vaux, 2005). Water

shortage is not the only problem, but also the variability of the hydrological cycle affects

the society. Countries with high hydroclimatic variability would require huge investment

on infrastructures and strong water institutions. The latter case is true particularly in

developing countries where majority of the society depends on agriculture.

To cope up with freshwater problems, Hall et al. (2014) identified three important

elements: (1) institutions, legal systems and organizations that can effectively govern

and plan the water resources (Pahl-Wostl, 2007); (2) infrastructures that can be used for

water storage (dam, water transfer, and levees), desalination technology, and other flood

reduction structures (Gleick, 2003); and (3) water resource information that is essential

for operating institutions and infrastructure. In fact, countries level of economic growth

can be described (Hall et al., 2014) (figure1.1) based on the interlink between institutional
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capacity and the nature of hydrological variability,.

Figure 1.1: The interlink between hydrological variability; investment in infrastructure
and institutional capacity; and the economic growth (Hall et al., 2014)

On the contrary to the fact that it is a key for water resource management and

governance, information on spatial and temporal domain of hydrological cycle is usually

scarce (Buytaert et al., 2014; Hannah et al., 2011). Instead, effective managment requires

scientifically rigorous evidence of each water budget component.

Since the first formulations of rational method in 1850 (Mulvany, 1850), many hy-

drological models has been developed to understand and/or provide information (data

and knowledge) on different water cycle components. Historical evolution and thorough

review of many hydrological models and their applications can be refereed in Todini

(2007); Davison and van der Kamp (2008); Praskievicz and Chang (2009); Moradkhani

and Sorooshian (2008). Traditionally, most hydrological modeling has been rather limited

to the understanding (or estimation) of a particular process (flux) at a particular point.

For instance, in the last decades, rainfall-runoff modeling has been the main modeling

exercise, in which case, most commonly the objective has been the estimation of peak

discharges, or discharge hydrograph, at basin outlet, without a clear understanding of

the internal processes. In the recent years, however, tremendous effort has been ad-

vancing the representations and estimations of physical processes and fluxes using fully
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distributed, physically based models. Due to their data demanding and computationally

expensive nature their application were rather limited to small and experimental basin.

Semi-distributed models are in the middle of simple rainfall-runoff lumped model-

ing and fully distributed physically based models. This group of models are better in

combining the advantage of a less computational demand, and the ability to explicit

represent the major hydrological fluxes that are of interest for water resources manage-

ment. Notwithstanding the availability of myriads of hydrological models, basin water

budget components such as evapotranspiration and water storage are rarely character-

ized and analyzed even if the estimation of all the components at various temporal and

spatial scale is the modern day societal demand. For this reason, for instance, the EU

Water Framework Directive endorsed and promoted models that cover entire fresh water

cycle (Højberg et al., 2013).

1.2 Challenges in basin water resources modelling

In regards to the societal needs and the hydrological scientific community future

goals, Wood et al. (2011) identified six major challenges that we re-interpreted here

below from our experience.

The quantification of spatially and temporally continuous water fluxes and
total water availability at various scales is the main (grand) challenge of modelling.

All the water fluxes (precipitation, evapotranspiration, discharge) and the total water

storage of a basin are equally important factors determining the water availability. The

challenge comes from the data sets, tools, and approaches used to estimate the water

budget and its closures (Wood et al., 2012). In addition to the procedures and methods, its

purpose i.e. the provision of reasonable accurate hydrological information for operational

purposes such as agriculture and water resources infrastructure (irrigation, hydropower

dams etc), is real challenge of hydrological science.

In practice, tackling this grand challenge and improve the representations of water

resources have many problems. Effective use of different data sources; modeling frame-

works and modeling solutions; and spatial data analysis and visualization tools have to

be combined. Specifically, the challenges of water budget modelling can be outlined as

follows:

Challenge 1: The use of efficient and innovative GIS tools to generate hydrogeomr-

phological parameters that can be used in hydrological modelling. Hydrological models

are based on highly spatially variable information, and the use of efficient GIS tools is
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necessary. While there has been many GIS tools available, the challenge is to find one

that is suited and based on strong dedicated functionalities that can be used to drive

hydrological models (Sui and Maggio, 1999).

Challenge 2: The second challenge is how to better estimate and predict precipi-

tation and the other important auxiliary meteorological data required by hydrological

applications. Capturing the space-time heterogeneity of precipitation (and other auxiliary

meteorological forcings) for accurate water resource modelling, has always been at the

center of hydrological research, and still is a very important open problem (Nicótina

et al., 2008). The efforts to improve this challenge goes in two directions. The first one

is efficient use of available data, when they exist, by using sophisticated tools for spa-

tial information generations. The other challenge (Challenge 3) is the separation of

precipitation into snowfall and rainfall.

Challenge 4: The modeling and optimization in hydrological literature has been

highly tailored to discharge forecasting. The estimation of the whole water budget at

various scale with reasonable performances for each of the hydrological cycle components

is a problem of different complexity.

Challenge 5 is the efficient utilization of satellite data in regions where data are

scarce. In spite of its recent advancement, satellite data has many problems and that

need to be addressed properly before use. Comparison between the available satellite

data sets and ground measurements needs to be applied using different error and bias

reduction strategies.

Thus, (Challenge 6) is the optimal combination of different remote sensing data, not

only rainfall data, ground based measurements, statistical techniques and hydrological

models to estimate and forecast water resources at any location of the basin.

The contribution of this research is to address all the above-mentioned challenges of

basin hydrological modelling, estimate the water budget at various spatial and temporal

scales, and thereby provide a methodological framework to advance the hydrological

forecasting.

1.3 Objectives of this study

In order to achieve the above goals, the specific objectives addressed are to:

• Describe the GIS tools and algorithms that are useful to provide topographic data

for hydrological modeling inputs;
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• Examine the effects of topographic descretization on basin hydrological response;

• Obtain improved accuracy of water budget inputs and other meteorological forcing

estimates from in situ observation;

• Obtain an improve precipitation estimates from remote sensing products in areas

where in situ observations are scarce;

• Improve methods to estimate discharge and evapotranspiration fluxes.

• Set-up standardized working framework for water budget closure for basins of

various sizes (from ten to hundreds thousand square kilomtres) by combining

different components of the JGrass-NewAge system and remote sensing data;

• Estimate water budget closure of Posina river basin and Upper Blue Nile river

basin at high temporal and spatial scale.

1.4 Organization of the thesis

The thesis is organized based on the logical flows of challenges raised in section 1.2.

Chapter two is about a specialized set of GIS tools that are useful to generate spatial

the hydro-geomorphological parameters that are subsequently used in the hydrological

modeling. In this chapter the capability of JGrasstools are discussed.The third chapter

is an extension of the first chapter, and is more specialized to the geomorphological

characterization of semi-distributed model in general and JGrass-NewAGE in particular.

The chapter aims to examine the effects of topographic discretization on hydrological

modeling. The fourth chapter is about how to approach (challenge 2 and 3) basin water

budget estimation problems, i.e. estimation of spatio-temporal water budget modeling

inputs (rainfall, snow, temperature data), as well as their errors. The fifth chapter is

extension of the fourth chapter (challenge 4), and aims to solve the water budget at small

scale using the input data modeled in chapter four.

Chapter six uses a different approaches for estimating the precipitation in area

where in-situ observations are scarce (challenge 5). In this chapter different satellite

rainfall products have been compared and the performances of a bias correction method

is evaluated. In chapter seven, is shown an effort to model a large-scale basin using

JGrass-NewAGE capability and remote sensing data sets (challenge 6). The general

conclusion, chapter eight, is presented to draw the overall summary of the thesis and try

to establish the significance of the work.
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CHAPTER 1. INTRODUCTION

Each of the chapters is designed to stand alone, as they go from introduction to the

methods followed, and then to the results and conclusion of the chapter. So, readers are

free to select and read a particular chapter of interest.
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2
THE UDIG SPATIAL TOOLBOX FOR

HYDRO-GEOMORPHIC ANALYSIS *

This chapter focuses on the use and functionality of uDig GIS Spatial Toolbox. Obvi-

ously, GIS underpins the development of distributed hydrological models. It supports

hydrological modeling in preprocessing input data, facilitate (or support) modelling and

analysis and postprocessing the output data. The Spatial Toolbox of uDig GIS is a spe-

cialized toolset for topographical analysis, geomorphometry and hydrology. The chapter

describe the advantages of uDig GIS Spatial toolbox over the other several commercial

GIS software packages, and explain the algorithms of some of hydrogeomorphological

parameters that can be used in distributed hydrological models.

2.1 Introduction

Since efforts in the late 1980s (Bras et al., 1988.; Band, 1986, 1993; Moore et al., 1991)

much progress has been made in extending terrain modelling and implementing the

mathematical findings of geomorphometry (Evans et al., 2003, e.g.) into usable tools (e.g.

Wilson and Gallant, 2000; Pike, 2002; Rigon R and A, 2006) . Furthermore, the avail-

ability of Digital Elevation Models (DEMs) has promoted the automatic derivation of

river basin features by researchers and practitioners in hydrology and geomorphology.

*This chapter is based on "Abera, W., Antonello, A., Franceschi, S., Formetta, G., Rigon, R., 2014.
The uDig Spatial Toolbox for hydro-geomorphic analysis, in: Clarke and Nield (eds.) geomorphological
techniques (online edition) Edition. British Society for Geomorphology, London, UK."
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Given that the tools available were sometimes prohibitively expensive, some researchers

provided their tools as a free product (e.g. Lindsay, 2005; Wood, 2009), but, with few

exceptions (e.g. Garbrecht and Martz, 1997; Mitasova and Neteler, 2004), and the suite

Sextante (http://www.sextantegis.com/docs.html), they provided just the executable of

their code, and did not disclose the source code. Since then, with the objective to offer open

source alternatives for terrain analysis, various software has been developed. LandSerf

is an open source tool designed to provide high quality geomorphological visualization

and analysis (Wood, 2009), which includes specific tools for fractal analyses of landscape

surfaces. Whitebox Geospatial Analysis Tools, formerly known as TAS, was developed

with the objective of providing free and improved visualizations and spatial analyses

in GIS (Lindsay, 2005). TauDEM (Terrain Analysis Using Digital Elevation Models)

derives from decades of theoretical and applicative work in hydrologic DEM analysis

and watershed delineation by Tarboton (e.g. Tarboton, 1997). GRASS GIS is for many

purposes similar to the uDig tools presented in this chapter (e.g. Jasiewicz and Metz,

2011). GeoNet derives from recent research by Passalacqua and coworkers on filtering

landscape geometries with wavelet tools (e.g. Lashermes and Foufoula-Georgiou, 2007),

and on channel initiation (Passalacqua et al., 2010b,a). The uDig (User-friendly Desktop

Internet GIS) Spatial toolbox merges the visualization and spatial analysis capabilities

commonly found in raster GIS packages with an extensive list of sub-programs specifi-

cally designed for research in hydrology and geomorphology. In comparison to many of

the other toolkits mentioned, the Spatial Toolbox is a real GIS toolkit (like the one in

GRASS) with the advantages of being able to access geographical databases, transform

and treat several common geographical data formats, handle and conjointly use vectorial

and raster data, and generate the most common data formats in output. Additionally,

while most users will find the sole availability of executable code satisfactory, only the

full availability of source code internals provides researchers with complete control

over the final results of their analyses. For this reasons, the uDig Spatial Toolbox was

designed to provide a userfriendly, open source, well-documented, new generation, GIS

for specific applications in hydrology and geomorphology, but also effective for more

generic environmental applications. For historical reasons, the tools in the uDig Spa-

tial Toolbox are also called JGrasstools. They are organized into four toolboxes: Raster

processing (RP); Vector processing (VP); HortonMachine (HM); and Others. Most of

the geomorphometry analysis tools are in the HortonMachine toolbox. This chapter

will concentrate on those functionalities which are useful to geomorphological analyses

contained in the HortonMachine toolbox, but will also touch on those command options
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that can produce vectorial features of geomorphological entities, without going into a

detailed description. The Raster processing toolbox has basic tools for raster corrections

and operations (that work through the Map Calculator in ArcGIS), whereas the Horton-

Machine has functionality that ranges from standard analysis of DEMs (such as slope,

aspect, curvature) to more specific hydro-geomorphological modeling solutions, which are

explained under each category. Raster processing and HortonMachine have some tools

which output vectorial features, the Vector Processing toolbox provides many tools for

vectorial hydro-geomorphological analysis. Table 2.1 presents the general functionalities

of the four toolboxes.

Table 2.1: The list of uDig spatial toolboxes and summary of their general functionalities

Toolbox Functionalities
Raster processing Raster data correction and calculations
Vector processing Wide range of Vector data analyses such as vectorizer,

buffer zone, line and polygon topological analyses etc.
HortonMachine From simple digital raster terrain analyses to more ad-

vanced hydro-geomorphological analyses
Others Design of water supply and sewer systems for urban

environments, and other tools

In the next sections, some selected raster processing and HortonMachine tools are

described in detail. In showcasing the virtues of the uDig Spatial Toolbox, the Posina

River Basin has been selected as a case study to illustrate the application of some tools.

The Posina River Basin is located in the north-western part of the Pre-Alps of Vicenza,

between the Astico Valley and Monte Pasubio. The surface area of the basin at Stancari

is 116 km2. Geomorphologically, the basin shape is roughly circular and enclosed by a

series of mountains with elevations reaching 2000 m and above (Borga et al., 2000). The

location and associated DEM of the Posina River Basin are shown in figure 2.1.

2.2 Raster Processing

The Raster Processing toolbox contains a set of tools for the preparation of topographic

data for hydro-geomorphological applications. Figure 2.2 shows the typical appearance

of the uDig Spatial Toolbox. When the Spatial Toolbox is open, for any tool, there are

three tabs that serve to input and the output variables. The third tab contains the help

associated with the selected the tool, with a short explanation of what the tool does.
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Figure 2.1: The location and the DEM of Posina river basin, the case study

Figure 2.2: uDig GIS interface with spatial toolbox overlay and the three tabs: inputs,
outputs and descriptions tabs at the bottom of the toolbox.
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Raster processing toolbox contains tools for the quick manipulation of raster maps (the

relevant tools are listed in table 2.2).

There are about 30 tools under the RP toolbox that can be implemented. However,

there is not the scope to explain all of them here, therefore a little more detail will be

provided about a selection of the more interesting tools within the RP toolbox. Among the

list of tools presented in table 2.2, a very useful one for advanced raster map manipulation

is the raster calculator (MapCalc), which allows complex calculations involving numerical

and logical functions. With Mapcalc one can perform the most common mathematical

operation on a map, modify maps values, combine maps, multiply, divide one map

by another map (i.e. the values contained in one map for the corresponding values

of another map), select part of a map, and so on. Ranglookup, Rastercorrector, and

Rasterconverter provide summary statistics of raster maps. The Rangelookup tool is

particularly important as it identifies the raster data included between user-defined

range values. RasterSummary tool is useful as it provides basic summary statistics (such

as the minimum, maximum, mean, standard deviation, histogram, and the NaN value)

of the raster map.

Table 2.2: Some of the tools available in the Raster Processing toolbox of uDig.

Raster Processing Tools Functionalities
BobTheBuilder Builds human artifacts (such as dams) on a raster map
CutOut Raster masking and cutout with some threshold
KernelDensity Estimates the kernel density
MapCalc Performs map algebra on raster map
Mosaic ImageMosaicCreator Patches rasters and creates mosaics of shapefiles for

images
PointRasterizer and LineRasterizer Rasterizes vectorial point and line features respectively
CannyEdgedetector Performs edge detection operations
Profile Creates profiles over raster maps
RangeLookUp Reclassifies and assigns values of maps for a given

ranges of raster values
RasterConverter Converts rasters from one format to another
RasterCorrector Corrects some raster values
RasterDiff Calculates the difference between two rasters
RasterReprojector Re-projects maps
RasterResolutionResampler Resamples the raster map coverage
RasterSummary Calculates the summary statistics of a raster map
RasterVectorIntersector Analyzes raster maps within a polygon vector (intersec-

tion)

A group of tools for rasterizing vector data includes BobTheBuilder, PointVector-
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izer and LineVectorizer. BobTheBuilder rasterizes human artifacts, such as dams and

buildings, which could be useful to include in the raster maps. PointVectorizer and

LineVectorizer rasterize point and line features, such as measurement stations and river

channels respectively.

Finally, SurfaceInterpolator is useful for interpolating landscape data (such as eleva-

tion and temperature) from point measurement to the whole study area. Two surface

interpolation algorithms are incorporated in this tool: the Thin Plate Spline (TPS) In-

terpolator and the Inverse Weight Distance (IWD) Interpolator (e.g. Goovaerts, 2000).

These methods can be applied to create Digital Terrain Models (DTM) from a set of GPS

points or digitized maps, as well as models of other continuous environmental variables,

for instance, surface temperature.

2.3 HortonMachine Functionality in
Geomorphometry

The HortonMachine toolbox is organized into seven broad categories of commands: DEM

manipulation; Geomorphology indices; Network related analysis; Hydrogeomorphology

model tools; Basin related tools; Hillslope related attribute tools; and spatial statistics

tools. Each of these will now be outlined in turn, and tables 2.3 and 2.3 present the

selection of tools useful for hydrogeomorphological applications.

2.3.1 DEM manipulation toolbox

The DEM manipulation tools contain subprograms used for preparing DEMs for analysis.

These subprograms include routines to remove flats, spikes, and depressions from DEMs

(pitfiller), to extract streams (ExtractNetwork), to extract subbasins (ExtractBasin,

SplitSubbasins), and to find the basin outlets (Wateroutlet). Depression filling is perhaps

the most widely implemented algorithm for depression removal and is found in all the

terrain analysis tools (e.g. TauDEM - Tarboton (1997); Rivix - Peckham (2008); TAS

- Lindsay (2005); GRASS - Jasiewicz and Metz (2011)). JGrasstools uses the algorithm

presented by Tarboton et al. (1991).
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Table 2.3: Some of the tools for DEM manipulations, geomorphology, hydro-
geomorphology and statistics available in the HortonMachine toolbox.

HortonMachine Tools Functionalities
1. DEM Manipulations (e.g. Moore et al., 1991; Palacios-Velez and Cuevas-

Renaud, 1986; Rigon R, 2006)
ExtractBasin Extracts a basin by using the flow direction map
Markoutlets Marks the outlets of a basin on the drainage direction

map
Pitfiller Fills the depression points of the DEM
SplitSubbasins Labels the sub-basins of a basin using stream ordering
Wateroutlet Extracts the watershed for a defined outlet
2. Geomorphology tools (e.g. Orlandini et al., 2003; Tarboton, 1997; Mitasova

and Neteler, 2004; Moore et al., 1991; Garbrecht and
Martz, 1997).

Aspect, slope, Gradient,
curvature Calculate aspect, slope, gradient and curvature type of

the map respectively
FlowDirections, DrainDir,
LeastCostFlowDirections Calculate the D8 method drainage direction, drainage

directions minimizing the deviation from the real flow,
and least cost method drainage directions respectively

Tca, Gc Calculate contributing areas and topographic classes,
respectively

3. Hydro-geomorphology
Hillshade Calculates the shadows of the DEM
Skyview Calculates the skyview factor of the DEM
Insolation Estimates the amount of shortwave radiation on a sur-

face for a given of time
4. Statistics
Cb Calculates the histogram and the statistical moments of

a set of data from a map with respect to another map
SumDownStream Calculates the sum values of a map from upstream to

downstream following the flowdirections
Jami An interpolation method
Variogram Calculates the experimental semivariogram
Kriging Implements the ordinary kriging interpolation algo-

rithm
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2.3.2 Geomorphology toolbox

The Geomorphology toolbox contains tools for calculation of slopes, curvatures, drainage

directions and contributing areas, among many others. One of the simplest geomorpho-

logical attributes maps is the aspect map, a map that shows which side a slope is directed,

this can be calculated using the Aspect tool from the DEM (figure 2.3).

Terrain attributes are based on local neighbourhoods and reflect a simple application

of the differential geometry of curves on surfaces (Peckham and Gyozo, 2007). Algorithms

involving upslope or downslope calculations (i.e. those within the basic topographic

attributes and network related measures tools) rely on the steepest descent (or D8)

flow-routing algorithm (O’Callaghan and Mark, 1984) because of the need for unique,

non-diverging flowpaths. Two other algorithms involving analysis of neighbourhoods

are implemented in uDig because using the pure D8 method for the drainage direction

estimation causes deviation from the real flow direction identified by the gradients. The

first algorithm implemented according to Orlandini et al. (2003) is the D8-LAD (least

angular deviation), which minimizes the total angular deviation. The second algorithm,

D8-LTD (least transversal deviation), minimizes the total deviation length of the flow

going downstream. uDig (through the uDig Spatial toolbox) is currently the only GIS

that contains these algorithms.

A third algorithm available is the multiple flow directions algorithm, first imple-

mented by Fairfield and Leymarie (1991). This is used mainly for comparison, since this

effect is barely found in nature (e.g Orlandini et al., 2012), and D8-LAD and D8-LTD

recover very precisely the real drainage directions. Gradient calculation (Gradient, Slope)

is another standard tool present in all modern toolboxes.

The classification of topographic sites into three different classes of curvature is

another important tool (Tc, Gc). Longitudinal (or profile), normal and planar curva-

tures for each pixel are helpful to estimate the deviation of the gradient vector. Pro-

file curvature measures the topographic curvature (i.e. the gradient deviation) along

a flow line following the steepest descent path, and planform curvature measures

the curvature of contour lines on topographic maps. Detailed description of differ-

ent landform curvatures is found, for instance, in Tarolli et al. (2012). In combina-

tion with some other general tools, provided by the uDig Spatial Toolbox, these tools

can provide the information shown in figure 2.4 (see also complementary material at

http://abouthydrology.blogspot.it/2014/05/theudig- spatial-toolbox-paper.html). Figure 2.4

shows the elevation, slope and curvatures along the main stream of the Posina. Two

knickpoints are particularly evident in the elevation plot, which reflect changes of gra-
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Figure 2.3: Aspect map of the Posina river basin, with enhanced visualization using the
style editor tools in uDig GIS.

Table 2.4: Some of the tools available in the Network sub toolbox and their general
functionalities.

HortonMachine Net-
work tools

Functionalities

ExtractNetwork Extracts the raster network from DEM (Orlandini et al.,
2012; Montgomery and Dietrich, 1988, 1989)

HackLength Calculates the distance of each pixel to the divides going
upstream and along the flow directions (Rigon R, 2006)

NetDiff Calculates the difference between the value of a quantity
in two network points with different numbering

Netnumbering Assigns identification (id) numbers to the network links
NetworkAttributesBuilder Extracts the network as a shapefile and adds networks

attributes to it some (Rodriguez-Iturbe and Rinaldo,
1997; Rigon et al., 1996)

DistanceToOutlet Calculates the planar projection of the distance of each
pixel to the outlet (D’Odorico and Rigon, 2003)

NetShape2Flow Transforms the network shapefile to a flow raster map
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dient and curvature. The curvatures, in turn, are both positive starting after the first

knickpoint, as expected, and identifying the presence of convergent-convex sites typical

of a valley, and of channel geomorphology.

2.3.3 Network toolbox

The main tasks available in the Network toolbox in uDig are related to watershed ex-

traction, various basin morphometric analyses, stream network extraction and analysis.

These are presented in table 2.4. The stream network extraction tool uses three alterna-

tive approaches: total contributing area threshold; slope-area threshold; and curvature

based. The first, and most common, method of extracting a channel is by setting some

threshold on the total contributing area (Tca), representing the total area of upslope cells.

Cells with a total contributing area greater than a given threshold area are considered

to be flow channel, since Tca is considered a surrogate of discharge (O’Callaghan and

Mark, 1984).

In addition to the contributing-area threshold method, a slope-area threshold method

based on work by Montgomery and Dietrich (1992) and a curvature based stream

delineation method (Tarboton and Ames, 2001) have been implemented in the stream

network extraction tool. Furthermore, stream network analysis includes utilities to order

channel streams (using Hack and Horton- Strahler ordering schemes, e.g. Rodriguez-

Iturbe and Rinaldo (1997)). From this ordering, it is possible to derive statistics associated

to the network, to estimate Shreve’s magnitude, and to measure link-average slopes and

lengths and from them estimate, for instance, Horton laws (e.g. number and length of

channels per Horton order, bifurcation ratio, and length ratio; see Rodriguez-Iturbe and

Rinaldo (1997)).

The HackStream tool provides the channel ordering based on Hack’s stream enu-

meration (Rigon et al., 1996). In Hack’s ordering, the main channel of the network is

assigned the order 1, the channels that flow into it are assigned the order of 2, and the

branches that flow into channels of order 2 are assigned the order of 3, and so on.

The most common and popular method of channel classification is according to the

Horton-Strahler ordering scheme (Horton, 1945; Strahler, 1957), which is implemented

in the NetworkAttributesBuilder tool: the network is divided into links that connect

either two tributary junctions (internal links) or a tributary junction and a channel

source point (external links: Rigon et al. (1996)). This ordering system assigns order 1

to the source; and when two or more streams of the same order, n, meet they form a

stream of order, n+1. When two streams of different orders, n and m with n > m, meet
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Figure 2.4: The topographic parameters: (a) planar curvature, (b) profile curvature, (c)
slope and, (d) elevation, in the main stream of case study basin of Posina.
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the order of the channel they form remains with the order of the greater of the two, n.

The NetworkAttributesBuilder produces not only the raster enumeration, but also the

vectorial features of the stream ordering.

Another method for labeling channel links and associated hillslope is the so-called

Pfafstetter coding method (e.g. Verdin and Verdin (1999)). It provides the topographical

connectivity between channels and hillslopes. The technical description of the Pfafstetter

numbering schemes (PNS) as implemented in the Pfaf tool is given by Formetta et al.

(2014b). The generalization of this coding system, implemented in the uDig Spatial

Toolbox, can also take account of the presence of dams and irrigation channels. The Pfaf

tool produces a shapefile (i.e. a vectorial feature) that contains, besides the enumeration

itself (as shown in figure 2.5), the associated properties, such as the starting and ending

point of a link, the elevation drop and other properties.

Figure 2.5: The pfafstetter enumeration scheme for the Posina river basin, as imple-
mented in uDig GIS spatial toolbox for channel networks and hillslopes.

2.3.4 Hillslope toolbox

The Hillslope toolbox contents are presented in table 2.5. They include tools for the clas-

sification of hillslope points into categories derived from information about curvatures,
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tools for evaluating distances of hillslope points to streams, and tools for calculating

statistics of any quantity in a hillslope. In addition to the estimation of pixels curvature,

based on the longitudinal (profile) and transversal curvatures mentioned before, the

topographic class (Tc) tool subdivides the sites of a basin in different topographic classes.

The program has two outputs: the more detailed nine topographic classes (Parsons, 2002)

and an aggregated topographic classification with three fundamental classes. Figure 6 is

a visual comparison of an example of detailed nine and aggregated three topographic

class maps of Posina river basin.

Planar curvature represents the degree of divergence or convergence perpendicular

to the flow direction, and profile curvature shows convexity or concavity along the flow

direction. By combining these two main curvatures, the topographic class (Tc) tool

identifies 9 classes, which are three planar type sites (parallel-planar, divergent-planar

convergent-planar sites), three convex type sites (parallel-convex, divergent-convex

and convergent-convex sites), and three concave type sites (divergent-concave, parallel

concave and convergent-concave sites). These attributes can be summarized into three

fundamentals classes (concave, convex and planar sites). The graphical depiction of the

curvature classification of hillslopes is shown in figure 2.7.

Table 2.5: The list of tools in Hillslope and Basin sub toolbox and their general function-
alities.

HortonMachine Tools Functionalities
Hillslope toolbox (e.g. Parsons, 1988; Rodriguez-Iturbe and Rinaldo, 1997)
H2CA Estimates some attributes of hillslopes associated to a

common channel network.
H2cd Calculates hillslope distance from river network
Tc Subdivides hillslopes into topographic classes
Basin toolbox (e.g. Rigon et al., 2011; D’Odorico and Rigon, 2003)
BasinShape Creates sub-basin shape file following the netnumbering

tool
RescaledDistance Calculates the rescaled distance of each pixel from the

outlet
TopIndex Calculates the topographic index of each sites

In general terms, divergent-convex landforms are associated with the dominance

of hillslope processes, while convergentconcave landforms are associated with valley-

dominated erosion (e.g. Tarolli and Dalla Fontana, 2009). Mapping these divergent and

convergent sites is essential for the geomorphological and hydrological analyses of a

basin, the local divergence and convergence roughly identifying convex zones as hillslope
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Figure 2.6: Hillslope topographic classes map of the Posina river basin. The first map
(left) shows the nine hillslope classes based on topographic curvature (planar-planar
sites (10), convex-planar sites (20), concave-planar sites (30), planar-convex sites (40),
convex-convex sites (50), concaveconvex sites (60), planar-concave sites (70), convex-
concave sites (80), and concave-concave sites (90)). The second map (right) shows the
three principal topographic classes (concave sites (15), planar sites (25), and convex sites
(35)) of the basin.

Figure 2.7: The subdivision of the hillslope sites according to their curvature (after Par-
sons (1988).
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zones, the concave zones as valleys, which are subject to different processes (as also

enlighten by figure 2.4).

Other tools from this toolbox were used, for instance, to produce the calculations

in D’Odorico and Rigon (2003) to evaluate the distance of any point in a hillslope to a

channel. The hillslope to channel distance (H2cd) calculates the distance of each point

on the hillslope to the channel network following the steepest descent (see figure 2.8).

H2CA calculates the distance a drop of water released (or rained) in any point in a

hillslope takes to arrive into a channel. H2CA plus H2Cd is the total length from any

point in a basin to the basin outlet. It is useful to separate these tools so as to associate

to each of them a different residence time, as was done by Rinaldo et al. (1995).

Figure 2.8: The map of the distance of each hillslope pixel to the channel (h2cd) in the
Posina basin.

Figure 2.8 shows the distribution of distances from any point in a hillslope to channel

versus the distance of the hillslope to the outlet. The figure was obtained after a little

manipulation of the data (produced by the tool) made with R (http://www.r-project.org,

please see the complimentary material). It clearly shows that the mean hillslope lengths

of the Posina catchment are increasing downstream. The command Drainage Density

(which equals the total network length per contributing area) can be used to obtain the

homonymic quantity. Historically the two quantities, H2CA and drainage density were

thought to be inversely proportional (e.g. Rodriguez-Iturbe and Rinaldo, 1997), and the

second was often used to infer the first because easier to estimate from maps.
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Figure 2.9: The distribution of hillslope pixel distance to the outlet versus the mean
hillslope distance.

2.3.5 Basin toolbox

The Basin toolbox in the HortonMachine toolbox contains models to estimate basin wide

characteristics (shown in table 2.5). They include, among others, methods to evaluate the

width function (e.g. D’Odorico and Rigon, 2003; Rigon et al., 2011) and the rescaled width

function (RescaledDistance; Rinaldo et al. (1995)), and topographic index (TopIndex)

which is commonly used to quantify topographic control on hydrological processes which

accumulate soil moisture (Beven and Kirkby, 1979). This has been criticised as a model

for deriving maps of soil (see Barling et al. (1994); Lanni et al. (2012)), however, the

topographic index still remains a useful visualization of the process of saturation, which

can serve as a first approximation to understand which points saturate first (e.g. Crave

and Gascuel-Odoux, 1997; Hjerdt et al., 2004). The rescaled distance is the distance of

each pixel from the outlet measured along the drainage directions, weighted by the ratio

of the water velocity in channels and on the hillslope. If the ratio of velocities is taken

equal to one, the normal planar projection of the distances to outlet for any point in a

basin is obtained.
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The topographic index classifies the basin based on its ability to generate surface flow,

according to Beven and Kirkby (1979). As is known, sites with a higher topographic index

tend to become saturated before sites with a lower topographic index. The map showing

the topographic index and the rescaled distances for each pixel of the study basin is

shown in figure 2.10. BasinShape is a tool which creates feature collections of subbasins

extracted by the netnumbering tool. It is useful for extracting important information

form each sub-basin, such as area, perimeter, max elevation, minimum elevation, mean

elevation etc.

Figure 2.10: The map of the topographic index (left) and the rescaled distance (right) for
the Posina river basin.

2.3.6 Statistics toolbox

In addition to the terrain analysis functionalities described above, the spatial toolbox

also incorporates statistical tools (presented in table 2.4). Among these, there are tools

for both deterministic and geostatistic interpolation algorithms. These include Just

Another Meteo Interpolator (JAMI) and kriging interpolation tools. JAMI is a robust

approach of interpolating different meteorological data presented in Formetta (2013).

The geostatistical technique implemented in the statistical toolbox is kriging. At the

moment, the ordinary kriging algorithm (Goovaerts, 1997, 2000) is the one implemented

in the toolbox. If input data are provided as time series, the kriging runs over all the

time steps, estimating a different semivariogram model, and the parameters used for

kriging interpolation, for each time step.
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Figure 2.11: Scatter plot of measured and ordinary kriging interpolated (left: with R2

= 0.78) and JAMI interpolated (right: with R2 = 0.74) hourly temperature for one year
(1995), in one of the measurement station in Posina river basin.

Figure 2.12: The grid-based rainfall interpolation using Ordinary kriging for the Posina
basin
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The kriging tool provides both point (nonregular grid) and regular raster grid outputs.

Figure 2.11 and 2.12 are examples of grid and point interpolations obtained using expo-

nential semivariogram model fitting. Figure 2.11 is a scatter plot comparing measured

and interpolated hourly meteorological data (temperature).

2.4 Further characteristics of the Spatial Toolbox

The geomorphological tools described in the previous sections are made even more

effective by the general characteristics that the Spatial Toolbox inherits from uDig,

which are summarize briefly below.

2.4.1 Visualization

The graphical user interface (GUI) of the Spatial Toolbox allows multiple images to be

displayed simultaneously with transparency effects, facilitating the visual inspection of

multiple terrain attributes. Displayed images can also be combined with shaded-relief

images to enhance visualization of terrain. In these composite-relief models, variations

in colour correspond to the displayed attribute and tonal variations correspond to hill

shading. Vector data may be overlaid onto raster images to enhance data visualization

and interpretation. Spatial Toolbox is distributed with a standard set of colour palettes,

which have been set as the default. Nonetheless, users can eventually create custom

palettes for specific purposes using the Palette manager.

2.4.2 Importing and exporting data

DEMs are the main input data to Spatial toolbox, but the program can utilize many

other types of spatial data, including satellite imagery. Raster import / export functions

include read and write ArcView raster formats, GRASS images, Surfer grids, Autodesk

.dwg and device independent bitmaps. The program can also read all the supported

raster data included in the GDAL (http://www.gdal.org) library and the Shuttle Radar

Topography Mission (SRTM) data (http://www.ppp.org). JGrasstools in Spatial toolbox

reads and writes shapefiles, GRASS ASCII and native (supported since the GRASS 5.0)

vector file formats, and delimited XYZ vector point files. Graphical output (i.e. displayed

images with vector overlays) can be saved as MS-Windows bitmap (.wbmb), jpg, jpeg, and

Portable Network Graphics files (.png), which can be read by most graphical packages

and several wordprocessing programs.
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2.5 Concluding remarks

The uDig Spatial toolbox is a powerful, research-grade environmental modeling envi-

ronment. The main tools have been described in this chapter, however many more tools

are available, particularly an advanced Hydrological model called JGrass- NewAGE

modelling system (Formetta, 2013; Formetta et al., 2014c, 2013b, 2014d), complete

sub-models for estimating rainfall-runoff, radiation, evapotranspiration, snow water

equivalent, landslide models like SHALSTAB (Montgomery and Dietrich, 1994), and CIS-

LAM (Lanni et al., 2012), peak flow modelling (Rigon et al., 2011). Tools in JGrasstools

are ideal for both research and student instruction due to ease of use and free availability.

Therefore, we believe, the uDig Spatial toolbox is suited to be used in research and

education in physical geography, hydrology, geomorphology, climatology, environmental

science and watershed modelling.
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3
THE EFFECT OF SPATIAL DISCRETIZATION ON

HYDROLOGICAL RESPONSE, IN THE CASE OF

SEMI-DISTRIBUTED HYDROLOGICAL MODEL *

This chapter focuses on how geomorphological descretization affects basin hydrological

response. The studies elsewhere on spatial descretization and hydrological modelling

performance does not provided conclusive results. Hence, here, the emphasis is to analyze

how different level of spatially explicit representation of geomorphological information

on topographically based hydrological response (particularly rescaled distance and width

function, as used in many applications as minimalist model of basin hydrologic response).

While many topographic descriptor detailed in chapter 2 can be used to assess the effect

of geomorphology on basin response, rescaled distance and width function are used in

this study. The study results clearly shows the possible epistemic uncertainty introduced

when geomorphological information is lost due to subbasin descritization, as used in most

semi-distributed models. The analysis is supported by two model simulation experiment,

PeakFlow model which uses detail topographic information, and JGrass-NewAGE model

which uses semi-distributed (aggregated) topographic information. While impacts of

different level of spatial representation on basin hydrological response using the analysis

of width function is clearly expressed, it is unsuitable to infer this from hydrological

models which involves calibration procedure.

*This chapter is based on "Abera, W., Formetta, G., Rigon, R., The effect of spatial discretization in
Semi-distributed hydrological modelling, in preparation for Journal of Hydrological Processes"
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3.1 Introduction

Due to limiting factors of fully distributed hydrological modelling such as high compu-

tational demands, unrealistic process representation domain(i.e. grid cells), the lack of

data (Garbrecht and Martz, 2000), sometimes semi-distributed modelling approach is

preferred for water resource assessment and water simulation studies. The DEM grid

cell ignores the large scale spatial correlations structures of geomorphic features, while

subbasin approach respect large and meaningful geomorphic structures (Bogaart and

Troch, 2006). Based on the above limitation of grid scale partition and the advantage

of some level of aggregation, basin discretization into different homogeneous units is

the base for most distributed and semi-distributed hydrological models. For instance,

KINEROS (Smith et al., 1995) is based on partitions of the basin into topographical

variables in which channel link and hillslope are extracted and characterized by slope,

length and other geometry. In the case of TOPMODEL, basin topographic variables for

hydrological modelling is represented by the the so-called topographic index, λ. The

WEPP (Flanagan and Nearing, 1995), AGNPS, PRMS (Leavesley et al., 1983) assumes

detail delineation of subbasins into hillslopes using contributing area. SWAT (Neitsch

et al., 2002) uses subbasin discretization and further divide the sub-basins to the homo-

geneous units called HRUs, based on the combination of topographic elements(slope),

landuse, and soil maps. Zhang et al. (2013) summarized the effect of basin partitioning

for semi-distributed modelling purpose in three ways: the effects on the aggregation

patterns of other meterological forcing inputs; the effects on the topographic values

(slope, shape, aspect, etc) caused by the change in the subbasin shape and size; and the

effects on the river channel connectivity and subbasin size. All these affects the models

result.

In the last decade, different researchers investigated the effect of spatial discretiza-

tion on basin rainfall-runoff modelling using different level of basin partitioning (K Ajami

et al., 2004; Muleta et al., 2007; Kumar and Merwade, 2009; Ghosh and Hellweger,

2011; Tripathi et al., 2006; Jha et al., 2004; Kuo et al., 1999; Chen and Mackay, 2004;

Dehotin and Braud, 2008; Githuia and Thayalakumaranb, 2011; Berni et al., 2008).

Recently, Lobligeois et al. (2014) conducted an extensive analysis on different level of

spatial descretisation on 3620 events in 181 catchments of France. However, their result

did not show clear trend on the performances of hydrological modeling with different

spatial characterizations, and the results are inconclusive. This could be due to the effect

of calibration process. In other words, the interaction of many forcing inputs error (such
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as rainfall, evapotranspiration), lack of methods to treat all into hydrological forecast,

and complex interaction within the model structure can offset the errors. Therefore, the

structural errors of the spatial descretisation comes from all the input representation

in the modelling. As a result, the error due to partitioning of each inputs (meteorolog-

ical average, and topological average) should be treated separately and integrated in

the modelling uncertainty. Thus, we believe there is a need to clarify the impacts of

geomorphological discretisation.

The idea persuaded here is to use the topographic information itself to analyse

the errors induced by the use of different level of geomorphological based hydrological

modelling. Following the theoretical formulation by Rodríguez-Iturbe and Valdés (1979),

basin geomorphological structure as a base for hydrological response modelling has been

an active research of hydrology in the last two decades (Rodríguez-Iturbe et al., 1982;

Rinaldo et al., 1991; Snell and Sivapalan, 1994; Gupta et al., 1980; Gupta and Mesa,

1988; Marani et al., 2001). In literature, the geomorphological implication of hydrological

responses is followed two approaches (Cudennec, 2007).

The first one is based on the flow distance distribution of each grids in the DEM to

the outlet which is introduced by Kirkby (1976). This concept is formalized in the theory

of width function. Width function is an important quantifier of a basin geomorphology

and hydrology description (Di Lazzaro, 2009; Troutman and Karlinger, 1984; Veitzer

and Gupta, 2001; Moussa, 2008; Marani et al., 1994; Wang and Wang, 2002) and it is

the area of the basin with flow distance to the basin outlet. The hydrological distance

has two components (D’Odorico and Rigon, 2003), the one from each pixel to the channel

network and from the channel network to the outlet.

The second approach is based on the use of hydrological responses modelling following

the original framework of GIUHs (Rodríguez-Iturbe and Mejía, 1974). The formulations

of the geomorphological parameters for hydrological response is developed in the theory

of GIUH by the pioneering work of Rodríguez-Iturbe and Valdés (1979), and latter by

many researches (Rodríguez-Iturbe and Valdés, 1979; Rodríguez-Iturbe et al., 1982;

Rinaldo et al., 1991; Snell and Sivapalan, 1994; Gupta et al., 1980; Gupta and Mesa,

1988; Marani et al., 2001). It is revealed that hydrological responses of a basin is not

only based on signature of geomorphological structure of the channel network but also

on the hillslope length characterization (Botter and Rinaldo, 2003; Rinaldo et al., 1991,

1995; D’Odorico and Rigon, 2003; Marani et al., 2001). The work of D’Odorico and Rigon

(2003) provided framework to analyse how hillslope and channels travel time affect in

the generation of hydrological responses. Hence, the interpretation of geomorphological
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signature of water travel time to basin outlet is perceived well. The idea of GIUH is that

the holding time of non-interacting and identical rainfall injected to the basin at the

outlet is equal to probability density function (pdf) of the the holding time (Gupta et al.,

1980).

Two approaches are followed to quantify the effects of the subbasin partitioning for

hydrological response modelling purposes. In the first approach, the rescaled distance and

width function, as used in fully-distributed and semi-distributed model, are calculated

for both gird by grid partition and subbasin (or hillslope) partition.

In the case of fully-distributed hydological models, the grid by grid partition assumed

to maintained all the possible geomorphometric properties; whereas in the case of using

some level of subbasin partition as representative units, for instance, the distance of each

units (and each pixels inside) is represented by the average value. For analyzing this

effect, the basin width function is computed for full DEM, and later after geomorphologi-

cal discretization into subbsasin, the width function is recomputed for the same basin.

This changes all geomorphometries and geomorphological properties that can be used

as input in hydrological model. In addition, comparison of channel network extraction

methods were carried out in quantitative terms by computing the rescaled distance of

grid by grid and HRU partition. Hence, the difference between the fully (pixel by pixel)

and semi-distributed (hillslope, or subbasin, or HRU) width function can be argued as

the main and immediate impacts of geomorphological subbasin discretization (see section

3.2). In the second approach, in order to further investigate, two hydrological models that

are based on the two topographic representations (use of topographic information in the

model structure) are used. For this, PeakFlow model (section 3.3.1) and JGrass-NewAge

model (section 3.3.2) which uses width function instantaneous unit hydrograph (WFIUH)

and topographic information averaged at HRU units, respectively, are selected. The

description and practicality of the two hydrological models are provided in section 3.3.

The purpose of this study is, therefore, to understand the effects of basin geomorpho-

logical partitioning on hydrological responses modelling. In this research we attempt

to single out and investigate the effect of geomorphological spatial partitioning on

hydrological response. Specifically, we have three objectives: i. evaluate the effects of

HRUs descretization based on basin width function, by comparing fully-distributed and

semi-distributed topographic information; ii. investigate the effects of three types of

channel-hillslope extraction methods using rescaled width function; and iii. compare

the fully-distributed (GIUH) based and semi-distributed (aggregated at HRU) based

hydrological models.

30



3.2. THE RESCALED WIDTH FUNCTION APPROACH

The next sections describes the methods and concepts on the use of rescaled width

function and the two hydrological models used to investigate the effects of basin parti-

tioning on basin hydrological responses.

3.2 The rescaled width function approach

The relationship between basin morphology and hydrologic response with the objective

of describing the hydrological response of a basin has been a well established research

interest (Rinaldo et al., 1991; Rodríguez-Iturbe and Valdés, 1979; D’Odorico and Rigon,

2003). The spatial distribution of the flowpath of the points in a basin to the outlet is one

of the most important approaches to study hydrological response. The probability density

function of travel times, f (t), from any point in the basin to the outlet is geomorphologic

width function, W(x) (Gupta et al., 1980; Kirkby, 1976; D’Odorico and Rigon, 2003),

and analytically characterized in many researches (Rinaldo et al., 1991; D’Odorico and

Rigon, 2003; Moussa, 2008). Due to the important contribution of hillslope to the total

resident time, the proper representation of total travel time requires the estimation of

the distances of each pixels in the hillslope and in channel to the outlet (D’Odorico and

Rigon, 2003).

This approach is based on the idea that each pixel in the basin is connected to the

outlet through the flowpath distance. The flow distance is the distance for a drop of

water to flow from a particular pixel to the channel and then though the channel to

the outlet. Recognizing the processes in the hillslopes which ignored in the original

width function (Rodríguez-Iturbe and Valdés, 1979), in this study, the flow distance of

each hillslope and channel grid to the outlet is considered. The analytical approach to

formulate the distances is based on D’Odorico and Rigon (2003), where the distance is

rescaled to the different processes in the channel and hillslopes. The rescaled distance x
′

of a point to the outlet is then calculated by equation (3.1):

(3.1) x
′ = xc + rxh

where r = uc/uh, xc is the channel distance, and xh is the hillslope distance. uc and

uh are channel and hillslope velocity respectively. Assuming constant velocity at hillslope

and channel, the ratio of the velocity, uc/uh is the only parameters to estimate the

distance of each pixel to the outlet, while the two distance can be extracted from the

basin DEM analysis (D’Odorico and Rigon, 2003). To characterize the effects of subbasin
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discretization at a basin scale, the geometric analysis of rescaled distance is calculated.

Di Lazzaro (2009) and Di Piazza et al. (2011) used the spatial statistical moments of

geomorphological width function framework to characterize the hydrological response

of a basin. In this case, we used the following statistical moments of the rescaled width

function:

• The first order moments of the width function , 〈x〉,

• The second order moments, V ar(x),

• The coefficient of variance, CV (x),

• The maximum flow distance, L

Usually, the basin partition for hydrological modelling is based on some random

channel forming threshold area (AT). Then the statistical moments can be estimated by

varying threshold area and extraction procedures (methods). For instance, D’Odorico

and Rigon (2003) formulated the first order moments of the rescaled width function of

grid by grid 〈x′
g〉 as:

(3.2) 〈x′〉g = 〈xc〉+ r〈xh〉

Essentially the basin scale mean flow distance is the mean of basin channel flow distance

plus the mean of the hillslope distance weighted by the velocity ratio. Similarly, for

subbasin partitioning approach (such as hillslope, or HRU) the rescaled width function

cab be derived from averaged value at HRU and the channel distances, and it can be

proximate as:

(3.3) 〈x′〉s = 〈xc〉+ r〈x̂h〉

subtracting the subbasin mean distance from the grid mean (the mean lag between

the two descretization rescaled distance) can be estimated using:

(3.4) 〈x′〉g −〈x′〉s = r(〈xh〉−〈x̂h〉)

where 〈xc〉 and 〈xh〉 are the basin average channel and hillslope length respectively,

and x̂h is derived from the statistical average of all the HRUs (or any form of subbasin

partition) mean hillslope distance of the basin.
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(a) (b)
(c)

Figure 3.1: The sketch on the comparison of full distributed grid-by-grid DEM flowpath
(a), subbasin partition flowpath (b), and plots of derived pdf of the two width functions
(c).

The variance of the rescaled distance (Di Lazzaro et al., 2015) can be estimated using

equation ( 3.5):

(3.5) var(x
′
)= var(xc)+var(rxh)+2cov(xc, rxh)

Similar formulation on basin scale width function statistical moments can be found

in Di Lazzaro et al. (2015). The lag in the variance of the rescaled flow distance due to

the use of subbasin descritization in the case of semi-dsitributed modelling can be given

by equation ( 3.6):

(3.6) V ar(x
′
g − x

′
s)= var(rxh)+var(rx̂h)−2cov(rxh, rx̂h)

Other statistics used are the coefficient of variance, CV , and the longest distances,L.

Since CV is dimensionless, it can be compared across basin and can be used to estimate

the lag due to the use of subbasin descretization. Similarly, by normalizing the error

in V ar(.) and L to the total basin scale, these four rescaled flow distance statistical

moments can be used to characterize the errors of aggregating the DEM topographic

information into subbasin when used in semi-distributed models.

Hence, we define the width function variance ratio (WFVR) and width function

longest length ratio (WFLR) as:

(3.7) WFV R = V ar(x
′
s)

V ar(x′
g)
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(3.8) WFLR =
L(x

′
g)−L(x

′
s)

L(x′
g)

Where the WFV R and WFLR are the width function variance ratio and maximum

length ratio between the subbasin partition and grid partition. Both ratio ranges from 0

to 1, where 1 indicates there is no difference between grid and HRU partitioning moments

at basin scale, and decreases when the effects of HRU descretization increases. These

indices are useful to combine different basins to investigate the effect of descritization

on basin hydrological response, and draw some generalization (power law) regards to the

errors induced by basin partitioning.

Alternatively, both the rescaled distance and width function can be non-dimensional

by normalized to the longest distance and total area of the basin (equation 3.9).

(3.9) x∗ = x
L

and w∗ = w(x)
A

where x∗, w∗, A are the normalized rescaled distance, normalized width function,

and the total area of the basin respectively. And the normalized rescaled width function

is given by:

(3.10)
∫ 1

0
w∗(x∗)dx∗ = 1

The use of normalized width function is intended to estimate the flow distance

distribution which affects by the position of the channels and the shape of hillslopes.

The analytical simplification of the width function for both the fully distributed and

semi-distributed topographic rescaled width function can be shown in the sketch of figure

3.2.

Since the two distribution is expressed in pdf, then, the final comparison is analysed

based on well established information-theoretic framework. This is useful to quantify

the general information disorder (or loss) due to the use of subbasin (hillsope, HRU)

descretization. There are some measure of information and discrimination (distance). In

addition to statistical moments, the most popular desimilarity (similarity) index between

two pdf (ρ1,ρ2) is Jensen-shannon divergince (JSD) is computed to compare two width

function (Sánchez-Moreno et al., 2012; Lin, 1991):

JSD(ρ1,ρ2)= KLD
[
ρ1,

ρ1 +ρ2

2

]
+KLD

[
ρ2,

ρ1+ρ2

2

]
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where

(3.11) KLD(ρ1,ρ2)=∑
ρ1 log

ρ1

ρ2

where KLD is Kullback-Leibler divergence or relative entropy (KLD is short) (Kull-

back and Leibler, 1951). JSD ranges between 0 and 1, with 0 being the most similar pdf

and no information loss between the width function, and 1 being the most divergence

and no mutual information between the two width function.

3.3 Hydrological models

The analysis of rescaled distance and width function for a basin hydrological response

provide incomplete insight to the subject, because of hydrological response of a basin

involves the geomorphological and dispersion parameters. To illustrate the issue more

practically, the use of two hydrological models addressing the two spatial representa-

tion in the modelling structure (the one uses fully DEM information and another uses

subbasin information) is required to complete the analysis. In this section, we aims to

briefly describe two hydrological models used to elucidate the effects of geomorphological

partitioning. Accordingly, PeakFlow model (five parameters; Rigon et al. 2011) which uses

full topographic (DEM) information and rainfall-runoff component of JGrass-NewAge

system (five parameters; Formetta et al. 2014c) depending on subbasin averaged geomor-

phological information are used for comparison.The comparison of the width function

and the models are based on r, R2, and KGE goodness-of-fit statistics (Appendix B).

3.3.1 The PeakFLow Model

PeakFlow is a hydrological model based on the geomorphological and hydrodynamic

characteristics of a basin (Rigon et al., 2011). In PeakFlow model, the basin-scale travel

time distribution f (t), is expressed using the DEM topographic width function of study

area (Rigon et al., 2011):

(3.12) f (t)=
∫ L

0
W

′
(x

′
) f (t/x)dx

where W
′
(x

′
) is the concept of rescaled-width function as explained in the previous

sections (rescaled by the velocity in the channel (uc) and hillslope (uh) for the drainage

paths of channel network (xc) and hillslopes(xh). The f (t/x) is the probability distribution
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of travel times for the rain falling at a distance x (measured along the flow path)

from the outlet. Considering the hydrodynamic dispersion effects and diffusive-wave

approximation of the de Saint-Venant equations, the probability distribution of travel

times provided as solution of the Kolmogorov′s backward equation (Mesa and Mifflin,

1986; Rigon et al., 2011; D’Odorico and Rigon, 2003):

(3.13) f (t|x)= 1p
4πDt3

exp[− (x−ut)2

4Dt
]

Where D is the coefficient of hydrodynamic dispersion. Hence, Eq. ( 3.13) in Eq. (3.12)

gives width function based geomorphologic unit hydrograph (WFIUH). The hydrograph

is estimated according to PeakFlow is, thus, by:

(3.14) f (t)= 1p
4πDt3

∫ L

0
x
′
W

′
(x

′
)e−(x

′−uc t)
2/4Dt

dx
′

The model uses the full topographic information available from the DEM. Detail

derivation of each equation can be refereed at (Rigon et al., 2011).

3.3.2 JGrass-NewAGE Model

JGrass-NewAge model characterizes the topography by partitioning into homogeneous

units, HRUs, in which each HRU units are connected through the channel links (Formetta

et al., 2011, 2014c). The runoff production averaged at each HRU units using Hymod

model (Vrugt et al., 2002; Boyle et al., 2001; Formetta et al., 2011), then follows routing

procedures from the starting point of the link to the outlet of the HRU using non linear

variant of the Saint Venant equation integrated to each links (Bras, 1985). The runoff

production and propagation processes of JGrass-NewAGE model can be referred from

(Formetta et al., 2011, 2014c). The starting point of the link, the end point, the length

and slope of the links are the basin topographic inputs used in the model. Depends on the

aims, JGrass-NewAge model could be more or less distributed. Here, we are interested

to compare the effects of spatial descritization from the hydrological modelling point of

view. So we keep it less distributed and provide similar inputs with the PeakFLow model.

Hence, the rainfall, and evapotranspiration is the same for all the HRU units, and keep

the geomorphological information variability at HRU level, in contrast to the PeakFlow

model where the full grid DEM is used.

uDig GIS spatial toolbox (Formetta et al., 2014c), described in chapter 2, is used to pre-

pare the the digital watershed model setting for the hydrological model. Three alternative
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Figure 3.2: The location of three basins in Italy used in this study

methods of channel extraction are implemented in uDig GIS spatial toolbox (Formetta

et al., 2014c). These are threshold value on the contributing areas, threshold value on

both slope and total contributing area, and threshold value for the concave sites. Those

different channel-hillslope extraction methods produce different HRU shape and geome-

try, and affect the HRU based width function pdf. Even for a given method, the selection

of threshold area to extract channel networks affects the hillslope size, other model

input averaging and eventually the model outputs. Since it determine the input and

output of the model, the selection of threshold area should be carefully chosen (Zhang

et al., 2013). For this, we systematically increased(decreased) the threshold area for

channel extraction to decreased (increased) the hillslope area being extracted to search

for appropriate hillslope size suitable for rainfall-runoff modelling.
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3.4 Study basins and model application

The analyses described in this study is based on the application of rescaled width function

and hydrological models of hydrological response to the three basins: Posina river basin

(enclosed at Stancari), Brenta river basin (closed at Bassano del Grappa) and the Piave

river basin (closed at Montecastello). The width function analysis is based on all the three

basins. They are located in Northern mountainous part of Italy. Figure 3.2 indicates the

distribution of the three basins. Posina river basin is located in the North Eastern part

of pri-alpine mountainous parts of Veneto region. It is situated between the Adige and

Brenta valleys, has elevation range of about 1800 meters.

The Brenta river has total area of about 1640 km2 and the main river course length

is about 72km when closed at Bassano del Grappa (Nicótina et al., 2008). The rainfall

patterns of the area are quite heterogeneous, with the heaviest rainfalls occurring mainly

in the eastern part of the basin. Piave river basin also situated in North-Eastern part

of the Italian peninsula. The area of the basin is about 3460 km2. The elevation ranges

from 700 to 3160 m.a.s.l, and the mean annual precipitation is about 1500 mm and the

annual temperature is about 10oc. It is characterised by an artificial system of water

resources built between 1920 and 1960 (Nicótina et al., 2008). The rescaled distance and

width function is calculated for all the three basins in both the topographic partitioning

approaches. The differences between the two approaches is estimated using the statistical

moments of the width functions at the basin scale.

For the rainfall-runoff simulations, due to the availability of data, Posina river basin

is used. The rainfall data collected from 11 station in an around the basin is used to

estimate the mean value using kriging interpolation.

3.5 Results and discussions

3.5.1 The effects of HRU on basin hydrological response

The set of upscaling (use of different HRU size) experiments is conducted to investigate

the effects of spatial partitioning on hydrological response of the basin. Thus, starting

from the use of DEM, the three basins are partitioned progressively coarse grained i.e

using increasing threshold area (AT). The AT used ranges from 0.001% to 2% of the

basin. For instance, the experiment of width function on both grid and HRU on different

threshold area in Posina basin is shown at figure 3.3. It shows how the geomorphological

parameters change. Similarly, the comparison of normalized rescaled width function of
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Figure 3.3: Examples of how AT affects the basin rescaled width function in both
grid (fully-distributed, first column) and HRU (semi-distributed model, second column)
topographic partitioning in Posina basin.

grid by grid and HRU decretization for Brenta shows clear difference (figure 3.4). It

shows that the highest error is at longer flow distances. As expected, the increase in AT

increases the errors of the width function between the two partitioning. The effect can

be seen both on the rising and recession limb of the width function plots. Increasing the

HRU sizes, by increasing the AT , the HRU width function shifts to the right with gradual

change in its shape. The comparison at Posina shows that rescaled distances averaged at

HRU units is shorter and more narrower than the pixel based width functions. It is noted

that the shortest and longest rescaled distance of the subbasin is larger and shorter

than the shortest and longest rescaled distance of grid width function respectively (not

shown).

As indicated in equation ( 3.1), the possible effects of threshold area and HRU size

on the width function is influenced by the kinematic ratio, r. Hence, we assume three
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Figure 3.4: The comparison of grid and HRUs based normalized rescaled width function
for different normalized threshold area AT /A: 0.03% (a), 0.1% (b), 0.5% (c) and 1% (d) for
Brenta basin, for a given r = 10.

r values (r = 5, r = 10 , r = 20) to evaluate the effects on different partition, hence

rescaled width function. It strongly affects the rescaled width function and the errors

(lags) between the two descretization schemes (figure 3.5). To reduce the discontinuity in

the HRU rescaled distances, figure 3.5 is shown in cumulative distribution (cdf) of the

rescaled distances.

As shown in figure 3.5 the effects of AT is not only on the HRU width function, it

also affect the grid width function by influencing the proportion of hillslope and channel

distance. Hence, the second experiment is to investigate the effect of AT on the dynamic

errors between the two partitioning. Figure 3.6 is the moments of rescaled distance for

both grid and HRU discretization.

The effect of AT (HRU size) on hydrological response of the basin (using width

function as surrogate) can be hypothesize by deriving the errors (lags) of the HRU

width function in reference to the DEM grid by grid width function. Accordingly, we did

experiments of the rescaled width function for different HRU size level and r value, and

the error between the two approach can be shown in figure 3.6. The gray area is the

lags or errors in width function statistical moments between two width function. For
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rescaled width function of Posina basin for some selected threshold area values(AT =
100,1000,5000 grid cells). The three rows are representing the effects of three different
values of the rescaled width function parameter, r.

small threshold area, the errors between the two width function is relatively small, and

it increases with increases in AT .

The spatial moments of the width function analysed for AT . The 〈x〉 of grid and HRU

descretisation for a basin is the same, hence, the errors in 〈x〉 is almost zero. The other

three moments (V ar(x
′
), CV , and L) for all the basins for both spatial descrtization

is analysed and shown at figure 3.6. V ar(x
′
) increases when AT increases for both

approach but with different rates. Therefore, the errors in the V ar(x
′
) increases with AT ,

and also get larger for high r value of the rescaled distance function.

To compare between different basins, and generalize the effect of HRU descretisation

on topographic width function, we normalized the rescaled width function. The errors

in the spatial moments of the two discretization can be plotted in scaling power law to

characterize the general effects of subbasin on the topological hydrological response of a

basin. The power law fitting could provide the scale invariance of the errors due to the

use of different partitioning size. We have established the simple empirical equation on

the bases of observed linear relationship of those errors and lags of statistical moments
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Figure 3.6: Moments of rescaled distance of the basin as function of channel threshold
area: (a) variance of rescaled distance; (b) coefficient of variation of rescaled distance; (d)
maximum of the geomorphological distance of the basin (width function), L. The mean
difference in the resident time is very small, and not easy to recognize to differentiate
the impacts of subbasin, because the raw mean of the mean is the same as the mean
(subbasin mean). However, the use of normalized width function can clearly show the
effects of subbasin discretization at a basin, because it shows the pdf of the flow distance,
and where the flow is more distribute and less distributed.
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(WFVR, WFCVR, and lag(WFL)) with normalized threshold area, At/A in log-log plots.

(3.15) ξ=λ[
AT

A
]−α

where ξ is the error parameters (WFVR, WFCVR, and lag (WFL) ), λ and α is the two

empirical parameters of the power law. Figure 3.7 is shows the errors in spatial statistics

due to the use of HRU descrtisation as function of normalized threshold area At/A and

rescaled distance r. The WFVR decreases with normalized threshold area AT /A and

rescaled distance r (figure 3.7).

Combining all the basins, WFVR is highly explained by the normalized AT (HRU

area) with R2 = 0.84 and the other remaining factors ( 0.16) could be related to the

shape, topographic distribution and DEM resolution of the basins. Rinaldo et al. (1995)

indicates that the shape of the basin is one of the controlling factor of the width function.

To identify how those factors affecting the power law, we separated the relation to each

basin and the R2 increases to 0.93 and above. For instance, for Posina basin (circular

basin) the scaling law of the lags of the spatial moments is shown at figure 3.8. Similar

analysis of the scaling law formulation for each basin and the results are presented in

table 3.1.

In addition to the analysis on statistical moments error, the width function of both

topographic partitioning is analysed using the goodness-of-fitness (GOF) indices. This is

essentially mean that changing AT , the width function of both grid and HRU partitioning

changes and the GOF indices changes too. Looking to the trends of the GOF indices

between the grid and HRU provides insight on the effects of the assumption of HRU on

geomorphological hydrological responses of a basin. This results are shown at figure 3.9.

The KGE value indicates that up to the normalized threshold area of 0.1% of the basin

we can maintain the model structure simulation (width function) with KGE value of

0.97, while it drops fast with increasing normalized threshold area, and gets to 0.45 KGE

value with 1%. It is important to note that the pattern in KGE and R2 is the same for all

the basin with various size and shape. This can be an important suggestion to the semi-

distributed hydrological models which depend on topographic information. To maintain

the high process based flow estimation with high GOF requires the considerably high

topographic information in the model structure (normal threshold area less than 1%).

This information is important for GIUH based hydrological models which claims to be

useful in ungauged basins, for providing the epistemic uncertainty of the HRU based

operations in hydrological modelling.
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lag(WFL) ), and normalized threshold area AT

A for the three study basins combined.
Different dot color is representing different basins.

Lastly, as in the previous experiment, we use the grid by grid DEM and HRU based

width function by systematically increasing the AT , to estimate the divergence index

value (JSD) between the two distributions. The JSD index indicates that the information

loss in semi-distributed model due to the use of HRU topographic information is very

small up to 0.03% of normalized threshold area, and after 0.1% it increases quickly

and monotonically for all the three basins. For instance, with the normalized AT of 1%,

we lost 10% of the full grid by grid based width function information. In the case of

semi-distributed hydrological models, based on the KGE and JSD values, the normalized
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of the spatial moments of the two descretization in Posina river basin. Refer to table 3.1
for the regression fitting parameters.

Table 3.1: The power law fitting of the spatial moment lag (error) of HRU and grid
descretization rescaled width function. The r is the ratio of the velocity in the channel
to hillslope used to define rescaled flow distance. The lags are the errors of the spatial
moments (variance, CV, and the maximum distance L in the width function) between the
HRU and grid based width function

lag(Var) lag(CV) lag(L)

Basin r λ α R2 λ α R2 λ α R2

r=5 75.8 0.61 0.99 0.00005 0.52 0.99 204.5 0.42 0.95
Posina r=10 471.2 0.55 0.96 0.0007 0.29 0.75 903 0.37 0.82

r=20 3339 0.49 0.97 0.0036 0.29 0.91 3997 0.29 0.93
r=5 7080 0.85 0.99 0.00003 0.74 0.99 1146 0.53 0.96

Piave r=10 3746 0.78 0.99 0.0002 0.58 0.98 3220 0.48 0.95
r=20 164931 0.74 0.98 0.0012 0.38 0.93 8416 0.45 0.92
r=5 26 0.65 0.98 0.00003 0.52 0.98 1131 0.30 0.90

Brenta r=10 49.5 0.73 0.97 0.00002 0.47 0.96 407 0.52 0.94
r=20 118 0.79 0.96 0.0001 0.34 0.93 676 0.54 0.94

AT of 0.1% is recommended to maintain high GOF values and very low information loss

in the rescaled width function of the basin (KGE = 0.95, JSD = 0.03).

In addition to the HRU sizes and AT , the geometry and shapes of the HRUs affects
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function.

the rescaled width function (Rinaldo et al., 1995), and here we further investigated how

the shape of each HRU determine the width function and the geomorphological struc-

ture in the response modelling. The three alternatives of HRU discretization methods

implemented in JGrass spatial Toolbox (Formetta et al., 2014c) is investigated using

the mean routing distances versus the HRU centroids. In some semi-distributed hydro-

logical models, for instance SWAT and JGrass-NewAge, the physico-statistical values

at HRU centroids are used for further simplification to represent average process of
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47



CHAPTER 3. THE EFFECT OF SPATIAL DISCRETIZATION ON HYDROLOGICAL
RESPONSE

Table 3.2: Optimal paramater values of both models based on particle swarm calibration
procedure.

JGrass-NewAge PeakFlow

Parameters values Parameters values
Cmax 349.07 r1 19.65
Bexp 3.2 r2 117.65
α 0.127 C 0.76

Rs 0.032 D 5099
Rq 0.218 ASat 0.85

that particular HRU. Using this scheme, keeping the same number of HRU extracted,

We compared the rescaled flow distances of the HRU mean flow distance with HRU

centroids. The scaterplot is shown at figure 3.11. It shows that the constant threshold

area method has less GOF values (NSE = 0.85,R2 = 0.84) in comparison to the other

two methods (slope-area method with NSE = 0.94,R2 = 0.98, and slope-area method at

convergent site method with NSE = 0.95,R2 = 0.98). Given the geomorphological and

geometrical construction of the HRUs in the three methods, the centroid values of HRUs

in the threshold-slope area and threshold area at convergent site are more closer to HRU

mean flow distances. Hence, it is recommended that in preparing the geomorphological

information for hydrological modelling, the two latter methods are preferred in capturing

the statistical mean of the rescaled flow distances of the HRUs.

3.5.2 Models calibration and validation experiments

The hydrological modelling exercise in this section aims to investigate the role of topo-

graphic information discretezition on the basin response modelling. Keeping the same

meteorological forcing for both rainfall-runoff models, the effects of topographic infor-

mation representation on the model performance investigated. We calibrated model

parameters at some selected events, and validated for the rest of the events. The models

are calibrated on series of single event and then selects the best performing model

parameter set for optimum. Some of the selected events used for the analysis are re-

ported in table 3.3, and the corresponding simulations are also shown at figure 3.12.

Automatic particle swarm (Eberhart and Shi, 2001) procedure is used to calibrate the

model parameters. The optimized model parameters for both NewAge and PeakFlow

model are presented at figure 5.2.

Three GOF parameters are used to compare the two models (brief description on the
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Table 3.3: Some selected storm events used for validation, and the model performances
values. The hydrogrphs of the simulation is shown at figure 3.12

PeakFlow JGrass-NewAge

Event NSE KGE R2 NSE KGE R2

16-Oct-1996 0.31 0.51 0.70 0.67 0.56 0.93
18-Dec-1997 0.64 0.66 0.85 0.67 0.56 0.88
06-Oct-1998 0.66 0.81 0.75 0.75 0.70 0.89
21-Oct-1999 0.17 0.55 0.86 0.14 0.44 0.82
07-Nov-1999 0.74 0.87 0.76 0.82 0.66 0.91
02-Nov-2000 0.82 0.83 0.82 0.66 0.62 0.85
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Figure 3.12: Hourly simulation of JGrass-NewAge and PeakFlow model for six selected
events. The model performance of the two models of these events are shown at table 3.3.
The bar in each plot is the rainfall of the events.
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GOF indices are provided at appendix B). A sample of performances of the two models

are reported at table 3.3. Generally, the performance of the models are mixed: poor to

good. Inter-model comparison shows that JGrass-NewAge is better in some events (like

16-Oct-1996, and 12-Oct-2000) and PeakFlow model perform better in others (like event

02-Nov-2000). However, looking at the simulation hydrographs at figure 3.12, the model

with the full topographic information based width function (peakFlow) were able to

simulate the peak of the events better than JGrass-NewAge. However, the errors of

the peakFlow model is mainly at the recession part of the hydrograph which always

overestimate, and reduce the model performances (figure 3.12). In general, JGrass-

NewAge captures the patterns of the hydrographs, and hence the R2 is higher than the

peakFlow model.

The simulation comparison indicates that the topographic representation into the

models affects the model performances. As a premise, The PeakFlow model that uses the

full topographic information (grid based width function) does not always perform better

than the NewAge semi-distributed hydrological model.

3.6 Conclusions

In the present chapter, we analysed the effects of spatial descretization in basin response

modelling using two approaches: 1) using grid and HRU based rescaled distance and

its width function (WF), and 2) using two WFIUH based hydrological model which uses

different level of topographic information i.e. one with full topographic information (peak-

Flow), and the second one with semi-distributed information (HRU, JGrass-NewAge).

Since HRU in semi-distributed model is the representative units for all the processes,

the errors due to averaging all inputs are complex and interlinked. Hence, we need to

investigate each source of errors and uncertainty in our modelling predictions. Therefore,

the use of flow distance of the basin to the outlet could be the first errors attached in the

semi-distributed modelling efforts.

We found out that there is clear relationship between the HRU size (channel delin-

eation threshold area) and the rescaled width function errors. The smaller the HRU

size is used, as expected, the width function difference between the grid and the HRU

is small, and vice-versa. Hence, for any threshold area consideration, there is a certain

errors introduced to the modelling, and this can be incorporated in the predicted fluxes.

We forward two remarks at this point: ≤ 0.3% of the basin as minimum threshold area

to maintaining high topographic information, which keeps the sources of error from
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topographic partitioning is small; and otherwise, the topographic information error due

to reduced topographic information need to be known and communicated in GIUH based

hydrological predictions.

To finish the theoretical analysis on the effects of basin partition using the width

function, the effects of discharge prediction at the outlet of the basin using two hydro-

logical model (full topographic information and the other semi-distributed topographic

information) using some events in Posina river basin is studied. Automatic calibration is

done to fix the parameters for both models.

In general, it can be seen that the two models have small differences in performances

with good capability of capturing the pattern (or variance of the simulation) in JGrass-

NewAge and capability of simulating the peak of the hydrograph in PeakFlow. This

study also confirm that, a premise that model with detail topographic information better

estimate the peak event is not always valid.
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4
ESTIMATING WATER BUDGETS AT THE BASIN SCALE

WITH JGRASS-NEWAGE: WATER INPUTS, THEIR

VARIABILITY AND UNCERTAINTY*

This chapter describe the efforts to generate accurate spatial information of meteoro-

logical forcing from in situ observations. For a series of tasks required in basin water

budget modelling i.e. proper catchment partition, estimation of spatial field time series

meteorological forcing data, and separation of rainfall and snowfall, this study provides

sophisticated and consistent methods, and thereby set-up JGrass-NewAge model system

in Posina river basin. The use of MODIS imagery data in rainfall/snowfall separation is

effectively employed. Estimating forcing data (the input component) with appropriate

tools and methods, as pursued in this study, helps for reasonable basin scale water

budget closure.

4.1 Introduction

Estimating the terrestrial water balance at different scales is certainly an important

task of modern hydrology (e.g. Eagleson, 1994). It can be obtained by integrating the

*This chapter is based on "Wuletawu Abera, Giuseppe Formetta, Marco Borga, and Riccardo Rigon.
Estimating water budgets at the basin scale with JGrass-NewAge; part I: water inputs, their variability
and uncertainty, Submitted to HESS"
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water budget equation over an appropriate control volume, k:

(4.1)
∂Sk(t)
∂t

= Jk(t)+∑
i

Qki(t)−ETk(t)−Qk(t)

for an appropriate set of elementary control volumes connected together. In Eq.(5.1),

S [L3] represents the total water storage of the basin, J [L3 T−1], ET [L3 T−1], and Q
[L3 T−1] are precipitation, evapotranspiration, and runoff (surface and groundwater)

respectively. The Q is represent input fluxes, of the same nature of Q, coming from

adjacent control volumes.

a

b

Figure 4.1: The location of the Posina basin in the Northeast of Italy (a) and DEM elava-
tion, location of rain gauges and hydrometer stations, subbasin-channel link partitions
used for this modelling (b).

It is clear that Eq.(5.1) is governed by two types of terms, which can be easily identi-

fied as “inputs" and “outputs". The outputs are certainly evapotranspiration, ET, and

discharges, Q, including the Q is, because they come from the assembly of control volumes.

The inputs are J(t), but this term has to be split into rainfall and snowfall. Moreover,

other inputs are ancillary to the estimation of outputs, in particular temperature, T and

radiation Rn. Another input of the equation is the definition of the domain of integration

and its“granularity", i.e. its partition into elements for which a singe value of the state

variables is produced.

In this chapter we discuss the estimation of all of these input quantities, with the

scope to obtain a methodology that is generally applicable, following and expanding
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the concepts developed in the case of cryospheric processes by Garen and Marks (2005).

There are several objectives:

• Implement, assess and improve procedures for estimating spatial time series of

the necessary meteorological inputs required for spatially distributed modelling;

• Introduce a new, simplified, method for performing the separation of rainfall from

snowfall;

• Produce an estimation of errors involved in the above procedure, and eventually

study their impact on estimating the outputs;

• Exploit the JGrass-NewAGE (see below) system capabilities to automatize proce-

dures for producing spatial time series of meteorological data.

4.1.1 Literary review

Solving the water budget spatially requires a proper treatment of topographic data,

hydrological parameters (i.e. time-constant but possibly space varying characteristics)

and the creation of a time series of hydrological inputs fields.

Nowadays, topographic data means digital data. This discipline has a recent tradition,

which started in the late eighties of the last century (e.g., Band, 1986; Tarboton, 1989;

Moore, 1992), based on the use of Digital Elevation Models. It has been reviewed in

Wilson and Gallant (2000), Peckham and Gyozo (2007) and, very recently, in Passalacqua

et al. (2015), where new data retrieval techniques are also analyzed. Regarding the this

chapter, the tools adopted are those described in Abera et al. (2014) and Formetta et al.

(2014a) where further references can be found.

The model parameters, which are model‚Äôs dependent, are treated in chapter 4 and,

therefore, the topic is not discussed here too.

We briefly discuss here the problem of spatial interpolation of meteorological data,

especially of rainfall and temperature. Historically various methods have been used:

Thiessen polygons (e.g., Thiessen, 1911; WMO, 1994), Inverse distance methods (IDW)

(Ly et al., 2013), interpolation with splines (e.g., Hutchinson, 1995; Mitášová and Mitáš,

1993), Kriging (e.g., Matheron, 1981; Goovaerts, 1997) or other types of interpolation

(e.g., Robeson, 1992; Li and Heap, 2011, and references therein). When data density is

high, most methods produce similar results (Burrough and McDonnell, 2011) and some

other methods are, indeed, equivalent (e.g., Borga and Vizzaccaro, 1997). In practice,

the choice of method by scientists depends on the availability of the appropriate tools
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to perform the analysis. However, the choice of Kriging recently gained momentum,

especially because it can use auxiliary variables to help the interpolation. For instance,

the influence of other terrain-related parameters such as relief, slope and aspect was

investigated by Attorre et al. (2007). They found that universal kriging with external

drift performed as well as the best method for most of the climatic variables analyzed.

Last, but not least, Kriging implements some standard procedures to assess error of

estimates that are less obvious to obtain with other methods.

Besides, e.g. (Goovaerts, 2000; Lloyd, 2005; Basistha et al., 2008; Ly et al., 2011),

Kriging is seen to give better rainfall interpolation performances than other methods.

Notable early contributions on this topic came by Creutin and Obled (1982); Tabios and

Salas (1985); Phillips et al. (1992). Garen and Marks (2005); Tobin et al. (2011) give

detailed reviews of the procedures to follow.

In principle spatial information for rainfall can also be derived from satellite (Ward

et al., 2011; Tian et al., 2007; Kidd and Levizzani, 2011; del Jesus et al., 2015; Ge-

bremichael and Hossain, 2010). Also, information from radar can be used for this scope,

as in Borga (2002), Berne et al. (2004), Schuurmans et al. (2007), Velasco-Forero et al.

(2009) and Schiemann et al. (2011), to cite a few.

However, since there is a dense network of stations around the basin that will be

used as an example for this study, we restrict our use to ground-based data.

Concerning the temperature fields, it is a well known fact that elevation is the first

order variable explaining temperature gradients (e.g. Lookingbill and Urban, 2003;

Blandford et al., 2008; Dobrowski et al., 2009)(a decrease of about 0.6oC/100 m is

generally accepted as a mean estimate, (e.g. Jabot et al., 2012)).

Therefore Kriging techniques accounting for the temperature lapse rate also seem

appropriate for temperature interpolation (e.g. Dodson and Marks, 1997). An early paper

using external drift charging to predict air temperature and precipitation was published

by Hudson and Wackernagel (1994) and, not surprisingly,Carrera-Hernández and Gaskin

(2007) found that the use of elevation as a secondary variable improves temperature

prediction.

Although elevation is the main variation factor for air temperature, it is influenced

by other factors. Both local and regional effects exist (Courault and Monestiez, 1999).

Seguin et al. (1982) observed a temperature difference in close settings of 2 and 4oC
caused by the wet and dry areas, respectively. Proximity to the sea, topography, and the

general atmospheric circulation patterns (CPs; ?) also influence spatial variations of air

temperature. All these factors are not easy to integrate using interpolation methods, and
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will not be used in the present chapter.

One issue about which many papers dealing with precipitation in mountain areas

are reticent is the separation between rainfall and snowfall.

This partition can be accomplished by using an appropriate, limited-area, meteo-

rological model, like WRF (Dudhia et al., 2005; Caldwell et al., 2009) or ARPS (Xue

et al., 2000, 2001), whose resolution can be pushed to one kilometre and below, so as

to have appropriate spatial information usable in hydrological modelling. However, the

ability of these models to forecast in a reliable, quantitative, form is still questionable.

Other physical approaches to snowfall-rainfall separation are based on utilising the

psychometric energy balance, e.g. Steinacker (1983) and Harder and Pomeroy (2013);

Harder and Pomeroy (2014) and Ye et al. (2013) represent informative treatments and

reviews of the topic.

Most hydrological models use variations of the phase separation method proposed by

the U.S. Corps of Engineers (Army, 1956; Rohrer, 1989). Basically, this method introduces

a threshold temperature, above which precipitation is liquid, and below which it is snow.

The transition between phases can be smoothed in various ways.

In 1974, Auer Jr studied 1,000 surface weather observations to identify surface air

conditions associated with snow and rain. He concluded that when the air temperature

is 2.28oC , the probability of rain and snow are 50% each, and that 95% probability for

snow occurs at 1.18oC and for rain at 5.68oC. However, Ye et al. (2013), reports that

these temperature thresholds can vary greatly from one place to another, as confirmed

also by Kienzle (2008) studies in Canada.

For our modelling we followed the idea of Kitanidis and Bras (1980), as implemented

by Kavetski et al. (2006), which assume an S-shaped separation curve. The smoother

contains parameters that could be estimated if some snow data were available. In fact,

MODIS remote sensing platforms offer products that can be used for this scope, as will

be explained in section 3.3.

4.1.2 Chapter organization

The chapter is organized as follows: first descriptions of study area and experimental

setup are given(section 7.2); then the methodologies (section 7.3) on control volume

discretization (subsection 4.3.1), the input, J(t), estimation at each control volume, and

varieties of kriging interpolation methods are discussed (subsection 4.3.2). For the water

balance in high resolution models, snowfall needs to be approached differently than

rainfall, therefore, snowfall estimation procedures are discussed in subsection 4.3.3.
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The results of the performances of the methods, the precipitation estimates at each

control volume, and the conclusions of the study are presented in section 5.4 and 5.5

respectively.

4.2 Study area, data set, and experiment setup

The NewAge system is applied to the Posina river basin. It is a small catchment (116

km2), located in the the Alpine foothills of Veneto Region in Italy. The basin outlet is at

Stancari (figure 4.1a). Its climate is characterised as wet, with an annual precipitation

of 1645 millimeters and annual runoff of 1000 millimeters (Norbiato et al., 2008).

The basin area is covered by a DEM with a resolution of 20 x 20 metres. In the Posina

area, there are 12 meteorological stations and three discharge gauges. Generally, the

number and type of stations can be considered good for general hydrological applications.

However, all the stations lack other meteorological forcings such as solar radiation, wind

speed, relative humidity, and snow depth (or snow water equivalent). The coordinates

and elevations of the hydro-meteorological stations are reported in table 4.1. The mete-

orological stations provide hourly rainfall and temperature data, and the hydrometer

stations provide the hourly discharge data. The digital elevation map of the Posina river

basin and the distribution of weather measurement stations and hydrometers are shown

in figure 4.1b.

Precipitation and temperature data used for the study cover the period 1994 to 2012

(inclusive). Discharge data are available for all three gauge stations for the same period.

However, due to the lack of observed snow information in the basin, remote sensing data,

particularly MODIS data (Hall et al., 2006), were used for assessing the snow cover. Four

years of daily MODIS snow products (2002/2003, 2003/2004, 2004/2005, 2005/2006 of

winter seasons) are used to calibrate and validate the snow separation component. The

first three seasons are used for snow separation model parameters, while the last one

is used to evaluate the procedures. For the availability of all these data (including the

DEM) and its reproducibility (appendix F).

4.3 Methodology of inputs analysis

The following subsections provides the methods for each input term of the water balance

equation (5.1), which also correspond to the workflow in making the NewAGE systemc

operational.
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Table 4.1: List of the meteorological stations and hydrometers used for meteorological
(rainfall and temperature) spatial interpolation and rainfall-runoff model calibration
and validation analysis in the Posina river basin. The last three stations are maked with
a (∗) to indicate that these are discharge guaging stations. The areas of the basin and
subbasins draining to each hydrometer are given in brackets.

ID. City Z X Y
51 Folgaria UPO 1168 1668428 5086815
63 Lavarone UPO 1171 1674754 5089860
204 Brustol Velo d’Astico 328 1682121 5074661
206 Contr? Doppio Posina 725 1672938 5075022
208 Molini Laghi 597 1675208 5078024
210 Monte Summano 619 1687964 5069297
212 Passo Xomo Posina 1056 1674012 5071777
214 Pedescala 308 1683840 5079537
216 Valli del Pasubio 600 1672265 5069542
218 Castana Arsiero 430 1679369 5076164
201∗ Rio Freddo at Valoje (22.24km2) 390 1681507 5075248
202∗ Posina at Stancari (116.2km2) 388 1681524 5075140
203∗ Posina at Bazzoni (38.82km2) 453 1678208 5074606

Differently from other approaches (e.g. Garen and Marks (2005)), we are concerned

that even the “spatialisation” of inputs requires modeling and the determination of some

parameters. These, when necessary, are explicited and characterised with the use of the

calibration components, particularly the particle swarm algorithm (Kennedy et al., 1995;

Formetta et al., 2014c), included in the NewAGE system.

4.3.1 Watershed partition

Pertinent to our approach is the use of a coarse degree of spatial information, at the

level of the hydrologic response units (HRUs). These HRUs groups a set of hydrologically

similar points close each other, that are treated as a single unit, on the basis of math-

ematical, physical or computational arguments. In other words, even if a information

can be calculated at pixels level, for instance for exploiting the accurate knowledge of

topography, this information is subsequently coarse grained for getting single values for

any HRU. The rationale of this choice is to capture the ’meaningful’ spatial heterogeneity

in the input data and processes, similar to that adopted in other models (Lagacherie

et al., 2010; Ascough et al., 2012).
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Figure 4.2: The workflow of model set-up for NewAge-JGrass hydrological model system

More specifically, in NewAGE the basin is partitioned into hillslopes and channel

links. This partition (Formetta et al., 2011; Abera et al., 2014) is carried out according

the procedure presented in Formetta et al. (2014c). Each hillslope and link is numbered

according to the Pfafstetter scheme (Formetta et al., 2014a), which defines an identifier

for each link and hillslope, and an order to transverse them.

Eventually, this approach allows the resolution of Eq. (5.1) for any of these units

independently, from the most uphill one to the outlet. However, depending on the process,

the value of each term in the equation can depend on some sub-HRU analysis. The overall

model-setup activities required for different components of the NewAge simulation are

summarised in figure 4.2. The OMS components implemented for the delineation of the

HRUs and the extraction of topographic attributes were described in detail in Abera et al.

(2014). In this chapter, the term hillslope, HRU, and subbasin are used alternatively

for the same basin partitioning concept. A total of 42 HRUs is chosen for the basin (as

depicted in Figure 4.1b). To illustrate the variability of hydrological quantities among

HRUs, a sample of HRUs (four HRUs: Id 1, 4, 13, and 37) are systematically selected to

represent different elevation (elevation ranges from 656 m to 1616 m) and position in

the basin. Hence, further analysis and results at the subbasin scales are shown at those

HRU throughout the chapter.
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4.3.2 Meteorological Forcing Interpolation

The NewAge spatial interpolation (NewAge-SI) component takes care of spatial meteo-

rological data at a specific point or in a grid format. It can elaborate data indifferently

at hourly, daily, and monthly time steps. Here, NewAge-SI is used to interpolate meteo-

rological variables from meteorological stations to points of interest (centroids of each

HRU, or in any cell in the case of a specific grid format over the basin)

According to kriging theory, meteorological forcing measurements (rainfall and tem-

perature), zuα, are considered as a particular realization of a random variable (Zuα)

(Goovaerts, 1997; Isaaks and Srivastava, 1989). Detailed explanations and discussions

on these variants of kriging can be found, for instance, in (Germann and Joss, 2001;

Haberlandt, 2007; Hwang et al., 2012; Ly et al., 2013, 2011; Ruelland et al., 2008; Ashraf

et al., 1997; Buytaert et al., 2006), and are not described in depth here. Before any

kriging interpolation is done, an empirical semivariogram model is estimated (Cressie

and Cassie, 1993), from:

(4.2) γ(h)= 1
2N(h)

N(h)∑
α=1

(Zu −Zu+h)2

where N(h) denotes the set of pairs of observations N(h) at location u and vector h
distance apart. This empirical semivariogram may need to be fitted with the theoretical

semivariogram to estimate semivariogram model parameters (nugget, sill and range),

which are kriging model inputs. Four semivariogram models (exponential, spherical,

gaussian, and linear) have been selected and implemented in the NewAge-SI, following

(Prudhomme and Reed, 1999) arguments. Their analytical formulation is presented in

appendix A. As methods for geostatistical interpolation, ordinary kriging (OK) and

its local version, local ordinary kriging (LOK), were chosen (Goovaerts, 1997) for their

simplicity. Because many researches have found that incorporating elevation data into

the kriging interpolation improves the performances (Lloyd, 2005; Buytaert et al., 2006;

Garen et al., 1994) of their models, we also considered detrended kriging (DK) and a

local deternded kriging (LDK) (Phillips et al., 1992). This means that a linear, time-

varying relationship between elevation and rainfall data is assumed and the fitting line

is subtracted from observations. This linear model is regressed automatically by the

component at each time step. The kriging is then left to calculate the residuals of the

interpolation (e.g. Garen and Marks (2005)).

In order to assess the error of prediction of the estimated data, NewAge-SI offers

the possibility of automatically perfoming cross-validation (leaving-one-out or Jackknife-
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method; Isaaks et al., 1989), based on removing one data point at a time and performing

the interpolation for the location of the removed point using the remaining meteo-stations.

Finally, for this chapter, kriging is used to generate time series of meterological forcings

for the centroid of each HRU. These forcings, for the purposes of this study, are kept

constant over the whole HRU area.

Figure 4.3: The Spatial interpolation component of the NewAge system (SI-NewAge).
The figure shows how different components are connected together, here the variogram
(semivariogram) component solves for the spatial structure of measured data in the
form of an experimental variogram. The particle swarm optimization algorithm uses
the experimental variogram to identify the best theoretical semivariogram and optimal
parameter sets for each time step. Lastly, Kriging uses the best semivariogram model
and optimal model parameters to estimate the meteorological data at the interpolation
point or as a raster for a given basin.

In order to understand the effects of the theoretical semivariogram model on kriging

and to compare the different kriging methods performances, we applied the following pro-

cedures. Firstly, we select a single kriging type (for instance OK) and fit the experimental

semivariogram with a single theoretical semivariogram (for instance, exponential) and

estimate the best semivariogram parameters. Secondly, we perform a cross-validation for

each station, computing estimated time-series forcing values for each (removed) station.

Thirdly, measured and estimated time-series forcing values are compared with GOF

indices (appendix ??). Lastly, the GOF indices values calculated from 18 years of hourly
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forcings (rainfall and temperature) data for each station are statistically averaged for all

12 stations. This procedure is obtained with the OMS-components configuration shown

in Figure 4.3. Each of these steps is repeated for all four krigings for any of the four semi-

variogram models available (for a total of sixteen combinations analyzed). In addition,

we developed an iterative procedure that selects a couple of best fitting semivariogram

and best semivariogram parameters, time-step by time-step.

For the sake of brevity, the analysis based on automatic selection of the optimal

semivariogram model and the best semivariogram model parameters for each time-step

was done only for OK.

4.3.3 Snowfall modelling

The aggregated precipitation, J, for each HRU has to be separated into rainfall JR and

snowfall JS. This is one of the critical tasks for any snowpack simulation, and strongly

affects the result of any modelling, even if performed with more sophisticated tools,

like SNOWPACK (Lehning et al., 1999) or GEOtop 2.0 (Endrizzi et al., 2014). One

possibility is to use a micro-meteorological model, in which the separation comes about

automatically, as in WRF (Skamarock et al., 2008). However, the standard procedure in

hydrological models is to use simple mathematical expressions based on temperature (e.g.

Garen and Marks (2005)). In our case, separation is based on a threshold temperature,

TS. When the HRU temperature is less than TS, the precipitation, J, tends to be snow,

JS, otherwise it is rain, JR. Temperature, in turn is modelled as explained in section

4.3.2 above. In NewAge, a smoothing of the threshold is applied as in (Kavetski et al.,

2006; Formetta et al., 2014d):

(4.3)

{
JR =αr ∗

[
J
π

.arctan
(T−Ts

m1

)+ J
2

]
Js =αs ∗ [J− JR]

Where J[mm t−1] is measured precipitation, JR[mm t−1] is the rainfall, JS[mm

t−1] is the snowfall, Ts [oC] is the threshold temperature, and m1[−] is a parameter

controlling the degree of smoothing. αr, αs and m1[−] are dimensionless coefficients

to be calibrated. The calibration of these parameters is very problematic due to a lack

of snow data, which in the Posina basin are completely absent. In similar cases, snow

parameters (including modelling of metamorphism and runoff) are usually calibrated

using discharge measurements, e.g. Li et al. (2012); He et al. (2014). However, here

we have decided to calibrate snow on snow data and, therefore, we used MODIS snow
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imagery data (MOD10A1 and MYD10A1), which is available globally. The procedures

used are described in detail in appendix D. Both the fractional snow cover (FSc) and

albedo information were used. The first establishes, pixel by pixel, the fraction of snow

cover, the second is used for detecting when snow falls on old snow, which causes an

increase in albedo.

At the moment, a manual optimization procedure is used to determine Eq.(4.3)

parameters. The objective function used are the so called Accuracy index, AI, and

Spearman rank correlation coefficient, ρrank. The Accuracy index, AI, is given by:

(4.4) AI = Na +Nd

Na +Nb +Nc +Nd
.100

Where the terms Ni (i ∈ {a,b, c,d}) are the number of pixel combinations identified by

using the confusion matrix given in table 6.2. The optimization procedures, as outlined in

figure 4.4, maximize true positives and true negatives, while minimizing false positives

and false negatives, therefore increasing the overall accuracy. This procedure optimizes

Eq.(4.3) to estimate snowfall only at locations where MODIS (MOD10A1 and MYD10A1)

shows snow data.

Table 4.2: Confusion matrix based on the four possibile results of the snowfall Js
simulation in comparison with the MODIS snow products. The four possibilities are: true
positive (a); false positive (b); false negative (c); and true Negative(d).

MODIS:Yes MODIS:NO
SWE:Yes a b
SWE:NO c d

The binary data derived from the FSc does not show snowfall on snowfall. Hence, to

include the new snowfall events on pixels already covered with snow, we used the FSc
values (i.e new HRU area is covered by snow) and snow albedo. When associated to a

precipitation, increase in snow albedo can be interpreted as a new snowfall. Hence, snow

accumulation equation (Eq.4.3) is optimized against the FSC and the snow albedo using

the Spearman rank correlation coefficient. The Spearman rank correlation (Kottegoda

and Rosso, 1997) is used because it provides a means to quantify the monotonic relation-

ship between two variables with no frequency distribution assumption (nonparametric).

First, the values of the two variables (in this case snow albdo or FSc and Js) are ranked,

and then the correlation is computed based on the difference in the rankings as follows:
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(4.5) ρrank = 1− 6.
∑n

k=1 D2
k

n(n2 −1)

where D is the difference between the rank of the MODIS data (FSC or snow albedo)

and snowfall, Js, data at the K th pair, and n is the number of observations. The higher the

value of ρrank, the higher the correlation between Js and snow albedo. Those parameters

producing the highest ρrank are used to model the hourly time steps of snowfall for each

HRU.

The derivation of snow separation parameters for each HRU is possible, however, as

is pertinent to the overall analysis of other components of the study, single, global and

optimized values of Eq.(4.3) parameters are derived.

Figure 4.4: The Snow separation component, outlining how the MODIS snow products
are used to calibrate the spatial snow accumulation ( Eq. 4.3). The dashed line shows the
iterative (calibration) process to optimize the equation. Due to the time step differences
between MODIS and the separation model output, the manual calibration is preferred
in this case.

4.3.4 Net Radiation

Net radiation is necessary for evapotranspiration estimation and for snow modelling. It

derives from the local difference between downwelling radiation and upwelling radiation,
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Figure 4.5: The mean performance value in terms of RMSE, correlation coefficient and
mean error (from left to right respectively) of all the rainfall interpolation methods
considered for this study. The dot in the middle is the mean value, while the length of
the line represents the 95% confidence interval with respect to the mean.

and is usually subdivided into shortwave radiation and longwave radiation. Therefore,

radiation budgets can be expressed, for any point in the landscape, as:

(4.6) Rn = (1−α)Rs ↓ +L ↓ −L ↑

where Rn [J L−2 T−1] is the net radiation, α [dimensionless] is the albedo, Rs ↓ [J

L−2 T−1] is the downwelling shortwave radiation, L ↓ [J L−2 T−1] is the downwellling

longwave radiation and L ↑ [J L−2 T−1] is the upwelling longwave radiation. For details

on Rn estimation, which includes geometric and topographic corrections, and various

attenuation factors, please refer to Formetta et al. (2013b). With regards to longwave

radiation, this can be estimated by:

(4.7) L ↓= εall−sky ·σ ·T4
a

(4.8) L ↑= εs ·σ ·T4
s

where σ= 5.670 ·10−8 is the Stefan-Boltzmann constant,Ta [K] is the near-surface air

temperature, εall−sky [-] is the effective atmospheric emissivity, εs [-] is the soil emissivity
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and Ts is the surface soil temperature. According to ?, the Idso ?? model can be fruitfully

used to estimate Eq.(4.7). It consists in adopting the following form for εclear:

(4.9) εclear = 0.7+5.95 ·10−4 · e · exp(1500/Ta)

where Ta [K] is the air temperature. The paper ? also provides appropriate site-

specific values of Eq.(4.8) parameters, and corrections for the presence of clouds. All of

these estimators are implemented as OMS3 components and can be easily invoked inside

any NewAGE modelling solution. They are assumed here as acquired and not discussed

further.

4.3.5 Other meteorological fields

Other meterological data such as humidity, wind speed, and dew point, which are taken

as essential data by Garen and Marks (2005), are not estimated here. However, they

could be easily processed and spatially interpolated to the appropriate control volume

if available. Their presence or absence greatly affects the modelling methods that can

be used for estimating both snow pack evolution and evapotranspiration. For instance,

depending on the availability of data, the choice of evapotranspiration tool can switch

from the Priestley and Taylor Formula (Priestley and Taylor, 1972) to the Penman-

Monteith equation (Penman, 1948; Monteith et al., 1965) or to other models. The snow

modelling can also take on different formulations, such as the temperature-index model,

which only requires precipitation and temperature data, or the energy-index models,

which require more meteorological data inputs, such as shortwave radiation, humidity,

and wind speed (Förster et al., 2014; Formetta et al., 2014d)

4.4 Results and discussions

4.4.1 Rainfall estimation, model performances and uncertainty

The overall performance of all the rainfall interpolation algorithms illustrated previously

are depicted in figure 4.5. Both RMSE and correlation coefficient results indicate that

the LDK and LOK outperform the other two groups of krigings. The LDK and LOK

analyses are based only on the nearest five stations for each station. Both LDK and

LOK show lower RMSE and higher correlation coefficients following cross-validation

analyses (figure 4.5a). The idea that DK improves performance is not clearly visible in
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this experiment. This may be due to the small number of stations from which to draw a

trend or to a more complex variability of rainfall at this scale and location. The mean

error value results (figure 4.5c) are not clear and were found to be inconsistent with

reports from the previous two performance indicators. Though the mean error value is

small, it was noticed that the mean error difference is between the kriging methods, not

between the semivariogram fitting within a single model.

It was found (in figure 4.5) that the automatic selection of the best semivariogram

model at each time step provides the lowest RMSE value, high correlation coefficients,

and short confidence interval for both RMSE and correlation coefficients. Though the

differences between all the kriging methods are relatively small, analysis of the variance

(one-tail ANOVA gives ρ = 0.018) test shows that the mean difference between methods

is significant.
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Figure 4.6: The scatterplot of measured rainfall and normalized (relative) errors of
different kriging interpolation methods for station ID 218. The kriging percentage error
analysed for the whole dataset is calculated to be 4.5%.

To briefly describe the nature of errors in relation to rainfall intensity at the mea-

surement stations, we used the forecasting errors that can be estimated from the leave-

one-out method. Due to the different effects of high rainfall magnitude and low rainfall
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magnitude, the absolute residual analysis could not provide a clear bias of estimation.

We used the relative error (interpolated minus measured rainfall values divided by

measured rainfall values for each time step). Figure 4.6 shows that the relative residuals

distributed across zero, with a relatively higher dispersion for small values. It is also

estimated that, at a point location, the kriging estimation error (about 4.5% for non-

zero rainfall values) is comparable to the rain gauge measurement errors reported in

literature at hourly time-steps (Habib et al., 2001; Ciach, 2003). We also analysed the

performances of the four kriging models plotted against elevation, as shown in figure 4.7.

For all the kriging methods, the performances resulted lower for stations located at high

elevations. All methods are competitive across different elevations, with slightly better

behaviour from LDK and LOK in middle and higher elevation stations. Similar results

are reported in Verworn and Haberlandt (2011); Tobin et al. (2011).
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Figure 4.7: Plot of the four kriging model performances (as measured by KGE, on top,
and correlation, on the bottom) and elevations of the measurement stations.

We used kriging to estimate errors spatially (Phillips and Marks, 1996). We analyzed

multitemporal maps of kriging estimates and kriging errors for some events and obtained
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Figure 4.8: The spatial distribution of the standard error of rainfall estimate (in mm).
The plot shows the distribution of the kriging standard error across elevation. OK_SE is
the standard error for the OK estimate (R2 = 0.44), LOK_SE is the standard error for
LOK (R2 = 0.37), DK_SE is the standard error for DK (R2 = 0.44), and LDK_SE is the
standard error for LDK (R2 = 0.37). There is a clear difference between the local and
universal ordinary kriging in that the two local krigings reduce the standard error with
relation to elevation.

an inverse relationship between rainfall intensity and errors, with larger errors for lower

values of rainfall (in absolute term). As an example, the maps in figure 4.9 are shown. We

also found a slight correlation between elevation and kriging standard error, as shown

in figure 4.8 where the boxplot of the kriging standard error is reported for a time step

(2003−11−26 11 : 00).

For use in conjunction with the runoff module, we had to aggregate the rainfall

estimate at the subbasin level, by assuming the centroid as representative of the en-

tire subbasin. This operation was repeated for each time step, and shown for a time

instant in figure 4.10. The aggregation still maintains a relevant spatial difference in

rainfall distribution. The variability in cumulative rainfall between the subbasins for

the represented event is more than 70 mm, and it is evident that rainfall is higher in the
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Figure 4.9: The spatial distribution of estimated rainfall (LOK kriging), on the left, and
the kriging standard error, on the right. From top to bottom different time steps are
represented, 2003-11-26 22:00, 2003-11-27 18:00 and 2003-11-28 04:00.
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Figure 4.10: Spatial rainfall variability in an aggregated subbasin approach: (a) vari-
ability in the estimated total rainfall (the code number in the subbasin represents the
subbasin number, while the color shows the total rainfall distribution), (b) comparison of
four selected time series of subbasin rainfall estimates, and (c) further analysis on the
kriging estimation error used to estimate the confidence interval of the estimates for
some selected subbasins. The analysis is based on the Oct. 16, 1996 event.
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south-western part of the basin (figure 4.10a). Figure 4.10b shows the rainfall variability

for four selected subbasins (subbasin 1, 4, 13, 37) along a limited time-window. As a

product of the Kriging procedure, the time-varying errors in rainfall can be estimated.

Figure 4.10 shows the 95% confidence interval in grey.

4.4.2 Temperature estimation and error bounds
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Figure 4.11: The mean performance value of temperature interpolations in terms of mean
error (a), Root mean square error (b), and correlation coefficient (c) for all interpolation
methods considered for this study. The dot in the middle is the mean value, whereas the
length of the line shows the 95% confidence interval with respect to the mean.

Temperature forcing is an input for the next two components (Snow and ET) of the

water balance. Hence, it is important to examine the spatial interpolation performances.

Similarly to the rainfall interpolation comparison, the relative performances of the four

kriging models (with four semivariogram model fitting each) are compared in terms of

two error statistics (ME and RMSE) and the correlation coefficient (r). All three goodness-

of-fit indices show that (figure 4.11) LOK and LDK are performing better than OK and

DK. The ME is 0.0±1.3 and 0.1±1.4 for LDK and LOK and −0.23±1.4 and −0.24±1.3

for DK and OK respectively, indicating that the use of only nearby stations enhances

temperature estimation performances. The cross-validation of temperature estimates

shows that DK and OK have negative mean errors, while the local versions (LDK and
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LOK) have almost no bias. The RMSE of LOK and LDK is lower (about 2.6±3.25) than

DK and LDK (about 8.25±0.5). Similarly, the four kriging interpolations comparison

using r shows that LOK and LDK are higher than DK and LDK. In general, figure 4.11

shows that the effects of semivariogram models for kriging temperature estimations

are minimal. Comparing with the rainfall estimation performances, the LDK and LOK

kriging temperature interpolation performances are relatively better(r = 0.97±0.03, and

ME = 0.05±1.35).

For snow modelling purposes, we have several options for sampling HRU temper-

ature. One option is to further divide HRUs into different elevation bands. However,

considering the HRU size partition and the relatively smooth nature of temperature data,

the temperature at the centroids of each HRUs is shown to be a sufficiently realistic rep-

resentation of the physical phenomenon. This can be assessed by examining all the grid

temperatures inside each HRUs. To this scope, figure 4.12 shows the standard deviations

of temperature fields within each HRU, more precisely, the mean standard deviation of

temperature fields distribution for each HRUs against their elevation, averaged for 120

temperature maps, sampled for all the seasons across all the years. The boxplot shows

that the temperature distribution for most of the HRUs is mostly contained in half of a

degree centigrade. This validates the use of single location estimates (with high savings

of computational time) as representative values.

A sample of time-series temperature estimation for selected subbasins (1,4,13, and 37)

is shown (figure 4.13) as an analysis of internal subbasin variabilities. It shows estimated

time-series temperatures for selected HRUs with error bounds, where the errors are

the sum of the estimate errors, as derived from kriging and from the approximations

made with the sampling procedure. The result shows that the sampling error within

HRU is much smaller than the kriging interpolation error. There is pattern indicating

that HRUs at high elevations (e.g. HRU 1) have higher error bands than HRUs at low

elevations (e.g. HRU 4).

4.4.3 Snowfall estimates

The rainfall and snowfall separation equation (Eq.4.3) is calibrated using MODIS snow

data. Table 4.3 shows the optimal model parameters obtained.

A sample of MODIS maps and the spatial snowfall is shown in figure 4.15. For

instance, in the first column of map (11-11-2002) both the MODIS FSc and albedo tell

that, on this particular day, though there is precipitation, the surface is snow free; and

so does the model. However, on the next day (12-11-2002), the MODIS imagery data
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Figure 4.12: box-and-whisker plot of standard deviation of temperature field distribution
within each HRU, plotted against their mean elevations. The median HRU temperature
standard deviation is indicated by a horizontal line inside the boxes for which the range
is determined by the 25th and 75th quantiles. The upper and lower whiskers represent
the 95% confidence interval distribution of the Inter-quartile range. Each box of the plots
is calculated from 120 temperature maps sampled from all the seasons across all the
years. It clearly shows that temperature spatial variation as given by LDK is limited in
each HRU to a less than half a degree.

shows that in some parts of the basin, the surface is covered with some level of snow.

The model started separating the precipitation into snowfall and rainfall in this day, and

the spatial distribution is consistent with the MODIS data. Note that where MODIS

shows no snow, the model estimated very light snowfall that could be approximated to

zero (figure 4.15, first column). It is also important to note that after the new snowfall

that can be captured by MODIS, fresh snowfall on the snow surface can be depicted by

the increase in FSc, which is an increase in the area of snow cover for each HRU, and

albedo, which shows fresh snowfall. Figure 4.15 (third column) shows snowfall in the

middle of the snow season, on 01-02-2003, as depicted by the FSc and albedo. Clearly,

the basin is covered in snow, and the model also estimated spatially consistent snowfall.

For many reasons, such as the difference in MODIS and model time steps and spatial

units,the spatial consistency between MODIS and the snowfall model is not very high, as
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Figure 4.13: Estimated time-series temperatures and associated kriging estimates and
sampling errors for selected subbasins (1,4,13,37) for sept 1-10, 2002.The solid black line
shows the estimated temperature values, the gray area is the estimate plus or minus the
kriging standard errors, and the red area shows the sampling errors associated to each
HRU, as derived in figure 4.12.

described below. At basin scale, however, the approach is helpful to maintain some level

of spatial consistency. The estimated snowfall value mimics the spatial distribution of

the FSc and the snow albedo data. It was not possible to obtain similar spatial variability

using discharge data.

Table 4.3: Snowfall separation model optimized parameters using MODIS data

Parameters αr[−] αs[−] Tm[oC]
Values 1.08 1.05 1.94

As described in the previous section, there are slight decreases in temperature at

higher elevation HRUs, leading to more snowfall and higher spatial variability, even

in such a small basin. However, the relationship of the MODIS snow product with

topography is neither linear nor strong. Topographical complexities (such as slope,

aspect, wind speed, shading, and vegetation) might be suggested as responsible factors
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for this non-linearity.

The time series of precipitation separation into rainfall and snowfall for the Feb.

21-22, 2004, event for the four selected HRUs (1,4,13,37) is shown in figure 4.15. It is

interesting to observe that the variability in the partition into snowfall/rainfall from hour

to hour during the same event. The spatial variability in snowfall (or the snowfall/rainfall

ratio) between the different HRUs is also appreciable.

The overall performances of the snowfall separation model during the calibration

and evaluation period is presented in table 4.4. The accuracy index between the snowfall

estimate and the MODIS snow binary data during the calibration and validation period

is 60% and 45% respectively. From a statistical point of view, the performances can

be considered reasonably acceptable. These accuracy values can also be seen from the

perspective of 85% of global accuracy of the MODIS snow product itself (Parajka et al.,

2012). Hence the 60% of binary mapping accuracy is considered acceptable for the long

term water balance analysis in this study. This could also be due to differences in the

temporal and spatial scale between the model and MODIS data.

The rank correlation result of modelled snowfall with MODIS snow albedo and FSc,

maintaining the 60% binary accuracy, is 0.41 and 0.52 respectively. This correlation

value is considered to be of medium performance (Kottegoda and Rosso, 1997) . The

performance of the rank correlation decreases during the validation period, as shown in

table 4.4. However, it can still be considered to be in the medium performance range.

Table 4.4: ρ1
rank and ρ2

rank are the rank correlation coefficients between the model
snowfall and the MODIS Albedo and FSc respectively. The calibration period covers the
2002/2003, 2003/2004,and 2004/2005 snow seasons, and the validation period is for the
2005/2006 snow season.

Period AI ρ1
rank ρ2

rank
Calibration 60% 0.41 0.52
Validation 45% 0.34 0.37

It is clear that uncertainty is introduced in the snowfall estimates from both the

precipitation and temperature data. In this study, the best performing temperature and

precipitation estimation at each HRU is used to predict the snowfall estimate. If a differ-

ent estimation approach is usedrather than ours, the new precipitation and temperature

data sets need to be used to calibrate the rainfall-snowfall separation algorithms to opti-

mize the model result with the MODIS snow data. Generally, therefore, the uncertainty

due to the errors in the inputs data for the snowfall estimation algorithms (precipitation
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Figure 4.14: The Spatial distribution of MODIS fractional snow cover extracted from
both Terra and Aqua products (a), fractional snow cover aggregated into the HRUs (b),
MODIS snow cover albedo derived from both Terra and Aqua products (c), snow albedo
aggregated into HRUs (d), and HRU snowfall estimated using the separation algorithms
(e) for three days (11-11-2002, 12-11-2002, 02-01-2003).
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Figure 4.15: Comparison of time series snowfall separation estimates during the Feb.
21-22, 2004 event for four selected HRUs (HRU 1, 4, 13, 37). Modeling at HRU level,
which is the aggregation of each point within the HRu that can be characterized by
pure snowfall or pure rainfall or snow-water mix event, the water-snow mixing is more
physically and statistically meaningful.

and temperature) is expected to be very small. Spatially, the precipitation and tempera-

ture kriging estimation errors for HRUs increases with elevation, as portrayed in figures

4.8 and 4.13. Comparatively, the HRUs at higher elevations have higher uncertainty

of the snowfall separation model than the HRUs at lower elevations. More important

factors that may be responsible for higher uncertainty in snowfall estimates in this

approach could be high wind-induced undercatch precipitation during snowfall events

and MODIS snow data error.
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4.5 Summary and outlooks

In this study a series of procedures and methods are developed and deployed to estimate

the inputs necessary for a basin’s water budget. These range from the topographic delin-

eation of control volumes at which the budget is estimated, to the spatialisation of input

forcings, to the separation of rainfall and snowfall. For each of the hydrological quantities

produced, an estimate of the errors made (assuming perfectly correct measurements)

has been performed. We have taken care that each operation is reproducible by sharing

the tools and some of the data we used.

Considering the Posina river basin, a small basin in Northeast Italy, this study

tested the performances of different kriging interpolation and semivariogram choices on

the estimations of rainfall and temperature. The study suggests that the effects of the

semivariogram model on small scale basins is minimal and that the main difference in

kriging performances is between the local and universal kriging versions, i.e, the LOK

and LDK perform better than the OK and DK. This result is true for both precipitation

and temperature data. However, the procedure we used allows for automatic selection of

the semivariogram at run-time, by performing a best-fit of incoming measures of rainfall

data.

Regarding temperatures, it has been assessed that, as long as HRUs remain of limited

extension, sampling the temperature at the centroid of the HRU does not imply large

errors. If larger HRUs are chosen, more temperature estimates can be easily used instead

.

Rainfall/snowfall separation has been obtained by means of a simple model taken

from literature, whose parameters are calibrated using MODIS snow albedo and snow

fractional cover data. This procedure, albeit relatively simple, is, to our knowledge,

completely new. Calibrated parameters that can be made to vary spatially, can be used

to produce rain-snow separation even when data are missing. Given the availability of

MODIS data at a global level, this procedure is also highly transportable to any region of

the world. Also in this case, calibration and validation are made easy by the modularity

of the NewAGE system.

Chapter 5 will illustrate how to use the spatial-field, time-varying, inputs presented

in this chapter for the estimation of water budget outputs, i.e. discharges and evapo-

transpiration and water storage. The assessment of input errors will be propagated to

estimate the uncertainties in water inputs.
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5
ESTIMATING WATER BUDGET AND THEIR VARIABILITY

AT THE BASIN SCALE WITH NEWAGE-JGRASS: OUTPUTS

AND STORAGE COMPONENTS*

In this chapter, using the input component estimated in chapter 4, different components

of NewAge-JGrass model system are calibrated for optimal estimation, and are used to

resolve the basin water budget. At hourly time steps, 18 years of snow water equivalent,

runoff, ET simulations has been conducted, and the model performances are acceptable.

The simulation of hourly time scale and small spatial scale enable water budget closure

at any given location and time. Aggregating at long temporal scale, for Posina river

basin, the mean annual water budget is about 1269±372 mm (76.4%) runoff, 503.5±35.5

mm (30%) evapotranspiration, and −50±129 mm (-4.2%) basin storage from the basin

rainfall 1730±344 mm. The highest variability is shown for precipitation, J, followed by

discharge, Q. ET shows less interannual variability and less dependent on precipitation.

5.1 Introduction

The terrestrial water balance modelling at various scales using an appropriate control

volume k requires to solve the water balance equation which is given by:

*This chapter is based on "Wuletawu Abera, Giuseppe Formetta, Marco Borga, and Riccardo Rigon.
Estimating water budget and their variability at the basin scale with NewAge-JGrass. Part II: Outputs
and storage component, Submitted to HESS"
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(5.1)
∂Sk(t)
∂t

= Jk(t)+
m(k)∑

i
Qki(t)−ETk(t)−Qk(t)

for an appropriate set of elementary control volumes, k, connected together. In Eq.

(5.1) S [L3] represents the total water storage of the basin, J [L3 T−1], AET [L3 T−1], Q
[L3 T−1] are precipitation (including snowfall), evapotranspiration, runoff (surface and

groundwater) respectively. The Qkis represent input fluxes to the k HRU coming from

the set of m(k) HRUs conencted to it, and are of the same nature of Q. The modelling

framework set-up which enable to solve the equations at each control volume, and "input"

term (J [L3]) of Eq.(5.1) is analysed in chapter 4. Hence the main focus of this chapter is

to estimate the "output" terms of the water budget equation i.e the ET [L3 T−1], Q [L3

T−1] and S [L3], and estimate the long term space-time variability of the water budget in

a small basin of Italian Prealps, where snowfall is a non negligible part of precipitations.

of precipitations.

5.1.1 Literary review

Recent efforts on the estimations of water fluxes and storages are based on very diverse

strategies and aimed to different purposes. Applications involves: the use of data (Hirschi

et al., 2006; Becker et al., 2011; Rodell et al., 2004); the use of hydrometeorological data

coupled to satellite measurements (Wang et al., 2014b; Woo, 2007; Wang et al., 2014a);

stochastic approaches, as by Rodríguez-Iturbe and co-workers (Rodríguez-Iturbe et al.,

2006; Rodríguez-Iturbe and Porporato, 2004; Botter et al., 2007; Caylor et al., 2006;

D’Odorico and Porporato, 2006; Tamea et al., 2009; Laio et al., 2001; Settin et al.,

2007). In some other cases process-based hydrological models such as GEOtop (Rigon

et al., 2006; Endrizzi et al., 2013) and tRIBS(Tucker et al., 2001; Ivanov et al., 2004),

PARFLOW(Kollet and Maxwell, 2006), CATHY(Camporese et al., 2010) are used. They

have a detailed control on the physical processes (e.g. Noto et al., 2008; Liuzzo et al.,

2009; Bertoldi et al., 2006; Kunstmann et al., 2013) to return the water budget with

great accuracy over the elements of a grid. However, these detailed approaches, often

confined to small areas, are data demanding and computationally intensive. Trials to

assess the water budget within a modeling strategy of sound intermediate complexity,

and reasonable computational demands are represented by models like LISFLOOD (Van

Der Knijff et al., 2010), mHM (Samaniego et al., 2010), VIC (Liang et al., 1994), SWAT

(Arnold et al., 1998).
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5.1.2 Objectives
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Figure 5.1: Posina basin and the HRU partition used for simulation. The triangle points
are the discharge measurement stations. The location and elevation of the basin is
described in 4

Learning from all of these various efforts, in this chapter we pursue the assessment

the hydrological budget with the modelling system JGrass-NewAge (from now on, sim-

ply NewAge), which offers a set of model components built accordingly to the Object

Modelling System version 3 (OMS) framework (David et al., 2013). OMS, modelling

framework based on component-based software engineering, uses classes as fundamen-

tal model building blocks (components) and uses a standardized interfaces supporting

component communication. In OMS3, the interaction of each component is based on the

use of annotations. This enable model connectivity, coupling and maintaining easy and

fast (David et al., 2013).
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NewAge covers most of the processes involved in the water budget and its components

were discussed with detail in: Formetta et al. (2011, 2013a); Formetta (2013); Formetta

et al. (2013b, 2014c), and they are not fully re-discussed here. Components that can be

used in various combinations inside of NewAge are shown in Table 5.1.

Table 5.1: NewAge-JGrass Hydrological modelling components. It ranges from hydro-
logical pre-processing such as topography hydrological conditioning to automatic model
parameter optimization components. The components in bold are the ones used in this
study

Role Component Name Descriptions
Basin hillslope-
link partitioning

GIS spatial toolbox
and Horton Machine

A GIS spatial toolbox that uses DEM to extract basin, hillslopes,
channel links for JGrass-NewAge set-up. The channel partition
is according to pfafstetter enumeration system ( (Formetta et al.,
2014a), chapter 2)

Data interpola-
tions

Kriging, Inverse Dis-
tance Weighting, and
JAMI

Interpolates meteorological data from meteorological stations
to points of interest according to variety of kriging algorithms
(Goovaerts, 2000; Haberlandt, 2007; Goovaerts, 1999; Schiemann
et al., 2011), Inverse Distance Weighting (Goovaerts, 1997) and
JAMI(Formetta et al., 2014c)

Energy balance Shortwave radiation
, Longwave radiation
model

Calculates shortwave and longwave radiation, respectively, from
topographic and atmospheric data (Formetta et al., 2013b; Iqbal,
1983; Corripio and Purves, 2002; ?).

Evapo - transpi-
ration

Penman-Monteith,
Priestly-Taylor, Fao-
Evapotraspiration

Estimates evapotranspiration using Penman-Monteith (Monteith
et al., 1965), Priestly-Taylor (Priestley and Taylor, 1972), and Fao-
Evapotraspiration (Allen et al., 1998) options

Runoff Duffy, HYMOD Estimates runoff based on HYMOD (Moore, 1985) and Duffy (Duffy,
1996) algorithms

Optimization Particle Swarm Op-
timization, DREAM,
LUCA

Calibrates model parameters according to Particle Swarm Optimiza-
tion (Kennedy et al., 1995), DREAM (Vrugt et al., 2009), LUCA (Hay
et al., 2006) algorithms respectively.

The goals of this chapter are to determine the water budget of each Hydrologic

Response unit (HRU) of a small catchment at high temporal resolution i.e hourly, that

can be aggregated to different temporal scale, and define a methodology that can be used

to analysed larger basins. A HRU represents a part of the basin that can be treated as a

single unit, and a single control volume k for which eq. (5.1) is solved.

The working scheme followed are:

• For each model’s component determine the parameters by calibration by using

an automatic calibration algorithm, and comparing appropriate measured and

simulated data;

• Validate the models using various goodness of fit methods (GoFs) to assess the

model performances.
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• Estimate the outputs of the budgets’ terms i.e. discharge, actual evapotranspiration,

and storage and thier errors

5.1.3 Chapter organization

The chapter is organized as follows: section 7.3 provides methodologies of modeling

the "output" terms of the water balance equation, particularly rainfall-runoff modeling

and discharge estimation (subsection 5.2.3) and evapotranspiration and water balance

residual estimations (section 5.2.4). Brief description of the basin is at section 5.3. At

section 5.4, the results of the hourly time series simulations for three components (snow

water equivalent (sec 5.4.1), discharge (sec 5.4.2), and evapotranspiration and storage

(sec 5.4.3), and results of basin scale water budget closure (sec 5.4.4)) is presented.

Finally, the conclusions about the water flux of the basin follows.

5.2 Methodologies and models

Depends on the nature and availability of hydrometeorological data sets and question of

interests, different combination of NewAge components can be used to solve basin water

budget. In this study, kriging, snow melting, radiation budget (SWRB), Priestly-Taylor,

HYMOD, and Particle swarm and LUCA are used. The components used in this study

are marked in bold in table 5.1, and further described in their respective section below.

5.2.1 Calibration-validation procedures

For all the components we pursue an independent validation, if appropriate data are

available. The procedure we use is standard. The data is separated into two sets, one

for the calibration procedure and a second for the validation procedure (see section 5.3).

Here, to achieve our objective, three calibration procedures are used. The first one is the

calibration of snowfall based on MODIS imagery data as described in chapter 4. The

second and the third calibration strategies are pursued for rainfall-runoff modelling.

The first calibration on the rainfall-runoff is used to analyze the effects of different

precipitation data sets (i.e generated from four kriging methods) on the runoff modelling.

Then, based on the optimal data set identified from second calibration procedure, the

third calibration aims to optimize the rainfall-runoff and the evapotranspiration models

parameters jointly, as detailed in section 5.2.4, has been done to resolve the water

budget. LUCA and particle swarm optimization tools, available in OMS among a few
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choices, are used for the former and later calibration procedures respectively. The Let’Us

Calibrate (LUCA, (Hay and Umemoto, 2007)) is a multiple-objective, stepwise, based on

the Shuffled Complex Evolution global search algorithm procedures (Vrugt et al., 2003).

Whereas Particle swarm optimization is a population based stochastic optimization

technique inspired by social behavior of bird flocking or fish schooling (Kennedy et al.,

1995; Zhang et al., 2001; Formetta, 2013).

The objective function used as standard is the KGE (Kling et al., 2012) which was

considered more solid than Nash-Shutcliffe, but the goodness of fit was estimated by

two other indicators, the Pearson’s correlation coefficient and the PBIAS, all of them

described in Appendix B. Other statistical indicators of performances are specified case

by case.

5.2.2 Snow melting

To simulate snow metamorphism processes, we used the degree-day modelling of snow

water equivalent (SWE) component as described in Formetta et al. (2014d). In this case,

the melting rate, M[mm t−1], is given by:

(5.2) M =
{
αm1 ∗ (T −Tm) T > Tm

0 T 6 Tm

Where αm1[mm t−1] is the melt factor, Tm [oC] is the snow-melting temperature,

and T[oC] is the air temperature. When the temperature is less than the melting

temperature,Tm, the melting is zero, instead freezing occurs. The rate of freezing F[mm

t−1] is given instead by:

(5.3) F =
{
α f ∗ (Tm −T) T < Tm

0 T > Tm

where α f [mm t−1] is the freezing factor.

The three unknown parameters in the above equations (Ts, m1, and α f ) need to be

calibrated by comparing the simulated snow water equivalent with measured. How-

ever, we do not have any snow water equivalent measurement, hence, the unknown

parameters are calibrated using discharge data together with the parameters of the

ADIGE (described below) component. This follows a consolidated approach as applied for

instance in Li et al. (2012); Mou et al. (2008); He et al. (2014). However, in our approach
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the snowfall parameters are already calibrated using MODIS snow imagery datasets

(chapter 4).

Furthermore, MODIS snow albedo products (MOD10A1 and MYD10A1) are used

(Shrestha et al., 2014; He et al., 2014; Blöschl et al., 1991; He et al., 2014; Parajka et al.,

2012; Sirguey et al., 2009) as ’soft’ information to compare with. The daily fractional

snow cover (FSc) and snow albedo extracted, and aggregated to the HRU level, and

are used to evaluate the space-time dynamics of the SWE estimations. The procedures

of MOD10A1 and MYD10A1 imagery processes aims to produce useful data for SWE

dynamics and snow metamorphism calibration are described in detail at appendix D.

Since there is a directional relation between HRU’s FSc (and albedo) and SWE, spearman

rank correlation is used for evaluation. It is preferred because it provides a means to

quantify the monotonic relationship between two variables with no frequency distribution

assumption (nonparametric), and is given by (Kottegoda and Rosso, 1997):

(5.4) ρrank = 1− 6.
∑n

k=1 D2
k

n(n2 −1)
where D is difference between the rank of the MODIS data (i.e. FSC or snow albedo)

and SWE data at K th pair, and n is the number of observations. The higher the value

ρrank, the higher the correlation between SWE and the snow albedo. The use of the

MODIS imagery data supplementary information is important to maintain the spatial

distribution of the modeling solutions, which could never be assessed otherwise.

5.2.3 Runoff estimation

The NewAge component estimating runoff is called ADIGE. It is made by many Hymods

(Moore, 1985), each one for each HRU in which the basin is subdivided. Besides, ADIGE

can also model reservoirs and dams, and includes a routing model along the river network

that connects the HRUs (Formetta et al., 2011). The inputs of ADIGE model are rainfall,

evapotranspiration, and melting snow; and the output is discharge at each channel-link.

The Hymod core of the component is a conceptual rainfall-runoff model that separate

a quick (shallow) flux from a slower (deeper) one. The first accounts for surface runoff

by using three linear reservoirs, the latter accounts for subsurface storm flow with one

single linear reservoir (Moore, 1985; Formetta et al., 2011; Formetta, 2013). Groundwater

is described by a further storage. Essential to Hymod’s calculation is also the estimation

of the water “losses" by ET, which are modelled as detailed in the next section. The

details of Hymod are reported in Appendix A, for readers convenience. The fundamental
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parameters of the model can be interpreted as the mean travel time in each of the surface

and subsurface compartments of the hydrological cycle.

The NewAge Hymod component is applied to any HRU, in which the basin is subdi-

vided and the total watershed discharge is the sum of the contribution of the HRUs. This

sum can include (or not include) the delay due to routing from the HRUs outlet to the

basin outlet, but in this application we excluded it because at these scales (of around ten

kilometers) travel time in channels is irrelevant (D’Odorico and Rigon, 2003). Eventually

the Hymod component provides an estimate of the discharge at each link of the river

network of the watershed, downstream to the HRUs.

ADIGE 

Figure 5.2: The HYmod component of NewAge system and its input providing compo-
nents. It shows how different components are connected, here kriging, SWE, ETP, and
calibration component connected with Adige to solve the runoff at high spatial and
temporal resolution. The detail discussion about each component can be referred at its
respective section.

The first part of the simulation analysis is to evaluate the effects of four precipitation

data set generated using four krigings on the runoff calibration and modelling results.

So HYMOD parameters are calibrated for all the four precipitation data sets for five

years (1994-1999), using LUCA as optimization tool. The simulation from 2000-2012 is
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used for validation for the data set comparison. Based on the validation strategies, the

optimal data set is selected used to resolve the water budget of the basin.

5.2.4 Evapotranspiration (ET) estimation, and residual storage

ET measurements, in this case study, are completely missing and therefore, they need

to be modeled. In situation illustrated in the previous pages, we can consider as a

reasonable basis for the estimates, the following modification of the Priestley and Taylor

(PT) Formula (Priestley and Taylor, 1972) for each HRU:

(5.5) AET(t)=α S(t)
Cmax

∆

∆+γ (Rn−G)

where AET is the actual evapotranspiration [LT−1], α is the so-called Priestley-Taylor

coefficient, S(t) is the water storage in the root zone, and Cmax the maximum storage

of water in the HRU. Rn[L2T−1] is surface net radiation; G [L2L−1] is the down-welling

flux of thermal energy. The formula can be further simplified by assuming G ∝ Rn, and

including it in α (Clothier et al., 1982). ∆ is the slope of the Clausius-Clapeyron relations

which is given by a function of the air temperature (Murray, 1967):

(5.6) ∆= 4098∗ e
17.27T

T+237.3

T +237.32

where T[oc] is temperature; and the γ is the psychometric constant [in K T−1, where K

means the temperature unit]. It is estimated by (Allen et al., 1998):

(5.7) γ= 0.001013∗P
0.622∗2.501−0.002361∗T

where P[kPa] is the atmospheric pressure. The choice of reducing AET with the relative

water content, is similar to the one pursued in several studies, e.g. Porporato et al. (2002)

Rodríguez-Iturbe and Porporato (2004). Cristea et al. (2012) reports that the value of α

varies in previous studies from 0.6 to 2.4, depending on land cover and site conditions,

making literature almost useless in determining the conditions specific to a basin.

In our modelling approach, we estimate α using the water budget as shown in

appendix E obtaining, instead of the potential evapotranspiration, the actual evapotran-

spiration. The whole procedure, which involves an iterative procedure between the PT

and runoff estimation, is detailed in E. Our procedure assumes that the water storage

is null after a specified number of years, said Budyko’s time, TB, (after Budyko (1978)).
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Here, two algorithms can be followed. The first neglects soil moisture variability and

generate α from the observed data using equation E.6. The second procedure uses

variable storages insides the HRUs (appendix E) and consists in optimising at the same

time the parameters of the Adige component, and requiring that the water storage is

null after TB years.

In principle, for both the procedures, and for any specific Budyko’s time, TB, an α

is generated, thus producing a series of candidate αs whose variability is observed and

discussed. However, since the second procedure is highly demanding computationally,

only a single optimization procedure was actually performed for years 1995 to 1999, with

TB = 5 years.

Radiation which enters in eq. (5.5) is estimated by using the two radiation compo-

nent included in JGrass-NewAGE system, NewAGE-SWRB component (Formetta et al.,

2013b). Temperature is interpolated by using kriging 4 from the meteorological stations

at single point of each HRU (centroids), since HRUs are of quite small extension (and its

variability internally to each HRU has been checked to be less than half Celsius degree).

In this approach, the uncertainty of ET estimation comes from other components’

errors of estimation. Assuming that measurement errors in J and Q component are

neglected (or predefined separately), the ET using the standard theory of errors (Rodell

et al., 2004), the standard deviation of ET estimates is:

(5.8) σET =
√
σ2

J +σ2
Q +σ2

α
′

where σET is the standard deviation errors of ET, σJ is rainfall estimation errors (in

this case the kriging error), σQ is the discharge estimation errors (model error) and σα is

the errors made on estimating α. The σα is estimated from the standard deviation of ET

caused by using different α following 17 years of stationary.

Varying the year of null storage, TB, implies obviously different estimates of ET,

which remain however confined in certain range, that we interpret as the representative

of the epistemic uncertainty of the approach. Being assessed with this method, ET does

not automatically balance equation (5.1) for each year. The residual is, as a consequence,

interpreted as relative water storage. If the first years of simulation imply a negative

storage, this is assumed to be present at the initial time, which, in turn, imply that the

α coefficient must be recalculated to obtain null storage at the given year.

Therefore the whole procedure is repeated, until the initial storage, and estimated

ET are consistent. Once ET is estimated with the above procedure (and varying the zero

storage year for all year) the mean α coefficient is chosen as the most reliable, and used.
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In the end, using our dataset and our modelling approaches, we close the water budget

of the basin at any time scale (from hourly to yearly).

5.3 Description of the study area and input data

Here very brief description of the meteorological data sets and the study basin used in

the study is presented, detail description can be found in Abera et’al (2016, submitted)

and Norbiato et al. (2008). The study area is Posina river basin, located in the North

Eastern part of prealpine mountainous parts of Veneto region in Italy. The area of the

basin is about 116 km2 (figure 5.1). The hourly time step data sets of precipitation,

temperature and discharge that covers from 1995 to 2012 (18 years) are used for analysis.

The time series estimation of input components (precipitation i.e both rainfall and

snowfall, and temperature) data for each HRUs are estimated according to the procedures

described in chapter 4.

For discharge, 18 years of hourly data are available at three hydrometer stations, at

location indicated in figure 5.1. The first 5 years are used for calibration, and the rest for

validation in the case of the rainfall-runoff component.

5.4 Results and discussions

The fundamental essence of presenting The results of the study is organized as follows.

First brief results on SWE estimates of the basin are described. Next, the rainfall-

runoff simulation results and their performances are evaluated. The third subsection

contains results on spatio-temporal estimation of ET and storage. Lastly, following proper

temporal and spatial characterization of all the water budget components, the results of

water budget closure analysis are followed.

5.4.1 SWE estimations

The 18 years of hourly time series analysis of SWE for some selected HRUs is shown

at figure 5.3 a. The 1995-2012 simulation shows that Snow forms mostly in the period

of October to the following year March/April. The timing in the formation period varies

across years. The annual variability of the snow accumulation also appreciable. The

winter 1997/1998, 2000/2001, 2006/2007 shows small snow accumulation, and the years

2003/2004, 2005/2006, 2008/2009, 2010/2011 winters shows higher snow accumulations
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Figure 5.3: Time series SWE estimation of 18 years for four sample HRUs i.e 1, 4, 13,and
37 (a), and time series SWE estimation along with MODIS fractional snow cover (bottom)
and snow albedo (middle) for HRU 1 (b).
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in the basin. Considering all the winter seasons of the 18 years, the year 2008/2009 is

the highest and 2006/2007 the lowest accumulations. The SWE estimation comparison

between the HRUs shows (figure 5.3a) that, as expected, the HRUs at high elevation

(HRU 1 and 37) has always higher estimated value than HRUs at low elevation (HRUs 4

and 13).
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Figure 5.4: The spatial variability of SWE for some selected time steps.

The plot of SWE along with the MODIS FSc and snow albedo (figure 5.3 b) for a single

HRU (HRU1) provide an insight that the SWE dynamics shows some level of consistency

with MODIS imagery data. The correlation of SWE values with snow fractional area

coverage and that of snow albedo is high (0.65) and low (0.15) receptively. A sample of

simulated SWE spatial distribution is shown at figure 5.4. There is a notable spatial

variability of SWE over the basin (i.e between the HRUs), and the difference reaches

as high as 300 mm, and this could be due to the difference in topography and receiving

solar radiation.
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5.4.2 Stream flow modeling and impacts of rainfall
interpolations

Four precipitation data sets generated using ordinary kriging (OK), Local ordinary

kriging (LOK), Detrended kriging (DK) and Local detreded kriging (LDK) are used

as input for the discharge modelling. The detail algorithms and their performances

in comparison to the measured precipitation data is discussed in Abera et al. (2015,

submitted). All four kriging interpolation data sets are used to calibrate the Rainfall-

runoff model, even if LOK was actually found to perform better in rainfall reproduction

(e.g. Abera et al., 2015). The calibrated parameters are reported in table 5.2. LUCA

optimization produced the same model parameters values for the three data sets except

the DK. (table 5.2).

However, the different kriging methods have different performances in reproducing

runoff, reported in Table 5.3. Surprisingly, the result of LOK (relatively the best in

reproducing measured precipitation, Abera et al., submitted) is actually the lowest in

reproducing the observed discharge, with KGE=0.78 and KGE=0.40 during calibration

and validation period respectively (table 5.3). The comparison of observed and simulated

discharge at the outlet using PBIAS shows that simulation using DK has the lowest bias,

while the LOK has the highest bias both during the calibration and validation periods.

In general, the simulation results of LDK and DK are both acceptable according to the

standard interpretation of the GOFs values (Moriasi et al., 2007) in both calibration

and validation, while OK and LOK return very low GOFs during the validation period

(table 5.3). In general, the the performances in validation period not high because the

performances in the validation period decreases when the duration from the calibration

period increases.

The higher performances of the DK methods could indicate, that this method, even

if not visible in the calibration phase, could actually capture better the physics of the

process. Contrary to our results, using SWAT model, Heijden and Haberlandt (2010)

did not get any significant difference between different interpolation methods. Sample

calibration and validation hydrographs from the four precipitation data set based on the

four types of kriging interpolation methods are shown in figure 5.5, while the whole 18

years of hourly simulation are portrayed at the complimentary material of this chapter.

The overall ranking of Hymod model performance driven from the four types of

krigings is evaluated by the KGE index (table 5.3). Based on the performance during

the validation periods, DK interpolation method is found to be the most performing, and
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Table 5.2: Optimized parameters obtained from hourly rainfall-runoff and snow modelling
during the calibration periods (1995-1999). The first three parameters are for SWE
component, and the next five parameters are of the rainfall-runoff component. DK* is
set of optimized parameters based on DK precipitation, and optimized for both discharge
and Budyko assumption for a five years, as detailed in appendix E.

Parameters OK LOK DK LDK DK*
αm1[mmC−1h−1] 1.01E-4 1.08E-4 0.0856 1.98E-4 8.83E-02
α f [mmC−1h−1] 0.0367 0.0423 0.0029 0.0911 0.0204
α1[−] 0.949 0.985 0.2362 0.987 0.855
Cmax[L] 978.778 997.438 758.688 999.682 838.449
Bexp[−] 1.506 1.604 3.348 1.692 0.565
α[−] 0.255 0.229 0.247 0.231 0.0286
Rs[T] 0.001 0.001 0.0026 0.001 0.019
Rq[T] 0.211 0.204 0.206 0.184 0.312
α - - - - 1.895

Table 5.3: The model performance statistics of rainfall-runoff model based on the four
types of kriging interpolation methods. Performance of the model during the calibration
and validation. Percent bias (PBIAS) measures ranges form −∞ to +∞, with optimal
value of 0.0. Positive values indicate model underestimation bias, and negative values
indicate model overestimation bias. DK*, which is used for the water budget analysis, is
based on DK precipitation, and optimized for both discharge and Budyko assumption for
a five years.

Calibration Validation

Methods KGE PBIAS r KGE PBIAS r
OK 0.80 1.80 0.80 0.40 66.8 0.50
LOK 0.78 5.2 0.79 0.35 40.1 0.49
DK 0.85 -0.8 0.85 0.56 14.30 0.68
LDK 0.83 1.30 0.83 0.56 15.50 0.66
DK* 0.71 14.6 0.81 0.63 -14.30 0.82
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Figure 5.5: A comparison of four precipitation based simulations during calibration
period (1998) and validation period (2004) and the residuals (obs-sim) of the forecast

followed by LDK, OK and LOK respectively. Because of the overall better performances,

we decided to use DK (instead of LOK) for further discharge analysis. For implication

of impacts of different kriging generated precipitation data sets on long term runoff

estimation, figure 5.6 shows that, in general, all the precipitation data sets generate

higher long term annual runoff than the observed, and simulation using DK is relatively

better than the others.

Figure 5.6 shows long term annual mean runoff using different kriging data sets,

and in general, all the data sets generates higher mean annual runoff than the observed.

There is a slight difference between OK and LOK in one group and DK and LDK in other.

Generally, DK shows relatively the lowest long term annual mean runoff, and smallest

volume error from the observed (figure 5.6).

At this stage, the HYMOD and PT models are coupled to optimize for both the

discharge and for Budyko assumption of water budget, and the performance is reported

in table 5.3, last row. This simulation is used to simulate discharge at each links of the
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Figure 5.6: Comparison of long term mean annual runoff simulation with different
kriging interpolation precipitation inputs with observed discharge at basin outlet.

basin, and if data available, the performance can be assessed. at any links. In this case,

observed discharge at two interior points are used to evaluate the potential of the model

for estimation of runoff at each links (figure 5.7).

The two internal links which are not used in the calibration processes, see figure 5.1

for their locations, are drain by 22.2 km2 and 38.8 km2 area. According to all the

performance statistics, the calibrated model solution provides acceptable results at the

two interior links In fact, a KGE=0.73 and a PBIAS=3.30% at Valoje (ID 201) and a

KGE= 0.62 and a PBIAS=2.50% at Bazzoni (ID 203) are obtained. While there are some

studies that shows degrade of model performances when applying basin outlet calibration

parameters at the interior sites (Moussa et al., 2007; Feyen et al., 2008; Boscarello et al.,

2013), the study of Lerat et al. (2012) using large number of basin demonstrated that a

semi-distributed rainfall-runoff models using a single site (like basin outlet) calibration

could give acceptable estimate ungauge internal points. Our case seems to confirm the

latter and better case, but, obviously, we are not able to discern if this is due to the

characteristics of our modeling solutions, or, perhaps, of the study site size, dimension

and location, even if, the first two conditions certainly play a role.
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Figure 5.7: NewAge model forecasting validation at internal links. Discharge is estimated
for all links, here, plotted for link 1,3, 9 (the outlet link), 14, 27, 32 as a sample. When
data is available at any internal points, model performances can be evaluated (e.g. for
link 14 and 32).

5.4.3 Evapotranspiration estimation and uncertainty

Once, hourly data of the solar radiation is estimated according to the NewAGE SWRB

component (Formetta et al., 2013b) and temperature data interpolated as described in

chapter 4, ET for each HRUs is estimated at hourly time steps, by optimizing the PT’s α
′

against water budget closure (stationarity). The procedure of calibration of parameter α

returns the results shown in Figure 5.8.

Varying TB from one year to eighteen years, as described in section 5.2.4, the value of

PT’s α changes from 0.38 to 0.8, with mean ᾱ= 0.56 (figure 5.8). This result represents an

aftermath verification of the method chosen. The variability in α around the mean, still

great, is much less than the one found in literature. Besides, α is relatively at the lower
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Figure 5.8: The scatterplot of ET ’s α
′
parameters plotted for different lengths of station-

arity assumption years.

bound of values used in literature. In the first 10 years, increasing the number of years

for water balance closure assumption, the α is highly variable, becoming subsequently

relative stable around the mean (figure 5.8) Our result suggests that taking the TB ∼ 10

years could be a reasonable choice.

Following proper determination of α values of the PT equation, the ET of each

HRUs are estimated with their uncertainty errors. Figure 5.9 is a sample of four HRUs

(1,4,13,37) time-series of ET during august, 2005. The spatial variability for a sample

of hourly simulated ET is shown in figure 5.10. The resulting annual ET ranges from

maximum of 550 mm to a minimum of 424 mm, in 2001/2 and 2002/2003 respectively.

The errors of estimation can vary as much as 20%. As it can be seen from figure 5.11,

ET actually does not tend to vary much. This situation is common to many other places

in humid areas (Lewis et al., 2000; Oishi et al., 2010; Möller and Stanhill, 2007).

Accordingly to the hypothesis of consistence we made, the relative water storage

varies from a negative maximum of 410 mm to 87 mm positive maximum. Whilst the

quantitative assessment of both ET and relative storage can be thought as imprecise,

their overall internal variability cannot certainly be neglected, and must be considered a

realistic product of this chapter, further discussed in the next section.
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Figure 5.9: Estimated ET at hourly time steps and comparison between subbasins
(1,4,13,37) for 10 days of hourly simulation August 2005.The gray band is the uncertainty
band associated with the water balance approach ET estimations.

5.4.4 Closing the water budget at basin scale

Figure 5.11 shows the mean estimate of the water budget obtained with the method

explained in the previous sections and in Appendix. The annual water balance is based

on hydrological years, in our case from October to end of September of the following year.

The components of the water balance of the basin is estimated for each years and the

relative share of each components from the rainfall can be observed (figure 5.11). The

hypothesis that budget is stationary after TB years implies major interannual variability

with both negatives and positive storages. This variability is very pronounced and, in

the catchment under study, ET vary from around 19% to 35%, Q from 64% to 95% and S
from -19% to 5% of the whole yearly budget. The main source of variability in the budget

is clearly in the rainfall input.
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Figure 5.10: The spatial distribution of ET for some selected hourly time steps.

However, it has to be remarked that simulated ET is more smooth than in reality,

since it has been estimated "in mean" by assuming a unique PT parameter along the

seventeen years. In addition, the main driver of ET is radiation which is relatively

consistent between years. Hence, the pronounced monthly and seasonal variability tends

decrease a lot when aggregated to annual level. Similar studies has obtained that ET

in forested basin has very low interannual variability. For instance, for oak woodland

watershed in California, (Lewis et al., 2000) find out that the interanual variability of

ET is low. For similar basin of our study, forested mountainous basin, Yoshiyukiishii and

Nakamura (2004) analyzed 11 years of water balance from relatively well gauged basin,

and show that the interannual variability is very small. The result of Oishi et al. (2010);

Möller and Stanhill (2007) also indicate similar analysis.

Analyzing the relation between the simulated and measured output terms (ET, Q,

and S) with the input term (i.e J) of the water budget at annual scale, in figure 5.11, it

can be seen that higher precipitation years are accompanied by higher Q years, which
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Figure 5.11: Water budget components of the basin and its annual variabilities from
1994/95 to 2011/2012. It shows the relative share (the size of the bars) of the three
components (Q, ET and S) of the total available water J.
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indicates that increases in J tends to contribute directly to Q with minor effects on S

and ET. The great part (88%, R2=0.88) of Q variance is explained by the variance J. As

aforementioned, the variability in ET is smaller than other components, and only 38%

can be explained by J (i.e. R2=0.38). Q and ET exchange their role during the years and

there are clearly years where Q is larger than ET and vice-versa. Notwithstanding the

uncertainties implied in the procedure, it is clear that the variability of the budget is

impossibly to be denied. The error of estimation is shown by the error bar in figure 5.11,

which is highest and lowest for S and Q respectively. This is expected because Q is the

more reliable measured data set in the water budget equation at the basin scale (Wang

et al., 2014b).

Since the budget was actually performed on hourly base and at small units (HRU),

plot analogous to figure 5.11 can be produced for any hour of any day of the year

of simulations and any HRUs of the basin, clearly, with increasing uncertainty with

decreasing time step, due to the conditions in which the ET parameter, and storage were

assessed.

As an example the monthly budget was estimated for year 2011/2012 in figure 5.12.

For obtaining figure 5.12 were used the measured (but interpolated with DK) rainfalls,

the simulated discharges, using the parameter calibrated between 1995-1999, and the PT

calibrated for Budyko assumption in five years. Similarly, to show variability among the

HRus, the water budget components for long term monthly mean are analyzed from the

18 years of simulations, and the mean monthly estimates of four months (January, April,

July, and October, one from each season) is presented in figure 5.11. Figure 5.12 provides

the monthly variability of the budget. The monthly variability is very pronounced. The

highest variability is mainly by J and S. During summer all the components show high

magnitude (high J, high Q). The variability in monthly S is governed by the J, though

non-linearly. The variability in ET is evidently connected with the annual cycle of solar

radiation, and highest in June and July and lowest from November-February, as expected.

In this year, from late spring to august, evapotranspiration is sustained by the water

storage more than from direct precipitation, indicating that, if not sustained by winter

rainfalls catchment vegetation could go under considerable stresses, in these months.

Figure 5.13 shows the long term monthly mean, of course it provides seasonal inference

too as each month is sampled from each season, spatial distribution of water budget

components over the basin. The result confirms the monthly analysis given for the year

2012 (figure 5.12).

The trend in Q follows the trend in precipitation, but actually not in a linear way.
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This could have been deduced from the data alone, However, seeing it with the other

budget components enlighten the complexity of the interactions actually in place.
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Figure 5.12: The same as figure 5.11, but monthly variability for the year 2012.
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ponents (J, ET, Q, S). For reason of visibility, the color scale is for each component
separately.
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5.5 Conclusions

The water budget of the river Posina basin has been analyzed with the NewAge system

at hourly time-steps by using 18 years of meteorological data (rainfall and temperature)

and discharge. The analyses include estimations of the four components of water budget

(precipitation, discharge, relative storage, and evapotranspiration) under the hypothesis

of stationarity (i.e. null storage) in one of the years where measurements are available.

NewAge model components are used to capture the basin behaviour and forecast the wa-

ter cycle, in presence of known precipitation inputs, and to fill the gaps where distributed

data are necessary and only local measured are present. The procedure implemented,

with its imprecision, is general, and can be transposed to basins where rainfall and

discharge measurement are available.

In NewAge Hymod rainfall-runoff component, the inputs for runoff production such

as precipitation and temperature are produced for each hillslope. To asses the impact of

interpolation and its coarse graining at hillslope scale, as requested by the rainfall-runoff

model, we analyzed the discharge forecasting by using all four kriging methods. The DK

and LDK performances are better that the OK and LOK for discharge forecasting. The

GOF index of the simulated with observed discharge shows that the model performance

is acceptable. Using discharge measures inside the basin, it was possible to quantify the

reliability of internal discharges by assuming the validity of model parameters calibrated

at the overall outlet. The model performances actually maintain similar performances at

the interior sites.

Eventually, Priestley-Taylor method is used to estimate the evapotranspiration compo-

nents of the water budget, and to infer the relative storage of water under the hypothesis

of stationarity (null storage) at the 17th year. This hypothesis is sufficient to set a value

for the mean PT α
′
coefficient apt to obtain the mean actual ET. By moving the null stor-

age hypothesis along the first 17 years, we obtain variable values of the PT α
′
that we can

interpret as an estimate of the error in ET to be accumulated with uncertainty produced

in precipitation and discharge estimate. Changing the length of years of closure assump-

tion,starting from first year to 17th years assumption,it provide mean α
′ = 0.56±0.1. To

consider both the atmospheric demand and local water storage supply at each hillslope

for ET estimation, the PT α
′
is optimized coupled with the HYMOD storage information

and PT radiation budget for five year null storage assumption (Budyko assumption).

The annual variability of the rainfall is as high as 1400 mm, with minimum annual J

of 1355 mm in 1995/1996 and maximum 2700 mm in 2010/2011. The low in errors of Q
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annual estimation is due to its relatively good measurements and models to estimate

at the basin scale. The inter annual variability in Q is high, with minimum annual Q

of 1003 mm in 1995/96 and maximum 2072 mm in 2010/2011. Both the contribution

and uncertainties of ET to the water budget is very high. While ET accounts 19-38%

of J, its annual uncertainty is about 20% (148mm on average). Based on consistency of

the water budget, it can be observed the high interannual variability of the fluxes, with

certainly the variability of J dominating it. In all years Q is larger than ET, and vice

versa. Either (relative) positive and negative water storages have been found. NewAge

produces estimates for any hour of the year, and estimation of each component can be

obtained actually for any hour, and for any subcatchment, even if with large uncertainty

inherited, for instance, from the error in transposing Hymod model parameters, from the

outlet to the interior point of the basin. With all the disclaimers of the case, the system

once setup on a basin, can anyway produce data which can be of real interest in many

practical cases of water management.
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6
COMPARATIVE EVALUATION OF DIFFERENT SATELLITE

RAINFALL ESTIMATION PRODUCTS AND BIAS

CORRECTION IN THE UPPER BLUE NILE (UBN) BASIN *

In this chapter, a solution to the practical problem of water budget modelling input

(precipitation) when dealing with large scale hydrology or basin with paucity of in situ

observation, is investigated. In this study, five high resolution satellite products (3B42V7,

CMORPH, TAMSAT, SM2R-CCI, and CFSR) are compared and analysed using the

available in situ data in one of the most topographically and climatologically complex

regions, the Upper Blue Nile basin. Considering three goodness-of-fit indexes, correlation,

bias and root mean square error (RMSE) between the SREs and ground-based gauge

rainfall, CMORPH, TAMSAT and SM2R-CCI outperform the other two. Furthermore, a

confusion matrix is used to investigate the detection ability of satellite rainfall products

for different rainfall intensities. TAMSAT has the highest (91%) detection skill for dry

days, followed by CFSR (77%). On the contrary, SM2R-CCI has the highest accuracy

index for medium rainfall ranges (10-20 mm). The empirical cumulative distribution

(ecd f ) mapping technique is used to correct the SREs intensities distribution. This

method provides a means to improve the rainfall estimation of all SREs, and the highest

improvement is obtained for CMORPH (bias reduction from -72% to -1%).

*This chapter is based on "Wuletawu Abera, Luca Brocca, Riccardo Rigon. 2016, Comparative evalua-
tion of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN)
basin, Journal of Atmospheric Research, in press "
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6.1 Introduction

Rainfall is the primary component of the water balance and is, therefore, the key input

for hydrological modelling and water resources analysis. Before any analysis for water

resource modelling and/or management can be carried out, it is essential to answer how

much water is flowing to the basin (Shaw et al., 2010). Traditionally, rainfall estimation

for hydrological modelling and water resource analysis is available from ground-based

rain gauges. However, there are many regions in the world where ground-based gauge

data are scarce, if available at all, and estimation of spatial rainfall field from ground-

based gauge data is elusive. Recently, satellite rainfall estimates (SREs) provide viable

alternative options (Ward et al., 2011; Tian et al., 2007; del Jesus et al., 2015; Ge-

bremichael and Hossain, 2010). The key advantage of SREs is that they provide spatially

and temporally continuous data that can be used to capture the variability of rainfall.

However, the retrieval of rain rate from satellite data is not straightforward and, hence,

over the past decades, numerous satellite rainfall estimation algorithms, applied to

different satellite sensors, have been developed. For instance, we can mention the Tropi-

cal Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA,

(Huffman et al., 2007; Kummerow et al., 1998)), the Climate Prediction Center (CPC)

morphing technique (CMORPH, Joyce et al. (2004)), the Precipitation Estimation from

Remotely Sensed Information Using Artificial Neural Networks (PERSIANN, Sorooshian

et al. (2000)) and recently products based on the novel SM2RAIN algorithm (Brocca

et al., 2014). All these products vary in terms of resolution (spatial and temporal) and

accuracy, hence, their performances and drawbacks for operational application in water

resources modelling must be assessed.

The Blue Nile basin, particularly the Upper Blue Nile basin (hereinafter UBN), is

one of the most physically and socially complex basins in Africa, but poorly covered

by rain gauges. The Basin is the part of trans-boundary river basin, where different

countries have different policies and legal regimes, sometimes with contrasting interest.

This encompasses a challenge on the basin water resource development. Due to the lack

of in situ data, most hydrological studies in the region are limited to small basins where

there are relatively better hydrometeorological data (Rientjes et al., 2011; Uhlenbrook

et al., 2010; Tekleab et al., 2011; Wale et al., 2009; Kebede et al., 2006; Bewket and

Sterk, 2005; Steenhuis et al., 2009; Conway, 1997; Mishra et al., 2004; Mishra and Hata,

2006). These studies usually pay little attention to a proper spatio-temporal rainfall

characterisation (Kim et al., 2008).
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Figure 6.1: The geographic location of Upper Blue Nile basin in the Nile basin (a) and
digitale elevation model of the basin (b). The points in figure b are the meteorological
stations used for this study.

Several validation studies of SREs have been conducted in the Ethiopian UBN basin

(Dinku et al., 2007, 2008; Haile et al., 2013; Gebremichael et al., 2014; Worqlul et al.,

2014; Romilly and Gebremichael, 2011; Hirpa et al., 2010; Habib et al., 2012). For

instance, two comparative studies by Dinku et al. (2007) and Dinku et al. (2008) on high

temporal (less than and equal to 10 days) and spatial (less than or equal to 10) resolution

products shows that CMORPH, TAMSAT (Grimes et al., 1999) and TRMM 3B42 (the

gauge-corrected version of TMPA products, Huffman et al. (2007)) are three SREs with

good accuracy and potentially useful for hydrological applications in the region. Dinku

et al. (2008) reported that CMORPH works better in Ethiopia than other regions of

Africa, while Haile et al. (2013), studying the accuracy of CMORPH over a subbasin of

UBN basin for three months, found poor accuracy with respect to other regions. More

recently, Gebremichael et al. (2014), by designing experimental rain gauges for two

summer seasons in two experimental locations (one in the lowlands and one in the

highlands) of the UBN basin, examined the accuracy of three high-resolution satellite

rainfall products (CMORPH, TRMM 3B42RT - the real-time version of TMPA - and

TRMM 3B42). Regarding the relationships between SREs goodness-of-fit values and

topography (particularly elevation) of the experimental sites, SREs overestimate the

mean rainfall rate in the lowlands and, vice versa, underestimate at the highland site.
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On 3-hourly time scales, the SREs miss more rainfall at the highland sites than at the

lowland sites. Worqlul et al. (2014) extended these studies by comparing TRMM-3B42

with two other products (Multi-Sensor Precipitation Estimate‚ÄìGeostationary (MPEG)

and the Climate Forecast System Reanalysis (CFSR)) in the Lake Tana subbasin in 2010

and found that MPEG and CFSR are far better than TRMM-3B42. CFSR is one of the

highest resolution (time and space), multiyear, global gridded reanalysis rainfall dataset,

and is used as input to the rainfall-runoff modelling in Gumera basin (subbasin of the

UBN) and provides similar performances to the ground-guage data model inputs (Fuka

et al., 2014). This study compliments the above mentioned researches (Dinku et al., 2007,

2008; Haile et al., 2013; Gebremichael et al., 2014; Worqlul et al., 2014), which have

been conducted either for some subbasin or only for short time series in some designated

experimental sites.

The objectives of this chapter are twofold: 1. to comparatively evaluate five daily

SREs, i.e. four commonly used products (TRMM 3B42, CMORPH, TAMSAT, and CFSR)

and the new SM2R-CCI (see Data sets section) product; and 2. to assess the potential

of improving the SREs by using a bias correction method. In the view of evaluating

the SREs for hydrological modelling, the study aims to unify all the above results by

analyzing relatively high resolution (daily) SREs against available daily gauged rainfall

data for a 10 year period (2003-2012). It is known that some products such as CMORPH

and IMERG are available at higher resolution (at sub daily time steps i.e. 30 min and 3

hour). However, in this study, we have focused at daily time steps due to two reasons.

Firstly, at large basin scale as UBN, the hydrological simulation at daily time step can

be considered high resolution. Secondly, there are no in-situ measured data to evaluate

the SREs estimation skills at sub daily time steps.

The chapter is organized as follows: section 6.2 provides a basic introduction to the

study basin, followed by data descriptions (section 6.3) of both SREs (subsection 6.3.1)

and ground-based data (subsection 6.3.2). Section 6.4 elaborates the methods used for

comparison and for bias correction of SRE. The comparison of SREs in relation to the

ground-baed data and the bias correction results, and the conclusions of the study are

presented in section 6.5 and 6.6 respectively.

6.2 Study area

The study basin is the Upper Blue Nile (UBN) basin. The UBN basin contributes to

60% Of the total contribution (85%) of the Ethiopian highlands to the Nile river flows
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(Abu-Zeid and Biswas, 1996; Conway, 2000). The total area of UBN enclosed at the

Ethio-Sudan border is about 175,315 km2 (figure 7.1). The UBN originates at Lake Tana,

and flows to Sudan, where it meets the White Nile River at Khartoum. The large scale

hydrological behavior of the basin is described in a series of studies (Conway, 1997,

2000, 2005; Conway and Hulme, 1993). Its hydrological behavior is characterized by high

spatio-temporal variability. Since UBN basin has the lion’s share of the total Nile flow, it

is the economic mainstay of downstream countries (Sudan and Egypt). Moreover, the

Ethiopian highlands are highly populated and have high water demands for irrigation

and domestic uses.

The topographic distribution of the basin is shown in figure 7.1 b. The topography of

UBN is very complex, with elevation ranging from 500 m in the lowlands at the Sudan

border to 4160 m in the upper parts of the basin. Due to the topographic variations, the

climate of the basin varies from cool (in the highlands) to hot (in the lowlands), with

large variations in a limited elevation range. The wet season, with low temperatures, is

from June to September, while the hot season is from March to May. Three controlling

mechanisms of the rainfall characteristics of the UBN, and Ethiopia in general (Seleshi

and Zanke, 2004), are the Intertropical Convergence Zone (ITCZ) that mainly derive the

wet monsoon rainfall in the wet season (June to September), the Saharan anticyclone

that generates the dry and cool northeasterly winds in the dry season (from October-

February), and the Arabian highlands that produce thermal lows in the mild season

(February - May). The mean annual rainfall and potential evapotranspiration of the UBN

basin are estimated to be in the ranges of 1200-1600 mm and 1000-1800 mm respectively

(Conway, 1997, 2000), with high spatio-temporal variability. The annual temperature

mean is 18.5o with small seasonal variability.

6.3 Data sets

6.3.1 Satellite Rainfall Estimate (SRE) products

In this section, we describe five high resolution SRE products, TRMM 3B42, CMORPH,

TAMSAT, CFSR, and SM2R-CCI, that will be used for rainfall estimates in the following

sections. All the products are available at spatial resolution of 0.25o (except TAMSAT

which is 0.035o) and temporal resolution of subdaily to daily. To obtain the rainfall

estimation, some of these products have different procedures (i.e., SM2RAIN as described

below), than the rainfall retrieval algorithm from passive microwave (PMW) / infrared
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(IR) observations. Nevertheless, here, we are referring SRE for all the five satellite-based

rainfall products. The detailed description of each algorithm/product can be referred to

in the literature cited in table 6.1.

TRMM is the joint NASA and JAXA mission originally aimied at studying tropical

rainfall (Kummerow et al., 2000; Rozante et al., 2010). TRMM 3B42 version 7 (hereinafter

defined as 3B42V7) (Huffman and Bolvin, 2013; Huffman et al., 2007) is among the TMPA

products with high spatial resolution of (0.25o) and high temporal resolution (3-hour).

The spatial coverage extends from 50 degrees south to 50 degrees north latitude. For this

study, 3B42V7 is obtained from NASA‚Äôs TRMM Online Visualization and Analysis

System (Liu et al., 2007, 2012) (http://disc.sci.gsfc.nasa.gov/precipitation/

tovas/). The detailed information on processing and generation of the 3B42V7 can be

found in the literature cited in table 6.1. We underline here that the 3B42V7 product is

corrected with rain gauge observations (i.e., it is not based only on satellite data). Indeed,

the 3-hourly rainfall fields are corrected on a monthly basis with the Global Precipitation

Climatology Centre (GPCC) monthly rain gauge dataset by using inverse-error-variance

weighting methods (Huffman and Bolvin, 2013; Huffman et al., 2007).

The CMORPH product (Joyce et al., 2004) is a rainfall estimation method that mainly

relies on PMW observation. It uses precipitation estimates that have been derived from

low orbit satellite PMW observations exclusively, and whose features are transported

via spatial propagation information that is obtained from geostationary satellite IR data

(Joyce et al., 2004). CMORPH is a near global product (60o north and south) and provides

data at 3 hourly and daily resolution since 1998; and at temporal resolution of 30-min

since December 2002. The 3-hourly precipitation at 0.25o spatial resolution data are

used for this study.

CFSR is one of the SREs assessed in this study. It is a reanalysis product that com-

bines the weather forecasts generated by the National Weather Service’s NCEP Global

Forecast System, and satellite data (Saha et al. (2010)). The analysis is reinitialized

every 6-hours, and it is obtained at hours 00:00, 06:00, 12:00, 18:00 UTC. The spatial

resolution of CFSR is about 38 km, and it is available since 1979.

Tropical Applications of Meteorology Using Satellite and Ground-Based Observations

(TAMSAT) (Grimes et al., 1999; Tarnavsky et al., 2014), is a rainfall product specialized

for Africa. It has been providing 10-day rainfall estimates since 1983 and recently

(since 2013) daily products are available. The TAMSAT rainfall estimation algorithm is

calibrated using the historical rain gauges, TAMSAT African Rainfall Climatology And

Time-series. The methodology and algorithms of the TAMSAT rainfall product derive
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6.3. DATA SETS

Table 6.1: Summary of the different satellite products used in this study. Because
CMORPH is available since December 2002, the study is based on only 10 years of data.
However, the statistical indexes analyzed for all the years with available data is almost
the same and the difference is not statistically significant.

SREs Spatial res.o Temporal res. Available Data used References
3B42V7 0.25 3-hourly 1998-present 2003-2012 Zhao and Weng (2002); Huffman et al.

(2007); Prakash et al. (2015); Ku-
mar et al. (2014); Duan and Bas-
tiaanssen (2013); Romilly and Ge-
bremichael (2010)

CMORPH 0.25 3-hourly 1998-present 2003-2012 Ferraro (1997); Joyce et al. (2004); Haile
et al. (2015); Romilly and Gebremichael
(2010); Gao and Liu (2013)

TAMSAT 0.0375 daily 1983-present 2003-2012 Grimes et al. (1999); Maidment et al.
(2014); Tarnavsky et al. (2014)

CFSR 0.3125 6-hourly 1979-present 2003-2012 Saha et al. (2010, 2006); Wang et al.
(2011); Xue et al. (2011); Saha et al.
(2014)

SM2R-CCI 0.25 daily 1990-present 2003-2012 Brocca et al. (2013, 2014); Ciabatta et al.
(2015)

from Meteosat imagery and gauge data using contemporaneous cold cloud duration

fields (Tarnavsky et al., 2014; Maidment et al., 2014). The product is available at a

resolution of 0.0375o at nadir (∼4 km). Some studies (Laurent et al., 1998; Thorne

et al., 2001; Chadwick et al., 2010; Maidment et al., 2013; Jobard et al., 2011) find that

TAMSAT estimates (over ten days) are comparable to the other SREs, even better in

some cases, when compared with gauge data. Dinku et al. (2007) showed that TAMSAT

(over ten days) rainfall estimates perform as well as CMORPH and TRMM (version 6)

in Ethiopia‚Äôs central highlands. However, the new TAMSAT daily rainfall estimates

performances have not yet been assessed.

The SM2R−CCI rainfall product is based on the SM2RAIN method (Brocca et al.,

2013) and is obtained from the CCI soil moisture product (Dorigo et al., 2015) for the

period 1990-2013 at 0.25¬∞ spatial resolution. The SM2RAIN algorithm is based on the

inversion of the water balance equation by considering the soil as a natural rain gauge

(Brocca et al. (2014)). The SM2RAIN-derived product provides an integrated estimate

of rainfall (daily in this case). In this study, SM2RAIN is applied for the first time to

the CCI soil moisture product, allowing to obtain a long-term (24-year) daily rainfall

product, by using the same approach given in Ciabatta et al. (2015). Specifically, the

SM2RAIN parameter values are calibrated by using the 3B42V7 product as benchmark

in the period 1999-2005. In the evaluation period, there is 3 years (2003-2005) of overlap

with the calibration period (1999-2005) between 3B42V7 and SM2R-CCI, that could
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(slightly) affect the independency between the two products. However, the use of different

length of data sets for SRE evaluation statistics (see section 6.4.1), which also have

longer period of independent data, helps to understand if this dependency affects the

results considerably. We note that this calibration is performed here for the UBN study

area but, potentially, it can be easily applied on a global scale.

6.3.2 Rain gauge rainfall data sets

Rain gauges across the UBN basin are very scarce. In this study, 35 daily rain gauges are

used. The in situ data is obtained from the national meteorological agency of Ethiopia.

The spatial location and elevation of the stations used for this study are shown in

figure 7.1b. The data are manually checked for quality and the final refined data are

used in the following analysis. Looking at the distribution of the stations, the upper part

of the basin has relatively higher station density than the lowland and the middle of the

basin (figure 7.1b).

6.4 Methodology

The daily rainfall data estimates from 3B42V7, CMORPH, TAMSAT, CFSR, and SM2R-

CCI at grid level are compared with daily rainfall data from raingauges. Since the

density of the rain gauges is very low and the topography of the study area is complex,

we decided not to interpolate the rainfall data over the spatial fields but to compare

directly point rainfall at the stations, with the the grid rainfall as in (Porcù et al., 2014;

Worqlul et al., 2014).

6.4.1 Performance metrics

To make the comparison we used the products at daily time steps. Therefore, all the

SRE products at sub daily time steps are accumulated into daily totals. Since we are

interested in assessing the entire performances of the SREs in the basin, the statistics

are calculated for the whole data set (including zeroes). We used the Pearson linear

correlation coefficient (r), the Root Mean Square Error (RMSE), and the BIAS goodness-

of-fit (GOF) indexes, as defined in appendix B. An important question concerning SREs

is their error sensitivity and variability to the length of data used for evaluation. In order

to assess the effects of data series length on the performance statistics (GOF statistics),

we used different sets of data series length for estimation of GOFs between SREs and
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gauge observed data. We have evaluated the SREs error statistics progressively for 1, 4,

7 and 10 year period. The 1 year means the analysis is based on only the first year of

the data set (2003), 4 years from 2003 to 2006, 7 years from 2003 to 2009 and 10 years

the whole period. Accordingly, we calculate the GOF statistics for the four data sets with

different length.

To further investigate the errors and prediction capacity of SREs, we decomposed

the errors in classes as in (Salio et al., 2015; Cohen Liechti et al., 2012; Haile et al.,

2013). They use two class of data, i.e., rain and no-rain distinction, and the products are

evaluated using the accuracy index, given by:

(6.1) Accuracy= Na +Nd

Na +Nb +Nc +Nd

Where the terms of the equation are described by the confusion matrix given in table 6.2.

Table 6.2: Confusion matrix based on the four possibilities of SRE detection of the guage
observed rainfall. The four possibilities are true positive (a), false positive (b), false
negative (c), and true negative(d).

SREs:Yes SREs:NO
Gauge: Yes a b
Gauge: NO c d

In this study, we further analyze the detection skill of the SREs by subdividing the

SREs into several rainfall classes based on observed rainfall amounts. Specifically, the

SREs are divided into 7 rainfall classes (all in mm/day): ≤ 0.1, 0.1-2; 2-5; 5-10; 10-20;

20-40; ≥ 40. The first class (class 0) characterizes dry days. In literature, separation of dry

days is obtained by imposing a minimum detectable rainfall threshold. This threshold

value is controversial, as it ranges from 0.1 to 1 mm/day (Jakob Themeßl et al., 2011;

Moon et al., 1994; Lázaro et al., 2001; Schmidli and Frei, 2005; Kisaka et al., 2015). In

this study, we use 0.1 mm as suggested by World Meteorological Organization (Jarraud,

2008).

The confusion (or matching) matrix of different SRE amounts versus rain gauge

measured amounts is estimated for each rainfall class. As it can be seen in the results

section, multi-class confusion matrix tells the proportion of SREs in different classes,

shown on the y-axis, for a given observed rainfall classes, in the x-axis. In the ideal

situation, where the SREs are perfectly consistent with the observed data, the matrix
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would be an anti-diagonal matrix where all the entries are zero except on the diagonal

going from the lower left corner to the upper right corner with ones.

6.4.2 Bias correction

The comparative evaluation study and selection of the best product may not always give

an accurate enough product for hydrological modelling. Therefore, further bias correction

of SREs could be important to obtain reasonable results (AghaKouchak et al., 2012). In

the second section of the analysis, systematic bias correction of SREs is performed. The

empirical cumulative distribution function (ecd f ) mapping bias correction technique,

initially proposed by (Panofsky et al., 1958), and recently applied for hydrological data

correction by (Themeßl et al., 2012; Michelangeli et al., 2009; Iizumi et al., 2011; Maurer

and Pierce, 2014; Hwang and Graham, 2013), is used. In this method, the ecd f of the

SREs is first matched to the ecd f of the gauges observed rainfall estimates, generating

a correction function depending on the data percentile. The correction function is derived

for each percentile. In the case a new extreme value is available in the SREs used in the

validation period/set, the correction function, based on the relationship between SREs at

validation points and correction function generated during validation period, is linearly

extrapolated. Then, the correction function is applied to the ecd f of the SREs (ecd f S,cal
i )

and the ecd f of the ground-gauge data at calibration points (ecd f G,cal−1

i ) to transfer the

original SREs (Sval
t,i ) to the corrected SREs (SCorr,val

t,i ) at other validation points, as given

by (Michelangeli et al., 2009; Themeßl et al., 2012)

(6.2) SCorr,val
t,i = ecd f G,cal−1

i (ecd f S,cal
i (Sval

t,i ))

where SCorr,val
t,i is the new corrected SRE for a given stations ,i and t time steps.

The ecd f −1 is the inverse of the ecd f . S and G are SRE and gauge rainfall estimate,

respectively. The subscript t, i are are the time steps and station number, respectively.

As shown in different studies (Cai et al., 2015; Hossain and Huffman, 2008; Ebert

et al., 2007), biases and errors in SREs exhibit space and time variability. To reduce the

effect of spatial variability in bias correction procedure, the 35 stations are systematic

divided into two groups: 17 stations for calibration and 18 stations for validation as shown

in (figure 6.2). The correction function (equation 6.2) is constructed based on all stations

combined ecd f matching between the observed rainfall and SREs at calibration stations.

The function generated is used to develop new corrected SREs that can be evaluated at

validation stations. While this approach may not provide the highest performance at a
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particular station, it is useful to assess the basin scale performance of the bias correction

procedure. Similarly, to reduce the effect of temporal SREs errors, the bias correction

procedures is calculated for each season independently (Bennett et al., 2014). For the

sake of simplicity, as the basin receives 75% of the rain in summer (Mellander et al.,

2013), we apply the procedure only in the summer season (June, July, and August).
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36 38 40
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La
t
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Validation stations

Figure 6.2: The spatial distribution of stations used to generate the correction function
(calibration stations) and used to evaluate the performances of the ecd f mapping method
(validation points).

For validation of time series bias correction procedure, the data set (10 years of

data for all stations) is split in to two; the first 5 years (2003-2007) to develop the

transfer function, and the next 5 years (2008-2012) for subsequent evaluation of the

bias correction procedures using the same approach of spatial cross validation. The

procedures of transfer function generation and validation are applied for all stations

combined.
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6.5 Results and Discussions

The study results are presented in two subsections. The first part comparatively evaluates

the five daily SREs against the gauge observed rainfall data. The second subsection

focuses on the results of SREs bias correction using ecd f matching method.

6.5.1 Comparative evaluation of SREs

The five SREs are analyzed based on GOF statistics (r, RMSE and BIAS) and on their

detection capability (confusion matrix and accuracy index). In figure 6.3, we summarized

the GOF statistics between the SREs and gauge observations by splitting the 10 years of

data into subsets of 1, 4, 7 and 10 years.

Figure 6.3 illustrates that GOF statistics generally show stability with increasing

length of data series used for the evaluation of SREs. For instance, for 3B42V7, the

median value of r slightly decreases (from 0.5 to 0.47) with increasing the length of data

period from 1 to 10 years. Similar patterns are observed for all the other SREs, except

SM2R-CCI which shows an overall improvement when the whole period is considered.

The latter result is expect due to the higher accuracy and temporal resolution of the CCI

soil moisture product (Dorigo et al., 2015) on which the SM2R-CCI product is built on.

The correlation coefficient comparison between the SREs shows that CMORPH, TAMSAT

and SM2R-CCI perform better than the other two SREs. The same figure demonstrates

that the correlation of CFSR is low and characterized by high variability as shown by the

long boxplot. The median r value of 3B42V7 (0.47) is generallyhigher than the values

reported by Worqlul et al. (2014), which however has a maximum value of 0.54 (monthly

scale analysis).

The data analysis for 1, 4, 7, and 10 year data sets illustrates that also the effect of

length of the data set on RMSE values is rather limited (figure 6.3, second row). For most

SREs, RMSE median values for 1 year validation is smaller (likely due to the selection of

2003 that is a dry year), and it increases to 4 year, and then it keeps stable for 7 and 10

years. The comparison between the SREs for the 10 years evaluation results is consistent

with the correlation results, i.e., the RMSE value of TAMSAT (6.85 mm/day), SM2R-CCI

(6.88 mm/day), and CMORPH (7.3 mm/day) shows better performances in comparison to

the other SREs.

The daily RMSE values of CFSR and 3B42V7 by Worqlul et al. (2014) at a specific

subbasin (Lake Tana watershed) is 6.2 and 4.0 mm/day, respectively. These values are

smaller than our results (CFSR=8.9 mm/day, 3B42V7 = 7.52 mm/day). The difference
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Figure 6.3: Comparison of SREs with the ground-based rainfall estimation using (above)
correlation (-), (middle) Root mean square error (mm/day) and (below) BIAS (-). In the
boxplot, the horizontal line in the middle shows the median, the bottom and top end
of the box shows the 25th and 75th percentile, respectively, the whiskers (vertical line)
shows the range of the data, of the GOF values. For CFSR and TAMSAT, some stations
(with high annual gauge observed rainfall) shows outliers GOF values (dot in in the
figure).

(as discussed below) could be due to the stations in the lowland area of the basin (the

western part) which shows higher RMSE values than the eastern and north-eastern

highlands where Lake Tana basin is located. Hence, it can be interpreted that RMSE

of CFSR is smaller than the 3B42V7 in the highlands (to be specific Lake Tana basin),

while the results in this study shows that at the whole UBN basin, 3B42V7 shows better

performance (RMSE = 7.52 mm/day) than CFSR (RMSE=8.91 mm/day). The study of

Young et al. (2014), in the Oromia region of Ethiopia, find similar results: TAMSAT

and CMORPH have lower RMSE values in comparison to 3B42V7 at daily time steps.

Based on the r and RMSE statistics, CMORPH outperforms 3B42V7, which is consistent

with the results of Bitew et al. (2012) for the small subbasin of UBN basin, the Koga
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watershed, but for a single year.

In general, the effect of data length on BIAS is very small, and it is valid for all the

SREs (figure 6.3, third row). For instance, the BIAS for 3B42V7 decreases from 4% for 1

year evaluation to -4% in 10 years, the same level of BIAS but opposite sign. A similar

slight decline in BIAS is shown for CMORPH (frm -66% to -72%) when the number of

years in the analysis increases. The comparison of the five products using BIAS is not

consistent with the products comparison using r and RMSE (figure 6.3, the third row).

For instance, SM2R-CCI (0.001) has the lowest BIAS, followed by 3B42V7 (-0.042) and

CFSR (-0.06). The low BIAS of SM2R-CCI has to be attributed to the use of 3B42V7

for the calibration of the parameter values of the SM2RAIN algorithm. Note that while

CMORPH is better in estimating ground-gauge rainfall using the two previous statistics

(i.e., r and RMSE), it is underestimating by 72%, thus being the most biased product of

the five SREs. This could be because CMORPH is only based on satellite products, and

not corrected using ground data as 3B42V7. TAMSAT, on average, is underestimating

rainfall by 30%.
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Figure 6.4: The spatial distribution of GOF values for different SREs: correlation coeffi-
cient (first row), RMSE (second row) and Bias (third row).

The spatial distribution of the the three GOF values (r, RMSE, BIAS) are presented

in figure 6.4. Overall the distribution of the statistics can depict a spatial pattern, i.e., the

correlations in the eastern and northeastern part of the basin are higher than western

and southwestern part. Similar pattern can be inferred from the RMSE and BIAS
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statistics that are smaller in the eastern part (the highlands), while they are higher in

the western lowlands of the basin. The BIAS statistic shows a less pronounced pattern in

comparison to r and RMSE. While CMORPH shows high underestimation at all stations,

3B42V7, CFSR, and SM2R-CCI shows the same described pattern. Generally, CFSR

has less spatial pattern in the statistics, and has relatively high spatially mixed results

(figure 6.4).As elevation increases from the west towards the east and northeast part of

the basin, the pattern can be partly explained by elevation. The general pattern is that

SRE performance increases with elevation (data not shown). Gebremichael et al. (2014)

did a comparison study between the highland and lowland sites, when using RMSE and

BIAS, they found the similar result. I.e., the highland sites show better performances

than the lowland sites.

Following the results of GOF analysis, the comparison of SREs using the confusion

matrix and the accuracy index is carried out. The confusion matrix in figure 6.5 sum-

marizes the relative bias of SREs for a given observed rainfall class. To analyses the

performances of each rainfall class, the SREs values were grouped based on the observed

rainfall classes in the x-axis. For instance, the first column shows the distribution of

SREs when the gauge recorded rainfall values ≤ 0.1: it describes the distribution of SRE

records for this specific observed rainfall class.

3B42V7 (figure 6.5a) has the higher detection capacity for the first class (≤ 0.1

mm/day, 68%), with lower performances for the other rainfall classes (≤ 26%). Except

for the first and second rainfall classes (≤ 0.1, 0.1-2mm), which have high detection

capacity (73% and 52%, respectively), the higher rainfall classes (≥ 10mm) show very low

detection by CMORPH (below 5%). It is important to note that apparently CMORPH does

not detect observed rainfall ≥ 20 mm at all. In general, compared to 3B42V7, CMORPH

has a systematic underestimation for all the rainfall ranges (figure 6.5b). The confusion

matrix analysis results of CFSR (figure 6.5c) show that the pattern in the detection

capacity is similar to CMORPH for the first class and to 3B42V7 for the other classes.

Two important results of the SM2R-CCI confusion matrix (figure 6.5d) are its rel-

atively higher detection capacities for medium rainfall values (from 5mm to 20mm)

and relatively lower detection for lower rainfall intensities (38%), likely due to noise in

soil moisture observations (see e.g., Ciabatta et al. (2015)). It is only SM2R-CCI that

has detection capacity of 25% and above for rainfall ranges between 5 to 20 mm. In

general, SM2R-CCI, being based on soil moisture, tends to aggregate the rainfall volume

thus being more accurate in the estimation of accumulated rainfall than 3B42V7 and

CMORPH that relies on the estimation of instantaneour rainfall rates. This result is also
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Figure 6.5: Confusion matrix that shows the proportion of observed rainfall classes in
the x-axis reproduced by the different SREs (3B42V7 (a), CMORPH (b), CFSR (c), and
SM2R-CCI (d), TAMSAT (e)) in the y-axis. Each value in the confusion matrix is the
proportion of the gauge observed rainfall class (along column) that is estimated as a
particular SREs class (along row). The comparison of SREs using accuracy index, for
different rainfall classes, is shown in figure F. The statistics are based on the daily rain
gauge data size of <0.1 mm (N = 71010), 0.1-2 mm (N = 11059), 2‚Äì5 mm (N = 8500),
5-10 mm (N = 8602), 10-20 mm (N = 8546), 20-40 mm (N=5141) and >40 mm (N = 1098).
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Figure 6.6: Annual mean cumulative rainfall estimations based on five SREs and gauges
data.

important as it highlights the large potential that could be gained by the integration of

these two kinds of SREs (e.g., SM2R-CCI and CMORPH or 3B42V7 or TAMSAT).

Among the five SREs, TAMSAT has the highest detection capacity for lowest rainfall

intensities (91%). For all classes, TAMSAT has the highest missing rate and the highest

recorded is for the 0.1-2 mm observed rainfall class (54%), while the systematic bias

for all the classes is relatively low (figure 6.5e). The SREs detection capacity is further

evaluated by the overall accuracy capacity, and the comparison is shown in figure 6.5f.

The result confirms the confusion matrix analysis.

The time series rainfall summary analysis is useful for comparative evaluation, but

does not provide insight into the aggregate effects of using different SREs on water

resource modelling. Figure 6.6 shows the comparison of long term (2003-2012, 10 years),

mean cumulative rainfall for different SREs and measured data. A sample of three

stations systematically selected to represent different ranges of elevation and spatial

location is used in the analysis. These are Mehal Meda, Debre Markos, and Assosa

which are located at high (3084 meters), medium (2446 meters) and low (1600 meters)

elevations, respectively. The spatial location of the three stations is shown in the maps

plotted in figure 6.6. Four comments can be drawn:

1. Based on the three stations, the observed long term annual rainfall shows that the
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effect of elevation is masked by the rainfall climatological regime difference (Mel-

lander et al., 2013). Mehal Meda which is at the highest elevation has a lower

mean annual rainfall than Debre Markos.

2. Although CFSR and CMORPH show consistent patterns across elevations, CMORPH

always underestimates, whereas CFSR always overestimates rainfall. From this

analysis, CMORPH and CFSR have a significant BIAS.

3. The errors on cumulative annual rainfall given TAMSAT, 3B42V7 and SM2R-CCI

across elevation are rather contrasting. For instance, 3B42V7 and SM2R-CCI

slightly overestimate in high and low elevation while underestimate in middle

elevation. TAMSAT shows high underestimation in the highland station, and

progressively overestimate in the lowland station.

4. The 10 year mean cumulative rainfall value of the five SREs differ tremendously.

The total mean annual rainfall difference between the SREs is about 600 mm (in

Mehal Meda), 2740 mm (in Debre Markos), and 1600 mm (in Assosa).

6.5.2 Bias correction using ecdf mapping

This subsection assesses and discusses the improvements obtained by using the bias

correction function generated at the calibration stations (or calibration time series) and

applied to the SREs at validation stations (or validation time series). This technique is

evaluated i) by comparing the SRE ecdf and the gauge rainfall ecdf, and (ii) by computing

statistics (e.g., BIAS, confusion matrix, and accuracy index) between ground data and

the SREs before and after the correction.

Figure 6.7 shows the variance of SREs (before correction) ecd f distribution from the

gauge rainfall ecd f distribution in the case of spatial cross-validation strategy. For all

SREs except TAMSAT, it is shown that there is dry-day frequency underestimation. In

comparison to the gauge observed rainfall, most SREs tend to overestimate very low

(light) rainfall frequency (‚Äúdrizzling-effect‚Äù Wilcke et al. (2013)), as shown in ecd f
distribution at figure 6.7a. The observed drizzling traits for most SREs could be due to its

large spatial scale representation in comparison to the point ground-gauge observation.

To avoid this kind of effects, the selection of a proper threshold for dry/wet days plays

an important role. In figure 6.7, the zoomed-out plot, gauge observed dry day frequency

is used to determine the dry/wet threshold. However, in this approach, a problem arise

when SRE dry-day frequency is much greater than the gauge observed rainfall (Themeßl
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data before correction, used to construct the ecd f correction function (a), and SREs and
observed data after the correction function applied for the validation data set (b). The
zoomed-in plot in figure a is used to identify the dry and wet days for the SREs.

et al., 2012; Wilcke et al., 2013), and when dry-day frequency corresponds to high rainfall

value for determining SRE threshold. The dry-day frequency matching approach , as

shown in figure 6.7a, is used to define the threshold for CFSR (at 1 mm), 3B42V7 (at 0.5

mm) and CMORPH ( at 0.3 mm) in the JJA period. However, for TAMSAT the dry-day

frequency is already to high, and threshold is kept to the original 0.1 mm. Contrary to

TAMSAT, SM2R-CCI dry-day and low intensity rainfall is much smaller than the gauge

observation. For SM2R-CCI the dry-day frequency matching pointed to high threshold

(4.5 mm). Since this will cut an important rainfall information, and as the use of this

threshold (4.5 mm) reduce the bias correction performances, we also used the original 0.1

mm threshold for SM2R-CCI. Once the threshold information for the SREs is estimated,

below these thresholds, the rainfall values are set to be zero, and above the threshold the

ecd f of SREs are mapped to the ecd f of the observed data to construct the correction

function. This correction function is thus used to correct new SREs.

The overall evaluation of SREs improvement from the bias correction application in

both independent station (cross-validation) and time series GOF index (mainly bias),

confusion matrix, and detection capacity (accuracy) are shown in table 6.3 and figure 6.8.

The table 6.3 shows application of the ecd f bias correction in a spatial cross-validation
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and future time series validation improves SREs. The result illustrate that for spatial

cross-validation application, except CFSR, most SREs rainfall bias strongly improved.

For instance, the highest bias observed was -70% for CMORPH, and the summer season

bias correction method improves it to only -4% (table 6.3), followed by SM2R-CCI from

-12% to 1%. The improvement in the detection capacity, however, is very small. This

could be due to the use of a single correction function for the summer season as a whole.

The construction of monthly correction functions could further improve the results. The

results for time series split are very similar. The exceptional in the time series evaluation

is 3B42V7 which does not show any improvement in bias.

The overall detection capacity improvement from the correction procedures is also

presented in figure 6.8A and B. Generally, it improves the detection capacities and bias

of the SRE products. For instance, for spatial cross-validation, large proportions of CFSR

and SM2R-CCI estimates, 15 to 30% and 40 to 60% respectively, are concentrated in

the 5-10mm rainfall range. The correction function improves this trend and BIAS for

all classes is distributed to all classes of SREs estimations. The derivation of dry/wet

rainfall threshold using the ecd f matching also improves the detection capacity for the

zero (dry) rainfall class, except for TAMSAT, which already has the highest detection

capacity for dry days (figure 6.8). This is important because it gives an objective decision

on reducing the small rainfall values by the SREs i.e drizzling effects of the products.

In the case of TAMSAT, the correction function did not improve the detection capacity

of the first class (class 0) because the products have no "drizzling effect" and instead

overestimate dry days in comparison to the observed rainfall data. In this case, since it

has the highest detection capacity for zero class (figure 6.5), the raw SREs are accepted

for the first one or two classes and the ecd f matching will be applied to high values.

The correction in 3B42V7 improves the dry days estimation, however, it increases the

missing rate to higher rainfall values. The result of future time series validation shows

exactly the same pattern of improvement (figure 6.5B). The independent station and

future time series validation results suggest that simple ecd f bias correction procedure

can be used to obtain better quality SREs at non-gauge sites and in future realization of

UBN basin.

6.6 Conclusions

This chapter comparatively evaluates five satellite rainfall datasets over the Upper Blue

Nile basin at daily time steps for 10 years, and uses ecd f bias correction technique
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Figure 6.8: The effects of bias correction on the confusion matrix of different SREs (CFSR,
CMORPH, SM2R-CCI, TAMSAT, and 3B42V7 from above to below) during the summer
season(June, July, August) applied in independent stations (A) and in future time series
(B). The first column shows the detection capacities of SREs before the bias correction
and the second column is after bias correction.
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Table 6.3: The comparison of different SREs using summary statistics (Bias) and detec-
tion capacity (accuracy index) against the gauge observed data at validation stations and
time series during summer season (JJA) for about 10 years. The effect of bias correction
on the other statistics (correlation coefficient and RMSE) is very small, and results are
not reported

spatial cross validation time series validation
Before correction After correction Before correction After correction

SREs BIAS (%) Accuracy BIAS Accuracy BIAS (%) Accuracy BIAS Accuracy
CFSR 13.60 0.51 -16.00 0.52 16.40 0.52 15.20 0.51
CMORPH -70 0.53 -4.0 0.56 -72.20 0.53 -1.10 0.55
SM2R-CCI -12.70 0.52 -1.40 0.54 -7.70 0.51 -2.60 0.54
TAMSAT -26.20 0.55 11.30 0.58 -23.80 0.55 11.30 0.57
3B42V7 -9.00 0.54 -1.60 0.55 -12.20 0.54 -12.80 0.55

to improve SREs. Different goodness-of-fit statistics (r, RMSE, BIAS) and confusion

matrix are utilized to compare SREs and evaluate the bias correction strategy. The major

findings are summarized as follows:

• The correlation coefficient based on 10 years of daily data at the whole basin scale

shows similar value for TAMSAT (median=0.51), SM2R-CCI (0.5), and CMORPH

(0.52), slightly better than 3B42V7 (0.47) and CFSR (0.3) performances.

• CFSR has the highest RMSE (8.9 mm/day) followed by 3B42V7 (7.5 mm/day) and

CMORPH (7.3mm/day); TAMSAT (6.8 mm/day) and SM2R-CCI (6.8 mm/day) show

relatively lower RMSE values.

• CMORPH has the highest BIAS (-72%), with most of the stations tends to have

similar BIAS.

• The spatial distribution of GOF shows that the eastern part of the basin (highlands)

has higher performances (lower RMSE and BIAS, and higher correlation) than the

western part of the basin (lowlands).

• Generally, the detection skill decreases with increasing rainfall classes. TAMSAT

has the highest detection skill for dry days while SM2R-CCI has better detection

capacity for medium rainfall intensities (10-20 mm/day).

• The mean annual cumulative rainfall analysis shows, at some stations, that the

difference amongst the various SREs is as high as about 2700 mm. Such a huge

difference in rainfall is the real concern in using SREs for water balance modelling,

and it shows that the choice of SRE product is a topic of real interest.
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• The two validation strategy of ecd f bias correction, grouped cross validation

and time series split validation, show that there is room for improvement with

relatively small efforts. The highest and lowest bias improvement following the

ecd f correction procedures is shown for CMORPH and CFSR, respectively.

In summary, different SREs exhibit different skills. The quantification of different SREs

performances and characterization of errors is an important initial step for distributed

hydrological model set-up in the basin. As it is not possible to depict the whole picture of

SREs impact on the basin hydrological budget, the implementation of SREs and bias

correction procedure in hydrological modeling framework in UBN basin is an important

issue we would like to address in the next step.
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WATER BUDGET MODELLING OF UPPER BLUE NILE

BASIN USING JGRASS-NEWAGE MODEL SYSTEM AND

SATELLITE DATA *

Learning from previous chapters’ modelling and analysis experience, this chapter shifts

to practical problems of data scarcity and modelling framework that requires to resolve

water budget in the case of large scale hydrology. For this, one of the most complex basin

in topographical, hydrological and social system, Upper Blue Nile (UBN) is used. To solve

the issue of hydrometerological data shortage, different satellite products are employed.

Precipitation product SM2R-CCI is used for forcing the water budget model, MODIS ET

and GRACE storage are used as independent data comparison of JGrass-NewAge ET

and storage component simulations. The rainfall-runoff simulation at each river links

shows that JGrass-NewAge reproduce the discharge well. Finally, the calibrated model is

used to estimate the space-time water budget of Upper Blue Nile basin from 1994-2009

(16 years). The results can be used as reference for any water resource development

activities in the region.

*This chapter is based on "Wuletawu Abera, Giuseppe Formetta, Luca Brocca, Riccardo Rigon. Water
budget modelling of Upper Blue Nile basin using JGrass-NewAge model system and Satellite data: in
preparation
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7.1 Introduction

Freshwater is scarce resources in many regions of the world: the problem continued to be

aggravated due to growing populations and significant increases in demand for agricul-

tural and industrial purposes. Nile river basin is one of such regions, with relatively arid

climate, due to high temperature and solar radiation fostering rapid evapotranspiration.

Most of the countries in the basin such as Egypt, Sudan, Kenya, Tanzania, receives

insufficient fresh water (Pimentel et al., 2004). The exceptions are the small area in

the equators and the Upper Blue Nile basin in Ethiopian highlands which receives up

to 2000 mm per year (Johnston and McCartney, 2010). Particularly, Upper Blue Nile

(hereafter UBN) basin is the main sources of water resource in the region. However, it

is probably one of the most hydroclimatologically and socio-politically complex basin.

The water resources in the basin faces many pressures and challenges: (1) As a main

contributor (i.e 85%) to the main Nile basin, it supports lives of hundreds of millions of

people in the downstream, and it is refereed as "water Tower" of northeast Africa; (2)

locally, the basin is inhabited by 20 million of people whose main livelihood is subsis-

tence agriculture (Population Census Commission 2008); (3) topographically, the basin

is very complex: it starts from mountain as high as 4300 meter and drains to lowlands,

of about 450 meter; (4) UBN is a part of trans-boundary river, hence its development

and management requires diplomatic discussion from many national governments; (5)

Many international and nongovernmental organizations, with different policies, legal

regimes, and contrasting interests, are involved for the basin freshwater governance;

(6) Ethiopian government started many water resource development projects such as

irrigation and dams, among which Grand Ethiopia Renaissance dam (GERD), which,

upon completion, will be one of the largest in Africa.

To tackle all these complexities and challenges and develop better water development

strategies is only possible based on quantitative information (Hall et al., 2014) on the

hydrological system. Understanding the hydrological process of the basin, therefore,

is the base for both transboundary negotiations about the sharing of the basin water

resources (FAO 2000) and for assessment of sustainability of subsistence farming systems

in the region.

Due to the lack of hydrometeorological data and proper modelling framework, how-

ever, spatio-temporal hydrological information in the basin is very scarce. Hence, the

recent modeling efforts conducted in the basin has limitations to address this problem.

Studies in the region are limited to small basin particularly in Lake Tana basin where
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there are relatively better hydrometeorological data (Rientjes et al., 2011; Uhlenbrook

et al., 2010; Tekleab et al., 2011; Wale et al., 2009; Kebede et al., 2006; Bewket and Sterk,

2005; Steenhuis et al., 2009; Conway, 1997; Mishra et al., 2004; Mishra and Hata, 2006;

Teferi et al., 2010), or at the whole basin scale, but in which case information on spatial

variability is usually ignored (Kim et al., 2008; Kim and Kaluarachchi, 2009; Gebremicael

et al., 2013; Tekleab et al., 2011). Others are limited to a specific hydrological processes

e.g. rainfall variability (Block and Rajagopalan, 2007; Abtew et al., 2009), time series and

statistical analysis of in situ discharge/rainfall data (Teferi et al., 2010; Taye and Willems,

2011) or modelling at very low temporal resolution (monthly) (Kim and Kaluarachchi,

2008; Tekleab et al., 2011). Consequently, spatially distributed information on all the

components of water budget does not exist.

This chapter is therefore an effort to contribute to the above mentioned problems, and

aims to resolve the water budget of UBN basin using a hydrological modelling framework

and remote sensing data. It is also a methodological chapter, in what it delineate various

methodologies to overcome the data scarcity, and inherits from chapter 3 and 4.

The chapter is organized as follows: first descriptions of study area and model setup

are given(section 7.2) then the methodologies for each water budget components and the

model set-up is detailed in section 7.3. The results and discussions of each component

and the water budget is presented in section 7.5. Then, conclusions of the study is

followed (section 7.6).

7.2 The study basin

Upper Blue Nile (UBN) river flows from Lake Tana at Bahid Dar and flows to southwest

through a series of cataracts. After about 150 km distance, the river enters into deep a

canyon, and at the same slowly change direction south. After another 120 km flow, the

river finally changes its direction to the west and northwest to the El Diem (Ethiopia-

Sudan border). Many tributary rivers draining from many part of highlands of Ethiopia

join the river along the way. The total distance of the river within Ethiopia is about

1000km.

UBN basin contributes to 60% Of the total contribution (85%) of the Ethiopian

highlands to the Nile river flows (Abu-Zeid and Biswas, 1996; Conway, 2000). The area

of UBN enclosed at the Ethio-Sudan border is about 175,315 km2 (figure 7.1), covers

about 17% of the total area of the country. The large scale hydrological behavior of the

basin is described in a series of studies (Conway, 1997, 2000, 2005; Conway and Hulme,
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1993). Its hydrological behavior is characterized by high spatio-temporal variability.

Since UBN basin has the lion’s share of the total Nile flow, it is the economic mainstay of

downstream countries (Sudan and Egypt). Moreover, the Ethiopian highlands are highly

populated and have high water demands for irrigation and domestic uses.

Figure 7.1: Upper Blue Nile basin and digital elevation map, along with the meteorologi-
cal stations.

The topographic distribution of the basin is shown in figure 7.1. The topography of

UBN is very complex, with elevation ranging from 500 m in the lowlands at the Sudan

border to 4160 m in the upper parts of the basin. Due to the topographic variations, the

climate of the basin varies from cool (in the highlands) to hot (in the lowlands), with

large variations in a limited elevation range. The wet season, with low temperatures, is

from June to September, while the hot season is from March to May. Three controlling

mechanisms of the rainfall characteristics of the UBN, and Ethiopia in general (Seleshi

and Zanke, 2004), are the Intertropical Convergence Zone (ITCZ) that mainly derive the
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Figure 7.2: UBN basin and the subbasin partition used for simulation in this study. The
square points are the discharge measurement stations.

wet monsoon rainfall in the wet season (June to September), the Saharan anticyclone

that generates the dry and cool northeasterly winds in the dry season (from October-

February), and the Arabian highlands that produce thermal lows in the mild season

(February - May). The mean annual rainfall and potential evapotranspiration of the UBN

basin are estimated to be in the ranges of 1200-1600 mm and 1000-1800 mm respectively

(Conway, 1997, 2000), with high spatio-temporal variability. The annual temperature

mean is 18.5o with small seasonal variability.

7.3 Methodology

7.3.1 Water budget modelling

The water budget simulation is essential estimation of both storage and fluxes (rate of

flow) of water for a given appropriate control volume and period of time. It is given by:
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(7.1)
∂Sk(t)
∂t

= Jk(t)+
m(k)∑

i
Qki(t)−ETk(t)−Qk(t)

where J(t) is the rainfall data, and ET is actual evapotranspiration, Q(t) is discharge,

Qki(t) is the discharge coming from the contributing streams. The index k = 1,2,3... is

the control volume where the water budget is solved. In our case, the control volume is a

portion of the basin (a subbasin) derived from topographic partitioning as described in

section 7.3.2.

In case of data scarcity, remote sensing (RS) observations contributes to fill the gaps,

and therefore effective utilization of different RS products is clearly a new paradigm

in hydrological modelling activities (Andrew et al., 2014; Sahoo et al., 2011; Gao et al.,

2010). In large African basin, where in situ data are very poor, RS data could be even

better than the in situ observation.

In this study, different RS data are used to close the water budgets, and are used

both as input and for evaluation of the modelling solutions implemented.

7.3.2 JGrass-NewAGE system set-up

The JGrass-NewAGE hydrological model system is the one used to resolve the water

budget of UBN basin. JGrass-NewAGE is actually a set of modelling components that

can be connected at runtime (Formetta et al., 2014c) to form various modelling solutions.

JGrass-NewAGE system (Formetta et al., 2011) and different individual components

are described in a series of papers (Formetta, 2013; Formetta et al., 2014d, 2013b, 2011,

2014c,a; Abera et al., 2014), and is not re-discussed here. In this study, solar radiation

budget (SWRB), Evapotranspiration component (Priestley and Taylor), Adige rainfall-

runoff model, and all the components illustrated in 7.3 are used to estimate the various

hydrological flows .

The necessary step for spatial hydrological modeling is partitioning of the topographic

information into appropriate spatial scale. The GIS representation of the basin topogra-

phy, as detailed in (Formetta et al., 2014a; Abera et al., 2014; Formetta et al., 2011), is

based on the Pfafstetter enumeration (Formetta et al., 2014a; Abera et al., 2014). The

basin is subdivided in Hydrologic Response Units (HRUs), where the model inputs (i.e.

meteorological forcing data), the hydrological processes and outputs (i.e. evapotranspira-

tion, discharge, net radiation) are averaged. The basic water budgets are estimated for

each HRU, and, subsequently, a routing scheme is applied to move the discharge to the

basin outlet through the channel network.
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We divide the UBN basin into 402 subbasins and channel links as shown in figure 7.2.

This spatial partitioning may not be the finest scale possible, however, considering the

size of the basin, it can be considered an acceptable compromise to capture the water

budget spatial variability.

ADIGE: Rainfall-runoff

Figure 7.3: Workflow with a list of NewAge components (in white), and remote sensing
data processing parts (gray shaded, not yet included in JGrass-NewAGE but performed
with R tools) used to derive the water budget of UBN. It does not include the components
used for the validation and verification processes.

7.3.2.1 Precipitation J(t)

Regards to the input term of Eq. 7.1 (J(t)), the spatio-temporal precipitation, it is quan-

tified based on RS-based approaches (chapter 6). Different satellite rainfall estimates

(SREs) available for varied accuracy and purposes. The use of SREs and lists products

that can be used in hydrological applications can be found elsewhere in literature (Hong

et al., 2006; Bellerby, 2007; Huffman et al., 2007; Kummerow et al., 1998; Joyce et al.,

2004; Sorooshian et al., 2000; Brocca et al., 2014). Regardless of the recent advancement

of rainfall retrieval algorithm, SREs are still subjected to significant uncertainty due to

various factors including sensor problem, infrequent satellite overpasses, large spatio-

temporal scale, and retrieval algorithm (Hong et al., 2006; AghaKouchak et al., 2009;

Hossain et al., 2006).
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Five, high spatial and temporal resolution, potentially good SREs for hydrological

applications for the same basin is analyzed in chapter 6, shows that SM2R-CCI (Brocca

et al., 2013, 2014) is one of the best products in the basin particularly in capturing the

total rainfall volume. Hence, for this study, SM2R-CCI is used as input data for the

modelling. The persistent nature of systematic errors i.e. bias (Habib et al., 2014) of

SM2R-CCI is removed according to the ecdf matching techniques, as in chapter 6.

Once the SM2R-CCI are corrected for bias errors, it is used to examine the spatio-

temporal precipitation variability of the basin and drive the JGrass-NewAGE modelling

system to solve the discharge. Hence, the subbasin mean precipitation is estimated by

averaging all the pixels inside each subbasin. Accordingly to the basin partition described

in section 7.3.2, for 402 subbasin, 1994-2009 daily precipitation is generated.

7.3.2.2 Evapotranspiration ET

The ET component, as it is an important flux of a basin, is very crucial for agricultural

and water resource management. However, the lack of in-situ data impedes the modelling

effort and makes it probably the most difficult task in water budget estimation. In this

study, ET is formulated according to NewAge evapotranspiration component using

energy budget as input. This approach instead provide estimates at any temporal and

spatial resolution required. The ET is mainly depends on net solar radiation, as it

is the main quantity of radiant energy available at the surface to drive the surface

biophysical processes and evapotranspiration (Kjaersgaard et al., 2009). Priestley and

Taylor (hereafter referred as PT) Formula (Priestley and Taylor, 1972) is one of the

simplified models to estimate ET, mainly based on net radiation,Rn, and simplified all

the unknowns by α coefficient, as it shown in Eq. 7.2. PT formula is given by:

(7.2) ET =α ∆

∆+γ (Rn)

Here α the unknown factors to estimate the ET. Based on some empirical data, there

are some specific values have been suggested in literature, α =1.26 is commonly used,

however, a wide ranges of α is reported (Pejam et al., 2006) and are not enough to close

water budget at a particular area. When aimed for water budget closure i.e actual evapo-

transpiration at different temporal and spatial scale, Abera et al (submitted, chapter 5)

modified PT introducing water storage constraint functions based on information that

can be obtained from Adige rainfall-runoff component (i.e HYMOD). In this study, this

approach has been followed. The reformulated ET equation is given by:
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(7.3) ET(t)=α S(t)
Cmax

∆

∆+γ (Rn)

Where ∆ and γ is slope of the Clausius-Clapeyron relations and psychometric con-

stant, respectively, as given in 5. The α and the Cmax (maximum water storage capacity

of each HRUs) is calibrated together inside the rainfall-runoff model for a given Budyko

assumption of null storage. In this study,Budyko′s time,TB (Budyko, 1978), i.e. assump-

tion of null water storage after a specified number of years, six years, has been taken.

This approach is innovative because it combines the atmospheric demand and soil storage

information to solve the α coefficient, hence the ET. The detail procedure on this is given

in chapter 5.

In equation 7.3, While S(t)/Cmax determining the availability of water to be evap-

orated, the Rn is the main input modulating the atmospheric demand component of

ET. NewAge shortwave radiation budget component SWRB, Formetta et al. (2013b)

is used to estimate each subbasin shortwave radiation budget in clear sky condition.

Irradiance at clear sky conditions is however unsuitable for all sky condition. Because

surface Shortwave radiation is strongly affected by cloud cover and cloud type (Arking,

1991; Kjærsgaard et al., 2009), the cloud fractional cover (CFC) satellite data set (Karls-

son et al., 2013) processed and provided by EUMETSAT Climate Monitoring Satellite

Application Facility (CM SAF) project (Schulz et al., 2009) is used to cut the clear sky

SWRB estimated using NewAge-SWRB to Rn all sky condition, as in the following

formulation (Kim and Hogue, 2008):

(7.4) Rn = (1−CFC)SWRB

When SWRB is the net shortwave radiation estimated using the NewAge-SWRB

component at each Subbasin, and Rn is the net radiation. For this, the daily CFC

originated from polar orbiting satellites, version CDRV001, at the daily time resolution

and 0.25
′
spatial resolution from 1994 to 2009 (16 years) is processed (Karlsson et al.,

2013) to obtain the mean daily CFC for each subbasin. In comparison to the effects of

CFC, the surface albedo is very minimal particularly in highland area with vegetation

cover and no snow cover like UBN basin.

Once the ET is estimated according to the methods described, it is useful to validate

with independently obtained ET estimates or data. ET in situ observations are not

available for this basin, as it is not for most regions. RS based estimates of ET have
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been produced by different algorithms (Norman et al., 1995; Mu et al., 2007; Jarmain,

2009). We used the standard MODIS evapotranspiration product MOD16 (Mu et al.,

2007). MOD16 is available at spatial resolution of 1-km and temporal resolution of

8-day, monthly and annual scales. Different from NewAge approach, MODIS ET product

(MOD16) also considers vegetation index such as land cover type (Mu et al., 2007). Here,

MOD16 ET specially provided for the Nile basin countries (Hofste, 2014) is used for

assessment of the NewAge estimation. The only difference from the standard MOD16 is

that it considers improved land cover and water bodies. The objective of the comparison

is not for strict validation of either estimation, but to assess the level of consistency

between the two independent estimation, and to provide feedback on the product. More

detail on the comparison strategies is described section 7.4.

7.3.2.3 Discharge Q

For discharge estimation, ADIGE rainfall-runoff component is used. Adige component

is based on the well know HYMOD model (Moore, 1985). The main inputs for ADIGE

model are J(t) and ET(t), as estimated in the above sections. Detail description of

HYMOD implementation in NewAge model system is given at Formetta et al. (2011) and

chapter 5, and a concise summary is given at appendix C. The ADIGE rainfall-runoff

has five calibration parameters, and the calibration is performed using the particle

swarm (PS) optimization. PS is population based stochastic optimization technique

inspired by social behavior of bird flocking or fish school (Kennedy et al., 1995). It

is advantageous to obtain global optimal, and less susceptible to get trapped in local

minima (Scheerlinck et al., 2009). The objective function used for the optimal value is

Kling-Gupta efficiency (Kling et al., 2012). The formulation of the Kling-Gupta efficiency

(KGE) and other GOF indexes used for evaluation of the model performances in this

chapter are presented in appendix B.

7.3.2.4 Total water storage change ds/dt

The ds/dt in Eq. 7.1 is the water contained in the ground, soil, snow and ice, lakes and

rivers, and biomass. It is total water storage (TWS) change, calculated as the residuals

of the water budget fluxes for each control volume. In this chapter, the ds/dt estimation

at daily time steps is based on the interplay of all the other components as presented in

Eq. 7.1. There is no way to estimate areal TWS from in situ observations. The new Gravity

Recovery and Climate Experiment (GRACE) data (Landerer and Swenson, 2012) has a

potential to estimate this component, but at very low spatial and temporal resolutions.
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GRACE is a mission based on two twin satellites that measures spatiotemporal variations

of water storage that is derived from a continuous observation of the gravity field. At

this scale, however, GRACE can still be used for constraining and validating data to the

modelling solutions. Here, the performance of our modelling approach to close the water

budget i.e. estimating storage following the characterization of all the terms, is assessed

using the GRACE estimation at the basin scale. Since the other fluxes are modeled as

function of basin water storage, for instance Q and ET, good estimation of water storage

of a model has inference to its reasonable computation of other fluxes as well (Döll et al.,

2014). GRACE data is an extraordinary resource to assess the over all performance of

the simulation, at least at the basin scale.
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Figure 7.4: The spatial distribution of daily mean (a) and annual mean rainfall estimated
from long term data (1994-2009).

7.4 Calibration and validation approach

The precipitation data is error corrected based on the in situ observation. The Adige

rainfall-runoff component, i.e HYMOD model parameter, are calibrated to fit the observed

discharge during the six years of calibration period (1994-1999) at daily time step. Based

on the approach described ET estimation, the ADIGE component is also used to calibrate

the PT α. The simulation for each hydrological component is verified using the available

in-situ or remote sensing data as follows:
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Figure 7.5: The spatial distribution of quarterly percentages of rainfall in Autumn (a),
Winter (b), Spring (c) and Summer (d) of the total annual precipitation.

• Discharge validation: Discharge simulation is calibrated for a separate time-series

data at the outlet, where the model is calibrated. In addition, the simulation of

NewAge at the internal links is validation where there is in situ data are available.

The evaluation at the internal links provide an assessment of the model estimation

capacity at a location where gauges are absent.

• ET validation: Once ET is estimated according to the procedures described, MOD16 (Mu

et al., 2011) is used as independent data set for assessing the ET estimation. Since

the MODIS is 8-daily data at 1km resolution, two steps are followed for easy com-

parison. (1) the MOD16 ET is spatially aggregated at subbasin scale, and (2) the

NewAge daily ET is temporally aggregated to 8-daily. Based on the same spatial

and temporal resolution, the MODIS and the model ET is compared, and the GOF

indexes are calculated based on 7 years data (2003-2009).

• ds/dt validation: The water storage change, ds/dt, estimated from the model-

144



7.5. RESULTS AND DISCUSSIONS

ing solution is evaluated using GRACE data set. We used the GRACE prod-

uct to estimate the total water storage change (TWSC) for the the whole basin.

Monthly data is obtained from NASA Jet Propulsion Laboratory (JPL)ftp:// podaac-

ftp.jpl.nasa.gov/allData/tellus/L3/land mass/RL05 in units of cm equivalent water

thickness. The leakage errors and scaling factor (Landerer and Swenson, 2012)

that is provided with the product is applied to improve the data before the com-

parison is made. The total error of GRACE estimation is a combination of GRACE

measurement and leakage errors (Billah et al., 2015). Based on the two error

data, the mean monthly error of GRACE TWSC in the basin is about 8.2 mm. To

harmonize and enable comparison between the model and GRACE TWS data, it

is necessary to do both time and spatial filtering. Following the GRACE TWSc

temporal resolution, the model ds/dt is aggregated at monthly time steps. Since

error of GRACE increases if used at small scale, the comparison is made only at

the whole basin scale.

In summary, SM2R-CCI is evaluated against the available in-situ gauges, evapotran-

spiration is evaluation using the MOD16, discharge simulation using in situ discharge

measurements, and the total storage estimation using the GRACE data. Once the perfor-

mances of each component are evaluated, then, the spatio-temporal water budget of the

basin is modeled and quantified.

7.5 Results and discussions

The results of the study are organized as follows: First, the results on the simulation

performance and comparison with independent data, along with brief spatio-temporal

characteristics of the fluxes and storage are presented. The simulated water budget

components are described chronologically i.e. 1) Precipitation, 2) evapotranspiration, 3)

discharge and 4) total water storage. Second, the components are used to resolve the

water budget closure at each subbasin, hence, the contribution of each term is analyzed.

7.5.1 Precipitation J

The spatial and temporal variability of J(t) is analyzed in this section. The spatial dis-

tribution of long term mean daily and annual precipitation is presented in figure 7.4.

SM2R-CCI shows that south and the southwest part of the basin receives high precipita-

tion while the east and northeast part of the highland receives low precipitation. The
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highest rainy subbasin are in the southern part of the basin in the Oromia regions. It

obtains mean annual rainfall about 1900 mm. The mean annual precipitation reported

for this region by Abtew et al. (2009) is about 2049 mm. The discrepancy could be

that Abtew et al. (2009) estimation is from point gauge data, while this study is based on

the areal data from SM2R-CCI. Generally, precipitation increases from the east (about

1000 mm/year) to south and southwest part (1800 mm/year). This distribution map is

consistent with the results of Mellander et al. (2013); Abtew et al. (2009).

To understand the spatial distribution of seasonal cycle, quarterly percentage of the

total annual precipitation calculated from 1994 to 2009 daily estimations is presented in

figure 7.5 . During the summer season, while the subbasin in the north and northeast

receives about 65% (figure 7.5 d), the subbasin in the south part do receives about

40% of the total precipitation. Generally, the seasonal variability of the basin is very

high. Studies found out that the interannual and seasonal variability of precipitation

in UBN basin is governed by Southern Oscillation Index (SOI), equatorial eastern

Pacific sea level pressure, sea-surface temperature (SST) over the tropical eastern Pacific

Ocean (Camberlin, 1997; Seleshi and Zanke, 2004).

7.5.1.1 Evapotranspiration ET

Based on the approach detailed in our methods, the ET is estimated for each subbasin at

daily time step. Figure 7.6 shows a sample of spatial and temporal estimation of MOD16

and NewAge ET for some systematically selected (selected from the four seasons) at

8-days time resolution. While the spatial pattern has some similarities, the magnitudes

of ET amount between the model and MOD16 estimation is different. In all the maps, ET

tends to be high in the lowlands of the basin (western part). MOD16 estimation, however,

considerable underestimates ET in comparison to NewAge. Time series comparison of

two ET from 2000-2009 for some selected subbasin (figure 7.7) shows that MOD16 highly

underestimates ET. Other studies also show similar results that MOD16 considerably

underestimate in comparison to some model estimations and eddy covariance flux towers

data (Yilmaz et al., 2014; Knipper et al., 2016; Schaffrath and Bernhofer, 2013; Ramoelo

et al., 2014).

NewAge revealed high level of temporal variability while MOD16 shows similar

temporal patterns between the years. The agreement between the two estimations vary

from subbasin to subbasin (figure 7.7). For instance, in figure 7.7b shows relatively better

consistency while figure 7.7d has lower agreement between the two. The spatial distri-

bution of the correlation and PBIAS between the model and MOD16 data is presented
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Figure 7.6: The Spatial and temporal variability of ET in 8-day intervals for both MOD16
and NewAge in the study area.

in figure 7.8a and b respectively. The NewAge estimation in the eastern part of the

basin shows higher correlation with the MOD16 data, while the correlation tends to

decrease systematically towards the west i.e. to the lowlands (figure 7.8a). Similarly, the

PBIAS shows that the western part, border to the Sudan, has very high underestimation

(figure 7.8b). The overall correlation and PBIAS between NewAge and MOD16 is 0.48±
0.15 and 14.5 ± 18.9 respectively. Based on the consistency we made, and our ability to

characterize the other water budget solution with observation and GRACE, we can point

out that the performance of MOD16 is low, and need to be improved in this region.

7.5.1.2 Discharge Q

The optimized Adige model parameters obtained at the Ethio-sudan border during

the calibration period are presented at table 7.1. Automatic calibration of NewAge

rainfall-runoff component conducted at Ethio-Sudan border during the calibration period

provided very good GOF indexes values (KGE=0.93, PBIA = 2.2, r = 0.94). The model

performance is verified during the validation period, and the performance is almost

similar to the validation period. It is also evaluated at the internal river of the basin.
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Figure 7.7: Time series ET estimation with NewAge and MOD16 at 8-days of time steps
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Figure 7.9 shows simulated hydrograph for some channel links, when available, along

with the observed discharge. At the outlet, even during the validation period, the model

is able to capture the dynamics of the basin response very well (KGE=0.92, PBIAS =

2.4, r = 0.93). The results shows that the performances of NewAge simulation is better

than the performances reported by Mengistu and Sorteberg (2012). Generally, the model

predict well both the high flows and low flows, with slight underestimation of peak flows

(figure 7.9 a) likely due to the underestimation of SM2R-CCI precipitation data for high

rainfall intensities (Abera et al. Submitted, chapter 6).

Table 7.1: Optimized parameters obtained from daily ADIGE simulation during the
calibration periods (1994-1999). The last parameter is of the ET component.

Parameters value
Cmax[L] 694.18
Bexp[−] 0.64
α[−] 0.61
Rs[T] 0.086
Rq[T] 0.394
α[−] 2.9

For further analysis and understanding on the forecasting capacity of NewAge for

discharge, model fitness for some internal sites are described here. For Gelgel Beles

river enclosed at the bridge near to Mandura, with area of 675 km2, the hydrograph

comparison between NewAge simulated and observed discharge is shown at figure 7.9

b. The performance of uncalibrated NewAge at Gelegel Beles has correlation coefficient

and PBIAS value of 0.64 and 0.58% respectively. The KGE value is 0.48.

The forecasting skills of NewAge at the Ribb river enclosed at Addis Zemen (area 1592

km2) is very high with KGE = 0.81, PBIAS = 12 and r = 0.82 (figure 7.9 c). Comparing

with SWAT Model performances at this station during validation period (Tekleab et al.,

2011; Setegn et al., 2008), despite SWAT was calibrated for this specific subbasin, the

results of this study are much better.

In comparison to the SWAT, WASE-Tana, and FlexB models applied in Gilgel Abay

River enclosed at Merawi (Wosenie et al., 2014), even with calibration for the particular

basin, NewAge outperform. For instance, the simulation result (PBIAS=12, r=0.93) at

Gilgel Abay based on the calibration at the basin outlet (see table 7.2), can be compared

with the results of Wase-Tana (PBIAS=34, R2=0.8), SWAT ( PBIAS=5, R2=0.63) and

FlexB (PBIAS=77.6, R2=0.75). It revealed that with out calibration the performances

of NewAge is comparable with other models which is calibrated for this specific basin,
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Table 7.2: The forecasting skill of NewAge Adige rainfall-runoff component at the internal
sites based on the optimized parameters calibrated at the outlet. The performance in the
outlet (El Diem) is the model performance at validation period.

River Name (Hydrometer stations) Area (km2) KGE PBIAS r
Koga @ Merawi 244 0.58 24.00 0.73
Jedeb @ Amanuel 305 0.38 9.80 0.53
Neshi @ Shambu 322 0.58 32.00 0.57
Suha @ Bichena 359 0.40 53.20 0.82
Temcha @ Dembecha 406 0.70 3.30 0.71
Gilgel Beles @ Mandura 675 0.46 0.58 0.64
Lower Fettam @ Galibed 757 0.48 32.20 0.82
Gummera @ Bahir Dar 1394 0.10 -66.20 0.88
Ribb @ Addis Zemen 1592 0.81 12.00 0.86
Gelgel Abay @ Merawi 1664 0.81 12.00 0.93
Main Beles @ Bridge 3431 0.55 -17.70 0.74
Little Anger @ Gutin 3742 0.11 44.80 0.77
Great Anger @ Nekemt 4674 0.72 -14.10 0.77
Didessa @ Arjo 9981 0.55 19.60 0.81
Upper Blue Nile @ Bahir Dar 15321 0.26 5.10 0.60
Upper Blue Nile @ El Diem 174000 0.92 2.40 0.93

sometimes even better. From other study in this basin, Dile et al. (2013) found ENS

value between 0.54 to 0.74 using SWAT calibration.

The Angar river subbasin is located in the southern region of the UBN basin. The

topography ranges from 860 to 3210 meter, and is dominated by forest land cover (Easton

et al., 2010). It is located in high rainfall zone of the basin. The performance of NewAge

for Angar river enclosed near Nekemt (area 4674 km2) is KGE = 0.72, PBIAS = -14.10,

and r = 77 (table 7.2). The comparison of simulated and observed discharge and its

location is shown at figure 7.10h. Easton et al. (2010) obtained R2=0.79, and NSE = 0.89

using SWAT model, also the parameters are calibrated for the subbasin.

The performances of NewAge simulation at the outlet of Lake Tana (area 15321 km2)

is relatively low. This could be due to poor characterization of the Lake water fluxes. The

performance of NewAge simulation (KGE = 0.26, PBIAS = 5.10, and r = 0.60) can be

compared with SWAT simulation performance by Mengistu and Sorteberg (2012) (PBIAS

= 25, R2=0.78) during validation period, but with calibrated parameters at this station.

Dedisa river basin is one of the main tributary of UBN basin, enclosed at hydromter
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Figure 7.9: NewAge model forecasting validation at internal subbasins. The model
calibrated and validated at El Diem (a) is used to estimate at each channel link, and
verified at link where discharge measurements are available: main Beles bridge (b), Ribb
river enclosed at Addis Zemen (c), just simulation of the main Blue Nile before joining
Beles river (d), Jedeb near Amanuel (f), Dedisa river basin enclosed near Arjo (g), Angar
river basin enclosed near Nekemt (h), and Nesh near Shambu (i). figure (e) shows the
long term estimated daily discharge at all river links of the basin.

station near to Arjo, the total area is about 9981 km2. The model performance for this

station is KGE=0.55, PBIAS = 19.60, and r = 0.81. Hydrograph comparison between

model and observed discharge is shown in figure 7.9g.

For most subbasin, because the model performances i.e. KGE is higher than 0.5 and

PBIAS is within 20%, estimated discharges is deemed to be adequate for forecasting and

estimating water resource at locations where gauges are unavailable. The model also

able to reproduce discharge at across the range of scales. For instance, the performances

at the Ethiopia-Sudan border (174 000 km2), Dedisa near Arjo (9981 km2), main Beles

(3431 km2), and Temcha near Dembecha are acceptable (figure 7.9 and table 7.2).

A sample of spatially distributed daily discharge at all the channel links is shown
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Figure 7.10: The spatial distribution of simulated discharge at each links of the basin at
daily time steps. Here, the spatial distribution of discharge is shown for the first day of
May, June, July, August, September, and October of 1994.

in figure 7.10. Here, the daily discharge for the first day of May, June, July, August,

September and October are presented to show the spatio-temporal dynamics of discharge.

The spatial distribution of the GOF values between the NewAge simulation and observed

discharge in all the available hydrometers is shows at table 7.2.

7.5.1.3 Total water storage change

The NewAge simulated ds/dt for 16 years for each subbasin as residuals of the flux terms.

We first compared the simulated ds/dt with GRACE based TWSC. Figure 7.11 shows

ds/dt time series for the whole basin estimated using NewAge and GRACE. The storage

change shows high seasonality over the basin, and with positive change in summer,

and negative change in winter. The change varies from -100 to +120 mm/month. The

model ds/dt aggregated at monthly time scale is in accordance with the GRACE TWSC,

both in temporal pattern and amplitude. Over the whole basin, correlation coefficient
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0.84 is obtained. The good performances of the ds/dt also has an inference on the model

capability to reproduce other components well,as it is the residual terms to balance the

flux dynamics.

The spatial distribution of NewAge ds/dt and GRACE based TWSC for four months

(January, April, July, and October) of 2005 is shown at figure 7.12. The comparison is

based on the NewAge modelling at subbasin scale, and GRACE grid resolution of 10. Due

to the possible high leakage error introduced at high spatial resolution (Swenson and

Wahr, 2006), statistical comparison at subbasin level is not performed. However, focusing

on maps of the sample months, some level of similar spatial and temporal pattern is

revealed (figure 7.12).
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Figure 7.11: Comparison between basin scale NewAge ds/dt and GRACE TWSC from
2004-2009 at monthly time step.

7.5.2 Water budget closure

The water budget components (J, ET, Q, ds/dt) of 402 subbasin of UBN is simulated for

duration of 1994-2009 at daily time series. Figure 7.13 is long term monthly mean water
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Figure 7.12: Comparison of Spatial distribution of NewAge ds/dt and GRACE TWSC for
January, April, July, and October 2005. Note that the sptial resolution of NewAge ds/dt
and GRACE is subbasin scale and 10 X 10 respectively

budget closure derived from 1994-2009. The four months (January, April, July, and Octo-

ber) are systematically selected to show the four seasons (winter, Spring, summer and

Autumn). For all the components, the mean seasonal variability is very high. Generally,

the seasonal patterns of Q and S follows the J, showing highest in summer (i.e July) and

lowest in winter (i.e January). However, simulated ET shows distinct seasonal pattern

from other components, and the highest is during spring (October), followed by winter

(January). During summer, it is low most likely due to high cloud cover.

The variability between the subbasins also appreciable. Except summer season (July),

all components tends to increase from east to southwest part of the basin. On the contrary,

during summer, the eastern part of the basin receives its highest rainfall, store more

water, and generate high runoff as well. In general, at this time scale, the dominant

role vary with months. For instance, in January ET is the dominant while in June and

July S is more dominant. After summer season, Q and ET are the dominate flux. This

knowledge is very important for water resource management. Based on all subbasin and

all year results, the variability in ET that can be explained by J is zero (R2=0.01) at short

time scale such as at a daily and monthly scale. Conversely, at yearly time scale, 78% of

ET variance is explained by J.

The spatial variability of long term mean annual water budget closure is shows at

figure 7.14. The spatial variability J and Q is higher than S and ET. The higher Q and ET

in the southern and southwestern part of the basin could be due to higher J. Similarly Q
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Figure 7.14: The spatial distributions of long term mean annual water budget closure:
precipitation in mm (a), the output term (Q, ET, S) in mm (b), and the percentage share
of the output term (Q, ET, S) of the total precipitation (c).

is lower in the eastern and northeaster part of the basin. Focusing on the percentage

share of the output term (Q, ET, S) of the J (figure 7.14 c), ET dominant the water budget

followed by Q. Note that the eastern subbasin with low ET have still high percentage

share of ET due to low amount of J receives.

The long term basin average water budget component shows that 1360 ± 230 mm of

J followed by 740 ± 87 mm of ET, 454 ± 160 mm of Q and -4 ± 63 mm of S. While the

spatial variability of the water budget is high, the annual variability is rather limited.

The higher annual variability is observed for J, followed by Q. years 2001 and 2006 are

wet years, characterized by high J and Q. Conversely, 2002 and 2009 are dry years with

1167.480 mm and 1215.123 mm per year of precipitation. Detail on the two dry years

(2002, 2009) can be refereed in Viste et al. (2013).

Figure 7.16 provides long term monthly mean estimates of water budget fluxes and

storage. The basin scale mean budget is highly variable. The highest variability is mainly

in J and S. During summer months, J, Q, and S shows high magnitude. ET is not highest

in June, July and August, but, in October and December. The accumulated S in the

summer season is feeding to the highest ET in autumn, and causes very high drops in S

(figure 7.16).
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7.6 Conclusions

The goal of this study is to estimate the water budget and its spatial and temporal

variability using JGrass-NewAge hydrological model system and remote sensing data

over upper Blue Nile basin from 1994-2009 (16 years). Different remote sensing data are

used to force and verify the modeling results. The results can be summarized as in the

following.

The basin scale annual precipitation over the basin is 1360 ± 230 mm, and spatially

highly variable. The southern and southwestern part of the basin receives highest

precipitation and tends to decrease towards the eastern part of the basin (figure 7.4).

The comparison of simulated ET with MOD16 shows that MOD16 underestimate ET

considerable. Spatially, the Correlation between MOD16 and NewAge ET is higher in
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Figure 7.16: Basin scale long term monthly mean Water budget components based on
estimates from 1994 to 2009. It shows the relative share of the three components (Q, ET
and dS/dt) of the total available water J.
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7.6. CONCLUSIONS

the east and northeast part of the basin. Generally, the interannual variability of ET is

high, and tends to be higher (lower) in Autumn (summer). The average basin scale ET is

about 740 ± 87 mm, and is the second dominant component of water budget in the basin.

NewAge Adige rainfall-runoff component is able to reproduce discharge very well at

the outlet (KGE = 0.92), and the verification results at the internal sites revealed that

the model can be used for forecasting at ungauged links. Here, discharge is estimated for

each channel links in the basin. The long term annual runoff of UBN basin is about 454

± 160 mm.

The NewAge storage estimations and its space-time variability is effectively verified

by the basin scale GRACE TWSC data. The total water storage change estimated using

GRACE and NewAge shows high correlation, and similar amplitude. Generally, the long

term water budget simulation shows that, the basin is equilibrium around zero storage

(-4 ± 63 mm).

Different remote sensing data (SM2R-CCI, SAF EUMETSAT CFC, MOD16, GRACE)

are effectively employed to force the water balance modelling and verify model results,

and the performance of the modelling solution is promising (figure 7.9 and 7.11, and

table 7.2)
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CONCLUDING SYNTHESIS

This study is conducted to characterize and simulate basin water budget at varying

spatial and temporal scale. The study has also sought to identify different datasets useful

for hydrological simulation in data scarce areas and in large scale basins. To obtain

this, this study combined uDig GIS spatial toolbox to efficiently handle spatial data, and

JGrass-NewAge model system to simulate different hydrological processes.

Spatially-distributed hydrological models, through their integration with GIS, ex-

plicitly represent basin physical properties and processes. However, different GIS tools

used in hydrological models has been criticized for lack of sophisticated analytical and

modelling capability. In addition, most of the GIS have limitation in processing time-

series (or short time steps) data, are platform dependent, have closed source code that

impedes customization of post and pre-processing of hydrogeomorphological data. The

tools we use, the JGrass-Spatial toolbox is a specialized GIS for hydrogeomrophological

application, with the aims to solve the aforementioned problems. It facilitates the work

of the hydrologists (either developers/users), can efficiently integrate with spatial data,

and allows researchers to modify the source codes at their demand (chapter 2).

The key advantage of spatially-distributed models is their ability to use spatial

information of both basin geomorphology and forcing data. In the case of semi-distributed

models, the spatial information is aggregated in some level. The spatial aggregation is not

virtue by itself, but facilitates the modeling activities from different perspectives (Ajami

et al., 2004; Khakbaz et al., 2012), and helps to obtain major hydrological fluxes at useful

spatial and temporal time scales.
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CHAPTER 8. CONCLUDING SYNTHESIS

Focusing only on the spatial representation of geomorphological information, both

the topographic and topological elements of basins are important variables required. It

is obvious that the representation of geomorphology in hydrological models varies from

model to model, and their impact on hydrological forecasting has been an active area of

research. However, the results are inconclusive. The use of geomorphological information

as formulated in the geomorphic unit hydrograph, first proposed by Rodríguez-Iturbe

and Valdés (1979), and recently summarized by Rigon et al. (2015), is well established

methods of analyzing the effect of basin geomorphology on basin response. By comparing

the level of topographic information according to fully distributed (at finest scale grid

data) and semi-distributed (some level of aggregated units such as Hydrologic Response

Units, HRUs) models, some level of understanding can be obtained as shown in chapter

3. However, even though, some interesting results are found, further research is required

to integrate the empirical findings into the practical modeling solutions.

Having hydrological information, at many locations inside the basin, contrary to the

traditional estimation of integrated behavior of the hydrological system at outlet, is

modern day societal demand. For that, a hydrological modelling framework which uses

the spatial basin information and spatiotemporal forcing data is required (Fatichi et al.,

2016).

Precipitation, with its spatial variability, is not only the main forcing, but it is the

input component for any water budget computation. Hence, its proper representation

is a key for reasonable water budget modelling. The effort to generating improved pre-

cipitation data brought two research directions. In the first approach, applicable when

appropriate in situ data are available, sophisticated tools of statistics can be used to

elaborate the spatial information. Kriging algorithms have been the standard tools for

hydrological analyses, and efforts to improve these algorithms continues. The improve-

ment in semivariogram model parameters calibration and the selection procedures of

theoretical semivariogram is clearly very crucial and an important contribution as illus-

trated in chapter 4. Another important practical question is how to separate precipitation

into snowfall and rainfall which was solved with the use of remote sensing. Particularly

MODIS snow cover and snow albedo data has been very useful (chapter 4) in establishing

a new methodology.

The second approach to generate spatial information of meteorological inputs is to

use remote sensing data. Satellite rainfall estimates (SREs) are a practical option when

the basin of interest lacks in situ data and is a large basin. However, different SREs have

different skills and their accuracy greatly varies from area to area. The improvement
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of this approach, pursued in chapter 6, includes the comparison of viable products with

available in situ data and some kind of post processing such as bias correction.

The simulation results for water budget output terms, runoff and evapotranspiration,

can follow different formulations, but need to be consistent with the level of coarse

graining. In this thesis, coarse graining was implicitly obtained by using different spatial

aggregation (i.e. Hydrologic Response Units, HRUs) of different sizes for basins of

different dimensions, and switching form the hourly time scale to the daily time scale for

the quantity forecasted. This has required a certain amount of pre-treatment of the input

data, their averaging (or summation) that have been performed thanks to the ability of

the JGrass-NewAGE system. Detailed conclusions of the single sections of this study are

reported at the end of each chapter and are summarised for the readers’ convenience

here below.

The water budget of Posina river basin (116km2) and Upper Blue Nile (UBN) basin

(about 175315km2) are simulated with JGrass-NewAge model system. For Posina basin,

the simulation is at hourly time-steps by using 18 years of meteorological data (rainfall

and temperature) and discharge. The analysis of UBN basin is based on 16 years of daily

steps and mainly based on the remote sensing data and few hydrometer measurements.

The analyses include estimations of the four components of water budget (precipitation,

discharge, relative storage, and evapotranspiration).

At Posina river basin, the spatial precipitation and temperature is characterized us-

ing Kriging. Four types of kriging are performed. Based on one-leave-out cross-validation,

local ordinary kriging and local detrended kriging, those considering only the nearest

stations, relatively outperform ordinary kriging and detrended kriging. The effect of

semivariogram model selection at this spatial small scale is minimal. The kriging inter-

polation helps to estimates the spatial variability in a few km scales, and helps to obtain

appreciable spatial variability for water budget input. The use of automatic selection

of the semivariogram, instead of fitting a single semivariogram to the whole analysis

period, improved kriging estimation.

For precipitation estimation in UBN basin, five satellite rainfall datasets are evalu-

ated at daily time steps for 10 years (2003-2012). The mean annual cumulative precipita-

tion analysis shows, at some stations, that the difference amongst the various satellite

rainfall estimates is as high as about 2700 mm. The correlation coefficient based on 10

years of daily data at the whole basin scale shows almost similar value for TAMSAT

(median=0.51), SM2R-CCI (0.5), and CMORPH (0.52), slightly better than 3B42V7 (0.47)

and CFSR (0.3) performances. CMORPH has the highest BIAS (-72%), with most of the
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stations tends to have similar bias. The ecdf-matching bias correction procedure provided

highest performance for CMORPH. Based on the comparison analysis, SM2R-CCI is

selected to be used as input to the water budget modeling.

The NewAge HYMOD rainfall-runoff component is used to estimate the spatial runoff.

For both basins, discharge simulation is calibrated at the outlet of the basins and used to

estimate at each channel link. Based on the goodness-of-fitness statistics, the rainfall-

runoff component provides acceptable performances. The discharge measures inside the

basin helps to quantify the reliability of internal discharges by assuming the validity of

model parameters calibrated at the overall outlet. For Posina, the model performances at

the interior sites are similar the outlet performances. Similarly, in UBN basin, NewAge

rainfall-runoff component is able to reproduce discharge very well at the outlet, and

the verification results at the internal sites revealed that the model can be used for

forecasting at ungauged links.

Priestley-Taylor (PT) method is used to estimate the evapotranspiration component

of the water budget, and to infer the relative storage of water under the hypothesis

of stationarity (null storage). This approach is sufficient to set a value for the mean α

coefficient apt to obtain the mean evapotranspiration if the precipitation and discharge

data are measured well. For Posina basin, by moving the null storage hypothesis along

the first 17 years, variable values of the PT α obtained and it can be interpret as an

estimate of the error in evapotranspiration to be accumulated with uncertainty produced

in precipitation and discharge estimate. To consider both the atmospheric demand and

local water storage supply at each hillslope for ET estimation, the PT α is optimized

coupled with the HYMOD storage information and PT radiation budget for five year null

storage assumption (Budyko assumption). For UBN basin, the second approach is applied

to estimate space-time dynamics of evapotranspiration. The results of NewAge simulated

evapotranspiration are compared with MODIS evapotranspiration (MOD16), and shows

that MOD16 underestimate ET considerably. Spatially, the correlation between MOD16

and NewAge ET is higher in the east and northeast part of the basin.

For both basins, the spatial and temporal dynamics of storage is estimation based on

water budget equation for each HRU. In the case of UBN basin, storage estimation is

effectively verified by the basin scale GRACE total water storage change data. The total

water storage change estimated using GRACE and NewAge shows high correlation, and

similar amplitude.

For Posina basin, the annual variability of the precipitation is as high as 1400 mm,

with minimum annual value of 1355 mm in 1995/1996 and maximum 2700 mm in
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2010/2011. The inter annual variability in discharge is high, with minimum annual

value of 1003 mm in 1995/96 and maximum 2072 mm in 2010/2011. Both the contribution

and uncertainties of evapotranspiration to the water budget is very high. While evapo-

transpiration accounts 19-38% of the precipitation, its annual uncertainty is about 20%

(148 mm on average). Based on consistency of the water budget, it can be observed the

high interannual variability of the fluxes, with certainly the variability of precipitation

dominating it. In all years, discharge is larger than evapotranspiration. Either (relative)

positive and negative water storages have been found.

In the case of UBN basin, the spatial variability in the water balance terms, as

expected is high. The basin scale annual precipitation over the basin is 1360 ± 230 mm,

and spatially highly variable. The southern and southwestern part of the basin receives

highest precipitation and tends to decrease towards the eastern part of the basin. The

interannual variability of evapotranspiration is high, and tends to be higher (lower)

in Autumn (summer). The average basin scale evapotranspiration is about 740 ± 87

mm, and is the second dominant component of water budget in the basin. The long term

annual runoff of UBN basin is about 454 ± 160 mm. Generally, the long term water

budget simulation shows that, the basin is in equilibrium around zero storage (-4 ± 63

mm).
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ANALYTICAL FORMULATION OF THE FOUR

SEMIVARIOGRAM MODELS

Using h to represent lag distance, r to represent range, and s to represent sill, the four

most frequently used semivariogram models for rainfall interpolation in literature, which

are the ones used in this paper, are:

• Spherical semivariogram model

(A.1)

γ(h)= s · [1.5 · h
r −0.5 · ( h

r )3] h < r

γ(h)= s h ≥ r

• Exponential semivariogram model

(A.2) γ(h)= s · [1− e−
|h|
r ]

• Linear semivariogram model

(A.3)

γ(h)= s · h
r h < r

γ(h)= s h ≥ r

• Gaussian semivariogram model

(A.4) γ(h)= s · (1− e−
h
r )
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MODEL PERFORMANCE CRITERIA

The model evaluation statistics used in the research are different goodness-of-fit (GOF)

indices. These includes for comparison of observed and simulated data, comparison of

two models, and between the model simulation and remote sensing observation data.

The followings formulations of GOF statistics are used in this study.

1. Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the rela-

tive magnitude of the residual variance compared to the measured data variance

(Nash and Sutcliffe, 1970). The choice of this index is to give high emphasis to the

peak of the hydrograph.

(B.1) NSE = 1−
∑N

i=1(Si −Oi)2∑N
i=1(Oi −Oi)2

2. Coefficient of determination (R2) is a measure of how well the simulated data fit

to the model simulation, and how much of the variance of the simulated data is

explained by the observed data.

(B.2) R2 =

 ∑n
i=1(Oi −O)(Si −S)√∑n

i=1(Oi −O )2
√∑n

i=1(Si −S )2


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APPENDIX B. MODEL PERFORMANCE CRITERIA

3. Mean Error (ME) is calculated as

(B.3) ME = 1
n

n∑
i=1

Si −Oi

where Si is the predicted value and Oi is the observed value of the rainfall data at

a given time step.

4. The Root Mean Square Error (RMSE) (Chu and Shirmohammadi, 2004; Singh

et al., 2005). The lower the RMSE the better the model performance is. It is given

by

(B.4) RMSE =
n∑

i=1

√
1
n

(Si −Oi)2

The RMSE is a joint measure of bias in the mean and in the variance, as the square

of individual differences between estimated and observed values puts the emphasis

on the errors in outliers or higher differences (Ashraf et al., 1997; Nalder and Wein,

1998).

5. The Pearson linear correlation coefficient (r):

(B.5) r = 1
N

∑N
n=1(Si − S̄)(G i − Ḡ)√∑N

n=1(Si − S̄)2 ∑N
n=1(G i − Ḡ)2

,

where S and G are the SREs and gauge rainfall estimation respectively, N is the

number of observations, and the overbar is the mean operator.

6. PBIAS: is a measure of the average tendency of estimated values to be large or

smaller than the corresponding measured values. The value near to zero indicates

high estimation, whereas a positive value indicates overestimation and a negative

value indicates model underestimation (Moriasi et al., 2007; Gupta et al., 1999).

(B.6) BI AS =
∑n

i=1(Pi −Oi)∑n
i=1Oi

This value can be used to estimate the systematic under- or overestimation of the

model.

7. Kling-Gupta efficiency (KGE) is developed by Gupta et al. (2009) to provide a

diagnostically interesting decomposition of the Nash-Sutcliffe efficiency (and hence
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MSE), which facilitates the analysis of the relative importance of the different com-

ponents (correlation, bias and variability) in the context of hydrological modelling.

Kling et al. (2012) proposed a revised version of this index. It is given by

(B.7) KGE = 1−ED

(B.8) ED =
√

(r−1)2 + (vr−1)2 + (β−1)2

where ED is the Euclidian distance from the ideal point, β is the ratio between the

mean simulated and mean observed flows, r is the Pearson product-moment corre-

lation coefficient, and v is the ratio between the observed (σo) and modelled (σs)

standard deviations of the time series and takes account of the relative variability

(Zambrano-Bigiarini and Bigiarini, 2013).

8. The BI AS:

(B.9) BI AS =
∑N

i=1(Si −G i)∑N
i=1 G i

,

It is dimensionless and optimal value is 0.
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HYMOD MODEL IN NEWAGE-JGRASS SYSTEM

The NewAge system executes one Hymod model at each HRU, and routes water downs-

lope. Detailed descriptions of Hymod model is provided in many researches (Moore, 1985;

Van Delft et al., 2009; Boyle et al., 2001; Formetta et al., 2011). In Hymod, each HRU,

is supposed to be a composition of storages of capability C [L] according to distribution

(Moore, 1985):

(C.1) F(C < c)= 1− (1− c
Cmax

)Bexp

where F(C) represents the cumulative probability of a certain water storage capacity, C;

Cmax is the largest water storage capacity within each hillslope and Bexp is the degree of

variability in the storage capacity.

As shown in the schematic diagram (figure C.1), the precipitation exceeding Cmax

is send directly to the volume available for surface runoff. If we call the precipitation

volume in a time interval ∆t, P(t) := J(t)∆t, then this “direct” runoff can be estimated

according to:

(C.2) RH(t)=max(0,P(t)+C(t)−Cmax)

where C(t) defines the fraction of storages already filled at time t. The latter equation is

true for any precipitation and storage level, even when the maximum storage Cmax is

not exceeded. When precipitation does not exceeds Cmax runoff volume can be produced

by filling some of the smaller storages. To which extent this happens, can be derived
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APPENDIX C. HYMOD MODEL IN NEWAGE-JGRASS SYSTEM

Figure C.1: Schematic diagram of hymod model (adapted from Van Delft et al. (2009))

by the knowledge of the storage distribution, eq. (C.1), the initial storage C(t) and the

precipitation P(t). This residual runoff is, in fact, given by:

(C.3) R(t)=
∫ min(C(t)+P(t),cmax)

C(t)
F(c) dc

An analytic expressions for the integral in eq. (C.3) is available, which makes the

computation easier. Water in storage is made available to evapotranspiration. Water

going into runoff the runoff volume, i.e. R(t) and RH , is further subdivided into a surface

runoff volume and subsurface storm runoff. Surface runoff, in turn, is composed by the

whole of RH(t) and part of R(t), and R(t) is split according to a partition coefficient Θ

such that the part ΘR(t) goes into surface runoff volume and (1−Θ) into the subsurface

storm runoff volume. In Hymod, Θ is a calibration coefficient.

Finally, surface runoff volumes are routed through three linear reservoirs, and,

subsurface storm runoff volume is routed through a single linear reservoir. A summary

of equations for the surface runoff is therefore:

(C.4)
dS1(t)

dt
=ΘR(t)+RH(t)−kS1(t) Q1(t)= S1(t)

k

where S1 [L3] is the storage in the first of the linear reservoirs, and k [T] is the mean

residence time in each of the reservoirs. Then:

(C.5)
dSi(t)

dt
=Q i−1(t)−kSi(t) Q i(t)= Si(t)

k
for the other two reservoirs, where Si [L] with i = 2,3 is the storage in the two remaining

surface reservoirs. Subsurface storm runoff is then modeled by:

(C.6)
dSsub

dt
= (1−Θ)R(t)−ksubSsub(t)
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where Ssub [L3] is the storage in the subsurface storm-flow system and ksub [T] is its

mean residence time. A budget equation can be written for the groudwater system as:

(C.7)
dSg(t)

dt
= (P(t)−R(t)−RH(t))− AET(t)−Qg(t)

where Sg(t) [L3] is the groundwater storage, and Qg(t) the groundwater flow which

becomes surface flow at the closure of the HRU.

Summarizing, Hymod subdivides each HRU into three reservoirs: a groundwater

reservoir, from where evapotranspiration and groundwater flow is allowed, a subsurface

storm-water reservoir, and a surface runoff reservoirs set. Partition of precipitation into

the three reservoirs is obtained by a calibration coefficient, Θ, and the use of a probability

distribution function of storages’ capacity, F(c).
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MODIS SNOW PRODUCT PROCESSING FOR SNOW

FALLING MODEL CALIBRATION

The daily standard snow products of Terra and Aqua MODIS products, i.e. MOD10A1

and MYD10A1 (V005) (Hall et al., 2006), are used. Both products are downloaded from

NASA, which is distributed through the National Snow and Ice Data Center in Boulder,

Colorado Scharfen et al. (2000) at http://modis-snow-ice.gsfc.nasa.gov. Terra (MOD10A1)

is collected since February 2000 while Aqua (MYD10A1) is since June 2002. The study

basin is covered by the h18v04 MODIS tile. The technical steps on MODIS snow products

processing is similar to that described by (Gascoin et al., 2015).

First the MOD10A1 fractional snow cover (FSc) of the study area is used. It provides

the percentage coverage (0-100%) of a pixel with snow. If MOD10A1 does not provide

FSc estimates due to any reason, it is replaced with the MYD10A1 for that particular

time steps or pixel. This helps to produce much less “no values" and eliminates clouds,

providing a much more useful pixel than using MOD10A1 or MYD10A1 alone, e.g.

Parajka and Blöschl (2008).

The FSc itself has advantages over the snow/no-snow data, which is often used in

routine applications. It provides the percentage of each pixel (or any intended aggregated

scale) covered by the snow. This helps the decision on the discriminating threshold

between snow/no-snow binary data, based on the scale, location and purpose of the

application. Usually, to recover snow cover information, a threshold in FSc is used. In

this study the threshold is set at 10%. Therefore, values of FSc below 10% are set to

no snow cover and pixels with FSc larger than 10% are considered as snow covered.
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APPENDIX D. MODIS SNOW PRODUCT PROCESSING FOR SNOW FALLING MODEL
CALIBRATION

Then the snow/no-snow based distributed information is used to optimize the rainfall-

snowfall separation algorithm parameters. To maintain the model structure, and reduce

parameter transfer error from pixel to HRU, the FSc is coarse grained to HRU level for

daily time steps for 4 years (2002-2006). The first three years are used for optimization,

and the last year, 2006, is used for validation.
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ESTIMATION OF EVAPOTRANSPIRATION. PROCEDURE’S

DETAILS

A gross estimation of evapotranspiration coefficient α (e.g. eq. (5.5) can be obtained

directly from data available, under what we call Budyko Hypothesis.

This hypothesis implies that the water storage oscillates and after a number of

days/years, let’s call it Budyko’s time, TB, it is back at the same level it was at the initial

time. This implies that the water budget is not very far from equilibrium, even in climate

change times. In this case, considering each HRUs, or the whole basin as a unique control

volume (as allowed by data), the water budget can be written as:

(E.1) S(t)−S(0)=
∫ TB

0
(J(t)−Qm(t)−αET(t))dt = 0

where Qm(t) is the measured discharge, and it has been defined

(E.2) ET(t) := ∆

∆+γRn

where the dependence on water storage (which would bring in the process the necessary

knowledge of the parameter Cmax, the maximum allowable storage, a Hymod parameter

that is object of calibration), has been, necessarily, neglected.

Therefore, from data only, the maximum we can obtain is:

(E.3) α̃(TB)=
∫ TB

0 (J(t)−Qm(t))dt∫ TB
0 ET(t))dt
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These values can then be used in Hymod either in calibration and forecasting phases.

This averaged Priestley-Taylor coefficient is clearly a function of the Budyko’s time, which

we do not know, unless we can perform appropriate groundwater level measurements.

By using modelling, an estimation of an evapotranspiration dependent on storage

can be obtained. It must use Hymod partition of the budget, and forecasted (instead of

measured) discharges. This estimation process is not that smooth because the estimation

of α is interwined with the process of calibration of Hymod’s parameters.

Hymod, in fact, requires the knowledge on the Storage Sg(t), which, in turn, depends

on how much water is withdrawn by evapotranspiration (e.g. eq. C.7). In this case, the

Budyko’s hypothesis says that:

(E.4) Sg(T)−Sg(0)=
∫ TB

0
(P(t)−R(t)−RH(t))−αET(t)dt = 0

where, now:

(E.5) ET(t)= S(t)
Cmax

∆

∆+γRn

and implies that we can estimate an average α as:

(E.6) ᾱ(TB)=
∫ TB

0 (J(t)−R(t)−RH(t))dt∫ TB
0 ET(t)dt

Therefore,in a set of n years of data, let us assume to use n−1 years for setup the

modelling and the last year for predictions (given precipitations). For each of the year

in range [1,n-1], let us assume valid eq. (??). This implies that we obtain n−1 values of

α(TB) which can be used.

In the calibration phase, to update C(t) in eq. (C.2) the knowledge of al pha is

necessary. Therefore, the calibration procedure must simultaneously estimate Evapo-

transpiration and the runoff parameters. An iterative procedure to obtain it, can be:

• Assign a first trial value for α, say α̂0, as in eq. (??) ;

• Assign a tolerance, ε> 0 for α estimates.

• Estimate through calibration Hymod’s parameters, which are, obviously al pha0

dependent;

• for an assigned TB estimate α̂1;

• Repeat the calibration procedure until |α̂n − α̂n−1| < ε
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This finally gives a value of α which is compatible with the estimation of ET depen-

dent on variable storages.

It has to be remarked that, if, depending on available data α̂, can be a global or local

(to HRUs) parameter, the storage fractions S(t)/Cmax are always estimated at the level

of each HRU.
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REPLICABLE RESEARCH

The model components used in this thesis and as much as possible material to repro-

duce findings will be posted at the AboutHydrology Blog https://abouthydrology.

blogspot.com and http://ecohydrogeomorpho-metry.blogspot.it.

The source code of NewAGE is available on GitHub at https://github.com/

formeppeandhttps://github.com/geoframecomponents.

Materials for reproducing chapter 2 can be find http://abouthydrology.blogspot.

it/2014/05/theudig-spatial-toolbox-paper.html.

Complementary material that explains how the Figures in the paper were generated

can be found at

http://abouthydrology.blogspot.it/2014/05/theudig-spatial-toolbox-paper.html.

The datasets used in chapter 6, mainly the five SREs, R codes, and supplementary ma-

terial will be available for reproducing the results at http://ecohydrogeomorpho-metry.

blogspot.it/2015/09/satellite-rainfall-estimation-products.html.
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