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Abstract

In the last decade the increasing availability of high resolution remote sensing data en-
abled precision forestry, which aims to obtain a precise reconstruction of the forest at
stand, sub-stand or individual tree level. This calls for the need of developing techniques
tailored on such new data that can achieve accurate forest parameters estimations. More-
over, in this context the integration of multiple remote sensing data brings to a more
comprehensive representation of the forest structure. Accordingly, the goal of this thesis
is the development of novel methods for the automatic estimation of forest parameters
that can exploit the different properties of multiple remote sensing data sources. The
thesis provides five main novel contributions to the state-of-the-art.

The first contribution of the thesis addresses the problem of the single tree crowns
segmentation in multilayered forest by using very high-density multireturn LiDAR data.
The aim of the proposed method is to fully exploit the potential of these data to de-
tect and delineate the single tree crowns of both dominant and sub-dominant trees by a
hierarchical 3-D segmentation technique applied directly in the point cloud space. The
second contribution of the thesis regards the estimation of the diameter at breast height
(DBH) of each individual tree by using high-density LiDAR data. The proposed data-
driven method extensively exploits the information provided by the high resolution data
to model the main environmental variables that can affect the stems growth in terms of
crown structure, topography and forest density. The third contribution of the thesis pro-
poses a 3-D model based approach to the reconstruction of the tree top height by fusing
low-density LiDAR data and high resolution optical images. The geometrical structure of
the tree is reconstructed via a properly defined parametric model which drives the fusion
of the data. Indeed, when high resolution LiDAR data is not available, the integration of
different remote sensing data sources represents a valid solution to improve the parameter
estimation. In this context, the fourth contribution of the thesis addresses the fusion of
low-density airborne LiDAR data and terrestrial LiDAR data to perform localized forest
analysis. The proposed technique automatically registers the two LiDAR point clouds by
using the spatial pattern of the forest in order to integrate the data and to automatically
estimate the crown parameters. The fusion of the LiDAR point clouds leads to a more
comprehensive representation of the 3-D structure of the crowns. Finally, we introduce
a sensor-driven domain adaptation method for the classification of forest areas sharing
similar properties but located in different areas. The proposed method takes advantage
from the availability of multiple remote sensing data to detect features subspaces where
data manifolds are partially (or completely) aligned.

Qualitative and quantitative experimental results obtained on large forest areas con-
firm the effectiveness of the methods developed in this thesis, which allow an improvement
in terms of accuracies when compared to other state-of-the-art methods.
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Introduction

This chapter presents an introduction to the PhD thesis work. We briefly introduce the
framework where this work has been developed by providing an overview of the problem of
forest parameter estimation using remote sensing data. This allows us to highlight and
discuss the motivation, the objectives and the novel contributions of this thesis. Finally,
the structure of the document is reported.

Background

Nowadays, the accurate estimation of forest parameters at individual tree level has become
an important research topic. Precision forestry is the new direction of modern forest
inventories, which aims to obtain a comprehensive representation of the tree structure for
better forest management. In this framework, the integration of different remote sensing
sources represents an effective solution to obtain precise analysis of the forest parameters.
This calls for the development of novel methods being able to exploit the complementary
information provided by the different data sources. Moreover, the new generation of high
resolution sensors results in the collection of an overwhelming amount of detail of the
forest. The availability of this large amount of information encourages the definition of
automatic techniques being able to exploit the full potential of these data for an accurate
estimation of the forest parameters. In the following a brief overview on the use of remote
sensing data for forest parameter estimation is given.

Remote sensing data have been widely employed to estimate forest parameters due to
the possibility of monitoring objectively and accurately large forest areas. The traditional
approach, based on field observations, is constrained by lack of access to remote areas
(especially in mountainous scenarios) and involves high costs related to the amount of
time spent for collecting field data. Moreover, in order to obtain reliable estimates, the
number of ground measurements collected should be proportional to the extension of the
considered forest area. Therefore, this approach is efficient when applied to small areas,
but at regional scale the data collected could be not sufficient for modelling accurately
the entire investigated area. In this framework, remote sensing represents a valuable
technology for providing measures useful for forestry inventories. In particular, in this
thesis we focus the attention on Active Light Detection and Ranging (LiDAR) sensor and
passive high spatial/spectral resolution optical sensors.

LiDAR data have been extensively used for the forest attribute estimation because
of the capability of the laser scanner of directly measuring the height and the vertical
structure of the trees. This technology, based on line-of-sight measurements, penetrates
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the tree crowns and allows the 3-D reconstruction of the forest. The acquisition of LiDAR
data can be carried out by either Airborne Laser Scanning (ALS) systems or Terrestrial
Laser Scanning (TLS). ALS systems are suited for surveying and mapping large forest
areas, whereas TLS data are usually employed for local forest inventories. When acquired
with high laser sampling density (i.e., characterized by a number of hits per m2 higher
than 5), ALS data allow the precise estimation of different forest variables such as height,
volume or basal area both at individual tree level or at stand level (group of trees).
Although many approaches have been developed to estimate forest parameters by using
ALS data, the new generation of high resolution LiDAR sensors acquire significantly more
detail of the inner structure of the forest than the systems available some years ago. These
new technologies provide a higher spatial point density as well as additional information
on the reflecting characteristics of the forest structure like branches and stems. This
calls for the need of developing automatic methods that can maximize the information
extracted from the data to accurately estimate the forest parameters. Moreover, towards
the direction of the precision forestry, the integration of airborne and terrestrial LiDAR
data is gaining interest because of the possibility of using TLS to complement the weak
points of ALS, and thus link ground-level structural measurements with the measures of
the uppermost portion of the canopy provided by the ALS. Indeed, despite the improved
capability of the new ALS systems of penetrating the vegetation, they still provide limited
information on the below-canopy tree structure, especially in dense forest scenario. On
the contrary, TLS systems are able to record a very high resolution profile of sub-canopy
tree crown structure, while missing the uppermost part of the tree canopy. In light of
this, the fusion of the LiDAR point clouds acquired by different view points allows a more
comprehensive representation of the crown structure, which is useful to perform localized
environmental analysis (e.g., biogeochemical cycles, fuel loading, habitat provision, etc.).

Passive sensors can acquire images of the Earth’s surface measuring the energy re-
flected by the target at different wavelengths. In the past, satellite optical images were
one of the first remote sensing data source exploited for forestry applications. In par-
ticular, these data have been mainly employed for forest species classification since plant
species can be analyzed considering the reflective characteristic of the foliage in the visible
and infrared bands. Depending on the spatial and the spectral resolution of the optical
image it is possible to solve the classification problem at different levels. High geomet-
rical resolution optical sensors provide more accurate geometrical representation of the
horizontal structure of the forest because of their high spatial resolution. However, due
to the low spectral resolution, their capability of discriminating forest species is limited.
In contrast, hyperspectral images allow the distinction of different tree species and the
discrimination of similar forest types due to the dense sampling of the spectral signature.
Although optical images have also been used for tree volume estimation, the accuracy
of the estimates declines with the increase of the forest volume as these data do not
provide any information about the vertical structure of the forest. In contrast, LiDAR
sensors are suited for the estimation of vertical forest parameters, whereas do not achieve
accurate forest species classification since they are not able to discriminate similar tree
species. Due to the different properties of the passive and active sensors, LiDAR data
and optical images provide complementary information about the structure of the forest.
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In this framework, the integration of these data sources represents an effective solution
to obtain precise analysis of the forest parameters. However, in order to cope with this
large amount of data, it is necessary to develop techniques that can automatically achieve
accurate forest parameters estimations by fusing the information provided by different
data sources.

Another important research topic in forestry is related to the precise land cover map-
ping of the forest area and the forest species. To obtain reliable classification maps,
supervised classification methods are usually employed. The main drawback of these
methods is the need of a sufficient number of labeled ground reference samples for train-
ing the classification algorithm. However, in many cases reference samples are expensive
and difficult to collect. Therefore, in real application scenarios, it is not reasonable to as-
sume to have groundtruth available on wide forest area. To mitigate the need of labeled
samples, the classification of a remote sensing data where no ground data is available
(target domain) can be performed by using ground reference data associated to a data
acquired by the same sensor in a region with comparable properties (i.e., the same set of
land-cover classes). However, even tough the data are similar to each other, it is necessary
to face many problems. The different acquisition conditions of the two data (e.g., illu-
mination conditions, atmosphere conditions, look/view angles, sensor parameters) affect
the radiometry of the scene. Moreover, the phenological state of the vegetation or the
differences in the soil moisture can lead to crucial variations in the spectral response of
the same land-cover classes. In machine learning and pattern recognition literature, these
problems are usually addressed by domain adaptation (DA) methods. The main idea
is to model the changes between similar domains by transferring the knowledge learned
on the source domain (one or more) to a target domain. DA methods address critical
and challenging problems due to the fact that labeled data are assumed to be available
only for the source domain, which is different from the target domain. It is clear that
in such a complex scenario the accuracy of the obtained results is strongly related to the
capability of modelling properly the changes occurring between the two image domains.
In this framework, the availability of multiple remote sensing data sources results in the
collection of complementary measurements of the classes. By exploiting the capability of
each sensor of measuring different physical properties of the scene it is possible to increase
the reliability of the obtained results.

Objectives and Novel Contributions of the Thesis

The work presented in this thesis is aimed at investigating and defining novel methods
for the precise estimation of forest parameters by exploiting the properties of different
remote sensing data sources. In particular, we focused the attention on the main gaps
present in the literature towards the direction of the precision forestry. Accordingly,
it is necessary to develop automatic methods capable of exploiting the full potential of
the new generation of high resolution LiDAR sensors and to define data fusion techniques
being able to accurately integrating the different information provided by multiple remote
sensing sources. In greater detail, the novel contribution of the thesis are as follows:

1. A hierarchical 3-D crown segmentation method in multilayered forest for very high-
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density LiDAR data.

2. An adaptive tree stem diameter estimation technique for high-density LiDAR data.

3. A tree top height estimation method based on the fusion low-density LiDAR data
and high resolution optical images.

4. A crown structure estimation method based on the fusion of airborne and terrestrial
LiDAR data.

5. A sensor-driven DA method for the classification of large forest areas with multisen-
sor data.

In the following subsections the main objectives and novelties per contribution of the
thesis will be briefly described.

Hierarchical 3-D Crown Segmentation Method

As mentioned above, the accurate estimation of forest parameters at individual tree level
is becoming essential for modern forest inventories. The estimation of the tree parameters
requires the segmentation of the single tree crowns including the dominant trees and the
understory vegetation. Thus, in this thesis we present a novel method for the detection
and delineation of the single tree crowns in multilayered forest by using very high-density
LiDAR data. The proposed method performs a 3-D segmentation of both the dominant
and the sub-dominant trees visible in the LiDAR point cloud. Unlike the methods present
in the literature, the proposed approach does not require any prior knowledge on the
crown size and forest density, but relies on the geometrical structure of the forest and the
properties of the LiDAR data. Thus, it can be successfully applied to large forest areas
characterized by heterogeneous 3-D crown structures. The method considers both the
rasterized version of the LiDAR data (i.e., image domain) and the original point cloud
domain. The main novelties of the proposed approach are: (i) the use of the LiDAR point
cloud to detect the dominant trees missed in the image domain, (ii) the identification of
the sub-dominant trees located in different sides of the dominant tree crowns by means
of an angular analysis, and (iii) a crown delineation method for both dominant and sub-
dominant trees based on the derivative analysis of the horizontal profile of the trees in
the LiDAR point cloud. The effectiveness of the proposed method is demonstrated in
experiments carried out in a complex dense forest scenario located in the Southern Alps
of the Trentino region (Italy) by using very high-density LiDAR data (up to 50 pts/m2)
and high-density LiDAR data (up to 5 pts/m2).

Adaptive Tree Stem Diameter Estimation Method

The Diameter at Breast Height (DBH) is a fundamental tree parameter for forest inven-
tories. Indeed, the accurate estimation of stem diameter allows a proper representation of
the 3-D forest structure. While the height of the trees is directly measured by the sensor,
DBH should be retrieved by means of regression analysis. By training a unique regression
model medium size tree diameter are accurately estimated, while small and large stem
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DBH are usually overestimated and underestimated, respectively. These errors lead to a
wrong reconstruction of the forest structure as well as a wrong estimation of the forest
volume. To solve this problem, we propose an adaptive method to the accurate estima-
tion of the DBH. First, the main tree growth model classes are detected by means of a
data-driven approach. Then, for each growth model class, a tailored regression rule is
defined and used to improve the estimation accuracy of small and large stem diameters.
All the factors which can affect the growth of the tree stem in terms of topography and
forest density are modeled. Differently from the literature, the proposed approach: (i)
performs a data-driven detection of the growth model classes, (ii) allows an accurate rep-
resentation of the environmental factors which affect the DBH growth, and (iii) defines
different regression models for each growth model class. Experiments were carried out on
high-density LiDAR data in a forest area characterized by a wide range of stem diameters.
The results show that the method has a high estimation accuracy regardless of the size
of the tree stem.

Tree Top Height Estimation Method

One of the most important forest parameter that needs to be accurately estimated is
the height of the trees. Due to the high acquisition costs of high-density LiDAR data,
when dealing with large forest areas low-density data are typically acquired. However, the
reduction of the number of laser points results in: (i) an underestimation of the height of
the trees, (ii) the missed detection of some trees present in the scene. To mitigate the lack
information due to the low laser sampling, thus improving the estimation results, low cost
high resolution optical images can be employed. Accordingly, by integrating the accurate
representation of the horizontal structure of the forest provided by the optical data to the
vertical height information of the LiDAR sensor, we aim to reconstruct the tree top height
by means of a 3-D tree model representing the crown structure. Moreover, the heights
of the missed trees are estimated by means of a k-Near Neighbours trees (k-NN trees)
technique which takes advantage from the correlation between tree height and crown area.
The main novelties of the proposed technique are: (i) the use of a 3-D parametric model
for the reconstruction of the tree top height of those crowns hit by LiDAR points, and (ii)
the estimation of the tree top height for those crowns that are missed by any LiDAR pulse
with a k-NN trees technique. In this study, we concentrate our attention on coniferous
forests in the Alpine scenario. In the experiments, we considered four LiDAR datasets
of low laser sampling density (i.e., 1, 0.75, 0.5, and 0.25 pt/m2) and very high resolution
optical images (0.20 m). The experimental results obtained confirm the effectiveness of
the proposed technique.

A Method for Crown Structure Estimation based on the Fusion of Airborne
and Terrestrial LiDAR data

Although LiDAR measures are effective for estimating forest parameters, when acquired
from a single view point they are not able to perform an exhaustive representation of
the entire scene. Moreover, when airborne low-density LiDAR data is available, it is not
possible to accurately characterize the structure of the trees. To solve these problems,
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we present a method that integrates the terrestrial and low-density airborne LiDAR data
for the accurate crown structure estimation for localized forest analysis. TLS data are
typically acquired to replace traditional forest inventories, thus used as reference data
to estimate forest parameters using ALS. However, despite the increasing availability
of the two data types on the same forest area, few papers address the fusion of these
data source. Moreover, to the best of our knowledge, the fusion of these data is usually
performed considering the synthesis of derived parameters rather than integration of the
ALS/TLS data from a real fusion view point. Based on this knowledge gap, we propose an
automatic data fusion technique that aims to exploit the complementarity of these data
to accurately estimate the 3-D structure of the forest stand and model the structure of the
crowns. The main novel contributions of this method are: (i) the use of the ALS data for
the automatic registration of the multiple terrestrial scans (without the need for reference
targets), (ii) the analysis of the forest spatial pattern to perform the registration of the
data, (iii) the use of the airborne segmentation results to delineate the crown in the TLS
scans, and (iv) the integration of the 3-D LiDAR point clouds. The experimental results
obtained in an open woodland forest scenario demonstrate the importance of fusing the
two LiDAR point clouds to accurately represent the crown structure.

Classification of Large Forest Areas by a Sensor-Driven Domain Adaptation
Method

As mentioned above, to obtain accurate forest land-cover maps, field data are needed
to train the classification algorithm. However, it is not feasible to have ground refer-
ence samples every time that a remote sensing image is acquired. Moreover, due the
different acquisition scenario a shift in the spectral responses of the land-cover classes is
expected. To solve this problem, we introduce a transfer learning method which performs
the adaptation by taking advantage from the availability of multisensor remote sensing
data. The specific properties of the different remote sensing data sources are exploited to
facilitate the transfer of knowledge in a reliable way. In particular, we propose a method
for the classification of large forest areas by a sensor-driven DA based on LiDAR data,
hyperspectral images and high resolution optical data. Because of the capability of each
sensor of measuring different physical properties of the scene, we identify one sensor (or
a combination of sensors) being able to measure spatial invariant properties for a subset
of classes. The detection of these invariant feature subspaces allows us to infer labels of
samples in forest areas that result aligned to the area where ground reference data are
available. Then, the inferred labeled samples are re-projected into the full feature space
to classify the remaining target samples of the same classes. Finally, for those classes for
which none of the sensors can measure invariant features, we perform the adaptation via
a standard Active Learning (AL) technique. The sensor-driven inference method allows
us to: (i) accurately model the distribution of the subset of classes for which invariant
feature subspaces have been detected, and (ii) introduce constraints on the general struc-
ture of the adaptation problem, thus simplifying the adaptation procedure. Experimental
results confirm the effectiveness of the proposed method.
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Thesis Organization

The present Chapter provided a brief overview on the use of remote sensing data for
forestry application. In addition, it introduced the motivation, the objectives and the
novel contributions of this thesis. The rest of this dissertation is organized in six main
chapters. Chapter 1 illustrates the fundamentals and the background notions useful for
understanding the thesis. Moreover, a brief analysis of the state-of-the-art on the use of
remote sensing data for forest parameter estimation is presented. Chapter 2 introduces to
the main problems related to the single tree crown segmentation in multilayered forest by
using LiDAR data. Then, it presents the proposed novel 3-D segmentation approach to
the detection and the delineation of dominant crowns and understory vegetation, which
takes advantage from the properties of the very high resolution LiDAR sensor. Chapter 3
proposes an adaptive data-driven method based on the detection of growth model classes
for an accurate estimation of the DBH by using high-density LiDAR data.

In the framework of the fusion of multisensor remote sensing data, Chapter 4 illustrates
the proposed 3-D model based approach to the accurate tree top height estimation, which
is based on the fusion of low-density LiDAR data and high resolution optical images.
Chapter 5 presents the fusion of low-density airborne and terrestrial LiDAR data for
an accurate 3-D canopy structure characterization, whereas Chapter 6 reports the novel
sensor-driven DA method for transferring the knowledge between remote sensing data
acquired on different forest areas but sharing similar properties.

In each chapter an introduction to the specific topic and a review of the related state-
of-the-art is provided. Finally, in the last chapter the conclusions of the thesis are drawn
and proposals for future research developments are discussed.
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Chapter 1

Fundamental and Background

In this chapter we review the fundamentals of remote sensing data used in this thesis. In
the first section we provide the concepts and definitions needed throughout the disserta-
tion. In particular, we illustrate the basic principles of LiDAR sensor mounted on both
airborne and terrestrial platforms, and passive high spatial/spectral resolution optical sen-
sors. Then, a brief analysis of the state-of-the-art regarding the use of remote sensing
data for forest parameter estimation is reported.

1.1 Fundamentals

In the framework of remote sensing technologies, two main classes of sensors can be dis-
tinguished: active sensors and passive sensors. Active sensors generate and direct energy
toward a target and subsequently record the backscattered radiation. Most common ac-
tive sensors are RADAR (radio detection and ranging) and LiDAR (light detection and
ranging). In this thesis we focus the attention on LiDAR systems, which emit pulses of
light by laser beams. This characteristic allows the acquisition of LiDAR data during the
night, when the air is usually clearer. However, unlike RADAR systems LiDAR sensors
cannot penetrate clouds, rain, or dense haze due to the working wavelengths. Passive
sensors measure the electromagnetic energy radiated and reflected by the Earth surface.
The radiation measured by the passive systems comes from an emitting external source
of energy (typically the sun in the visible and infrared portions of the spectrum), which
propagates through the atmosphere and hits the Earth’s surface. The Earth’s surface in-
teracts with the incident electromagnetic wave by absorbing, transmitting and reflecting
the incident energy of the transmitted component. The reflected components propagate
back through the atmosphere (again with absorption), thus reaching the sensor. In this
thesis, we focus on the analysis of high geometrical and high spectral resolution optical
images. In the following, the basic principle of LiDAR and passive optical sensors are
presented.

1.1.1 LiDAR basis

Also known as LADAR or laser altimetry, LiDAR is the acronym for light detection and
ranging. This active remote sensing system is able to characterize an object by measuring
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the properties of the laser light reflected by the target. The sensor transmits a short-
duration pulse of laser light towards the target, while the receiver (placed in the same
location of the sensor) measures the elapsed time between emission and detection of the
reflected light back at the sensor (Fig. 1.1). By using the speed of light, the time measure
is then converted into the distance of the point from which the light was reflected. Similar
to RADAR systems, but working at smaller wavelengths, LiDAR is highly sensitive to
small targets such as aerosols and cloud particles and thus, it has also been used for
atmospheric research. Most of the LiDAR systems operate in the near-infrared part of
the electromagnetic spectrum (i.e., for forestry application typically between 1010 [nm]
- 1064 [nm]), even though some sensors work in the green band to penetrate water and
detect bathymetry features. Moreover, due to their very narrow beam, LiDAR data are
characterized by a high geometrical resolution.

Let us focus the attention on the LiDAR transmission equation. The echo power Pe
received is a function of the transmitted power Pt and depends on four main contributions.
By assuming the laser beam larger than the target size and the source of power as a point
isotropic radiator, the first contribution is the power density emitted by the source located
at distance Rt over a spherical area, i.e.,:

Pt
(4π) R2

t

(1.1)

Accordingly, the echo power is affected by the return power density scattered over the
forward hemisphere, i.e.,:

1

2π R2
t

(1.2)

The third factor that affects the power returned from the target is the directivity of the
lens used to radiate the power in a given direction, which depends on the laser beam
width ϑBW as follows:

4π

π/4 ϑ2
BW

(1.3)

Finally, the last contribution is given by the Laser Cross Section (LCS) σ, the aperture
of the receiving lens A and the optical efficiency of the TX-RX chain Oeff . The LCS
estimates how detectable the object is for the laser pulse, and depends on the size and the
chemical composition of the target and the wavelength. Accordingly, the relation of the
transmitted laser power Pt to the echo power of its reflections Pe is given by the following
LiDAR transmission equation:

Pe =
Pt

4πR2
t

· 1

2π R2
t

· 4π

(π/4)ϑ2
BW

· σ · A ·Oeff (1.4)

The laser beam ϑBW depends on the lens diameter Dl and the λ wavelength of the adopted
light radiation, i.e.,:

ϑBW =
λ

Dl

= λ ·
√

π

4A
(1.5)
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Figure 1.1: Basic principle of LiDAR sensor.

Thus, the LiDAR transmission equation can be rewritten as follows:

Pe =
8A2 · Pt · σ ·Oeff

π3R4
tλ

2
(1.6)

In Fig. 1.1 the basic principle of the sensor is illustrated. The target surface placed at
distance Rt is hit by the pulse emitted at time tp. At time t the energy is observed back at
the laser location. The distance of the target from the scanner is estimated according to
the speed of light and time difference between the pulses, which is halved due to the round-
trip. In real application scenario, when the laser emit the light pulse, the sensor position
in terms of latitude, longitude and altitude are recorded in order to convert the position
of the target in geographic coordinates (x,y,z). At the end of the acquisition phase, the
outcome of the sensor is a 3-D point cloud, derived by the laser range measurements and
the knowledge on the position and altitude of the instrument.

According to the LiDAR system used, the run time for submitted laser pulses or the
phase shift for continuous wave (cw-LiDAR) emission can be acquired. For pulsed laser
systems the reflected signal can be recorded over time (full waveform analysis) instead
of just measuring the time of discrete returns (first pulse, last pulse or multiple returns)
[1]. Discrete return LiDAR systems consist of a laser transmitter that emits a sequence
of pulses characterized by specific pulse duration and specific Pulse Repetition Frequency
(PRF), thus generating a discrete acquisition of the target. The range of the object is
measured considering the time delay between transmitted and received pulses. While early
version of laser transmitters were able to measure only the distance of the first contact with
the target, new high resolution LiDAR sensors are able to measure from one to a few echoes
for each emitted pulse (i.e., multireturn LiDAR data). Full waveform LiDAR systems
record the entire return intensity for each pulse as a function of time. Although these
data are computational demanding because of the huge amount of information recorded,
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Figure 1.2: Principle of ALS system: (a) example of LiDAR beam divergence, for a given flying altitude
the footprint diameter depends on the laser beam of the sensor, (b) representation of the main scanning
attributes of airborne LiDAR data acquisition considering a zizag scanning pattern.

they result in an accurate representation of the 3-D shape and the inner structure of the
target [2, 3].

The acquisition of LiDAR data can be performed by using different platforms according
to the application. In this thesis we focus the attention on the ALS and the TLS for
forestry applications. In the following sections the two systems are described in detail.

1.1.2 Airborne Laser Scanning (ALS)

ALS systems consist of a set of instruments that work independently: (i) the laser device,
(ii) a Differential Global Positioning System (DGPS) which records the geographic po-
sition for each collected point, (iii) an Inertial Navigation System (INS) which monitors
the flight dynamic by recording the parameters related to the rotation angles of the vehi-
cle (pitch, roll and yaw) and the horizontal and vertical movements of the aircraft (Fig.
1.2b), and iv) a computer interface that manages communication among devices and data
storage.

Although full waveform laser scanners provide very high-density LiDAR point clouds as
well as additional information on the reflecting properties of the tree branches and stems,
ALS discrete return systems are usually acquired for surveying and mapping large forest
areas due to the limited storage capacities. While old system were able to discriminate
only either the first or the first and last returns, recent sensors penetrate the structure
of the vegetation thus measuring the foliage, the deepness of the canopy and even reach
lower trees. Moreover, they allow the detection of multiple returns (e.g., up to five) from
a single beam. According to the length of the emitted laser pulse (i.e., pulse length), it is
possible to determine the range resolution of the pulse or the minimum distance between
consecutive returns from a pulse. In particular, to accurately characterize the structure of
the crowns, typically small footprint multireturn LiDAR data are acquired. The footprint
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Figure 1.3: Examples of theoretical LiDAR scanning patterns: (a) elliptical pattern, (b) zigzag pattern,
and (c) parallel pattern. The presented spatial arrangement of the pulse returns is the one expected in
case of flat surface.

diameter depends on the beam divergence and the flying altitude. In greater detail, it is
defined as the beam diameter intercepted by a plane positioned perpendicularly to the
beam direction at a distance from the instrument equal to the nominal flying altitude.
Fig. 1.2a presents a practical example where, for the same flying altitude (i.e., 2000
m), different footprint diameters are obtained because of the different beam divergence.
Indeed, even though in a true laser system the trajectories of the photons generate a
cylinder, in a beam emitted by a LiDAR instrument their trajectories slightly deviate, thus
forming a narrow cone. By increasing the distance between the laser and the target, the
footprint diameter increases. To obtain an accurate representation of the forest structure,
small footprint (i.e., 0.1m - 2 m) are preferred because they facilitate accurate linkages
between the LiDAR point cloud and the individual trees or forest stands. Indeed, the
distribution of the pulse energy is not uniform within the footprint, thus it is usually
approximated with 2-D Gaussian distributions since it radially decreases from the center.

Together with the footprint diameter, one of the most important ALS operational
specification is the point spacing on the ground (i.e., laser point density). This parameter
is affected by the flight properties such as flying altitude, flying speed and scanning
pattern, and the sensor properties in terms of PRF and scan angle. The PRF (or scanning
frequency) is the number of laser beams emitted by the laser per second. While old
instruments were able to record few thousand pulses in 1 second, modern sensors typically
operate at 100 kHz up to 400 kHz. The choice of the PRF has a significant impact in the
ALS derived metrics because of the introduction of noise. In [4] the authors demonstrate
that by increasing the PRF an upwards shift is visible in the canopy height distribution
and the proportion of multiple echoes decreases. Accordingly, between different PRFs
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(50 kHz and 100 kHz), different forest parameter estimation are obtained, especially for
metrics derived from the last echoes. The scan angle is defined as the off-nadir angle at
which the sensor acquires during scanning. By increasing the scan angle it is possible
to reduce the acquisitions cost, because of the possibility of covering more ground in a
single flight line. However, canopy penetration deteriorates at higher values of scan angles.
Moreover, height measurement errors are visible with scan angles > 10◦ off-nadir [5].

To collect the LiDAR point cloud all over the considered scene, the direction of the
laser beam needs to be moved across the flight direction while the aircraft is moving since
it can illuminate a single point at once. Depending on the mechanism used to direct
pulses across the flight lines, multiple types of patterns are defined. Indeed, during the
ALS acquisition, the laser beam is pulsed towards a mirror and projected downward from
the aircraft. Moreover, the beam is scanned from side to side by a moving optics as the
aircraft flies over the investigated area according to a specific scanning pattern. Fig. 1.3
presents the most common scanning patterns employed. Even though the configuration is
usually designed to preserve equal spacing between returns, in real acquisition scenarios
pulse density is not uniform and laser density eventually is higher at the end of the swath
because of mirror deceleration. However, according to the scanning pattern, the footprint
spacing along the scanning lines and the nominal footprint spacing between the scanning
lines can be calculated (Fig. 1.2b).

1.1.3 Terrestrial Laser Scanning (TLS)

TLS systems refer to LiDAR acquisition performed from a static view point, typically a
tripod, thus creating a 3-D point cloud of the surrounding vegetation. In the framework
of forest parameter estimation, TLS is typically acquired for accurate local forest invento-
ries. Indeed, it is a valuable tool for retrieving tree parameters because of its capability of
recording high resolution profiles of the individual tree crowns. Moreover, the 3-D point
cloud provided by the laser scanner solves the limitations in structural detail which can
be measured by conventional forest inventory. Similarly to the airborne sensor, the basic
concept of this system is the use of light to determine the target distance. TLS systems
were initially developed for engineering and mining applications, with characteristics (e.g.,
cost, resolution, acquisition efficiency, portability) that precluded a favorable cost-benefit
for forestry applications. However, in recent years the development of portable and cost-
effective TLS increased the possibility of performing efficient forest structure assessment
using these systems. The survey equipment used to collect TLS data include tripods, tar-
gets, tribrachs, target poles, and a laptop computer. Typically the radial survey method
is used for the terrestrial data acquisition. The basic components of the TLS system are
shown in Fig. 1.4.

Similarly to the airborne case, one of the most important system specification in TLS
is the beam divergence. The initial beam diameter depends on the LiDAR instrument
and can range from 0.1-1.0 millirads. Unlike the airborne case characterized by a constant
flying altitude, in the terrestrial scanning the beam size on a target varies as a function
of the initial beam diameter, the beam divergence and the target distance. Accordingly,
the scan resolution is affected by this beam widening when the final spot size of the
beam illuminates the target. The attributes within the illuminated area are averaged and
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Figure 1.4: Basic components of the TLS system acquisition: (a) example of scan partitioning. For each
scan, different angular steps should be considered to have the same point density in the whole acquisition,
and (b) example of terrestrial LiDAR data acquisition. By increasing the distance of the scanner from
the target, the point density decreases.

recorded by the receiver. Thus, the wider is the illuminated area, the less overall detail is
gained on a scale smaller than the illuminated area. Together with the beam divergence,
the resolution of the terrestrial LiDAR data is affected by the angular resolution, which
influences the point density. The point density of the TLS systems depends on the distance
of the target and the angular step. The higher is the distance of the target from the
scanner, the lower is the point density acquired (Fig. 1.4b). However, by decreasing the
angular step of the laser beam, the spot space decreases, improving the spatial resolution
of the data. Thus, to obtain a high resolution scan at long ranges, the angular step should
be tuned considering the distance from the target. In particular, this parameter can be
adjusted in the vertical and the horizontal directions in order to obtain a very high points
density acquisition. It is worth noting that extremely dense point clouds require more
storage space and take a longer time to scan. This impacts both the time spent out
in the field collecting data and the data processing computational complexity. Finally,
the terrestrial LiDAR acquisitions are strongly affected by the topography of the scene
because of the varying ranges of the objects measured by the sensor within the same scan.
For this reason, in order to obtain a homogeneous point density acquisition in the entire
scene, the scan needs to be partitioned into several scans at determined mean distance
intervals (Fig. 1.4a). Then, the angular step should be adjusted as a function of that
mean distance to achieve the same resolution and point density. In particular, since TLS
scans along vertical and horizontal orientations, vertical and horizontal partitioning needs
to be taken into consideration during a complex project.

1.1.4 Passive Optical Sensors

Passive optical sensors record the energy emitted and reflected by the Earth’s surface
operating at visible, near infrared, short-infrared and thermal infrared wavelengths. These
systems are passive sensors, as they do not illuminate the target and thus cannot operate
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Figure 1.5: Representation of the main components that affect the radiance recorded by the sensor.

without the sun radiation. The solar radiation spectrum can be modeled by a black body
with source temperature of 5900 K, with a peak radiation located at wavelength of about
500 nm. The signal measured by the sensor is mainly the radiation coming from the
sun, which is reflected by the Earth’s surface passing through the atmosphere. A small
amount of energy is also directly emitted by the Earth’s surface. The interaction between
the solar radiation and the gas molecules present in the atmosphere strongly affects the
solar radiation. Thus, only the wavelength regions of the electromagnetic spectrum where
the atmospheric gas absorption effect is minimized can be used for remote sensing. Fig.
1.5 shows a schematic representation of the main components that affect the radiance
recorded by the sensor which are: (i) the radiation scattered by the atmosphere Ia in
the viewing direction, (ii) the radiance reflected by the target It and transmitted to the
sensor, and (iii) the radiation reflected by the background Ib. The measured radiance
hit the electronics detectors (i.e., the Charge Coupled Device (CCD)) placed on the focal
plane. The signal focused by the optics of the imaging system is converted into electrical
current to obtain the digital image and be stored.

In a real acquisition scenario, the energy emitted by a point source is spread over the
finite size of the cells of the CCD sensor. This effect, due to the sensor’s focal length f
and the detector width w, determines the spatial resolution of the image, which is the
capability of the sensor of distinguishing two spatially adjacent points on the ground.
The angle subtended by a single detector element on the axis of the optical system is
referred as the Instantaneous Field of View (IFOV). When dealing with remote sensing
data acquisition, passive sensors are usually mounted on aircraft or spaceborne platforms.
In this thesis we focus the attention on optical images acquired by airborne platform.
According to the altitude of the aircraft, by projecting the IFOV on the ground we obtain
the Ground-projected Instantaneous Field of View (GIFOV), which corresponds to the
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Figure 1.6: Examples of scanning methods for the acquisition of optical images: (a) pushbroom scanner,
(b) whiskbroom scanner.

geometrical resolution of the optical image (i.e., pixel size). Thus, each pixel represents a
portion of the investigated area enclosed in the angular cone of visibility of the sensor at
a given flight altitude.

To generate the optical image, the scanning in the across-track direction (orthogonal
to the motion of the sensor platform) is combined with the motion of the platform in
the along-track direction. According to the number of detectors used to scan, different
scanning patterns are used. Fig. 1.6 shows the main types of scanning patterns for
the acquisition of optical images: the whiskbroom scanner and the pushbroom scanner.
The whiskbroom scanner uses several CCD detectors aligned in track to achieve parallel
scanning, thus acquiring more pixels simultaneously. However, to scan the entire scene a
rotating mirror which moves back and forth across the flight direction is required. The
mechanical rotating mirror limits the acquired spatial resolution due to slower data rates.
The pushbroom scanner, also referred to as across-track scanners, is a wide-angle optical
system which uses a linear array of thousand of CCD detectors arranged perpendicular
to the flight direction. While the aircraft flies forward, the scanner is acquiring one line
at a time of the optical image. Although the detectors need to be perfectly calibrated to
avoid striping artefacts, these systems allow the fast acquisition of high data rates. Thus,
this technique is suited for high resolution sensors.

In this framework, it is clear that the information content of the remote sensing images
strongly depends on the amount of details recorded according to the spatial resolution
of the image, which indicates the smallest distance between two objects that can be dis-
tinguished in the image. When acquired with high spatial resolution (i.e., smaller than
1 m), optical images allows the precise recognition of the shape and the geometry of the
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analyzed scene. For this reason, high spatial optical images represent an important source
of information for environmental monitoring. However, the energy emitted by the source
is quantized both from the spatial and the spectral view point. Thus, together with the
spatial resolution, one of the most important characteristic of the optical sensor is the
spectral resolution, which describes the sensitivity of a sensor to the wavelength interval.
The finer is the spectral resolution, the narrower is the wavelength range for a partic-
ular channel or band. To characterize the target, it is possible to analyze its reflecting
behaviour at different wavelengths, i.e., its spectral signature. Indeed, depending on the
chemical and physical characteristic of the object, the solar radiation can be transmitted,
absorbed or reflected by the target surface in a different way in different portions of the
electromagnetic spectrum. If the optical remote sensing system has a sufficient spectral
resolution, the object can be identified by its spectral signature. Depending on the ap-
plication, the main passive optical remote sensing sensors that can be considered are:
multispectral sensors and hyperspectral sensors. Multispectral sensors are characterized
by a few broad bands (< 10), whereas hyperspectral sensors have up to a few hundred
of very narrow spectral bands. These data are a rich source of information for precise
recognition and characterization of the material and objects on the ground, thus facilitat-
ing fine discrimination between different targets based on their spectral response in each
of the narrow bands. Hyperspectral images allow the precise identification of land-cover
classes and thus, they are suited for application such as detailed classification of forest
areas. In this thesis high spatial resolution and high spectral resolution optical images
are considered.

1.2 Related Works: Remote Sensing and Forestry

The estimation of forest attributes has been effectively improved by the use of the remote
sensing technology. The traditional approach to forest inventories is based on ground
measurements that are collected for some stand plots usually chosen by randomly sampling
a forest area. Then, these measurements are statistically extended to the entire area in
order to obtain global estimates of the forest parameters (e.g., average tree volume, average
tree height, tree density). For obtaining reliable estimates, the amount of data collected
should be representative of the entire forest ecosystem considered. However, field surveys
are costly, time consuming and constrained by lack of access to remote areas (especially in
mountainous scenarios). In this context, remote sensing represents an important tool for
monitoring objectively and accurately large forest areas. In the following a brief analysis
of the state-of-the-art on the use of remote sensing data for forest parameter estimation is
presented. In particular, in this thesis we focus the attention on LiDAR data and optical
images even though SAR data have been employed for single tree detection [6, 7]. More
details on specific topics will be given in the next Chapters.

1.2.1 Forest Parameters Estimation with LiDAR Data

LiDAR is a well established active remote sensing technology widely employed for es-
timating forest parameters [8, 9]. As mentioned in the previous section, the sensor is
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typically mounted on an airborne platform (ALS) or a terrestrial platform (TLS). Due to
the capability of the ALS systems of collecting measurements on wide forest areas with
high spatial resolution, in many countries it has been incorporated as tool for operational
forest inventories [10, 11, 12]. Moreover, ALS data have been extensively employed in
many countries to generate detailed Digital Terrain Models (DTMs) [13, 14].

Research studies on the use of ALS for modelling forest attributes began in the mid-
1970s with experiments using simple profiling instruments. However, the commercial
development of ALS measurements started in 1990s, when the system was integrated
with the GPS and the INS instruments, thus facilitating the accurate positioning of the
scanner. The very early studies addressed the estimation of the forest parameters at
stand level, i.e., the area-based approaches, later refined by the more accurate individual
tree approaches. The area-based approaches aim to estimate forest parameters such as
stand volume or basal area by considering groups of trees [15, 16, 17, 18]. Typically, the
predicted variables are the ALS height distribution attributes collected over the entire
stand plot (i.e., mean height, height percentiles, return density, etc.). In [15], the authors
present a method for the estimation of forest stem volume at stand level by training a
multiplicative regression model based on statistical LiDAR derived variables. The paper
demonstrates the importance of dividing the sample plots in homogeneous forest age
classes (i.e., young forest, mature forest in good site quality and mature forest in poor
site quality) to obtain accurate estimation results. Indeed, one of the main limitation of
the area-based approach is that regression models used to link ALS derived metrics to
the predicted variable have limited portability to other species or other study areas. This
is confirmed by the results obtained in [16], where the authors evaluate the performances
of a multiplicative regression method widely applied to boreal forest region when used
on the alpine scenario in Vorarlberg, Austria. The results demonstrate that to obtain
comparable estimation accuracy to the one obtained in a boreal forest, it is necessary
to re-calibrate the regression model by using inventory data collected in the local forest.
Thus, to obtain reliable estimates the stand level approach requires sample plots with
similar properties.

Due to the visibility of single trees in high-density LiDAR data, to obtain more accurate
estimates, the individual tree crown approach is usually considered [19, 20, 21, 22, 23, 24,
25]. For individual tree level inventories, the estimation of the forest attributes requires
the tree detection and delineation, the feature extraction, and finally the regression of the
considered forest variables. In this framework, the accuracy of the segmentation results
strongly affect the crown parameter estimation. Not all trees can usually be detected due
to the different forest condition. Indeed, the stand density and spatial pattern of the forest
play a dominant role in the number of trees identified due to the problems related to both
interlaced tree crowns and understory vegetation [26]. However, the performance of the
tree identification is influenced by the detection algorithm and its parameterization [27].
To perform the estimation of the tree attributes, different features can be considered.
Some papers address the tree parameters estimation through linear regression models
based on LiDAR derived height and LiDAR derive crown radius [20, 21, 22]. In this case
the crown delineation result plays a crucial role in the estimation accuracy since it is
directly linked to the predictors. Although the geometry of the crown is well described
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by theses two parameters, they are not sufficient to accurately model the variability of
the tree attributes especially in heterogeneous forest scenario. Thus, to obtain a more
detailed characterization of the canopy structure, some papers extract LiDAR point cloud
metrics calculated from the area of the segmented crowns [23, 24, 25, 19]. In [25], after
having segmented the single trees by means of a watershed segmentation algorithm, the
authors extract a set of statistical variables from the LiDAR data to estimate forest stem
volume. However, the accuracy of the results obtained was affected by the availability of
first and last returns per crown. In contrast, a more detailed analysis could be performed
when multiple returns per pulse are recorded. In [28] the authors extract a large set of
statistical variables in order to select the pool of variables that better characterize the
stem diameter. The variables extracted from the multireturn LiDAR data model the
distribution of the laser pulses within the crown, thus representing the height of the tree,
the horizontal and vertical shape of the crown, the crown internal structure and the forest
species. In [19], the reported results show the strong correlation between the capability
of the LiDAR to penetrate the crown and the precise characterization of the tree in the
framework of the stem volume estimation. In particular, the authors demonstrated that
the number of acquired returns is directly proportional to the crown depth and, thus
linked to the volume of the tree. Few papers extended the analysis to the circular area
around the tree [29, 30, 31]. Indeed, the stand density plays a fundamental role in the
tree growth in terms of availability of water and sunlight and thus, in the estimation of its
parameters. In [31] the authors define a competition index to evaluate the influence of the
surrounding trees (i.e., competitors) on the DBH growth in old-aged forest. The height
and the distance of the competitors are evaluated to quantitatively estimate their pressure
on the growth of the considered tree. Results confirm the importance of modelling the
forest environment.

Currently, large effort is devoted to the acquisition of TLS data because of the in-
creasing need of having a precise estimation of the forest structure for monitoring bio-
geochemical cycles, fuel loading and habitat provision, as well as for forest management
and planning. Although initially developed for applications in the built environment,
increasing potential has been shown in the assessment of forest structure. However, this
system is not suited for forest mapping but for local forest inventories. Indeed, TLS
provides hemispherical scanning from a ground-based platform, and thus is tuitable for
performing localized sampling of the forest structure. Most of the papers in the literature
exploit the TLS data to perform accurate estimation of the 3-D structure of the crowns
[32, 33], while others focus their attention on the precise reconstruction of the tree stem
and branch structures [34, 35, 36]. Moreover, TLS surveys allow the automatic detection
of the individual tree stems location with high accuracy [37, 38]. Indeed, due to the
acquisition platform, very high resolution profile of sub-canopy tree crown structure are
recorded. However, the main limitation of the TLS acquisition is the need of perform-
ing multiple scanning within the same forest to overcome occlusion. Multi-angular scans
are labor-intensive and time-consuming due to the need of positioning reference targets
to co-register the scans. Moreover, the geometric registration of the scans represents a
complex task which often results in manual refinements.
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1.2.2 Forest Parameters Estimation by Optical Images

As anticipated in the previous section, different remote sensing sources have been em-
ployed for the estimation of forest parameters. In the past, satellite optical images were
one of the first remotely sensed data exploited for forestry applications. The main ad-
vantage of these data are the wide area coverage provided with a low cost acquisition, in
particular when compared to the high cost related to field data collection. In regions such
as Finland, Sweden or Canada, characterized by large forest areas, optical images have
been employed for national forest inventories [39]. In particular, standard passive sensors
have been mainly used for forest species classification. Depending on the spatial and the
spectral resolution of the optical image, it is possible to solve the classification problem
at different levels. While in the case of low spatial resolution multispectral images the
classification analysis is limited to forest and no forest areas [40], by increasing the spa-
tial/spectral resolution of the multispectral image is it possible to increase the capability
of distinguishing different vegetation classes [41, 42, 43]. In [43] the authors demonstrate
that by using Landsat Enhanced Thematic Mapper Plus (ETM+) images, they were able
to distinguish eight different vegetation classes, whereas in [41] the authors classify six
forest types using Quickbird images due to possibility of performing detailed geometrical
analysis.

Although the use of multispectral data has a longer tradition for the species classifica-
tion, when dealing with forest characterized by a high number of similar tree species the
spectral resolution of these sensors is not sufficient to obtain accurate classification results.
In [43] the authors were able to distinguish only three kinds of mangrove using Ikonos and
Quickbird data because of relatively small number of bands with large spectral interval.
In this context, hyperspectral data allow the distinction of different tree species and the
analysis of similar forest types due to the dense sampling of the spectral signature [44, 45].
In particular, these data have become more popular in the recent years due to their in-
creased availability. In [46] the authors present a comparison of the classification results
obtained by using two multispectral sensors (i.e., the Landsat-7 ETM+ and the EO-1
ALI), and the EO-1 Hyperion hyperspectral sensor. The results demonstrate that with
hyperspectral data it is possible to strongly improve the classification accuracy obtained
with the multispectral data. In [47] the authors confirm the effectiveness of these data by
accurately discriminating different coniferous species besides their similarity. Moreover,
these data have been used to perform precise analysis of the forest environment such as
the estimation of the chlorophyll concentration [48, 49, 50]. Just few radiance-based ap-
proaches have been developed for estimating forest biomass by exploiting the reflective
characteristic of the vegetation, [51, 52, 53, 54]. However, this type of data do not provide
any information about the vertical structure of the forest, thus reducing the capability
of forest biomass estimation when dealing with dense forest scenario as demonstrated in
[54].

Several papers have investigated the possibility of generating Digital Surface Models
(DSM) by using optical images as an alternative to the laser scanner [55] or as additional
information to combine with LiDAR data [56, 57, 58, 59]. In [55] the authors proposed a
novel image matching technique for the reconstruction of the 3-D structure of the forest
using pairs of stereo images. In the first experiment, the DSM derived from high resolution
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aerial images allowed a better description of the 3-D structure of the forest with respect to
the DSM obtained by using low-density LiDAR data (i.e. 0.5 pts/m2). In particular, the
authors compared the results obtained with manually measured reference points directly
derived from the stereo images. In the second experiment, the best DSM is derived from a
LiDAR characterized by 1.5 pts/m2 compared to the result obtained using multitemporal
satellite images. Similar results have been presented in [56], where the authors compared
the estimation of plot forest variables derived from the DSM generated by using high-
density LiDAR data (7 pts/m2) and high resolution aerial images. LiDAR data achieved
the best accuracy in the estimation of mean height, mean diameter and volume. In [58]
the authors proposed a hybrid technique that combines photogrammetric Canopy Height
Model (CHM) obtained by pairs of stereo aerial images supported by LiDAR data. LiDAR
has been employed both for selecting the absolute orientation parameters of the stereo
model and for deriving the ground elevation data. Results pointed out that the quality
of the CHM was strongly affected by the dissimilarities of stereo images caused by the
combination of view and sun angles, as well as by the complexity of the forest canopy
surface. Indeed, in order to accurately match the two optical images, reference points (or
edges) should be detected, which results to be difficult due to the different point of views
of the images [55]. Moreover, the complex surface of the canopy could create occlusions
that increase image matching uncertainty [60]. The results obtained showed an average
Root Mean Square Error (RMSE) between the DSM generated by using satellite images
and that produced by LiDAR data of 2.7 m, which increased to 5.3 m in the forest area.
However, due to the need of more than one optical image on the same area, different
illumination and atmospheric conditions or different image orientations could result to be
very critical.

1.2.3 Data Fusion Approaches to the Estimation of Forest Parameters

The fusion of LiDAR data and optical images has been widely addressed in the literature
since the integration of these data can lead to more accurate estimation results. Also
when acquired with high laser sampling density, LiDAR data can take advantage from
optical images for better describing the structure of the forest. Indeed, high spatial
resolution optical images provide a detailed representation of the horizontal structure of
the forest, whereas LiDAR data not always allow a precise reconstruction of the 3-D
shape of the target (e.g., building corner missing) because of the irregular sampling of the
LiDAR points. However, the laser scanner is able to measure the vertical dimension of the
target. In [61] the complementary of these data is demonstrated for the individual tree
crown segmentation. While the high resolution optical image allow a better segmentation
results in dense forest area, ALS are more effective in the delineation of isolated tree
crowns. Thus, the vertical information measured by the LiDAR sensor allows the correct
discrimination of ground and forest areas. In contrast, due to the illumination conditions,
the radiance values of bare soil and forest are similar in the optical image, but the high
spatial resolution gives a geometrical detail that allows a better representation of the
crown structure in dense forest areas. By fusing the information brought by the data
sources, the number of the false tree detected on the optical image was strongly reduced.
In [62], an approach to the detection of the single trees was applied to both LiDAR data
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and high resolution aerial photo. The results confirm that optical images are suited for
describing dense forest, whereas LiDAR data allow higher accuracy on lower tree density
areas.

The importance of integrating the laser scanner information with the optical images
is even more evident in the estimation of forest parameters mainly related to the vertical
dimension. Some papers address the stem volume estimation issue by fusing low-density
LiDAR data and optical images [63, 64]. In [63], the authors demonstrate the importance
of a having a precise tree height estimation for accurately estimating the tree volume.
They compare the results obtained by extracting the tree-top height from 3 high-density
LiDAR datasets of respectively 57, 25 and 9 point/m2 and 3 low-density LiDAR dataset
of 0.25 point/m2 from the same segmentation result obtained on a high resolution optical
image in order to calculate the volume at single tree-level by means of an allometric
equation. Finally, they compute the error metrics of the entire stand. In the high-
density case the root mean square error (RMSE) ranges from 156.0 m3/ha to 163.6 m3/ha,
while in the low-density case the RMSE ranges from 205.4 m3/ha to 209.0 m3/ha. The
technique proposed in [64] combines optical data acquired by the SPOT5 satellite with
tree height information provided by laser scanner. A multiple linear regression analysis
is developed for both each source and the combination of the two data sources in order
to perform volume estimation. The joint use of the two sources improves the volume
estimation of 49% compared to the use of the only optical image, reducing the RMSE
on the average volume from 31% to 16%. In [65], the authors exploit the combination of
an aerial photograph and low-density LiDAR data in order to delineate the tree crowns
and estimate the tree height. The optical image corresponding to the studied area is
segmented for deriving the canopy shape of the trees (coconuts plantation) while LiDAR
data are used to derive the tree height of each individual tree identified. In order to
delineate the tree crowns a contouring technique is applied to the green band. Although
the segmentation algorithm applied to the aerial photo successfully detects the crowns, the
LiDAR derived height is underestimated due to the low-density LiDAR data acquisition.

The combination of ALS and multi- or hyper-spectral data provides valuable com-
plementary information for the species classification. The integration of the two remote
sensing data improves the classification accuracy of those species having similar spectral
signature but different height values [66, 67, 68, 69]. In particular, two main approaches
have been explored to combine optical and LiDAR data: (a) the individual tree crown
approach, (b) the pixel approach. In the first case, the features extracted from the spec-
tral and the ALS data are combined per crown area [70, 71], whereas in the latter case
the features are extracted per pixel and afterwards the pixel level classification map is
aggregated per tree crown extracted from ALS data. Some studies that follow the pixel
based approach do no perform the crown aggregation [66, 72] to obtain a classification
map that is not affected by possible crown segmentation results. However, when working
at individual tree level, it is possible to reduce the effect of the shadows which strongly
impact the reflectance values. In [73] and [74], the authors reduce the classification error
due to self-shading by considering for each crown only the pixels from the sunny side
of the tree. However, both at pixel and at individual tree level, the joint use of these
data improves the classification accuracy with respect to the results obtained by using
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the singular remote sensing data. In [75] the authors obtained a sharp improvement in
the classification accuracy combining hyperspectral and ALS data compared to only ALS
or combined ALS and multispectral data. The kappa accuracy improved from 0.56, when
using only ALS data, to 0.78 by combining the two data sources. In [70] the classification
results obtained using only ALS for discriminating pine, spruce and deciduous trees (i.e.,
87–88 %) increased up to 95–96 % by including the spectral mean values calculated at
pixel level.

In the data fusion context, the combination of ALS with TLS has been explored in
the framework of collecting detailed measures at plot level. In [76] the authors extract
tree stem positions and attributes from TLS scan in order to train the ALS data. Indeed,
TLS is an alternative to traditional field inventories for ALS forest assessment. However,
when dealing with dense forest scenarios a manual noise removal in the areas surrounding
the scanner should be done for obtaining an accurate stem detection. In [77] the authors
examined the voxel column percentile distributions of point returns for both ALS and
TLS and demonstrated that a higher percentage of laser pulses intercept the top of the
canopy for ALS, with limited returns within the canopy and understory. Likewise, TLS
exhibited a higher number of returns from the lower-canopy, but had fewer returns in
the upper canopy. In light of this, there is a growing research interest in using TLS to
complement the ALS [78, 79], and thus link ground-level structural measurements with
the top view perspective of ALS. However, there has been limited research in this area,
in part due to the difficult prerequisite of registration [80].



Chapter 2

Hierarchical 3-D Crown
Segmentation Method

The estimation of the forest parameters at individual tree level is based on an accurate
detection and delineation of the single tree crowns. Accordingly, the first contribution1

of this thesis presents a novel hierarchical method to the 3-D segmentation of individual
tree crowns in multilayered forest. The proposed approach allows the detection and the
delineation of trees belonging to the dominant and the sub-dominant layers of the forest
by using both the original point cloud and the rasterized version of the LiDAR point cloud
(i.e., image domain). Unlike the state-of-the-art methods, the proposed approach does not
require any prior knowledge on the forest stand properties (e.g., average crown size, forest
density). It relies on the geometrical structure on the tree crowns and the properties of
the LiDAR data. The effectiveness of the proposed method is confirmed by experimental
results obtained on two LiDAR datasets characterized by different laser point densities.

2.1 Introduction

One of the most important step in the estimation of the forest attributes is the accurate
segmentation of the individual tree crowns. To this end, many methods have been pro-
posed in the literature [81, 82, 83, 84, 85]. Most of them focus on the analysis of the
Canopy Height Model (CHM), the rasterized image obtained by interpolating the nor-
malized LiDAR point cloud. The position of the trees is identified by detecting the peaks
present in the CHM image, which should correspond to the top of the trees. Typically,
these peaks are identified by means of a Local Maxima Filtering (LMF) Algorithm [84]
or a Level Set Method (LSM) [86] applied to smoothed version of the CHM. Indeed, a
Gaussian Filtering is necessary before segmenting the trees to avoid the detection of false

1Part of this chapter appears in:
C. Paris, D. Valduga, and L. Bruzzone, “A hierarchical approach to the segmentation of single dominant and
dominated trees in forest areas by using high-density lidar data,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2015 IEEE International. IEEE, 2015, pp. 65-68.

C. Paris, D. Valduga, L. Bruzzone, “A Hierarchical Approach to 3-D Segmentation of LiDAR Data at
Single Trees Level in Multi-Layered Forest,” Geoscience and Remote Sensing, IEEE Transactions on, in press.
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tree tops while reducing the noise.
The crowns are delineated around each detected tree top in the CHM by means of

region growing algorithms [84, 87, 88], watershed or pouring techniques [89, 90, 91, 92,
93, 94], or methods based on template matching [95, 96, 97]. However, in mixed forest
stands, combinations of tree groups can be segmented in one single crown due to the
smoothing introduced by the filtering process, thus degrading the accuracy of the tree
parameters estimation [98]. In particular, in heterogeneous forest it is not possible to find
the optimal smoothing factor because of the variable crown size [92]. To reduce the over-
segmentation problem, in [87] the region growing segmentation results are constrained by
rules on the shape of the crowns, whereas in [94] the watershed algorithm is driven by a
prior estimation of the canopy size, thus reducing the applicability of the method to wide
areas forest. Moreover, even though the rasterization provides the regularized version of
the LiDAR point cloud, thus facilitating the analysis of the data, the spatial resolution
of the CHM and the interpolation process influence the detection and delineation results.
However, there are no reliable rules to select the spatial resolution of the CHM, which is
constrained by the LiDAR data properties [99]. In [91] the authors present a strategy to
determine the best CHM resolution at plot level by estimating the spatial stem distribution
of the forest stand. By testing a set of candidate pixel sizes, the best spatial resolution
is the one that allows the detection of a number of local maxima equals to the predicted
number of stems. However, the method relies on the assumptions that all the trees are
visible in the CHM and that the number of trees can be accurately estimated.

By comparing the segmentation results obtained in the CHM and the LiDAR point
cloud, the highest accuracy is obtained in the point cloud domain [100]. In contrast,
when performing the tree detection in the LiDAR point cloud problems arises in choosing
the right scale [101] and with the irregular sampling of the tree crowns by the LiDAR
sensor [102]. For all these reasons, several methods perform the detection in the CHM
and the segmentation in the point cloud space by k-means clustering algorithm [103, 104,
105]. In [103] the authors compare the results obtained by setting the initial clusters
centroids randomly or using the set of local maxima identified in the CHM. Moreover,
they investigate the possibility of scaling down the height value instead of using the
original one to minimize the intra-cluster variance and fit the conical shape of the crown.
The highest accuracy are obtained by initializing the algorithm with the detected tree
tops and re-scaling the height value. Indeed, shape constraints should be considered
to obtain a reasonable result when clustering the trees to avoid ball-shaped clusters of
LiDAR points [104]. However, the main lack of the detection algorithms applied to the
CHM is the missing detection of the understory vegetation not visible in the image [106].
When dealing with multilayered forest it is necessary to detect both the dominant and
the sub-dominant trees present in the scene to properly estimate the forest structure, to
generate accurate fire behaviour models [107] as well as the forest planning.

To solve this problem, the detection analysis is extended to the LiDAR point cloud.
In [108] the authors present a segmentation method suited for full waveform LiDAR
data. The segmentation of the dominant trees is performed in the CHM by means of a
watershed segmentation algorithm, subsequently refined by detecting the stems of trees
to recover missed crowns. By analyzing the dominant segmented crowns in the LiDAR
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point cloud, understory vegetation is detected using the normalized cut segmentation
approach presented in [109]. Although this technique obtains high detection rate for
small trees, many false trees are identified. Moreover, the detection of the sub-dominant
trees strongly depends on several parameters. In [110], the authors perform a k-means
clustering algorithm to segment the crowns of both the dominant and the sub-dominant
layer of the forest. While the cluster centers of the dominant trees are the local maxima
detected in the CHM, for the sub-dominant trees the centroids are placed at regular
horizontal distance and the height is the half of the dominant tree mean height. While
the dominant trees are properly segmented, many sub-dominant crowns delineated do
not correspond to any field-measured tree. The identification of sub-dominant trees has
been also addressed by applying a statistical analysis of the LiDAR point cloud [111, 112,
113, 114, 115, 116]. In [115] the authors detect the understory vegetation without tuning
any parameters or thresholds. For each segmented dominant crown the height frequency
distribution is computed and then interpolated with a polynomial function. By analyzing
the behaviour of the interpolated curve sub-dominant trees are detected. Similarly in
[116] the height distribution probability function of the entire stand plot is analyzed to
split the LiDAR point clouds into two layers. However, this approach assumes the vertical
forest structure characterized by two layers separable by a plane.

In this chapter we propose a novel hierarchical 3-D segmentation method to the de-
tection of both dominant and sub-dominant trees. Unlike the methods presented in the
literature, the proposed approach does not require knowledge on the considered forest
area and unrealistic homogeneity assumptions on the average crown size. In contrast, it
relies on the geometrical structure of the crowns and the LiDAR data properties. Accord-
ingly, the proposed method can be applied to wide are forest characterized by variable
crown size. In greater detail, the proposed approach: (i) exploits the joint use of the
CHM image domain and the original LiDAR point cloud to improve the detection-rate
of the dominant trees, (ii) detect the sub-dominant trees by analyzing the vertical profile
of the dominant trees in different angular sectors, and (iii) delineates the dominant and
the sub-dominant tree crowns directly in the LiDAR point cloud by means of a derivative
analysis of the horizontal profile of the trees. To assess the effectiveness of the proposed
method experimental results have been carried out in a complex dense forest scenario
located in the southern Italian Alps by using very high-density LiDAR data (up to 50
pts/m2) and high-density LiDAR data (up to 5 pts/m2).

The rest of this chapter is organized as follows. Sec. 2.2 presents the proposed method
for the automatic detection and delineation of the dominant and the sub-dominant trees.
Sec. 2.3 shows the experimental results obtained on two LiDAR dataset characterized by
different laser densities. Finally Sec. 2.4 draws the conclusion of the chapter.

2.2 Proposed 3-D Segmentation Method

The aim of the proposed method is the accurate segmentation of all the trees visible in
the LiDAR point cloud. To decompose the segmentation process, and thus facilitate the
segmentation problem, we exploit a hierarchical approach which concentrates sequentially
on the dominant and on the sub-dominant layers of the forest. Fig. 2.1 shows the archi-
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Figure 2.1: Architecture of the proposed hierarchical approach to 3-D segmentation of the dominant
and the sub-dominant crowns.

tecture of the proposed method, where the Point Cloud Space (PCS) is the normalized
LiDAR point cloud obtained after the subtraction of the Digital Terrain Model (DTM).

2.2.1 Dominant Trees Detection

The aim of the first step is the accurate detection of the dominant trees present in the
scene. To this end, both the CHM and the PCS are considered to take advantage from
the complementary of the two domains. While in the CHM it is possible to detect most
of the trees present in the scene with a low computational load, the analysis of the PCS
allows us to recover the missed tree tops. First, a coarse tree detection is performed in
the image domain by applying a LSM [86]. Second, the analysis is refined in the PCS to
detect close neighbouring trees that may not appear clearly separated in the CHM due
to the smoothing filtering but are visible in the point cloud.

Let P = {p1,p2, ..,pN} be PCS and let TCHM = {t1, t2, .., tM} be the set of tree tops
detected in the CHM. Note that pi and tj are 3-element row vectors defined by the x,
y, z coordinates, i.e., pi = (xi, yi, zi) and tj = (xtj, y

t
j, z

t
j). To identify possible missed

crowns, we analyze directly in the PCS the forest area around each tree top detected in
the CHM. Let us define with Pj the set of LiDAR points extracted around the tree top
tj within a given search radius Rs, which is large enough to represent the surrounding
crowns (e.g., three times the crown radius). The detection of the neighbouring tree tops
in different directions is performed by means of an angular analysis which partitions Pj
into Nθ angular sectors. Let Θk be the angular partition between the adjacent angles
θk = 2πk/N and θk+1 = 2π(k + 1)/N , with k ∈ [0, N -1] (Fig. 2.2a and Fig. 2.2b). The
set of LiDAR points belonging to the angular sector Pj,Θk

is defined as:

Pj,Θk
=
{
pi ∈ Pj

∣∣ arctan

(
xi − xtj
yi − ytj

)
∈ [θk, θk+1)

}
(2.1)

To detect the tree top of the neighbouring trees, we model the angular sector with a 1-D
discrete signal Sj,Θk

(ρ) composed by the coordinates zi of the LiDAR points pi ∈ Pj,Θk
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(a) (b) (c) (d)

Figure 2.2: Example of angular analysis: (a) top view of the LiDAR point cloud Pj divided into Nθ
angular sectors, with Nθ=8, (b) top view of the angular sector Θk, (c) side view of the angular sector
Θk after the circular projection, (d) side view of the 1-D discrete signal Sj,Θk

(ρ) that approximates the
shape of the crown in the sector Θk.

and depending on their distances from the tree top ρi, i.e.:

ρi =
√

(xi − xtj)2 + (yi − ytj)2 (2.2)

To this end, we first apply a circular projection to the points pi ∈ Pj,Θk
onto the ρz

plane centered in the tree top coordinates (xtj, y
t
j). Let us define Πc : (x, y, z) 7→ (ρ, z)

as the circular projection that maps the points from the 3-D space R3 to the 2-D space
R2 (Fig. 2.2c). Second, we keep the set of highest points belonging to the first return to
represent the crowns surface. Accordingly, we quantize the distance of the points from
the tree top ρi ∈ [0, Rs] into F intervals ξ = Rs/F and select the maximum height value
in each ξ (Fig. 2.2d). Note that, the quantization step should be tuned considering
the properties of the LiDAR data (i.e., footprint, point density) to guarantee that in
each interval ξ the highest LiDAR point represents the crown surface. A similar angular
analysis is presented in [117], where the authors refine the manual segmentation of tree
crowns based on field measurements, by removing those sectors including LiDAR points
of the neighbouring trees. In particular, they represent the angular sector considering
the mean height values in each interval ξ =0.5 m. Then, by evaluating the trend of the
sector profile, they determine possible over-segmentation. In contrast, we consider the
maximum height value per interval to represent the shape of the crown and we aim to
detect the position of the closest tree top.

A Gaussian filtering is then applied to Sj,Θk
(ρ) to trim upper branches and thus avoid

false local maxima. Unlike filtering applied in the image domain, we do not lose any detail
while still smoothing the conical shape of the crown. Finally, for each 1-D signal Sj,Θk

(ρ)
we compute the discrete derivative S ′j,Θk

(ρ) to detect the closest local height maximum,
i.e,:

Mj,Θk
= Sj,Θk

(ρ0), with ρ0 = argmax
ρ

{
Sj,Θk

(ρ)
}

(2.3)

To avoid false tree tops detection, a local maximum is considered a tree top when it is
detected from at least two different tree apexes identified in the CHM. This is based on
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the reasonable assumption that a missed apex is surrounded by more than one tree. Since
we are dealing with dense forest scenarios, this cross check allows us to avoid false local
maxima without losing possible tree tops. The new set of candidate tree tops TPCS is then
compared with the set of tree tops TCHM to remove the redundancy. At the end of this
step, we obtain the whole set of tree apexes T = {t1, t2, .., tH}.

Note that the hybrid approaches presented in the literature typically refine the seg-
mentation results obtained in the CHM by detecting the tree stems [108] or by fitting
parametric models to the segmented point clouds [118]. However, tree stems are not al-
ways visible (especially in dense forest scenario). Moreover, to obtain accurate detection
results it is necessary to properly tune the model parameters. In contrast, the proposed
method jointly uses the CHM and PCS to improve the detection of the trees by relying
only on the geometrical structure of the crown. Moreover, the proposed analysis of the
PCS is not computationally demanding and thus can be easily applied to large forest
areas.

2.2.2 Dominant Trees Segmentation

To avoid the drawbacks of the segmentation methods applied to the CHM, the crowns
have been delineated in the PCS by means of clustering techniques [104, 103]. However,
the bottleneck of these methods is the computational burden because of their need of
processing the entire point cloud. Moreover, they do not consider the physical properties
of the shape of the crown to perform the segmentation. In contrast, we aim to exploit the
geometrical convex shape of the crowns to segment each single tree. Moreover, due to the
angular analysis we are in the condition of accurately adapting the segmentation to the
different portions of the crown by considering each angular sector separately. Furthermore,
by focusing the attention on the set of LiDAR points Pj extracted around the tree top
tj ∈ T within a radius Rs we can segment each crown separately and in parallel from the
others, thus strongly reducing the computational effort.

By modelling the profile of angular sector Pj,Θk
with the discrete 1-D signal Sj,Θk

(ρ),
the position of the edge Ej,Θk

can be associated to the first local minimum detected
computing the discrete derivative S ′j,Θk

(ρ), i.e.,

Ej,Θk
= Sj,Θk

(ρ0), with ρ0 = argmin
ρ
{Sj,Θk

(ρ)} (2.4)

By analyzing the distance ρi of the LiDAR points pi ∈ Pj,Θk
from the tree top tj, we can

identify the points belonging to the crown Cj that are those having ρi ≤ Ej,Θk
. At the

end of this step the edge positions Ej,Θk
with k ∈ [0, N -1] within the angular sectors have

been identified. Therefore, we can segment the crowns directly in the PCS thus generating
the set of segmented crowns C = {C1, C2, .., CH}, where for each detected tree top tj ∈ T
we associate the set of LiDAR points Cj = {p1,p2, ..,pB} belonging to the crown. Note
that the size of the angular sectors can be the same of the one used for the detection of
the tree top. However, to better delineate the crown contours it is possible to increase
the number of angular sectors as long as there is a sufficient number of LiDAR points in
each Θk to represent the shape of the crown. Finally, we check the set of trees detected
by means of the derivative analysis to assess that those segmented point clouds have a
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.3: Example of sub-dominant tree crown detection: (a) top view of the dominant tree crown Cj
divided into L angular sectors, with L=4, (b) side view of Cj , (c) vertical profile of the projected LiDAR
points Πc(pi) ∈ Cj,Θ3

, where the sub-dominant crown is present, (d) vertical profile quantization Vj,Θ3
(z),

(e) Vj,Θ3
(z) after the Gaussian filtering, (f) vertical profile of the projected LiDAR points Πc(pi) ∈ Cj,Θ4

,
where no sub-dominant crowns are present, (g) vertical profile quantization Vj,Θ4

(z), (h) Vj,Θ4
(z) after

the Gaussian filtering.

minimum number of LiDAR points. Indeed, in the case upper branches might appear as
local maxima in the derivative analysis, the crowns delineated around them can be easily
removed because they result in few LiDAR points.

2.2.3 Sub-Dominant Trees Detection

In this step we aim to detect all the sub-dominant trees covered by upper canopies.
Therefore, we are not assuming that the forest is characterized by two layers of trees,
but we can address the multilayered forest case. To automatically detect the understory
vegetation, we first split each segmented crown Cj into L angular sectors (Fig. 2.3a and
Fig. 2.3b), large enough to reveal the presence of sub-dominant trees. Thus, the number
of angular sectors could be different from the number of sectors employed to perform the
dominant tree crowns segmentation, i.e., L ≤ N . Second, we analyze the vertical profile of
each sector to detect both the presence and the height of the sub-dominant trees. Indeed,
if there is a sub-canopy, it is reasonable to assume the presence of a hump in the bottom
part of the vertical profile of the angular sector of the crown (Fig. 2.3c), otherwise not
visible (Fig. 2.3f). Accordingly, we model the angular sector Cj,Θk

with the 1-D vertical
discrete signal Vj,Θk

(z), composed of the distances from the tree top ρi of the LiDAR
points pi ∈ Cj,Θk

and depending on the height coordinates zi. To this end, we first apply
the circular projection Πc to the LiDAR points pi ∈ Cj,Θk

. Let Hj,Θk
be the maximum

height value of the set of points Cj,Θk
. Second, we quantize the height values zi ∈ [0, Hj,Θk

]
into D steps δ = Hj,Θk

/D and select in each δ the LiDAR point having maximum distance
ρi from the tree top tj (Fig. 2.3d and 2.3g). Finally, a Gaussian filtering is applied to
smooth the profile and reduce the noise introduced by the tree branches (Fig. 2.3e and
Fig. 2.3h). It is worth noting that, unlike the 1-D discrete signal Sj,Θk

(ρ) generated to
perform the derivative analysis, Vj,Θk

(z) depends on the variable z (instead of ρ) since
we are interested in the vertical profile of the tree rather than in the horizontal one. By
computing the discrete derivative V ′j,Θk

(z), we aim to the detect the presence of a local
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(a) (b) (c) (d)

Figure 2.4: Example of sub-dominant tree detection: (a) top view of the dominant tree crown Cj in
the PCS, (b) top view of the sub-dominant tree in the PCS obtained keeping the set of LiDAR point
Psub
j = {Psub

j,Θ2
,Psub

j,Θ3
}, (c) CHM of the dominant tree crown, and (d) CHM of the sub-dominant tree

crown, where the detected tree top is highlighted in red.

minimum which corresponds to the height of tree top of the sub-dominant crown Hsub
j,Θk

located in the angular sector Θk, i.e.,:

Hsub
j,Θk

= Vj,Θk
(z0), with z0 = argmin

z
{Vj,Θk

(z)} (2.5)

Thus, if a local minimum is detected, we assume the presence of a sub-dominant tree
in Cj,Θk

(Fig. 2.3e), whereas if no local minima are identified we assume there is no
understory vegetation in Cj,Θk

(Fig. 2.3h). Let us define with Csub
j,Θk

the sectors where a
sub-dominant crown has been identified. To detect the ground coordinates of the tree top
(xsub

j , ysub
j ) we consider only the set of LiDAR points Psub

j,Θk
defined as:

Psub
j,Θk

= {pi ∈ Csub
j,Θk
|zi ≤ Hsub

j,Θk
} (2.6)

Therefore, we generate the raster image of Psub
j,Θk

and we detect the tree top of the sub-
dominant tree by applying the LSM to the obtained CHM representing the understory
vegetation (Fig. 2.4). In particular, adjacent angular sectors are rasterized in the same
image to assess if they represent the same sub-dominant tree or different ones. In contrast,
non-adjacent angular sectors are rasterized separately. Unlike the methods presented in
the literature [115, 116, 119], by means of the angular analysis we are int he condition
of detecting the presence of more than one sub-canopy below the same dominant tree.
Moreover, the circular projection emphasizes the presence of the sub-dominant crowns,
thus facilitating the detection. At the end of this step, we obtain the set of tree tops
of the sub-dominant trees T sub = {tsub

1 , tsub
2 , .., tsub

G }, where around each tree top tsub
j we

have the associated LiDAR point sectors, i.e., Psub
j = {Psub

j,Θ1
, ..,Psub

j,ΘS
}, with S ≤ L.

2.2.4 Sub-Dominant Trees Segmentation

In the final step of the proposed method, we extract the crowns of the detected sub-
dominant trees directly in the PCS. For each tree top tsub

j we consider the associated

LiDAR point cloud Psub
j . Then, as in the dominant layer of the forest, we apply the

angular analysis to automatically delineate the crown boundaries of the trees belonging
to the sub-dominant layer of the forest. In particular, for each tree top tsub

j we extract

the crown Csub
j , thus generating the set of sub-canopies Csub = {Csub

1 , Csub
2 , .., Csub

G }.
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2.3 Experimental Results

In this section we present the results obtained by the proposed method on two LiDAR
data characterized by different laser point densities acquired in a complex mountainous
scenario. First, we describe the dataset employed in the experiments. Then, an analysis
of the parameters required by the proposed method is presented. Finally, the quan-
titative and qualitative results obtained are illustrated for both the dominant and the
sub-dominant layers of the forest.

2.3.1 Dataset Description

To assess the performance of the proposed method we used two LiDAR data acquired in
different geographical areas with different laser point density, hereafter referred to as the
very high-density (i.e., average density of 15 pts/m2) and the high-density dataset (i.e.,
average density of 5 pts/m2). Both the study areas are coniferous forests located in the
Southern Alps of the Trentino region (Italy). This mountainous scenario is characterized
by a complex terrain’s morphology due to the steep slopes and wide altitude range.

The very high-density LiDAR data were acquired between 7th and 9th of September
2012 with a Riegl LMS - Q680i sensor mounted on an airborne platform in the municipality
of Pellizzano, Trentino region. The aircraft was flying at a speed of about 180 km/h
at an altitude of approximately 660 m above the ground level. The pulse repetition
frequency was 400 kHz and for each laser pulse 4 returns were recorded. The central
point coordinates of the study area are 46◦17′31,00′′ N, 10◦45′56,49′′ E. The area extends
approximately 3200 Ha and the altitude ranges from 900 to 2000 meters a.s.l.. The species
composition of the forest is mainly Norway Spruce and European Larch. Field data were
collected in 7 circular forest stands having radius 20 m (Fig. 2.5) characterized by different
structure in terms of crown size and forest density. All of them are uneven-aged forest
(i.e., inside the stand plot the trees have 3 or more distinct age classes), thus representing
a complex test case.

Within the sample plot, for each tree the position (x, y coordinates), the height, the
species were recorder, whereas we manually delineated the crown radius by means of an
accurate visual interpretation (Tab. 2.1a). To this end trees were displayed in the 3-D
LiDAR point cloud and the crown boundaries were manually drawn by an independent
experienced operator. The crown segmentation was based on visual interpretation of the
crown geometry both from the top and the side view of the considered tree. Because of
the lack of sub-dominant trees in the sample plots, from the entire forest area a subset
of 171 dominant trees were considered for validation purpose, 85 of which contain sub-
dominant trees below, and 86 without sub-canopies. The presence of both the dominant
and the sub-dominant trees was checked individually in the PCS to generate the reference
data. The crown radii of the sub-dominant trees were manually delineated by visual
interpretation.

The high-density LiDAR data were acquired on 4th September 2007 at Parco Natu-
rale Paneveggio - Pale di San Martino, by means of an Optech ALTM 3100EA sensor.
The LiDAR wavelength and the pulse repetition frequency are 1064 nm and 100 kHz,
respectively. For each laser pulse four returns were recorded. The coordinates of the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.5: False color representation of the CHMs representing the investigated stand plots for the
very high-density LiDAR dataset. (a) Sample Plot H1, (b) Sample Plot H2, (c) Sample Plot H3, (d)
Sample Plot H4, (e) Sample Plot H5, (f) Sample Plot H6, (g) Sample Plot H7. The rasterization has
been performed with a spatial resolution of 25 cm.

(a) (b) (c) (d) (e) (f)

Figure 2.6: False color representation of the CHMs representing the investigated stand plots for the
high-density LiDAR dataset. (a) Sample Plot M1, (b) Sample Plot M2, (c) Sample Plot M3, (d) Sample
Plot M4, (e) Sample Plot M5, (f) Sample Plot M6. The rasterization has been performed with a spatial
resolution of 50 cm.

central point of this area are 46◦17′47,60′′ N, 11◦45′29,98′′ E. The area extends for 368 Ha
and the altitude ranges between 1536 m and 2065 m. The dominant species are Norway
Spruce and Silver Fir. Ground data are available in 6 circular stands plot of radius 20
m (Fig. 2.6). Within each stand plot, all the trees were measured. For each surveyed
tree, the position (measured with respect to the center of the sample plot), the height,
the species and the projected crown area were recorded. Also in this case the crown radii
were manually delineated in the PCS for validation purpose (Tab. 2.1b).

To accurately match the surveyed trees to the segmented crowns, first the plot center
coordinated were corrected by matching the dominant trees positions measured in situ
with the tree tops visible in the CHM. Then, each detected tree has been associated to a
field measured tree considering a maximum horizontal distance dxy of 2 m and a maximum
height difference dh of 3 m.
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Table 2.1: Number of trees, tree height (H) and crown radius (CR) presented divided per stands plot for
the: (a) very high-density LIDAR data, (b) high-density LIDAR data. While the number and the height
of the trees were measured in situ, the crown radii were manually delineated by visual interpretation.

Plot Trees
H (m) CR (m)

Range Mean Range Mean

H1 14 34-44 38.4 2.9-5.5 4.4

H2 33 20.7-33.5 28.5 1.6-5.9 3.3

H3 37 24-37.4 33.2 2.1-4.1 3.1

H4 28 28.2-39.8 35.3 2.5-6.2 3.9

H5 31 3.6-35 23.6 1.2-5.2 2.8

H6 39 15-42.4 32.1 1.8-6.4 3.5

H7 36 27 - 35 31.3 1.6 - 4.5 3.1

(a)

Plot Trees
H (m) CR (m)

Range MeanRangeMean

M1 33 4.4-28.3 21.4 1-3.6 2.3

M2 50 3.9-34.6 28.6 1-3.2 2.3

M3 24 16.6-24.4 20.6 1-3.6 2.4

M4 36 7.7-35.9 25 1-3.2 2.3

M5 45 34.6-40.5 38.1 2-3.2 4.1

M6 29 31.6-41.9 38.4 2-5 3.2

(b)

2.3.2 Sensitivity Analysis

Tab. 2.2 reports the values for the parameters used in all the experiments presented
in this chapter for the very high- and the high- density LiDAR data. The tuning was
carried out considering only the properties of the LiDAR data without the need of prior
knowledge on the average crown size and forest density. The spatial resolution of the
CHM was selected taking into account the density of the LiDAR data, whereas the 2-
D Gaussian filtering was tuned considering the spatial resolution of the image to avoid
commission errors. Accordingly, these values were the same for all the sample plots in the
same dataset besides the average crown size.

The angular analysis was performed considering N = 8 sectors to have Θ = 45◦ for
both the tree detection and segmentation regardless of the laser sampling density. Note
that the value Θ = 45◦ allows the accurate representation of the different crown sides.
The horizontal quantization step ξ was tuned considering the LiDAR point density to
guarantee at least one LiDAR point per interval. In the considered dataset, ξ was equal
to 0.3 m and to 0.6 m for the very high- and the high- density LiDAR dataset, respectively
since the average point density was 15 pts/m2 in the first case and 5 pts/m2 in the second
case. The Gaussian filtering applied to the 1-D discrete signal Sj,Θk

(ρ) used for smoothing
the crown profile and removing the outliers had a window size of 1×3, which can be used
regardless of the LiDAR density and the crown size.

For the detection of the sub-dominant crowns the number of angular sectors L was
4. This conditions allows us to analyze the presence of the understory vegetation in 4
different portions of the dominant tree crown. From our experiments it turned out that
in each sector an average of 20 LiDAR points for each quantization step δ is required to
properly represent Vj,Θk

(z). In our dataset, this condition was achieved setting D = 29,
thus adapting the size of δ to the height of the crown. Accordingly, we fixed this value
to perform all the experiments presented in this chapter. Fig. 2.7 depicts the behaviour
of the number of detected trees and true negatives versus the value of D. Note that
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Table 2.2: Recommended values for the parameters of the proposed method for the very high- and the
high- density datasets. The tuning of the parameters is based only on the properties of the LiDAR data.

Parameters Values
Very High-DensityHigh-Density

D
o
m

in
an

t

Spatial Resolution of the CHM 0.25 m 0.50 m
2-D Filter Kernel Size 5×5 3×3
2-D Filter Standard Deviation 10 5
Search Radius Rs 20 20
# of Angular Sectors Nθ 8 8
Horizontal Quantization Step ξ 0.30 m 0.60 m
1-D Filter Kernel Size (Horizontal Profile) 1×3 1×3
1-D Filter Standard Deviation (Horizontal Profile) 4 4

S
u

b
-D

o
m

. # of Angular Sectors L 4 -
# of Vertical Quantization Step D 29 -
1-D Filter Kernel Size (Vertical Profile) 1×7 -
1-D Filter Standard Deviation (Vertical Profile) 4 -

the detection rate of sub-dominant trees increases as the value of D does. However, it
leads to a lower detection of a true negative (i.e., high detection of false positive). Indeed,
increasing the number of steps implies a better representation of the tree structure, but the
number of LiDAR points per step δ decreases. Moreover, with too fine quantization scale
some false trees can be detected because of the possible geometrical anomalies present
in the vertical profile of the crown. Therefore, to obtain accurate detection results, it is
necessary to have a reliable representation of the crown guaranteeing a minimum amount
of LiDAR points per step.

Number of quantization steps (D)
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Figure 2.7: Behaviour of the vertical quantization step D vs the number of detected trees and true
negatives for the sub-dominant layer of the forest.
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2.3.3 Results on the Dominant Forest Layer

To evaluate the performance of the Proposed Method (PM), the detection results ob-
tained were compared to the LSM [86] and the LMF [84]. In particular, the results were
evaluated by considering the Detection Accuracy (DET), the Omission Error (OM) and
the Commission Error (COM). The Detection Accuracy and the Omission Error repre-
sent the number of trees associated to the field data and the number of missed trees,
respectively. The Commission Error represents the number of number of trees detected
which are not associated to any field data. Tab. 2.3a and 2.3b show the detection results
obtained with the PM, the LSM and the LMF on the very high- and the high- density
dataset, respectively.

Both the state-of-the-art methods detect the trees only in the image domain. There-
fore, the results are strongly affected by the degree of smoothing applied to the CHM.
Moreover, while the LSM progressively slices the CHM to detect the tree top [86], the
LMF exploit a sliding window to search the local peaks. Thus, the applied window size
affects the detection results. Accordingly, a tuning of the state-of-the-art algorithms on
a training set was necessary to ensure the best performance per forest type.

Even though the CHM provides the full representation of the dominant layer of the
forest, the LSM and the LMF did not detect all the trees present in the scene due to the
very high canopy density. In particular, the LMF achieved a lower detection rate compared
to the LSM because of the window size, which was tuned to fit the larger crowns (to avoid
too many false tree detected), thus penalizing the detection of the smaller crowns. This
condition has less of an effect on the detection results for the high-density dataset (i.e.,
183 trees detected compared to the 184 identified with the LSM) since the forest stands
are characterized by homogeneous crown size (Fig. 2.6). In contrast, the choice of the
window size strongly affects the detection in the very high-density dataset characterized
by uneven-aged stands (i.e., 194 trees detected compared to the 204 identified with the
LSM).

Differently from the state-of-the-art methods, the proposed approach exploits the in-
formation provided by the original LiDAR point cloud to refine the detection performance
achieved in the CHM. Indeed, in the PCS the convex shape of the tree crowns is clearly
visible and not affected by any interpolation process. Accordingly, the proposed approach
is capable of handling the crown size variability within the same forest stand since it relies
on the geometrical properties of the tree crowns. Thus, due to the further analysis in the
PCS, the proposed method improved the detection rate regardless of the laser point den-
sity. This was achieved by keeping the commission errors under 7% and 2% for the very
high- and the high- density dataset, respectively. In particular, in the very high-density
dataset the PM identified 8 and 18 trees more than the LSM and the LMF, respectively,
whereas it introduced only 3 and 4 commission errors more than the LSM and the LMF,
respectively. In the high-density dataset the PM identified 16 trees more than the LSM
and 17 more than the LMF, while incurring only 3 additional commission errors.

Note that on the very high-density dataset we obtained higher detection rate (i.e.,
97.3%) than in the high-density dataset (i.e., 92.1%) because of the better characterization
of the 3-D structure of the forest. However, while in the very high-density case the CHM
provided enough information to detect the majority of the trees (the spatial resolution
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Table 2.3: Tree detection results for the dominant layer of the forest obtained on: (a) the very high-
density LiDAR dataset, (b) the high-density LiDAR dataset. The Detection Accuracy (DET), Commis-
sion (COM) and Omission (OM) Errors are presented divided per stand plot. The proposed method
(PM) is compared with the standard LSM and LMF.

ID # PM LSM LMF

Plot Trees DET COM OM DET COM OM DET COM OM

H1 14 13 (92.8%) 2 (14.2%) 1 (7.1%) 13 (92.8%) 2 (14.2%) 1 (7.1%) 11 (78.5%) 3 (21.4%) 3 (21.4%)

H2 33 30 (90.9%) 0 (0%) 3 (9.1%) 28 (84.9%) 0 (0%) 5 (15.2%) 26 (78.8%) 0 (0%) 7 (21.2%)

H3 37 36 (97.3%) 4 (10.8%) 1 (2.7%) 31 (86.4%) 4 (10.8%) 6 (13.5%) 31 (83.7%) 2 (5.4%) 6 (16.2%)

H4 28 28 (100%) 4 (14.2%) 0 (0%) 28 (100%) 2 (7.1%) 0 (0%) 27 (96.4%) 0 (0%) 1 (3.6%)

H5 31 31(100%) 1 (3.2%) 0 (0%) 31 (100%) 0 (0%) 0 (0%) 28 (90%) 3 (9.7%) 3 (9.,7%)

H6 39 38 (97.4%) 1 (2.6%) 1 (2.6%) 38 (97.4%) 1 (2.6%) 1 (2.6%) 36 (92.3%) 0 (0%) 3 (7.6%)

H7 36 36 (100%) 2 (5.6%) 0 (0%) 35 (97.2%) 2 (5.5%) 1 (2.78%) 35 (97.2%) 2 (5.5%) 1 (2.7%)

Tot. 218 212 (97.3%) 14 (6.6%) 6 (2.8%) 204 (93.6%) 11 (5.1%) 14 (6.6%) 194 (89.0%) 10 (4.6%) 24 (11%)

(a)

ID # PM LSM LMF

Plot Trees DET COM OM DET COM OM DET COM OM

M1 33 31 (93.9%) 0 (0%) 2 (6.1%) 28 (84.8%) 0 (0%) 5 (15.2%) 26 (78.8%) 0 (0%) 7 (21.2%)

M2 50 46 (92%) 0 (0%) 4 (8%) 41 (82%) 0 (0%) 9 (18%) 43 (86%) 0 (0%) 7 (14%)

M3 24 22 (91.7%) 1 (4.1%) 2 (8.3%) 20 (83.3%) 0 (0%) 4 (16.7%) 20 (83.3%) 0 (0%) 4 (16.7%)

M4 36 34 (94.4%) 0 (0%) 2 (5.6%) 31 (86.1%) 0 (0%) 5 (13.9%) 29 (80.6%) 0 (0%) 7 (19.4%)

M5 45 41 (91.1%) 1 (2.2%) 4 (8.9%) 40 (88.9%) 0 (0%) 5 (11.1%) 38 (84.5%) 0 (0%) 7 (15.6%)

M6 29 26 (89.6%) 1 (3.4%) 3 (10.4%) 24 (82.7%) 0 (0%) 5 (17.3%) 27 (93.1%) 0 (0%) 2 (6.89%)

Tot. 217 200 (92.1%) 3 (1.3%) 17 (7.8%) 184 (84.8%) 0 (0%) 33 (15.2%) 183 (84.3%) 0 (0%) 34 (15.6%)

(b)

of the CHM is 0.25 m), in the high-density case the analysis of the PCS allowed us to
halve the omission errors obtained with the LSM (i.e., from 33 to 16 missed trees). This
reduction of the omissions strongly improves the estimation of forest parameters such
as volume and structure, especially when dealing with trees characterized by an average
height that ranges from 23.6 m to 38.4 m in Pellizzano (Tab. 2.1a) and from 20.6 m to
38.4 m in Paneveggio (Tab. 2.1b).

To quantitatively assess the crown delineation results, radii identified by visual inter-
pretation were compared to the ones automatically detected by the proposed approach
by considering: the statistical determination coefficient (R2), the Mean Error (ME), the
Mean Absolute Error (MAE), the Mean Square Error (MSE) and the Normalized Mean
Square Error (NRMSE). Note that, the NRMSE is computed as the ratio between the
RMSE and the range of the measured CR to facilitate the comparison between the dataset
due to the different CR. Fig. 2.8a and Fig. 2.8b depict the scatterplots of the real ver-
sus the estimated crown radii of the correctly detected trees for the very high- and the
high- dataset, respectively. The scatterplots show the capability of the angular analysis
to properly delineate the single tree crowns regardless of the forest density and the laser
sampling density.
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Figure 2.8: Real versus estimated (with the proposed method) crown radius (CR) of the dominant trees
for: (a) the very high-density LiDAR dataset, (b) the high-density LiDAR dataset.

Due to the higher spatial resolution, the very high-density dataset resulted in a bet-
ter delineation of the crown boundaries. However, the error metrics point out that we
obtained accurate results in both of the dataset. Indeed, R2 ranges between 0.78 to 0.82,
whereas the NRMSE ranges from 7.96% and 8.75%. Because of the missed detection
of some trees, there are few over-segmented crowns. For evaluating the overall method
Tab. 2.4 reports ME, MAE, RMSE and NRMSE of the estimated crown radii divided
per dataset. By taking into the omission errors we obtained a MAE of 0.52 m on an
average crown radius of 3.4 m for the very high-density dataset (i.e., 15.3%), and a MAE
of 0.51 m on an average crown radius of 2.6 m for the high-density dataset (i.e., 19.6%).
A qualitative evaluation of the segmentation results confirms the effectiveness of the pro-
posed method in detecting the crown boundaries. Fig. 2.9 shows some examples of crown
delineation results by presenting the segmented trees in the forest area for the very high-
density (Fig. 2.9a - Fig. 2.9f) and the high-density LiDAR dataset (Fig. 2.9g - Fig. 2.9l).
As one can notice, the segmentation method was able to delineate the crowns of detected
trees, despite the presence of overlapping and asymmetric crowns.

Table 2.4: ME, MAE, MSE and NRMSE of the estimated crown radius are presented divided per dataset.
The error metrics include the over-segmentation error due to the omission errors.

Dataset ME MAE MSE NRMSE

Very High-Density 0.38 m 0.52 m 0.81 16.8%

High-Density -0.26 m 0.51 m 0.59 15.1%
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.9: Qualitative example of tree crown segmentation obtained in the dominant layer of the forest
for: (a)-(f) the very high-density LiDAR data, and (g)-(l) the high-density LiDAR data. The segmented
crowns (represented in bright colors) are located in the original forest scenario. A visual analysis confirms
that the proposed method is able to properly extract trees both in dense canopy scenario and when they
are isolated regardless of the laser point density.

2.3.4 Results on the Sub-Dominant Forest Layer

To assess the effectiveness of the proposed method in the detection of the sub-dominant
trees, the set of 171 trees selected in the very high-density LiDAR data was considered.
The Detection Accuracy and the Omission Error represent the number of detected trees
and the number of false negatives in proportion to the number of real sub-dominant trees
(i.e., 85), respectively. The Commission Error represents the number of false positives in
proportion to the number of dominant trees without sub-canopies (i.e., 86). Finally, the
Overall Accuracy (OA) metric evaluates both the correct identification of the presence or
absence of the sub-dominant trees in proportions to the total amount of trees (i.e., 171).
The PM was compared with the Height Frequency Distribution method (HFD) presented
in [115] and [108]. However, due to the assumption of double layer forest stands (not
true for the considered dataset) in the latter case the technique resulted in both many
commission errors and low detection rate. Thus, here we do not report the numerical
results obtained. To have a fair detection comparison of the detection rate, the same set
of dominant tree crowns extracted in the previous step was considered for both the HFD
and the PM.

Tab. 2.5 shows the detection results obtained with the PM and the HFD [115]. Both
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Table 2.5: Detection Accuracy (DET), Commission Errors (COM), Omission Errors (OM) and Overall
Accuracy (OA) obtained for the sub-dominant layer of the forest with the Proposed Method (PM) and
the Reference Method (HFD).

DET COM OM OA

PM 61 (71.8%) 24 (27.9%) 24 (28.3%) 123 (71.9%)

HFD 66 (77.6%) 43 (50%) 19 (22.3%) 109 (63.7%)

methods achieve similar performances in terms of number of detected trees (i.e., 61 with
the PM and 66 with the HFD), whereas the proposed approach strongly reduced the
number of commission errors (i.e., 24 compared to 43). This improvement is due to
the analysis of the PM of the geometrical structure of the vertical profile, instead of
considering the frequency height distribution. Indeed, when dealing with dense forest
scenarios neighbouring trees are very close to each other and thus, the shape of the
dominant crowns is no more symmetric. Accordingly, the presence of anomalies in the
frequency height distribution is poorly correlated to the presence of understory vegetation
as proved by the commission errors obtained by the HFD method. Moreover, the angular
analysis allows us to address the issue of anisotropic crowns, while the projection of the
laser points to the ρz plane (accomplished to represent the vertical profile of the tree)
further reduces the influence of the asymmetry of the crown in the sub-dominant tree
detection. Fig. 2.10 shows a qualitative example of the segmentation results obtained for
the sub-dominant trees. As one can notice, the PM effectively extract the shape of the
crown. Due to the angular analysis, the small trees can be extracted even though they
are really close to the trunk of the dominant tree crown. The quantitative evaluation
presented in Fig. 2.11 confirms the accuracy of the proposed approach in delineating the
sub-canopies.

(a) (b) (c) (d) (e) (f)

Figure 2.10: Qualitative example of tree crown segmentation obtained in the sub-dominant layer of the
forest (very high-density LiDAR dataset). (a)-(f) the segmented crowns are represented in bright colors
in the original forest scenario.
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Figure 2.11: Real versus estimated (with the proposed method) crown radius (CR) of the sub-dominant
trees.

2.4 Conclusion

In this chapter we presented a novel method to the 3-D segmentation of the individual
tree crowns of both the dominant and the dominated layer of the forest. The obtained
results demonstrate that the proposed method is able to improve the detection rate of
the dominant trees with respect to the standard methods of the state-of-the-art. This is
accomplished by refining the detection achieved in the CHM considering the information
provided by the original LiDAR point cloud, which is not affected by the interpolation
process and the smoothing filtering. Moreover, the method improves the detection accu-
racy while keeping the commission error rate under 7% for both datasets. Furthermore,
the detection performed in the PCS proved to be robust with respect to the forest density
and the average crown size since it relies on the geometrical properties of the tree crowns.

For the sub-dominant tree detection, the angular analysis of the vertical profile of the
crown drastically reduced the commission errors while allowing the detection of multiple
trees present below the same dominant crowns. Also in this case, the detection rate was
better than the one obtained with the method presented in the literature. Finally, the
proposed segmentation segmentation method is able to fit the shape of the trees for both
the dominant and the sub-dominant trees besides the forest density. Indeed, the angular
analysis performed in the PCS is able to adapt the crown delineation to the different
portion of the crowns separately.

As future developments of this work, we aim at testing the proposed method on LiDAR
data characterized by different point densities and in forests having properties different
from the one used in the chapter. Moreover, we plan to test the effectiveness of the
proposed approach on the full waveform LiDAR data. Finally, we aim to extend the
method to the broadleaved forest, which represent a complex test case because of their
crown umbrella shape difficult to delineate.



Chapter 3

Adaptive Tree Stem Diameter
Estimation Method

The Diameter at Breast Height (DBH), together with the height of the tree, is one of
the most important tree parameters for forest inventory. While the tree height is directly
measured by the LiDAR sensor, DBH has to be estimated by means of regression models.
To accurately retrieve the DBH of trees characterized by small and large stems, in this
chapter we present a novel method for the adaptive estimation of the stem Diameter at
Breast Height (DBH). The method is based on the identification of growth model classes.
First, we aim to detect different tree growth model classes by means of a data-driven ap-
proach based on a clustering procedure. The clustering is performed considering all the
environmental factors that can affect the growth of the trees (e.g., topography, forest den-
sity), modeled by a set of features extracted from the data. For each detected growth model
class a tailored estimation model is trained to obtain accurate DBH estimation results.
Experiments have been carried out in an Alpine mountainous scenario characterized by a
complex topography and a wide range of soil fertility. The results obtained demonstrate
the effectiveness of having multiple regression models adapted to the different tree classes.

3.1 Introduction

Diameter at Breast Height (DBH) is one of the most relevant tree parameter for the
characterization of the structure of the forest. At single tree level DBH is fundamental to
estimate the tree stem volume, the basal area as well as the carbon budget. At plot level,
an accurate prediction of the tree diameter distribution is necessary to characterize the
structure, the growth and the economic value of the forest stand (i.e., timber quality).
However, while the height of the trees is directly measured by the laser scanner, DBH
should be retrieved by means of regression models.

To address this issue, many papers in the literature estimate the DBH considering the
height and the crown diameter measured by the LiDAR data ([95, 120, 121]). Although
there is a correlation between the geometry of the crown and the stem diameter, these
parameters are not sufficient to accurately model the variability of the DBH especially in
heterogeneous forest scenario. To obtain a more detailed characterization of the canopy
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structure, some papers extract LiDAR point cloud metrics calculated from the area of the
segmented crowns ([28, 122, 123]). In [28] the variables extracted from the multireturn
LiDAR data represent the distribution of the laser pulses within the crown, thus modeling
the height of the tree, the horizontal and vertical shape of the crown, the crown internal
structure and the forest species. However, despite the capability of these metrics to
accurately represent the tree crowns, the characterization of the structure of the tree is
not sufficient to obtain accurate DBH estimates. In this framework, some papers explored
the possibility of extracting variables from the circular area around the tree in order to
model the immediate forest neighbourhood ([29, 30, 31]). Indeed, the stand density plays
a fundamental role in the expansion of the DBH in terms of availability of water and
sunlight. In [31], the authors introduced a competition index to evaluate the influence
of the surrounding trees (i.e., competitors) on the DBH growth in old-aged forest. The
height and the distance of the competitors are evaluated to quantitatively estimate their
pressure on the growth of the considered tree.

Much effort has focused on spatial statistical models ([124, 125, 126]) which take advan-
tage from the spatial correlation for improving the accuracy of the predicted diameters.
Indeed, it is reasonable to assume that the dendrometric variables of trees growing in
the same forest area are more similar with respect to trees belonging to separate forest
stands. In [124], the authors compared different statistical regression models and found
that the linear mixed-effects model (LME) allows a better DBH estimation with respect
to the geographically weighted regression (GWR), the ordinary least squares (OLS) and
the generalized least squares (GLS) with a non-null correlation structure. Although LME
does not directly incorporate the spatial information, the inclusion of random effects per-
mit to focus on each individual tree by taking into account the lack of independence
among trees belonging to same forest stand. Although these models improve the DBH
estimation accuracy, in mountainous forest areas the properties of forest stands are not
uniform due to the complex terrain morphology. Thus, the spatial distribution of the trees
is not homogeneous and the terrain properties rapidly change when considering close trees
due to the steep slopes.

From the analysis of the literature it turns out that even though height and DBH
are correlated within the same forest area, there is a high variability in their relationship
due to the terrain properties (e.g., fertility, soil class, altitude, slope) and the forest
properties (e.g., stem density, management history of the stand). Accordingly, regression
models based only on tree variables achieve good performances on medium size diameters
but are highly sensitive to the outlayers, thus causing poor model fits at the tails of
the distribution. In particular, these models tend to overestimate small diameters and
underestimate large diameters. While the underestimation of the DBH strongly affects the
tree (or stand) volume estimates, the overestimation of the small DBH is problematic for
predicting the future growth of the stand plot. To solve these problems, in this chapter we
propose a data-driven inference process to dynamically detect classes of trees characterized
by different DBH growth rates. Instead of considering the spatial correlation, the proposed
approach takes into account all the environmental factors that affect the DBH growth to
detect classes of trees characterized by different growth models. Indeed, trees belonging to
the same stand plot but affected by different environment conditions (e.g., stand density,
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Figure 3.1: Architecture of the proposed method based on a data-driven identification of the tree growth
models for an accurate DBH estimation.

terrain slopes) present different growth models. In contrast, trees located in different
forest area but sharing similar forest condition are characterized by comparable stem
expansion rates. Then, a growth model classes analysis based on a feature ranking method
is used to identify the main variables characterizing the different growth models. Finally,
a regression model is defined and adopted to each class, thus increasing the estimation
accuracy. Results obtained demonstrate the effectiveness of having multiple regression
model tailored on each growth model class, which allows a sharp improvement in the
estimation accuracy of both small and large stem diameters.

The remaining of the chapter is organized as follows. Sec. 3.2 illustrates the architec-
ture of the proposed and describes in detail each single step of the approach. Sec. 3.3
presents the experimental results. Finally, Sec. 3.4 draws the conclusion of the chapter.

3.2 Proposed Estimation Method

Fig. 3.1 presents the architecture of the proposed approach. The main steps of the
method are: (i) pre-processing for the segmentation of the tree crowns, (ii) extraction
of variables potentially correlated to the stem growth and the related mining, (iii) data-
driven identification of the growth models, (iv) variable selection, and (v) data-driven
DBH estimation.

3.2.1 Pre-processing

In the pre-processing step, first the DTM is subtracted to each point of the raw LiDAR
data to obtain the absolute height value with respect to the ground (PCS). Then, from
the normalized LiDAR point cloud we generate the CHM by assigning to each pixel the
maximum height value of the first return measured in the considered area. A nearest
neighbouring technique is employed to fill the empty pixels. Finally, the individual tree
crowns (ITC) are delineated by means of the segmentation method presented in Chapter
2. At the end of this step, we obtain the set of tree tops T = {tj}Hj=1 and the set of

related segmented crowns C = {Cj}Hj=1, with tj = {xtj, ytj, ztj}.
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(a) (b)

(c)

Figure 3.2: Visual representation of the variables extracted to model the growth of the tree stems in
terms of: (a) the structure of the crown xTree, (b) the forest stand xPlot, (c) the topography xDtm.

3.2.2 Variable Extraction and Growth Model Analysis

In the proposed method we identify the growth model classes directly from the data. Thus,
we need to properly model the environmental variables (in terms of stand density and
topography) which may affect the stem growth. Moreover, there are variables necessary
for the accurate estimation of the stem diameter growth model. Fig. 3.2 presents a visual
representation of the main factors that affect the DBH. We extract variables from the
LiDAR point cloud P and the DTM in order to model: (i) the structure of the tree xTree,
(ii) the local and global stand densities xPlot, and (iii) the topography xDtm. Accordingly,
the considered feature vector xj ∈ Rd associated to the Cj crown defined as follows:

xj = (xDtm
j ∪ xPlot

j ∪ xTree
j ) (3.1)

Tab. 3.1 reports the feature that we considered to represent the crown structure xTree.
Because of the availability of the multireturn LiDAR data, we extract both a set variables
which represent the statistical distribution of the laser pulses within the crown (e.g.,
Hr
max, Hr

range, Hr
av) and a set of variables being able to model the crown geometry (e.g.,

Ca, r1, r2). The internal structure of the tree crowns is accurately characterized by the
differences between the mean height values of different returns (e.g., H1

av - H2
av), whereas

the vertical profile is represented by the height percentiles Hp and the difference between
the maximum height of the 1st return and the minimum height of the 3rd return, H1

max-
H3
max. It is worth noting that this set of variables has been widely used for modelling

the tree structure for both stem volume estimation ([127, 128, 129]) and forest species
classification ([130, 131]).

To model the forest density, we extract features representing both the local and the
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global stand density (Tab. 3.2). The Local Canopy Cover (LCC) allows us to model the
immediate neighbourhood around the tree. The index is calculated as the ratio between
canopy cover and ground area within a radius larger than 1m with respect to the crown
radius (i.e., r1 +1m). For the stand density we calculate the Global Canopy Cover (GCC)
as the ratio between canopy cover and ground area around the tree within a radius of
10m. In the same area we calculate the ratio between the number of 2nd and 1st pulses to
evaluate the vertical density of the forest stand, p2/p1. Moreover, we extract the Canopy
Reflection Sum (CRS) index, which has been proved to be an effective metric to model
the forest density ([132, 133]).

Finally, a proper representation of the topography around each tree is obtained by
extracting from the DTM the variables presented in Tab. 3.3. It is worth mentioning
that even though the topography is not usually considered, the terrain properties play a
fundamental role in the DBH growth (e.g., soil fertility, sunlight exposure). Let us define
the partial derivatives of the DTM z = g(x, y) along the orthogonal directions x and y in
the horizontal plane and let us assume that the second-order partial derivative exist:

gx =
∂z

∂x
gy =

∂z

∂y
gxx =

∂2z

∂x2
gyy =

∂2z

∂y2
gxy =

∂2z

∂x∂y
(3.2)

Let us also define:

p = (g2
x + g2

y) and q = (g2
x + g2

y + 1) (3.3)

The standard topographic metrics usually employed in the DBH estimation (which are
slope, altitude and aspect within a radius of 10m around the tree) are extracted, where
the sun exposure γ has been calculated as follows:

γ = 180− arctan
(
gy
gx

)
+ 90

gx
|gx|

(3.4)

Moreover, differently from the literature, an accurate characterization of the terrain mor-
phology is performed by using approaches usually considered in the hydrological modeling
of a terrain ([134], [135]). This is done to obtain a proper characterization of hydrological
topographic attributes that allow a better estimation of the relation between stem diame-
ter and tree height. As these variables are not usually considered to retrieve the DBH, in
the following their mathematical definition is reported. We consider the profile curvature
(ϕ), the plan curvature (ω) and the wetness index (w) which are defined as follows:

ϕ =
gxxg

2
x + 2gxygxgy + gyg

2
y

pq3/2
(3.5)

ω =
gxxg

2
x − 2gxygxgy + gyg

2
x

q3/2
(3.6)

w = ln
( As√

g2
x + g2

y

)
(3.7)

where As is the circular area around the tree having a radius of 10m.
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Table 3.1: Set of variables modeling the crown structure.

Variable Description

Hr
max Maximum height per return, with r =[1,4]

Hr
range Height range per return, with r =[1,4]

Hr
av Average height per return, with r =[1,4]

Hr
var Variance height per return, with r =[1,2]

Hr
skw Skewness height per return, with r =[1,2]

Hr
kurt Kurtosis height per return, with r =[1,4]

H1
max-H3

max Max height 1st - Min height 3rd

H1
av - H2

av Average height 1st - Average height 2nd

H1
av - H3

av Average height 1st - Average height 3rd

H1
av - H4

av Average height 1st - Average height 4th

H2
av - H3

av Average height 2nd - Average height 3rd

H2
av - H4

av Average height 2nd - Average height 4th

H3
av - H4

av Average height 3rd - Average height 4th

Hp pth height percentile, with p ={25,50,75,90,95}
Ca Crown area

r1 Radius of the circle circumscribed to the crown

r2 Radius of the ellipse circumscribed to the crown

Table 3.2: Set of variables modeling the forest density.

Variable Description

LCC Local Canopy Cover (in a radius = r1 + 1m)

GCC Global Canopy Cover (in a radius = 10m)

p2/p1 Ratio of 2nd and 1st return pulses (in a radius = 10m )

CRS Sum of intensity (in a radius = 10m)

Table 3.3: Set of variables modeling the topography.

Variable Description

Swest Slope between (xt, yt) and (xt − 10m , yt)

Seast Slope between (xt, yt) and (xt + 10m , yt)

Ssouth Slope between (xt, yt) and (xt, yt − 10m )

Snord Slope between (xt, yt) and (xt, yt + 10m )

γ Aspect (degrees clockwise from north)

ϕ Profile Curvature: direction of max slope

φ Plan Curvature: transverse to the max slope

w Wetness Index

Amin Minimum Altitude

Amax Maximum Altitude

Aav Average Altitude
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3.2.3 Data-Driven Identification of the Growth Models

In this step a data-driven inference process is performed to detect classes of trees char-
acterized by the same growth model. Let us assume to have in the considered forest
scenario M growth models classes ΩM = {ωi}Mi=1. The first growth model to be detected
is the one associated to the young trees, which present linear DBH/height relationship
and relatively low height values. Indeed, while the growth model of the mature trees are
affected by the environment, young trees are characterized by almost linear DBH/height
growth rate. Accordingly, the detection of this class is performed in the xTree feature
space considering the H1

max variable. Let us Hth be the height threshold that allows us to
discriminate between young and mature trees in a reliable way. It is worth mentioning
that the threshold can be selected by considering the average height of the forest stand.
Let ω1 be the growth model class associated to the young trees, and let ΩK = {ΩM −ω1}
be the remaining set of classes, with K = M − 1. The jth crown Cj is classified as ω1 or
ΩK according to the following thresholding operation:

Cj ∈ ω1 if (H1
max ∈ xTree

j ) ≤ Hth

Cj ∈ ΩK if (H1
max ∈ xTree

j ) > Hth

(3.8)

Even though the correct detection of the young trees is important to improve the DBH
estimation of the small tree stem diameter, the main challenge is represented by the
DBH estimation of mature trees. Thus, for a given tree height, the DBH considerably
varies depending on the age of the tree. However, the stem growth of these trees is
strictly related to the environmental condition. Therefore, by considering the feature
space xEnv = (xDtm ∪ xPlot), we can identify classes of mature trees characterized by
different growth models. Accordingly, in the proposed method a data-driven approach is
employed to automatically determine the remaining K growth models. An unsupervised
clustering algorithm is applied to the feature space xEnv to partition the remaining set
of trees into homogeneous growth model classes. Note that the clustering analysis is
completely independent of the geographic location. Thus, trees widely separated in space
can be associated to the same growth model class given the similarity of the environmental
conditions. Moreover, the clustering result is completely driven by the employed variables
(i.e., the considered feature space). Here, for simplicity we use the K-mean clustering
algorithm. However, any other clustering techniques can be considered. In greater detail,
the K-mean clustering algorithm initializes randomly the set of centroids and associates
each features vector xEnvj ∈ ΩK to the closest centroid considering the euclidean distance
metric. By iteratively adjusting the centroid position with respect to the center of the
obtained clusters {υi}Ki=1, the algorithm converges by minimizing the intra-cluster variance
in the feature space, i.e.,:

argmin
ΩK

K∑
i=1

∑
xEnv∈ωi

||xEnv − υi||2 (3.9)

where υi is the cluster centroid of ωi. At the end of the growth models identification, a
growth model analysis is performed on the identified mature trees classes. Accordingly,
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we analyze the separability of the set of K detected classes versus the considered variables
to identify which are the variables that mainly influence the stem growth. To this end, we
consider the Jeffreys-Matusita distance (JM) in order to evaluate the statistical separa-
bility of the growth model classes. By means of the Sequential Floating Feature Selection
(SFFS) to identify the subset of features that maximizes the separability criterion. The
considered algorithm has the capability of performing a fast selection reasonably close
to the optimal one [136]. Let us consider the classes ωh and ωt, the JMht among their
distributions can be defined according to the Bhattacharyya distance Bht:

JMht =
√

2{1− e−Bht} (3.10)

Under the simplifying assumption that the distributions of the growth model classes can
be modeled with Gaussian distributions, the Bhattacharyya distance can be defined as
follows:

Bht =
1

8
(µh − µt)T

(
Σh + Σt

2

)−1

(µh − µt)+

+
1

2
ln

(
1

2

|Σh + Σt|√
|Σh||Σt|

) (3.11)

where µh is the mean vector of class ωh, and Σh is its covariance matrix. Therefore, we
automatically detect both the most relevant set of variables and the number of variables
to select due to the capability of the JM distance to saturate when the discriminability
between the classes does not increases by increasing their distance. Thus, after the sat-
uration point, any feature added does not increase the separability. This analysis allows
us to: (i) determine which variables mostly affect the growth of mature stems, (ii) asses
from the quantitative point of view the separability of the classes in the feature space
where we perform the growth models classification.

3.2.4 Variable Selection

In the previous step a wide set of features has been extracted in order to model all the
possible environmental factors that can affect the growth of the tree stems. Moreover, the
analysis performed on the growth model classes allows us to detect the combinations of
variables able to maximize the separability between the growth model classes. In contrast,
the rationale of this step is the detection the combination of variables which results in bet-
ter estimation than using the whole set of features. Indeed, from the methodological view
point, the regression problem with high number of input variables represent a complex
task because of: (i) the degradation of the generalization ability of the regression model
due to the high number of parameters to estimate, (ii) the high computational cost of the
regression analysis caused by a large number of input variables, (iii) the presence of noise
and redundancy introduced by the variables. In this framework, the variable selection step
becomes mandatory to avoid a model overfitting and to reduce the computational burden.
Accordingly, the most relevant set of variables were selected by using an exhaustive feature
selection method [137]. Unlike the SFFS algorithm, for this method is necessary to fix
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the number of desired features. Even though it is computational demanding, the exhaus-
tive feature selection method allows the detection of the overall best set of the features
by testing all possible combinations of the input features x = (xDtm ∪ xPlot ∪ xTree) and
thus, guarantees the highest accuracy. In the considered implementation, the separability
criterion employed is the MSE of the DBH estimation.

Let us assume to have a training set made up of q samples T = (y,X), where X is the
q × d matrix of extracted variables and y ∈ Rq is the vector of the observed values that
needs to be estimated. According to the results of the growth model identification step,
the considered training set is partitioned into M training set Ti(i = 1, ..,M), where the
ith training set Ti = (yi,Xi) is composed of the ni training samples associated to the ith
growth model class ωi, with ni ≤ q. For each growth model class we selected the set of
bi ≤ d features which minimizes the MSE.

3.2.5 Data-Driven DBH estimation

To accurately estimate the stem diameter regardless of the DBH growth model class,
different regression models are defined and adopted for each class. Indeed, the dependence
of he DBH from the extracted variables varies according to the different environmental
conditions. Accordingly, having a regression model tailored to each class allows us to: (i)
adapt the regression rule to the class of trees, (ii) to detect the set of most informative
variables per regression model and (iii) increase the correlation between the predicted
variables and the DBH.

Let us focus the attention on the ith training set and let us considered to have bi ≤ d
features selected in the previous step. To retrieve the stem diameter a regression model
is trained. For sake of simplicity in this study we employ a multilinear regression model.
However, any other model can be used. The rationale of the multilinear regression is to
derive the linear function yi = f(Xi) that models the relationship between the vector
of dependent variables yi and the matrix of variables Xi. Accordingly, by focusing the
attention on the ith training set Ti = (yi,Xi), the multilinear regression model adopted
is as follows:

yi = Xiβi + εi (3.12)

where βi is the vector of the model parameters estimated and εi the residual error. The
considered equation can be rewritten as follows:


y1

y2
...
yni

 =


x11 x12 . . . x1bi

x21 x22 . . . x2bi
...

...
. . .

...
xni1 xni2 . . . xnibi



β1

β2
...
βni

+


ε1

ε2
...
εni

 (3.13)

At the end of this step, for each growth model ωi a vector of parameters βi is derived,
thus adapting the regression rule to each growth model class.
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3.3 Experimental Results

In this section we present the results obtained by applying the proposed method to a high-
density LiDAR data acquired in a complex Alpine mountainous scenario characterized by
a wide range of stem diameters. After a brief description of the used dataset, we show and
analyze the results obtained in terms of identification of growth models. Moreover, the
results of the growth model classes analysis performed on the identified mature growth
model classes are presented and discussed. Then, we focus the attention on the estimation
results by considering the accuracy obtained per growth model class and on the entire set
of samples.

3.3.1 Dataset Description

Experiments were carried out considering a coniferous forest located at Parco Naturale
Paneveggio – Pale di San Martino, in the Trento Province, Southern Alps, Italy. The
area extends approximately 368 Ha and is characterized by a complex topography with
hillsides having different inclinations and sun exposition (mainly north north-west aspect).
The altitude ranges from 1536 to 2064 a.s.l., whereas the slopes are up to 30◦. The main
forest species are Norway Spruce (Picea Abies) and European Larch (Larix Decidua)
with a small presence of Silver Fir (Abies Alba) and Swiss Pine (Pinus Cembra). High-
density LiDAR data (5 pts/m2) were acquired with the Optech ALTM 3100EA sensor
in September 2007. The number of returns acquired was as up to four, the laser pulse
wavelength was 1064 nm and the laser repetition rate 100 kHz.

Reference data were collected on the ground within 2, 5 and 11 circular stand plots of
radius of 7 m, 13 m and 25 m, respectively. Moreover, two additional square sample plots
having on area of 1 Ha were surveyed. The plots were randomly distributed on the entire
study area to obtain a statistical representation of the in terms of topography and forest
density (Fig. 3.3). Within each sample plot, trees having Diameter at Breast Height
(DBH) larger than 3 cm were surveyed. For each tree, the position with respect to the
center of the sample plot, the species and the DBH were measured. To further reduce the
uncertainty of the horizontal position, the samples plot were manually geo-referenced by
visual interpretation with the LiDAR raster image. In our experiments we analyzed 1462
trees randomly divided into training, test and validation sets Tab. 3.4 shows the mean,
variance, min and max value of DBH and tree height.

Table 3.4: Distribution of the reference data divided into training, test and validation set. For each set
the mean, variance, min and max value of DBH, and the tree top height are reported.

Data set Variable Mean Std Min. Max.

Training Set (380) DBH (cm) 36.48 16.92 3.00 92.00

Height (m) 24.17 9.60 2.26 42.91

Validation Set (200) DBH (cm) 37.12 15.76 4.00 79.00

Height (m) 24.25 9.16 2.31 41.56

Test Set (882) DBH (cm) 36.29 16.95 3.00 92.00

Height (m) 23.31 9.85 2.26 42.43
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Figure 3.3: Study area, Trentino region, Italy. The stand plots are highlighted in white and a zoom of
the two square stands points out the different forest density and structure conditions.

3.3.2 Results of Growth Models Identification

Fig. 3.4 shows the clustering results obtained by partitioning the set of detected trees into
ω1, ω2 and ω3. The DBH/height relationships are highlighted in black and overlapped
on the sample distributions. As one can notice from the figure, the considered classes
are described by different DBH/height growth rates due to the different tree structure,
forest stand and topographic condition. While trees characterized by low height values
present a linear relationship between height and DBH (Fig. 3.4b), tall trees present a
non-linear dependence of the DBH from the tree top (Fig. 3.4c and Fig. 3.4d). Hence,
for the same tree height, the DBH strongly varies due to the environmental conditions. In
greater details, young trees ω1 were correctly identified by a conservative height threshold
Hth = 15 m, which is a reasonable threshold for young trees on an average forest height of
23 m (Tab. 3.4). In the considered forest two main mature growth models are dominant
in the scene (Fig. 3.4). Accordingly, the clustering algorithm was able to accurately
distinguish among different classes of mature trees ω2 and ω3 in an unsupervised way.

Let us focus the attention on the growth model classes analysis performed to identify
which variables mainly affect the stem growth of the mature trees. Tab. 3.5 presents
the variables selected by means of the SFFS in the ranking order. From this result it
turns out that the altitude (i.e., Amin and Amax) plays a dominant role in the growth of
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Figure 3.4: LiDAR tree heights vs DBH for: (a) all the considered trees, (b) the young trees classified
as ω1, (c) the mature trees classified as ω2, (d) the mature trees classified as ω3. For each class, the
DBH/height relationship is presented in black and overlapped on the scatterplots to highlight the different
growth rates.
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the stem diameter. Indeed, the tree growth rate decreases when increasing the altitude
because of the colder temperature, the increased exposure to wind, the shorter growing
seasons and the reduced amount of soil nutrients [138]. The second variable selected is the
plan curvature φ, which models the soil water drainage and thus is strongly correlated to
the soil fertility, especially in mountainous and hilly terrain. Finally, the vertical density
of the forest stand p2/p1 plays a fundamental role in the expansion of the stem in terms
of availability of water, whereas the horizontal forest density metrics GCC models the
impact of forest density in terms of surrounding trees. Thus, the stem growth of trees
characterized by low height values is more sensitive to the presence of taller neighbouring
trees because of the light reduction effect.

Table 3.5: The set of discriminative features between ω2 and ω3 are presented.

Mature Growth Models

Amin

Amax

φ

p2/p1

GCC

3.3.3 Stem Diameter Estimation

Fig. 3.5 shows the ranking of the features selected (divided per growth model class) by
using the exhaustive search method. In these experiments, five variables were selected.
For all the classes the crown radius r2 was selected together with the tree top heights, i.e.,
H95 for ω2 while H1

max for ω1 and ω3. Regardless of the growth model class, attributes
modeling the topography were always selected, thus confirming the importance of a proper
representation of the terrain morphology. In particular, for the young trees ω1 the local
forest density metric LCC and the terrain altitude Amin are selected together with the
variance height value of the second return H2

var. In contrast, the DBH growth of the
mature trees is more influenced by the topographic metrics, ϕ and Sest. Finally, for the
mature trees ω3 the vertical forest density p2/p1 affects the stem expansion more than the
terrain morphology φ and Amax.

At the end of the feature selection phase the regression analysis was performed. The
results obtained with the PM were compared with a standard multilinear regression model
trained on the entire set of trees (RM). Although in the literature the feature space xTree

is usually employed, to have a fair comparison we considered the entire set of features x
also for the RM. To quantitatively evaluate the estimation accuracy, we considered the R2,
the ME, the MAE, the MSE and the percentage Root Mean Square Error (RMSE(%)).
Note that, the RMSE(%) is computed as the ratio between the RMSE and the average
DBH value. Fig. 3.6a and 3.6b depict the DBH estimates obtained with the PM and
the reference method (RM), respectively. These results demonstrate the importance of
defining and adopting different regression models for each detected class. Thus, due to the
clustering step, we can select the set of features which better fit the sample distribution



56 Adaptive Tree Stem Diameter Estimation Method

Features Importance

Ca

r1
r2

H1
max

H2
max

H3
max

H4
max

H1
max−H3

min

H1
mean

H2
mean

H3
mean

H4
mean

H1
mean−H2

mean

H1
mean−H3

mean

H1
mean−H4

mean

H2
mean−H3

mean

H2
mean−H4

mean

H3
mean−H4

mean

H1
range

H2
range

H3
range

H4
range

H1
var

H2
var

H3
var

H4
var

H1
skw

H2
skw

H1
kurt

H2
kurt

Hp25

Hp50

Hp75

Hp90

Hp95

LCC

GCC

p2/p1
CRS

γ

ϕ

ω

w

Swest

Seast

Ssouth

Snord

Amin

Amax

Amean

(a)

Features Importance

Ca

r1
r2

H1
max

H2
max

H3
max

H4
max

H1
max−H3

min

H1
mean

H2
mean

H3
mean

H4
mean

H1
mean−H2

mean

H1
mean−H3

mean

H1
mean−H4

mean

H2
mean−H3

mean

H2
mean−H4

mean

H3
mean−H4

mean

H1
range

H2
range

H3
range

H4
range

H1
var

H2
var

H3
var

H4
var

H1
skw

H2
skw

H1
kurt

H2
kurt

Hp25

Hp50

Hp75

Hp90

Hp95

LCC

GCC

p2/p1
CRS

γ

ϕ

ω

w

Swest

Seast

Ssouth

Snord

Amin

Amax

Amean

(b)

Features Importance

Ca

r1
r2

H1
max

H2
max

H3
max

H4
max

H1
max−H3

min

H1
mean

H2
mean

H3
mean

H4
mean

H1
mean−H2

mean

H1
mean−H3

mean

H1
mean−H4

mean

H2
mean−H3

mean

H2
mean−H4

mean

H3
mean−H4

mean

H1
range

H2
range

H3
range

H4
range

H1
var

H2
var

H3
var

H4
var

H1
skw

H2
skw

H1
kurt

H2
kurt

Hp25

Hp50

Hp75

Hp90

Hp95

LCC

GCC

p2/p1
CRS

γ

ϕ

ω

w

Swest

Seast

Ssouth

Snord

Amin

Amax

Amean

(c)

Figure 3.5: Features selected for the DBH estimation for: (a) the young trees ω1, (b) the mature trees
ω2, (c) the mature trees ω3. The features are represented in the ranking order normalized between [0,1].
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Figure 3.6: Estimated vs real DBH obtained by using the multilinear regression model with (a) the PM,
(b) the RM.

of each class and to adapt the regression rule to the each tree growth model. As one can
notice, the R2 values show that the amount of variability within the estimates is sharply
reduced by the PM with respect to the RM. Moreover, the ME values confirm that the
PM allows to have unbiased estimates.

Tab. 3.6 shows the estimation results obtained with the PM and the RM applied to
the entire set of trees and to the DBH classes applied for local forest inventories in the
considered study area. The classification distinguish among pre-inventory trees (i.e., DBH
≤ 17.5 cm), small trees (i.e., 17.5 cm < DBH ≤ 27.5 cm), medium trees (i.e., 27.5 cm <
DBH ≤ 47.5 cm), large trees (i.e., DBH > 47.5 cm). In this framework, the RMSE(%)
allows us to quantify the error on the DBH classes, by weighting the RMSE on the average
stem diameter of each considered class. The results demonstrate the strong improvement
obtained by the PM in estimating small and large stems. The RMSE was reduced of more
than 2 cm for trees having DBH<17.5 cm and of more than 1 cm for DBH between 17.5
cm−27.5 cm. Moreover, it was reduced of almost 2 cm for large stems (DBH>47.5 cm).
The percentage results point out the sharp increase of performance.

Table 3.6: MAE (cm), RMSE (cm) and RMSE(%) calculated on the entire set of trees and on 4 DBH
classes obtained with the PM an the RM.

DBH class PM RM

(cm) MAE RMSE RMSE(%) MAE RMSE RMSE(%)

<17.5 2.16 3.03 26.91% 4.29 5.38 47.83%

17.5−27.5 4.00 5.32 23.19% 4.88 6.56 28.62%

27.5−47.5 4.94 6.13 16.15% 5.51 6.93 18.26%

>47.5 6.98 8.92 20.27% 7.72 10.42 23.68%

All Trees 4.88 6.55 18.04% 5.82 7.80 21.48%
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3.4 Conclusion

In this chapter we presented a data-driven method to the identification of growth model
classes for the adaptive estimation of the DBH. Moreover, a growth model classes analysis
which determines which variables mainly affect the stem growth of mature trees has been
illustrated.

To accurately estimate the DBH regardless of the stem size, the PM in the first step
extracts a large set of variables potentially correlated to the stem growth model. In par-
ticular, it considers variables modeling: (i) the crown structure, (ii) the terrain properties,
and (iii) the forest density. In the second step, a data-driven unsupervised identification
of the different tree growth models is performed. To this end a clustering is performed
by in the feature space defined by all the environmental variables which may affect the
stem expansion. Finally, a regression algorithm is trained for each detected growth model
class. This allows us to adapt the regression rule to the different classes and to select the
best set of features for each growth model class, thus improving the correlation between
the predicted and the true DBH values.

The experimental results demonstrate that the method is able to properly model the
environmental factors that influence the growth of the DBH. In particular, due to a the
proper representation of the forest conditions, it accurately identifies the DBH growth
models. Due to the growth model classes analysis it was then able to identify which
variables mainly affect the stem expansion. In particular, it turned out that the terrain
altitude together with the water drainage play a dominant role in the DBH growth of
the mature trees. The proposed approach strongly improved the DBH estimation of the
small and large stems with respect to the state-of-the-art methods. Regardless of the
growth model classes, the crown radius and the tree top height were always selected as
features in input to the regression models. The estimation results confirm that the terrain
properties affect the stem expansion together with the forest density. Note that the PM
is automatic and data-driven. Thus, it can be applied to different areas for identifying
the specific growth-models to be used.

As future developments of this work, we aim to test the method on forest stands
characterized by different ages and structures. Moreover, we plan to further analyze the
growth model classes for a better comprehension of the environmental factor which affect
the growth of the trees. In this context, experiments will be extended to LiDAR dataset
characterize by higher laser point density and to forest having different environmental
conditions. Moreover, we aim to automatically detect the number of growth models
presented in the forest area by analyzing the distribution of the samples in the feature
space.



Chapter 4

Tree Top Height Estimation Method

Typically, low-density LiDAR data are acquired in large forest areas for reducing the
acquisition cost. However, due to the low laser sampling density, many trees are not hit
by any LiDAR pulses and thus when working at single tree level the height of the trees is
systematically underestimated. To solve this problem, in this chapter1 we propose a 3-D
model based approach to the reconstruction of the tree top height by fusing low-density
LiDAR data and high resolution optical images. The joint use of the data sources is first
employed to accurately detect and delineate the single tree crowns. For those trees where
LiDAR measures are available, the vertical information together to the crown radius and
the tree top position derived from a segmentation step are employed to reconstruct the real
tree top height. A 3-D parametric model suited for conifers is considered. Finally, for the
set of trees missed by the laser scanner, a novel k-NN trees technique is used to estimate
their heights as the average of the k reconstructed height values of the trees having most
similar crown properties. Experimental results confirmed the effectiveness of the proposed
method.

4.1 Introduction

As anticipated in the previous chapters, the individual tree crown segmentation introduces
to the estimation of the forest parameters at single tree level. One of the most important
tree attribute that should be accurately retrieved is the tree top height, which is necessary
for the estimation of other individual tree parameters (e.g., diameter at breast height
(DBH), tree stem volume) [28, 19, 84, 139]. In this framework, LiDAR sensor represents
an effective tool which directly measures the height of forest with high accuracy when
acquired with high laser sampling density (i.e., larger than 5 pts/m2) [140, 141, 142,

1Part of this chapter appears in:
C. Paris and L. Bruzzone, “A novel technique for tree stem height estimation by fusing low density LiDAR data
and optical images,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International. IEEE,
2013, pp. 3022-3025.

C. Paris and L. Bruzzone, “A three-dimensional model-based approach to the estimation of the tree top
height by fusing low-density lidar data and very high resolution optical images,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 53, no. 1, pp. 467-480, 2015.
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143]. However, to guarantee a high number of points per m2 it is necessary to increase
the duration of the flight (or to decrease altitude/speed of the airborne platform), thus
strongly increasing the acquisition cost. By decreasing the interval of the spacing of
LiDAR hits from 1.5 m to 0.3 m the acquisition cost per km2 may increase of about
three times as pointed out in [144]. In this framework, the availability of low-density
LiDAR data is more common on wide area coverage. However, the main problems related
to the reduction of the LiDAR point density are: (i) the underestimation of the height
of the trees due to the missed detection of the tree top positions by the LiDAR points,
and (ii) the missed detection of some trees which are not hit by any laser pulse. In
[145] the authors demonstrate that these effects, which happen when the altitude of the
aircraft increases, are due to both the subsequently decrease of the pulse density and
the increase of the footprint size. Moreover, there is a considerable underestimation of
the tree top height when the platform altitude increases over a certain level (e.g., 1500
m). This considerable deterioration of the height estimation results is even more evident
when dealing with mountainous scenarios due to the error associated to the generation
of the DTM as presented in [146, 147]. Indeed, by increasing the flight altitude the
penetration rate decreases, thus reducing the number of ground laser points used to model
the topography of the scene [146]. The poor penetration rate of the laser pulses may miss
crests and ridges, resulting in an inaccurate estimation of the DTM. Moreover, due to the
terrain slope, the elevation obtained at the center of the footprint is higher than the one
obtained at the last pulse [147]. Accordingly, when the tree leans towards upper side of
slope, its height is underestimated.

For all reasons mentioned above, it is possible to conclude that the accuracy of the
tree top height estimation suddenly declines when the laser sampling density is below
3-5 pts/m2 leading to a heavy underestimation of both the tree height and the number
of trees detected. In this framework, the complementary information provided by the
optical images could be a possible solution for improving the performances of the low-
density LiDAR data. Also when acquired with high laser sampling density, LiDAR data
can take advantage from optical images for better describing the structure of the forest.
The gaps among the laser pulses do not allow a comprehensive representation of the
horizontal structure of the forest, which is provided by the optical data [148]. In [61] the
complementary of LiDAR and optical sources for the individual tree crown segmentation
is demonstrated. While the optical image allow a better segmentation results in dense
forest area, LiDAR data are more effective in the delineation of isolated tree crowns. Thus,
the vertical information measured by the LiDAR sensor allows the correct discrimination
of ground and forest areas. In contrast, the radiance values of bare soil and forest are
similar in the optical image, but the high level of detail allows a better representation of
the crown structure in dense forest areas. By fusing the information brought by the data
sources, the number of the false tree detected on the optical image was strongly reduced.
A similar result is presented in [149], where an approach that aims at mapping the single
tree location both on LiDAR data and high resolution aerial photo is presented. The
results confirm that optical images are suited for describing dense forest, whereas LiDAR
data allow higher accuracy in open woodland.

The importance of integrating the LiDAR data and optical images is even more evident
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in the estimation of forest parameters mainly related to the vertical dimension. In [150]
the authors compare the volume estimation results obtained by using only aerial images or
integrating them with high-density LiDAR data. While the optical image is employed to
delineate the single tree crown, LiDAR data provide the height information. As expected,
the synergistic use of the data significantly improve the estimation results (R2 from 0.14
to 0.54). In [63], the authors pointed out that for an accurate estimation of the tree stem
volume, the height of the individual trees is the most important geometrical parameter.
The crown segmentation was performed on high resolution optical image, while the height
of trees was derived by high- and low- density LiDAR data. After having calculated the
stem volume by means of allometric equation, they computed the error metrics of the
entire stand plots. In the high-density case the RMSE ranges from 156.0 m3/ha to 163.6
m3/ha, whereas in the low-density case the RMSE ranges from 205.4 m3/ha to 209.0
m3/ha.

By focusing the attention on the fusion of low-density LiDAR data and optical images,
few papers exploit the combination of these data source to improve the forest attribute
estimation [64, 151, 65, 152]. In [151] the authors present an approach to derive the height
of the forest at stand level by using multispectral images and low-density LiDAR data.
First, they classify the multispectral image to distinguish broadleaves and conifers. For
each species and for the two species combined, non-linear regression models are derived
from field inventories to estimate the crown width from the tree height. The a priori
information is employed to facilitate the tree top detection by using the species and the
height of the pixel. By comparing the results obtained with and without considering the
species information, there is an improvement only for the coniferous forest. In [64] the
authors combine optical data acquired by SPOT5 satellite with tree height information
provided by a laser scanner. The estimation of the forest stem volume at stand level was
performed by using the single data source separately and by combining them. The joint
use of the two sources improved the volume estimation of 49% compared to the use of the
only optical image, reducing the RMSE on the average volume from 31% to 16%. In [65],
aerial photo are employed to segment the single tree crowns while low-density LiDAR
data provide the height values. Although the method achieves accurate segmentation
results, the LiDAR derived height was underestimated due to the low-density LiDAR
data acquisition. Similar problem is encountered in [152], where the authors define an
automatic approach to the estimation of forest structural parameters based on aerial
images and low-density LiDAR data. First, they perform an automatic registration step
based on the intensity value of the LiDAR data and the RGB channels of the aerial
images. At the end of the registration step, the tree height is estimated by fusing the
remote sensing data. Although the registration properly integrates the two data, due to
the low laser sampling density the height is not accurately estimated.

To solve these problems, in this chapter we propose a data fusion approach to integrate
low-density LiDAR data and a single optical image. Unlike the methods described in the
literature, we aim to address the height estimation from a real data fusion perspective
to accurately estimate the height of the trees. In particular, the proposed approach
first identifies the crowns of the trees present in the scene by applying a segmentation
algorithm to the optical image with the integration of the height information provided
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Figure 4.1: Architecture of the proposed Tree Top Height Estimation Approach.

by the LiDAR data. At the end of the crown detection phase, reconstructs the tree top
height employing a 3-D parametric model for those trees hit by at least one laser point,
while defines a k-Nearest Neighbor (k-NN) trees technique to reconstruct the height of
those trees completely missed by the laser scanner.

The remainder of the chapter is organized as follows. Section 4.2 presents the proposed
method illustrating in detail each single step of the proposed architecture. Section 4.3
describes the experimental results and finally Section 4.4 draws the conclusion.

4.2 Proposed Tree Top Height Estimation Method

Fig. 4.1 presents the architecture of the proposed method divided into two main parts,
the pre-processing phase and the proposed technique. In the following the details of each
part are presented.

4.2.1 Pre-processing Phase

In the first phase, we perform the pre-processing on both the LiDAR data and the optical
image. In the LiDAR data pre-processing, first the DTM is subtracted to the original
LiDAR point clous to obtain the PCS. Then, we generate the CHM image having the
same spatial resolution of the optical data, where we assign at each pixel the height
measured by the LiDAR pulses in the area correspondent to the pixel. Because of the
low spatial density of the laser pulses, many pixels of the CHM do not include any height
information. To solve this problem, we propagate the height information to the empty
pixels by applying a dilation algorithm to the CHM (e.g., [153]). The structural element
employed is a disk whose size depends on the tree crowns dimension. Thus, the aim of this
procedure is to exploit the LiDAR height information to distinguish the forest area from
the ground area. The accuracy of the result obtained depends on a trade-off between the
laser sampling density of the LiDAR data and the density of the forest. However, since we
aim at identifying flat ground areas or shrub vegetation, the sparse LiDAR information
is sufficient to cope this purpose. Let CHM(x, y) be the height value of the pixel at the
position (x, y). Let Q be the structural element chosen for dilating the CHM image, and
Q(x′, y′) the value of the structural element at the position (x′, y′). Let DCHM and DQ be
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the domain of the image CHM and the domain of the structuring element Q, respectively.
The dilation algorithm for the image CHM by Q is described by the following equation:

(CHM⊕Q)(x, y) = max{CHM(x− x′, y − y′) |(x′, y′) ∈ DQ,

(x− x′, y − y′) ∈ DCHM}
(4.1)

Let thHeight be the height threshold value chosen to distinguish between forest and flat
ground areas. The mask image Msk is obtained by deleting all the pixels of the LiDAR
image CHM having value smaller than the height threshold thHeight, [61]. We can write
as follows:

Msk(x, y) =

{
1 if CHM(x, y) ≤ thHeight
0 otherwise

with (x, y) ∈ D CHM (4.2)

The goal of the optical image pre-processing is to emphasize the tree apexes and the crown
boundaries, thus facilitating the segmentation of the individual tree crowns. Let G be the
green band of the optical image, and G(x, y) the radiance value of the pixel at the location
(x, y). First, a n × n median convolution filter is applied to G for reducing the noise in
the image. Then, the image is smoothed by means of a n× n Gaussian convolution filter
in order to emphasize the local maxima and the crown contours. The filters size depends
on the spatial resolution of the image and the average size of the tree crowns.

At the end of the pre-processing phase, the proposed tree top height estimation ap-
proach can be applied to the remotely sensed data. The approach is based on three
steps: (i) multisensor segmentation of the crowns by using optical and LiDAR data, (ii)
reconstruction of the tree top height for those crowns hit by laser points employing a 3-D
parametric model of the tree based on the LiDAR height and the crown radius informa-
tion, (iii) estimation of the height of those trees missed by any LiDAR points by using a
similarity crown area criterion based on a k-NN trees algorithm.

4.2.2 Multisensor Segmentation

In this step we aim to accurately detect and delineate the single tree crowns present in the
scene. Due to the low-laser sampling density, LiDAR data is not sufficient to describe the
horizontal structure of the forest. In contrast the optical images allows a comprehensive
representation of the crowns structure. In particular, we consider the green band of the
optical image which is the most correlated band to the radiation intensity of the image
[154]. Indeed, the radiance of the optical image, under nadir condition acquisition, can be
considered a topographic surface which represents the structure of the forest (Fig. 4.2).
However, where the forest is less dense the discrimination between bare soil and trees is
a critical issue for the crown recognition in optical images. For this reason, we apply to
the optical image the binary mask image Msk generated by using LiDAR data. Let G be
the green band of the optical image. Since the G image has the same dimension of the
Msk image, the masking procedure is accomplished as follows:

Gm(x, y) = Msk(x, y) ·G(x, y),

with (x, y) ∈ DCHM

(4.3)
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(a) (b)

Figure 4.2: (a) RGB representation of the original ortophoto. (b) 3-D representation of the radiance
value of the green band.

The obtained masked image Gm is processed to determine the center of the crown which
corresponds to each tree top. Similarly to the valley following approach [155], we assume
that on optical imagery the highest values of the radiation intensity are concentrated on
the uppermost part of the tree, which is surrounded by lower intensity pixels (valleys)
[61, 154]. The tree top positions are identified in the optical image Gm by applying the
LSM to detect the local peaks of the optical data T = {tj}Kj=1, where tj = {xtj, ytj}. It is
worth mentioning that the aim of the proposed method is the accurate estimation of the
ztj coordinate by exploiting the sparse LiDAR vertical measures. The crown delineation
is performed by assuming the crown surrounded by shadows, thus searching for the local
minima along the four main directions (0◦, 45◦, 90◦, 135◦) as presented in [156]. Then, the
boundaries detected are processed to close possible gaps and to remove the pixels that have
less than two minimum neighbours. This step provides a minima network which identifies
the regions correspondent to the crown areas. Finally, we refine the segmentation result
by removing the segmented areas having less than thp pixels, which are too small for being
a crown. The value of thp depends on the resolution of the image.

For each labeled region we analyze the correspondence with the tree top locations. If
the labeled region includes just one tree top tj, then this means that the region describes
the tree crown belonging to that specific seed and thus it is associated with the tree
crown Cj. If the region includes more than one tree top, then this means that two
or more crowns are fused in a single connected region and should be separated. The
remaining connected regions that include more tree tops are usually partially separated
by the minimum network. For this reason, to separate them completely, we just follow the
direction of the enclosure and split the remaining crowns. At the end of this process, we
obtain the set of K detected crowns C = {Cj}Kj=1, where Cj identifies the region delineated
around the tree top tj.
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Figure 4.3: (a) Representation of the tree crown parameters of the defined 3-D reconstruction model.
(b) Example of 3-D model of the tree.

4.2.3 Tree Top Height Reconstruction Method

The main idea of this step is to define a procedure that can accurately reconstruct the
height of the tree top ztj exploiting the LiDAR elevation information associated to the
crown. This is done starting from the assumption that: (i) the density of the considered
LiDAR data is not sufficient to hit the top of each tree, (ii) only trees with at least
1 LiDAR measure are considered. The case in which some crowns are missed by laser
pulses is addressed in the next section. Let N = {nj}Kj=1 be the number of LiDAR pulses
associated to the tree crowns, where nj is the number of LiDAR pulses associated to the
crown Cj. The K detected crowns can be split into three sets:

• the set of crowns hit by just one laser point {Cj ∈ C| nj = 1, j ∈ [1, K]};

• the set of crowns hit by more than one laser point {Cj ∈ C| nj > 1, j ∈ [1, K]};

• the set of crowns missed by the laser scanner {Cj ∈ C| nj = 0, j ∈ [1, K]}.

In Fig. 4.4, an example of the classification of the tree crowns is reported. The crowns
hit by more than one laser pulse are represented in white, the crowns hit by just one
laser pulse are represented in blue, whereas the crowns missed by the laser scanner are
represented in red. It is worth nothing that the low laser sampling density limits the
number of pulses acquired inside each crown to few sparse measures (at the limit of 1
point per crown). Moreover, when low-density LiDAR signals are acquired with a narrow
laser beam, there is a systematic underestimation of the height due to the missed tree
top location. To solve these problems, the proposed technique defines a proper 3-D
parametric model of the crown surface for reconstructing the real height of the tree by
using the altitude information of the LiDAR points associated with the tree crown and
the segmentation results from the optical image.



66 Tree Top Height Estimation Method

(a) (b) (c)

Figure 4.4: Example of classification based on the number of LiDAR points associated to the crown.
(a) LiDAR points shown in white and overlapped on the ortophoto, (b) both LiDAR pulses and crown
boundaries represented in white overlapped on the ortophoto, and (c) crowns hit by more than one laser
pulse (white), crowns hit by just one laser pulse (blue) and crowns missed by the laser scanner (red).

In the proposed approach, we address the issue of reconstructing the tree apex for
coniferous forests. Indeed, broadleaves are characterized by a round canopy almost flat
on the uppermost part. Thus, due to this umbrella shaped crown morphology, the tree
height is not heavily underestimated when the LiDAR pulses do not center the tree apex.
In contrast, the steep morphology of the crown surface of the conifer strongly affects the
height estimates depending on the distance of the laser pulse from the tree top. The 3-D
geometric model of the tree used in this chapter is derived from the synthetic template
presented in [157], which was employed to describe the crown envelope of conifers for
delineating the single tree crown on high resolution optical images. In greater detail, by
focusing the attention on the generic jth tree the authors proposed a generalized ellipsoid
described by the tree top coordinates (xtj, y

t
j, z

t
j), the adjusting coefficient of the crown

surface curvature cc, the crown height ch and the crown radius cr (Fig. 4.3). The same
mathematical representation has been adopted in [140] for delineating the single tree
crowns on LiDAR images, and in [104] to visually reconstruct the forest after having
estimated all the tree attributes by using a high-density LiDAR data (≤ 10 pts/m2). The
mathematical representation of the crown envelope is as follows:

(z + ch− ztj)cc

chcc
+

[(x− xtj)2 + (y − ytj)2]cc/2

crcc
=1

where ztj − ch < z < ztj

(4.4)

From the segmentation results we can derive the tree top location (xtj, y
t
j) and the crown

radius cr. Then, after having associated to each tree the related laser pulses, the ground
coordinates of the each LiDAR point pi = (xi, yi, zi) are known. Accordingly, fixed the
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parameters cc and ch, ztj represents the only unknown variable to retrieve by employing
the height information zi provided by the LiDAR data. It is worth mentioning that zi
is constrained among ztj − ch and ztj for ensuring that the considered LiDAR measure is
inside the vertical structure of the crown.

Let us address the case of having nj > 1, thus having one equation per point pi and
a single unknown variable ztj. Once the value of the parameters ch and cc are defined, in
order to find the ztj we can solve the estimation problem with a least square method, i.e.,

ztj = arg min
z̄tj

∥∥z̄tj∥∥2

2

= min
z̄tj

[
r1(z̄tj)

2 + ..+ ri(z̄
t
j)

2 + ..+ rnj
(z̄tj)

2
] (4.5)

where ri(z̄
t
j) is the residual of the ith LiDAR point pi described by the ground coordinates

(xi, yi, zi) and calculated as follows:

ri(z̄
t
j) =

(zi + ch− z̄tj)cc

chcc
+

[(xi − xtj)2 + (yi − ytj)2]cc/2

crcc
− 1 (4.6)

Under the assumption that nj > 1, instead of imposing a couple of parameters cc and
ch for all the trees, we automatically determine the optimal tree model representation
for each tree. In particular, we aim to fit as close as possible the 3-D structure of the
tree to the LiDAR points acquired inside the crown. The residual metric can be used
to identify the combination of parameters that minimizes the distance between the 3-D
parametric model and the LiDAR points associated to the crown. The lower is the sum
of the residual values the better the crown surface fits the LiDAR points.

This method cannot be applied to the set of crowns hit by just one LiDAR point since
the residual metric remains zero for all the possible crown surfaces (i.e., combination of
parameters). For this reason, for each crown we refine the search of the optimal tree model
among Nm possible models. Afterwards, we select the model that returns the ztj equal to
the median value of the Nm different ztj obtained. Since the ith LiDAR point associated to
the crown is described by the height value zi and the distance from the center of the tree

given by dref =
√

(xi − xtj)2 + (yi − ytj)2 to choose the Nm combinations of parameters cc

and ch to analyze, we consider the distance from the center. We compute the absolute
difference between dref and the distance from the center of the LiDAR points associated
to the crowns hit by more than one laser point. Finally, we select the models of the
Nm crowns having the minimum absolute difference. Fig. 4.5 shows an example of the
described procedure with N = 3.

4.2.4 k-Nearest Neighbors Trees k-NN trees

Low-density LiDAR measures do not affect only the accuracy of the tree top height
estimates, but also tree detection rate. Although we are dealing with dense forest, by
decreasing the laser sampling density the number of crowns hit by LiDAR points decreases
as well. As the tree top reconstruction method described in the previous subsection
requires at least one LiDAR measure for estimating the tree top height, a strategy for



68 Tree Top Height Estimation Method

Tree top  
(𝑥𝑗

𝑡, 𝑦𝑗
𝑡, 𝑧𝑗

𝑡) 

LiDAR point 
𝒑i=(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 𝑑1 𝑑2 

(𝑐𝑐1, 𝑐ℎ1) (𝑐𝑐2, 𝑐ℎ2) (𝑐𝑐3, 𝑐ℎ3) 𝐶𝑗 ∈ 𝐶 𝑛𝑗 = 1, 𝑗 ∈ 1, 𝐾  

𝑑3 

𝑑 

Figure 4.5: Example of the Tree Top reconstruction method for those crowns hit by just one LiDAR
point, with N = 3. For the generic tree, the 3 trees having similar point distances (d1,d2 and d3) and
thus the 3 associated models (i.e., (cc1, ch1), (cc2, ch2) and (cc3, ch3)) are tested. The chosen model is
the one that returns the ztj equal to the median value of the 3 resulting ztj .

estimating the heights of the missed crowns is developed. To this purpose we define a k -
Nearest Neighbors Trees (k-NN trees) algorithm. Note that due to the segmentation, we
are in the condition of detecting crowns missed by the laser scanner. Assuming that the
tree properties can be considered in average homogeneous at local level in the studied area,
the defined k-NN trees estimation method is based on the correlation among crown area
and tree top height. Indeed, as demonstrated in [158, 159], there is a strong correlation
between these two tree parameters. Accordingly, it is reasonable to exploit the crown area
information to detect trees with similar tree top height by considering the same forest
scenario. Let us focus the attention on the jth crown Cj and let us assume to have nj = 0
laser points associated to it. To estimate the missed ztj, we identify the k trees that:

• belong to a predefined sparse neighborhood of the forest of Cj;

• are hit by at least 1 LiDAR pulse;

• are the most similar in terms of crown area.

The similarity measure defined is the absolute difference between the missed crown area
of Cj and the area of all the crowns hit by at least one laser points {Cj ∈ C| nj ≤ 1, j ∈
[1, K]}. Then, we estimate the tree height ztj as the average of the tree top reconstructed
heights of the k trees having the minimum distance measure to the Cj crown. It is worth
noting that here we considered all the trees belonging to the same coniferous forest to
detect the k-NN trees. However, one can define more refined rules restricting the search
to trees belonging to areas having similar terrain properties (e.g., same slope and/or same
aspect of the terrain).
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(a) (b)

(c) (d)

Figure 4.6: Examples of the considered 3-D parametric model: (a) real scene, (b) LiDAR points cloud
of the trees, (c) 3-D parametric models of the trees automatically detected by the proposed method
superimposed on the real scene, and (d) 3-D parametric models of the trees automatically detected by
the proposed method superimposed on the LiDAR points cloud.
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4.3 Experimental results

In this section we present the results obtained by the proposed technique on 4 low-density
LiDAR dataset generated undersampling the original high-density LiDAR data. To assess
the effectiveness of the proposed method from the quantitative view point the tree top
height estimation results were evaluated on 3 circular stand plots where ground reference
data were available. In particular, we analyze the results obtained considering: (i) the
multisensor segmetnation, (ii) the 3-D reconstruction model for those crowns hit by more
than one LiDAR pulse, and (iii) the overall method. Moreover, we applied the proposed
technique on a wide test forest even though ground data were not available. Due to the
availability of high-density LiDAR data, the heights measured by the sensor were used as
reference data.

4.3.1 Dataset Description

The study area is a coniferous forest located in the Southern Italian Alps at Parco Naturale
Paneveggio - Pale di San Martino in the Trentino province (Fig. 4.7). The predominant
specie are the Norway Spruce (Picea Abies) and Silver Fir (Abies Alba). The optical
image and the LiDAR data considered in the experiments were acquired simultaneously
on September 4, 2007. The optical data are very high spatial resolution ortophotos (20
cm) characterizes my limited spectral resolution (RGB). LiDAR data have been acquired
by an Optech ALTM 3100EA sensor, with an average point density > 5 pts/m2. The laser
scanner is characterized by a pulse wavelength of 1064 nm and a pulse repetition frequency
of 100 Khz. To assess the effectiveness of the proposed technique, we undersampled the
original LiDAR data for generating four low-density LiDAR datasets. The undersampling
process has been realized by overlapping a uniform grid over the high-density LiDAR data
and randomly selecting just one LiDAR point belonging to the first return within each
grid cell. In greater details, we generated datasets having:

• 1 pt/m2;

• 0.75 pts/m2;

• 0.5 pts/m2;

• 0.25 pts/m2.

For the quantitative evaluation we considered 3 circular stands plot of radius 20 m and
area 400 m2 (Fig. 4.7a, Fig. 4.7b and Fig. 4.7c), where field data were collected during
the summer 2007. The considered stand plots area characterized by different topography
and different forest densities (Tab. 4.1) to test the method in different forest conditions.
Within each stand plot all the trees were surveyed by measuring the tree position, the
height, the crown diameter, the DBH and the forest species. Moreover, we considered a
wide area (for which ground data are not available) located in the same coniferous forest
(Fig. 4.7d) characterized by an extension of approximately 1.9 hectares and an altitude
that ranges between 1565 m and 1604 m a.s.l.. Although the sensors were mounted
on the same airborne platform during the simultaneous acquisition, we registered the
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(a) (b) (c)

(d)

Figure 4.7: Optical images of the investigated area. (a) Stand plot P1, (b) Stand plot P2, (c) Stand
plot P1, (d) extended test area.

Table 4.1: Number of trees, average value of altitude, slope and aspect, mean and range of the tree
heights for each sample plot.

Plot # Trees Altitude Slope Aspect Mean H (m) Range H (m)

P1 71 1401 m 6◦ 264◦ 23.3 19.3 - 29.2

P2 32 1550 m 13◦ 131◦ 26.6 15.4 - 35.9

P3 48 1554 m 9◦ 253◦ 26.9 15.2 - 34.2
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data by using Ground Control Points (GCP). The warped image has been obtained with
a polynomial transformation of first order and a nearest-neighbour resampling of the
pixels. The RMSE after the registration phase was 0.92 for Stand P1, 0.97 for Stand P2,
1.13 for Stand P3 and 1.22 for the wide area.

4.3.2 Experimental Setup

For the pre-processing of the optical images, the parameters were tuned considering the
spatial resolution of the optical image and the expected minimum dimension of the tree
crowns. Accordingly, the Gaussian and the Median filters window size was 5×5, while
the standard deviation of the Gaussian filter was 10. The minimum number of pixels thp
of a segmented region to be considered a crown has been set to 5. Regarding the tree top
reconstruction model, the ranges of parameters tested are as follows:

• The crown curvature cc ∈ [1.7, 1.9] with a step of 0.1.

• The crown height ch ∈ [10, 25] with a step of 1.

Please note that we tested a wide set of combinations of parameter values because of the
high variability of the tree height which ranges from 15.2 m to 35.9 m (Tab. 4.1). For
those crown hit by one LiDAR point, we set the number of models to test Nm equal to
3. Similarly, the value of the k trees selected for reconstructing the tree top height of the
missed crowns has been set to 3 to evaluate just the most similar crowns.

4.3.3 Segmentation Results

An example of segmentation results is presented in Fig. 4.8 and Fig. 4.9 for the stand
plot P2 and wide test forest area, respectively. In Fig. 4.8 the comparison between the
result obtained using only the optical image and integrating the LiDAR data having the
lowest density (i.e., 0.25 pts/m2, the worst case for the considered dataset) is presented.

As discusses in Sec. 4.1, while in dense forest scenario the optical image allows a
comprehensive representation of the horizontal structure of the forest, in wide open areas it
is difficult to discriminate forest areas and bare soil. In this framework, the complementary
information provided by the LiDAR data by means of the binary mask is fundamental
to improve the segmentation result (Fig. 4.8d). Indeed, the fusion between the LiDAR
height information and the optical image increased the crown delineation accuracy by
avoiding that ground pixels were merged inside the tree crowns. This is confirmed by the
results obtained on the wide area forest, where the segmentation identified 740 trees. Fig.
4.9 shows in white crown boundaries overlapped on the ortophoto. A qualitative visual
analysis of the results confirms that the multisensor segmentation algorithm obtained a
reliable delineation of the tree crowns.

To have a quantitative evaluation of the crown delineation results, for the three stand
plots we compared the crown radius derived from the segmentation phase with crown
radius measured in situ (Tab. 4.2). The results obtained demonstrate that the multisensor
segmentation algorithm is able to detect the dominant trees present in the scene and to
properly estimate the crown radius with a MAE of 0.78 m. It is worth noting that the
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Masking procedure process. (a) Ortophoto of the Stand P2, (b) segmentation result obtained
on the ortophoto, (c) circular representation of the segmentation result, (d) masking process result using
the lowest sampling density dataset (i.e., 0.25 pts/m2), (e) multisensor segmentation result, and (f)
circular representation of the multisensor segmentation result.

Table 4.2: Number of trees detected by the multisensor segmentation algorithm compared to the number
of dominant trees associated to ground data and ME, MAE and MSE of the Estimated Crown Radius.

Plot N. Dominant N.Detected Percentage of Estimated CR

Trees Trees Detected Trees ME MAE MSE

P1 72 71 99 % -0.36 0.57 0.74

P2 33 32 97 % -1.04 1.10 1.44

P3 50 48 96 % -0.82 -0.89 1.09

All Stands 155 151 97 % -0.65 0.78 1.04
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Figure 4.9: Segmentation result obtained on the wide coniferous forest. The crown boundaries are
highlighted in white and overlapped on the ortophoto.

quality of the segmentation results affects the accuracy of the height estimation, since the
derived crown radius and area are employed in tree top reconstruction step and in the
k-NN trees criterion, respectively.

4.3.4 Tree Top Height Estimation Results

Let us now focus the attention on the tree top height estimation results, by first considering
the results obtained on the three sample plots for those trees hit at least by one LiDAR
points. Fig. 4.10 depicts the scatterplots of the Measured versus the Reconstructed Tree
Top Height for the trees hit by more than one laser pulse, divided per laser sampling
density. The results shows that the geometric representation of the shape of the crown
effectively reconstruct the real height of the trees. By decreasing the laser sampling
density the number of laser pulses associated to each crown decreases. However, for all
the datasets the coefficient of variation R2 ranges between 0.77 to 0.88.

Tab. 4.3 shows the tree top height estimates versus the number of hits associated to
the crowns for the three stand plots. As expected the most accurate results are obtained
when the tree crowns are hit by more than one LiDAR point. For those crowns, we
obtained a MAE error of 1.41 m. Moreover, the ME demonstrates that the use of the 3-D
parametric model resulted in almost unbiased estimates regardless of the laser sampling
density (i.e. 1.02 m).

By reducing the number of points associated to the crown to one, the error values
slightly increased. This is due to the suboptimal choice of the parameters ch and cc,
which affected the performance of the tree top height estimation. Indeed, with more than



Experimental results 75

10 15 20 25 30 35 40

Reconstructed Tree-Top (m)

10

15

20

25

30

35

40

R
e

a
l 
T

re
e

-T
o

p
 (

m
)

R
2
 = 0.88

y = x + 0.87

(a)

10 15 20 25 30 35 40

Reconstructed Tree-Top (m)

10

15

20

25

30

35

40

R
e

a
l 
T

re
e

-T
o

p
 (

m
)

R
2
 = 0.83

y = 0.91x + 2.97

(b)

10 15 20 25 30 35 40

Reconstructed Tree-Top (m)

10

15

20

25

30

35

40

R
e

a
l 
T

re
e

-T
o

p
 (

m
)

R
2
 = 0.81

y = 0.94x + 2.6

(c)

10 15 20 25 30 35 40

Reconstructed Tree-Top (m)

10

15

20

25

30

35

40

R
e

a
l 
T

re
e

-T
o

p
 (

m
)

R
2
 = 0.77

y = 0.85x + 5.5

(d)

Figure 4.10: Reconstructed versus Observed Tree Top height for the trees hit by more than 1 LiDAR
point. The height estimation results of all the Stand Plots is presented for the dataset having density of:
(a) 1 pt/m2, (b) 0.75 pts/m2, (c) 0.5 pts/m2, and (d) 0.25 pts/m2.
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one LiDAR point per crown it was possible to choose the model parameters more suited
to the real shape of the considered tree crown. In contrast, with just one LiDAR point
the model was selected only on the basis of the distance of the LiDAR point from the
crown center and thus the accuracy of the height estimation decreased. Regarding those
crowns that were not hit by any LiDAR point, the MAE is 3.97 m, while the low-density
LiDAR could not obtain any measure for these trees.

Table 4.3: ME, MAE and MSE of the Estimated Tree Top and the Measured Tree Top. The average
height estimation results are presented divided per number of hits associated to the crowns.

LiDAR
All Datasets

points Measured Tree Top Estimated Tree Top

N. Trees ME MAE MSE ME MAE MSE

> 1 Point 510 2.15 2.15 7.12 1.02 1.41 3.47

1 Point 59 4.98 4.98 33.53 -0.08 2.25 9.28

k-NN Trees 35 22.83 22.83 532.59 -2.32 3.79 26.86

4.3.5 Overall Method Results

By focusing the attention on the overall method, the results obtained demonstrate the
effectiveness of the proposed approach. Tab. 4.4a and Tab. 4.4b presents the comparison
between the height measured by the low-density LiDAR data (Measured Tree Top) and
the height estimated with the proposed method (Estimated Tree Top) for the all the
stand plots and the entire test area, respectively. While for the stand plot the grountruth
was used as reference data, for the entire forest area the error metrics were calculated
considering the height measured by the high-density LiDAR data.

The proposed technique always reduced the error with respect to the low-density
LiDAR data. Considering the stand plots, for the LiDAR datasets having 1 pt/m2 the
ME was reduced of 0.71 m and the MAE of 0.44 m, while for dataset having 0.75 pts/m2

there was an improvement of the ME of 0.99 m and of the MAE of 0.43 m. By decreasing
the laser sampling density the difference increases. In the case of 0.5 pts/m2 the ME
decreased of 2.01 m and the MAE of 1.38 m, while with 0.25 pts/m2 the ME decreased
of 7.93 m and the MAE of 5.72 m. Accordingly, we obtained a small MAE which ranges
from 1.17 m (datasets of 1 pt/m2) to 2.48 m (datasets of 0.25 pts/m2) on an average
height value of 25 m (approximately the 10% of average tree height value). These results
contain all the sources of errors (included the segmentation errors).

For the entire forest area, the results obtained (Tab. 4.4b) confirmed the analysis
performed on the stand plots. Also in this case, the proposed technique reduced all
the error metrics with respect to the low-density LiDAR measures for all the considered
datasets. Moreover, also in this case we can observe that by decreasing the laser sampling
density the accuracy of the height estimation of the low-density LiDAR data decreases,
whereas the accuracy of the proposed technique is not heavily affected. In greater detail,
the ME of the Estimated Tree Top ranged from 0.31 m to 1.36 m and the MAE ranged
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Table 4.4: ME, MAE and MSE of the heights estimated (Estimated Tree Top) and the heights measure
by the low-density LiDAR data (Measured Tree Top) divided per laser sampling density on : (a) the
three stand plots; (b) the wide area forest

LiDAR

All Stands Plot

Measured Tree Top Estimated Tree Top

ME MAE MSE ME MAE MSE

1 pt/m2 1.61 1.61 3.70 0.90 1.17 2.45

0.75 pts/m2 1.74 1.74 4.78 0.75 1.31 3.32

0.50 pts/m2 2.95 2.95 17.89 0.94 1.57 4.03

0.25 pts/m2 8.20 8.20 134.23 0.27 2.48 11.77

(a)

LiDAR

Entire Test Area

Measured Tree Top Estimated Tree Top

ME MAE MSE ME MAE MSE

1 pt/m2 1.15 1.15 2.50 0.31 0.97 2.13

0.75 pts/m2 1.46 1.46 3.92 0.33 1.19 3.13

0.50 pts/m2 2.79 2.79 16.16 1.20 1.96 7.08

0.25 pts/m2 4.33 4.33 41.22 1.36 2.39 9.86

(b)

from 0.97 m to 2.39 m for all the low-density LiDAR datasets, whereas the ME and the
MAE of the Measured Tree Top ranged from 1.15 m to 4.33 m. Furthermore, we can
again observe that the proposed method mitigated the systematic underestimation of the
tree height.

By analyzing the MAE of the Measured Tree Top, one can observe that, as expected,
it is equal to the ME since the LiDAR data systematically underestimate the Tree Top
Height. In contrast, the ME obtained with the proposed method was close to zero (almost
unbiased estimate) for all the stands (i.e., 0.90 for the datasets of 1 pt/m2, 0.75 for the
datasets of 0.75 pts/m2, 0.94 for the datasets of 0.5 pts/m2 and 0.27 for the datasets of 0.25
pts/m2). Furthermore, while the Measured Tree Top estimates were strongly affected by
the decreasing of laser sampling density, the proposed method achieved similar accuracies
for all the LiDAR density considered. Indeed, by halving the laser sampling density
the error metrics of the Measured Tree Top were almost doubled, whereas the proposed
method slightly increased the error metrics.

4.4 Conclusion

In this chapter we presented a method for the accurate reconstruction of the tree top
height by fusing low-density LiDAR data and optical images. The proposed method is
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tailored on coniferous forest when the density of the LiDAR data available is not sufficient
for an accurate estimation of the individual tree height.

To accurately estimate the height of the trees present in the scene, the method exploits
the synergistic use of the two data sources in a data fusion perspective. First, a multisensor
segmentation method is applied to the optical image by integrating the height information
provided by the LiDAR data to obtain accurate crown delineation results. Starting from
the segmentation results, we propose a height reconstruction method for those trees hit
by at least one laser point and a k-NN trees technique for those trees completely missed
by the laser scanner. In the first case, a 3-D parametric model of the conifers is employed
to address the reconstruction of the true height of the tree. The model is adapted to the
shape of the tree both in the horizontal and vertical directions. The horizontal crown
structure is modelled by the crown radius and the tree top location derived from the
segmentation phase, while the vertical structure is obtained by fitting the LiDAR points
associated to the crown. For those crowns missed by the laser scanner, the k-NN trees
technique estimates the missed tree height as the average of the k reconstructed height of
the trees having similar crown area and belonging to a sparse neighbourhood.

The experimental results obtained demonstrate the effectiveness of the proposed tech-
nique. The quantitative results obtained on the three stand plots confirm that the 3-D
parametric model is able to accurately reconstruct the structure of the trees. As expected,
the higher is the number of LiDAR points associated to the tree crowns the better is the
choice of the values of the model parameters and thus, the tree top height estimation.
Accordingly, reducing the number of points associated to the tree crown to one, the accu-
racy of the height estimation decreases. Regarding the results obtained on those crowns
that are not hit by any LiDAR point, the error metrics only slightly increased with re-
spect to those obtained by applying the reconstruction model. However, the k-NN trees
technique allows the estimation of the height for those crowns which are not measured by
LiDAR. Therefore, the height estimate of the entire stand plot is strongly improved by
the introduction of the proposed method.

The robustness of the proposed technique is confirmed by the results obtained on a
dataset characterized by a wide area coverage. The significant reduction of the estimation
errors becomes more evident when we deal with very low-density LiDAR data (i.e., 0.5
pts/m2 and 0.25 pts/m2). Moreover, the height estimation results are almost unbiased
and thus do not systematically underestimate or overestimate the tree height. On the
contrary the laser sampling density results in strongly underestimated height values due
to both the missed tree top by the laser pulses and the missed detection of tree crowns.

As future developments, we aim to investigate other strategies for selecting the 3-D
parametric model for those crowns hit by just one LiDAR point, in order to better adapt
the model to the real shape of those tree. Moreover, we plan to improve the performance
of the k-NN trees technique by investigating the forest environment in order to select trees
similar to the missed ones in terms of crown structure, topography and forest density.



Chapter 5

A Method for Crown Structure
Estimation based on the fusion of
Airborne and Terrestrial LiDAR
data

In this chapter1 we present a method for the accurate estimation of the 3-D structure of
a tree crown, which is based on the fusion of low-density airborne and high resolution
terrestrial LiDAR data. By exploiting the joint LiDAR data coverage acquired from dif-
ferent viewpoints it is possible to accurately characterize the 3-D structure of the single
tree crowns to perform localized forest analysis. The method is made up of: (i) the Li-
DAR data pre-processing, (ii) the registration of airborne and terrestrial LiDAR scans,
(iii) the fusion of the segmented tree point clouds, and (iv) the automatic crown param-
eter estimation. After the pre-processing, an automatic registration module allows us to
accurately match the LiDAR point clouds obtained by airborne and terrestrial acquisition.
In particular, the spatial pattern of the forest is used to adapt the segmentation result ob-
tained on the airborne data to the terrestrial one, to accurately extract the crowns in both
the data types. Second, a refined registration analysis accurately fuses the LiDAR point
clouds at single tree level. Finally, the crown parameters are estimated from these fused
point clouds and compared with the ones obtained by a separate processing of airborne
and terrestrial data. Experimental results obtained on data acquired in an open woodland
forest area confirm the effectiveness of the proposed approach.

5.1 Introduction

Tree crowns have important implications to wildland fire dynamics [160], avian habitat
provision [161], microclimates [161] and estimation of the fractal dimension of trees [162].

1Part of this chapter appears in:
C. Paris, D. Kelbe, J. van Aardt, and L. Bruzzone, “A precise estimation of the 3d structure of the forest based
on the fusion of airborne and terrestrial LiDAR data,” in Geoscience and Remote Sensing Symposium (IGARSS),
2015 IEEE International. IEEE, 2015, pp. 49-52.
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Within a tree crown, the net leaf surface area drives the size of the plant-atmosphere in-
terface, which affects the rate and balance of biotic exchanges through photosynthesis and
transpiration [163]. Likewise, the distribution of elements governs radiation penetration
through to lower-canopy strata [164, 165], with implications to growth and productivity
[166, 167]. Accurate and precise measurement of crown structure is therefore an enviable
goal for systematic characterization and measurement. However, explicit measurement
of tree crowns using conventional techniques is not trivial, due to the complex structure
of irregular, natural surfaces. Despite a long history of forest mensuration, traditional
methods for quantifying canopy structure remain limited in their ability to make detailed,
quantitative, and spatially-explicit measurements [161]. Moreover, tree-level parameters
are often restricted to coarse metrics, such as crown height, crown base height, and crown
width, while more informative metrics are modeled based on lower-level parameters [168].
Crown volume, in particular, has been reported as one of the more difficult parameters
to obtain [169]. Traditional techniques rely on allometric equations to parameterize geo-
metric primitives (e.g., cones and ellipsoids) and require species information and certain
field-measured variables [168].

In contrast, laser scanning records range data based on an emitted laser pulse [170],
thus providing non-destructive, high-resolution, and repeatable 3-D surveys of individual
trees crowns. Laser scanning has a demonstrated capability to address the limitations of
traditional measurement approaches [32], both from airborne and terrestrial platforms.
ALS provides wide-area coverage by coupling an across-track scanning mechanism to
along-track aircraft movement [171], while large-footprint sensors have focused on stand-
scale parameters, e.g., mean canopy height, increasingly fine footprints (sub-meter) and
point densities (>15 hits/m2) [172], have allowed the detection and measurement of indi-
vidual tree canopy parameters, including volume. As was done with typical forestry tech-
niques, a common approach is to fit assumed geometric shapes to LiDAR point clouds, in
order to derive basic tree crown parameters [173, 95, 174, 175, 176]. In this approach, tree
canopy height and stem location are obtained by detecting convex shapes in a CHM (e.g.,
[85]), thus allowing extraction of crown width and ultimately crown volume. However,
these methods relied on a priori species identification for parametrizing the appropriate
geometric crown shape, information which is often unavailable from remote sensing data
[169]. This is especially challenging for heterogeneous, non-managed forest environments.
Moreover, these simple geometric models are coarse compared to the fidelity of ALS mea-
surement. With the recent trend towards higher point density LiDAR collection, direct
measurement of tree crowns should be considered [169].

Several alternative approaches therefore have been pursued, based on either graph-
based segmentation or direct measurement. In [108] the authors employed normalized
cut segmentation to detect individual trees, including those below canopy, theoretically
allowing for direct computation of volume (although quantitative results were not pre-
sented). Similarly, in [177] authors employed a graph-based segmentation algorithm with
potential for volume assessment based on existing techniques. In [169], on the other hand,
authors developed a direct, wrapped surface reconstruction technique based on radial ba-
sis functions. Irregular tree crown shapes were validated with respect to survey-grade
equipment to assess goodness of fit. Among other reported metrics, the authors achieved
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measurement of crown volume with R2 = 0.84/0.89 for coniferous/deciduous trees. Fi-
nally, computational geometry to measure explicit crown volume using 3-D alpha shapes
and convex hulls can be used. These estimates were validated against field-measured
values and modelled ellipsoids, with R2 = 0.83 (best), but significant underestimation
(-24%, on average), attributed to insufficient LiDAR returns from the lower crown re-
gions. The observed challenges in crown volume assessment with ALS [178] underscore
several fundamental system limitations. A first limitation is the reduced capability to
sample sub-canopy structure. Discrete-return ALS, for example, records only the first
and last, or perhaps, a few, e.g., up to 5, backscattered returns from each emitted laser
pulse. As a result, limited information from the inner or lower canopy is obtained [32, 77].
While waveform-digitizing LiDAR [179] offers potential to rectify this gap, the systems
are still poorly understood, and there remains a measurement gap due to dead time in
the digitization of the return pulse. A second limitation is related to measurement char-
acteristics: as a result of limited incidence angles constrained to predominantly nadir,
and finite footprint sizes on the order of 0.1–0.5 m, ALS may be unable to detect small
canopy gaps [161, 180, 181], or other fine-scale structures. Finally, when acquired with
low laser sampling density, these data do not allow a comprehensive representation of the
crown structure.

Recent studies have suggested the potential to address these concerns via fusion with
a complementary, upward-looking laser ranging system, i.e., TLS [182]. TLS provides
hemispherical scanning from a ground-based platform, and thus samples different parts of
the forest structure. In [77] the authors examined the voxel column percentile distributions
of point returns for both ALS and TLS and demonstrated that a higher percentage of laser
pulses intercept the top of the canopy for ALS, with limited returns within the canopy and
understory. Likewise, TLS exhibited a higher number of returns from the lower-canopy,
but had fewer returns in the upper canopy. In light of this, there is a growing interest
in utilizing TLS to complement the strengths of ALS ([79, 78]), and thus link ground-
level structural measurement with the synoptic perspective of ALS. However, there has
been limited research in this area, in part due to the difficult prerequisite of registration
[80]. Indeed, the main limitation of TLS acquisition is the need of positioning reference
targets to register the multi-angular scans, which often requires time-consuming manual
refinements. To solve these problems, in this chapter we propose a method for fusion of
ALS and TLS based on an automatic registration module. In greater detail, we aim to
take advantage from the spatial pattern of the forest to register the terrestrial scan to the
airborne data without the need for reference targets. This condition allows us to adapt
the crown segmentation performed on the ALS data to the terrestrial scans. By fusing
for each crown the LiDAR point clouds a extremely high resolution 3-D crown profile
is obtained. Therefore, the main objectives of this work are to: (i) utilize the airborne
LiDAR data to automatically register the multiple terrestrial scans (without the need for
reference targets), (ii) analyze the spatial pattern of observed forest structure to perform
co-registration, (iii) use of the airborne segmentation results to delineate the crown in the
TLS scans, and (iv) integrate the 3-D LiDAR point clouds of both the ALS and TLS data
for quantitative measurements of both forest and tree crown structure.

The following chapter is organized as follows. Sec. 5.2 illustrates the considered
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Figure 5.1: The NEON Pacific Southwest domain (D17) is located in central California. It contains
one core site and two relocatable sites. The core site, San Joaquin Experiment Range (SJER), is an oak
savanna.

dataset by presenting in detail the study area, the terrestrial measurement setup and the
airborne data available. Sec. 5.3 describes the proposed data fusion approach and 5.4
presents the obtained experimental results. Finally Sec. 5.5 draws the conclusion of the
chapter.

5.2 Dataset Description

The considered study area is the National Ecological Observatory Network (NEON) Pa-
cific Southwest (PWS) Domain 17 (D17) core site, located in the San Joaquin Experimen-
tal Range (SJER; 37◦6′43,77′′ N, 119◦44′11,85′′). The SJER is an oak savanna woodland.
An example of the study area is presented in Fig. 5.1. The dominant species are blue oak
(Quercus Douglasii), interior live oak (Quercus Wislizeni), and grey pine (Pinus Sabini-
ana). Reference data were collected in June 2013 (14 trees) for the considered site area.
For each sample plot the height, species and crown width were measured.

ALS data were obtained from the National Ecological Observatory Network (NEON)
Airborne Observation Platform (AOP), which operates an Optech ALTM Gemini LiDAR
system. The 1064nm, four-return-per-pulse system was operated at a 100kHz pulse repeti-
tion rate and 1000m above-ground-level (AGL), for an average point density of 2 hits/m2.
The ALS overflight was performed coincident with the TLS field measurement campaign
performed during the period of June 9-21, 2013. Terrestrial data were acquired using a
portable laser system created by Rochester Institute of Technology [183]. The TLS sensor
head is a SICK LMS-151 laser scanner, which is compact and weather-resistant. A 905 nm
laser is pulsed at 27 kHz with range measurement recorded based on time-of-flight. The
laser pulse is deflected by a rotating mirror to sample a 270 arc, swept out in elevation
angle. This sensor head is coupled to an azimuthal rotation stage, which provides cover-
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Figure 5.2: False color representation of the airborne CHM. The ideal TLS measurement setup is in red
and overlapped on the image, where for each position the acquisition number of the TLS scan is reported.
Two example of TLS data are presented.

age of the full hemisphere above the instrument and a portion of the hemisphere below
(270 V x 360 H coverage). Up to two returns per outgoing pulse are digitized. Mounted
to the unit are a BeagleBone computer and power tool battery. Sensor control is achieved
via a wireless mobile application. The main properties of the system are the light weight
(1.1 kg) and fast scanning speed (less than a minute per scanning location), which allow
practical acquisition campaigns. To this end, at plots of 40 m × 40 m, 25 scans per plot
were collected along an equally spaced grid at 10 m increments (Fig. 5.2). No artificial tie
points were placed to drive the terrestrial data acquisition and registration. After having
measured the center of the stands with the GPS, the plots were laid out by means of the
traditional tape-and-compass method. This regular sampling acquisition setup allows us
to acquire fast, but consistent data coverage.

5.3 Proposed Method

The aim of the proposed method is the accurate characterization of the structure forest
exploiting the joint LiDAR data coverage acquired from different viewpoint perspectives.
In particular, we aim to accurately reconstruct the 3-D structure of the crowns. To this
end, the proposed method is made up of four main phases: (i) the LiDAR data pre-
processing, (ii) the registration of airborne and terrestrial LiDAR scans, (iii) the fusion
of the segmented tree point clouds, and (iv) the automatic crown parameter estimation.
In greater detail, in the registration module we first exploit the forest spatial pattern to
register the airborne data to each LiDAR scan separately. This condition allows us to
apply the segmentation result obtained on the airborne image to the terrestrial LiDAR
point cloud. Finally, a registration at single tree level is performed by registering the
terrestrial data to the airborne one. Fig. 5.3 shows the block-scheme of the proposed
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Figure 5.3: Block scheme of the proposed data fusion approach to the accurate reconstruction of the
3-D structure of the crown.

data fusion method. In the following we describe in detail each phase of the proposed
method.

5.3.1 Pre-processing

Let us assume to have L evenly-spaced terrestrial scans and one airborne LiDAR data
acquired in the same forest area. In the pre-processing phase, in the first step we perform
the subtraction of the Digital Terrain Model (DTM) from the airborne and the terrestrial
LiDAR data. Accordingly, we generate a series of normalized point clouds where each
point’s z coordinate represents the height above ground. Let PA be the normalized air-
borne LiDAR point cloud and let PTn be the nth normalized terrestrial LiDAR scan, with
n = 1, .., L. In the second step, we rasterize the data to generate a series of Canopy Height
Models (CHMs). Let IA be the CHM of the airborne LiDAR data and ITn the CHM of
the nth terrestrial LiDAR scan, with n = 1, .., L. Because of the comprehensive represen-
tation of the horizontal structure of the forest provided by the airborne acquisition, the
detection and the delineation of the individual tree crowns is performed considering only
the airborne LiDAR data. Therefore, at the end of the pre-processing phase, the ALS
data are employed to segment the trees with the method presented in Chapter 2. The
single trees are first detected in the CHM by means of an LSM that identifies the tree
tops. Then, the analysis is refined in the LiDAR point cloud to detect possible missed
crowns. Finally, an angular analysis is performed to adapt the delineation of the border
to the different sides of the crown. At the end of this phase we obtained the segmented
image SA representing the set of crowns CA.

5.3.2 Registration Module

Because of the different acquisition perspective, the terrestrial and the airborne point
clouds are not comparable and thus cannot be automatically registered (Fig. 5.4). How-
ever, the spatial pattern of the forest structure is the same regardless of the acquisition
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Figure 5.4: Visual representation of the different LiDAR point sampling obtained by using ALS and
multi-angular TLS scans when considering the same tree. Due to the different view point, the LiDAR
point cloud obtain are not comparable.

view point. For this reason, the first step of the registration module takes advantage from
the correlation between the forest structure represented in the airborne and the terrestrial
CHMs to determine the registration parameters. For sake of simplicity, in the following
we focus the attention on the nth terrestrial scan.

Step 1 - Tls Scan Registration: The goal of this step is registering the airborne data IA

to the terrestrial scan ITn in order to adapt the segmentation image SA to the terrestrial
point cloud PTn . Indeed, even though TLS provides a high resolution point cloud, the seg-
mentation of the crowns is usually addressed manually due to the lateral scanning pattern.
To solve this problem, we adapt the airborne segmentation results to the terrestrial data,
thus accurately delineating the single tree crowns present in PTn . In particular, we aim to
determine a linear affine transformation that allows the best image alignment since these
linear models apply a shape-preserving mapping because of their capability of preserving
angles and curvatures of the original image [184]. Thus, the shape of the tree crowns is
preserved. The starting registration point is given by the GPS coordinates on the ter-
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restrial scanner that are measured in situ. However, these coordinates are not precise
enough to guarantee no shift in terms of translation or rotation. Moreover, even tough
the forest pattern represented by the two CHMs is the same, the geometry of the scene
acquired from the ground does not perfectly match the one acquired from the airborne
platform because of the different acquisition perspective. Thus, a scale factor should be
considered. For all these reasons, a geometric affine transformation ζn should be applied
to IA to accurately match the forest recorded by the terrestrial scan. Let N × M be
the size of ITn . First, the CHM of the airborne data IA is cropped in order to keep the
portion of the airborne CHM IA representing the same forest area present in ITn . Let us
define with IAn the considered portion of the airborne image having corresponding to ITn .
Second, the parameters of the affine transformation ζn applied to IAn are estimated. The
affine transformation is defined as follows, i.e.,:

ζn(x, y) =

(
sx · cosφ −sy · sinφ
sx · cosφ +sy · sinφ

)(
x
y

)
+

(
tx
ty

)
(5.1)

where φ is the rotation angle, [tx, ty] the translation vector and [sx, sy] is the scaling factor.
The estimation of the five unknown parameters is performed by minimizing an objective
criterion function. Here we select as criterion function the Sum of Squared intensity
Differences (SSD) between the terrestrial CHM ITn and the registered airborne CHM IAn

′

as follows:

SSDmin = min
[φ,tx,ty ,sx,sy ]

M∑
i=1

N∑
j=1

[ITn (xi, yj)− IAn (ζn(xi, yi))]
2

= min
[φ,tx,ty ,sx,sy ]

M∑
i=1

N∑
j=1

[ITn (xi, yj)− IAn
′
(xi, yj)]

2

(5.2)

In particular, a gradient descent step optimization algorithm was adopted to estimate
the transformation parameters [185, 186]. To evaluate the effectiveness of the registration
process, we compute the normalized cross correlation similarity measure between ITn and

IAn
′
. Accordingly, the value of the correlation matrix Υ at the position (w, l) is computed

as follows:

Υ(w, l) =

∑
x,y[I

T
n (x, y)− µTn ][IAn

′
(x− w, y − l)− µAn ]√∑

x,y[I
T
n (x, y)− µTn ]2

∑
x,y[I

A
n
′(x− w, y − l)− µAn ]2

(5.3)

where µTn and µAn are the mean value of ITn and IAn
′
, respectively. By checking in the nor-

malized correlation matrix Υ, if the position of the peak (Xp,Yp) is the image center and
the value of the peak ∈ [−1, 1] is higher than a positive threshold we can automatically
confirm the registration result.

Step 2 - Tls Crown Segmentation: At the end of the first registration step, for each
nth terrestrial scan we have the affine transformation ζn which allows us to register IAn to
the ITn . To accurately detect and delineate the single tree crowns present in the terrestrial
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scans, we exploit the segmentation result obtained on the airborne image. Indeed, because
of the comprehensive representation of the horizontal structure of the forest provided by
the airborne acquisition, the airborne segmentation result is more accurate than the one
obtained on a terrestrial data. First, we crop the segmented image SA to represent the
portion of the forest area present in ITn . Let SAn be the portion of the segmented image
corresponding to ITn . Second, we apply the affine transformation ζn, thus adapting the

segmented crowns to the shape of the terrestrial data. Let SAn
′

be the portion of the
segmented image SAn registered to ITn . Finally, we delineate the crowns directly in PTn ,
thus generating the set of segmented LiDAR point clouds CTn visible in ITn .

Step 3 - Single Tree Registration: in the last step of the registration module we address
the registration of the single tree crowns delineated in the LiDAR point clouds. For each
crown CA

k ∈ CA we consider the set of associated terrestrial crowns. In this step, the
airborne data drive the registration process, due to the whole representation of the forest
structure. The crown boundaries of the terrestrial segmented point cloud are matched to
the to the boundaries of CA

k . In particular, we consider only the portion of the terrestrial
crown that was facing the laser scanner during the acquisitions. Accordingly, different
LiDAR acquisition of the same crown are registered into a single reference coordinate
system, i.e., the airborne coordinate system.

5.3.3 Point Cloud Fusion

At the end of the registration phase, the proposed method performs the fusion of the
ALS and TLS point clouds per crown to generate the set of final segmented point clouds.
Although airborne LiDAR data represent the horizontal structure of the entire stand
plot, an over-segmentation problem usually arises due to both the crown overlapping and
the low density of the LiDAR point cloud. However, due to the fusion we have a high
resolution crown profile. Therefore, to detected the possible over-segmentation errors, we
analyze the obtained set of fused LiDAR point clouds. In particular, each crown is first
rasterized and then the tree tops are detected. If the LiDAR point cloud represents a
single tree crown, the tree top identification result coincides with the result obtained from
the airborne data. In contrast, if the LiDAR point cloud represents two or more trees,
thanks to the contribution from the terrestrial data, we separate the crowns.

5.3.4 Crown Parameter Estimation

Finally, we address the automatic estimation of the tree parameter by considering the
height of the tree, the crown width and the 90◦ crown width. Accordingly, the height
is measured as the highest LiDAR point belonging to the crown. To determine the two
crown widths we considered the length of the major and the minor axis of the ellipse
having the same normalized second central moments of the crown region.



88 A Method for Crown Structure Estimation

Table 5.1: Normalized cross correlation similarity results. For each terrestrial scan the obtained cor-
relation coefficient Υ ∈ [−1, 1] and the position (Xp,Yp) of the correlation peak after the automatic
registration are presented.

TLS Scan Number

11 13 17 19 31 33 37 39 53 55 59 73 75 77 79 91 95

Υ 0.78 0.85 0.83 0.78 0.66 0.71 0.67 0.60 0.74 0.78 0.65 0.81 0.56 0.63 0.70 0.66 0.75

Xp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Yp 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

5.4 Experimental Results and Discussion

In this section we show the results obtained by applying the proposed method to the
considered dataset. In the following, we analyze the registration and the point cloud
fusion results from the quantitative and the qualitative view point.

5.4.1 Results on TLS and ALS Point Clouds Registration

Among the 25 terrestrial scans collected in the considered study area, eight were discarded
due to acquisition problem. Accordingly, the results presented consider the remaining
17 scans. No parameter were tuned to perform the registration, which was completely
driven by the spatial pattern of the forest. Tab. 5.1 shows the accuracy of the TLS
scan registration phase. Although the proposed method is fully automatic, to asses the
reliability of the registration phase, the normalized cross-correlation similarity among the
registered airborne data and the terrestrial scan is computed. Both the values of the
correlation peak (Υ ∈ [−1, 1]) and of its position (Xp and Yp) are presented per TLS
scan. As one can notice, all the terrestrial scans obtained high values of the correlation
coefficient which range between 0.56 and 0.85, with an average value of 0.71. Moreover,
the position of the correlation peak, which is always almost [0,0], confirms the accuracy of
the registration results obtained. Thus, the affine transformation applied to the airborne
image is able to accurately register the data to each terrestrial scan regardless of the
spatial pattern of the forest. These results are confirmed by those presented in Fig. 5.6
- Fig. 5.10, where each TLS scan is represented before and after the registration step.
The crown boundaries of the airborne image are highlighted in grey and superimposed
to the TLS CHM to show the effectiveness of the registration procedure. The images
demonstrate the importance of performing the registration step since the original TLS
scan is shifted with respect to the ALS data due to the inaccurate GPS position and the
different acquisition point of view. This misalignment is clearly visible when overlapping
SA directly on the terrestrial scan. Due to the registration performed we are in the
condition of accurately adapting the airborne segmented image to the TLS data.

It is worth noting that the registration phase is not affected by the accuracy of the
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airborne segmentation result since it is performed by considering the original CHMs. In
contrast, the TLS segmentation is affected by the accuracy of the ALS crown delineation
result. However, the proposed method allows us to extract in an automatic way the TLS
crown without performing any manual refinement of the segmentation results. Moreover,
due to the top view perspective, the ALS allows a better segmentation result with respect
to the TLS even though the terrestrial data provide a higher resolution point cloud.

5.4.2 Results on Point Cloud Fusion

(a) Pinus Sabiniana (b) Quercus Douglasii (c) Quercus Wislizeni

Figure 5.5: Example of point cloud fusion results. Due to the high resolution data obtained, the three
main species of the considered study area can be recognized by considering the different crown structures.

At the end of the proposed processing chain we perform the fusion of the LiDAR point
clouds associated to the same crowns. Fig. 5.5 shows some qualitative examples of the
data fusion result. The three main species of the study area were selected in order to
highlight the capability of the fused point clouds obtained by the proposed method to
accurately describe the shape of the crowns. The presented results confirm the comple-
mentarity of airborne and terrestrial LiDAR data, which leads to a more comprehensive
3-D crown reconstruction. The airborne data allow us to drive the registration of the
TLS scans in an automatic way and to perform the crown delineation. However, due
to the low laser sampling density and the top view acquisition perspective, ALS data
alone do not describe the below canopy structure. In contrast, TLS provides very high
resolution profile of sub canopy tree-crown structure. It is worth noting that the resolu-
tion of the obtained crowns varies depending on the number of associated TLS scan and
their distance from the crown during the acquisition. Moreover, due to the topography
(i.e., on steep slopes occlusion problems arise), the TLS acquisitions are not performed
in homogeneous conditions for all the scans, thus influencing the quality of the obtained
crowns. However, the airborne acquisition guarantees a minimum laser sampling density
for each crown. Moreover, the number of terrestrial scans can be increased to obtain a
more accurate result due to the possibility of processing the TLS data in an automatic
way. Furthermore, we would like to point out that the considered TLS setup was defined
to have a regular sampling on the study area. However, by measuring multiple TLS scans
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Table 5.2: Mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coeffi-
cient of determination (R2) of the crown parameters estimation results obtained by using only the TLS
data, only the ALS data, and by fusing the two data sets with the proposed method.

Tree Top Height (m) Crown Width (m) 90◦ Crown Width (m)

TLS ALS Fusion TLS ALS Fusion TLS ALS Fusion

ME 0.07 0.14 0.41 -1.02 1.69 0.28 -2.74 -0.01 -0.94

MAE 0.47 0.41 0.48 2.64 2.62 1.58 3.49 2.07 1.79

RMSE 0.53 0.54 0.57 3.87 3.03 1.84 4.47 2.47 2.41

R2 0.97 0.96 0.98 0.59 0.54 0.71 0.47 0.45 0.55

around the trees, it is possible to strongly improve the reconstruction of the 3-D crowns.
Tab. 5.2 presents the quantitative results of the crown parameter estimation obtained

by using the ALS data, one singular TLS data, and the fused data. To have a fair
comparison, the best singular TLS scan was considered. In particular, the height of the
tree, the crown width and the 90◦ crown width results are compared with ground reference
data. From the results obtained it turns out that the fusion always improves the crown
parameter estimation by taking advantage from the combination of the complementary
acquisition view point. TLS allows a better tree top height estimation with respect to
ALS due to the fact that the considered dataset is characterized by relatively small height
values. Therefore, the laser scanner is able to acquire samples over the entire crown even
though it is mounted on a tripod. Moreover, the ALS acquisition is low-density and thus
underestimates the real height of the trees. By combining the two information sources,
the proposed method improves the estimation results with a coefficient of correlation R2

of 0.98. However, the impact of the improvement is more visible in the crown width
estimates. Regarding the maximum crown width, the ALS data allow a better estimation
with respect to the TLS data since a singular scan is not sufficient to represent the entire
crown shape. By fusing the data the proposed method sharply improves the estimates of
the maximum crown width obtaining a MAE of 1.58 m compared to a MAE of 2.62 m
and 2.64 m obtained with ALS and TLS, respectively. Similar results are obtained for the
estimation of the 90◦ crown width, where the fused data show a MAE of 1.79 m compared
to 2.07 m and 3.49 m obtained with ALS and TLS, respectively.

5.5 Conclusion

In this chapter we have presented an automatic method for the fusion of airborne and
terrestrial LiDAR data for an accurate reconstruction of the forest structure. The fusion of
these data leads to a more comprehensive representation of the tree crowns. In particular,
the proposed method is suited for a localized forest analysis that aims to accurately
measure the forest structure. Little research has been done on the joint use of these two
data sources mainly due to the registration problems. The main novelties of the presented
work are: (i) the use of the ALS data for the automatic registration of the multiple
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terrestrial scans, (ii) the analysis of the spatial pattern of forest to drive the registration,
(iii) the TLS crown delineation performed using the ALS segmentation results, and (iv)
the fusion of the LiDAR point clouds.

The registration results demonstrate that the proposed method is able to accurately
match the TLS and ALS data by using the spatial pattern of the forest. Accordingly, the
method does not require any reference targets during the acquisition of the TLS scan. This
condition leads to a fast and practical TLS acquisition campaign. Moreover, by registering
the airborne segmented image to the TLS scan, we accurately delineate the single tree
crowns present in the terrestrial data without requiring manual analysis or refinements.
The registration validation strategy based on the normalized correlation matrix allows
the automatic detection of possible residual misregistration, due to problems related to
the TLS scan acquisition. We would like to remark that due to the different acquisition
perspective it is not possible to address the registration directly in the point cloud domain.

The data fusion results further confirm the effectiveness of the proposed approach.
From the qualitative and the quantitative point view, we assessed that the 3-D structure
of the crown is accurately reconstructed. The resolution of the obtained fused data varies
depends on the number of terrestrial scans and the distance of the terrestrial data ac-
quisitions. However, the fusion always improves the estimation results due to the joint
use of the two data sources. As future developments, we aim to extend the method to
forest characterized by different tree densities and different spatial patterns. Moreover,
we aim to extend the method to the estimation of a larger set of parameters than those
considered in this thesis.
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(a) Tls data IT11 (b) SA on top of IT11 (c) SA
n

′
on top of IT11

(d) Tls data IT13 (e) SA on top of IT13 (f) SA
n

′
on top of IT13

(g) Tls data IT17 (h) SA on top of IT17 (i) SA
n

′
on top of IT17

(j) Tls data IT19 (k) SA on top of IT19 (l) SA
n

′
on top of IT19

Figure 5.6: TLS scan registration results: (a),(d),(g),(j) original terrestrial data, (b),(c),(h),(k) crown
boundaries of the original airborne segmented image SA are highlighted in gray and superimposed on the
nth terrestrial scan, (c),(f),(i),(l) crown boundaries of the registered airborne segmented imageSAn

′
are

superimposed on the nth terrestrial scan.
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(a) Tls data IT31 (b) SA on top of IT31 (c) SA
n

′
on top of IT31

(d) Tls data IT33 (e) SA on top of IT33 (f) SA
n

′
on top of IT33

(g) Tls data IT37 (h) SA on top of IT37 (i) SA
n

′
on top of IT37

(j) Tls data IT39 (k) SA on top of IT39 (l) SA
n

′
on top of IT39

Figure 5.7: TLS scan registration results: (a),(d),(g),(j) original terrestrial data, (b),(c),(h),(k) crown
boundaries of the original airborne segmented image SA are highlighted in gray and superimposed on the
nth terrestrial scan, (c),(f),(i),(l) crown boundaries of the registered airborne segmented imageSAn

′
are

superimposed on the nth terrestrial scan.
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(a) Tls data IT53 (b) SA on top of IT53 (c) SA
n

′
on top of IT53

(d) Tls data IT55 (e) SA on top of IT55 (f) SA
n

′
on top of IT55

(g) Tls data IT59 (h) SA on top of IT59 (i) SA
n

′
on top of IT59

(j) Tls data IT73 (k) SA on top of IT73 (l) SA
n

′
on top of IT73

Figure 5.8: TLS scan registration results: (a),(d),(g),(j) original terrestrial data, (b),(c),(h),(k) crown
boundaries of the original airborne segmented image SA are highlighted in gray and superimposed on the
nth terrestrial scan, (c),(f),(i),(l) crown boundaries of the registered airborne segmented imageSAn

′
are

superimposed on the nth terrestrial scan.
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(a) Tls data IT75 (b) SA on top of IT75 (c) SA
n

′
on top of IT75

(d) Tls data IT77 (e) SA on top of IT77 (f) SA
n

′
on top of IT77

(g) Tls data IT79 (h) SA on top of IT79 (i) SA
n

′
on top of IT79

(j) Tls data IT91 (k) SA on top of IT91 (l) SA
n

′
on top of IT91

Figure 5.9: TLS scan registration results: (a),(d),(g),(j) original terrestrial data, (b),(c),(h),(k) crown
boundaries of the original airborne segmented image SA are highlighted in gray and superimposed on the
nth terrestrial scan, (c),(f),(i),(l) crown boundaries of the registered airborne segmented imageSAn

′
are

superimposed on the nth terrestrial scan.
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(a) Tls data IT95 (b) SA on top of IT95 (c) SA
n

′
on top of IT95

Figure 5.10: TLS scan registration results: (a) original terrestrial data, (b) crown boundaries of the
original airborne segmented image SA are highlighted in gray and superimposed on the nth terrestrial
scan, (c) crown boundaries of the registered airborne segmented imageSAn

′
are superimposed on the nth

terrestrial scan.



Chapter 6

Classification of Large Forest Areas
by a Sensor-Driven Domain
Adaptation Method

In this chapter1 a method to the transferring of knowledge between remote sensing data
acquired on different geographical area but sharing the same set of land-cover classes is
presented. Due the different acquisition scenario a shift in the spectral response of the land-
cover classes is expected to be addressed. To solve this problem, we aim to take advantage
from a multisensor data acquisition to detect features subspaces where data manifolds are
partially (or completely) aligned. In particular, the capability of each sensor of measuring
different physical properties of the scene can be employed to identify one sensor (or a
combination of sensors) being able to measure spatial-invariant properties for a subset
of classes. The detection of these invariant feature subspaces allows us to infer labels of
the target samples that result more aligned (i.e., more reliable) to the source data for the
considered subset of classes. Then, the labeled target samples are re-projected into the full
feature space to classify the remaining target samples of the same classes. Finally, for
those classes for which none of the sensors can measure invariant features we perform the
adaptation via a standard AL technique. The sensor-driven inference method allows us to:
(i) accurately model the distribution of the subset of classes for which invariant feature
subspaces have been detected, and (ii) introduce constraints on the general structure of
the adaptation problem, thus simplifying the adaptation procedure. Experimental results
confirm the effectiveness of the proposed method.

6.1 Introduction

The possibility of generating accurate land-cover maps by applying supervised classifica-
tion approaches to remote sensing data has been extensively analyzed in the literature.

1Part of this chapter appears in:
C. Paris, and L. Bruzzone, “A sensor-driven domain adaptation method for the classification of remote sensing
images,” in Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014, pp.
185-188.
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The main drawback of these methods is the need of reference data for training the clas-
sification algorithm, which requires expensive and labour intensive field data collection.
Therefore, in a real application scenario it is not reasonable to assume to have ground
reference data available each time that a new remote sensing data is acquired. To mitigate
the need of labeled samples, the new remote sensing image can be classified by exploiting
the ground reference data associated with an image acquired by the same sensor in a region
with comparable properties (i.e., same set of land-cover classes). However, when transfer-
ring the knowledge among pairs of remote sensing images, even tough they are similar to
each other, it is necessary to face many problems. The different acquisition conditions of
the two data (i.e., illumination, atmosphere, look/view angles, sensor parameters) affect
the radiometry of the scene. Moreover, the phenological state of the vegetation or the
differences in the soil moisture can lead to crucial variations in the spectral response of the
same land-cover classes (e.g., bare soil, crops). From the statistical view point, all these
factors result in a shift of the probability distribution of the classes between the images.
Hence, the direct application of the classifier trained on the source domain (remote sens-
ing data where reference data are available) to the target domain (remote sensing data
where no reference data are initially available) results in a low classification accuracy of
the obtained land-cover map.

In machine learning and pattern recognition literature, the issue mentioned above is
addressed by using DA methods in the framework of transfer learning. The main idea is
to transfer the knowledge learned on the source domain to a target domain by modelling
the differences among the areas [187, 188]. Several methods have been presented in the
framework of change detection, where the source and the target domains are acquired in
the same geographical area but at different times. Few approaches have been developed
to normalize the images if they have been taken under identical acquisition condition [189,
190], while others adopt image processing for matching as more as possible the statistical
distributions of the images [191]. More sophisticated techniques aim at adapting the
classification model estimated on the source domain to the target domain [192, 193, 194].
In [192, 193] the main idea is to use in an unsupervised way the samples of the target
image to tune the classifier in order to update the land-cover map generated on the source
domain. In [194] the authors first apply an unsupervised change-detection method to the
source and the target domains, then they exploit the unchanged pixels associated with
the groundtruth samples of the source domain to generate the reference data of the target
domain. However, all these methods can address the case of classification of time-series
images acquired on the same area.

In the case of images acquired on different regions, it is not possible to use the change
information or the temporal correlation between areas for addressing the DA issue. To
solve this problem, a common DA strategy consists in weighting the samples of the source
domain in order to use them in the classification of the target domain. In [195] the authors
address the DA problem from a distribution point of view by weighting the training
samples of the source domain to model the target distribution, while in [196, 197] the re-
weighting technique of the source samples is combined with an AL method to evaluate the
similarity between source and target domains. Note that AL methods aim at iteratively
expanding the original training set by selecting the most informative unlabeled samples
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of the target domain. Typically, an interactive process with a supervisor is required to
manually label the selected samples, thus strongly improving the classification accuracy
[198].

Many DA problems have been also addressed by semisupervised learning (SSL) meth-
ods [199, 200, 201, 202] when the reference data are not sufficient to represent the real
distributions of the land-cover classes. Indeed, often ground data are acquired over con-
tiguous sites easily to access, thus resulting in a unrepresentative pool of samples that
affect the training of the classifier. SSL methods aim to solve this problem by taking
advantage from the unlabeled samples of the image to better model the distributions of
the classes and thus train the classifier. In [199] the authors present an iterative algorithm
which exploits a weighting strategy based on a time-dependent criterion to include in the
training set the unlabeled samples of the image. At each iteration a Support Vector Ma-
chine (SVM) classifier is trained with the enlarged set of labeled samples, thus gradually
searching the optimal classification function. In particular, they observe that the most
informative unlabeled samples are the ones close to the margin boundaries of the SVM.
Recently, graph-based methods brought a great contribution in solving semisupervised
classification problems due to their solid mathematical background [203, 204, 205]. Typi-
cally, both the labeled and unlabeled samples are considered as nodes of the graph, while
the weights between the nodes represent the similarity among pairs of samples. This
condition allows one to drive the labeling process in a natural way among samples of the
same classes under the assumption of consistency (i.e., nearby points should belong to the
same class) [203]. In [206], the graph represents the structure of the land-cover classes
to highlight possible changes between the domains. Thus, the method does not require
to have the same set of land-cover classes between source and target domains. First, the
number of classes of the target domain is detected by means of a clustering algorithm.
Second, a sub-graph matching algorithm is proposed to detect the common classes and to
identify possible changes among pairs of land-cover classes. To match the classes of the
different domains, the data are projected into a higher dimensional kernel induced feature
space which allows a linear class separation.

Although all these methods address the adaptation between different domains, recently
some papers focused the attention on feature extraction and/or feature-selection methods
to detect the feature space where the data are more aligned to perform the adaptation
[207, 208, 209, 210]. In [207] the authors propose a method which aims to select a subset
of features that are characterized by both invariant spatial behaviour and discrimination
ability among the set of land-cover classes. The feature selection is performed consid-
ering a novel criterion function based on a standard measure of distance between the
classes and a novel metric that evaluates the stationary behaviour of features between the
domains. Due to this feature-selection phase, the generalization capability of the classi-
fication method is strongly improved with respect to the standard techniques. In [208]
a nonlinear deformation based on vector quantization and graph matching is presented
to adapt the source domain to the target domain. The data manifolds of the images are
locally deformed to facilitate the statistical alignment. Therefore, by maximizing the sim-
ilarity of the graphs representing the two domains it is possible to transfer the knowledge
from the source to the target domain in an unsupervised way. In [211, 210, 212, 209] the
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authors address the adaptation from a local perspective, trying to adapt locally the sam-
ples of the images while preserving the geometrical structure of the entire distribution.
In [209] the authors propose an alignment method which works directly on the mani-
folds of the images, thus addressing the cases of having multiangular, multitemporal, and
multisource image classification problems. In greater details, the method aims to pull
close samples of the same classes while preserving the geometry of each manifold along
the transformation. However, to detect possible spaces where the manifolds are aligned
the presented method requires a set of labeled data from the target image. Indeed, the
alignment transformation is defined by using both labeled and unlabeled samples. Simi-
larly, in [210] the authors focus on the feature extraction phase to statistically align the
distributions of the source and the target domains either in a semisupervised or in an
unsupervised way. In particular, they present a Transfer Component Analysis, which al-
lows the preservation of the local geometry (data manifold) while minimizing the distance
between the domains, thus improving the classification accuracy of the target domain
regardless of the classifier.

From this brief analysis of the literature, one can notice that the choice of the feature
space strongly affects the DA result. In this framework, the possibility of acquiring
multisensor data results in the collection of complementary measurements (features) of
the classes. By exploiting the capability of each sensor of measuring different physical
properties of the scene, we aim to detect feature subspaces where subset of classes results
almost aligned between the domains. Instead of using data-driven feature-extraction
methods, in the proposed approach such a detection is driven by the physical properties
of the classes. This condition allows us to infer knowledge from the source to the target
domain in an unsupervised yet reliable way. However, even though these feature subspaces
guarantee a better alignment of the data with respect to the original space, they are not
sufficient to model the entire distribution of the target domain. Thus, the main idea of
the proposed method is to exploit the invariant feature subspaces to infer the labels of
the target samples having the highest probability of being properly aligned to the source
data. The labeled target samples are then re-projected in the full feature space to properly
represent the Probability Density Function (PDF) of the target domain for the considered
subset of classes. Note that the method presented in this chapter significantly extends
and enhances the work described in [213]. The proposed approach is based on three main
steps. First, we decompose the DA problem defining a hierarchical-tree structure of the
land-cover classes. By analyzing the source domain (both the reference ground data and
the remote sensing data) the set of land-cover classes is divided into two groups: (i) a
subset of classes for which we have one sensor (or a combination of sensors) being able
to acquire almost invariant features (physical properties) between the domains, and (ii) a
subset of classes for which none of the sensors available can measure invariant features. In
the second step, we aim to define an initial training set for the invariant classes selecting
the more reliable target samples by means of a sensor-driven inference method. The
condition of data alignment allows us to propagate in an unsupervised way the labels
from the source to the target domain rather than adapting the classification parameters.
Then the labeled target samples are re-projected into the full feature space to classify the
remaining samples for the considered subset of classes. This inference process results in:
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(i) modelling the distribution of the subset of classes for which invariant features have been
measured in the target domain (thus handling possible shift in the statistical distributions
in the whole feature space between the domains for that subset of classes), (ii) introducing
constraints on the general structure of the DA method, and (iii) simplifying the global
adaptation process. In the third step, we aim to address the adaptation of those classes
characterized by a variant feature behaviour by means of an AL procedure which takes
advantage from the adaptation performed in the previous step. Thus, the AL strategy
focuses only on the variant land-cover classes for the entire procedure. This strategy allows
us to rapidly increase the classification accuracy of the target domain while requiring a
small amount of target samples. Experiments conducted on two real multisensor datasets
confirm the effectiveness of the proposed method.

The following chapter is organized as follow. Sec. 6.2 introduces the problem formu-
lation and the notation used in the chapter. Sec. 6.3 presents the proposed DA method,
while Sec. 6.4 describes the considered dataset. Sec. 6.5 illustrates and discusses the
experimental results. Finally, Section VI draws the conclusion of this chapter.

6.2 Problem Formulation

In this section we formalize the sensor-driven DA problem and define the notation used
in the chapter. Let us assume to have N sensors Ψn, with n = 1, .., N , which can acquire
data on two different geographical areas. The feature vector extracted by the nth sensor
Ψn is defined as xΨn = (xΨn

1 , xΨn
2 , .., xΨn

zn ), with xΨn ∈ Rzn . Accordingly, the vector x ∈ Rd

of features extracted by all the available N sensors is as follows:

x = (xΨ1 ∪ xΨ2 ∪ .. ∪ xΨN)

= (xΨ1
1 , .., xΨ1

z1
, xΨ2

1 , .., xΨ2
z2
, x

ΨN
1 , .., x

ΨN
zN )

(6.1)

Let DS be the source domain and DT the target domain that we assume share the same set
of M land-cover classes Ω = {ωm}Mm=1. The source domain DS = {XS,YS} is characterized
by a set of ns labeled samples XS = {xsi}nsi=1 with YS = {ysi }nsi=1, where xsi ∈ Rd, ysi ∈ Ω.
The target domain is characterized by a set of nt unlabeled samples DT = {XT} = {xti}nti=1,
where xti ∈ Rd. In this framework, the main goal of DA methods is to predict the target
labels {YT} = {yti}nti=1 ∈ Ω by taking advantage from the labeled samples of the source
domain. This can be done under the assumption that the distributions of DS and DT are
sufficiently correlated. From the statistical view point, each class ωm ∈ Ω is characterized
by the prior probability P (ωm) and the class conditional probability p(x|ωm). Accordingly,
the distribution of the source domain can be written as:

pS(x) =
∑
ωm∈Ω

P S(ωm)pS(x|ωm) (6.2)

and the distribution of the target domain:

pT (x) =
∑
ωm∈Ω

P T (ωm)pT (x|ωm) (6.3)
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Figure 6.1: Block scheme of the proposed sensor-driven DA approach.

Due to the different scenes represented by DS and DT (e.g., different acquisition condi-
tion, different ground condition, different geographical locations), usually a shift in the
probability distributions of the classes is observed (i.e., pS(x) 6= pT (x)). Typically, DA
methods overcome this shift by searching feature spaces where the data are more aligned
from the global view point [214] or by matching local deformations [215, 216]. Differently
from the literature, in the proposed method the detection of these features subspaces is
driven by the physical meaning of the properties measured by the sensors. The main
assumptions of the proposed method are: (i) the availability of multisensor data acquired
on DS and DT , and (ii) the same set of land-cover classes is shared between the domains.

6.3 Proposed Method

The acquisition of multisensor data results in the collection of complementary measure-
ments on the scene, thus increasing the probability of obtaining features characterized by
invariant behaviour between the domains. By focusing the attention on the capability of
each sensor of measuring different physical properties of the land-cover classes, we aim
at identifying those physical properties which are reasonably invariant between DS and
DT for some specific classes. The detection of these feature subspaces allows us to bridge
the gap between the distributions according to a sensor-driven strategy. Fig. 6.1 shows
the block-scheme of the proposed DA approach, which is based on three main steps: (i)
hierarchical decomposition of the land-cover classes on the basis of an invariance analysis
of the adaptation problem, (ii) sensor driven inference on the classes for which invariant
features have been measured by one or more sensors, and (iii) adaptation of the classes
for which none of the available sensors can measure invariant features by means of an AL
strategy.
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6.3.1 Hierarchical Decomposition

A class hierarchical structure can be obtained by iteratively partitioning the multiclass
problem into meta-class problems. In the literature, Binary Hierarchical Classifiers (BHC)
are constructed in order simplify the classification problem such that the adaptation can
be performed solving binary problems [217, 218, 219]. The similarity of the classes is
evaluated in the feature space to keep similar classes in the same partition until the leaf
nodes of the tree represent the data classes. In the proposed method we aim to keep in
the same partition the classes for which one sensor (or a set of sensors) has measured the
same invariant properties. While in the entire feature space the distributions of classes
in the two domains can significantly change, by focusing the attention on the physical
properties of the scene we can derive a class hierarchy where some classes in a feature
subspace result statistically aligned. Therefore, to derive the hierarchical decomposition
of the classes we perform an invariance analysis considering both the labeled samples of
the source domain and the available sensors. Differently from the BHC, at each level of
the hierarchy there can be more than two classes, relaxing the constraint of the binary tree
construction. Note that this class decomposition is not realized to solve the classification
problem but to facilitate the detection of invariant feature subspaces.

Let us consider a hierarchical tree structure made up of the set of classes Call = {ck}Nk
k=1,

where ck can be a meta- or a data- class (i.e., ωm). The first meta-class c1 includes the
whole set of land-cover classes Ω. For all the hierarchy levels starting from two, each
class ck is connected to a unique parent-class M(ck) and a set of child-classes F (ck) =
{ck1 , ck2 , .., ckfk}, where fk is the number of classes included in the meta-class ck (Fig.

6.2). The key idea of the proposed method is to divide at each level of the hierarchy
the set of classes into two groups: (i) a subset of classes Cinv ⊆ Call for which we have
at least one sensor being able to measure spatial invariant features, and (ii) a subset of
classes Cv ⊆ Call for which none of the sensors available can measure invariant features.
Accordingly, for each level of the tree the PDFs of DS and DT can be rewritten as follows:

pS(x) =
∑
ck∈Call

P S(ck)p
S(x|ck)

=
∑
ck∈Cv

P S(ck)p
S(x|ck) +

∑
ck∈Cinv

P S(ck)p
S(x|ck)

(6.4)

and
pT (x) =

∑
ck∈Call

P T (ck)p
T (x|ck)

=
∑
ck∈Cv

P T (ck)p
T (x|ck) +

∑
ck∈Cinv

P T (ck)p
T (x|ck)

(6.5)

Note that the sets Cv and Cinv are different for different levels of the tree (for simplifying
the notation we do not include explicitly the dependence). The goal of the hierarchical
structure is to decompose the adaptation problem in order to identify and separate from
the others the classes Cinv, which result statistically aligned between the domains in some
feature subspaces. This allows us to adapt first the classes Cinv by means of a sensor-driven
inference method and then to address the adaptation of classes characterized by variant
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behaviour Cv. In the latter case, the adaptation is based on a standard AL technique.
The adaptation process is driven by a sensor Ψn (or a combination of sensors if more than
one sensor provides invariant features) that measures spatial invariant features xΨn for
the class ck ∈ Cinv.

 

C 

M(ck) 

ck 

ck1 ck3 

F(ck) 

Data-class 

Meta-class 

ck2 

(a)

Figure 6.2: Example of hierarchical partitioning of the land-cover classes where the generic class ck is
represented connected to its parent class M(ck) and its child-classes F (ck). In the considered example
fk is equal to three.

6.3.2 Sensor-driven Inference Method

The goal of this step is to propagate the labels of the classes Cinv from the source to the
target domains, thus generating a training set adopted to DT for those classes. This is
accomplished by means of two main steps. First, we exploit the detection of invariant
features subspaces to infer class labels of the target samples that result more aligned to the
source samples (i.e., that have the highest probability of being correctly labeled). Then,
we re-project the labeled target samples in the full feature space to accurately model the
target distribution of the considered classes and thus to label the remaining samples of
that classes. Let us focus the attention on the generic meta-class ck which includes 2
child-classes F (ck) = {ck1 , ck2}. Without loosing generality, let us assume that one sensor
Ψn, among the N available ones, provides an invariant features subspace xΨn where the
classes F (ck) can be discriminated. Even tough the prior probabilities in the two domains
are not influenced by the features measured by the sensor Ψn, the conditional PDFs result
almost aligned in that feature subspace xΨn , i.e.,

pT (xΨn|ck1) ≈pS(xΨn|ck1), and

pT (xΨn|ck2) ≈ pS(xΨn|ck2)
(6.6)

whereas they are not aligned for all other feature subspaces:

pT (xΨv |ck1) 6=pS(xΨv |ck1), and

pT (xΨv |ck2) 6= pS(xΨv |ck2) ∀v ∈ [1, N ], with v 6= n
(6.7)
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This alignment condition of the data allows us to transfer the knowledge from DS to DT
in an unsupervised but reliable way. In greater details, the proposed label propagation
strategy exploits the classifier trained on DS in the feature subspace xΨn to predict the
labels of DT for the invariant classes ck1 and ck2 . Note that, due to the hierarchical tree
structure, we are in the condition of focusing the attention on the unlabeled samples of
the target domain X T

ck
belonging to the meta-class ck. Indeed, while at the first level of

the hierarchy the entire set of unlabeled samples is considered, for all the levels starting
from two the samples belonging to the meta-class ck have been already identified at the
previous level (i.e., classification map representing the classes {ck, C − ck}). In our study
we consider SVMs classifiers, which have been extensively employed in remote sensing
because of their high generalization capability [220, 221], high classification accuracy when
compared with other classifiers and effectiveness in handling ill-posed problems (i.e., low
ratio between the number of training samples and the number of features) [222, 223]. It
is worth mentioning that since the data results almost aligned because of the invariance
of the feature space, any classifier can be employed.

For sake of simplicity, let us present the binary classification problem for the classes
{ck1 , ck2}, which can be extended to the multiclass case by means of the One Against
All (OAA) multiclass strategy [199]. Let T Sck = {(xsi , ysi )}

nsck
i=1 , where xsi ∈ Rzn and

ysi ∈ [ck1 , ck2 ] be the training set of DS for the considered invariant classes. First, the
standard SVM classifier is trained using the labeled samples of the source domain T Sck by
solving the following constrained optimization problem:

min
w,ξs

1

2
‖w‖2 + C

nsck∑
i=1

ξsi

subject to: ysi (x
s
i ·w + b) ≥ 1− ξsi , ξsi ≥ 0 ∀i ∈ [1, nsck ]

(6.8)

where w is a vector normal to the separating hyperplane; b is a bias term such that
b/‖w‖ represents the distance of the hyperplane from the origin; C is the regulariza-
tion parameter; ξsi are the slack variable associated with the nsck labeled samples of the
source domain for the classes ck1 and ck2 . By using the Lagrangian formulation, the
aforementioned convex optimization problem can be reformulated into the following dual
representation:

max
αs

nsck∑
i=1

αsi −
1

2

nsck∑
i,j=1

αsiα
s
jy
s
i y
s
j

〈
xsi · xsj

〉
subject to: 0 ≤ αsi ≤ C ∀i ∈ [1, nsck ],

nsck∑
i=1

αsiy
s
i = 0

(6.9)

where αsi with i = 1, .., nsck are the Lagrange multipliers and
〈
xsi · xsj

〉
is the inner product

between the two feature vectors. If the data cannot be linearly separated in the original
input space, it is possible to project them into a higher dimensional feature space. Hence,
by means of the nonlinear mapping function Φ(x), the inner product between the two
mapped feature vectors

〈
xsi · xsj

〉
is replaced by the inner product in the transformed
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space
〈
Φ(xsi ) · Φ(xsj)

〉
. Note that there is no need of explicitly compute Φ(x) because of the

possibility of employing a kernel function that satisfies the Mercer’s condition K(xsi ,x
s
j) =

Φ(xsi ) · Φ(xsj). Thus, the final discriminant function associated to the hyperplane can be
represented as a function of the data (conveniently in the original dimensional feature
space) as follows:

f(x) =
∑
i∈G

αsiy
s
iK(xsi ,x

s
j) + b (6.10)

where K(xsi ,x
s
j) is a kernel function, and G is the subset of training samples corresponding

to the nonzero Lagrange multipliers (i.e., support vectors). By applying the classifier to
the target samples X T

ck
, their labels are predicted according to the sign[f(x)], where f(x)

represents the hyperplane.
Although the considered feature subspace Ψn guarantees a better alignment of the

data with respect to the original space (and thus a more reliable classification of the
target samples), this subspace is not sufficient to properly model the entire target PDFs
of ck1 and ck2 . For this reason, we generate a reliable training set for the target do-
main, by considering only the samples that fall outside the margin (i.e., |f(x)|> 1) be-
cause they are the ones having the highest probability of being correctly classified. Let
T Tck(0) = {(xti, yti)| xti ∈ X T

ck
, |f(xti)|> 1} be the initial training set of DT generated by

transferring the knowledge in xΨn for the invariant classes ck1 and ck2 . Then, we re-project
the target labeled samples T Tck(0) into the full feature space to represent the PDFs of the

considered classes on all the available features (i.e., pT (x|ck1) and pT (x|ck2)). This con-
dition allows us to use all the available information to select a subset of features where
the considered classes are more discriminable in order to ensure an accurate classifica-
tion of the remaining unlabeled samples. To this end a feature-selection technique is
applied to the training samples T Tck(0) to select the most discriminative subset of features.

In our study, we exploited a Sequential Forward Floating Selection (SFFS) considering
the Jeffreys-Matusita distance as separability criterion [224, 225]. Then, the classifier is
trained on the initial training set T Tck(0) in the obtained feature subspace, thus generating

the training set T Tck(1) which includes all the originally unlabeled samples X T
ck

. There-

fore, we can update the initial classification map {ck, C − ck} with the classification map
{ck1 , ck2 , C − ck}. Moreover, we distinguish among the child classes F (ck1) and F (ck2)
which can further classified on the basis of the invariance analysis if they belong to the
invariant classes Cinv or by means of an AL method (Section 6.3.3). It is worth mentioning
that depending on the complexity of the adaptation problem, more restrictive criteria on
the value |f(x)| can be adopted for increasing the probability of selecting reliable target
samples to generate the initial training set.

By applying the label inference method to all the classes Cinv, at the end of this step we
generate an initial training set for the target domain T Tinf = {(xtj, ytj)}, with xtj ∈ Rd and
ytj ∈ Cinv and a classification map representing all the invariant data-classes ωm ∈ Cinv
and the meta-classes ck ∈ Cv. It is worth mentioning that by inferring the knowledge
on the classes Cinv, we simplify the adaptation problem by: (i) reducing the number of
classes that should be adapted in the next step, and (ii) introducing constraints in the
adaptation of the remaining classes Cv that increase the reliability of adaptation based
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on AL method. The amount of simplification depends on the number of classes Cinv on
which we can detect invariant feature subspaces between DS and DT .

6.3.3 Adaptation based on Machine Learning

The last step of the proposed method aims to complete the land-cover map of DT gener-
ated at the previous step, by integrating the classes ωm ∈ Cv. According to the constraints
on the additional labeling cost for the user, the goal of this step is to minimize the number
of training samples of the target domain required to achieve a predefined classification
accuracy. This is obtain by using AL methods in order to rapidly increase the classifi-
cation accuracy of the target land-cover map. Usually AL methods are employed in the
supervised classification of remote sensing data to optimize the definition of the training
set by selecting the most informative samples. The initial training set is iteratively ex-
panded by means of an interactive procedure which involves a supervisor (i.e., a human
expert) who correctly assigns the labels to the selected uncertain samples [226, 227, 228].
The labeling process can be either based on photointerpretation or on the collection of
ground reference data.

The AL strategy employed in the proposed method focuses the attention only on
the Cv classes by taking advantage from: (i) the hierarchical decomposition of the DA
problem, and (ii) the adaptation performed in the previous step on the classes Cinv. Due
to the hierarchical decomposition of the classes, we are in the condition of identifying the
target samples belonging to the variant classes X T

Cv . This condition allows us to refine
the initial training set T Tinf = {(xtj, ytj)} generated in the previous step by integrating
only unlabeled target samples belonging to the classes ωm ∈ Cv. Indeed, the sensor-driven
inference method already provided the labels for the classes ωm ∈ Cinv. In this framework,
the iterative AL procedure minimizes the number of target samples to label by directly
selecting the most informative samples of the ωm ∈ Cv classes. It is worth mentioning that
the proposed method can use any kind of AL strategy. Here we consider the MCLU-ECBD
(i.e., MultiClass Level Uncertainty - Enhanced Clustering Based Diversity) batch mode
AL technique presented in [198]. This technique has been developed in order to improve
the classification accuracy of remote sensing data with SVMs classifiers. The method is
based on a clustering technique performed in the kernel space which aims to select at each
iteration more samples that are both uncertain and diverse (distant one another). While
the diversity criterion avoids redundancy in the selection of the samples, the uncertainty
criterion guarantees the selection of the most informative ones. In greater detail, first
m uncertain samples are selected considering their distance from the hyperplane of the
binary SVM classifiers according to the OAA architecture. Then, the m samples are
refined by applying a kernel k-means clustering [229] to define h different clusters (with
h ≤ m) and select the most uncertain sample from each cluster (i.e., diverse samples).

At the end of the step, we generate the land-cover map of the target domain by means
of the training set obtained with the inference method integrated to the AL approach.
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Figure 6.3: Color composition of the orthophoto acquired on a portion of the Trentino region. The
study areas are highlighted in the white rectangles overlapped on the optical image. A small portion of
the high resolution optical images of the dataset is represented for both the study areas.

6.4 Experimental Results

In this Section the experimental results obtained on a wide forest area are presented.
In particularity, to assess the effectiveness of the proposed method we carried out two
experiments. In the first experiment we focused the attention on the set of classes Cinv for
which the adaptation can be addressed by means of the sensor-driven inference method
SVMinf , without requiring any labeled sample from DT .

6.4.1 Dataset Description

For our analysis we considered two spatially disjoint forest areas located in the Southern
Italian Alps, in the Trentino region, (Fig. 6.3). The first study area is located in Val
di Sella (1090 Ha), whereas the second one is located in Padergnone (175 Ha), hereafter
referred as Vds and Pad, respectively.

The sensors available were a hyperspectral scanner, a LiDAR system and a color
camera. The hyperspectral images were acquired by the AISA Eagle sensor mounted
on an airborne platform with a spectral range between 402.9 nm and 989.1 nm and
a spatial resolution (GIFOV) of 1 m. In Vds, the acquisition was performed on 16th
July 2008 with a spectral resolution of 4.6 nm (126 spectral bands), whereas in Pad
the data were taken on 4th September 2007 with a spectral resolution of 9.2 nm (63
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Table 6.1: Number of available labeled samples of the land-cover classes in the source and the target
domains.

Class Name

Number of samples

V ds Pad

TR TS Pool TR TS Pool

Norway Spruce (ω1) 478 238 239 43 21 21

Silver Fir (ω2) 378 189 189 105 52 53

European Larch (ω3) 373 186 187 388 194 194

European Beech (ω4) 512 255 256 815 407 408

Hop Hornbeam (ω5) 83 41 41 145 72 72

Grass (ω6) 178 89 89 172 86 86

Building (ω7) 143 71 71 137 68 68

Roads (ω8) 148 73 74 137 68 68

Bare Soil (ω9) 190 94 95 200 99 100

spectral bands). For each spectral channel of the Pad image there are two spectral
channels of the Vds image acquired in the same wavelength range. Thus, to perform
the adaptation, the Vds image was resampled by applying a Gaussian model with a Full
Width at Half Maximum (FWHM) equal to the band spacings (i.e., 9.2 nm) by matching
the corresponding wavelength ranges.

LiDAR data were acquired jointly with the hyperspectral image by the Optech ALTM
3100EA sensor mounted on the same aircraft of the hyperspectral sensor for both the
areas. The average point density is 5 points per m2, with up to four returns acquired.
The laser pulse wavelength was 1064 nm whereas the laser repetition rate was 100 kHz.
The digital terrain model (DTM) was produced and subtracted from the LiDAR data to
obtain the relative height of the targets with respect to the terrain. The obtained LiDAR
point cloud was rasterized to generate the canopy height model (CHM) image.

The high resolution optical image has 3 spectral bands acquired in the visible range
(RGB) with a spatial resolution of 0.2 m. The spatial resolution of the optical image
was degraded to 1 m to be coherent with the hyperspectral image and the CHM, using
the nearest neighbour resampling. The multi-sensor data were manually registered by
guaranteeing a data shift up to 1 m. To this end, we used as reference targets the
buildings present in the scene

To assess the performance of the proposed approach, both the areas were considered
as DS and DT . Tab. 6.1 reports the number of samples available per area divided in
Training (TR) and Test (TS) and Pool sets. When an area is considered as DS , the
training set is exploited to infer the knowledge on the unlabeled samples of DT . The test
set of the other area (i.e., DT ) is used for the accuracy assessment and the pool set is the
unlabeled set of samples used by the AL technique. Five random datasets per area have
been generated and the average results obtained on the test set of the DT for the 5 trials
are reported.
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Figure 6.4: Hierarchical tree structure derived at the end of the invariance analysis for the considered
DA problem.

In all the experiments carried out, a radial basis function (RBF) kernel was adopted in
the SVM classifier. In the experiments with AL methods, at the first iteration the model
selection phase was performed using a grid strategy on the validation set of DS, thus
tuning the RBF kernel width and the regularization parameter of the SVM classifier. The
same grid strategy was used to tune the model parameters for the standard supervised
SVM. For the P3SVM we considered the best parameters obtained for the supervised
classifier. Then, we applied a grid strategy to tune the parameters of the semisupervised
method, thus selecting the ones that resulted in the highest classification accuracy on the
samples of the test set of DT .

6.4.2 Hierarchical Decomposition

Let us focus the attention on the hierarchical decomposition of the considered set of land-
cover classes. Fig. 6.4 shows the hierarchical representation of the land-cover classes for
the considered DA problem. Accordingly, the two domains share 9 land-cover classes: 3
species of Conifers Trees (i.e., Norway Spruce, European Larch, Scots Pine), 2 species of
Broadleaves Trees (i.e., European Beech, Hop Hornbeam), Grass, Buildings, Roads and
Bare Soil. Even tough the considered areas are characterized by similar forest composi-
tion, the different properties of the terrain (altitude, slope and aspect) and the different
phenological state of the various type of vegetation present in the scene result in a re-
markable shift of the class distributions in the full feature space. At the first level of
the hierarchy, the adaptation problem is represented by the Forest and No-Forest classes.
By analyzing the source training samples (and their physical meaning) we observed that
it is possible to infer knowledge from the DS to DT in the feature subspace defined by
a simple Normalized Difference Vegetation Index (NDVI) extracted from the hyperspec-
tral sensor and the height measured by the LiDAR sensor. In particular, the NDVI was
calculated by considering the red and the infra-red channels acquired at the wavelengths
of 623.13 nm and 863.13 nm, respectively, whereas the height was the maximum height
value measured by the laser scanner. Accordingly, it is reasonable to assume that the
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Figure 6.5: Distributions of the labeled samples of Pad (left) and Vds (right) represented in: (a-b) the
invariant feature subspace defined by the NDVI (hyperspectral scanner) and the height (LiDAR sensor),
and (c-d) the feature subspace defined by the 16 and 37 spectral channels at the wavelength of 538 nm
and 737 nm, respectively.

forest samples are characterized by positive NDVI (because of the chlorophyll response
in the infra-red band) and relatively high values of the measured height. In contrast, by
analyzing the No-Forest class, it includes the Land and the Building classes. Therefore,
all the samples belonging to the Land are characterized by relatively low height values,
whereas the target samples of the Buildings present negative NDVI values. Therefore, the
considered simple feature space is both invariant and discriminative for the Forest and
No-Forest classes. Accordingly, we expect that DT and DS are approximatively aligned
in this space.

A representation of the DA problem is presented in Fig. 6.5. The two scatterplots in
Fig. 6.5a and Fig. 6.5b show the distribution of the Forest, Roads, Buildings and Grass
classes in the invariant feature subspace defined by the hyperspectral and the LiDAR
sensors. Due to the physical properties of the NDVI and the Height features, the distri-
butions result statistically aligned on the considered classes besides the samples belongs
to different domains. In contrast, if we consider other features (e.g., the other spectral
channels) we can observe a relevant shift in the class distributions. An example of this
shift is presented in Fig. 6.5c and Fig. 6.5d, where the same set of classes is represented
in the subspace defined by bands 16 and 37 of the hyperspectral data (i.e., 538 nm and
737 nm).

At the second level of the hierarchy, the Forest samples can be classified into Conifers
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and Broadleaves, which are characterized by different spectral response in the infra-red
spectral band. In our study, the infra-red channel considered was the one centered in
863 nm. Moreover, typically conifers are higher than broadleaves. Therefore, the feature
subspace defined by the NDVI and the LiDAR height is employed due to its discriminative
and almost stationary behaviour for those classes. Note that the NDVI is preferable to the
infra-red bands of the hyperspectral data because the ratio of the spectral bands (infra-red
and red spectral channels) performed to generate the normalization index compensates
possible differences in acquisition condition between the DS and DT .

To discriminate between Buildings and Land, the height feature is sufficient to guar-
antee the samples distribution alignment, whereas for discriminating the Terrain from the
Roads the inference can be applied in the feature subspace defined by the homogeneity
textural feature derived by processing the green band of the high resolution optical image
[230] and the NDVI values. Indeed, by analzying the samples of the source domain it
turned out that the spectral signature of the Grass is affected by the presence of chloro-
phyll, thus generating higher reflectance responses in the infra-red band with respect to
the Roads and the Bare Soil. Moreover, the textural behaviour of the Roads samples is
different from the one of the Bare Soil samples. Finally, the Bare Soil and the Grass classes
were discriminated by means of the NDVI response and the color textural features (i.e.,
mean and variance of the Red, Green and Blue spectral channels) derived by processing
the high resolution optical image [231].

6.4.3 Adaptation of Invariant Classes

In the first experiment we analyze the results obtained by means of the sensor-driven
inference method, thus focusing the attention on the Cinv classes. As a baseline for our
comparison, we considered both the standard supervised SVM classifier trained on DS and
directly applied to DT , and the DA Progressive Semisupervised Support Vector Machine
(P3SVM) presented in [199]. In this context, the adaptation results in a 6 land-cover
classes problem: Conifers, Broadleaves, Bare Soil, Roads, Grass and Building. Tab. 6.2a
and Tab. 6.2b show the Overall Accuracy (OA%), the Producer Accuracy (PA%) and
the User Accuracy (UA%) obtained on DT for each class by using: (1) the SVM classifier
trained on DS , (2) the semisupervised P3SVM method, and (3) the proposed sensor-driven
DA method SVMinf . In Tab. 6.2a Pad was the source domain, whereas in Tab. 6.2b the
source domain was Vds.

By directly applying the SVM trained on DS to DT , it turned out that the shift in the
sample distributions strongly affects the classification accuracies of the Grass and Bare
Soil classes. This effect is encountered in both the adaptation problems, thus generating
a PA and a UA lower than 50% for the Bare Soil class. By focusing the attention on
the other classes, one can notice that the labeled samples of Pad properly represent the
unlabeled samples of Vds. In contrast, by considering Vds as source domain, the sample
distributions of Building and Roads are not effective in representing the distributions that
characterize the Pad samples for the same classes.

By exploiting the considered semi-supervised classifier we slightly increase the OA
with respect to the use of the supervised SVM classifier, by reaching 82.18% instead of
81.73% and 82.40% instead of 76.59% when Pad and Vds are considered source domain,
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Table 6.2: Average classification results (over five trials): (a) Pad is the source domain, (b) Vds is the
source domain. OA%, PA% and UA% obtained by applying: (1) the supervised SVM classifier trained on
the source domain, (2) the semisupervised P3SVM method, (3) the proposed sensor-driven DA method
SVMinf .

Classes
Baselines PM

SVM P3SVM SVMinf

PA% UA% PA% UA% PA% UA%
Conifers 94.09 91.53 95.5 90.1 93.44 94.99
Broadleaves 82.64 88.05 79.87 89.06 90.07 87.01
Grass 86.29 45.02 75.06 43.66 99.10 99.32
Building 62.25 91 67.46 99.79 98.03 100
Roads 90.96 73.78 99.73 77.65 100 99.46
Bare Soil 1.48 7.53 6.98 25.00 98.94 98.10

OA % 81.73 82.18 94.11

(a)

Classes
Baselines PM

SVM P3SVM SVMinf

PA% UA% PA% UA% PA% UA%
Conifers 92.21 77.42 95.66 86.31 94.01 95.08
Broadleaves 84.68 92.65 90.82 94.72 97.58 96.69
Grass 78.14 87.27 79.65 92.82 98.37 99.30
Building 70.00 53.13 87.35 60.12 100 100
Roads 66.76 33.83 66.47 37.92 100 99.71
Bare Soil 5.25 50 16.08 78.43 99.19 100

OA % 76.59 82.40 97.21

(b)

respectively. However, the P3SVM method is not able to handle the adaptation of the
classes Grass and Bare Soil as proven by the accuracy obtained on the target domain.
As expected the sharp differences in the PDFs of the classes decrease the effectiveness of
the semi-supervised approach. In contrast, the proposed method is not affected by the
statistical misalignment of those classes because of the selected simple feature subspace
which is based on spatial-invariant physical properties of the scene. In particular, by
means of the invariant feature subspace we correctly transfer the knowledge to the more
aligned unlabeled samples of the target domain. Then, by re-projecting these samples
in the full feature space we are able to accurately model the PDFs of the target domain
for the invariant classes as proven by the obtained PA and UA (all higher than 87% for
both the adaptation problems). Therefore, we always improve the OA yielded by both
the SVM and the P3SVM methods. Moreover, we sharply increase the PA and UA of the
Grass and Bare Soil classes, thus generating a reliable classification map for the target
domain without requiring any labeled sample for it. Note that we achieve similar OA
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results for both the DA problems (i.e., 94.11% and 97.21%), regardless of the accuracies
obtained by directly applying the classifier (i.e., 81.73% and 76.59%). Thus, although
the samples of Vds are not appropriate to represent the target ones in the entire feature
space, by generating an unsupervised training set of the target domain T Tinf , we are in the
condition to properly represent the statistical distribution of the target samples and then
to model them in the full feature space.

6.4.4 Adaptation of Variant Classes

To increase the level of detail of the obtained classification map, in the second experiment
the AL procedure was integrated to the inference method to adapt the remaining Cv
classes, i.e., SVMinfer

AL . Due to the significant changes in the distribution of the classes,
no comparison with semisupervised techniques are provided since they resulted in poor
classification accuracy. Thus, the proposed method was compared to a standard DA
method based on AL. The considered DA-AL approach is composed of two steps: (i)
direct application of the supervised classifier trained on DS to DT , and (ii) AL procedure
to select the most informative unalabeled samples of DT . In particular, the AL query
considered in the standard DA-AL approach was the same exploited by the proposed AL
method, i.e., the MCLU-ECBD. At each iteration of the AL process, 5 most informative
samples of DT were added to the initial training set.

Even though the adaptation performed in the previous step allows us to obtain an
accurate classification map of the target domain for the invariant classes without any
labeling cost, the AL technique is integrated in the inference method for addressing the
adaptation of the remaining forest species (i.e., Cv classes). Indeed, for the specific adap-
tation problem a strong shift in the sample distribution occurred both for the Conifers
and the Broadleaves. This shift cannot be recovered by working in simple subspaces de-
fined on the basis of physical measures since the discriminability of these classes require
an accurate modeling of the spectral signature. Tab. 6.3a and Tab. 6.3b show the Overall
Accuracy (OA%), the Producer Accuracy (PA%) and the User Accuracy (UA%) obtained
on the target domain for each class by applying: (1) the supervised SVM classifier trained
on DS , (2) the standard MCLU-ECBD AL method for DA, (3) the proposed inference

method SVMinf
AL integrated with the AL step for adapting the Cv classes. In the first case

the source domain was Pad and 20 samples were added by means of the AL method,
whereas in the latter case Vds was the source domain and the number of samples added
was 25.

Due to the adaptation performed by means of the sensor-driven inference method, we
are in the condition of focusing the attention only on the Cv classes, thus reducing the
number of needed target samples to achieve accurate classification map. Indeed, while
the standard DA-AL technique selects the most informative samples of all the land-cover
classes, with the proposed method we require only the labels of samples belonging to the
Cv classes (i.e., the forest species). This condition allows us to rapidly increase both the
accuracy of the Cv classes and of the entire DA problem. This effect is more evident when
we select few samples from DT .

Let us focus the attention on the results obtained when Pad is the source domain
(Tab. 6.3a). By requiring the labels of only 20 samples of the target domain, the PM
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Table 6.3: Average classification results (over five trials) considering: (a) Pad as the source domain and
the number of target samples added is 20, (b) Vds as the source domain and the number of target samples
added is 25. OA%, PA% and UA% obtained by applying: (1) the supervised SVM classifier trained on

the source domain, (2) the MCLU-ECBD, (3) the proposed adaptation method SVMinf
AL integrated with

the AL step for adapting the Cv classes.

Classes
Baselines PM

SVM SVMAL SVMinf
AL

PA% UA% PA% UA% PA% UA%

F
or

es
t

N. Spruce 88.32 64.16 86.30 65.83 78.40 71.28
E. Larch 1.80 38.64 26.67 77.06 48.04 72.18
S. Pine 80.97 49.64 82.37 58.25 86.56 67.14
E. Beech 70.35 83.36 72.86 86.34 77.41 85.38
Hornbeam 55.61 40.71 55.61 42.86 59.51 48.03

N
o

F
or

es
t Grass 88.54 50.32 100 99.55 99.10 99.32

Building 66.48 100 92.68 98.21 98.03 100
Roads 98.08 74.90 98.36 96.51 100 99.46
Bare Soil 17.87 65.63 100 97.51 98.94 98.10

OA % 63.17 75.90 79.61

(a)

Classes
Baselines PM

SVM SVMAL SVMinf
AL

PA% UA% PA% UA% PA% UA%

F
o
re

st

N. Spruce 31.43 15.42 35.24 43.53 48.57 46.79
E. Larch 1.15 0.86 0.38 0.93 9.23 33.80
S. Pine 74.54 46.20 87.94 68.73 89.90 70.27
E. Beech 41.87 93.52 85.11 96.49 91.40 97.03
Hornbeam 50.28 23.66 64.72 45.96 69.72 62.91

N
o

F
o
re

st Grass 81.40 92.59 89.07 87.64 98.37 99.30
Building 65.59 65.40 95.00 87.77 100 100
Roads 68.53 38.58 80.00 68.00 100 99.71
Bare Soil 37.37 88.10 77.37 97.21 99.19 100

OA % 52.16 79.04 87.20

(b)
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Table 6.4: Average (over five trials) Overall accuracy (%) versus the number of target labeled samples

annotated by AL with the proposed method (SVMinfer
AL ) and the standard DA AL method (SVMAL)

considering: (a) Pad as source domain, (b) Vds as source domain.
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improves the OA accuracy of approximatively a 4% with respect to the standard SVMAL

and of a 17% with respect to the SVM. Moreover, the PA and the UA of the forest species
sharply increased compared to the ones obtained with the SVMAL. Therefore, due to the
accurate adaptation performed in the previous step for the classes Grass, Building, Roads
and Bare Soil, by requiring the labels of few samples for the remaining classes we obtained
an accurate land-cover map of the target domain. Tab. 6.3b shows similar results when
Vds is the source domain. By labeling 25 samples of the target domain, the PM improves
the OA accuracy of a 8% with respect to the SVMAL and of a 35% with respect to the
SVM.

Fig. 6.4a and Fig. 6.4b depict the average (on five trials) classification accuracies
obtained on DT versus the number of new labeled samples with the proposed method
SVMinf

AL and the standard AL method SVMAL considering Pad and Vds as source domains,
respectively. The results obtained confirm that the proposed approach allows a significant
reduction of the number of labeled samples of the target domain required for obtaining
a given classification accuracy, and thus the labelling cost. As an example, when Pad
is the source domain, to reach an OA of 80% our method requires 20 samples whereas
the SVMAL needs twice the number of samples (Fig. 6.4a). Similarly, when Vds is the
source domain, with the PM by adding 25 samples the OA obtained is 87%, whereas
the standard SVMAL requires 35 samples more than the PM to reach the same OA (Fig.
6.4b). Furthermore, even tough the AL exploited in the PM selects samples only from
the variant set of classes Cv, by adding a high number of labeled samples from the DT the
standard AL method still achieves comparable OA. Thus, the results obtained confirm
the effectiveness of the inference method in adaptation the invariant set of classes Cinv.
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6.5 Conclusion

In this chapter a sensor-driven DA method based on invariant features for the classification
of remote sensing data has been presented. The proposed method allows the transferring
of knowledge between remote sensing data acquired on different geographical areas which
share the same set of classes. In particular, it takes advantage from a multisensor data
scenario to overcome the shift in the PDFs of the classes due to the different acquisition
condition. By exploiting the peculiarity of each sensor of measuring different physical
properties of the scene, it is possible to detect feature subspaces where subsets of classes
result statistically aligned. Accordingly, instead of using data-driven feature extraction
methods, the detection of invariant features is driven by the physical properties of the
land-cover classes.

The proposed approach is based on three main steps. In the first step we analyze
the labeled samples of the source domain and the set of sensors available to perform
an invariance analysis of the land-cover classes. Thus, the adaptation problem can be
decomposed by dividing the classes into two groups: (i) a subset of classes for which
invariant features are measured, and (ii) a subset of classes for which none of the sensor
available can measure invariant properties. To facilitate the identification of the subset
of invariant classes, we perform a hierarchical decomposition of the land-cover classes
by focusing the attention on the physical properties of the scene. In the second step,
we bridge the gap between the distributions according to a sensor-driven DA strategy,
which infers labels from the source to the target domain for the invariant classes. By
taking advantage from the statistical alignment of the domain distributions in the detected
features subspaces, we generate an initial training set for the target domain selecting
the target samples more aligned to the source data. This training set is re-projected
in the full-feature to properly model the PDF of the target domain for the considered
subset of classes. Indeed, even though the invariant feature subspaces guarantee a reliable
data alignment between the domains, they may be not sufficient to accurately manage
the complex classification problem of the target domain. Finally, the proposed method
addresses the adaptation of the remaining land-cover classes characterized by variant
features behaviour using an AL method.

Experimental results obtained show that the sensor-driven inference method can gen-
erate a reliable training set for the target domain. Thus, without any additional labeling
cost, we are in the condition of properly model the distribution of the target domain
for the subset of invariant classes and, thus to generate an accurate land-cover map of
them. Moreover, the adaptation of the invariant classes introduces constraints to the
general structure of the entire problem facilitating the adaptation of the remaining vari-
ant classes. Accordingly, by integrating the AL technique with the inference method we
increase the level of detail in the adaptation process by strongly reducing the number of
labeled samples required with respect to DA methods based on standard AL.

As future developments, we plan to further analyze the sensor-driven inference strategy
by testing the proposed technique on datasets where a different combination of sensors
is available. Moreover, we aim to replace the AL technique with an unsupervised DA
method in order to adapt the set of variant classes without any labeling cost. Thus, it
can be achieved by exploiting the constraints introduced on the set of invariant classes to
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drive the unsupervised adaptation of the remaining land-cover classes. As a final remark,
we point out that due to the increasing availability of multisensor data, the proposed
sensor-driven domain adaptation method is promising from the operational view point.
Indeed, the possibility of acquiring complementary measures of the scene makes it possible
to take advantage from the physical properties of the classes to drive the adaptation, thus
increasing the reliability of the adaptation process.



Conclusions

This chapter concludes the thesis by presenting a general discussion of the work described
and by providing a summary of the novel contributions illustrated in the document. Fi-
nally, possible future developments of the proposed methods are presented.

Summary and Discussion

In this thesis we have presented novel methods for the accurate estimation of forest pa-
rameters based both on the fusion of multisensor remote sensing data and the use of high
resolution LiDAR data. In particular, we focused the attention on data acquired by active
LiDAR sensors, mounted on both airborne and terrestrial platform, and passive high spa-
tial/spectral optical sensors. The proposed methods represent a valuable contribution for
the automatic estimation of forest parameters in the framework of the precision forestry.
Indeed, to obtain a more comprehensive representation of the forest structure and to cope
with the huge amount of data collected over wide forest areas, automatic methods capable
of taking advantage from the specific properties of the different data sources are essential
for modern forestry inventories.

Five main novel contributions to the state-of-the-art have been presented in the disser-
tation. As a first step, we presented a method for the individual tree crowns delineation in
multilayered forests by using very high-density LiDAR data. The proposed 3-D segmen-
tation method is able to accurately detect and delineate both the dominant trees and the
understory vegetation. The obtained results demonstrate the importance of integrating
the analysis carried out in the original LiDAR point cloud with the one performed in
the rasterized image domain, which leads to a higher detection accuracy of the dominant
trees. Moreover, by taking advantage from the capability of the new LiDAR sensors of
deeply penetrating the vegetation, it is possible to accurately detect the sub-dominant
trees. In particular, the angular analysis of the vertical profile allows the detection of
multiple trees located under different portions of the crown and drastically reduces the
commission errors. Moreover, from the results obtained, we can conclude that the pro-
posed crown delineation performed directly in the LiDAR point cloud accurately fits the
shape of the trees of both the dominant and the sub-dominant vegetation with a low
computational load.

In the second contribution of the thesis, we addressed the estimation of the DBH at
single tree level by fully exploiting the information provided by the high-density LiDAR
data to model the main environmental factors that can affect the stem growth. The pro-
posed novel method for the adaptive estimation of the DBH demonstrates the importance
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of modelling the forest environment in order to accurately retrieve the forest parameters.
Moreover, it highlights the need of developing methods being able to fully exploit the po-
tential of the high resolution LiDAR data. After the unsupervised detection of the growth
model classes based on a data-driven inference process, for each detected growth model
class a regression rule is defined and adopted. The experimental results pointed out that
the method is able to identify the environmental factors that affect the growth expansion
and to identify groups of trees characterized by different growth conditions. In particular,
we assessed that the topography plays a dominant role in the growth of the trees and
affects the stem expansion in different ways in mature and old-growth trees. Moreover,
the proposed approach sharply improves the estimation accuracy of small and large stems
with respect to the state-of-the-art methods due to tailored regression models defined for
each growth model class. Furthermore, it is automatic and data-driven and thus can be
applied to different areas for identifying the specific growth-models to be used.

In the third contribution of the thesis, we addressed the fusion of low-density LiDAR
data and high resolution optical images for an accurate estimation of the individual tree
top height. The synergistic use of the two data sources performed in a data fusion perspec-
tive mitigates the lack of height information when data with low laser sampling density
are available. Indeed, the proposed multisensor segmentation method allows an accurate
delineation of the single tree crowns due to the joint use of the information provided by
the optical image and the LiDAR data. The proposed 3-D parametric model is able to
accurately reconstruct the real tree top height, whereas the k-NN trees technique allows
the estimation of the height of those trees completely missed by the laser scanner. The
sharp improvement of the estimation accuracy becomes more evident when we deal with
very low-density LiDAR data (i.e., 0.5 pts/m2 and 0.25 pts/m2). Moreover, the robustness
of the method is confirmed by the fact that the accuracy is not affected by the decrease
of number of laser samples.

Towards the direction of the precision forestry, the fourth contribution of the thesis
consists in a method for the integration of low-density airborne LiDAR data with high
resolution terrestrial LiDAR data for the accurate reconstruction of the 3-D structure of
the crowns. The fusion of the two LiDAR point clouds acquired by different view points
results in extremely high resolution crown profiles. Moreover, limited research has been
done in this area because of the difficult prerequisite of registration. The experimental
results obtained demonstrate that the proposed method is able to register the LiDAR point
clouds in an automatic way by taking advantage from the spatial pattern of the forest.
These results are accurate and thus promising for operational applications. Moreover,
the fusion of the LiDAR point clouds allows a more comprehensive representation of the
scene, thus mapping the forest structure at high level of detail. This is confirmed by the
crown parameter estimation improvement obtained by the proposed method with respect
to the results obtained by using the singular LiDAR data sources.

Finally, the availability of multiple remote sensing data was employed to define a
sensor-driven DA method based on invariant features for the classification of remote sens-
ing data. The main idea is to model the differences among forest areas (domains) sharing
the same set of land-cover classes by transferring the knowledge from a source domain
(forest area where reference data are available) to a target domain (forest area where no
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reference data are initially available). The proposed method demonstrates the importance
of exploiting the peculiarity of each sensor of measuring different physical properties of the
scene, which allows the detection of feature subspaces where subsets of classes result sta-
tistically aligned. Accordingly, instead of using data-driven feature extraction methods,
the detection of invariant features is driven by the physical properties of the land-cover
classes. Then, for the remaining set of variant classes we perform the adaptation by us-
ing an AL method. Experimental results obtained show that the sensor-driven inference
method can accurately classify the target domain. Moreover, from the results obtained we
can conclude that the adaptation of classes characterized by invariant feature behaviour
introduces constraints to the general structure of the entire problem, thus facilitating the
adaptation of the remaining variant classes. Thus, the proposed approach strongly reduces
the number of labeled samples required to achieve a predefined classification accuracy with
respect to DA methods based on standard AL.

Future Developments

In this research activities we defined and developed methods that can significantly improve
the capability of automatically estimating forest parameters at individual tree level by
using high resolution LiDAR data and by integrating multiple remote sensing data. On
the basis of the developed methods, the analysis and the experimental results carried out
in the framework of this thesis, we identified some interesting directions of research as
future developments of the presented work.

First, we aim to test the proposed methods on forest areas characterized by different
ages and structures to confirm the robustness of the developed approaches. Moreover, fu-
ture developments should be devoted to extend the proposed methods to the broadleaved
trees, which represent a complex test case because of their crown umbrella shape difficult
to delineate. Thus, even though the classification of these species has been widely ad-
dressed, little research has been done in the estimation of the individual tree parameters
for broadleaved forest.

In the direction of the precision forestry we aim to develop automatic methods for
the analysis and the extraction of the high amount of information contained in the full
waveform LiDAR data. These scanners provide a higher spatial point density as well
as additional information on the reflecting properties of crown structure. Moreover, the
cross section calculated from the waveforms gives important information on the type of
vegetation, whereas the calibration and the decomposition of full waveform data are still
open tasks in the literature that need to be further analyzed.

By focusing the attention on the fusion of multiple remote sensing data, we aim to fur-
ther investigate the combination of different data sources by including synthetic aperture
radar (SAR) systems. Indeed, SAR data represent an important source of information
for studies on forest environments, but their use is still limited since the forest parameter
estimates are affected by the tree structure, incidence angle, and environmental condi-
tions. In this framework, the integration of these data with optical images represents an
interesting research topic.

Finally, attention will be devoted to the update of the forest parameter estimation. In
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particular, we aim to develop 3-D change detection methods based on the comparison of
multi-temporal LiDAR point clouds to monitor the forest changes. Even though, multi-
temporal analysis has been extensively analyzed for optical and SAR data, few works
have done considering LiDAR data because of the challenges introduced by the point
cloud domain. The point density may be significantly different between two LiDAR
data acquisition and the laser may penetrate different parts of the canopy in the two
acquisitions. Moreover, the tree canopies are natural structures with highly irregular
properties difficult to compare. Accordingly, novel reliable approaches to change detection
in multi-temporal LiDAR data for forestry application should be studied and developed.
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[136] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,” Pattern recognition
letters, vol. 15, no. 11, pp. 1119–1125, 1994.

[137] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Proceedings of the ninth interna-
tional workshop on Machine learning, 1992, pp. 249–256.

[138] D. A. Coomes and R. B. Allen, “Effects of size, competition and altitude on tree growth,” Journal of
Ecology, vol. 95, no. 5, pp. 1084–1097, 2007.
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[205] L. Gómez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, “Semisupervised image classification with
laplacian support vector machines,” Geoscience and Remote Sensing Letters, IEEE, vol. 5, no. 3, pp. 336–
340, 2008.



136 Bibliography

[206] B. Banerjee, F. Bovolo, A. Bhattacharya, L. Bruzzone, S. Chaudhuri, and K. M. Buddhiraju, “A novel
graph-matching-based approach for domain adaptation in classification of remote sensing image pair,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 53, no. 7, pp. 4045–4062, 2015.

[207] L. Bruzzone and C. Persello, “A novel approach to the selection of spatially invariant features for the
classification of hyperspectral images with improved generalization capability,” Geoscience and Remote
Sensing, IEEE Transactions on, vol. 47, no. 9, pp. 3180–3191, 2009.

[208] D. Tuia, J. Munoz-Mari, L. Gomez-Chova, and J. Malo, “Graph matching for adaptation in remote sensing,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 51, no. 1, pp. 329–341, 2013.

[209] D. Tuia, M. Volpi, M. Trolliet, and G. Camps-Valls, “Semisupervised manifold alignment of multimodal
remote sensing images,” Geoscience and Remote Sensing, IEEE Transactions on, 2014.

[210] G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia, “Semisupervised transfer component analysis
for domain adaptation in remote sensing image classification,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 53, no. 7, pp. 3550–3564, 2015.

[211] C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using manifold alignment,” in IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, no. 1, 2011, p. 1541.

[212] J. Ham, D. Lee, and L. Saul, “Semisupervised alignment of manifolds,” in Proceedings of the Annual
Conference on Uncertainty in Artificial Intelligence, vol. 10, 2005, pp. 120–127.

[213] C. Paris and L. Bruzzone, “A sensor-driven domain adaptation method for the classification of remote sens-
ing images,” in Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE,
2014, pp. 185–188.
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