
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

A Programmable Enforcement

Framework for Security Policies

Minh Ngo

Advisor: Thesis Committee:

Prof. Fabio Massacci Prof. Heiko Mantel

Università degli Studi di Trento Technische Universität Darmstadt

Prof. Frank Piessens

Katholieke Universiteit Leuven

Prof. Luca Viganò

King’s College London

April 2016





Abstract

This thesis proposes the MAP-REDUCE framework, a programmable frame-

work, that can be used to construct enforcement mechanisms of different

security policies. The framework is based on the idea of secure multi-

execution in which multiple copies of the controlled program are executed.

In order to construct an enforcement mechanism of a policy, users have

to write a MAP program and a REDUCE program to control inputs and

outputs of executions of these copies.

This thesis illustrates the framework by presenting enforcement mecha-

nisms of non-interference (from Devriese and Piessens), non-deducibility

(from Sutherland) and deletion of inputs (a policy proposed by Mantel). It

demonstrates formally soundness and precision of these enforcement mech-

anisms.

This thesis also presents the investigation on sufficient condition of poli-

cies that can be enforced by the framework. The investigation is on reactive

programs that are input total and have to finish processing an input item

before handling another one. For reactive programs that always terminate

on any input, non-empty testable hypersafety policies can be enforced. For

reactive programs that might diverge, non-empty downward closed w.r.t.

termination policies can be enforced.

Keywords

[programming language; secure multi-execution; non-interference; informa-

tion flow policies; hypersafety policies; reactive programs]





Acknowledgements

First and foremost I would like to thank Fabio Massacci for being such

a great supervisor and colleague over these past four years.

I am grateful to Frank Piessens and Dimiter Milushev. I am very glad

that I had the chance to work with both of you.

I would like to thank Heiko Mantel, Frank Piessens and Luca Viganò

for serving in the committee.

I would like to thank the Department of Information Engineering and

Computer Science of the University of Trento for offering me the chance of

working and studying here.

Thank you to my friends and colleagues in Trento and Leuven. Without

you, working in Trento and Leuven would not be what it was.

I am grateful to my parents, brothers, and sisters for their support and

encouragements during these past four years.

i





Contents

1 Introduction 1

1.1 Motivation and objectives . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7

2.1 Enforcement mechanisms of information flow policies . . . 7

2.2 Enforceable security policies . . . . . . . . . . . . . . . . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 MAP-REDUCE Framework 17

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Semantics of controlled programs . . . . . . . . . . . . . . 19

3.3 Semantics of enforcement mechanisms . . . . . . . . . . . . 25

3.3.1 Local executions . . . . . . . . . . . . . . . . . . . 26

3.3.2 MAP . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 REDUCE . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Enforcement Mechanisms of Information Flow Policies 35

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Enforcement mechanism of non-interference . . . . . . . . 40

iii



4.3 Enforcement mechanism of deletion of inputs . . . . . . . . 45

4.4 Enforcement mechanism of non-deducibility . . . . . . . . 53

4.5 Soundness of constructed enforcement mechanisms . . . . . 59

4.5.1 Soundness of mechanism of non-interference . . . . 65

4.5.2 Soundness of mechanism of deletion of inputs . . . 66

4.5.3 Soundness of mechanism of non-deducibility . . . . 68

4.6 Precision of constructed enforcement mechanisms . . . . . 69

4.6.1 Precision of mechanism of non-interference . . . . . 72

4.6.2 Precision of mechanism of deletion of inputs . . . . 75

4.6.3 Precision of mechanism of non-deducibility . . . . . 75

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Testable Hypersafety Policies 77

5.1 Reactive programs . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Testable hypersafety policies . . . . . . . . . . . . . 80

5.2.2 Incrementally constructing observations allowed by

a policy . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 General enforcement mechanism . . . . . . . . . . . . . . . 86

5.3.1 Generating sufficient test inputs . . . . . . . . . . . 86

5.3.2 Consistently correcting executions . . . . . . . . . . 88

5.3.3 General enforcement mechanism . . . . . . . . . . . 91

5.4 Programming the general enforcement mechanism . . . . . 96

5.5 Instances of the general mechanism . . . . . . . . . . . . . 100

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Downward Closed w.r.t. Termination Policies 105

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Orderly terminating policies . . . . . . . . . . . . . . . . . 108

6.3 Allowably divergent policies . . . . . . . . . . . . . . . . . 109

iv



6.4 Downward closed w.r.t. termination policies . . . . . . . . 111

6.4.1 Enforcement mechanism . . . . . . . . . . . . . . . 113

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion 119

Bibliography 121

v





List of Tables

1.1 Enforcement mechanisms of policies . . . . . . . . . . . . . 5

2.1 SME-based enforcement mechanisms . . . . . . . . . . . . 14

3.1 Labels and their semantics . . . . . . . . . . . . . . . . . . 23

4.1 Functions specifying privileges of local executions on chan-

nels used in sample enforcement mechanisms . . . . . . . . 39

vii





List of Figures

1.1 Architecture of enforcement mechanisms . . . . . . . . . . 3

2.1 Secure Multi-Execution . . . . . . . . . . . . . . . . . . . . 9

3.1 Language instructions . . . . . . . . . . . . . . . . . . . . 18

3.2 Running example program - Job application . . . . . . . . 20

3.3 Semantics of instructions of controlled programs . . . . . . 22

3.4 Execution of the example program . . . . . . . . . . . . . 24

3.5 Semantics of input and output instructions of π[j] . . . . . 27

3.6 Execution of a local execution . . . . . . . . . . . . . . . . 29

3.7 Semantics of instructions of MAP . . . . . . . . . . . . . . 30

3.8 Semantics of instructions of REDUCE . . . . . . . . . . . . 32

4.1 Activation of MAP and REDUCE in constructed enforcement

mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Programs of MAP and REDUCE for the enforcement mech-

anism of non-interference . . . . . . . . . . . . . . . . . . . 41

4.3 Executions of local copies for non-interference . . . . . . . 45

4.4 Example of input and output queues for non-interference . 46

4.5 Programs of MAP and REDUCE for the enforcement mech-

anism of deletion of inputs . . . . . . . . . . . . . . . . . . 48

4.6 Executions of local copies for deletion of inputs . . . . . . 51

4.7 Example of input and output queues for deletion of inputs 52

ix



4.8 Programs of MAP and REDUCE for the enforcement mech-

anism of non-deducibility . . . . . . . . . . . . . . . . . . . 54

4.9 Executions of local copies for the enforcement mechanism of

non-deducibility . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Example of input and output queues for non-deducibility . 58

4.11 Proof strategy for soundness of constructed enforcement mech-

anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Proof strategy for precision of constructed enforcement mech-

anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Implementation of a reactive program . . . . . . . . . . . . 78

5.2 Semantics of the enforcement mechanism EM•P(π) . . . . . 92

5.3 Activation of MAP and REDUCE . . . . . . . . . . . . . . 97

5.4 MAP for a non-empty testable hypersafety policy . . . . . 97

5.5 REDUCE for a non-empty testable hypersafety policy . . . 98

6.1 Implementation of a reactive program that might diverge on

an input item. . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 MAP for a non-empty, downward closed w.r.t. termination

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 REDUCE for a non-empty, downward closed w.r.t. termina-

tion policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



Chapter 1

Introduction

1.1 Motivation and objectives

Non-interference [22] prevents leakage of confidential data to attackers by

requiring that the confidential data do not interfere with events observable

to attackers. With or without the confidential data, observations to attack-

ers should be the same. By weakening or strengthening some assumptions

of non-interference, researchers proposed other information flow policies,

such as non-deducibility [45], declassification polcies [42], etc.

Information flow policies can be enforced by different techniques [41,

30, 20, 38, 47]. Among them, the secure multi-execution technique [20, 38,

51, 50, 25, 4, 47] has an advantage that is it does not change behaviour

of programs that already comply with the policy. This technique executes

multiple instances of the controlled program and carefully controls their

input and output behaviors.

There are several enforcement mechanisms based on secure multi-execution

technique [20, 38, 51, 50, 25, 4, 47]. However, they work only for a sin-

gle information flow policy, typically non-interference or non-interference

with declassification. Modification of these mechanisms to enforce another

information flow policy is not straight-forward.

1



CHAPTER 1. INTRODUCTION

Research Question 1. Is there a general purpose, i.e. pro-

grammable, enforcement framework that is based on the secure

multi-execution technique and can be used to construct enforcement

mechanisms of different policies?

Given a general purpose enforcement framework for information flow

policies based on the secure multi-execution technique. Enforcement mech-

anisms from this framework have to satisfy different properties. Two im-

portant properties are soundness and precision. An enforcement mech-

anism is sound if the application of the enforcement mechanism on any

program complies with the policy. An enforcement mechanism is precise if

it does not change the behaviour of programs that already obey the policy.

Additional interesting issues are the classes of policies that can be en-

forced by enforcement mechanisms from such a framework. Constructed

enforcement mechanisms from the framework can explore alternative exe-

cutions and observe inputs and output of these executions. However, they

cannot know whether an execution terminates or not.

Purely static enforcement mechanisms (i.e. mechanisms that accept or

reject a program after some finite amount of analysis) can enforce decidable

properties of programs [23]. A mechanism of execution monitoring can

only observe executions of the controlled program and terminate them if

it detects a violation. Roughly speaking, execution monitors can enforce

computable safety properties [43, 48]. Edit automata are mechanisms that

are more powerful than execution monitors and can enforce infinite renewal

properties [33]. There is no investigation on classes of policies that can be

enforced by enforcement mechanisms based on the secure multi-execution

technique.

Research Question 2. Which policies can be enforced soundly and

precisely by using a general purpose enforcement framework based

on the secure multi-execution technique?

2



1.2. CONTRIBUTION

I0 π[0] O0

Ij π[j] Oj

ITOP π[TOP] OTOP

REDUCEMAP

Input Queue Output Queue

Local Executions

Local Input Queue Local Output Queue

Figure 1.1: Architecture of enforcement mechanisms

1.2 Contribution

This thesis presents the MAP-REDUCE framework, a programmable frame-

work, that can be used to construct enforcement mechanisms of differ-

ent security policies. The enforcement mechanisms rely on secure multi-

execution technique. To construct an enforcement mechanism of an infor-

mation flow policy users have to write a program of MAP to control inputs

consumed by the enforcement mechanisms, and a program of REDUCE to

control outputs generated by the enforcement mechanism. Programs of

MAP and REDUCE are written by using instructions whose semantics is

formally specified.

Figure 1.1 depicts the general architecture of the enforcement mecha-

nism of a policy on a controlled program π. It is composed by global input

and output queues, MAP and REDUCE components, and an array EX of

local executions (π[0], . . . , π[TOP ], where TOP is the index of the last

local execution in the array).

The global input queue contains the input items from the external en-

vironment, and the global output queue contains the output items filtered

by the enforcement mechanism to the environment.

Local executions π[j] are instances of the original program π. They

are unaware of each other, and are separated from the environment input

3



CHAPTER 1. INTRODUCTION

and output actions by the enforcement mechanism. The local input (resp.

output) queue of a local execution contains the input (resp. output) items

that can be freely consumed (resp. generated) by this local execution.

When a local execution needs an input item that is not yet ready in its

local input queue it will request the help of MAP by emitting an interrupt

signal. When a local execution generates an output item it emits a signal

to request the help of REDUCE.

MAP is responsible for performing input operations and sending input

items to local executions. It can also make clones of local executions or

wake local executions up. REDUCE can collect output items generated

by local execution and send output items to global output queue. It can

remove local executions from the array of local executions or wake local

executions up.

This thesis illustrates the framework by presenting enforcement mech-

anisms for three information flow policies: non-interference [20], deletion

of inputs [34]), and non-deducibility [45]. Soundness and precision of con-

structed enforcement mechanisms are formally demonstrated.

This thesis presents the investigation on which policies can be enforced

soundly and precisely by using this framework. Controlled programs are

reactive programs that are input total and have to finish processing an

input item before handling another one. The investigation focuses on en-

forcement mechanisms whose MAP consumes inputs, sends different inputs

to different copies of the controlled program, and REDUCE collects outputs

from all local executions and decides good outputs to outside. For reac-

tive programs that always terminates on inputs, any non-empty testable

hypersafety policy [37] can be enforced. The thesis introduces downward

closed w.r.t. termination policies and shows that for reactive programs

that might diverge on inputs, any non-empty downward closed w.r.t. ter-

mination policies can be enforced.

4



1.3. STRUCTURE OF THE THESIS

Table 1.1: Enforcement mechanisms of policies

Policy
Components

MAP REDUCE

Termination (in)sensitive non-interference [20] Figure 4.2a Figure 4.2b

Deletion of inputs [34] Figure 4.5a Figure 4.5b

Termination (in)sensitive non-deducibility [45] Figure 4.8a Figure 4.8b

Non-empty testable hypersafety policies [37] Figure 5.4 Figure 5.5

Non-empty downward closed w.r.t. termination

policies

Figure 6.2 Figure 6.3

A summary of MAP and REDUCE programs for enforcing non-interference,

deletion of inputs, non-deducibility, testable hypersafety policies, and down-

ward closed w.r.t. termination policies can be found in Table 1.1.

1.3 Structure of the thesis

This thesis is organized as follows. Chapter 2 presents a review of exist-

ing enforcement mechanisms constructed with the secure multi-execution

technique, and enforceable policies. Chapter 3 describes semantics of con-

trolled programs and the framework. Chapter 4 illustrates the framework

by presenting enforcement mechanisms of non-interference [20], deletion of

inputs [34] and non-deducibility [45]. Chapter 5 shows the investigation

on which policies can be enforced by the framework on reactive programs

that are input total, have to finish processing an input item before han-

dling another one, and process inputs in finite time. Chapter 6 presents

downward closed w.r.t. termination policies defined on reactive programs

that might diverge on inputs. Chapter 7 concludes the thesis.

5





Chapter 2

State of the Art

This chapter presents existing enforcement mechanisms of infor-

mation flow policies. The focus of the presentation is on enforce-

ment mechanisms constructed with secure multi-execution tech-

nique. Next, it presents policies that can be statically or dynam-

ically enforced.

2.1 Enforcement mechanisms of information flow poli-

cies

Many of static analyses are based on type systems. An example of a type

system for non-interference can be found in [49] where intuitively, variables

at confidential level in a well-typed program do not interfere with variables

at public level. A discussion of static analysis on enforcing information

flow policies can be found in the survey of Sabelfeld and Myers [41] and in

Le Guernic’s PhD thesis [30]. Static analysis may reject secure programs

[41].

For dynamic analysis, an extensive survey up until 2007 is in Le Guer-

nic’s PhD thesis [30]. Taint tracking only tracks explicit flows and thus is

unsound. A generic framework that captures the essense of explicit flows

7



CHAPTER 2. STATE OF THE ART

can be found in [44]. Austin and Flanagan [2] proposed an enforcement

mechanism in which assignments to public variables in confidential con-

texts are forbidden. In their subsequent work [3], they developed another

technique that may be more permissive. When an assignment to a public

variable in a confidential context occurs, it is allowed. If later in the execu-

tion, there is a branch on this variable, or the value of this variable is to be

output, the execution is stopped. Recent works focus on JavaScript. Russo

et al. [40] proposed a monitor that track information flow in dynamic tree

structures. Russo and Sabelfeld [39] proposed a monitor that prevents

insecure information flow via assignments to public variables. They also

address internal timing attacks, a type of attacks where attackers do not

need access to a clock. Similar to static analysis techniques, dynamic anal-

ysis techniques may rejects some secure programs.

Hybrid monitors [31, 29, 8] are based on the combination of dynamic

analysis and static analysis and can accept more secure programs. In the

monitor proposed by Le Guernic et al. [31], when a branch instruction

is executed, variables that can be influenced by confidential data in the

unexecuted branch are syntactically analyzed. This information is used

to prevent implicit indirect flows. In [29], Le Guernic presented a more

permissive static analysis and gave constraints that characterize a set of

static analysis techniques that can be used. In [8], Besson et al. proposed a

generic framework that is parametrised by static analysis techniques. They

compared existing hybrid monitors by relative precision and showed that

their instantiated monitor is more precise. Hybrid monitors may still reject

some secure programs.

The secure multi-execution technique can be used to enforce precisely

information flow policies [20, 38, 51]. To the best of our knowledge, the

first secure multi-execution based enforcement mechanisms are in [26, 15].

Devriese and Piessens independently formalized the idea in [20] and pro-

8



2.1. ENFORCEMENT MECHANISMS OF INFORMATION FLOW POLICIES

High Execution

Low Execution

Confidential output channelsConfidential input channels

Public input channels Public output channels

Fake confidential input items

Only the high execution (resp. the low execution) can consume input items from confidential input

channels (resp. public input channels). The high execution has to reuse input items from public channels

consumed by the low execution. When the low execution needs a high input item, it will be fetched a

fake input item. Only the high execution (resp. the low execution) can send its outputs to confidential

output channels (resp. public output channel).

Figure 2.1: Secure Multi-Execution

posed an enforcement mechanism called secure multi-execution (SME). We

next describe SME proposed by Devriese and Piessens since their work has

attracted many researchers to the technique.

The basic idea of SME with two security levels is depicted in Figure 2.1.

The enforcement mechanism contains two local executions which are copies

of the controlled program. The low execution can ask and receive public

input items from input channels. Whenever the low execution needs a

high input item, it is fetched with a fake value. When the low execution

terminates, the high execution starts executing. The high execution can

ask and receive confidential input items from input channels, and it has

to reuse public input items asked by the low execution. The high (resp.

low) execution can send output items to confidential (resp. public) output

channels. Output items of the high execution (resp. the low execution) to

public (resp. confidential) output channels are ignored.

SME-based enforcement mechanisms. Khatiwala et al. [26] proposed a

technique called data sandboxing. The controlled program is split into

two partitions: public zone and private zone. The private zone contains

instructions used to process confidential data. The public zone contains

9



CHAPTER 2. STATE OF THE ART

the remained ones. This technique is applicable only when the source of

the controlled program is available. Capizzi et al. [15] proposed the shadow

execution technique. The privileges of copies of the controlled program on

inputs and outputs are as in SME.

In SME, the scheduler for local executions is fixed, that is the low ex-

ecution has to be executed first. Kashyap et al. [25] explored different

scheduler strategies (for example, all local executions are executed in par-

allel, or local executions are executed in an interleave manner, etc) and

their security guarantees on termination and timing covert channels [35].

In SME, for non-interferent programs, the order of the output events are

not preserved. This limitation was addressed by Rafnsson and Sabelfeld

[38], and Zanarini et al. [51]. In the work of Rafnsson and Sabefeld, instead

of being ignored, the public outputs of the high execution are matched with

the public outputs of the low execution. If there is a deviation, the con-

trolled program is not non-interferent. To preserve the order of events,

Zanarini et al. [51] let the controlled program and the application of SME

on the controlled program are executed in parallel and their outputs are

checked at each steps. If there is a mismatch, there is a presence of infor-

mation leakage.

In SME, the set of input and output channels are fixed and each channel

is assigned to a fixed security level (for example, high or low). By extending

the enforcement mechanism in [51], Zanarini and Jaskelioff proposed the

enforcement mechanism that can be used in the situation where the set

of channels can be changed and the security level of a channel can be

reassigned [50].

Declassification policies [42] are addressed in [38, 47, 4]. In the work of

Rafnsson and Sabelfeld [38], for policies in which the occurrence of confi-

dential input events can be declassified [42], when there is a confidential

input value sent to the high execution, a fake high input value is sent to

10



2.1. ENFORCEMENT MECHANISMS OF INFORMATION FLOW POLICIES

the low execution. Thus, the low execution knows the occurrence of confi-

dential events but not their values. For policies which specify what can be

declassified, values computed by expressions marked with declassification

annotations in the high execution are available for being used by the low

execution. In the work of Vanhoef et al., declassify annotations are only

directives indicating that a particular value is computed by the release

function [47]. In their work, the stateless project function that projects

confidential events to events visible to attackers is idempotent. Bolosteanu

and Garg [14] proposed an enforcement mechanism called asymmetric SME

in which the low execution is a variant of the original program. Asymmet-

ric SME can enforce declassification policies where the projection functions

are not idempotent, and can enforce policies whose states depend on pro-

gram outputs. Austin and Flanagan [4] proposed enforcement mechanisms

for robust declassification [52], which requires that active attackers (who

can introduce new code) are no more powerful than passive attackers (who

can only observe).

Austin and Flanagan [4] proposed the multiple facet technique that can

simulates SME by using faceted values. A faceted value is a triple consist-

ing of a principal, a value that appears to observers who can view private

data of the principal, and a value that appears to observers who cannot

view private data of the principal. SME with two security levels (confiden-

tial and public) can be simulated by the multiple facet technique with a

single principal. The author reported that when the number of principals

increases, the multiple facet technique is the more efficient approach.

Barthe et al. [5] proposed a way to achieve the security guarantees

of SME by program transformation. Given a controlled program, a new

program is created by sequentially composing copies of the original pro-

grams. They also proposed a variant of the transformation for concurrent

programming languages. One advantage of program transformation is that

11



CHAPTER 2. STATE OF THE ART

it does not require modifications to runtime environment.

Implementations of SME are reported in [26, 15, 20, 24, 9, 18, 4, 19,

47]. Khatiwala et al. [26] reported the implementation of a prototype.

Capizzi et al. [15] implemented their proposed techniques on Firefox,

Adobe Reader, etc. Devriese and Piessens [20] implemented a prototype

using a Javascript engine. Jaskelioff and Russo [24] proposed a monadic

library to implement SME in Haskell. Austin and Flanagan [3] evaluated

their idea of faceted values by an implementation on Firefox. They reported

that when the number of principals increases, their approach becomes more

efficient. Bielova et al. [9] reported an implementation of SME with Feath-

erfox [13], a model of browsers implemented in Ocaml. In implementations

of both Bielova et al. [9] and Capizzi et al. [15], two local copies of the

browser are executed. De Groef et al. [18, 19] implemented SME with

FireFox and presented the first fully functional web browser. Instead of

having two instances of the browser executed as in [9, 15], two instances

of scripts are executed. They reported that the performance and memory

cost is substantial but not prohibitive. The implementation reported in

[47] is based on the implementation on [18, 19].

A summary of the SME-based enforcement mechanisms is presented in

Table 2.1. The last five columns of the table correspond to five features of

enforcement mechanisms: (1) Scheduler: enforcement mechanisms inves-

tigate the influence of the order of executing local executions on security

guarantees; (2) Event Order: enforcement mechanisms preserves order of

output events; (3) Dynamic Channel: enforcement mechanisms can cope

with the situation where the set of channels is not fixed and security levels

of channels can be changed dynamically; (4) Declassification: enforcement

mechanisms can enforce declassification policies; and (5) Implementation:

enforcement mechanisms are implemented. When we mark an enforcement

mechanism with the X mark, we mean that this enforcement mechanism

12



2.2. ENFORCEABLE SECURITY POLICIES

has a particular feature. The work in [18] is extended in [19] and hence it

is not presented in the table.

2.2 Enforceable security policies

Hamlen et al. [23] investigated the class of statically enforceable policies.

Generally, a policy is statically enforceable if there is a machine that takes

an arbitrary program as an input and returns true in finite time if the pro-

gram satisfies the policy, otherwise, it returns false in finite time. Hamlen

et al. proved that the class of statically enforceable security policies is the

class of decidable properties of programs. They also proposed a class of

policies that can be enforced by program rewriters. A program rewriter

modifies, in finite time, untrusted programs before their executions. How-

ever, they did not give a precise characterization of this class.

Schneider [43] demonstrated that for a policy to be enforced by execu-

tion monitors, it has to be a safety property [27]. Schneider also introduced

monitors called security automata that can be used as recognizers for safety

properties. These automata can observe executions of programs, and ter-

minating the executions if violations are detected.

The condition for a policy to be enforced was further refined by Viswanathan

[48]. Viswanathan observed that a finite execution must be checked whether

it is good or bad in finite time. If this condition is violated, then an enforce-

ment mechanism cannot know whether the finite execution it has observed

so far is good or not and thus cannot do an appropriate action.

Hamlen et al. pointed out that not all policies that satisfy conditions

proposed by Schneider and Viswanathan can be enforced [23]. For exam-

ple, it is impossible for enforcement mechanisms to enforce a policy if it

forbids all interventions available to enforcement mechanisms. Basin et al.

revised enforceable safety policies [7, 6]. They differentiated actions that

13



CHAPTER 2. STATE OF THE ART

T
ab

le
2.1:

S
M

E
-b

ased
en

forcem
en

t
m

ech
an

ism
s

P
a
p

e
r

Y
e
a
r

S
ch

e
d
u
le

r
E

v
e
n
t

O
rd

e
r

D
y
n
a
m

ic

C
h
a
n
n
e
l

D
e
cla

ssifi
ca

tio
n

Im
p
le

m
e
n
ta

tio
n

K
h
atiw

ala
et

al.
[26]

2006
X

C
ap

izzi
et

al.
[15]

2008
X

D
ev

riese
an

d
P

iessen
s

[20]
2010

X

J
askelioff

an
d

R
u
sso

[24]
2011

X

K
ash

yap
et

al.
[25]

2011
X

B
ielova

et
al.

[9]
2011

X

A
u
stin

an
d

F
lan

agan
[4]

2012
X

X

R
afn

sson
an

d
S
ab

elfeld
[38]

2013
X

X

Z
an

arin
i

et
al.

[51]
2013

X

D
e

G
ro

ef
et

al.
[19]

2014
X

M
ath

y
et

al.
[47]

2014
X

X

Z
an

arin
i

an
d

J
askelioff

[50]
2014

X

B
olostean

u
an

d
G

arg
[14]

2016
X

14



2.2. ENFORCEABLE SECURITY POLICIES

are only observable by enforcement mechanisms (that is the enforcement

mechanism can see them but not prevent) and actions that are controllable

by enforcement mechanisms. They gave necessary and sufficient conditions

for a security policy to be enforceable based on their generalized notion of

safety properties.

Ligatti et al. investigated which policies can be enforced by edit au-

tomata [32, 33]. In addition to terminating executions as security au-

tomata, edit automata can insert events or remove events. Ligatti et al.

proved that edit automata can enforce a class of policies called infinite re-

newal properties which include some liveness properties [1]. They argued

that the set of computable safety properties is included in the set of infinite

renewal properties.

Given an edit automaton, Bielova and Massacci investigated the ques-

tion whether the automaton really enforced the security policy that you

wanted [10, 11]. They introduced a fine grained classification of edit au-

tomata and related security properties. They also investigated the influ-

ence of enforcement mechanisms on bad executions (or how far bad ex-

ecutions are changed by enforcement mechanisms) [12]. They proposed

iterative properties and enforcement mechanisms that can handle bad ex-

ecutions in a more predictable way.

Fong [21] investigated policies that can be enforced by execution moni-

tors that are limited by the information that they can track. He introduced

shallow history automata that track only a shallow access history and use

this information to make decision on granting access. Despite the limita-

tion, many policies are still enforceable. Talhi et al. [46] extended works

of Schneider [43], Ligatti [32, 33], and Fong [21], and introduced a class of

automata called bounded history automata. They gave a classification of

policies that are enforceable under memory limitation constraints.

15



CHAPTER 2. STATE OF THE ART

2.3 Summary

This chapter presented several enforcement mechanisms of information flow

policies which are constructed based on the secure multi-execution tech-

nique. One problem with those enforcement mechanisms is that they en-

force only single information flow policy, usually non-interference or non-

interference with declassification. This chapter also presented the investi-

gation on enforceable policies. The existing investigation does not cover

runtime enforcement mechanisms that can explore different executions.

16



Chapter 3

MAP-REDUCE Framework

This chapter presents the small step operational semantics of con-

trolled programs, local executions, MAP programs, and REDUCE

programs.

3.1 Overview

Instructions used to compose controlled programs, MAP, and REDUCE

programs are presented in respectively Figure 3.1a, Figure 3.1b, and Fig-

ure 3.1c. Basic instructions which are assignment, condition, loop, skip,

input and output instructions might be used to compose controlled pro-

grams, MAP programs, and REDUCE programs.

MAP is responsible for sending inputs to local executions, creating local

executions, or changing states of local executions. Thus, in addition to

basic instructions, instructions in programs of MAP might be map, wake,

and clone instructions. MAP can send input values to local executions by

map instructions, wake local executions up by wake instructions, and make

clones of local executions by clone instructions.

REDUCE needs to collect outputs from local executions, remove local

executions, or modify states of local executions. Therefore, for REDUCE,

additional instructions are retrieve, wake, and kill instructions. Retrieve

17



CHAPTER 3. MAP-REDUCE FRAMEWORK

π ::=x := e assignment

|if e then π else π if

|while e do π while

|skip skip

|input x from c input

|output e to c output

|π; π sequence

(a) Controlled program instructions

πM ::=π program instructions

|map(e, c, PRED[ ]) map

|wake(PRED[ ]) wake

|clone(PRED[ ]) clone

(b) MAP instructions

πR ::=π program instructions

|retrieve x from (j, c) retrieve

|wake(PRED[ ]) wake

|clean(c, PRED[ ]) clean

|kill(PRED[ ]) kill

(c) REDUCE instructions

π, e, x, c, πM , πR, and PRED are meta-variables for respectively instructions, expressions, variables,

(input/output) channels, instructions of MAP, instructions of REDUCE, and predicates. A (controlled,

MAP, or REDUCE) program is a sequence of instructions. Executions of instructions with PRED as a

parameter influence local executions that satisfies PRED.

Figure 3.1: Language instructions

18



3.2. SEMANTICS OF CONTROLLED PROGRAMS

instructions allow REDUCE to collect output items generated by local ex-

ecutions. Kill instructions allow REDUCE to remove local executions from

the array of local executions. REDUCE can clean local output queues of

local executions by clean instructions.

3.2 Semantics of controlled programs

Our model programming language is derived from [20]. We consider only

deterministic programs. A program π is an instruction composed from the

basic instructions described in Figure 3.1a. Since a program is a sequence

of instructions (i.e. a complex instruction itself), we will use program

and instruction interchangeably. An example of controlled programs is

presented in Example 3.2.1.

Example 3.2.1. Figure 3.2a present a JavaScript script that facilitates the

job application process. The execution of this program gets the selected posi-

tion of an applicant from a low channel (Figure 3.2a, line 1) and his desired

salary from a high channel (Figure 3.2a, line 2). Then, if the selected posi-

tion is CEO and the desired salary is not too high, the execution will get the

bonus from a confidential channel which is https://aCompany/getBonus.

After that, the program displays the desired salary and the bonus to user

(Figure 3.2a-line 15), and send these data to http://attacker (Fig-

ure 3.2a-lines 17-19), a low channel that attackers can directly observe.

The program is rewritten in our model language and the rewritten ver-

sion is described in Figure 3.2b. The public input channel for getting the

selected position is cL1, the confidential input channels for getting the de-

sired salary and the bonus are respectively cH1 and cH2. Confidential chan-

nel cH3 is corresponding to the one used to show desired salary and bonus

to user. Public channel cL2 is corresponding to http://attacker.

Let I (resp. O) be an enumerable set of input values (resp. output

19



CHAPTER 3. MAP-REDUCE FRAMEWORK

1 var selectedPosition = document.getElementbyId(’selectedPosition’).value;

2 var desiredSalary = document.getElementbyId(’desiredSalary’).value;

3

4 var bonus = 0;

5 var xmlHttpsBonus = new XMLHttpRequest();

6 xmlHttpsBonus.open("POST","https://aCompany/getBonus",false);

7

8 var isSalaryHighNotTooHigh = checkSalary(desiredSalary)

9 if (selectedPosition == ’CEO’) and isSalaryHighNotTooHigh {

10 xmlHttpsBonus.send();

11 var xmlDocs=xmlHttpsBonus.responseXML;

12 bonus = xmlDocs.getElementsByTagName("bonus")[0].

13 childNodes[0].nodeValue; }

14

15 document.getElementbyId(’info’).value = desiredSalary + bonus;

16

17 var xmlhttpAttacker = new XMLHttpRequest();

18 xmlhttpAttacker.open("POST","http://attacker/");

19 xmlhttpAttacker.send(desiredSalary + bonus);

(a) In JavaScript

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//corresponding to line 1

//corresponding to line 2

//corresponding to line 4

//corresponding to line 8

//corresponding to line 9

//corresponding to lines 10-13

//corresponding to line 15

//corresponding to lines 17-19

(b) In our language

Figure 3.2: Running example program - Job application

values). We model an input (output) item as a vector and define input

(output) of programs as queues. We use vectors of channel to accommo-

date forms in which multiple fields are submitted simultaneously but are

classified differently (e.g. credit card numbers vs. user names).

20



3.2. SEMANTICS OF CONTROLLED PROGRAMS

Definition 3.2.1. An input vector ~v is a mapping from input channels to

their values, ~v : Cin → I ∪ {⊥}, where the value ⊥ is the special undefined

value. An output vector ~v is a mapping from output channels to their

values, ~v : Cout → O ∪ {⊥}.

Given a vector ~v and a channel c, the value of the channel is denoted by

~v[c]. The symbol ~⊥ denotes an output vector mapping all channels to ⊥.

To simplify the formal presentation, in the sequel w.l.o.g. we assume that

each input and output operation only affect one channel at a time. Thus,

for each vector, there is only one channel c such that ~v[c] 6= ⊥.

Let (finite) queue Q be a sequence of elements q1.q2 . . . qn. The addition

of new element q to Q is denoted by Q.q and the result of the addition

is queue q1.q2 . . . qn.q. After removing the first element from Q, we get

q2 . . . qn. By ε we denote an empty queue.

To define an execution configuration, we use a set of labelled pairs.

A labelled pair is composed by a label and an object and in the form

label:object. The label is attached to the object in order to differentiate

this object from others, so each label occurs only once. For example,

map:prgπM is the instruction to be executed of MAP. A summary of labels

and their semantics used in this report is in Table 3.1.

Definition 3.2.2. An execution configuration of a program is a set {prg:

π,mem:m, in:I, out:O}, where π is the program to be executed, m is the

memory that is a function mapping variables to values, I is the input (a

queue of input vectors) to be consumed, and O is the generated output (a

queue of output vectors).

The operational semantics of controlled programs is described in Fig-

ure 3.3. The conclusion part of each semantic rule is written as ∆,Γ ⇒
∆,Γ′, where ∆ denotes the elements of the execution configuration that

are unchanged upon the transition. The semantics of the comma “,” in the

21



CHAPTER 3. MAP-REDUCE FRAMEWORK

ASSG
π = x := e m(e) = val

∆, prg:π,mem:m _ ∆, prg:skip,mem:m[x 7→ val]

COMP
prg:π1,mem:m, in:I, out:O _ prg:π′1,mem:m′, in:I ′, out:O′

prg:π1; π2,mem:m, in:I, out:O _ prg:π′1; π2,mem:m′, in:I ′, out:O′

IF-T
π = if e then π1 else π2 m(e) = T

∆, prg:π _ ∆, prg:π1

IF-F
π = if e then π1 else π2 m(e) = F

∆, prg:π _ ∆, prg:π2

WHIL-T
π = while e do πloop m(e) = T

∆, prg:π _ ∆, prg:πloop; π

WHIL-F
π = while e do πloop m(e) = F

∆, prg:π _ ∆, prg:skip

SKIP
∆, prg:skip; π _ ∆, prg:π

INP
π = input x from c I = ~v.I ′ ~v[c] 6= ⊥

∆, prg:π,mem:m, in:I _ ∆, prg:skip,mem:m[x 7→ ~v[c]], in:I ′

OUTP
π = output e to c ~v = ~⊥[c 7→ m(e)]

∆, prg:π, out:O _ ∆, prg:skip, out:O.~v

Figure 3.3: Semantics of instructions of controlled programs

22



3.2. SEMANTICS OF CONTROLLED PROGRAMS

Table 3.1: Labels and their semantics
Label Semantics

prg Controlled program or program executed by a component (a local execu-

tion, MAP, or REDUCE)

mem Memory of the controlled program or of a component (a local execution,

MAP, or REDUCE)

in Input of the controlled program, the enforcement mechanism, or a local

execution

out Output of the controlled program, the enforcement mechanism, or a local

execution

top Index of the last execution in the array EX

stt State of a local execution (Sleeping or Executing)

int Interrupt signal sent by a local execution

map Configuration of the MAP component

red Configuration of the REDUCE component

expression ∆,Γ is the disjoint union of ∆ and Γ. We abuse the notation

of the memory function m(.) and use it to evaluate expressions to values.

When an output command sends a value to the channel c, an output vector

~v = ~⊥[c 7→ val] is inserted into the output queue, where ~v is the vector

with all undefined channels, except c that is mapped to m(e), so ~v[c′] = ⊥
for all c′ 6= c and ~v[c] = m(e).

The initial configuration of controlled program π with input I is {prg:

π,mem:m0, in:I, out:ε}, where m0 is the function mapping variable to ini-

tial values. An execution of program π on input I is a finite sequence of

configuration transitions γ0 _ γ1 _ . . . _ γk, where γ0 is the initial con-

figuration of π with input I, and γk is the configuration after k transitions.

The transition sequence can be also written as γ0 _k γk, or γ0 _∗ γk if

the exact number of transitions does not matter.

Definition 3.2.3. An execution of program π on input I terminates if

there exists a configuration γf = {prg:skip,mem:m, in:ε, out:O} such that

23



CHAPTER 3. MAP-REDUCE FRAMEWORK

Input:
PPPPPPPPPPP
Channel

Time
0 1

cH1 ⊥ M1

cH2 ⊥ ⊥
cL1 T ⊥

Output:
PPPPPPPPPPP
Channel

Time
0 1 2 3

cH3 ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ M1 + 0

Each column in the tables corresponds to an input/output operation. The execution consumes T and

M1 from channel cL1 and channel cH1 at respectively time 0 and time 1. At time 2 and 3, it generates

output values M1 on channel cH3 and M1 on channel cL2.

Figure 3.4: Execution of the example program

γ0 _∗ γf , where γ0 is the initial configuration of π with input I. We denote

this whole derivation sequence by (π, I) ⇓ O using the big step notation.

Example 3.2.2. Let T (resp. F) denote the boolean value true (resp.

false). We consider the execution of the program presented in Figure 3.2

with input (cL1 = T)(cH1 = M1), which means that the input contains two

vectors, the first one contains T from cL1, and the last one contains M1

from cH1. We assume that check(M1) = F.

The execution of the program with the input terminates and generates

output (cH3 = M1 + 0)(cL2 = M1 + 0). The value sent to cH3 and cL2 is

M1 + 0.

We describe input and output queues in Figure 3.4, where each column

in the tables corresponds to an input/output operation. Input and output

tables should be read from left to right; columns describe the input/output

to each channel at time t = 0, t = 1, etc.

The execution consumes T and M1 from channel cL1 and channel cH1

at respectively time 0 and time 1. At time 2 and 3, it generates respectively

output value M1 on channel cH3 and M1 on channel cL2.

24



3.3. SEMANTICS OF ENFORCEMENT MECHANISMS

3.3 Semantics of enforcement mechanisms

Definition 3.3.1. A configuration of an enforcement mechanism of a pol-

icy is a set {top :TOP,map.prg :πM ,map.mem :mM , red.prg :πR, red.mem :

mR, in:I, out:O,
⋃
j LECSj}, where TOP is the index of the last execution

in the array of local executions EX, πM (resp. πR) is the instruction to be

executed of MAP (resp. REDUCE), mM (resp. mR) is the memory of MAP

(resp. REDUCE), I is the input that can be consumed, O is the generated

output, and LECSj is the configuration of the j-th local execution.

We denote the enforcement mechanism of policy P on program π by

EMP(π). In the initial configuration of the enforcement mechanism with

input I, the input that can be consumed is I, the output generated is

empty, variables in programs of MAP and REDUCE are mapped to initial

values, skip is the only instruction to be executed of MAP and REDUCE. In

addition, all local inputs and local outputs of local executions are empty,

there is no interrupt signal generated by local executions, all variables of all

local executions are mapped to initial values, instructions to be executed

of all local executions and the controlled program are the same.

Definition 3.3.2. The execution of the enforcement mechanism on input

I terminates if there exists a configuration γf such that γ0 ⇒∗ γf , where γ0

is the initial configuration of the enforcement mechanism with input I; and

in γf the input that can be consumed is empty, skip is the only instruction

to be executed of all local executions, MAP and REDUCE. We denote this

whole derivation sequence by (EMP(π), I) ⇓ O using the big step notation.

We now specify the semantics of the enforcement mechanism compo-

nents: local executions, the programs of MAP and REDUCE. The general

approach is that execution of parallel programs is modeled by the inter-

leaving of concurrent atomic instructions [28] so each transition rule either

25



CHAPTER 3. MAP-REDUCE FRAMEWORK

by a local execution, by MAP, or by REDUCE is a step of the enforcement

mechanism as a whole.

3.3.1 Local executions

Each local execution is associated with a unique identifier j, that is its index

on the array EX. A local execution can be in one of the two states: E

(Executing) or S (Sleeping). Initially, states of all local executions depend

on policies to be enforced (e.g. in the enforcement mechanisms of sample

policies in Chapter 4, initial states of all local executions are executing

states). A local execution moves from E to S when it has sent an interrupt

signal to require an input item that is not ready in its local input, or to

signal that it has generated an output item. A local execution moves from

S to E when it is awaken by the MAP component (e.g. the input item it

required is ready) or by the REDUCE component (e.g. its output item is

consumed).

Definition 3.3.3. An execution configuration of local execution EX[j] is

a set LECSj , {EX[j].stt : st, EX[j].int : sig, EX[j].prg : π,EX[j].mem :

m,EX[j].in:I, EX[j].out:O}, where st is the state of the local execution,

sig is the interrupt signal sent by the local execution, π is an instruction

to be executed, m is the memory, and I and O are local input and local

output respectively.

We define dequeue operator dequeue(Q, c) on queue Q and channel c

that returns (val,Q′), where the value of val is ~v[c], and ~v is the first

vector in Q such that ~v[c] 6= ⊥, and Q′ is obtained by removing ~v from

Q; otherwise (there is no vector ~v in Q such that ~v[c] 6= ⊥), val = ⊥ and

Q′ = Q.

The semantics of local executions for assignment, composition, if, while,

skip instructions is essentially identical to the one of the controlled pro-

26



3.3. SEMANTICS OF ENFORCEMENT MECHANISMS

LINP1

EX[j].prg:π = input x from c

EX[j].stt = E

EX[j].in = I dequeue(I, c) = (val, I ′) val 6= ⊥

∆, EX[j].prg:π,EX[j].mem:m,EX[j].in:I

⇒ ∆, EX[j].prg:skip, EX[j].mem:m[x 7→ val], EX[j].in:I ′

LINP2

EX[j].prg:π = input x from c

EX[j].stt = E

EX[j].in = I dequeue(I, c) = (⊥, I ′)

∆, EX[j].stt:E, EX[j].int:⊥ ⇒ ∆, EX[j].stt:S, EX[j].int:�(c)

LOUTP

EX[j].prg:π = output e to c

EX[j].stt = E EX[j].mem = m ~v = ~⊥[c 7→ m(e)]

∆, EX[j].stt:E, EX[j].int:⊥, EX[j].prg:π,EX[j].out:O

⇒ ∆, EX[j].stt:S, EX[j].int:�(c), EX[j].prg:skip, EX[j].out:O.~v

Figure 3.5: Semantics of input and output instructions of π[j]

27



CHAPTER 3. MAP-REDUCE FRAMEWORK

grams. The only difference is the explicit condition that the local state

must be E. We do not present these rules in the paper. We provide the

rules for input and output instructions in Figure 3.5. When the input

instruction is executed and the input item required is in the local input

queue, this item will be consumed (rule LINP1). Otherwise, the local ex-

ecution emits an input interrupt signal �(c) and moves to the sleep state

(rule LINP2). The output interrupt signal �(c) is generated when the

output instruction is executed (rule LOUTP).

Example 3.3.1. We consider the execution of a local execution of the

program presented in Figure 3.2. Its local input is (cH1 = M1)(cL1 = T),

which means that the input contains two vectors, the first one contains

M1 from cH1, and the last one contains T from cL1. We assume that

check(M1) = F.

The local execution terminates and generates output (cH3 = M1+0)(cL2 =

M1 + 0). The value sent to cH3 and cL2 is M1 + 0. We describe input and

output corresponding to the execution in Figure 3.6, where each column in

the tables corresponds to an input/output operation.

The execution consumes T and M1 from channel cL1 and channel cH1

at respectively time 0 and time 1. At time 2 and 3, it generates respectively

output value M1 on channel cH3 and M1 on channel cL2. Notice that the

first input item in the input does not contain an input value from channel

cL1 and the local execution has to find the first input item that contains

such an input value.

3.3.2 MAP

MAP controls the input actually consumed by the enforcement mechanism.

MAP can perform input operations, broadcast input items to local input

queues of local executions, clone local executions and wake local executions

28



3.3. SEMANTICS OF ENFORCEMENT MECHANISMS

Input:
PPPPPPPPPPP
Channel

Time
0 1

cH1 M1 ⊥
cH2 ⊥ ⊥
cL1 ⊥ T

Output:
PPPPPPPPPPP
Channel

Time
0 1 2 3

cH3 ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ M1 + 0

Each column in the tables corresponds to an input/output operation. The execution consumes T and

M1 from channel cL1 and channel cH1 at respectively time 0 and time 1. At time 2 and 3, it generates

output values M1 on channel cH3 and M1 on channel cL2.

Figure 3.6: Execution of a local execution

up.

In addition to the instructions in Figure 3.1a (except the output in-

struction that is replaced by the map instruction), the program πM is

also composed by instructions map(e, c, PRED[ ]), clone(PRED[ ]), and

wake(PRED[ ]) described in Figure 3.1b, where e is a meta-variable for

expressions, and PRED[ ] , λx.Pred(x) is a meta-variable for predicates.

The evaluation of the predicate PRED[ ] on the configuration of the local

execution π[i] is denoted as PRED[i].

The execution of map, wake, or clone instruction is applied simultane-

ously to all local executions π[j] such that PRED[j] is true as follows. For

map instruction, the value of the expression e is sent to the input queues of

all local executions. The value sent is considered as a value from the chan-

nel c. For wake instruction, all local executions π[j] are awaken and the

interrupt signals generated by those local executions (if there were some)

are removed. The execution of the clone instruction clones the configu-

ration of each local execution π[j]. Configurations of new executions are

appended to the array of local executions, and the index of the last local

execution (TOP ) is updated.

The semantics of instructions of assignment, sequence, if, while, and skip

of MAP is similar to the semantics presented in Figure 3.3. The output

29



CHAPTER 3. MAP-REDUCE FRAMEWORK

INPM

map.prg:πM = input x from c

I = ~v.I ′ ~v[c] 6= ⊥

∆,map.prg:πM ,map.mem:mM , in:I ⇒ ∆,map.prg:skip,map.mem:mM [x 7→ ~v[c]], in:I ′

MAP

map.prg:πM = map(e, c, PRED[ ])

S = {j ∈ {0, . . . , TOP} : PRED[j]} ~v = ~⊥[c 7→ mM(e)]

LECS =
⋃
j∈S

{EX[j].in:I} LECS′ =
⋃
j∈S

{EX[j].in:I.~v}

∆,map.prg:πM , LECS⇒ ∆,map.prg:skip, LECS′

WAKM

map.prg:πM = wake(PRED[ ])

S = {j ∈ {0, . . . , TOP} : PRED[j]}
LECS =

⋃
j∈S

{EX[j].int:sig, EX[j].stt:S} LECS′ =
⋃
j∈S

{EX[j].int:⊥, EX[j].stt:E}

∆,map.prg:πM , LECS⇒ ∆,map.prg:skip, LECS′

CLON

map.prg:πM = clone(PRED[ ])

S = {j ∈ {0, . . . , TOP} : PRED[j]}
LECS =

⋃
0≤j≤TOP

LECSj

LECS′ = LECS ∪
⋃
j∈S

fork(LECSj, TOP + assignInd(j))

∆, top:TOP,map.prg:πM , LECS⇒ ∆, top:TOP + |S|,map.prg:skip, LECS′

Figure 3.7: Semantics of instructions of MAP

30



3.3. SEMANTICS OF ENFORCEMENT MECHANISMS

instruction is not used in πM . The semantics of input, map, wake, and clone

instructions is described in Figure 3.7. The execution of map instruction

or wake instruction changes only the program of MAP (referred in the

configuration of the enforcement mechanism by map.prg), and configuration

of local executions that satisfy PRED[ ]. In addition to these changes, the

execution of the clone instruction also changes the index TOP . For map,

wake, and clone instructions, if there is no j such that PRED[j] holds,

then the execution of these instructions makes all local executions move

from their current configurations to themselves.

The cardinality of a set S is |S|. Assume that S is a set of integer

numbers; bijective and increasing function assignInd : S → {1, . . . , |S|}
assigns and returns a unique index of the element j in the set S. Function

fork(LECSj, k) makes a copy of the local execution π[j]; the new execution

can be referred as EX[k] (notice that k is smaller than or equal to the

updated TOP ).

When MAP is activated, its configuration is {map.prg :πM ,map.mem :

mM}, where πM is the program of MAP tailored to the policy to be enforced

(for example, for non-interference the program of MAP is described in

Figure 4.2a), and mM is the memory of MAP from the last activation. The

execution of MAP terminates if skip is the only instruction in the MAP

program.

3.3.3 REDUCE

REDUCE controls the output actually generated by the enforcement mech-

anism. REDUCE can retrieve output items from a local output queue of

a local execution, send output items to the external output queue, clean

local output queues of local executions, wake local executions up, and kill

local executions.

Except for the input instruction that is replaced by the retrieve instruc-

31



CHAPTER 3. MAP-REDUCE FRAMEWORK

RETR

red.prg:πR = retrieve x from (j, c)

EX[j].out = O dequeue(O, c) = (val, O′) val 6= ⊥

∆, red.prg:πR, red.mem:mR ⇒ ∆, red.prg:skip, red.mem:mR[x 7→ val]

OUTR

red.prg:πR = output e to c

red.mem = mR ~v = ~⊥[c 7→ mR(e)]

∆, red.prg:πR, out:O ⇒ ∆, red.prg:skip, out:O.~v

WAKR

red.prg:πR = wake(PRED[ ])

S = {j ∈ {0, . . . , TOP} : PRED[j]}
LECS =

⋃
j∈S

{EX[j].int:sig, EX[j].stt:S} LECS′ =
⋃
j∈S

{EX[j].int:⊥, EX[j].stt:E}

∆, red.prg:πR, LECS⇒ ∆, red.prg:skip, LECS′

CLN

red.prg:πR = clean(c, PRED[ ])

S = {j ∈ {0, . . . , TOP} : PRED[j]}
LECS =

⋃
j∈S

{EX[j].out:O} LECS′ =
⋃
j∈S

{EX[j].out:remove(O, c)}

∆, red.prg:πR, LECS⇒ ∆, red.prg:skip, LECS′

KIL

red.prg:πR = kill(PRED[ ])

S = {j ∈ {0, . . . , TOP} : PRED[j]}
LECS =

⋃
0≤j≤TOP

LECSj LECS′ = delete(LECS, S)

∆, red.prg:πR, top:TOP, LECS⇒ ∆, top:TOP − |S|, red.prg:skip, LECS′

Figure 3.8: Semantics of instructions of REDUCE

32



3.3. SEMANTICS OF ENFORCEMENT MECHANISMS

tion, in addition to the instructions in Figure 3.1a, the program of the

REDUCE component may contain retrieve x from (j, c), clean(c, PRED[ ]),

wake(PRED[ ]), or kill(PRED[ ]) instructions which are described in Fig-

ure 3.1c. The execution of the retrieve instruction reads the value from the

output queue of π[j]. The execution of clean, wake, or kill instruction is

applied to all local execution π[j] such that PRED[j] is true. The exe-

cution of clean instruction removes the first vector ~v of the local output

queue of π[j], where the value of ~v[c] is different from ⊥. The execution

of the kill instruction removes π[j] from the array of local execution and

updates TOP . The execution of the wake instruction is similar to the one

of MAP.

The semantics of retrieve, output, wake clean, and kill instructions is

described in Figure 3.8, where function remove(O, c) used in rule CLN

removes the first vector ~v in O where ~v[c] 6= ⊥; assume that LECS is the

set of configurations of all local executions (i.e. LECS =
⋃

0≤j≤TOP LECSj),

and S is a subset of {0, . . . , TOP}, function delete(LECS, S) in rule KIL

removes configurations of local execution π[j] (where j ∈ S) from LECS,

and reassign the indexes of the remained local executions such that the

order of local executions are maintained (i.e. for local executions π[j] and

π[k] such that j, k are not in S and j < k, after the application of the

function, these two local executions are referred with new indexes j′ and

k′ such that j′ < k′ ≤ TOP − |S|).

When REDUCE is activated, its configuration is {red.prg:πR, red.mem:

mR}, where πR is the program of REDUCE tailored to the policy to be

enforced (for example, for non-interference, the program of REDUCE is

described in Figure 4.2b), and mR is the memory of REDUCE from the last

activation. Similar to the execution of MAP, the execution of REDUCE

terminates if skip is the only instruction in the REDUCE program.

33



CHAPTER 3. MAP-REDUCE FRAMEWORK

3.4 Summary

Controlled programs can be composed of basic instructions which are as-

signment, condition, loop, skip, input and output instructions. Local exe-

cutions are copies of controlled programs. In addition to these instruction,

instructions available for MAP are map, wake and clone. For REDUCE,

additional instructions are retrieve, wake and kill. The small step opera-

tional semantics of controlled programs, local executions, MAP programs,

and REDUCE programs was specified.

34



Chapter 4

Enforcement Mechanisms of

Information Flow Policies

This chapter illustrates the framework by presenting constructed

enforcement mechanisms of non-interference [20], non-deducibility

[45] and deletion of inputs [34]. Soundness and precision of the

constructed enforcement mechanisms are formally demonstrated.

4.1 Overview

To illustrate our framework, we next present enforcement mechanisms of

non-interference [20], non-deducibility [45], and deletion of inputs [34]. We

choose non-interference because it is enforced by secure multi-execution

[20], the mechanism that has drawn a lot of attention of researchers [9,

18, 38, 51, 50, 19, 47, 36] to multi-execution technique. Non-deducibility

and deletion of inputs are chosen to illustrate the idea that from an ex-

isting enforcement mechanism (e.g. the enforcement mechanism of non-

interference), by some modification, we can enforce another policy. Dele-

tion of inputs is also used to illustrate the clone instruction.

The chosen information flow policies are defined on a lattice with two

security levels: low (L) and high (H). An input or output channel is at

35



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

either the low level or the high level. Items on channels at the low level

is visible to users at the low or high level, while items on channels at the

high level is visible only to users at the high level. Function lvl(c) returns

the level of channel c.

States of local executions. In the enforcement mechanisms of the selected

policies, initially all local executions are in executing states and all local

executions are executed in parallel. When a local execution needs an input

item that is not ready in its local input queue or when it generates an

output item, it emits an interrupt signal and move to a sleeping state. A

local execution will be waken up by REDUCE if its generated output item

has been processed. A local execution will be waken up by MAP if it has

already received the input item that it is waiting for. The condition for a

local execution to be waken up is encoded in function isReady(c).

From the semantics of the enforcement mechanism (Section 3.3), func-

tion isReady(c) is defined as in Equation 4.1, where EX[x].stt = S ∧
EX[x].prg = input y from c; π means that local execution π[x] is sleeping

and waiting for an input item from c, and EX[x].in = I ∧ dequeue(I, c) =

(val, I ′) ∧ val 6= ⊥ means that π[x] has already received the input item

that it is waiting for.

isReady(c) , λx.EX[x].stt = S ∧ EX[x].prg = input y from c; π ∧

EX[x].in = I ∧ dequeue(I, c) = (val, I ′) ∧ val 6= ⊥
(4.1)

Activation of MAP and REDUCE. The program of MAP is activated only

when the previous execution of MAP has terminated, there is an interrupt

signal �(c) from local execution π[j], the state of this local execution is

sleeping (S), and the instruction to be executed is the input instruction.

The resulting activation of MAP removes the signal from configuration of

36



4.1. OVERVIEW

π[j].

Function pick(S) returns an element from a non-empty set S. Such

selection can be non-deterministic or in a round-robin way. The chosen

selection does not influence our results. The predicate WAITI[ ] indicates

whether a local execution is waiting for an input item or not.

WAITI[ ] , λx.EX[x].stt = S ∧ ∃c ∈ Cin : EX[x].int = �(c) ∧

EX[x].prg = input y from c; π

(4.2)

Similarly to MAP, REDUCE can be activated when the previous exe-

cution of REDUCE has terminated, and there is an interrupt signal �(c)

from the local execution π[j], the state of this local execution is sleeping

(S), the instruction to be executed is an output instruction. The resulting

activation of REDUCE removes the signal from the configuration of π[j].

Predicate WAITO[ ] indicates whether a local execution is sleeping on an

output instruction.

WAITO[ ] , λx.EX[x].stt = S ∧ ∃c ∈ Cout : EX[x].int = �(c) ∧

EX[x].prg = output e to c; π

(4.3)

Remark 4.1. Notice that as reported by Kashyap et al. [25], orders of

executing local executions influence security guarantees on timing and ter-

mination channels. We believe that the orders of executing local executions

reported in their work and the corresponding security guarantees can be

incorporated into our constructed enforcement mechanisms.

Common functions. The enforcement mechanisms of selected policies are

based on three functions canAsk(j, c), canBeTold(c), and canSend(j, c),

which specify privileges of local executions on input and output channels.

37



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

MACTSAMPLE

map.prg:skip

S = {j ∈ {0, . . . , TOP} : WAITI[j]} S 6= ∅
j = pick(S) EX[j].prg = input x from c; π

∆, EX[j].int:�(c),map.prg:skip⇒ ∆, EX[j].int:⊥,map.prg:πM(j, c)

RACTSAMPLE

red.prg:skip

S = {j ∈ {0, . . . , TOP} : WAITO[j]} S 6= ∅
j = pick(S) EX[j].prg = output e to c; π

∆, EX[j].int:�(c), red.prg:skip⇒ ∆, EX[j].int:⊥, red.prg:πR(j, c)

Figure 4.1: Activation of MAP and REDUCE in constructed enforcement mechanisms

• Function canAsk(j, c) indicates whether local execution π[j] can ask

MAP perform input operations on channel c.

• Function canBeTold(c) indicates whether local execution π[x] can re-

ceive genuine values on channel c from MAP. The application of

canBeTold(c) on local execution π[j] is written as canBeTold(c)[j].

• Function canSend(j, c) indicates whether local execution π[j] can send

its generated output values to channel c.

Table 4.1 summarizes ideas of these functions for the enforcement mech-

anisms.

Another function which is used by the constructed enforcement mecha-

nisms is function identical(j) that returns true only when it is applied on

j and is defined as below:

identical(j) , λx.x = j (4.4)

38



4.1. OVERVIEW

Table 4.1: Functions specifying privileges of local executions on channels used in sample

enforcement mechanisms
Function Non-interference Non-deducibility Deletions of in-

puts

canAsk(j, c) Only the high execu-

tion (resp. the low

execution) can ask for

input items from high

channels (resp. low

channels).

Only the shadow exe-

cution (resp. the low

execution) can ask for

input items from high

channels (resp. low

channels).

Privileges for high

and low execu-

tion are similar to

the ones of non-

interference. The

clones cannot ask

any input items.

canBeTold(c) The high execution can

be told all genuine

items. The low execu-

tions can be told gen-

uine items only from

low input channels.

High and shadow exe-

cutions can be told in-

put items from high in-

put channels. High

and low executions can

be told genuine input

items from low input

channels

Privileges for high

and low execu-

tion are similar

to the ones of

non-interference.

The clones can be

told genuine input

items from low

input channels.

canSend(j, c) Only the high execu-

tion (resp. low execu-

tion) can send output

items to high channels

(resp. low channels).

Similar to non-

interference.

Similar to non-

interference.

39



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

4.2 Enforcement mechanism of non-interference

Let I|L (resp. O|L) return the projection of the input I (resp. output O)

containing only items on channels at the low level. For non-interference, for

two arbitrary inputs I and I ′ that are low-equivalent (i.e. I ′|L = I|L), the

generated outputs O and O′ are also low-equivalent (i.e. O′|L = O|L). Non-

interference comes in two flavors: termination-sensitive non-interference

and termination-insensitive non-interference. Termination-sensitive non-

interference is defined with assumption that attackers at the low level can

observe the terminations of executions of programs. This assumption is

not used in the definition of termination-insensitive non-interference.

Definition 4.2.1 (TINI). A program π satisfies termination-insensitive

non-interference iff

∀I, I ′ : I|L = I ′|L ∧ (π, I) ⇓ O ∧ (π, I ′) ⇓ O′ =⇒ O|L = O′|L

Definition 4.2.2 (TSNI). A program π satisfies termination-sensitive non-

interference iff

∀I, I ′ : I|L = I ′|L ∧ (π, I) ⇓ O =⇒ (π, I ′) ⇓ O′ ∧ O|L = O′|L

Enforcement mechanism. The enforcement mechanism of non-interference

on a controlled program π needs only two local executions: the high execu-

tion (π[0]) and the low execution (π[1]). The high execution is responsible

for asking input items from input channels at the high level and generating

output items sent to output channels at the high level. The low execution

is responsible for the corresponding ones at the low level. In the sequel,

the term high input items is used for input items from input channels at

the high level. Similarly, we have high output items, low input items, and

low output items.

40



4.2. ENFORCEMENT MECHANISM OF NON-INTERFERENCE

1: if canAskNI(j, c) then

2: input x from c

3: map(x, c, canBeToldNI(c))

4: map(~df [c], c,¬canBeToldNI(c))

5: wake(isReady(c))

6: else

7: if ¬canBeToldNI(c)[j] then

8: map(~df [c], c, identical(j))

9: wake(identical(j))

10: else

11: skip

12: end if

13: end if

(a) MAP for NI on an input request from local execution

π[j] on channel c

1: if canSendNI(j, c) then

2: retrieve x from (j, c)

3: output x to c

4: end if

5: clean(c, identical(j))

6: wake(identical(j))

(b) REDUCE for NI on an output request from

local execution π[j] on channel c

The low execution (π[1]) cannot ask MAP to perform input operations on high input channels. When

it needs a high input item, MAP fetches it a fake value (~df [c]). Only the low execution (resp. the high

execution) can send its own generated output items to low channels (resp. high channels).

Figure 4.2: Programs of MAP and REDUCE for the enforcement mechanism of non-

interference

In order to enforce non-interference, we ensure that the execution of the

low execution is independent from high input items consumed by the high

execution. In addition, only the low execution can send output items to

low output channels. Thus, high input items do not influence consumed

low input items and generated low output items. These ideas are encoded

in the programs of MAP and REDUCE that are presented in respectively

Figure 4.2a, and Figure 4.2b, where ~df [c] returns the default value for

channel c.

Because the low execution is responsible for observation visible at the

low level, the low execution can ask MAP to perform input operations on

low input channels. The high execution cannot do so since if it can, the

consumed high input items influence the consumed low input items. For

41



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

the low execution, if it can ask MAP to perform an input operation on

high input channels, the enforcement mechanism is still non-interferent.

However, for the controlled program that is already non-interferent, the

inputs consumed by the enforcement mechanism and the inputs consumed

by the controlled program might be different. In other words, the en-

forcement mechanism changes the behavior of programs that is already

non-interferent. Thus, MAP only perform input operations on high input

channels when it receives input request on these channels from the high

execution.

canAskNI(j, c) , (j = 0 ∧ lvl(c) = H) ∨ (j = 1 ∧ lvl(c) = L) (4.5)

Since the high execution generates high output items, it is natural for

the high execution being told genuine input items from high input channels.

Because non-interference allows low input items to influence the observa-

tion of users at the high level, this execution can also be told genuine input

items from low input channels. The low execution cannot receive genuine

values from high input channels since if it can, high output items will in-

fluence the observation visible to users at the low level. Put differently, the

enforcement mechanism fails to enforce non-interference. Thus, the low

execution can receive only genuine input items from low input channels.

canBeToldNI(c) , λx.(lvl(c) = H ∧ x = 0) ∨ (lvl(c) = L) (4.6)

The high (resp. low) execution is allowed to send its generated output

items to high (resp. low) output channels and it is not allowed to send

anything to low (resp. high) output channels.

canSendNI(j, c) , (j = 0 ∧ lvl(c) = H) ∨ (j = 1 ∧ lvl(c) = L) (4.7)

When MAP is activated on an input request from local execution π[j] on

channel c, its path of execution depends on the privileges of local execution

42



4.2. ENFORCEMENT MECHANISM OF NON-INTERFERENCE

π[j] on channel c. If local execution π[j] can ask MAP to perform an input

operation on channel c (i.e. canAskNI(j, c) = T), MAP gets an input value

from the global input queue by performing an input operation (Figure 4.2a-

line 2), sends the asked value to all local executions that can be told genuine

values from channel c (i.e. canBeToldNI(c)) (Figure 4.2a-line 3), and sends

a fake value to others (Figure 4.2a-line 4). After that, MAP wakes local

executions that are sleeping and have already received the input items they

are waiting for (Figure 4.2a-line 5). If local execution π[j] cannot ask MAP

to perform input operations on channel c, and this local execution cannot

be told genuine values from c (i.e. canBeToldNI(c)[j] = F), MAP sends

a fake value to this local execution (Figure 4.2a-line 8) and wakes it up

(Figure 4.2a-line 9).

As shown in Figure 4.2b, when REDUCE is activated on an output re-

quest from local execution π[j] on channel c, it checks whether this exe-

cution can send its generated output items to channel c or not. If so (i.e.

canSendNI(j, c) = T), REDUCE retrieves the generated output item from

the local output queue of local execution π[j] (Figure 4.2b-line 2) and sends

the retrieved output value to c (Figure 4.2b-line 3). Otherwise, no output

operation is performed. After that, the output queue of π[j] is cleaned

(Figure 4.2b-line 5) and π[j] is waken (Figure 4.2b-line 6).

Example 4.2.1. We illustrate the enforcement mechanism of non-interference

with the controlled program presented in Figure 3.2 and with input (cL1 =

T)(cH1 = M1), which means that the input contains two vectors, the first

one contains T from cL1, and the last one contains M1 from cH1. Default

values for channels cH1 and cH2 are respectively D1 and D2. We assume

that check(D1) = T (i.e. true) and check(M1) = F (i.e. false).

Executions of high execution and low execution are shown in respectively

Figure 4.3a and Figure 4.3b. At Figure 4.3a-line 1, the high execution sends

a request to MAP and moves to a sleeping state. MAP is activated. Since

43



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

the high execution can be told low input items but cannot ask for them, there

is no input operation performed, no input item sent to the high execution,

and this execution keeps sleeping. At the first instruction, the low execution

sends a signal to MAP and moves to a sleeping state. MAP is activated,

gets input item T from the global queue, sends it to local input queues of

both local executions, and wake both local executions up.

When the output instruction at Figure 4.3a-line 7 of the high execution

is executed, REDUCE is activated. Since the high execution can send its

generated output values to cH3, REDUCE retrieves the output item gener-

ated by the high execution, sends the item to the global output queue, cleans

the output queue of the high execution, and wakes this execution up. When

the high execution executes the output instruction at Figure 4.3a-line 8,

REDUCE is also activated. Because the high execution cannot send output

item to low channels, REDUCE does not send any output item to cL2. No-

tice that when the low execution needs an input item from cH2, a fake input

item will be fetched to it by MAP.

The enforcement mechanism terminates and generates output (cH3 =

M1 + 0)(cL2 = D1 +D2). The values sent to cH3 and cL2 are respectively

M1 + 0 and D1 + D2. We describe the global input, output queues, and

local input, output queues in Figure 4.4, where each column in the tables

corresponds to an input/output operation.

At time 0, MAP consumes T from channel cL1 and sends this value to

local inputs of high and low executions. At time 1, MAP consumes value M1

from channel cH1, sends this value to the local input of the high execution,

and sends a fake value (D1) to the local input of the low execution. At time

3, when the low execution requests an input value from channel cH2, MAP

gives it a fake value (D2).

At time 3 and 4, REDUCE sends respectively the output value (M1 + 0)

from the high execution to channel cH3 and the output value (D1 + D2)

44



4.3. ENFORCEMENT MECHANISM OF DELETION OF INPUTS

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Use T asked by π[1].

//Get M1 from cH1.

//b = F = check(M1).

//This instruction is not executed since b is F.

//Send M1 + 0 to cH3.

//The output is ignored.

(a) The high execution π[0]

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Get T from cL1.

//A fake value D1 is used.

//b = T = check(D1).

//A fake value D2 is used.

//The output is ignored.

//Send D1 +D2 to cL2.

(b) The low execution π[1]

Figure 4.3: Executions of local copies for non-interference

from the low execution to channel cL2. Output values of the high execution

to channel cL2 and output values of the low execution to channel cH3 are

ignored by REDUCE.

4.3 Enforcement mechanism of deletion of inputs

Deletion of inputs [34] prevents attackers from deducing the occurrence of

the last high input event. The policy requires that if we perturb a possible

trace t = β.e.α (there is no high input event in α) by deleting the high

input event e, the result can be corrected into a possible trace t′ (t′ = β′.α′).

Parts β and β′ are equivalent on the low input events and the high input

events, and so are parts α and α′; parts α and α′ are also equivalent on

low output events.

45



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Input to MAP:
PPPPPPPPPPP
Channel

Time
0 1

cH1 ⊥ M1

cH2 ⊥ ⊥
cL1 T ⊥

=⇒ MAP

Local Executions:

High execution π[0]:

Local input: Local output:

cH1 ⊥ M1

cH2 ⊥ ⊥
cL1 T ⊥

cH3 ⊥ ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ M1 + 0

Low execution π[1]:

Local input: Local output:

cH1 ⊥ D1 ⊥
cH2 ⊥ ⊥ D2

cL1 T ⊥ ⊥

cH3 ⊥ ⊥ ⊥ D1+D2 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ D1+D2

REDUCE =⇒

Output by REDUCE:
PPPPPPPPPPP
Channel

Time
0 1 2 3 4

cH3 ⊥ ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ D1+D2

Each column in the table corresponds to an input/output operation. At time 0 and 1 respectively, MAP

consumes value T and M1 from channel cL1 and cH1. It sends appropriate values to local inputs of local

executions. At time 2, MAP sends a fake value (D2) to the local input of the low execution. At time 3

and 4, REDUCE sends M1 + 0 and D1 +D2 to respectively cH3 and cL2.

Figure 4.4: Example of input and output queues for non-interference

In our notation, for a program to satisfy deletion of inputs, on any input

such that the execution of the program on this input terminates, the high

input item that follows by only low input items or high default items can be

replaced by a default item. The obtained input can be modified further by

46



4.3. ENFORCEMENT MECHANISM OF DELETION OF INPUTS

adding or removing default input items and the execution of the program

on the resulted input terminates and the output items generated at the

low level are not changed.

Put differently, w.r.t. ~df that maps input channels to default values,

a program satisfies deletion of input iff for any input I = I1.~v.I2, where

~v contains a value from high channel c (i.e. ~v[c] 6= ⊥ and lvl(c) = H)

and in I2 there are either no high items or only high items with default

values (i.e. I2|H = (~vdf)
∗ and if ~vdf [c] contains a value from channel c′ then

~vdf [c
′] = ~df [c′]), and the execution of the program on I terminates, input I

can be changed by replacing ~v by a default vector; the obtained input can

be sanitized by removing existing default high input items in I2 or adding

other default high input items to I2. The sanitized input is consumed

completely by the program and the generated output is still low-equivalent

to the original output generated with input I (i.e. O′|L = O|L).

Definition 4.3.1 (DI). W.r.t. vector ~df that maps input channels to de-

fault values, a program π satisfies deletion of inputs iff

∀I : I = I1.~v.I2 ∧ ~v[c] 6= ⊥ ∧ lvl(c) = H ∧ I2|H = (~vdf)
∗ ∧ (π, I) ⇓ O

=⇒ ∃I ′ : I ′ = I1.I
′
2 ∧ I ′|L = I|L ∧ I ′2|H = (~vdf)

∗ ∧ (π, I ′) ⇓ O′ ∧ O′|L = O|L

where ~vdf is a vector that contains a default value (i.e. if ~vdf contains a

value from channel c′, then ~vdf [c
′] = ~df [c′]).

Notice that in the definition of deletion of inputs, I2|H and I ′2|H may

have different lengths and may contain inputs from different high input

channels.

Enforcement mechanism. The enforcement mechanism of deletion of in-

puts is similar to the one of non-interference except for the way handling

input requests from the high execution on high input channels. Whenever

47



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

1: if beCloned(j, c) then

2: clone(identical(j))

3: end if

4: if canAskDI(j, c) then

5: input x from c

6: map(x, c, canTellDI(c))

7: map(~df [c], c,¬canTellDI(c))

8: wake(isReady(c))

9: else

10: if ¬canTellDI(c)[j] then

11: map(~df [c], c, identical(j))

12: wake(identical(j))

13: else

14: skip

15: end if

16: end if

(a) MAP for DI on an input request from local execution

π[j] on channel c

1: if canSendDI(j, c) then

2: retrieve x from (j, c)

3: output x to c

4: end if

5: clean(c, identical(j))

6: wake(identical(j))

(b) REDUCE for DI on an output request

from local execution π[j] on channel c

When the high execution needs a high input item, MAP creates a clone of the high execution. Only the

high execution receives the actual high input items. Clones of the high execution and the low execution

use fake high input items (~df [c]) sent by MAP. As in the enforcement mechanism of NI, only the high

execution (resp. the low execution) can send output items to high output channels (resp. low output

channels).

Figure 4.5: Programs of MAP and REDUCE for the enforcement mechanism of deletion of

inputs

48



4.3. ENFORCEMENT MECHANISM OF DELETION OF INPUTS

the high execution (π[0]) requests a high input item, this execution will be

cloned. To ensure that clones do not influence the observation at the low

level, we force the clones not to ask MAP perform input operations on low

input channels and their outputs to low channels are ignored. Since a clone

is responsible to the execution with an input I ′ in the definition, it does

not receive genuine values from high channels and it has to reuse low input

items requested by the low execution (π[1]). A clone cannot send outputs

to high channels (only the high execution can send its generated output

items to these channels). It is worth noting that clones can influence the

termination of the enforcement mechanism.

The program of MAP is in Figure 4.5. The program of REDUCE is as

in the one of the mechanism of non-interference. Function beCloned(j, c)

is defined as below:

beCloned(j, c) , j = 0 ∧ lvl(c) = H (4.8)

Functions canAskDI(j, c), canTellDI(c), and canSendDI(j, c) are as below.

Notice that in the enforcement mechanism of deletion of inputs, the number

of local executions is not a constant since MAP can create clones of the

high execution.

canAskDI(j, c) , (j = 0 ∧ lvl(c) = H) ∨ (j = 1 ∧ lvl(c) = L) (4.9)

canTellDI(c) , λx.(lvl(c) = H ∧ x = 0) ∨ (lvl(c) = L) (4.10)

canSendDI(j, c) , (j = 0 ∧ lvl(c) = H) ∨ (j = 1 ∧ lvl(c) = L) (4.11)

Example 4.3.1. We illustrate the enforcement mechanism of deletion of

inputs with the controlled program presented in Figure 3.2. The input is

(cL1 = T)(cH1 = M3) (cH2 = M2), which means that the input contains

three vectors, the first vector contains T from cL1, the second vector con-

tains M3 from cH1, and the last one contains M2 from cH2. The default

values for channels cH1 and cH2 are respectively D1 and D2. We assume

49



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

that check(D1) = T and check(M3) = T, where T denotes the boolean

value true.

The execution of the high copy is similar to the one in the enforcement

mechanism of non-interference, except that when it needs a high input item

(Figure 4.6a-line 2 or Figure 4.6a-line 6) , MAP creates a clone of it. The

execution of the low execution π[1] is the same as the execution of the low

copy in the enforcement mechanism of non-interference. The execution of

the first clone π[2] is similar to the execution of the low execution. The

second clone π[3] is created when the high execution executes the input

instruction at Figure 4.6a-line 6. At this point, the high execution receives

the genuine item from cH2 while the second clone receives the default one.

All output items generated by clones are ignored by REDUCE.

The enforcement mechanism terminates and generates output (cH3 =

M3 +M2)(cL2 = D1 +D2). The values sent to cH3 and cL2 are respectively

M3 + M2 and D1 + D2. We describe the global input, output queues, and

local input, output queues in Figure 4.7, where each column in the tables

corresponds to an input/output operation.

At time 0, when receiving the request from the low execution, MAP con-

sumes value T from channel cL1, sends this value to local inputs of all local

executions. At time 1, MAP consumes M3 from channel cH1 when receiv-

ing the input request from the high execution. It creates the first clone and

sends M3 to the local input of the high execution and sends a fake value

(D1) to local inputs of the low execution and the first clone. At time 2,

MAP consumes M2 from channel cH2 and creates the second clone. MAP

then sends M2 to the local input of the high execution and sends a fake

value (D2) to local inputs of other local executions.

At time 3 and 4, REDUCE sends respectively the output value (M3 +M2)

from the high execution to channel cH3 and the output value (D1+D2) from

the low execution to channel cL2. Output values of the high execution to

50



4.3. ENFORCEMENT MECHANISM OF DELETION OF INPUTS

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Use T asked by π[1].

//Get M3 from cH1. The first clone π[2] is created.

//b = T = check(M3).

//Get M2 from cH2. The second clone π[3] is created.

//Send M3 +M2 to cH3.

//The output is ignored.

(a) The high execution π[0]

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Get T from cL1.

//A fake value D1 is used.

//b = T = check(D1).

//A fake value D2 is used.

//The output is ignored.

//Send D1 +D2 to cL2.

(b) The low execution π[1]

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Use T asked by π[1].

//Get M3 from cH1.

//b = T = check(M3).

//A fake value D2 is used.

//The output is ignored.

//The output is ignored.

(c) The second clone π[3]

The execution π[2] is created when the high execution needs an input item from cH1. The execution

of this copy is similar to the one of the low. The execution π[3] is created when the high execution

requests a high input item from cH2. When π[3] is created, it is sleeping at the input instruction at

Figure 4.6c-line 6. All output items generated by π[2] and π[3] are ignored by REDUCE.

Figure 4.6: Executions of local copies for deletion of inputs

channel cL2, output values of the low execution to channel cH3, outputs of

clones to all channels are ignored by REDUCE.

51



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Input to MAP:
PPPPPPPPPPP
Channel

Time
0 1 2

cH1 ⊥ M3 ⊥
cH2 ⊥ ⊥ M2

cL1 T ⊥ ⊥

=⇒ MAP

Local Executions:

High execution π[0]:

Local input: Local output:

cH1 ⊥ M3 ⊥
cH2 ⊥ ⊥ M2

cL1 T ⊥ ⊥

cH3 ⊥ ⊥ ⊥ M3 +M2 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ M3 +M2

Low execution π[1]:

Local input: Local output:

cH1 ⊥ D1 ⊥
cH2 ⊥ ⊥ D2

cL1 T ⊥ ⊥

cH3 ⊥ ⊥ ⊥ D1 +D2 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ D1 +D2

Second clone π[3]:

Local input: Local output:

cH1 ⊥ M3 ⊥
cH2 ⊥ ⊥ D2

cL1 T ⊥ ⊥

cH3 ⊥ ⊥ ⊥ M3 +D2 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ M3 +D2

REDUCE =⇒

Output by REDUCE:
PPPPPPPPPPP
Channel

Time
0 1 2 3 4

cH3 ⊥ ⊥ ⊥ M3 +M2 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ D1 +D2

Each column in the tables corresponds to an input/output operation. At time 0, MAP consumes T from

cL1 and sends this value to all local executions. At time 1, MAP consumes M3 from cH1, sends it to

the high execution, and sends D1 to other executions. At time 2, MAP consumes M2 from cH2, sends it

to the high execution, and sends D2 to other executions. At time 3 and 4, REDUCE sends respectively

M3 + 0 from the high execution to cH3, and D1 + D2 from the low execution to cL2. Local input and

local output of the first clone π[2] are as of the low execution and hence are not described here.

Figure 4.7: Example of input and output queues for deletion of inputs

52



4.4. ENFORCEMENT MECHANISM OF NON-DEDUCIBILITY

4.4 Enforcement mechanism of non-deducibility

Sutherland defines non-deducibility by using two views: the first view cor-

responds to events that attackers at the low level could not deduce (e.g.

high input events), and the second view corresponds to observations of

attackers at the low level [45]. There are no flows from from the former

to the latter if the two views can always be combined. In this way an

attacker cannot know whether a particular sequence of events in the first

view took place, because it can be always replaced by another sequence

and the observation to the second view is not changed.

Let I|H return the projection of the input I containing only items at the

high level. Termination-insensitive non-deducibility requires that for any

two inputs I and I∗, such that the program terminates with these inputs,

there exists another input I∗∗, which is low-equivalent with I (I|L = I∗∗|L),

high-equivalent to I∗ (I∗|H = I∗∗|H), and if the program terminates with

I∗∗, the generated output visible to attackers at the low level is not changed.

Termination-sensitive non-deducibility assumes that attackers can observe

terminations of executions. It also assumes the existence of the default

view where all input items are default values. If the input with only default

values could not be accepted by an execution then it would be possible to

deduce that the sequence of genuine high input items is actually different

from the sequence of default values.

Definition 4.4.1 (TIND). A program π satisfies termination-insensitive

non-deducibility iff

∀I, I∗ : (π, I) ⇓ O ∧ (π, I∗) ⇓ O∗ =⇒ (∃I∗∗ : I|L = I∗∗|L ∧ I∗|H = I∗∗|H
∧ ((π, I∗∗) ⇓ O∗∗ =⇒ O|L = O∗∗|L))

53



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

1: if canAskND(j, c) then

2: input x from c

3: map(x, c, canBeToldND(c))

4: map(~df [c], c,¬canBeToldND(c))

5: wake(isReady(c))

6: else

7: if ¬canBeToldND(c)[j] then

8: map(~df [c], c, identical(j))

9: wake(identical(j))

10: else

11: skip

12: end if

13: end if

(a) MAP for ND on an input request from local exe-

cution π[j] on channel c

1: if canSendNI(j, c) then

2: retrieve x from (j, c)

3: output x to c

4: end if

5: clean(c, identical(j))

6: wake(identical(j))

(b) REDUCE for ND on an output request from lo-

cal execution π[j] on channel c

Only the shadow execution can ask MAP to perform input operations on high input channels. The

shadow execution cannot be told genuine input items from low input channels and it has to use fake

values for low input items. MAP does not perform input operations when it receives input requests from

the high execution. The high execution reuses genuine items asked by shadow and low executions. The

high execution is the only one that can send output items to high output channels.

Figure 4.8: Programs of MAP and REDUCE for the enforcement mechanism of non-

deducibility

Definition 4.4.2 (TSND). W.r.t. vector ~df that maps input channels to

default values, a program π satisfies termination-sensitive non-deducibility

iff

∀I, I∗ : (π, I) ⇓ O ∧ (π, I∗) ⇓ O∗ =⇒ (∃I∗∗ : I|L = I∗∗|L ∧ I∗|H = I∗∗|H
∧ (π, I∗∗) ⇓ O∗∗ ∧ O|L = O∗∗|L)

and the execution with the input that contains only default values specified

by ~df is always present and terminates.

Enforcement mechanism. The enforcement mechanism of non-deducibility

has three local executions: the high execution (π[0]), the shadow execu-

54



4.4. ENFORCEMENT MECHANISM OF NON-DEDUCIBILITY

tion (π[1]), and the low execution (π[2]). To enforce non-deducibility, we

configure the mechanism such that the consumed high input items and

the consumed low input items are independent. Thus, any combination

between the high inputs and the low inputs are always possible.

In order to ensure that the consumed high input items do not influ-

ence the consumed low input items, as in the enforcement mechanism of

non-interference, we require that MAP performs input operations on low

input channels only on input request from the low execution. When this

execution needs a high input item, MAP fetches it a default value.

In order to guarantee that low input items do not determine high inputs,

we need the shadow execution. Indeed the shadow execution is the only

one that can ask MAP to consume input items on high channels. However,

the shadow execution can only receives fake (default) low input items. We

use the word shadow as its generated output items are ignored by REDUCE

(only legitimate output items from the high execution are going to be sent

to high output channels).

The high execution here cannot request MAP to perform input opera-

tions on high input channels. It can be told genuine values from high input

channels (which are asked by the shadow execution), and genuine values

from low input channels (which are asked by the low execution). The high

execution is the only one that can send output items to high channels.

The programs of MAP and REDUCE are similar to the corresponding

ones for the enforcement mechanism of non-interference, except that func-

tions canAskND(j, c), canBeToldND(c), and canSendND(j, c) are redefined.

canAskND(j, c) , (j = 1 ∧ lvl(c) = H) ∨ (j = 2 ∧ lvl(c) = L) (4.12)

canBeToldND(c) , λx. (lvl(c) = H ∧ (x = 0 ∨ x = 1)) ∨

(lvl(c) = L ∧ (x = 0 ∨ x = 2)) (4.13)

canSendND(j, c) , (j = 0 ∧ lvl(c) = H) ∨ (j = 2 ∧ lvl(c) = L) (4.14)

55



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Example 4.4.1. We illustrate the enforcement mechanism of non-deducibility

on the controlled program presented in Figure 3.2 with the input (cL1 =

T)(cH1 = M1), which means that the input contains two vectors, the first

one contains T from cL1, and the last one contains M1 from cH1. The fake

values for channels cH1 and cL1 are respectively D1 and F. We assume

that check(D1) = T (i.e. true) and check(M1) = F (i.e. false).

The execution of the low execution is the same as the one in the en-

forcement mechanism of non-interference. Both high and shadow execu-

tions execute instructions from line 1 to 5, and from line 7 to 8. At Fig-

ure 4.9b-line 1, the shadow execution consumes a fake value (F) returned

by MAP. At Figure 4.9b-line 2, it consumes an input from cH1. All output

values generated by the shadow execution at Figure 4.9b-lines 7 and 8 are

ignored. The high execution reuses the input items asked by the low exe-

cution (Figure 4.9a-line 1) and the shadow execution (Figure 4.9a-line 2).

The execution of output instructions of the high execution is the same as

the ones in the enforcement mechanism of non-interference.

The enforcement mechanism terminates and generates output (cH3 =

M1 + 0)(cL2 = D1 +D2). The values sent to cH3 and cL2 are respectively

M1 + 0 and D1 + D2. We describe the global input, output queues, and

local input, output queues in Figure 4.10, where each column in the tables

corresponds to an input/output operation.

At time 0, on the input request from the low execution, MAP consumes

T from channel cL1 and sends this value to local inputs of all local exe-

cutions. At time 1, on the input request from the shadow execution, MAP

consumes M1 from channel cH1, sends this value to local inputs of high

and shadow executions, and sends a fake value (D1) to the local input of

the low execution. At time 2, when the low execution needs an input item

from channel cH2, MAP gives it a fake value (D2).

At time 3 and 4, REDUCE sends respectively the output value (M1 + 0)

56



4.4. ENFORCEMENT MECHANISM OF NON-DEDUCIBILITY

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Use T asked by the low execution.

//Use M1 asked by the shadow execution.

//b = F = check(M1).

//This instruction is not executed since b is F.

//Send M1 + 0 to cH3.

//The output is ignored.

(a) The high execution π[0]

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//A fake value F is used

//Get M1 from cH1.

//b = F = check(M1).

//This instruction is not executed since b and l1 are F.

//The output is ignored.

//The output is ignored.

(b) The shadow execution π[1]

1 input l1 from cL1

2 input h1 from cH1

3 h2 := 0

4 b := check(h1)

5 if l1 and b then

6 input h2 from cH2

7 output h1 + h2 to cH3

8 output h1 + h2 to cL2

//Get T from cL1.

//A fake value D1 is used.

//b = T = check(D1).

//A fake value D2 is used.

//The output is ignored.

//Send D1 +D2 to cL2.

(c) The low execution π[2]

Figure 4.9: Executions of local copies for the enforcement mechanism of non-deducibility

from the high execution to channel cH3 and the output value (D1 + D2)

from the low execution to channel cL2. Output values of the high execution

to channel cL2, output values of the low execution to channel cH3, and

output values of shadow executions are ignored by REDUCE.

57



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Input to MAP:
PPPPPPPPPPP
Channel

Time
0 1

cH1 ⊥ M1

cH2 ⊥ ⊥
cL1 T ⊥

=⇒ MAP

Local Executions:

High execution π[0]:

Local input: Local output:

cH1 ⊥ M1

cH2 ⊥ ⊥
cL1 T ⊥

cH3 ⊥ ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ M1 + 0

Shadow execution π[1]:

Local input: Local output:

cH1 ⊥ M1

cH2 ⊥ ⊥
cL1 F ⊥

cH3 ⊥ ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ M1 + 0

Low execution π[2]:

Local input: Local output:

cH1 ⊥ D1 ⊥
cH2 ⊥ ⊥ D2

cL1 T ⊥ ⊥

cH3 ⊥ ⊥ ⊥ D1+D2 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ D1+D2

REDUCE =⇒

Output by REDUCE:
PPPPPPPPPPP
Channel

Time
0 1 2 3 4

cH3 ⊥ ⊥ ⊥ M1 + 0 ⊥
cL2 ⊥ ⊥ ⊥ ⊥ D1+D2

Each column in the tables corresponds to an input/output operation. At time 0, MAP consumes T from

cL1 and sends it to all local executions. At time 1, MAP consumes M1 from cH1, sends it to high and

shadow executions, and sends D1 to the low execution. At time 2, when the low execution needs a value

from cH2, MAP gives it a fake value. At time 3 and 4, REDUCE sends respectively M1 + 0 from the high

execution to cH3, and D1 +D2 from the low execution to cL2.

Figure 4.10: Example of input and output queues for non-deducibility

58



4.5. SOUNDNESS OF CONSTRUCTED ENFORCEMENT MECHANISMS

4.5 Soundness of constructed enforcement mechanisms

The soundness property states that the instantiated enforcement mecha-

nism correctly enforces the desired policy on an arbitrary program [20, 18].

Soundness does not hold for enforcement mechanisms of sample termination-

sensitive policies because one local execution might terminate but the oth-

ers might not. Thus, the whole enforcement mechanism does not terminate.

Definition 4.5.1. For a policy P, its enforcement mechanism EMP is

sound iff for any program π, EMP(π) satisfies P.

Theorem 4.5.1. Enforcement mechanisms of termination-insensitive non-

interference, termination-insensitive non-deducibility, and deletion of in-

puts are sound.

The proof strategy of soundness is sketched in Fig. 4.11. In order to

prove soundness, we state two basic properties specifying the behaviour

of MAP on receiving requests for low input items and the behaviour of

REDUCE when receiving an output request from a local execution. For the

actual proof of the theorem, we perform a case-based reasoning showing

that at the end, the output is what we expect. In this respect an important

assumption is that the program to be enforced is deterministic. In addition

to these two basic properties, we need an additional preliminary property

showing the relationship between the execution of a controlled program

and the corresponding local execution. For deletion of inputs, we need

another preliminary property about the input items that can be consumed

by clones (π[j] where j > 1).

Proposition 4.5.1 (Input items consumed by enforcement mechanisms

and input items sent to local input queues of local executions). Consider

the enforcement mechanisms of sample information flow policies, it follows

that:

59



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Prop. 4.5.1

Input of EM(π)

Prop. 4.5.2

Output of EM(π)

Non-interferenceNon-deducibility

Prop. 4.5.3
Semantics 

Equivalence

Prop. 4.5.4
Clones in DI

Deletion of 
inputs

similar

Proposition 4.5.1 is about inputs consumed by the enforcement mechanisms, and the relationships be-

tween those inputs and inputs of local executions. Proposition 4.5.2 is about outputs generated by the

mechanisms, and the relationships between those outputs with outputs of local executions. The controlled

program and local executions handle their input differently. However, if they receive same input items

on all channels, their outputs are the same. This fact is proven in Proposition 4.5.3. Proposition 4.5.4 is

about the influence of clones on input and outputs of the enforcement mechanism of deletion of inputs.

Figure 4.11: Proof strategy for soundness of constructed enforcement mechanisms

• MAP will only ask low input items from the environment for low input

requests from the low execution. The low execution can only receive

default values for high input items. This local execution can receive

real values for low input items.

• For the enforcement mechanism of non-interference and deletion of

inputs, MAP will only ask high input items from the environment for

high input requests from the high execution.

• For the enforcement mechanism of deletion of inputs, the clones (π[j]

with j > 1) receive real values for low input items, and receive default

values for high input items.

• For the enforcement mechanism of non-deducibility, MAP will ask

high input items from the environment for high input request from

the shadow execution.

• For the enforcement mechanism of non-deducibility, the shadow exe-

cution can receive only real values for high input items. It receives

default values for low input items.

60



4.5. SOUNDNESS OF CONSTRUCTED ENFORCEMENT MECHANISMS

• The high execution of the enforcement mechanism of non-interference,

non-deducibility or deletion of inputs can receive real values for low

and high input items.

Proof. The proposition is obvious from the configurations of the corre-

sponding enforcement mechanisms, where all input items in local input

queues are sent by MAP; and only MAP can get input items from the

environment.

The proposition is proven by using the induction technique on the num-

ber of times of activation of MAP on input requests from local executions.

Let k be the number of times of activation of MAP on the input request.

For the base case, k = 0, we can check that the proposition holds

vacuously. Assume that the proposition holds for the case that k < n.

We now prove that the proposition holds for k = n. We consider the n-th

activation of MAP on a request from π[j] on channel c. Notice that:

• Each instruction of MAP, REDUCE, and local executions is executed

atomically,

• MAP and REDUCE are executed separately,

• Local executions are executed separately,

• Local executions interact with MAP and REDUCE via interrupt sig-

nals. The execution of a local execution does not influence the execu-

tions of MAP and REDUCE.

Therefore, we have:

• Case 1: j = 0

– Case 1.1: lvl(c) = L (the high execution asks a low input item):

For non-interference, the instructions at lines 1, 7 and 11 in Fig. 4.2a

are executed. For deletion of inputs, the instructions at lines 1, 4

61



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

and 14 in Fig. 4.5a are executed. MAP does not perform any in-

put action. This activation does not influence the items received

by the low execution. For non-deducibility, the instructions at

lines 1, 7, and 11 in Fig. 4.8a are executed. In all the constructed

enforcement mechanisms, the high execution keeps sleeping.

– Case 1.2: lvl(c) = H (the high execution asks a high input item):

For non-interference, the instructions from line 1 to 5 in Fig. 4.2a

are executed. MAP performs an input action and sends a default

value to the local input queue of the low execution, and the real

value to the local input queue of the high execution. For deletion

of inputs, the instructions from line 1 to 8 in Fig. 4.5a are exe-

cuted. MAP performs actions as in the case of non-interference.

In addition, it also makes a clone of the high execution and fetch a

default value to local input queues of clones. For non-deducibility,

the instructions at lines 1, 7, 11 in Fig. 4.8a are executed. The

high execution keeps sleeping.

• Case 2: j = 1.

– Case 2.1: lvl(c) = L: For non-interference, the instructions exe-

cuted are the same as the ones in Case 1.2. For deletion of inputs,

the instructions executed are also the same as the ones in Case 1.2

except for the clone instruction at line 2 in Fig. 4.5a that is not

executed. In the enforcement mechanisms of non-interference and

deletion of inputs, the real value is sent to the local input queues

of all local executions. For non-deducibility, the instructions at

lines 1, 7, 8, 9 in Fig. 4.8a are executed. MAP sends a default

value to the shadow execution.

– Case 2.2: lvl(c) = H: For non-interference, (respectively deletion

of inputs), the default value is sent to the local input queue of

62



4.5. SOUNDNESS OF CONSTRUCTED ENFORCEMENT MECHANISMS

π[1] by the execution of the instruction at line 8 in Fig. 4.2a

(resp. line 11 in Fig. 4.5a). For non-deducibility, the instructions

from line 1 to 5 in Fig. 4.8a are executed. MAP performs an input

action, sends the read value to high and shadow executions, and

sends a default value to the low execution.

• Case 3: j = 2 (only for the enforcement mechanism of non-deducibility)

– Case 3.1: lvl(c) = H (the low execution asks a high input item):

the instructions at lines 1, 7, 8, 9 in Fig. 4.8a are executed. MAP

sends a default value to the low.

– Case 3.2: lvl(c) = L (the low execution asks a low input item):

the instructions from line 1 to 5 in Fig. 4.8a are executed. MAP

performs an input action and sends a default value to the local

input queue of the shadow execution, and the real value to local

input queues of high execution and low execution.

• Case 4: j > 1 (only for the enforcement mechanism of deletion of

inputs)

– Case 4.1: lvl(c) = L: (a clone asks a low input item) MAP does

not perform any input actions. MAP does not send any input

item to the local input queue (line 14 in Fig. 4.5a).

– Case 4.2: lvl(c) = H: (a clone asks a high input item) MAP will

send only a default input item to the local input queue of π[j]

(line 11 in Fig. 4.5a).

The proposition holds for k = n. Therefore, the proposition holds for

all k ≥ 0.

Proposition 4.5.2 (Outputs of enforcement mechanisms). Concerning the

output of enforcement mechanisms of sample information flow policies, it

follows that:

63



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

• For the enforcement mechanism of non-deducibility, non-interference,

or deletion of inputs, only the high execution π[0] sends output items

to high output channels.

• For the enforcement mechanism of non-deducibility, non-interference,

or deletion of inputs, only the low execution (π[2] in the enforcement

mechanism of non-deducibility, π[1] in the enforcement mechanism of

non-interference, or π[1] in the enforcement mechanism of deletion of

inputs) can send output items to low output channels.

• For the enforcement mechanism of deletion of inputs, the output items

generated by the local execution π[j] with j > 1 are ignored.

Proof. The proposition is proven by using the induction technique on the

number of times of activation of REDUCE on output requests from local

executions. The proof is similar to the proof of Prop. 4.5.1.

For the proof of the soundness of the constructed enforcement mecha-

nisms, we need a property stating the relationship between the controlled

program and a local execution. We also need another simple property

showing how MAP handles the high input requests from local executions.

Proposition 4.5.3 (Controlled programs and local executions). Let I1 and

I2 be two input queues, such that for all input channels c, I1|c = I2|c. Then

we have: for all programs π,

∀I1 : (π, I1, ε) _k (πk, I1k, Ok) =⇒

∀I2 : ∀c ∈ Cin : I1|c = I2|c : (π, I2, ε)⇒k (πk, I2k, Ok)

and I1k|c = I2k|c for all c.

And we have:

∀I1 : (π, I1, ε)⇒k (πk, I1k, Ok) =⇒

∃I2 : ∀c ∈ Cin : I1|c = I2|c : (π, I2, ε) _k (πk, I2k, Ok)

64



4.5. SOUNDNESS OF CONSTRUCTED ENFORCEMENT MECHANISMS

and I1k|c = I2k|c for all c.

Proof. The proposition is proven by using the induction technique on k

and the length of the input queue I1, along with the fact that controlled

programs and the local executions are deterministic.

4.5.1 Soundness of mechanism of non-interference

Proof. Let us consider two executions: (EM(π), I) ⇓ O and (EM(π), I ′) ⇓
O′, where I|L = I ′|L.

The following holds:

1. The low input items consumed by the enforcement mechanism de-

pends only on the low execution (by Prop. 4.5.1).

2. The low executions in the runs of the enforcement mechanism on I and

I ′ always consume default values for high input items (by Prop 4.5.1).

3. The low executions in these two runs consume the same low input

items and same high output items. (By 1, 2 and π be deterministic).

4. These low executions generate the same outputs (By 3 and the fact

that π is deterministic).

5. The output items sent to low output channels are always generated

by the low executions (by Prop 4.5.2).

6. O|L = O′|L (by 4 and 5, and Prop. 4.5.3.)

This concludes the proof.

65



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

4.5.2 Soundness of mechanism of deletion of inputs

To prove the soundness of the enforcement mechanism of deletion of inputs,

we need a proposition showing the influence of local execution π[j] (with

j > 1) on the input consumed by the enforcement mechanism.

Proposition 4.5.4. For the enforcement mechanism of deletion of inputs,

clones of the high execution (π[j] with j > 1) has no effect on the input

consumed by the enforcement mechanism.

Proof. The proof is obvious from the configuration of the enforcement

mechanism.

Proof of Theorem 4.5.1 for the enforcement mechanism of deletion of inputs.

The idea of the enforcement mechanism of deletion of inputs is that when

the high execution requests a high input item, the high execution will

be duplicated and the newly duplicated execution will receive the default

values for high input items. If we replace the last high input item in the

original input I with a default item, then there exists another input queue

satisfying the definition of deletion of inputs. Such an input queue is the

input consumed by the π[TOP ].

Let I be an input, such that (EM(π), I) ⇓ O. The proof of soundness of

the enforcement mechanism of deletion of inputs is based on the induction

technique on the number of high input item in I.

Base case: since there is no high input item in I, the theorem holds

vacuously.

We assume that the theorem holds for all I, such that the number of

high input items is smaller than n. We now need to prove that the theorem

also holds for the case when the number of high input items is equal to n.

Now I can be written as I1.~v1. . . . .In.~vn.In+1

66



4.5. SOUNDNESS OF CONSTRUCTED ENFORCEMENT MECHANISMS

Based on the configuration of the enforcement mechanism, π[TOP ] is

created when the high execution requests the last high input item. Let

ITOPrc be the input consumed by π[TOP ], I1
rc be the input consumed by

π[1]. We have:

1. ITOPrc = I1.~v1. . . . .In.~vdf .I
′
n+1, where I ′n+1|H = (~vdf)

∗.

2. I|L = I1
rc|L

Let I∗ be an input queue, such that

I∗ = I1. . . . .In.In+1.~v1. . . . .~vn−1.~vdf .I
∗
n+1,

where I∗n+1 = I ′n+1|H . Assume that the order of executing local executions

is first π[1], then π[0]. We have:

3. I∗|L = I|L.

4. The low execution will consume the part I1. . . . .In.In+1 for low input

items and default values for high input items (by Prop 4.5.1).

5. The high execution π[0] will consume ~v1. . . . ~vn−1.~vdf .I
∗
n+1 (by 1 and

Prop. 4.5.3).

6. For every j, such that 1 < j ≤ TOP , the execution of the local

execution π[j] terminates and it does not effect the input consumed by

the enforcement mechanism (by the assumption that (EM(π), I) ⇓ O
and Prop. 4.5.4).

7. I∗ is consumed completely by the enforcement mechanism (by 4 and

5).

8. The high execution terminates (by the assumption that (EM(π), I) ⇓
O).

9. (EM(π), I∗) ⇓ O∗ (by 6, 7, 8).

67



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

10. O∗|L = O|L (by Prop. 4.5.2 and Prop. 4.5.3).

From 3, 9, and 10, the theorem holds for the case of the number of high

input item in I is n. Therefore, the theorem holds for the enforcement

mechanism of deletion of inputs.

4.5.3 Soundness of mechanism of non-deducibility

Proof. For an arbitrary pair input (I, I∗) where (π, I) ⇓ O and (π, I∗) ⇓ O∗,
we first check the existence of I∗∗ such that I∗|H = I∗∗|H , I|L = I∗∗|L and

O|L = O∗∗|L.

Considering an input I such that (EM(π), I) ⇓ O, we have:

1. (π[j], Ij) ⇓ Oj, where 0 ≤ j ≤ TOP (TOP = 2), and Ij and Oj are

respectively the input consumed and output generated by π[j].

2. The low execution π[2] can ask and be told real values for low input

items. It can generate output for low output channels (by Prop. 4.5.1,

Prop. 4.5.2) . Therefore: I|L = I2|L, I2|H = (~vdf)
∗, and O|L = O2|L.

3. The shadow execution π[1] can ask and be told real values for high in-

put channels. It uses fake values for low input channels (by Prop. 4.5.1,

Prop. 4.5.2).

4. The high execution π[0] cannot ask but can be told real values from

any channel (by Prop. 4.5.1, Prop. 4.5.2).

5. From 3 and 4, I|H = I1|H and I1|L = (~vdf)
∗.

We next consider two inputs I and I∗ such that (EM(π), I) ⇓ O, and

(EM(π), I∗) ⇓ O∗. Let us investigate the running of the enforcement mech-

anism on I∗∗ such that I∗∗|H = I∗|H and I∗∗|L = I|L. Based on the con-

struction of the enforcement mechanism, the running of the enforcement

mechanism on I∗∗:

68



4.6. PRECISION OF CONSTRUCTED ENFORCEMENT MECHANISMS

6. From 3, the input consumed by the shadow execution is I∗∗1 where

I∗∗|H = I∗|H and I∗∗|L = (~vdf)
∗. Since (EM(π), I∗) ⇓ O∗, the shadow

execution terminates(π[1], I∗∗1 ) ⇓ O∗∗1 .

7. From 2, the input consumed by the low execution is I∗∗2 where I∗∗2 |L =

I|L and I∗∗2 |H = (~vdf)
∗. Since (EM(π), I) ⇓ O, the low execution

terminates (π[2], I∗∗2 ) ⇓ O∗∗2 .

8. The high execution consumes partially I∗∗. It cannot influence the

input consumed by the mechanism (by Prop. 4.5.1).

From 6, 7, and 8, there exist I∗∗ such that I∗∗|H = I∗|H and I∗∗|L = I|L.

If (EM(π), I∗∗) ⇓ O∗∗, then O∗∗|L = O|L (by 7, Prop. 4.5.2, and Prop. 4.5.3).

In other words, the definition of TIND holds for the arbitrary input pair

(I, I∗). This concludes the proof.

4.6 Precision of constructed enforcement mechanisms

The notion of precision for enforcement of a property is taken from [20, 18].

The intuition is that the instantiated enforcement mechanism does not

change the visible behavior of a program that is secure with respect to the

property (and in particular the I/O behaviour on specific channels).

Definition 4.6.1. An enforcement mechanism is precise w.r.t. a policy

iff for any program π satisfying the property, and for every input I, where

(π, I) ⇓ O, the actually consumed input I∗ and the actual output O∗ of the

enforcement mechanism, regardless of the order of executing local execu-

tions, are such that the enforcement mechanism terminates and I∗|c = I|c
and O∗|c = O|c for all channels c.

Theorem 4.6.1. Enforcement mechanisms of termination-sensitive non-

interference, termination-sensitive non-deducibility, deletions of inputs are

precise.

69



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Prop. 4.5.2

Output of EM(π)

Prop. 4.5.3
Semantics equivalence

Non-interference Non-deducibility

Prop. 4.6.1
Local Input 

Consumption

Prop. 4.6.2

Wake of π[j]

Prop. 4.6.3
Relationship between Global 

Queue and Local Queue

Lem. 4.6.1
Input 

Consumption 
of NI

Lem. 4.6.2
Input 

Consumption 
of ND

Proposition 4.5.2 is about outputs generated by the mechanisms, and the relationships between those

outputs with outputs of local executions. The controlled program and local executions handle their

input differently. However, if they receive same input items on all channels, their outputs are the same.

This fact is proven in Proposition 4.5.3. Proposition 4.6.1 is about the usage of local inputs of local

executions. Proposition 4.6.2 is about the transitions from sleeping states to executing states of local

executions. Proposition 4.6.3 is about the relationship between the input of the enforcement mechanism

and the input of the high execution. Lemma 4.6.1 is about the input consumed by an enforcement

mechanism of non-interference on a program satisfying TSNI. Similarly, Lemma 4.6.2 is about the inut

consumed by the enforcement mechanism of non-deducibility on a program satisfying TSND. The proof

of the precision of the enforcement mechanism of deletion of inputs follows the structure of the one of

non-interference.

Figure 4.12: Proof strategy for precision of constructed enforcement mechanisms

70



4.6. PRECISION OF CONSTRUCTED ENFORCEMENT MECHANISMS

Figure 4.12 shows the proof strategy for precision. The proof of precision

is more complex than the proof of soundness. At first, we need to prove

a number of simple properties on the correct handling of interrupt signals

and the equivalence between the semantics of controlled programs and the

semantics of local executions.

Proposition 4.6.1 (Local executions and local input queues). For a local

execution, when the input instruction is executed, if the input item required

is in its local input queue, this item will be consumed. Otherwise, an in-

terrupt signal is generated.

Proof. Proof follows obviously from the semantics of local executions.

Proposition 4.6.2 (The wake of local executions). The following facts

hold:

1. If a local execution is sleeping on an input instruction that required

an input item from the channel c, this local execution will be waken

up when the input item is ready and the instruction of πM executed is

the wake instruction. In addition, when a local execution is awaken,

there is no interrupt signal in its configuration.

2. A local execution is not awaken when the input item required is not

ready or when the input item required is ready, but the instruction

executed of πM is not the wake instruction.

Proof. Proof follows by induction on the length of the derivation sequence

of the enforcement mechanism.

Next we show that from π[0]’s input, we can reconstruct the original

global input.

Proposition 4.6.3 (Global input and local inputs). Let k be the number

steps of derivation of the execution of the enforcement mechanism of NI,

71



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

DI, or ND. Assume that we have (EM(π), I, ε) ⇒k (EM(π)k, Ik, Ok), and

I0
rck

is the queue of the input items that have been received by π[0], then it

follows that:

• I0
rck
.Ik = I

Proof. The lemma is proven by using the induction technique on the length

of the global input queue and the length of the derivation sequence of

the enforcement mechanism, along with the fact that the execution of the

controlled program and the executions of local executions are deterministic.

4.6.1 Precision of mechanism of non-interference

At this point, we have all that is needed to present the key lemma for the

proof of precision for non-interference that shows that all inputs have been

processed and there is nothing left within the enforcement mechanism.

Lemma 4.6.1 (Inputs of a controlled program and inputs consumed by

the corresponding enforcement mechanism). Let π be a program satisfying

termination sensitive non-interference and (π, I) ⇓ O. Regardless of the

order of executing local executions, if the low execution consumes the same

low input items as in I, and the high execution consumes high input and

low input items as in I, then it follows that the execution of the enforce-

ment mechanism terminates, and the input consumed by the enforcement

mechanism is I∗, where I∗|c = I|c for all c.

Proof. The proof of this lemma is based on the proposition of equivalence

between semantics of controlled programs and semantics of local executions

(Prop. 4.5.3) and the proposition of the relationships between the global

input queue and local input queues (Prop. 4.6.3).

72



4.6. PRECISION OF CONSTRUCTED ENFORCEMENT MECHANISMS

According to the semantics of the enforcement mechanism of NI, the

high execution does not influence the termination of the low execution, the

input consumed and the output generated by the low execution.

Therefore, regardless of the order of executing local executions, if the

low execution consumes the same low input items as in I, then the input

consumed by the low execution is I|L.(~vdf)∗.Ia, where Ia contains only low

input items. We next prove that Ia = ε and the low execution terminates.

• Assume that Ia 6= ε. This means there exists an execution of π on in-

put I ′, where I ′|L = I|L.Ia and I ′|H = (~vdf)
∗. Since π is deterministic,

this case cannot happen.

• Assume that π[1] does not terminate. However, this leads to the

conclusion that π does not satisfy TSNI.

We now prove that the high execution also terminates and does not

request any high input item that is not in I.

• Case 1: Assume that the high execution is stuck on a request for

low input items. If the high input execution needs a low input item,

the enforcement mechanism will behave accordingly to Prop. 4.6.1

and Prop. 4.6.2. The high execution is stuck on low input items

when it requests for an input item that is never requested by the low

execution. Since the low input items consumed by the low execution

is I|L, the stuck of the high execution leads to the conclusion that π

is non-deterministic (notice that π and π[0] (the high execution) are

equivalent, that is if they receive the same input, they have the same

behavior).

• Case 2: The high execution requests a high input items that is not in

I. Regarding this assumption, because of Prop. 4.5.3, there are two

73



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

instances of π that consume some input items, but at some point run

in different paths of execution. In other words, π is non-deterministic.

• Case 3: The high execution receives all input items it needs, but is

in an infinite loop. This case also leads to the conclusion that π is

non-deterministic.

Therefore both local executions terminate. Let I0
rc be the input queue

received by π[0]. Since π[0] does not request any other input items that

are not in I, then I0
rc|c = I|c. From Prop. 4.6.3, we have I∗ = I0

rc. Thus

I∗|c = I|c and (EM(π), I∗) ⇓ O∗.

We have now all that is needed for the main theorem.

Proof of Theorem 4.6.1 for the enforcement mechanism of non-interference.

Let I be an input queue, such that (π, I) ⇓ O. We need to prove that

regardless of the order of executing local execution, the input I∗ and output

Oj will be such that I∗|c = I|c, O∗|c = O|c, and (EM(π), I∗) ⇓ O∗.
The proof of precision of the enforcement mechanism of non-interference

is based on Lem. 4.6.1 and Prop. 4.5.2. We have:

• Regardless of the order of executing local execution, the input I∗ and

output O∗ will be such that I∗|c = I|c, and (EM(π), I∗) ⇓ O∗ (by

Lem. 4.6.1).

• O∗|c = O|c (by Prop. 4.5.2 and π satisfying TSNI).

Therefore, the theorem holds for the enforcement mechanism of non-

interference.

74



4.6. PRECISION OF CONSTRUCTED ENFORCEMENT MECHANISMS

4.6.2 Precision of mechanism of deletion of inputs

The proof for the precision of the enforcement mechanism of deletion of

inputs follows the same structure as the one of non-interference. We first

prove that regardless of the order of executing local execution, if the con-

trolled program is a good program, then the input consumed by the en-

forcement mechanism (i.e. I∗) and the input consumed by the original

controlled program (i.e. I) are equal on all channels (i.e. I∗|c = I|c for all

input channels c).

4.6.3 Precision of mechanism of non-deducibility

To prove the precision of enforcement of TSND, we also need a key lemma

about the input consumed by the enforcement mechanism.

Lemma 4.6.2 (Input consumption of the enforcement mechanism of non-d-

educibility). Let π be a program satisfying termination sensitive non-deducibility,

and (π, I) ⇓ O. Regardless of the order of executing local executions, if the

low execution consumes the same low input items as in I, and the shadow

execution consumes the same high input items as in I, then it follows that

the execution of the enforcement mechanism terminates, and the input con-

sumed by the enforcement mechanism is I∗, where I∗|c = I|c for all c.

Proof. We have that π satisfies TSND, and (π, I) ⇓ O. We write I as

IH .IL where IH (resp. IL) is an input containing only high (resp.) low

input items. Let ID be an input that contains only default values. We

consider inputs I1 and I2 such that I1|H = IH , I1|L = (~vdf)
∗, and I2|L = IL,

I2|H = (~vdf)
∗.

Since the program π is deterministic and satisfies TSND, it follows that

I1|L = ID|L, I2|H = ID|H , (π, I1) ⇓ O1, and (π, I2) ⇓ O2. We next prove

that regardless of the order of execution, local executions are not stuck (i.e.

all input items necessary for their executions are provided by MAP).

75



CHAPTER 4. ENFORCEMENT MECHANISMS OF INFORMATION FLOW
POLICIES

Regardless of the order of executing local executions, if the low execution

consumes the same low input items as in I, then the input consumed by

the low execution is (~vdf)
∗.IL.Ia, where Ia contains only low input items.

We next prove that Ia = ε.

Assume that Ia 6= ε. This means there exists an execution on input I ′,

where I ′|L = I|L.Ia. However, this leads to the conclusion that π is not

deterministic. Contradiction.

Since π is deterministic, it follows that the low execution terminates.

Using the same reasoning, we also prove that the executions of shadow and

high executions are not stuck, and these executions terminate. Therefore,

the lemma holds.

Proof of Theorem 4.6.1 for the enforcement mechanism of non-deducibility.

The proof follows directly from Lem. 4.6.2, Prop. 4.5.2, and the fact that

the controlled program satisfies TSND.

4.7 Summary

This chapter illustrated the proposed framework by presenting enforce-

ment mechanisms of three information flow policies: non-interference [20],

deletion of inputs [34], and non-deducibility [45]. The enforcement mech-

anism of non-interference is similar to the one proposed by Devriese and

Piessens, except that local executions are executed in parallel. Based on

the enforcement mechanism of non-interference, by few changes, the mod-

ified enforcement mechanisms can enforce non-deducibility and deletion of

inputs. From the formal semantics of controlled programs and enforce-

ment mechanisms specified in Chapter 3, this chapter demonstrated that

the constructed enforcement mechanisms are sound and precise.

76



Chapter 5

Testable Hypersafety Policies

This chapter presents the investigation on which policies can be

enforced by using the framework on input total reactive programs.

Reactive programs have to handles inputs in finite time and have

to process completely an input item before handling another one.

It shows that the framework can be used to construct enforcement

mechanisms for non-empty testable hypersafety policies.

5.1 Reactive programs

We consider deterministic and black box reactive programs. Assumptions

on reactive programs are:

1. input total: a program accepts all inputs defined over an enumerable

input item set;

2. computable: a program handles any input in finite time and generates

an output defined over an enumerable output item set;

3. an input item must be handled completely before another input item

can be processed.

Such reactive programs can be implemented in our language by using the

pattern in Figure 5.1, where T is the boolean value true, envin is the only

77



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

1: while T do

2: input x from envin

3: //Calculate output o with a terminating and deterministic program.

4: output o to envout

5: end while

Figure 5.1: Implementation of a reactive program

input channel and envout is the only output channel. Hereafter, without

any further notice, by programs, we mean reactive programs following the

pattern in Figure 5.1. Since there is only one input channel, we use i to

denote an input item. Similarly, we use o to denote an output item.

Notation. As presented in Chapter 3, I and O are respectively the enu-

merable set of input items and the enumerable set of output items. Let I∗

be the set of all finite inputs. An input with length n ≥ 1 can be expressed

as [i1. . . . .in]. This notation is also used for outputs.

We write π(I) = O, where I is a finite input, O is a finite output, I and

O are of equal length, to mean that from an initial state with input I (i.e.

{prg:π,mem:m0, in:I, out:ε}, where m0 is the initial memory), π consumes

completely I and generates output O. Formally, π(I) = O means that

there is a sequence of transitions of π from the initial state with input

I (i.e. {prg :π,mem :m0, in :I, out :ε}, where m0 is the initial memory) to

{prg :π,mem :m′, in :ε, out :O}, where m′ is a the memory of the program

after it finishes handling input I. Notice that for a program π follows the

pattern in Figure 5.1, the program before consuming any input I and the

program after consuming I are the same.

A program π is input total if for any I, there exists O such that π(I) = O.

A program π is deterministic if for any I, O and O′, if π(I) = O and

π(I) = O′ then O = O′.

A primitive observation is a pair (I, O), where I and O are respectively

a finite input and a finite output, and of equal length. A program π has

78



5.2. POLICIES

the primitive observation (I, O) iff π(I) = O. An observation M is a finite

set of primitive observations. M is an observation of program π (denoted

by M ⊆ π) iff all the primitive observations in M is of π.

An observation M is prefixed-closed if (I.i, O.o) in M then (I, O) is also

in M . The prefix closure of M (denoted by M) is the smallest set that

includes M and is prefixed-closed. M is possible if it can be exposed by a

deterministic reactive program, i.e if (I, O) and (I, O′) are in M , then O

and O′ are equal. Hereafter, we consider only possible observations. We

use OBS to denote the set of all observations.

We write input(M) for the set {I | (I, O) ∈ M}. Given a finite set of

inputs Is, map(π, Is) returns the observation of π on Is:

map(π, Is) = {(I, O)|I ∈ Is ∧ π(I) = O}

Example 5.1.1. Let I = O = {a, b}. The prefix closure of M1 = {([a.b], [a.b])}
is M 1 = {(ε, ε), ([a], [a]), ([a.b], [a.b])}. Observation M2 = {([a.b], [a.b]), ([a], [b])}
is not a possible observation since there is no deterministic reactive program

π such that π([a]) = [a] and π([a]) = [b].

5.2 Policies

A policy P can be defined as the set of programs allowed by the policy.

Membership of the policy is required to be compatible with observational

equivalence: if π ∈ P then all programs observationally equivalent with

π must also be in P . Hence, one can also think of a policy as a set of

sets of primitive observations: a program satisfies the policy iff the set of

primitive observations of the program is an element of the policy [17].

In [17], Clarkson and Schneider define hypersafety policies. Informally,

if a program is not in a hypersafety policy P , then this program has an

observation disallowed by the policy [17, 16].

79



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

Definition 5.2.1 ([17, 16]). A policy P is a hypersafety policy iff

∀π 6∈ P =⇒ ∃Mbad ∈ OBS.Mbad ⊆ π ∧ (∀π′.Mbad ⊆ π′ =⇒ π′ 6∈ P)

Hypersafety policies can be specified by defining a set M of bad or

disallowed observations. The corresponding policy P is then defined as:

π 6∈ P if and only if π has one of the specified bad observations Mbad ∈
M. However, for a given hypersafety policy, M need not be unique. For

example, one may choose M to be the set containing any one Mbad for

every π 6∈ P .

Example 5.2.1. Non-interference (NI), the policy that low (L) outputs do

not depend on high (H) inputs is a hypersafety policy, and can be specified

by defining a set of disallowed observations as follows. Let lvl be a function

that assigns H or L to input and output values. Given an input I, let I|L
be the resulting input after filtering out the input values i with lvl(i) = H

(and similarly for O|L).

A reactive program π is non-interferent (or π ∈ PNI) iff

∀I, I ′ ∈ I∗ : I|L = I ′|L =⇒ O|L = O′|L,

where π(I) = O and π(I ′) = O′.

A set of bad observations that specifies PNI is:

{{(I, O), (I ′, O′)} | I|L = I ′|L ∧ O|L 6= O′|L}.

A program π that has an observation in this set is not non-interferent.

If π does not have any such observation, then it is non-interferent.

5.2.1 Testable hypersafety policies

A hypersafety policy can be specified by different sets of bad observations.

A canonical set of bad observations for a given policy is the maximal set.

80



5.2. POLICIES

Definition 5.2.2. For a hypersafety policy P, we defineMP , the maximal

set of bad observations as:

MP = {Mbad | ∀π : Mbad ⊆ π =⇒ π 6∈ P}

An observation M is allowed by a policy P iff M 6∈ MP .

It is maximal in the sense that any other setM that specifies the same

policy P is a subset of MP . For any hypersafety policy P , the maximal

set MP always exists.

Definition 5.2.3. A hypersafety policy P is testable iff membership in

MP is decidable.

For the construction of enforcement mechanisms, we limit our attention

to testable hypersafety policies. Such policies can be specified by giving

a total computable boolean function reject(M) that for an observation M

returns T iff M ∈MP .

It is non-trivial to check whether a set of bad observations specified

by a reject function is actually maximal. For example, the set of bad

observations that we specified in Example 5.2.1 for NI is not maximal. It

does not contain observations that have violated the policy in the past but

where things have ”re-adjusted” as the execution progressed, as shown in

the following example.

Example 5.2.2. Suppose that I = O = {0, 1} and that lvl(0) = L whereas

lvl(1) = H. Consider the following observation {([0.1.0], [0.1.0]), ([1.0.0], [0.0.1])}.
This observation is possible and it satisfies the simple test presented in Ex-

ample 5.2.1 because the outputs are equivalent [0.1.0]|L = [0.0] = [1.0.0]|L.

However, no program that satisfies the non-interference policy can gener-

ate this observation because it will have to first generate the observation

{[0.1, 0.1], ([1.0], [0.0])} which would violate the policy.

81



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

Fortunately, the maximal set for non-interference is still decidable.

Example 5.2.3 (NI, a testable hypersafety policy). For the non-interference

policy discussed in Example 5.2.1, a reject predicate can be constructed as

follows:

reject(M) =


T ∃Mbad = {(I, O), (I ′, O′)},

Mbad ⊆M s.t. I|L = I ′|L and O|L 6= O′|L,

F otherwise.

It is straightforward to check that this is a total computable function. We

show that it specifies the maximal set of bad observations by contradiction.

Suppose that there is an observation M such that reject(M) = F and

M ∈MP . By construction of the reject() function we have that reject(M) =

F. Since MP is maximal, M ∈MP .

By definition of MP , all programs π such that M ⊆ π must not belong

to the policy. Consider now one of such programs πgood such that for all

(I, O) ∈ M , πgood(I) = O and otherwise it always outputs a value o with

lvl(o) = H. This program satisfies the policy. Contradiction.

5.2.2 Incrementally constructing observations allowed by a pol-

icy

An enforcement mechanism must not only decide whether or not an obser-

vation is rejected by the policy. It must also “correct” programs that turn

out to have observations that are not allowed (for instance by terminating

the program, or more generally by modifying the outputs of the program).

Given an observation M of the untrusted program that is still allowed so

far, when we find for the next input item i that the corresponding output

will lead to a violation of the policy, we need to find another output that

will not lead to a violation of the policy.

82



5.2. POLICIES

Definition 5.2.4. Given a set of bad observations M that specifies a hy-

persafety policy, a function extendM(M, I, i) is an extension function for

M iff, for any observation M 6∈ M, where (I, O) ∈M , it returns an o ∈ O

such that M ∪ {(I.i, O.o)} 6∈ M.

One of the reasons why it is useful to work with the maximal set of bad

observations to specify a policy is that for the maximal set, an extension

function always exists.

Proposition 5.2.1. For any hypersafety policy P, there exists an extension

function for the maximal set of bad observations MP .

Proof. If the policy P is empty then all observations are bad observations

(in MP) and therefore the precondition for the applicability of the exten-

sion function is false, and we are done.

If the policy is not empty, consider an observation M that is allowed

by MP . By definition of maximal set of bad observations there must be

a program πgood such that M ⊆ πgood and πgood ∈ P (if none existed M

would have been in MP).

Let I be an arbitrary input such that (I, O) ∈ M and i an arbi-

trary input value. By definition of observation on a program, it must

be πgood(I) = O. Since programs are input total, πgood(I.i) has the form

O.o for some o ∈ O. Pick this o as the return value for extendMP(M, I, i).

Suppose now M ∪ {(I.i, O.o)} ∈ MP . Since M ∪ {(I.i, O.o)} ⊆ πgood

by definition of maximal set of bad observation it should be πgood 6∈ P .

Contradiction. Therefore the set M ∪ {(I.i, O.o)} is also allowed by MP .

For a given hypersafety policy P , we write extendP(M, I, i) as an ab-

breviation for some function extendMP(M, I, i) that is guaranteed to exist

by the proposition above.

83



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

Interestingly, for testable hypersafety policies, there is always a total

computable extension function.

Proposition 5.2.2. Let P be a testable hypersafety policy, then there exists

a total computable extension function for MP .

Proof. Let M be an observation, I be an arbitrary input in input(M) and

i be an arbitrary input value. The total computable extension function is

constructed as follows:

1. if the first argument M already belongs to MP then the function

returns an arbitrary output value; (in this case the precondition for

the extension function is not satisfied, and we can return any value)

2. otherwise the function enumerates all output values o and submits

each observation M∪{(I.i, O.o)} to the total computable membership

test for MP continuing until the reject() function returns false.

Since (by Proposition 5.2.1) an ogood exists such that M ∪ {(I.i, O.ogood)}
is not in MP this procedure terminates.

The function constructed in the proof of Proposition 5.2.2 is not very ef-

ficient. Some policies admit much more efficient ways of extending allowed

observations.

Example 5.2.4. For the non-interference policy, we can define extendPNI
(M, I, i)

as follows. Let oH be an arbitrary output value with lvl(oH) = H.

1. if (I.i, O.o) is in M , then return o,

2. else if lvl(i) = H, then return oH ,

3. else if lvl(i) = L:

(a) if there exists (I ′.i, O′.o′) in M s.t. I ′|L = I|L then return o′

84



5.2. POLICIES

(b) otherwise, return oH .

We show that this is a correct extension function by contradiction.

Suppose there exists an input I, an input value i, and an output O

such that (I, O) ∈ M , reject(M) = F, and reject(M ∪ {(I.i, O.o)}) =

T, where the reject( )predicate is specified as in Example 5.2.3 and o =

extendPNI
(M, I, i) is the result of the above algorithm.

By construction of the reject() function we also have reject(M ′) = reject(M ′)

for all M ′. Let M1 = M ∪ {(I.i, O.o)}, then by hypothesis and the proper-

ties of the reject() predicate we have that reject(M1) = T. Further, since

(I, O) ∈M we have that M1 = M ∪ {(I.i, O.o)}.

• If (I.i, O.o) is in M , then M1 = M . Thus, reject(M) = T. Contra-

diction.

• If lvl(i) = H, then o = oH , hence lvl(o) = H. Since reject(M1) = T,

there exists (Ib, Ob) in M s.t Ib|L = I.i|L and Ob|L 6= O.o|L. Because

lvl(i) = lvl(o) = H, it follows that I.i|L = I|L and O.o|L = O|L. But

then Ib|L = I|L and Ob|L 6= O|L. Thus, reject(M) = T. Contradiction.

• If lvl(i) = L and there exists (I ′.i, O′.o′) in M s.t. I ′|L = I|L, then o

is o′. Since reject(M1) = T, there exists (Ib, Ob) in M s.t Ib|L = I.i|L,

and Ob|L 6= O.o|L. But I ′.i|L = I.i|L and O′.o′|L = O.o|L, and since

both (Ib, Ob) and (I ′.i, O′.o′) are in M it follows that reject(M) = T.

Contradiction.

• If lvl(i) = L and there is no (I ′.i, O′.o′) in M s.t. I ′|L = I|L, then

o = oH . Since reject(M1) = T, there must exist Ib in input(M) s.t

Ib|L = I.i|L. Let I ′b be the prefix of Ib that removes all elements with

level H at the end of Ib. Then I ′b is in input(M), and it must have the

form I ′′b .i and it must have I ′′b |L = IL. Contradiction.

85



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

5.3 General enforcement mechanism

An important question needs to be addressed for a general enforcement

mechanism is that which alternative executions the enforcement mecha-

nism should look at. Another one is how to correct executions consistently.

5.3.1 Generating sufficient test inputs

For hypersafety policies like non-interference, the enforcement mechanism

should not only look at the input/output (I, O) of the current execution.

For such policies, it should also make sure that other primitive observations

that the policy defines to be incompatible with the current execution do

not exist, and in general there will be infinitely many alternate inputs that

can possibly lead to incompatible observations.

Example 5.3.1. For the non-interference policy, for a given primitive ob-

servation (I, O), the set of all other primitive observations that are incom-

patible with (I, O) is:

{(I ′, O′) | I|L = I ′|L ∧O′|L 6= O|L}

This set contains an infinite number of inputs I ′, so the enforcement mech-

anism can not query the program π with all of them in finite time.

Fortunately, it is not necessary to check the behavior of the program on

all inputs that might be potentially conflicting with the current input.

We introduce the notion of test generator, a function that computes a

finite and sufficient set of alternative inputs to check.

Definition 5.3.1. A test generator for a hypersafety policy P is a function

g : I∗ → finite 2I
∗

s.t. for all π and all Mbad ∈MP :

∀I ∈ input(Mbad),map(π, g(I) ∪ {I}) 6∈ MP =⇒ Mbad 6⊆ π

86



5.3. GENERAL ENFORCEMENT MECHANISM

In other words, if a program π has a bad observation Mbad, then there

is at least one input I ∈ input(Mbad) for which g(I) is a sufficiently large

set of inputs such that testing the program π on these inputs in addition

to the actual input I will detect a policy violation.

Lemma 5.3.1. If, for every I, map(π, g(I) ∪ {I}) 6∈ MP , then π ∈ P.

Proof. Suppose π 6∈ P . By definition, there is a bad observation Mbad ∈
MP such that Mbad ⊆ π.

From the property of generators in Definition 5.3.1, it follows that there

exists an I ∈ input(Mbad) such that map(π, g(I) ∪ I) ∈ MP . But this

contradicts the condition of the lemma.

Example 5.3.2. For the non-interference policy from Example 5.2.1 (with

reject specified in Example 5.2.3), g(I) = {I|L} is a test generator.

Let Mbad ∈ MPNI
. This means there must exist (I, O), (I ′, O′) ∈ Mbad

with I|L = I ′|L and O|L 6= O′|L.

Now, suppose Mbad ⊆ π, i.e. π(I) = O and π(I ′) = O′. We show that π

has a bad observation either on inputs I and I|L, or on inputs I ′ and I ′|L.

Consider the output O′′ of π on I|L = I ′|L. Since O|L 6= O′|L, we must

have either that O′′ 6= O|L or O′′ 6= O′|L.

• If O′′ 6= O|L, then π has a bad observation on inputs I and I|L.

• If O′′ 6= O′|L, then π has a bad observation on inputs I ′ and I|L.

This implies that g is a generator.

We can further reduce the size of the generator. Let us define g′ as

follows:

g′(I) = if I|L = I then {} else {I|L}

Since for all I, g(I)∪ I = g′(I)∪ I ′, it follows easily from Definition 5.3.1

that g′ is a generator if g is a generator.

87



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

5.3.2 Consistently correcting executions

A second challenge that needs to be addressed is how to correct executions.

While processing an input I, the enforcement mechanism will explore other

inputs in order to check that there are no bad observations. So the output

for input I will be computed in different circumstances: while the enforce-

ment mechanism is actually processing I, as well as while the mechanism’s

actual input is another input I ′ and the input I is only considered as a

potential candidate jointly with I ′ for membership in a bad set. The en-

forcement mechanism should compute the same output for I in any of these

circumstances.

Example 5.3.3. Assume that I = O = {0, 1}. I ⊕ I ′ is defined for I and

I ′ of equal length as a pair-wise xor of I and I ′, where (0⊕1) = (1⊕0) = 1

and (0 ⊕ 0) = (1 ⊕ 1) = 0. Similarly, we define O ⊕ O′. Let 1 (resp. 0)

denote an input or output consisting of only 1 values (resp. 0 values).

A program π satisfies a policy Pxor iff

∀I, I ′ : I ⊕ I ′ = 1⇒ O ⊕O′ = 1

The reject function that decides MPxor
is as follows:

reject(M) =


T ∃Mbad = {(I, O), (I ′, O′)},

Mbad ⊆M s.t. I ⊕ I ′ = 1 and O ⊕O′ 6= 1,

F otherwise.

We define g(I) , {I ′ | I ⊕ I ′ = 1}. Obviously, given an I, such I ′ is

unique. It is easy to show that it actually is a test generator.

Now consider a naive construction of an enforcement mechanism EMPxor

that on execution of a program π on input I, checks the behavior of π also

on g(I) = {I ′}. If the enforcement mechanism finds that π(I)⊕ π(I ′) 6= 1,

it corrects the output for π(I) to make it compliant with the policy. For

88



5.3. GENERAL ENFORCEMENT MECHANISM

instance, let π be the program that just outputs 0 for any input value (i.e.

π(I) = 0 for any I). If EMPxor
(π) is executed on [0], the enforcement

mechanism would see that π([0]) = [0] and that π([1]) = [0], and it would

decide to correct the output for [0] to [1]. It is easy to see that EMPxor
is

not a secure enforcement mechanism, because if EMPxor
(π) is executed on

[1], it would see that π([1]) = [0] and that π([0]) = [0], and it would decide

to correct the output for [1] to [1]. Essentially EMPxor
(π) will be a program

that always outputs 1 on every input, and it violates the policy Pxor as badly

as π does.

This is an example of inconsistent corrections: on execution of EMPxor
(π)

on [0], we are considering the alternate execution [1], but we are not taking

into account that the alternate execution might as well be corrected if it

were ever executed.

Guaranteeing consistency of corrections is challenging. One idea is to

use recursive invocations of the enforcement mechanism while checking

alternative inputs.

Example 5.3.4. For the example above, if EMPxor
(π) is executed on [0], the

enforcement mechanism would see that π([0]) = [0] and then it should not

check this against π([1]), but against EMPxor
(π)([1]). Unfortunately, for the

given generator, this would lead to divergence, as EMPxor
(π)([1]) will again

recursively call EMPxor
(π)([0]).

We address the issue of divergence by means of the notion of well-

founded test generator: a generator is well-founded, if there exists a well-

founded partial order @ on the set of finite inputs, such that:

• I @ I.i

• ∀I ′ ∈ g(I), I ′ @ I

89



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

Now, we can recursively call the enforcement mechanism on alternative

inputs generated by the generator, and this will make sure that corrections

are done consistently.

Example 5.3.5. Consider again the Pxor policy. We now propose the

following generator: g(I.0) , {} and g(I.1) , {I ′.0|I.1⊕ I ′.0 = 1} .

This is a well-founded generator. The partial order @ can be defined as

(the transitive closure of) I @ I.i and I.0 @ I.1.

Now consider again an enforcement mechanism EMPxor
that on execution

of an untrusted program π on input I, checks the behaviour of EMPxor
(π)

also on g(I). Now the enforcement mechanism will let any program π do

its original output on 0s and it will correct the output on 1s so that the

policy is satisfied.

For instance, let π again be the program that just outputs 0 for any input

value. If EMPxor
(π) is executed on [0], the enforcement mechanism would

output [0]. If EMPxor
(π) is executed on [1], our algorithm would see that

π([1]) = [0] and that EMPxor
(π)([0]) = [0], and it would decide to correct

the output for [1] to [1]. Essentially EMPxor
(π) will now be a program that

echoes inputs on outputs, and hence it is a secure program. The recursive

calls to EMPxor
(π) always terminate thanks to the well-founded generator.

For every non-empty testable hypersafety policy, there is a well-founded

test generator.

Lemma 5.3.2. Every non-empty testable hypersafety policy has a well-

founded generator.

Proof. Construct an enumeration of I∗ (the set of finite inputs) that has

the property that I is enumerated before I.i for all i, I. The constructed

enumeration defines a total order on I∗. Say I @ I ′ if I is enumerated

before I ′. Define the generator g(I) = {I ′ | I ′ @ I}. It is easy to check

that this is a generator: for any Mbad, let I be the maximal element in the

90



5.3. GENERAL ENFORCEMENT MECHANISM

set inputs(Mbad). Then inputs(Mbad) ⊆ g(I)∪{I}. Since π is deterministic

and inputs(Mbad) ⊆ g(I)∪{I}, if Mbad ⊆ π then Mbad ⊆ map(π, g(I)∪{I}),
and hence map(π, g(I)∪ {I}) ∈MP (from the property of maximal set of

bad observations).

5.3.3 General enforcement mechanism

We denote the general enforcement mechanism of a non-empty testable

hypersafety policy P on a program π by EM•P(π). The enforcement mech-

anism is constructed with three computable functions that are reject, ex-

tension, and generator functions. Notice that for a testable hypersafety

policies, the existence of these three functions are guaranteed.

To simplify the presentation, following the notation used in [37], in this

section, we use 〈π,m′〉 to denote a configuration of the controlled program,

where π is the instruction to be executed and m′ is the memory. We abuse

_ and write 〈π,m′〉
i|o
_ 〈π,m′′〉 to denote that on 〈π,m′〉, the program

consumes input i, generates output o and moves to 〈π,m′′〉. Notice that the

instructions to be executed before consuming the input and after generating

the output are the same.

A state of the enforcement mechanism EM•P(π) is a tuple 〈I, π,m0,m
′, O〉,

where m0 is the initial state of π, and m′ is the memory of the controlled

program after input I, and O is the output of the enforcement mechanism

on I (i.e. EM•P(π)(I) = O). The initial state of the enforcement mechanism

is 〈ε, π,m0,m0, ε〉, where m0 is the initial memory of program π.

The semantics of the enforcement mechanism is described in Figure 5.2.

The first rule says that, if the observation obtained by combining the re-

cursive application of EM•P to g(I.i) and the new observation that π is

producing are allowed by the policy, then we just release the output of

π. The second rule says that, if the obtained observation is not allowed,

we will correct the execution. We correct it by selecting a new output

91



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

OK
〈π,m′〉

i|o
_ 〈π,m′′〉 M = map(EM•P(π), g(I.i)) reject(M ∪ {(I.i, O.o)}) = F

〈I, π,m0,m
′, O〉

i|o
V 〈I.i, π,m0,m

′′, O.o〉

NOK

M = map(EM•P(π), g(I.i))

〈π,m′〉
i|o
_ 〈π,m′′〉 reject(M ∪ {(I.i, O.o)}) = T o′ = extendP(M ∪ {(I, O)}, I, i)

〈I, π,m0,m
′, O〉

i|o′

V 〈I.i, π,m0,m
′′, O.o′〉

Figure 5.2: Semantics of the enforcement mechanism EM•P(π)

using the consistent extension function extendP . It is worth noting that

rule NOK presented here is a subcase of rule NOK in [37]. In [37], in

rule NOK, the configuration of the controlled program after the transition

can be an arbitrary configuration which is computed deterministically from

state 〈π,m′′〉 and input item i.

We next show that the rules OK and NOK are a proper definition for a

program.

Lemma 5.3.3. EM•P(π) is total computable, and deterministic.

Proof. We first prove that for every state 〈I, π,m0,m
′, O〉 of the enforce-

ment mechanism, and for every input i,

1. there exists m′′, o such that 〈I, π,m0,m
′, O〉

i|o
V 〈I.i, π,m0,m

′′, O.o〉,

2. for any o, o′,m′′,m′′′, if 〈I, π,m0,m
′, O〉

i|o
V 〈I.i, π,m0,m

′′, O.o〉 and

〈I, π,m0,m
′, O〉

i|o′
_ 〈I.i, π,m0,m

′′′, O.o′〉 then m′ = m′′ and o = o′.

We show both properties by total induction on the well-founded order

@ on I∗, the set of all finite inputs. So, suppose both properties (1) and

(2) hold for all states 〈I0, π,m0,m
′
•, O0〉 and input i0 with I0.i0 @ I.i.

The first property holds because (a) π is total computable (in any state,

it accepts any input value and handles it in finite time), (b) the reject

92



5.3. GENERAL ENFORCEMENT MECHANISM

and extension functions are total computable, and (c) the computation of

the map of EM•P(π) only needs a finite number of transitions on states

〈I0, π,m0,m
′
•, O0〉 and inputs i0 such that I0.i0 @ I.i (this follows from the

fact that g is well-founded and hence all I ′ ∈ g(I.i) @ I.i). Hence by the

induction hypothesis all these transitions are total computable.

The second properties holds because (a) π is deterministic, (b) the com-

putation of the map of EM•P(π) only needs transitions on states 〈I0, π,m0,m
′
•, O0〉

and inputs i0 such that I0.i0 @ I.i. Hence by the induction hypothesis all

these transitions are deterministic. Now reject() deterministically returns

either true or false. For the false case, we are done. For the true case, since

the extension function is indeed a function and its parameters are deter-

ministically determined by the input state and input value, this function

deterministically returns an o′.

We have just shown that the two properties hold. These two properties

imply that EM•P(π) is total computable and deterministic.

Soundness. The definition of soundness is similar to the one in Chapter 4.

Definition 5.3.2. The enforcement mechanism EMP of a policy P is sound

iff for all programs π, EMP(π) ∈ P.

Theorem 5.3.1 (Soundness). Let P be a testable and non-empty hyper-

safety policy. Then EM•P is sound.

Proof. Let us say that a program π is I-level secure if it does not have any

bad observation Mbad with for all I ′ ∈ inputs(Mbad), I
′ v I.

We first show the following property: For all I ∈ I∗, EM•P(π) is I-level

secure. We prove this by complete induction on the well-founder order @.

So suppose the property holds for all inputs I1 @ I. We prove it holds for

I.

93



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

For the case where I is empty: Since the empty list is a minimal element

under the @ relation, we just have to show that the primitive observation

(ε, ε) is not in MP . This follows from the fact that P is non-empty: there

is a program π ∈ P , and every π has the observation (ε, ε).

For the case where I has the form I1.i, we show that map(EM•P(π), g(I1.i)∪
{I1.i}) 6∈ MP .

• For the subcase where the last output on this input was derived by the

OK rule, this follows from the fact that reject(M ∪ {(I1.i, O.o)}) = F

for M = map(EM•P(π), g(I1.i)).

• For the subcase where the last output on this input was derived by

the NOK rule, we can use the induction hypothesis. All the inputs

in g(I1.i) ∪ {I1} are @ I1.i. Hence, the first argument to the extend

function is an allowed observation. By the property of the extend

function, we then also get for this subcase that map(EM•P(π), g(I1.i)∪
{I1.i}) 6∈ MP .

Now we can show that EM•P(π) is I-level secure. Suppose there is an

Mbad with all elements of inputs(Mbad) v I. Then we can easily see that

for all I ′ ∈ inputs(Mbad) it holds that map(EM•P(π), g(I) ∪ {I}) 6∈ MP .

(For I ′ @ I this follows from the induction hypothesis and the fact that g

is well-founded, for I ′ = I we have just shown it.) But then the definition

of test generator tells us that Mbad 6∈ MP .

Finally, using this fact that EM•P(π) is I-level secure for all I, we can

apply Lemma 5.3.1 and we get that EM•P(π) ∈ P .

Precision. In Chapter 4, the definition of precision focuses on terminating

executions. For reactive programs which run forever, we modify the notion

of precision as below.

94



5.3. GENERAL ENFORCEMENT MECHANISM

Definition 5.3.3. An enforcement mechanism EMP is precise iff for any

program π that satisfies P, for any input I, EMP(π)(I) = π(I).

Theorem 5.3.2 (Precision). Let P be a testable and non-empty hypersafety

policy. Then EM•P is precise.

Proof. We have to show that π and EM•P(π) have exactly the same primitive

observations when π ∈ P . We show this by complete induction on the well-

founded partial order @ on I∗.

Assume that π and EM•P(π) have the same primitive observations (I ′, O′)

for all I ′ @ I.i. We have to show that EM•P(π)(I.i) = π(I.i).

From the induction hypothesis, it follows that the derivation of the last

step of EM•P(π) processing input I.i was done by the OK rule: EM•P(π)

is applied only on I ′ @ I.i, hence the induction hypothesis applies, and

EM•P(π) has the same outputs as π on g(I.i). Hence, map(EM•P(π), g(I.i)∪
{(I.i, O.o)}) is actually an observation on π, and since π ∈ P it follows

that map(EM•P(π), g(I.i))∪{(I.i, O.o)} 6∈ MP , and hence the call to reject

must return false. As a consequence, the primitive observation of EM•P(π)

on I.i is the same as the primitive observation of π on I.i.

Theorem 5.3.3. Every non-empty testable hypersafety policies can be en-

forced soundly and precisely.

Proof. For any non-empty testable hypersafety policy:

• the reject predicate is total computable by definition of testable.

• Proposition 5.2.2 gives us a total computable extension function.

• Lemma 5.3.2 gives us a well-founded generator.

Hence, we can construct an enforcement mechanism with semantics as in

Figure 5.2, and Theorems 5.3.1, and 5.3.2 tell us that this enforcement

mechanism is sound and precise.

95



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

5.4 Programming the general enforcement mechanism

In this section, we use the framework to program the general enforcement

mechanism in Theorem 5.3.3. Notice that the general enforcement mecha-

nism is constructed based on the extension function constructed in Propo-

sition 5.2.2, and the well-founded generator g constructed in Lemma 5.3.2.

The generator is based on an enumeration of finite inputs such that I is

enumerated before I.i for any I and i. The enumeration defines a total

order between finite inputs. Let enum(j) return the j-th input, where

1 ≤ j, and position(I) return the position of I in the order defined by the

enumeration procedure. We have position(I) = j iff enum(j) = I.

The activation of MAP and REDUCE are described in Figure 5.3. The

programs of MAP and REDUCE are described respectively in Figure 5.4

and Figure 5.5. Here we assume that a map instruction can send an input

to a local execution instead of only an input item. This assumption can

be implemented by using a loop on input items of the input. Initially,

the enforcement mechanism has only one local execution π[0] at a sleeping

state with its initial memory

MAP is activated when REDUCE terminates, and there is only one local

execution which is the local execution that does not receive any input

item. Notice that MAP stores the input that it has received so far. This

information is necessary for MAP to calculate all smaller inputs when it

handles a new input item.

Assume that EMP(π)(I) = O and π(I.i) = Oπ.o. Now the enforcement

mechanism has to handle a new input item i. To know whether the output

o is good or not, like EM•P(π), the enforcement mechanism needs to test

whether (I.i, O.oπ) and observation of the mechanism on g(I.i) are good

or not; and the enforcement mechanism calculates good outputs for inputs

in the order from 1 to position(I.i).

96



5.4. PROGRAMMING THE GENERAL ENFORCEMENT MECHANISM

MACTTESTABLE

red.prg:skip top:TOP = 0

∆,map.prg:skip⇒ ∆,map.prg:πM

RACTTESTABLE

∀j, 0 ≤ j ≤ TOP,EX[j].in:I = ε

∀j, 0 ≤ j ≤ TOP,EX[j].int:sig 6= ⊥

∆, red.prg:skip⇒ ∆, red.prg:πR

Figure 5.3: Activation of MAP and REDUCE

1: input i from envin

2: j := 1

3: while (j ≤ position(I.i)) do

4: clone(identical(0))

5: map(enum(j), identical(j))

6: wake(identical(j))

7: j := j + 1

8: end while

9: I := I.i

Figure 5.4: MAP for a non-empty testable hypersafety policy

MAP goes through all inputs with order from 1 to position(I.i). For each

input, MAP creates a clone of the controlled program (Figure 5.4-line 4)

and fetch this clone the input (Figure 5.4-line 5). After the iteration, MAP

updates the input that it has received so far (Figure 5.4-line 9). Since

MAP starts the iteration from 1, π[0] does not receive any input item from

MAP. Thus, a clone of this local execution can be used by the enforcement

mechanism when it wants to know output of the controlled program on a

specific input.

REDUCE is activated when all local executions consumes all local inputs

and finish calculating outputs. It uses outputs, a function that maps integer

numbers to outputs, to manage the generated output of the enforcement

mechanism on an input. On activation, REDUCE calculates outputs of the

97



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

1: outputs := λx.x 7→ ε

2: j := 2

3: while (j ≤ TOP ) do

4: I ′.i′ := enum(j)

5: //Get the output of π[j] on I ′.i′

6: retrieve O′π.o
′ from j

7: //Get the output of the enforcement mechanism on I ′

8: O′ := outputs(position(I ′))

9: //Get outputs of the enforcement mechanism on inputs in g(I ′.i′) and output of π

on i′.

10: M :=
⋃

1≤k<j{enum(k), outputs(k)} ∪ {(I ′.i′, O′.o′)}
11: //Test observation M

12: if reject(M) then

13: //If the observation is bad, the output returned by the extend function is used

14: outputs := outputs[j 7→ O′.extendP(M, I ′, i)]

15: else

16: //If the observation is good, output o′ is used

17: outputs := outputs[j 7→ O′.o′]

18: end if

19: j := j + 1

20: end while

21: O.o := outputs(TOP )

22: kill(λx.(x > 0) ∧ (x ≤ TOP ))

23: output o to envout

Figure 5.5: REDUCE for a non-empty testable hypersafety policy

enforcement mechanism on inputs smaller than or equal to enum(TOP ),

where enum(TOP ) is the input that the enforcement mechanism has re-

ceived. Notice that REDUCE does not need to handle the case of enum(1)

which is the empty input since EMP(π)(ε) = ε. Therefore, the loop to

calculate outputs (from Figure 5.5-line 3 to Figure 5.5-line 20) starts from

2.

At Figure 5.5-line 5, REDUCE gets input enum(j) which is not an empty

98



5.4. PROGRAMMING THE GENERAL ENFORCEMENT MECHANISM

input (since j > 1). At Figure 5.5-line 6, REDUCE collects output O′π.o
′

of the controlled program on I ′.i′. At Figure 5.5-line 8, REDUCE collects

the output of the enforcement mechanism on I ′ by outputs(position(I ′)).

Notice that when I ′.i′ is handled, the output of the enforcement mechanism

on I ′ was calculated and can be retrieved by outputs(position(I ′)).

Next, at Figure 5.5-line 10, REDUCE constructs observation M that con-

tains (I ′.i′, O′.o′) and all primitive observations of the enforcement mecha-

nism on inputs smaller than I ′.i′. After that, REDUCE tests whether o′ is

a good output for the enforcement mechanism on i′ by using reject(M). If

o′ is a bad output (reject(M) returns true), the output item returned by

extendP(M, I, i) is used as a good output item for the enforcement mech-

anism on i′ (Figure 5.5-line 14). Otherwise, o′ is used (Figure 5.5-line 17).

In the last iteration of the loop, j is equal to TOP and enum(j) re-

turns I.i. Following the above description, the output of the enforcement

mechanism on I.i is calculated and stored in outputs(TOP ). Thus, after

the loop, REDUCE gets the output item for the enforcement mechanism on

i from outputs(TOP ) (Figure 5.5-line 21) and sends this output item to

the environment (Figure 5.5-line 23). Before sending the output, REDUCE

removes all local executions except π[0] from the array of local executions

(Figure 5.5-line 22).

Lemma 5.4.1. For any non-empty testable hypersafety policy P, for any

program π and any finite input I, EM•P(π)(I) = EMP(π)(I), where EM•P is

the enforcement mechanism in Theorem 5.3.3.

Proof. Base case: It is easy to check that EMP(π)(ε) = EM•P(π)(ε) = ε (ε

is the minimal element in the order defined by g).

Assume that the lemma holds for all inputs smaller than I.i. We now

look at I.i.

For REDUCE, the loop from 2 to TOP − 1 calculates the output of the

enforcement mechanism on inputs smaller than I.i. From the assumption,

99



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

we have that for all I ′ smaller than I.i, EMP(π)(I ′) = EM•P(π)(I ′). Thus,

map(EMP(π), g(I.i)) = map(EM•P(π), g(I.i)), where map(EMP(π), g(I.i))

is calculated by REDUCE in the last iteration. From the construction of

EMP(π) and EM•P , we have EMP(π)(I.i) = EM•P(π)(I.i).

Theorem 5.4.1. For any non-empty testable hypersafety policy P, the

constructed enforcement mechanism EMP is sound and precise.

Proof. The proof of this theorem follows from the facts that on any pro-

gram and input our constructed mechanism and the mechanism EM•P in

Theorem 5.3.3 generate the same output (Lemma 5.4.1), and EM•P is sound

and precise (Theorem 5.3.3).

5.5 Instances of the general mechanism

Given a hypersafety policy P , the steps that need to be taken to enforce the

policy using our general enforcement mechanism presented in Section 5.4

are:

1. specify a total computable reject function that decides membership in

MP . Prove that the set of observations for which reject returns true

is indeed maximal in the sense of Definition 5.2.2.

2. specify a total computable test generator function as in Lemma 5.3.2.

3. specify a total computable extension function, and prove that it has

the property required of such a function as specified in definition 5.2.4.

For a testable hypersafety policy, the construction of such an extension

function can be found in Proposition 5.2.2.

100



5.5. INSTANCES OF THE GENERAL MECHANISM

Non-interference with two levels. Let pr be a total idempotent function

from finite inputs to finite inputs. That is, for all I ∈ I∗, pr(I) = pr(pr(I)).

We think of pr as a projection that removes confidential information from

the input.

A program π is non-interferent w.r.t. pr iff

∀I, I ′ ∈ I∗ : pr(I) = pr(I ′) =⇒ O|L = O′|L,

where π(I) = O and π(I ′) = O′.

The projection pr can be instantiated in many ways, and our enforce-

ment mechanism can handle all these instantiations.

• pr(I) = I|L,HD where I|L,HD is the resulting input after replacing the

high input values in I with default values: this is a variation of non-

interference where content of input events is secret but the occurrence

of the input event is not. Our general enforcement mechanism can be

reduced to standard secure multi-execution [20, 38].

• pr(I) = I|L: models standard non-interference as in Example 5.2.1.

Our general enforcement mechanism defines a reactive variant of se-

cure multi-execution as in [9, 51].

• pr can more generally project to values that depend on all previous

values in the input. This can model for instance non-interference with

stateful declassification policies [47]. Our general enforcement mech-

anism even improves on the mechanism in [47], as it does not require

declassify annotations for precision since in [47] a declassify operator

is just a directive indicating that a particular value is computed by

the release function.

Construction of the reject predicate for this policy is similar to Exam-

ple 5.2.3. As mentioned above, construction of test generator and extension

function is described in Lemma 5.3.2 and Proposition 5.2.2.

101



CHAPTER 5. TESTABLE HYPERSAFETY POLICIES

reject(M) =


T ∃Mbad = {(I, O), (I ′, O′)},

Mbad ⊆M s.t. pr(I) = pr(I ′)and O|L 6= O′|L,

F otherwise.

(5.1)

Non-interference for multiple levels. It is relatively straigtforward to ex-

tend all the variants of non-interference above to multiple confidentiality

levels. We illustrate this for standard non-interference.

Let 〈L,≤〉 be a complete lattice of security levels with a top level (>)

and a bottom level (⊥), and let lvl be a function from I ∪ O to L. A

program π is non-interferent with respect to lvl iff

∀I, I ′ ∈ I∗ : I|l = I ′|l =⇒ O|l = O′|l

where π(I) = O and π(I ′) = O′, and I|l filters out all i with lvl(i) 6≤ l (and

similarly for O|l).
Construction of the reject predicate for this policy is as below. Construc-

tion of test generator and extension function is described in Lemma 5.3.2

and Proposition 5.2.2.

reject(M) =


T ∃Mbad = {(I, O), (I ′, O′)},

Mbad ⊆M s.t. I|l = I ′|land O|l 6= O′|l, for some l

F otherwise.

(5.2)

5.6 Summary

This chapter presented the investigation on sufficient condition of policies

that can be enforced by using the proposed framework. Controlled pro-

grams are reactive programs which accepts any inputs, process inputs in

102



5.6. SUMMARY

finite time and have to finish processing an input item before handling

another one.

This chapter described the notion of testable hypersafety policies, pre-

sented a general enforcement mechanism of testable hypersafety policies,

and proved that the general enforcement mechanism is sound and precise.

It then used the proposed framework to program the general enforcement

mechanism.

103





Chapter 6

Downward Closed w.r.t.

Termination Policies

Chapter 5 presented the investigation on which policies can be

enforced by using the framework on reactive programs. One im-

portant constraint on reactive programs is that reactive programs

must handle inputs in finite time. However, there are reactive

programs that might diverge when handling inputs. Thus, this

chapter investigates which policies can be enforced on such reac-

tive programs. Specifically, the investigation focuses on an en-

forcement mechanism similar to the one in Chapter 5.

6.1 Overview

We consider reactive programs written in the template described in Fig-

ure 6.1. Compared to reactive programs in Chapter 5, on handling an input

item, the calculation of output might not terminate. Thus, on input I.i, a

program might consume I, generate O, and then diverge when calculating

the output for i.

We use ↑, a special output value to model diverged output calculation.

In a primitive observation, output values after ↑ are only ↑. If there is no

105



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

1: while T do

2: input x from envin

3: //Calculate output o with a deterministic program that might diverge.

4: output o to envout

5: end while

Figure 6.1: Implementation of a reactive program that might diverge on an input item.

1: input i from envin

2: j := 1

3: while (j ≤ position(I.i)) do

4: clone(identical(0))

5: map(enum(j), identical(j))

6: wake(identical(j))

7: j := j + 1

8: end while

9: I := I.i

Figure 6.2: MAP for a non-empty, downward closed w.r.t. termination policy

↑ in O, then (I, O) is a terminating primitive observation. Otherwise, it

is a diverging primitive observation. Hereafter, by O we mean an output

without ↑, and by o an output item that is different from ↑. We write

(I, O ↑n) to denote a diverging primitive observation in which ↑ is repeated

n times.

We investigate which policies can be enforced soundly and precisely

by the enforcement mechanism with MAP and REDUCE programs are de-

scribed respectively in Figure 6.2 and Figure 6.3. The MAP program here

is similar to the one in Chapter 5. We modify the program of REDUCE a bit

since now the extension function may return ↑. In this case, REDUCE goes

into a forever loop. The modified program of REDUCE is in Figure 6.3, and

the forever loop is at lines 16-18. Notice that the enforcement mechanism

in Chapter 5 is constructed based on a total order between inputs such

that for any input I and input item i, I is smaller than I.i.

106



6.1. OVERVIEW

1: outputs := λx.x 7→ ε

2: j := 2

3: while (j ≤ TOP ) do

4: I ′.i′ := enum(j)

5: //Get the output of π[j] on I ′.i′

6: retrieve O′π.o
′ from j

7: //Get the output of the enforcement mechanism on I ′

8: O′ := outputs(position(I ′))

9: //Get outputs of the enforcement mechanism on inputs in g(I ′.i′) and output of π

on i′.

10: M :=
⋃

1≤k<j{enum(k), outputs(k)} ∪ {(I ′.i′, O′.o′)}
11: //Test observation M .

12: if reject(M) then

13: //If the observation is bad, the output returned by the extend function is used

14: o′′ := extendP(M, I ′, i)

15: if o′′ =↑ then

16: while T do

17: skip

18: end while

19: else

20: outputs := outputs[j 7→ O′.o′′]

21: end if

22: else

23: //If the observation is good, output o′ is used

24: outputs := outputs[j 7→ O′.o′]

25: end if

26: j := j + 1

27: end while

28: O.o := outputs(TOP )

29: kill(λx.(x > 0) ∧ (x ≤ TOP ))

30: output o to envout

Figure 6.3: REDUCE for a non-empty, downward closed w.r.t. termination policy

107



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

6.2 Orderly terminating policies

For a policy to be enforced precisely by this enforcement mechanism, we

require that if the enforcement mechanism on I terminates, then the en-

forcement mechanism also terminates on inputs smaller than I. Thus, in

a good observation M , if (I, O) is a terminating primitive observation in

M , then for any I ′ that is smaller than I and is in a primitive observation

in M , then I ′ is also in a primitive terminating observation in M .

Let M ↓, {(I, O) ∈M} be the observation that contains all terminating

primitive observations in M .

Definition 6.2.1 (Orderly Terminating). A testable hypersafety policy P
is orderly terminating iff there exists a total, well-founded order @ such

that

• for all I and i, I @ I.i, and

• for all M 6∈ MP , all I ′ and I:

I ∈ input(M ↓) ∧ I ′ ∈ input(M) ∧ I ′ @ I =⇒ I ′ ∈ input(M ↓)

Example 6.2.1. An example of orderly terminating policies is the policy

that requires a good program terminates on any input. Hereafter, we refer

to this policy by TER. The maximal set of bad observations of the policy:

MP = {M |∃(I, On) ∈M}.

For this policy, we construct a total order between inputs such that I

smaller than I.i for any I and i. It is easy to check that this order satisfies

the first condition specified in Definition 6.2.1.

Assume that the order does not satisfy the last condition of orderly ter-

minating policy. Thus, there exist an observation M 6∈ MP , I and I ′ such

that:

108



6.3. ALLOWABLY DIVERGENT POLICIES

I ∈ input(M ↓) ∧ I ′ ∈ input(M) ∧ I ′ @ I ∧ I ′ 6∈ input(M ↓).

It follows that there exist an observation M 6∈ MP , I and I ′ such that:

I ∈ input(M ↓) ∧ I ′ ∈ input(M) ∧ I ′ @ I ∧ I ′ ∈ input(M ↑),

where M ↑ contains all diverting primitive observation in M .

In other words, there exists a good observation containing a diverging

primitive observation. From the specification of the maximal set of bad

observations, this observation is a bad one. Contradiction.

6.3 Allowably divergent policies

Is the constructed enforcement mechanism for TER sound? Unfortunately,

the answer is negative. When the controlled program diverges on an input,

the whole enforcement mechanism also diverges on inputs larger than or

equal to this input.

The enforcement mechanism is sound if the divergence of the enforce-

ment mechanism because of the divergence of a local execution is always

accepted by the enforced policy. In addition, from the construction of the

enforcement mechanism, when the enforcement mechanism diverges on an

input I ′, it also diverges on inputs larger than I ′. Those divergences also

have to be accepted by the enforced policy. Thus, for a policy to be en-

forced soundly, if a bad observation is bad because it contains a diverging

primitive observation (I ′, O′ ↑n), then this bad observation must contain a

primitive observation with input I, where I ′ is smaller than I. In other

words, a diverging primitive observation is not bad because of itself.

Definition 6.3.1 (Allowably Divergent). A testable hypersafety policy P
is allowably divergent iff there exists a total, well-founded order @ such that

109



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

• for all I and i, I @ I.i, and

• for all Mbad ∈MP and all I ′ in input(M bad):

M bad \ {(I ′, O′ ↑n)} 6∈ MP =⇒ ∃I : I ′ @ I ∧ I ∈ input(M bad)

Example 6.3.1 (TINI for reactive programs). Reactive programs run for-

ever. After finishing handling an input item, a controlled program can

consume another one. Thus, in the below definition, instead of requiring

(π, I) ⇓ O as in Definition 4.2.1, we only require that π(I) = O.

A reactive program π satisfies termination-insensitive non-interference

iff

∀I, I ′ : I|L = I ′|L ∧ π(I) = O ∧ π(I ′) = O′ =⇒ O|L = O′|L

The maximal set of bad observations of TINI:

MP = {M |∃{(I ′, O′), (I, O)} ⊆M s.t. I|L = I ′|L ∧O|L 6= O′|L}

We construct a partial order @po such that I @po I.i for any I and i; and

I ′ @po I if I ′ = I|L and I ′ 6= I. We next prove that for all Mbad ∈MP and

all I ′ in input(M bad):

M bad \ {(I ′, O′ ↑n)} 6∈ MP =⇒ ∃I : I ′ @po I ∧ I ∈ input(M bad).

Assume that the constructed partial order does not satisfy the property.

Thus, there must exist Mbad ∈MP and I ′ ∈ input(M bad) such that:

M bad \ {(I ′, O′ ↑n)} 6∈ MP ∧
(
∀I : I ′ @po I =⇒ I 6∈ input(M bad)

)
.

However, from the specification of the maximal set of bad observations,

there is no such bad observation. Contradiction.

We next prove that the constructed partial order @po can be extended to

a total order @ that satisfies the conditions of allowably divergent policy.

110



6.4. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

The first condition is trivial. Because @ is an extension of @po, for any I

and i if I @po I.i then I @ I.i. We now look at the second condition.

Let Q(@a) be a predicate on @a, where @a is an arbitrary order defined

on all finite inputs. If Q(@a), then for all Mbad ∈ MP and all I ′ in

input(M bad):

M bad \ {(I ′, O′ ↑n)} 6∈ MP =⇒ ∃I : I ′ @a I ∧ I ∈ input(M bad).

We need to prove that if Q(@po), and @ is an extension of @po, then

Q(@). Assume that this statement does not hold. Thus, Q(@po), and

@ is an extension of @po, and ¬Q(@). Since ¬Q(@), there must exist

Mbad ∈MP and I ′ ∈ input(M bad) such that:

M bad \ {(I ′, O′ ↑n)} 6∈ MP ∧
(
∀I : I ′ @ I =⇒ I 6∈ input(M bad)

)
.

We consider an arbitrary bad observation Mbad 6∈ MP and I ′ ∈ input(M bad)

such that M bad\{(I ′, O′ ↑n)} 6∈ MP . Since Q(@po), there exists I such that

I ′ @po I and I ∈ input(Mbad). Because @ is an extension of @po, I ′ @po I

implies I ′ @ I. Thus, for an arbitrary Mbad and I ′, if M bad\{(I ′, O′ ↑n)} 6∈
MP , then there exists an I such that I ′ @ I, and I ∈ input(M bad). Con-

tradiction with ¬Q(@).

6.4 Downward closed w.r.t. termination policies

A policy that is both allowably divergent and orderly terminating might

not be enforced soundly and precisely by our construction. We consider a

policy that has two different orders, one satisfies the condition of orderly

terminating policies and one satisfies the condition of allowably divergent

policies. However, there is no order for this policy that satisfies both

condition. This policy cannot be enforced soundly and precisely by our

constructed enforcement mechanism.

111



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

We next define downward closed w.r.t. termination policies and prove

that a non-empty downward closed w.r.t. termination policy can be en-

forced soundly and precisely by our constructed enforcement mechanism.

Definition 6.4.1 (Downward Closed w.r.t. Termination). A testable hy-

persafety policy P is downward closed w.r.t. termination iff there exists a

total, well-founded order @ such that:

• for all I and i, I @ I.i, and

• for all M 6∈ MP , all I ′ and I:

I ∈ input(M ↓) ∧ I ′ ∈ input(M) ∧ I ′ @ I =⇒ I ′ ∈ input(M ↓)

• for all Mbad ∈MP and all I ′ in input(M bad):

M bad \ {(I ′, O′ ↑n)} 6∈ MP =⇒ ∃I : I ′ @ I ∧ I ∈ input(M bad)

Hereafter, when we mention an order of a downward closed w.r.t. ter-

mination policy, we mean the order that satisfies all conditions in Defini-

tion 6.4.1.

Example 6.4.1. We consider a policy P defined on I = {a, b} and O is

an enumerable set. The policy requires that good programs might termi-

nates only on [a] or [b], and if good programs terminates on [b], they also

terminate on [a].

MP =
{
M | ∃{([a], [↑]), ([b], [o])} ⊆M for some o ∨

∃{(i.I, o.O)} ⊆M for some o and O, i and non-empty I
}

We construct a total order between finite inputs such that ε @ a @ b

and I @ I.i for any I.i. It is easy to check that this order satisfies the

first condition of downward closed w.r.t. termination policies. We next

112



6.4. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

prove that this order satisfies the other conditions of downward closed w.r.t.

termination policies.

Assume that the constructed order does not satisfy the second condition.

Thus, there exist M 6∈ MP , I ′, I such that:

I ∈ input(M ↓) ∧ I ′ ∈ input(M) ∧ I ′ @ I ∧ I ′ 6∈ input(M ↓)

From the specification of the maximal set of bad observations, good pro-

grams might terminate only on [a] and [b]. In addition, if they terminates

on [b], they must terminate on [a]. Thus, there is no good observation M

such that I ∈ input(M ↓), I ′ ∈ input(M), I ′ @ I and I ′ 6∈ input(M ↓).

Contradiction.

Assume that the constructed order does not satisfy the third condition.

Thus, there exist Mbad ∈MP , I ′ ∈ input(M bad):

M bad \ {(I ′, O′ ↑n)} 6∈ MP ∧
(
∀I : I ′ @ I =⇒ I 6∈ input(M bad)

)
From the specification of the maximal set of bad observation, to satisfy the

condition M bad\{(I ′, O′ ↑n)} 6∈ MP , Mbad must include {([a], [↑]), ([b], [o])}
for some o, and does not include {(i.I, o.O)} for some o and O, i and non-

empty I. By removing ([a], [↑]) from such a bad observation, we get a good

observation. However, there are inputs (e.g. [b]) larger than [a] in the bad

observation. Contradiction.

6.4.1 Enforcement mechanism

The MAP program of the enforcement mechanism of a non-empty down-

ward closed w.r.t. termination policy is the same as the one described in

Figure 5.4. The REDUCE program is described in Figure 6.3. The acti-

vation of MAP and REDUCE is the same as the one in the enforcement

mechanisms of testable hypersafety policies. Notice that our enforcement

mechanism is constructed with the generator based on an enumeration of

inputs such that I is enumerated before I.i for any I and i.

113



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

Lemma 6.4.1. For any non-empty, downward closed w.r.t termination

policy P, for any π, any finite input I, map(EMP(π), g(I) ∪ {I}) is an

allowed observation.

Proof. We use the complete induction technique on order @ defined in the

set of all finite inputs.

For the base case, the lemma holds since EMP(π)(ε) = ε and g(ε) = {}
(ε is the minimal element in the order @).

Assume that the lemma holds for all inputs smaller than I.i. Let M • be

the observation that contains the observations of the enforcement mecha-

nism on all inputs smaller than I.i, and M = M • ∪ {(I.i,EMP(π)(I.i))}.
Case 1: EMP(π)(I.i) = O ↑n. This case happens when there is a local

execution diverges, or there is an input on which the fix is ↑. Assume

that M is a bad observation. From the induction hypothesis, M • = M \
{(I.i, O ↑n)} is a good observation. From the definition of the policy, there

must be an Ib in input(M), where I.i @ Ib. From the construction, I.i is

the maximal input in M . Contradiction.

Case 2: EMP(π)(I.i) = O.o. From the property of the reject function

and extension function, M is an allowed observation.

Theorem 6.4.1. For any non-empty, downward closed w.r.t. termination

policy P, the constructed enforcement mechanism is sound.

Proof. Suppose that EMP(π) does not satisfy P . Thus, there exists a bad

observation Mbad exposed by EMP(π). From the definition of generators,

there exists an I in Mbad such that map(EMP(π), g(I)∪{I}) ∈MP . From

Lemma 6.4.1, for any I, map(EMP(π), g(I) ∪ {I}) 6∈ MP . Contradiction.

Theorem 6.4.2. For any non-empty, downward closed w.r.t termination

policy, the constructed enforcement mechanism is precise.

114



6.4. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

Proof. For the base case, since π(ε) = EMP(π)(ε) = ε, the theorem holds

for this case.

Assume that the theorem holds for all inputs smaller than I.i. We

consider the following cases.

Case 1: π(I) = O ↑n for some n. Since I is smaller than I.i, the assump-

tion applies. Thus, EMP(π)(I) = O ↑n. From the computation model, we

have that π(I.i) = O ↑n+1. From the construction of the mechanism,

EMP(π)(I.i) = O ↑n+1. Thus, the theorem holds for this case.

Case 2: π(I) = O. From the assumption, we also have EMP(π)(I) = O.

a) π(I.i) = O ↑. Since there is a local execution that does not terminate,

REDUCE is not activated and EMP(π)(I.i) = O ↑.

b) π(I.i) = O.o. From the property of the policy, for any input I ′ smaller

than I.i, π(I ′) = O′. Thus, REDUCE is activated. Since there is no

violation, o is used as the output of the enforcement mechanism.

Thus, EMP(π)(I.i) = O.o.

Remark 6.1. As mentioned above, TER is not enforceable by our con-

structed enforcement mechanism. We showed that TER is an orderly ter-

minating policy. We now give a formal proof that TER is not an allowably

divergent policy. Assume that TER is an allowably divergent policy. Let i

and i′ be two inputs. We consider a bad observation Mbad1 = {(i, o1), (i
′, ↑)}

for some o1. It follows that M bad1\{i′, ↑} is a good observation. Thus, there

must exist an terminating primitive observation in M bad1 and the input of

this primitive observation is larger than i′. Hence, i′ @ i. We consider

another bad observation Mbad2 = {(i, ↑), (i′, o′2)} for some o′2. Using the

similar reasoning as above, i @ i′. Contradiction.

115



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

Reactive TINI is an allowably divergent policy and it is not enforceable

by our general construction. We prove that reactive TINI is not an or-

derly terminating policy. Assume that it is an orderly terminating policy.

Thus, there exists a total, well founded order @ that satisfies the condition

specified in Definition 6.2.1.

Let I and I ′ be inputs such that I|L = I ′|L. We consider a good ob-

servation M1 = {(I, O1), (I
′, O′1 ↑n)} for some O1 and O′1. From the

specification of the order, I @ I ′. We look at another good observation

M2 = {(I, O2 ↑m), (I ′, O′2)} for some O2 and O′2. It follows that I ′ @ I.

Contradiction.

Remark 6.2. There are policies that can be enforced by other enforcement

mechanisms but cannot by our constructed one. In Example 6.4.2, we

present such a policy.

Example 6.4.2. Given a program π∗ such that the number of inputs on

which π∗ terminates is infinite and there is an input on which π∗ diverges.

Policy EQUI is defined as a set of programs that have the same outputs as

π∗ on all inputs (in other words, the set of programs that are equivalent to

π∗):

EQUI = {π|∀I : π(I) = π∗(I)}

The maximal set of bad observations of the policy:

MP = {M |∃(I, O) ∈M : π∗(I) 6= O}

This policy cannot be enforced by our constructed enforcement mecha-

nism. The problem is that if π∗(I.i) = O.o and π(I.i) = O ↑, our en-

forcement mechanism on π and I.i diverges. However, this policy can be

enforced soundly and precisely by a rewriting mechanism that maps any

program to π∗.

116



6.4. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

This policy does not satisfy the specification of allowably divergent policy

which requires that a diverging execution is not bad by itself. This policy is

also not a orderly terminating policy.

First we prove that the policy is not an allowably divergent policy. As-

sume that this policy is a allowably divergent policy. Thus, there exists an

order @ such that I @ I.i for any I and i; and for all Mbad ∈MP and all

I ′ in input(M bad):

M bad \ {(I ′, O′ ↑n)} 6∈ MP =⇒ ∃I : I ′ @ I ∧ I ∈ input(M bad)

We consider I•.i• such that π∗(I•.i•) = O•.o• for some O• and o•

(the existence of such input is guaranteed since there are inputs on which

π∗ terminates). A bad observation Mbad = {I•.i•, O• ↑}. By removing

(I•.i•, O• ↑) from M bad, we get a good observation. In this good observa-

tion, all inputs are prefixes of I•.i• and smaller than I•.i•. Thus, there is

no input that is larger than I•.i• in Mbad. Contradiction.

Now we prove that that the policy is not an orderly terminating policy.

We first recall the definition of orderly terminating policies: there exists a

well-founded, total order @ such that for any I and i, I @ I.i, and for all

M 6∈ MP , all I ′ and I:

I ∈ input(M ↓) ∧ I ′ ∈ input(M) ∧ I ′ @ I =⇒ I ′ ∈ input(M ↓)

Thus, for all M 6∈ MP , all I ′ and I:

¬(I ∈ input(M ↓)) ∨ ¬(I ′ ∈ input(M)) ∨ ¬(I ′ @ I) ∨ (I ′ ∈ input(M ↓))

It follows that:

(I ∈ input(M ↓)) ∧ (I ′ ∈ input(M)) ∧ ¬(I ′ ∈ input(M ↓)) =⇒ ¬(I ′ @ I)

From (I ′ ∈ input(M)) and ¬(I ′ ∈ input(M ↓)), it follows that I ′ ∈
input(M ↑), where M ↑ contains all diverging primitive observation in M .

Since the order is total, ¬(I ′ @ I) implies I @ I ′.

117



CHAPTER 6. DOWNWARD CLOSED W.R.T. TERMINATION POLICIES

Therefore, for all M 6∈ MP , all I ′ and I:

(I ∈ input(M ↓)) ∧ (I ′ ∈ input(M)) ∧ (I ′ ∈ input(M ↑)) =⇒ (I @ I ′)

Given an input I ′ on which π∗ diverges. Since the number of inputs on

which π∗ converges is infinite, it follows that there is an infinite number

of inputs that are smaller than I ′. Thus, the order is not well-founded.

Contradiction.

6.5 Summary

This chapter presented the investigation on which policies can be enforced

by an enforcement mechanism similar to the one in Chapter 5. Controlled

programs are reactive programs that are input total and have to finish han-

dling an input item before consuming another one. Different from reactive

programs in Chapter 5, reactive programs in this chapter might diverge

on handling inputs. This chapter proposed downward closed w.r.t. ter-

mination policies and proved that any non-empty downward closed w.r.t.

termination policy can be enforced by the constructed enforcement mech-

anism. As shown in Example 6.4.2, there are enforceable policies that

cannot be enforced by the constructed enforcement mechanism. Thus, ex-

panding the sufficient condition for policies to be enforced is an interesting

avenue for future work.

118



Chapter 7

Conclusion

This thesis proposed the MAP-REDUCE framework, a programmable frame-

work, which can be used to construct enforcement mechanisms of differ-

ent security policies. The framework is constructed based on the secure

multi-execution technique. An enforcement mechanism from this frame-

work can execute multiple instances of the controlled program, and handle

input/output events for these executions.

To construct an enforcement mechanisms of a security policy, users have

to write a MAP program and a REDUCE program to control executions of

instances of the controlled program, inputs consumed and outputs gener-

ated by the enforcement mechanism. The thesis illustrated the framework

by presenting enforcement mechanisms for selected information flow poli-

cies: non-interference, non-deducibility, and deletion of inputs.

The thesis also presented the investigation on which policies can be

enforced soundly and precisely by the framework on reactive programs

that accept any input and have to finish processing an input item before

handling another one. On reactive programs that always terminate on

handling inputs, it showed that any non-empty testable hypersafety policy

can be enforced. On reactive programs that might diverge on inputs, it

demonstrated that any non-empty downward closed w.r.t. termination

119



CHAPTER 7. CONCLUSION

policies can be enforced.

120



Bibliography

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.

Distributed Computing, 2(3):117–126, 1987.

[2] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic

information flow analysis. In Proceedings of the 2009 Workshop on

Programming Languages and Analysis for Security, PLAS ’09, pages

113–124, 2009.

[3] Thomas H. Austin and Cormac Flanagan. Permissive dynamic infor-

mation flow analysis. In Proceedings of the 2010 Workshop on Pro-

gramming Languages and Analysis for Security, PLAS ’10, page 3,

2010.

[4] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic

information flow. In Proceedings of the 39th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

’12, pages 165–178, 2012.

[5] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank

Piessens, and Exequiel Rivas. Secure multi-execution through static

program transformation. In Proceedings of the 14th Joint IFIP WG

6.1 International Conference and Proceedings of the 32Nd IFIP WG

6.1 International Conference on Formal Techniques for Distributed

Systems, FMOODS’12/FORTE’12, pages 186–202, 2012.

121



BIBLIOGRAPHY

[6] David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zălinescu. En-

forceable security policies revisited. ACM Transactions on Informa-

tion and System Security, 16(1):3:1–3:26, June 2013.

[7] David A. Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zalinescu.

Enforceable security policies revisited. In Proceedings of the 1st Prin-

ciples of Security and Trust Conference, POST ’12, pages 309–328,

2012.

[8] Frederic Besson, Nataliia Bielova, and Thomas Jensen. Hybrid in-

formation flow monitoring against web tracking. In Proceedings of

the 26th Computer Security Foundations Symposium, CSF’13, pages

240–254, June 2013.

[9] Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank

Piessens. Reactive non-interference for a browser model. In Pro-

ceedings of the 5th International Conference on Network and System

Security, NSS ’11, pages 97–104, 2011.

[10] Nataliia Bielova and Fabio Massacci. Do you really mean what you

actually enforced? In Proceedings of the 2008 Workshop on Formal

Aspects in Security and Trust, pages 287–301, 2008.

[11] Nataliia Bielova and Fabio Massacci. Do you really mean what you

actually enforced? - edited automata revisited. International Journal

of Information Security, 10(4):239–254, 2011.

[12] Nataliia Bielova and Fabio Massacci. Iterative enforcement by suppres-

sion: Towards practical enforcement theories. Journal of Computer

Security, 20(1):51–79, 2012.

[13] Aaron Bohannon and Benjamin C. Pierce. Featherweight firefox: For-

malizing the core of a web browser. In Proceedings of the 2010 USENIX

122



BIBLIOGRAPHY

Conference on Web Application Development, WebApps’10, pages 11–

11, 2010.

[14] Iulia Bolosteanu and Deepak Garg. Asymmetric secure multi-

execution with declassification. In Proceedings of the 5th International

Conference on Principles of Security and Trust, POST ’ 16, pages 24–

45, 2016.

[15] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and

A. Prasad Sistla. Preventing information leaks through shadow ex-

ecutions. In Proceedings of the 2008 Annual Computer Security Ap-

plications Conference, ACSAC ’08, pages 322–331, 2008.

[16] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In

Proceedings of the 2008 IEEE 21st Computer Security Foundations

Symposium, CSF ’08, pages 51–65, June 2008.

[17] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal

of Computer Security, 18(6):1157–1210, September 2010.

[18] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank

Piessens. Flowfox: A web browser with flexible and precise information

flow control. In Proceedings of the 2012 ACM Conference on Computer

and Communications Security, CCS ’12, pages 748–759, 2012.

[19] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank

Piessens. Secure multi-execution of web scripts: Theory and practice.

Journal of Computer Security, 22(4):469–509, July 2014.

[20] Dominique Devriese and Frank Piessens. Noninterference through se-

cure multi-execution. In Proceedings of the 2010 IEEE Symposium on

Security and Privacy, SP ’10, pages 109–124, 2010.

123



BIBLIOGRAPHY

[21] Philip W. L. Fong. Access control by tracking shallow execution his-

tory. In Proceedings of the 2004 IEEE Symposium on Security and

Privacy, pages 43–55, May 2004.

[22] Joseph A. Goguen and José Meseguer. Security policies and security

models. In Proceedings of the 1982 IEEE Symposium on Security and

Privacy, pages 11–20, 1982.

[23] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Com-

putability classes for enforcement mechanisms. ACM Transactions on

Programming Languages and Systems, 28(1):175–205, January 2006.

[24] Mauro Jaskelioff and Alejandro Russo. Secure multi-execution in

haskell. In Proceedings of the 2011 International Andrei Ershov Memo-

rial Conference, pages 170–178, 2011.

[25] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing-

and termination-sensitive secure information flow: Exploring a new

approach. In Proceedings of the 2011 IEEE Symposium on Security

and Privacy, SP ’11, pages 413–428, 2011.

[26] Tejas Khatiwala, Raj Swaminathan, and V. N. Venkatakrishnan. Data

sandboxing: A technique for enforcing confidentiality policies. In Pro-

ceedings of the 2006 Annual Computer Security Applications Confer-

ence, ACSAC ’06, pages 223–234, 2006.

[27] Leslie Lamport. Proving the correctness of multiprocess programs.

IEEE Transactions on Software Engineering, SE-3(2):125–143, March

1977.

[28] Leslie Lamport. Specifying concurrent program modules. ACM Trans-

actions on Programming Languages and Systems, 5(2):190–222, April

1983.

124



BIBLIOGRAPHY

[29] Gurvan Le Guernic. Precise Dynamic Verification of Confidentiality.

pages 82–96.

[30] Gurvan Le Guernic. Confidentiality Enforcement Using Dynamic In-

formation Flow Analyses. PhD thesis, Kansas State University, 2007.

[31] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A.

Schmidt. Automata-based confidentiality monitoring. In Proceedings

of the 11th Asian Computing Science Conference on Advances in Com-

puter Science, ASIAN’06, pages 75–89, 2007.

[32] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforce-

ment mechanisms for run-time security policies. International Journal

of Information Security, 4(1-2):2–16, 2005.

[33] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement

of nonsafety policies. ACM Transactions on Information and System

Security, 12(3):1–41, 2009.

[34] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In

Proceedings of the 13th IEEE Workshop on Computer Security Foun-

dations, CSFW ’00, pages 185–, 2000.

[35] Jonathan K. Millen. Covert channel capacity. In Proceedings of the

1987 IEEE Symposium on Security and Privacy, SP ’87, pages 60–66,

1987.

[36] Minh Ngo and Fabio Massacci. Programmable enforcement framework

of information flow policies. In Proceedings of the 15th Italian Con-

ference on Theoretical Computer Science, ICTCS ’14, pages 197–221,

2014.

[37] Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens.

Runtime enforcement of security policies on black box reactive pro-

125



BIBLIOGRAPHY

grams. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’15,

pages 43–54, 2015.

[38] Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: Fine-

grained, declassification-aware, and transparent. In Proceedings of

the IEEE 26th Computer Security Foundations Symposium, CSF ’13,

pages 33–48, 2013.

[39] Alejandro Russo and Andrei Sabelfeld. Securing timeout instructions

in web applications. In Proceedings of the 2009 22nd IEEE Computer

Security Foundations Symposium, CSF ’09, pages 92–106, Washington,

DC, USA, 2009. IEEE Computer Society.

[40] Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. Tracking

information flow in dynamic tree structures. In Proceedings of the

14th European Conference on Research in Computer Security, ES-

ORICS’09, pages 86–103, Berlin, Heidelberg, 2009. Springer-Verlag.

[41] Andrei Sabelfeld and Andrew C. Myers. Language-based information-

flow security. IEEE Journal on Selected Areas in Communications,

21(1):5–19, September 2006.

[42] Andrei Sabelfeld and David Sands. Declassification: Dimensions and

principles. J. of Computer Security, 17(5):517–548, October 2009.

[43] Fred B. Schneider. Enforceable security policies. ACM Transactions

on Information and System Security, 3(1):30–50, February 2000.

[44] Daniel Schoepe, Musard Balliu, Benjamin Pierce, and Andrei

Sabelfeld. Explicit secrecy: A policy for taint tracking. In Proceed-

ings of the 1st IEEE European Symposium on Security and Privacy,

EuroS&P’16, 2016.

126



BIBLIOGRAPHY

[45] David Sutherland. A model of information. In Proceedings of the 1986

National Computer Security Conference, pages 175–183, 1986.

[46] Chamseddine Talhi, Nadia Tawbi, and Mourad Debbabi. Execution

monitoring enforcement under memory-limitation constraints. Infor-

mation and Computation, 206(2-4):158–184, February 2008.

[47] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank

Piessens, and Tamara Rezk. Stateful declassification policies for event-

driven programs. In Proceedings of the 2014 IEEE 27th Computer

Security Foundations Symposium, pages 293–307, 2014.

[48] Mahesh Viswanathan. Foundations for the Run-time Analysis of Soft-

ware Systems. PhD thesis, University of Pennsylvania, 2000.

[49] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type

system for secure flow analysis. J. Comput. Secur., 4(2-3):167–187,

January 1996.

[50] Dante Zanarini and Mauro Jaskelioff. Monitoring reactive systems

with dynamic channels. In Proceedings of the 9th Workshop on

Programming Languages and Analysis for Security, PLAS’14, pages

66:66–66:78, 2014.

[51] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. Precise en-

forcement of confidentiality for reactive systems. In Proceedings of the

2013 IEEE 26th Computer Security Foundations Symposium, CSF ’13,

pages 18–32, 2013.

[52] Steve Zdancewic and Andrew C. Myers. Robust declassification. In

Proceedings of the 2001 IEEE Workshop on Computer Security Foun-

dations, CSFW ’01, page 15, 2001.

127


