
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

IMPLICIT HUMAN-COMPUTER

INTERACTION:
TWO COMPLEMENTARY APPROACHES

Julia Wache

Advisor:

Prof. Nicu Sebe
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Abstract

One of the main goals of Human Computer Interaction (HCI) is to improve

the interface between users and computers: interfacing should be effortless and

easy to learn. In this thesis, we pursue this goal, aiming to reduce the stress of

users and increase their wellbeing. We work on two different but complementary

approaches: (i) Automatic assessment of users inner psychological state, so as

to enhance computer-human interaction; and (ii) Information presentation in a

comprehensive manner, with no stress added by devices and applications when

delivering information. Not only computers should understand their users, but

also users should easily understand the information given by computers. For

the first approach we collected physiological and psychological data from peo-

ple exposed to emotional stimuli. We created a database, and made it freely

available to the community, for further use in research on automated detection

of the differences in the inner states of users. We employed the data for pre-

dicting both the emotional state of users and their personality traits. For the

second approach, we investigated two devices that intend to provide compre-

hensible feedback easily. First we discuss how to utilize a breathing sensor that

informs its users on their current physiological state and on how to decrease the

stress in daily life by adapting their breathing patterns. Here we investigated

general criteria on how to develop systems that are easily understandable. The

second device was a tactile belt. We analyze the belt as a solution that provides

comprehensive guidance information in navigation contexts, and that does not

require cognitive effort. The belt uses localized tactile stimulation to transmit

directional information. By employing the tactile sense it can augment or even

replace the information normally received through eyes and ears. Finally, we

discuss opportunities for future applications of our research, and conclude with

a summary of our contributions to HCI: transmitting information from humans

to machines and vice versa.
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Chapter 1

Introduction

In the past decades new technologies became a constant and important part of
human life being used in many areas of interest. The typical life and work style
of people have changed resulting in people spending more time interacting with
computers and other smart devices. To facilitate the experience and improve
the interaction with users, Human Computer Interaction (HCI) research aims
constantly at improving the interaction processes with new technologies.

Unlike those of computers, not all actions of humans are predictable or fol-
low logical rules; in fact one important factor of human behavior is emotion.
External cues from the environment as well as internal states induce emotions
that can have a substantial influence on the peoples experience and subsequent
actions. The information a computer system has on the assumed emotional sta-
tus of a user is mostly limited. Therefore, it is useful for a system to learn
from interactions with users and their behavior about their inner state and cur-
rent emotions. If the system is able to detect and understand human emotions
without forcing the user to explicitly name his or her emotions (e.g. by pro-
viding written feedback), the system can adapt then the consequent interactions
accordingly.

This chapter presents the outline of the approach and methods of the research
conducted throughout this thesis.
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1.1. RESEARCH APPROACHES

1.1 Research approaches

To enhance interactions between users and their computers two different aspects
are important: (1) enable computers to assess user’s differences automatically to
improve the understanding of their current inner state and (2) make technology
provide information in an easy accessible way that avoids stress and cognitive
overload of users.

1.1.1 Technology understanding humans

One important factor influencing human behavior is emotion. Emotions are
psychological phenomena but they also have an impact on physiological sig-
nals that can be measured and analyzed (e.g. [142]). Physiological changes are
induced by the Limbic System, the part of the brain controlling the autonomic
nervous system. The Limbic System is involved in emotional experience and
sensory input processing [72]. Hence, the current emotional state may influence
the perception of a situation and the corresponding behavioral actions of peo-
ple [134, 172]. Also further internal factors, such as personality, can have an
impact. Therefore one challenge for contemporary HCI systems is the ability
to understand the influence that factors like the personality traits or the environ-
ment have on the emotional state of a user and to use this information to predict
consequential behavioral actions. For example, in an e-learning scenario the
computer might adapt the shown content depending on how easy (boring) or
difficult (stressing) it is perceived by the user.

To investigate emotional states and what influences them, emotional videos
are preferably used because multimedia contents such as movies intend to in-
duce certain emotions in viewers to create a specific experience [176]. One way
to understand the current emotional state of users while watching emotional
stimuli is to interrupt the users and directly ask them for an evaluation. Newer
methods avoid interrupting the user. Instead they measure users’ implicit reac-
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CHAPTER 1. INTRODUCTION

tions in emotional situations and extract the affective state from the collected
data. One method is to record physiological responses and facial expressions
during exposure to emotional content [149, 89]. In this way we intend to solve
the first problem - automated emotion and personality recognition.

Successful applications could cover the area of computer games or learning
platforms where the user experience can be enhanced significantly when the
system decreases the stress level, hence, the negative emotions. These applica-
tions should avoid frustration and should increase their success by adapting the
speed and the difficulty of the tasks according to the users performance.

1.1.2 Humans understanding technology

The other side of an effective communication between humans and their techno-
logical devices is the ability to provide information in an easily understandable
way making the processing of data effortless for the users. In a world of increas-
ing information overload, people are often overwhelmed by the huge amount of
data to be processed. Most input is usually received over the visual and audi-
tory channels. In daily life people continuously encounter an endless stream
of sounds and images which can lead to cognitive overload resulting in less ef-
fective performance in current tasks [182]. To relieve the visual and auditory
senses, a further sense that can be employed for information input is the tactile
sense. The sense of touch is suitable to transmit simple information in a dis-
crete way, e.g. a mobile phone that vibrates to transmit information to its owner
without attracting attention from other people close by.

We analyze a tactile alternative to common output devices (visual displays,
loudspeakers, earphones) to provide precise information during navigational
tasks. As a direct application outside of the lab, tactile belts can, in combi-
nation with a smartphone, be used for navigation in unknown environments.
Current navigation aids are mostly based on audio or visual instructions. Nor-
mally navigating in a new environment requires eyes and ears to be focused on

3



1.2. RESEARCH METHODOLOGIES

the surroundings, e.g. in a urban area pedestrians need to attend to traffic and
evade obstacles or other people. The usage of tactile signals elegantly circum-
navigates an overload of the visual and auditory sensory modalities as it uses
the tactile sense to provide information. This can enhance the effective naviga-
tion for people requiring special assistance such as visually impaired or elderly
people, but it can also improve navigation experience for people engaged in ac-
tivities that require their hands (cyclists) or their eyes and ears to be free for
other tasks, for example athletes or tourists. In summary, tactile devices can be
applied in real world applications to facilitate information reception and under-
standing.

1.2 Research methodologies

When interacting with intelligent systems an important aspect is to take the
contextual situation of the user into account. Therefore, adapting the interaction
possibilities between computer and user according to the users mental state can
facilitate understanding between humans and machines.

In order to reach the goal of automated response to emotional states, the
emotions need to be detected first. Emotions are psychological phenomena but
they also have physiological concomitants that can be measured and analyzed
(e.g. [148]). The challenge is to accurately detect physiological changes caused
by affective responses and understand the dependencies between physiological
signals, the emotions and the personality of users.

To analyze the physiological reactions we need to induce similar emotions in
many people. This is exactly what multimedia contents such as movies intend to
do. They evoke certain emotions in viewers to create an enjoyable experience.
In fact, often the emotional experience stimulated is the aspect people value
when watching a movie [9].

Important aspects of the mental state are current emotions and personality
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CHAPTER 1. INTRODUCTION

traits. Emotions are correlated to implicit responses [105] but it is yet to investi-
gate in more depth how personality affects this relationship. Additionally, there
is an increasing need of easy information transfer from machines to humans to
avoid information overload. To achieve these goals we work on the following
problems:

1. We need to automatically detect the mental state of users such as emo-
tions and personality in order to improve interactions with intelligent systems.
Therefore, we correlate physiological signals to emotions and personality traits
and try predicting both, emotional states and personality traits, from those sig-
nals to understand how the goal of automated detection of inner states can be
achieved best.

2. The second problem is to find a good way to communicate information
to users and make it easily understandable. Information need to be transmitted
in a complex context even when eyes and ears are already occupied by other
tasks that require attention. We investigate whether tactile signals can over-
come limitations of attention and be used to transmit information intuitively.
We investigate how a tactile device in form of a belt can be best used to dis-
play information for navigation purposes and whether we can create an easy
understanding of directional indications to reduce the required mental effort in
orientation.

In the end we discuss how knowledge about the mental state and the per-
sonality of a user can be utilized by a system to provide information in a per-
sonalized way adapted to individual needs. We review how the results could be
applied to future applications.

1.3 Outline of the thesis

Our general goal is to improve the intuitiveness of new technological devel-
opments to make the interaction with them easier and more effective. There
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1.3. OUTLINE OF THE THESIS

are two complementary approaches that we address. To investigate the prob-
lems mentioned in the last section we developed and applied two main lines
of investigation. In Figure 1.1 we show a schematic overview of the thesis.
We highlight the two directions of communications in HCI with two different
colors. For each flow of information we indicate the sender, the type of infor-
mation provided, the supporting device (in grey), and the outcome that reaches
the receiver. In more detail we did the following:

Figure 1.1: This schema provides an overview about this thesis. The first part focuses on the
transfer of Information from Human to Computer, while the second part concentrates on the
transfer of information from technology to humans.

In the next two chapters we aim at better understanding the user. There-
fore, we investigate how to predict the inner mental state automatically, without
users’ having to actively provide information themselves, by measuring implicit
signals. We then use those to predict both, the affective state and the personality

6



CHAPTER 1. INTRODUCTION

traits.

We employ facial expressions and physiological signals, implicit signals, as
they are mostly unconscious and difficult to influence. Therefore, we use sen-
sors measuring their physiological changes while subjects watch multimedia
content that elicits different emotions. With pattern recognition and machine
learning approaches we then work on predicting emotions as well as personality
traits from the collected measurements. We conduct two main experiments ex-
plained in chapter 2 and 3 where we collect physiological data, train classifiers
to predict both, their affective reactions to emotional stimuli and personality
traits, and use correlation methods to understand their connections. Both chap-
ters are based on papers we published at respected conferences [1, 174]. From
the study in chapter 2 we additionally prepared a dataset that is under review to
be published for the community [173].

In the next project, we investigate how breathing can be used as an indicator
for physiological states such as stress (chapter 4). We work on developing a
sensor able to measure breath rates and an smartphone application to provide
useful feedback. We evaluate how it can be used as calming technology to
effectively reduce stress in users.

Finally we work on a use case investigating how to provide relevant infor-
mation to the users in an easily comprehensible way. For this scenario we de-
veloped a tactile belt as a navigation device. It provides feedback via a tactile
display to indicate directions. In chapter 5 we review the benefits of using tactile
signals and the advantages of the tactile belt as navigation device, in particular
for more challenged users such as the visually impaired. We investigate the
form of tactile feedback necessary to optimize understanding of the tactile sig-
nal. We perform a study to validate the prototype of the tactile belt and detect
differences in navigation performance for two different versions of displaying
directional information. Further we investigate performance changes of subjects
when under cognitive load.
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1.3. OUTLINE OF THE THESIS

In the last chapter (chapter 6) we discuss the results of our research and put
them in the context of possible applications. We conclude by summarizing our
contributions and pointing out the limitations of our research.
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Chapter 2

ASCERTAIN: A Multimodal Affective
Database for Personality Assessment

We present ASCERTAIN1 – a multimodal databaASe for impliCit pERsonaliTy

and Affect recognitIoN using commercial physiological sensors. To our knowl-

edge, ASCERTAIN is the first database to connect personality traits and emo-

tional states via physiological responses. ASCERTAIN contains big-five person-

ality scales and emotional self-ratings of 36 users along with their Electroen-

cephalogram (EEG), Electrocardiogram (ECG), Galvanic Skin Response (GSR)

and facial activity data, recorded using commercially available sensors while

viewing affective movie clips. We first examine relationships between users’

affective ratings and personality scales in the context of prior observations,

and then study linear and non-linear physiological correlates of emotion and

personality. Our analysis suggests that the emotion–personality relationship is

better captured by non-linear rather than linear statistics. We finally attempt bi-

nary emotion and personality trait recognition using physiological features. Ex-

1This chapter is mainly based on the following two papers: 1. Julia Wache, Ramanathan Subramanian, Mojtaba
Khomami Abadi, Radu-Laurentiu Vieriu, Nicu Sebe, and Stefan Winkler. Implicit User- centric Personality Recog-
nition Based on Physiological Responses to Emotional Videos. In Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, pages 239-246, 2015 [174]. 2. Julia Wache, Ramanathan Subramanian,
Mojtaba Khomami Abadi, Radu-Laurentiu Vieriu, Nicu Sebe, and Stefan Winkler. ASCERTAIN: A Multimodal
Affective Database for Personality Assessment. Submitted to IEEE Transactions on Affective Computing (TAC)
[173].
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2.1. INTRODUCTION

perimental results cumulatively confirm that personality differences are better

revealed while comparing user responses to emotionally homogeneous videos,

and above-chance recognition is achieved for both affective and personality di-

mensions.

2.1 Introduction

Despite rapid advances in Human-computer Interaction (HCI) and continuous
effort to improve user experience with computer systems, the need for systems
to recognize and adapt to the affective state of users has been widely acknowl-
edged. While affect is an important component influencing human behavior,
nevertheless it a highly subjective phenomenon that is influenced by contextual
and psychological factors including personality.

The personality–affect relationship has been actively studied ever since a
correlation between the two was proposed in Eysenck’s personality model [52].
Eysenck supposed that Extraversion, the personality dimension that describes a
person as either talkative or reserved, is accompanied by low cortical arousal,
i.e., extraverts require more external stimulation than introverts. His model also
proposed that neurotics, characterized by negative feelings such as anxiety, are
more sensitive to external stimulation and become easily upset or nervous due
to minor stressors.

Many affective studies have attempted to validate and extend Eyesenk’s find-
ings. Some have used explicit user feedback in the form of affective self-
ratings [127, 85], while others have measured physiological signals to acquire
implicit user responses such as Electroencephalogram (EEG) activity [154] and
heart rate [44]. However, few works have investigated affective correlates of
traits other than Extraversion and Neuroticism. Social psychology studies have
examined personality mainly via non-verbal social behavioral cues (see [171]
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Table 2.1: Summary of the ASCERTAIN database.

Number of Participants 36

Number of Videos 36

Video Length 51–128 seconds (µ±σ = 80 ± 20)

Self-reported ratings
Arousal, Valence, Engagement

Liking, Familiarity

Personality Scales
Extraversion, Agreeableness

Conscientiousness, Neuroticism, Openness

Physiological signals ECG, GSR, Frontal EEG, Facial features

for a review), but few works have modeled personality traits based on emotional
behavior.

To facilitate research on emotion recognition from physiological signals re-
searchers need large datasets comprising physiological and emotional data from
many subjects, but due to high cost of time, equipment and interdisciplinary
knowledge necessary to compile such datasets, there is only a limited number
available [149] and no currently published data set includes personality data.

We created the dataset ASCERTAIN2 which contains measures of Elec-
trocardiogram (ECG), Galvanic skin response (GSR), facial expressions and
Electroencephalography (EEG) in response to 36 affective video stimuli. This
work includes the first publicly available dataset that also includes personality
scores. It builds on [174] and examines the influence of personality differences
on users’ affective states. Hence, we investigate whether affective physiologi-
cal responses are indicative of users’ personality traits. ASCERTAIN contains
personality scores and emotional self-ratings of 36 users in addition to their
affective physiological responses (overview of the dataset in Table 2.1).

We utilize ASCERTAIN to (i) understand the relation between emotional at-

tributes and personality traits, and (ii) characterize both via users’ physiological

2Available at: http://mhug.disi.unitn.it/index.php/datasets/ascertain/
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responses.

We specifically designed a movie-based study as movie scenes effectively
evoke emotions [68, 1], and movie genres such as thriller, comedy or horror

are explicitly defined by the emotions they evoke. Also, different from existing
affective databases, ASCERTAIN comprises data recorded exclusively using
commercial sensors to ensure ecological validity and scalability of our frame-
work for profiling applications.

From the ASCERTAIN data, we first examine correlations among users’ va-
lence (V) and arousal (A) self-ratings and their personality dimensions. We
then attempt to isolate physiological correlates of emotion and personality. Our
analyses suggest that the relationships between emotional states and personality
traits are better captured by non-linear rather than linear statistics. Finally, we
present single-trial (binary) recognition of A,V and the big-five traits consider-
ing physiological responses observed over (a) all, and (b) emotionally homoge-

neous (e.g, high A, high V) clips. Superior personality recognition is achieved
for (b), implying that personality differences are better revealed on comparing
responses to emotionally similar stimuli. The salient aspects of ASCERTAIN
are:

1. To our knowledge, ASCERTAIN is the first physiological database that fa-
cilitates both emotion and personality recognition. In social psychology,
personality traits are commonly modeled via questionnaires or social be-
havioral cues. Instead, this is one of the first works to assess personality
traits via affective physiological responses (the only other work similar to
ours is [1]).

2. Different from popular recent affective computing databases such as the
DEAP [89], MAHNOB [149] and DECAF [3] databases, we use wear-

able, off-the-shelf sensors for physiological recordings. This enhances
the ecological validity of the ASCERTAIN framework, and above-chance
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recognition of emotion and personality confirms its utility and promise for
commercial applications.

3. We present interesting insights concerning correlations among affective
and personality attributes. Our analyses suggest that the emotion–personality
relationship is better captured via non-linear statistics. Also, personality
differences are better revealed on comparing user responses to emotion-
ally similar videos (or more generally, under similar affect inducement).

The chapter is organized as follows– Section 2.2 reviews related literature
to motivate the need for ASCERTAIN, while Section 2.3 explains the materi-
als and methods employed for data compilation. Section 2.4 presents descrip-
tive statistics, while correlations among users’ affective ratings and personal-
ity dimensions are analyzed in Section 2.5. Section 2.6 details physiological
correlates of emotion and personality, while Section 2.7 presents recognition
experiments. Section 2.8 discusses the correlation and recognition results, and
Section 2.9 concludes the chapter with key observations.

2.2 Related Work

This section reviews related work focusing on (a) multimodal affect recognition,
(b) personality assessment and (c) the personality–affect relationship.

Emotions are an important factor in human life. Any behaviour and envi-
ronmental stimulus may cause these psychological effects in us and influences
our interpretation of the environment and our consequent behaviour. Emotional
intelligence, the capability to recognize and understand affective states of the
person we are communicating with, is of great importance for our success in so-
cial interaction and therefore in life in general. The capability of understanding
emotions that comes naturally to most people is very difficult to implement in
the current intelligent systems [131]. During the last decades emotions became
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an increasingly interesting topic in research. So far many studies investigated
how emotions are induced through speech and several algorithms were devel-
oped to analyse emotional content in speech [48] and were integrated in speech
recognition systems e.g. in robots [137]. Also the use of images to induce emo-
tions has been widely studied [143] and research investigating the emotional
responses to videos are steadily increasing.

2.2.1 Emotion Theories

In order to understand the phenomenon of feelings, emotion theories have been
developed to build hypotheses and run experiments. Mainly two concepts are
used today. One classifies emotions in six distinct universal groups [47]: hap-
piness, sadness, anger, fear, surprise and disgust. Each of these basic emotions
has a unique facial expression that can be easily detected [53]. For continuous
measurements it is more common to use the dimensional concept of emotion.
Already in the late 19th century Wundt [185] proposed that emotions could be
classified along three dimensions: pleasure, arousal and dominance. To assess
the emotions evoked by different stimuli often a technique based on the model
of Russell is used [141]. Using this, subjects have to generate 18 ratings for
bipolar adjective pairs (e.g. bored-relaxed). To save time and effort the subjects
can directly rate arousal (calm-excited) and the valence (unpleasant-pleasant)
leading to the same results [21] which can be displayed on a two-dimensional
plane with the two axes valence (miserable-pleased) and arousal (sleepiness-
aroused).

2.2.2 Physiological responses

To capture stress and emotions some studies have been done with multi-modal
emotion recognition systems using facial expressions [145]. Even if facial ex-
pressions are closely correlated to emotions they can be controlled consciously
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and are therefore not completely reliable. Additionally, the face mainly dis-
plays the conscious aspect of an emotion. Physiological reactions caused by
the peripheral nervous system are unconscious and cannot easily be controlled
willingly. Signals that effectively encode emotions are for example: Electro-
cardiogram (ECG) measuring the heart activity, Electroencephalogram (EEG)
measuring the electrical activity of the brain through the scalp, and galvanic
skin conductance (GSR) measuring the electrical conductance of the skin [96].
Lisetti and Nasoz [105] review the technologies for capturing physiological sig-
nals that are associated with emotions using wearable devices. They use GSR,
heart rate and temperature to predict emotions with different algorithms.

2.2.3 Multimodal affect recognition

As emotions are conveyed by content creators using multiple means (audio,
video), and expressed by humans in a number of ways (facial expressions,
speech and physiological responses), many affect recognition (AR) methods
employ a multimodal framework. Common content-based modalities employed
for AR include audio [14, 15, 98], visual [109, 191, 132] and audio-visual
[30, 60, 144]. Recent AR methodologies have focused on monitoring user be-
havior via the use of physiological sensors (see [177] for a review). Emotions
induced by music clips are recognized via heart rate, muscle movements, skin
conductivity and respiration changes in [86]. Lisetti and Nasoz [105] use GSR,
heart rate and temperature signals to recognize emotional states. As part of the
HUMAINE project [46], three naturalistic and six induced affective databases
containing multimodal data (including physiological signals) are compiled from
8–125 participants.

Koelstra et al. [91] analyze blood volume pressure, respiration rate, skin tem-
perature and Electrooculogram (EOG) patterns for recognizing emotional states
induced by 40 music videos. MAHNOB-HCI [149] is a multimodal database
containing synchronized face video, speech, eye-gaze and physiological record-
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ings from 27 users. Abadi et al. [1] study Magnetoencephalogram (MEG), Elec-
tromyogram (EMG), EOG and ECG responses from users for music and movie
clips, and conclude that better emotion elicitation and AR are achieved with
movie clips.

2.2.4 Personality recognition

The big-five or five-factor model [40] describes human personality in terms of
five dimensions– Extraversion (sociable vs reserved), Neuroticism or the degree
of emotional stability (nervous vs confident), Agreeableness (compassionate vs
dispassionate), Conscientiousness (dutiful vs easy-going) and Openness (curi-

ous/creative vs cautious/conservative).
A comprehensive survey of personality computing approaches is presented

in [171]. The traditional means to model personality traits are questionnaires
or self-reports. Argamon et al. [7] use lexical cues from informal texts for
recognizing Extraversion (Ex) and Neuroticism (Neu). Olguin et al. [129] and
Pineda et al. [5] show that non-verbal behavioral measures acquired using a so-
ciometric badge such as the amount of speech and physical activity, number of
face-to-face interactions and physical proximity to other objects is highly cor-
related with personality. Much work has since employed non-verbal behavioral
cues in social settings for personality recognition including [100], where Ex

is recognized using speech and social attention cues in round-table meetings,
while [159, 192] predict Ex and Neu from proxemic and attention cues in party
settings.

Among works that have attempted recognition of all five personality fac-
tors, Mairesse et al. [112] use acoustic and lexical features, while Staiano et

al. [153] analyze structural features of individuals’ social networks. Srivas-
tava et al. [152] automatically complete personality questionnaires for 50 movie
characters utilizing lexical, audio and visual behavioral cues. Brouwer et al. [22]
estimate personality traits via physiological measures, which are revealed sub-
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consciously and more genuinely (less prone to manipulation) than questionnaire
answers. In a gaming-based study, they observe a negative correlation between
(i) heart rate and Ex, and (ii) skin-conductance and Neu.

2.2.5 Personality-Affect relationship

The relationship between personality and affect has been extensively examined
in social psychology [183], but not in a computational setting. Eysenck’s sem-
inal personality theory [52] posits that extraverts require more external stimu-
lation than introverts, and that neurotics are aroused more easily. Many studies
have since studied the personality–affect relationship by examining explicit or
implicit user responses. Personality effects on brain activation related to valence
(V) and arousal (A) is investigated in [85], which concludes that Neu correlates
negatively with positive V, and positively with A. In an EEG-based study [154],
a negative correlation is observed between Ex and A, while a positive correla-
tion is noted between Neu and A especially for negative valence stimuli.

The impact of personality traits on affective user ratings is studied using path
analysis in [163]. Feedback scores from 133 students are analyzed in [127] to
conclude that neurotics experience positive emotions similar to emotionally sta-
ble counterparts in pleasant situations, even though they may experience nega-
tive emotions more strongly. Event-related potentials and heart rate changes are
studied in [44] to confirm a positive correlation between Neu and A for negative
stimuli, while a signal-detection task is used in [70] to suggest that extraverts
are generally less aroused than introverts. Brumbaugh et al. [27] examine cor-
relations among the big-five traits, and find Ex and Neu to be associated with
increased A while viewing negative videos. Abadi et al.[3] attempt recognition
of the big-five traits from affective physiological responses, and our work is
most similar to theirs in this respect. Nevertheless, we consider user responses
to a larger stimulus set in this work (36 clips vs 16 in [3]), and show superior
personality trait recognition on comparing physiological responses to emotion-
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ally homogeneous clips.

2.2.6 Spotting the research gap

Examination of related literature reveals that AR methodologies are increas-
ingly becoming user-centric instead of content-centric, suggesting that emo-
tions better manifest via human behavioral cues rather than multimedia content-
based (typically audio, visual and speech-based) cues. Nevertheless, the influ-
ence of psychological factors such as personality on emotional behavior has
hardly been examined, in spite of prior work suggesting that personality affects
one’s (i) feelings [183, 104], (ii) emotional perception [85, 154] and (iii) multi-
media preferences [93, 146].

Motivated by the above findings and the lack of publicly available data sets
positioned at the intersection of personality and affect, we introduce ASCER-
TAIN, a multimodal corpus containing physiological recordings of users view-
ing emotional videos. ASCERTAIN allows for inferring both personality traits
and emotional states from physiological signals. We record GSR, EEG, ECG
signals using wearable sensors, and facial landmark trajectories (EMO) using
a web-camera. In the light of recent technological developments, these signals
can be acquired and analyzed instantaneously. Also, Wang and Ji [177] advo-
cate the need for less intrusive sensors to elicit natural emotional behavior from
users. Use of wearable sensors is critical to ensure the ecological validity, re-
peatability and scalability of affective computing studies, which are typically
conducted in controlled lab conditions and with small user groups.

Table 2.2 presents an overview of publicly available user-centric AR datasets.
Closest to ASCERTAIN is the dataset of Abadi et al. [3], in which the authors
use both movie and music clips to elicit emotions. In contrast, we record our
signals using affordable sensors and provide personality annotations in addition
to emotional responses. Apart from being one of the largest datasets in terms
of the number of participants and stimuli examined for analysis, ASCERTAIN
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Table 2.2: Comparison of user-centered affective databases. We point out the number of sub-
jects (N), the number of stimuli, the type of recorded signals and the annotations collected. ’var’
denotes variable.

Name N Stimuli Recorded signals
Annotations

Comments
Affect Personality

HUMAINE
[46]

var var audio, visual, physi-
ological

yes no includes 6 sub-collections
(some non-public)

DEAP [89] 32 40 physiological yes no focus on music videos
DECAF [3] 30 76 face, physiological yes no compares music and movie

clips
MAHNOB-
HCI [149]

27 20 face, audio, eye
gaze, physiological

yes no includes video and image
stimuli

ASCERTAIN 36 36 face, physiological yes yes connects emotion and per-
sonality

is also the first database to facilitate the investigation of the personality–affect
relationship.

2.3 ASCERTAIN Overview

Figure 2.1 presents an overview of the ASCERTAIN framework and a summary
of the compiled data is provided in Table 2.1. To study the personality–affect
relationship, we recorded users’ physiological responses as they viewed the af-
fective movie clips used in [2]. Additionally, their explicit feedback, in the form
of arousal, valence, liking, engagement and familiarity ratings, were obtained
on viewing each clip. Finally, personality measures for the big-five dimensions
were also compiled using a big-five marker scale (BFMS) questionnaire [133].
We now describe (1) the procedure adopted to compile users’ emotional rat-
ings, personality measures and physiological responses, and (2) the physiologi-
cal features extracted to measure users’ emotional responses.
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Figure 2.1: ASCERTAIN study overview.

2.3.1 Materials and Methods

Subjects: 36 university students (12 female, mean age = 29.2) from various
countries participated in the study. All subjects were fluent in English and were
habitual Hollywood movie watchers.

Materials: One PC with two monitors was used for the experiment. One
monitor was used for video clip presentation at 1024× 768 pixel resolution
with 60 Hz screen refresh rate, and was placed roughly one meter before the
user. The other monitor allowed the experimenter to verify the recorded sensor
data. Following informed consent, physiological sensors were positioned on
the user’s body as shown in Figure 2.2(a). The GSR sensor was tied to the left
wrist, and two electrodes were fixed to the index and middle finger phalanges.
Two measuring electrodes for ECG were placed at each arm crook, with the
reference electrode placed at the left foot. A single dry-electrode EEG device
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was placed on the head like a normal headset, with the EEG sensor touching the
forehead and the reference electrode clipped to the left ear. EEG data samples
were logged using the Lucid Scribe software, and all sensor data were recorded
via bluetooth. A webcam was used to record facial activity. Synchronized data
recording and pre-processing were performed using MATLAB Psychtoolbox3.

Figure 2.2: Participant with sensors (EEG, ECG and GSR visible) during the experiment (left)
and timeline for each trial (right).

Protocol: Each user performed the experiment in a session lasting about 90
minutes. Viewing of each movie clip is denoted as a trial. After two practice
trials involving clips that were not part of the actual study, users watched movie
clips randomly shown in two blocks of 18 trials, with a short break in-between
to avoid fatigue. In each trial (Figure 2.2b), a fixation cross was displayed for
four seconds followed by clip presentation. On viewing each clip, users self-
reported their emotional state in the form of affective ratings within a time limit
of 30 seconds. They also completed a personality questionnaire after the exper-
iment.

Stimuli: We adopted the 36 movie clips used in [2] for our study. These clips
are between 51–127 sec long (µ =80, σ =20), and are shown to be uniformly
distributed (9 clips per quadrant) over the arousal-valence (AV) plane.

3http://psychtoolbox.org/
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Affective ratings: For each movie clip, we compiled valence (V) and arousal
(A) ratings reflecting the user’s affective impression. A 7-point scale was used
with a -3 (very negative) to 3 (very positive) scale for V, and a 0 (very boring) to
6 (very exciting) scale for A. Likewise, ratings concerning engagement (Did not

pay attention – Totally attentive), liking (I hated it – I loved it) and familiarity
(Never seen it before – Remember it very well) were also acquired. Mean user
V,A ratings for the 36 clips are plotted in Figure 2.3(b), and are color-coded
based on the ground-truth ratings from [2]. Ratings form a ’C’-shape in the AV
plane, consistent with prior affective studies [89, 2].

Personality scores: Participants also completed the big-five marker scale (BFMS)
questionnaire [133] which has been used in many personality recognition works [192,
100, 159]. Scale distributions for the big-five traits are shown in Figure 2.3(b).

(a) (b)

Figure 2.3: (a) Mean Arousal-Valence (AV) ratings for the 36 movie clips used in our experi-
ment and (b) Box-plots showing distribution of the big-five personality trait scores for 36 users.
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2.3.2 Physiological feature extraction

We extracted physiological features corresponding to each trial over the final
50 seconds of stimulus presentation, owing to two reasons: (1) The clips used
in [3] are not emotionally homogeneous, but are more emotional towards the
end. (2) Some employed features (see Table 2.3) are nonlinear functions of
the input signal length, and fixed time-intervals needed to be considered as the
movie clips were of varying lengths. Descriptions of the physiological signals
examined in this work are as follows.

Table 2.3: Extracted features for each modality (feature dimension stated in parenthesis). Statis-
tics denote mean, standard deviation (std), skewness, kurtosis of the raw feature over time, and
% of times the feature value is above/below mean±std.

Modality Extracted features

ECG (32) Ten low frequency ([0-2.4] Hz) power spectral densities (PSDs),
four very slow response ([0-0.04] Hz) PSDs, IBI, HR and HRV
statistics.

GSR (31) Mean skin resistance and mean of derivative, mean differential for
negative values only (mean decrease rate during decay time), pro-
portion of negative derivative samples, number of local minima in
the GSR signal, average rising time of the GSR signal, spectral
power in the [0-2.4] Hz band, zero crossing rate of skin conductance
slow response ([0-0.2] Hz), zero crossing rate of skin conductance
very slow response ([0-0.08] Hz), mean SCSR and SCVSR peak
magnitude

Frontal EEG
(88)

Average of first derivative, proportion of negative differential sam-
ples, mean number of peaks, mean derivative of the inverse channel
signal, average number of peaks in the inverse signal, statistics over
each of the 8 signal channels provided by the Neurosky software

EMO (72) Statistics concerning horizontal and vertical movement of 12 motion
units (MUs) specified in [80].
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Galvanic Skin Response (GSR): GSR measures transpiration rate of the skin.
When two electrodes are positioned on the middle and index finger phalanges
and a small current is sent through the body, resistance to current flow changes
with the skin transpiration rate. Most of the GSR information is contained in
low-frequency components, and the signal is recorded at 100 Hz sampling fre-
quency with a commercial bluetooth sensor. Following [86, 89, 149], we ex-
tracted 31 GSR features listed in Table 2.3.

Electroencephalography (EEG): EEG measures small changes in the skull’s
electrical field produced by neural activity, and information is encoded in the
EEG signal amplitude as well as in certain frequency components. We used a
commercial, single dry-electrode EEG sensor4, which records eight informa-
tion channels sampled at 32 Hz. The eight channels are respectively raw EEG,
attention and meditation level, alpha, beta, delta, gamma and theta components.
The recorded information includes frontal lobe activity, level of facial activa-
tion, eye-blink rate and strength, which are relevant emotional responses.

Electrocardiogram (ECG): Heart rate characteristics have been routinely used
for user-centered emotion recognition. We performed R-peak detection on the
ECG signal to compute users’ inter-beat intervals (IBI), heart rate (HR), and the
heart rate variability (HRV). We also extracted power spectral density (PSD) in
low frequency bands as in [86, 149].

Facial landmark trajectories (EMO): A facial feature tracker [80] was used
to compute displacements of 12 interest points or motion units (MU) in each
video frame. We calculated 6 statistical measures for each landmark to obtain a
total of 72 features (Table 2.3).

4www.neurosky.com
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2.3.3 Data Quality

Figure 2.4: Bar plot showing proportion of trials for which data quality ranges from best (1) to
worst (5).

A unique aspect of ASCERTAIN with respect to prior affective databases is
that physiological signals are recorded using commercial and minimally inva-
sive sensors that allow body movement of participants. However, it is well
known that body movements can degrade quality of the recorded data, and such
degradation may be difficult to detect using automated methods. Therefore, we
plotted the recorded data for each modality and trial, and rated the data quality
manually on a scale of 1 (good data)–5 (missing data). For ECG, we evaluated
the raw signal from each arm as well as the R-peak amplitudes. For GSR, we
examined the extent of data noise, and rated EEG (i) on the raw signal, (ii) by
summarizing the quality of δ (< 4 Hz), θ (4–7 Hz), α (8–15 Hz), β (16–31
Hz) and γ (> 31 Hz) frequency bands, and (iii) on the pre-calculated attention

and meditation channels available as part of the EEG data. Plots and tables with
explanations on data quality are available with the dataset. Figure 2.4 presents
an overview of the data quality for the four considered modalities, with the pro-
portion of trials for which the quality varies from 1–5 highlighted. About 70%
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of the recorded data is good for all modalities except EEG, with the facial video
data being the cleanest. Maximum missing data is noted for EEG, reflecting the
sensitivity of the EEG device to head movements.

2.4 Descriptive Statistics

In this section, we present statistics relating to user self-reports and personality
scores.

2.4.1 Analysis of Self-ratings

As mentioned previously, we selected 36 movie clips such that their emotional
ratings were distributed uniformly over the AV plane as per ground-truth rat-
ings in [1], with 9 clips each corresponding to the HAHV (high arousal-high
valence), LAHV (low arousal-high valence), LALV (low arousal-low valence)
and HALV (high arousal-low valence) quadrants5. The targeted affective state
was mostly reached during the ASCERTAIN study as shown in Figure 2.3(a). A
t-test revealed significantly higher A ratings for HA as compared to LA stimuli
(t(34) = 5.8889, p < 0.0001). Similarly, V ratings for HV and LV clips were
significantly different (t(34) = 17.9621, p < 0.0001). Overall, emotion elici-
tation was more consistent for valence as compared to arousal like also found
by prior works [1, 89]. Emotion elicitation was easier for the valence dimen-
sion than for the arousal one. This is due to the fact that it is hard to induce
strong emotional responses while keeping a low level of arousal. This effect is
visible from the C-shape the clip ratings form in the AV plane (Figure 2.3a) be-
ing consistent with previous studies [89]. In Figure 2.5 the rating distributions
are separated for each quadrant. While HV and LV video ratings are clearly
separated, HA and LA have some overlap.

5For consistency’s sake, quadrant-wise video labels derived based on ratings from [3] are used in this work.
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Figure 2.5: Boxplots of the mean Arousal, Valence, Engagement, Liking and Familiarity ratings
for the different video sets.

We computed agreement among participants’ A,V ratings using the Krip-
pendorff’s alpha metric– mean agreement for A and V were respectively found
to be 0.11 and 0.61, implying more consensus for clip valence as for arousal.
We then computed the agreement between the ASCERTAIN population and the
DECAF [3] groundtruth using the Cohen’s Kappa measure. To this end, we
computed the agreement between ground-truth (GT) labels from [1] and each
user’s A,V labels assigned as high/low based on the mean rating– the mean
agreement over all users for A and V was found to be 0.22 and 0.72 respec-
tively. Finally, we computed the agreement between GT and the ASCERTAIN
population based on the mean A,V rating of all users– here, an agreement of
0.89 was observed for A and perfect agreement (of 1) was noted for V. Overall,
these measures suggest that while individual-level differences exist in affective
perception of the movie clips, there is high agreement between overall assess-
ments of the ASCERTAIN and DECAF populations implying that the consid-
ered movie clips are effective for emotion elicitation.

Figure 2.5 presents box-plots describing the distribution of the arousal (A),
valence (V), engagement (E), liking (L) and familiarity (F) user ratings for
quadrant-based videos. Clearly, low-arousal videos are perceived as more ’neu-
tral’ in terms of A and V, which leads to the ’C’-shaped distribution in Fig-
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ure 2.3(a). All videos are perceived as sufficiently engaging, while HV clips
are more liked than LV clips. Also, the presented movie clips were not very
conversant to participants, suggesting that the ASCERTAIN results are overall
unlikely to be modulated by familiarity biases.

2.4.2 Correlating Affective Ratings and Personality Scales

To examine relationships between the different user ratings, we computed Pear-
son correlations among self-reported attributes as shown in Table 2.4. Since
the analysis involves attribute ratings provided by 36 users for 36 clips, we ac-
counted for multiple comparisons by limiting the false discovery rate (FDR) to
within 5% using the procedure outlined in [16]. Highlighted numbers denote
correlations found to be significant over at least 9 users (25% of the population)
adopting the above methodology.

Focusing on significant correlations, A is moderately correlated with E and L
and there also exists a moderate correlation between E and L. Also, V is found
to correlate strongly with L mirroring the observations of Koelstra et al. [89].
Correlations between F and E, as well as between F and L confirm the mere
exposure effect observed in [20], which attributes liking to familiarity. Nev-
ertheless, different from [89] with music videos where a moderate correlation
is noted between A and V ratings, we notice that the A and V dimensions are

Table 2.4: Mean Pearson correlations between self-ratings across users. *s denote significant
correlations (p < 0.05) upon limiting FDR to 5%.

A V E L F

Arousal 1 0.04 0.40* 0.21* 0.17
Valence 1 0.21 0.69* 0.18
Engagement 1 0.44* 0.27*
Liking 1 0.37*
Familiarity 1
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Table 2.5: Pearson correlations between personality dimensions (*⇒ p < 0.05)

E A Co ES O

Extraversion 1 0.49* 0.13 -0.02 0.45*
Agreeableness 1 0.10 0.34* 0.35*
Conscientiousness 1 0.29 0.15
Emotional Stability 1 -0.07
Openness 1

uncorrelated for the ASCERTAIN study, which again reinforces the utility of
movie clips as good control stimuli. To validate our experimental design, we
tested for effects of video length on A,V ratings but did not find any.

Table 2.5 presents Pearson correlations between personality dimensions. Again
focusing on significant correlations, moderately strong and positive correlations
are noted between Extraversion (Ex) and Agreeableness (Ag), as well as be-
tween Ex and Openness (O)– prior studies have noted that Ex and O are corre-
lated via the sensation seeking construct [6]. Ag is also found to moderately and
positively correlate with Emotional Stability (ES) and O. Conversely, the least
correlations are observed between (i) Ex and O, and (ii) ES and O.

Partial correlations between self-rated and personality attributes are tabu-
lated in Table 2.6. No significant correlation is noted between personality scales
and mean user emotional ratings acquired for all movie clips, but some signifi-
cant correlates are nevertheless observed when mean ratings for quadrant-wise
(or emotionally similar) videos are considered. Focusing on significant cor-
relates, Ag is positively correlated with L, but negatively with V ratings for
HAHV videos. Surprisingly, a negative correlation is noted between O and E
for LAHV clips. Consistent with prior studies [39], V is positively correlated
with Ex in general, with a significant and moderately positive correlation noted
for LALV clips. Finally, a moderately negative correlation is observed between
mean Valence ratings and ES for LALV clips consistent with the observations
made in [127].
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Table 2.6: Partial correlations between personality scales and self-ratings (*⇒ p < 0.05).

Ex Ag Co ES O

All

Arousal 0.03 -0.19 0.06 -0.15 0.04

Valence 0.25 -0.06 -0.06 -0.28 0.07

Engage -0.25 -0.09 0.15 -0.07 -0.21

Liking -0.16 0.23 -0.15 0.30 0.12

HAHV

Arousal -0.01 -0.10 -0.08 -0.03 0.03

Valence -0.26 -0.38* -0.06 -0.07 -0.18

Engage -0.13 0.19 0.22 0.03 -0.05

Liking 0.31 0.35* 0.00 0.12 0.21

LAHV

Arousal 0.10 0.01 0.09 -0.19 0.14

Valence 0.02 0.09 0.01 -0.16 0.06

Engage -0.27 0.05 -0.11 -0.09 -0.37*

Liking 0.12 -0.08 0.07 0.14 0.25

LALV

Arousal 0.05 -0.26 0.05 -0.27 0.03

Valence 0.40* -0.04 -0.05 -0.39* 0.04

Engage -0.10 -0.14 0.09 -0.26 -0.10

Liking -0.26 0.18 -0.15 0.30 0.11

HALV

Arousal 0.15 -0.15 -0.07 -0.10 -0.03

Valence 0.25 -0.02 -0.11 -0.19 0.10

Engage -0.24 -0.23 0.12 -0.02 -0.17

Liking -0.29 0.22 -0.25 0.26 -0.07

We also performed linear regression analyses with user self ratings as predic-
tors and personality attributes as the target variables for the different video sets,
and the coefficients of determination/squared correlations (R2) for the different
video sets are presented in Table 2.7. R2 values with the three best predictors
along with the predictor names are listed outside parentheses, while squared cor-
relations with the full model are listed within braces. It is easy to observe from
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Table 2.7: R2 and best three predictors for the five personality dimensions. Full model coeffi-
cients are shown in parentheses. *⇒ p < 0.05.

Ex Ag Co ES O

All
0.11 (0.11) 0.09 (0.10) 0.06 (0.07) 0.13 (0.13) 0.06 (0.07)

V,E,L A,E,L V,E,L A,V,L V,E,L

HAHV
0.11 (0.11) 0.19* (0.19) 0.05 (0.05) 0.01 (0.02) 0.05 (0.05)

V,E,L V,E,L A,V,E A,V,L V,E,L

LAHV
0.08 (0.08) 0.01 (0.01) 0.03 (0.03) 0.09 (0.10) 0.20* (0.20)

A,E,L V,E,L A,E,L A,V,L A,E,L

LALV
0.20* (0.20) 0.11 (0.11) 0.05 (0.05) 0.16 (0.21) 0.03 (0.03)

V,E,L A,E,L A,E,L A,V,L V,E,L

HALV
0.14 (0.16) 0.16 (0.16) 0.15 (0.16) 0.07 (0.07) 0.06 (0.06)

V,E,L A,E,L V,E,L A,V,L V,E,L

the table that (i) there is little difference in the predictive power of the best-
three-predictor and full models, and (ii) the linear models have rather limited
predictive power, with the best models explaining only 20% of the personality
scale variance. Overall, Tables 2.6 and 2.7 cumulatively suggest that the rela-
tionship between emotional and personality variables is not well modeled using
linear statistics, and it is perhaps worthwhile to explore the use of non-linear
measures to this end. Also, given the significance of the relationship between
emotional (A,V) attributes and personality dimensions, and the high degree of
correlation between E,L and A,V ratings, we will only focus on arousal and
valence in the rest of the chapter.

2.4.3 Mutual Information Analysis

Mutual information (MI) is a popular metric to capture non-linear relationships
between two random variables, and measures how much information is known
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about one variable given the other. Formally, the MI between two random vec-
tors X = {x} and Y = {y} is defined as:
MI(X ,Y ) = ∑x,y PXY (x,y)log PXY (x,y)

PX(x).PY (y)
where pXY (x,y) is the joint probability

distribution, while PX(x) and PY (y) are the respective marginal probabilities.
We attempted to describe the relationship between emotional ratings and per-
sonality scales via the normalized mutual information (NMI) index [158] de-
fined as: NMI(X ,Y ) = MI(X ,Y )√

(H(X)H(Y ))
, where H(X) and H(Y ) denote entropies of

X and Y .

Figure 2.6: NMI between big-five trait scales and A (left), V (right) ratings.

Computed NMI values with personality scales for arousal and valence rat-
ings are shown in Figure 2.6. In contrast to linear measures, both A and V share
a high degree of mutual information with all the five personality traits. While
considering all the movie clips, MI is generally higher for A as compared to V.
Among personality traits, Conscientiousness (Con) and Ex share the most MI
with affective attributes (note that in contrast, little correlation is observed be-
tween Con and A,V in Table 2.6), while lowest MI is noted for Openness. For
both A and V, higher MI with personality dimensions is noted when ratings for
quadrant-based videos are considered instead of all movie clips. One notable
difference exists between A and V though– higher MI with arousal is noted
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for high V as compared to low V videos. In contrast, for all personality traits
barring Ag, greater MI with valence is observed for LV clips than for HV clips.

2.5 Personality measures vs user ratings

We now examine the relationship between user V,A ratings and personality
scales in the context of hypotheses (H1–H4) put forth in the literature. To this
end, we determined high/low trait groups (e.g., emotional stable vs neurotic) for
each personality dimension by dichotomizing personality measures based on the
median score– this generated balanced high and low sets for three traits, with an
imbalanced split (19 vs 17) obtained for Conscientiousness and Openness. We
then proceeded to analyze the affective ratings for each group.

Figure 2.7: Quadrant-wise comparisons of A ratings by Neurotic and Emotionally Stable groups
(left), Agreeable and Disagreeable groups (right).
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2.5.1 H1: Extraversion vs Arousal and Valence

The correlation between Extraversion and arousal has been investigated in many
studies – EEG measurements in [154], signal detection analysis in [70], and
fMRI [85] have shown lower arousal in extraverts as compared to introverts,
consistent with Eyesenck’s personality theory. Also, Extraversion has been
found to correlate with positive valence in a number of works [39].

Analyses presented in Table 2.6 reveal a very weak positive correlation be-
tween Ex and A. While two-tailed t-tests showed that both extraverts and intro-
verts rated high A and low A videos differently (p < 0.00001 in both cases), no
differences in A ratings could be identified between the two groups considering
either all or quadrant-based movie clips. Focusing on V ratings, a generally
positive correlation between Ex and V can be noted for all video sets with the
exception of HAHV clips. A significant positive correlation is however noted
only for negative (LALV) videos. Therefore, while statistical analyses do not
support the negative correlation between Ex and A, they weakly corroborate the
positive correlation between Ex and V.

2.5.2 H2: Neuroticism vs Arousal

The relationship between Neu and A has been extensively studied and com-
mented on– a positive correlation between Neu and A is revealed through fMRI
responses [85], and EEG analysis [154] reinforces this observation especially
for negative valence stimuli. [127] further remarks that neurotics experience
negative emotions stronger than emotionally stable persons.

A ratings provided by the neurotic and ES groups were found to be sig-
nificantly different for low-arousal clips as confirmed by a left-tailed t-test
(t(34) = −1.9555, p = 0.0294). Quadrant-wise distributions of A ratings for
the ES and neurotic groups are presented in Figure 2.7 (left). Neurotics are gen-
erally found to experience slightly higher arousal than ES counterparts. Left-
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tailed t-tests confirmed that neurotics provided significantly higher A ratings for
LALV (t(16) = −1.7606, p = 0.0487) clips, and marginally higher A ratings
for LAHV (t(16) = −1.7349, p = 0.0510) and HAHV (t(16) = −1.5410, p =

0.0714) stimuli. In general, our analyses support the observation that Neuroti-
cism is associated with higher A, with the effect being more pronounced for LA
videos.

2.5.3 H3: Neuroticism vs Valence

Differing observations have been made regarding the relationship between Neu

and V. A negative correlation between Neu and positive valence is observed
in [85], while a positive relationship between the two for low arousal stimuli is
noted in [163]. [127] remarks that the Neu-V relation is moderated by situation–
while neurotics may feel less positive in unpleasant situations, they experience
positive emotions as strongly as ES subjects in pleasant conditions.

Comparing V ratings of the neurotic and ES groups, very similar V ratings
are noted for high/low V clips. Quadrant-wise comparisons also failed to reveal
any differences. Overall, no definitive relationship was noted between between
Neu and V.

2.5.4 H4: Openness vs Valence and Arousal

Among the few works to study Openness, [163] notes a positive correlation be-
tween Openness and valence under low arousal conditions, which is attributed
to the intelligence and sensitivity of creative individuals6, enabling them to bet-
ter appreciate subtly emotional stimuli. Right-tailed t-tests to compare V ratings
of the open and closed groups failed to reveal any differences. Quadrant-based
comparisons showed that open individuals experienced slightly higher V for
LAHV clips (t(16) = 1.3737, p = 0.0942).

6Creativity strongly correlates with Openness [119].
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No significant difference was noted in the A ratings of open and closed sub-
jects for HA and LA videos. For fine-grained analysis, we again used left-tailed
t-tests considering quadrant-wise ratings, which revealed that closed individu-
als experienced slightly higher arousal for HALV clips (t(16) = −1.3499, p =

0.0979). In summary, we observed a slightly positive relationship between
Openness and A,V as noted in [163].

2.5.5 Agreeableness and Conscientiousness

Quadrant-wise comparison of A ratings by agreeable and disagreeable groups
(Figure 2.7(b)) revealed that disagreeable subjects felt more aroused by HALV
(t(16) = −2.0811, p = 0.0269) and by LALV (t(16) = −1.8003, p = 0.0453)
clips. The fact that disagreeable persons felt more aroused by low-valence clips
could possibly be attributed to their association with negative feelings such as
deceit and suspicion.

Conscientiousness scale differences did not significantly influence the VA
ratings in any manner.

2.6 Physiological correlates of emotion and personality

From the previous section, we note that the impact of personality differences
on the emotion perceived by users is revealed mainly through quadrant-wise
comparisons of V and A ratings involving emotionally similar or homogeneous
clips. If explicit ratings provided by users are a conscious reflection of their
emotional perception, then the analyses employing physiological signals should
also reveal similar patterns. We attempt to identify linear and non-linear physi-
ological correlates of emotion and personality considering responses to all and
quadrant-specific clips in this section.
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2.6.1 Linear correlates of Emotion and Personality

Table 2.8: Physiological correlates of emotion and personality attributes. R◦ denotes the number
of significant feature correlates, while R2 is the coefficient of determination for the regression
model with the significant correlates as predictors. Bold values denote linear regression models
with a significant R2 statistic.

Arousal Valence Extra. Agreeable Conscient Em. Stab. Open
Video Set Feature Ro R2 Ro R2 Ro R2 Ro R2 Ro R2 Ro R2 Ro R2

All

ECG 1 0.17 2 0.51 1 0.49 1 0.35
GSR
EMO 1 0.28
EEG 1 0.45 1 0.27 2 0.66 2 0.64 2 0.68 2 0.54 2 0.49

HAHV

ECG 1 0.46 1 0.45
GSR
EMO 1 0.59 3 0.75 3 0.77
EEG 1 0.49 2 0.54 1 0.50

LAHV

ECG 1 0.15 3 0.55 1 0.44 1 0.46 1 0.42
GSR
EMO 1 0.20 1 0.30 1 0.29 2 0.51
EEG 1 0.54 1 0.56

LALV

ECG 1 0.41 2 0.55 1 0.44 1 0.42
GSR
EMO 1 0.22 2 0.61 1 0.40 2 0.45
EEG 1 0.40 1 0.57 3 0.63 1 0.58

HALV

ECG 2 0.57
GSR
EMO 1 0.13
EEG 1 0.59 3 0.69 2 0.53 1 0.39

We attempted to discover physiological correlates of emotional attributes
and the big-five personality traits via partial Pearson correlations. Given the
large number of extracted physiological features (Table 2.3) as compared to the
population size for this study, we first performed a principal component anal-
ysis (PCA) on each feature modality to avoid overfitting, and retained those
components that explained 99% of the variance. This gave us 8–9 predictors
for each of the considered modalities. Table 2.8 presents correlations between
these principal components, users’ affective ratings and personality scales (R◦
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denotes number of significant correlates). For affective dimensions, we deter-
mined significant correlates considering mean user V,A ratings provided for the
36 clips. We also trained regression models with the significantly correlating
components as predictors of the dependent emotion/personality variable, and
the squared correlations (R2) of these models are also tabulated.

Examining Table 2.8, the relatively few (maximum of 3) number of signifi-
cant predictors can be attributed to the sparse number of principal components
employed for analysis. Considering correlations with A and V, more correlates
are observed for V than for A overall. At least one significant correlate is noted
for all modalities except GSR. EEG is the modality found to correlate most with
A, with one correlate observed for all and LAHV movie clips. EEG also has
the most number of correlates with V (one significant correlate per video set),
but this is unsurprising as a number of works have successfully recognized V
with commercial-grade sensors [24]. For V, one ECG correlate is noted for all
and LAHV videos, and one EMO correlate for HAHV and LALV videos. Prior
studies [1, 89] have also noted that these modalities correlate better with V than
A.

Focusing on personality dimensions, a larger number of physiological corre-
lates are observed as compared to emotional attributes. Least number of corre-
lates are noted for Agreeableness, while most correlates are noted for Extraver-
sion. The EEG modality again corresponds to the maximum number of corre-
lates, while no correlates are observed for GSR. In general, a larger number of
physiological correlates are noted for quadrant-based videos for all traits except
Agreeableness. Also, models with a higher R2 statistic are noted for emotion-
wise similar clips, suggesting that the physiology–based linear models are more
effective at predicting personality traits while comparing user responses under
similar affective conditions. Considering models with significant R2 values, the
highest value of 0.69 is noted for Extraversion for HALV, while none of the
linear models can accurately predict Agreeableness and Emotional Stability.

38



CHAPTER 2. ASCERTAIN: A MULTIMODAL AFFECTIVE DATABASE FOR
PERSONALITY ASSESSMENT
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Figure 2.8: (From top to bottom) Bar plots showing the means of the NMI histograms for the
four modalities. Best viewed under zoom.

2.6.2 Non-linear correlates

To examine non-linear physiological correlates of emotion and personality at-
tributes, we performed a mutual information analysis between the extracted fea-
tures from the four modalities and those attributes. Given the varying number of
features for each modality, we segregated the NMI distribution over all features
and the emotion/personality rating using 10-bin histograms. Figure 2.8 presents
the first moment or the mean of the NMI histogram distribution computed over
the different video sets for each emotional/personality attribute.

From Figure 2.8 can be noted that personality attributes share more MI with
the user’s physiological responses than A and V, in line with the linear analy-
ses. Also, for both emotion and personality attributes, the NMI computed for
the quadrant-based video sets is generally equal to or higher than the NMI for
all movie clips, implying that a fine-grained examination of the relationship be-
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tween sub-conscious physiological responses and conscious user self-ratings is
more informative. Focusing on affective attributes, higher MI between ratings
and physiological responses is noted for V considering all movie clips for all
modalities, while the highest quadrant-based NMIs are noted with A for all four
modalities. Among the four modalities, facial features share the highest MI
with both A and V, followed by GSR, ECG and EEG.

Focusing on the big-five personality traits, the highest NMI histogram means
over all modalities are observed for Conscientiousness and Extraversion, fol-
lowed by Emotional Stability, Agreeableness and Openness. This trend is strik-
ingly similar to that obtained from the MI analysis between V,A ratings and
personality scales in Section 2.4.3. Examining the sensing modalities, ECG
features share the highest MI with personality scales followed by EEG, while
EMO and GSR correspond to lower NMI means.

2.7 Recognition results

We performed binary recognition of emotional and personality attributes to
evaluate the efficacy of the proposed framework. This section details the ex-
periments and results thereof.

2.7.1 Emotion recognition

A salient aspect of this work is the exclusive use of commercial sensors for
examining users’ physiological behavior. To evaluate if we can still achieve
emotion recognition comparable to prior affective works which use laboratory-
grade sensors, we followed a procedure identical to the DEAP study [89]. In
particular, the most discriminative physiological features were first identified
for each modality using Fisher’s linear discriminant with a threshold of 0.3.
Features corresponding to each user were then fed to the naive Bayes (NB)
and linear SVM classifiers as shown in Table 2.9, with a leave-one-out cross-
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Table 2.9: Affective state recognition with linear SVM and Naive Bayes (NB) classifiers.
Mean F1-scores over all participants for the four modalities, peripheral Signals (ECG + GSR)
and late fusion (Wt

est) are shown. Baseline F1-score is 0.5. Maximum unimodal F1-scores are
shown in bold.

ECG GSR EMO EEG Peripheral Wt
est Class Ratio

SVM NB SVM NB SVM NB SVM NB SVM NB SVM NB

Arousal 0.54 0.58 0.52 0.58 0.55 0.60 0.59 0.61 0.56 0.62 0.62 0.62 0.50

Valence 0.55 0.58 0.52 0.57 0.58 0.62 0.60 0.62 0.55 0.62 0.64 0.64 0.50

validation scheme employed where one video is held out for testing, while the
other videos are used for training. The best misclassification cost parameter
C for linear SVM is determined via grid search over [10−3,103] again using
leave-one-out cross-validation.

Table 2.9 presents the mean F1-scores over all users obtained using the NB
and SVM classifiers with unimodal features and the decision fusion (Wt

est) tech-
nique described in [89]. In decision fusion,the test sample label is computed as

∑
4
i=1 α∗i tipi. Here, i indexes the four modalities used in this work, pi’s denote

posterior SVM probabilities, {α∗i } are the optimal weights maximizing the F1-
score on the training set and ti = αiFi/∑

4
i=1 αiFi, where Fi denotes the F1-score

obtained on the training set with the ith modality. Note from Section 2.3 that
there is an equal distribution of high/low A and V, implying a class ratio (and
consequently, a baseline F1-score) of 0.5

Observing Table 2.9, above-chance emotion recognition is achievable using
the physiological features extracted using commercial sensors. The obtained
F1-scores are very similar to DEAP [89], which employs music video excerpts
to induce emotions. EEG features produce the best recognition performance
for A, while both EEG and facial features produce the best recognition for V.
GSR produces the worst recognition performance, and the NB classifier outper-
forms linear SVM for all the considered features. Finally, the best fusion-based
recognition performance of 0.64 is noted for V, and better (unimodal as well as
multimodal) recognition is generally noted for valence as in [89, 1].
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2.7.2 Personality recognition

For binary personality trait recognition, we first dichotomized the big-five per-
sonality trait scores based on the median. This resulted in an even distribution
of high and low trait labels for three traits, while an inexact split (19 vs 17)
was obtained for Conscientiousness and Openness. As baselines, we consider
majority-based voting and random voting according to class ratio. Based on
majority voting, F1-score for the Con and O traits is 0.35 and 0.33 for the oth-
ers. For class-ratio based voting, a baseline score of 0.5 is achieved for all traits.
We performed PCA on each feature modality in a similar way to linear corre-
lation analyses prior to classification. A leave one-subject-out cross-validation
scheme was used to compute the recognition results. Three classifiers were em-
ployed for recognition, i) naive Bayes, ii) linear (Lin) SVM and iii) Radial Basis
Function (RBF) SVM. The C (linear and RBF SVM) and γ (RBF SVM) param-
eters were tuned via leave-one-subject-out grid search cross-validation on the
training set.

Table 2.10 presents the recognition results, with the best F1-scores achieved
using unimodal features denoted in bold. For each personality trait, feature
and video set, a better-than-chance recognition F1-score (> 0.5) is achieved
with at least one of the employed classifiers. Considering user physiological
responses to all affective videos, Con is the best recognized personality trait,
while Ag corresponds to the lowest F1-score. Also, higher recognition scores
are generally achieved considering user responses to quadrant-wise videos, in
line with the observations from linear and non-linear correlation analyses.

Considering feature modalities, EEG is found to produce the best recogni-
tion performance across personality traits and video sets, followed by ECG,
GSR and EMO. EEG is found to be the optimal feature for recognizing ES,
while GSR is the best feature for Con recognition. Focusing on classifiers, the
non-linear RBF SVM produces the best F1-score for all traits except Ag while
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Table 2.10: Personality recognition considering affective responses to a) all, and b) emotionally
homogeneous stimuli. Maximum F1-scores with unimodal classifiers are shown in bold.

Extravert Agreeable Conscient Em. Stab Open

Videos Method NB SVM
(lin)

SVM
(rbf)

NB SVM
(lin)

SVM
(rbf)

NB SVM
(lin)

SVM
(rbf)

NB SVM
(lin)

SVM
(rbf)

NB SVM
(lin)

SVM
(rbf)

All

ECG 0.45 0.61 0.61 0.49 0.00 0.38 0.44 0.14 0.60 0.52 0.00 0.31 0.57 0.46 0.56

EEG 0.60 0.59 0.63 0.51 0.19 0.15 0.52 0.35 0.51 0.58 0.61 0.61 0.55 0.55 0.39

EMO 0.32 0.41 0.40 0.60 0.41 0.42 0.50 0.25 0.15 0.46 0.35 0.35 0.28 0.48 0.62
GSR 0.08 0.00 0.47 0.20 0.00 0.53 0.59 0.60 0.66 0.58 0.54 0.55 0.35 0.29 0.61

Wt
est 0.44 0.67 0.61 0.58 0.39 0.49 0.53 0.38 0.60 0.68 0.66 0.66 0.58 0.66 0.66

HAHV

ECG 0.24 0.11 0.67 0.31 0.00 0.69 0.39 0.22 0.22 0.24 0.08 0.19 0.45 0.44 0.63
EEG 0.40 0.29 0.31 0.60 0.23 0.51 0.40 0.28 0.49 0.54 0.56 0.56 0.51 0.35 0.31

EMO 0.56 0.42 0.65 0.56 0.33 0.50 0.52 0.38 0.38 0.34 0.17 0.08 0.53 0.41 0.57

GSR 0.44 0.00 0.50 0.00 0.00 0.36 0.67 0.33 0.46 0.54 0.53 0.47 0.36 0.35 0.56

Wt
est 0.57 0.33 0.69 0.58 0.32 0.58 0.67 0.29 0.50 0.58 0.62 0.58 0.58 0.44 0.61

LAHV

ECG 0.31 0.03 0.16 0.44 0.03 0.00 0.52 0.61 0.64 0.32 0.00 0.16 0.58 0.75 0.69

EEG 0.63 0.60 0.43 0.51 0.20 0.39 0.10 0.35 0.27 0.60 0.62 0.46 0.60 0.65 0.56

EMO 0.55 0.35 0.49 0.48 0.31 0.29 0.53 0.60 0.54 0.47 0.23 0.21 0.62 0.00 0.53

GSR 0.35 0.00 0.08 0.40 0.00 0.44 0.64 0.66 0.69 0.61 0.57 0.54 0.29 0.29 0.54

Wt
est 0.42 0.44 0.53 0.61 0.29 0.41 0.69 0.67 0.69 0.55 0.64 0.58 0.67 0.75 0.69

LALV

ECG 0.33 0.50 0.31 0.58 0.03 0.53 0.55 0.16 0.24 0.44 0.20 0.50 0.44 0.32 0.33

EEG 0.60 0.58 0.51 0.42 0.37 0.39 0.29 0.33 0.31 0.71 0.52 0.51 0.67 0.62 0.65

EMO 0.65 0.23 0.35 0.45 0.69 0.66 0.38 0.29 0.13 0.36 0.55 0.38 0.44 0.11 0.03

GSR 0.19 0.00 0.62 0.30 0.00 0.05 0.61 0.66 0.50 0.58 0.61 0.62 0.29 0.29 0.44

Wt
est 0.60 0.58 0.67 0.58 0.71 0.69 0.67 0.69 0.50 0.69 0.61 0.72 0.58 0.64 0.69

HALV

ECG 0.41 0.64 0.61 0.34 0.00 0.63 0.44 0.22 0.18 0.52 0.03 0.72 0.44 0.68 0.69

EEG 0.59 0.54 0.48 0.45 0.31 0.31 0.57 0.35 0.60 0.67 0.67 0.49 0.68 0.66 0.71
EMO 0.47 0.35 0.49 0.27 0.35 0.24 0.26 0.35 0.55 0.41 0.35 0.27 0.48 0.33 0.31

GSR 0.18 0.00 0.36 0.18 0.00 0.18 0.55 0.64 0.53 0.58 0.52 0.57 0.36 0.29 0.16

Wt
est 0.60 0.66 0.62 0.41 0.41 0.55 0.61 0.68 0.61 0.68 0.65 0.53 0.68 0.72 0.75

considering user responses to all videos. RBF SVM also produces the best
recognition performance in 11 out of 25 (5 personality traits × 5 video sets)
conditions. Linear classifiers perform best for the ES trait, producing the best
F1-scores for quadrant-specific video sets. Among the two linear classifiers,
NB slightly outperforms linear SVM, producing highest F1-scores in eight con-
ditions (as against 7 with Lin SVM).

Fusion-based recognition is beneficial in general, and higher recognition
scores as compared to unimodal recognition are achieved. With user responses
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acquired for all videos, the highest and least fusion-based F1 scores are achieved
for the ES (0.68 with NB classifier) and Ag (0.58 with NB) traits respectively.
With quadrant-based videos, a maximum F1-score of 0.75 is noted for Openness
(with RBF classifier). For fusion-based recognition, RBF SVM again outper-
forms the NB and linear SVM classifiers for the vast majority of conditions,
and most notably for the Openness trait where it achieves optimal recognition
for four of the five video sets.

2.8 Discussion

The correlation analyses and recognition results convey two aspects related to
personality recognition from physiological data: (i) A fine-grained analysis of
users’ physiological responses to quadrant-wise or emotionally similar movie
clips enables better characterization of personality differences. This is notable
from the increased number of linear physiological correlates for some of the AV
quadrants in Table 2.8 for all traits excepting Ag, and the generally higher NMI
means for quadrant-specific videos in Figure 3.3. Also, higher F1-scores are
obtained when physiological responses to emotionally similar clips are used for
personality trait recognition. (ii) The relationship between personality scales
and physiological features is better captured via non-linear metrics. Consider-
ably high NMI means are noted for all feature modalities and personality traits,
and the general effectiveness of the RBF SVM classifier support this observa-
tion.

Feature-based relationships are also evident between the correlation and recog-
nition experiments. Given that linear classifiers are employed for affect recog-
nition, it is interesting to note the similarities between Tables 2.8 and 2.9. The
most number of affective correlates are noted for EEG and EMO in Table 2.8,
and the best recognition performance is achieved with these features (Table 2.9).
Conversely, no GSR correlate is observed for A and V, and GSR also achieves
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the worst emotion recognition performance. For personality recognition, ECG
and EEG are found to be the better features from linear and non-linear correla-
tion analyses, and these two modalities also produce better recognition perfor-
mance. On the other hand, GSR features produce good recognition only for the
Con trait, with which they share a high degree of MI.

Focusing on personality traits, the least number of linear physiological cor-
relates in Table 2.10 are observed for the Ag trait and correspondingly, the worst
F1-scores with linear classifiers (especially with linear SVM) are noted for this
trait. Linear classifiers perform somewhat better for the Con and Ex traits, and
produce the best recognition performance for the O and ES traits, for both of
which a good number of linear correlates are obtained.

It is appropriate to point out some limitations of this study in general. Weak
linear correlations are noted between emotional and personality scores in Ta-
ble 2.6, and only few physiological correlates of emotion and personality are
observed in Table 2.8, which can partly be attributed to the low variance for
some of the personality dimensions as seen in Figure 2.3(b). While median-
based dichotomization of the personality scores for binary recognition is com-
mon in personality research [171], it may not be the most appropriate method.
Most user-centered affective studies have also demonstrated recognition in a
similar manner and on data compiled from small user populations, due to the
general difficulty in conducting large-scale affective experiments. Overall, the
general consistency in results from the correlation and recognition experiments
suggest that data artifacts have only minimally influenced our analyses, and that
reliable affect and personality recognition is achievable via the extracted phys-
iological features. Furthermore, we make the collected data publicly available
in order to facilitate related research.

Even though not analyzed in this work, the ASCERTAIN database also in-
cludes Familiarity and Liking ratings, which could be useful for other research
studies. With familiarity ratings we collected data about how well-known the
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shown scenes are to the users. Potentially, people with specific personality traits
have different physiological responses not only based on the emotional value of
a video but also depending on its familiarity to them. Whether people prefer
specific videos, depending on their personality type, is relevant for building
recommender systems that are personality aware. Such systems are built more
frequently nowadays and are appreciated by users as easier to use than common
ones based on ratings [78]. Personalized video recommender systems could
learn and adapt to users over time by taking physiological signals into account.

Familiarity and Liking ratings could be also used to replicate and extend re-
lated studies reported in the literature. For example, the study presented in [184]
notes a connection between familiarity, liking and the amount of smiling while
listening to music. Also, Hamlen and Shuell [73] find a positive correlation be-
tween liking and familiarity for classical music excerpts, which increases when
an associated video was presented with the audio. Similar effects could be tested
with emotional videos with ASCERTAIN.

Finally, the importance of using less-intrusive sensors for affective comput-
ing has also been widely acknowledged [105, 177]. Collecting data using min-
imally invasive and wearable sensors enables naturalistic user response to the
presented stimuli, alleviating the stress caused by cumbersome clinical equip-
ment. Choosing minimally invasive sensors is especially critical when complex
behavioral phenomena such as emotions are the subject of investigation. While
most of the currently available affective datasets have been compiled using lab
equipment [177], ASCERTAIN represents one of the first initiatives to exclu-
sively use wearable sensors for data collection, which enhances its ecological
validity.
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2.9 Conclusion

This chapter presents ASCERTAIN – a new multimodal affective database com-
piled using only commercial and wearable sensors. ASCERTAIN contains im-
plicit physiological responses of 36 users collected via EEG, ECG, GSR sensors
and a webcam while viewing emotional movie clips, along with their explicit
affective ratings and big-five personality trait scores. Among affective datasets,
ASCERTAIN is the first that facilitates analysing the relationship between phys-
iological signals, emotional states and personality traits.

Using the collected data, we analyzed the correlations between affective rat-
ings, personality scales and extracted physiological features. We only obtained
weak correlations and regression models for emotional ratings and personal-
ity scales, but we noted a high degree of mutual information between the two.
This implies that the personality–affect relationship is better characterized via
non-linear statistics. When including physiological features in the analyses, we
found only few linear correlates with affective ratings and personality traits. In
contrast we obtained considerably high NMI means over all feature modalities
and personality dimensions– also, personality attributes share more MI with
physiological signals than arousal and valence share with them. Finally, we
achieved emotion recognition performance comparable with former works em-
ploying lab-grade sensors. We obtained above-chance personality trait recogni-
tion with each of the considered modalities. Personality differences are better
revealed when analyzing responses to emotionally similar movie clips, as sug-
gested by both correlation and recognition experiments. Finally, RBF SVM
produces the best recognition performance overall among the three classifiers,
further supporting a non-linear relationship between emotional responses and
personality scales, while EEG and ECG are found to be the two best modalities
for personality trait recognition.

We believe that ASCERTAIN will facilitate future affective studies, and en-
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courage further investigation on the relationship between personality and affect,
particularly in computational settings. The fact that personality differences are
observable from user responses to emotion-wise similar stimuli can pave the
way for simultaneous emotion and personality profiling. Our future research
will focus on the development of real-time emotion and personality recogni-
tion systems, coupled with a deeper examination on the relationship between
personality and affective behavior. We will also study how prior knowledge of
personality can impact the design of user-centered affective studies.
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Chapter 3

Inference of Personality Traits and Affect
Schedule by Analysis of Spontaneous
Reactions to Affective Videos

This chapter1 presents a method for inferring the Positive and Negative Affect

Schedule (PANAS) and the big-five personality traits of 35 participants through

the analysis of their implicit responses to 16 emotional videos. The employed

modalities to record the implicit responses are (i) EEG, (ii) peripheral physio-

logical signals (ECG, GSR), and (iii) facial landmark trajectories. The predic-

tions of personality traits/PANAS are done using linear regression models that

are trained independently on each modality. The main findings of this study are

that: (i) PANAS and personality traits of individuals can be predicted based on

the users’ implicit responses to affective video content, (ii) ECG+GSR signals

yield 70%±8% F1-score on the distinction between extroverts/introverts, (iii)

EEG signals yield 69%±6% F1-score on the distinction between creative/non

creative people, and finally (iv) for the prediction of agreeableness, emotional

stability, and baseline affective states we achieved significantly higher than

chance-level results.
1This chapter is based on: Mojtaba Khomami Abadi, Juan Abdón Miranda Correa, Julia Wache, Heng Yang,

Ioannis Patras, and Nicu Sebe. Inference of personality traits and affect schedule by analysis of spontaneous
reactions to affective videos. In 11th IEEE International Conference and Workshops on Automatic Face and
Gesture Recognition, 2015. [1]
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3.1 Introduction

In human computer interactions, the emotional state of a user is a great source
of information to enrich the experience. For instance, in an e-learning scenario
the computer may adapt the content shown to the user depending on how easy
(boring) or difficult (stressing) the content is perceived by the user. Recog-
nizing the emotional state of the user to enhance the user experience has been
targeted intensively in affective computing research [145]. Some studies used
the explicit responses of the users (e.g. interrupting him/her and asking to self-
assess his/her emotional state) to access their emotions. However, most of the
recent studies [105] try to avoid interruptions and instead analyze the implicit
emotional responses of users (e.g. facial expressions, physiological signals)
to automatically infer their emotional state. Emotional responses of humans
are influenced by some factors (such as mood, baseline affective schedule, per-
sonality, temper and memories), that make the emotion recognition tasks more
user-specific. However, by learning the effect of the factors on the emotional
behaviors, we can generalize the user-specific model to cross-users models.

The objective of this work is to study the relation between these factors, in
particular personality and baseline affective schedule, and the implicit responses
of people to affective content. We infer the big-five personality traits [115] and
the Positive and Negative Affect Schedule (PANAS) [179] by analyzing the fea-
tures extracted from three modalities, namely (i) EEG signals, (ii) peripheral
physiological signals (ECG, GSR), and (iii) facial landmark trajectories in re-
sponse to 16 emotional videos.

We performed a mutual information (MI) analysis between different modali-
ties and (i) arousal, (ii) valence, and (iii) dimensions of personality and PANAS.
The analysis shows that the implicit responses are informative of the emotional
state and the personality/PANAS of individuals. Therefore, the personality traits
and PANAS could be revealed at the presence of emotions. We show that (i)
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emotional states have correlations with personality/PANAS and (ii) emotional
state of individuals have normalized mutual information of about 0.5 with dif-
ferent modalities. Therefore, we expect similar levels of mutual information
between modalities and personality/PANAS; this is shown to be true especially
for peripheral physiological signals.

The main findings can be summarized as follows: (i) all three modalities
have high mutual information with the dimensions of personality and PANAS,
however the relation is not always linear. (ii) the peripheral physiological fea-
tures have relatively higher mutual information with the dimensions of person-
ality traits and PANAS than the other proposed features; (iii) due to strong lin-
ear relations between (a) EEG and openness and (b) peripheral physiological
signals and extroversion, we achieved remarkably high mean F1-scores (about
70%) on the prediction of high/low extroversion/openness with a simple linear
method.

The remainder of this chapter is structured as follows: section 3.2 summa-
rizes previous research efforts in both (i) personality assessment methods and
(ii) emotion measurement through psycho-physiological signals; section 3.3
provides an overview of the experimental protocol we followed; section 3.4
describes the data pre-processing and feature extraction steps taken followed
by the the mutual information analysis; finally, after reporting experimental re-
sults in section 3.5, we discuss them along with the future research directions in
section 3.6.

3.2 Related Works

In this section, we review the state of the art on measurement and prediction of
affective behavior and personality.
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3.2.1 Measuring Emotion

Emotions have a large impact on how we experience events in our life. Any
behavior and environmental stimulus may have a psychological effect on us
and may influence our interpretation of the environment and our consequent
behavior. Knowing how people feel is helpful in improving interactions both
in human-human and in human-computer interaction. Mainly two concepts are
used in the literature of affect computing; One classifies emotions in six distinct
universal groups [47]: happiness, sadness, anger, fear, surprise and disgust. The
other is a dimensional model of emotion that is developed for the continuous
measurement of affect. Wundt [185] proposed that emotions could be classi-
fied along three dimensions: pleasure, arousal and dominance. Bradley et al.
[21] displayed emotions on a two-dimensional plane with the two axes valence
(unpleasant-pleasant) and arousal (calm-aroused). Traditional methods to mea-
sure emotions are based on questionnaires. In order to detect emotion changes,
it is useful to determine baseline levels of positive and negative affect the partic-
ipants usually experience as it was done by Watson et al. [179] who developed
the Positive and Negative Affect Schedule (PANAS).

To avoid the bias that can occur when people rate what they think they are
supposed to feel instead of what they actually feel, emotions need to be decoded
implicitly. Recent methods use physiological responses [89] or monitor users’
facial expressions [80] since both (especially the former) are difficult to control.

Different affective states are correlated to changes in communicative sig-
nals such as speech, body language and facial expressions. An extensive re-
view is given in [193]. Many researchers used the implicit responses acquired
through psycho-physiological signals to predict the emotional states of humans
[105, 90]. Lisetti and Nasoz [105] employed wearable devices to collect the
physiological signals such as Galvanic Skin Response (GSR), heart rate (ECG),
and skin temperature in order to predict basic emotions. They achieved a max-
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imum 84% emotion recognition accuracy. Abadi et al. [2] measured emotions
on the Arousal-Valence dimensions. They compiled a dataset with 30 subjects
and used Magnetoencephalogram (MEG), Near Infra-Red (NIR) facial video,
Electrooculogram (EOG), Electromyogram (EMG) and ECG responses for 36
emotional movie clips. Koelstra et al. [89] used EMG, EOG, blood volume
pulse (BVP), skin temperature, and GSR to predict the emotional state of 32
participants upon watching on music videos. Soleymani et al. [149] created
the MAHNOB-HCI multimodal database presenting emotional video clips to
participants and collecting physiological signals to predict the emotional state.
In this manuscript we take a step forward. By using a subset of videos from
[2] and [149] we show that emotional states share high mutual information with
personality and PANAS.

3.2.2 Personality Assessment

The Big-Five or the five-factor model describes human personality in terms of
five dimensions: Extraversion (sociable vs. reserved), Agreeableness (com-
passionate vs. dispassionate and suspicious), Conscientiousness (dutiful vs.
easy-going), Neuroticism or emotional stability (nervous vs. confident), and
Openness or Creativity (curious vs. cautious) [115]. The traditional method
to measure these personality dimensions has been through the use of question-
naires or self-reports. Other works used word frequencies in texts, non ver-
bal communication aspects and body language cues for automatic personality
recognition. There are few (if any) studies so far covering the connection be-
tween physiological signals and personality. The recent review [171] covers
most of literature dealing with personality computing. Mairesse et al. [112]
used acoustic and lexical features to develop classification, regression and rank-
ing models for personality recognition. Social media are used as well to predict
personality, especially with the increasing use of smart-phones that can be em-
ployed to measure different aspects of communication activities such as calls,
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instant messages and even frequency of speaking or proximity to other people
in their social network. Srivastava et al. [152] presented a novel method for
automating personality questionnaire completion utilizing behavioral cues for
50 movie characters, but this was not used in a real-life scenario.

Relationships between personality traits and user responses are mainly re-
ported on Neuroticism and Extroversion [115, 85, 127]. Stenberg [154] reported
relations between personality and arousal in an EEG-based study. According to
[154], lower arousal levels are observed for extraverts as compared to intro-
verts, while Neuroticism is associated with high arousal especially for negative
valence stimuli. Gilbert [62] used active and passive coping tasks as stimuli
and found that heart rate and skin conductance correlate with Extroversion and
Neuroticism. Stough et al. [155] found correlations between Openness and
Conscientiousness with EEG signals when using photic driving. While previous
studies mainly concentrated on finding correlations between implicit responses
and personality we employ the implicit responses for the prediction of person-
ality traits. Additionally, to the best of our knowledge, we are the first to use
pycho-pysiological responses to predict PANAS.

3.3 Experimental Protocol and Rating Analysis

3.3.1 Used stimuli and experimental protocol

Selected stimuli

Our objective for stimuli selection was to select videos that covered well the
arousal and valence (AV) space. For each quadrant of the AV space (High
Arousal-High Valence (HAHV), Low Arousal-High Valence (LAHV), Low Arousal-
Low Valence (LALV), and High Arousal-Low Valence (HALV)) 3 videos were
selected from the 36 videos used in [2]. This selection was made based on
the self-assessment of 80 participants. Additionally, one video for each quad-
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rant was selected from the ones used in MAHNOB-HCI [149], giving a set of
16 videos (4 per each quadrant). Selected videos (51s-150s long (µ = 86.7,
σ = 27.8)) are listed in Table 3.1. Each video is given an ID that is used to refer
to it in the remainder of the chapter.

Materials and Setup

Experiments were performed in a laboratory environment. Physiological signals
were obtained using wearable sensors. EEG was recorded using an Emotiv
EPOC Neuroheadset1 (14 channel {AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4}, 128 Hz, 14 bit resolution). For ECG and GSR signals
recording, two extended Shimmer 2R2 platforms (12 bit resolution) working at
256 and 128 Hz, were used. A MATLAB3 based platform running on a PC (Intel
Core i7, 3.4 GHz) was used to (i) present the stimuli, (ii) obtain and synchronize
the signals, and (iii) get the users’ ratings. Subjects were seated approximately
at 2 meters from the screen (40-inch,1280 x 1024, 60 Hz) where stimuli were
presented at the maximum scale that conserved the original aspect ratio. The
sound volume was adjusted for each participant to a comfortable level. Frontal
face video was recorded with a JVC GY-HM150E camera.

Experimental protocol

35 healthy participants (12 female), aged between 24 and 40 (mean age 28.85),
participated in the experiment.
Preparation: Each participant was informed of the experimental protocol and
signed a consent form before she/he was led into the experiment room. The ex-
perimenter explained the scales used and how to fill the self-assessment form.
Then the sensors were placed and their signals checked. The participant started

1http://www.emotiv.com/
2http://www.shimmersensing.com/
3http://www.mathworks.co.uk/
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Table 3.1: The Video Clips Listed with Their Sources (Video IDs are stated in parentheses). In
the category column, H, L, A, and V stand for high, low, arousal and valence respectively.

Category Excerpt’s source

HAHV Airplane (1), When Harry Met Sally (2), Hot Shots (3), Love Actually (4)

LAHV August Rush (5), Love Actually (6), House of Flying Daggers (7), Mr Beans’
Holiday (8)

LALV Gandhi (9), My girl (10), My Bodyguard (11), The Thin Red Line (12)

HALV Silent Hill (13), Prestige (14), Pink Flamingos (15), Black Swan (16)

the experiment once the experimenter left the room.
Experiment pipeline: The recording session started with an initial emotion
self-assessment. The 16 videos were presented in a random order in trials con-
sisting of a 5 second baseline recording (fixation cross), the presentation of a
short video (see 3.3.1), followed by the video emotion self-assessment.

Participant self-assessment

At the beginning of the experiment and at the end of each trial, participants
performed a self-assessment of their affective state. Self-assessment manikins
(SAM) [21] with continuous sliders at the bottom were used to visualize the
scales of arousal, valence and dominance. Participants moved the sliders to
specify their self-assessment level in a continuous scale. Arousal ranges from
very calm: 1 to very excited: 9, valence from very negative: 1 to very posi-

tive: 9, and dominance from overwhelmed with emotions: 1 to in full control

of emotions: 9. In addition, each participant was also asked to select one or
more emotional keywords (Neutral, Disgust, Happiness, Surprise, Anger, Fear,
and Sadness) they considered that described their emotional state (1: if chosen,
0: otherwise). The whole experiment including the preparation steps took 50
minutes on average per person.
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3.3.2 Personality and PANAS evaluation

Big Five Personality

The Big Five personality traits were measured using the big-five marker scale
(BFMS) questionnaire [133]. For each personality trait ten descriptive ad-
jectives were rated on a 7-point Likert scale and the mean was calculated.
The distributions of personality measures over all participants are presented in
Figure 3.1(a). While for Extroversion and Emotional Stability they are more
equally distributed, the average scores for Agreeableness, Conscientiousness
and Creativity are more clustered with a higher average close to 5.

Figure 3.1: a) Distribution of the big-five personality traits. b) Distribution of the average
Positive and Negative Affect (PA and NA).

PANAS

We used the General PANAS questionnaire [179] consisting of 10 questions
each to access the positive and the negative affect. The participants filled an
online form rating their general feelings on a 5-point intensity scale using ques-
tions like ”Do you feel in general...?”. The positive feelings asked are: active,
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alert, attentive, determined, enthusiastic, excited, inspired, interested, proud,
strong. The negative ones asked are: afraid, scared, nervous, jittery, irritable,
hostile, guilty, ashamed, upset, distressed. The resulting positive and negative
affect measures are mostly independent as shown in [178]. This allows to in-
vestigate both aspects independently. The correlation coefficient is 0.12 which
is similar to the ones reported in the literature [178]. PANAS is calculated by
summing the values (between 1 and 5) of all 10 questions for PA and NA re-
spectively resulting in values between 10 and 50. The distribution and average
for PA and NA is consistent with the literature as well [178]. The mean PA is
32.9 while the mean NA is lower (21.3) as presented in Figure 3.1(b).

3.3.3 Affective Rating Analysis

We evaluated the suitability of the presented stimuli in terms of their power
to evoke emotions in participants. The mean and standard deviation of partic-
ipants’ self-assessments of arousal and valence for each video is reported in
Table 3.2. Upon calculating the mean for emotional keywords of each video
over participants, the mean values were normalized to sum up to 100 to get
the percentage of reported emotional keywords (see Table 3.2). According to
table 3.2, the chosen stimuli for the four quadrants of the AV space (LALV,
HALV, LAHV, and HAHV) generally resulted in the elicitation of the target
emotions, and the four quadrants are covered. The relatively lower values of
dominance self-assessments over HALV suggest that the participants were more
emotionally touched by negative videos.

Among the emotional keywords (adapted from [47]), happiness is the only
positive keyword. We observe happiness to be among the dominant emotional key-
words chosen for all the HV videos. All HA videos are associated with surprise

(often as the second dominant keyword), as surprise is characteristic to excite-

ment. Interestingly, all the LA videos are labeled with the neutral keyword
(often as the second dominant keyword), which is due to the lower intensity of
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Table 3.2: The mean and standard deviation of participants ratings (range = [1,9]), over arousal
and valence dimension for each video is reported. Moreover, the table includes the normal-
ized histogram of the selected emotional keywords (Neutral, Anger, Disgust, Fear, Happiness,
Sadness, and SurPrise) for each video clip. The dominant emotional keywords of each video
are bolded.

Video Arousal Valence Dominance % % % % % % %
ID µ±σ µ±σ µ±σ N A D F H S P

H
A

H
V

1 5.5 ± 1.8 5.8 ± 2.0 5.4 ± 2.3 18 8 3 6 31 2 32
2 6.0 ± 1.5 6.8 ± 1.3 4.7 ± 1.9 14 1 0 2 49 0 34
3 5.5 ± 1.7 6.4 ± 1.3 5.3 ± 2.1 14 2 2 3 47 0 32
4 5.4 ± 1.5 7.7 ± 1.0 5.0 ± 1.8 15 0 0 0 60 0 25

L
A

H
V

5 3.8 ± 1.7 7.0 ± 1.2 6.2 ± 2.2 44 0 0 0 52 0 4
6 4.1 ± 1.8 7.7 ± 1.0 5.4 ± 2.1 32 0 0 0 54 7 7
7 3.7 ± 1.5 7.3 ± 1.0 5.8 ± 2.0 27 0 0 2 57 8 8
8 4.4 ± 1.6 7.0 ± 1.0 6.1 ± 1.9 33 0 0 0 61 0 6

L
A

LV

9 4.4 ± 1.6 3.9 ± 1.5 6.0 ± 1.8 32 26 8 5 3 13 13
10 5.2 ± 1.6 3.5 ± 1.3 5.0 ± 2.1 24 7 2 2 0 63 2
11 5.0 ± 1.5 3.4 ± 1.4 5.3 ± 2.2 27 33 9 5 3 12 11
12 4.2 ± 1.4 3.6 ± 1.1 5.5 ± 1.9 26 9 5 3 0 55 2

H
A

LV

13 6.8 ± 1.4 3.4 ± 1.8 4.5 ± 2.0 17 3 13 38 0 1 28
14 5.9 ± 1.5 3.2 ± 1.4 4.7 ± 2.0 11 9 4 20 0 33 23
15 5.5 ± 1.4 2.9 ± 2.1 4.0 ± 2.0 7 10 58 0 6 2 17
16 6.5 ± 1.7 3.1 ± 1.4 4.4 ± 1.8 8 4 14 41 1 7 25

emotion in lower arousing videos [175].
In LV videos, the underlying negative emotional keywords (sadness/dis-

gust/fear/anger) are often the most dominant reported ones. We observe that the
anger keyword is only dominant in LA videos. that indicates that the 9th and
the 11th video clips involve low intensities of anger and evoke irritation/pity

more than rage/anger.
T Wilcoxon signed-rank tests showed that low and high arousal stimuli in-

duced different valence ratings (p< .005 and p< .001). Similarly, low and high
valence stimuli induced different arousal ratings (p < .0001 and p < .0001).
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Table 3.3: Observed significant correlations between Personality/PANAS dimensions versus ex-
plicit emotional responses (self assessments). Each reported item starts with a letter indicating
the emotion dimension (A,V, and D for arousal, valence and dominance, respectively), followed
by the ID of the video for which the correlation is observed (in parentheses the correlation value
is stated)

Dimension Observed significant (p < 0.05) correlations

Extroversion V16 (0.19) D6 (-0.19)

Agreeableness A2 (-0.08) A8 (-0.42) V3 (-0.04) D16 (-0.04)

Conscientiousness A7 (0.06) V16 (-0.06)

Emotional Stability A1 (0.41) A12 (0.13) A14 (0.28) D1 (-0.34)

Creativity (openness) V6 (0.27) V11 (0.16)

Positive Affect Schedule A3 (-0.08) A6 (-0.26) V16 (0.04)

Negative Affect Schedule A15 (-0.22)

The distribution of the individual ratings per conditions shows a large variance
within conditions. This can be explained by between-stimulus and between-
participant variations. We investigated the mean inter-correlation of the arousal
and valence scales over participants. The mean of the subject-wise inter-correlations
between the scales is −0.168. The correlation is significant (p < .05) - this is
consistent with other studies [89]. Even though the arousal and valence scales
are not independent, their negative correlation is quite small implying that par-
ticipants could differentiate between them.

We measured the Spearman’s correlation between the affective ratings of
each video provided by the 35 participants versus the personality traits as well as
PANAS measures over the 35 participants. The significant observed correlations
(p < .05) are reported in Table 3.3. Previous works established a link between
psycho-physiological signals and affective states [125, 87, 89, 149]. Therefore,
the obtained correlations between explicit emotional responses (affective self-
assessments) and the personality and PANAS dimensions reported in Table 3.3,
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suggest that the implicit emotional responses (i.e. psycho-physiological signals)
should also relate to personality and PANAS dimensions. In the next sections,
we present a method to predict the personality and PANAS dimensions using a
person’s implicit responses to emotional videos.

3.4 Data Analysis

We used 3 modalities to record the implicit emotional responses of people:
(i) EEG, (ii) peripheral physiological signals (ECG and GSR), and (iii) facial
videos. We extracted state of the art affective features from different modalities
for our analysis. In this section we first describe in detail the extracted features
from the employed modalities and then analyze their mutual information with
the different affect/personality/PANAS dimensions. To avoid any bias due to
different video lengths, all the features are calculated using the responses over
the last 50 seconds of the videos.

3.4.1 EEG Signal Processing

EEG measures the electrical activity on the scalp. For obtaining features from
the EEG signals, the EEG data was processed similarly to [89], using the sam-
pling frequency of 128 Hz. To correct for stimulus-unrelated variations in power
over time, the EEG signal from the five seconds before each video was ex-
tracted as baseline. Using the Welch method with windows of 128 samples,
the frequency power of trials and baseline signals between 3 and 47 Hz was
calculated. The baseline power was then subtracted from the trial power, yield-
ing the change of power relative to the pre-stimulus period. These changes of
power were averaged over the frequency bands of theta (3-7 Hz), alpha (14-29
Hz), beta (8-13 Hz), and gamma (30-47 Hz). Additionally, the spectral power
asymmetry between 7 pairs of electrodes in the four bands was calculated. The
complete set of features is listed in Table 3.4.
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3.4.2 Peripheral Physiological Signal Processing

We used the methods reported by Kim and Andrè [87] to preprocess the ECG
and GSR signals and then extract the features.
Galvanic Skin Response: GSR provides a measure of the electrical resistance
of the skin. This resistance varies due to changes in perspiration that are con-
trolled by the sympathetic nervous system (SNS). The changes in GSR are re-
lated to the presence of emotions such as stress or surprise while the mean of
the GSR signal is related to the level of arousal [95]. In our setup the electrical
resistance between two electrodes positioned on the middle phalanges of the
middle and index fingers is measured as the GSR signal.

Following [87] we calculated the skin conductance (SC) from GSR and then
normalized the SC signal. We low-pass filtered the normalized signal with 0.2
HZ and 0.08 Hz cut-off frequencies to get the low pass (LP) and very low pass
(VLP) signals, respectively. Then, we detrended the filtered signals by remov-
ing the continuous piecewise linear trend in the two signals. We calculated 31
GSR features employed in [89, 149] and that are listed in Table 3.4.
Electrocardiogram: The ECG signal was recorded using three electrodes at-
tached to the participant’s body. Two of them were placed on the right and
left arm crooks and the third one was placed to the left foot as reference. This
setup allows precise identification of heart beats. Using the method reported in
[87] we accurately localized the heart beats in ECG signals (R-peaks) to cal-
culate the inter beat intervals (IBI). Using IBI values, we calculated the heart
rate (HR) and heart rate variability (HRV) time series. Following [149, 87] we
extracted 77 features listed in Table 3.4. In this study we use the concatenation
of ECG and GSR features as the peripheral physiological features.
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Table 3.4: Extracted affective features for each modality (feature dimension stated in paren-
thesis). Computed statistics are: mean, standard deviation (std), skewness, kurtosis of the raw
feature over time, and % of times the feature value is above/below mean ± std.

Modality Extracted features

ECG (77) root mean square of the mean squared of IBIs, mean IBI, 60 spectral
power in the bands from [0-6] Hz component of the ECG signal, low fre-
quency [0.01,0.08]Hz, medium frequency [0.08,0.15], and hight frequency
[0.15,0.5] Hz components of HRV spectral power, HR and HRV statistics.

GSR (31) Mean skin resistance and mean of derivative, mean differential for negative
values only (mean decrease rate during decay time), proportion of negative
derivative samples, number of local minima in the GSR signal, average rising
time of the GSR signal, spectral power in the [0-2.4] Hz band, zero crossing
rate of skin conductance slow response (SCSR) [0-0.2] Hz, zero crossing
rate of skin conductance very slow response (SCVSR) [0-0.08] Hz, mean
SCSR and SCVSR peak magnitude

EEG (84) 4 bands (theta, alpha, beta, and gamma) spectral power for each electrode.
The spectral power asymmetry between 7 pairs of electrodes in the four
bands.

Facial
Landmark
tracks (72)

Statistics concerning horizontal and vertical movement of 12 motion units
(MUs) specified in [80].

3.4.3 Facial Video Analysis

We used state of the art methods to initialize and track the facial landmarks and
then we extracted statistic measures over 12 motion units (MU) as facial fea-
tures.
Facial landmark tracking: We extracted the time series of facial landmark
location tracks. Before applying the tracking methods, we used the Robust Cas-
caded Pose Regression (RCPR) [29] with detection model from [188] and the
SDM [186] face alignment methods over the first few frames of the facial video.
Both of the methods detect the facial landmarks and work in a cascaded way.
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Figure 3.2: Left Image: A sample frame of a participant’s facial video. Right Image: The output
of the SDM facial landmark detection algorithm. The ID of the location of the 49 landmarks
are visible under zoom.

Figure 3.3: The normalized histograms of normalized mutual information between each modal-
ity and affect/PANAS/persoanlity dimensions. The first moment of each distribution is shown
in red (best viewed under zoom).

SDM uses only a shape inside the face bounding box as initialization of the face
shape (locations of the facial landmarks). In each cascade, based on the calcu-
lated Histograms of Oriented Gradient (HoG) features [42] that are calculated.
In the surrounding of each landmark, a linear regression is applied. RCPR uses
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several face shape initializations, normalized by the face bounding box. At each
cascade, random ferns are used as the primitive regressor for calculating the up-
date. Upon extracting the landmarks using the SDM and RCPR, we validate
the correctness by calculating the difference of the locations of their common
landmarks. When the difference is smaller than a threshold (set empirically),
we use the SDM method to obtain the tracks. Otherwise, the landmarks are set
manually. In our experiments, only a few videos, mainly ones in poor light-
ing conditions needed to be manually checked. The SDM outputs the track of
49 inner facial landmarks using the pixel locations as reference. The landmark
detection sample over a frame of a participant’s facial video is shown in Fig-
ure 3.2.
Processing the facial landmark tracks: To discard the head movement artifact
from the facial landmark tracks, we subtracted the track of the nasion (landmark
#11) from all the other tracks. Then each track was low-pass filtered with a cut-
off frequency of 1Hz. The tracks are used to determine the time series of 12
motion units (MUs) according to [145, 80]. Statistics over the 12 time-series
are used as features (see Table 3.4).

3.4.4 Mutual Information Analysis

We performed a mutual information analysis between the extracted features
from the three modalities versus affect/PANAS/personality dimensions (9 in
total). Mutual information (MI) between two random variables measures how
much information is known about one of the random variables when the other
is known. The function that defines the MI of two random vectors x and y is
defined by:
MI(x,y) = ∑i, j p(xi,y j)log p(xi,y j)

p(xi).p(y j)
where p(x,y) is the joint probability distri-

bution and p(x) and p(y) are the respective marginal probabilities. After cal-
culating the MI between each modality and the affect/PANAS/personality dim-
mensions, we calculate the normalized mutual information (NMI) index [156]
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using the following equation: NMI(x,y) = MI(x,y)√
H(x)H(y)

where H(x) and H(y) are

the entropies of x and y. We used the MIToolbox [23] to calculate the MI index
and entropy values after normalizing x and y to [0,10]. Figure 3.3 presents the
normalized 20-bins histograms of the distribution of NMIs for every modality
and dimension. The histogram normalization allows a better comparison given
the different number of features for every modality. For each normalized his-
togram, we also calculate the first moment (indicated in red text in Figure 3.3),
to summarize the distribution of NMIs. The presented results in Figure 3.3 sug-
gest that (i) the extracted features from different modalities share information
with arousal and valence dimensions and hence they contain information about
affective state of the participants. The results also suggest that (ii) the features
contain information about the participants’ personality/PANAS measures. From
the two observations we may expect to obtain above-chance prediction of per-
sonality and PANAS dimensions, and that may be with the help of affective
information included in the extracted features.

3.5 Experimental Setup and Results

In this section we describe our method for the prediction of personality/ PANAS
based on the extracted features in a leave-one-subject-out cross-validation schema.

3.5.1 Personality/PANAS recognition

Each participant watched 16 emotional video clips and for each participant
we have five measures for the big-five personality traits and two measures for
PANAS. To this end we extracted the features listed in Table 3.4 of 35 partici-
pants for each of the 16 emotional videos.

Recognition tasks: We associate all the emotional responses of a participant
to his/her personality/PANAS measures and we propose a method that can pre-
dict the measures of a new test participant based on the available training data.
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In total we have seven recognition tasks; five for personality traits and two for
PANAS.

Experimental Schema: We use a leave-one-subject-out cross-validation
schema to validate our proposed method for solving the recognition tasks. As-
suming the dataset includes N participants as our samples, in each iteration of
the cross validation, we take out one sample as the test sample and use the rest
as training samples. We train a linear regression model using the N-1 training
samples and we predict the measure for the test sample. After completing all
the N iterations we dichotomize the prediction and the ground truth values us-
ing the median criteria as threshold to divide the samples into high/low classes
(e.g. high/low score on extroversion). We then use mean F1-score of high/low
classes to evaluate the quality of the predictions. To more reliably report the per-
formance of our method, we ran the whole cross-validation process 1000 times.
In each run, 31 subjects were randomly chosen as samples (N = 31) from the 35
available participants. In Table 3.5 the mean and standard deviation over the ob-
tained results from 1000 runs is presented. The table also includes the random
baseline results that are obtained using three methods for the sake of compari-
son; (i) random voting, (ii) majority class voting, (iii) class distribution voting
according to [89]. We also employed a t-test to probe which of the results has
a distribution with a significantly (p < 0.001) higher than chance level (0.50)
mean. The distributions for which the lower bound of the confidence-intervals
are more than 0.55 are bold.

Method in Detail: For a certain recognition task (e.g. recognition of extro-
version) and a certain modality (e.g. EEG), all the 16 feature vectors in response
to 16 emotional videos are taken as samples of a participant. The 16 samples
of a participant are associated with the measure of the target dimension (e.g.
extroversion). For each participant, the features extracted from each modality
in response to 16 video clips are mapped to the range of [−1,1] over the 16
clips. The normalization removes the subjective artifacts and puts the focus of
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the pattern recognition on differentiating between the responses to different af-
fective videos. During the training, after pooling all the samples (30×16 = 480
in total) from the training subjects, we calculate the z− score of features along
all the samples. The same parameters of the second normalizations (µ and σ )
are used to map the samples of the test subject. We also normalized the scores
associated to train/test samples with the parameters of the map to [−1,1]. Then
we used SV D decomposition to solve the following equation for WTr (the re-
gression weights):

WTr× [1 DTr] = STr (3.1)

where DTr contains the normalized training samples in its columns and STr

contains the normalized target dimension scores of the train samples in one row
vector. We use WTr to predict PT s, the prediction of the target dimension of the
test subject, using the following equation:

WTr× [1 DT s] = PT s (3.2)

where DT s includes the normalized test samples in its columns. Table 3.3 sug-
gests that the responses to some videos are more useful for the prediction of
the target dimension. Therefore, we select a set V of 3 videos that yield the
best performance over training samples. Then, we calculate the median of the
predictions for the videos in V as the estimation of the score for the target di-
mension of the test subject.

3.5.2 Discussion on the Results

Our method for the prediction of different personality/PANAS dimensions is
based on a linear regression, therefore it is computationally very cheap but can-
not capture nonlinear relations. We observed that different modalities share
information (Figure 3.3) with the personality/PANAS dimensions. However
not all of the relations are linear. The obtained results presented in Table 3.5
suggest that the extracted features from peripheral physiological signals have
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Table 3.5: Mean and standard deviation over 1000 independent runs. In each run the per-
formance of a leave-one-subject-out cross validation using 31 participants out of 35 people is
measured. The mean-F1 scores of binary classes are used to evaluate the performance. The re-
sults of random prediction baseline using three methods; random voting, majority class voting
and class ratio voting are also reported.

Modality Ext. Agr. Con. Emo. Cre. PA. NA.

Emotive EEG 0.44±
0.07

0.60±
0.07

0.53±
0.08

0.53±
0.07

0.69±
0.06

0.38±
0.07

0.49±
0.06

Physiological signals 0.70±
0.08

0.50±
0.08

0.53±
0.09

0.58±
0.08

0.53±
0.08

0.60±
0.07

0.58±
0.09

Facial Tracks 0.50±
0.07

0.58±
0.06

0.38±
0.09

0.45±
0.07

0.52±
0.08

0.59±
0.08

0.48±
0.09

Random Baseline 0.49±
0.09

0.50±
0.09

0.50±
0.09

0.49±
0.09

0.49±
0.09

0.50±
0.09

0.49±
0.09

Majority Baseline 0.50±
0.01

0.50±
0.01

0.50±
0.01

0.50±
0.01

0.50±
0.01

0.50±
0.01

0.50±
0.01

Class Ratio Baseline 0.34±
0.01

0.35±
0.01

0.36±
0.02

0.35±
0.01

0.36±
0.01

0.35±
0.01

0.36±
0.01

more (strong) linear relation with different dimensions, particularly with extro-
version scores. Spectral power features extracted from EEG responses seem to
have strong linear relation with openness. This result is in line with the related
exploratory studies [155, 62, 154]. Particularly, (i) Stough et al. [155] found
correlations between EEG signals and openness and (ii) Gilbert [62] found that
heart rate and skin conductance correlate with Extroversion and Neuroticism.
As future work, we will investigate capturing the nonlinear relations between
different modalities and target dimension.
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Table 3.6: Importance of the role of the 16 videos for the best prediction performance reported
in Table 3.5. The values are presented in terms of colors from 0 (white) to 100 (dark blue). The
values indicate the mean percentage of times that a video was selected for the prediction of test
samples of a certain dimension, while using the features from a certain modality. The reported
results are the mean percentage over 1000 independent runs.

HAHV LAHV LALV HALV
Dim. Modal. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ext. Phys.
Agr. EEG
Agr. Face
Emo. Phys.
Cre. EEG
PA. Phys.
PA. Face
NA. Phys.

3.5.3 Chosen videos during the predictions

As mentioned above, each prediction (over a dimension) is based on the predic-
tions over a test person’s responses (collected through a modality) to 3 videos,
(set V ) out of the 16 presented videos. The chosen three videos are the ones that
best help the prediction of the dimension. It is interesting to know which videos
were usually selected for the successful predictions over a dimension. Over
the 1000 runs for the prediction of a dimension using a modality, we counted
the occurrence of all videos in the chosen set V . Then the percentage of the

times that each video is chosen for the prediction is calculated and reported in
Table 3.6. Since each prediction involves 3 videos, the sum over the entries in
each row of Table 3.6 is equal to 300%.

Discussion: For distinguishing between extroverts/introverts, videos from
all categories were involved. However, low arousal (LA) videos were chosen
more often and particularly August rush (happy) and My girl (sad) were the
most effective videos for the prediction of extroversion.
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For the prediction of agreeableness, mainly low arousal videos were se-
lected. The difference between the chosen videos for different modalities (EEG
and Facial landmark tracks) for the prediction of agreeableness suggests the
presence of complementary information in different modalities and encourages
the fusion of information for future extensions of this study.

The important videos in estimating the level of emotional stability are se-
lected from all the four quadrants but HALV. HALV videos in our study were
rarely chosen for the predictions. The reason may be that the negative videos
in HALV (scary/disgusting/stressful videos) are very emotional that touch the
majority of population similarly and hence, the responses of different people to
HALV videos are not very useful for the predictions. A support for the last state-
ment is that the HALV videos are shown in Table 3.2 to be the most emotional
ones (with lower values of dominance).

Interestingly, the top videos for the prediction of openness are only from
HAHV (funny) videos. The observation suggests that the reaction to funny
moments in videos is very useful for the prediction of creativity.

Positive affect (PA) and negative affect (NA) schedules were mainly esti-
mated through (physiological) responses to positive videos. However in the
estimation of the level of PA through facial tracks, funny videos (HAHV) had
the main role, suggesting that facial expressions to humorous stimuli are dis-
tinctive for general positive affect.

3.6 Conclusion

This study proposes a method for predicting users’ big-five personality traits and
PANAS of people based on the analysis of their implicit responses to emotional
videos. We used 16 emotional videos to evoke emotions in people and recorded
the implicit responses through wearable EEG, GSR, and ECG sensors, as well
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as facial videos. We observed that all the employed modalities share high in-
formation with the personality and PANAS dimensions and we showed in some
cases that a linear model can model well the relation. We tried to capture the
linear relations with a linear regressor to predict the correspondent dimensions.
The accurate prediction of personality traits and PANAS can later be used (i) to
profile people in human-computer interaction and (ii) to develop cross-subject
personality/PANAS predictors. Even though we could already show mutual in-
formation among constant characteristics (personality traits and General Affect)
with changing reactions (EEG, physiological signals and facial expressions), we
believe that by using nonlinear regression methods we can obtain even better re-
sults. This will be addressed in future work to contribute to better user profiling
in human computer interactions.
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Chapter 4

Respiration as indicator of physiological
states

Stress is a recurrent factor in modern life that people try to reduce. To monitor

stress we propose to use physiological signals such as breathing patterns. The

breath rate depends on the psychological state of the person, but in contrast to

other physiological signals it can also be actively influenced. For example, de-

liberate slow breathing can be a calming process relaxing body and mind. We

investigated the benefits of improving breathing patterns at Spire in San Fran-

cisco. We conducted a study investigating how to increase the awareness of

breathing patterns and consequent effects on reducing stress in a real life set-

ting. We designed a wearable device, the Spire sensor, which detects breathing

patterns and a respective application that provides correspondent information

and suggestions to improve breathing behavior. To assure that no additional

stress is imposed on the user through the interface, we considered correspond-

ing design principles to avoid additional mental effort for the users.

4.1 Breathing and its connection to stress

As we saw in the first part of the thesis, physiological data contain information
about emotion and personality (Chapters 2 and 3). One important emotional
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state, which is often present in today’s population, is stress, often caused by
frustration or cognitive overload. In this chapter we analyze how to use technol-
ogy in order to reduce stress by using the information of a persons physiological
states measured via breathing patterns.

So far, many physiological effects have been correlated to emotions [105],
while respiration data have been studied less intensively. Breathing behavior
changes with emotions, especially with the stress level someone experiences
[37]. Stress is related to diseases (burn out, sleeping disorders or even heart
attacks) because permanent negative emotions can cause negative physiological
and psychological effects [61]. Therefore, researchers have searched for easy
strategies to reduce stress [121]. In this context, two aspects of breathing are
important: (i) breathing patterns are correlated to the stress level [37], however
(ii) breathing patterns can also be actively changed because they are under con-
scious control. Consequently, breathing cannot only be used to understand the
current mental state and stress level, but also has the potential to change people’s
physiological and psychological states by relaxing the body, e.g. as practiced
in yoga [25]. By increasing awareness and learning to identify bad breathing
habits (breath-holding, hyperventilation, etc.) we aim at helping to return to
natural, effortless, and deep breathing, reducing negative physiological effects
such as fatigue and negative mood and their consequences [101].

We conducted a user study to investigate the positive effects that controlled
breathing provides in a stressful working environment. The study and its re-
sults are described in the following. Our preliminary results suggest that indeed
breathing patterns are correlated to stress as previously identified by [25, 26].

4.2 Controlled Breathing and Physiological Effects

Physiological data are a good indicator of emotions and stress [148]. Respira-
tion patterns are particularly interesting signals because they are easier to in-
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fluence than other autonomic body responses as breathing is under cognitive
control. Respiratory rate changes with body conditions and is used to monitor
both illness and general wellbeing [4]. Stressed persons often breathe fast and
irregular. Hence, increasing awareness of breathing can help to stabilize the
breathing rate [37].

Reducing the breath rate actively leads to activation of the parasympathetic
nervous system. It relaxes the body, therefore regulating the breath is a common
practice to alleviate (physiological) stress symptoms [105]. Clark [36] showed
in a clinical trial that deliberately breathing with a low breath rate causes even
more reduction of anxiety and thereby helps to relax. Breathing techniques have
been shown to have medical benefits, e.g. calm breathing is an effective non-
pharmacological method to reduce blood pressure. Ten [69] or fifteen [117]
minutes of conscious breathing per day to a calm paced rhythm proved to be
beneficial for patients with hypertension. Ley [102] discusses the possibilities
to condition changes in breathing behavior and found that indeed changes in
aspects of breathing can be conditioned, for example to decrease the breathing
rate. Therefore, training slower paced breathing should help reducing physio-
logical arousal. In order to benefit from calm breathing also during performing
other tasks, Moraveji et al. [122] aimed at integrating calm breathing into nor-
mal work processes. They integrated a visual feedback in the operating system
of a computer to stimulate peripheral paced respiration. While following the vi-
sual breathing feedback, and breathing more calmly accordingly, the users were
still able to work on other tasks.

It remains to investigate in more depth how respiration patterns are connected
to emotions. Breathing more calmly has reportedly positive effects [36] but
normally requires active attention [37]. Consequently, finding a way to monitor
and raise awareness for breathing could be beneficial to reduce stress. Moraveji,
the author of [122], therefore decided to co-found the start-up Spire1 that the

1www.spire.io
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author visited during a three month internship. We developed a breathing sensor
to reduce stress by increasing awareness of breathing patterns and supporting
users to change them actively, e.g. breathing more calmly.

4.3 Study

Nowadays people in many jobs are exposed to stressful working environments.
Especially when working on a computer, they have to deal with multitasking
and frequent distractions. The permanent pressure to be contactable at any time
(i) increases distraction, (ii) decreases productivity and (iii) leads to a higher
stress level. Regulating breathing can be beneficial for reducing stress [37],
but acquiring new breathing habits and breathing in a more controlled way can
be a challenging. Raising awareness about ones breathing behavior and corre-
spondent feedback can therefore be of great help to improve breathing behavior
leading to further benefits.

4.3.1 Hypotheses

Together with Spire we conducted a user study to test a new approach. By
using the prototype of their wearable sensor, we measured the breath rate and
provided feedback to the participants, creating awareness and incentivizing to
breathe more frequently in a calmer way.

Our app is supposed to help people being more aware of their breathing
habits and change them. The goal is to breathe more calmly, at least 20 minutes
per day. Each half-minute that the participant was breathing with a low breath
rate was counted. Consequently our research hypotheses were the following:

1. Using Spire, i.e. the sensor with the corresponding app, increases calm
breathing and therefore the average breath is reduced.

2. Using Spire has positive psychological effects such as (i) increasing users’
awareness of their breathing patterns and (ii) reducing their stress level.
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4.3.2 Participant selection

We informed the employees of the company LinkedIn about our study and all
people interested in participating were invited to fill in a selection survey. In
order to be eligible, people had to own an iPhone 4S or newer, be at the office
during the study period and be willing to fulfill all the tasks required by the
experiment. 20 participants were selected (10 female, 10 male) but only 16
people completed the study without more than one missing day (out of 5 days).
Their age ranged from 23 to 41 with an average of 31.

4.3.3 Sensor

To detect the breath rate we used Spire’s prototype of a new breathing sensor;
the newly developed wearable sensor Spire is light, small and non-intrusive.
The sensor has a clip that is attached to the waistband of the trousers detect-
ing abdominal movement that is caused by breathing, without needing any skin
contact (Figure 4.1). It contains a pressure sensor and an accelerometer that
collects data with a sample rate of 30Hz. By using this data one can calcu-
late the breath rate. The accelerometer provides additional data about general
movement and the amount of steps walked. With this data it is possible to detect
whether a person was active (moving) or at rest (sitting, lying) during a specific
time. The sensor connects via Bluetooth to the iPhone for which we designed an
app that is supposed to help people being more aware of their breathing habits
and change them.

4.3.4 App

The app consists of a single screen. In the center the number of minutes breathed
calmly during the day is displayed and next to it the goal for that day. In the top
a small animation of the actual breathing state is demonstrated and on the bot-
tom tips and information are presented. According to their status, participants
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(a) (b)

Figure 4.1: (a) Prototype Spire sensor with the clip to connect to the waistband. (b) Sensor
attached to trousers.

received push notifications informing them when the Bluetooth connection was
lost, the sensor was not placed correctly, they reached their daily goal or they
had a long streak of calm breathing. If they did not collect any minutes of calm
breathing for more than 1.5 hours they also received a notification.

4.3.5 Procedure

On the first day all participants gathered for an introduction. Each person re-
ceived a Spire sensor and installed the Spire app on the phone. They learned
how to use them and what other tasks they had to perform during the study. For
one week they wore the sensor throughout the workdays and were advised to
breathe deeply and calmly for at least 20 minutes per day.

In the evening participants received a daily report informing them about the
amount of minutes they were breathing calmly and how they compared to the
other participants. A diagram was shown that gave an overview of the average
breath rate throughout the day. Additionally they had to fill in a questionnaire
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asking how they felt during the day and what impact the sensor had on their
daily life.

4.3.6 Data collection

As mentioned before, the sensor collects data with a sampling rate of 30Hz and
sends it via Bluetooth to the smartphone. Via Internet connection on the phone
the data was sent to the server where the raw data was stored and an average
breath rate for each half-minute was calculated.

In order to count calm minutes, a threshold breath rate needs to be set. The
first day the default was set to 15 breaths per minute (b/min). After collecting
one day of data we calculated the average breath rate during the time the person
was not moving and adjusted the threshold for each individual by setting it
2 b/min lower. This assured that everybody could gain minutes by breathing
calmly but not by coincidence.

Each day an online questionnaire was sent out to collect self-assessment rat-
ings of their stress level, productivity and other psychological effects of the
experiment. The participants could rate each effect on a scale of 0 (no effect) to
3 (strong effect). Not every participant filled in all questionnaires. On average
12 people filled in each one.

4.3.7 Results

On the last day of the study only 14 people could still collect the breathing data
with the sensor as some participants forgot to charge or wear it.

In order to analyze the average breath rate, we separated active and passive
phases depending on whether people were walking or sitting (Figure 4.2). We
then compared only the data for the phases without movement. The average
breath rate for all participants did not change over the week. We could not show
that the calm breathing minutes per day increased. Therefore, we have to reject
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the first hypothesis.
To measure the psychological effect we analyzed the daily questionnaires.

First we calculated the percentage of people that felt any effect at all in each
category and for those people the average rating between 1 (some effect) and 3
(strong effect) for this question. All participants reported to be more aware of
their breathing than before (average rating 2.12) and 82% were also more aware
of their stress level (1.40). 94% agreed to take more calm breaths during the day
(2.00). Further questions contributing to understanding the stress level revealed
that 76% felt more relaxed when wearing the sensor (1.46), 64% could organize
their tasks better (1.29) and 76% felt less tension (1.23). Consequently we can
accept the second hypothesis. Due to the experiment (i) all users were much
more aware of their breathing pattern and (ii) most users felt at least a bit less
tense and more relaxed.

Figure 4.2: Number of minutes per average breath rate separated for breathing during rest (blue)
and physical activity (green) for one subject.

4.3.8 Discussion

Especially those people already practicing yoga or doing breathing exercises
prior to the experiment and who therefore better understood the importance of
conscious breathing, reported to benefit from the positive effects of wearing the
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sensor. Irregular wearing times and the short duration of the user study made it
difficult to analyze the data.

One possible explanation is that later in the week fewer people wore the
sensors for less time making it difficult to compare the data.

In order to understand the possible effects better, more participants and col-
lecting data for a longer time would be beneficial. As we collected the first
data on the first day participants wore the sensor, possible effects might have
occurred already during that day and no further changes occurred during the
week.

However, the experiment suggests that exerting active influence on breathing
patterns can cause the (subjective) stress level to decrease. Hence, a breath-
monitoring device is useful to increase awareness about the state of the body
and the stress level. A lower breath rate correlates with a calmer state of mind.
The sensor can help to create a habit of calm breathing and integrating it in
the workday [121]. Some participants wished to have more instant feedback
on their breathing behavior. We took these results into account when working
on the next version of the sensor and the application in order to increase the
effect and user experience. In the following we describe how we proceeded in
developing both.

4.4 Development of Spire

During the internship at Spire the author also worked on designing the mobile
application, creating an intuitive user interface and collecting information about
user interaction. These were valuable lessons also applicable when working in
the startup feelSpace as discussed later in chapter 5.
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4.4.1 Design heuristics

In order to design a valuable user interface for an application or a wearable
device, it is important to ensure the product’s effectiveness and ease of use.
Therefore, these factors need to be evaluated, ideally already during the iter-
ations of the design process. One of the most common user interface design
guidelines are Nielsen’s heuristics [128], briefly described as follows:

NH1: Visibility of system status,

NH2: Match between system and the real world,

NH3: User control and freedom,

NH4: Consistency and standards,

NH5: Error prevention,

NH6: Recognition rather than recall,

NH7: Flexibility and efficiency of use,

NH8: Aesthetic and minimalist design,

NH9: Help users recognize, diagnose, and recover from errors,

NH10: Help and documentation.

These design guidelines are used as an economical and quick method for
evaluating interfaces while they are still under development. In this way, possi-
ble later problems can be avoided right from the beginning. The guidelines draw
the attention to aspects of interface design that make their use faster, easier to
remember and adaptable to specific situations.

While most of these heuristics help to improve effectiveness, another impor-
tant factor that is often overlooked is to avoid users being stressed or mentally
overloaded by a user interface.

TTo avoid stress for the user, design principles need to be considered when
developing user interfaces for applications. Such principles can help to provide
the right (amount of) information through a suitable sensory channel to the user
in an intuitive way.
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Consequently, stress can be prevented, boosting comprehension and support-
ing a positive user experience. This is achieved by reducing factors causing
stress, which is crucial for a product that aims at stress reduction as in the case
of Spire. Moraveji and Soesanto [123] proposed 10 design heuristics that help
to avoid inducing psychological stress (M1-M10):

M1: Reveal ability to control interruptions,

M2: Reduce feelings of being overwhelmed,

M3: Acknowledge human interpretations of time passing,

M4: Use appropriate tone and emotion,

M5: Provide positive feedback to user input and events,

M6: Encourage prosocial interaction,

M7: Relieve time pressure,

M8: Choose naturally calming elements,

M9: Acknowledge reasonable user actions,

M10: Demystify the interface.

These guidelines help to consider many aspects of interfaces that might not
be essential to make their use effective but that can decrease stress, e.g. by
providing adequate feedback of the current status during waiting time. Reduced
stress increases the likelihood of people using the interface and thus the number
of customers.

4.4.2 App development

The mobile App was developed for the iPhone 5, the first model that had low
energy Bluetooth required to work with the sensor. An Android app is planned
but not yet available.

After various iterations of mockups and user interviews with participants of
the study as well as people interested in the sensor, it became clearer what in-
formation people would like to see displayed and how to efficiently implement
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(a) (b)

Figure 4.3: App design showing the amount of minutes already breathed calmly during the day.
(a) Mockup versions. (b) Final version on the market.

this information (see Figure 4.3). The final application now available com-
bines many of those features and was designed according to Nielson’s [128]
and Moraveji’s [123] guidelines.

On the home screen a graphic display of the current breathing pattern and
recent streaks (see figure 4.4a) are visible, while on the second screen a sum-
mary of the ongoing day’s achievement is displayed, i.e. how many minutes
the user was calm, focused, tense or active (NH8, M2) (4.4b). The first three
features are calculated from the breathing patterns, while the status of ”active”
is calculated from the steps that are also tracked by the sensor. Tapping on one
of the features opens a second screen with more details about the current streak
(4.4c). Push notifications inform users about achieved streaks if desired (M1)
and acknowledges the achievements or gives gentle hints on how to improve
(M4, M5) (4.4d). Additionally, voice guided breathing exercises are provided
to help finding more focus or calmness. A nature picture forms the background
(M8) and matching colors are used for the four different types of events (NH6).
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a b c d

Figure 4.4: Screenshots of the final app. (a) Main screen showing current breathing pattern and
recent streaks. (b) Summary of recent achievements. (c) Details of recent streak. (d) More
information about past activities and interesting facts.

When tapping on the settings symbol (NH4), one can set personal information
and find help for possible problems (NH10).

4.4.3 Final Sensor

In the experiment we used the prototype that had the necessary functionality
but still lacked an attractive design, essential to people liking a wearable device
and using it (see Figure 4.1). Together with a designer we evaluated the needs
of future customers. One important factor troubling many users of wearable
devices was the need to charge it by plugging in a cable. Consequently, we
made the decision to make the sensor rechargeable by induction, still a new
technology at that time (NH8). The final design uses a Qi-compatible wireless
charger [113]. While it is charging, a small LED light is pulsating until it is
fully charged (NH1). The sensor, now called Spire stone, is designed to look
like an elegant stone but is actually soft (NH8, M8). On one side it has a metallic
clip to attach it to the waistband so that the soft side faces the user’s body. In
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this position it can detect the movements of the abdomen which is used to infer
breathing patterns while only the clip is visible (see Figure 4.5). The sensor
vibrates to give tactile feedback when the battery is low or the positioning needs
to be readjusted (NH5).

Finally, Spire could produce and ship the sensors and has been selling them
since successfully.

Figure 4.5: Final version of the sensor on the wireless charging pad.

4.5 Conclusion

Breathing patterns are connected to one’s mental state, especially to stress. Be-
ing aware of personal breathing habits and learning to control them, e.g. by
actively reducing the breath rate, can help to decrease stress and stay more re-
laxed.

We performed a study with a new breathing sensor to test how feedback
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about breathing rates can reduce breathing rate and stress. While we could not
find a decrease of the average breath rate, we could show that all participants
became more aware of their breathing and most of them declared to have taken
more calm breaths and to having felt more relaxed during the study period.

Together with the startup Spire we developed a new version of the breathing
sensor and the corresponding smartphone app. We followed design guidelines
intended to decrease stress in order to create a tracking sensor that actually helps
to reduce stress by improving breathing behavior.

In the next chapter we explore another method on how to decrease stress
during daily life, especially for more challenged individuals. A specific task
that can be difficult is navigation, i.e. reaching an unknown location. While for
some people navigation with current technological aids is feasible even though
sometimes troublesome, for others it causes severe problems, and it is particu-
larly more difficult for visually impaired people. We explore existing solutions
that can support users, such as visually impaired people, especially in naviga-
tional tasks. We focus on how tactile devices can be employed in this context.
To this end, we investigate how a tactile belt can use vibrotactile signals best in
order to provide easily understandable guidance information.
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Chapter 5

Tactile guidance in navigation

”Only he who knows his destination finds the way.”

Lao Tse (6th century BC), Chinese philosopher

For perceiving information, technology has traditionally employed vision

(e.g. via screens) and hearing (e.g. via speakers, earphones). A lot of sensory

input through one channel can be problematic. Especially in a context where

a lot of information needs to be processed at the same time, such as during

navigation tasks, where routing information, traffic signals, other travelers and

much more has to be integrated. Employing the sense of touch for navigation

and orientation can reduce cognitive overload by freeing other sensory capac-

ities. In addition, using tactile feedback could be particularly beneficial for

people lacking one of the primary senses, i.e. the visually impaired. A promis-

ing device is a tactile belt with integrated vibration units that can be used in

navigation contexts to show directions in an easily understandable way. In this

chapter, we investigate how to indicate directions best. Further, we examine

whether using this device adds to already existing cognitive load. We review

the potential of tactile devices and the limitations of current navigation support

solutions, especially for challenged individuals. We argue that tactile belts have

the potential to overcome these limitations.
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5.1 Introduction

Over the past decades, technology has developed fast. Interaction with com-
puters or smartphones through manifold interfaces have become more common
and an increasingly important part of human life. This leads to a constant need
to improve human-computer interaction to avoid users being overwhelmed by
the complexity of the devices and applications they use. Commonly, interfaces
draw on visual and auditory attention to transmit information, which can cause
cognitive overload if various tasks require attention at the same time (see section
5.2.1).

Navigation, i.e. finding the correct way to reach a pre-determined location,
is a common task that requires particularly much attention. Especially in unfa-
miliar urban environments, people need to attend to the current traffic situation,
but also to street signs, names or maps to find their destination. To master
this challenge, people commonly rely on technological support, such as smart-
phones with navigation apps or other GPS devices. Most of these devices use
screens or audio instructions as means to transmit information to guide users.
However, relying mostly on visual or audio output can cause problems mainly
for the following reasons:

• Internal factors that prevent information perception because of personal
limitations of the users, for example: (i) Sensory deficits like being visu-
ally impaired or deaf, (ii) overload of attention because a large variety of
signals has to be processed at the same time, e.g. at a large intersection in
an unknown town, (iii) divided attention because additional tasks require
a lot of attention, such as monitoring the traffic or attending to others, e.g.,
children or (iv) they are simply not fluent in the language the information
is presented in.

• External factors that prevent information perception for various reasons:
(i) Occupation of the hands by a different task like during biking, that

90



CHAPTER 5. TACTILE GUIDANCE IN NAVIGATION

makes operating a display difficult. (ii) Environmental factors such as too
bright or dark lighting that prevent users from perceiving the information
properly on the screen. Also weather conditions (e.g., coldness or rain)
complicate operating the device.

This poses a challenge especially for visually impaired people. As they lack
vision, they rely heavily on their ears to be informed about their environment,
making it impracticable or even dangerous to use an auditory information output
when using devices for navigation support.

Tactile feedback is a valuable opportunity to avoid using visual or auditory
signals when transmitting information to users. Tactile stimuli, hence, perceiv-
able stimulations on the skin, provide an easily detectable and interpretable sig-
nal that can overcome the limitations of attention present in other channels as
proposed by the Multiple Resource Theory (see section 5.2.1). Tactile feedback
is increasingly used with different devices, e.g. a tactile navigation belt.

Tactile navigation belts are a prominent example of devices that provide eas-
ily understandable feedback on navigation information. A tactile belt has vi-
brating units all around the waist. It delivers 360◦directional information via
vibration at specific locations at the torso to indicate a direction. Tactile belts
have been successfully applied to indicate static directions [35, 150] or guide
people of different user groups along waypoints, such as pedestrians [74, 151],
visually impaired people [83, 59] or the elderly [66]. Promising results showed
successful navigation guided by tactile stimulation; however, many studies miss
to report adequate accuracy measurements that allow decisions on the optimal
use and design for such a device. Participants repeatedly reported that using
a tactile belt for navigation is intuitive and does not require much attention
[84, 56]. As of now,it has not been thoroughly tested how using a tactile belt
affects cognitive load when applied simultaneously with other tasks. Therefore,
two main questions arise: 1. What is the best way to display directions with a
tactile belt to make people turn most accurately to a new direction? 2. Has us-
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ing the tactile belt indeed no negative effects on cognitive load? Do tactile cues
interfere with other tasks performed in parallel? To address these questions in
this chapter, we perform two experiments:

1. We use a prototype tactile belt with two versions of tactile feedback to
understand which design leads to more accurate responses to direction in-
dications.

2. We investigate the interference between two tasks, using the belt and a
parallel cognitive task, to verify that in fact the device is suitable to reduce
cognitive load.

This chapter is structured as follows: In the literature review, we first explain
the concept and benefits of sensory substitution, focusing on visually impaired
people. We review current solutions they use for navigation support and their
limitations that tactile devices can overcome. Summarizing prominent use cases
of tactile devices, the focus lies particularly on tactile belts and the spectrum of
their applicability, especially in the context of navigation tasks. We point out
limitations of past research and the respective gaps we aim at overcoming with
two experiments we realize thereafter. Finally, we recap the results and their
implications.

5.2 Background

The common description of ”the sense of touch” often summarizes two separate
senses: the kinesthetic sense and the tactile or cutaneous sense. The first pro-
vides continuous information about body movements and relative positions of
different body parts to each other via receptors in muscles, joints and skin. The
tactile sense provides information about stimulation on specific locations on the
skin independently of the current body position. When touching or manipulat-
ing objects we use both of these senses that in combination are called haptic or
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tactual perception [107, 82]. The tactile sense is important for various applica-
tions using tactile feedback to provide information that is commonly delivered
through other sensory channels.

Employing the tactile sense might decrease the required mental load. One
main reason for mental load in the first place is the necessity to perform various
tasks in parallel or attend to many simultaneous stimuli. How well various
stimuli at the same time can be processed, does not only depend on the amount
of input but also on the type and combination of stimuli. To calculate the effects,
Wickens developed the multiple Resource Theory [181, 182] described in the
next section.

5.2.1 Multiple Resource Theory

An increasing amount of time people are required to perform multiple tasks at
the same time, which can cause performance decline, stress and cognitive over-
load. Cognitive overload is caused when (various) tasks require more cognitive
capacities such as attention from a user, than is available at the current moment.
Whether performance of parallel tasks declines depends on the types of tasks
and the resources they demand. To predict when and to what extend engag-
ing in multiple tasks actually leads to interference and decrease in performance,
Wickens developed the Multiple Resource Theory (MRT) [181, 182].

The MRT states that information acquired from different channels can be
processed in parallel without an increasing cost because different resources are
available to process each. Hence, performance of different tasks at the same
time depends on the combination of necessary resources for their performance.
Distributing the information that needs to be processed at a given time to dif-
ferent input channels, can improve perception and performance. Offloading
information from sensory modalities that are already highly overloaded, such
as vision and audition, to less used ones such as the tactile sense can allow to
process more information in parallel without a decrease in performance. The
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MRT allows to predict the cognitive effort required by each of multiple tasks
performed in parallel, which provides valuable hints on how to design systems
and how to display information most efficiently to users.

The Prenav theory [170] proposes that the effect of external stressors on
human users of technology can be reduced if the display method requires little
mental resources. Hence, the theory suggests tactile displays to reduce cognitive
overload.

Not always all senses are available, e.g. visually impaired people can not
use devices based on visual displays. Therefore providing information through
other senses can help to substitute the missing senses which is done by sensory
substitution.

5.2.2 Sensory substitution and augmentation

Sensory substitution aims at providing information usually perceived with one
sense through a different one. Especially difficult for people without vision is
spatial orientation and the recognition of objects beyond the range of their hands
or long cane [82]. One of the first corresponding experiments of sensory sub-
stitution was done by Bach-y-Rita et al. [10] in 1969 who developed the Tactile
Vision Substitution System (TVSS). In this experiment a tripod mounted TV
camera captured visual information. The TVSS translated the visual informa-
tion into tactile patterns that was displayed via a vibrotactile array on the back
of congenitally blind people. After training, they could use the information to
detect and recognize simple objects in the space surrounding them. Successful
implementation depended on the participants being allowed to manipulate the
input. Hence, allowing them to change the directions of the camera or zoom
during training led to a spatial perception of the perceived objects localized in
the corresponding space outside of their reach instead of a tactile sensation on
the skin [99]. In later studies, visual signals were also successfully translated to
electro-tactile stimuli displayed on the tongue, the area with the highest sensi-
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bility [12].

Since then, different sensory-substitution-devices have been developed to
compensate for inoperative senses such as eyesight or hearing [82, 13]. While
sensory input might be limited due to physiological damage for example of the
retina, the brain might still be able to ’see’. Brain structures usually processing
information from a specific sense are sufficiently flexible to adapt to process dif-
ferent sensory input with the same contingencies, e.g. in transforming auditory
information and interpret them as visual[157] or by transforming electro-tactile
stimulation to visual impressions for the blind [138]. With adequate substitution
devices, blind people are able to roll out actions to substituted visual input, such
as grasping a drink or intersecting a ball rolling towards them [11]. This capac-
ity can be used to develop devices that can substitute a lost sense to a certain
degree and can thus arguably make blind people ’see’ again [13]. When using a
visual-to-audio substitution device, congenitally fully blind people can exceed
the blindness acuity threshold set by the World Health Organization that defines
blindness [157]. Various systems have been developed to help blind peoples
orientation by substituting vision in different ways (review in [110]).

It is also possible to augment human senses by providing sensory input peo-
ple normally do not perceive. While sensory substitution strives to compensate
for non-functional senses, sensory augmentation provides new information hu-
man senses are not able to detect on their own [82]. One aspect of sensory
augmentation is to improve a sense, like glasses or telescopes enhance vision.
Another dimension is to provide a completely new sense detecting signals not
normally perceived by humans. One successful tactile implementation is the
feelSpace belt, a device using vibrotactile stimulation around the waist to signal
information of magnetic north. Of the 13 to 30 vibration motors, the one that
points north is continually activated. If the user turns their body axis, the signal
adapts to the movement. After 6 weeks of training with the device, participants
space perception changed substantially [124, 83, 84].
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Further research on devices to help visually impaired people to navigate is
described in the following subsection focusing especially on tactile solutions.

5.2.3 Navigation devices for the blind

Severely visually impaired and blind people have difficulties with navigational
tasks, since navigation is highly vision based. Often, they use a white cane
to avoid obstacles. Some also rely on a guiding dog or a human companion
to find their way to different locations. To increase their independence and
improve their quality of life, various technologies have been developed to make
navigation easier and safer for them.

To solve the problem of avoiding collisions with objects, the white cane is
the most common device. However, not all blind people use it. In fact, esti-
mates range from 17% to 50% of blind people using it [111]. One of the main
problems is that it usually cannot detect obstacles that are above ground level or
further away than about 1 meter. To overcome this problem, various new Elec-
tronic Travel Aids (ETAs) have been proposed [63]. Some of them are sensory
substitution devices (SSDs) that enhance the range by sending different signals
(sonar, infrared light, laser, etc.). These devices can be pointed in various direc-
tions to measure the distance to objects out of range, which is then translated
to tactile or audio feedback (for a review see [41]). One natural method imple-
mented by some blind people is echolocation. It works by producing sounds
with the mouth and then extracting information from the returning echo about
present objects such as location, distance, position or even texture [92].

Golledge blind himself - made a survey with colleagues to identify prefer-
ences on necessary features of a guidance system for visually impaired indi-
viduals [65]. While they did like voice input and output, they were concerned
about wearing headphones, which prevent them from listening to the environ-
ment, extremely necessary especially in high-traffic areas.

Loomis et al. [108] tested various versions of spatial display methods such
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as displaying sound and speech through headphones that appeared to come from
the direction of the next waypoint when pointing either with the head, the whole
torso or a handheld device towards the next waypoint. Participants liked the
body pointing version as it kept their hands free. Furthermore, audio feed-
back presented through speakers at the shoulder was preferred over headphones.
However, moving the whole body to point towards a direction was considered
troublesome.

A different solution uses an oral tactile interface to communicate directions
[161]. It displays moving patterns in four directions (left, right, forward, and
backward) onto the roof of the mouth while it can be operated with the tongue
from below. While front and back movements sometimes led to erroneous iden-
tification, left and right movements were almost perfectly detected. Requiring
only a very low voltage (25-30V), it is an energy efficient method to provide
basic directional cues to blind users while keeping their hands and ears free.
However, it prevents users from speaking while wearing the device.

In unknown environments orientation is especially uncomfortable for visu-
ally impaired people as they have little possibilities to consult a map of the area
they want to visit beforehand. Mental mapping helps to develop mobility and
orientation skills, letting people feel safer and more likely to explore new areas.
To enable blind people to explore spaces before visiting them, Virtual Environ-
ments (VE) are used. Through haptic and audio feedback they can safely get
to know the place in advance [94]. Merabet et al.[118] could show that blind
people learn the outline of a building not only when guided through an online
environment simulating the same floor plan but also when they play an audio
guided game based on the same floor plan even when they are not explicitly told
to obtain knowledge about the layout of the building. Hence, using VE-games
is a promising method to teach spatial layouts in advance to visually impaired
people.

Tactile information display has the advantage, especially for visually im-
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paired people, of not occupying the hearing sense. In the next subsection we
will describe further devices that provide information via the tactile sense.

5.2.4 Tactile devices

The number of applications and devices in everyday life that use tactile feedback
is steadily increasing [147, 81]. Many products available on the market use
tactile stimuli, either to direct attention or to provide a more intuitive feedback
on specific information. Providing information via tactile signals is gaining
popularity as they are instantly noticed and often circumnavigate the bottleneck
of attention when other senses are already occupied.

There are two main forms of vibrotactile displays, either 1) an entire rigid
object vibrates or 2) various vibrating actuators in a spatial arrangement are
used to communicate specific locations [33]. The first is mainly used in small
handheld devices, such as smartphones, to communicate an event privately as
they are felt just by the target person (e.g. when receiving a message on the
phone) or it can be used as a warning, particularly in cars, where tactile signals
are used as alarm signals to indicate distances to other cars [76].

The more flexible combination of individual vibrating units is used to indi-
cate a specific location in space as a direction indication in navigational aids but
also when a precise pattern is presented such as in the OPtical to TActile CON-
verter (Optacon). This device for visually impaired people converts the image
from a handheld camera to distinguishable patterns on a vibrotactile pin array
that can be sensed by the fingertips of the user [64].

Signals can also draw attention towards a specific location. Tapping on the
shoulder via a haptic display on the back can cue attention to the correspondent
side similar to real-life shoulder tapping [160]. In cars, directional vibrotactile
signals have been successfully tested for various purposes such as keeping a
safe distance to a leading car [76] or preventing collisions by presenting tactile
cues on the side corresponding to possible danger [77]. Also, driver’s mental
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workload could be decreased when presenting directional cues through local-
ized tactile cues [167]. During flying maneuvers, pilots are able to decrease
drifting from the main course and hence minimize navigational errors when be-
ing given simple feedback on a tactile torso display by indicating the desired
direction [169].

Recently, research on supporting orientation and navigation increasingly in-
vestigated tactile feedback provided by belt-like devices with vibrators dis-
tributed equally around the waist to provide directional information in real and
virtual environments. In the following section we will explore the potential of
tactile belts used as navigation device for visually impaired people, but also for
other user groups.

5.3 Tactile belts

Information is often transferred to humans via audio or visual presentation, but
recently more vibrotactile feedback is used as described in the previous section.
Especially in navigation contexts tactile feedback is beneficial as a primary in-
formation modality to avoid using other senses since vision and audition are
often already occupied by other tasks. Tactile feedback provided by a belt-like
device has the advantage that tactile feedback presented at specific locations
around the body can indicate a direction. To present tactile stimuli at precise
locations around the waist different vibration technologies are employed. For
simplification, we call them vibrating units (VUs) independently of the technol-
ogy used to cause the vibration and the names used in the correspondent studies.
Compared to the limbs, the torso is relatively stable and therefore a good loca-
tion to present directional information [34]. The concept is shown in Figure 5.1:
VUs are equally distributed around the waist. One VU is activated and indicates
a direction to the user.

Following the vibrating signal is intuitive and requires almost no training,
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Figure 5.1: 8 vibration units (VUs) (in white) are equally distributed around the waist. The
activated VU is depicted in green and indicates a direction of 45◦ to the user.

because the location of the directional signal is directly associated with a di-
rection in the environment [84]. Hands, eyes and even ears stay free which is
especially relevant and useful when needing the hands (in a car, on the bike, on
the motorcycle) and the eyes (to monitor traffic, to enjoy nature). In fact, peo-
ple start experiencing an intuitive understanding of their location and heading
direction [124].

In the following, we review different tactile belts that have been tested by
various research groups. Several factors are denotative for studies with tactile
belts and are relevant for the type of results possible to achieve: A tactile belt
is mainly characterized through the number of VUs it contains. The experi-
ments varied in their tasks and the data they collected. The response method
was in most cases either static, i.e. subjects communicated the position of the
tactile stimuli but did not move, or required the subject to turn towards the
indicated direction. The applied methods vary strongly, making it difficult to
compare different outcomes. Often, the number of subjects is limited. In Table
5.1 we summarized a selection of prominent belt studies with relevant details.
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We report the number of VUs, the number of participating subjects, the type of
subjects (’normal’ is used, when no specific selection criteria are given) the re-
sponse type (either static or turning) and the main task in the study. Finally, we
selected one main outcome specific to this study. More details to most studies
are provided later in the corresponding sections.

Research in tactile guidance via tactile belts received increasing interest in
recent years. Many studies investigated tactile belts in the context of navigation
tasks and showed to various degrees their successful implementation. In the fol-
lowing, we give an overview of existing studies and their findings. Thereupon,
we look at implementations and results for user groups with special needs who
can particularly benefit from using tactile belts, before giving a brief overview
of other application possibilities. We will then extend the researched topics
by experiments building up on what we identified to be missing in previous
research.

The existing research points out some limitations we will address. While
successful navigation experiments have been done, no common benchmarks
to measure results have been applied. Only few studies measured precisely
how accurately people can follow an indicated direction or compared different
cueing implementations with the same experimental settings. We describe those
studies that do address turning accuracy and point out their limitations. These
limitation led us to research two distinct tactile display modes to test how to
increase accuracy in a first experiment.

As visible in table 5.1, most studies conduct their experiments with less than
15 participants, partly due to time consuming experimental settings [124, 84].
Mostly, belts with only 8 VUs are used, making the resolution coarse. In our
experiments, we test 26 subjects with a belt with 16 VUs.

Our second experiment aims at measuring effects of mental load caused by
performing parallel tasks. While MRT [181] and the prenav model [170] (see
section 5.2.1) indicate that mental load could be reduced when the informa-
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Table 5.1: Overview of previous belt studies summarizing the publication (name of belt or first
author; year; citation), number of vibration units (VUs), number of subjects using the belt (N),
type of subject (S type), response mode (either static or turning) and the task to perform. Task
forms are following waypoints, discrimination of indicated direction or navigation training.
Finally, we selected one prominent result.

Belt year [Paper] VUs N S type response task results

ActiveBelt 2004 [165] 8 6 normal turning follow correct responses
Cholewiak 2004 [35] 6,

8,
12

18 normal static discrimination increasing accuracy for less Vus

feelSpace 2005 [124] 13 4 normal turning training new orientation experience after 6
weeks

Van Erp 2005 [168] 8 12 normal turning follow no improvement for distance indica-
tion

Pielot 2008 [136] 6 16 normal static discrimination accuracy increased by interpolating
vibration intensiyity between 2 Vus

Jones 2008 [81] 8 10 normal static discrimination 98% correct recognition of active VU
Tactile Wayfinder 2008
[74]

6 7 normal turning follow subjects stay within 15m of path

Tactile Wayfinder 2010
[135]

12 14 normal turning follow requires less attention than common
GPS

Grierson 2009 [66] 4 9 elderly turning follow maze performance higher than for speech
based system

Grierson 2011 [67] 4 11 dementia turning follow indoor successful guidance for dementia pa-
tients

TacNav 1 2011 [150] 8 16 normal static discrimination better than tactile back array
TacNav 2 2013 [151] 8 12 normal turning follow faster than other GPS device
feelSpace 2012 [83] 30 1 blind turning training improved sense of security
feelSpace 2014 [84] 30 7 normal turning training new orientation experience after 7

weeks
Cosgun 2014 [38] 8 15 normal static discrimination Continuos vibration lead to best re-

sults
Faugloire 2014 [56] 8 12 normal turning turning Tactile indication leads to better accu-

racy than speech
Li 2015 [103] 4 18 normal static discrimination Comparison of frequency, amplitude,

duration
Flores 2015 [59] 8 10 blind turning follow Path following more precise than with

audio guidance

tion necessary to perform parallel tasks is perceived through different sensory
channels, only few studies precisely measured the correspondent effects in the
context of tactile belts. We give a short overview over the existing studies and
point out the gap we address.
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5.3.1 Tactile belts for navigation

One of the first tactile belt prototypes was build by the feelSpace group [124]
and it provided cardinal information via localized cues. 13 VUs were placed
equally around the waist. The VU closest towards north was vibrating continu-
ously, providing a constant feedback of cardinal direction (4 belt and 4 control
subjects). Within 6 weeks of training with the belt, in particular performance
in an outside navigation tasks improved. In half of the participants, a quali-
tatively new sensory experience emerged so that they intuitively ”knew” were
North was and how they were orientated in space. A later experiment of the
same group used a new prototype with 30 VUs [84]. 9 participants wore the
belt during the duration of 7 weeks and used it while training navigation tasks.
The belt facilitated navigation and stimulated using new navigation strategies.

Another early belt prototype was the ActiveBelt with 8 VUs equally dis-
tributed around the waist [165]. 6 participants were able to identify cardinal
direction correctly and follow the direction indicated by the belt.

Van Erp et al. [168] tested a further belt with 8 VUs. 12 participants fol-
lowed a path with 6 waypoints . Different methods of encoding the distance to
the upcoming waypoint in addition to the direction did not change performance,
suggesting that distance information may not be relevant for efficient guidance.
This belt was later also tested in the context of challenging military tasks [51].
When testing the tactile display in comparison to standard GPS devices and
combinations of both for navigation tasks in difficult terrain and with an addi-
tional task requiring attention, they concluded that the tactile navigation display
has large application potential especially when subjects are under conditions of
heavy visual and cognitive load.

The Tactile Wayfinder is a belt with only 6 equally distributed VUs. To indi-
cate an intermediate direction, two neighboring VUs were activated at the same
time [74]. On an open field, 7 participants followed the signal along waypoints.
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In 99% of the time they stayed within 15m from the target. While authors iden-
tified these results as success, leaving the core path up to 7.5m to either side
is potentially dangerous in a urban environment. A later version included 12
VUs [135] and was used to convey information not only of the next but of the
next two waypoints. To achieve this, a sequence of two outputs was presented
every 4s that represented the next two waypoints respectively. In a study with
14 subjects comparing the Tactile Wayfinder with a standard GPS device, the
tactile belt caused more navigation errors but required less attention as subjects
remembered the environment better. However, no alternative waypoint presen-
tation patterns were tested.

TactNav is a belt with 8 VUs that was first compared to a tactile array dis-
playing information on the back [150]. TactNav outperformed the back array in
a direction discrimination task with 16 subjects. Further on, the performance of
TactNav was compared with a navigation app on a smartphone [151]. In a field
experiment with pedestrians navigation accuracy was similar in both cases, but
route completion time was significantly faster with the tactile belt.

Other studies investigated how to use a tactile belt to provide directional
information to drivers in a car. Boll et al. [18] developed vibration patterns
that indicate the intended turns in advance. Asif et al. [8] developed rhythmic
patterns to additionally show distance information to car drivers via a tactile
belt.

5.3.2 Navigation belts for the blind

To test a minimalistic approach of tactile feedback, Marston et al. [114] com-
pared an audio and a tactile binary cue setting. 8 blind subjects wore a head
mounted compass and received either auditory or tactile feedback presented via
a single VU placed on the arm to indicate whether they are within 10◦of the
desired path. In both conditions, subjects were able to successfully follow the
path. They proposed a multivibrator display to overcome the limitations occur-
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ring when switching from walking towards one waypoint to the next one, where
participants in this study had to actively turn until they find the next direction.
However, they did not test the alternative display.

In a case study, one late blind subject trained with a tactile belt with 30 VUs,
resulting in improved performance in various navigational tasks. Most of all, the
tactile device enhanced the feeling of security especially when exploring unfa-
miliar environments, which points out the opportunities such devices present for
self-guided and self-depended navigation of visually impaired people [83]. In
this case, information about cardinal north was displayed continuously through
a tactile stimulation on the correspondent location on the waist.

Flores et al. [59] used a belt with 8 VUs or audio feedback (speech) to guide
10 congenitally blind subjects along 6 paths. The belt indicated directions by
activating the correspondent VU pointing towards the next waypoint. Thus, it
created a moving signal to indicate the need for turning (e.g. a signal moving
from the front towards the right to indicate the need for a right turn). With the
tactile feedback, participants were slightly slower but followed the path more
precisely. In general they preferred the tactile version to avoid impairing their
hearing sense.

5.3.3 Navigation belts for the elderly

A wearable tactile belt with 4 VUs was used to guide elderly people through
a maze. When compared to younger adults, they made significantly more nav-
igation errors when guided by speech but followed the tactile signal without
problems even when the route complexity was increased [66]. The same device
was also successfully used by persons with mild dementia [67].
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5.3.4 Other use cases

One important advantage of a tactile belt is the possibility to present stimuli at
specific locations. This is not only useful when indicating directions for nav-
igation purposes. The belt can also be combined with an obstacle detecting
system. Johnson and Higgins [79] developed a prototype with 14VUs. Cam-
eras attached to the devide detected the objects around the user, the location
was transmitted to the user via vibrotactile feedback at the correspondent loca-
tions. Cassinelli et al. [31] used a band around the head with 5 sensor-vibrator
modules that could detect obstacles at the height of the head and provide corre-
spondent tactile stimulation. Blind users felt safer and more independent with
the band and their anxiety related to navigation decreased.

Obstacle detection is also an important task for robot locomotion. A tactile
belt was successfully used in the context of remote controlling a robot. To
represent the distances to objects from the robot, localized tactile feedback was
presented to the person controlling the robot’s movements through the interface
of a tactile belt [164].

In general, tactile cues are a good way to attract attention towards a specific
location, which can also be used in other scenarios. Borg et al. [19] successfully
indicated the source of sounds to deaf people via a tactile belt. Buchmann et
al. [28] in contrast used tactile cues in the context of a Virtual Environment to
indicate the direction of a target the user should turn to. In comparison to visual
and auditory hints users performed best with the tactile belt. Ferscha et al.
[57] used a tactile belt to successfully show workers the location of dangerous
obstacles close to their path.

5.4 Tactile direction display

So far, we summarized research on tactile devices and their potential for trans-
mitting information particularly when other senses are unavailable or used oth-
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erwise. We reviewed experiments with tactile belts that are specifically useful
for navigation applications, not only but particularly for visually impaired peo-
ple, because tactile belts can overcome the limitations present when other senses
are compromised. to receive guiding instructions.

In various studies, the effectiveness of tactile belts for providing guiding
instructions in form of directional tactile cues, has been shown. However, it
remains unclear how to indicate directions best to users to achieve the highest
accuracy for tactile guidance. In the following, we review previous methods of
displaying directions and measuring the consequent responses. To close the gap
we find in prior research we design two correspondent experiments.

In the first experiment, we compare turning accuracy for different tactile dis-
play modes. Turning accuracy denotes the precision with which the tactually
presented direction is estimated by the subject [56]. We test how accurately
subjects turn towards the direction that is displayed via the tactile belt. There-
fore, we call the result turning accuracy achieved in a turning task.

With the second experiment we examine the effect of mental load on parallel
tactile guidance to test whether performing both tasks in parallel compromises
performance.

5.4.1 Location of tactile stimulation

In previous tactile belt research, the position of the tactile stimulation on the
body changes in order to indicate different directions. A target location is dis-
played by activating the VU that lies in the direction of the target. VUs are
normally equally distributed around the waist and each VU has an equal range
of directions that it represents [165, 124, 168, 74]. Hence, the range of direc-
tions of each VU depends on the number of VUs integrated in the belt. Con-
sequently, the fewer VUs a tactile belt has, the lower the resolution of angles it
can indicate, e.g. when having 6 VUs, each represents directions in a range of
360◦divided by 6 equals 60◦.
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Pielot et al. [136] tested a different approach to display directions with a
belt that was limited to 6 VUs. When displaying a direction between two VUs,
the two neighboring VUs are activated and the exact angle of the direction is
encoded through different intensity levels of their vibration. The one closest
to the target direction vibrates with a higher intensity. For 15 subjects, this
approach increased the accuracy of direction detection significantly, but at the
cost of slower reaction time. Participants found it more difficult to interpret the
signal compared to discrete directions displayed with only one activated VU.

To evaluate the best way to provide directional information to blind people
Cosgun et al. [38] considered not only directional cues but additionally moving
vibration patterns to directional signals. However, continuous vibration of a
single VU to indicate a direction leads to least recognition errors, while two
intermittent pulses were slightly preferred.

5.4.2 Accuracy of perceiving directions

In research, an important factor to judge effectiveness of tactile belt stimulation
is the method to measure the accuracy of response. Two types of studies can
be classified according to the required response requested from the participants.
The first type requires a stationary response and focuses on the localization of
the signal. Participants either use a handheld rotary dial to manipulate a cursor
[166], press buttons arranged corresponding to the stimulus site [34] or draw
the indicated direction on paper [103]. The second response type requires that
participants turn actively towards the direction they want to indicate [56] or ad-
ditionally walk towards it [135, 168, 59]. While measuring stationary responses,
contrary biases have been found shifting the perceived signal either towards the
sides of the abdomen (i.e. away from the navel or spine) [34] or towards the
middle of the body (i.e. towards the navel in the front and towards the spine in
the back) [166]. It seems that indicating a direction via body movement is an
ecologically more valid method. Haber et al. [71] showed that the method of
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indicating a direction has an influence on the accuracy of the perceived loca-
tion. Using the whole body or parts of it to indicate the direction, leads to the
best results. Many studies proved the effectiveness of tactile direction displays.
However, often users performance was either not reported completely or the
study did not include accuracy measurements of the body’s orientation move-
ments. Other responses were evaluated such as discriminating which specific
VU was activated. [35, 150].

Most of the devices mentioned in literature used 8 equally distributed VUs
around the waist and mapped equal angles to each [165, 168, 150, 38, 59]. In
other words, the tactile belts most often have a resolution of 45◦per VU. To
test the accuracy of turning performance, most studies only tested whether the
”correct angle” is perceived. Cosgun et al. [38] tested the turning accuracy for
different stimulation versions. Participants walked around and verbally named
the VU number they felt vibrating. When the vibration signal was presented
continuously on the same VU, the turning accuracy was highest (9◦ deviation).

Heuten et al. [74] tested a belt with only 6 VUs. In this case each VU repre-
sented an angular range of 60◦. Therefore the expected deviation between actual
and presented directions lies between 0◦- 30◦with an expected average devia-
tion of 15◦. In fact, in experiments with 13 participants, the direction indicated
by the signal produced by the belt was perceived with the expected median de-
viation of 15◦. Pielot et al. [136] used a similar belt but the real average error
for 16 participants was higher with an average deviation of 19.4◦. The authors
proposed as possible explanation the difficulty of mapping the perceived signal
to the response format, a visual circle on a screen.

However, in real navigation tasks, 45◦ angles are quite inexact, especially if
the user has to navigate along a route that is not visible (e.g. because of darkness
or visual impairment) or where the destination is not clearly recognizable (e.g.
in an open field, a forest or on a big parking lot). Thus, a better resolution is
desirable.

109



5.4. TACTILE DIRECTION DISPLAY

To reduce the recognition error, the number of VUs could be increased. But
this number has its limits not only for economic reasons, but also because differ-
ent tactile stimulations can only be differentiated on the skin when the distance
between two stimulation sites has a minimal distance of at least about 35mm
(depending on the location around the waist) [180].

A further factor having an influence on perception of tactile stimulation is
the vibration rhythm of the tactile signal. In previous tactile guidance studies,
the vibration rhythm was chosen mostly arbitrarily, either with constant rates
[150, 66, 59] or variations in order to code distance information [168, 18]. In
the most cited tactile guidance paper, Van Erp et al. [168] used pulses in 1s
intervals and recommended a feedback frequency of at least one pulse every 4s.
However, the effectiveness of this recommendation has received little validation
[56].

The chosen vibration rhythm determines how this information can be used to
control turning movements. When the vibration rhythm is high (several bursts
per second or even a continuous signal) the location of tactile stimulation can
be updated in accordance to the rotation of the user’s body. Such a relation
between movement and tactile feedback creates an action-perception coupling
similar to natural sensory perception (e.g. updated perceived image during body
rotation) [130] that has been found in users of tactile devices in previous studies
[124, 83].

Faugloire and Lejeune [56] directly compared whether this more natural ap-
proach for presenting tactile information enhances turning accuracy in contrast
to a short initial direction indication without updating the signal during move-
ment. In an experiment with an 8 VU belt, 12 participants turned towards the
indicated direction and turning accuracy was measured. A continuously updated
signal led to higher accuracy (absolute turning error AE = 10.1◦) than compared
to a short initial burst (AE = 13.6◦). The difference remained the same when
performing the experiment in the dark. The findings show that action-perception
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coupling supports the effectiveness of tactile guidance. Hence, it is useful when
the tactile signals are reciprocally related to the movement of the user. This
condition was also favored by participants.

Our goal is to reach the highest turning accuracy possible via tactile guid-
ance. The described experiment [56] reports with AE = 8.9◦one of the lowest
errors for turning accuracy. Therefore we base our study on their study. To
use the benefit of action-perception coupling, we use a continuous vibration in
our experiment so that the tactile signal was constantly updated according to
subject’s movements. We used a belt with 16 VUs to increase the expected ac-
curacy. We then compared two different display modes, i.e. different mappings
of directions to VUs, to measure their influence on turning accuracy.

5.4.3 Mental load

The Multiple Resource Theory (section 5.2.1) proposes that providing infor-
mation through different sensory channels can reduce mental load, especially
when tasks are performed in parallel [182]. A meta-analysis of tactile applica-
tions shows improvements for workload and performance when adding tactile
to existing visual cues [50]. Therefore, tactile devices can provide simple infor-
mation additionally to vision or audition, reducing mental load.

Participants in various studies repeatedly reported that using the tactile belt
for navigation required less cognitive effort or attention than other methods [84].
A few studies investigated the effect of using a tactile belt on mental load. El-
liott et al. [51] measured self-ratings on mental workload and found that tactile
navigation displays can outperform visual displays when cognitive and visual
load is high. Davis [43] measured self-rated mental load for 7 different naviga-
tion devices but did not find any specific advantage of the tactile display mode.
However, in contrast to a visual personal pedestrian navigation device, Pielot et
al. [135] confirmed that pedestrians using the tactile belt attended more to their
surroundings. Dorneich et al. [45] compared performance of 9 subjects un-

111



5.4. TACTILE DIRECTION DISPLAY

der low and high cognitive load conditions. They performed various cognitive
tasks in parallel to a navigation task either supported by a tactile belt or visual
based navigation device. Subjects performed better with the tactile belt when
cognitive load was high.

Especially for visually impaired people performing navigation tasks requires
high levels of attention. In a case study with one late blind subject, Krcher et
al. [83] tested the effect of an additional mental task on the capacity to walk a
straight line. Walking a straight line has a high relevance for blind people for
example when crossing large streets and simultaneously using the ears to mon-
itor traffic. When performing the mental task, performance was significantly
better when using the tactile belt than without it. In this study, the tactile belt
continuously indicated north, hence the signal was not necessarily felt in the
front but at a consistent location around the waist. In a more complex naviga-
tion task, an additional mental task caused worse performance independently of
the support of the belt. However, after 5 weeks of training with the tactile belt,
performance was higher when using the belt, suggesting that the signal was in-
tegrated and could be used unconsciously [83]. Klatzky et all [88] tested mental
load on a navigation task without vision when guided by either virtual sound or
language. When under mental load, navigation performance decreased for the
verbal condition but in the virtual sound condition, performance dropped only
for the first trial. In the consecutive trials, subjects performed again equally well
compared to the navigation-only task, suggesting that very short adaptation or
training is enough to avoid interference between modalities. .

While some studies evaluated subjective mental load via personal ratings,
only a few studies measured concrete performance and those predicate their
results on only few subjects (9 in [45], 1 in [83]). In their conclusion of their
recent paper Faugloire and Lejeune [56] explicitly pointed out the necessity to
test the effect of mental load on a tactile guidance task. In our experiment, we
aim at closing this gap. We test 26 subjects and measure both, the performance
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in the cognitive task and in the tactually guided task. Both tasks are performed
by themselves as well to allow drawing conclusions on mutual influences the
tasks might have on each other.

In the present literature, we identified various aspects expected to increase
turning accuracy during tactile guidance. With the two experiments we con-
ducted, we aim at closing the gaps we identified in recent literature.

As vibration rhythm we used a continuous vibration that proved of value
because it allows for action-perception coupling [124, 84, 38]. With the first
experiment, we aim at quantifying how well the directional display of a 16 VU
tactile belt can be understood.

As we saw in the last section, still no clear results show the effects of men-
tal load on a tactile guidance task. Therefore, in the second experiment, we
investigate the effect of mental load on the turning accuracy.

5.4.4 Experiment 1: Turning accuracy

In our first experiment we quantify the turning accuracy achieved by two differ-
ent display modes: precise action-perception coupling versus emphasizing the
target direction.

When each VU indicates directions in the range of 22.5◦ (360◦/16 VUs), an
maximal error of 11.25◦ in each direction is possible with an expected average
error of 5.6◦. However, this would only be true for an optimal situation in which
the user precisely detects every signal change and differentiates well between
the closely spaced VUs. It has been shown that the accuracy of distinguishing
between different VUs decreases when more VUs are present (for 12, 8 and 6
VUs) [35].

But with fewer VUs, the amount of possible directions that can be displayed
declines and accordingly turning accuracy decreases due to the ample range of
directions represented by each VU [136, 74]. Many studies use a tactile belt
with only 8 VUs (see table 5.3). Yet, how precise directions can be detected
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with a tactile belt with 16 VUs has not been tested so far. During the first
experiment, we test the turning accuracy with 16 equally spaced VUs around
the waist and compare the effect of two different display modes on the turning
accuracy.

The first mode we call the equal belt (EB), where the 16 VUs represent
an angle of 22.5◦ each. Hence, one VU is active when the target direction
lies within its range (see figure 5.2 a). This allows a precise action-perception
coupling, i.e. body movements are leading directly to correspondent tactile
feedback. The tactile feedback changes in a consistent manner when turning
the body and with a consistent difference between VUs, independently of the
direction.

However, tactile discrimination accuracy is highest close to the navel [35,
166]. Therefore the second display mode, the magnifying belt (MB), displays
directions differently: The VU directly in the front close to the navel covers a
range of only 5◦, the two next to it, one on either side, cover 10◦ each while all
others cover 25◦ (figure 5.2 b). Here, a less direct action-perception coupling is
present. The signal still wanders when the user turns, but the tactile feedback
changes faster during turning when the target direction lies nearly in front of
the person, compared to all other directions. We hypothesize that the higher
resolution in the front leads to increased turning accuracy.

5.4.5 Experiment 2: Mental load

In a second experiment, we tested the tactile belt with an additional mental
load. In an application case, pedestrians during navigation have to fulfill various
tasks in parallel, such as monitoring the traffic while finding the way to their
destination. Hence, a device supporting navigation should be easy to use and
not disturb other tasks performed simultaneously. To learn about the influences
that using a tactile belt and performing mental tasks have on each other, we
tested whether the turning accuracy stays the same when using the tactile belt
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(a) (b)

Figure 5.2: Schema of the distribution of the represented directions among the 16 VUs for the
two different display modes: (a) The Equal belt (EB) and (b) the Magnifying belt (MB).

while additionally adding cognitive load through a mental task. We expect the
two tasks not to effect each other like the Multiple Resource Theory proposed
(see section 5.2.1) [182]. To induce mental load, we used a version of the 7-
backwards task that was used for the same purpose by Krcher et al. [83].

5.4.6 Hypotheses

In conclusion, our hypotheses for the two experiments are:

1. When using a tactile belt with 16 VUs were each represents directions in
the range of 22.5◦ (EB), an average turning accuracy of at least 5.6◦ can
be achieved.

2. When the range of the 3 frontal VUs is reduced (MB), the accuracy of
turning performance should increase to an average of around 1.25◦.

3. We expect the reaction time to be the same in both conditions. This is be-
cause in both cases, a continuous vibration signal is presented and action-
perception coupling is present.

115



5.5. METHODOLOGY

4. When performing the turning task and the mental task simultaneously, we
do not expect a performance difference compared to performing each task
individually.

5.5 Methodology

5.5.1 Participants

26 participants (11 female, 15 male) aged between 19 and 55 years (mean =
25.0, ± 6.8) took part in the study. 5 had already participated beforehand in
a different study with a tactile belt. All had normal sensory functions. In the
beginning, each participant received written information about the experimental
procedure and signed an informed consent statement.

The subject was seated on a swivel chair with at least 80cm free space in
each direction. The tactile feelSpace belt was put on and closed in the back.
The belt is a research prototype from the feelSpace group that contained 32VUs,
but only every second one was activated. Hence, it used 16 equally distributed
vibro-tactile units (VUs). Each VU is a standard pancake vibro-motor like those
used in smartphones vertically positioned.

The belt was connected via Bluetooth to a Smartphone (Nexus 6) that was
fixed on the arm rest of the chair and pointed towards the front. In this position
it stayed parallel to the participant while he1 performed the turning task. The
belt was operated by a smartphone app that saved data every 100ms. The data
contained both, the current direction indicated by the belt (D1) and the actual
heading direction of the participant (D2) together with a time stamp.

1For easier reading we write about subjects as ’he’, but mean both our male and female participants.
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5.5.2 Procedure

After putting on the tactile belt, the participant sat down on a swivel chair and
the experimenter explained in detail how the belt works. Then the experimenter
started a compass mode in which the belt continuously indicates north. The
subject took the smartphone in his hand and received a visual feedback indicat-
ing north. He was asked to familiarize himself with the sensation of the tactile
signal while swiveling on the chair to experience the wandering of the signal.
Finally, he was asked to stop turning when heading towards north, i.e when
the tactile signal was displayed exactly at the VU closest to the navel. This
served both for familiarizing the subject with the task but as well for letting the
experimenter control that the belt is correctly placed and the accuracy of the
smartphone’s compass was not compromised.

Further details were explained if the subject had questions. Then, the subject
was asked to close his eyes for performing the task. The reason was that the
subject should not be distracted by movements of the experimenter or other
details of the room. All participants closed their eyes as asked and only opened
them between trials (monitored by the experimenter).

5.5.3 Experiment 1: Turning task

The experiment consisted of 4 trials, 2 using the MB and 2 the EB in alternating
order. The beginning condition was counterbalanced across subjects. Each trial
started with 3 bursts on the side of the belt during which the app calibrated itself
followed by a vibration in the front for 5s. During this initial phase, the partici-
pant did not move. The signal then deviated to a new predefined angle and the
correspondent VU vibrated for 10s. Every time the signal changed, the partici-
pant rotated on the chair so that he was aligned with the signals direction with
the frontal VU vibrating again. The angle changed 9 times resulting in a total
length of 95s per trial (5s initial vibration plus 9 directions á 10s). Each trial
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contained 9 pseudo-randomized angles: at least 4 direction changes leftwards
and 4 rightwards, no more than 2 changes towards the same direction in a row
and at least 2 small changes (between 10◦and 90◦) and 2 big changes (between
100◦and 180◦) in each direction.

In total, each possible direction in steps of 10◦ between 10◦ and 180◦ was
represented twice, once to the right and once to the left, distributed across the 4
trials (36 directions in 4 trials = 9 directions per trial).

5.5.4 Experiment 2: Mental task

After finishing the first experiment, participants continued directly with the sec-
ond one.

Each subject performed a mental task in 4 trials. In 2 trials, only the mental
task was performed and in 2 trials, the mental task was simultaneously per-
formed with the rotation task (using EB) from the first experiment. During the
mental task, the subject continuously subtracted 7 from a 3-digit number ini-
tially announced. 4 numbers (451, 519, 778, 982) where randomly assigned to
the 4 trials so that each subject started with the same 4 numbers in a differing
order. In this way, we avoided varying difficulty in the mental task between
subjects. When performing the turning task together with the mental task, the
experimenter told the initial number right before starting the belt simulation and
the participant announced the final number he reached as soon as the simulation
was over. In trials where subjects performed only the mental task, the subject
sat still on the chair until the experimenter announced the end of the trial period
after 95s. The subject announced the final number he arrived at. The experi-
menter noted the results in both conditions. The trial versions were performed in
alternating order. The beginning condition was again counterbalanced between
subjects.
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5.5.5 Qualitative scores

After the experiments, participants completed a questionnaire asking for quali-
tative feedback. They were asked to score easiness (Did you find the task easy
to perform?), intuitiveness (Did you find the directional information intuitive?),
and perceived accuracy (Do you think your responses were accurate?) for both
display versions. The rating scale ranged from 1 (very difficult, not intuitive
at all, very inaccurate) to 6 (very easy, very intuitive, very accurate). Finally,
the participants were asked whether they preferred one of the 2 belt conditions.
Altogether, the experiment took about 30 minutes to complete.

Additionally, subjects were asked whether they believe to have performed
better at the mental task either with (1) or without (5) the parallel turning task
on a 5-point Likert scale.

5.6 Data analysis and results

The app saved one file for each trial, logging both D1 (the direction indicated
by the belt) and D2 (the actual heading position) for every 100ms (see Figure
5.3 for an example of the data). To extract the absolute error (AE), we mea-
sured the difference between D1 and the mean D2 during the last second of the
presentation of D1, when the participants had usually reached a stable position.

To evaluate the reaction time (RT), we extracted the time the participant
needed from the onset of a new D1 until he turned more than 3◦ away from his
previous stable position. With 3◦ we assured that we did not capture artifacts
caused by inaccuracy of the compass or micro-movements of the participant.
We did not evaluate the time used to arrive to the new stable position because i)
this time is dependant on how big the angular change is and ii) we gave no clear
instructions on how fast people should turn. Some participants moved slowly
to avoid feeling dizzy from the turning movement. As each D1 was displayed
for 10s, participants usually had enough time to turn. We visually checked the
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Figure 5.3: D1 shows the direction displayed on the belt while D2 shows the real movement of
the participant. Changes upwards indicate turns to the left and changes downwards turns to the
right. The absolute error (AE) between D1 and D2 is the mean distance between the two during
the last second of presentation.

data to detect cases in which people did not arrive in time before a new D1 was
displayed; in this case, we removed the data point. For some participants, a
VU failed to work. If therefore he missed a direction (because no vibration was
felt), we also excluded the event. If, in contrast, the subject noticed right away
that the vibration was missing, he turned slightly until the signal was felt at an-
other VU again and completed the task. In this case we included the data for
measuring the AE but not for RT. A few data points had to be removed because
the compass was malfunctioning and caused erroneous direction displays. Two
subjects had to be excluded because no stable signals had been displayed. In
total, 8.6% of the data was removed.

In case of the secondary task (subtracting 7 from a random number), for each
trial, we collected the number the participant began with and arrived at. From
that, we calculated the number of iterations he performed (N7) and whether the
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final number was calculated correctly. If the final number was not a correct re-
sult, we rounded to the closest correct answer. Participants achieved on average
N7= 21.7 (±7,8).

5.6.1 Display modes

According to the first hypothesis we expected a mean error of 5.625◦in the EB
condition. Participants achieved a significant better result with 4.912, tested
with a one-sample t-test (p = 0.0122). We compared the mean AE for each
subject between the two belt settings EB and MB with a paired two-tailed t-test.
The mean AE was almost exactly the same in both conditions with around 4.9◦.
Accordingly, no significant difference could be found (t(46) = −0.0036, p =

0.997). Also, for mean RT no difference between the two settings was detected:
t(46) = −1.1696, p = 0.2541. The mean RT for the EB condition was 1.35s
and 1.43s for MB respectively.

5.6.2 Effects of the turning task on mental performance

No difference of N7 was found for the 4 initial numbers confirming that the
difficulty of the mental task was similar, independent of the starting number.
The error rate with respect to the final number was similar for both trial versions.
When performing the mental task together with the turning task, 60.3% of the
final numbers were correctly calculated. Respectively, 60.4% were correctly
calculated when performing the mental task alone.

To test whether there was a negative effect on the performance in the mental
task when simultaneously doing the turning task, we compared N7 for both
conditions, the mental task alone (”belt off”) and both tasks together (”belt on”).
Every participant performed two trials for each condition. When comparing the
mean N7 result with a two-tailed paired t-test, the difference was significant
(t(46) = 4.5889, p < 0.001). In the ”belt on” -condition they reached N7 = 19.3
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while they reached N7 = 23.9 when only performing the mental task. When
separating in blocks of the first two and the second two trials, a difference is
clearly visible. In the first block, the performance differs significantly between
conditions with a difference of 5.5 (t(46) = 5.5189, p < 0.001), in the second
block, the difference of N7 is lower (3.5) and not significant anymore (t(46) =
1.3281, p = 0.1972). When comparing the mean of the complete first block
with the second (”All trials”) no significant difference can be seen (see Figure
5.4 a).

(a) (b)

Figure 5.4: Performance in the 7-backwards task: Mean number of iterations subjects subtracted
(N7) with performing a turning task with the tactile belt (Belt on) and without (Belt off). We
compare average performance for all trials and separate N7 for the 1. trials and the 2. trials.
First we compare N7 depending on (a) the belt on or off condition and then (b) separated for
the first and second blocks of trials. * denotes a significant difference. Error bars indicate the
standard deviation.

In general, no significant learning effect was found, i.e. participants did not
improve over time in the task. When comparing the first and the second ”belt
off” trial, no difference was found (t(46) = 0.3796, p = 0.7078). In contrast,
when comparing the two ”belt on” trials a significant N7 improvement of 2.3
was detected (t(46) =−2.4155, p = 0.0241) (Figure 5.4 b).
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5.6.3 Effects of the mental task on the turning performance

We tested whether performing the mental task in parallel to the turning task had
a negative impact on the reaction time and the turning performance. Therefore,
we compared RT and AE to those from the EB condition that used the same belt
setting but without an additional task. The turning accuracy is similar in both
conditions with no significant difference in AE (t(46) =−1.2425, p = 0.2266).
Also the reaction time does not slow down when adding the additional task
(t(46) =−0.5385, p = 0.5954). Both comparisons are displayed in Figure 5.5.

(a) (b)

Figure 5.5: Comparison of (a) turning performance and (b) reaction time for the two display
modes and when adding the mental task. The mean AE and RT show no significant difference
between conditions.

5.6.4 Qualitative data

When comparing the qualitative data we found no difference between the two
belts MB and EB. Both versions were rated equally well with average ratings
between 5.3 and 5.6 for all three categories, hence subjects perceived the use of
the tactile belt as easy, intuitive and expected their answers to be accurate (see
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Figure 5.6 a). No clear preference for one of the display modes could be found
(see Figure 5.6 b) While 13 subjects had no preference, 6 preferred MB and 5
EB.

When comparing the ratings for the combination of turning task and mental
task, only the perceived intuitiveness of the tactile signals was still the same.
Participants perceived the task as significantly harder and believed to react more
inaccurately. The significant differences are denoted with a * in Figure 5.6 (a).

(a) (b)
(a) (b)

Figure 5.6: Qualitative data: (a) no significant difference has been found for rating of easiness,
intuitiveness and accuracy for the magnifying (MB) and equal belt (EB). When comparing EB
with the ratings for the mental task a significant difference is present for perceived easiness and
accuracy (marked with *). (b) There is no clear preference for the display mode .

5.7 Discussion

5.7.1 Turning accuracy

We could show that the turning accuracy with a 16 VU belt is very high with an
AE of only 4.9◦, which is significantly lower than the estimated 5.6◦. Therefore,
we can accept our first hypothesis and confirm the high turning performance
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precision.

When comparing the two tactile display conditions, we find no difference in
turning accuracy. We expected AE to decrease since the smaller range of direc-
tions represented by the frontal VU should lead to a higher turning accuracy.
This was not the case. Subjectively, the two display modes were perceived to
be similar and no clear preference could be found.

One possible explanation for the fact that we found no difference between
the conditions could be the strong effect of action-perception coupling in both
cases. When subjects turn, they quickly know how the tactile signal changes ac-
cording to their body movement. When they feel a new direction indication and
start to turn, they can already estimate how far they need to move. The subjects
acquire a feeling for how far exactly they have to turn for the signal to change
to the next VU. Consequently, they do not stop as soon as the signal switches to
the frontal one. Instead they continue to turn about half the distance normally
required to make the signal switch to the next VU. This phenomenon might have
lead to the increased turning accuracy in the study of Faugloire and Lejeune [56]
for a similar condition. When using 8 VUs and each represents 45◦, the devi-
ation between indicated (D1) and actual (D2) directions lies between 0◦-22.5◦.
Therefore, the expected mean deviation, i.e. the absolute error AE, is 11.25.
Yet, in the action-perception coupling condition subjects reached a mean AE of
10.1◦, 1.15◦ better than expected. Similar to their result, in our EB condition
we received a significant better result than expected with AE = 4.9◦ instead of
5.6◦. This is a similar performance increase of 10.2% and 12.5% respectively,
possibly due to the same phenomenon.

The action-perception coupling might have such a strong effect that subjects
in the MB condition pay less attention to adjusting the final position. The in-
tuitive understanding of how much they have to turn to let the signal switch
from one VU to the next one does not apply to the frontal ones, thus possibly
annulling potential benefits of the MB direction distribution.
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Another possible reason why AE was not lower for MB lies in the inaccuracy
of the built-in digital compass of the smartphone that was used to present the
tactile stimulation on the correct location and measured the orientation during
the following movements. We were not able to find data about the accuracy
of the Nexus 6, the smartphone model we used; however, errors of smartphone
compasses have been found to be on average between 5◦ to 20◦ [17, 140] for
previous generations of smartphones. The problem was controlled as much as
possible by setting the initial direction for each trial to 0◦. Additionally, when
presenting the target direction D1 and measuring the actual direction D2, the
error should be the same. The measured position stayed mostly within less
than 1◦when in a stable position. However, it is difficult to estimate the effect
that inaccurate compass readings might have had on the turning accuracy. In
conclusion, we have to reject the second hypothesis that suggested that the MB
condition leads to better turning accuracy than the EB one.

The reaction time was indeed the same in both cases and with around 1.4s
similar to the continuous vibration condition in the study of Cosgun et al. (see
Figure 4 in [38]). Therefore, we can accept the third hypothesis, which states
that the reaction time does not differ between the conditions.

5.7.2 Mental task

The results show that having additional mental load while performing the turn-
ing task does not have a negative effect on turning performance. Neither the
accuracy of following the signal nor the reaction time decreases, even though
participants had the subjective feeling they would perform worse in the com-
bined task.

The effect on mental performance when simultaneously attending to the belt
is small. When combining both tasks for the first time, the mental performance
is slightly worse. However, when performing both tasks simultaneously for the
second time, i.e. after about 90s of training,, the difference decreases and is
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not significant anymore. Klatzky et al. [88] found a similar result. In their
study they measured the influence of mental load on a navigation task either
guided by speech or by virtual sound. Virtual sound allowed for a similar
action-perception coupling as in our experiment. Performance in this condi-
tion decreased during the first trial in which both tasks were combined. Already
during the second combined trial performance resembled again that of the nav-
igation task without the additional mental load.

Our results indicates that processing the tactile signal and turning as in-
structed does not require much effort and does not have a negative effect on
mental tasks performed in parallel. Also, the average error rate does not change.
Therefore, we can accept the fourth hypothesis, at least in part. No effect of the
mental task on the turning task was found and performance in the mental task
only slightly decreased. When performing both tasks for the second time, per-
formance in the mental task already improved significantly. Hence, we assume
training with a tactile belt can enhance parallel performance considerably[83].

5.8 Conclusion and outlook

In conclusion, to achieve high turning accuracy the MB was not superior to the
EB. The mean AE of 4.9◦ is sufficient in most navigational purposes, supporting
our design with 16 VUs. We did not improve turning accuracy by changing
the angle distribution in the front (MB), possibly due to the effect of action-
perception coupling. To avoid these problems, we will build a better compass
directly in the tactile belt and use its data. We can then test similar settings again
for specific tasks in which high turning accuracy is necessary.

When combining the turning task with the mental task, no negative effect
on the turning task was detected. A negative effect on the mental task was
only found during the first combination trial. The second time, no significant
impairment was found anymore. In our experiments, subjects performed each
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task only for 3 minutes in total. Hence, we expect that prolonged training would
lead to completely equal performance for the mental task with and without the
parallel turning task. We will address this assumption in future work.

Overall, these results suggest that using a tactile belt for supporting naviga-
tion tasks can be helpful, especially when the user has to process other cognitive
input in parallel. This is especially the case for blind people who use their ears
to monitor their surroundings
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Chapter 6

Summary and conclusion

In this chapter we summarize what we learned about communication between

humans and technologies, and what needs to be considered to make it as en-

joyable and effective as possible. In this thesis we consider two complementary

approaches in HCI: I. How to help technology to better understand humans,

and II. How to help humans to better understand technology. In the first part we

investigated automatic emotion and personality recognition. In the second, we

worked towards developing and advancing devices aiming at simplifying under-

standing and reducing stress for the user. Here we summarize our research and

explore possible applications. Finally, we point out the contributions but also

the limitations of this work.

6.1 Summary

The inner state of individuals has a great influence on their actions and their
perception of the world [21]. Whether people feel stressed does not only depend
on the external factors made responsible for it, but also on the current emotional
state and their personality [97, 75]. However, people are often unaware of their
inner state [172].
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In this thesis at first we aspired to understand how to make the inner state
accessible to technology without requiring to ask people directly but instead
by employing physiological signals. So far, physiological signals have already
been used by the field of affective computing and successful emotion recogni-
tion from physiological data has been achieved [193]. We followed this trend
but additionally worked on Automatic Personality Recognition (APR). The younger
research area of APR ”targets the externalization process and is the task of in-
ferring self-assessed personalities from machine detectable distal cues” [171].
The information analyzed for APR range from written texts, spoken words, and
nonverbal cues, to behavior in the context of social media, mobile devices, and
computer games [171]. While all these methods require collecting data about
actual behavior of people, data collection for APR from physiological signals
can be done passively and does not require the person to provide input explic-
itly. Automatic APR could allow various applications to automatically adapt
information output to the needs of the individual. To help advance APR we
conducted two successful studies on affective state and emotion recognition.
Additionally, we published a database to support the respective community.

Later on we sought to help people to better understand information provided
by technology. Since a large amount of information provided simultaneously
can cause high cognitive load and stress, we worked on two wearable devices
supposed to reduce stress in different contexts.

First we designed Spire, a wearable sensor that uses a physiological signal,
namely breathing rate, to detect the psychological state of the person wearing
it. In contrast to other physiological signals, breathing can be changed actively
and therefore used to influence the psychological state. The correspondent ap-
plication helps the user to increase awareness of the current mental state, and
gives breathing advice to achieve a desired mental state.

Finally, we tested a tactile belt that transmits directional information via
vibro-tactile signals. As current devices rarely use the tactile sense, this is an
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advantage. The information of the tactile belt does not have to compete for the
same sensory attention, and the mental workload is reduced because informa-
tion is perceived through different channels [181]. We compared two display
modes for indicating directions. While we did not find a difference in the ac-
curacy of following the direction indications between the two modes, we were
able to show that our design is successful and leads to better results than any
other tactile belt described in the literature [56, 74, 136]. Additionally, with a
second experiment we showed that using the belt has only little impact on other
cognitive tasks performed simultaneously, and training could reduce it even fur-
ther.

6.2 Putting research into practice

A common challenge in the academic world is to accomplish the transition from
tested research prototypes to applications serving users [49]. Often, researchers
lack the knowledge and motivation necessary to bring a product to the market,
while entrepreneurs, in contrast, lack the skills to conduct the research required
to develop a useful consumer product. One main challenge is bridging this gap
by bringing different people together or educating researchers in both skill sets.
We approached this challenge by investigating how to transform our research
results into applications that could solve problems in daily life. Further on, we
describe scenarios in which the products resulting from our research are likely
to be applied.

6.2.1 Emotion and Personality recognition

The interest in personality computing is increasing steadily (for a review see
[171]). First efforts to use personality knowledge in applications are mostly
concerned with applying perceived personality traits to the output of systems.
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One study showed that adding personality to the synthetic voice of a GPS sys-
tem increased its acceptance [126].

Our results are an initial step towards implicit APR via physiological signals.
Automatically detecting the personality of users could increase the performance
in recommender systems. One study [78] showed that users prefer a personal-
ity quiz over a rating system to teach a recommender system their preferences.
They preferred the quiz both because of the consequent recommendations and
the reduced initial effort. Another work [162] developed a recommender system
that takes both the current affective state and the personality of the user into ac-
count. While the affective state was predicted using facial videos, for accessing
personality traits, questionnaires were used. User comfort could potentially be
increased even further in future implementations, when also personality recog-
nition is done automatically.

The popularity of computer games increases and accordingly the correspon-
dent research. Games have been used to understand personality, for example
by analyzing user profiles [190] or by developing a game specifically aiming
at personality detection [187]. By automatically detecting emotions and per-
sonality, the game environment could be adapted to enhance the experience for
gamers accordingly.

6.2.2 Breathing sensor

The breathing sensor Spire has already been developed as a market ready prod-
uct that is sold internationally. By measuring physiological signals, the sensor
with the corresponding app is able to predict the mental state and provide feed-
back. People have used it successfully for decreasing tension, and improving
their breathing patterns and calmness during work and daily life1.

Patients affected by lung diseases such as asthma, might benefit from the
breathing sensor. Future research will show whether it is possible to warn the

1https://www.spire.io/why-people-love-spire
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patient when an asthma attack impends, or even reduce incidences by proposing
preventive exercises.

6.2.3 The tactile belt

For different user groups there are different needs and opportunities that encour-
age using a tactile device to provide directional information.

A few research groups have already implemented tactile belts for various ap-
plications. McDaniel et al. [116] use vibration location and duration of 7 VUs
to indicate the direction and distance of nearby people to blind users. Ferscha et
al. [58] employ a tactile belt to indicate exits during an evacuation procedure.
Simulations showed that such intuitive information can decrease panic growth
and improve successful evacuation. Another example application for a vibro-
tactile belt is teaching how to dance. Rosenthal et al [139] successfully taught
basic dance steps via tactile cues to demonstrate the usability of the designed
belt.

For tourism tactile navigation support presents an attractive opportunity. Cities,
tourist attractions, and hotels, could leverage on tactile navigation to improve
their guests travel experience. For instance, bus travel agencies or hotels could
lend tactile belts to their guests, enabling them to visit a town with less stress,
as finding their way back to the starting location (travel bus, hotel, etc.) is guar-
anteed. For elderly people who feel insecure in navigation [66], this technology
could increase the quality of travel experiences tremendously. In view of the
demographic change the importance of supporting elderly, especially in naviga-
tion, will continue to increase [120].

A navigation device relying on the tactile sense, would especially benefit
blind people, who need support for navigation and other daily activities that are
more challenging without vision. Many supporting devices, such as common
navigation devices, rely mostly on visual information displays. While various
sensory substitution devices (SSDs) have been developed for the visually im-
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paired (see section 5.2.2), most of them have never reached blind users outside
of research laboratories [49]. Elli et al. identified various reasons partly respon-
sible for the low adoption of supporting devices in the lives of blind people: (i)
The affordability is often low due to small-scale manufacturing, (ii) research
groups often built SSDs to prove concepts without considering comfort and
aesthetics, and (iii) missing opportunities for purchase and consequent training
make it difficult to access new technologies.

These pitfalls responsible for low adoption rates of new technologies should
be avoided when implementing the tactile navigation belt. Therefore, members
of the feelSpace research group formed the company feelSpace GmbH in Ger-
many that develops a user-friendly tactile belt. The company prepares not only
to sell the belt as a product, but also to offer training tailored to the specific
needs of the respective user groups, such as the visually impaired.

6.2.4 Combining both approaches

Improving mutual understanding between humans and the technology they use
will improve the adaptation of systems to users and therefore enhance their
satisfaction. However, users individual differences are often ignored. Personal-
ization is partly possible via customizable settings on devices and applications,
but this process can be complicated and users might not necessarily be aware of
the options best fitting their needs. Machine learning approaches have also been
used. Liu et al. [106] addressed personalization by building an adaptive user in-
terface enhanced by personalized learning of users’ behavior. Yao [189] applied
deep personalization to pedestrian navigation systems to support the population
that has traumatic brain injuries.

Tailoring the information provided by applications to individual users is par-
ticularly important when these users are people with special needs. Moreover,
adapting to individual differences and current states automatically, will not only
benefit more challenged user groups, but also individual users. Changing infor-
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mation output settings based on the individuals inner state might help decreas-
ing cognitive overload and consequent stress and frustration.

Emotion and personality play an important role for learning as well [55].
Previous works already predicted learner’s emotions to personalize the tutor’s
feedback [32]. Fatahi et al. [54] additionally took learners’ personality into
account and incorporated human features in the interaction with the user. The
system resulted in higher learning quality and more satisfied users. Future ap-
plications could increase their success by adapting the speed and the difficulty
of the tasks not only according to the users performance but also the individual
state.

6.3 Contributions

We investigated both ends of the communication between humans and tech-
nologies, and aimed at highlighting the importance of following an integrative
approach. In the following we summarize our contributions.

6.3.1 Technology understanding humans

Publication on implicit user-centric personality recognition

To automatically learn about the inner state of technology users, we investi-
gated how to detect emotions and personality traits from physiologically sig-
nals. While emotion detection has already been performed successfully, we are
the first to show initial success in personality recognition. In addition, we used
only commercially available wearable devices to grant ecological validity.

We published the results at the International Conference on Multimodal In-
teraction 2015 [174] (Chapter 2).
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Publication on the inference of personality traits and affect schedule

Similarly to the previous study, in this we successfully performed both, person-
ality and emotion recognition. Additionally, we achieved inference of affective
schedule, i.e. general positive and negative affect, via physiological signals.

We published the study at International Conference on Automatic Face and
Gesture Recognition 2015 [1] (Chapter 3).

Database made available

To support the Affective Computing community on enhancing and experiment-
ing with emotion and personality recognition algorithms, we published our
database2 containing physiological data in response to emotional stimuli. This
36 participants database is not only one of the largest available, but also there is
currently no similar database publicly available that contains additional person-
ality data. The correspondent paper was submitted to the Journal Transactions
of Affective Computing and is currently under review [173] (Chapter 2).

6.3.2 Humans understanding technology

User study with breathing sensor

In face of the growing amount of wearable devices and the information they
can communicate to their users, it is important to make information processing
easy in order to avoid information overload and stress. In the framework of the
first internship of the author of this thesis we worked on designing the breathing
sensor Spire and the correspondent smartphone app that intend to reduce stress.
Through a set of iterations we found a comfortable way to show the notion of
breathing to users. With a user study we demonstrated that the sensor helped
people to reduce stress and be more aware of their mental state. Thousands of

2http://mhug.disi.unitn.it/index.php/datasets/ascertain/
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sensors were sold by now and received great reviews on their ability to reduce
stress, calm users down and help them to be more productive3 (Chapter 4).

Investigation of applicability of a tactile belt for visually impaired people

Together with feelSpace we worked on advancing the tactile belt from a re-
search prototype state towards a market ready version. While tactile belts have
been tested in the lab with promising results (see section 5.3) especially for
supporting navigation, so far no version has been released to the market that
supports visually impaired or other users. Initially, we investigated the usability
for navigational purposes especially for blind people (Section 5.2). With our
results we won the first prize in a global student competition held at Virginia
Tech4 endowed with US$ 25.000.

Experiment to optimize tactile guidance

With an experiment we investigated the effectiveness of direction indication
with a tactile belt equipped with 16 vibrating units. We measured accuracy
in orienting towards an indicated direction with a turning task, and reached
a mean error of only 4.9◦, thus demonstrating the usefulness for navigation
applications. When comparing two different tactile display modes no difference
in performance or user preferences were found (Chapter 5).

Experiment to test the influence of mental load on tactile guidance

With the second experiment we demonstrated that indeed no significant interfer-
ence was present between a cognitive task and the accuracy with which people
could follow the tactile signal. Performance in the mental task declined slightly
when both were required at the same time. However, after only 1.5 minutes of
training, task performance was not significantly different anymore, as compared

3https://www.spire.io/why-people-love-spire
4http://vtkwglobal.com/winners/2014
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to performing each task alone. These results suggest that even a short training
time has already a significant effect on learning to integrate the tactile signals
(Chapter 5).

Currently we prepare a paper with the results of the two experiments to sub-
mit it to the International Conference on Multimodal Interaction 2016.

The recently formed company feelSpace continues working on the tactile
belt to put our research into practice. After her defense the author will become
an employee of the company feelSpace.

6.4 Limitations and Future Work

In this section we explain the limitations of the research carried out throughout
this thesis. We explain how the limitations impact our plans for future research
and how these limitations could be overcome.

6.4.1 Emotion and personality recognition

We were one of the first to show that physiological signals in fact contain in-
formation that could be used to predict personality. However, in order to make
useful applications able to automatically detect personality, more research is
necessary to guarantee continuous accuracy of the recognition results, and to
allow a consistent integration of emotion recognition results. We have not yet
identified consistent rules on how personality mediates the emotional state un-
der varying circumstances.

We are aware that the nature of personality measurements is quite complex.
Personality traits are calculated from a compilation of various personal charac-
teristics. It could be beneficial to test each personal characteristic on its own,
and analyze which characteristics have the biggest effect on specific physiolog-
ical signals. We will further try to understand, whether reaching higher recogni-
tion accuracies reliably and continuously is possible by improving the selection
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of sensors, choosing different analyzing methods or other emotional stimuli.
We have made our database available so that other researchers could conduct
such work as well.

In our recent studies, subjects were not equally distributed along the per-
sonality scales, possibly depriving us of valuable data from people with more
prominent personality traits. We separated people in high and low-trait groups
depending on the median. While this is a common practice in APR research
[171], ranking people according to their personality traits might be psycholog-
ically more meaningful. For some personality traits the distribution along the
scale was low and our subjects formed a more homogeneous group. Hence, the
difference between the two binary groups was relatively small, and might have
caused worse recognition results for the respective personality traits. To avoid
this problem, for our next study we will consider preselecting our subjects ac-
cording to their personality traits to include subjects with a bigger variance in
personality.

6.4.2 Breathing sensor

While the breathing sensor was initially proven successful in our short-term
user study for increasing awareness and reducing subjective stress, we did not
conduct any long term study on the effects of using the breathing sensor on
daily life. However, selling numbers seem to propose that the results of our
work have a positive impact on customers’ lives.

Unfortunately, because not all the raw data gathered by the sensor is available
to users, future research on analyzing breathing patterns is limited.

6.4.3 Tactile belt

Comparing two response modes of the belt (EB and MB) both lead to successful
accuracy of perceiving tactile cues that indicate directions. However, we could

139



6.4. LIMITATIONS AND FUTURE WORK

not show that one improves response accuracy over the other. We will investi-
gate the necessary accuracy in real life applications to determine whether there
are situations for which the achieved precision is not sufficient.

We could prove that cognitive load has no significant effect on the ability of
using the tactile belt. The influence of the tactile belt on the cognitive task was
small and already decreased after minimal training. In our future work we will
evaluate whether training in fact facilitates complete integration of the tactile
signal and eliminates any interference between the two parallel tasks.

In our study we controlled for having only two tasks, however, in real navi-
gation situations more tasks might be present or movements could decrease the
accuracy of perceiving the tactile signals. Therefore, we will carry out studies
in more natural conditions with real navigation scenarios.
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Children Interacting with the AIBO Robot: A Cross-linguistic Emotional
Speech Corpus. Lrec, pages 171–174, 2004.

142



BIBLIOGRAPHY

[15] Anton Batliner, K. Fischer, R. Huber, J. Spilker, and E. Nöth. How to
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[83] Silke M. Kärcher, Sandra Fenzlaff, Daniela Hartmann, Saskia K. Nagel,
and Peter König. Sensory Augmentation for the Blind. Frontiers in Hu-

man Neuroscience, 6(March):1–15, 2012.

[84] Kai Kaspar, Sabine König, Jessika Schwandt, and Peter König. The ex-
perience of new sensorimotor contingencies by sensory augmentation.
Consciousness and Cognition, 28(1):47–63, 2014.

[85] Elizabeth G. Kehoe, John M. Toomey, Joshua H. Balsters, and Arun L W
Bokde. Personality modulates the effects of emotional arousal and va-
lence on brain activation. Social Cognitive and Affective Neuroscience,
7(7):858–870, oct 2012.

[86] Jonghwa Kim and Elisabeth André. Emotion recognition based on phys-
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