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Introduction

A century after the prediction of the existence of gravitational waves by A. Einstein and after
over fifty years of experimental efforts, gravitational waves have been detected at Earth directly
[1, 2]. This result is a major achievement and opens new prospectives for the exploration of
our universe. Gravitational waves carry different and complementary information about the
source with respect to electromagnetic signals. In particular the first detection demonstrated the
existence of stellar-mass black holes, binary systems of black holes and their coalescence.

The detection was made by the LIGO instruments which are twin kilometer-scale Michel-
son interferometers in the US. These detectors represent the second generation of gravitational
wave interferometers and, for the first time, they achieved the outstanding strain sensitivity of
10−23Hz−1/2 between 90 Hz and 400 Hz. In the next months the LIGO network will be joined
by another second generation detector: Advanced Virgo located near Pisa, Italy. The sensitivity
of these advanced detectors is set by different noise sources. In particular, in the low frequency
range (below 100 Hz) major contributions come from thermal noises, gravity gradient noise and
radiation pressure noise; instead, the high frequency band (above 100− 200 Hz) is dominated
by shot noise. Quantum noise (radiation pressure and shot noise) is expected to dominate the
detector sensitivity in the whole frequency band at the final target laser input power.

To decrease the shot noise while increasing the radiation-pressure noise, or vice-versa, Caves
[3] proposed in 1981 the idea of the squeezed-state technique. The LIGO collaboration demon-
strated for the first time in 2011 [4] that the injection of a squeezed vacuum state into the dark
port of the interferometer can reduce the shot noise due to the quantum nature of light. This
result was achieved with the German-British interferometer GEO600 and was replicated in 2013
with the LIGO interferometer at Livingston [5]. After these results, the LIGO collaboration
have pursued further the research in the squeezed-state technique [6, 7, 8] which is considered
mandatory for third generation of ground based interferometric detectors.

In 2013, the Virgo collaboration started developing the squeezed-state technique. The subject
of my thesis is the realization of a prototype of frequency independent squeezed vacuum state
source to be injected in Advanced Virgo. This prototype is developed in collaboration with other
Virgo groups.

This thesis is organized as in the following. In Chapter 1 I give an overview of gravitational
wave and ground based interferometric detectors. In Chapter 2 I summarize the results of
the theory of non linear optics of interest for the development of a squeezed vacuum source for
Advanced Virgo. In chapter 3 I discuss the expected Advanced Virgo performances including the
use of squeezed-state technique. In the second part of this work I describe my experimental work:
in Chapter 4 I describe the prototype under development, in Chapter 5 the second harmonic
generator and in Chapter 6 the Faraday isolator.

v
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The darker the night,
the brighter the stars.

Crime and Punishment,
Fyodor Dostoevsky, 1866

Part I

Theory
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Chapter 1

Gravitational wave and detectors

This chapter provides a brief introduction to gravitational waves (GW) and to the main GW
sources accessible by ground based detectors. The second part reviews the optical-interferometric
detectors for GW, focusing in particular on Advanced Virgo (AdV).

1.1 Gravitational waves

Gravitational waves are ripples in the space time. They are a special solution of the Einstein
equations for weak gravitational field.

The Einstein equations can be written as (see [9]):

Rik −
1

2
gikR =

8πG

c4
Tik (1.1.1)

or alternatively

Rik =
8πG

c4

(
Tik −

1

2
gikT

)
(1.1.2)

where Rik is the Ricci curvature tensor, gik is the metric tensor, G is the Newton’s gravitational
constant, Tik is the stress-energy tensor, R is the scalar curvature and Rii = R = − 8πG

c4 T with
T = T ii .

In the vacuum space, Tik = 0 and the Einstein equations reduce to

Rik = 0 (1.1.3)

Having a weak gravitational field means that the metric tensor can be expressed as a small
perturbation to the Minkowski metric ηik:

gik = ηik + hik (1.1.4)

where hik is the small perturbation. In this situation of weak gravitational field,

Rik =
1

2
�hik (1.1.5)

where � is the D’Alembert operator: � = −ηlm ∂2

∂xl∂xm
= ∆− 1

c2
∂2

∂t2 Considering eq(1.1.5) with
eq(1.1.3), choosing the Lorenz gauge and the transverse traceless gauge, we find

�hik = 0 (1.1.6)

3



4 CHAPTER 1. GRAVITATIONAL WAVE AND DETECTORS

This equation is formally equivalent to the electromagnetic wave equation. Gravitational
fields, like electromagnetic fields, propagate at the speed of light. Their properties can be derived
from eq(1.1.6). All the details can be found in any general relativity textbook [9].

The gravitational waves are transverse waves which polarization is defined by a symmetric
rank two tensor . The two polarization are usually identified as h+ and h×; these differ from
each other by a π/4 rotation in the plane perpendicular to the propagation direction.

Gravitational waves are emitted by accelerated masses. The lowest multipole term which can
radiate a gravitational wave is the quardupole term. This means that mass distributions that
exhibit a spherical symmetry cannot radiates GWs.

Examples of GWs sources of interest to ground based detectors are:

• Compact binary systems: [10] these systems are formed by two compact stars such
as neutron stars or black holes orbiting around their center of mass. As demonstrated
by Hulse and Taylor on a binary neutron star pulsar system, PSR B1913+16, massive
binary rotating systems lose energy via GW radiation [11, 12, 13]. Up to coalescence, the
frequency and the amplitude of the emitted GW increase as the orbit radius decrease. This
results in a chirp signal.

• Spherical asymmetric spinning massive objects: these objects can be non-symmetric
pulsars and neutron stars. The expected GW signal from this source is a continuous signal,
whose frequency is proportional to the source rotating frequency. The GW signal strength
increases as the degree of axial-asymmetry increases.

• Stochastic background: [14] in analogy to cosmic microwave background (CMB), also
a cosmic gravitational wave background is expected as remnant of the Big Bang. Unlike
the CMB that gives information of approximately 300000 years after the Big Bang, the
stochastic background can give information from about 10−36s after the Big Bang. In
addition other GW backgrounds are expected from the overposition of many astrophysical
emitters.

• Supernovae: [15, 16] stellar explosions that are not spherical symmetric are predicted to
emit GWs.

Figure 1.1: Effect of the two GW polarization on two rings of free falling test particles. The top
strip shows the effect of an h+ polarized GW while the bottom one shows the effect of an h×
polarized GW. In both cases the GW propagation direction is perpendicular with respect to the
test masses ring plane. The horizontal axis is the phase of the GW with π/2 phase intervals.
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The effect of a gravitational wave on an extended body is a modification of the relative
distances between different positions. Fig.1.1 shows the effect of the two polarisations (h+ and
h×) of a passing gravitational wave on two rings of free-falling test particles.

The strength of a GW is usually measured in strain, that is the fractional length change it
induces:

h =
δL

L
(1.1.7)

where δL is the length variation induced by the GW and L is the original length. The largest
astrophysical events are expected to have strains of the order of h = 10−21.

1.2 GW detector: Advanced Virgo

The GW ground based detectors that have the highest sensitivity are the GW interferometric
detectors. These detectors are based on the Michelson interferometer design.

Figure 1.2: Basic scheme of a Michelson interferometer. The laser light is splitted at the beam-
splitter and then, after traveling through the arms, it’s recombined again at the beam splitter.
The light detected at the photodetector carries the information of the relative displacement of
the two end mirror. In this case, the two end mirrors are displaced by an h+ polarized GW.

Fig.1.2 shows the basic scheme of a Michelson interferometer. The two end mirrors are
displaced due to the passage of an h+ polarized GW. The light detected at the photodetector
carries the information of the relative displacement δL of the two mirrors.

To increase the sensibility to GW of a basic Michelson interferometer, several upgrades can be
implemented: two Fabry-Perot cavities are inserted along the arms of the interferometer, a power
recycling mirror is placed between the laser and the beam splitter and a signal recycling mirror
is placed between the beam splitter and the photodetector. Moreover, an input mode cleaner
(realized with a triangular cavity) is used to clean the input light frequency before injecting in
the interferometer and, at the output, just before the photodetector, an output mode cleaner
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cleans the beam from spurious TEM modes and from control sidebands. Fig.1.3 shows the basic
scheme of a GW interferometer.

IMC

OMC

SR

PR Arm Cavity

ITM

ETM

Figure 1.3: Basic scheme of a GW interferometric detector. In the figure IMC is the input mode
cleaner, PR is the power recycling mirror, SR the signal recycling mirror, OMC is the output
mode cleaner and each arm cavity is formed by the input test mass (ITM) and the end test mass
(ETM). The length of the arm cavity is Larm ≈ 3 km for AdV and Larm ≈ 4 km for the two
aLIGO.

In the near future, the network of ground based GW interferometric detectors will comprise
the two LIGO detectors (LIGO Livingston and LIGO Hanford, both in the US), the Virgo col-
laboration detector (near Pisa, Italy), KAGRA detector (in Japan, at Kamioka), GEO-HF (near
Hannover, Germany) and LIGO-India (joint India-US detector recently approved). Last year,
in September, the first two second generation GW detectors (the two LIGO) started collecting
science data, showing a strain sensitivity of ≈ 10−23/

√
Hz within 100−500Hz. The italian-french

AdV detector is currently under construction and will join the world wide network before the
end of this year.

In the following I detail the sensitivity curve expected for AdV pointing out the major noise
sources. All the details of the following discussion can be found in [17, 18].

AdV is expected to reach the design sensitivity of ≈ 3× 10−24/
√

Hz between 50− 400Hz. To
reach this goal, a four steps upgrade process is planned by implementig the following configura-
tions:

• power recycled, Pin = 25 W;

• dual recycled, Pin = 25 W, tuned signal recycling;

• dual recycled, Pin = 125 W, tuned signal recycling;
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• dual recycled, Pin = 125 W, detuned signal recycling.

The input power Pin is measured after the IMC and dual recycled refers to the presence of both
the PR and the SR mirrors.

Frequency [Hz]
101 102 103

S
tr

ai
n 

[1
/

H
z]

10-24

10-23

10-22

AdV Noise Curve: P
in

 = 125.0 W

Quantum noise
Gravity Gradients
Suspension thermal noise
Coating Brownian noise
Coating Thermo-optic noise
Substrate Brownian noise
Seismic noise
Excess Gas
Total noise

Figure 1.4: Dual recycled AdV noise curve with 125 W input power and tuned SR mirror. The
simulation is performed using GWINC code.

Fig.1.4 shows an example of the expected noise budged of a dual recycled AdV with 125 W
input power and tuned SR mirror. The sensibility of the GW detector is limited by several noise
source for different frequency ranges.

Thermal noise

A motion of the reference surface of the test masses due to brownian motion can mimic the signal
of an incoming GW. The two most limiting noises within this class are the coating brownian
thermal noise and the suspension thermal noise (see Fig.1.4). The first arises from the brownian
noise of the test masses coating, while the second is mainly due to the silica fibers that suspend
the input test masses (ITMs) and the end test masses (ETMs). This noise can be reduced either
improving the quality of the coating and fiber materials or heading to low temperature operations.
Additional thermal noise sources come from thermo-optical processes in the coating, Brownian
motion of the mirror substrate, thermo-elastic processes of the substrate and thermo-refractive
processes in the output mode cleaner (OMC).

Seismic noise

Fig.1.5 shows the seismic noise of the central building floor (near the beam splitter) of AdV
during the science run VSR4. This noise must be reduced usign seismic filtering stages. The
AdV collaboration developed a passive multistage seismic attenuator (superattenuator or SAT)
that attenuates the seismic motion by 140dB above 3Hz.
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Figure 1.5: Horizontal ground motion measured on the floor of the AdV central building during
science run VSR4 (see [19]) in the West direction.

Gravity gradient noise

This noise arises from the Newtonian gravitational attraction between masses, in particular
between the detector test masses and nearby moving masses. Those moving masses can be
either people, cars, trains, etc and also environmental density changes (e.g. atmospheric pressure,
subterranean sediment settlement). This is one of the most tricky noise source of the ground
based GW detectors and probably the hardest low frequency noise to be tackled. In AdV is
expected to limit the sensitivity below 20− 30 Hz. Underground detectors can reduce the impact
of this noise source, as e.g. KAGRA, and future third generation GW detectors.

Quantum noise

This noise source arises from the quantum nature of light. It is composed by the photon counting
noise (phase noise or shot noise) at the photodetector and by the radiation pressure noise (that is
the photon momentum transfer at the test masses). For the AdV case, the shot noise will limit the
sensitivity for all the frequency above ≈ 300Hz while the radiation pressure noise will contribute
to limit the low frequency sensitivity. This noise cannot be reduced in the whole frequency range
by a brute force approach. The most promising approach is to build correlations between the shot
noise and the radiation pressure noise in order to reshape the quantum noise. A method to build
those correlation is to utilize a signal recycling technique. Another method is to substitute the
coherent vacuum flactuation that enters from the dark port of the interferometer with a squeezed
vacuum, in order to reduce one of the two quantum noises at the price of enhancing the other
one. Since the shot noise and the radiation pressure noise limit the interferometer sensitivity in
two different frequency ranges, the optimal solution is to inject a frequency dependent squeezed
vacuum state whose ellipse rotates as function of frequency in order to reduce the radiation
pressure noise at low frequency and the shot noise at high frequency.

The aim of the project which provides the framework for this thesis is to realize a squeezed
vacuum source for AdV.

Other noises

There are a plethora of other noises that contribute to limit the AdV sensitivity to GWs, such
as magnetic noise, alignment and control noises, excess gas noise and stray light noise.
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1.3 Gravitational wave detection

On 14 September 2015 the first gravitational wave have been directly observed by the two
LIGO observatories (LIGO Hanford and LIGO Livingston) [1]. This gravitational wave was
originated by a coalescence of two black holes at a luminosity distance of distance of 410+160

−180 Mpc

corresponding to a redshift z = 0.09+0.03
−0.04. In the source frame, the initial black hole masses

are 36+5
−4M� and 29+4

−4M�, and the final black hole mass is 62+4
−4M�, with the equivalent of

3.0+0.5
−0.5M� energy radiated in gravitational waves. These observations demonstrate the existence

of gravitational wave, the existence of stellar-mass black holes with masses higher than 20M�, the
existence of binary stellar-mass black hole systems and that those binary systems can coalesce.
Fig.1.6 shows the coincident signal GW150914 detected by the two LIGO observatories.

Figure 1.6: From [1]. The gravitational-wave event GW150914 observed by the LIGO Hanford
(H1, left column panels) and Livingston (L1, right column panels) detectors. Times are shown
relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35 − 350Hz bandpass filter to suppress large fluctuations outside the detectors’ most
sensitive frequency band, and band-reject filters to remove the strong instrumental spectral
lines. Top row, left: H1 strain. Top row, right: L1 strain. GW150914 arrived first at L1
and 6.9+0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in
time by this amount and inverted (to account for the detectors’ relative orientations). Second
row: Gravitational-wave strain projected onto each detector in the 35 − 350Hz band. Solid
lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [20] confirmed to 99.9% by an independent calculation based on [21].
Shaded areas show 90% credible regions for two independent waveform reconstructions. One
(dark gray) models the signal using binary black hole template waveforms [22]. The other (light
gray) does not use an astrophysical model, but instead calculates the strain signal as a linear
combination of sine-Gaussian wavelets [23, 24]. These reconstructions have a 94% overlap, as
shown in [22]. Third row: Residuals after subtracting the filtered numerical relativity waveform
from the filtered detector time series. Bottom row: A time-frequency representation [25] of the
strain data, showing the signal frequency increasing over time.

On December 26, 2015 at 03:38:53 UTC a second gravitational wave has been directly ob-
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served by the GW detectors network [2]. The signal, GW151226, persisted in the LIGO frequency
band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35
to 450 Hz, and reached a peak gravitational strain of 3.4+0.7

−0.9 × 10−22. The inferred source-

frame initial black hole masses are 14.2+8.3
−3.7M� and 7.5+2.3

−2.3M�, and the final black hole mass is

20.8+6.1
−1.7M�. At least one of the component black holes has spin greater than 0.2. This source is

located at a luminosity distance of 440+180
−190 Mpc corresponding to a redshift of 0.09+0.03

−0.04.

Figure 1.7: From [2]. GW151226 observed by the LIGO Hanford (left column) and Livingston
(right column) detectors, where times are relative to December 26, 2015 at 03:38:53.648 UTC.
First row: Strain data from the two detectors, where the data are filtered with a 30− 600 Hz
bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove
strong instrumental spectral lines [26]. Also shown (black) is the best-match template from a
nonprecessing spin waveform model reconstructed using a Bayesian analysis [27] with the same
filtering applied. As a result, modulations in the waveform are present due to this conditioning
and not due to precession effects. The thickness of the line indicates the 90% credible region.
Second row: The accumulated peak signal-to-noise ratio (SNRp) as a function of time when
integrating from the start of the best-match template, corresponding to a gravitational-wave
frequency of 30 Hz, up to its merger time. The total accumulated SNRp corresponds to the peak
in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting
the best-match template waveform and computing the integrated SNR at each point in time.
The peak of the SNR time series gives the merger time of the best-match template for which
the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
Livingston are 10.5 and 7.9, respectively, primarily because of the detectors’ differing sensitivities.
Fourth row: Time-frequency representation [25] of the strain data around the time of GW151226.
In contrast to GW150914 [1], the signal is not easily visible.
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Figure 1.8: From [2]. Estimated gravitational-wave strain from GW151226 projected onto the
LIGO Livingston detector with times relative to December 26, 2015 at 03:38:53.648 UTC. This
shows the full bandwidth, without the filtering used for Fig.1.7. Top: The 90% credible region
(as in [22]) for a nonprecessing spin waveform-model reconstruction (gray) and a direct, non-
precessing numerical solution of Einstein’s equations (red) with parameters consistent with the
90% credible region. Bottom: The gravitational-wave frequency f (left axis) computed from the
numerical-relativity waveform. The cross denotes the location of the maximum of the waveform
amplitude, approximately coincident with the merger of the two black holes. During the inspi-
ral, f can be related to an effective relative velocity (right axis) given by the post-Newtonian
parameter v/c = (GMπf/c3)1/3, where M is the total mass.
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Chapter 2

Classical and quantum optics

In this chapter I briefly overview the basics of non linear optics and quantum optics which
are prerequisites for the thesis work. The electromagnetic field quantization and Heisenberg
Uncertainty are used to introduce properties of coherent squeezed states and to the homodyne
detection method to characterize them. Non linear media are discussed in the context of second
harmonic generation and squeezed light generation.

2.1 Quantization of the electromagnetic field

The quantization of the electromagnetic field usually starts from the classical Hamiltonian of the
field, that is:

H =
1

2

∫
V

dτ

(
ε0E

2 +
B2

µ0

)
(2.1.1)

where the integration is performed over the volume of the electromagnetic field and E is the
electric field, ε0 is the vacuum dielectric constant and B is the magnetic field and µ0 is the
vacuum magnetic permeability. Following [28], this Hamiltonian can be rewritten as

H =
1

2

∑
j

(
mjω

2
j q

2
j +

p2
j

mj

)
(2.1.2)

where mj is a constant with the dimension of mass, ωj is the electromagnetic field angular
frequency, qj is the normal amplitude with the dimension of a length and pj = mj q̇j is the
canonical momentum of qj .

The quantization of this Hamiltonian can be realized identifying qj and pj as operators which
obey the commutation relations:

[qj , pj′ ] = ı~δ(j − j′) and [qj , qj′ ] = [pj , pj′ ] = 0 (2.1.3)

Making the canonical transformation to operators aj and a†j defined as follows

aj =
eıωjt√
2mj~ωj

(mjωjqj + ıpj) (2.1.4a)

a†j =
e−ıωjt√
2mj~ωj

(mjωjqj − ıpj) (2.1.4b)

13
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the Hamiltonian (2.1.2) becomes

H = ~
∑
j

ωj

(
a†jaj +

1

2

)
(2.1.5)

Using (2.1.3) the commutation relations between aj and a†j are

[aj , a
†
j′ ] = δ(j − j′) and [aj , aj′ ] = [a†j , a

†
j′ ] = 0 (2.1.6)

The operators aj and a†j are usually addressed as the annihilation and the creation operators,
respectively.

Starting from the annihilation and the creation operators of a single mode field, we define
the quadrature operators X+ and X−:

X+ =
(
a+ a†

)
and X− = −ı

(
a− a†

)
(2.1.7)

These two quadrature operator are usually called amplitude quadrature and phase quadrature
[29]. A generic quadrature operator Xθ can be described using a linear combination of X+ and
X−:

Xθ = ae−ıθ + a†eıθ

= X+ cos θ +X− sin θ (2.1.8)

where θ is the quadrature angle. Starting from (2.1.6) it is straightforward to demonstrate that

[X+, X−] = 2ı (2.1.9)

Another useful operator is the number operator defined as

N = a†a (2.1.10)

Taking the mean number of photon of a state 〈N〉 and multiplying by the photon energy ~ω we
have the optical power of the state

Popt = 〈N〉~ω (2.1.11)

2.1.1 Fock states

Fock or number states are eigenstates of the number operator:

N |n〉 = n |n〉 (2.1.12)

The ground state or vacuum state is defined as

N |0〉 = 0 (2.1.13)

Combining eq.(2.1.5) and (2.1.13) we can calculate the energy of the vacuum state. We take the
case of a single mode field.

〈0|H |0〉 =
1

2
~ω (2.1.14)

chosen 〈0|0〉 = 1.
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Starting from the vacuum state all the Fock state can be defined applying the creation
operator. In general we have

|n〉 =

(
a†
)n

√
n!
|0〉 (2.1.15)

The Fock states are orthogonal and complete:

〈n|m〉 = δnm and

∞∑
n=0

|n〉 〈n| = 1 (2.1.16)

The variances of the quadrature operators on a Fock state are:

V (X+) = (∆X+)2 = 〈n| (X+)2 |n〉 − (〈n|X+ |n〉)2

= 1 + 2n (2.1.17)

and

V (X−) = (∆X−)2 = 〈n| (X−)2 |n〉 − (〈n|X− |n〉)2

= 1 + 2n (2.1.18)

In the case of the vacuum state ∆X+ = ∆X− = ±1.

2.1.2 Coherent states

An example of a coherent state is the light emitted by a stabilized and monochromatic laser.
A coherent state |α〉 is a left eigenstate of the annihilation operator:

a |α〉 = α |α〉 (2.1.19)

where α is a complex number. The mean photon number of a coherent state is therefore

〈α|N |α〉 = |α|2 (2.1.20)

and ∆N = |α|. This is characteristic of a Poissonian distribution.
Starting from the vacuum state, a coherent state can be defined using a displacement operator

D(α):
|α〉 = D(α) |0〉 with D(α) = exp

(
αa† + α∗a

)
(2.1.21)

The variances of the quadrature operators on a coherent state are V (X+) = V (X−) = 1 and
therefore ∆X+ = ∆X− = ±1.

2.1.3 The Heisenberg uncertainty principle

The Heisenberg uncertainty principle [30] states that for two noncommuting Hermitian operators
q and p one cannot simultaneously measure their physical quantities with arbitrary precision:

∆q∆p ≥ 1

2
|〈[q, p]〉| (2.1.22)

Heisenberg uncertainty principle applied to the quadrature operators (eq.(2.1.9)) translates into

∆X+∆X− ≥ 1 (2.1.23)

From the previous two paragraph we see that all coherent states and vacuum state fulfill the
special case of the Heisenberg uncertainty principle

∆X+∆X− = 1 (2.1.24)

All states satisfying this equation are known as minimum uncertainty states.
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2.1.4 Squeezed states

The Heisenberg uncertainty principle states that the product of the variances of two noncom-
muting operators has a minimum. However, it does not put any constrain on the individual
component variances, thus if

(∆q)2 <
1

2
|〈[q, p]〉| or (∆p)2 <

1

2
|〈[q, p]〉| (2.1.25)

but not simultaneously, the state is said to be squeezed.
In analogy to the coherent state, a squeezed state can be described applying a squeezing

operator to a vacuum state. The squeezing operator S(r, θ) is defined as

S(r, θ) = exp

(
1

2
re−2ıθ(a)2 − 1

2
re2ıθ(a†)2

)
(2.1.26)

where r is the the squeezing factor and θ is the quadrature angle of the squeezing: θ = 0
corresponds to amplitude squeezing and θ = π/2 to phase squeezing.

The squeezed vacuum is thus obtained applying the squeezing operator to the vacuum state

|0, r, θ〉 = S(r, θ) |0〉 (2.1.27)

while a bright squeezed state is defined as

|α, r, θ〉 = D(α)S(r, θ) |0〉 (2.1.28)

For an amplitude squeezed state (θ = 0), application of the number operator will yield

〈α, r, 0|N |α, r, 0〉 = |α|2 + sinh2(r) (2.1.29)

On the same state, the variance of the quadrature operators X+ and X− are

(∆X+)2 = e−2r and (∆X−)2 = e2r (2.1.30)

On the other hand, for a phase squeezed state (θ = π/2) the variance of the quadrature operators
X+ and X− are

(∆X+)2 = e2r and (∆X−)2 = e−2r (2.1.31)

The squeezed state described previously are minimum uncertainty states. Imperfect processes,
such as loss, will result in a state that is not a minimum uncertainty state. We therefore can
define the squeezing purity P as

(∆X+)2(∆X−)2 = P (2.1.32)

A pure state will have a purity of P = 1, as does the vacuum. A pure state is a minimum
uncertainty state.

2.2 Linearized quantum theory

Let’s consider the single mode annihilation operator a and let’s break into two different contri-
butions:

a = α+ δa(t) (2.2.1)

where α is a complex number representing the single frequency part of the mode and δa(t) are
the fluctuations and modulations (therefore representing the continuum of modes surrounding
the single frequency carrier.
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The number operator becomes

N = a†a = (α∗ + δa†(t))(α+ δa(t))

≈ α2 + α(δa†(t) + δa(t))

≈ α2 + αδX+(t) (2.2.2)

where we have taken the arbitrary phase of α real and linearized by assuming the fluctuation
are small and hence neglecting higher than first order terms in the fluctuations. We see that we
are effectively measuring the quadrature operator δX+(t) = δa†(t) + δa(t). For this reason δX+

is referred to as the amplitude quadrature operator.

2.2.1 Photodetection

Combining eq.(2.2.2) with eq.(2.1.11) we have that the optical power of a beam can be written
as

Popt ≈ ~ω(α2 + αδX+(t)) (2.2.3)

A common measurement of the optical power of a beam involves a photodiode. As a consequence
of the Photoelectric Effect, incident photons hitting a photosensitive medium are a source of freely
moving electrons. The produced photocurrent i, is given by

i = ρPopt =
eηpd
~ω

Popt (2.2.4)

where ρ is the responsivity of the photodetector (in units of A/W), ηpd is the quantum detection
efficiency of the detection medium, ~ω the energy per photon, and e is the modulus of the electron
charge. Using eq.(2.2.3) in eq.(2.2.4) in the case of an ideal photodiode (ηpd = 1) we have

i ≈ e(α2 + αδX+(t)) (2.2.5)

The first term of eq.(2.2.5) is a non-fluctuating term that is directly proportional to the optical
intensity of the incident light, while the second term is a fluctuating term proportional to the
amplitude quadrature times the coherent amplitude.

pd

'

Figure 2.1: Model of a real photodiode with quantum efficiency ηpd. One of the two input power
of the beam splitter is occupied by the input beam, while the other is occupied by the vacuum
state. The light that reaches the ideal photodiode is a linear combination of the two input of the
beam splitter.

The case of ηpd < 1 can be modeled considering a beam that go through a beam splitter with
reflectivity ηpd before being detected by an ideal photodiode (see Fig.2.1). The beam that is
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detected by the ideal photodiode is the linear combination of the two beam splitter input beams,
that are the beam that we want to measure and the vacuum. In this case, the photocurrent
generated by the photodiode is

i ≈ eηpdα2 + eα

(
ηpdδX

α
+(t) +

√
ηpd(1− ηpd)δXv

+(t)

)
(2.2.6)

The photocurrent in this case differs by eq.(2.2.5) in both the fluctuating and the non-fluctuating
term: the non-fluctuating term is scaled by the quantum efficiency of the photodiode and the
fluctuating term is a linear combination between the amplitude quadrature fluctuation of the
input beam (δXα

+(t)) and the amplitude quadrature fluctuation of the vacuum state (δXv
+(t)).

2.2.2 Balanced homodyne detection

As seen in the previous paragraph, non perfect quantum efficiency is a limitation to the measure-
ment of quantum noises of light. Measuring the quantum noise requires that all classical noise
terms, such as laser intensity noise and electronic noise, are reduced to a level well below the
noise level of interest. To perform these measurements, a commonly used method is the balanced
homodyne detection (see Fig.2.2).

bssignal

local

oscillator

C

D
A

B

pd1

pd2

Figure 2.2: Scheme of an ideal balanced homodyne detector. The local oscillator (LO) and the
signal beams are mixed on the beam splitter. The two resulting beams are detected by two ideal
photodiodes pd1 and pd2.

The two inputs of the homodyne detector are the signal beam A = α + δa and the local
oscillator (LO) beam B = β + δb. The quantum properties of the signal beam are measured by
recording the difference of the two photodiodes’ photocurrents.

The two output beams of the beam splitter (C and D) are

C =
√

1− ηbsA+
√
ηbsBeıθ (2.2.7a)

C =
√
ηbsA−

√
1− ηbsBeıθ (2.2.7b)

where ηbs is the splitting ratio of the beam splitter and θ is the relative phase of the two input
beams and it has been chosen to ensure that the coherent amplitude terms of the fields are real.
Assuming ideal photodiodes, the two photocurrents are

i1/e = (1− ηbs)A†A+ ηbsB
†B +

√
ηbs(1− ηbs)

(
A†Beıθ +B†Ae−ıθ

)
(2.2.8a)

i2/e = ηbsA
†A+ (1− ηbs)B†B −

√
ηbs(1− ηbs)

(
A†Beıθ +B†Ae−ıθ

)
(2.2.8b)
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and the difference of the two photocurrent is

(i1 − i2)/e = (1− 2ηbs)A
†A+ (2ηbs − 1)B†B + 2

√
ηbs(1− ηbs)

(
A†Beıθ +B†Ae−ıθ

)
(2.2.9)

Using eq.(2.2.2) we can approximate A†A ≈ α2 + αδXA
+ and B†B ≈ β2 + βδXB

+ where
δXA

+ = δa + δa† and δXB
+ = δb + δb† are the amplitude quadrature of the signal and the LO

beam respectively. Therefore, eq.(2.2.9) can be approximate as follow:

(i1 − i2)/e ≈(1− 2ηbs)(α
2 + αδXA

+) + (2ηbs − 1)(β2 + βδXB
+ ) + 2

√
ηbs(1− ηbs)×[

2αβ cos θ + α(δXB
+ cos θ − δXB

− sin θ) + β(δXA
+ cos θ + δXA

− sin θ)
]

(2.2.10)

In most of the cases of interest, the LO is much brighter than the signal field (β � α). This
condition is particularly true when the signal beam is a vacuum state. In those cases, all the
terms of eq.(2.2.10) where β is not present can be neglected. Therefore we have that

(i1 − i2)/e ≈(2ηbs − 1)(β2 + βδXB
+ )+

2
√
ηbs(1− ηbs)

[
2αβ cos θ + β(δXA

+ cos θ + δXA
− sin θ)

]
(2.2.11)

Supposing an ideal splitting ratio of 50% we finally have

(i1 − i2)/e ≈ 2αβ cos θ + β(δXA
+ cos θ + δXA

− sin θ) (2.2.12)

The first term of eq.(2.2.12) is a DC term that describes the interference between the two
fields as the phase between the signal and the local oscillator is varied. The second term contains
the quantum properties of the signal beam that are amplified by the coherent amplitude of the
LO beam. By choosing the phase between the signal and the LO to be θ = 0, the output of the
homodyne detector is proportional to the signal amplitude quadrature, while choosing θ = π/2
the output is proportional to the signal phase quadrature.

2.3 Squeezed state and losses

In section 2.2.1 we shown how in the non ideal case of a photodiode, the quantum properties of
a state are mixed with the quantum properties of the vacuum state. In general, any losses (such
as transmission losses, absorption, non ideal quantum efficiency, mode mismatching, etc) can be
modeled with the introduction of a partially reflective beam splitter which couples the vacuum
state noises into the beam quantum properties. After the virtual beam splitter we will have

a′ =
√
ηa+

√
1− ηδv (2.3.1)

where 1−η are the generic “losses” and hence η is the transmittivity of the virtual beam splitter.
Therefore we also have

a′†a′ = η(α2 + αδXa
+) +

√
η(1− η)αδXv

+ (2.3.2)

where δXv
+ is the vacuum amplitude quadrature fluctuation and the input beam is linearized as

did in the previous sections. The variance of the photon number Va′ can be calculated as

Va′ = ηVa + (1− η)Vv (2.3.3)

being Va the photon number variance of the state before the beam splitter and Vv the photon
number variance of the vacuum state. Since Vv = 1 and η ∈ [0, 1], the higher are the losses, the
closer is Va′ to Vv.

For a squeezed state the variance of the two quadrature X+ and X− are given respectively
by (2.1.30) for an amplitude squeezed state and by (2.1.31) for a phase squeezed state. Fig.2.3
shows the effect of losses on a pure squeezed state. The resulting state is a minimum uncertainty
state just for η = 0 and η = 1.
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Figure 2.3: Effect of losses on a pure amplitude/phase squeezed state. For an amplitude squeezed
state the continue lines represent the variance of X+ and the dashed lines are the variance of
X−; for a phase squeezed state the variances are just switched. The X+ and X− quadrature
variances are plotted as a function of the losses in three different situations: red curves refer to
a state with 15 dB of amplitude/phase noise suppression and 15 dB of phase/amplitude noise
enhancement in the loss-less case; blue (green) curves show the same information for a state with
10 dB (5 dB) squeezing in the loss-less case.

2.3.1 Squeezing ellipse phase fluctuations

Another effect that decreases the noise enhancement/suppression of a squeezed state is the cou-
pling of the X+ and X− quadrature variances due to the squeezing ellipse phase fluctuations.
As function of the rms phase fluctuations θ̄, the measured variances are

V (X ′+,−) = V (X+,−) cos2 θ̄ + V (X−,+) sin2 θ̄ (2.3.4)
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Figure 2.4: Degradation of the squeezing level of a pure 15 dB squeezed state due to the combined
effect of losses and squeezing ellipse phase fluctuations.

The combined effect of losses and phase fluctuations is shown in Fig.2.4. This figure shows
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the degradation of the squeezing level starting from a pure 15 dB squeezed state.

2.4 Non linear optics

The beginning of the field of non linear optics is often taken to be the discovery of second-
harmonic generation by Franken et al.(1961) [31], shortly after the demonstration of the first
working laser by Maiman in 1960.

For most of the materials the induced polarization P (t) depends linearly on the strength E(t)
of an applied optical field:

P (t) = ε0χ
(1)E(t) (2.4.1)

where χ(1) is the linear susceptibility and ε0 is the permittivity of free space. In general, this
approximation does not hold true. In fact, for intense electric field, eq(2.4.1) is generalized by
expressing the polarization P (t) as a power series in the field strength E(t):

P (t) = ε0

[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

]
≡ P (1)(t) + P (2)(t) + P (3)(t) + . . . (2.4.2)

The quantities χ(2) and χ(3) are known as the second- and third-order nonlinear optical suscep-
tibilities, respectively. In my work only second-order processes are present.

Let’s take the case where the electric field can be written as E(t) = E0e−ıωt + c.c. In this
case, the second-order polarization of eq.(2.4.2) is

P (2)(t) = ε0χ
(2)
[
E2

0e−2ıωt + c.c.
]

+ ε0χ
(2)
[
2E0E

∗
0

]
(2.4.3)

This equation lead to the production of two different field, one at twice the frequency of the
input electric field and one at zero frequency. The two processes involved in this situation are
known as second harmonic generation (SHG) and optical rectification (OR) respectively. If
the input electric field is composed by two or more frequency components, the second-order
nonlinear optical susceptibility leads also to sum and difference frequency generation (SFG and
DFG respectively).

z

L

1

2

3= 1 2+
d   = 

eff

(2)1
2

Figure 2.5: Sum-frequency generation.

Let’s take the case of SFG. Fig.2.5 shows the scheme of the process. The generic wave
equation for nonlinear optical media can be written as in [32]:

∇2En −
ε(1)(ωn)

c2
∂2En

∂t2
=

1

ε0c2
∂2PNL

n

∂t2
(2.4.4)
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where En is the electric field of the n-th mode, ωn is the angular frequency of the mode, PNL
n

in the nonlinear part of the polarization and ε(1)(ωn) is the linear part of the relative permit-
tivity, which is different for each material. This equation holds true for the case of an isotropic,
dissipationless material.

For simplicity, let’s take the case of plane wave propagating in the +z direction. In this case,
the inputs and the output beams of Fig.2.5 can be written as:

Ei(z, t) = Eie
ıωit + c.c. where Ei = Aie

ıkiz (2.4.5)

with i = 1, 2, 3. We also write the nonlinear source term appearin in eq(2.4.4) as

P3(z, t) = P3eıω3t + c.c. where P3 = 4ε0deffE1E2 (2.4.6)

having deff = χ(2)/2.

Without going into details, combining eqs(2.4.4), (2.4.6) and (2.4.5) in the slowly varying
amplitude approximation, we end up with three coupled differential equations that describes the
spatial dependences of Ai:

dA1

dz
=

2ıdeffω
2
1

k1c2
A3A

∗
2e−ı∆kz (2.4.7a)

dA2

dz
=

2ıdeffω
2
2

k2c2
A3A

∗
1e−ı∆kz (2.4.7b)

dA3

dz
=

2ıdeffω
2
3

k3c2
A1A2eı∆kz (2.4.7c)

where ∆k = k1 + k2 − k3 which is called the wavevector mismatch. Eqs(2.4.7) can be solved in
the simplified case of no-pump depletion, that means that A1 and A2 can be taken as constants.
In this situation, for ∆k = 0, the amplitude A3 increases linearly with z, and consequently its
intensity increases quadratically with z. When the ∆k = 0 condition is not fulfilled, eq(2.4.7a)
can be solved by direct integration (between z = 0 and z = L):

A3(L) =
2ıdeffω

2
3A1A2

k3c2

∫ L

0

eı∆kz dz =
2ıdeffω

2
3A1A2

k3c2

(
eı∆kL − 1

ı∆k

)
(2.4.8)

The intensity of the generated wave is given by the magnitude of the time-averaged Poynting
vector, which is given by

Ii = 2niε0c|Ai|2 i = 1, 2, 3 (2.4.9)

We thus obtain

I3 =
8n3ε0d

2
effω

4
3 |A1|2|A2|2

k2
3c

3

∣∣∣∣eı∆kL − 1

∆k

∣∣∣∣2 (2.4.10)

Note that the effect of wavevector mismatch is entirely included in the squared modulus term.
This term can be rewritten as ∣∣∣∣eı∆kL − 1

∆k

∣∣∣∣2 = L2 sinc2(∆kL/2) (2.4.11)

Fig.2.6 shows the effect of wavevector mismatch on the sum frequency generation efficiency. The
wavevector mismatch is usually called phase matching.
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Figure 2.6: Effect of wavevector mismatch on the sum frequency generation efficiency.

2.4.1 Phase matching

The phase matching condition is a general condition that does exist not only for SFG (and
therefore for SHG) but also for DFG. This condition is usually not easy to achieve. That’s
because, commonly, materials shows an effect known as normal dispersion: the refractive index
increases as function of frequency. Therefore, the condition for perfect phase matching with
collinear beams

n1ω1

c
+
n2ω2

c
=
n3ω3

c
(2.4.12)

where ω1 + ω2 = ω3 cannot be achieved. The most common procedure for achieving phase
matching is to make use of the birefringence displayed by many materials. Birefringence is the
dependence of the refractive index on the direction of polarization of the optical radiation.

Three different techniques are commonly used to perform the phase matching. The first two
described make use of the birefringence, while the third allows the phase matching condition to
be fulfilled even for non birefringent materials:

Type I phase matching: the two input fields (at ω1 and ω2) have the same polarization and
the produced field is orthogonally polarized. This can be achieved by adjusting the angle
of incidence, changing the crystal temperature or both. The phase matching is said to be
noncritical if the refractive indices are matched for light fields propagating in the plane
which is orientated 90◦ with respect to the optical axis of the crystal.

Type II phase matching: the two input fields (at ω1 and ω2) have orthogonal polarization
and the harmonic field has the same polarization as one of the fundamental fields. Again
this can be achieved by adjusting the angle of incidence, changing the crystal temperature
or both. Independently of the relative values of ω1 and ω2, type I phase matching is easier
to achieve than type II.

Quasi phase matching: it is done via a periodic manipulation of the accumulated relative
optical phase. The crystal’s domain is inverted periodically on short length scales resulting
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in a phase mismatch of

∆kQPM = k1 + k2 − k3 −
2π

Λ
(2.4.13)

where Λ is the crystal inversion period. Due to the periodic poling term, there is no
requirement of the refractive index being equal for the fundamental and harmonic fields.
An advantage of the periodic poled (PP) materials is that phase matching can be achieved
at room temperature over a very wide temperature range compared to the other two phase
matching methods and the phase matching temperature depends on Λ. Periodically poling
allows to exploit additional terms of the nonlinear susceptibility matrix which are larger
than those used in type I and type II phase matching. Using quasi-phase matching, the
constant deff of eqs(2.4.7) must be substituted with dQPM = (2/π)deff .

2.5 Squeezed state generation

The very first generation of a squeezed state was realized in 1985 by Slusher et al. [33] using
nondegenerate four-wave mixing. The actual most commonly used process to generate a squeezed
state is the degenerate parametric down conversion in an optical cavity, as used firstly by Wu et
al. in 1986 [34]. The degenerate parametric down conversion is a particular case of DFG where
the pump field at ω3 = ωp create via nonlinear interaction a signal field at ω1 = ω2 = ωs = ω3/2
(see [32]).

In the rotating wave approximation, the Hamiltonian of a degenerate parametric down con-
version process can be written as in [28]:

H = ~κ(a†a†b+ aabdagger) (2.5.1)

where a, a† and b, b† are the annihilation/creation operators for the signal field and the pump field
respectively and κ is a constant which depends upon the second-order susceptibility tensor that
mediates the interaction. Let’s assume the pump field is a coherent state and let’s approximate b
as β exp(−ıφ) where β is the real amplitude of the pump field and φ is the relative phase between
the pump and the signal beams. In this case, eq(2.5.1) can be rewritten as

H = ~κβ(a†a†e−ıφ + aaeıφ) (2.5.2)

The evolution operator associated to this process is therefore

U(t, 0) = exp(−ıHt/~) = exp
[
−ıκβt(a†a†e−ıφ + aaeıφ)

]
(2.5.3)

This operator looks like exactly as the squeezing operator defined in eq(2.1.26).



Chapter 3

Squeezing applied to GW
detectors

In this chapter I describe the advanced Virgo simulated noise budget with the injection of a
squeezed vacuum into the dark port of the interferometer.

Injecting a squeezed vacuum state into an interferometer, modifies the quantum noises of
the detector with respect to the case where no squeezing is injected. A detailed explanation of
the quantum noises of a GW interferometer can be found in [35]. The injection of frequency
independent squeezed vacuum into a GW interferometer have already demonstrated to reduce
the detector shot noise [4, 5].

3.1 Squeezing applied to AdV

The tool developed by the LIGO-Virgo collaboration to compute the expected noise budget for a
GW detector is called GWINC. According to [17], the detector design sensitivity will be achieved
following a step by step process. Within this process, three different interferometer configurations
are identified:

1. Power recycled interferometer: in this situation the power recycling (PR) mirror is installed
while the signal recycling mirror (SR) is not. This is the first step foreseen by the AdV
collaboration and will be implemented with an input power of 25 W.

2. Tuned dual recycled interferometer: both the two recycling cavities (PR and SR) are
installed in this configuration and the signal recycling cavity is tuned.

3. Detuned dual recycled interferometer: the only difference of this configuration from the one
previous is that the signal recycling cavity is detuned. The choice of the detuning angle
allows to tailor the spectral sensitivity of the detector.

Since the squeezing injection is expected to impact only on the quantum noises of the inter-
ferometer, in the following, all the non quantum noises are considered altogether and shown as
one overall contribution.

Within the collaboration, the sensitivity of the detectors is usually expressed in observable
ranges for specific GW sources, in units of Mpc. This quantity expresses the expected maximum
distance at which an emitted GW can be measured with a SNR≥ 8. The two more common GW
signals that are used to compute ranges are the emission from the coalescence of two neutron

25
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stars (NS) with mass MNS = 1.4M� and the coalescence of two black holes (BH) with mass
MBH = 30M�.

The expected NSNS and BHBH ranges for AdV in the various configuration as function
of the input power and the signal recycling mirror detuning are shown in the following, using
optimization routines that I developed to post-process the results from the GWINC code.
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Figure 3.1: Binary coalescences ranges for configuration 1 as function of the input power. The
NSNS range increases as function of input power, while, for black holes of mass MBH = 30M� the
detection range decrease as the input power increases. For BH with small masses, this behavior
changes and for MBH = 5M�, the same behavior of the NSNS ranges is obtained.

Fig.3.1 shows the expected ranges for NSNS and BHBH coalescence as function of the injected
power (10− 125 W): the NSNS ranges increases as function of the injected power reaching the
maximum of 109.7 Mpc with Pin = 125 W. On the other hand, the BHBH range for MBH =
30M� decreases as the input power increases and the maximum range is 1078 Mpc with Pin =
10 W. This difference is entirely due to the fact that the radiation pressure noise gets higher
as the input power increases and this spoils the detector low frequencies performances. Fig.3.2
shows the AdV sensitivity curves in this two cases.
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Figure 3.2: The sensitivity curves I computed for configuration 1 in the case of Pin = 125 W
(left) and Pin = 10 W (right) are shown.

For configuration 2 and 3 I computed the binary system ranges (in this case MBH = 30M�) as
function of the input power and of the signal recycling cavity detuning. Fig.3.3 shows the ranges
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of the dual recycled interferometer as function of the input power and the SR detuning. The
best NSNS range (145.6 Mpc) is obtained with Pin = 125 W and a SR detuning of 0.2565 rad,
that is 14.69◦ and the best BHBH range (1381 Mpc) is obtained with Pin = 10 W and a SR
detuning of 1.282 rad, that is 73.47◦. As in the configuration 1 case, the difference between this
two sets of parameters are the low frequency performances of the interferometer.
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Figure 3.3: Binary coalescences ranges for a dual recycled interferometer as function of the input
power and the SR detuning, configurations 2 and 3
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Figure 3.4: The sensitivity curves for configuration 3. (left) input power and SR tuning are
optimized to maximize the NSNS range: Pin = 125 W and SR detuning is 0.2565 rad; (right)
input power and SR tuning are optimized to maximize the BHBH range: Pin = 10 W and SR
detuning is 1.282 rad.

Now I consider the effect of injecting frequency independent squeezing into configuration
1. The computation has been performed supposing to start with a pure squeezed state (i.e.
phase squeezed state with the squeezing degree equal to the anti-squeezing degree) and then
the degradation of the squeezed state due to losses and phase noise are computed. The AdV
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squeezing working group set a challenging but not optimistic target for the squeezing input
losses equal to 20%. Those losses take into account the OPO escape efficiency and absorption,
Faraday isolators transmission losses, mode matching between the squeezed vacuum and the
interferometer, OMC absorption and mode matching, AdV photodetector non perfect quantum
efficiency. For the phase noise a conservative value equal to 30 mrad has been chosen as target.
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Figure 3.5: NS (left) and BH (right) coalescence ranges gain for configuration 1 with Pin = 25 W
as function of the frequency independent squeezing level and angle.

Fig.3.5 shows the ranges gain for configuration 1 with Pin = 25 W as function of the squeezing
level and the squeezing angle. The ranges are normalized on the ranges obtained with the same
configuration and input power but without squeezing injection. For both the NS and BH ranges,
the squeezing injection enhance the interferometer sensitivity. In particular, the NSNS range
has a maximum of 113.1 Mpc with an injection of 3.6 dB of squeezing and a squeezing angle of
62.1◦, while, for BHBH range, a maximum of 1183 Mpc is achieved with the injection of 7.8 dB
of squeezing at a squeezing angle of 86.9◦. These two ranges are higher compared to the best
ranges obtained with configuration 1 without any squeezing injection. It is worth to notice that
injecting a phase squeezed state at a squeezing angle close to 90◦ means that we are injecting an
amplitude squeezed vacuum state.

The result of injecting a frequency independent phase squeezed vacuum state in an interfer-
ometer in configuration 2 (that is dual recycled interferometer with tuned signal recycling cavity)
is an enhancement of both the NSNS and BHBH ranges with respect to the ranges obtained in
the same configuration but without squeezing. An example for Pin = 25 W is in Fig.3.6.

In all the previous cases, the ranges are maximized without considering that this maximization
usually spoils the high frequency performances of the interferometer. To increase the BHBH and
NSNS ranges injecting a squeezed vacuum state while preserving the high frequency performances
of the detector, frequency dependent squeezing must be taken into account.

A frequency dependent squeezed vacuum can be obtained starting from a frequency indepen-
dent squeezed vacuum and injecting it into a detuned Fabry-Perot cavity, the cavity reflection
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Figure 3.6: Binary ranges for configuration 2 with Pin = 25 W. The highest ranges are:
118.55 Mpc for NSNS systems with an injection of 8.5 dB of squeezing at a squeezing angle
of 6◦ and 1197.9 Mpc for BHBH systems with an injection of 8 dB of squeezing at a squeezing
angle of 18◦.
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is a frequency dependent squeezed vacuum. This cavity is usually called filter cavity (FC). To
obtain a squeezed ellipse optimal rotation for a GW interferometer, two filter cavities are needed
[36].

The study of the injection of a frequency dependent squeezed vacuum into a GW interfer-
ometer is not the aim of my work. However, as a view into future developments for a GW
detector with squeezing, I computed the sensitivity curve for the particular case of the injection
of 10 dB of frequency dependent squeezing with optimal angle rotation into a configuration 2
interferometer with Pin = 125 W (see Fig.3.7).
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Figure 3.7: AdV noise budged in configuration 2 with Pin = 125 W with the injection of different
types of frequency dependent squeezing. The light blue curve is the AdV noise budget without
any squeezing injection, the orange curve is the noise budget with the injection of a non optimal
frequency dependent squeezing (as can be realized with just one FC) and the black curve is the
noise budget with the injection of a frequency dependent squeezing with optimal ellipse rotation.
The blue curve is the noise contribution due to the sum of all non quantum noises; the red curve
is the noise contribution due to the sum of quantum noises in the case of frequency dependent
squeezing with optimal ellipse rotation.

The FC parameters used to perform the simulations of Fig.3.7 are: length of 100 m with
losses of 1ppm/m and end mirror power transmittivity of 1ppm. From the figure is evident that
injecting frequency dependent squeezing with optimal ellipse rotation produces limited benefits
because of the presence of non quantum noises below ≈ 100 Hz. The non quantum noises
that contribute mainly to limit the squeezing benefits are the suspension thermal noise, gravity
gradient noise and coating thermal noise. However, the red curve of Fig.3.7 shows that there is
large room for improving the AdV sensitivity provided one can reduce the non quantum noises
below 100 Hz.
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Chapter 4

Advanced Virgo squeezed vacuum
source

This chapter describes the optical layout along with the electronics and controls of the AdV
squeezed vacuum source, with special focus on the parts which I worked on during this thesis. The
realization of the first AdV squeezed vacuum source is a collaborative effort involving many italian
Virgo laboratories: INFN Napoli, INFN Roma1 (LaSapienza) and INFN Roma2 (TorVergata),
INFN Pisa, INFN Genova, INFN Padova-Trento. My group, Padova-Trento, delivered some key
subsystems as the Second Harmoic Generator, the Phase Locked Loops, Infrared Mode Cleaner
and took a wider responsibility on the implementation of controls and on the integration of the
several parts.

Considering the results of the LIGO and GEO600 experiments [4, 5], the collaboration decided
to set the following requirements:

• 12 dB frequency-independent squeezed vacuum in the AdV detection band (that is between
10 Hz and 10 kHz). This requirement is as produced, i.e. before measurement losses.

• 10 mrad rms phase noise

• up to 5% losses without taking into account the measurement losses.

4.1 Squeezed vacuum source optical layout

The optical layout of the squeezed vacuum source is schematized in Fig.4.1. The setup can be
divided into four main blocks:

Laser sources: it contains three IR laser sources and two phase locked loops (PLL). The main
laser (ML) is used to pump the second harmonic generator and to provide the local oscillator
for the homodyne detector. The first auxiliary laser (AUX1) provides the coherent control
field used to stabilize the squeezed ellipse angle, while the second auxiliary laser (AUX2)
is used as the optical parametric oscillator (OPO) length control beam. Two PLLs lock
the phase of the two auxiliary laser to the main laser, each one with a different frequency
detuning.

Second harmonic source: this block contains a second harmonic generator (SHG), a Mach-
Zehnder interferometer (MZ) and a triangular cavity (MCgr). The SHG provides the green
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Figure 4.1: Building block scheme of the squeezed vacuum source: (I) is the laser sources, (II)
is the second harmonic source, (III) is the squeezed light source and (IV) is the squeezed light
detector. To be operational in AdV, the bench main laser (ML) must be phase locked to the
AdV laser: this additional PLL is not shown in the picture.
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pump power for the OPO, while the MZ stabilizes the pump power and the MCgr stabilizes
the phase of the pump field at high frequency1 and defines the mode shape.

Squeezed light source: it contains the OPO cavity. This cavity, driven below threshold,
generates the squeezed vacuum state of light.

Squeezed light detector: this block contains a triangular cavity (MCIR) and the homodyne
detector (HOM). The MCIR is used to clean and define the mode shape of the HOM local
oscillator and the HOM is used to characterize the produced squeezed vacuum state.

The Napoli group was in charge to develop the Mach-Zehnder interferometer and the green
mode cleaner, the Roma1 group developed the homodyne electronic board, the Roma2 group
was in charge to realize the OPO cavity, the Pisa group provided a DSP board and the Padova-
Trento group was in charge to realize the second harmonic cavity, the infrared mode cleaner and
to develop all the electronics and controls needed in the optical bench.

The SHG is fully described in Chapter 5. Here I describe the other main parts of the squeezed
vacuum source. The controls of the optical system are described in Section 4.2. Here I just
anticipate that two versions of the controls and electronics were implemented during this work
and which I call phase one and phase two.

Fig.4.2 shows a picture of the squeezed vacuum source optical bench as it was at the beginning
of May 2016.

4.1.1 Mach-Zehnder (MZ)

The Mach-Zehnder (MZ) interferometer is used to stabilize the power of the green pump to a
fixed value. This is needed since a fluctuation of the green pump will lead to a fluctuation of
the degree of produced squeezing. Fig.4.3 (left) shows a photo of this setup: it was produced
by INFN-NA and I took care of its characterization and control. The MZ consists of two high
reflectivity mirrors and two beam splitters.

Fig.4.3 (right) shows the scheme of the electric fields in the MZ interferometer: Ein is the
input electric field. Referring to this picture, ER and ET can be written as

ER =
(
r1r2 − t1t2e2πı∆L

λ +φ
)
Ein

ET = ı
(
r1t2 + t1r2e2πı∆L

λ +φ
)
Ein (4.1.1)

where r1 and r2 are the amplitude reflectivities of the first and the second beam splitter re-
spectively, t1 and t2 are the amplitude transmittivities of the first and the second beam splitter
respectively, ∆L is the length difference of the two interferometer paths, λ is the light wavelength
and φ is the difference of the Gouy phases of the two beams at the recombination point.

Usually the contribution of the Gouy phase can be neglected; in particular, it is negligible
when ∆L � zR where zR is the Rayleigh length of the beam. This term becomes important
when the interferometer has length unbalanced arm or if the beam is heavily focused. Our MZ
is not in such situations, so in the following we can neglect the Gouy phase contribution.

Our MZ has beam splitters’ power reflectivities2 R1 = R2 = 0.1 for p-polarized light and
R1 = R2 = 0.01 for s-polarized light. Fig.4.4 shows the MZ total power reflection and power

1A cavity acts as a low pass filter with a frequency cut equal to the half of its FWHM. Therefore the MCgr
stabilizes the phase of the green pump field for frequency greater than the half of its FWHM.

2Remind that
R = |r|2 and R+ T + Σ = 1

where R, T and Σ are respectively the power reflectivity, power transmittivity and losses of a generic surface, and
where r is the amplitude reflectivity.
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Figure 4.2: Picture of the squeezed vacuum source optical bench as it was at the beginning of
May 2016.
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Figure 4.3: (left) Picture of the installed MZ. (right) Working principle scheme of the MZ
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Figure 4.4: Simulation of total power reflection and transmission of the MZ as function of the
path length difference. Blue curve is for p-polarized light while orange curve is for s-polarized
light.

transmission (defined as RMZ = |ER/Ein|2 and TMZ = |ET /Ein|2). For p-polarized light the
mean reflection is RmeanMZ = 0.82 while for s-polarized light RmeanMZ = 0.98.

To control the MZ, one of the two mirrors is placed on a piezoelectric ceramic. Acting on
the piezo, the difference path length can be actively modified. The error signal is provided by a
photodiode that samples the MZ reflected signal (i.e. the beam used as pump for the OPO). The
optimal working point to the control loop is when the MZ reflection is linear with the steepest
slope, that is, RoptMZ = RmeanMZ . A scheme of the control loop is in Fig.4.5. The measurements of
the MZ transfer function and the MZ open loop transfer function are presented in Fig.4.6 and
Fig.4.7 respectively.

The target pump power stability is set at 1% of the power entering the OPO. Fig.4.8 shows
a two day measurement of the green pump stability. To perform this measurement, the voltage
of the in loop photodiode and the out of loop photodiode (see Fig.4.5) are acquired. The out
of loop channel represents the beam that will be injected into the OPO, therefore this channel
is the one where the requirement must be fulfilled. After the MZ the measured residual pump
power fluctuation is 1.9%. The target is not yet fulfilled; this is mainly due to a low gain of the
feedback at low frequency. In the next version of the control, the digital filter will be redesigned
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Figure 4.5: Scheme of the MZ control loop. The beam reflected by the second beam splitter of
the MZ interferometer is sampled by a beam splitter (with 700ppm reflectivity and diverted to
a (in loop) photodiode: the difference of the developed signal with respect to a reference signal
is used to control the MZ arm length difference. For the measurements of Fig.4.8, the beam
transmitted by the sampling beam splitter was collected by a (out of loop) photodiode.
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Figure 4.6: Measurement of the MZ transfer function. This transfer function includes the entire
control loop except for the servo. A structure is present at high frequency, likely due to mechanical
resonances of the MZ interferometer supports.
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Figure 4.7: Measurement of the MZ open loop transfer function. The unitary gain frequency is
approximately 1 Hz and the servo is a standard PI.

to reach the target power stability.

4.1.2 Infrared mode-cleaner (MCIR)

The infrared mode cleaner (MCIR) is one of the two traveling wave cavities present on the optical
bench. This resonator is used as an optical low pass filter for high frequency phase noise, moreover
it provides mode spatial filtering on the incoming beam and it also works as a polarization filter.

This cavity is placed along the homodyne local oscillator beam path, as close as possible to
the homodyne detector. As illustrated in Fig.4.9 (left), this resonator is set up as a three mirror
Fabry-Perot ring cavity. Fig.4.9 (right) shows a picture of the IR mode cleaner mounted on the
optical bench. The input and output cavity mirror are two identical plano-plano polished mirror
with power transmittivity Tp = 1.25% for p polarized light and Ts = 700ppm for s polarized light
both at an incidence angle θi = 45◦±2◦. The third cavity mirror is a polished, curved mirror with
a radius of curvature of 1 m and a transmittivity of T = 300ppm for both light polarizations.
The round trip length is 545 mm. The two plano-plano mirror are mechanically attached to
a monolithic invar3 spacer and the curved mirror is mechanically attached to a piezoelectric
ceramic, in turn attached to the same invar spacer. This design was adopted to guarantee high
mechanical stability and low length fluctuation due to thermal variation. The computed waist
size is 389.4 µm in the transverse or horizontal plane and 389.6 µm in the sagittal or vertical
plane with respect to the plane identified by the cavity path. The cavity finesse Fs,p can be

3Invar, also known generically as FeNi36, is a nickeliron alloy notable for its low coefficient of thermal expansion
(αth = 1.2× 10−6K−1).
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Figure 4.8: Measurement of the green power stability over two days.

Figure 4.9: (left) Schematic of the IR mode cleaner; in red the optical path of the IR light inside
the mode cleaner. (right) Picture of the IR mode cleaner mounted on the optical bench inside
the cleanroom at Virgo site.

computed, for s and p polarization respectively, via

Fs,p =
π(R1R

2
2s,p)

1/4

1−
√

1−R1R2
2s,p

(4.1.2)

where R1 is the power reflectivity of the curved mirror and R2s,p are the power reflectivity of
the plano-plano mirrors for the s and p polarization respectively.

In our case, eq(4.1.2) gives Fs ≈ 3700 for s polarized light and Fp ≈ 247 for p polarized light.
Considering the free spectral range (FSR), that is 550 MHz, the cavity linewidth (FWHM) is
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149 kHz for s polarization and 2.23 MHz for p polarization.
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Figure 4.10: Cavity scan near the s pol TEM00. The top line shows the cavity transmission, while
the bottom one is the error signal obtained by demodulating at 80 MHz the cavity reflection sig-
nal. The transmission peak has been fitted and the FWHM is reported (νFWHM = 165.21 kHz).
The linear part of the error signal has been also fitted to calibrate the error signal.

Fig.4.10 shows a cavity scan of the s pol TEM00. The fitted cavity linewidth is slightly
higher than expected. This results in a finesse for s polarization of Fs = 3330. The finesse for p
polarization was also measured, giving Fp = 205. Also in this case the finesse is slightly lower
than expected.

The infrared mode cleaner is held on resonance to the main laser field using a standard PDH
technique. The laser light is phase modulated by an EOM with a frequency of 80 MHz by the
same EOM which provides the modulation for the SHG cavity. The cavity reflection signal is
acquired by a photodetector and analogically demodulated. The bottom trace of Fig.4.10 shows
the demodulated signal obtained with phase one electronics.

Fig.4.11 shows the cavity scan of the p pol TEM00 demodulated reflection, that is the p pol
error signal used to lock the cavity length. The orange curve is the fit of the data performed
using equations of [37]. The fit is in good agreement with the experimental data.

Fig.4.12 shows the cavity transfer function of the infrared mode cleaner with phase one
electronics. On this cavity the phase two electronics was tested. In particular the transmission
and reflections photodetectors have been upgraded and we migrated the control loop from the
commercial PXI system to the SAT group board (see Section 4.2.2).

Fig.4.13 shows the cavity transfer function of the infrared mode cleaner with phase two
electronics. Comparing this transfer function with the one of Fig.4.12, few differences are visible:
the low frequency gain decreased from ≈ 60 dB to ≈ 50 dB and a low pass filter have been
removed; all the high frequency features are still present. Since the only component of the loop
that hasn’t changed is the cavity itself, we can infer that the high frequency resonances are
mechanical resonances of the invar spacer and of the piezoelectric ceramic. The red line shown
in the top and central panels of the figure, represents the fit of the cavity transfer function. This
fit does not take into account the resonances and the model is two first order low pass filter. The
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Figure 4.11: Cavity scan of the p pol TEM00 demodulated reflection. The blue dot are the
acquired data; the orange curve is the fit of the data performed using equations of [37].
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Figure 4.12: Infrared mode cleaner cavity transfer function. For frequencies higher than 2 kHz,
some resonances are visible. Those resonances can limit the unitary bandwidth of the control
loop. The transfer function is acquired with the cavity locked on p polarization light.
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Figure 4.13: Infrared mode cleaner cavity transfer function using phase two electronics and
controls. The blue curve are experimental data, while the red curve is a fit of the transfer function
supposing two first order low pass filter (the two cut frequencies are 6.4 kHz and 17.5 kHz.

cut frequencies are 6.4 kHz and 17.5 kHz; the two low pass filters are due to the high voltage
piezo driver. The third low pass filter that was present in the transfer function of Fig.4.12 (with
a frequency cut of ≈ 1 kHz) was due to an RC filter after the demodulation stage of the phase
one electronics.

Fig.4.14 shows the infrared mode cleaner open loop transfer function. The red line is the
modeled open loop transfer function and it shows a good agreement with the data. The controller
implemented with the SAT board is constituted by a pole at fpole = 1 mHz and a zero at
fzero = 2 kHz and a DC gain of 1000.

4.1.3 Balanced homodyne detector

The balanced homodyne detector is used as diagnostic tool to measure the vacuum squeezing
level produced by the OPO. As said at the beginning of the chapter, the development of the
electronic board of the homodyne detector has been developed by the Rome1 INFN group. I
took care of its integration in the squeezed light source optical bench, the electronic debugging
and characterization of the board.

Two typical schemes to realize an homodyne detector are the variable gain design (left panel
of Fig.4.15) and the current self subtracting design (right panel of Fig.4.15). In the first one,
the two photocurrents are amplified separately by two transimpedence gain stages with different
gain, then the two outputs are subtracted. The gain between the two detectors can be varied to
optimize balance when subtracting the photocurrents electronically, allowing for the compensa-
tion of uneven optical powers and differences in the photodiode responses. In the second design,
the two photocurrents are firstly subtracted and then the difference is amplified by a transim-
pedence gain stage. In this case, the balancing of the optical power and photodiode response
differences must be done optically. The advantage of the current self subtracting design with
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Figure 4.14: Infrared mode cleaner open loop transfer function using phase two electronics and
controls. The red curve is the model of the open loop transfer function obtained using the cavity
transfer function fit of Fig.4.13 and a controller with a DC gain of 1000, a pole at a frequency of
fpole = 1 mHz and a zero at a frequency of fzero = 2 kHz.

g2

g1

OUT OUTg

Figure 4.15: Two different electrical schemes for the balanced homodyne detector. (left) Variable
gain design: the photocurrents generated by the two photodiodes are amplified separately by two
transimpedence gain stages, g1 and g2, then the two outputs are subtracted. (right) Current self
subtracting design: the two photocurrent are firstly subtracted and the difference is amplified by
a transimpedence gain stage.
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respect to the variable gain design is that the second one has reduced classical noise due to the
fact that all of the electronic components after the photodiodes are common. The chosen design
for our balance homodyne detector is the current subtracting design.

AUDIO difference

RADIO difference

DC pd1

DC pd2

pd2

pd1

AUDIO sum

+V

-V

Figure 4.16: Conceptual scheme of the circuit design: the two photodiodes (pd1 and pd2) work
in reverse bias. Each photodiode has its own DC readout. These two output are used mainly
for alignment purpose. The photocurrents of the two photodiodes are selfsubtracted and then
amplified. The AUDIO difference channel is band pass filtered between 10 Hz and 10 kHz while
the RADIO difference is band pass filtered between 1 MHz and 120 MHz. The AUDIO sum
channel electronically sum the two photocurrents after separate amplification and is band pass
filtered between 10 Hz and 10 kHz.

Fig.4.16 shows the conceptual scheme of the homodyne circuit design. The homodyne board
provides five output channels. Two DC output, one for each photodiode; this two outputs are
used uniquely for alignment purpose. An AUDIO difference output; this channel will be used to
measure the produced squeezing between 10 Hz and 10 kHz. A RADIO difference output; this
channel is band pass filtered between 1 MHz and 120 MHz; this channel will be used to measure
the produced squeezing in the RF range and will be also used in the coherent control loop to
stabilize the phase of the squeezed field with respect to the local oscillator phase. The AUDIO
sum output is the sum of the two photocurrents between 10 Hz and 10 kHz; this channel is used
to compute the common mode rejection ratio (CMRR) of the homodyne detector [38].

I will not go into details about the board design since this was not part of my thesis. On the
contrary I collaborated into the board debugging and characterization, which I describe in the
following. All the characterization has been performed using only the local oscillator beam as
input to the homodyne beam splitter, while the other beam splitter input is the coherent vacuum
(see Fig.4.1).

Fig.4.17 shows the characterization of one of the two DC channel. The channel shows a
saturation for input powers greater than ≈ 7 mW. Below the saturation point the response is
linear with a coefficient of 0.33 V/mW. The other DC channel shows the same behavior of the
one presented in the figure, but with the linear coefficient equal to −0.33 V/mW and a saturation
voltage of −2.55 V. Both outputs are low pass filtered on the board with a fcut ≈ 0.7 Hz.

I characterized the band pass filter of the two AUDIO outputs. Despite of the designed
values, both channels exhibit a high pass frequency cut of 7.1 Hz and a low pass frequency cut
of 106 kHz.

To cancel the common mode noise of the two photodetectors (that is the amplitude noise
of the local oscillator), the optical power of the two beams after the beam splitter must be
balanced. This balancing has been performed adjusting the polarization of the local oscillator
with an halfwaveplate. The splitting ratio of the beam splitter depends weakly on the incoming
polarization, therefore, the power of the two beam after the beamsplitter can be finely adjusted.



46 CHAPTER 4. ADVANCED VIRGO SQUEEZED VACUUM SOURCE

Input power [mW]
0 2 4 6 8 10 12

D
C

 o
ut

pu
t [

V
]

0

0.5

1

1.5

2

2.5

3

Figure 4.17: Measured output of the DC channel relative to pd2 of Fig.4.16 as function of the
input power measured before the homodyne beam splitter (see Fig.4.1). The data shows a clear
saturation of the channel for input powers greater than ≈ 7 mW. Below the saturation point the
response is linear with a coefficient of 0.33 V/mW.

Figure 4.18: Power spectral density of the AUDIO difference output for different local oscillator
input power.
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The value that measures the common mode noise cancellation is usually called common mode
rejection ratio (CMRR) [38]. For our setup, the CMRR is defined as the ratio between the
AUDIO difference output and the AUDIO sum output. I measured a flat CMRR of ≈ −80 dB
in the whole frequency range of the channel.

Fig.4.18 shows the power spectral density of the AUDIO difference output for different local
oscillator input power. The traces are flat as expected from a shot noise limited signal and they
scale linearly with the input power. Below ≈ 500 Hz a non stationary noise is present. This
noise is due to air flow on the beam after the beam splitter and to stray light. To suppress this
two noise sources, the homodyne detector will be housed in a box.

4.2 Controls and electronics

The requirement of a moderate and stable degree of squeezing in the audio band translates into
quite high requirements on the controls and electronics both on the noise level and the long
term stability. Moreover, when the squeezed light source will be installed in AdV, only remote
controls will be allowed. For this reason and to allow maximum flexibility, we chose to use digital
electronics for the controls together with analog electronics for the photodetection and the high
frequency demodulation. The controls of the bench are listed in the following:

Pound Drever Hall (PDH): four PDH controls are needed (SHG, OPO, MCIR, MCgr);

Temperature stabilization: both the SHG and OPO nonlinear crystal need to be thermally
stabilized;

Phase Locked Loop (PLL): two PLLs need to be implemented, one to lock AUX1 to ML
and the second to lock AUX2 to ML;

Pump power stabilization: The MZ must be controlled so to stabilize the green field power;

Coherent Control Loop (CCL): this loop stabilizes the low frequency angular drifts of
the squeezing ellypse.

Within the electronics, several components need to be realized or optimized:

DC photodiode: low frequency photodiodes are needed as monitor as well as triggers for
various loops;

RF photodiode: high frequency photodiodes with embedded demodulation are used for the
PDH loops, for the PLLs and for the CCL;

Direct Digital Synthesizer (DDS): DDS provides the RF signals that are necessary for
the EOMs, for the RF photodiodes’ mixers and for the PLLs;

High Voltage piezo driver (HVpiezo): HVpiezo amplifies by a factor of 100 the correc-
tion signal of the PDH loops, the pump power stabilization loop and the CCL.

The electronics and controls of the squeezer optical bench was realized by a two step process:

Phase one: digital commercial electronics based on Labview, integrated by custom elec-
tronics;

Phase two: custom and AdV compatible controls and electronics.

In the followings, the two phases are explained.
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4.2.1 Phase one: Labview based controls and custom PLL and DDS

The phase one is based on a commercial PXI system. This system is constituted by several
components:

• PXI-8106: 2.53 GHz Dual-Core Embedded Controller for PXI;

• PXI-1042Q: General-Purpose 8-Slot Chassis for PXI;

• PXI-4110: Triple-Output Programmable DC Power Supply ;

• APS-4100: Auxiliary Power Source for PXI Programmable Power Supplies;

• cDAQ-9178: USB Data Acquisition Systems;

• NI-9219: Universal Analog Input, 24-Bit, 100 S/s/ch, 4 Ch Module;

• PXI-6259: 16-Bit, 1 MS/s (Multichannel), 1.25 MS/s (1-Channel), 32 Analog Inputs, 4
analog outputs (2.8 MS/s);

• BNC-2110: Shielded Connector Block with BNC.

During this thesis, I implemented various control loop on this system. The temperature sta-
bilization loops and environmental temperatures monitoring involve two NI-9219 units and the
PXI-4110 unit. All thermistors are read at a sampling frequency of 1 Hz in 4-wire configuration
and the Peltier cell is used as heater never reversing the current source. The loop is based on a
standard PID controller and the results are presented in Fig.5.19.

The PDH length stabilization loops are realized with the PXI-6259 unit and two BNC-2110
units. For each cavity (i.e. SHG, MCIR, MCgr and OPO) a photodiode in transmission of
the cavity and an analog demodulated photodiode in reflection of the cavity are sampled at a
frequency of 10 kHz. The photodiode in transmission is used as trigger for the loop to switch
from the cavity scan regime, where the cavity length is linearly changed to scan the FSR, to
the locked cavity regime, where the cavity length is locked. The error signal for the locked
cavity regime, provided by the analog demodulated photodiode in reflection, is digitally filtered
using a PID controller and then fed back to the HV amplifier that drives the cavity piezoelectric
actuator. The open loop transfer function of the SHG cavity is presented in Fig.5.14. The other
two cavities (MCgr and OPO) have not been locked with the phase one electronics.

The MZ length control is realized with the same units of the PDH length stabilization. The
aim of this control is to stabilize the green power, produced by the SHG, at a fixed level. After
the MZ, the beam is sampled by a beam splitter and the slow frequency signal developed at a DC
photodiode is acquired. The error signal of the loop is the difference between the DC photodiode
voltage level and a fixed voltage value. This signal is processed by a standard PID controller
and then fed back to the HV amplifier that drives the piezoelectric actuator that changes the
relative length of the two MZ arms. The measured MZ open loop transfer function is in Fig.4.7
and the green pump stability is presented in Fig.4.8.

The custom electronics developed for the phase one is mainly constituted by the DDS and
the PLL board. For this phase, the HVpiezo was supplied by EGO electronic workshop.

The DDS board was developed in collaboration with the INFN-PD electronic workshop and
the first version is based on the Analog Devices AD9959 evaluation board. AD9959 chip pro-
vides four synchronized DDS channels at 500 MS/s and four 10-bit programmable DACs. The
evaluation board of this chip has all the features of the chip itself and is provided with PC
evaluation software for control and measurement of the AD9959, USB interface and graphic user
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interface software (Windows based). The power supply of the board was furnished by a stan-
dard NIM rack. AD9959 needs a system clock source that, in our case, is a Wenzel Sprinter
Plus 500 MHz oscillator. The channels that drive the EOMs are amplified using MiniCircuit
ZHL-3A+ amplifier.

(LO)

(VCO)

Figure 4.19: Conceptual scheme of an OPLL between two laser.

Before describing the PLL board, I explain how a PLL works. Fig.4.19 represents an ideal
optical PLL (OPLL). The target of this control loop is to maintain the frequency and the phase
of a slave laser locked to the frequency and the phase of a main laser, possibly with a frequency
and phase detuning. In figure, the mixer M1 represent the photodiode where the beat note
between the two laser is detected; the mixer M2 compare the beat note to the RF signal that
represents the detuning signal. In an ideal and locked OPLL the conditions ωs = ωm + ωrf and
φs = φm + φrf hold true. While the optical part of this system can be simple, the electronic
part may be tricky. For the optical part, the beat note signal amplitude is influenced by several
parameters; in particular, to maximize the beat note signal the two beams must overlapp: same
beam waist and waist position, the wavevectors must be parallel and the two beams must be
in the same polarization state. The beat note of the two laser is compared to a signal or local
oscillator (LO) using a phase frequency detector (PFD), whose output is proportional to the
phase difference. The basic scheme of a PFD is in Fig.4.20 (left). U1 and U2 components are
two D (“data” or “delay”) flip-flops and U3 is an AND port. The left part of the circuit (before
the charge pump) works in the following way: if the output of the two flip-flops is 0 for both,
the charge pump is not activated, while if both two outputs are 1, the AND port resets both
the flip-flops and again the charge pump is not activated; when the output of the two flip-flops
are different, the charge pump is driven and the current flows from VP to CP or from CP to
CPGND depending on which flip-flop is in the 1 state. The charge pump is formed by a voltage
generator and two transistors that are driven from the output of U1 and U2. The current pulses
generated by the charge pump are converted to voltage by a filter that can be either an active
or passive filter or a mixture of both; Fig.4.20 (right) is an example of a passive type of filtering
and is the one implemented in our board. The voltage signal generated is fed back to the VCO
(voltage controlled oscillator) controls, in our case, the piezoelectric actuator of the slave laser.

Our PLL board was developed in collaboration with University of Bologna and LENS elec-
tronic workshop and it is based on the ADF4002 chip. This chip is a Phase Detector/Frequency
Synthesizer. It has a bandwidth of 400 MHz and programmable charge pump currents. The
filter after the charge pump implemented in this board is a passive filter, formed by the parallel
between a capacitor (C1 = 33 nF) and the series of a resistor (R1 = 55∇ · 150 Ω depending on
the setup) and a capacitor (C2 = 216 nF), see right panel of Fig.4.20. The output of this filter
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Figure 4.20: (left) PFD basic scheme. (right) passive filtering implemented in the OPLL board
after the charge pump.

is then fed to the piezoelectric control of the slave laser. The maximum frequency shift that can
be corrected with this setup is defined by the minimum between this two numbers: the laser
piezoelectric tuning range, that for our lasers is 130 MHz, and the maximum PFD output voltage
multiplied by the laser piezoelectric tuning coefficient, that is 9 V × 2 MHz/V = 18 MHz. Con-
sidering that, for stabilized room temperature, the frequency drift of our lasers is of the order
of 45 MHz/h, the maximum frequency shift that we can correct is really small. To cure this
problem, the SLOW laser control needs also to be used. This control acts on the laser’s crystal
temperature by means of a Peltier cell, with a tuning coefficient of 3 GHz/V and a frequency
bandwidth of ≈ 1 Hz. The output of the PFD is sampled by the ADC of the micro-controller
ATmega328. Inside the micro-controller, the PFD output signal is maintained in the middle of
its dynamic range by a digital PI. The generated correction signal is converted by a 16-bit DAC
(AD5663) and fed to the laser SLOW control. With all the above implemented the PLL board,
the long term stability of the loop is ensured. A long term measurement is presented in Fig.4.21.

The residual phase noise target for the PLL is φres < 10 mrad rms integrated between 8 Hz
and 100 kHz. The residual phase noise is the integral below the power spectral density of the
photodetector output after being analogically demodulated at the LO frequency by a mixer.
The PLL φres has been measured for two different conditions and the results are presented
in Fig.4.22. In the figure, three sets of measurement are presented; they are taken with two
different setups of the PLL board (setup A, B), the two differ by the charge pump current
(IcpA = 1.91 mA and IcpB = 1.22 mA) and the filter resistance (R1A = 150 Ω and R1A = 55 Ω),
see Fig.4.20 (right). Moreover, the simulation of both the configuration is shown. In the setup
B, the expected residual phase noise is 17.6 mrad while the measured one is 19.2 mrad; in the
setup A, the expected residual phase noise is 7.9 mrad while the measured is 11.4 mrad for the
measurement A1 and 9.3 mrad for the measurement A2.

4.2.2 Phase two: AdV compatible controls and electronics

The main target of phase two is the migration from the PXI based system, to a custom and AdV
compatible system. Since this migration is currently ongoing, in this thesis I present it shortly.
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Figure 4.21: Long term stability measurement of the PLL board. The upper time stream is
the PFD output sampled by the micro-controller, while the bottom one is the laser’s crystal
temperature.
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In phase one, the PDH loops and the pump power stabilization loop were implemented using
the PXI system. In this phase, these loops will be realized using a board developed by the AdV
SAT group (INF-PI). This board was independently developed for the control of the mechanical
degree of freedom of the AdV superattenuators (SAT) by the AdV INFN Pisa group.

The SAT board crucial components are: a commercial DSP and two FPGA, 6 DAC and
6 ADC (differential, 24-bit at 320 kS/s each) and a fiber transceiver. The communication to
the AdV data acquisition (DAQ) system is performed via fiber but all the computations are
performed internally (mainly in the DSP and in one of the two FPGA while the other FPGA
take care of the communication with the ADC and DAC). The boards are programmed using a
code developed by the SAT group and the communication is via Ethernet connection.

The temperature control of the nonlinear crystals, that in phase one was performed by the
PXI system, in phase two will be performed by stand-alone boards. The basic scheme of this
board (named Peltier driver) is presented in Fig.4.23. The NTC thermistor is inserted into a
voltage divider with a resistence R. The aim of this voltage divider is to linearize the response
of the thermistor in the range of temperatures where RNTC(T ) ≈ R. In our board R = 9.1 kΩ
(±0.05%, ±10ppm/◦C), thus the operating temperature is T0 = 30 ◦C.

NTC ADC PID DAC
H

bridge

OUT+

OUT-
Peltier

+V

R

Figure 4.23: Basic scheme of the Peltier driver.

The voltage difference across the NTC thermistor is digitized using a 24-bit ADC (AD7745)
and acquired by an ATmega328 micro-processor. The acquired voltage signal is transformed into
a temperature signal and processed by a digital PID filter. The 16-bit DAC (AD5667R) outputs
the correction signal to the Peltier cell as a PWM signal. The used DAC has two different output
so that the Peltier cell can either be heated up or cooled down. On the contrary of what done
with the PXI system, the Peltier is used as heater as well as cooler. The current flow is reversed
by the H bridge that is driven by the DAC two outputs.

The second version of the DDS is based on the AD9910 chip. Compared to AD9959, this chip
provides only one DDS channel at 1 GS/s and one 14-bit programmable DAC. Moreover it has
better phase noise performances and longer word to define phase and frequency of the channel
(32 bit instead of 24 bit). On each new board, four AD9910 have been installed and PLL locked
between each other (channel 2 is the master channel). As in the previous version, the power
supply of the board is provided by a standard NIM rack and the channels that drive EOMs are
amplified using MiniCircuit ZHL-3A+ amplifier. Since the phase noise performances of the DDS
are influenced by the phase noise performances of the system clock source, the Wenzel Sprinter
Plus 500 MHz oscillator has also been upgraded. The two main issues that degrade the phase
noise performances of the majority of local oscillator are the thermal stabilization of the crystal
and the power supply fluctuations. Wenzel oscillators have embedded stabilization of the crystal
temperature; to cure the power supply fluctuation, in phase two we installed a low noise voltage
regulator (LNVR-15-12-2-1) that provides 12 V with few nV/

√
Hz voltage noise. Fig.4.24 shows

the phase noise measurement of the latest DDS board.
In the new version of the PLL board, few upgrades will be implemented. The major one

is the auto-lock system. A spectrum analyzer will be added to the board so to extend the
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Figure 4.24: Residual phase noise of the DDS board based on AD9910 chip. The measurement
is performed at fOUT = 80.1 MHz (blue trace), while the orange trace is the residual phase noise
of the chip at fOUT = 96.8 MHz as expected from the AD9910 datasheet.

“capturing range” of the signal up to ≈ 5 GHz. Another upgrade will be the implementation
of a 5-th order bandstop filter on the laser’s piezoelectric correction signal. The aim of this
filter is to decrease the amplitude of the correction signal in the frequency range where piezo’s
mechanical resonances are present (100 kHz− 200 kHz) so to have the possibility to extend the
PLL frequency bandwidth. This filter was present also in the first version of the board, but was
never used. Another thing that limits the PLL bandwidth is the filter after the charge pump. In
this version, an optimization of this part of the circuit will be performed.
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Chapter 5

Second Harmonic Generator

The Second Harmonic Generator (SHG) is one of the two non-linear stages of the experiment and
is used to convert energy from frequency ω0 to the new frequency 2ω0. The working principle was
first demonstrated in 1961 with a Q-switched ruby laser with a conversion efficiency of 2 · 10−8

[31]. Since then the technique has advanced and conversion efficiency up to 89% have been
demonstrated for continuous wave systems[39].

In this thesis we use the same SHG scheme of [39] because it has been demonstrated to have
high conversion efficiency, high frequency stability and excellent long-term stability [4].

Another benefit of the SHG scheme with an IR cavity is that the latter provides a spatial
filtering of the IR beam, if the higher order modes are not degenerate with the TEM00 mode.
This translates into spatial filtering of the green field since it inherits the spatial features of the
IR beam.

5.1 SHG requirements

The IR source of the SHG is provided by a Mephisto Coherent laser with nominal output power
of 1W . The OPO threshold power will be in the range of 70mW . From the experience of the
GEO group [40], we expect that after years of continuous operation, the non-linear gain of the
non-linear crystal inside the OPO will drop and the OPO threshold power will increase. For
this reason, and to have the possibility to run the OPO above-threshold, we require our SHG to
provide at least 100mW of green (532nm) power in the TEM00.

In our setup we use a periodically poled crystal to exploit the possibility to have a high non-
linear susceptibility and low phase matching temperature1. For audio band squeezers, the most
used PP material is the periodically poled potassium titanyl phosphate (PPKTP - KTiOPO4)
which has been demonstrated to have good long term performances and to be robust against
green induced infrared absorption (GRIIRA) [41]. PPKTP is thus our choice; typically the poling
period is 9µm which corresponds to a phase matching temperature of ≈ 310K.

Low IR contamination

As said, the green field produced inside the SHG pumps the OPO. Therefore a crucial issue is
the IR contamination of the green beam2. To avoid this problem we use two different solutions.

1This point will be crucial in the case of a vacuum compatible setup.
2An IR field entering the OPO through the green beam will act as a seed for the squeezer cavity and it will

introduce low frequency noise in the squeezed field.
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Figure 5.1: Measurements on HBSY11 (Thorlabs). The IR (1064nm) power reflectivity and trasmittiv-
ity are plotted as function of the polarization angle θ of the incident field. s-polarized light is at θ = 0.
The lowest IR transmittivity (56 ± 5ppm) is achieved for s-polarized beam.

Dichroic mirror cascade Dichroic mirrors (also called harmonic beamsplitter) are widely
used to separate spatially light beams of different frequency. Fig.5.1 shows measurements
on an harmonic beam splitter (Thorlabs - HBSY11). Depending on the polarization of the
incident beam (at 45◦ incident angle), this component exhibits very low IR transmittivity,
with a minimum of (56 ± 5)ppm for vertically polarized field. In the AdV squeezer, a
cascade of dichroic mirrors will follow the SHG cavity along the green field path. The first
dichroic mirror after the SHG cavity is one of the two steering mirrors used to align the
cavity itself. Three mirrors are necessary to reduce the IR contamination of the green field
below 10−13W for 1 W of IR input power. This is enough to reduce to a negligible level
the noise introduced into the squeezed state by the IR seed. Three dichroic mirrors are
also used in the GEO600 squeezer [42].

Cavity reflection tuning Ref.[43] shows that the values of several parameters can change the
IR reflection from a cavity enhanced SHG. In particular, we tune the IR power reflection
of the cavity incoupling mirror.

In our setup we use both the Dichroic mirror cascade and the Cavity reflection tuning methods
in order to lower the IR contamination of the green beam.



5.2. MECHANICS 57

Figure 5.2: SHG cavity mechanics. Left: SHG vertical section. The cut plane contains the cavity
optical axis. Right: Dry assembly of the two termistor.

5.2 Mechanics

The main target of the mechanical mount of the SHG cavity is to provide a mechanically stable
housing for the PPKTP crystal and for the incoupling mirror. Since the length fluctuations
cause phase fluctuations both on the IR beam and therefore on the green produced light, a
robust mechanical housing is required. Moreover, a good thermal stabilization is required for the
nonlinear crystal phase matching condition.

To ensure a good thermal contact, the crystal is placed on a OFHC copper element that is
thermally connected to the Peltier element. Moreover, the crystal is surrounded by a indium foil
and an indium foil has been inserted between the Peltier cell and the copper element. This two
last solutions ensure a good thermal conductivity from the Peltier to the PPKTP. Two NTC
thermistors are mechanically attached to the copper element. Since greases and glues needs to
be avoided, the thermal contact between the thermistors and the copper element is ensured by
two copper-berillium springs (see Fig.5.2 right).

The incoupling mirror of the cavity is placed on a piezoelectric actuator. The elastic element
that act against the piezo is a viton o-ring. The cavity length can be manually changed moving
the two brass spacers that keep the piezo in position, this degree of freedom allows a length
change up to 3 mm but is feasible only before aligning the cavity.

To proper align the incoupling mirror and crystal optical axis, the aluminum piezo housing
component must be moved perpendicularly to the laser propagation axis. This movement is
ensured by the presence of a teflon foil between the piezo housing and the SHG base attached
to the POM bridge. Once the cavity is aligned, the mechanical stability holds thanks to four
screws that keep the piezo housing in position respect to the SHG base and POM bridge.

In Table 5.1 all the pieces and relative materials are listed.
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Object name Material

SHG base Aluminum
Crystal support Oxygen-free high thermal con-

ductivity (OFHC) copper
Macor spacers Macor
POM bridge Polyoxymethylene (POM)
PZT holders Brass

Incoupling mirror holder Aluminum
O-ring Viton

PZT housing Aluminum
Springs Copper-Berillium

Table 5.1: List of different pieces and relative materials composing the SHG cavity holder. The pieces’
name refers to Fig. 5.2.

5.3 Double pass measurements

To obtain the parameter used to realize the in cavity SHG, the single-pass nonlinear conversion
efficiency must be measured. From [44] this parameter is defined as follows

ENL =
P2

P 2
1

(5.3.1)

where P1 is the fundamental pump power (1064 nm) and P2 is the second harmonic generated
power (532 nm). Unfortunately, due to the fact that our PPKTP crystal has an high-reflectivity
(HR) coating on the curved side, ENL must be measured performing a double pass SHG.

For the double-pass scheme, the second-harmonic power is represented as [45]

P2 ∝

∣∣∣∣∣
∫ L

0

 eı∆kz

1− 2ı
z − z0

b

+ eıφ+ı∆kL eı∆kz

1− 2ı
z − (L− z0)

b

dz

∣∣∣∣∣
2

(5.3.2)

where L is the crystal length, z0 is the distance between the entrance surface of the crystal and
the beam waist, b = kw2

0 is the confocal parameter, w0 is the radius of the beam waist and φ is
the phase shift between the first and the second harmonics.

For plane waves (b→∞), the second harmonic produced power is

P2 = 4Pmax,SP2 sinc2

(
∆kL

2

)
cos2

(
φ+ ∆kL

2

)
(5.3.3)

where Pmax,SP2 represents the maximum second harmonic power achievable in the single pass
configuration (once defined L and ∆k). Fig.5.3 shows eq(5.3.3) for different phases φ.

Our case is slightly more complicated since we cannot use the approximation of plane wave and
the HR coated surface of the crystal is curved (RoC = 8 mm). Boyd and Kleinman demonstrated
[46] that for focused beam, the optimum second harmonic conversion is obtained with z0 = L/2
and b = L/2.84 that in our case means a beam waist equal to w0 = 23.55 µm. Fig.5.4 shows
the second harmonic production as function of the beam waist position inside the crystal. As
expected, the maximum is reached with the waist in the middle of the crystal. The simulation
takes into account also the effect of the curvature of the HR surface.
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Figure 5.3: Double pass quasi phase matching for different φ (eq(5.3.3)). Dashed curve is the
single pass phase matching multiplied by a factor of 4.
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Figure 5.4: Green production as function of beam waist position inside the PPKTP. The black
line is the numerical solution of eq(5.3.2) as function of the waist position inside the crystal (z0).

Having the beam waist dimension and position optimized, the phase φ has been optimized
overlapping the reflection from the HR coated surface with the entering IR beam. The results
are shown in Fig.5.5. This figure represent the quasi phase matching of the double pass second
harmonic generation. The optimal crystal temperature is Topt = 305.2 K. Since the conversion
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Figure 5.5: Double pass quasi phase matching after alignment and waist position optimization.
The quasi phase matching is obtained varying the temperature of the PPKTP crystal using
the peltier cell. The temperature is measured by an out of loop thermistor. IR pump power
P1 = 200± 11 mW

efficiency is pretty low, therefore the green absorption and the consequent crystal heating are
negligible, Topt remain constant over all the range of input IR power used to characterize the
double pass SHG.

PPKTP
P2

P1

Figure 5.6: Double pass scheme basic experimental setup. Descrivere il setup.

The input power has been changed feeding a DC signal to the pump diode of the IR laser.
A basic scheme of the measure is presented in Fig. 5.6. Using this setup, the green produced
light has been measured while varying the crystal temperature in a small range across Topt and
varying also the pump diode current of the laser. The measure has been performed in a steady
state regime.

The results are in Fig.5.7. The fit of the data with eq(5.3.1) results in ENL = (2.33± 0.01) · 10−2 W
−1
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with a reduced-χ2 = 0.35.
In the figure are clearly visible three “bumps” that are not compatible with the fitted law.

The explanation of this behavior is demanded to the next section.

Figure 5.7: Double pass green production. Fitting the data with eq(5.3.1) results in ENL =

(2.33± 0.01) · 10−2 W
−1

with a reduced-χ2 = 0.35. The three bumps have been excluded from
the fit. They originate from a different process, as explained in Sec.5.3.1.

5.3.1 Multimode SHG

Here I consider the multimode SHG and, following the explanation found in [47], I focus on
the case of a two mode laser (N = 2): i.e. a laser whose output is the sum of two frequency
component.

Let’s have ω1 and ω2 the frequencies of the two laser mode (ω2 > ω1). We neglect the variation
of the transverse beam profile over the range of frequencies contained in the fundamental beam.
This means that all modes are assumed to have the same transverse spatial structure. We define

ω0 =
ω1 + ω2

2
and ∆ω = ω2 − ω1 (5.3.4)

therefore ω1 and ω2 can be rewritten as

ω1 = ω0 −∆ω/2

ω2 = ω0 + ∆ω/2 (5.3.5)

To describe the fundamental and the second harmonic generated field inside the crystal, it is
convenient to introduce a dimensionless field amplitude αm and a fractional mode power pm for
the mth mode in the fundamental beam by

pm = |αm|2 =
ε0cnfπw

2
0

4P
|Em|2 with m = 1, 2 (5.3.6)
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where nf is the refractive index of the crystal at the frequency of the fundamental beam (n(ω1) =
nf ≈ n(ω2)), w0 is the beam waist and P is the total power of the fundamental beam. The second
harmonic field Esh must obey the equation

∂Esh
∂z

=
ıω0d

nshc

N∑
m=1

N∑
m′=1

EmEm′eı∆kmm′z × δ(ωm + ωm′ − ωsh) (5.3.7)

where nsh is the crystal refractive index at the second harmonic frequency and ∆kmm′ = km +
km′ − ksh. In the summation of eq(5.3.7), only those modes for which ωm + ωm′ has a definite
value ωsh contribute. In our case

ω
(1)
sh = 2ω1 =2ω0 −∆ω (5.3.8a)

ω
(2)
sh = 2ω2 =2ω0 + ∆ω (5.3.8b)

ω
(3)
sh = ω1 + ω2 =2ω0 (5.3.8c)

ω
(4)
sh = ω2 + ω1 =2ω0 (5.3.8d)

therefore, there are three different second harmonic modes produced while pumping the process
with two distinct fundamental modes. If p1 = p2 = 0.5, half of the total second harmonic power
is hosted in the central mode (ωsh = 2ω0) and the other half is equally divided into the other
two modes. Now let’s consider the phase matching of the process. If we suppose that the second
harmonic process’ phase matching is optimized for the central frequency ω0, like in [47], it exists
an optimal bandwidth for which the phase matching condition is nearly fulfilled for all the modes.
Using the data for the refractive index variation of the PPKTP [48], the acceptance bandwidth
is 1011 rad/s, that is 16 GHz; as we will see in few moments, the frequency distance of our modes
is ∆ν ≈ 3GHz.
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Figure 5.8: Mode hop model. In the left panel, the power transfer from the mode at ω1 to the
one at ω2 is shown. In the chosen set of coordinates, p1(x) = 1− x and p2(x) = x. In the right
panel, the enhanced second harmonic efficiency (see eq(5.3.10)) is computed as function of x.

Now we can compute the ratio η of the multimode second harmonic generation over the single
mode second harmonic generation. We suppose that mode phases are uncorrelated and randomly
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distributed over the range [0, 2π].

η =
Pmm,sh
Psm,sh

= 1 +

N∑
m=1
m6=m′

N∑
m′=1

|αm|2|αm′ |2 (5.3.9)

In our case

η = 1 + 2|α1|2|α2|2 (5.3.10)

In the special case of |α1|2 = |α2|2 = 1/2, we have from eq(5.3.10) that η = 1.5.
Now, let’s imagine a case where the source starts lasing single mode at ω1 and ends lasing a

single mode at ω2. Let’s define a normalized coordinate x so that the process of power transfer
from the mode at ω1 to the one at ω2 starts at x = 0 with p1(0) = 1 and ends at x = 1 with
p2(1) = 1. The power transfer must obey the condition p1(x) + p2(x) = 1 ∀x; we suppose that
process like in the left panel of Fig.5.8. For the model described above, eq(5.3.10) has been
computed and it is shown on the right panel of Fig.5.8. In such a coordinate system, eq(5.3.10)
becomes η = 1 + 2x− 2x2.

Using the setup described in the previous chapter, we measured the SHG green production
at fixed input power, fixed PPKTP crystal temperature and varying the laser NPRO crystal
temperature: acting on it, the frequency of the laser is changed by approximately 3 GHz/K (see
Fig.5.9).
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Figure 5.9: Standard Mephisto slow control. Taken from ’Coherent, Mephisto/Mephisto S’
datasheet.

As shown by Fig.5.9, in some ranges of temperatures, the laser is not single mode but two
different modes coexist. This process is commonly known as mode hop. Fig.5.10 (left) shows the
produced green as function of the NPRO crystal temperature. These measurements show four
temperature ranges where the second harmonic generation is enhanced. The spacing between
them is compatible with the temperature difference between two laser mode hops and the second
harmonic production enhancement η (see eq(5.3.10)) is compatible with the developed model of
two different modes with a linear power transfer between each other.

I have also performed measurements of the produced green as function of the laser crystal
temperature for different laser diode current, that means, for different IR input power into the
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Figure 5.10: SHG green production at fixed PPKTP crystal temperature (304.4 K) and at fixed
input power. In the left panel, the produced green as function of the laser NPRO crystal temper-
ature. Four temperature ranges of enhanced green production are clearly visible. On the right
panel, a zoom of one of the enhanced green production areas. To compare the data with the
model, the ratio of the multimode second harmonic generation over single mode second harmonic
generation has been computed and the NPRO temperature is converted in the x coordinate using
x = (TNPRO−T0)/∆T where TNPRO is the temperature of the laser crystal, T0 is the mode hop
starting temperature, in the case of the measurement present in the right panel T0 = 31.6◦C;
∆T is the temperature width of the mode hop process (∆T = 0.9◦C). The data are fitted ac-
cording to eq.(5.3.10) with η = a+ bx+ cx2 resulting in a = 0.998± 0.003, b = 1.89± 0.02 and
c = −1.87± 0.02.
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Figure 5.11: 3D and 2D maps of the green production as function of laser diode current (I) and
NPRO crystal temperature (T). The enhanced green production due to the coexistence of 2 laser
mode (during the mode hop) has been mapped.

double pass SHG. Results are presented in Fig.5.11. Each measurement at fixed diode current,
has its own color map, this has been done for visual purpose. The right panel of Fig.5.11 shows
the laser mode hop map. In Fig.5.7, for three different IR pump power ranges, an enhanced
green production is present. For each of this three “bumps”, the best green enhancement is
approximately a factor of 1.5. By looking Fig.5.11 for any NPRO crystal temperature, the mode
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hop lines are crossed at least once while scanning the laser diode pump current, thus, we can
conclude that the three “bumps” present in Fig.5.7 are due to the presence of the laser mode
hops.

5.4 In cavity SHG

In this section, the in cavity SHG is described and characterized. Fig.5.12 (right) shows a picture
of the SHG cavity.

Figure 5.12: (left) SHG cavity scheme. All the power reflectivities and the curvature radii are
listed. (right) Picture of the working SHG cavity.

The cavity is constituted by the PPKTP crystal and an in-coupling mirror. The non linear
crystal has dimension 1 mm× 1.5 mm× 9.3 mm; the back surface of the crystal has a radius of
curvature of 8mm and is high reflection coated (R = 99.975 % for both green and IR wavelength)
whereas the other surface of the crystal is flat and it is anti-reflection coated (R < 0.2 % for IR
wavelength and R < 0.3 % for green wavelength). The other part of the cavity is a partially
reflective meniscus lens with the inner surface reflectivities of R = 90 % at 1064 nm, R < 2 %
at 532 nm and a radius of curvature of 25 mm. This results in a finesse of the cavity at the
fundamental wavelength of F = 54, a free spectral range (FSR) of approximately 3.8 GHz and a
full width half maximum (FWHM) of approximately 71 MHz. The outer surface of the meniscus
is anti-reflection coated for both wavelengths and has a radius of curvature of 20 mm. The
meniscous is mounted on a piezoelectric actuator (see Fig.5.2). The power reflectivities for all
the surfaces and the radii of curvatures are summarized in Fig.5.12. The optical simulation are
performed in detail in A.1.

The SHG cavity length has been locked to the IR laser source by a standard PDH technique.
The incoming field at 1064 nm is phase modulated at 80 MHz using a commercial electro-optic
modulator (EOM). The reflected light is detected and analogically demodulated at 80 MHz. The
demodulated signal is acquired and processed by a commercial PXI system and the processed
signal is then fed back to the piezoelectric ceramic that moves the incoupling mirror of the SHG
cavity. The measured open-loop transfer function of the SHG cavity length control loop is plotted
in Fig.5.14. The unitary gain frequency is approximately equal to 600 Hz. The transfer function
of all the loop but the PXI controller is plotted in Fig.5.15.

For the second version of the control electronics the RF photodiode has been replaced with
a new version (detail in appendix) and the PXI system by the SAT board. Fig.5.16 shows a
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Figure 5.13: Schematic of measuring the transfer function of a cavity (left) and the open loop
transfer function of the same cavity with the servo (right). The cavity TF is the ratio between
the PSDs measured at node A over the one measured at node B, while injecting noise at the
node S. The open loop transfer function is minus the ratio between the PSDs measured at node
A over the one measured at node B, while injecting noise at the node S. The noise injected must
be the dominant signal source of the loop, otherwise the measure is meaningless.
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Figure 5.14: Measurement of the open-loop transfer function of the SHG cavity with the first
version of control electronics. The unitary gain frequency is approximately equal to 600 Hz.
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Figure 5.15: Measurement of the transfer function of all the loop but the PXI controller with
the first version of photodetector and demodulator.

comparison between the dark noises of the old RF photodetector plus the demodulation stage
compared with the dark noise of the new version RF photodetector with the embedded demod-
ulation: the noise of the new photodetector is at least one order of magnitude (up to more than
two order of magnitude) better than its older version.

5.4.1 Alignment and mode matching

The SHG cavity must be aligned so that the optical axis inside of the mirror and the crystal
matches. To properly align the SHG cavity I found this procedure particularly appropriated.
The procedure consists in few steps.

1. Prepare a beam with the beam waist needed to couple the SHG cavity entering from the
back side of the PPKTP crystal and mark two positions of the beam with two iris along
the path.

2. Insert between the two iris the PPKTP entering from its curved side with the crystal housed
inside its mounting and placed over a multi-axis micrometric stage, move the crystal so
that the beam direction is not changed by the presence of the crystal and, at the same
time, the reflected ray from the curved side of the crystal must overlap with the incoming
beam.

3. Place the meniscus mirror in place and move it on a plane perpendicular to the beam path
while scanning with the piezo the cavity length. Adjust the position of the meniscus to
have proper cavity modes in transmission and keep adjusting it until all the high order
mode are suppressed.
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Figure 5.16: Dark noise of the old RF photodiode and demodulation stage compared with the
dark noise of the new RF photodiode with embedded demodulation stage.

After these steps, the cavity is almost aligned; it can then be turned around and placed in the
correct position. The residual high order modes that are present while adjusting the incoupling
mirror (step 3), can now be further suppressed acting on the two steering mirror in front of the
cavity.

All these actions must be performed at a crystal temperature where the infrared to green
conversion is low. This is because the conversion from IR to green can be seen as a loss in the
IR field, therefore, the impedance matching of the cavity changes as function of the conversion
efficiency. For the case of negligible second harmonic conversion efficiency, the usual reflection
function can be defined as follow

F =
Erefl
Einc

=
−r1 + r2(r2

1 + t21)eıω/ωFSR

1− r1r2eıω/ωFSR
(5.4.1)

For negligible second harmonic conversion, the SHG cavity is strongly overcoupled, see
Fig.5.17. In this situation, if we suppose the input IR beam to be a perfect TEM00, the cavity
mode matching can be measured in the following way: the cavity length is varied by few FSRs
and the transmitted light is recorded, the mode matching is computed as the ratio between the
area of a TEM00 over the total area of a FSR. Fig.5.18 shows the best mode matching obtained:
≈ 98 %.

5.4.2 High efficiency SHG

To increase the efficiency of a nonlinear conversion, the nonlinear crystal is usually inserted inside
an optical resonator. As in [44], we define the conversion efficiency

ε =
P2

P1
(5.4.2)
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Figure 5.17: Plot of the F function for the SHG in the imaginary plane in blue. As reference, a
perfectly impedence matched cavity with no losses in orange.

Figure 5.18: SHG mode matching. A mode matching of ≈ 98 % has been achieved. Most of the
mismatch is due to TEM01 and TEM02.
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with P1 the fundamental input power and P2 the harmonic output power. Using this definition,
a simple calculation from [49] yelds

√
ε =

4T1

√
ENLP1[

2−
√

1− T1

(
2− σ −

√
εENLP1

)]2 (5.4.3)

where ENL is the single-pass nonlinear conversion efficiency (eq.(5.3.1)), T1 is the transmission
coefficient of the input coupler and σ describes all the linear losses in the cavity exclusive of T1 (σ
and T1 both refer to the fundamental field). As in the case of the single- and double-pass second
harmonic conversion, also for the in-cavity conversion, the quasi-phase matching condition must
be fulfilled to obtain the optimal conversion efficiency. The temperature of the PPKTP crystal
is thus an important parameter to be optimized and stabilized.

In the setup developed for this work, the temperature stabilization is performed using a stan-
dard PID loop implemented into the PXI system. The temperature loop uses a NTC thermistor
as temperature sensor of the crystal temperature and a Peltier cell as heater. Another thermis-
tor is used as out of loop monitor of the crystal temperature. Other two thermistors are also
acquired to monitor the optical bench and the room temperatures. The data acquired over a
weekend with the temperature control ON and the locked SHG are shown in Fig.5.19. In the
first two top strip charts which show the environmental temperatures (room and bench), the
day-night alternation is clearly visible. The third strip represents the in loop temperature: the
FWHM of the histogram is 1.1 mK. The bottom strip is the out of loop temperature monitor;
also this trace evidences the day-night alternation, but the fluctuation is suppressed by a factor
of 30, compared to the bench temperature.
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Figure 5.19: Temperature variation over time when temperature control i ON.

With the stabilized temperature, the green production has been measured for several input
power P1 and for several crystal temperatures, so to map the green production and therefore the
in cavity conversion efficiency. A scheme of the measurement is in Fig.5.20.
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Figure 5.20: In cavity measurement scheme.

Fig.5.24 shows the results of a typical measurements at fixed input power: they are fully
automated using the digital controls. The PPKTP crystal temperature is fixed and, after ready-
ing the steady state the input power and the produced green are measured. This procedure is
repeated at different crystal temperatures, between 298 K and 314 K.

Another set of measurements were taken: the crystal temperature is fixed and the IR input
power is manually changed between 30 mW to 0.5 W, and for each IR input power, the produced
green is recorded. The data collected for T = 304.6 K are presented in Fig.5.22. In this figure
also the numerical solution of eq.(5.4.3) is shown (red line). The parameter used to obtain this
solution are ENL = 0.028 W−1 and σ = 0.005. The value of ENL found is comparable to the
one found in section 5.3 with another kind of measurement. In the figure are clearly visible four
data point that differ quite a lot from the computed curve (marked as star). Those data show
that there exists a process that limits the maximum green produced power. This process will be
exploited in the next section.
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Figure 5.21: In cavity produced green at fixed input IR power for different temperature of the
crystal.

The same measurement presented in Fig.5.22 has been done for different temperatures be-
tween 300 K and 310 K and for each set of data, eq.(5.4.3) has been solved with different ENL
(σ is considered constant over this temperature range). Fig.5.23 shows the results of these com-
putation: ENL changes as function of the crystal temperature, as expected. This is due to the
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Figure 5.22: In cavity produced green at fixed crystal temperature (T = 304.6 K) for different
IR input power. The red line on the left panel is the numerical solution of eq.(5.4.3), while the
right panel red line is the one of the left panel multiplied by the input IR power. The parameter
used to compute the solution are: ENL = 0.028 W−1 and σ = 0.005.

quasi phase matching condition.
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Figure 5.23: ENL as function of the PPKTP crystal temperature.

Fig.5.24 summarizes the measurements collected and presented in Fig.5.21 and in Fig.5.22.
As clear from the right panel of this figure, there is a set of parameter (P1 and T ) for which the
conversion efficiency is extremely high. The maximum conversion efficiency found is at a crystal
temperature T = 304.6 K, with an input power P1 = 0.165 W that produces P2 = 0.1568 W of
green power with a conversion efficiency of ε = 0.95. The result obtained is not corrected for the
green reflectivity of the first dichroic beam splitter that is used to extract the green beam from
the IR light path; the amount of IR power at the sideband frequencies has also been negleced.
Both effects would point to even higher efficiencies. As far as I know, this is the highest Second
Harmonic Generation efficiency present in the literature.
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Figure 5.24: In cavity green production and efficiency results.

5.4.3 Competitive non linear processes

The star points of Fig.5.22 shows that it exist a process that limits the maximum amount of
green that can be produced by our SHG cavity. This process is the parametric down conversion
of light. The parametric up and down conversion processes are well known and studied and they
are the basis of the operations of the OPOs and OPAs. A crucial parameter for these processes
is the threshold pump power. This threshold parameter depends on the crystal optical and
geometrical parameter and also on the cavity optical parameters. For the case of a degenerate
doubly resonant3 OPO with optimized confocal near-field Gaussian beams and for optimized
phase matching (∆k = 0), the pump threshold Pp,th is [50]:

Pp,th =
ε0n

2
scλ

3
p

2π2d2
effLcr

ln2(R) (5.4.4)

where ns is the refractive index for the signal (IR beam in our case), λp is the wavelength of the
pump (532 nm), deff is the effective non linear coefficient, Lcr is the non linear crystal length
and R =

√
R1R2 is the terms that takes into account the reflectivities of the two cavity mirrors.

When an OPO cavity is operated below threshold, the signal suffers an amplification or a
deamplification depending on the relative phase between the pump and the signal field; when
is operated above threshold, the pump field is converted to the signal field with an high gain
coefficient.

Also for a SHG cavity the threshold parameter can be defined, and in this case the pump
field is the produced green itself. Therefore, if the amount of produced green exceed the pump
threshold of the system, the green is down converted to IR before exiting the cavity.

This effect can be seen when operating the SHG in a steady state (i.e. nonlinear crystal
temperature stabilized and cavity length locked) or while scanning the cavity length. An example

3Degenerate in the sense that the signal and the idler are at the same frequency, and doubly resonant means
that both the signal and the idler are resonant at the same time, that is straightforward in the case of degenerate
OPO.
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of this last measurement is in Fig.5.25. Here each couple of green and red peaks represents a
cavity length scan of the TEM00 for different IR input power. When below threshold the produced
green amplitude increases as function of the IR power and both the produced green peak and the
transmitted IR light (red curve) peak are Airy functions, as expected. When above threshold,
the top of the green peak exhibit a jagged profile. This profile is due to the fact that, as steated
in [51], the threshold also depends on the cavity detuning.
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Figure 5.25: Produced green and transmitted IR TEM00 scans for different IR input power.
When the produced green power exceeds the threshold of the system, the Airy function gets
clipped and exhibit a jagged profile. The clipped value is the system threshold. The jagged
profile is due to the fact that the threshold also depends on the cavity detuning. The IR input
power ranges from 25 mW to 120 mW.

I measured the SHG threshold as function of the nonlinear crystal temperature for two differ-
ent SHG cavities. The two SHG cavities differ only for the IR power reflectivity of the incoupling
mirror, that is RIR = 0.96 in the first case and RIR = 0.90 in the second case. The threshold
measurement reported in Fig.5.26 refers to the cavity with RIR = 0.96 and was obtained with
the cavity scanning technique. As it is clear from the plot, the maximum green power achievable
with this cavity is 70 mW at a nonlinear crystal temperature of 310 K. On the other hand, the
non linear gain ENL is maximum at about 305 K as shown in Fig.5.23. Thus, this indicates that
the maximum produced green power is not at the maximum nonlinear gain because there the
threshold is relatively low. The maxium produced green power is for this SHG cavity is thus set
as a compromise between the nonlinear gain and the threshold. In Fig.5.26, three different phase
matching curves are also shown. It is clear that for the highest input power case (black curve),
the pump threshold limits the green production in most of the crystal temperature range and in
particular around 305 K.

Fig.5.27 shows the results for the SHG with low IR incoupling mirror reflectivity (RIR = 0.90).
As clear from eq(5.4.4), the threshold increases if the mirror reflectivity gets lower. In fact, for
305 K for example, the threshold changes from ≈ 20 mW for RIR = 0.96 to ≈ 300 mW for
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Figure 5.26: Phase matching curves and green pump threshold measured for a SHG with RIR =
0.96 for the incoupling mirror. The input IR power for the three phase matching curve is
respectively 45 mW for the black, 25 mW for the blue and 5 mW for the red curve.
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RIR = 0.90. In that figure the red star points represent the threshold measured with the cavity
length scanning technique, while the blue dots are obtained with the measurement presented in
Fig.5.22.
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Figure 5.27: Green pump threshold measured for a SHG with RIR = 0.90 for the incoupling
mirror. Red star points are collected using the cavithy length scan technique, while, blue dots
are obtained with the measurement presented in Fig.5.22.

From these measurements, it is evident that, if one wants to maximize the produced green
power at low IR input power, the choice of the incoupling mirror reflectivity needs to be a tradeoff
between conversion efficiency (see eq(5.4.3)) and threshold (see eq(5.4.4)). In our case, the choice
of RIR = 0.90 is good to produce 200 mW green power with ≈ 220 mW IR input power.

5.4.4 Birefringence and absorption losses

In this section I present a birefringence measurement on the SHG cavity and I propose a method-
ology to measure intracavity losses based on birefringence.

Birefringence measurements are crucial measurements in the case of the OPO cavity since
we plan to lock the cavity length with p polarized light, therefore the frequency offset between
the p pol and s pol resonance condition must be known exactly to proper set up the LO of the
PLL between the main laser and the AUX2 laser. Since the nonlinear material is the same for
both the OPO and the SHG cavity, we expect that, apart from a frequency offset, the slope of
the effect should be the same. This phenomenon arises from the fact that for some material, the
refractive index for ordinary and extraordinary rays is different.

Fig.5.28 shows the measurement of the frequency offset between p pol cavity resonance and
s pol cavity resonance as function of the PPKTP crystal temperature. This measurement shows
that the frequency offset between the two polarization resonances depends linearly on the tem-
perature. The red line represents the linear fit of the data, the slope estimates the birefringence
coefficient ((502± 2) MHz/K), while the intercept depends on the initial measurement setup and
we are not interested in it.

The measurement has been performed at low IR input power to reduce self heating effects
of the crystal and while scanning the cavity length feeding the piezoelectric actuator with a
triangular signal. The calibration of the temporal axis is ensured by the sidebands imposed by
the EOM.
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Figure 5.28: Measurement of the frequency offset between p pol cavity resonance and s pol cavity
resonance. The results of the linear fit (red line) is a slope of (502± 2) MHz/K.

The proposed measurement is based on two assumption: the temperature gradient inside the
crystal is defined uniquely by the spatial profile of the laser beam and the temperature we set
with the control loops does not affect the spatial shape of this thermal gradient but just add an
offset to the temperature profile inside the crystal. This two assumption have been tested and
confirmed by finite element simulations of the system.

We lock the cavity as always on the s pol beam, but we inject a small portion of p pol light.
Once the cavity is locked at low IR input power, a temperature for which the two polarization
are both perfectly on resonance must be found. At this point, due to material absorption, an
increase of IR input power, leads to a local heating of the crystal along the optical path. Due
to this temperature change, the two polarization won’t be both on resonance. In particular,
since the length lock is performed on s pol, the p polarized light won’t resonate perfectly. The
convolution product between the Airy function of the cavity and the p pol laser line, allow us to
know the frequency difference between the two polarization caused by the temperature change.
Using Fig.5.28 the frequency offset can be translated into a local temperature change. From
preliminary computation, the expected temperature sensitivity is ≈ 1.5 mK.

For simple systems, the heat transfer equation Q̇ = kA∇T allow us to compute the total
absorption coefficient α since Q̇ = Pinα. In our case, we will use finite element simulation to
solve the heat transfer equation in our system.
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Chapter 6

Faraday Isolator

The injection losses are the main limiting factor which will limit the benefits of injecting a
vacuum squeezed state into a GW interferometer. The experience of the LIGO and GEO groups
indicates that one of the main contributors to the injection optical losses is the in vacuum Faraday
isolator (FI) where the squeezed light field is injected into the interferometer at the detection
bench. The FI installed in GEOO600 was characterized in air and showed transmission losses
equal to ≈ 2% [42]; however, once in vacuum, the inferred total losses due to the FI is ≈ 7% (I
remind that this FI is crossed twice by the squeezed vacuum field). In my opinion, the increase
of transmission losses is mainly due to a variation in the temperature of the paramagnetic crystal
used in the Faraday isolator, due to the absence of convective heat transfer. This variation leads
to a difference in the angular rotation of the polarization plane after the paramagnetic crystal,
with respect to the designed angular rotation which is tuned in air (ideally 45◦).

polarizer

magnetic 

system

polarizer

crystal

Figure 6.1: A Faraday isolator is constituted by two crossed polarizer and a paramagnetic crystal
imbued into a magnetic field in the direction of the light propagation.

In this chapter I present the study and characterization of a low loss, high isolation, tem-
perature tunable, vacuum compatible Faraday isolator. The measurements include the optical
characterization of the main components of the FI (polarizers and TGG paramagnetic crystal),
the study of the variation of the paramagnetic properties of the TGG crystal with temperature.
This study is performed to characterize an AdV high power FI. I furthermore designed a new
prototype of FI, improving in particular the thermal isolation of the TGG crystal with respect to
the other components of the system (in particular from the magnets of the FI). This new design

79
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is suitable not only for the high power utilization in AdV, but it fits also the requirements for
the squeezed vacuum injection.

The Faraday Isolator (FI) is a magneto-optical component widely used in optical setups to
protect the laser system from the light which is back-reflected and back-scattered by an optical
system. A FI is traditionally composed by two polarizers and a Faraday Rotator (FR), which is
composed by a paramagnetic crystal immersed in a magnetic field (Fig.6.1).

The basic principle of a FR is the Faraday effect. Let us consider a linearly polarized beam
that crosses a paramagnetic transparent medium placed in a homogeneous magnetic field parallel
to the beam propagation direction; the beam polarization axis is rotated by an angle θ with
respect to the input polarization:

θFR = VBnd (6.0.1)

where d is the length of the paramagnetic crystal where the light and the magnetic field interact,
n is the refractive index of the paramagnetic crystal, B is the magnetic field in the direction of
the light propagation and V is the Verdet constant of the paramagnetic material (see Fig.6.2).
The Verdet constant is defined empirically and varies with the crystal temperature and with
the light’s wavelength. For the terbium gallium garnet (TGG) the Verdet constant ranges from
V = −134 rad/Tm at room temperature and for a wavelength of 632 nm to V = −40 rad/Tm at
room temperature and for 1064 nm light.

Figure 6.2: Scheme of the Faraday effect. E is the oscillating electric field, d is the geometrical
length of the paramagnetic crystal, B is the magnetic field and θ is the angle rotation as in
eq(6.0.1).

The performance of a FI are determined by the isolation ratio and the throughput or trans-
mission losses (Σtr). The Σtr are defined by eq(6.0.2) where the first term represents the angular
mismatch between the FR and the input polarizer (dθFR/ dT is the derivate of the angular rota-
tion due to the Faraday effect with respect to the temperature, ∆T is the temperature variation
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of the FR and θFR−θp is the static or initial angular mismatch between the FR angular rotation
and the output polarizer angle with respect to the input polarization angle) and the second and
the third ones are the sum of all the losses due to non-perfect AR coating and material absorption
(RAR is the power reflectivity of a generic AR coated surface, while α is the material absorption
coefficient per unit length).

Σtr(T ) =

(
1− cos2

(
∆T

dθFR
dT

+ θFR − θp
))

+
∑
i

RAR,i +
∑
j

eαj`j (6.0.2)

The isolation ratio is defined by eq(6.0.3) where the first term takes into account the angular
mismatch between the FR and the polarizer, the second the polarizer quality and the third
represents the thermal depolarization where γ = γ(δT (r)), δT (r) is the temperature profile
inside the TGG crystal, r is the radial distance from the optical axis of the TGG (our system
has been considered having cylindrical symmetry) and Pin is the input power.

isolation(T, Pin) = −10 · log10

(
cos2

(
∆T

dθFR
dT

+ θFR + θp

)
+ pq + γP 2

in

)
(6.0.3)

Fig.6.3 shows the analytical computation of (6.0.2) and (6.0.3). For this computation, the losses
due to AR coatings and material absorption are not considered; the thermal depolarization is
not considered as well. The computation is performed at fixed temperature.

In both isolation ratio and Σtr equations, the temperature dependence of the angular mis-
match between polarizer and FR is mainly due to the thermal dependence of the Verdet constant
of the crystal inside the FR. In particular from eq(6.0.1) we have

dθFR
dT

=
∂B

∂T
Vnd+

∂V
∂T

Bnd+
∂n

∂T
VBd+ αthVBnd (6.0.4)

= θFR

(
∂B

∂T

1

B
+
∂V
∂T

1

V
+
∂n

∂T

1

n
+ αth

)
(6.0.5)

in the last term of eq(6.0.5), αth is the linear thermal expansion coefficient of the paramagnetic
crystal.

A common material used in FR as paramagnetic crystal is the Terbium Gallium Garnet
(TGG, Tb3Ga5O12). For TGG at room temperature, the thermal expansion coefficient is of the

order of αth ≈ 10−6 K
−1

[52],
∂n

∂T
= 2 · 10−5 K

−1
for nIR radiation (nTGG@1064 nm = 1.95)

and
1

V
∂V
∂T

= 3.5 · 10−3 K
−1

[53]. For commonly used magnets (SmCo magnets family)
∂B

∂T
≈

3∇ · 5 · 10−4 T/K. Thus, the main two contributors to eq(6.0.5) are the temperature dependence
of the magnetic field and of the Verdet constant. Therefore we can write

1

θFR

dθFR
dT

=
1

B

∂B

∂T
+

1

V
∂V
∂T

(6.0.6)

In the followings a thermal study of the system will be performed, demonstrating that the
temperature gradients across the magnets can be minimized. Before going into details of the
thermal study of the FR system, another crucial parameter will be studied.

6.1 Polarizers’ polarization quality

A crucial component that defines both isolation ratio and Σtr are the polarizers. In this section
three different polarizers are tested and characterized. The three sample are: the Virgo+ INJ FI



82 CHAPTER 6. FARADAY ISOLATOR

Throughtput losses [ppm]

Faraday rotator angle [deg]
44.5 45 45.5

po
la

riz
er

 a
ng

le
 [d

eg
]

44.5

44.6

44.7

44.8

44.9

45

45.1

45.2

45.3

45.4

45.5

0

50

100

150

200

250

300

Isolation ratio [dB]

Faraday rotator angle [deg]
44.5 45 45.5

po
la

riz
er

 a
ng

le
 [d

eg
]

44.5

44.6

44.7

44.8

44.9

45

45.1

45.2

45.3

45.4

45.5

34

35

36

37

38

39

Figure 6.3: Analytical computation of (6.0.2) and (6.0.3). In the throughput losses the terms due
to AR coatings and material absorption are neglected, while in the isolation ratio pq = 40 dB and
the thermal depolarization is ignored. All the calculation are performed at fixed temperature.
The optimal performance is achievable only for rotation and polarization angle equal to 45◦,
while if the rotation angle is different from 45◦ the polarization angle can be tuned to recover
the isolation despite the Σtr or vice-versa.

polarizer that is actually used in the AdV DET FI, the INJ input power control (IPC) polarizer
and a fused silica, commercial polarizer that at present is not used in any of the AdV subsystem.
The quantity that is commonly used to define the polarization quality is the extinction ratio
(ER).

Let’s define the power reflectivity of an interface as Rs for an s polarized beam and as Rp
for a p polarized beam. Consequently, assuming lossless medium, the power transmittivity are
Ts = 1 − Rs for an s polarized beam and Tp = 1 − Rp for a p polarized beam. The power
reflectivity of a surface is defined by the Fresnel law (eq. (6.1.1) and (6.1.2)).
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(6.1.2)

Fig. 6.4 (left) explains the variable used in eq. (6.1.1) and eq. (6.1.2): θi is the angle of
incidence, θr is the reflection angle, θt is the transmission angle, n1 and n2 are the refractive
indices of the materials. Fig. 6.4 (right) is an example of eq. (6.1.1) and eq. (6.1.2) with n1 = 1
and n2 = 2.
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Figure 6.4: (left) Variables used in the Fresnel equations: θi is the angle of incidence, θr is the
reflection angle, θt is the transmission angle, n1 and n2 are the refractive indices of the materials.
(right) example of eq. (6.1.1) and eq. (6.1.2) with n1 = 1 and n2 = 2 as function of θi.

The Brewster angle θB is the angle at which Rp(θB) = 0 and it is defined as

tan θB =
n2

n1
(6.1.3)

Fig. 6.5 defines the main variables for the following. In our case the first medium is air,
thus n1 = 1.0002740 ≈ 1 and n2 = n is the refractive index of the substrate. c1 identifies the
first interface (or coating) with respect to the impinging beam, while c2 the second interface
(or coating) with respect to the impinging beam. We define the power reflectivities of the first
interface as Rp,1 and Rs,1 and the one of the second interface as Rp,2 and Rs,2. Transmission
losses for p polarized light are

ΣT,p = 1− Tp,1(1− α`) Tp,2 (6.1.4)



84 CHAPTER 6. FARADAY ISOLATOR

In

T

R1

R2

d

n1

c1

2

Out

Figure 6.5: Sketch of the polarizer. θi and θt are the incidence and transmission angle respec-
tively. n1 is the refractive index of the material surrounding the polarizer, that in our case is
air, thus n1 ≈ 1; n2 is the refractive index of the polarizer material (n2 = 1.4496 for fused silica
and n2 = 1.5066 for BK7). ` is the optical path length inside the polarizer and d is the thickness
of the polarizer. R1 identifies the first reflected ray, while R2 identifies the second reflected ray;
c1 and c2 identify respectively the first and the second interface with respect to the impinging
beam.

where α is the material absorption per centimeter (e.g. α ≈ 100 ppm/cm for fused silica and
α ≈ 1000 ppm/cm for BK7) and ` is the optical path inside the substrate. In the case of an
uncoated substrate, transmission losses for p polarized light are minimal for θi = θB . In this
case ` = d/n

√
1 + n2, where d is the thickness of the substrate. Reflection losses for s polarized

light are defined as the power transmittivity on s polarization of the first interface:

ΣR,s = Ts,1 (6.1.5)

Eq. (6.1.5) is correct if there is no reflection at the second interface of the substrate (i.e. the R2

beam of Fig. 6.5 can be neglected or properly stopped).
We define the extinction ratio in transmission (for p polarization) as

TER,p = −10 log10

(
Ts
Tp

)
(6.1.6)

where Ts = Ts,1(1 − α`) Ts,2 is the total transmission of the polarizer on s polarized light and
Tp = Tp,1(1−α`) Tp,2 is the total transmission of the polarizer on p polarized light. In reflection,
the extinction ratio (for s polarization) is

RER,s = −10 log10

(
Rp
Rs

)
(6.1.7)

Expected target for an ideal polarizer are

Tp,1 → 1

Rs,1 → 1

Tp,2 → 1
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Our requirements are transmission (for p pol) and reflection (for s pol) losses smaller than
0.5%, transmission extinction ratio for p polarized light greater than 40 dB and reflection ex-
tinction ratio for s polarized light greater than 30 dB.

6.1.1 Experimental setup

Power meter

�/2

Sample area

Figure 6.6: Experimental setup realized to characterize the transmission losses and the extinction
ratio of various polarizers. To perform the study as function of the incidence angle θi, the sample
is hosted on a rotating platform.

Fig. 6.6 shows the experimental setup realized to characterize the transmission losses and
the extinction ratio of polarizers. The beam of the laser source (Lightwave M126N-1064-700) is
folded twice before arriving to the “Sample area” where polarizer under study is placed. Since
the mirrors degrade the polarization quality of the beam, before the sample area the beam
polarization is cleaned using two Brewster polarizers. The measured polarization quality of the
beam after the halfwave plate, just before the sample area, is 44.6 dB. The halfwave plate is
placed on a high precision rotation mount (Thorlabs - PRM1/M). By rotating the waveplate
before the sample area one can select different input polarization to the sample.

By placing the power meter as in Fig6.6 one can measure Rp,1(θi), Rs,1(θi), Rp,2(θi), Rp,2(θi),
while, by placing the power meter on the transmitted beam of the sample Tp(θi) and Ts(θi) can
be measured.

In the following a relative error of 5% is assumed for all the reflectivities and transmittivities.

6.1.2 Virgo+ INJ FI polarizer

In this section I present the characterization of the polarizer that was used in the Virgo+ INJ
Faraday isolator. This polarizer is currently used in on the AdV DET Faraday isolator.

This polarizer is provided by the Electro-Optics Technology (EOT) company. It’s formed
by a BK7 rectangular substrated coated only on the surface c1 (see Fig.6.5). The coating is a
so called Brewster coating, that is high reflective for s polarized light and anti reflective for p
polarized light, both at θi = θB . As said, c2 is uncoated.

Fig.6.8 shows the c1 surface reflectivity for p polarized light (left panel) and the c2 surface
reflectivities for s and p polarized light as function of the incident angle. Fitting R2,p(θi) for this
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Figure 6.7: Images of the experimental setup realized to test the performances of several type of
Brewster polarizers. (left) Photo of the sample area and of the two polarizers used to clean the
polarization before the sample area. (right) Top view of the sample are with a sample in place.
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Figure 6.8: Coating characterization of the Virgo+ INJ FI polarizer. (left) c1 surface reflectivity
for p polarized light as function of the incident angle. (right) c2 surface reflectivity for s and p
polarized light as function of the incident angle. Fitting R2,p(θi) using eq(6.1.2), the material
refractive index estimated value is n = 1.505± 0.022.
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sample with eq. (6.1.2) results in n = 1.505± 0.022 which is compatible with the tabulated data
(n = 1.5066)1 for BK7 glass.
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Figure 6.9: Total transmittivity for s polarized light as function of the incident angle. The total
transmittivity takes into account the transmittivity of the first and the second surface and the
material absorption.

Fig.6.9 shows the total transmittivity for s polarized light as function of the incident angle.
Using the reflectivity of the c1 surface for p polarized light (R1,p(θi)), the reflectivities for s and
p polarized light at the c2 surface (R2,s(θi) and R2,p(θi)) and the polarizer total transmittivity
(Ts(θi)), the extinction ratio and the losses in transmission and in reflection are computed using
equations from (6.1.4) to (6.1.7).
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Figure 6.10: Performance of the Virgo+ INJ FI polarizer. The red horizontal line in both plots
represents the 0.5% losses that are the target losses for this kind of optics. The black dots are
the extinction ratio as function of the incident angle, while the red dots are the total losses
as function of the incident angle. (left) Reflection performances for s polarized light. (right)
Transmission performances for p polarized light.

Fig.6.10 shows the reflection and transmission performances of the Virgo+ INJ FI polarizer.

1http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT

http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT
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This sample shows 39− 40 dB extinction ratio in transmission for p polarized light for a wide
range of incident angles and the transmission losses for p polarized light are within the require-
ment in a small range of incident angles. The reflection losses are well within the requirements
for all the incident angle, the reflection extinction ratio for s polarized light is not fulfilling the
requirements at any incident angle.

When the AdV DET Faraday isolator has been installed on SDB1, the two polarizers have
been characterized and the measured transmission losses are ≈ 2.5%. Thus I infer from Fig.6.10
(right) that the polarizer alignment is not optimized to minimize the transmission losses but to
maximize the isolation ratio.

6.1.3 EOT polarizer

Figure 6.11: Picture of the mounted EOT polarizer (fused silica substrate).

The polarizer whose characterization is reported in this section is not presently used in any
FI within the AdV collaboration. The polarizer substrate is a fused silica rectangular substrate
and the polarizer surfaces have the same coating type of the Virgo+ INJ FI polarizer (i.e. c1
has a Brewster coating and c2 is uncoated). Note that since BK7 and fused silica have different
refractive index, fused silica’s θB is different from BK7’s θB . The main advantage of fused silica
is that this material shows absorption losses per unit length one order of magnitude smaller than
the ones of BK7. Also this polarizer is provided by Electro-Optics Technology (EOT). Fig.6.11
shows a picture of the EOT polarizer.

Fig.6.12 shows the c1 surface reflectivity for p polarized light (left panel) and the c2 surface
reflectivities for s and p polarized light as function of the incident angle. Fitting R2,p(θi) for this
sample with eq. (6.1.2) results in n = 1.459± 0.006. The result of the fit is compatible in two σ
with the tabulated refractive index (n = 1.4496)2 for fused silica.

Fig.6.13 shows the total transmittivity for s polarized light as function of the incident angle.
Using R1,p(θi) from Fig.6.12 (left), R2,s(θi) and R2,p(θi) from Fig.6.12 (right) and Ts(θi) shown
in Fig.6.13, the extinction ratio and the losses in transmission and in reflection are computed
using equations from (6.1.4) to (6.1.7).

Fig.6.14 shows the performances of the EOT polarizer. This type of polarizer shows very
low losses in both reflection and transmission; in particular, in reflection the requirements (that
are ΣR,s < 0.5% and RER,s > 30 dB) are fulfilled for θi ∈ [53◦, 57◦]. In transmission, the losses

2http://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson

http://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson
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Figure 6.12: Coating characterization of the EOT polarizer. (left) c1 surface reflectivity for
p polarized light as function of the incident angle. (right) c2 surface reflectivity for s and p
polarized light as function of the incident angle.
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Figure 6.13: Total transmittivity for s polarized light as function of the incident angle (Ts(θi))
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Figure 6.14: Performance of the EOT polarizer. In both plots the red horizontal line represents
0.5% of transmission (right) or reflection (left) losses. The black dots are the transmission and
reflection extinction ratio, while the red dots are the transmission and reflection losses as function
of the incident angle.

are within the requirement for a wide set of incident angles, but the extinction ratio is few dB
below the requested value of 40 dB. As shown in this figure, for an incident angle of θi ≈ 55◦,
the transmission and reflection losses are smaller than 500ppm, the reflection extinction ratio is
much higher than the requested 30 dB while the extinction ratio in transmission is near 38 dB.

6.1.4 INJ IPC polarizer

The polarizer presented in this section is used in the AdV INJ input power control (IPC). This
system allows the control of the injected power into the interferometer and it’s formed by three
of this polarizers and a half-wave plate.

The polarizer is constituted by a rectangular fused silica substrate (20 mm×55 mm×10 mm)
provided by SOLID company. The substrate has been coated from Laboratoire des Matriaux
Avancs (LMA) in Lyon. This laboratory is part of the AdV collaboration. The coatings are a
Brewster coating on the surface c1, while the surface c2 has been coated with an anti reflective
coating for both the polarizations.

Fig.6.15 shows the coating’s characterization of the INJ IPC polarizer. The main difference of
this polarizer compared to the previous two is that the c2 surface is coated with an antireflective
coating instead of being uncoated. The right panel of the figure shows that the c2 reflectivity for
p polarized light is remarkably higher compared to the same quantity of the other two polarizers
considered. Moreover, comparing the left and the right panel of Fig.6.15, the two coatings seems
to be optimized for two different incident angle: the reflectivity for p polarized light of the c1
surface has a minimum at θi = 58◦, while the reflectivities of c2 surface have the minimum at
θi = 53◦ for s polarized light and at θi = 48◦ for p polarized light.

As did for the previous two polarizers, using the quantities measured and showed in Fig.6.15
and Fig.6.16 and using the equations from (6.1.4) to (6.1.7), the extinction ratio and the losses
in reflection and in transmission are computed.

Fig.6.17 shows the performances of the INJ IPC polarizer. As clear from the right panel of
the figure, this polarizer shows very high transmission losses. This is mainly due to the high
reflectivity for p polarized light of the antireflective coating of c2 surface. In reflection, the losses
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Figure 6.15: Characterization of the INJ IPC polarizer’s coatings. (left) c1 reflectivities for s and
p polarized light. (right) c2 reflectivity for s and p polarized light.
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Figure 6.16: Total transmission for s polarized light measured on the INJ IPC polarizer.
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Figure 6.17: Reflection and transmission performances of the INJ IPC polarizer. The red hori-
zontal line marks the required 0.5% of losses.
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requirement is fulfilled, but the extinction ratio for s polarized light is 6 dB lower compared to the
requirements. Also in transmission the extinction ratio is at best 2 dB below the requirements,
and it drops to 34 dB for the incidence angle that minimizes the transmission losses (θi ≈ 58◦).

6.1.5 Polarizers’ summary

The polarizer with the best performances among the measured polarizers is the fused silica EOT
polarizer 6.1.3. The INJ IPC polarizer exibits high losses, mainly due to the AR coating on c2.

For the AdV squeezed light source FI, new polarizers will be realized: fused silica substates
will be coated with the EOT polarizer configuration:

• c1: Brewster coating (HR@θB for s pol, AR@θB for p pol)

• c2: uncoated

To obtain high performance the request on the Brewster coating are:

• Ts@(55.4± 2)deg < 0.01%

• Rp@(55.4± 2)deg < 0.1%

The incidence angle is the less critical parameter since, for the uncoated surface, Rp < 0.1% for
every incident angles θi = θB ± 3◦. With these numbers the polarizer should have transmission
losses smaller than 1000ppm, reflection losses smaller than 100ppm, transmission extinction ratio
higher than 40dB and reflection extinction ratio higher than 30dB.

6.2 Thermal design

In this section, the thermal study of a new vacuum compatible FR is performed. This FR I
designed is shown in Fig.6.20 (left). The thermal isolation of the magnetic part of the system from
the TGG crystal is crucial to reduce the polarization angle variation due to thermal fluctuation,
as explained in eq(6.0.6).

The thermal characteristics of the TGG crystal have been numerically simulated with a
commercial finite element modelling software. The crystal is a cylinder 12 mm in diameter and
18 mm in length. In the simulation the TGG crystal radiates from the two flat surfaces to
the room at a temperature of 293 K; heat transfer via convection is neglected since the crystal
is supposed to be in vacuum. The curved surface of the crystal is thermalized to a constant
temperature Tb which is a variable of the simulations and ranges from Tb = 280 K to Tb = 330 K.
The input beam has a waist of 600 µm placed at the center of the TGG crystal. The input power
is also a variable and ranges from Pin = 10 W to Pin = 200 W.

To determine the absorption coefficient to be used in the simulations, I measured it in two
different samples, resulting in α = 1800ppm/cm.

Fig.6.18 shows a typical result of the simulations performed. In this case Tb = 300 K and
Pin = 100 W. The left panel of the figure shows a color map of the temperature inside the
crystal. The map has been calculated for a generic plane that contains the optical axis. On the
right panel, the temperature profile and the temperature gradient are shown. Both these two
quantities are computed at the middle of the crystal.

The performed simulations show that the thermal gradient has a weak dependance on Tb
and it is mainly defined by Pin for any input power value in the analyzed range. As expected,
the temperature profile mimic the gaussian beam spatial energy distribution and Tb only set a
temperature offset between different temperature profiles (at fixed input power).
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Figure 6.18: Thermal simulation of the TGG crystal. For this particular case Tb = 300 K and
Pin = 100 W. (left) Temperature color map of a plane that contains the optical axis. (right)
Temperature profile and thermal gradient computed at the center of the crystal.
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The thermal study of the other components of the FR has been realized analytically.
There is an electrical analogy with conduction heat transfer that can be exploited in problem

solving. The analog of Q̇ is current, and the analog of the temperature difference, T1 − T2 , is
voltage difference. From this perspective a slab is a pure resistance to heat transfer and we can
define

Q̇ =
T1 − T2

R
(6.2.1)

where R = L/kA is the thermal resistance of the slab, while L is its width, A its area and k is
the thermal conductivity of the slab’s material. Fig.6.19 shows two example of composite slabs.

Figure 6.19: Series (left) and parallel (right) of thermal resistors.

For the FR of Fig.6.20(left) the computation of the thermal resistance between the TGG and
the environment is not trivial as can be appreciate in Fig.6.20. In the left panel we have the
crystal in blue, the copper crystal-holder in orange, the magnetic system in black, the peltier
cell in gray and two spacers in yellow. Particular attention has been devoted to these two last
components since, as shown in Fig.6.20 (right), to minimize the heat flux across the magnetic
system, the parallel resistance of the two spacers RSp must be much higher than the resistance of
the heat sink (Rpillar) between the peltier and the thermal bath (that, in vacuum, is the optical
bench).

All the materials in use inside the magnetic field must exibit a magnetic permeability µ as
close as possible to the vacuum one µ0. In Tab.6.1 thermal and magnetic properties of the chosen
material are reported.

The thermal connection between the peltier and the optical bench is performed by a 2 mm
thick copper plate. The thermal resistance of this component is Rpillar = 2.56 K/W. The
thermal resistance of the internal spacer RintSp is the parallel between the resistance of the
spacer itself and of the screw used to attach it to the copper holder. To maximize this resistance,
titanium screws are used and the spacer is realized in Peek. Overall RintSp ≈ 55 K/W. Also for
the external spacer the total resistance RextSp is the parallel between screws and spacer itself.
In this case RextSp ≈ 20 K/W. The parallel between these two resistances is RSp ≈ 15 K/W
that is a factor of 6 larger compared to Rpillar. The calculations are performed considering a



6.3. IN VACUUM FARADAY ISOLATOR 95

Peltier element

TGG

External spacer (Peek)

Internal spacer (Peek)
Holder (OFHC Cu) 

Al tube

Cupper Plate

Magnet

peltier Rimb

RextSp RintSp

RcryIn

RFR

Rpillar

crystal

RpelIn

Figure 6.20: (left) Image of the vertical section of the FR. (right) FR thermal model.

Material Thermal conductivity [W/Km] µ/µ0 − 1
Brass 125 9 · 10−5 ± 3 · 10−5

Titanium 6.7 7.5 · 10−5 ± 2.5 · 10−5

OFHC copper 391 2 · 10−5 ± 2 · 10−5

Al 7075 130 2.2 · 10−5

Macor 1.46
Teflon 0.25
Peek 0.25

Indium 86 10.2 · 10−6

TGG 7.4 0.88 · 10−2

Table 6.1: Summary of thermal and magnetic properties of materials used in the FR.

perfect contact between interacting surfaces. This semplification holds true for Rpillar but not
in the case of RSp, therefore RSp ≈ 15 K/W is just a lower limit and the ratio between RSp and
Rpillar can be much higher. The other resistances that are present in Fig.6.20 (right) are: the
resistance RcryIn = 15.4 mK/W of the indium sheet between the crystal and the copper support
placed to ensure a good thermal conduction between them, the resistance Rimb = 1.7 K/W of
the OFHC copper holder and the resistance RpelIn = 3.22 mK/W of the indium sheet between
the copper support and the peltier element again placed to ensure a good thermal conduction
between them. The thermal resistance of the peltier is supposed to be zero.

Fig.6.21 shows a detail of the TGG crystal holder with the internal and external spacers.

6.3 In vacuum Faraday Isolator

In this section I present the results obtained on the developed in vacuum Faraday Isolator
prototype.

The prototype is composed by a commercial magnet (provided by EOT), a wedged TGG
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Figure 6.21: Detail of the TGG crystal holder with the internal and external spacers.
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crystal with anti reflective coating on both sides, and two fused silica EOT polarizers (see 6.1.3).
I measured the residual reflectivity of the TGG’s AR coating, finding RTGG = 0.8% on each
surface. This value is not within the requirements ( RTGG < 0.25%).

faraday
rotator

polarizer

PI

waveplate /2

polarizer

Laser

faraday
rotator

polarizer

PI

waveplate /2

polarizer

Laser

step I step II

45o + 45o -

Figure 6.22: Optical set-up for the tuning of the FI. The tuning is performed in two steps. The
first step involves optimizing the rotation angle for the FR by tuning the TGG crystal position
in the magnetic field. The optimal TGG crystal position is achieved when the signal in reflection
is minimum, regardless of the orientation of the input polarizer. For this particular optical
configuration, in which the isolation is performed in transmission, the second step involves finely
tuning the angle of the output polarizer to be precisely at 45◦ with respect to the input polarizer.
In black, the angles of the polarizer axes are detailed, while in red, the beam polarization
orientation after the Faraday rotator is shown.

The TGG and the polarizers have been aligned on air to maximize the isolation of the FI.
The first step (left panel of Fig.6.22) involves the optimization of the TGG longitudinal axial
position within the magnet of the FR. To perform this optimization, the transmitted beam of
the FR is reflected back through the FR again, and the transmission through the input polarizer
is collected at the photodetector PI . Regardless the orientation of the input polarizer, the
signal at PI is minimum when the light polarization experience a 90◦ rotation after the two
passages through the FR, therefore, the longitudinal axial position of the TGG crystal has been
optimized minimizing the signal at PI . Furthermore, the input polarizer has been rotated to have
the maximum transmission through it. The second step (right panel of Fig.6.22) is performed
to obtain the angular orientation of the output polarizer with respect to the input one. For this
particular measurements, output polarizer has been aligned so to have the minimum transmission
(i.e. to minimize the signal of PI photodetector as in the right panel of Fig.6.22). All these action
have been performed with relatively low input power (Pin = 10W ) and resulted into an isolation
ratio of ≈ 40 dB.

All the following measurements have been performed with the FR in vacuum (10−5mbar)
using the optical setup of Fig.6.23. The TGG temperature is stabilized using a PI loop. The
temperature range allowed is ±2◦ and this is limited by the vacuum wires dimensions that
limit the maximum current that can be fed to the Peltier. For this setup the FI isolation is
−10 log(PI/Pin) and (Pin−PT )/2Pin, where PT is the transmitted power detected as in Fig.6.23,
is very close to the transmission losses defined in eq(6.0.2).

Fig.6.24 shows the result of the FI isolation variation as function of the TGG crystal temper-
ature. The input power for this measurement has been set to 10 W so to neglect the contribution
to this measurement of the thermal depolarization (i.e. γ = γ(δT (r)) ≈ 0). Moreover, ∂B/∂T
has also been considered negligible thanks to the thermal isolation of the TGG crystal from the
magnetic part of the FR. Given the stated approximations, the isolation variation data have
been fitted using eq(6.0.3). The fit outcome of 1

V
∂V
∂T = 4.0 · 10−3K−1is in good agreement with



98 CHAPTER 6. FARADAY ISOLATOR

Vacuum chamber

/2

faraday

rotator
polarizerpolarizer

Pin

PI

PT

TGG

Figure 6.23: Optical set-up for characterization of the FI. The isolation ratio is computed using
the transmission power measured by PI , PT is used to compute the losses after a double pass
through the FI and Pin is a measurement of the input power.
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Figure 6.24: Variation of the isolation ratio with respect to the highest value reached in air as a
function of the mean crystal temperature. The curve fit is done using eq(6.0.3).
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the reported value of 3.5 · 10−3K−1 [53].
This last measurement demonstrate that the isolation ratio of the FI can be tuned modifying

the mean temperature of the TGG crystal. Since the mechanism that allow us this tuning is the
same that appear in eq(6.0.2), we are confident that also the transmission losses can be tuned
adjusting the TGG temperature. Future measurements will be performed to demonstrate this
effect.
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Appendix A

Optical simulation

In this appendix I’ll put Finesse optical simulation and if possible analytical solutions.

A.1 Second Harmonic Generator

The Second Harmonic Generator (SHG) is an hemilitc cavity composed by a meniscous (or
incoupling mirror) and a PPKTP crystal (see Fig.A.1).

crystalmeniscous

R1 R2

Figure A.1: Sketch of the SHG

A.1.1 Analytic results

Using the notation of “Laser” Siegman (chapter 19), we define the “resonator g parameters”:

g1 ≡ 1− Lopt
R1,opt

g2 ≡ 1− Lopt
R2,opt

(A.1.1)

where Lopt is the optical length of the cavity, R1 and R2 are the radii of curvature of the cavity’s
mirror normalized over the refractive index of the medium. In the case of the SHG cavity,

Lopt = Lair + Lcrystal/ncrystal

R1,opt = R1

R2,opt = R2/ncrystal

In term of the g parameters, many useful quantities can be defined. First of all, a cavity is
stable if 0 ≤ g1g2 ≤ 0. The parameter’s region where this disequation is fulfilled is called stability
region. In Fig.A.2(a) is plotted the g1 and g2 product as function of Lair.
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Figure A.2: SHG properties as function of Lair: (a) stability region, (b) beam waist size, (c) beam
waist geometrical distance from the inner face of the meniscous and (d) beam waist geometrical
distance from the curved surface of the PPKTP crystal.
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Another useful parameter that can be written as function of g1 and g2 is the beam waist spot
size, which is given by

w2
0 =

Loptλ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
(A.1.2)

where λ = 1064nm. EqA.1.2 has finite and real solution if the stability condition is fulfilled. In
Fig.A.2(b) is plotted the beam waist spot size as function of Lair.

Other two interesting parameters are the distances of the beam waist location from the two
mirrors. They are given by

z1,opt =
g2(1− g1)

g1 + g2 − 2g1g2
and z2,opt =

g1(1− g2)

g1 + g2 − 2g1g2
(A.1.3)

FigA.2(c) and FigA.2(d) show the geometrical distances of the beam waist from the two mirrors
of the cavity.

A.1.2 Finesse simulation

n1 n2a n2b n2c n2d n3 n4 n5 n6 n7
LASER

EOM air

mext

menisc

mint

airgap

ar

PPKTP

hr

Figure A.3: Visual representation of the finesse code.

Fig.A.3 shows a representation of the components and nodes used in the finesse code. In
Tab.A.1 are summarized the property of the main components.

Component
name

length [mm]
refractive

index
R T RoC [mm]

mext — — 0.002 0.998 −20
menisc 5.7 1.4495 — — —
mint — — 0.9 0.1 −25

airgap 20.0∇ · 24.2 1 — — —
ar — — 0.005 0.995 ∞

PPKTP 9.3 1.8306 — — —
hr — — 0.9997 0.0003 8

Table A.1: Property of the component used in the SHG finesse simulation

FigA.4 show a summary of the SHG finesse simulation. For the final SHG cavity the airgap
chosen is Lair = 22mm. The main quantities of the cavity are summarized in TabA.2.
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Figure A.4: SHG properties as function of Lair simulated using a Finesse code: (a) cavity waist
size as seen from different nodes, Fig.A.2(b) is shown as comparison; (b) geometrical distance of
the cavity waist from node n3 and node n6, FigA.2(c) and FigA.2(d) are shown as comparison;
(c) cavity free spectral range (FSR); (d) cavity full width half maximum (FWHM).

Lair 22mm
wn2a

0 35.7µm
wn3

0 27.2µm
wn7

0 34.1µm
waist geometrical distance from n3 27.14mm
waist geometrical distance from n6 4.15mm

FSR 3.84GHz
FWHM 70.75MHz

Table A.2: Summary of the SHG finesse simulation



Conclusions

In the next few months, Advanced Virgo will join the LIGO observatory for the second obser-
vation run (O2), making (once again) a world wide network of GW detectors. After the end of
O2 and before the starting of the next observation run (O3), the Advanced Virgo detector will
undertake major upgrades. One of such upgrades will be the injection of a squeezed vacuum state
into the interferometer dark port. This thesis was devoted to the development of a prototype of
a frequency independent squeezed vacuum source.

I studied the effect of injecting a squeezed vacuum state on the performances of the AdV
detector. In particular in Chapter 3 different detector configurations, namely, power recycled
Michelson interferometer, dual recycled interferometer with tuned signal recycling cavity and dual
recycled interferometer with detuned signal recycling cavity are discussed. For each configuration
I computed the detection ranges of binary neutron star and binary black hole coalescences as
a function of the input power and of the signal recycling detuning with and without squeezing
injection. For the case of no squeezing injection, the best AdV configuration for detecting binary
neutron star coalescences (MNS = 1.3M�) is the dual recycled interferometer with 125 W of
input power and 0.26 rad detuned signal recycling cavity: in this case the detection range is
146 Mpc. The best AdV configuration for detecting binary black hole coalescences (MBH =
30M�) is the dual recycled interferometer with 10 W of input power and 1.28 rad detuned signal
recycling cavity: in this case the detection range is 1381 Mpc.

The coalescing binary ranges for AdV with squeezing has been investigate in the following
detector configurations.

• Power recycled interferometer with 25 W of input power. The binary neutron star detection
range is maximized with squeezing level of 3.6 dB and squeezing ellipse angle of 62◦ and
results in 113 Mpc, which is a 5% increase with respect to the same configuration but
without squeezing and still larger than the highest range obtainable with power recycled
interferometer (110 Mpc with 125 W of input power). For the binary black holes, the range
improvement with squeezing is 20% reaching 1183 Mpc with squeezing level of 7.8 dB and
squeezing ellipse angle of 87◦; this detection ranges is ≈ 100 Mpc larger compared to the
highest range obtainable with power recycled interferometer (1078 Mpc with 10 W of input
power).

• In the case of dual recycled interferometer with 25 W of input power and tuned signal
recycling cavity, the binary neutron star detection range is maximized with squeezing level
of 8.5 dB and squeezing ellipse angle of 6◦ and results in 119 Mpc, which is a 23% increase
with respect to the same configuration but without squeezing. For the binary black holes,
the range improvement with squeezing is 16% reaching 1198 Mpc with squeezing level of
8 dB and squeezing ellipse angle of 18◦.

• In addition, injecting frequency independent squeezing in dual recycled AdV with tuned

105



106 CONCLUSIONS

signal recycling cavity results in an improvement of detection ranges with respect to the
ranges without squeezing in the entire range of input power.

I also investigated the benefit of injecting frequency dependent squeezed vacuum in dual
recycled AdV with tuned signal recycling cavity which may be foreseen for a future upgrade. My
study highlights the importance of reducing the noises other than of quantum origin that limits
the sensitivity at low frequencies so to take fully advantages from the squeezed-state technique.

Since I joined the AdV squeezing working group from its start, I had the opportunity to fully
contribute to the design of the squeezed vacuum source prototype. This prototype consists of
three infrared laser, four Fabry-Perot cavities, a Mach-Zehnder interferometer, two phase locked
loops, an homodyne detector and several other minor components. Two of the four cavities,
the SHG and the OPO, are linear cavities and contain a nonlinear crystal, while the other two
cavities are triangular cavities used as mode cleaners. The mechanical design adopted for the
SHG and the OPO was targeted to grant high mechanical stability and therefore reduce the
squeezing phase fluctuations.

I took care of the integration of many of the components installed on the prototype. In
particular I personally designed and integrated the SHG cavity and the infrared mode cleaner.
I realized all the phase one control loops, that are: the thermal control of the SHG crystal, the
length control of the SHG and MCIR cavities and the Mach-Zehnder length control.

A major part of my PhD work was devoted to the second harmonic generation process. The
study of the SHG process is not only important to define the SHG cavity design, but also for the
design of the OPO cavity.

In Chapter 5, the characterization of the PPKTP non linear crystal performing double pass
conversion measurements is presented. In this configuration I measured the second harmonic
efficiency enhancement due to laser mode hop. This enhancement is explained by multiple
frequency second harmonic generation, and the measurements confirms the 1.5 enhancement
factor expected from theory. Using this process I realized a map of the laser mode hop as
function of the laser diode pump current and of the laser NPRO crystal temperature. This map
is used to define the laser crystal temperature working point and the PLLs actuation ranges.

To obtain a stable second harmonic production I realized a thermal stabilization of the non-
linear crystal by a digital control loop. This thermal loop demonstrated a residual in loop
temperature fluctuation of ≈ 1 mK and an out of loop suppression of the room temperature fluc-
tuation by a factor of 30. I defined an alignment procedure for the SHG cavity and, using this
procedure, I was able to obtain a mode matching of 97.8%. I characterized the second harmonic
conversion efficiency as function of the input infrared power and PPKTP crystal temperature.
The highest conversion efficiency measured of 95% was achieved with an input power of 165 mW
and a PPKTP crystal temperature of 304.6 K. This value represents the highest second harmonic
conversion efficiency present in literature. Moreover, I found several SHG working points that
fulfill the requirements for this cavity, that is the production of at least 200 mW of green power
in the TEM00.

To produce a squeezed state of light from an optical parametric oscillator, the pump power
must be below the threshold of the OPO cavity. A precise measurement of the threshold is
crucial to know the squeezing level that can be produced with an OPO. I demonstrated on two
different SHG cavities that the competitive non linear processes that define the threshold in the
OPO also limit the maximum second harmonic power production in the SHG cavity. The two
SHG cavities differ just by the incoupling mirror reflectivity and allowed measurements of the
threshold as function of the nonlinear crystal temperature.

On the SHG cavity I also measured the frequency difference of the s pol and p pol cavity
resonances as function of the nonlinear crystal temperature finding a linear relation between
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these two quantities with a slope of 502± 2 MHz/K. Using the temperature dependence of the
s pol and p pol resonance condition, I found a new method to measure the crystal absorption.

To inject a squeezed vacuum state into the dark port of the interferometer, Faraday isolators
are necessary. They will provide both the isolation needed to avoid a seed injection from the
interferometer to the OPO and also the isolation needed to avoid backscattered light from the
OPO to the interferometer. In collaboration with the EGO optics group, I designed a low
losses, tunable, in vacuum Faraday isolator. In particular, I performed measurements on various
polarizers samples, defining the coatings requirements to have high isolation ratio as well as
low transmission and reflection losses. These coatings requirements have been adopted by the
collaboration.

The temperature dependence of the TGG Verdet constant is used to finely tune the isolation
ratio and the transmission losses. Therefore, I performed the thermal design of the Faraday
rotator with particular care to the thermal isolation of the TGG with respect to the magnets
and to reduce the thermal resistance between the TGG and the Peltier element. A prototype
Faraday rotator has been realized and it is currently under tests in vacuum.



108 CONCLUSIONS



Acknowledgements

I want to thank my supervisor professor Giovanni Andrea Prodi for the opportunity he gave me,
for his support and for his time.

I also want to thank Jean-Pierre Zendri and Livia Conti for their support and their patience.

A great thank to my family for their support over the last years and especially to Giulia for
her love. Thank you for always be there for me.

A great thank also to Marco, Sheon, Claudia, and all the people that helped me during these
years.

109



110 ACKNOWLEDGEMENTS



Bibliography

[1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,
T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma,
N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, B. Allen, A. Allocca, P. A. Altin,
S. B. Anderson, W. G. Anderson, K. Arai, M. A. Arain, M. C. Araya, C. C. Arceneaux, J. S.
Areeda, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, M. Ast, S. M. Aston, P. Astone,
P. Aufmuth, C. Aulbert, S. Babak, P. Bacon, M. K. M. Bader, P. T. Baker, F. Baldac-
cini, G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker,
F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bar-
tos, R. Bassiri, A. Basti, J. C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Behnke,
M. Bejger, C. Belczynski, A. S. Bell, C. J. Bell, B. K. Berger, J. Bergman, G. Bergmann,
C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. A.
Bilenko, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, A. Bisht, M. Bitossi,
C. Biwer, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloe-
men, O. Bock, T. P. Bodiya, M. Boer, G. Bogaert, C. Bogan, A. Bohe, P. Bojtos, C. Bond,
F. Bondu, R. Bonnand, B. A. Boom, R. Bork, V. Boschi, S. Bose, Y. Bouffanais, A. Bozzi,
C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, T. Briant, A. Brillet,
M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. A. Brown, D. D. Brown, N. M.
Brown, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic,
C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. C. Bustillo, T. Cal-
lister, E. Calloni, J. B. Camp, K. C. Cannon, J. Cao, C. D. Capano, E. Capocasa, F. Car-
bognani, S. Caride, J. C. Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cav-
alieri, G. Cella, C. B. Cepeda, L. C. Baiardi, G. Cerretani, E. Cesarini, R. Chakraborty,
T. Chalermsongsak, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chassande-Mottin,
H. Y. Chen, Y. Chen, C. Cheng, A. Chincarini, A. Chiummo, H. S. Cho, M. Cho, J. H.
Chow, N. Christensen, Q. Chu, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark, F. Cleva,
E. Coccia, P.-F. Cohadon, A. Colla, C. G. Collette, L. Cominsky, M. Constancio, A. Conte,
L. Conti, D. Cook, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, M. W.
Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, E. E. Cowan, D. M.
Coward, M. J. Cowart, D. C. Coyne, R. Coyne, K. Craig, J. D. E. Creighton, T. D. Creighton,
J. Cripe, S. G. Crowder, A. M. Cruise, A. Cumming, L. Cunningham, E. Cuoco, T. D. Can-
ton, S. L. Danilishin, S. D’Antonio, K. Danzmann, N. S. Darman, C. F. Da Silva Costa,
V. Dattilo, I. Dave, H. P. Daveloza, M. Davier, G. S. Davies, E. J. Daw, R. Day, S. De, D. De-
Bra, G. Debreczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker,
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alier, R. Cavalieri, G. Cella, C. B. Cepeda, L. Cerboni Baiardi, G. Cerretani, E. Cesarini,
S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chassande-Mottin, B. D. Cheese-
boro, H. Y. Chen, Y. Chen, C. Cheng, A. Chincarini, A. Chiummo, H. S. Cho, M. Cho,
J. H. Chow, N. Christensen, Q. Chu, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark,
F. Cleva, E. Coccia, P.-F. Cohadon, A. Colla, C. G. Collette, L. Cominsky, M. Constan-
cio, A. Conte, L. Conti, D. Cook, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A.
Costa, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, E. E.
Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, K. Craig, J. D. E. Creighton,



BIBLIOGRAPHY 113

J. Cripe, S. G. Crowder, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, S. L.
Danilishin, S. D’Antonio, K. Danzmann, N. S. Darman, A. Dasgupta, C. F. Da Silva Costa,
V. Dattilo, I. Dave, M. Davier, G. S. Davies, E. J. Daw, R. Day, S. De, D. DeBra, G. De-
breczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker, T. Dent,
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R. Smith, M. Van Der Sluys, A. Vecchio, W. Vousden, and L. Wade, “Parameter esti-
mation for compact binaries with ground-based gravitational-wave observations using the
lalinference software library,” Phys. Rev. D, vol. 91, p. 042003, Feb 2015.

[28] M. S. Z. Marlan O. Scully, Quantum Optics. Cambridge University Press, 1997.

[29] T. C. R. Hans-A. Bachor, ed., A Guide to Experiments in Quantum Optics, Second Edition.
WILEY-VCH Verlag GmbH & Co. KGaA, 2008.
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