
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

Department of

Information Engineering and Computer Science

University of Trento, Italy

Application Interference

in Multi-Core Architectures:

Analysis and Effects

Alexandre Kandalintsev

Advisor:

Prof. Renato Lo Cigno

Università degli Studi di Trento

April 2016

Abstract

Clouds are an irreplaceable part of many business applications. They pro-

vide tremendous flexibility and gave birth for many related technologies –

Software as a Service (SaaS) and the like. One of the biggest powers of

clouds is load redistribution for scaling up and down on demand. This

helps dealing with varying loads, increasing resource utilization and cutting

down electricity bills while maintaining reasonable performance isolation.

The last one is of our particular interest.

Most cloud systems are accounted and billed not by useful throughput,

but by resource usage. For example, a cloud provider may charge according

to cumulative CPU time and/or average memory footprint. But this does

not guarantee that the application realized its full performance potential

because CPU and memory are shared resources. As a result, if there are

many other applications it could experience frequent execution stalls due

to contention on memory bus or cache pressure. The problem is more

and more pronounced because modern hardware rapidly increases in density

leading to more applications are co-located. The performance degradation

caused by co-location of applications is called application interference.

In this work we study in-depth reasons of interference as well as ways

to mitigate it. The first part of the work is devoted to interference analysis

and introduces a simple yet powerful empirical model of CPU performance

that takes interference into account. The model is based on empirical ob-

servations and build up from extrapolation of a two-task (trivial) case.

i

In the following part we present a method of ranking of virtual machines

according to their average interference. The method is based on analysis

of performance counters. We first launch a set of very diverse benchmark

programs (to be representative for wide range of programs) one-by-one to-

gether with all sorts of performance counters. This gives us their “ideal”

(isolated) performances. Then we run them in pairs to see the level of in-

terference they create to each other. Once this is done, for each benchmark

we calculate average interference. Finally we calculate the correlation be-

tween the average interference and performance counters. The counters

with the biggest correlation are to be used as interference estimators.

The final part deals with measuring interference in production environ-

ment with affordable overhead. The technique is based on short (in the

order of milliseconds) freezes of virtual machines to see how they affect

other VMs (hence the name of method – Freeze’nSense). By comparing

the performance of the VM when other VMs active and when they frozen

it is possible to conclude how much it looses in speed because of sharing

hardware with other applications.

Keywords

Cloud, Resource Management, Application Interference, Datacenters.

ii

Contents

1 Introduction 1

1.1 Clouds under the hood . 3

1.2 Cloud Economics . 5

1.2.1 Why Clouds . 5

1.2.2 Why not Clouds 8

1.3 Application Interference 9

1.4 Motivation . 14

1.5 Research Objectives . 17

1.6 Structure of the Thesis . 19

1.7 Topics outside the scope 20

2 State of the Art 23

2.1 Monitoring and On-the-Fly Profiling 23

2.2 Performance Modeling . 28

2.3 Task-aware Scheduling . 30

3 Modeling Tasks Inter-Core Interference 35

3.1 Introduction . 35

3.1.1 The Benchmark Programs 36

3.2 Problem Statement . 40

3.2.1 A Simple Experiment 40

3.3 Interraction Model . 42

iii

3.4 Performance Measure . 46

3.4.1 The Metric . 46

3.4.2 Accuracy and Overhead 47

3.5 Model Validation . 48

3.5.1 Hardware Configurations 48

3.5.2 Measurement Methodology 49

3.6 Results and Analysis . 50

3.6.1 Digging Inside the Model 52

3.6.2 The Two-Core Machine 54

3.6.3 Intel W3670: The Six-Core Case 54

3.6.4 Effects of Prefetching on Intel W3670 54

3.6.5 AMD FX-8120: The Eight-Core Case 55

3.6.6 Improving the Precision 56

3.7 Obtaining Model Parameters 57

3.7.1 Direct Measurement 57

3.7.2 Task Classification 57

3.7.3 Low-level Resource Utilization 58

3.7.4 On-line Tuning . 58

3.8 Conclusion . 59

4 Ranking VMs by their interference 61

4.1 Introduction . 61

4.2 Methodology . 62

4.2.1 Hardware Performance Counters 63

4.2.2 Virtual Machines Profiling 64

4.3 Experimental Study . 64

4.3.1 Testbed . 64

4.3.2 Benchmarks . 65

4.3.3 Software Architecture 66

iv

4.4 Performance Results and Analysis 66

4.4.1 Analysis of different HPCs 70

4.4.2 Lessons Learned . 76

4.4.3 Conclusion . 76

5 Freeze’nSense:

Isolated Performance Sampling in a Shared Environment 79

5.1 Introduction . 79

5.2 Notation and Terminology 82

5.3 Performance Isolation and Monitoring 83

5.3.1 Symmetric Multiprocessing System (SMP) Open Issues 84

5.4 Methodology . 86

5.5 Implementation . 88

5.5.1 Benchmarks and Workload 88

5.5.2 Performance Sampling Issues 89

5.6 Results . 92

5.6.1 Freezing Validation 92

5.7 CPU Load Balancing . 97

5.8 Conclusions and Discussion 100

6 Conclusion and the Road Ahead 103

6.1 Future Research . 104

A Vocabulary 107

B Research Hiccups and Dead-ends 111

B.1 Importance of Storage . 111

B.2 Looping programs . 112

B.3 Unexpected Load Variation 114

Bibliography 115

v

List of Tables

1.1 Memory access times (in ns) in a four CPU system. Num-

bers represent how fast a CPU on row n can access memory

of another CPU on column m. 11

3.1 Rrmse accuracy of our model compared to the linear predic-

tion in different test scenarios for the two-core E7600 CPU. 51

3.2 Rrmse accuracy of our model compared to the linear predic-

tion in different test scenarios for six-core Intel W3670 CPU

with enabled and disabled hardware prefetcher (HWP) and

Adjacent Cache Line Prefetch (ACLP). 51

3.3 Rrmse accuracy of our model compared to the linear predic-

tion in different test scenarios for eight-core FX-8120 CPU

with different cache control settings. 52

3.4 Performance penalty (percentage) for simultaneous task ex-

ecution on Intel E7600 CPU. 53

4.1 Performance degradation for concurrent execution of VMs

running the benchmarks on ARM Exynos reported in percents. 67

4.2 Performance degradation for concurrent execution of VMs

running the benchmarks on AMD FX reported in percents. 68

4.3 Interference and sensitivity of benchmarks on ARM Exynos. 69

4.4 Interference and sensitivity of benchmarks on AMD FX. . 70

vii

4.5 Correlation between interference, sensitivity and HPC. P-

value is the probability that results are statistically insignif-

icant (null hypotesis), less is better. 73

4.6 Performance comparison of AMD FX and ARM Exynos

platforms1. 75

5.1 Notation specific to Chapter 5. 83

5.2 Main characteristics of our test platforms. 88

viii

List of Figures

1.1 Load variation over 24h on Moscow Internet Exchange Point

(MSK-IX). The gap between day and night is up to 8x. . . 2

1.2 Load variation (in requests per minute) over 24h on CoDesign.

io. “2xx” indicates normal server responses, “3xx” for redi-

rects, the rest are for different types of errors. “R” label on

X axis means there was a software update (“release”), it has

no special meaning in this context. 2

1.3 Good cloud: money saved on up-front investments helps

growing the business. For illustrative purposes only. 7

1.4 Two different scenarios: when clouds accelerate business de-

velopment and when they don’t. Good clouds reduce up-

front costs on infrastructure and maintenance, allowing to

put saved money into business development (upper picture).

Bad clouds: consider switching to a private cloud if your

cloud provider charges too much (lower picture). For illus-

trative purposes only. 10

1.5 How far memory latency lags behind CPU performance. . 11

1.6 Inside Intel Xeon E5-2630 v3: every CPU core has two

threads of execution (Hyper-Threading), “private” L1 and

L2 caches, and one big L3-cache shared between all cores. . 12

ix

CoDesign.io
CoDesign.io

1.7 An AMD’s two-core “bulldozer” module. Picture shows that

not only caches, but other CPU units can also be shared:

FPU, instruction decoder, branch predictor, and thelike.

Shared blocks aim at increasing average block utilization

and save some silicon area and power. 13

1.8 Performance scaling of SDAGP on AMDFX-8120 increasing

the number of parallel instances; the gap between the two

is due to shared hardware resources. 14

1.9 Current and future Internet traffic trends as seen by Cisco. 15

3.1 Performance of four benchmark programs in three possible

allocations A1, A2 and A3. 41

3.2 The effects of HWP and ACLP on the per-core performance. 55

4.1 Ranking process at a glance. 63

4.2 Software architecture of the experiments. 66

4.3 Four cases of interference for ARM Exynos: no interference

(only NGINX is running), negative interference (NGINX

runs with INTEGER), medium interference (NGINX with

WORDPRESS) and strong (NGINX with MATRIX). . . 72

4.4 Execution profiles of benchmarks running on ARM Exynos.

Benchmarks are arranged according to their interference fac-

tors. 74

5.1 Performance scaling of SDAGP on AMDFX-8120 increasing

the number of parallel instances; the gap between the two

is due to shared hardware resources. 81

5.2 Applications profiled in isolated (no other core is loaded)

and shared environments (the other cores are used too): the

gap shows how large the difference can be (CPU: Xeon E3-

1245 V2, 100 ms sampling). 85

x

5.3 Intel Xeon: estimate of ζb(i) when tasks runs alone in the

CPU and when the environment is frozen; tm =100 ms in

the upper plot, tm = 10 ms in the lower plot. 93

5.4 Intel Xeon: Reducing tm to the limit: estimate of ζb(i) for

tm = 10, 5, 2, and 1 ms; tsleep is reduced to 50 ms. 94

5.5 AMD FX: Reducing tm to the limit: estimate of ζb(i) for tm

= 10, 5, 2, and 1 ms; tsleep is reduced to 50 ms. 96

5.6 AMD FX: empirical pdf of ζb(i) estimates in isolation and

with Freeze’nSense for NGINX and BLOSC for tm = 2 ms. 96

5.7 ARM Exynos: estimate of ζb(i) when tasks runs alone in the

CPU and when the environment is frozen; tm =100 ms. . . 97

5.8 Distribution of performance improvement using Freeze’nSense

to decide Virtual Machine (VM) relocation. 98

5.9 Distribution of performance improvement of VMs relocated

by Freeze’nSense. 99

B.1 CPU and DISK load variation over 24hours for linux.org.

ru server. 115

xi

linux.org.ru
linux.org.ru

Chapter 1

Introduction

What makes cloud computing so attractive? Deploying applications of al-

most any size and complexity is easy as never before. Cloud adopters do

not need to concern about resources, scalability and reliability: these prob-

lems are solved by the cloud provider. Clouds also fostered two business

models previously unseen, or rarely used in IT: Pay-As-You-Go (PAYG)

and Everything-as-a-Service (XaaS).

Pay-as-you-go frees cloud customers from upfront costs on infrastruc-

ture. Before clouds, resource provisioning was a difficult tasks for many

services because of variability of the load. For example, the day/night

traffic variation can be a factor of 10 [29]. This means that the full compu-

tational power is needed only during peak hours. As a result, many systems

are underloaded most of the time and unused resources are just wasted.

Fig. 1.1 shows the daily variation of traffic on MSK-IX, Moscow Inter-

net Exchange Point; higher traffic corresponds to higher loads of servers.

Fig. 1.2 shows backend load (in requests per minute) of CoDesign.io; the

load changes from almost zero up to 30rpm.

Another issue related to provisioning. An infrastructure without sta-

tistical multiplexing cannot scale dynamically; the infrastructure can only

sustain a fixed maximum load and it must be planned well in advance. This

1

CoDesign.io

CHAPTER 1. INTRODUCTION

Figure 1.1: Load variation over 24h on Moscow Internet Exchange Point (MSK-IX). The

gap between day and night is up to 8x.

Figure 1.2: Load variation (in requests per minute) over 24h on CoDesign.io. “2xx”

indicates normal server responses, “3xx” for redirects, the rest are for different types of

errors. “R” label on X axis means there was a software update (“release”), it has no

special meaning in this context.

2

CoDesign.io

CHAPTER 1. INTRODUCTION 1.1. CLOUDS UNDER THE HOOD

makes it hard to deal with unpredictable spike loads. For most Internet

services significant load fluctuations is more than normal, and this rendered

most resources allocated statically unused at least half of the time. This

underutilization is not just bad on initial expenses on equipment. Main-

tenance costs (energy, cooling, spare parts) are also higher, significantly

raising the Total Cost of Ownership (TCO).

XaaS is the further evolution of the cloud concept: not only hardware

resources, but software and services can be rent on PAYG principles. It

may take many forms and shapes, but, in general, it is something hosted

remotely and available through some sort of remote API. Example XaaS:

software-as-service – libraries and applications that integrate into other

services or to be used alone – Google Translate, Travis CI (continuous

integration service), Adobe Creative Cloud (Photoshop and other famous

Adobe products) and even YouTube (though it is free for most users). It

can also be a storage-, database- and even algorithm-as-a-service. The key

aspect of of such services, besides ease of use, is (almost) zero support costs

because it is a service provider’s responsibility to keep it up and running.

In this Chapter we fist discuss the rationale behind the success of clouds

and how they are organized. Then we introduce the problem of resource

management in the clouds – application interference, and our motivation.

Then we present the structure of the thesis and topics that are covered in

this work.

1.1 Clouds under the hood

From an external point of view there is no difference between a cloud and

a conventional datacenter: physically a cloud is just a (very big) bunch

of interconnected servers with a very good, low-latency connection to talk

with the outside world. However, the main difference is not at the physical

3

1.1. CLOUDS UNDER THE HOOD CHAPTER 1. INTRODUCTION

level, but deeper inside; it is in the management plane.

Cloud resources must be well tracked and accounted for. The cloud

provides customers with dynamic resource allocation: if some resources

are not immediately needed they are put back to the resource pool. And

vice versa: more resources are readily available if required. This provides

customers with dynamic sizing of applications that may rapidly shrunk or

expand depending on the demand.

Underneath of almost any cloud is resource virtualization. Applications

no more run on bare hardware, they run in virtual containers of some kind:

Virtual Machines (VMs). A VM mimics a physical node and it is almost

indistinguishable from real hardware till it comes to scaling. VMs bring

the following properties: a) multiple VMs can be collocated on the same

node b) dynamic resource “sizing” c) isolation (problem with one VM does

not propagate to others) d) relocation (they can be moved from one node

to another). The ability to co-locate means denser packing: two or more

customers can be put on the same server if resources allow. Dynamic sizing

allows for scaling explained earlier. Isolation guaranties that security is not

compromised, i.e., the vulnerability of one application cannot be used to

gain access to other applications. Finally, relocation means VMs can be

moved between the nodes without interruptions, also enabling seamless

maintenance. This again helps scaling: applications are distributed to

provide hardware footprint adequate to the load.

There are two approaches to provide scaling for applications. The first

one relies on dynamic resource provisioning. Every VM is given the min-

imal portion of resources required to serve the load. Underutilized VMs

are shrunk, overloaded VMs are given more resources. If a VM does not

fit the node it is relocated to another node with enough resources.

The second approach is to maintain VMs of fixed size. When a single

VM is not enough, another one is launched and the load divided. And

4

CHAPTER 1. INTRODUCTION 1.2. CLOUD ECONOMICS

vice versa: if the load is not enough to keep all VMs busy, VMs in excess

paused or shut down and the load is redistributed. This method requires

an external load balancer for load distribution.

In practice, these two approaches are often combined. For example,

Amazon micro instances1 always provide a small baseline performance.

In addition to that, micro instances that do not fully use their share are

given “CPU credits” that can be used to deal with spike loads, backups or

periodic activity. The peak performance can be 5 times higher the baseline.

1.2 Cloud Economics

“There is no Cloud. It’s just someone else’s computer.”

(c) Internet folklore

“I don’t understand what we would do differently in the light of Cloud

Computing other than change the wording of some of our ads.”

(c) Larry Ellison, former Oracle CEO

Depending on the use, clouds can be a project accelerator or a money

black hole. On the strong side of clouds are ease of use, scalability, relia-

bility, usage-proportional pricing, (almost) zero initial investment.

The downsides are potential privacy and legal issues, price benefits di-

minish as the project scales up, vendor lock-in, and the exposure to the

cloud provider failures. Here we quickly discuss factors to consider before

giving clouds a green light.

1.2.1 Why Clouds

One of the most attractive cloud features is ease of use and access. Most

cloud providers have nice and simple web interfaces allowing for easy con-

1https://aws.amazon.com/ec2/instance-types/

5

1.2. CLOUD ECONOMICS CHAPTER 1. INTRODUCTION

figuration of most common deployment scenarios. This straight-forward

approach eliminates many risks associated with infrastructure setup: an

improperly-configured infrastructure is an easy victim for hackers [68].

Common maintenance burden is also much easier with clouds. This

often eliminates the need for dedicated infrastructure workforce, saving

headcount for projects.

Scalability. For a rapidly growing company it can be difficult to scale IT

infrastructure accordingly. This is less the case with cloud providers who do

a number of steps to ensure their scalability. First, big “cloud” datacenters

are built in areas where they can be easily expanded or there is enough

place for more datacenters. Second, there is a good practice of choosing

datacenter places where electricity and thick Internet links are not an issue.

As a result, commercial clouds are much better ready for expansion than a

typical private infrastructure. And because of their scale, they can sustain

enormous spikes of load that would normally kill a typical private cloud.

With on-premises infrastructure it is also easy to mispredict the load.

Companies overestimating their growth would waste their money on exces-

sive infrastructure capacity. Underestimating the growth is also dangerous

because not every infrastructure can be easily expanded. For example,

once the datacenter is full there is no physical place put more hardware.

Or the datacenter can be capped by power and cooling capabilities.

Pricing and minimal initial investment. PAYG allows paying only for

consumed resources. Although this may not hold true for larger instances

(discussed later), it is a money-saving option for projects not requiring lots

of resources. But even for larger cloud installments it may worth using

clouds because of larger gross margins : companies prefer to put money

into growth rather than own infrastructure because this is more profitable

in the long run [74]. Fig. 1.3 illustrates this.

Ease of Use. Creating new applications and services nowadays as easy

6

CHAPTER 1. INTRODUCTION 1.2. CLOUD ECONOMICS

E�ciencies
Value
Services

Revenue

Pro�t
Margin

Pro�t Margin

Ability to Sell
Annuity Services

Sourcing
“Long Tail”

Time

Price/
Cost

$

Figure 1.3: Good cloud: money saved on up-front investments helps growing the business.

For illustrative purposes only.

as never before, and often can be done with a few clicks in a browser. In

fact, many well-known Internet services (like Dropbox, Netflix, Airbnb and

many others) are built on top of other services.

Reliability. Comparing to a single-server deployment, a proper cloud has

two big advantages. First, there are always spare resources to deal with

hardware troubles. Second, storage is often network-enabled, eliminating

the need to transfer user data between servers in case of migration. This

helps relocating user from one machine into another in case of, e.g., failure

or malfunction. Some providers even have live migration.

QoS. Clouds normally have 24x7 support and rapid incident response.

This is useful for small companies that cannot afford covering non-working

hours with on-call support.

Legal requirements may also put restrictions on security and availability

of an IT infrastructure. Building a datacenter satisfying all the needs may

7

1.2. CLOUD ECONOMICS CHAPTER 1. INTRODUCTION

be challenging and expensive. But sometimes it is possible to rent a private

cloud that already meets the requirements.

1.2.2 Why not Clouds

Clouds are not always attractive, sometimes they may be undesirable or

illegal to use.

Privacy and Trust. Cloud users give full access to their data to cloud

providers; they do not have any control of what the provider does with

it [46]. If the provider’s security is breached it can potentially affect all

customers.

Legal issues. Not all data can be put into the cloud. For example,

healthcare data is very restricted in Europe by “EU data protection regu-

lation”. This makes impossible to use public clouds for many applications

dealing with personal and sensitive data.

Pricing for large instances may be less fair. Cloud bills include fees for

both hardware and services. As the scale grows the service “overhead” may

outweigh PAYG benefits. Sometimes prices for large or dedicated instances

are unjustified: for example, Amazon charges $2 per hour for each region

of presence (“availability zone”) when it comes to dedicated hardware2.

That is $2 ∗ 24h ∗ 365d = $17.5k/year per region and does not include any

computational resources.

Latency. Cloud services may not be close to customers and to each other.

Building responsible applications in the cloud from elementary building

blocks (frontend, backend, database, authentication, file storage, etc) can

be a real problem because these blocks may not be in close proximity. The

author had once to solve problems with poor application performance. It

turned out, round-trip time to the database was too high for applications

sending many SQL queries sequentially.

2https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

8

CHAPTER 1. INTRODUCTION 1.3. APPLICATION INTERFERENCE

Ownership. Cloud users are normally not in charge of everything. If

something goes wrong or there is a lack of functionality customers can

only complain and hope to be heard.

Vendor Lock-in. Most cloud providers have competing set of services,

but each uses its own API and implementation. As a result, it is hardly

possible to migrate from one provider to another without a big headache.

This is especially true for storage and databases: different providers have

different features and performance. For example, Amazon provides “cloud”

databases based on Oracle, PostgreSQL and MySQL, while Google Cloud

supports only MySQL. This also complicates the interoperability between

different vendors.

All in all, clouds are a considerable choice for startup companies because

they accelerate growth. For mature companies clouds are less attractive

because costs savings are less pronounced. These two faces of clouds are

on Fig. 1.4. We now move to more technical discussion on one important

aspect of life of applications in clouds.

1.3 Application Interference

We tend to think that CPU cores add performance linearly. E.g., the total

performance is the performance of one core multiplied by the number of

cores in the system. This ideal scenario is not seen in practice on com-

modity hardware because CPU cores have quite a lot to share. First of all,

it is memory. A typical CPU has just one memory bus controller (albeit

multi-channel in modern hardware), and it is shared between many, up to

tens, of CPU cores. But the gap in speed between a CPU core and the

main memory is so huge that memory was not fast enough since many

years ago [23, 42]. The last time it could supply CPUs without the need

of caches was in 1980: Fig. 1.5. Tab. 1.1 demonstrates that the memory

9

1.3. APPLICATION INTERFERENCE CHAPTER 1. INTRODUCTION

Leveraging Speed and Cost

Faster rate
of cost reduction

Faster time
to cost reduction

Adoption
of OPEX based Services

Adoption of Rapid
Dev/Test/Deploy
Lifecycle

Total Cost
of Ownership

Traditional

Cloud

TCO

Time

$

(a) Clouds help returning on investment by lowering TCO. OPEX (OPerational EXpense) –

money spent for keeping business running. Cortesy of The Open Group.

$0K $30K $60K $90K $120K $150K $180K

Public

Private

Public vs Private cost comparison

CI systems Deployment Systems

(b) Bad cloud: at some scale and “steady state” of business supporting own infrastructure is

cheaper. Source: [60].

Figure 1.4: Two different scenarios: when clouds accelerate business development and

when they don’t. Good clouds reduce upfront costs on infrastructure and maintenance,

allowing to put saved money into business development (upper picture). Bad clouds:

consider switching to a private cloud if your cloud provider charges too much (lower

picture). For illustrative purposes only.

10

CHAPTER 1. INTRODUCTION 1.3. APPLICATION INTERFERENCE

1980 1985 1990 1995 2000 2005
Year

1

10

100

1000

10000

100000

P
e
rf

o
rm

a
n
ce

CPU
Memory

Figure 1.5: How far memory latency lags behind CPU performance. Source: [42].

CPU 0 1 2 3

0 136 194 198 201

1 194 135 194 196

2 201 194 135 200

3 202 197 198 135

Table 1.1: Memory access times (in ns) in a four CPU system. Numbers represent how

fast a CPU on row n can access memory of another CPU on column m. Source: [87].

latency is far behind typical clock cycles of modern processors.

Moreover, caches are also shared. In a modern CPU every core needs to

be supported with a substantial amount of cache or it will stall frequently

when main memory cannot deliver data in-time. On the other side, caches

occupy almost as much chip space as all other subsystems together, making

them very expensive to scale up. Because of this, caches are organized into

levels. L1 cache is ultra-fast and directly feeds processor’s pipeline. L2 is

slower, but substantially larger. Still, it takes enough space to consider it

sharing between multiple cores. L3 cache is even larger (and slower) and

is shared between all cores of the CPU serving as a last frontier between

fast cores and slow memory: Fig. 1.6.

11

1.3. APPLICATION INTERFERENCE CHAPTER 1. INTRODUCTION

L2
L1

 D
L1

 I
0 1

CPU

L2
L1

 D
L1

 I
2 3

CPU

L2
L1

 D
L1

 I
1
0

1
1

CPU

L2
L1

 D
L1

 I
1
2

1
3

CPU

L2
L1

 D
L1

 I
1
4

1
5

CPU

L2
L1

 D
L1

 I
8 9

CPU

L2
L1

 D
L1

 I
6 7

CPU

L2
L1

 D
L1

 I
4 5

CPU

L3

Figure 1.6: Inside Intel Xeon E5-2630 v3: every CPU core has two threads of execution

(Hyper-Threading), “private” L1 and L2 caches, and one big L3-cache shared between all

cores.

Not only caches are shared, but many other “CPU building blocks”

are shared as well. Fig. 1.7 shows the internal architecture of a two-core

module of the AMD Bulldozer CPU Family. Apart from caches, module’s

cores share instruction decoder, branch predictor and Floating Point Unit

(FPU) block3.

Fig. 1.8 highlights the problem. We launched one to eight instances

of one machine learning tool [70] that performs comparisons between tree

structures. The computing node was based on FX-8120, an eight-core CPU

from AMD. If we take the speed of the first instance as 1, two instances

show a total performance of 1.8. As the number of instances grows the

total performance keeps increasing less than linearly. This means that

every next CPU core contributes less and less to the total performance.

With all cores active, the per-core performance is just ∼ 60% of what was

seen when only one core was active (clearly, adding more cores to this

3We do not mention other shared units like instruction fetcher, instruction decoder or resource dis-

patcher because they designed to sustain throughput of two cores and less likely to cause bottlenecks.

12

CHAPTER 1. INTRODUCTION 1.3. APPLICATION INTERFERENCE

Figure 1.7: An AMD’s two-core “bulldozer” module. Picture shows that not only caches,

but other CPU units can also be shared: FPU, instruction decoder, branch predictor, and

thelike. Shared blocks aim at increasing average block utilization and save some silicon

area and power. The picture courtesy of Wikipedia contributor Shigeru23, CC BY 3.0 [1].

13

1.4. MOTIVATION CHAPTER 1. INTRODUCTION

1 2 3 4 5 6 7 8

Number of CPU cores used

1

2

3

4

5

6

7

8

O
v
e
ra

ll
P
e
rf

o
rm

a
n
ce

Ideal perf.

Measured perf.

0 1 2 3 4 5 6 7 8 9

Number of CPU cores used

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

 p
e
r

co
re

Figure 1.8: Performance scaling of SDAGP on AMDFX-8120 increasing the number of

parallel instances; the gap between the two is due to shared hardware resources.

would be just a waste of silicon).

This performance degradation largely depends on the software running

in the system (some programs tend to scale worse than others) and it is

called application interference.

1.4 Motivation

Infrastructure bills can be enormously huge – $20B was spent just by Ama-

zon, Google, Facebook and Microsoft in 2014. And, what is more frighten-

ing, the Internet keeps growing (Fig. 1.9). Internetional Data Corporation

(IDC) predicts worlwide spendings to reach $107B by 2017 [35]. With

such high stakes efficiency plays a major role and every percent counts.

The cost, demand, trends and environment – all these have become of

great concern. However, despite growing demands, there are economical

limits imposed on datacenters, they cannot grow infinitely.

Is there a way around to satisfy the growing demand? The need for

14

CHAPTER 1. INTRODUCTION 1.4. MOTIVATION

2014 2015 2016 2017 2018 2019
0

5

10

15

20

25

30

E
x
a
b
y
te

s
p
e
r

M
o
n
th

2.5EB
4.2EB

6.8EB

10.7EB

16.1EB

24.3EB

Figure 1.9: Current and future Internet traffic trends as seen by Cisco. Source: Cisco

VNI Mobile, 2015 [44].

more computational power caused some drift towards new solutions like

many-core systems, General-purpose Computing on Graphics Processing

Units (GPGPU) systems, Application-Specific Integrated Circuits (ASICs)

and Field-Programmable Gate Array (FPGA) solutions. Many-core and

GPGPU systems impose significant restrictions on how a program should

be written and work in order to fully utilize the advantages of the ar-

chitecture. Most real-world programs cannot efficiently scale to tens and

hundreds processing units [76].

ASICs are very expensive because it requires designing and manufactur-

ing computer chips specific for a task. It is not just poor flexibility (a chip

is normally designed to solve one and only one problem), but also enor-

mous engineering efforts, huge costs of fabrication and long development

cycles. This approach has currently no way to mass market.

FPGA has some market potential and may help keeping Moore’s law

alive for a while. They are quite versatile, but mostly used for signal pro-

cessing, pattern marching, encryption, search and some other areas where

15

1.4. MOTIVATION CHAPTER 1. INTRODUCTION

it could be beneficial to have custom (“soft”) computational architecture

that can be tuned for the application. Unfortunately, FPGA accelerators

are not available for cloud computing to date, although Intel aims at re-

leasing their hybrid CPU+FPGA prototypes [37] in early 20174.

For all these reasons traditional datacenters remain here for long, and

we need to pay special attention on their efficient usage. And that is what

clouds are for – efficiency. Efficiency is achieved by careful tracking and

accounting cluster resources. Resource management is at the very heart

of every cloud: the quality of management defines performance, efficiency

and robustness.

Thus, Cloud Resource Manager (CRM) is a central part of any cloud

stack. It performs monitoring, scheduling and accounting of cluster re-

sources and it gives a single point of control for the whole infrastructure.

Tasks are no more statically instantiated and assigned to computers, they

are dynamically placed according to the load, Service Level Agreement

(SLA) and priority. Having different priorities is useful for different com-

puting models. For example, mission-critical applications may co-exist

with normal and batch-processing applications. In this case CRM first

ensures that there is always enough room for mission-critical applications.

The rest is dedicated to normal applications. Any resource leftovers can

be given to batch-processing jobs that can tolerate performance variability

or even full eviction during peak hours.

But this flexibility is not granted, in large clouds CRM has to handle a

lot of resources. Nowadays machines with tens of CPU cores and hundreds

of gigabytes of RAM are readily available on the market5. The scale of

modern datacenters has grown up dramatically, hundreds of thousands of

4http://fortune.com/2015/11/18/intel-xeon-fpga-chips/, accessed: 2015-12-13
5Intel Xeon E7-8800 v3 has 18 cores supporting up to eight sockets, that is 144 cores (or 288 if counting

for hyper-threading) in one computing node. IBM has 12-core CPUs with 4 “threads” each, yielding 384

threads of execution in a four-socket server.

16

http://fortune.com/2015/11/18/intel-xeon-fpga-chips/

CHAPTER 1. INTRODUCTION 1.5. RESEARCH OBJECTIVES

servers is not uncommon6. That is, a datacenter can have well over million

cores, petabytes of memory and exabytes of storage. To this end, it is

very important for a CRM to be very efficient because at this scale every

percent of performance matters. One thing, however, is often overlooked.

A server is not just a sum of its resources because they are intercon-

nected, particularly memory and CPU cores. This means that tasks can

greatly affect each other within the same system. Therefore, a management

system that considers task placement problem as a “multidimensional bin

packing problem” misses a great optimization opportunity: jointly placing

tasks in such a way that their interaction maximizes performance.

Apart from optimizing task placement for better performance there are

other questions related to performance and efficiency. Does optimal task

placement means optimal performance for every task or we sacrificing per-

formance of some tasks in favor of others? Can we make slow tasks running

faster? In a heterogeneous hardware environment, what hardware is better

for a specific task and why? What factors affect system performance and

hardware efficiency?

1.5 Research Questions and Objectives

In this thesis we focus on the following research questions.

Interference

We discuss why tasks interfere each other, how to measure the in-

terference and what can be done to minimize it. We also discuss

how to identify tasks that create the most interference and what

placement schemes can help reclaiming lost speed.

6http://www.datacenterknowledge.com/inside-microsofts-chicago-data-center/microsoft-chicago-

infrastructure/, accessed=2015-12-13

17

1.5. RESEARCH OBJECTIVES CHAPTER 1. INTRODUCTION

Hardware efficiency

Same programs may show very different performance on differ-

ent hardware platforms. Moreover, depending on the settings,

applications may show quite different performance even on the

same platform. We discuss the effects of hardware settings (like

prefetching, memory frequency, etc) and even provide clues on

choosing hardware platform (Intel, AMD, ARM) and a quick com-

parison of ARMv7 and AMD Bulldozer platforms.

Task Classification

A cloud may run hundreds of thousands of tasks and measuring

interference between all of them can be problematic. Fortunately,

many tasks show similarity and we can exploit this to manage

them in groups. In this work we will find out how we can identify

such groups.

On-the-fly profiling

Tasks running in shared environment are not easy to profile be-

cause of interference. It may well happen that the root cause of

performance issues is not in the program, but in the environment.

We will present a technique of performance sampling that gives

accurate estimation of isolated performance of programs in shared

environments. We also evaluate accuracy of obtained data, com-

pare how sampling time affects the result and investigate what

limits precision.

18

CHAPTER 1. INTRODUCTION 1.6. STRUCTURE OF THE THESIS

1.6 Structure of the Thesis

Chapter 2 gives an overview of state-of-the-art. It mainly consists of four

sections. The first one is devoted to methods of monitoring and profiling

of applications in the cloud. The second section is about performance

modeling and interference prediction. Then we discuss modern algorithms

for resource allocation and scheduling.

Chapter 3 presents a CPU performance model that takes interference

into account. The model is based on the idea that the interference between

any two applications is proportional to the time they run together. Thus,

the total performance is the sum of isolated performances of all tasks minus

the sum of all pairwise interferences.

Chapter 4 shows a simple method for ranking tasks according to aver-

age interference they create. The performance model from the previous

chapter requires an interference coefficient for each pair of tasks. Measur-

ing them is impractical because for N different tasks we would need to

measure N 2 coefficients. But we can infer coefficients by sampling hard-

ware performance counters (performance sampling). The problem is that

performance samples do not provide interference characteristics directly,

we obtain these by using statistical analysis. There is one drawback: the

method requires performance samples not affected by interference because

interference greatly affects them in an unpredictable way. This means that

while sampling there should be one and only active application running in

the system – the application we deriving interference characteristics for.

This is fine for research work or profiling a limited set applications, but

becomes impractical for anything serious. Fortunately, we effectively ad-

dressed this issue in Chapter 5.

Chapter 5 introduces a method of performance sampling that is not af-

fected by interference. In a shared environment the performance degrada-

19

1.7. TOPICS OUTSIDE THE SCOPE CHAPTER 1. INTRODUCTION

tion can be very high, making it hard to guess if insufficient performance is

due to the interference or problems on the application side. This approach

eliminates uncertainty by providing accurate estimation of isolated perfor-

mance. It works as following. Before taking a performance sample of the

application in question, we temporary freeze all other applications in the

system (hence why it we call it Freeze’nSense). Then we take a sample and

unfreeze the system. The frozen phase no need to be long, often 10ms or

less is enough. Short and fixed duration guaranties small and predictable

overhead.

Chapter 6 concludes the thesis with a brief discussion of what is done,

what is left to be done and future plans.

1.7 Topics outside the scope of the thesis

The focus of this work is the study and analysis of task interference on

CPUs. The following topics are strictly related to cloud management and

performance, but they are not addressed in this thesis.

Application Accelerators. We do not address problems with differ-

ent application accelerators, namely ASIC, FPGA and GPGPU. ASIC is

too specific to be used for general computing, although there are clouds

providers giving their ASIC facilities for, e.g., bitcoin mining. FPGAs

are also too specific, although Intel bought a major FPGA manufacturer

(Altera) and we may see wider application of the technology in the future.

Many-core systems. We do not consider many-core systems with

many tens of cores because of their marginal market presence. There are

only two major players on this market, Intel and Oracle, and their prod-

ucts do not aim at utility computing. Oracle’s SPARC T5 is aimed at

enterprise database applications [56]. The Intel’s initiative with current

20

CHAPTER 1. INTRODUCTION 1.7. TOPICS OUTSIDE THE SCOPE

name Xeon Phi7 is yet to come. They also, while mimicking the tradi-

tional Intel’s architecture, quite depart from mainstream CPU computing

and require using special programming tools to get full advantages of the

architecture [69].

I/O issues. Storage, networking and other I/O are big topics on their

own and are not part of the thesis. We do not study interference induced

by, e.g, shared storage.

Precise simulation. We also did not aim at precise performance pre-

dictions, our work is to steer CRM, preferably in real time, trading accu-

racy for speed. Therefore, we do not compete with detailed machine- and

DC-level simulators.

Placement Algorithms. Full-fledged placement algorithms are also

not part of the thesis. There are many well known and “approved” (e.g.,

multidimensional bin packing) approaches to this. However, we provide a

few examples of task placement algorithms for demonstration purposes.

Data locality issues in Non-Uniform Memory Access (NUMA)

systems. In large systems, just one memory controller is not enough to

serve the needs of CPUs. For this reason every CPU normally has its own

controller and local memory, forming a so-called “NUMA domain”. From

a program perspective there is no “domain boundaries” because hardware

takes care and transfers data between CPUs transparently. But inter-

domain transfers are expensive because they involve at least two CPUs

(or more if it is needed to maintain cache coherency) and cross-domain

links [63]. Therefore, the closer data is to the CPU the better the perfor-

mance. Proper resource allocation place significant role in NUMA systems,

but it is to some extent orthogonal to interference analysis.

7The project was started in 2009 and changed many names since then: Larrabee (supposed to work

as a videocard), Knights Ferry, Knights Corner, Knights Landing and, finally, as Xeon Phi to market it

for high-performance server solutions.

21

1.7. TOPICS OUTSIDE THE SCOPE CHAPTER 1. INTRODUCTION

22

Chapter 2

State of the Art

2.1 Monitoring and On-the-Fly Profiling

Most of resource management algorithms consider CPU cores as unified

resources adding performance in proportion to their number. That is, a

six-core CPU to be three times faster than a two-core CPU running at

the same frequency. In reality the performance gain may vary due to the

subsystems shared between cores. These subsystems can include CPU

caches, memory bus, I/O lines, instruction decoders, branch predictors,

computational units and other components. Therefore, under heavy load

it is unlikely to see a linear gain in performance when adding more CPU

cores. In fact, an increase the number of cores can even degrade VM

performance for up to 50% due to the inter-VM interference [96, 9].

Profiling and monitoring applications to evaluate their run-time perfor-

mance is a multifaceted problem, especially when the goal is to understand

and to manage the performance of production environments. Several differ-

ent techniques have been proposed, but given the complexity of the topic,

the variability of the environment, and the difference in final goals, they are

rarely comparable one another. It is also surprising that general method-

ologies are somewhat lacking in the literature. We revise here the works

that are comparable to our proposal, even if their final goal is different, or

23

2.1. MONITORING... CHAPTER 2. STATE OF THE ART

if their applicability is fare more specific compared to the methodology we

propose, which is instead very general.

The most obvious way to profile the interference experienced by an

application is to run it alone and compare its performance in isolation

with its performance in a shared environment [49, 62]. This approach can

be considered a benchmark, but it is not feasible as a production means.

First, extra hardware resources are required. Second, given the enormous

number of different applications and their specific customization, repeating

the measurement for each of them is cumbersome and time consuming. If

the spare hardware is limited, then the profiling cycle is also very long as

all the different applications must be loaded and measured on the spare

hardware. A long cycle may prevent a timely and efficient identification of

bottlenecks, because applications can change their behavior in time.

A different perspective is represented by a cluster-wide massive data

collection [95]. The idea is to collect performance statistics from different

instances of the same application. If the statistical properties of the appli-

cation are known or can be inferred with some techniques then the method-

ology can identify instances that are under-performing. The approach is

suitable for very large installations running many (stochastically) identical

instances of the same application, while it fails for single and unique in-

stances, but also for applications whose instances can be customized so that

they are no more stochastically comparable. Applying this technique at

the level of VMs is even more difficult as assuming identical configuration

of VMs is far fetching.

These methods have in common that they do not rely on measurements

taken from single production servers that share resources between many

applications. They either try to gather statistics in an isolated environ-

ment, or they try to infer the isolated performance out of many data points.

It is clear that identifying the performance in isolation measuring the per-

24

CHAPTER 2. STATE OF THE ART 2.1. MONITORING...

formance only in a shared environment can be difficult, as the “ground

truth” is missing.

However, there are techniques that can work in a production environ-

ment without requiring many identical instances of the same application,

and our work fits into this class.

In [65] Jia Rao et al. studied how pinning the threads of multithreaded

applications to different cores influence the performance due to the data

locality on NUMA systems [53]. Different thread-to-core mappings lead to

different performance, but it is unknown in advance what mapping is the

best. Thus, the proposal is based on random relocation of the threads to

select the mapping that performs better. The relocation process is done

in an initial time window during which the performance data of individual

threads is recorded. At the end of the window the best allocation is chosen

and the application continues to run steadily. The performance sampling

is done with performance counters with sampling interval of 10 ms. The

performance measure is based on the score derived from the number of L2-

cache misses. The higher the score the more chances the thread is suffering.

To accommodate changes in programs’ behavior the process of relocation

must be repeated regularly. Unfortunately, the overhead of the relocation

and measurement process is not negligible, specially when there are many

threads in the system.

Intensive I/O operations performed by VMs may be difficult to account

when the hypervisor is shared like in Xen [6]. This happens because the

VM itself has no rights to perform such activity, so that the I/O operations

are actually performed by the hypervisor and accounted to it [36]. Thus,

the identification of performance issues due to I/O conflicts becomes very

difficult: all the activity is accounted on behalf of the hypervisor. The

authors propose a “sidecar” extension to the hypervisor that traces the I/O

activities by parsing the log file. The log is periodically (every 100 ms by

25

2.1. MONITORING... CHAPTER 2. STATE OF THE ART

default) parsed and the number of I/O operations for each VM is counted.

Then, knowing the average CPU cost for each type of operation, it is

possible to adjust the CPU consumption of each VM so they fit their

performance limits or allocation targets.

Wood et al. proposed and implemented a gray-box monitoring for VMs

[89]. In their system VMs are monitored both externally, using, e.g., statis-

tics from the hypervisor, and internally, by running a small monitoring

application inside each VM. The application exports performance statis-

tics as it is seen from inside the VM. This helps to understand the way

resources are consumed, as well as detect performance issues. The latter

are detected by analyzing performance metrics exported by applications

and the OS. If performance is not meeting the Quality of Service (QoS)

constraints over a “sustained period” then there is a bottleneck and the

VM is relocated to another machine with more resources available. The

distinctive part of this work is the heuristic used to understand the trends

in VMs’ behavior. For each resource there are two derived metrics calcu-

lated over a sliding time window: distribution of the value and raw time

series. The distribution is used by the migration manager “to estimate

peak resource requirements and provision accordingly”. Time series show

if a resource utilization rises, falls, or remains steady and they are used by

the so called “hotspot detector” that drives the decisions to move the load

from highly utilized servers to servers with lower load.

Another technique is tailored to profile and consolidate databases [27].

Many database are hugely over-provisioned in terms of CPU and memory.

Due to the aggressive caching performed by modern database engines it

is very hard to estimate the real memory requirements for a database.

The performance estimation is done by creating an artificial probing load

that gradually increases the memory consumption and reduces the memory

available to the real workload. As soon as the database noticeably slows

26

CHAPTER 2. STATE OF THE ART 2.1. MONITORING...

down we can conclude that the minimum efficient memory footprint is

reached and the memory occupied by the artificial workload is the memory

the database does not really need to run efficiently. The required CPU

timeshare is calculated as the sum of individual timeshares of each database

as if they were running alone. The required disk bandwidth is estimated

from an empirical model based on multiple synthetic tests. The average

probing overhead is claimed to be just 5%. The technique is aimed at large

databases running directly on hardware; load balancing is done by moving

tables between the databases.

Chopstix [19] is a Performance Monitoring Unit (PMU)-based tool for

applications profiling. It has a traditional three-phase architecture (collec-

tion → aggregation → analysis) with one distinctive feature: the perfor-

mance sampling is probabilistic and done in adaptive intervals. That is,

code functions that have less samples are more likely to be sampled [54].This

greatly reduces the overhead of profiling and the size of collected data by

reducing the sampling rate for the functions that already have a lot of

samples.

In [31] researchers studied the possibility of predicting performance

degradation using regression trees. They first analyzed the correlation

between performance counters and the level of interference. This let them

to drastically reduce the number of features: from 340 down to 19. Then

they used WEKA [38] to build the regression tree. The tree was used for

interference prediction of previously unseen workloads. The model was

tested on two platforms (Intel and AMD) and showed the absolute error

below 20% on the 80th percentile.

The training set needs to resemble the behavior of cluster applications or

estimations will not be accurate. The model warns if two or more features

are out of the training range, the model yields an error and the application

is considered as so that not enough covered by the training set.

27

2.2. PERFORMANCE MODELING CHAPTER 2. STATE OF THE ART

In [32] authors proposed a hardware modification suitable for measur-

ing performance degradation in Simultaneous Multi-Threading (SMT) en-

vironment. They upgraded PMU of DEC Alpha CPUs to categorize CPU

cycles into three types: base (normal execution), miss event (cache misses

and branch misprediction) and waiting (execution stalls). They also esti-

mated the increase in cache misses due to resource sharing. The result were

evaluated in SMTSIM simulator and showed average prediction errors of

7.2% and 11.2% for two- and four-thread SMT respectively. Unfortunately,

modification of hardware is expensive, and such proposals rarely have their

way into production.

2.2 Performance Modeling

Performance estimation tools for computing systems majorly fall into two

categories: high-level models and precise cycle-accurate simulators [55].

The latter category provides nearly exact results at the cost of speed and

complexity. Flexible simulators like [18] can not only predict the actual per-

formance of the tasks but also give a hint concerning the bottlenecks. How-

ever, simulation speed is a limiting factor. Execution inside fully fledged

circuit simulators is too slow, making this technique useless for on-line

performance prediction in cloud environments.

High-level models do not try to simulate the behavior of processors.

The core of such systems is either an empirical or an abstract model (or a

group of loosely coupled models) based on observations. High-level models

neither interpret nor execute programs: they operate on traces and perfor-

mance data obtained trough the normal execution of the programs. They

try to predict the overall performance based on the past experience and

interaction patterns that are mapped on the model parameters.

As an example of high-level models, the early work [82] proposed a

28

CHAPTER 2. STATE OF THE ART 2.2. PERFORMANCE MODELING

queueing network model of the memory architecture of CPUs, which was

suitable for some classes of tasks.

Another simple performance model dedicated to threading applications

and taking into account NUMA topology was proposed in [92]. The model

shows a mere 15% error in general, which already enabled predictive man-

agement.

The same authors in [91] explored the effects of dynamic page migration

and its applicability for Gaussian 3, a multi-threading chemistry compu-

tational tool, with a similar model.

A model that tries to predict the performance of threading applications

and whose goal is the optimization of both thread and memory allocation

is presented in [16], but the model goal is not on-line prediction, rather

it is off-line understanding of different NUMA implementations and their

threading performances.

The work presented in [11] discusses a hierarchical model used in Java-

Symphony, a high-level framework for parallel and distributed systems pro-

viding transparent access to remote data as if the data were local. It pro-

vides means and tools to build a hierarchical memory model that includes

not only local resources (processors, memory bus, interconnections) but

remote resources (remote machines and clusters) as well.

In general, all modern task schedulers are aware of data locality, CPU

caches, and NUMA domains. For instance, Linux attempts to calculate the

performance penalties for task migrations and memory allocations outside

the current NUMA domain. This mechanism is usually tunable to ac-

commodate different hardware systems, but does not contain a self-tuning

feature.

A novel method of memory allocation is presented in [57] (again for

NUMA systems). Usually the memory is allocated during the first access

(delayed or lazy allocation). However, the first access is often done from the

29

2.3. TASK-AWARE SCHEDULING CHAPTER 2. STATE OF THE ART

initializing thread and the rest of the time the data is accessed from another

thread possibly in another domain. The developed algorithm detects such

cases and moves the data to the closest possible domain.

Thus, a large body of work exists on performance evaluation and perfor-

mance impairments due to locality violation, unwanted tasks interaction,

etc. However, a systematic study of how these performance impairments

can be predicted and how they are influenced by different hardware is miss-

ing and this is exactly the kind of tools that are needed for the management

of large, heterogeneous facilities supporting cloud computing.

2.3 Task-aware Scheduling

In [73] authors present an interesting approach to optimize scheduling of

multithreaded programs that extensively use shared memory. They found

that there are cases when Linux cannot handle big shared data structures

efficiently. It was proposed to split the load between multiple OS instances

so each of them would be in charge of just a small portion of shared mem-

ory. The optimization requires multiple OSes, a modified Xen hypervisor,

and applications statically linked with a small helper library. The key ad-

vantage of the technology is that, thanks to virtualized system calls and

memory management, one process may span across multiple OSes. The

resulting structure is called SuperProcess, and it is supervised by Virtual

Machine Monitor (VMM). VMM manages system calls (including file sys-

tem that appears to be transparently shared) and memory management

so that all processes that form SuperProcess have a consistent view to the

resources. The optimization framework was tested on two machines (16

core Intel and 48 cores AMD) with reported average speedups of 1.7x and

4x under full load.

REEact, an execution manager that cooperates with programs, was pre-

30

CHAPTER 2. STATE OF THE ART 2.3. TASK-AWARE SCHEDULING

sented in [83]. Cooperative programs inform the manager about resource

policies they want and the manager dynamically adjusts their execution

accordingly. Apart from CPU and memory, tracked resources include tem-

perature, frequency, number of active threads or even memory prefetching.

Such a rich set of monitored resources allows the manager to define mul-

tiple global goals, such as maintaining the node power or cooling budget

or aiming at best power efficiency. Programs may request more threads

to be spawned when there are spare resources or adjust CPU limits ac-

cording to the changing load. It was also shown that disabling prefetching

when it does not help can save up to 12% of energy with speedup up to

8% comparing to when it is always enabled. The speedup by prefetching

was determined by comparing the system performance with and without it

(“start and stop” technique). The manager showed less than 3% overhead,

worked on Linux and was evaluated on x86 and SPARC.

In [41] the authors studied two options for application scaling: more

threads vs processes. The study performed on Lighttpd webserver and an

eight-core system. It was found that, depending on the number of active

cores, these approaches produce different results and none is the winner in

general. Threads allow for some memory savings because they share com-

mon data. But for this reason the performance degrades significantly when

they spread over multiple NUMA domains: a) processors have to keep

shared data in sync, and b) access to non-local data is much longer [81].

The best results are achieved by the hybrid approach when every CPU

runs its own threaded instance of application.

However, there might be a potential issue with the experimental setup.

It was spawned 128 processes per CPU core to fully load the system. Such

a big number of active processes may indicate that the bottleneck was

not related to CPU or memory. Increased latency could be caused by

31

2.3. TASK-AWARE SCHEDULING CHAPTER 2. STATE OF THE ART

task switching, cache displacement and longer scheduler queues1. For this

reason high-load systems avoid spawning too many processes (and 8 ·128 =

1024 processes is a bit too much for an eight-core system).

ReSense [28] optimizes tasks placement according to their memory re-

source consumption. It has two phases, offline and online, and uses perfor-

mance counters to estimate usage of memory bus and caches, this is done in

isolated environment on the target platform (offline phase). Then sensitiv-

ity score is derived for each application. During the online phase ReSense

optimizes task placement according to their sensitivity score. The opti-

mization is to be repeated when the number of active threads is changed.

The strong point of this work is the support of multithreaded programs.

The proposed method also differentiates two levels (types) of resource con-

tention: between threads of the same application and between different

applications.

In [78] authors clustered threads based on their data sharing. If threads

frequently access the same memory (at L2 cache-line granularity) and run

on different CPUs they are to be placed together. But only if the CPU stalls

are above the threshold, otherwise data sharing is considered a non-issue.

Access patterns were detected with PMU counting for L1 data misses that

were satisfied by remote L2 and L3 caches. The optimization could reduce

sharing by up to 70% on the Power5 platform. The performance boost

was more moderate – up to 7%, mainly due to the Out-of-Order (OoO)

execution and thick inter-chip links.

Zhuravlev et al. [97] developed a “contention-aware scheduling” algo-

rithm that balances miss rates among the Last-Level Caches (LLCs). The

balancing was done according to estimated mutual interference via the

cache. They evaluated six different approaches for interference estimation,

1Although the modern Linux scheduler CFS uses red-black tree instead of plain queues ([88]) the

reasoning is still valid. The tree does not eliminate latency, but majorly reduces latency spikes

32

CHAPTER 2. STATE OF THE ART 2.3. TASK-AWARE SCHEDULING

the most promising was based on stack distance profiles [24]. Unfortu-

nately, due to the implementation difficulties this algorithm was not used

for online scheduling. They used heuristics based on cache miss rates of

individual applications that also showed good estimations. Reported av-

erage improvement was 20% with up to 50% for individual applications.

The scheduler showed to be good in reducing performance variation be-

tween different program executions. The best improvement was observed

when memory intensive applications neighbored with non-intensive.

Cache Coloring (Partitioning)

These techniques are a little bit apart from what we are doing, but they

serve the same purpose: optimize data access in multicore environments.

Therefore, it is worth mentioning them.

Common Instruction Set Architecture (ISA) do not allow for cache con-

trol overriding, i.e., a program cannot tell the CPU the importance of

different pieces of data. A not-so-uncommon situation is when live data is

constantly evicted while access-once data may be held for longer. This is

because cache metadata (cache tags and flag bits) may not have enough

information to understand complex data access patterns. Notwithstanding

that, knowing how the CPU uses caches a programmer may enforce desired

cache store policy by placing data in specific addresses.

The problem comes from the fact that continuous addresses in virtual

memory are not continuous in the cache [40]. This means that adjacent

virtual pages are not adjacent when cached and they may even point to the

same place in the cache. This leads to underperformance of the cache be-

cause a) some cache lines may be less used than others; b) some cache lines

may be overwritten too frequently; c) two applications may fight for the

same cache lines. This can be avoided by ensuring that continuous virtual

addresses are mapped to continuous virtual addresses. Furthermore, it is

33

2.3. TASK-AWARE SCHEDULING CHAPTER 2. STATE OF THE ART

possible to partition the cache between the tasks so they will not overlap

in the cache. A few works that tackled this issue.

In [77] authors introduced an OS-level cache partitioning. It was done

through a modified process of physical page allocation that required no

changes in applications. The algorithm managed L2 cache on IBM Power5

and gave up to 17% speedup. The cache was not divided into equal por-

tions, but dynamically partitioned according to the needs of applications.

To achieve this, the performance curves (instruction stalls and L2 miss

rates vs partition size) were obtained for every target process. Then each

process was given a piece of the cache to minimize total (system-wide)

instruction stalls. The cache could be partitioned up to 16 equally-sized

blocks because the target CPU uses the last 4 bits of the page address to

determine the data location. It was observed that most applications are

comfortable with just two blocks (256KB) of L2 cache. This is where the

speedup came from: only the applications that could really benefit from

larger portions of the cache were given them. The run-time performance

statistics was obtained with performance counters.

There are some inherited problems peculiar to these techniques. First,

different CPUs have different cache configurations, algorithms must adjust

to the running hardware. Second, the CPU’s own resource planners may

interfere.

Another possible solution would be to override cache control and steer

caches from software ([17, 25, 39]). But as of now none of the most common

arctitectures (x86, ARM and MIPS) implements this. Therefore we do not

mention these works.

34

Chapter 3

Modeling Tasks Inter-Core

Interference

3.1 Introduction

The first step to solve a problem is to recognize it, and devise a first,

simple conceptual model that represents it. Inter-core interference has

been recognized as a problem in computation since many years [48, 90,

23, 30, 92, 82], but very often either disregarded or dismissed as a minor

problem, compared to others [47, 72, 80, 33]. We have discussed the state

of the art on data-center management and we have also discussed some

works that do represent in some way inter-core interference, but we think

a more specific model is needed.

This Chapter introduces a simple, first order model that captures the

influence of one task running on a core on another task running on another

core. Advanced modeling techniques like [22, 8, 61] can be used in future

works to refine the model once the key features of interaction are better

understood with simple models.

In contrast to more complex full-featured simulators like [18], our model

does not require a complete knowledge about CPU internals and, hence,

it is more general and simple to apply. The model answers to two major

35

3.1. INTRODUCTION CHAPTER 3. MODELING...

questions: i) how a given set of tasks performs simultaneously, and ii) what

tasks are better neighbors one another.

The contribution of this Chapter is thus twofold. First of all, we show

and highlight to what extent tasks running on different cores of the same

CPU can affect each other performance, casting light in a phenomenon

that is qualitatively well known, but quantitatively largely ignored in data

center management. Second, we analyse to what extent a simple model

that is suitable for on-line training and tuning can be used as a prediction

tool to enhance CRM systems.

The remaining is organized as follows. Sect. 3.2 introduces the problem

with some initial and simple measures of performance and efficiency and

introducing our terminology. Sect. 3.3 contains the major contributions,

formalizing the problem and describing the behavioral model. Sect. 3.4

describes the metric we use to evaluate models of performance prediction.

Sect. 3.5 presents methodology we use for the model validation. Sect. 3.6

provides a deep analysis and discussion of the results. Sect. 3.7 describes

how the parameters of the model can be obtained and Sect. 3.8 concludes

the chapter summarizing the contribution.

3.1.1 The Benchmark Programs

Before going further it is worth describing benchmark programs we use for

experiments. For the sake of convenience, we describe the whole set of

benchmarks present in the thesis. In this Chapter only SDAG, SDAGP,

MATRIX and MATH are used (described below).

The choice of benchmarks was not random. To make our studies more

comprehensive, we chose programs of different and distinctive classes with

different memory footprints, cache-awareness, utilization of memory band-

width and CPU arithmetic units. Here they are:

1. MATRIX: a program performing matrix multiplication of randomly-

36

CHAPTER 3. MODELING... 3.1. INTRODUCTION

generated square matrices. It is based on Basic Linear Algebra Sub-

programs (BLAS) library – an industry standard for such kind of

computation. BLAS takes roots from late 1970-x when first specifi-

cations were published.

We used to use a quite trivial Python script with some NUMPY

routines (another golden standard for such kind of computations)

but it showed great variability in results due to intensive garbage

collection, randomised data placement and other factors we could not

account for. So we replaced NUMPY with BLAS rewrote program

in C.

2. SDAG: a machine-learning program from natural language process-

ing domain [70]. The program uses Support Vector Machines (SVM)

to build compressed syntactic trees from text. It written in C and

uses state-of-the-art processing techniques and manual optimizations

allowing it work very fast. Particularly, the memory layout is very

cache friendly.

3. SDAGP: a machine-learning program from [70]. It mostly resembles

the previous one, but with one difference: it does not attempt to split

the training set into smaller chunks for parallel processing, the data

processed in whole. For the algorithm it is not a big deal, but for

the CPU this means much bigger active dataset. As a result, there

is much higher pressure on caches and the memory bus.

4. BLOSC: a high-performance compression library [12]. Modern CPUs

can greatly outperform memory and this is not what can be easily

fixed. One potentially good approach is to use data compression.

In a multi-core system it is often feasible to dedicate one-two cores

for compression and data delivery while other cores access readily

available data from CPU caches. This approach increases effective

memory bandwidth by the compression ratio. Our benchmark script

37

3.1. INTRODUCTION CHAPTER 3. MODELING...

is a simple program the sequentially compresses and decompresses

3e6 numbers (of type float64) evenly distributed between 0 and 100.

5. FFMPEG: a set of libraries and programs for decoding, encoding

and re-encoding multimedia streams. It is one of two tools (another

one is GStreamer) extensively used for video processing. If an appli-

cation does something with audio or video, chances are one of these

libraries is used. As a benchmark we used slightly different scenar-

ios. For this Chapter it was a transcoding of a 1280X720@25Hz video

(obtained from a camcoder) to a higher compression (lower quality).

For Chapter 4 and Chapter 5 we scaled FullHD trailers down to 720p

(Terminator 2 and Avatar trailers correspondingly).

6. NGINX: (pronounced as “engine x”) a very popular webserver that,

as of November 2015, serves 27.9 millions of sites [7] all over the

world. It uses asynchronous architecture and heavily tunned for

performance. With NGINX a single machine (though a powerful

one) can handle hundreds of thousands simultaneous connections

with some tens of thousands active. Typically, it is used as a reverse

proxy for slow applications or a load balancer.

7. MATH: a small ad-hoc C program performing basic integer com-

putations. Ages ago, when floating point computations were expen-

sive, people used to use so-called “fixed-point arithmetic” because

it was much faster. Nowadays it less likely to find an application

that would do intensive integer computations because floating point

is fast enough for most applications (and even if not it is possible

to use GPU for acceleration). Yet, to have a comprehensive set of

benchmarks, we decided it is worth including a program that would

do basic arithmetic with integers and just it, nothing else.

8. INTEGER: same as MATH, we renamed this benchmark in later

works so the name better describes what it does.

38

CHAPTER 3. MODELING... 3.1. INTRODUCTION

9. WORDPRESS: a popular web publishing platform serving more

than 60 millions websites [26]. It is not the only of its kind, but it

is the most used one. Technically it consists of two big components:

the application code and the database. As database we used MySQL

because it is the most popular choice for such kind of services. The

benchmark is just to access the main page. Nonetheless this cre-

ates serious load for the server (mostly by PHP, much less by the

database). We did not used any PHP accelerators or any caching,

this a pure “dynamic” load.

10. PGBENCH: a benchmark for PostgreSQL. The presence of this

benchmark is very important for two reasons. First, SQL databases

are very popular for data storage and (online-) processing. Having

at least one of such solutions is essential for any thorough server

performance evaluation. Second, PostgreSQL is the leading open

source solution when it comes to performance and reliability of large

installations. Any other relational open source database, should it

be MySQL (and its derivatives), SQLite or something, just does not

have so much all at once. We chose PGBENCH as a very represen-

tative benchmark of what people do with databases “on average”:

reads, updates, deletes, all wrapped in transactions. Sure enough,

the TPC-B (the standard this benchmark implements) is quite old

(1990), but more sophisticated successors emulating more complex

scenarios (like, how a bank works) would not make it any better for

our purposes. We run the benchmark in 20 concurrent threads, a

more or less typical value for PostgreSQL on loaded servers.

39

3.2. PROBLEM STATEMENT CHAPTER 3. MODELING...

3.2 Problem Statement

One of the most important role of a CRM is to minimize the amount of

equipment to be provisioned (i.e., maintained active) in order to maintain

the SLA (Service Level Agreement) with customers. This is achieved by

dynamically assigning tasks to hardware resources, i.e., consolidating the

load into a smaller number of nodes when the system is over-provisioned

and increasing the resources when it is approaching overload. In both

operations the capability to predict performance is fundamental to achieve

efficiency and minimize reconfigurations.

Most CRM algorithms assume that the load of nodes is fully determined

by resource requirements of the tasks, and the performance scales linearly

with the load; in particular tasks running on different cores are considered

independent. If, for instance, two tasks require one CPU core each, the

CRM can put them together on any node having two cores free, assum-

ing they will run without interaction. In the next section we show this

assumption is wrong.

3.2.1 A Simple Experiment

As discussed in the introduction, most CRMs today consider tasks assigned

on different cores and CPUs independent one another: is this assumption

reasonable?

let us set up a simple experiment with a single two-core machine: take

four tasks, run them in the cluster (two tasks per core) with different

allocations, and measure the joint performance. The choice of the four

programs (SDAG, SDAGP, MATRIX and MATH) is basically random,

but we had some attention to select them with different characteristics, at

least to a first heuristic examination. The selected programs are described

in Sect. 3.1.1 together with others that we use for the model validation.

40

CHAPTER 3. MODELING... 3.2. PROBLEM STATEMENT

A1 A2 A3
Task Allocation

0

20

40

60

80

100
P
e
rf

o
rm

a
n
ce

SDAG
SDAGP
MATRIX
MATH
Average

Figure 3.1: Performance of four benchmark programs in three possible allocations A1, A2

and A3.

We consider all the three possible assignments (distributions) of tasks to

cores: as cores are identical the other three permutations of four tasks in

two cores maps to the first three.

The results are presented on Fig. 3.1. The performance is normalized

with respect to the same tasks running alone on the computer. As we see,

the performance never reaches the maximum even in the best distribution.

Indeed, the task assignment has a huge impact, lowering the average per-

formance from roughly 95% to about 80%. What is worse is the fairness

with one program (MATRIX), whose performance is nearly halved in one

assignment.

There are many reasons for such a bad behavior, but they can mainly

be ascribed to the shared parts of the cores and CPU. For instance, L2

cache is usually shared between each pair of cores; the latest generations of

AMD processors have only one FPU per two-cores package; memory bus,

41

3.3. INTERRACTION MODEL CHAPTER 3. MODELING...

instruction decoders and other circuits are often shared to increase their

average utilization and to reduce the silicon area occupied. By assigning

two tasks to the neighbor cores we can create a hidden bottleneck due to

the shared usage of CPU subsystems (or to the other extreme speed-up

the execution if the tasks share some data; more on this in Sect. 3.6).

A discussion on its own would be needed for hyper-threading and the

related technologies, but this is beyond our scope.

3.3 A First Order Interaction Model

As proven by our simple experiment, the “load” of a cluster is not simply

the sum of the loads of each running task as if it were alone, but it must

take into account also the overhead induced by interaction of the tasks. We

can treat the overhead as an additional load for the sake of performance

prediction. With this simple observation in mind we derive a simple be-

havioral interaction model with the assumption and notation introduced

hereinafter.

Assumptions

We assume that the overhead is present only when tasks are actually run-

ning in parallel, and we are interested in the steady state performance,

i.e., we consider tasks, as for instance video encoding, that run for long

time. We also assume that the dominant interaction is pairwise, i.e., that

if multiple tasks run in parallel, their overhead is equivalent to the sum of

the overheads of the tasks running in pairs. We expect this assumption to

be a non marginal approximation, and to lead to an overestimation of the

overhead.

42

CHAPTER 3. MODELING... 3.3. INTERRACTION MODEL

Notation

We define the task load Li = L(Ti) on a core as the time share required

by task i on the core. The per-core load is the sum of loads created by all

tasks running on that core and is in the range [0, 1]. The number of cores

is N . We define the system load Lsys as a sum of loads of all CPU cores in

the system; it is in the range [0, N]. The pipe notation Ti|Tj means that

tasks Ti and Tj are running on different cores.

Let’s consider the following scenario. We have two tasks A and B run-

ning on CPU cores 1 and 2 and exclusively occupying all CPU time. As we

noticed, the joint performance in this case is less than what normally ex-

pected, and thus we have an overhead that can be expressed as a parasitic

load Loh
A|B, leading to a system load that can be expressed as

Lsys(A|B) = LA + LB + Loh
A|B (3.1a)

Loh
A|B = βA|BLALB (3.1b)

where βA|B expresses the level of interference of the tasks A and B as

a function of the product of each task load. Remember that loads are

represented by time shares, so we can imagine that the product of the time

shares of two tasks represents the time during which the tasks actually

interfere as they are running together on the cluster.

Instead of introducing β-s we could extend the vector of resource usage

of the tasks with more components (like FPU and ALU utilizations) to

tackle the problem. There are two reasons for not going this way. The

first reason is the fact that the utilization of individual low-level computer

components often cannot be measured. The second reason is that taking

into account so much data is difficult as we already have a lot of parameters

like amount of needed CPU resources, required memory size, storage space,

reserved network bandwidth and other parameters. Adding thirty or forty

more parameters would greatly complicate the decision process of the CRM

43

3.3. INTERRACTION MODEL CHAPTER 3. MODELING...

which is already quite complex [80].

The overhead function can be decomposed to represent the performance

penalty for individual tasks:

Loh
A|B = βA→BLALB + βB→ALBLA (3.2)

This is useful, for instance, for real-time systems when we want to know

how high-priority tasks are affected by the other non real-time tasks.

Formula (3.2) can be transformed into a matrix form, which will come

very handy in the generalization of the model to multiple tasks and many

cores. The tasks running on core i are represented by the vector Ti of loads

they generate. The values of the vector components are in range [0, 1] with

0 meaning that the corresponding task isn’t scheduled on this core and 1

meaning it is using the core all the time. These vectors are sub-stochastic,

meaning that the sum of their components is less or equal to 1. The

matrix form of (3.2) for a two-core architecture two tasks A and B is:

βA→BLALB =
∣∣∣LA 0

∣∣∣(βA→A βA→B

βB→A βB→B

)∣∣∣∣∣ 0

LB

∣∣∣∣∣ (3.3a)

βB→ALBLA =
∣∣∣0 LB

∣∣∣(βA→A βA→B

βB→A βB→B

)∣∣∣∣∣LA

0

∣∣∣∣∣ (3.3b)

or in a compact and more general form:

Loh
1→2 = TT

1 BT2 (3.4)

where B is the matrix of β-coefficients, T1 and T2 are the vectors of the

tasks running on cores 1 and 2 respectively and Loh
1→2 is the overhead that

all tasks on core 1 impose the tasks on core 2.

Diagonal elements (βA→A, βB→B, . . .) are of special interest. They tell

us how a process affects the same processes running on another core which

is a typical situation in many cases like web-servers, databases and other

44

CHAPTER 3. MODELING... 3.3. INTERRACTION MODEL

cases. Knowing the overhead and using Amhdal’s law [15] we can estimate

the scalability limitations of the system.

In order to generalize the model let’s consider the case of two cores and

three programs (A,B,C); on the first core one copy of each program is

running, while on the second core only the programs B and C are running,

hence we have (TT
1 = |L1

A L
1
B L

1
C |T) and (TT

2 = |0 L2
B L

2
C |T). The program

A isn’t launched on the second core and therefore its time share is zero in

T2. The overhead created by core 1 tasks on core 2 is:

Loh
c1→c2 = βA→BL

1
AL

2
B + βA→CL

1
AL

2
C

+βB→BL
1
BL

2
B + βB→CL

1
BL

2
C

+βC→BL
1
CL

2
B + βC→CL

1
CL

2
C

= |L1
A L

1
B L

1
C |

βA→A βA→B βA→C

βB→A βB→B βB→C

βC→A βC→B βC→C

∣∣∣∣∣∣∣

0

L2
B

L2
C

∣∣∣∣∣∣∣
= TT

1 BT2

It is easy to see that (3.4) is a general representation of the overhead

imposed by one core on another, regardless of the number of tasks per core.

The description of the total overhead in an N-core CPU is given by the

sum of all the overheads imposed by tasks of every core on every other

core:

Loh
sys = Loh

c1→c2 + Loh
c1→c3 . . .+ Loh

c1→cn

+ Loh
c2→c1 + Loh

c2→c3 . . .+ Loh
c2→cn

+ Loh
cn→c1 + Loh

cn→c2 . . .+ Loh
cn→cn−1

=
N∑
i=1

N∑
j=1
j 6=i

TT
i BTj

Finally we can estimate the system (CPU) performance as the effective

load in terms of time shares by subtracting the overhead from the ideal

45

3.4. PERFORMANCE MEASURE CHAPTER 3. MODELING...

system load:

Lsys =
N∑
i=1

Ti −
N∑
i=1

N∑
j=1
j 6=i

TT
i BTj (3.5)

3.4 Performance Measure

The model we are proposing is best suited for persistent tasks like databases

or webservers. Users are normally interested in completion or response

times, but these metrics are hard to measure for persistent tasks. For

this reason we resort to use statistics provided by hardware performance

counters (HPC). HPC are special registers that collect different kinds of

statistics with little to no overhead. They are primary used to ease program

debugging [93] and profiling.

3.4.1 The Metric

The metric we use is the number of instructions executed per clock cycle

Ic. It is important to note that number of instructions does not match

the number of cycles. There are several reasons for this. The first two

reasons are instruction-level parallelism and pipelining. A core can execute

several independent instructions at the same time and pre-fetching enables

pipelined execution if the code does not branch.

The third reason is data availability. Comparing to CPU clock rate the

memory subsystem has huge delays. A CPU core running at 3Ghz has a

0.3ns clock cycle while a typical random-access delay for memory is 40-

60ns. This means that in case of unavailability of data the core would stall

and loose a lot of cycles waiting for data to be fetched from the memory.

As resources like memory bus, FPU, ALU, caches are shared between

several cores to save silicon space, if a resource is busy it cannot be used

46

CHAPTER 3. MODELING... 3.4. PERFORMANCE MEASURE

by another core. This leads to resource starvation that lowers the Ic each

task can achieve.

3.4.2 Accuracy and Overhead

The most important feature of HPC is that the accuracy does not depend

on OS and measuring tools [86]. Unfortunately, as any measure, HPCs are

not exact and contain a degree of uncertainty. Furthermore, the actual

accuracy can depend on the number of enabled counters [94].

There are many sources of error, most noticeable contributors are hard-

ware interrupts. With each interrupt the CPU core has to restart the

execution of the current process from the point it was stopped to serve the

interrupt. HPCs do not know exactly what instructions were aborted and

this can generate a small overestimation of performances (overcount), as

the same instruction is (partially) counted two times: before and after the

interrupt.

However, the level of uncertainty is low, usually below 1%, and in many

cases overcounts can be compensated [86]; this precision is enough for

the most of practical uses. Ad hoc measures we performed before the

performance measure campaign confirm that counting both system-wide

and per-task statistics for two processes at the rate of 10 samples per second

introduces less than 1% of overhead: a level we can consider negligible for

the purposes of our research. Furthermore, at least on the Core 2 Duo

machine, where we run this additional test, the performance measure for

a task is stable regardless of the background core load: the deviation of Ic

is less than 0.3% under any background activity.

47

3.5. MODEL VALIDATION CHAPTER 3. MODELING...

3.5 Model Validation

The validation of the model consists of two steps. The first step is to train

the model, i.e., to obtain the coefficients used in matrix B in (3.5). This is

done through the multiple execution of each test program. The first time

a task A is executed with no background activity. This gives us the ideal

performance of task A. Then task A is launched together with another task

(let’s say task B) on another core. The difference in performance gives us

the level of overhead that task B creates for task A. The process is to be

repeated with all tasks in all combinations. For validation purposes we

simply take this brute-force approach, but in Sect. 3.7 we shortly discuss

how to reduce the cost of this cumbersome operation.

As long as only two tasks interact one another, we can expect that

the model yields exact predictions; however, in real clouds there will be

multiple tasks interacting together, thus the goal and second step of the

validation is comparing the accuracy of our model with the naive approach

that scales performance linearly without accounting for the overheads. To

do this we launch randomly generated sets of tasks of specified sizes and

compare the naive prediction, our model, and the real performance mea-

sured by Ic.

To simplify the evaluation process we perform the measurement cam-

paign running the tasks directly on Ubuntu, but the model can also be

used with any kernel-visible task supporting performance counters. This

includes widely deployed virtualization technologies like Xen, KVM and

linux containers.

3.5.1 Hardware Configurations

The right choice of equipment is very important for model validation: the

machines used in experiments have different characteristics to ensure gen-

48

CHAPTER 3. MODELING... 3.5. MODEL VALIDATION

erality. We used the following hardware configurations from different ven-

dors (Intel and AMD) of different generations with different number of

CPU cores:

1. Intel E7600 (2 cores), 8GB RAM

2. Intel W3670 (6 cores), 24GB RAM

3. AMD FX-8120 (8 cores), 16GB RAM

We used Ubuntu Server 12.04 AMD64 OS with all services and back-

ground activity stopped. All tests were performed under the full load of

the CPU cores. Test programs were launched at least once before mea-

surements to warm-up the caches. All dynamic performance features like

TurboBoost were stopped because they violate the model’s assumption of

uniform CPU configuration when all cores have the same parameters and

equal access to hardware resources; it is possible to extend the model with

the coefficients representing the frequency scaling. For the same reason

the hyper-threading technology was disabled during the tests, though it

is possible to address this issue with hierarchical model like it was done

in [92].

The per-core assignment of the tasks were ensured by explicitly set CPU

affinity through the sched setaffinity system call.

3.5.2 Measurement Methodology

For each measurement the involved tasks were run 30 seconds for warm-up

and then 180 seconds for measurement. In the results reported here we al-

ways launched the same number of tasks on each core; however, additional

tests with different number of tasks on different cores haven’t shown any

difference in performance. We also checked the configuration when only

six out of eight cores on AMD machine were loaded, the model still show

the same good performance as for the tests with all cores loaded.

49

3.6. RESULTS AND ANALYSIS CHAPTER 3. MODELING...

The performance is measured by launching the tasks with the perf util-

ity and averaging results across 10 runs. The system-wide statistics, as

recommended by documentation, is measured with the

perf stat -a -e <counters> sleep Ns

command. On Intel CPUs all available performance events were engaged in

measurements for further analysis. On AMD machine, due to the smaller

number of available hardware counters [13], only cycles, instructions and

cpu-clock events were counted. For machines with different possible cache

prefetch settings the measurements were repeated for each setting sepa-

rately (including the computation of model parameters).

We compared algorithms by the relative root mean square error Rrmse

on the performance Ic defined as

Rrmse =

√√√√1

n

n∑
i=1

(
Ipred
c (i)− Imeas

c (i)

Imeas
c (i)

)2

(3.6)

where n is the number of runs. Lower Rrmse means better precision.

3.6 Results and Analysis

First of all, we compare the global results (in terms of Rrmse) of our model

as compared to the naive linear predictor for the three hardware config-

urations. Next, we will delve deeper into the experiments and analyze in

detail the interaction of different programs.

Table 3.1 reports Rrmse for Intel E7600, the two-core machine. Besides

power saving features, the machine does not have any extra performance

settings that would affect results. Table 3.2 reports results for Intel W3670,

the six-core machine; in this case we considered different BIOS settings.

The left half of the table refers to BIOS settings that enable the Hardware

PreFetcher (HWP) and Adjacent Cache-Line Prefetcher (ACLP); these

50

CHAPTER 3. MODELING... 3.6. RESULTS AND ANALYSIS

Table 3.1: Rrmse accuracy of our model compared to the linear prediction in different test

scenarios for the two-core E7600 CPU.

Tasks per core 1 2 3 Overall

num. of samples 36 210 210 456

Our model 0.016 0.024 0.024 0.021

Lin. pred. 0.233 0.178 0.170 0.194

Table 3.2: Rrmse accuracy of our model compared to the linear prediction in different test

scenarios for six-core Intel W3670 CPU with enabled and disabled hardware prefetcher

(HWP) and Adjacent Cache Line Prefetch (ACLP).

Cache control HWP and ACLP enabled HWP and ACLP disabled

Tasks per core 1 2 3 Overall 2 3 Overall

num. of samples 55 50 50 155 175 175 350

Our Model 0.058 0.060 0.050 0.056 0.016 0.013 0.015

Lin. pred. 0.296 0.298 0.290 0.294 0.117 0.117 0.117

technologies pre-populate the CPU caches with data1. The right half of

the table refers to BIOS settings with HWP and ACLP disabled. Table 3.3

refers to the measurements on the AMD CPU. Like the Intel W3670, the

BIOS of the FX-8120 motherboard allows choosing between several values

for cache-control parameter: auto, regular and extreme. This setting af-

fects how much data will be additionally prefetched during the memory

reads. Results in Table 3.3 refer to all three cases.

As we can see from the tables, the accuracy of our model is more than

one order of magnitude better than the simple linear prediction on Intel

hardware and roughly three times better on the AMD 8-cores machine,

and this independently of the number of concurrent tasks per core, even if

the β coefficients have been measured only in the case of a single-task per

core.

1The difference between them is in the logic: ACLP just blindly fetches two cache lines (128 bytes)

instead of one (64 bytes) whenever CPU reads something from memory, but HWP tries to figure out

memory access patterns. Both options can be activated and disabled independently.

51

3.6. RESULTS AND ANALYSIS CHAPTER 3. MODELING...

Table 3.3: Rrmse accuracy of our model compared to the linear prediction in different test

scenarios for eight-core FX-8120 CPU with different cache control settings.

Cache control Auto

Tasks per core 1 2 3 Overall

Num. samples 165 165 165 495

Our model 0.108 0.112 0.121 0.114

Lin. pred. 0.295 0.302 0.311 0.303

Cache control Regular

Tasks per core 1 2 3 Overall

Num. samples 85 85 85 255

Our model 0.139 0.131 0.134 0.135

Lin. pred. 0.292 0.293 0.312 0.299

Cache control Extreme

Tasks per core 1 2 3 Overall

Num. samples 80 80 80 240

Our model 0.121 0.129 0.132 0.127

Lin. pred. 0.277 0.304 0.313 0.298

3.6.1 Digging Inside the Model

The matrix form we use in the model has the further advantage of easy

task interaction analysis. Thus, it provides a handy tool for a classification

of tasks empowering performance prediction without the need of painstak-

ingly measuring all possible combination of tasks. The parameters of ma-

trix B in (3.5) are directly derived from the performance analysis as the

one reported in Table 3.4, obtained on the two-core E7600 CPU machine.

This matrix shows how tasks affect each other in pair. The numbers are

the performance (Ic) reduction in percentage of the two tasks interacting

on the two cores.

Using the table we can easily recognize the “conflicting” classes. The

tasks hungry for memory bandwidth are the most conflicting, while integer

computations and optimized video encoding are highly parallelizable.

52

CHAPTER 3. MODELING... 3.6. RESULTS AND ANALYSIS

Table 3.4: Performance penalty (percentage) for simultaneous task execution on Intel

E7600 CPU.

Task

SDAG SDAGP MATRIX MATH FFMPEG BLOSC

B
ac

k
gr

ou
n
d

ac
ti

v
it

y

SDAG 0.3 8.6 12.1 0.5 1.6 3.2

SDAGP 7.5 21.0 37.1 0.5 4.9 12.5

MATRIX 11.4 25.9 41.8 0.3 7.5 13.0

MATH −1.3 −0.6 −2.7 −0.0 −0.1 −0.1

FFMPEG 1.2 7.1 11.0 0.4 1.4 3.8

BLOSC 7.6 26.4 43.3 0.4 6.6 23.6

Negative values are not measurement errors, in some cases the parallel

execution of multiple processes can even give a small speedup over the

performance of the task alone. Even different processes often share some

memory pages (shared libraries, disk cache, ‘mmaped’ areas and other

resources). This increases the chances for cache hits. Joint execution of

processes also changes the way CPU accesses the memory. Going a bit

ahead, due to the different hardware optimizations like cache prefetchers,

the memory access pattern can greatly affect the overall performance (more

on this in 3.6.4).

Tab. 3.4 exhibits some symmetry, but this is not granted. In Chapter 4

we will see tasks creating more interference are usually more prone to

interference. Hence, a pattern can be noted that task A interferes with

task B in a similar way as B interferes with A. Yet there is not direct

relationship between these two metrics, this best can be seen on BLOSC.

The memory factor dominates in the interference picture; memory sub-

system remains the biggest single bottleneck contributor.

53

3.6. RESULTS AND ANALYSIS CHAPTER 3. MODELING...

3.6.2 The Two-Core Machine

The model is very precise on two cores. This is due to the nature of the

model: it is a second order model and, besides, it was trained for the two-

cores. The main contributor to the average error is SDAGP test. However,

this does not mean that SDAGP makes everything unpredictable, but the

level of uncertainty is higher than with other programs. In all cases with

more than 10% error the smart model still shows much better results than

the naive approach. Both approaches show positive error, i.e., the predicted

performance is higher than actual. Higher cache miss ratio leads to less

precision in general.

3.6.3 Intel W3670: The Six-Core Case

Compared with the two-core case, the performance of our model in a six-

core case is a bit worse as a six-way interaction is more complex. Unlike

the two-core machine, the six-core server is equipped with two mechanisms

that aimed at pre-populating the cache with data. The first is an auto-

matic cache line prefetch technology. If it is enabled, each time the CPU

accesses the memory the next cache line is fetched as well. The second

mechanism is a hardware memory prefetcher. It tries to detect sequential

memory readings and read the data in advance up to the memory page

boundary. Both technologies are aimed at reducing the data access time

and introduce some overhead. It is not granted that the overall perfor-

mance will be higher: the impact depends on the running tasks and how

they are distributed as discussed in 3.6.4.

3.6.4 Effects of Prefetching on Intel W3670

One interesting thing is how the BIOS prefetch settings affect the perfor-

mance. In general it does not hurt, but the maximum effect can be achieved

54

CHAPTER 3. MODELING... 3.6. RESULTS AND ANALYSIS

1 2 3 4 5 6

Num of cores

0.0

0.5

1.0

1.5

2.0

In
st

ru
ct

io
n

s
p

e
r

cy
cl

e

ACLP+HWP

1 2 3 4 5 6

Num of cores

0.0

0.5

1.0

1.5

2.0
ACLP

1 2 3 4 5 6

Num of cores

0.0

0.5

1.0

1.5

2.0
Bare

SDAG SDAGP MATRIX MATH FFMPEG BLOSC

Figure 3.2: The effects of HWP and ACLP on the per-core performance.

only under partial loads. This can be seen on Fig. 3.2. The prefetching can

improve performance only if few cores are loaded, while the performance

under full load is not affected. Yet, up to five out of six cores prefetching

makes positive or mostly-neutral effect on performance. Therefore, it can

be safely enabled. It is also seen that ACLP alone is not really useful

comparing to HWP+ACLP configuration.

3.6.5 AMD FX-8120: The Eight-Core Case

The eight-core AMD FX-8120 CPU seems to behave differently from the

Intel CPUs, but we do not have a clear explanation of whether this is

due to the larger number of cores, or to a different hardware architecture.

In general, we found that performance of this CPU is far less predictable

comparing to six-core Intel W3670.

On this platform our model still performs better than a simple linear

predictor, although the advantage is no more a full order of magnitude,

but roughly a factor of three. The prediction error is reduced to a few per-

centage points from more than 15%, thus it is probably still good enough

for CRM applications; however, more research and experiments are re-

quired to fully understand if this model is accurate enough in general or

55

3.6. RESULTS AND ANALYSIS CHAPTER 3. MODELING...

not. Moreover, we observed that aggressive prefetch settings make the

overhead slightly less predictable. Surprisingly, BIOS cache settings have

negligible effect on the performance if there is only one active task, though

we expected this to be an ideal showcase for memory prefetchers because

bandwidth is not shared between multiple cores and prefetching overhead

is unlikely to cause problems.

3.6.6 Improving the Precision

Though the proposed model shows very good results it can be further im-

proved. Modern CPUs often consist of multiple coupled cores. Neighbor

cores can share L1 and L2 caches, FPU units, instruction decoders and

other circuits. In this case the interaction between two tasks put on the

neighbor cores will be different than between the same tasks assigned to

the “distant” cores. Thus, taking this into account the accuracy can be

improved, obviously at the cost of more complex tuning and of less inde-

pendence of the model from the specific hardware platform.

Another way to improve the accuracy is in increasing the order of the

model. The proposed model considers only first-order interactions, i.e.,

the impairment βA→B caused by one task running on a core on another

task running on another core. It is evident that this can be a good model

for 2 tasks on two cores, but as the number of tasks and cores increases

higher order models would be more accurate. However, a model must be

also simple and usable, so that increasing its order is often not the right

direction. In our case, in ultimate analysis, a task always runs ‘alone’

on the core, due to time-sharing. This means that a proper combination

of first-order interactions should be enough to grab the real performance

reduction, but this refinement is left for future work.

Another possibility is to resort to stochastic models (e.g., Markovian)

which inherently take into account higher orders interaction through the

56

CHAPTER 3. MODELING... 3.7. OBTAINING MODEL PARAMETERS

different moments of the distribution. However, the lack of stochastic

models of the software itself (i.e., tasks) makes this direction, so natural

in other contexts like networking or hardware modeling, not-so-trivial for

the problem at stake.

3.7 Obtaining Model Parameters

Compared to a trivial linear predictor, the drawback of our model is clearly

the requirement of obtaining the β− parameters. However, there are sev-

eral ways in which these parameters can be estimated instead of directly

measured. Especially the possibility of on-line direct estimation with ma-

chine learning techniques is very promising for large-scale CRM manage-

ment. In the sequel we discuss some techniques to obtain the βs.

3.7.1 Direct Measurement

The level of interaction between tasks can be simply measured. We used

this approach to validate the model. It is the most deterministic way and

provides the best result, and it is definitely the way to go for a model

validation. Unfortunately, it requires a lot of possibly long measurements

and in general it does not scale as the number and variety of possible tasks

is practically unlimited. Still it can be useful if the expected outcome

outweighs the inconveniences, and most of all it can be used to tune other

techniques making selected and carefully crafted measurement campaigns.

3.7.2 Task Classification

A direct extension of the direct measurement of each individual β is the

reduction of the tasks space by aggregating them into categories character-

ized by similar interaction levels. In other words, this means answering the

57

3.7. OBTAINING MODEL PARAMETERS CHAPTER 3. MODELING...

question “Are all tasks so different one another to be accounted separately

one by one?” We can introduce broad classes of tasks sharing common

features (e.g., numbercrunching, memory intensive and other classes). The

level of similarity can be “measured”, for example, by looking at the li-

brary and resources the tasks use, comparing the hardware performance

statistics, tracing the system calls and other methods. Tasks classification

in a proper subset of classes will reduce the number of βs to be measured

to a few scores, which is well feasible.

3.7.3 Low-level Resource Utilization

A completely different way can be predicting the βs themselves with a

theoretical/heuristic analysis. A lot of information can be extracted from

performance counters. For instance, modern CPUs expose the level of

utilization of FPU, ALU and rich memory-related statistics. Using this

information we can understand the process activity and make some guess-

work about the level of interference with other tasks.

This road seems more useful for CPU design than for CRM optimization.

3.7.4 On-line Tuning

Finally, a dynamic method can be devised, which is possibly the most

promising. Starting from a coarsely populated B matrix, e.g., with βs com-

ing from tasks classification, a CRM can use machine-learning techniques

to gradually refine the coefficients for each and every task it happens to

handle repeatedly. For newer programs a library-match approach can be

used as initial assumption that is to be corrected later, but even starting

from a null interaction coefficient may work.

58

CHAPTER 3. MODELING... 3.8. CONCLUSION

3.8 Conclusion

In this Chapter we presented an empirical CPU performance model. De-

vised with real hardware and simplicity in mind, it suites cloud manage-

ment much better than the linear prediction, a naive approach used in

most CRMs today. Thus, the usage of this model would greatly increase

the efficiency of clouds. Besides higher precision, this model has two more

advantages. It was made trying to be backward compatible with existing

solutions, so that it can be used as a drop-in replacement for other load

models. The second advantage is its tolerance to the parameters needed

to run. In case some parameters are missing it still will be able to run at

the cost of reduced accuracy: in the worst case it will behave like a naive

linear predictor having all parameters set to zero.

But we can do better than just falling back to linear prediction. It

turned out the interference characteristics of a task or a VM can be “guessed”

by observing its performance counters. This is discussed in the following

Chapter.

59

3.8. CONCLUSION CHAPTER 3. MODELING...

60

Chapter 4

Ranking VMs by their interference

4.1 Introduction

The level of interference between VMs depends on many factors. OS,

libraries, programs and their versions, compilers used to build the system,

hardware, BIOS settings are some of the factors that affect the performance

results. It is difficult to predict how a particular VM will co-exist with other

VMs in a given scenario. The most precise way to understand the loss in

performance caused by a VM is to measure it. A good precision of this

method is on the expense of its complexity – each VM should be executed

with each other VM at least once during the measurement phase. It is

possible for systems with limited number of executed VMs, but becomes

impractical when the number of VMs is large.

Another factor contributing to complexity is the VM diversity: there is a

virtually infinite number of different virtual machines. But are they really

that different in terms of interference? What if we find a simple way to

rank arbitrary VMs according to the interference they cause? Such ranking

may be imperfect, but it will certainly be useful for cloud management.

In this Chapter we present a novel methodology to classify and rank

VMs based on the analysis of Hardware Performance Counters (HPCs).

HPCs accumulate resource access statistics such as the number of time a

61

4.2. METHODOLOGY CHAPTER 4. RANKING...

VM accessed CPU caches or the success rate of the branch predictor. The

main contributions are:

• Development of a methodology for profiling and ranking of VMs to

estimate the level of their mutual interference;

• Evaluation of the methodology on x86-based and ARM-based hard-

ware platforms;

• Analysis of the obtained profiling data to understand which shared

resources are the main contributors to the VM interference.

4.2 Methodology

Fig. 4.1 presents a high-level overview of the ranking process. It consists

of two major phases: learning phase and working (ranking) phase. During

the learning phase the system figures out which hardware counters are

the most important for application profiling and how they are related to

system performance. The obtained knowledge is stored in a database. The

ranking of a previously unseen application is performed by comparing the

profile of a new task with classes from the database.

If it is known which VMs co-exist well and which do not, we can perform

correct placement and schedule their execution properly. But each VM

behaves differently in the presence of other VMs competing for computing,

memory, or network resources: it can run unaffected, degrade or even

increase performance. How to assess and predict VM interference? A

straightforward way would be to launch all the VMs together in pairs and

measure their mutual interference. However, this would take too much

time. A better way would be to profile the VMs individually and then,

based on their profiles, reason how they will interact with each other.

Our goal is to rank VMs based on two parameters of interest – sensitivity

and interference. These parameters could then be used to, e.g., guide

62

CHAPTER 4. RANKING... 4.2. METHODOLOGY

Training Phase Operating Phase

New Cloud
Application

Knowledge
BaseFind

Correlation

Obtain
Statistics

Measure
Performance

Ranking

Obtain
Statistics

Predict
Performance

Classify
A B

A 4 5

B 3 9

Figure 4.1: Ranking process at a glance.

resource allocation and scheduling. Sensitivity is a measure of how the

performance of a given VM is affected by the activity of other VMs. On

the contrary, interference describes how the behavior of a given VM affects

operation of neighboring VMs. As both the sensitivity and interference

cannot be measured directly, we derive their values from the analysis of

HPCs.

4.2.1 Hardware Performance Counters

HPCs are a mechanism for application profiling. HPCs are built-in CPU

circuits designed to collect runtime low-level execution statistics. HPCs

consist of two parts: event detectors and 64-bit registers (counters). Each

time an event occurs the register associated with this kind of event is

incremented.

HPC statistics include the frequency of access to instruction decoders,

63

4.3. EXPERIMENTAL STUDY CHAPTER 4. RANKING...

caches and Floating Point Unit (FPU).

4.2.2 Virtual Machines Profiling

The mapping between interference/sensitivity and the values of HPCs can

be measured through correlation analysis. For this, we first calculate inter-

ference and sensitivity for a small set of VMs. This can be done by launch-

ing all pairs of the VMs and measuring their execution performances. Then

we compute linear correlation by calculating Pearson’s product-moment

correlation coefficient (“Pearson’s r” [59]) between the interference/sensi-

tivity and each of the hardware counters. The Pearson’s correlation was

chosen because it does not require data to have specific distribution (e.g.,

normal) or any kind of dependency. The HPCs with strong correlation are

selected to predict interference/sensitivity values of an arbitrary VM. This

prediction can be done, for example, with regression analysis.

4.3 Experimental Study

Our experiments are executed on a small scale heterogeneous testbed ac-

counting for different architectures, using collection of different benchmark

applications.

4.3.1 Testbed

We use the following equipment:

ARM Exynos – “Odroid-U2” board based on Samsung Exynos-4412

system-on-chip with ARM Cortex-A9 four-core CPU clocked at 1.7GHz.

ARM Exynos has 2 GB of RAM and 8 GB eMMC storage.

AMD FX – board based on an eight-core AMD FX-8120 CPU. The

CPU consists of four two-core blocks, each equipped with 2 MB dedicated

64

CHAPTER 4. RANKING... 4.3. EXPERIMENTAL STUDY

L2 cache. In addition, all two-core blocks share the same 8 MB L3 cache.

In order to obtain stable and repeatable results the dynamic overclocking

is disabled in BIOS. AMD FX is supplied with 16 GB DDR3-1600 RAM.

A CrucialTMM4 Solid State Drive (SSD) with 64 GB is used as a storage.

All measurements are done by “perf stat” command using all relevant

counters reported by “perf list” command.

4.3.2 Benchmarks

Benchmarks are selected to provide a comprehensive comparison of cloud

workloads. The emphasis is given to the real-world programs (FFMPEG,

NGINX, PGBENCH, SDAG, SDAGP, WORDPRESS), although a few

synthetic benchmarks (MATRIX, BLOSC and INTEGER) are present as

well. The complete description of these programs is given in Sec. 3.1.1,

here we briefly describe them for the sake of clarity.

1. BLOSC: a high performance compression library that optimizes

data transfers between CPU and memory;

2. FFMPEG: transcoding a H264 FullHD video into 720p format;

3. INTEGER: integer computations with the four operations;

4. MATRIX: matrix multiplication benchmark based on gsl/blas li-

brary with the size of matrices of 2048*2048; data type is 64 bit float;

5. NGINX: web server benchmark focused on static files [4];

6. PGBENCH: PostgreSQL database stress test [5];

7. SDAG: benchmark with machine learning [70];

8. SDAGP: same as SDAG, but with a different memory layout;

9. WORDPRESS: default installation of a popular blogging and

publishing platform.

65

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

4.3.3 Software Architecture

Fig. 4.2 presents the software architecture of our experiments. The core

component is the Experiment Controller. It sets-up VMs, checks OS set-

tings, and launches the benchmarks.

Resource
Pool

Experiment
Controller

VM Manager

Benchmarks

Measurement
Subsystem

Figure 4.2: Software architecture of the experiments.

We implemented a specific VM Manager, a subsystem which provides

virtualization method appropriate for the platform – QEMU for AMD FX

and Linux Containers (LXC [3]) for ARM Exynos, as these platforms do

not allow for standard VM management. The Resource Pool provides an

abstraction layer for VMs to hardware resources. In our experiments each

virtual machine was allocated 1 Gb of RAM and one core of the CPU. The

measurement subsystem serves two different purposes. The first one is to

collect the HPC statistics. The second purpose is to ensure that there is

no activity in the system left unaccounted.

4.4 Performance Results and Analysis

Tables 4.1 and 4.2 show how the VMs affect the performance of each

other during their concurrent execution. Columns specify the names of the

66

CHAPTER 4. RANKING... 4.4. PERFORMANCE RESULTS AND ANALYSIS

Table 4.1: Performance degradation for concurrent execution of VMs running the bench-

marks on ARM Exynos reported in percents.

Benchmark (foreground)

B
en

ch
m

ar
k

(b
ac

k
gr

ou
n
d
)

B
L

O
S
C

F
F

M
P

E
G

IN
T

E
G

E
R

M
A

T
R

IX

N
G

IN
X

P
G

B
E

N
C

H

S
D

A
G

S
D

A
G

P

W
O

R
D

P
R

E
S
S

BLOSC 0.9 4.7 0.3 13.3 8.7 11.4 10.7 9.8 6.9

FFMPEG 1.1 2.3 0.2 9.2 2.8 8.3 4.3 7.4 3.1

INTEGER -0.7 0.0 -0.1 -0.1 -1.8 -0.8 0.1 0.7 -0.6

MATRIX 9.6 8.4 0.3 15.4 21.9 24.7 22.8 41.3 14.0

NGINX 3.4 7.5 0.5 18.0 8.4 15.2 14.4 16.2 10.5

PGBENCH 5.2 6.5 0.4 16.8 19.4 8.3 12.4 12.6 10.9

SDAG 0.1 2.6 0.2 8.5 4.9 10.8 5.3 9.0 3.7

SDAGP 4.2 10.0 0.3 15.4 20.1 27.8 24.0 50.3 14.8

WORDPRESS 3.1 4.8 0.2 9.8 9.3 15.5 11.1 12.9 6.8

benchmarks currently being measured (foreground VMs), while rows are

associated with the benchmarks executed at the same time on the neighbor-

ing core (background). The numeric values reported show the performance

degradation of the foreground benchmarks with respect to their standalone

execution. The dark grey cells correspond to performance degradation of

more than 15%, while the light grey cells show the degradation between

10% and 15%. The values reported in square boxes signal the performance

increase. The latter can be achieved when the concurrent benchmark exe-

cution makes the use of the shared hardware resources (e.g., caches) more

efficient than during standalone runs. For AMD FX we report interference

results for both sibling cores that share the local cache and distant cores

that share less resources.

These synoptic tables give several interesting insights. The first one is

clear: running VMs on dedicated CPU cores does not ensure performance

67

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

Table 4.2: Performance degradation for concurrent execution of VMs running the bench-

marks on AMD FX reported in percents.

(a) Sibling cores

Benchmark (foreground)

B
en

ch
m

ar
k

(b
ac

k
gr

ou
n
d
)

B
L

O
S
C

F
F

M
P

E
G

IN
T

E
G

E
R

M
A

T
R

IX

N
G

IN
X

P
G

B
E

N
C

H

S
D

A
G

S
D

A
G

P

W
O

R
D

P
R

E
S
S

BLOSC 5.2 0.8 0.4 8.4 3.3 7.9 1.5 4.3 2.1

FFMPEG 3.7 -0.5 0.2 3.8 1.6 7.4 1.0 3.6 0.4

INTEGER 1.4 0.9 0.1 -0.7 0.5 5.8 -1.1 3.2 -0.8

MATRIX 5.2 3.3 0.2 19.1 11.1 15.0 4.2 14.3 6.6

NGINX 4.3 1.1 0.4 12.9 5.8 11.9 3.0 12.3 3.5

PGBENCH 2.6 1.6 0.1 5.7 2.6 9.3 -0.1 2.6 1.2

SDAG 1.1 -0.2 0.1 1.3 0.3 4.6 -1.2 -0.7 -0.5

SDAGP 2.8 -1.0 0.3 5.6 2.7 6.0 1.6 2.7 1.2

WORDPRESS 2.2 -0.1 -0.3 3.9 1.0 8.2 1.1 3.4 1.1

(b) Distant Cores

Benchmark (foreground)

B
en

ch
m

ar
k

(b
ac

k
gr

ou
n
d
)

B
L

O
S
C

F
F

M
P

E
G

IN
T

E
G

E
R

M
A

T
R

IX

N
G

IN
X

P
G

B
E

N
C

H

S
D

A
G

S
D

A
G

P

W
O

R
D

P
R

E
S
S

BLOSC 3.5 1.4 0.2 7.7 3.3 12.5 2.1 4.7 1.5

FFMPEG 2.3 0.4 0.4 4.6 1.0 7.7 0.9 3.5 0.2

INTEGER 2.3 0.7 0.0 0.0 0.3 10.0 -0.6 3.5 -0.5

MATRIX 5.2 3.8 1.1 19.0 11.7 15.1 4.9 17.6 6.1

NGINX 4.5 1.7 0.1 7.5 4.3 12.1 2.5 12.7 3.1

PGBENCH 2.9 0.6 0.4 4.8 2.9 9.2 2.3 10.4 1.2

SDAG 1.4 1.1 0.0 2.1 0.5 10.5 -0.4 9.2 0.0

SDAGP 2.5 -0.5 0.3 4.2 1.9 8.9 1.9 3.8 1.1

WORDPRESS 3.3 0.2 0.5 4.8 1.1 12.1 0.4 11.5 0.4

68

CHAPTER 4. RANKING... 4.4. PERFORMANCE RESULTS AND ANALYSIS

Table 4.3: Interference and sensitivity of benchmarks on ARM Exynos.

Interference Sensitivity

SDAGP 18.6% SDAGP 17.8%

MATRIX 17.6% PGBENCH 13.5%

NGINX 10.4% MATRIX 11.8%

PGBENCH 10.3% SDAG 11.7%

WORDPRESS 8.2% NGINX 10.4%

BLOSC 7.4% WORDPRESS 7.8%

SDAG 5.0% FFMPEG 5.2%

FFMPEG 4.3% BLOSC 3.0%

INTEGER -0.4% INTEGER 0.3%

isolation. The degradation of performance is in some cases definitely high

and can easily affect even the perceived QoS. Another interesting observa-

tion is that in the AMD FX architecture the interference is largely inde-

pendent from the cores’ distance. Finally, the performance improvement,

which is at first sight counter-intuitive. First of all, the gain is usually

small and in some cases it can well be just a measure noise, even if the

measures are the average of many runs. Second, e.g., for caches, the al-

gorithm that manages them is based on a very complex heuristic. Thus,

the scenarios and setups in which the heuristic works better than others

are not so surprising, specially taking into account that sharing resources

is far more common than running in isolation, thus, the heuristic has been

studied and tuned for these cases.

Tables 4.3 and 4.4 present the values of VM interference (how much

the background affects the foreground) and sensitivity (how much a fore-

ground is sensitive to have some other concurrent VM) calculated based on

the performance degradation values reported in Tables 4.1 and 4.2. The

sensitivity is obtained as an average from the values each column, while the

interference is an average on the rows. According to [49], the performance

69

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

Table 4.4: Interference and sensitivity of benchmarks on AMD FX.

Interference Sensitivity

MATRIX 8.8% PGBENCH 8.4%

NGINX 6.1% MATRIX 6.7%

BLOSC 3.8% SDAGP 5.1%

PGBENCH 2.8% NGINX 3.2%

SDAGP 2.4% BLOSC 3.1%

FFMPEG 2.4% WORDPRESS 1.7%

WORDPRESS 2.3% SDAG 1.1%

INTEGER 1.0% FFMPEG 0.6%

SDAG 0.5% INTEGER 0.2%

(a) Sibling Cores

Interference Sensitivity

MATRIX 9.4% PGBENCH 10.9%

NGINX 5.4% SDAGP 8.6%

BLOSC 4.1% MATRIX 6.1%

PGBENCH 3.9% BLOSC 3.1%

WORDPRESS 3.8% NGINX 3.0%

SDAG 2.7% SDAG 1.6%

SDAGP 2.7% WORDPRESS 1.5%

FFMPEG 2.3% FFMPEG 1.0%

INTEGER 1.7% INTEGER 0.3%

(b) Distant Cores

degradation increases following a power law with the number of CPU cores:

5% interference between each two cores leads to ∼18.5% and ∼33.6% of

overhead for four and eight cores respectively, but we cannot draw strict

conclusions on this yet.

4.4.1 Analysis of different HPCs

Events can be different in nature, but all of them can be assigned a perfor-

mance cost. For example, each LLC cache miss costs around 30-60 cycles

of additional CPU time [71]. However, to understand the impact of the

event on a system performance it is necessary to analyze the rate of the

event occurrence in addition to the cost of the event. Low-frequency events

do not contribute much to the VM interference. Therefore, we exclude low-

frequency events from the analysis, even if they are costly. We operate with

normalized frequency of events to avoid bias from the CPU clock rates.

Tables 4.3 and 4.4 give a high-level perception of the sensitivity and

interference “properties” of the benchmarks. A quick investigation, to no

surprise, indicates that all the top interfering benchmarks heavily use mem-

70

CHAPTER 4. RANKING... 4.4. PERFORMANCE RESULTS AND ANALYSIS

ory subsystem. SDAGP operates over a large set of scattered data. This

requires a lot of memory access requests that cannot be served efficiently.

MATRIX is optimized for efficient memory access, but uses all available

caches and constantly displaces other cached data. BLOSC was designed

to compress scientific data on-the-fly at extreme rates. It is capable of

fully occupy the memory bus, which heavily impacts all other applications

requesting bus access.

The high demand for memory resources that makes a benchmark an

interferer, also makes it sensitive to the same resources. Therefore, there

is a clear correlation between interference and sensitivity figures.

So far for the pure empirical observations. Now we proceed to identify

what HPCs are the most representative of the interference/sensitivity prop-

erties. We compute the correlation between each performance counter and

the values of interference and sensitivity and focus further investigation on

counters with high correlation.

Fig. 4.3 presents HPC measurements for different levels of task interfer-

ence: no interference (NGINX alone), low interference (NGINX + INTE-

GER), medium interference (NGINX + WORDPRESS), and high interfer-

ence (NGINX + MATRIX). Fig. 4.4 shows the measured HPCs counters for

all the benchmarks on the Exynos, corresponding to the interference val-

ues of Table 4.3. As expected, for low interference there are no significant

changes in HPCs values. This means benchmarks execute as if they were

alone. However, when interference becomes significant the HPCs values

reflect task competition for the resources.

Surprisingly, there is no increase in any memory-related counters, which

indicates that the main memory is not a primary bottleneck: the bottleneck

arise inside the CPU before the main memory is accessed. The CPU cannot

dedicate enough internal resources for all active cores. The cores compete

for the resources, and this race creates a lot of pipeline stalls. This is

71

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Avg. number of events per CPU cycle

branch-loads

L1-dcache-loads

L1-dcache-stores

cache-references

instructions

stalled-cycles-backend

stalled-cycles-frontend

HPCs measured for ARM Exynos

nginx
nginx+integer
nginx+wordpress
nginx+matrix

Figure 4.3: Four cases of interference for ARM Exynos: no interference (only NGINX

is running), negative interference (NGINX runs with INTEGER), medium interference

(NGINX with WORDPRESS) and strong (NGINX with MATRIX).

reflected by “stalled-cycles-backend” parameter.

Referring again to Table 4.2 we now interpret results based on the

HPC analysis. For sibling cores (Table 4.2a), there are many cases of

performance improvement (represented with negative values of interfer-

ence). This is especially evident for FFMPEG benchmark. The reason

for performance improvements becomes evident from the analysis of two

HPC counters: TLB and L1 caches. These parameters indicate that some

data (probably kernel code) is shared between VMs. Shared data may

speedup the simultaneous execution because if one core accesses it, there

is a chance that another core already fetched it and stored in shared cache.

Another possible reason is that the overhead for keeping cache lines coher-

ent is lower for the processes running on sibling cores [96]. The average

per-task interference is around 3%.

For distant cores (Table 4.2b) the average per-task interference is equal

to 4%. It is higher than for the sibling cores which is due to the fact

72

CHAPTER 4. RANKING... 4.4. PERFORMANCE RESULTS AND ANALYSIS

Table 4.5: Correlation between interference, sensitivity and HPC. P-value is the proba-

bility that results are statistically insignificant (null hypotesis), less is better.

(a) ARM Exynos

Interference

Parameter Correlation P-value

stalled-cycles-backend 0.887 0.1%

cache-misses 0.712 3.1%

L1-dcache-stores -0.808 0.8%

branch-loads -0.810 0.8%

instructions -0.851 0.4%

Sensitivity

Parameter Correlation P-value

stalled-cycles-backend 0.804 0.9%

cache-references -0.830 0.6%

L1-dcache-loads -0.831 0.6%

branch-instructions -0.832 0.5%

instructions -0.851 0.4%

(b) AMD FX

Parameter Correlation P-value

S
ib

b
li
n
g

co
re

s

Interference

LLC-stores 0.915 0.1%

L1-dcache-stores 0.732 2.5%

Sensitivity

stalled-cycles-frontend 0.753 1.9%

LLC-stores 0.694 3.8%

cycles -0.743 2.2%

D
is

ta
n
t

co
re

s

Interference

LLC-stores 0.881 0.2%

L1-dcache-stores 0.736 2.4%

L1-dcache-prefetches 0.720 2.9%

Sensitivity

L1-dcache-prefetch-misses 0.691 3.9%

iTLB-load-misses 0.683 4.3%

cycles -0.775 1.4%

73

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Avg. number of events per CPU cycle

L1-dcache-loads

branch-loads

cache-references

instructions

stalled-cycles-backend

HPCs measured for ARM Exynos for
different levels of task interference

sdagp
matrix
nginx
pgbench
wordpress
blosc
sdag
ffmpeg
integer

Figure 4.4: Execution profiles of benchmarks running on ARM Exynos. Benchmarks are

arranged according to their interference factors.

that sibling cores can share data more efficiently. The picture is quite

similar to the case with sibling cores. There is no single largest contributing

counter to the interference. The average per-VM interference is 4%. This is

slightly higher than the previous case and might be due to cache coherency

protocol.

One question frequently arising is “how ARM compares to x86?”. We

could not help ourselves from comparing the performance of these two. Ta-

ble 4.6 presents performance comparison in terms of Instructions per Cycle

(IPC) and execution time. The ARM Exynos has substantially smaller

IPCs. Interestingly, higher IPC does not necessarily lead to a higher per-

formance per MHz. This is due to the differences in hardware architectures

and optimization of compilers. We also spotted a few performance issues

on ARM with FFMPEG and PGBENCH benchmarks. FFMPEG bench-

mark does a lot of data crunching. For this to work faster, it includes some

hand-optimized assembly code. But this is done only for certain types of

hardware. For ARM platform it still uses generic C functions that are more

74

CHAPTER 4. RANKING... 4.4. PERFORMANCE RESULTS AND ANALYSIS

Table 4.6: Performance comparison of AMD FX and ARM Exynos platforms1.

IPC Performance

Bench ARM AMD Ratio ARM AMD Ratio (Norm.)

BLOSC 0.68 1.10 1.6 49.53s 12.7s 3.9 (2.1)

FFMPEG 1.18 1.36 1.2 689s 48.2s 14.3 (7.8)

INTEGER 1.46 0.57 0.4 16.8s 15.3s 1.1 (0.6)

MATRIX 0.42 1.16 2.7 84s 16.8s 5.0 (2.8)

NGINX 0.52 0.77 1.5 525MB/s 631MB/s 1.2 (0.7)

PGBENCH 0.31 0.52 1.7 155 tr/s 1293 tr/s 8.3 (4.6)

SDAG 0.73 0.99 1.4 24.9s 8.3s 3.0 (1.7)

SDAGP 0.19 0.44 2.3 132s 30s 4.4 (2.4)

WORDPRESS 0.60 0.82 1.4 8.45r/s 7.19r/s 0.85 (0.5)

1 Values in parentheses show performance ratios normalized to CPU fre-

quencies.

than ten times slower [64]. As for PGBENCH, it measures the number of

transactions per second. Every transaction is first written into transaction

log and only then to the actual database. To ensure reliable updates, each

write is accomplished with buffer flush which expensive on this platform

because flash memory (its main storage) should be erased first (at the block

granularity). Because of this and because the IO throughput of its storage

slow, PGBENCH is tend to be limited more by IO, rather than by CPU.

The experimental results presented in this section reveal clear differences

between the analyzed hardware platforms. In general, ARM cores have

less optimization features than traditional x86 CPUs. They do “less job”

per CPU cycle. For both platforms the most interfering tasks are the tasks

that do heavy memory use (MATRIX, NGINX, SDAGP and BLOSC). This

proves that the memory-related subsystems are the biggest bottleneck of

general-purpose CPUs [34]. The bottleneck makes them sensitive as well

because their performance almost entirely depends on data availability.

We can conclude that ARM Exynos performs well integer operations

75

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

and web-servicing duties (WORDPRESS and NGINX benchmarks). Heavy

memory-intensive applications (SDAG,SDAGP, MATRIX and BLOSC bench-

marks) perform better on AMD FX.

4.4.2 Lessons Learned

During the experiments we faced a number of technical problems. In the

following we list the most relevant of them.

1. The HPC implementations vary across platforms. Not only the num-

ber of available events differs across platforms, but also their mean-

ing. We checked OS Linux sources and developer manuals to ensure

that our interpretation is correct.

2. We observed that VMs may shortly migrate to another CPU even if

they are “pinned” to specific CPU cores. These cases are rare and

do not change the overall picture.

3. Care should be taken when a large number of events is enabled. The

number of available events exceeds the number of counting registers

by a factor of 5 to 10. If too many events are enabled simultaneously,

then the operating system has to do time multiplexing which leads

to loss of precision.

4. Drivers and I/O can significantly affect the performance. We ob-

served up to 40% deviation in instructions per second on heavy

benchmarks if the system flushes disk caches. This does not affect

the long-term average performance, but becomes critical for periodic

measurements.

4.4.3 Conclusion

In this Chapter we presented a methodology for ranking VMs according

to their level of mutual interference. The methodology was evaluated on

76

CHAPTER 4. RANKING... 4.4. PERFORMANCE RESULTS AND ANALYSIS

two platforms – x86 (AMD Bulldozer) and ARMv7 (Samsung Exynos-

4412) – and showed there is a good correlation between between average

interference of VMs and certain performance counters.

There is one inherited disadvantage of the proposed technique: for rank-

ing to work every application needs to be profiled in the first place. And

profiling must be done in an isolated environment so they are not affected

by interference because it affects measurements in an unpredictable way.

Another issue – depending on the input some programs may change their

behavior. For this reason one-time profiling may not be enough. Ideally,

all programs should be monitored for their behavior in run-time. The

next Chapter describes an easy and elegant way of obtaining performance

profiles in production environments on-the-fly and with small overhead.

77

4.4. PERFORMANCE RESULTS AND ANALYSIS CHAPTER 4. RANKING...

78

Chapter 5

Freeze’nSense:

Isolated Performance Sampling in a

Shared Environment

5.1 Introduction

One good thing about clouds is that they “just work” – customers do not

need to care about monitoring or backups – all these are done by the cloud

provider. Now it is the provider’s responsibility to provide satisfactory

service, that is what they are paid for. The quality of the service and

liability are defined in so-called SLA – a document that formally defines

services and guaranties specific performance in ways that can be measured.

An SLA can be defined in terms of equivalent hardware or absolute

computing and communication capabilities. In these cases meeting the

SLA is relatively easy – just by throwing enough dedicated resources so

the application would never suffer from underperformance – but very little

statistical sharing can be achieved, thus, the infrastructure costs remain

high. In many other cases the SLA is better defined in terms of appli-

cation response latency, or equivalent performance: the service (platform,

infrastructure, VM, . . .) is provided guaranteeing that its performance is

79

5.1. INTRODUCTION CHAPTER 5. ISOLATED SAMPLING...

as good as the one it would achieve in isolation on a given “bare iron,” i.e.,

on a specific hardware platform.

The second definition of SLA allows a much higher level of statistical

multiplexing, and, hence, reduced costs, but it introduces the problem of

measuring that the SLA is indeed met. Verifying if SLA is met can be done

in two steps: run the service in isolation and compare its performance with

the performance of the service executed on the operational facility. In most

of the cases this is not feasible for commercial services, but it is useful to

understand if other techniques are reliable and dependable or not.

The high-level integration and parallelism of modern high-end comput-

ing nodes for data centers complicate the problem even more. Even if a

node has N seem-to-be-independent CPU cores, it does not mean the node

is capable of executing N tasks independently. Server resources, such as

memory bus, CPU caches, network and storage, are shared between mul-

tiple cores, and NUMA architectures further complicate the scenario (see

for instance [58] for an experimental analysis of the behavior of NUMA

memory controller on a specific hardware architecture). As a result, the

system performance does not scale linearly with the number of cores as

one would hope. Fig. 5.1 reports the performance of SDAGP, a state of

the art machine learning tool using a Directed Acyclic Graphs (DAG) data

representation taken from [70]. The performance is measured on an 8-core

AMD FX-8120 processor progressively increasing the number of cores used.

When all 8 cores are used, the overall performance is only 65% of the one

resulting from linear scaling (blue dotted line with crosses). This is signif-

icant degradation and definitely an SLA violation if the SLA stated that

the performance is to be equivalent to the task running in isolation.

Running other software tools (from video transcoding to matrix mul-

tiplications) shows different scaling factors ranging from 72% down to a

stunning 28% on the same hardware. These experiments show that scaling

80

CHAPTER 5. ISOLATED SAMPLING... 5.1. INTRODUCTION

1 2 3 4 5 6 7 8

Number of CPU cores used

1

2

3

4

5

6

7

8
O

v
e
ra

ll
P
e
rf

o
rm

a
n
ce

Ideal perf.

Measured perf.

0 1 2 3 4 5 6 7 8 9

Number of CPU cores used

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

 p
e
r

co
re

Figure 5.1: Performance scaling of SDAGP on AMDFX-8120 increasing the number of

parallel instances; the gap between the two is due to shared hardware resources.

efficiency depends a lot on the workload, but also that the more cores a

machine has the more interference on common subsystems of the CPU is

possible, reducing the overall performance.

Chapter 3 explored the possibility of modeling interference between

tasks executed in parallel on different CPU cores. The approach yielded an

interesting and simple model; however, the difficulty of task classification

(i.e., identification of tasks with similar characteristics), and the fact that

the interference depends also on the CPU architecture and on the type of

common subsystems shared by the cores makes this approach too limited

for a widespread implementation.

Runtime performance monitoring is an effective way to measure the gap

between “theoretical” and “actual” performances, knowing which helps to

make decisions on the state of the system, assess whether it behaves healthy

or whether it is overloaded and requires intervention (load balancing, pow-

ering on additional resources, VM relocation, etc.).

Measuring actual performance of applications is relatively straightfor-

ward. But to assess the level of interference from other tasks concurrently

running in the system, the actual performance should be compared with

81

5.2. NOTATION AND TERMINOLOGY CHAPTER 5. ISOLATED SAMPLING...

the performance of this application executed in isolation on the same hard-

ware resources.

In this Chapter we present a novel methodology to estimate the theoret-

ical performance at run time, by measuring IPCs [51, 10] with millisecond-

level temporary performance isolation of the application under analysis.

To estimate performance of a task in isolation, all the concurrent tasks are

temporary frozen and put on hold for the duration of measurement inter-

val, which is in the order of milliseconds. The short duration of the phase

ensures low overhead on the task execution in the examined system. Know-

ing the ratio between actual performance and application performance in

isolation allows estimating how sensitive a given task to the presence of

other tasks in the system.

The remainder of this Chapter organized as follows. The notation and

terminology we use is described in Sec. 5.2. Sec. 5.3 introduces the notions

of performance isolation and performance monitoring. Sec. 5.4 describes

the methodology we propose for run-time monitoring. Sec. 5.5 describes

the equipment we use and Sec. 5.6 finally presents the results. In Sec. 5.7

we demonstrate one of many possible uses of this research work. Conclusion

and future works are in Sec. 5.8.

This Chapter is based on the article we submitted to “Software: Practice

and Experience” journal [50].

5.2 Notation and Terminology

The terminology used in computer performance is very vast and often am-

biguous, due to the mix of strictly scientific terms together with commercial-

driven keywords used by vendors to advertise their products. For the

purpose of clarity, Tab. 5.1 specifies the notation adopted in math and

algorithms used in this Chapter..

82

CHAPTER 5. ISOLATED SAMPLING... 5.3. PERFORMANCE ISOLATION ...

Symbol Meaning

N Number of cores in CPU

K Number of tasks executed on CPU

Ks Number of sensitive tasks (ζb(·)) to be estimated)

Oh Overhead introduced by measurements as fraction of time

ζ(i) Actual IPC measured for task i in the shared environment

ζb(i) Target (in isolation) IPC for task i

tm Time required to obtain a point estimate of ζb(·)
tsleep Time between measurements

Table 5.1: Notation specific to Chapter 5.

5.3 Performance Isolation and Monitoring

Performance isolation means that an application is running exploiting all

the resources it is entitled to. It is strictly related to the SLA between

the customer and the computing facility: failing to provide it not only

represents a breech of the contract, but it may result in unstable perfor-

mance leading to unpredictable freezes, spike overloads, monitoring alerts

and degraded user experience. In the latter term we include direct hu-

man experiences as in video streaming fruition, as well as indirect ones like

delayed termination of a scientific computing task.

Processor sharing with preemptive multitasking is the earliest form of

performance isolation, it requires careful crafting of the machine load and

complex monitoring of the actual fraction of CPU time dedicated to tasks,

and of the system freezes caused, for instance, by intensive IO. With the

advent of multicore systems it became possible to dedicate one (or more)

cores to a single task. Apparently, this solves the problem of isolation, at

least for the applications and tasks that require enough resources to make

it convenient to fully dedicate them one or more cores so they do not need

to share CPU time with others.

83

5.3. PERFORMANCE ISOLATION ... CHAPTER 5. ISOLATED SAMPLING...

Modern operating systems support both methods and their combina-

tion. For example, normal tasks can migrate from one core to another,

and specific interrupt handlers can be pinned in a way to evenly spread

the interrupt load across the cores [67].

5.3.1 Symmetric Multiprocessing System (SMP) Open Issues

Unfortunately, SMP cannot provide complete performance isolation. Hy-

pervisors and operating systems see CPU and its cores as separate entities,

which is not the case in practice. CPUs and cores share some components

that are either very expensive (e.g., cache memory), or are deemed to be

less used than the CPUs/cores themselves (FPU or command decoders),

or simply are inherently unique to the board, as the main memory or the

peripheral bus. As a result, a shared component is available to a specific

core only if it is not used by other cores. If the resource is busy the task

has to wait for it, and this creates stalls in the program execution [79],

wasting computing resources and violating performance isolation. Predict-

ing the components usage and classifying tasks to understand their mutual

interaction is very difficult [49], thus, a methodology is needed to measure

and estimate performance isolation at run time.

Fig. 5.2 shows how bad the violation of performance isolation can be.

It shows eight different applications (see Sec. 5.5 for details of selected ap-

plications) evaluated in isolation, i.e., running alone on the CPU, and in a

shared environment, i.e., running on a dedicated core, but with the other

cores busy as well. The performance measure is IPC, a metric strictly

correlated with the application throughput and efficiently derived from

Hardware Performance Counters (HPC) [84, 51]. For all the applications

considered the difference is striking, on average halving the performance,

and also increasing the spread of the performance (see BLOSC and SDAG).

The boxplots in Fig. 5.2 show the average value of the measures (red dots

84

CHAPTER 5. ISOLATED SAMPLING... 5.3. PERFORMANCE ISOLATION ...

Blosc
FFmpeg

Matrix

pgbench
SDAG

SDAGP
Nginx

WordPress

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
n
s

p
e
r

C
y
cl

e
 (

IP
C

)

isolated environment
shared environment

Figure 5.2: Applications profiled in isolated (no other core is loaded) and shared envi-

ronments (the other cores are used too): the gap shows how large the difference can be

(CPU: Xeon E3-1245 V2, 100 ms sampling).

and crosses), median (notches connected by red line), the 25th and 75th

percentiles (the boxes), the 10th and 90th percentiles as whiskers, and all

the outliers as isolated blue crosses. Interestingly, the measures are neatly

separated and statistically meaningful, as boxes are always completely sep-

arated and in many cases outliers do not overlap.

The problem is in obtaining the isolated performance of applications

in the shared environment. For some very well known and profiled appli-

cations running on well known hardware the self-profiling [75] can be an

option, but it is difficult to tell in general if the performance is low due to

the application problems or due to the poor hardware multitasking.

Notice that the guarantee of performance isolation is a relative measure

problem: it is about being able to tell if the application is running as it

would in isolation, or instead it is suffering from interference coming from

applications running on resources that are ideally separated (other cores),

85

5.4. METHODOLOGY CHAPTER 5. ISOLATED SAMPLING...

but indeed share components with the considered core.

5.4 Profiling Methodology: Freeze’nSense

As shown in [49, 95] the use of HPC, and IPC in particular, is a very

efficient technique to estimate relative performance of a task. The key issue

is deriving the target (isolated) performance of the task to compare it with

the current performance. Let ζb(i) and ζ(i) be the target performance of

a generic task i and its performance measured in the shared environment.

Measuring ζ(i) is relatively easy (see [49, 95]); estimating ζb(i) is instead a

challenge. ζb(i) can be time-varying and it is in general a stochastic process,

so that a single sample bears little insight on ζb(i) itself. The authors

of [95] base their estimation on the long-term observation of ζ(i), assuming

that task i is persistent and runs most of the time without substantial

interference. This assumption allows collecting the Empirical Probability

Density Function (e-pdf) of the marginal distribution of the ζb(i) process,

so that measures on ζ(i) deviating substantially from the e-pdf can be used

to identify a task suffering from interference.

The approach we propose is radically different. Its goal is to obtain

samples of ζ(i) and ζb(i) that are time-correlated, i.e., they can be com-

pared nearly in real-time without a priori knowledge of the characteristics

of task i.

To achieve this goal we estimate ζb(i) by freezing all applications except

task i for a very short time period tm, so that task i is effectively running

“alone” on the computing node. The challenge is keeping the overhead of

this operation at an acceptable level, while having a reliable estimate of

ζb(i). The operation can be repeated for any task that is deemed “sensitive”

or at risk. Furthermore, since the procedure is task-agnostic, it can also

be directly applied to an entire VM, where it is difficult to know what

86

CHAPTER 5. ISOLATED SAMPLING... 5.4. METHODOLOGY

applications are running and the hypervisor is unable to stop single tasks

inside the VM. We stress that the tasks (or threads) to be frozen are only

those that are running on the same computing node of task i, not the

entire data-center! Moreover, the inter-measure time tsleep >> tm, and tm

is just a few ms, so that the overhead is low and the other tasks barely

notice the interruption. Only the estimation of ζb(·) requires freezing other

applications; ζ(·) of all applications can be measured at run time with

negligible overhead. Alg. 1 summarizes the measure procedure running on

each node.

Algorithm 1: Loop used to estimate the ground-truth performance target for sen-

sitive tasks on a computing node.

1 while True do

2 for app ∈ sensitive applications do

3 rest← applications \ app
4 stop(rest)

5 after tm ζb(app)← ζ(app)

6 start(rest)

7 sleep(tsleep)

The overhead of Freeze’nSense is expressed by Eq. (5.1), where Ks is the

number of sensitive applications for which ζb(·) has to be evaluated, tm is

the time needed for the estimation and tsleep is the time between measures.

Oh =
Kstm

Kstm + tsleep
(5.1)

Values of tm as low as 10 ms can be used, while tsleep can be 10 s or more.

With these numbers and assuming that the number of critical tasks on a

single CPU does not exceed 10, the overhead is Oh ≤ 10−2. If instead we

assume that the infrastructure supports exactly one computational task per

core, and all of them are critical, then the overhead is simplyOh = KsN
KsN+tsleep

where N is the number of cores.

87

5.5. IMPLEMENTATION CHAPTER 5. ISOLATED SAMPLING...

Table 5.2: Main characteristics of our test platforms.

Platform name Xeon AMD FX ARM Exynos

CPU Xeon E3-1245 V2 FX-8120 Exynos-4412

Cores 8 8 4

Frequency 3.4GHz 3.1Ghz 1.7GHz

Memory 4x4Gb DDR3-1333 2x8Gb DDR3-1600 2Gb

Storage 3Tb RAID-1 64Gb SSD 8Gb eMMC

OS Arch Linux

Kernel 3.19.3 3.19.2 3.8.13

Virtualization qemu-kvm bare metal

5.5 Implementation

The proposed methodology is general and can be applied to almost any

hardware and does not require large facilities to be implemented, although

it naturally scales well to any number of computing nodes, as the mea-

sures and the overhead are strictly local to one CPU. We use three dif-

ferent platforms (Intel, AMD and ARM) described in Tab. 5.2 to test the

functionality and performance of Freeze’nSense. The Xeon platform has

4 cores with Hyper-Threading (HT), claiming 8 independent processing

units, the AMD FX presents four 2-core modules for a total of 8 cores,

and the Exynos platform has 4 symmetric cores. Thus, we are considering

three quite different architectures, that can be claimed to cover reasonably

well the spectrum of computing devices architectures available today.

5.5.1 Benchmarks and Workload

The experiments with Freeze’nSense are run using eight different programs

that are our benchmarks. To make the scenario more realistic, each pro-

gram is run into a VM implemented as a Kernel Virtual Machine (KVM)

Linux container. These benchmarks are selected to provide a comprehen-

88

CHAPTER 5. ISOLATED SAMPLING... 5.5. IMPLEMENTATION

sive blend of cloud workloads, ranging from a web Content Management

System (CMS) to multimedia encoding, to scientific calculus. The em-

phasis is given to standard applications (FFMPEG, PGBENCH, SDAG,

SDAGP, NGINX, WORDPRESS), although two synthetic, ad-hoc, bench-

marks (namely MATRIX and BLOSC) are present as well. The bench-

marks are described in Sec. 3.1.1.

During experiments each core of the platform is loaded with a VM

running one of the benchmarks. The Xeon and FX platforms has exactly

8 cores, so all benchmarks are run at the same time on these platforms.

5.5.2 Performance Sampling Issues

Unless otherwise stated, performance sampling is done using perf [84] (the

former PCL – Performance Counters for Linux – toolbox) to exploit its sta-

bility and support from the community. The main limitation of perf is

that it is mostly designed to serve as a standalone tool, not as a library

interfaced from a program. As a result, interacting with perf may cause

noticeable overhead when the sampling time is very short (< 50 ms). To

overcome this (and other) limitations we developed an additional perfor-

mance sampling library that we used in these cases. The remainder of this

Section describes faced technical challenges and lists the solutions adopted

to overcame them.

Limited Sampling Frequency.

perf supports hardware and software (tracepoints) events, system-wide,

per-process, per-core, per-thread monitoring and many other functions.

Unfortunately, the standard release does not support sampling periods

smaller than 100 ms. We patched this tool to support sampling periods tm

89

5.5. IMPLEMENTATION CHAPTER 5. ISOLATED SAMPLING...

as small as 1 ms1.

Freezing VMs.

Even idle VMs consume some noticeable CPU and memory resources. In

our measurements each KVM instance caused roughly 200 context switches

and 5 ∗ 106 instructions per second. Hence, the estimation of ζb(·) is more

accurate when freezing the whole VM and not just the job inside them.

Unfortunately, unlike normal processes, KVMs ignore the SIGSTOP signal;

additional interaction with the hypervisor is required to stop VMs. This

adds some overhead and makes the freezing phase before the measure of

ζb(i) a bit longer (∼0.25ms per VM).

Performance sampling for VMs is ragged.

Current implementations do not allow for random access of counters of

virtual CPUs2. The measurements are done by a virtual device called

virtual PMU. At some points in time the real PMU is synchronized with

the virtual one, but between synchronization points the virtual PMU does

not reflect properly the situation on the VM. Though the synchronization

is done quite frequently, for high-frequency sampling we can miss some

data points. The more counters activated the bigger chances to hit the

problem. The behavior of PMU is OS- and hardware-dependent; currently

nothing can be done here to improve the situation, but monitoring PMU

to discard incorrect samples (e.g., returning too big or too small values).

1The patch is available at https://github.com/kopchik/limit/blob/master/

perf-small-interval.patch
2Avi Kivity, “Performance monitoring for KVM guests.” Invited talk at KVM Forum, Vancou-

ver, Canada, August 16, 2011. Available as RedHat Video at https://www.youtube.com/watch?v=

skQrYiME-N4

90

https://github.com/kopchik/limit/blob/master/perf-small-interval.patch
https://github.com/kopchik/limit/blob/master/perf-small-interval.patch
https://www.youtube.com/watch?v=skQrYiME-N4
https://www.youtube.com/watch?v=skQrYiME-N4

CHAPTER 5. ISOLATED SAMPLING... 5.5. IMPLEMENTATION

Opening counters may suddenly fail.

Sometimes Linux kernel fails to initialize performance counters. This is

seen as an error returned by sys perf event open() system call. We over-

come this by repeating the syscall till it succeeds. Fortunately, this error

is quite rare (< 0.1% of total calls).

Measurements may create interference.

perf is a powerful and flexible tool, but in adopting it some precautions

must be taken. As discussed in Sec. 5.5, the overall overhead is in the order

of 1% or less, yet the tool may affect measurements, because the perf tool

consumes CPU cycles right when the measure is performed. Under full

load when no spare CPU time available it has to share the CPU time with

a task. If the task is profiled it may show lower performance.

To overcome this potential problem we designed a small performance

sampling tool that generates as little interference as possible, following the

steps below.

1. At bootstrap it initializes (“opens”) the needed performance counters

and keeps them open. Any subsequent measurements do not need

any initialization.

2. Each measurement is done with just three system calls. The first

is to reset the counters to zero, the second is a sleep function. The

final system call reads the performance measure. With the current

design the overhead of one measurement can be as low as a fraction

of a microsecond [85].

3. As we assume a VM per core, there is no need to account performance

on a task level; we gather statistics at the core granularity. This

prevents the system from saving and restoring the counters on every

context switch, making the measure faster and lighter.

91

5.6. RESULTS CHAPTER 5. ISOLATED SAMPLING...

5.6 Results

During the evaluation and measurement campaign we collected a very large

amount of data, all confirming the results we present here and supporting

the insight gained. Since the results on different platforms are very similar,

we often present results only for one platform (normally Xeon) implying,

without repeating it continuously, that the result is valid for all platforms.

If not otherwise stated, all the boxplots presented in figures are based

on 1000 samples measured with perf during tens of minutes of opera-

tions, thus, all results are statistically very meaningful, and we can safely

state that percentiles and outlier values would not change significantly with

longer measures.

5.6.1 Freezing Validation

The first step in the evaluation is the validation that the performance

measure of task i freezing all other VMs in the CPU is a good estimator of

ζb(i), and that it can be done with the low overhead and for all platforms.

Fig. 5.3 reports boxplots of the estimate of ζb(i) for all the benchmarks

obtained on the Xeon platform both in total isolation (i.e., the application

is running inside a VM and the VM is the only active task in the entire

CPU, apart from the hypervisor and other compulsory management tasks,

only one core out of N is used), or in freezing the environment (i.e., each

core is assigned a VM and a different benchmark runs in every VM, all

N cores are used, but in turn, N − 1 VMs are frozen and the remaining

one is measured and an estimate of ζb(i) is taken). The distribution of

ζb(i) samples is remarkably similar in all cases, strongly supporting our

idea of temporary freezing to estimate the isolated performance. Clearly,

the distribution changes slightly with changing tm; only BLOSC displays

a remarkable change with tm. BLOSC is hand-written, optimized and

92

CHAPTER 5. ISOLATED SAMPLING... 5.6. RESULTS

Blosc
FFmpeg

Matrix

pgBench
SDAG

SDAGP
Nginx

WordPress

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
n
s

p
e
r

C
y
cl

e
 (

IP
C

)

tm=100ms

isolated environment
frozen environment

Blosc
FFmpeg

Matrix

pgBench
SDAG

SDAGP
Nginx

WordPress

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
n
s

p
e
r

C
y
cl

e
 (

IP
C

)

tm=10ms

isolated environment
frozen environment

Figure 5.3: Intel Xeon: estimate of ζb(i) when tasks runs alone in the CPU and when the

environment is frozen; tm =100 ms in the upper plot, tm = 10 ms in the lower plot.

93

5.6. RESULTS CHAPTER 5. ISOLATED SAMPLING...

Blosc
FFmpeg

Matrix

pgBench
SDAG

SDAGP
Nginx

WordPress

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5
In

st
ru

ct
io

n
s

p
e
r

C
y
cl

e
 (

IP
C

)

10ms
5ms
2ms
1ms

Figure 5.4: Intel Xeon: Reducing tm to the limit: estimate of ζb(i) for tm = 10, 5, 2, and

1 ms; tsleep is reduced to 50 ms.

uses inline assembler expansions; it performs extremely monotonous op-

erations (fast compression of big memory regions). This allows a mostly

linear access to memory and near-100% branch prediction hit rate, thus

its performance in the long run is almost constant, while in the short run

is dominated by interrupts and memory accesses. Remarkably, this very

peculiar behavior is perfectly captured by Freeze’nSense.

Fig. 5.4 confirms that freezing the environment to estimate ζb(i) is ex-

tremely reliable and performing: in practice the sample distribution does

not change even if tm is reduced down to 1 ms and samples are separated

by a mere 50 ms. This observation opens the possibility of using adaptive

values for tm and tsleep depending on the scenario and application. For

instance, taking fairly long measures with very long tsleep for long-lasting

applications that show unpredictable short-term performance, while taking

shorter, more frequent samples for very intensive but stable applications.

Coming to the AMD FX platform, we have to note that some of the

94

CHAPTER 5. ISOLATED SAMPLING... 5.6. RESULTS

counters were hard-wired to the Linux watchdog subsystem, making mea-

sures unreliable. To replicate our results the watchdog must be disabled

with the command sysctl kernel.nmi watchdog = 0. More details and

information on this behavior can be found in [14, 45]. With this issue solved

Freeze’nSense behaves as predicted on this platform too, yielding consis-

tent and correct estimates of ζb(i). For this platform we report the com-

parison of ζb(i) estimation reducing tm in the freezing scenario in Fig. 5.5

where it is clear that also in this case tm and tsleep can be configured to

adapt to different needs of cloud computing. Boxplots give a favor of the

measure distribution, but a proper inspection of the empirical pdf bears

more insight. Fig. 5.6 reports the empirical pdf of ζb(i) with tm = 2 ms mea-

sured in isolation and with Freeze’nSense for two applications that display

very different behavior: NGINX and BLOSC. The figure shows the reason

of the different behavior: a single-mode distribution with a relatively low

variance for NGINX and a bi-modal, very skewed distribution for BLOSC.

The most interesting observation, however, is that Freeze’nSense correctly

estimate not only averages, but the entire distribution, so that in a long-

term measurement campaign a data center or cloud manager (human or

autonomic [52]) can even take decisions based on the performance per-

centiles.

The ARM Exynos platform has some limitations (lack of hardware vir-

tualization, limited RAM, and slow storage) that makes the application

of Freeze’nSense challenging. So far only single-threaded benchmarks are

supported. Therefore we present only a proof of concept with four bench-

marks and tm =100 ms. Fig. 5.7 shows the estimation of ζb(i) for four

benchmarks both in isolation and freezing the environment for tm. Once

more Freeze’nSense is reliable in predicting the performance in isolation.

95

5.6. RESULTS CHAPTER 5. ISOLATED SAMPLING...

Blosc
FFmpeg

Matrix

pgBench
SDAG

SDAGP
Nginx

WordPress

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
n
s

p
e
r

C
y
cl

e
 (

IP
C

)

10ms
5ms
2ms
1ms

Figure 5.5: AMD FX: Reducing tm to the limit: estimate of ζb(i) for tm = 10, 5, 2, and

1 ms; tsleep is reduced to 50 ms.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0.0

0.04

0.08

0.12

0.16

0.2
Nginx

isolated environment
frozen environment

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Instructions per Cycle (IPC)

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Blosc

isolated environment
frozen environment

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Figure 5.6: AMD FX: empirical pdf of ζb(i) estimates in isolation and with Freeze’nSense

for NGINX and BLOSC for tm = 2 ms.

96

CHAPTER 5. ISOLATED SAMPLING... 5.7. CPU LOAD BALANCING

FFmpeg
Matrix SDAG

SDAGP

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
st

ru
ct

io
n
s

p
e
r

C
y
cl

e
 (

IP
C

)

isolated environment
frozen environment

Figure 5.7: ARM Exynos: estimate of ζb(i) when tasks runs alone in the CPU and when

the environment is frozen; tm =100 ms.

5.7 Applying Freeze’nSense for CPU Balancing

Results of Sec. 5.6 are very encouraging, but can they be used in practice?

Given the impossibility to access a large scale computing infrastructure

for a full-scale evaluation campaign, we devised a simple proof-of-concept

experiments on the Xeon and AMD FX platforms we have. We disre-

garded the Exynos for this experiment due to its problems and a lack of

maintenance.

The idea is to fully load half of the CPU running benchmarks on 4 sib-

ling cores and measure their overall performance. To do this we loop the

benchmarks so that results are consistent and stable across different exper-

iments. Next, we redo the experiments enabling Freeze’nSense to estimate

if some of them are underperforming, select two most underperforming

and remove them to distant cores, those are most probably less subject

to interference, and measure the overall performance again to compare it

97

5.7. CPU LOAD BALANCING CHAPTER 5. ISOLATED SAMPLING...

10 0 10 20 30 40 50 60
Performance improvement, %

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

AMD FX

10 0 10 20 30 40 50 60
Performance improvement, %

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Intel XEON

Figure 5.8: Distribution of performance improvement using Freeze’nSense to decide VM

relocation.

with the one measured before. Recall that all our benchmarks run inside

KVM VMs, so that entire VMs are relocated. In a full scale infrastruc-

ture this procedure would normally run on the entire computing node (or

CPU) and relocation would probably involve other computing cores, pos-

sibly also switching on and off entire nodes and CPUs to optimize power

consumption, but this is beyond the scope of this Chapter. Finally, the cost

of relocation should also be taken into account for a global optimization.

Once more this issue goes beyond the scope of this work, and its evaluation

requires the knowledge of the architecture of the data center (to estimate

the cost of relocation), so that a larger scale infrastructure is needed.

Fig. 5.8 reports the experimental pdf of the performance gain after re-

location for both the Intel Xeon and AMD FX platforms. The results are

very encouraging, showing an average gain in performance around 12% for

98

CHAPTER 5. ISOLATED SAMPLING... 5.7. CPU LOAD BALANCING

0 20 40 60 80 100 120
Performance improvement, %

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

P
ro

b
a
b
ili

ty
 d

e
n
si

ty
AMD FX

0 20 40 60 80 100 120
Performance improvement, %

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Intel XEON

Figure 5.9: Distribution of performance improvement of VMs relocated by Freeze’nSense.

Xeon and 20% for AMD FX. The histogram shows performance change

after letting Freeze’nSense optimize the placement.

The starting point is the worst (but not impossible) scenario: 4 random

benchmarks launched on sibling cores, their performance is measured for

30s to average out any unexpected activities or change in programs be-

havior. Then for another 180s Freeze’nSense determines the interference

between VMs. As interference data is ready we relocate two most starving

VMs to separate (distant) cores. The new performance is measured for

another 30s. There is 90s warm-up before each round to populate caches.

The histograms represent 250 launches of the experiment.

While the overall performance improvement is not that high, the relo-

cated tasks have much higher gain: Fig. 5.9 shows performance improve-

ment of tasks relocated by Freeze’nSense. Comparing two platforms it can

be seen that Intel Xeon benefits much more from the relocation. This is

99

5.8. CONCLUSIONS AND DISCUSSION CHAPTER 5. ISOLATED SAMPLING...

because Intel’s Hyper-Threading technology relies on heavy resource shar-

ing [66]. The AMD sibling cores share much less, hence, less competition

of resources and much less interference [21].

The timings no need to be so long. For most of our benchmarks just a

few seconds is enough for warm-up and measurements. However, there is a

notable exception: SDAGP takes up to 1 minute to complete one iteration.

Because of this short measurements may produce inconsistent results.

Interestingly, under full load both platforms show quite similar per-

formance. The Intel CPU has significantly better peak performance per

core, but hyper-threading does not help too much. AMD cores are more

mild, but they all contribute to full speed. Both CPUs have comparable

transistors budgets (1.4B for the former and 1.2B for the latter).

5.8 Conclusions and Discussion

On-the-fly application profiling is vital for efficient management of data

centers and cloud computing facilities. Performing measurements and as-

sessing performance of applications is challenging in virtualized environ-

ments. Performance degradation often comes from interference of hardware

subsystems shared between cores including caches, FPU, etc.

This Chapter presented Freeze’nSense a general purpose, transparent

and minimally invasive technique for estimation of the intended perfor-

mance of a task, i.e., the performance it would have if it were running in

isolation. To estimate performance in isolation, the execution of all the

concurrent tasks is temporarily stopped for the duration of the measure-

ment period, which is in the order of milliseconds. IPC is used as the main

performance indicator. It is generic and can be applied to most of the tasks

and application as well as VMs.

Extensive evaluation on three different platforms confirms Freeze’nSense

100

CHAPTER 5. ISOLATED SAMPLING... 5.8. CONCLUSIONS AND DISCUSSION

ability to estimate task performance reliably. The obtained results inspired

a simple proof-of-concept task relocation methodology that has been im-

plemented and proved Freeze’nSense’s ability to automatically detect VMs

that suffer the most from interference and relocate them.

Freeze’nSense can naturally be used in heterogeneous infrastructures

that are common in most of data centers due to gradual hardware upgrades.

This raises questions how to distribute applications between old and new

servers and what hardware to buy next. With our technique these problems

are easy to solve by analyzing (potentially without human intervention)

performance profiles.

101

5.8. CONCLUSIONS AND DISCUSSION CHAPTER 5. ISOLATED SAMPLING...

102

Chapter 6

Conclusion and the Road Ahead

Cloud computing has irreversibly changed the computing market and un-

leashed great power for good. Despite all the hype around it, the outcome

is difficult to overestimate: fine-grained resource management, application

life cycle management, scalability and reliability are all affected and im-

proved by clouds. Clouds also open new business opportunities that would

be impossible without the Pay-As-You-Go model.

This thesis contributed to the cloud well-being in several ways. Our first

contribution is a simple yet powerful application interference model that

helps predicting the interference between programs. The model predicts

the performance of tasks running on the same machine by estimating the

interference they create to each other. This can be used for, e.g., estimating

and comparing performances of different task placements.

The second contribution is a task ranking technique that allows to sort

running applications according to the average level of interference they

create. In a cloud with many applications it is very likely to see applications

competing for resources. With the advent of high-density server equipment

the situation gets ever worse. For this reason it is very important to identify

(and possibly relocate) applications making the strongest impact on others.

We have proposed a simple technique to identify such programs. The

103

6.1. FUTURE RESEARCH CHAPTER 6. CONCLUSION

technique is based on the empirical observation that program’s average

interference has good correlation with specific performance counters. Once

performance counters representative for interference are found they can be

used to estimate interference of programs to steer resource management.

Our final contribution is a technique for estimating performance iso-

lation of tasks and virtual machines running in shared environment. The

tightening efficiency constraints and raising environmental concerns require

cloud providers to increase cloud density more and more. But the density

cannot be increased infinitely, at some point interference and resource star-

vation will make it impractical. Where to draw the line? Our technique

provides an accurate estimate of the performance of an application as if it

would be running alone on the machine. This is done by freezing other ap-

plications for a few milliseconds and taking performance samples that are

representative for isolated performance. These samples can be compared

with performance samples obtained without freezing. The difference will

show how badly the application is affected by interference. Given this in-

formation, the CRM can, e.g., estimate SLA or adjust placement to reduce

interference.

6.1 Future Research

So far we run our experiments on a budget and on a very small scale – just

one machine of each hardware architecture. It would be interesting to see

the proposed techniques at scale of tens machines or more. That would

bring new challenges as well as new optimization opportunities. For ex-

ample, one of the challenges is to align applications’ resource requirements

with cloud resource management. Some applications are very dynamic in

nature and can change their behavior over time. The CRM should detect

such applications and treat them specially because, depending on the rate

104

CHAPTER 6. CONCLUSION 6.1. FUTURE RESEARCH

of changes, redistributing the load may or may not be an option.

Another topic to dig into could be aligning resource management with

new application architectures. In this work we dealt only with small appli-

cations without dependent services running outside their containers. How-

ever, a typical service consists of many components (frontend, backend,

database, message bus, etc) potentially scattered across multiple VMs and

machines. Or it can be an application based on microservices, it is when

most of the processing is delegated to external services (like a file storage,

database, authentication, load balancing, video encoding, logging and oth-

ers). In such environments it is not granted that increasing efficiency of

one component we make noticeable impact to the whole software stack.

Furthermore, networking distance may also affect the performance. This

requires identification of hot spots, dependencies between services and even

co-location/co-scheduling of them to reduce network distance or increase

data sharing. All that are potential topics for our future research.

105

Appendix A

Vocabulary

Term Meaning

Counter Register counting events of a given type.

Event Low-level hardware event, e.g., a cache miss or suc-

cessfully executed (retired) instruction.

Freeze’nSense Name of the performance isolation measuring tech-

nique proposed in this thesis.

Hyper-

Threading

(HT)

technology of presenting a single physical CPU core

as multiple logical CPU cores that share the same

computational resources (for their better utiliza-

tion).

Kernel Vir-

tual Machine

(KVM)

Linux virtualization technology.

Isolated Envi-

ronment

Servers dedicated to run a given application exclu-

sively, without sharing resources with other applica-

tions.

107

APPENDIX A. VOCABULARY

Interference Degradation of performance caused by task A run-

ning on one CPU core on task B running on another

core. The source of interference is in the resources

shared between CPU cores (cache memory, Algebric

and Logic Unit (ALU), etc.), which in most of the

cases do not allow simultaneous access: whenever

one CPU core accesses a resource, the other must

wait until it is released (instruction stalls).

Performance

Monitoring

Unit (PMU)

A built-in CPU circuit that gathers low-level per-

formance statistics, such as number of executed in-

structions or cache misses.

Precise Event

Sampling

Mode of PMU operation when there is a dedicated

counter for each enabled event.

Shared Envi-

ronment

Hardware running many applications simultaneously

(e.g., shared hosting, clouds).

Symmetric

Multiprocessing

System (SMP)

Computing system with multiple semi-independent

and identical processing units (cores).

Simultaneous

Multithreading

(SMT)

Technology to allow a CPU core to execute multiple

(usually two) tasks simultaneously if resources allow.

Unlike SMP most resources are shared. SMT pro-

vides modest speedup, but cheap in terms of silicon

area and power consumption.

CPU Affinity A list of CPU cores a task or a thread can be sched-

uled on. Proper task pinning may well improve the

performance due to, e.g., better caches utilization.

108

APPENDIX A. VOCABULARY

Out-of-Order

(OoO)

Modern CPUs execute instructions not in program

order to minimize pipeline stalls. This is only pos-

sible for instructions that can be executed indepen-

dently and not depend on each other. The profit

comes when the current instruction waits for data,

but later instructions do not have to.

Virtual Ma-

chine (VM)

Virtual machine or container.

Total Cost

of Ownership

(TCO)

Total cost of ownership, an amount to be paid during

the lifecycle of a facility, product or service.

Queries Per

Second (QPS)

Queries per second.

(CPU) Affinity CPU cores on what a task is allowed to run.

KVM Kernel-based Virtual Machine, virtualization tech-

nology used in Linux kernel. Requires hardware sup-

port.

Resource Pool Free cluster resources that do not belong to any of

running tasks.

Cloud Re-

source Manager

(CRM)

software suite that manages resources, clouds, and

tasks in the entire cluster in order to maintain its

efficiency.

Non-Uniform

Memory Access

(NUMA)

Non-Uniform Memory access is a memory design

when every CPU has its own local memory.

109

APPENDIX A. VOCABULARY

110

Appendix B

Research Hiccups and Dead-ends

While the author enjoyed almost every moment of this research, it was

not always pure fun. Sometimes the hardware did not work as expected,

sometimes software was a bit buggy... Occasionally the research was trou-

blesome and we spent quite a bit on dealing with obscure problems. We

think it is worth sharing some of our experience so other researchers could

learn from it and avoid these traps for young players.

B.1 Importance of Storage

Our original intention was to prepare a live-usb drive allowing us to conduct

the experiments on any platform that could boot from it. And the first

platform was this one. However, the first uses uncovered many hidden

problems of such solution.

We bought a seemed-to-be-decent USB3 Stick (Kingston DataTraveler

R3.0). But the experiments didn’t go well crashing in random places due to

timeouts. A quick investigation showed that during timeouts the system

were spending most of the time in “waiting for IO”. This was strange

considering our tests are not IO bound. So we dug further and found that

our VM images are quite large and updated quite frequently. But why?

We do not make a dedicated image for each VM instance. Instead we

111

B.2. LOOPING PROGRAMS APPENDIX B. RESEARCH HICCUPS ...

have a template (a master image) that we clone. The clones are copy-on-

write (CoW): unmodified blocks are referenced from the template. If a

VM modifies something it gets its local copy of the block and the original

templates remains intact. This saves a lot of space. Yet images are not air

light because CoW works on a block level. Even if one changed byte makes

whole block copied. This becomes extremely inefficient on random small

writes. In our case such writes are logs and updates of file timestamps.

As we have 4-8 VM instances this overhead is multiplied by a factor of

4-8 as well. The usb stick can only approach the advertised speeds (up to

30Mb/s writes) only on sequential access. The actual speed was about 3-

5Mb/s because of randomized access and write amplification [43] (to write

a couple of bytes a flash drive has to erase a whole erase block of size of

up to several megabytes and only then write the modified data back).

Another issue was that the stick tended to sleep after a very short time

of inactivity; the wake up time was rather noticeable leading to frequent

“microfreezes” of applications.

We solved all our storage problems by replacing the usb stick with a

good SSD (Crucial M4-CT064M4SSD2). We also tuned the filesystem not

to update access timestamps (atime).

So just small bunch of VMs was enough to put a cheap storage on the

knees. And the point of the story is “never underestimate even small VMs

if they are in quantity”.

B.2 Looping programs

Our ARM testbed is based on Exynos 4412 SoC that has very limited

support in Linux. This imposed limitations on testing we had to overcome.

One of the major problem was that performance counters could not be

inherited by child processes. As a result, we could not run benchmarks

112

APPENDIX B. RESEARCH HICCUPS ... B.2. LOOPING PROGRAMS

with short execution time. Normally, we use a parent process (supervisor)

to spawn new (child) prosses upon their termination. But because children

did not inherit performance counters our software could not measure their

performance. So we were limited with just one process (possibly with

multiple threads though) per container. We decided to modify sources

and execute main function of our benchmarks in loop. But it turned out

many programs do not properly release resources after use and rely on OS

functions to free memory and other resources after they finish execution.

Hence, we tried to add garbage collector – BoehmGC ([20]) – to suppress

memory leaks. Otherwise a couple of seconds was enough to fully clutter

all RAM. The garbage collections supposed to work by replacing memory

allocation functions (malloc/realloc/free) with their GC variant (in this

case free is no-op). This would be done without touching the sources by

setting an environment variable (LD PRELOAD) to tell the linker to pre-

load our library ([2]) that does the trick. Unfortunately, some benchmarks

still leaked. This could be caused by low-level libraries that do not use

system malloc. So we went another way.

There is a family of exec* system calls that does exactly what we need:

it spawns a new process inside the old one (the old ceases to exist). The

usage is very simple, a complete listing of am example program is shown

in Listing B.1.

The exec* calls do not close file descriptors. It might happen that

with each iteration the program opens more and more file descriptors.

Unfortunately, there is no efficient platform-independent way to do this.

For the sake of simplicity, we just iterate over the first 1024 descriptors

(skipping stdio, stdout and stderr) and unconditionally close them.

113

B.3. UNEXPECTED LOAD VARIATION APPENDIX B. RESEARCH HICCUPS ...

Listing B.1: How to loop a program.

#include <uni s td . h>

#include <s t d i o . h>

int main (int argc , char ∗argv []) {
// c l o s e any open f i l e (e x c e p t s t d i n / s t d o u t / s t d e r r)

for (int i = 3 ; i < 1024 ; i++) {
c l o s e (i) ; }

}

// spawn new proces s in−p l a c e

execvp (argv [0] , argv) ;

// never reached but r e q u i r e d by the f u n c t i o n s i g n a t u r e

return 0 ;

}

B.3 Unexpected Load Variation

When we were collecting the data for the thesis we asked our friends to

provides us with data from their projects. And we got quite interesting

results from one project: it showed min/max load ratio of was just 1.3 at

most. How so?

We contacted the project owner and he kindly agreed to record perfor-

mance history for 24 hours. The data showed that there was unusually

low (2x) day-to-day variation. A quick investigation confirmed that night

visitors and search bots create significant load even off-peak hours. But

there was more. A big portion of resources was consumed by a backup/mir-

roring tool (duplicity1) that constantly synchronizes data between servers.

And because of the way it works (it performs full scan on every execution)

1duplicity.nongnu.org/

114

duplicity.nongnu.org/

APPENDIX B. RESEARCH HICCUPS ... B.3. UNEXPECTED LOAD VARIATION

0 20 40 60 80 100 120 140
30

40

50

60

70

80

90

100
Lo

a
d
,
%

disk
cpu

Figure B.1: CPU and DISK load variation over 24hours for linux.org.ru server.

it creates noticeable permanent load that barely correlates with visitors

traffic.

115

linux.org.ru

B.3. UNEXPECTED LOAD VARIATION APPENDIX B. RESEARCH HICCUPS ...

116

Bibliography

[1] Creative commons attribution license. https://creativecommons.

org/licenses/by/3.0/.

[2] GCPreload, a library that replaces malloc/realloc with their GC equiv-

alents. https://github.com/kopchik/gcpreload.

[3] Linux containers – chroot on steroids. http://lxc.sourceforge.

net/.

[4] Nginx web server. http://nginx.org/en/.

[5] pgBench, a benchmark for PostgreSQL. http://www.postgresql.

org/docs/9.4/static/pgbench.html. Accessed: 2015-06-08.

[6] The Xen project. http://www.xenproject.org/.

[7] November 2015 web server survey. http://news.netcraft.com/

archives/2015/11/16/november-2015-web-server-survey.html,

2015.

[8] Marco Ajelli, Renato Lo Cigno, and Alberto Montresor. Modeling bot-

nets and epidemic malware. In Proceedings of the IEEE International

Conference on Communications (ICC), pages 1–5, 2010.

[9] Mayez A. Al-Mouhamed and Khaled A. Daud. Experimental analysis

of SMP scalability in the presence of coherence traffic and snoop fil-

tering. In Proceedings of the 14th IEEE International Conference on

117

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://github.com/kopchik/gcpreload
http://lxc.sourceforge.net/
http://lxc.sourceforge.net/
http://nginx.org/en/
http://www.postgresql.org/docs/9.4/static/pgbench.html
http://www.postgresql.org/docs/9.4/static/pgbench.html
http://www.xenproject.org/
http://news.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html

BIBLIOGRAPHY BIBLIOGRAPHY

High Performance Computing and Communication & 9th IEEE In-

ternational Conference on Embedded Software and Systems (HPCC-

ICESS), pages 81–88, 2012.

[10] Alaa R. Alameldeen and David A. Wood. IPC considered harmful for

multiprocessor workloads. IEEE Micro, (4):8–17, 2006.

[11] Muhammad Aleem, Radu Prodan, and Thomas Fahringer. On the

evaluation of JavaSymphony for heterogeneous multi-core clusters. In

Proceedings of the 16th International European Conference on Parallel

and Distributed Computing (Euro-Par), pages 23–30. Springer, 2010.

[12] Francesc Alted. Why modern CPUs are starving and what can be done

about it. Computing in Science & Engineering, 12(2):68–71, 2010.

[13] AMD. BIOS and kernel developers guide (BKDG) for AMD fam-

ily 15h models 00h-0fh processors. http://support.amd.com/us/

Processor_TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf, 2012.

[14] AMD. BIOS and kernel developers guide (BKDG). http://

developer.amd.com/wordpress/media/2012/10/31116.pdf, 2013.

[15] Gene M. Amdahl. Validity of the single processor approach to achiev-

ing large scale computing capabilities. In Proceedings of the AFIPS

Spring Joint Computing Conference, pages 483–485. ACM, 1967.

[16] Joseph Antony, Pete P. Janes, and Alistair P. Rendell. Explor-

ing thread and memory placement on NUMA architectures: So-

laris and Linux, UltraSPARC/FirePlane and opteron/hypertransport.

In Proceedings of the 13th annual IEEE International Conference

on High Performance Computing (HiPC), pages 338–352. Springer-

Verlag, 2006.

118

http://support.amd.com/us/Processor_TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://support.amd.com/us/Processor_TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://developer.amd.com/wordpress/media/2012/10/31116.pdf
http://developer.amd.com/wordpress/media/2012/10/31116.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[17] Nathan Beckmann and Daniel Sanchez. Jigsaw: scalable software-

defined caches. In Proceedings of the 22nd International Conference

on Parallel Architectures and Compilation Techniques (PACT), pages

213–224. IEEE, 2013.

[18] Reinaldo Bergamaschi, Indira Nair, Gero Dittmann, Hiren Patel,

Geert Janssen, Nagu Dhanwada, Alper Buyuktosunoglu, Emrah

Acar, Gi-Joon Nam, Guoling Han, et al. Performance model-

ing for early analysis of multi-core systems. In Proceedings of the

5th IEEE/ACM/IFIP International Conference on Hardware/Soft-

ware Codesign and System Synthesis (CODES+ISSS), pages 209–214.

IEEE, 2007.

[19] Sapan Bhatia, Abhishek Kumar, Marc E. Fiuczynski, and Larry L.

Peterson. Lightweight, high-resolution monitoring for troubleshooting

production systems. In Proceedings of the 8th USENIX Symposium

on Operating Systems Design and Implementation (OSDI), pages 103–

116, 2008.

[20] Hans-J. Boehm. Dynamic memory allocation and garbage collection.

Computers in Physics, 9(3):297–303, 1995.

[21] Michael Butler, Leslie Barnes, Debjit Das Sarma, and Bob Gelinas.

Bulldozer: An approach to multithreaded compute performance. IEEE

Micro, (2):6–15, 2011.

[22] Damiano Carra, Renato Lo Cigno, and Ernst W. Biersack. Stochastic

graph processes for performance evaluation of content delivery ap-

plications in overlay networks. IEEE Transactions on Parallel and

Distributed Systems, 19(2):247–261, 2008.

119

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Carlos Carvalho. The gap between processor and memory speeds.

In Proceedings of the IEEE International Conference on Control and

Automation (ICCA), 2002.

[24] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Pre-

dicting inter-thread cache contention on a chip multi-processor archi-

tecture. In Proceedings of the 11th International Symposium on High

Performance Computer Architecture (HPCA), pages 340–351. IEEE,

2005.

[25] Jichuan Chang and Gurindar S Sohi. Cooperative caching for chip

multiprocessors, volume 34. IEEE Computer Society, 2006.

[26] J.J. Colao. With 60 million websites, wordpress rules the web. so

where’s the money. www.forbes.com/sites/jjcolao/2012/09/05/

the-internets-mother-tongue/. Last accessed: March 2016, 2012.

[27] Carlo Curino, Evan P.C. Jones, Samuel Madden, and Hari Balakr-

ishnan. Workload-aware database monitoring and consolidation. In

Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data, pages 313–324, 2011.

[28] Tanima Dey, Wei Wang, Jack W Davidson, and Mary Lou Soffa. Re-

Sense: Mapping dynamic workloads of colocated multithreaded appli-

cations using resource sensitivity. ACM Transactions on Architecture

and Code Optimization, 10(4):41, 2013.

[29] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto,

Ramin Sadre, and Aiko Pras. Inside Dropbox: understanding per-

sonal cloud storage services. In Proceedings of the ACM Conference

on Internet Measurement Conference (ICM), pages 481–494, 2012.

120

www.forbes.com/sites/jjcolao/2012/09/05/the-internets-mother-tongue/
www.forbes.com/sites/jjcolao/2012/09/05/the-internets-mother-tongue/

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Ulrich Drepper. What every programmer should know about memory.

Red Hat, Inc., 2007.

[31] Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth,

Fabien Gaud, and Jian Pei. A practical method for estimating perfor-

mance degradation on multicore processors, and its application to hpc

workloads. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, page 83.

IEEE, 2012.

[32] Stijn Eyerman and Lieven Eeckhout. Per-thread cycle accounting in

SMT processors. In Proceedings of the 14th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 133–144. ACM, 2009.

[33] Michal Feldman, Kevin Lai, and Li Zhang. The proportional-share

allocation market for computational resources. IEEE Transactions on

Parallel and Distributed Systems, 20(8):1075–1088, 2009.

[34] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,

Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel

Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:

a study of emerging scale-out workloads on modern hardware. In Pro-

ceedings of the 17th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), vol-

ume 47, pages 37–48. ACM, 2012.

[35] Frank Gens, Margaret Adam, David Bradshaw, Christian A Chris-

tiansen, and Laura DuBois. Worldwide and regional public IT cloud

services 2013-2017 forecast. International Data Corporation Market

Analysis, 38, 2013.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[36] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vah-

dat. Enforcing performance isolation across virtual machines in Xen.

In Proceedings of the 7th ACM/IFIP/USENIX International Middle-

ware Conference, pages 342–362. Springer, 2006.

[37] Prabhat K. Gupta. Xeon+ FPGA platform for the data center. In

Proceedings of the 4th Workshop on the Intersections of Computer

Architecture and Reconfigurable Logic, volume 119, 2015.

[38] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The WEKA data mining software:

an update. ACM SIGKDD Explorations, 11(1):10–18, 2009.

[39] Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-

managed cache design. In Proceedings of the 27th Annual International

Symposium on Computer Architecture (ISCA), pages 107–116. ACM,

2000.

[40] Amir H Hashemi, David R Kaeli, and Brad Calder. Efficient proce-

dure mapping using cache line coloring. In ACM SIGPLAN Notices,

volume 32, pages 171–182, 1997.

[41] Raoufehsadat Hashemian, Diwakar Krishnamurthy, Martin Arlitt, and

Niklas Carlsson. Characterizing the scalability of a web application

on a multi–core server. Concurrency and Computation: Practice and

Experience, 26(12):2027–2052, 2014.

[42] John L. Hennessy and David A. Patterson. Computer architecture: a

quantitative approach. Morgan Kaufmann Publishers Inc., 5th edition,

2011.

[43] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and

Roman Pletka. Write amplification analysis in flash-based solid state

122

BIBLIOGRAPHY BIBLIOGRAPHY

drives. In Proceedings of the SYSTOR 2009: The Israeli Experimental

Systems Conference, pages 1–9. ACM, 2009.

[44] Cisco Visual Networking Index. Global mobile data

traffic forecast update, 2015-2020 white paper. http:

//www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.html, 2015.

[45] Intel. Intel 64 and IA-32 Architectures Optimiza-

tion Reference Manual. http://www.intel.com/

content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf, 2014.

[46] Sushil Jajodia, Krishna Kant, Pierangela Samarati, Anoop Singhal,

Vipin Swarup, and Cliff Wang. Secure Cloud Computing. Springer,

2014.

[47] Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung

Chiang. Joint VM placement and routing for data center traffic engi-

neering. In Proceedings of the 31st IEEE International Conference on

Computer Communications (INFOCOM), 2012.

[48] Alain Kägi, James R Goodman, and Doug Burger. Memory band-

width limitations of future microprocessors. In Proceedings of the 23rd

Annual International Symposium on Computer Architecture (ISCA),

pages 78–78. IEEE, 1996.

[49] Alexandre Kandalintsev and Renato Lo Cigno. A behavioral first order

CPU performance model for clouds’ management. In Proceedings of

4th International Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT), pages 40–48. IEEE, 2012.

123

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[50] Alexandre Kandalintsev, Renato Lo Cigno, and Dzmitry Kliazovich.

Freeze’nSense: Estimation of performance isolation in cloud environ-

ments (submit). Software: Practice and Experience, 2016.

[51] Alexandre Kandalintsev, Renato Lo Cigno, Dzmitry Kliazovich, and

Pascal Bouvry. Profiling cloud applications with hardware perfor-

mance counters. In Proceedings of the 28th International Conference

on Information Networking (ICOIN), pages 52–57. IEEE, 2014.

[52] Jeffrey O. Kephart and David M. Chess. The vision of autonomic

computing. Computer, 36(1):41–50, 2003.

[53] Andi Kleen. An NUMA API for linux. Technical report, 2005. Ac-

cessed: 2015-06-08.

[54] Abhishek Kumar and Jun (Jim) Xu. Sketch guided sampling - using

on-line estimates of flow size for adaptive data collection. In Proceed-

ings of the 25th IEEE International Conference on Computer Com-

munications (INFOCOM), pages 1–11, 2006.

[55] Steven R. Kunkel, Richard J. Eickemeyer, Mikko H. Lipasti, Timo-

thy J. Mullins, B.O. Krafka, Harold Rosenberg, Steven P. Vanderwiel,

Philip L. Vitale, and Larry D. Whitley. A performance methodology

for commercial servers. IBM Journal of Research and Development,

44(6):851–872, 2000.

[56] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. Oracle

TimesTen: An in-memory database for enterprise applications. IEEE

Data Engineering Bulletin, 36(2):6–13, 2013.

[57] Henrik Löf and Sverker Holmgren. affinity-on-next-touch: increasing

the performance of an industrial PDE solver on a cc-NUMA system.

124

BIBLIOGRAPHY BIBLIOGRAPHY

In Proceedings of the 19th ACM Annual International Conference on

Supercomputing (ICS), pages 387–392, 2005.

[58] Zoltan Majo and Thomas R. Gross. Memory system performance in

a NUMA multicore multiprocessor. In Proceedings of the 4th Annual

International Conference on Systems and Storage (SYSTOR), pages

1–10. ACM, 2011.

[59] Steve McKillup. Statistics explained. An Introductory Guide for Life

Scientists, Cambridge, 2006.

[60] Eric Melski. Public versus private clouds for de-

v/test. https://blog.melski.net/2010/10/27/

public-versus-private-clouds-for-devtest/, Last accessed:

April 2016, 2010.

[61] Kashif Munir, Renato Lo Cigno, Pascale Primet Vicat-Blanc, and

Michael Welzl. Planning data transfers in grids: a multi-service queue-

ing approach. Concurrency and Computation: Practice and Experi-

ence, pages 407–422, 2011.

[62] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić,

and Ricardo Bianchini. DeepDive: Transparently identifying and man-

aging performance interference in virtualized environments. In Pro-

ceedings of the USENIX Annual Technical Conference, pages 219–230.

USENIX, 2013.

[63] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Fal-

safi, and Boris Grot. Scale-out numa. ACM SIGARCH Computer

Architecture News, 42(1):3–18, 2014.

[64] Zhonghong Ou, Bo Pang, Yang Deng, Jukka K Nurminen, Antti Ylä-

Jääski, and Pan Hui. Energy- and cost-efficiency analysis of ARM-

125

https://blog.melski.net/2010/10/27/public-versus-private-clouds-for-devtest/
https://blog.melski.net/2010/10/27/public-versus-private-clouds-for-devtest/

BIBLIOGRAPHY BIBLIOGRAPHY

based clusters. In Proceedings of the 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages

115–123. IEEE, 2012.

[65] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng-Zhong Xu. Optimizing

virtual machine scheduling in NUMA multicore systems. In Proceed-

ings of the 19th IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 306–317, 2013.

[66] Subhash Saini, Haoqiang Jin, Robert Hood, David Barker, Piyush

Mehrotra, and Rupak Biswas. The impact of hyper-threading on pro-

cessor resource utilization in production applications. In Proceedings

of the 18th International Conference on High Performance Computing

(HiPC), pages 1–10. IEEE, 2011.

[67] Alexander Sandler. SMP affinity and proper interrupt handling in

linux, 2008. Accessed: 2015-06-08.

[68] D. Sarno and S. Rodriguez. Hacker attacks show vulnerability of cloud

computing. Los Angeles Times, 17, June 2011. Accessed: 2016-03-25.

[69] Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. Performance evalu-

ation of sparse matrix multiplication kernels on Intel Xeon Phi. In Par-

allel Processing and Applied Mathematics, pages 559–570. Springer,

2014.

[70] Aliaksei Severyn and Alessandro Moschitti. Fast support vector ma-

chines for structural kernels. In Proceedings of the European Con-

ference on Machine Learning and Knowledge Discovery in Databases

(ECML-PKDD), pages 175–190. Springer, 2011.

[71] Rami Sheikh and Mazen Kharbutli. Improving cache performance by

combining cost-sensitivity and locality principles in cache replacement

126

BIBLIOGRAPHY BIBLIOGRAPHY

algorithms. In Proceedings of the 28th IEEE International Conference

on Computer Design (ICCD), pages 76–83, 2010.

[72] Vivek Shrivastava, Petros Zerfos, Kang-Won Lee, Hani Jamjoom, Yew-

Huey Liu, and Suman Banerjee. Application-aware virtual machine

migration in data centers. In Proceedings of the 30th IEEE Interna-

tional Conference on Computer Communications (INFOCOM), pages

66–70, 2011.

[73] Xiang Song, Haibo Chen, Rong Chen, Yuanxuan Wang, and Binyu

Zang. A case for scaling applications to many-core with os clustering.

In Proceedings of the 6th Conference on Computer Systems (EuroSys),

pages 61–76. ACM, 2011.

[74] William H. Starbuck. Learning by knowledge-intensive firms. Journal

of Management Studies, 29(6):713–740, 1992.

[75] Dylan Stark, Gabrielle Allen, Tom Goodale, Thomas Radke, and Erik

Schnetter. An extensible timing infrastructure for adaptive large-scale

applications. In Proceedings of the 7th International Conference on

Parallel Processing and Applied Mathematics (PPAM), pages 1170–

1179. Springer, 2007.

[76] M. Aater Suleman, Yale N. Patt, Eric Sprangle, Anwar Rohillah, An-

war Ghuloum, and Doug Carmean. Asymmetric chip multiprocessors:

Balancing hardware efficiency and programmer efficiency. Technical

report, University Texas (TR-HPS-2007-001), 2007.

[77] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing

shared l2 caches on multicore systems in software. In Proceedings

of the Workshop on the Interaction between Operating Systems and

Computer Architecture (WIOSCA), pages 26–33. Citeseer, 2007.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[78] David Tam, Reza Azimi, and Michael Stumm. Thread clustering:

sharing-aware scheduling on SMP-CMP-SMT multiprocessors. In Pro-

ceedings of the 2nd Conference on Computer Systems (EuroSys), vol-

ume 41, pages 47–58. ACM, 2007.

[79] David Tam, Reza Azimi, and Michael Stumm. Thread clustering:

Sharing-aware scheduling on SMP-CMP-SMT multiprocessors. In Pro-

ceedings of the 2nd Conference on Computer Systems (EuroSys), pages

47–58. ACM, 2007.

[80] Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and Gio-

vanni Pacifici. A scalable application placement controller for enter-

prise data centers. In Proceedings of the 16th International Conference

on World Wide Web, pages 331–340. ACM, 2007.

[81] Lingjia Tang, Jason Mars, Xiao Zhang, Robert Hagmann, Robert

Hundt, and Eric Tune. Optimizing Google’s warehouse scale com-

puters: The NUMA experience. In Proceedings of the 19th IEEE In-

ternational Symposium on High Performance Computer Architecture

(HPCA), pages 188–197, 2013.

[82] Joseph Torrellas, John Hennessy, and Thierry Weil. Analysis of critical

architectural and programming parameters in a hierarchical. ACM

SIGMETRICS Performance Evaluation Review, 18(1):163–172, 1990.

[83] Wei Wang, Tanima Dey, Ryan W Moore, Mahmut Aktasoglu, Bruce R

Childers, Jack W Davidson, Mary Jane Irwin, Mahmut Kandemir, and

Mary Lou Soffa. REEact: a customizable virtual execution manager

for multicore platforms. ACM SIGPLAN Notices, 47(7):27–38, 2012.

[84] Vincent M. Weaver. Linux perf event features and overhead. In Pro-

ceedings of the 2nd International Workshop on Performance Analysis

of Workload Optimized Systems (FastPath), pages 342–362, 2013.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[85] Vincent M. Weaver. Self-monitoring overhead of the linux perf event

performance counter interface. In Proceedings of the IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software,

pages 102–111, 2015.

[86] Vincent M. Weaver and Jack Dongarra. Can hardware performance

counters produce expected, deterministic results? In Proceedings of

the 3rd Workshop on Functionality of Hardware Performance Moni-

toring, 2010.

[87] Thomas Willhalm. Memory latencies on intel xeon pro-

cessor e5-4600 and e7-4800 product families. https:

//software.intel.com/en-us/blogs/2014/01/28/

memory-latencies-on-intel-xeon-processor-e5-4600-and-e7-4800-product-families,

Last accessed: April 2016.

[88] C.S. Wong, I.K.T. Tan, R.D. Kumari, J.W. Lam, and W. Fun. Fairness

and interactive performance of O(1) and CFS Linux kernel schedulers.

In Proceedings of the 3rd International Symposium on Information

Technology (ITSim), volume 4, pages 1–8. IEEE, 2008.

[89] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin

Yousif. Black-box and gray-box strategies for virtual machine migra-

tion. In Proceedings of the 4th USENIX Conference on Networked Sys-

tems Design Implementation (NSDI), pages 229–242. USENIX, 2007.

[90] Di Xu, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and Zhenjiang

Wang. Providing fairness on shared-memory multiprocessors via pro-

cess scheduling. In Proceedings of the 12th ACM SIGMETRICS/Per-

formance Joint International Conference on Measurement and Mod-

eling of Computer Systems, volume 40, pages 295–306, 2012.

129

https://software.intel.com/en-us/blogs/2014/01/28/memory-latencies-on-intel-xeon-processor-e5-4600-and-e7-4800-product-families
https://software.intel.com/en-us/blogs/2014/01/28/memory-latencies-on-intel-xeon-processor-e5-4600-and-e7-4800-product-families
https://software.intel.com/en-us/blogs/2014/01/28/memory-latencies-on-intel-xeon-processor-e5-4600-and-e7-4800-product-families

BIBLIOGRAPHY BIBLIOGRAPHY

[91] Rui Yang, Joseph Antony, and Alistair Rendell. Effective use of dy-

namic page migration on numa platforms: The gaussian chemistry

code on the sunfire x4600m2 system. In Proceedings of the 10th Inter-

national Symposium on Pervasive Systems, Algorithms, and Networks

(ISPAN), pages 63–68. IEEE, 2009.

[92] Rui Yang, Joseph Antony, and Alistair P Rendell. A simple perfor-

mance model for multithreaded applications executing on non-uniform

memory access computers. In , 2009. HPCC’09., pages 79–86. IEEE,

2009.

[93] Cemal Yilmaz. Using hardware performance counters for fault localiza-

tion. In Proceedings of the 2nd International Conference on Advances

in System Testing and Validation Lifecycle (VALID), pages 87–92.

IEEE, 2010.

[94] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth. Accuracy

of performance counter measurements. In Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 23–32, 2009.

[95] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo

Gokhale, and John Wilkes. CPI 2: CPU performance isolation for

shared compute clusters. In Proceedings of the 8th ACM European

Conference on Computer Systems (EuroSys), pages 379–391, 2013.

[96] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,

and Saman Amarasinghe. Dynamic cache contention detection

in multi-threaded applications. In Proceedings of the 7th ACM

SIGPLAN/SIGOPS Conference on Virtual Execution Environments

(VEE), volume 46, pages 27–38, 2011.

130

BIBLIOGRAPHY BIBLIOGRAPHY

[97] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.

Addressing shared resource contention in multicore processors via

scheduling. In Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), volume 38, pages 129–142. ACM, 2010.

131

	Introduction
	Clouds under the hood
	Cloud Economics
	Why Clouds
	Why not Clouds

	Application Interference
	Motivation
	Research Objectives
	Structure of the Thesis
	Topics outside the scope

	State of the Art
	Monitoring and On-the-Fly Profiling
	Performance Modeling
	Task-aware Scheduling

	Modeling Tasks Inter-Core Interference
	Introduction
	The Benchmark Programs

	Problem Statement
	A Simple Experiment

	Interraction Model
	Performance Measure
	The Metric
	Accuracy and Overhead

	Model Validation
	Hardware Configurations
	Measurement Methodology

	Results and Analysis
	Digging Inside the Model
	The Two-Core Machine
	Intel W3670: The Six-Core Case
	Effects of Prefetching on Intel W3670
	AMD FX-8120: The Eight-Core Case
	Improving the Precision

	Obtaining Model Parameters
	Direct Measurement
	Task Classification
	Low-level Resource Utilization
	On-line Tuning

	Conclusion

	Ranking VMs by their interference
	Introduction
	Methodology
	Hardware Performance Counters
	Virtual Machines Profiling

	Experimental Study
	Testbed
	Benchmarks
	Software Architecture

	Performance Results and Analysis
	Analysis of different HPCs
	Lessons Learned
	Conclusion

	Freeze'nSense: Isolated Performance Sampling in a Shared Environment
	Introduction
	Notation and Terminology
	Performance Isolation and Monitoring
	SMP Open Issues

	Methodology
	Implementation
	Benchmarks and Workload
	Performance Sampling Issues

	Results
	Freezing Validation

	CPU Load Balancing
	Conclusions and Discussion

	Conclusion and the Road Ahead
	Future Research

	Vocabulary
	Research Hiccups and Dead-ends
	Importance of Storage
	Looping programs
	Unexpected Load Variation

	Bibliography

