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Abstract

One of the ultimate goals of neuroscience is decoding someone’s intentions

directly from his/her brain activities. In this thesis, we aim at pursuing

this goal in different scenarios. Firstly, we show the possibility of creating

a user-centric music/movie recommender system by employing neurophys-

iological signals. Regarding this, we employed a brain decoding paradigm

in order to classify the features extracted from brain signals of participants

watching movie/music video clips, into our target classes (two broad music

genres and four broad movie genres). Our results provide a preliminary

experimental evidence towards user-centric music/movie content retrieval

by exploiting brain signals. Secondly, we addressed one of the main issue of

the applications of brain decoding algorithms. Generally, the performance

of such algorithms suffers from the constraint of having few and noisy sam-

ples, which is the case in most of the neuroimaging datasets. In order to

overcome this limitation, we employed an adaptation paradigm in order to

transfer knowledge from another domain (e.g. large-scale image domain)

to the brain domain. We experimentally show that such adaptation pro-

cedure leads to improved results. We performed such adaptation pipeline

on different tasks (i.e. object recognition and genre classification) using

different neuroimaging modalities (i.e. fMRI, EEG, and MEG). Thirdly,

we aimed at one of the fundamental goals in brain decoding which is re-

constructing the external stimuli using only the brain features. Under this

scenario, we show the possibility of regressing the stimuli spectrogram using



time-frequency analysis of the brain signals. Finally, we conclude the thesis

by summarizing our contributions and discussing the future directions and

applications of our research.
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[pattern recognition, brain decoding, neurophysiological signal processing,

information retrieval]
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Chapter 1

Introduction

In the past decade, machine learning algorithms have been widely used in

neuroscience community. Extracting stimulus-related information from the

brain activity by employing machine learning algorithms is known as brain

decoding. In a typical brain-decoding paradigm, different types of stimuli

are shown to the participant of the neuroimaging experiment, while his/her

concurrent brain activity is captured using neuroimaging techniques. Then

a machine learning algorithm is employed to categorize the measured brain

signal into the target stimuli classes. If the algorithm, can predict the tar-

get stimulus category better than the chance level, we can hypothesize that

the stimulus-related information exists in the brain data. Among various

neuroimging techniques for recording brain activity, the most widely used

methods for noninvasive brain recording in humans are Functional Mag-

netic Resonance Imaging (fMRI), Magnetoencephalography (MEG) and

Electroencephalography (EEG). Once brain signals are recorded, the afore-

mentioned decoding systems can be applied to the measured signal.

This research aims at retrieving semantic-level information from com-

plex stimuli and improving the accuracy of brain decoding systems. In the

remainder of this chapter we present the motivation and the outline of the

research conducted in this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Research Motivation

This thesis focuses on addressing some of the current issues in brain de-

coding and brain signal processing. The main objectives of this research

are listed as follows:

1. Retrieving the music/movie genre related information from

neurophysiological signals: The first objective of this thesis, is

to propose a decoding pipeline in order to classify features extracted

from brain signals of participants into our target classes (two broad

music genres and four broad movie genres). Our results provide an

evidence towards the feasibility of the user-centric music/movie con-

tent retrieval by exploiting brain signals. This can serve as the first

preliminary step towards user-centric music/movie recommender sys-

tems.

2. Improving the performance of brain decoding algorithms us-

ing an adaptation paradigm: The second objective of this thesis is

related to the poor performance of employing machine learning algo-

rithms on neuroimaging datasets since such datasets suffer from the

constraint of having few and noisy samples. On this, we employed

an adaptation paradigm in order to transfer knowledge from another

modality to the brain modality. We experimentally show that such

adaptation procedure leads to improved results on the neuroimaging

datasets.

3. Reconstructing external stimuli: The third objective of this thesis

aims at one of the ultimate goal of neuroscience which is reconstructing

2



1.2. THESIS STRUCTURE

individuals’ experience using their brain signals. Regarding this, we

tried to reconstruct the stimulus spectrogram using time-frequency

analysis of brain signals. Our approach is a preliminary step towards

a complete reconstruction of stimuli using only brain signals.

1.2 Thesis Structure

This thesis is organized into six chapters. Chapter 2 contains the back-

ground material. It gives an overview of some of the brain signal acqui-

sition techniques, signal processing and feature extraction methods. Fur-

thermore, our brain decoding pipeline is also introduced and some of its

applications as well as the current issues are also discussed.

Chapter 3 describes a method to address the specific problem of movie/musical

genre classification by exploiting features extracted from the brain activity.

The proposed algorithm is employed on two different datasets and yields

significant results on both of them. This chapter is based on the papers

we published in [28, 31].

Chapter 4 proposes a novel method for improving the performance of

“brain decoding” based on “domain adaptation” by transferring knowledge

learned in another modality (e.g. large-scale image domain) to the brain

modality. We employ this domain adaption pipeline for three different

tasks (i.e., object recognition, music genre classification and movie genre

classification) using three different neuroimaging modalities (i.e., fMRI,

EEG and MEG). Our results show a performance boost in all cases. This

chapter is based on the papers we published in [30, 29].

Chapter 5 describes a method for reconstructing the external stimuli

using the features extracted from brain signals. The proposed method, is

based on regressing the spectrogram of the stimuli using time-frequency

analysis of brain signals. From the study in this chapter, we are currently

3



CHAPTER 1. INTRODUCTION

prepare a submission for EUSIPCO 2017.

Finally, Chapter 6 provides a summary of the contributions and high-

lights some possible future directions.

4



Chapter 2

Concepts and Fundamentals

Reading someone’s mind has been for many years the domain of science

fiction. Recently however, after all new discoveries about the brain, “Mind

Reading” has become the province of science [60]. In fact, a challenging

goal in neuroscience is decoding mental contents from brain activities. Re-

cent progress in neuroimaging suggests the possibility of brain decoding

[38, 79, 126, 105, 52, 81, 137, 82]. Typically, a brain decoding pipeline

contains the following steps:

1. Signal Acquisition: The first step aims at capturing the brain ac-

tivity of subjects while they are doing a specific task (e.g. passive ob-

serving of different categories of objects). There are numerous types

of neuroimaging techniques for recording the brain activity. Each

method has its own advantages and disadvantages. In Section 2.1,

we briefly review some of the most commonly used signal acquisition

techniques.

2. Signal Processing: The second step of brain decoding involves the

processing of the recorded signal. However, brain signals have several

characteristics. These characteristics are sometimes task dependent.

We review such characteristics in Section 2.2.

5



CHAPTER 2. CONCEPTS AND FUNDAMENTALS

3. Feature Extraction: The third step towards brain decoding is fea-

ture extraction in order to represent discriminative information re-

garding a specific task. In Section 2.3, we review some of the most

commonly used feature extraction methods.

4. Classification: The last step of decoding is feeding the extracted

features into a classifier to identify the task. Accurate prediction of

the classifier suggests the existence of the task-related information in

the brain.

In this chapter we review the above-mentioned steps in more details and

we discuss some of the current issues in brain decoding.

2.1 Signal Acquisition

In neuroimaging studies, different neuroimaging techniques are used for

measuring the brain activity. These techniques are categorized into two

broad categories: invasive methods and noninvasive methods, each one

having its own advantages and disadvantages. Below, we briefly discuss

these techniques.

2.1.1 Invasive Methods

The most direct approach for measuring brain activity is by implanting

electrodes under the scalp. This is done by neurosurgery. The main ad-

vantage of invasive recordings is the high quality signals since they provide

very high temporal and spatial resolution and high signal to noise ratio

[122]. However, these techniques have many issues that make them in-

applicable in many cases. These methods cause significant health risks

and discomfort to the users due to their invasiveness. The brain tissues

6



2.1. SIGNAL ACQUISITION

might get infected or might fail to accept the microelectrode as the foreign

substance [59, 88]. Besides, these methods generally cover only a small

region of the brain since it is not feasible to put electrodes covering the

whole brain. Furthermore, the signal quality deteriorates over time [68].

Thus the usage of invasive methods in real world applications is usually

restricted to disabled people and animal studies [23].

Intracortical Signal Acquisition

Intracortical acquisition technique is the most invasive method that mea-

sures brain activity inside the gray matter of the brain. In this techinque,

the microelectrode arrays are implanted inside the cortex to capture spike

signals and local field potentials from individual or multiple neurons [88].

Cortical Signal Acquisition

Electrocorticography (ECoG) is a recording method that uses electrodes

placed over the exposed surface of the brain through a surgical operation,

to measure electrical activity from the cerebral cortex. Since subdural

electrodes are not implanted inside the gray matter, the ECoG does not

have the high surgical risk and user discomfort as the intracortical signal

acquisition methods.

2.1.2 Non-invasive Methods

Contrary to the invasive methods, non-invasive methods do not demand

implanting electrodes in the brain via surgical operations. Thus surgery-

related problems are avoided. Different non-invasive modalities have been

proposed over the past years. Generally, the type of the task that is going

to be decoded determines the modality to be used, since the captured signal

7



CHAPTER 2. CONCEPTS AND FUNDAMENTALS

by each modality has different spatial/temporal resolution and signal-to-

noise ratio. Here we briefly review some of the most common methods.

Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging (fMRI) is a neuroimaging tech-

nique (Figure 2.1) that measures brain activity indirectly by detecting

changes associated with Blood Oxygen Level (BOLD signal). This tech-

nique is based on the coupling of changes in the cerebral blood flow with

neural activity so that using a specific part of the brain increases the blood

flow to that region [75, 45]. The main advantage of fMRI is its high spa-

tial resolution which makes it a proper tool for localizing active regions

inside the brain. However, fMRI has a low temporal resolution (in order

of 1 or 2 seconds). Besides, the hemodynamic response has a physiological

delay (from 3 to 6 seconds). This low temporal resolution makes fMRI

inappropriate for rapid/real-time BCI systems [88].

Figure 2.1: functional magnetic resonance imaging (fMRI)

8



2.1. SIGNAL ACQUISITION

Electroencephalogram (EEG)

Electroencephalography (EEG) is a non-invasive neuroimaging technique

that can be easily used by placing the electrodes on the top of the scalp

(Figure 2.2). EEG measures the brain activity caused by the electrical

currents flow during the synaptic transmission [6, 88]. However, the signal

quality is weak due to the fact that the signals have to pass different layers

(e.g. the scalp and the skull) [88]. Nevertheless EEG has a very high

temporal resolution (in order of milliseconds). Besides it is not bulky

neither expensive (compared to the other acquisition methods). As a result

of this, EEG is the most commonly used brain signal acquisition method

for non-invasive BCI systems (specifically real-time BCI).

Figure 2.2: Electroencephalography (EEG)

9



CHAPTER 2. CONCEPTS AND FUNDAMENTALS

Magnetoencephalography (MEG)

Magnetoencephalography is a functional neuroimaging technique that mea-

sures the magnetic fields produced by electrical currents in the brain. The

neurophysiological processes that make MEG signals are very similar to

those that make EEG signals. Both signals are obtained during the synap-

tic transmission in the dendrites [36, 88]. These electrical currents produce

a magnetic field outside the brain which can be captured by using the arrays

of SQUIDs (the superconducting quantum interference device). However,

the MEG signals can be affected by the other magnetic sources. Thus, in

order to diminish the effects of the external magnetic fields, the recordings

need to be acquired in a magnetically shielded room. Figure 2.3 shows a

MEG device. The advantage of MEG, compared to EEG, is that magnetic

fields are less affected by the skull and scalp. Besides MEG has higher spa-

tial resolution than EEG which makes it suitable to localize certain types

of activities in the brain. In spite of these advantageous, MEG is rarely

used in BCI systems, since the device is too expensive and bulky and this

makes it not a suitable technique for many applications [88].

2.1.3 Spatio/Temporal Resolution of brain signal acquisition

Figure 2.4 compares the spatial and the temporal resolution of various neu-

roimaging methods. As shown in this figure, invasive methods (e.g. ECoG)

have higher temporal and spatial resoultion compared to the non-invasive

methods. Among non-invasive methods, fMRI has higher spatial resolu-

tion in comparison with MEG and EEG. However the temporal resolution

of fMRI is lower. MEG and EEG both have hight temporal resolution.

However their spatial resolution is relatively low.

10



2.2. SIGNAL PROCESSING

Figure 2.3: Magnetoencephalography (MEG)

2.2 Signal Processing

Neurophysiological signals involve numerous simultaneous phenomena re-

lated to the cognitive tasks. Most of them are still incomprehensible and

their origins are unknown [88]. However the analysis of the neurophysi-

ological signals has revealed several types of characteristics in the brain

activity patterns. Below, we briefly discuss the main categories of brain

responses.

11



CHAPTER 2. CONCEPTS AND FUNDAMENTALS

Figure 2.4: The spatio/temporal resolution of the neuroimaging methods.

2.2.1 Evoked Response

Evoked responses are automatic brain activities in response to the presen-

tation of certain types of stimuli1. These activities are time-locked and

phase-locked to the stimulus onset. Thus they are named by their latency

and their amplitude. For instance, P300, is a positive event-related po-

tential that is happening 300 milliseconds after the stimulus presentation.

Since, the amplitude of such responses is very low (in order of microvolts),

low-pass filtering and signal averaging are usually required in order to dif-

ferentiate the ERP components from the background noise.

Slow Cortical Potential

Slow Cortical Potentials (SCP) are event-related potentials that represent

the slow voltage changes in the very low frequency bands (below 2 Hz).

1Once such responses are measured using EEG, they are called event-related potential (ERP) and

once they are captured by MEG, they are called event-related field (ERF).

12



2.2. SIGNAL PROCESSING

These activities last from hundreds milliseconds to several seconds [128, 88].

Since the voltage-change in SCPs is very weak, it is necessary to average

many trials to obtain the overall trend of the EEG activity. Although

analyzing SCPs reveals high inter-subject variability [42], SCPs are shown

to be useful in BCI systems regarding moving a cursor on the computer

screen [88].

Steady-State Evoked Potentials

Steady State Evoked Potentials (SSEP) are activities evoked in response

to periodic stimuli. The stimulus could be either visual, auditory or so-

matosensory. In case of visual stimuli (flickering light), SSEP evokes a

sinusoidal-like waveform with the same fundamental frequency of the stim-

ulus [125, 88].

P 300

The P300 is an event-related potential that has gained increasing attention

in the literatures. These potentials are positive peaks that are elicited from

EEG approximately 300 ms after the presentation of a rare or unexpected

stimuli [25, 88]. This potential is mainly generated in an odd-ball scenario

when users see frequent and non-frequent visual stimuli. The appearance

of non-frequent items leads to a P300 response in sensors located in the

parietal area. Figure 2.5 demonstrates P300 response.

2.2.2 Event-related desynchronization/synchronization

Apart from the evoked responses that are phase-locked changes in the brain

activity, there are some other types of neural oscillations that are not phase-

locked to the stimulus onset [53, 101]. Such oscillations are not delectable

by simply averaging the signal (which is the case in ERP), but might be

13



CHAPTER 2. CONCEPTS AND FUNDAMENTALS

Figure 2.5: The P300 wave. A series of ERP components precedes the P300 and they

reflect low-level automatic processing of stimuli.

obtained by frequency analysis. These event-related events represent fre-

quency specific changes of brain activity. The decrease in the signal power

is called as ”event-related desynchronization” (ERD) and the increase in

the signal power is called as ”event-related synchronization” (ERS) [101].

These non-phase-locked activities (ERD/ERS), in some literatures are re-

ferred to as ”induced activity” [19]. Figure 2.6 shows the evoked and the

induced responses of a brain activity to a visual stimulus.

2.2.3 Spontaneous Brain Activity

The above-mentioned brain responses are brain activities induced by a

specific task. The brain activity in the absence of an explicit task is

called spontaneous brain activity (also referred to as ”resting-state” activ-

ity or ”ongoing brain” activity). Such activities are generally considered

as ”noise” where one wants to investigate the brain responses of a given
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Figure 2.6: (a) Phase-locked early gamma response to the visual stimulus. (b) Averaging

evoked potentials in time domain over trials. The non-phase-locked activity cancels out as

a result of averaging. (c) Time-frequency power representation of the evoked gamma re-

sponse. (d) Time-frequency power computed for each trial. (e) Average of time-frequency

powers across all trials. The induced gamma response is visible. [10]

task. However, they play a crucial role in our perception and understanding

[124, 13].

2.3 Feature Extraction

Different tasks result in different activity patterns in the brain signals.

Brain decoding is considered as a pattern recognition system that classifies

each pattern into a target class according to its features [88]. Once the

brain signal is captured, we need to extract features in order to represent

the raw neurophysiologic signals into representations that contain the dis-

15



CHAPTER 2. CONCEPTS AND FUNDAMENTALS

criminative information needed for that task. However, extracting a set of

suitable features is a challenging issue since the information of interest is

not easily obtainable as a result of the highly noisy environment. In this

section, we review some of the most common feature extraction methods.

2.3.1 Time-domain Features

As mentioned in the previous section, the presentation of certain types

of stimuli results in phased-locked alterations in the amplitude of neuro-

physiological signals at very specific time intervals (e.g. P300). In order

to use such information, we need to extract temporal features which are

typically the temporal variations of the signal amplitude. However some

low-pass filtering is generally needed prior to the feature extraction in order

to separate the task-related pattern from the background activity.

2.3.2 Frequency-domain Features

Some tasks induce changes in neurophysiological signals that are not phase-

locked to the stimulus onset (e.g. ERS/ERD). Since such oscillations are

not phase-locked, temporal features are not useful. Instead, features that

are invariant to the stimulus onset shall be used. These changes can be

captured from the signal power over specific frequency bands.

2.3.3 Time-Frequency Features

Due to the importance of the information encoded in the both domains

(Time and Frequency), time-frequency analysis is performed in order to

take into account the information encoded in both domains. These time-

frequency features can be estimated using the short-term Fourier transform

or wavelets. In both cases, the signal is divided into smaller sequential

segments (there might be overlaps between the segments). Then the signal
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power is estimated for each segment. The output of such analysis provides

a time-frequency representation of the signal.

2.4 Decoding Pipeline

One of the ultimate goals of neuroscience and brain studies is decoding

someone’s intentions from his/her brain activities. In this section, we first,

formulate “brain decoding” and then we review the opportunities and the

challenges of such analysis.

2.4.1 Definition

Prior works on brain decoding have mostly focused on the classification of

the stimuli into a set of pre-defined categories [38, 18, 79, 126, 14, 81, 82]. A

typical classification pipeline in neuroscience includes the following steps:

First, different stimuli regarding different categories are presented to the

participant of the experiment, while his/her concurrent brain activity is

recorded (using any of the neuroimaging methods). Once the signal is

captured and the features are extracted, a machine learning algorithm is

trained on the subset of the samples in order to differentiate different cat-

egories of stimuli using the extracted brain features. Accurate prediction

of the algorithm in the remaining subset (test-set) is considered as a pos-

itive evidence of the hypothesis of the existence of the stimulus-related

information in the brain data. Figure 2.7 demonstrates such pipeline.

2.4.2 Opportunities

During the past decade, machine learning algorithms have been widely

used in the neuroscience community to analyze and interpret neuroimag-

ing datasets. Such investigations revealed new insights regarding brain
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Figure 2.7: Brain Decoding Pipeline: Different stimuli regarding different categories (i.e.

house vs. face) are shown to the participant while his/her brain activity is recorded simulta-

neously. Then a classifier is employed to classify the recorded data into the target stimulus

classes. If the classifier performs above chance on the test set, it can be concluded that the

stimuli related activities are encoded in the brain signal.

functioning and provide practical applications for brain signals.

New Insights about Brain

One of the most fundamental question in neuroscience deals with the issue

of representation: what information is represented in brain; and how it is

represented [90]. Researchers tackle this issue in different ways. Conven-

tional brain analysis methods (Univariate approach) have focused on char-

acterizing the relationship between cognitive states and a specific brain

region (i.e. individual brain voxels in an fMRI study). However the in-

formation might be distributed over different brain regions. A study by
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Haxby et al. [38] illustrated how multi-voxel patterns of activity can dis-

tinguish different categories of objects (faces, houses, chairs, shoes, bot-

tles, scissors, cats). They showed that each object category has distinct

activity pattern in ventral temporal cortex (VT). This work has been ex-

tremely influential and since then, brain decoding algorithms have been

widely used in order to discover the hidden information encoded in the

brain [18, 79, 94, 55, 54, 40, 39, 41, 91].

Applications

Apart from finding new insights about the encoded information in the

brain, decoding brain activity has received substantial attention in Brain

Computer interfacing (BCI) and rehabilitation communities particularly

specifically due to its potential for helping disabled people [11, 129]. High

accuracy of brain decoding systems acquired with versatile techniques such

as EEG will ultimately allow subjects to interact with the external world

via their mind [123].

2.4.3 Challenges

Employing pattern recognition methods to neuroimaging datasets is also

challenging in various aspects including low signal-to-noise ratio, non-

stationarity, small sample size and high dimensionality. Below, we review

some of the important ones.

Low Signal-to-Noise Ratio and Non-stationarity

Typically, the signal-to-noise ratio of the brain signal acquisition tech-

niques, particularly the non-invasive methods, is very low. Such noisy

signals might yield unwanted results when employing machine learning al-

gorithms. Thus, it is important to pre-process the signal very carefully. Be-
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sides, the captured signal is not stationary. Such non-stationarity changes

the brain activity patterns (for a specific task) from trial to trial. There

are several factors that might contribute to such non-stationarity includ-

ing: changes in subject’s state (e.g. fatigue), artifacts and also changes in

the placement of the electrodes.

Small Sample Size

Neuroimaging datasets, in general, are relatively small in-terms of the num-

ber of samples. This is mainly due to the cost of recording brain signals

and the subject’s fatigue since the recording sessions are time consuming

and demanding for the subjects. This small number of samples drastically

decreases the performance of the machine learning algorithms.

High Dimensional Data

Another issue regarding neuroimaging datasets is due to their dimension-

ality in space/time resulting in enormous number of features. In order

to cope with such difficult issue, various feature reduction methods are

proposed. However not all of these methods are applicable since, in this

case (neuroimaging datasets), the number of observations is very low (much

lower than the number of features) yielding inconsistent results. Thus a sig-

nificant challenge in brain decoding is dealing with such high-dimensional

few-samples datasets.

Interpretation of the Results

Since, one of the aim of brain decoding is obtaining new insights about

brain, the interpretation of the results (obtained by employing machine

learning algorithms on the neuroimaging datasets) is a crucial step and

should not be overlooked [123]. It is important to understand why a specific
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feature selection method and a certain classifier yields a specific result

rather than dealing with them as “black box”.

2.5 Summary

One of the main goals of neuroscience and brain studies is decoding some-

one’s thoughts from his/her brain activities. In this chapter, we reviewed

all the steps of a brain decoding pipeline. These steps include: signal ac-

quisition, feature extraction, and classification. Moreover, we surveyed the

opportunities and the challenges of such analysis.

In the next chapter, we will employ the brain decoding pipeline in order

to classify the music/movie clips into target genre classes. If the decoder

can predict the target genre class better than the chance level, we can

hypothesize that the genre-related information exists in the brain data.

Such analysis can show the feasibility of a user-centeric music/movie rec-

ommender system by exploiting the brain signals.
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Chapter 3

Retrieving Genre related

Information from Brain Signals1

3.1 Introduction

Among all the different sources of entertainment, music and movies are

probably the most important ones for entertaining people. Nowadays,

thanks to the advances in the technology and with the rapid growth of

the Internet, a large amount of music and movies has become available

on-line. This has brought forward the need for organizing and managing

these large databases. Among all music and movie descriptors, probably

the most widely used criteria for indexing and retrieving musics/movies is

the genre of the music/movie [104, 139, 4, 74, 16]. As a result of this, genre

classification can be considered as an essential part of the music and movie

recommender systems.

The most common approach regarding genre classification is the content-

based approach. Thus far, various content-based genre classification meth-

ods have been proposed based on the variety of audio-visual features.

1This chapter is based on the two following publications: 1) Pouya Ghaemmaghami, Mojtaba

Khomami Abadi, Seyed Mostafa Kia, Paolo Avesani, and Nicu Sebe. Movie Genre Classification by

Exploiting MEG Brain Signals. in ICIAP, 2015 [28]. 2) Pouya Ghaemmaghami, and Nicu Sebe. Brain

and Music: Music Genre Classification using Brain Signals. in EUSIPCO, 2016 [31].
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Regarding movie genre classification, these features include average shot

length, color variance, saturation, brightness, grayness, motion, and vi-

sual excitement [84, 117, 104, 12, 43, 139]. Regarding music genre clas-

sification, these features include MFCC, spectral centroid, spectral flux,

zero crossings, energy, pitch, rhythm patterns, harmonic contents and etc

[120, 73, 72, 70, 44]. However, regardless of all research conducted during

the last years, content-based approaches always depend on the availabil-

ity of multimedia contents. When such contents are not obtainable, these

approaches are not applicable anymore. Besides, the main downside of

the content-based approaches is that they are not emotion-centric and are

not able to take into account the personal preferences of the people (i.e.,

they are not able to recommend the most suitable content according to a

specific emotional status). Such preferences are important since there are

sometimes disagreements between people on the definition of the genre due

to the indistinct devisions between the different genres. In view of this,

we propose an alternative approach for genre classification that aims at

retrieving the people’s perception. The rationale behind this is that the

recommendation system that captures the people’s understanding of the

music/movie (e.g. via neurophysiological data), might discern the music

genre better. In this study, we present preliminary experimental evidence

for the possibility of the music/movie genre classification based on the brain

recorded signals of individuals. The brain decoding paradigm is employed

to classify recorded brain signals into the target genre classes. Figure 3.1

illustrates the overall framework used in our study. We compare the per-

formance of our proposed paradigm on two neuroimaging datasets that

contains the electroencephalographic (EEG) and the magnetoencephalo-

graphic (MEG) data of subjects who watched 36 movie clips and 40 music

video clips. Our results suggests that the genre of the music/movie clips

can be retrieved significantly over the chance-level using the brain signals.
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Our study is a primary step towards user-centric music content retrieval

by exploiting brain signals.

The rest of this chapter is organized as follows. In Section 3.2 we briefly

review the literatures on genre classification in the multimedia content

analysis context. Besides, we also review the relevant literatures on the

brain decoding. Then, in Section 3.3 we explain the employed datasets,

data preprocessing and feature extraction methods. Furthermore, we dis-

cuss the method used for annotating the music/movie genres. Section 3.4

elaborates our experimental results with a brief discussion. And finally,

Section 3.5 concludes this chapter and highlights some future directions.

Figure 3.1: The framework used in this study regarding the movie/music genre classifica-

tion by exploiting brain signals.

3.2 Related Works

3.2.1 Content-Centric Music/Movie Genre Classification

Regarding movie genre classification, in the literatures, various content-

based genre classification approaches have been proposed based on audio-

visual features [84, 117, 104, 12, 43, 139]. Rasheed, et al. [104] used
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four low-level visual features (average shot length, color variance, motion

content and lighting key) to classify over a hundred movie previews into

four broad genre categories (Comedy, Action, Drama and Horror). In a

similar study [43], the authors used the same low-level visual features and

slow and fast moving effects to classify movie previews into three different

genres. Elsewhere, Zhou, et al. [139] represented over one thousand movie

trailers using a bag-of-visual-words model with shot classes as vocabularies.

Then they mapped these bag-of-visual-words models to high-level movie

genres.

Regarding music genre classification, there is a large body of works on

content-based genre classification approaches. One of the earlier works is

introduced by Tzanetakis and Cook [120] where the authors represent a

music piece using timbral texture, rhythmic features, and pitch-related fea-

tures. Their proposed features set has been widely used for music genre

classification [73, 72, 70, 44]. Other characteristics such as contextual in-

formational [78], temporal information [17], and semantic information [24]

have been investigated in the literatures to improve the accuracy of genre

classification. Recently, ”sparse feature learning” methods have also been

investigated for constructing a codebook for music songs [102, 135, 134, 98].

Elsewhere, Costa, et al. [16] proposed a robust music genre classification

approach by converting the audio signal into a spectrogram and extract-

ing features from this visual representation by treating the time-frequency

representation as a texture image.

3.2.2 Genre and Affective Content

Apart from content-centric audio-visual features, movies and musics can

be classified into different genres based on their emotional contents. This

emotional content induces an emotional experience in the viewer [131]. In
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fact, the emotions that are elicited in response to a clip contain useful

information regarding the genre of the clip [110]. For example, in case of

Horror and Action movies, it has been shown that movie segments with

high emotion intensity cover the major part of the movie highlights [132].

The common approach for predicting multimedia affect is a content-

centric approach, in which audio-visual features of the movie are used for

affect prediction. Many researchers have investigated the affective con-

tents of the video clips. Xu, et al. [131], analyzed the affective content of

comedy and horror movies by detecting emotional segments. Soleymani,

et al. [110] showed that a Bayesian classification approach can tag movie

scenes into three affective classes (calm, positive excited and negative ex-

cited). They used content-based features extracted from each shot of 21

full length movies. In another study [132], a hierarchical model for ana-

lyzing movie affective contents was proposed. The proposed model, firstly,

detects the emotional intensity level of the movie using fuzzy clustering

on arousal features. Secondly, emotion types (Anger, Sad, Fear, Happy

and Neutral) are detected using valence related features. Finally, Hidden

Markov Models (HMMs) are applied to capture the context information. A

similar hierarchical approach using conditional random fields (CRFs) was

proposed in [133].

3.2.3 Affective Contents and Neurophysiological Signals

Recent works on affective computing, shows the possibility of decoding af-

fects from neurophysiological data. This approach aims at capturing the

emotion of the viewer. In [109], authors captured physiological responses

of participants while they were watching movie scenes. They showed that

the predicted affects from physiological responses of participants are sig-

nificantly correlated with their self-assessed emotional responses. Koelstra

et al. [61], Hadjidimitriou et al. [35], Abadi et al. [1] and Zheng et al.
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[138] studied emotional responses of subjects induced by excerpts of music

and video clips. These studies indicate that emotional information is en-

coded in brain signals. In [114], authors aimed at retrieving a music piece

somebody listened to based on the EEG data. They obtained significant

results (compared to the chance-level) when CNN classifiers are employed

[113].

3.2.4 Spotting the gap

Our brief literature review reveals that music/movie genre classification has

been achieved so far with content-based approaches. On the other hand,

brain decoding algorithms were successfully employed on many tasks using

various neuroimaging techniques. However, the efficacy of the brain decod-

ing approaches on genre classification has not been explored. Therefore,

this study aims at investigating the possibility of classifying movie/musical

genres using brain data.

3.3 Experimental Setup

In this section, we describe the employed datasets, annotation process and

feature extraction method.

3.3.1 Datasets

In our experiments, we used two publicly available datasets. These datasets

contain the electroencephalographic (EEG) and the magnetoencephalo-

graphic (MEG) data of volunteers who watched 40 music video clips and 36

movie clips. The advantage of using these two datasets is that they contain

the same music clips (the duration of each clip is 60 seconds) so that the
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results can be compared. The details of these datasets are described below:

MEG dataset:

The MEG dataset, we employed in this study is the DECAF dataset [1].

This dataset contains the MEG brain signals of 30 volunteers while they

were watching 40 music video clips and 36 movie clips. These clips were

projected onto a screen placed in front of the subject inside the MEG ac-

quisition room with 20 frames/second and at a screen refresh rate of 60

Hz. The magnetoencephalographic data were recorded in a magnetically

shielded room with 1KHz sampling rate and in a controlled illumination

using a Electa Neuromag device that outputs 306 channels (102 magne-

tometers and 204 gradiometers).

EEG dataset:

The EEG dataset, we employed in this study is the DEAP dataset [61].

This dataset contains the EEG brain signals of 32 participants while they

were watching 40 music video clips. These music clips were projected onto a

screen placed about a meter in front of the subject at a screen refresh rate

of 60 Hz. The electroencephalographic data were recorded in controlled

illumination, at a sampling rate of 512 Hz, using a Biosemi ActiveTwo

system that outputs 32 channels.

3.3.2 Movie/Music Clips Annotation

The definition of a genre is very subjective so that one song/movie might

belong to different genres according to different individuals. As a result
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of such arbitrariness in the definition of the genre, many researchers have

shown that even major taxonomies are inconsistent [96, 4, 3, 16]. To deal

with such a difficulty and given the few number of total samples in our

employed datasets (36 excerpts of movie clips and 40 excerpts of music

clips), in this study, we asked human annotators to watch the music/movie

video clips and assign each clip one specific label. The details of such

annotation is as follows:

Annotating Movie Clips

In order to annotate movie genres, three human observers were asked to

classify each movie into four genres: Comedy, Romantic, Drama, Hor-

ror. The movie genres were picked based on the majority voting between

the observers. To evaluate the consistency of the genres across subjects,

we measured the agreement between annotators’ labeling using the Co-

hen’s Kappa measurement. The average κ across observers is 77% ± 2%

(p− value < 0.001) that suggests a substantial agreement [67] between the

annotators. Furthermore, we employed the Cohen’s kappa to evaluate the

agreement between the movie genres obtained from the majority voting,

with the genres obtained from the Internet Movie Database (IMDB). The

average κ across the two labels is 72% (p − value < 0.001) that shows a

substantial agreement between our picked labels (from the majority voting)

and the labels obtained from the IMDB. The lack of full agreement between

these two labels is mainly due to the fact that the employed movie clips

in [1] are not necessarily representing the whole movie theme. The genre

labels provided by this study augment the dataset proposed in [1]. From

here on we refer to the majority voting labels resulting from the annotation

process as the ground-truth (see Table 3.2 for the obtained ground-truth

labels).
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Annotating Music Clips

Same as movies, three human annotators (two of them are different from

the ones who annotate the movie clips) were asked to classify each music

clip into one of the two categories; The first category represents the follow-

ing genres: Pop, Dance, Disco and Tech-no. We refer to this category as the

POP category. And the second category represents the following genres:

Rock and Metal. We refer to this category as the ROCK category. The mu-

sic genre of each clip was picked based on the majority voting between the

annotators. To evaluate the consistency of the annotation across subjects,

we measured the Cohen’s Kappa agreement between annotators’ labeling.

The obtained average κ across observers (69.8%± 5%, p− value < 0.001)

indicates a substantial agreement [67] between the annotators. We refer to

the majority voting labels as the ground-truth labels. Table 3.5 presents

the name of the music clips together with their ground-truth labels.

3.3.3 Feature Extraction

MEG Features: The MEG trials are extracted and pre-processed using

the MATLAB Fieldtrip toolbox [93] as follows:

1. Down-sampling the MEG signal to 300 Hz.

2. Bandpass frequency filtering (1 - 95 Hz) in order to remove the noise

generated by external perturbations such as moving vehicles or muscle

activity.

3. Estimating the spectral power of the 102 combined-gradiometer sen-

sors of each trial with a window size of 300 samples. Following [1],

(i) we discarded the magnetometer sensors because they are gener-

ally prone to noise and (ii) we used a standard Fieldtrip function
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to combine the spectral power of planar gradiometers to obtain 102

combined-gradiometer spectral power for each trial.

4. Calculating MEG features by averaging the signal power over four

frequency bands: theta (3:7 Hz), alpha (8:15 Hz), beta (16:31 Hz)

and gamma (32:45 Hz). The output of this procedure for each trial

is a 3-dimensional matrix with the following dimensions: 102 (num-

ber of the MEG combined-gradiometer sensors) × 4 (major frequency

bands)×L, where L is the length of a video clip in seconds.

EEG Features: We used the same pre-processed EEG data as in [61].

These pre-processing steps are as follows:

1. Down-sampling the EEG signal to 128 Hz.

2. EOG artifacts removal.

3. Bandpass frequency filtering (1 - 45 Hz).

4. Estimating the spectral power of each channel of the EEG trials with

a window size of 128 samples.

5. Calculating EEG features by averaging the signal power over four fre-

quency bands: theta (3:7 Hz), alpha (8:15 Hz), beta (16:31 Hz) and

gamma (32:45 Hz). The output of this procedure for each trial is a 3-

dimensional matrix with the following dimensions: 32 (number of the

EEG sensors) × 4 (major frequency bands) × 60 (length of a music

clip in seconds).

MCA features: For each second of the music video clips, low-level audio-

visual features are extracted. These low-level Multimedia Content Analysis

(MCA) features are listed in Table 3.1. The extracted multimedia content

32



3.4. RESULTS AND DISCUSSION

analysis (MCA) features include 49 video features and 56 audio features.

Hence, for each video, we have 105 (low-level multimedia features) × L

features.

Table 3.1: Extracted audio-visual features from each movie clip (the number of features

is listed in the parenthesis).

Audio features Description

MFCC features (39) MFCC coefficients [71], derivative of MFCC, MFCC Auto-
correlation (AMFCC)

Energy (1) and Pitch (1) Average energy of audio signal [71] and first pitch frequency

Formants (4) Formants up to 4400Hz

Time frequency (8) mean and std of: MSpectrum flux, Spectral centroid, Delta
spectrum magnitude, Band energy ratio [71]

Zero crossing rate (1) Average zero crossing rate of audio signal [71]

Silence ratio (2) Mean and std of proportion of silence in a time window [71]

Video features Description

Brightness (6) Mean of: Lighting key, shadow proportion, visual details,
grayness, median of Lightness for frames, mean of median
saturation for frames

Color Features (41) Color variance, 20-bin histograms for hue and lightness in
HSV space

Motion (1) Mean inter-frame motion [1]

VisualExcitement (1) Features as defined in [1]

3.4 Results and Discussion

3.4.1 Correlation Results

We calculate the Pearson correlation between the 102 combined MEG gra-

diometers in each frequency band (θ , α, β, and γ) and audio-visual features

extracted from movie clips. The obtained p-values were first fused over all

clips and then over all subjects using the Fisher’s method [27]. We per-

formed the Boferroni correction in order to correct our results for multiple

comparisons. Figure 3.2 demonstrates the results of such correlation anal-

ysis. This figure shows two visual features (motion and grayness) and two

audio features (the forth and the sixth MFCC coefficient). As one can
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Figure 3.2: Pearson correlation analysis between the MEG responses and audio-visual

features. Correlation over each channel is denoted by the gray level, and significant

correlations are marked with red ?.

see, audio-visual features are significantly correlated with MEG sensors in

temporal area of the brain in the γ band (32:45 Hz). This part of the brain

processes the visual information as well as the audio information. Further-

more in the α band (8-15 Hz), the extracted motion feature is significantly

correlated with the MEG sensors located in the posterior part of the brain,

confirming previous studies [54, 41].

3.4.2 Classification Results

We employed two classifiers (Naive Bayes classifier, and a Linear SVM

classifier), in the classification experiments, under the leave-one-clip-out

cross-validation schema to decode the brain/multimedia feature descrip-

tors into our target genre classes.
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Feature Descriptors

The brain/multimedia feature descriptors, employed in the classification

experiments, are calculated as follows:

Movie Descriptors: We used three types of features descriptors:

1. MEG-based descriptors by averaging the MEG features over time.

2. MCA-based descriptors by averaging the MCA features over time.

3. MEG+MCA fusion by concatenating the MCA descriptors and

the MEG descriptors of each subject.

Music Descriptors: We fed the following features descriptors into the

classifiers:

1. MEG-based descriptors by averaging the MEG features over time.

2. EEG-based descriptors by averaging the EEG features over time.

3. MCA-based descriptors by averaging the MCA features over time.

4. MEG+MCA fusion by concatenating the MCA descriptors and

the MEG descriptors of each subject.

5. EEG+MCA fusion by concatenating the MCA descriptors and the

EEG descriptors of each subject.

Note that the fusion of MEG and EEG descriptors is not feasible, since

the subjects in these two datasets are not the same (DEAP contains 32

subjects whereas DECAF contains 30 subjects).

Movie Genres Classification

In the classification experiments we employed Naive Bayes classifier and a

Linear SVM classifier under the leave-one-clip-out cross-validation schema
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to decode the brain/multimedia feature descriptors into our target movie

genre classes (i.e. Comedy, Romantic, Drama, and Horror). The ground-

truth labels are used as the target labels in the classification procedure (see

Section 3.3.2).

Subject-level analysis: At the subject level, the classification procedure

was employed on the brain data of each subject separately. Thus, the clas-

sification of the MEG-descriptors are repeated 30 times (corresponding to

the number of subjects). For each subject, the 36 MEG descriptors (corre-

sponding to the 36 movie clips) are used as samples. Figure 3.3 summarizes

the results of the single-subject classification scenario. It compares the ac-

curacy of four-class classification based on the MEG and MCA features

with the chance level (27.4% and 28.2% obtained using Naive Bayes clas-

sifier and the SVM classifier respectively). The chance level is computed

by feeding random numbers with normal distribution into the classification

procedure for 100 times. In the MEG case, the average accuracies of 35.6%

(using Naive Bayes classifier) and 37.2% (using the Linear SVM classifier)

are obtained over 30 subjects which are significantly (p − value < 0.001)

higher than the chance level. This significant difference suggests the exis-

tence of the genre related information in the recorded brain activity. How-

ever, employing MCA features provides higher accuracy (45.5% in case of

the Naive Bayes classifier and 61.1% in case of the SVM classifier) than

employing the MEG features. This could be due to the fact that MEG

signals are very noisy.
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(a) Naive Bayes Classifier (b) Linear SVM classifier

Figure 3.3: Comparison between the accuracy of MEG and multimedia features (MCA)

with random inputs in the single-subject scenario. (a) using a Naive Bayes classifier. (b)

using a Linear SVM classifier.

To investigate the effectiveness of the feature descriptors, for each movie

genre, we computed the confusion matrices regarding the four-class genre

classification using MCA and MEG features (using both classifiers). Fig-

ure 3.4 shows these confusion matrices. To facilitate the comparison,

the confusion matrices are normalized with respect to the total number

of samples (30 × 36 in the MEG case and 36 in the MCA case). Even

though the classification accuracy using MCA features is higher than us-

ing MEG features, confusion matrices show significantly similar patterns

(p − value < 2 × 10−5). In both cases, the comedy and drama genres are

predicted with higher confidence while romantic and horror genres are al-

most indistinguishable from other categories.

Population-level analysis: To evaluate the efficacy of MEG descriptors

at the population level, for each video clip, we computed the majority vote

over the predictions of the single-subject classification across all subjects.

37



CHAPTER 3. RETRIEVING GENRE RELATED INFORMATION FROM BRAIN

Figure 3.4: Confusion matrix for four-class genre classification using multimedia and MEG

features. x and y axes represent predicted and actual labels, respectively. The top row

represents the confusion matrices obtained using the Naive Bayes classifier. The bottom

row represents the confusion matrices obtained by employing the Linear SVM classifier.

The results are summarized in Table 3.2 and Table 3.3. The population

level accuracy using the SVM classifier by employing the MEG+MCA fea-

tures is 75% which is significantly higher than the classification accuracy

of only MCA features (61.1%) or MEG features (58.3%). However, in case

of the Naive Bayes classifier, employing MEG+MCA features performs the

same as just employing the MEG features. But despite the same perfor-
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mance, examining the predicted genres in Table 3.2 and Table 3.3 shows

that the combined features are more successful in predicting the romantic

genre. This is mainly due to the fact that the MEG features are weaker

than the MCA features in classifying the romantic genre. This may suggest

the existence of the complementary genre related information in the brain

signals and the multimedia contents.

Music Genre Classification

We adopted a Linear SVM classifier and a Naive Bayes classifier under the

leave-one-clip-out cross-validation schema to decode the brain/multimedia

feature descriptors into our target music genre classes (i.e. Pop and Rock).

The ground-truth labels are used as the target labels in the classification

procedure (see Section 3.3.2). The feature descriptors are calculated as

follows:

Subject-level analysis: At subject level, the classification procedure was

employed on the brain data of each subject separately. Thus, the classi-

fication of the MEG-descriptors and the EEG descriptors are repeated 30

times and 32 times respectively (corresponding to the number of subjects

in each dataset). For each subject, the 40 MEG/EEG descriptors (corre-

sponding to the 40 music clips) are used as samples. Given the unbalanced

number of samples for each genres, both accuracy and F-measure are re-

ported as the metrics to compare the classification performance. These

metrics are averaged over all subjects.

Table 3.4 compares the results of music genre classification using MEG,

EEG and MCA descriptors using both classifiers. The chance level is com-

puted by feeding random numbers with normal distribution into the clas-

sification procedure for 100 times. In both MEG and EEG case, the distri-
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Table 3.2: Movie clip titles, ground-truth labels, and predicted labels. The accuracies are

obtained by employing the Naive Bayes Classifier.

ID Titles Ground-Truth MCA MEG MEG+MCA
1 Ace-Ventura: Pet Detective COMEDY COMEDY COMEDY COMEDY
2 The Gods Must be Crazy II COMEDY DRAMA COMEDY COMEDY
3 Liar Liar COMEDY ROMANTIC COMEDY COMEDY
4 Airplane COMEDY COMEDY COMEDY COMEDY
5 When Harry Met Sally COMEDY COMEDY COMEDY COMEDY
6 The Gods Must be Crazy COMEDY DRAMA COMEDY COMEDY
7 The Hangover COMEDY DRAMA COMEDY DRAMA
8 Up COMEDY COMEDY DRAMA COMEDY
9 Hot Shots COMEDY DRAMA COMEDY DRAMA
10 August Rush ROMANTIC DRAMA DRAMA DRAMA
11 Truman Show ROMANTIC DRAMA DRAMA DRAMA
12 Wall-E ROMANTIC HORROR COMEDY DRAMA
13 Love Actually ROMANTIC DRAMA DRAMA DRAMA
14 Remember the Titans DRAMA HORROR DRAMA DRAMA
15 Legally Blonde COMEDY COMEDY DRAMA DRAMA
16 Life is Beautiful COMEDY COMEDY COMEDY COMEDY
17 Slumdog Millionaire ROMANTIC ROMANTIC DRAMA ROMANTIC
18 House of Flying Daggers ROMANTIC ROMANTIC DRAMA ROMANTIC
19 Gandhi DRAMA DRAMA DRAMA DRAMA
20 My girl DRAMA COMEDY DRAMA COMEDY
21 Lagaan DRAMA COMEDY DRAMA COMEDY
22 Bambi DRAMA HORROR DRAMA DRAMA
23 My Bodyguard DRAMA DRAMA DRAMA DRAMA
24 Up ROMANTIC ROMANTIC DRAMA DRAMA
25 Life is Beautiful DRAMA DRAMA DRAMA DRAMA
26 Remember the Titans DRAMA COMEDY DRAMA DRAMA
27 Titanic DRAMA HORROR DRAMA DRAMA
28 Exorcist HORROR HORROR DRAMA DRAMA
29 Mulholland Drive DRAMA COMEDY DRAMA COMEDY
30 The Shining HORROR DRAMA DRAMA DRAMA
31 Prestige DRAMA HORROR COMEDY DRAMA
32 Alien HORROR DRAMA DRAMA DRAMA
33 The untouchables DRAMA DRAMA COMEDY DRAMA
34 Pink Flamingos HORROR DRAMA COMEDY DRAMA
35 Crash DRAMA DRAMA DRAMA DRAMA
36 Black Swan HORROR DRAMA DRAMA DRAMA

Accuracy 41.7% 55.6% 55.6%
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Table 3.3: Movie clip titles, ground-truth labels, and predicted labels. The accuracies are

obtained by employing the Linear SVM Classifier.

ID Titles Ground-Truth MCA MEG MEG+MCA
1 Ace-Ventura: Pet Detective COMEDY COMEDY COMEDY COMEDY
2 The Gods Must be Crazy II COMEDY HORROR COMEDY COMEDY
3 Liar Liar COMEDY COMEDY COMEDY COMEDY
4 Airplane COMEDY COMEDY COMEDY COMEDY
5 When Harry Met Sally COMEDY COMEDY COMEDY COMEDY
6 The Gods Must be Crazy COMEDY DRAMA COMEDY DRAMA
7 The Hangover COMEDY COMEDY COMEDY COMEDY
8 Up COMEDY COMEDY DRAMA COMEDY
9 Hot Shots COMEDY DRAMA COMEDY COMEDY
10 August Rush ROMANTIC HORROR DRAMA DRAMA
11 Truman Show ROMANTIC DRAMA DRAMA DRAMA
12 Wall-E ROMANTIC HORROR DRAMA ROMANTIC
13 Love Actually ROMANTIC ROMANTIC DRAMA ROMANTIC
14 Remember the Titans DRAMA DRAMA DRAMA DRAMA
15 Legally Blonde COMEDY COMEDY COMEDY COMEDY
16 Life is Beautiful COMEDY COMEDY DRAMA COMEDY
17 Slumdog Millionaire ROMANTIC ROMANTIC DRAMA ROMANTIC
18 House of Flying Daggers ROMANTIC ROMANTIC DRAMA ROMANTIC
19 Gandhi DRAMA DRAMA DRAMA DRAMA
20 My girl DRAMA COMEDY DRAMA COMEDY
21 Lagaan DRAMA DRAMA DRAMA DRAMA
22 Bambi DRAMA HORROR DRAMA DRAMA
23 My Bodyguard DRAMA DRAMA DRAMA DRAMA
24 Up ROMANTIC ROMANTIC DRAMA ROMANTIC
25 Life is Beautiful DRAMA DRAMA ROMANTIC DRAMA
26 Remember the Titans DRAMA DRAMA DRAMA DRAMA
27 Titanic DRAMA ROMANTIC DRAMA DRAMA
28 Exorcist HORROR DRAMA DRAMA DRAMA
29 Mulholland Drive DRAMA HORROR DRAMA DRAMA
30 The Shining HORROR DRAMA DRAMA DRAMA
31 Prestige DRAMA DRAMA DRAMA DRAMA
32 Alien HORROR HORROR DRAMA DRAMA
33 The untouchables DRAMA DRAMA DRAMA DRAMA
34 Pink Flamingos HORROR COMEDY COMEDY COMEDY
35 Crash DRAMA DRAMA DRAMA DRAMA
36 Black Swan HORROR DRAMA DRAMA DRAMA

Accuracy 61.1% 58.3% 75%

41



CHAPTER 3. RETRIEVING GENRE RELATED INFORMATION FROM BRAIN

Table 3.4: Comparison between the accuracy of MEG, EEG and MCA descriptors with

random inputs in the single-subject level scenario.

SVM Naive Bayes

Feature-Space Accuracy F-measure Accuracy F-measure

Random 0.51 ± 0.10 0.60 ± 0.09 0.52 ± 0.09 0.64 ± 0.08

MCA 0.70 0.73 0.82 0.87

EEG 0.60 ± 0.10 0.66 ± 0.09 0.55 ± 0.10 0.58 ± 0.12

EEG+MCA 0.75 ± 0.05 0.78 ± 0.05 0.82 ± 0.02 0.86 ± 0.05

MEG 0.54 ± 0.10 0.62 ± 0.09 0.52 ± 0.10 0.59 ± 0.10

MEG+MCA 0.82 ± 0.04 0.86 ± 0.03 0.80 ± 0.03 0.85 ± 0.02

bution of the obtained classification accuracies is better than chance level.

This difference implies the existence of genre related information in the

recorded brain activity. In the case of EEG descriptors, this difference

is significant (p − value < 0.001) where the SVM classifier is employed.

Furthermore, combining brain features (EEG descriptors and MEG de-

scriptors) of each subject with MCA descriptors provides higher accuracy

than employing only EEG/MEG descriptors. Such brain-multimedia fea-

tures fusion also outperforms the result of MCA descriptors (when the

SVM classifier is used) suggesting the existence of complementary music

genre related information in the brain signals.

Population-level analysis: To evaluate the efficacy of MEG/EEG de-

scriptors at the population level, for each video clip, we computed the

majority vote over predictions of the single-subject classification across all

subjects. The results are summarized in Table 3.5 and Table 3.6. In

case of the EEG descriptors, the population level accuracy (75% using

the SVM classifier and 70% using the Navie BAyes Classifier) is higher

than the single subject-level accuracy (60% using the SVM classifier and
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Table 3.5: Music clip titles, ground-truth labels, and predicted labels of different feature

descriptors. The accuracies are obtained by employing the Linear SVM Classifier.

ID Music Clip Title Ground-Truth MCA MEG MEG+MCA EEG EEG+MCA

1 Emiliana Torrini: Jungle Drum POP ROCK POP POP POP ROCK
2 Lustra: Scotty Doesn’t Know ROCK POP POP POP POP POP
3 Jackson 5: Blame It On The Boogie POP ROCK POP POP POP ROCK
4 The B52’S: Love Shack POP POP POP POP POP POP
5 Blur: Song 2 ROCK ROCK POP ROCK POP ROCK
6 Blink 182: First Date ROCK ROCK POP POP POP ROCK
7 Benny Benassi: Satisfaction POP ROCK POP POP POP POP
8 Lily Allen: Fuck You POP ROCK POP POP POP ROCK
9 Queen: I Want To Break Free POP POP POP POP POP POP
10 Rage Against The Machine: Bombtrack ROCK POP POP POP POP POP
11 Michael Franti : Say Hey (I Love You) POP POP POP POP POP POP
12 Grand Archives: Miniature Birds POP POP ROCK POP POP POP
13 Bright Eyes: First Day Of My Life POP POP POP POP POP POP
14 Jason Mraz: I’m Yours POP POP POP POP POP POP
15 Bishop Allen: Butterfly Nets POP POP POP POP POP POP
16 The Submarines: Darkest Things POP POP POP POP POP POP
17 Air: Moon Safari POP POP POP POP POP POP
18 Louis Armstrong: What A Wonderful World POP POP POP POP POP POP
19 Manu Chao: Me Gustas Tu POP POP POP POP POP POP
20 Taylor Swift: Love Story POP POP POP POP POP POP
21 Diamanda Galas: Gloomy Sunday ROCK POP POP POP POP POP
22 Porcupine Tree: Normal ROCK POP POP POP POP POP
23 Wilco: How To Fight Loneliness POP ROCK POP POP POP POP
24 James Blunt: Goodbye My Lover POP POP POP POP POP POP
25 A Fine Frenzy: Goodbye My Almost Lover POP POP POP POP POP POP
26 Kings Of Convenience: The Weight Of My Words POP ROCK POP POP POP POP
27 Madonna: Rain POP ROCK POP POP POP POP
28 Sia: Breathe Me POP POP POP POP POP POP
29 Christina Aguilera: Hurt POP POP POP POP POP POP
30 Enya: May It Be (Saving Private Ryan) POP ROCK POP POP ROCK ROCK
31 Mortemia: The One I Once Was ROCK ROCK POP ROCK POP ROCK
32 Marilyn Manson: The Beautiful People ROCK ROCK POP ROCK ROCK ROCK
33 Dead To Fall: Bastard Set Of Dreams ROCK ROCK POP ROCK ROCK ROCK
34 Dj Paul Elstak: A Hardcore State Of Mind ROCK ROCK POP ROCK ROCK ROCK
35 Napalm Death: Procrastination On The Empty Vessel ROCK ROCK POP ROCK ROCK ROCK
36 Sepultura: Refuse Resist ROCK ROCK POP ROCK POP ROCK
37 Cradle Of Filth: Scorched Earth Erotica ROCK ROCK POP ROCK ROCK ROCK
38 Gorgoroth: Carving A Giant ROCK ROCK POP ROCK POP ROCK
39 Dark Funeral: My Funeral ROCK ROCK POP ROCK ROCK ROCK
40 Arch Enemy: My Apocalypse ROCK ROCK POP ROCK ROCK ROCK

- Accuracy - 70% 57.5% 87.6% 75% 72.5%

55.5% using the Navie BAyes Classifier) and it is also higher than the

classification accuracy of only MCA descriptors (70%). In case of MEG

descriptors, the population-level analysis does not perform well. Neverthe-

less, in single-subject level analysis, as explained in previous section, the

average obtained results are better than chance level.
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Table 3.6: Music clip titles, ground-truth labels, and predicted labels of different feature

descriptors. The accuracies are obtained by employing the Naive Bayes Classifier.

ID Music Clip Title Ground-Truth MCA MEG MEG+MCA EEG EEG+MCA

1 Emiliana Torrini: Jungle Drum POP POP POP POP ROCK POP
2 Lustra: Scotty Doesn’t Know ROCK POP POP POP POP POP
3 Jackson 5: Blame It On The Boogie POP POP POP POP POP POP
4 The B52’S: Love Shack POP POP POP POP ROCK POP
5 Blur: Song 2 ROCK POP POP POP ROCK POP
6 Blink 182: First Date ROCK POP POP POP POP POP
7 Benny Benassi: Satisfaction POP ROCK POP ROCK POP ROCK
8 Lily Allen: Fuck You POP POP POP POP POP POP
9 Queen: I Want To Break Free POP POP POP POP ROCK POP
10 Rage Against The Machine: Bombtrack ROCK POP POP POP ROCK POP
11 Michael Franti : Say Hey (I Love You) POP POP POP POP POP POP
12 Grand Archives: Miniature Birds POP POP ROCK POP POP POP
13 Bright Eyes: First Day Of My Life POP POP POP POP POP POP
14 Jason Mraz: I’m Yours POP POP POP POP POP POP
15 Bishop Allen: Butterfly Nets POP POP POP POP POP POP
16 The Submarines: Darkest Things POP POP POP POP POP POP
17 Air: Moon Safari POP POP POP POP POP POP
18 Louis Armstrong: What A Wonderful World POP POP POP POP ROCK POP
19 Manu Chao: Me Gustas Tu POP POP ROCK POP POP POP
20 Taylor Swift: Love Story POP POP POP POP ROCK POP
21 Diamanda Galas: Gloomy Sunday ROCK POP POP POP POP POP
22 Porcupine Tree: Normal ROCK POP POP POP POP POP
23 Wilco: How To Fight Loneliness POP POP POP POP POP POP
24 James Blunt: Goodbye My Lover POP POP POP POP POP POP
25 A Fine Frenzy: Goodbye My Almost Lover POP POP POP POP POP POP
26 Kings Of Convenience: The Weight Of My Words POP POP POP POP POP POP
27 Madonna: Rain POP POP POP POP POP POP
28 Sia: Breathe Me POP POP POP POP POP POP
29 Christina Aguilera: Hurt POP POP POP POP ROCK POP
30 Enya: May It Be (Saving Private Ryan) POP POP POP POP ROCK POP
31 Mortemia: The One I Once Was ROCK ROCK POP ROCK ROCK ROCK
32 Marilyn Manson: The Beautiful People ROCK ROCK ROCK ROCK ROCK ROCK
33 Dead To Fall: Bastard Set Of Dreams ROCK ROCK POP ROCK ROCK ROCK
34 Dj Paul Elstak: A Hardcore State Of Mind ROCK ROCK POP ROCK ROCK ROCK
35 Napalm Death: Procrastination On The Empty Vessel ROCK ROCK POP ROCK ROCK ROCK
36 Sepultura: Refuse Resist ROCK ROCK POP ROCK ROCK ROCK
37 Cradle Of Filth: Scorched Earth Erotica ROCK ROCK POP ROCK ROCK ROCK
38 Gorgoroth: Carving A Giant ROCK ROCK POP ROCK ROCK ROCK
39 Dark Funeral: My Funeral ROCK ROCK POP ROCK ROCK ROCK
40 Arch Enemy: My Apocalypse ROCK ROCK POP ROCK ROCK ROCK

- Accuracy - 82.5% 57.5% 82.5% 70% 82.5%
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3.5 Conclusion

In this Chapter, we presented an approach for classification of music/movie

clips into the target genre classes using MEG/EEG brain signals. We ex-

perimentally demonstrated the existence of a significant correlation be-

tween low-level audio-visual features and the brain signals. This finding

shows the possibility of the prediction and the reconstruction of the mul-

timedia features using brain signals.

Furthermore, a classifier has been used to perform the genre class pre-

diction using the features extracted from brain signals. Regardless of the

fact that we need to cope with few and noisy samples, our classification

results confirm the possibility of user-centeric music/movie genre classifi-

cation using only the brain features. In addition, our analysis suggests the

existence of complementary genre related information in the features ex-

tracted from brain signals and the multimedia content. To the best of our

knowledge, this study is one of the first efforts in the direction of creating

user-centeric music/movie recommender system using brain signals. As a

future plan, this study can be extended in the following directions:

1. Employing more effective (sophisticated) machine learning algorithms

in order to improve the classification results.

2. Replicating the same pipeline on other neuroimaging datasets (i.e.

using portable brain recording devices such as Emotiv sensors).

3. Reconstructing the external stimuli by exploiting the features ex-

tracted from the brain signals.

Our future research will focus on the first and the third issues. Generally,

the neuroimaging datasets suffer from having few and noisy samples. This

leads to a drop in the performance of machine learning algorithms. In the
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next chapter, we will tackle this problem by employing a transfer learning

paradigm in order to take into account the rich information existing in

other domains. The aim of such approach is to transfer knowledge from a

rich modality to the poor-performing modality.

Finally, in Chapter 5, we aimed at the third issue which is reconstruction

of the stimuli using the brain activity.
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Chapter 4

Domain Adaptation1

4.1 Introduction

The neuroimaging datasets suffer from few samples due to the cost of

recording brain signals and subject’s fatigue. Additionally, the recordings

are very noisy due to the low signal-to-noise ratio and the non-stationarity

nature of the signals. These two constraints lead to a sudden drop in the

performance of machine learning algorithms. For example, in the previous

chapter, we discussed the possibility of music and movie genre classifi-

cation using brain signals. However the obtained results using low-level

multimedia features, instead of brain features, were far better.

In machine learning literature, researchers tackle this problem by em-

ploying the transfer learning paradigm. In this paradigm, shared knowledge

can be transfered from a large set of samples of source domain to a target

domain with fewer samples. In such cases, the performance in the target

domain strictly relies on the performance in the source domain and the

similarity between the two domains. These methods aim at finding repre-

sentations such that the domain divergence and consequently the modeling

1This chapter is based on the two following publications: 1) Pouya Ghaemmaghami, Moin Nabi, Yan

Yan, and Nicu Sebe. Sparse-coded Cross-domain Adaptation from the Visual to the Brain Domain.

in ICPR, 2016 [30]. 2) Pouya Ghaemmaghami, Moin Nabi, Yan Yan,and Nicu Sebe. A Cross-modal

Adaptation Approach for Brain Decoding. in ICASSP, 2017 [29].
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error on the target domain would be minimized. Transfer learning can truly

be beneficial in cases where collecting data is extremely expensive or even

impossible [97, 76, 9, 50, 95, 103]. This situation arises often in brain

studies.

Motivated by recent successes in domain adaptation in machine learning

literature [111, 100, 121, 34], in this study we investigate the possibility of

transferring knowledge from the multimedia domain to the brain domain.

We experimentally show that such adaptation procedure leads to improved

results for two different tasks (object recognition and genre classification) in

the brain domain, outperforming the results of brain features significantly.

This is the first study in the direction of transferring knowledge by adapting

representations learned on the multimedia domain to the brain modality.

The rest of this chapter is structured as follows: Section 4.2 reviews

related literatures on this topic. Section 4.3 and Section 4.4 investigate a

domain adaptation pipeline on two different tasks (genre classification and

object recognition) using different neuroimaging modalities. And Section

4.5 concludes this chapter by summarizing the key observations and some

possible future directions.

4.2 Related Works

4.2.1 Cross-Modal Domain Adaptation

Convolutional Neural Networks have recently resurfaced as a powerful tool

for learning from big data (e.g., ImageNet [106] with ∼1M images), provid-

ing models with excellent representational capacities. These models have

been trained via backpropagation through several layers of convolutional

filters [69, 64]. It has been shown that such models are not only able to

achieve state-of-the-art performance for the same visual recognition tasks,

but the learned representation can be readily applied to other relevant
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tasks [22]. These models perform extremely well in domains with large

amounts of training data. With limited training data, however, they will

generally dramatically over-fit the training data. Attracted by their amaz-

ing capability to produce a generic semantic representation, in this paper,

we investigate transferring the learned representation from a large set of

samples of visual domain to a small set of samples from the brain domain.

There has been a large body of works on representation transfer across

domains belonging to the same modality. The representation-transfer aims

at encoding the knowledge used to transfer across domains into a learned

representation by minimizing the domain discrepancy and the classification

error. In [107] an adaptation technique has been proposed that projects the

features into a domain-invariant space via a transformation learned from

both domains. Others have proposed domain adaptation methods based

on a learning asymmetric non-linear transformation [65], subspace align-

ment [26] and Geodesic flow kernel [32]. This problem is also investigated

as ”common feature learning” in the field of multi-task learning [2]. More

recently, authors in [121] proposed a deep architecture which simultane-

ously optimizes for domain divergence and uses a soft label distribution

matching loss. All these lines of work focused on the problem of domain

adaptation within the same modality. In this work we, however, tackle the

more difficult problem of domain adaptation across different modalities.

This cross-model adaptation problem has received much less attention.

While a few methods have been proposed for the text/image [111, 87] and

depth/image [34] adaptation, as far as we know, we are the first showing

that such cross-model adaptation can be used for brain signals.

4.2.2 Domain Adaptation in Brain Studies

Brain signals have inherent variability because of low signal-to-noise ratio,

non-stationarity and also the different physical and mental conditions of
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the subject. Such variability complicates the analysis of data in a consistent

way and degrades the performance of the brain decoding algorithm. This

has limited the scope of many brain studies from finding a global decoder

that can be applied to all subjects to subject-specific decoders [83, 48, 62].

To accommodate the variability in brain signals, recently transfer learn-

ing approaches have been applied on various brain datasets. The aim of

such transfer learning algorithms is to find discriminative features that are

common across subjects aiming at reducing subject variability and enabling

information sharing across subjects that consequently leads to increasing

in performance of the decoding system.

We target a completely different perspective compared to these works.

Investigating on a common feature space across subjects is out of scope of

this study. We differently aim at exploring cross-modal domain adapta-

tion in which each individual’s brain data takes advantage of the semantic

representations obtained in another modality.

4.3 Study 1: Object Recognition

Recent progress in Deep Neural Nets (DNN) provides the transfer learn-

ing community the opportunity to learn generic representations which are

capable of capturing the semantics, hence they can be transfered across

domains [22, 121] and modalities [34]. Due to the transferability power

of such representations specifically in an object recognition task, in this

study we investigate the possibility of transferring them for the same ob-

ject recognition task using brain signals. Prior works in brain studies have

shown that there is a region in the human brain called the “Ventral Tempo-

ral Cortex” (VTC) containing information about colour, object categories,

concepts and semantics [33, 38, 94]. Inspired by this, and because of the

importance of VTC in visual perception and object recognition, in this
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study, we address the specific problem of transferring knowledge learned

in ImageNet [106] to the brain domain.

4.3.1 Experimental Setup

Dataset

In this work, we used a well-known dataset introduced in a study on face

and object representation in human ventral temporal cortex [38]. This

dataset is the only publicly available fMRI dataset for object recognition

and has been studied massively by many researchers [18, 15, 41, 91]. It con-

sists of the fMRI data of 6 subjects in which each subject had undergone

12 sessions (runs). In each run, the subjects passively viewed greyscale im-

ages of eight object categories (faces, houses, cats, bottles, scissors, shoes,

chairs, and nonsense patterns)2, grouped in 24s time blocks separated by

rest periods. Each image was shown for 500ms and was followed by a

1500ms inter-stimulus interval. Full-brain fMRI data were recorded with

a volume repetition time of 2.5s, thus, a stimulus block was covered by

roughly 9 volumes.

Feature Selection

In fMRI studies, voxels (3D dimensional pixel that refers to small part of

the brain) are the typically considered features for the decoding algorithms.

However, among the whole set of voxels in the brain, not all of them are

needed for object recognition task [47, 38, 37, 21]. As such, a subset of

brain voxels dealing with visual categorization in human brain needs to be

selected. Ventral Temporal Cortex (VTC) is the area in the brain where

high-level visual regions reside. VTC is involved in visual perception and

2We discard “nonsense patterns” category in all our experiments.
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recognition. Such recognition is achieved by organizing representations in a

nested spatial hierarchy that serves as a neural infrastructure which enables

flexible access to category information at several levels of abstraction [33].

In this work, we propose using only voxels within this area (VTC) in

order to select the relevant features for object recognition task. However,

selecting VTC voxels is not trivial [38]. Traditionally, this has been done

using a univariate approach, but in this work we propose an atlas-based

approach for voxel selection. Below, we elaborate and compare these two

methods.

VTC voxels - A univariate Approach: In [38] VTC voxels are ob-

tained for each subject separately using an univariate analysis by thresh-

olding the brain volumes that are sensitive to one specific task (e.g. face).

As a result of this analysis, voxels that are sensitive to specific tasks are

selected. However, this procedure has two major drawbacks: 1) these vox-

els are too subject dependent. Thus, the shape of the VTC is different

from subject to subject and consequently the area they cover in the brain

is different as well. Figure 4.2b depicts this issue. 2) Since the masks are

obtained prior to the analysis, the features are extracted without splitting

the data into disjoint training and testing sets. This yields a double dipping

effect [63] in brain decoding that leads to over-fitting on each individual’s

data. As a result of this, if we use VTC voxels obtained in one subject

to decode another individual, the results drastically decrease in most cases.

VTC voxels - Atlas-Based Approach: An alternative method for

selecting voxels in the VTC area is an atlas-based approach. This approach

has been used previously in neuroimaging studies in order to align individ-

ual’s brain anatomy to a standard template. However, it has not been used

as a paradigm for selecting voxels. In this approach, instead of selecting
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Figure 4.1: Domain Adaptation Pipeline.

VTC voxels in each individual, we define our Region of Interest (ROI) us-

ing brain atlases. In this study, we used the “Harvard-Oxford cortical and

subcortical structural atlases” that provide probabilistic atlases covering

48 cortical and 21 subcortical structural brain areas [20]. These atlases are

available in FSL which is a comprehensive library of analysis tools for fMRI

brain imaging data [130, 49]. These brain regions are obtained in the MNI

(Montreal Neurological Institute) space. MNI is a 3-dimensional coordi-

nate system of the human brain obtained from 241 MRI brain scans which

is used widely as a standard space in order to map the location of brain

areas independent from individual differences. Our selected VTC area in

MNI space includes the following brain regions: 1) temporo-occipital part

of Inferior Temporal Gyrus, 2) posterior part of Parahippocampal Gyrus

and 3) temporo-occipital part of Fusiform Gyrus. Since this VTC area is

acquired in a standard space (i.e., the MNI space) using the brain corti-
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cal atlas, it can be used for every subject. Figure 4.2c shows the shape

of this area in the MNI space. Once the VTC area in the MNI space is

obtained, we map these regions to each subject’s brain anatomy to match

the subject’s anatomical and functional data. This can be done as follows:

1) First, we align the subject’s fMRI data to the MNI space. Figure 4.2a

shows such mapping. 2) The inverse transform of the mapping function in

the first step, can bring us to the subject’s anatomy from the MNI space.

We used this inverse function in order to acquire atlas-based VTC voxels

obtained in the MNI space from each individual’s fMRI data. We refer to

this voxel selection approach as “Atlas-based VTC”. In Section 4.3.3 we

compare this approach with the univariate approach and discuss the effects

of voxel selection on the classification results.

(a) (b) (c)

Figure 4.2: (a) The transformation of each subject’s brain anatomy to the standard space

(i.e., the MNI space). (b) The shape of Haxby’s VTC area obtained for each subject

individually in the MNI space. As it is is expected, the shape of VTC in this univariate

approach is different for each subject. (c) The shape of the VTC area in the MNI space

which is acquired by a brain atlas.

54



4.3. STUDY 1: OBJECT RECOGNITION

4.3.2 Adaptation Method

Sparse coding was shown to be able to find succinct representations of

stimuli from the brain [92]. In this section, we describe the details of our

domain adaptation sparse coding method. Figure 4.1 demonstrates the

overview of our adaptation paradigm.

The source task (i.e., the image domain) consists of data samples de-

noted by Xs = {x1
s ,x

2
s , ...,x

ns
s } ∈ IRns×d, where xi

s ∈ IRd is a d-dimensional

feature vector and ns is the number of samples in the source task. The

target task is defined as the brain fMRI data. Similarly, the target task

consists of data samples denoted by Xt = {x1
t ,x

2
t , ...,x

nt
t } ∈ IRnt×d, where

xi
t ∈ IRd is a d-dimensional feature vector and nt is the number of samples

in the target task.

To better adapt useful knowledge from the source domain to the target

domain, we are going to learn a shared subspace across the two domains,

obtained by an orthonormal projection W ∈ IRd×b, where b is the dimen-

sionality of the subspace. In this learned subspace, the data distributions

between the source domain and the target domain should be similar to

each other. The benefits of this strategy is that we can improve the coding

quality of the target task by transferring knowledge from the source task.

This can be realized through the following optimization problem:

min
Cs,Ds,Ct,Dt,W,D

‖Xs −CsDs‖2F + λ1 ‖Cs‖1
+ ‖Xt −CtDt‖2F + λ2 ‖Ct‖1
+λ3 ‖XsW −CsD‖2F + λ4 ‖XtW −CtD‖2F

s.t.


WTW = I

(Ds)j·(Ds)
′
j· ≤ 1, ∀j = 1, ..., l

(Dt)j·(Dt)
′
j· ≤ 1, ∀j = 1, ..., l

Dj·D
′
j· ≤ 1, ∀j = 1, ..., l

(4.1)

where Ds,Dt ∈ IRl×d are overcomplete dictionaries (l > d) with l pro-

totypes of the source and target task; (Ds)j· and (Dt)j· in the constraints
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denotes the j-th row of Ds and Dt respectively; Cs ∈ IRns×l and Ct ∈ IRnt×l

corresponds to the sparse representation coefficients of Xs and Xt respec-

tively. In the last two terms of Eqn.(4.1), Xs and Xt are projected by W

into the subspace to explore the relationship between the source and the

target tasks. D ∈ IRl×b is the dictionary learned in the shared subspace

between the source and the target tasks. Dj· in the constraints denotes the

j-th row of D. I is the identity matrix. (·)′ denotes the transpose opera-

tor. λ′s are the regularization parameters. The first constraint guarantees

the learned W to be orthonormal, and the other constraints prevent the

learned dictionary to be arbitrarily large. In our objective function, we

learn dictionaries Ds, Dt for the source and the target task respectively

and one shared dictionary D between the source and the target tasks.

Optimization: To solve the proposed objective problem of Eqn.(4.1),
we adopt the alternating minimization algorithm to optimize it with re-
spect to D, Ds, Cs, Dt, Ct and W respectively in five steps as follows:

Step1: Fixing Ds, Cs, W, Dt, Ct, Optimize D. If we stack X = [Xs; Xt],
C = [Cs; Ct], Eqn.(4.1) is equivalent to:

min
D
‖XW −CD‖2F

s.t. Dj·D
T
j· ≤ 1, ∀j = 1, ..., l

This is equivalent to the dictionary update stage in the traditional dic-

tionary learning algorithm. We adopt the dictionary update strategy of

Algorithm 2 in [76] to efficiently solve it.

Step2: Fixing D, Cs/Ct, W, Optimize Ds/Dt. This is the same

as Step 1 which is equivalent to the dictionary update stage in the tra-

ditional dictionary learning for k tasks. We adopt the dictionary update

strategy of Algorithm 2 in [76] to efficiently solve it.
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Step3: Fixing Ds/Dt, W, D, Optimize Cs/Ct. Eqn.(4.1) is equivalent

to:
min
Cs,Ct

‖Xs −CsDs‖2
F + λ1 ‖Cs‖1

+ ‖Xt −CtDt‖2
F + λ2 ‖Ct‖1

+λ3 ‖XsW −CsD‖2
F + λ4 ‖XtW −CtD‖2

F

This formulation can be decoupled into (ns +nt) distinct problems. We
adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [7] to
solve the problem.

Step4: Fixing Ds, Cs, D, Dt, Ct, Optimize W. If we stack X = [Xs; Xt],
C = [Cs; Ct], Eqn.(4.1) is equivalent to:

min
W
‖XW −CD‖2F

s.t. WTW = I

Substituting D = (CTC)−1CTXW back into the above function, we achieve

min
W

∥∥(I−C(CTC)−1CT)XW
∥∥2
F

= min
W

tr(WTXT(I−C(CTC)−1CT)XW)

s.t. WTW = I

The optimal W is composed of eigenvectors of the matrix XT(I−C(CTC)−1CT)X

corresponding to the s smallest eigenvalues.

We summarize our algorithm for solving Eqn.(4.1) as Algorithm 1.

Finally, the classification algorithm can be applied to Ct with corre-

sponding labels to train classification models to be used in the target do-

main. We refer to Ct as “Adapted-Features”.

4.3.3 Experiments and Results

In this section, we first introduce the details of the source and the target

domains, then explain the classification scenario and finally elaborate the

experiments in detail and discuss the results.
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Require:

Data sample matrix X; Subspace dimensionality b, Dictionary size l, Regularization

parameters λs.

Ensure:

Optimized W ∈ IRd×b, C ∈ IRn×l, Ds ∈ IRl×d, Dt ∈ IRl×d, D ∈ IRl×b.

1: Initialize W using any orthonormal matrix;

2: Initialize C with l2 normalized columns;

3: repeat
Compute D,Ds,Dt using Algorithm 2 in [76];

Adopting FISTA [7] to solve C;

Compute W by eigen decomposition of XT(I−C(C′C)−1C′)X;

until Convergence;

Algorithm 1: Domain adaptation method.

Datasets:

Source Domain - ImageNet: We use ImageNet images [106] selected

from the synsets corresponding to the seven object categories of: faces,

houses, cats, bottles, chairs, shoes and scissors.3 The number of images for

each category of interest is more than 1000 images. For each sample, we

extract the output of fc7 layer of pre-trained AlexNet model [64] using the

standard CNN Caffe toolbox [51].

Target Domain - Brain data: Our target domain is Haxby’s fMRI

dataset. For each subject, features are extracted using the Atlas-based ap-

proach explained in previous sections. The number of samples corresponds

to the number of volumes, and the number of features corresponds to the

number of Atlas-based VTC voxels.

3These categories are the same categories used in the Haxby’s fMRI dataset (excluding the non-sense

pattern images).
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Classification Scenario

As a common practice in brain decoding, we adopt a classification proce-

dure to classify extracted brain features into object categories. We em-

ployed a linear support vector machine to classify brain features. The

within-subject analysis is performed as following: The classifier is trained

and tested on the data for subject “s”. This is repeated for all six subjects.

However, this does not constitute training on the test data since different

brain scans regarding the visual stimuli are used for training and testing.

For this, leave-one-out cross validation is performed by run: One run is

taken as the test set and the remaining runs are taken as the training set.

In other words, when testing on run “r”, the classifier is trained on all

runs except run “r”. Such cross validation prevents training on the test

data and ensures that there is no information leakage from the training

set to the test set. This is repeated for all twelve runs, thus performing

twelve-fold cross validation.4

Experiments

We first study the cross-subject generalization of two feature selection

methods explained in Section 4.3.1. We, then, evaluate the effectiveness of

the adaptation method. In all experiments, we employed the same classi-

fication scenario mentioned above.

Experiment 1: We firstly investigate the performance of the fc7 features

on classifying the synset images (see Section “Datasets”). For this, 10-fold

cross validation schema is performed using the above-mentioned Linear

SVM classifier. Besides, we employed principle component analysis (PCA)

to reduce the dimension of fc7 features. Figure 4.3 shows the average per-

4We discard one of the sessions in Subject 5 from our analysis since the data for that session are

corrupted for this subject. Thus, eleven-fold cross validation is performed for this subject
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formance of the SVM classifier over all folds for each principle components.

Figure 4.3: The average accuracy of the SVM classifier over all folds for each principle

components.

Experiment 2: In this experiment, we study the cross-subject generaliza-

tion power in both univariate and Atlas-based feature selection approaches.

For this purpose, the VTC voxels are selected for each subject, using not

only its own VTC area, but also other subjects’ VTC areas. This experi-

ment reflects the subject bias that exists in the univariate feature selection

approach. In the Atlas-based approach, however, a unique Atlas-based

VTC area is used for feature selection on all subjects.

Results of these feature selection approaches are demonstrated in Table

4.1. The maximum performance of each subject is gained when his own

VTC area is used for voxel selection. Using voxels obtained by VTC area of

another subject drastically decreases the performance. This performance

drop, is as a result of subject bias and double dipping effect [63]. As an

example, the average classification accuracy for “Subject 3” using his own

VTC mask is 0.68. However the accuracy drops to 0.21 if we use Subject

4 VTC mask for this subject which is slightly higher than chance (0.14).

This is due to the fact that the features are selected in a subject-specific

fashion prior to the analysis (without splitting the data into training and
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test sets) and then a classifier is applied on the selected features. In other

words, such univariate analysis, is prone to be over-fitted for each sub-

ject data, so it cannot be used for brain decoding in general. Besides, the

last column of this table shows the results of Atlas-based feature selection

strategy. Although this approach does not provide the best result for each

subject, it performs fairly good on all subjects. Note that, this approach

is not subject-dependent and can be applied to every individual. This is

particularly helpful for a better generalization in brain decoding. Thus, in

this study we consider atlas-based approach as our baseline in the second

experiment.

Table 4.1: 7-class Classification Accuracy (average accuracy over 12 runs for each subject

on each mask area)

Subjects Sub1 VTC Sub2 VTC Sub3 VTC Sub4 VTC Sub5 VTC Sub6 VTC Atlas VTC

Subject 1 0.79 ± 0.16 0.64 ± 0.16 0.66 ± 0.1 0.61 ± 0.1 0.57 ± 0.07 0.6 ± 0.11 0.64 ± 0.10

Subject 2 0.57 ± 0.07 0.70 ± 0.08 0.54 ± 0.07 0.44 ± 0.07 0.50 ± 0.06 0.65 ± 0.06 0.59 ± 0.07

Subject 3 0.41 ± 0.07 0.30 ± 0.08 0.68 ± 0.07 0.21 ± 0.05 0.27 ± 0.09 0.46 ± 0.05 0.43 ± 0.08

Subject 4 0.44 ± 0.08 0.32 ± 0.09 0.33 ± 0.07 0.57 ± 0.10 0.33 ± 0.07 0.49 ± 0.08 0.49 ± 0.10

Subject 5 0.64 ± 0.08 0.61 ± 0.08 0.66 ± 0.06 0.60 ± 0.10 0.77 ± 0.03 0.66 ± 0.05 0.66 ± 0.08

Subject 6 0.60 ± 0.06 0.49 ± 0.06 0.48 ± 0.04 0.43 ± 0.05 0.40 ± 0.07 0.78 ± 0.05 0.65 ± 0.10

Experiment 3: As explained in Section 4.3.3, we used probabilistic atlases

to extract voxels within the VTC area of the brain. These probabilistic

atlases are defined by a threshold value that explains the probability of a

specific voxel that belongs to specific cortical brain area (i.e. VTC area).

This threshold can be chosen between 0 and 1. In order to study the

sensitivity of the threshold on our results, we set the threshold parameter

in the range of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. We observe that with

higher number of the threshold, the size of the VTC area shrinks. Figure

4.4 shows this effect.

Besides the shape of the VTC area, we also investigate the effect of

the values of the threshold on the classification results. Figure 4.5 demon-
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Figure 4.4: The VTC area in the brain (MNI space) using different value of threshold.

strate the classification results of each subject using various number of the

thresholds.

Figure 4.5: 7-class Classification Accuracy (average accuracy over all runs for each subject

using different threshold values).

To allow the threshold-wise analysis, we calculate the average results of

all subjects over all runs for each threshold. Table 4.2 compares the results

of such analysis. The average accuracy using VTC area obtained from thr

= 0 is superior compared to the average accuracy using other threshold
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values. As a result of this, we fix this value (the best parameter) in all our

experiments.

Table 4.2: Average accuracy of all subjects over all folds for each threshold.

Threshold Accuracy

thr = 0.0 0.58 ± 0.13

thr = 0.1 0.55 ± 0.16

thr = 0.2 0.52 ± 0.17

thr = 0.3 0.50 ± 0.19

thr = 0.4 0.48 ± 0.19

thr = 0.5 0.45 ± 0.19

thr = 0.6 0.41 ± 0.18

thr = 0.7 0.36 ± 0.18

thr = 0.8 0.31 ± 0.16

Experiment 4: To evaluate the effectiveness of our adaptation method,

we use the same experimental setup as the second experiment, only replac-

ing the VTC brain features with the Adapted-Features. In this experiment,

the features are computed using the adaption method explained in Section

4.3.2.

Table 4.3 summarizes the results of experiment 4. The average accuracy

using the Adapted-Features is significantly superior compared to the av-

erage accuracy obtained by Brain-Features (Atlas-based approach). This

difference suggests the impact of transferring knowledge from visual modal-

ity to brain modality. Regardless of the big differences in these modalities,

the semantic representations learned in ImageNet are transferred success-

fully to brain features. Besides, our result shows significant improvement

in 5 out of 6 subjects and is on a par with the baseline method for the

other subject.

To allow the category-wise analysis, the confusion matrices for object

classification are illustrated in Figure 4.6a and 4.6b. To facilitate the com-

parison, the confusion matrices are normalized with respect to the total

number of samples (639). In both cases, “face” and “house” categories are
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Table 4.3: Seven-Class Classification Accuracy (average accuracy over folds for each sub-

ject).

Subjects Atlas-based Features Adapted-Features

Subject 1 0.64 ± 0.10 0.78 ± 0.09

Subject 2 0.59 ± 0.07 0.65 ± 0.11

Subject 3 0.43 ± 0.08 0.47 ± 0.07

Subject 4 0.49 ± 0.10 0.57 ± 0.08

Subject 5 0.66 ± 0.08 0.73 ± 0.05

Subject 6 0.65 ± 0.10 0.63 ± 0.06

Average 0.58 ± 0.13 0.64 ± 0.13

predicted with higher confidence compared to the other categories. In 5

out of 7 categories, the classification using Adapted-Features outperforms

the baseline method with a large margin. The “House” and the “Face”

category, however, is predicated better using Atlas-based Features. This

is probably due to the importance of Fusiform Face Area (FFA) for face

recognition [56, 57] and the effect of this area might be lost after adapta-

tion.

(a) Atlas-based Brain-Features (b) Adapted-Features

Figure 4.6: Normalized Confusion Matrices. (a) baseline method (before adaptation). (b)

proposed method (Adapted-Features).
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4.4 Study 2: Genre Classification

Prior works in neuroimaging studies have shown that low-level audio-visual

features such as orientation, direction of motion and color of visual stimulus

are encoded in the human brain [33, 54, 118]. Some of these low-level

audio-visual features were used also in multimedia retrieval literature for

specific tasks (e.g,. genre classification [104, 139]). Inspired by these facts,

in this study, we address the specific problem of cross-modal adaptation by

learning jointly a sparse dictionary on the low-level audio-visual features

and brain features. Figure 4.7 illustrates the overview of the framework

used in this study.

Movie Clips

Brain Features

Multimedia Features

Classification

1) Comedy
2) Romantic
3) Drama
4) Horror

𝑾 (𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

Video Features Audio Features

Motion
Lightning Key
Visual Details
Visual Excitement
Shadow proportion
Saturation
…

MFCC coefficients 
Energy
Pitch
Formants 
Zero crossing rate 
Silence ratio
…

Figure 4.7: Overview of our proposed framework: During training, a dictionary learning

approach is used to learn a mapping function for brain/multimedia adaptation. Once the

mapping function is learned, the genre of a test movie clip is predicted using the adapted

brain features.

4.4.1 Materials and Method

In this section, we describe the employed datasets, feature extraction scheme,

and the adaptation procedure.
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Datasets

In this study, we employed two publicly available neuoroimaging cross-

modal datasets: DEAP dataset [61] and the DECAF dataset [1]. (see

Section 4.3.3 for more details on the employed datasets). We specifically

selected these two datasets in this study because, for each music/movie

clip, the corresponding brain features (i.e. MEG features and EEG fea-

tures) and multimedia features can be extracted.

Annotation

Each music clip (in both datasets) is labeled with one of the following two

broad genres: Pop or Rock. And Each movie clip is assigned with a label

out of the following four genres: Comedy, Romantic, Drama and Horror

(see Section 3.3.2 for more details on genre annotation). Note that the

music video clips used in the DECAF dataset are the same clips used in

the DEAP dataset.

Source Domain: Multimedia Features

As it is explained in Section 3.3.3, for each music/movie clip, the low-level

audio-visual features are extracted. These low-level Multimedia Content

Analysis (MCA) features are described in Table 3.1. These MCA features

are extracted for each second of the movie clips and then they were aver-

aged by the length of the clip.
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Target Domain: Brain Features

Brain features (MEG features an EEG features) were extracted using the

same principles described in Section 3.3.3.

MEG features: Using the MATLAB Fieldtrip toolbox [93] and following

[1], the MEG trials are extracted and pre-processed as follows: 1) Upon

down-sampling the MEG signal to 300 Hz, High-pass and Low-pass filter-

ing with cut-off frequencies of 1 Hz and 95 Hz are performed respectively.

2) Then, the spectral power of the 102 combined-gradiometer sensors of

the MEG trials is estimated with a window size of 300 samples. 3) MEG

features are calculated by averaging the signal power over time and four

major frequency bands: theta (3:7 Hz), alpha (8:15 Hz), beta (16:31 Hz)

and gamma (32:45 Hz).

EEG features: We used the publicly available pre-processed EEG data

[61]. These pre-processing steps include: EEG signal down-sampling to 128

Hz, EOG artifacts removal and bandpass frequency filtering (4 - 45 Hz).

Then, for every trial, the spectral power of each channel is estimated with

a window size of 128 samples. EEG features are calculated by averaging

the signal power over time and over four major frequency bands: theta (3:7

Hz), alpha (8:15 Hz), beta (16:31 Hz) and gamma (32:45 Hz).

4.4.2 Adaptation Method

To benefit sparsity-inducing properties, we first sparsify the features in

both modalities. Once sparse representations are obtained, we adopted

the Semi-Coupled Dictionary Learning (SCDL) approach [127] in order to

adapt the sparse MCA features to the sparse brain features. This was done
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for each subject separately. We refer to these features as Adapted-Brain

features.

The intuition behind such cross-modal adaptation is that a mapping

function can be found to associate the given sample in the brain domain

to the corresponding sample in the multimedia domain. Since each pair

of samples in two modalities refer to the same video clip, it is reasonable

to assume that there exists a hidden space where the knowledge can be

transferred across the two modalities. Therefore, we employ a coupled

dictionary learning method with the assumption that there exists a dictio-

nary pair over which the representations of two modalities have a stable

mapping. Once the dictionary pair and mapping are learned, cross-modal

domain adaptation can be performed.

We denote X and Y as source and target domain feature matrix, re-

spectively. Dx and Dy are the dictionaries learned in the source and the

target domain. Λx and Λy are the codes learned in the source and the

target domain. We propose to optimize the following objective function

below:

min(Dx,Dy,W)‖X−DxΛx‖2
F + ‖Y −DyΛy‖2

F

+γ‖Λy −WΛx‖2
F + λx‖Λx‖1 + λy‖Λy‖1 + λw‖W‖2

F

s.t. ‖dx,i‖l2 ≤ 1, ‖dy,i‖l2 ≤ 1, ∀i

(4.2)

where γ, λx, λy, λW are regularization parameters to balance the terms

in the objective function. The objective function in (4.2) is not jointly

convex to Dx, Dy, W. However, it is convex w.r.t. each of them if others

are fixed. An iterative algorithm is designed to alternatively optimize the

variables.
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4.4.3 Experiments and Results

For the sake of compatibility with the analysis performed in the previous

chapter, we employed the same classifiers (Linear SVM and Naive Bayes)

under the leave-one-clip-out cross-validation schema to classify brain fea-

tures (Brain features and Adapted-Brain features) into the target genre

classes. Such evaluation, provides us with comparing brain features before

and after adaptation. The above-mentioned pipeline was performed in the

following scenarios:

Subject-level analysis:

At subject level, both classifiers were employed on the brain data of each

subject separately. Figure 4.8a and 4.8b compares the results of the movie/music

genre classification using brain features (MEG and EEG) before and after

adaptation on all datasets (DECAF-MOVIE, DECAF-MUSIC and DEAP-

MUSIC). In both DECAF and DEAP datasets, the distribution of the

obtained classification accuracies using the Adapted-Brain features is far

superior to the Brain features (regardless of the employed classifier). This

difference implies the effectiveness of adapting brain domain to the mul-

timedia domain. In the case of the DECAF-MOVIE and the DECAF-

MUSIC datasets, this difference is significant (p− value < 0.01).

Population-level analysis:

To evaluate the efficacy of the Adapted-Brain features at the population

level, the genre of each music/movie clip is computed by majority voting

over the predicted labels of single-subject predictions across all subjects.

The results are summarized in Table 4.4. In case of movie genre clas-
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(a) Atlas-based Brain-Features (b) Adapted-Features

Figure 4.8: Comparison between the accuracy of Brain and Adapted-Brain features in

classifying the genre of the music/movie clip in the single-subject level scenario on different

datasets. (a) Using a Linear SVM Classifier. (b) Using a Naive Bayes Classifier.

sification (DECAF-MOVIE), the population level accuracy for Adapted-

MEG features, using Naive Bayes classifier, is 63.9% which is higher than

the accuracy of MEG features (55.6%). However, under SVM classifier,

the obtained accuracy using the Adapted-MEG features are on a par with

the accuracy of the MEG features. In case of music genre classification

using MEG signals (DECAF-MUSIC), the population level accuracy for

Adapted-MEG (65% using SVM classifier and 62.5% using Naive Bayes

classifier) is higher than the accuracy of MEG features (58.3% using SVM

classifier and 55.6% using Naive Bayes classifier). However, in the case of

music genre classification using EEG signals (DECAF-MUSIC), the pop-

ulation level accuracy for Adapted-EEG features is below the accuracy of

EEG features. Considering the higher accuracy of the Adapted-EEG fea-

tures in the Subject-Level analysis, this phenomena is probably due to the

low agreement between the predictions of all subjects.

70



4.5. CONCLUSION

Table 4.4: Comparison between the accuracy of Brain features and Adapted-Brain features

in the population-level analysis.

Dataset Feature-Space Accuracy Using SVM Accuracy Using Naive Bayes

DECAF-MOVIE
MEG 58.3% 55.6%

Adapted-MEG 55.6% 63.9%

DECAF-MUSIC
MEG 57.5% 57.5%

Adapted-MEG 65% 62.5%

DEAP-MUSIC
EEG 75% 70%

Adapted-EEG 62.5% 62.5%

4.5 Conclusion

In this chapter, we proposed an adaptation framework in order to transfer

the semantic representations learned on a rich and/or large-scale domain

to the brain domain. We showed that despite the big difference between

these two modalities, the adaptation procedure led to improved results for

the both object classification and genre classification tasks, outperforming

the the previous state of the art in all settings. We evaluated our approach

on three different neuroimaging modalities (MEG, EEG and fMRI) and

our cross-modal domain adaptation approach led to improved results in

all of them. This is the first study in the direction of transferring knowl-

edge from the multimedia domain to the brain modality. We believe that

such approaches can overcome the limitations of the neuroimaging studies

(namely, few and noisy samples) and consequently boost the performance

of the decoding algorithms. Our work shows that, brain features are more

informative than what we thought before. However this information is not

easily obtainable because of the nature of brain studies (i.e. few and noisy

samples). Using a rich representation from another modality, can help us

discover these hidden information in brain signals, thus improving the per-

formance of brain decoding algorithms. As a future plan, this study can

be extended by exploring other transfer learning algorithms in order to

investigate the possibility of improving results.
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Chapter 5

Towards Mind Reading:

Reconstructing External Stimuli

from Brain Signals

Despite the rapid advances in Brain-computer Interfacing (BCI) and con-

tinuous effort to improve the accuracy of brain decoding systems, the urge

for the systems to reconstruct the experiences of the users has been widely

acknowledged.

This urge has been investigated by some researchers during the past

years in terms of reconstruction of the naturalistic images [58, 86], ab-

stract images [66], video [89] and audio [99]. However, almost all of these

studies are conducted using either invasive methods or bulky expensive

non-invasive methods such as MEG or fMRI which are not appropriate

for out-of-lab scenarios. In this study, instead, we try to tackle this issue

using EEG that is the most commonly used signal acquisition technique in

BCI. In particular, we aim at regressing the stimuli spectrogram using the

spectrogram analysis of the EEG signal. Figure 5.1 illustrates the overall

framework used in our study. To our knowledge, we are one of the first

showing the possibility of reconstructing stimuli spectrogram using EEG

signals.
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S"muli	Wave	

EEG	signal	

S"muli	Spectrogram	

EEG	Spectrogram	

Regression	Coefficients	
S"muli	Spectrogram		
Reconstruc"on	

Figure 5.1: Stimuli reconstruction pipeline: In the first step of the analysis the

spectrogram of the EEG signal and audio wave (after generic preprocessing steps) is

computed. Then In the training phase, the EEG features are regressed (Ridge Regression)

onto the audio spectrogram to find the proper mapping function. After that, the resulting

weight matrix is used on the test EEG data to predict the spectrogram of the audio wave.

The remainder of this chapter is organized as follows: Section 5.1 re-

views related literature on this topic. Section 5.2 explains the employed

dataset and the data analysis methods used for data compilation. The

results of such analysis are presented and discussed in Sections 5.3 and 5.4.

Finally Section 5.5 concludes the chapter with the key observations and

some possible future directions.

5.1 Literature Review

Reconstruction of someone’s experiences from his/her brain activity pat-

terns can be considered as the ultimate goal of ”Mind Reading”. Dur-

ing the past recent years, many researchers tried to tackle this task in

many different ways using different neuroimaging modalities and different

methodologies. Here, we briefly review some of the major works on this
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topic.

5.1.1 Reconstructing image-based stimuli

Reconstructing image-based stimuli has received more attention compared

to the other types of stimuli. In the experiment conducted by Key et al.

[58], the authors used fMRI to record brain activity of the subjects while

they were watching 1,750 natural images. The authors used brain responses

of the voxels from early visual areas. Based on these data, they built an

encoding model for each voxel. This model can describe the dependency

between the voxel and a particular set of image features. In the iden-

tification test, the image with highest correlation between the predicted

activity pattern (based on the receptive-field models) and the measured

activity pattern (based on fMRI) was selected. 82% of the images (99 out

of 120 ) were identified correctly. Such encoding models were used in other

studies in order to decode the mental images of the remembered scenes

[112, 85]. In two very related studies, Naselaris et al. [86] and Nishimoto

et al. [89] succeeded to reconstruct natural images and movies using a

Bayesian framework and a database of natural image priors. In [89], natu-

ral movie stimuli were first passed through a set of Gabor filters (differing

in position, orientation, direction, spatial, and temporal frequency). Then,

during training, the hemodynamic response of each voxel to the stimulus is

learned using L1-regularized linear regression model. This model was used

to predict the bold response of a movie (in the test-set). Reconstruction

was accomplished by averaging over 5 movies (from a big separate dataset

that contained around 8,000,000 seconds of natural movies) with the high-

est probability of producing the same bold response. In another related

study by Schoenmakers et al. [108], reconstruction of the handwritten

characters from brain response was investigated. However, as authors in

[89, 108] conclude, the exact reconstruction is not possible and the quality
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of such reconstructions are highly dependent to the number and the quality

of the priors. In other words, changing the prior, can yield to a completely

different reconstruction.

Unlike these studies, Thirion et al. [119], Miyawaki et al. [80] and Kuo

et al. [66] tried to reconstruct visual stimuli from brain activity, without

any kind of image priors. This means that there exists a function that maps

the visual stimuli with the corresponding brain responses elicited from such

stimuli. By inverting this function, the stimuli can be reconstructed given

the brain activity patterns. However, in the studies, authors just used

very simple-abstract images with limited shapes. Even in such case, the

correlation coefficient between the reconstruction and the original stimulus

was not significant for all stimulus and all subjects.

5.1.2 Reconstructing audio-based stimuli

Reconstructing audio-based stimuli has received less attention compared

to the visual types of stimuli (i.e. images and videos). However, recently,

researchers began to explore this type of stimuli as well. One of the in-

spiring works is the work of Pasley et al. [99] in which the authors tried

to reconstruct the spectro-temporal auditory features of spoken words and

continuous sentences from neural responses using an invasive neuroimaging

technique (ECoG). However the spectrogram analysis of the audio input

contained the information in the very low frequencies (0.2-7 Hz). Despite

this, they obtained significant correlation (average accuracy r = 0.28), be-

tween the reconstructed spectrogram and the original wave spectrogram.

In a similar study [77], Martin et al., tried to reconstruct the spec-

trotemporal features of overt (reading out loud) and covert (silent reading)

speech from the human cortex using ECoG. On this, they first built a neu-

ral decoding model (using high gamma band (70-150 Hz) to reconstruct

spectrotemporal auditory features of the overt speech. Then they tried to
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see if such model can reconstruct auditory speech features in the covert

speech condition based on the hypothesis that these phenomena share a

common underlying neural representation. For the overt condition, recon-

struction accuracy (the correlation between original and predicted speech

features) was significant in each subject. For the covert speech, however,

the accuracy was lower but it was still higher than the baseline (resting-

state prediction).

Strum et al., [115], tried to reconstruct the musical stimuli power-slope

using a non-invasive approach (EEG). Using a Ridge Linear Regression

approach, they were able to regress the temporally embedded EEG fea-

tures into power-slope of the musical stimuli. They measure the canonical

correlation between the signal-slope and the reconstructed slope. However

in most of the cases the correlation value is very low and insignificant.

In an interesting and recent work by Huth et al. [46], authors tried

to build a semantic model for each voxel by regressing the brain activity

patterns of each voxel with the semantic features obtained from more than

two hours of narration of the stories (from The Moth Radio Hour). Seman-

tic features were constructed based on the word co-occurrence statistics in

a large corpus of text. Once semantic models are learned, they can be

employed to predict the brain activity patterns (BOLD response) of the

new stimuli. Such prediction can be validated by correlating the predicted

brain response with the original brain response. Such analysis revealed

high correlation in some voxels, but the average performance (in between-

subject analysis) is rather weak (less than 0.08). Although authors did not

investigate the possibility of reconstruction of the new stimuli (narration

of the story) from the brain responses, however, using such semantic voxel

models might enable them to do so in further experiments.
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5.1.3 Spotting the gap

Our examination of the related literature reveals that reconstructing the

experiences of the users are recently capturing attention across many com-

munities and will be a hot topic with the continuous advances in signal

acquisition techniques and machine learning algorithms. However, these

studies are conducted using the neuroimaging techniques that are not ap-

propriate for out-of-lab scenarios. Since EEG is probably the most common

signal acquisition technique in BCI, hence, it would be an interesting ques-

tion to investigate whether EEG responses to the musical stimuli can be

utilized to obtain information about the stimulus spectrogram or not. In-

sights into such question could be acquired by examining the relationship

between EEG signal spectrogram on one hand and the stimulus spectro-

gram on the other hand. In light of this, in the present context, we propose

an approach to regress the spectrogram of the stimulus using spectrogram

analysis of the EEG signals in order to complement a possible link between

stimulus structure and brain signals.

5.2 Materials and Methods

In this section, we describe the employed dataset and data analysis proce-

dure.

5.2.1 Dataset

In our experiments, we used DEAP dataset [61] that contains the EEG

data of volunteers who watched 40 music video clips. The complete de-

scription of this dataset is explained in Chapter 3.
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5.2.2 Data Analysis

EEG Signal Processing:

In this study, the pre-processed EEG data [61] is employed. These generic

pre-processing steps include: down-sampling of the EEG signal to 128 Hz,

EOG artifacts removal and bandpass frequency filtering (4 - 45 Hz). Then,

for every trial, the spectral power of each channel is estimated with a win-

dow size of 64 samples (500 milliseconds) with 8 samples overlap between

windows (We employed Short-time Fourier transform (Equation 5.1) in or-

der to estimate the signal power for a specific frequency and time-intervals).

EEG features are calculated by averaging the signal power over four major

frequency bands: theta (3:7 Hz), alpha (8:15 Hz), beta (16:31 Hz) and

gamma (32:45 Hz). The output of this procedure for each trial is a matrix

with the following dimensions: 32 (number of the EEG sensors) × 4 (major

frequency bands) × 137 (number of segmented temporal windows).

X(τ,ω) =

∫ +∞

−∞
x(t)w(t− τ)e−jωtdt (5.1)

Sensor Selection:

Not all brain regions involve in processing the auditory information in

humans. The auditory cortex (Figure 5.2) that is locate bilaterally at the

top of the temporal lobes, involves in perception and understanding of

voices [8, 136]. In light of this, In this study, we used the sensors located

in the temporal area of the brain (T7 and T8). In order to increase the

signal to noise ratio, for each subject and on each clip, we averaged the

time-frequency outputs of these two sensors.

79



CHAPTER 5. TOWARDS MIND READING

Figure 5.2: Auditory cortex in human brain

Stimuli Processing:

For each stimulus (music video clip), the signal power is determined as

follows: 1) Downsampling the audio signal to the sampling frequency of

the EEG signal (128 Hz). 2) Segmenting the audio signal into the 12.5

% overlapping time frames of 500 milliseconds width. 3) Calculating the

average signal power for each window for every frequency. 4) Averaging

the signal power over four major frequency bands: theta (3:7 Hz), alpha

(8:15 Hz), beta (16:31 Hz) and gamma (32:45 Hz).

5.2.3 Regression Analysis

We adopted Linear Ridge Regression models under leave-one-sample-out

cross-validation schema in order to minimize the distance between the spec-

trogram of the EEG signals and the spectrogram of the audio signal. Thus,

For a given stimulus on a particular subject a mapping function is learned

based on the EEG/Audio spectrogram of 39 stimulus (training set). Then,

the mapping function is applied to the EEG spectrogram of the remaining
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stimulus (test set) in order to predict the spectrogram of the audio stim-

ulus. Such procedure is repeated 40 times so that each stimulus for each

subject is once used in the test set.

5.2.4 Correlation Analysis

The prediction of the spectrogram of the audio stimulus from EEG Signals

is served as the basis for examining the relation between the stimulus spec-

trogram and the reconstructed stimulus spectrogram. In order to do so,

we calculate the Pearson correlation between these two spectrograms (the

original one and the reconstructed one) for each stimulus on each subject.

5.3 Results

As explained in Section 5.2.4, we calculate the Pearson correlation between

the spectrogram of the stimulus (in the test set) and the reconstructed

spectrogram of the same stimulus using the EEG signals. This procedure,

finds 40 correlation coefficient (r-values and their corresponding p-values)

for each stimulus of each subject. In order to compare the results on a

subject level basis, the correlation coefficients are averaged for each sub-

ject. Accordingly, for each subject, the obtained p-values are fused over

all clips using the Fisher’s method [27, 5]. The results of such analysis are

demonstrated in Table 5.1.

5.4 Discussion

The results of our regression-based method demonstrate the feasibility of

the reconstruction of the spectrogram of the audio stimulus directly from
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Table 5.1: Correlation analysis.

Subjects Correlation Coefficient p-value
Sub 1 0.0090 0.0918
Sub 2 0.0314 < 0.001
Sub 3 0.0701 < 0.001
Sub 4 0.0371 < 0.01
Sub 5 0.0068 0.6506
Sub 6 0.0290 < 0.05
Sub 7 -0.0011 0.4689
Sub 8 0.0340 < 0.001
Sub 9 0.0224 < 0.001
Sub 10 0.0432 < 0.001
Sub 11 0.0267 < 0.01
Sub 12 0.0057 0.8974
Sub 13 0.0168 < 0.001
Sub 14 0.0395 < 0.001
Sub 15 0.0293 < 0.05
Sub 16 0.0573 < 0.001
Sub 17 0.0097 0.4307
Sub 18 0.0768 < 0.001
Sub 19 0.0061 0.7059
Sub 20 0.0438 < 0.001
Sub 21 0.0764 < 0.001
Sub 22 0.0399 < 0.001
Sub 23 0.0022 0.9008
Sub 24 0.0255 < 0.001
Sub 25 0.0600 < 0.001
Sub 26 0.0486 < 0.001
Sub 27 0.0785 < 0.001
Sub 28 0.0244 < 0.05
Sub 29 -0.0044 0.3365
Sub 30 0.0363 < 0.05
Sub 31 0.0403 < 0.001
Sub 32 0.0432 < 0.001

Average 0.0333 1.13× e−136

the EEG signals at the single-subject level. The obtained correlation coef-

ficients are significant (p-value < 0.05) in 24 (out of 32) subjects. Never-

theless, several issues call for further exploration. First and foremost, the

obtained correlation coefficient is very weak (although it is significant and

it is consistent with the correlation value reported in the other literatures

[77, 115, 46]). On this, other regression methods can be explored. One

82



5.5. CONCLUSION

of the promising technique is applying canonical correlation in order to

find a subspace to maximize the correlation between two representations.

Secondly, the variance of the correlation coefficient between stimuli within

(and between) subjects has not been explained yet and should be explored

in future experiments. Thirdly, other characteristics of the music stimulus

(rather the signal spectrogram) need to be examined in the subsequent

studies. In addition, it would be interesting to probe whether or not such

stimuli can cause significant correlation with physiological responses, such

as heart rate.

5.5 Conclusion

In this Chapter, we presented an approach regarding reconstruction of the

audio stimulus spectrogram directly from the EEG brain signals. The

presented results are just a proof-of-concept that multivariate analysis of

the brain signals may extract complex stimuli related information from

brain. To our knowledge, this study is one of the first efforts that employs

EEG signals for such tasks. However the proposed study presents some

limitations that need to be addressed in further experiments. The main

limitation is regarding the correlation coefficient that is weak. For this,

other regression methods, as well as the canonical correlation, should be

investigated. As a future plan, this study can be extended in several ways:

1. Applying other regression methods for reconstructing audio spectro-

gram from EEG signals.

2. Exploring other musical features rather the spectrogram.
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3. Examining the correlation between musical features and behavioral

and physiological responses such as heart rate and respiration.
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Chapter 6

Conclusion

In this chapter we summarize our research conducted for this PhD. In this

thesis we investigated three aspects of brain decoding: 1) Retrieving the

genre-related information from brain signals. 2) Improving the accuracy

of machine learning algorithms on specific tasks by transferring the knowl-

edge learned in another modality using a domain adaptation approach.

3) Reconstructing some aspects of the stimuli structure by analyzing the

brain signals. Here we summarize our research and discuss the limitations

of this work as well as the possible future directions.

6.1 Summary

The individuals’ cognitive state and perception is determined by their brain

activity. So far, brain signals have already been analyzed by the field of

signal processing and computer science in order to retrieve information

related to specific tasks. Such analysis reveled the feasibility of decoding

brain signals. The brain decoding systems vary in tasks and the employed

stimuli, ranging from resting-state brain activity to observing complex nat-

ural stimuli (e.g. movies). In this thesis, we followed this trend but we

additionally worked on the idea of the recommender systems. We aspired to
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make music/movie recommender systems by employing neurophysiological

signals. But since genre classification can be considered as an essential part

of the music and movie recommender systems, in Chapter 3 we conducted

two studies on retrieving genre-related information from neurophysiologi-

cal signals: Music genre classification and movie genre classification. Our

analysis revealed the feasibility of such recommender systems and our re-

sults can be considered as an initial step towards an implicit music/movie

recommender system via neurophysiological signals.

Later on we sought to increase the performance of brain decoding sys-

tems. This urge has arisen as a result of poor-performing brain decoding

systems as a result of few and noisy samples of neuroimaging datasets.

On this, we proposed a domain adaptation approach in order to take into

account the rich information exists in other domains. The aim of such ap-

proach is to transfer knowledge from a rich modality to the poor-performing

modality. These approaches, has been used previously in other tasks. Fol-

lowing up those studies, in Chapter 4, we investigated the possibility of ap-

plying transfer learning algorithms on the brain data. Firstly, we proposed

an adaptation framework in order to transfer the semantic representations

learned on a visual domain to the brain domain. We showed that despite

the big difference between the modalities, the adaptation procedure led

to improved results for the object classification task, outperforming the

baseline method on the fMRI dataset. Secondly, we tried to investigate

such adaptation approaches on other tasks (i.e. genre classifications) using

other neuroimaging modalities (MEG and EEG). Our experimental results

showed a significant boost on the performance of the brain decoding sys-

tems once adaptation has been employed.

Finally, in Chapter 5, we aimed at one of the ultimate goals of neuro-

science that is reconstruction of someone’s experiences from his/her brain

activity. This goal has been tackled by many researchers recently in various
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ways using different neuroimaging modalities and different methodologies.

We tried to complement this research direction by reconstructing the audio

stimulus spectrogram from the brain signals. In our analysis, we found sig-

nificant correlation between the stimuli spectrogram and the reconstructed

version of the stimuli spectrogram using the brain signals. Our results are

a proof-of-concept that multivariate analysis of the brain signals may ex-

tract complex stimuli related information from brain.

6.2 Limitations and Future works

In this section, we discuss the limitations of the research carried out through-

out this PhD thesis.

6.2.1 Music/Movie genre classification

We are one of the first showing that brain signals contain genre-related

information, thus this can be used in movie/music recommender systems.

However, in order to make useful applications of such analysis, more re-

search needs to be conducted to guarantee the accuracy of the music/movie

retrieval from neurophysiological signals. Firstly, more effective machine

learning algorithms need to be employed in order to see wether the classi-

fication results can be improved. Without having a significant accuracy, it

would be difficult to find any practical usage of such systems in real life.

Secondly, one of the main practical limitations of our approach is related

to the employed datasets that contain MEG and EEG brain data. MEG

is an expensive and bulky device which is not suitable for out-of-lab sce-

narios. EEG, compared to MEG, is cheaper and easier to use. However it

also needs significant precision once the electrodes are placed. On the other
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hand, portable brain recording devices (e.g. Emotiv sensors, and Neurosky

device) are easier to use for normal users [116]. Thus, one direction of fu-

ture studies is replicating the same analysis by exploiting portable brain

recording devices or even by using wearable neurophysiological devices.

6.2.2 Domain Adaptation

While our domain adaptation showed a significant boost in the performance

of the brain decoding algorithms, the interpretation of such adaptation

should be further investigated in the future studies. In our analysis, we

did not explore to see what kind of knowledge is shared between these two

modalities and what is actually transferred between brain and the other

modality. This needs to be explored in the follow-up studies.

Apart from the interpretation, our approach is just applicable in cases

where data for both modalities (i.e. brain data and the multimedia data)

are available. In other words, the application of this approach is limited

and it is not probably suitable in real-time BCI scenarios.

6.2.3 Stimuli Reconstruction

Regarding audio stimulus reconstruction, we showed a proof-of-concept

that multivariate analysis of the brain signals may extract complex stimuli

related information from brain signals. However the results of our correla-

tion analysis is not very strong and should be further explored in the next

studies by employing other (more efficient) regression methods. Besides,

other musical features rather the signal spectrogram can be also investi-

gated as the future plan. On top of that, it would be interesting to examine

the relation between musical features and physiological responses such as
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heart rate and respiration.
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[77] Stéphanie Martin, Peter Brunner, Chris Holdgraf, Hans-Jochen

Heinze, Nathan E Crone, Jochem Rieger, Gerwin Schalk, Robert T

Knight, and Brian N Pasley. Decoding spectrotemporal features of

overt and covert speech from the human cortex. Frontiers in neuro-

engineering, 7:14, 2014.

[78] Riccardo Miotto and Gert Lanckriet. A generative context model

for semantic music annotation and retrieval. IEEE Transactions on

Audio, Speech, and Language Processing, 20(4):1096–1108, 2012.

[79] Tom M Mitchell, Rebecca Hutchinson, Radu S Niculescu, Francisco

Pereira, Xuerui Wang, Marcel Just, and Sharlene Newman. Learning

100



BIBLIOGRAPHY

to decode cognitive states from brain images. Machine Learning,

57(1-2):145–175, 2004.

[80] Yoichi Miyawaki, Hajime Uchida, Okito Yamashita, Masa-aki Sato,

Yusuke Morito, Hiroki C Tanabe, Norihiro Sadato, and Yukiyasu

Kamitani. Visual image reconstruction from human brain activity

using a combination of multiscale local image decoders. Neuron,

60(5):915–929, 2008.

[81] Eva Mohedano, Graham Healy, Kevin McGuinness, Xavier Giró-i
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