
Co-tutelle Individual Agreement between the University of Trento

(Italy) and the Pontificia Universidad Catolica de Chile (Chile)

Doctoral programme in Engineering Sciences

CLOSING THE GAP BETWEEN BUSINESS

PROCESS ANALYSIS AND SERVICE

WORKFLOW DESIGN WITH THE BPM-SIC

METHODOLOGY

CARLA MARINA VAIRETTI

Thesis submitted to the Office of Graduate Studies in par-

tial fulfillment of the requirements for the degree of

DOTTORE DI RICERCA IN INFORMATICA E TELE-

COMUNICAZIONI

Advisors:

ROSA ALARCÓN (PUC, CHILE)

FABIO CASATI (UNITN, ITALY)

Santiago de Chile, June 2016

c©MMXVI, CARLA MARINA VAIRETTI

Co-tutelle Individual Agreement between the University of Trento

(Italy) and the Pontificia Universidad Catolica de Chile (Chile)

Doctoral programme in Engineering Sciences

CLOSING THE GAP BETWEEN BUSINESS

PROCESS ANALYSIS AND SERVICE

WORKFLOW DESIGN WITH THE BPM-SIC

METHODOLOGY

CARLA MARINA VAIRETTI
Committee members:

ROSA ALARCÓN (PUC, CHILE)

FABIO CASATI (UNITN, ITALY)

SERGIO OCHOA

MARCOS SEPULVEDA

YADRAN ETEROVIC

LUCA CERNUZZI

GUSTAVO ROSSI

CRISTIAN VIAL

Thesis submitted to the Office of Graduate Studies in partial fulfill-

ment of the requirements for the degree of

DOTTORE DI RICERCA IN INFORMATICA E TELECOMUNI-

CAZIONI

c©MMXVI, CARLA MARINA VAIRETTI

I dedicate my dissertation work to

my family and friends. A special

feeling of gratitude to my loving

parents, Aida and Massimo whose

words of encouragement and push

for tenacity ring in my ears. My

sister Paola has never left my side

and is very special.

I also dedicate this dissertation to

my many friends who have

supported me throughout the

process.

I devote this work and give special

thanks to my husband Rodrigo, my

wonderful kids: Bruno and Emilia

for being there for me throughout

the entire doctorate program. You

three have been my best

cheerleaders.
iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor Rosa Alarcón for her expert

guidance, constant encouragement and enduring patience during my doctoral research.

During of year 2013 and 2014 I was given the opportunity to stay at the Department of

Computer Science in Trento University. I would like to thank Professor Fabio Casati who

invited me for this visiting. I am lucky to work in his group and have been surrounded by

knowledgeable and helpful co-workers. I am grateful to Florian Daniel for his wonderful

cooperation and all the interesting discussions, information and inspiration. I would also

like to thank the colleagues there, in particular Carlos Rodrigez and Jorge Saldivar for

discussions and assistance.

Finally, I would like to thank my family for their love and support. My special thank

goes to Rodrigo for his encouragement and support.

v

INDICE GENERAL

ACKNOWLEDGMENTS . v

INDICE DE FIGURAS . x

INDICE DE TABLAS . xiii

RESUMEN . xiv

ABSTRACT . xvi

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Research Questions . 5

1.2.1. Automatic and dynamic functional service composition 5

1.2.2. Eliciting BPA expertise . 6

1.2.3. Closing the gap between BPAs and SAs 6

1.3. Problem statement and General Goals 6

1.3.1. Automatic and dynamic functional service composition 7

1.3.2. Eliciting BPA expertise . 7

1.3.3. Closing the gap between BPAs and SAs 8

1.4. Hypothesis . 8

1.5. Thesis Work and Main Contributions . 8

1.5.1. Automatic and dynamic functional service composition 9

1.5.2. Eliciting BPA expertise . 9

1.5.3. Closing the gap between BPAs and SAs 10

1.6. Document Structure . 11

2. BACKGROUND . 13

2.1. Introduction to Web Services . 13

2.2. Service Oriented Architecture . 13

vi

2.3. Semantic Web Services . 15

2.3.1. OWL, WSMO, WSDL-S, OWL-S, SAWSDL 16

2.4. Service composition . 19

2.5. Functional Testing . 23

2.5.1. Testing in Business process . 25

2.6. Reducing the gap between business and Information Technology areas . . 29

3. A SEMANTIC APPROACH FOR DYNAMICALLY DETERMINING COMPLEX

COMPOSED SERVICE BEHAVIOUR . 33

3.1. Composing Web services considering complex control-flow patterns . . . 36

3.1.1. Motivating and example: Finding a service to apply for a travel reimbursement 38

3.1.2. Extending MSM to support complex control-flow patterns 41

3.1.3. Control flow patterns . 43

3.2. COMPO-SWS . 47

3.3. Composition Algorithms . 50

3.3.1. Pre-computing the graph: the Connect algorithm 51

3.3.2. Consuming services . 52

3.4. Evaluation . 57

3.4.1. Provider complexity: publishing a new service 57

3.4.2. Consumer complexity: atomic or composed (on the fly) service 58

3.4.3. Experimental evaluation . 59

3.5. Conclusions . 62

4. ANALYSIS AND IMPROVEMENT OF BUSINESS PROCESS MODELS USING

SPREADSHEETS . 65

4.1. Preliminaries and background . 69

4.1.1. Business processes . 69

4.1.2. Business process analysis . 71

4.1.3. Business process simulation . 73

4.1.4. Problem statement . 73

vii

4.2. Spreadsheet-based business process analysis 74

4.2.1. Requirements . 74

4.2.2. Approach . 75

4.3. Business process modeling and simulation configuration 78

4.4. Business process simulation . 81

4.5. Analysis and Visualization of Results . 84

4.6. Implementation . 85

4.7. User studies . 87

4.7.1. Business process analysis with spreadsheets 87

4.7.2. Modeling, analyzing and reporting 90

4.7.3. Discussion of results . 93

4.8. Qualitative Analysis . 93

4.8.1. Comparison Framework . 94

4.8.2. Analysis . 95

4.8.3. Discussion . 99

4.9. Conclusion . 100

5. CLOSING THE GAP BETWEEN IT AND BUSINESS STAKEHOLDERS: THE

CASE OF WEB SERVICE REUSE, COMPOSITION AND ANALYSIS FOR

SERVICE-BASED BUSINESS PROCESSES 102

5.1. Motivating scenario . 104

5.2. Requirements for closing the gap between BPAs and SAs 107

5.2.1. Changes in the scenario . 108

5.2.2. Bridging BPA and SA key requirements 109

5.3. BPM-SIC: Business Process Model - Service Implementation Collaboration

methodology . 111

5.3.1. CompoSWS server . 112

5.3.2. Emulator analyzer . 115

5.3.3. BPM-SIC methodology . 116

5.3.4. Key requirements examples . 118

viii

5.4. Implementation . 120

5.4.1. Extending CompoSWS . 120

5.4.2. Emulator server . 123

5.4.3. Extensions made to support the key requirements. 124

5.5. Experimental setting . 126

5.5.1. First interview: BPM identification 127

5.5.2. Second interview: Business analysis 128

5.5.3. Processing the information . 129

5.5.4. Third interview: Evaluating the recommendation 132

5.6. Analyzing the results . 133

5.7. Conclusions . 137

6. CONCLUSIONS AND FUTURE WORK 138

6.1. Automatic and dynamic functional service composition 138

6.2. Regarding eliciting BPA expertise . 139

6.3. Regarding closing the gap between BPAs and SAs 140

References . 142

ix

INDICE DE FIGURAS

3.1 BPMN model of a travel expense reimbursement process based on the Minnesota

University reimbursement process. 39

3.2 The user request as specified in an XML document. 40

3.3 An MSM ontology extension considering control-flow patterns and guard expressions

in order to model service behavior. 42

3.4 A composition example for the travel reimbursement scenario: Services are

progressively published into our triplestore as indicated by the numbers. The

composite service (19) is built from bottom to top (backwards) when a user

request is made. 44

3.5 Compo-SWS Architecture. 48

3.6 A: SAWSDL description for the PrepareWorksheetWithReceipts service; goal,

input and output are annotated. B: The N3 query using SPARQL 1.1 Update

generated form the SAWSDL. 50

3.7 Connect algorithm, step 1 (lines 1 to 12) and Connect algorithm, step2 (lines 13

to 30). 52

3.8 Q1 query finds all the services with the same goal and output. Q2 query looks for

a specific service predecessor. Q3 creates a predecessor in no one is available.

Q4 and Q5 look for services with a goal other than the published service’s goal,

in particular (Q4): Finds services with an input parameter that matches the

published service output and (Q5): Looks for services with an output parameter

that matches one of the published service’ input parameter. 53

3.9 The Connect2 algorithm generates sb:select, sb:alternative and sb:iterator relationships

as defined by the corresponding control-flow patterns. 54

x

3.10 The FindService algorithm is responsible for finding a simple service or discovers

the subgraph between a target and origin nodes, generating a subgraph that

represents the composed service behaviour. 55

3.11 Query (QF1) seeks for an atomic service that matches the request’s input, output

and goal. Query (QF2) searches for the set of nodes that contains the goal and

the output defined in the user request that is the set of target nodes. 56

3.12 Descriptive analysis of the performance results when publishing services. . . 60

3.13 Accumulated maximum response time obtained from the connect algorithm. . 60

3.14 Response time considering the sequence, select, discriminator, and synchronize

patterns. 61

3.15 Response time when searching for atomic and composite services including 1

(SS), 2 (2CS), 3 (3CS) and 4 (4CS) services. 61

3.16 A comparison, based on number of services composed or discovered versus

response time and the quality of the solution, among our approach (CompoSWS)

and the WSC challenge, CompoIT and WDS. 63

4.1 BPMN model of a travel expense reimbursement process and a possible execution

log. 66

4.2 BPMN elements related to control-flow specification. 69

4.3 Spreadsheet-based approach to BP analysis. 76

4.4 The instruments used for BP modeling and simulation configuration. 79

4.5 Modelling and configuring gateway nodes. 80

4.6 Process execution spreadsheetES containing logged process progression information. 82

4.7 Designing analysis reports: spreadsheets for defining (a) metrics m and (b)

assertions a. 83

4.8 Architecture of the proposed solution. 86

4.9 Survey results for questions regarding the overall experience of software developers. 88

xi

4.10 Survey results for questions regarding the BP model editor. 89

4.11 Survey results regarding the BP analysts’ overall experience. 91

4.12 Survey results regarding the use of spreadsheets for BP analysis. 91

4.13 Qualitative analysis of our tool (Spreadsheet-based BP Analyzer) and state-of-art

business process analysis and simulation solutions. 96

5.1 TR business processes from different departments of the university. 107

5.2 Implementation of the TR business model as a service workflow for various

universities. 109

5.3 BPA and SA bridging methodology. 117

5.4 CompoSWS architecture. 121

5.5 CompoSWS extended ontology supporting BPM-SIC strategy. 122

5.6 Emulator architecture. 123

5.7 BPM-SIC architecture. 126

xii

INDICE DE TABLAS

5.1 Quad examples for CompoSWS extension. 124

5.2 Participants to our study . 128

5.3 BPA’s workflow implementation for each BP model as created by CompoSWS 129

5.4 CompoSWS recommendations to SA and BPA based on the BPM 130

5.5 CompoSWS recommendations to SA and BPA based on the spreadsheet tool . 131

5.6 BPAs response to CompoSWS recommendations based on the BPM and the

spreadsheet tool . 132

5.7 BPAs response to CompoSWS recommendations based on the BPM and the

spreadsheet tool (second part) . 135

xiii

RESUMEN

Hoy en dı́a las empresas y organizaciones se enfrentan al reto de integrar y automatizar

sus procesos de negocio. Un proceso de negocio es un conjunto de tareas relacionadas

lógicamente, llevadas a cabo para generar un producto o servicio. Los procesos de negocio

se implementan tı́picamente mediante servicios Web. Los servicios Web son interfaces

programables que se pueden invocar a través de protocolos estandares de comunicación.

En general, la necesidad de externalizar partes de los procesos de negocio da lugar a un

gran número de servicios Web heterogéneos y distribuidos entre varias organizaciones y

plataformas.

La capacidad de seleccionar e integrar estos servicios Web en tiempo de ejecución,

es una caracterı́stica deseable pues permitirı́a a las plataformas basadas en servicios Web

reaccionar rápidamente ante cambios de necesidades de negocio y fallas, reduciendo los

costos de implementación y minimizando las pérdidas por una pobre disponibilidad. La

composición dinámica y automática de servicios Web tiene como objetivo generar un plan

de composición (workflow) en tiempo de ejecución, que cumpla cierta meta de negocios.

Las técnicas basadas en semántica explotan la anotación especializada de servicios para

facilitar el descubrimiento de servicios simples o compuestos (matchmaking) que forman

parte del plan. Por lo general, el proceso de matchmaking pone mayor atención en la

selección de servicios y no tanto en el comportamiento del servicio compuesto (workflow)

que tiende a ser muy simple. En la industria, por el contrario, los servicios compuestos

o workflows son definidos manualmente y tı́picamente siguen patrones de control de flujo

complejos que implementan procesos de negocio elaborados.

A pesar de que una técnica de composición dinámica y automática de servicios pro-

duzca un workflow ejecutable que implementa un proceso de negocio, éste debe ser val-

idado en relación al objetivo del negocio. Este análisis de alto nivel, por lo general, es

realizado por expertos del dominio (BPA, Business Process Analyst) quienes deben co-

ordinar con los expertos (SA: System Architect) la implementación de los procesos de

xiv

negocio. La conversación entre el BPA y el SA es un requisito fundamental durante el ciclo

de creación de un proceso de negocios ejecutable. La falta de comunicación entre ambos

participantes no solo genera retrasos en el tiempo de desarrollo, sino que también genera

fallas en el producto y ciclos innecesarios que conllevan muchas veces, aumentos de los

costos de producción y grandes pérdidas de dinero en las organizaciones.

En este trabajo de tesis, hemos desarrollado tres enfoques que permiten que esta brecha

entre el BPA y el SA disminuya y su colaboración sea más efectiva. Por un lado presen-

tamos una técnica de composición de servicios Web, dinámica y automática, teniendo en

cuenta la descripción semántica de los servicios. El servicio compuesto corresponde a un

workflow ejecutable con control de flujo complejo, facilitando la tarea de implementación

del SA. Por otro lado, proveemos una herramienta que permite al BPA verificar y analizar

el rendimiento de sus procesos de negocio. Y finalmente explotamos ambas herramien-

tas con el fin de proponer una metodologı́a que integra ambas perspectivas permitiendo

transferir conocimientos en ambas direcciones, logrando ası́ resultados prometedores que

permiten descubrir inconsistencias en el desarrollo y el diseño del proceso de negocio ası́

como entregar recomendaciones de mejores prácticas en ambos sentidos.

Palabras Claves: Ontologı́a, Composición de servicios, Servicios Web semánticos,

Procesos de negocios, Análisis de procesos, Simulación de proce-

sos de negocio.

xv

ABSTRACT

Nowadays companies and organizations are challenged to integrate and automate their

business processes. A business process is a set of logically related tasks, carried out to

produce a product or service. Business processes are typically implemented using Web

services. Web services are programmable interfaces that can be invoked through standard

communication protocols. In general, the need to outsource parts of a business processes

results in a large number of Web services, which are, generally, heterogeneous and dis-

tributed among various organizations and platforms.

The ability to select and integrate these Web services at runtime is desirable as it

would enable Web services platforms a quick reaction to changing business needs and

failures, reducing implementation costs and minimizing losses by poor availability. The

goal of dynamic and automatic Web services composition is to generate a composition

plan (workflow) at runtime that meets certain business goal. Semantics based techniques

exploit specialized services annotation to facilitate the discovery of simple or composed

services (matchmaking) that form part of composition plan. Usually, the process of match-

making places more attention in the selection of services and much less on the behavior

of the composed service (workflow) that tends to be very simple. In the industry, on the

contrary, the service compounds or workflows are manually defined and typically follow

complex control flow patterns that implement elaborate business processes.

Although a technique of dynamic and automatic service composition produces an ex-

ecutable workflow that implements a business process, it must be validated in relation to

the business goal. This high-level analysis is usually performed by domain experts (BPA

Business Process Analyst) who must coordinate with the experts (SA: System Architect)

the implementation of the business processes. The conversation between BPA and SA is a

fundamental requirement for the cycle of creation of an executable business process. The

lack of communication between both participants not only causes delays in development

xvi

time, but also generates product failures and unnecessary cycles involving often increases

in production costs and large losses of money in organizations.

In this thesis, we have developed three approaches that allow decreasing the gap be-

tween BPA and SA and making their collaboration more effective. On one hand we present

a Web service composition technique that is dynamic and automatic and is based on ser-

vices’ semantic descriptions. The composed service corresponds to an executable workflow

with complex control flow, facilitating the SAs implementation task. On the other hand,

we provide a tool that allows BPAs to verify and analyze the performance of their busi-

ness processes. And finally, we exploit both tools in order to propose a methodology that

integrates both perspectives allowing knowledge transfer in both directions. We obtained

promising results that reveal inconsistencies in the development and design of the business

processes as well as provide recommendations for best practices in both directions.

Keywords: Ontologies; Services Composition; Semantic Web Services; Business

process analysis; business process simulation.

xvii

1. INTRODUCTION

1.1. Motivation

Nowadays, companies and organizations implement their business processes and out-

source Web applications on the Internet. That is, they publish, store and invoke their ser-

vices through the Web, so that others can also use them. The ability of service providers

to identify business processes and align each task to a particular Web service is not an

easy goal, this happen because, in general, the selection of a suitable service (stored in a

repository that contains different services) requires efficient search and selection engines.

A simple or atomic service is a service, which is not dependent on others to run. A

composed service, however, is a service that publishes a standard interface and internally

invokes the execution of other services (components), which could be atomic or composed

(Medjahed, 2004). The composition can be static, if the composition model is built at de-

sign and compilation time; or dynamic, if the model components and their arrangement are

decided at runtime (Alamri, Eid, & El Saddik, 2006). A composition model is a represen-

tation of the set of tasks that should be carried out during the execution of the composed

service (e.g. workflow or plan), along with existing data dependence and control-flow

among them.

Static composition, on the other hand, takes place during design-time when the ar-

chitecture and the design of the software system are planned. The set of tasks and data

dependency between tasks to be used are chosen, linked together, and finally compiled and

deployed. (Dustdar & Schreiner, 2005).

There are several advantages of a dynamic service composition approach (W3C) (Dustdar

& Schreiner, 2005), for example, given a set of atomic services, a large number of com-

posed services is performed on demand. It is not necessary to maintain a local catalog

of available services to create composite services, which often happens with static com-

position. The functionality offered by composite services, in the dynamic case, can be

1

extended at runtime. Finally, dynamic service composition allows to customize the soft-

ware according to individual customer needs, without affecting other users of the system

(Mennie, 2000).

Web services composition is not a trivial task. In particular, it presents the following

complications:

• First, the amount of available Web services is huge, and it is beyond the ca-

pacity of human beings to analyze these services manually (Lemos, Daniel, &

Benatallah, 2015).

• Second, Web services can be created and updated on the fly, thus the composition

systems need to detect these updates at runtime and have the ability to adapt

the system to these changes (Rodriguez Mier, Pedrinaci, Lama, & Mucientes,

2015a).

• Third, Web services are often implemented by different organizations using dif-

ferent conceptual models to present the services characteristics. Differences may

appear at syntax and semantic level been a layer the harder to resolve. This re-

quires the use of semantic information in Web services description in order to

facilitate the matching and composition of heterogeneous Web services (Klusch,

Kapahnke, Schulte, Lecue, & Bernstein, 2015).

Some approaches these three problems above using using a planning technique (Hoffmann,

Bertoli, & Pistore, 2007; Sirin, Parsia, Wu, Hendler, & Nau, 2004; Klusch, Gerber, &

Schmidt, 2005; Pistore, Barbon, Bertoli, Shaparau, & Traverso, 2004; Xu, Chen, & Reiff-

Marganiec, 2011) that derives the sequence of actions needed to find a target state (required

outputs) from an origin state (inputs and preconditions). These techniques usually work

well for small repositories that also have a high number of repository restrictions; they

have some drawbacks such as high complexity, high computational cost and the inabil-

ity to maximize parallel execution of web services. Other approaches such as (Aversano,

Di Penta, & Taneja, 2006; Ghafarian & Kahani, 2009; Rodriguez-Mier, Mucientes, Lama,

& Couto, 2010), work with a large number of services without guaranteeing an optimal

2

solution; they are also very lengthy and require much memory. An approach that is similar

to this thesis proposal, is capable of finding an optimal composition taking into account

the matching between inputs and outputs for a specific requirement, at a semantic level.

This approach scales much better than other techniques with a large number of services,

showing a good performance (short response time) on large repositories (Rodrı́guez-Mier,

Mucientes, Vidal, & Lama, 2012).The problem is that this approach implements simple

flow-control patterns and it does not implement elaborate patterns mostly used in the in-

dustry.

But not only the selection of the Web service that better fits a task of a business process

is important; software in general (such as individual Web Services as well as the entire set

of services that implement tasks in the process) should be thoroughly analyzed before being

released to users. Unfortunately, many of the processes that go to market, do not have the

proper verification by the users who really know the process (e.g. a BPA, business process

analysts) (Bhat, Gupta, & Murthy, 2006; Sutcliffe, 2012). The truly important thing is

that the piece of software delivered to the market is analyzed by someone with proper

knowledge, tools and methodologies (Weske, 2007b).

Interestingly, when it comes to business processes this is not a common practice. In

fact, the BPA who designs the processes, don’t often have the tools to analyze its own arti-

facts (Sutcliffe, 2012; Wiegers & Beatty, 2013). Of course, analysts can test their models

under different execution scenarios manually, but if they lack automated support and ad-

vanced testing capabilities (e.g. metrics, statements, test reports, etc) (Galli et al., 2015),

their conclusions may be wrong.

In the context of the business process management (BPM), many process models tasks

are typically implemented using Web services (Weske, 2007a). This requires the partici-

pation of Web service developers and, it may happen that the role of the process analysis

is performed by the same developers (Buchwald, Bauer, & Reichert, 2011). This in turn

means that the BPA’s perspective may be unavailable before implementing and executing

3

processes. The identification of problems in the last phase of a Web service life cycle can

be a slow and costly process.

When a BPA analyzes a given process, he or she needs to communicate the analysis

goals, requirements and configurations to the software developer that implements and runs

the Web service platform. Understanding and implementing well a process may thus re-

quire several iterations between the analyst and the developer. This collaboration may be

hampered by the same difficulties already extensively reported in the literature on software

engineering in general, and requirements analysis in particular, such as ineffective com-

munication channels, inexpressive notations, and its dependent nature (Bhat et al., 2006),

(Sutcliffe, 2012), (Wiegers & Beatty, 2013).

To address these problems, we need technologies and methodologies for aligning both

roles supporting the complex dependencies that exist between high-level business process

models (as used by domain experts) and technical workflow specifications (i.e., service

composition schemas), respectively, (as used in IT departments) (Buchwald et al., 2011).

In this thesis, we propose a methodology that integrates these two perspectives. On one

hand, we present a mechanism capable of recommending business processes implementa-

tions, assisting both the Web service developer and the BPA in the design and implementa-

tion of a business model and, on the other hand, a BP modeling and analysis layer, which

facilitates the BPA requirements and expertise elicitation and knowledge dissemination so

that the SA can enrich and improve the implementation process layer (Web services).

The recommending mechanism was implemented by an automatic and dynamic Web

services composition platform (CompoWS) (Vairetti, Alarcon, & Bellido, 2016). This ap-

proach proposes a semantic web service composition framework and algorithm that is eval-

uated in a web services dataset. It proposes the use of complex control-flow patterns to-

gether with service’s signature and semantic annotations to identify composite services

dynamically at runtime. With this technique is possible to obtain connections between ser-

vices that are pre-calculated. It means that when a service is published, the algorithm

recursively evaluates the stored services according to the previously described patterns,

4

and generates all the necessary control-flow relationships, forming a graph that represents

the semantic behavior of a potential composite service. These services can be deployed at

runtime. The result is a compose service (a workflow) that enables recommendations to the

SA when selecting the services to be used in the business model to implement, as well as

detects inconsistencies at the implementation and business level.

The BP modeling and analysis layer was implemented as a system of spreadsheets that

allows the analysis of a business process by the BPA (Galli et al., 2015). This approach

allows BPAs to draw models, configure the execution of the entire process, define tests and

generate execution log in order to analyze all the processes. The characterization of the

ideal execution scenario of a business process is analyzed through the definition of metrics

and assertions at business-level, the tool allows the BPA to elicit their knowledge of the

business process and also to verify its correctness.

1.2. Research Questions

The research questions that this thesis tries to answer are:

1.2.1. Automatic and dynamic functional service composition

Given a set of services, semantically described, can we design an scalable method to

discover complex service compositions (i.e. complex workflows)?

To be more specific:

• Is there any semantic model that can be extended in order to represent service be-

havior following complex control-flow patterns (such as sequence or alternative)

that satisfy the needs of business processes?

• How do we specify service behavior within the composed service and what kind

of interaction can occur among a set of services implementing a business pro-

cess?

• What type of information is required to identify this kind of Web services at

run-time?

5

1.2.2. Eliciting BPA expertise

How can we enable BPAs (without development experience) to analyze and improve

their BPs on their own, with less reliance on and intervention of SA?

And more specifically:

• How can we map the problem of business process analysis to the problem of con-

figuring and analyzing data using a easy environment for organizing, analyzing

and storing data?

• Since spreadsheets is a tool known for BPAs, How can we enable the generation

of testing spreadsheets from an extended BPMN editor? How we can select a

familiar BPMN editor? How can we enable the BPA to define their own metrics,

assertions and test reports?

• It is feasible for the BPA taking the process execution log in order to define

their own metrics, assertions and test reports without the intervention of software

developers using a familiar tool?

1.2.3. Closing the gap between BPAs and SAs

How can we assist the BPA to transfer their BP knowledge to the SA and conversely, ex-

ploit the IT infrastructure to assist the BPA design choices when constructing a BP model?

In order to address the problem in detail:

• Which are the challenges faced by BPAs and SAs and which of them can be

assisted by themselves?

• Are there specific tools that bridge the gap between BPAs and SAs? Are these

powerful tools? Which validation criteria can be defined to evaluate these tools?

1.3. Problem statement and General Goals

The general goal of this thesis is to allow the definition of service compositions (work-

flows) that implement business process considering the complexity of BP behavior as well

6

as business level expertise. To achieve this goal, we divide the challenge into three stages

corresponding to corresponding to Chapters 3, 4 and 5 of this thesis, it is important to

understand that Chapters 3 and 4 serve as the basis of Chapter 5 that satisfy the general

goal.

1.3.1. Automatic and dynamic functional service composition

This part of the thesis addresses the problem of automatic and dynamic Web service

composition considering only functional requirements. The problem is seen as a graph

search problem from the point of view of the semantic input-output message structure

matching.

The first goal is the creation of a method able to determine, given a service description,

all the possible service composition fragments that the service is part of. The second goal

is to determine a set of control-flow patterns that define the behavior of a composition

fragment and from that the possible relationships among services. The third goal is the

creation of a method able to calculate, given a request, an extended service dependency

graph which represents a solution for the request.

1.3.2. Eliciting BPA expertise

The problem we aim to solve in this part of the thesis is devising an approach that

enables the BPA to leverage their expertise, characterizing and testing the performance of

their business process without the need for software development skills.

The first goal is to enable the BPA to specify their own business metrics M and asser-

tions A to characterize their business process and elicit part of her expertise. The second

goal is to allow the BPA to run a simulation of the BP considering such characterization and

to obtain a process execution log L, so as to be able to analyze the behavior of a business

process BP . The third goal is to do so in a fashion that allows the BPA to easily discuss

her findings with the software developer in charge of implementing processes.

7

1.3.3. Closing the gap between BPAs and SAs

The purpose of this part of this thesis is to propose a methodology that integrates

business process and workflow modeling allowing to transfer expertise in both directions.

The first goal is to allow the BPAs to transfer their expertise to the SAs by enrich-

ing and refining the service layer. The second goal is to assist the BPA’s design choices

when constructing a business model using the recommendations from the service capacity

deployed (i.e. workflows).

1.4. Hypothesis

The following are the hypothesis of this thesis:

H1: Services signatures (input and output) along with a goal and a set of rules

make possible to automatically and dynamically discover service compositions

with complex behavior.

H2: Spreadsheets together with a BP execution log allows BPAs to easily analyze

their BPs on their own by describing metrics, assertions and test reports.

H3: Signavio-Core BPM editor along with a service engine supporting H1 make

possible to detect new business level semantic relationships and inconsistences

in order to annotate them on a service engine supporting H1 that match semanti-

cally related services.

H4: A service engine supporting H1 that match semantically related services can

recommend to BPA a set of services that serve as implementation of BP tasks;

and it can also identify possible implementation level inconsistencies between

services.

1.5. Thesis Work and Main Contributions

This Section summarizes the results presented in a collection of selected papers pub-

lished by or submitted to international journals. Each paper is presented as a separate

8

chapter and briefly summarized, together with its relation to the contributions and research

questions of this thesis.

1.5.1. Automatic and dynamic functional service composition

The first part of this thesis describes a technique to derive complex composite service

behavior semantics extending the MSM ontology (Pedrinaci et al., 2010) in order to allow

the specification of simple and complex control-flow patterns based on the service’s sig-

nature. It also enables the automatic discovery of such patterns through a set of rules and

presents the algorithms and queries required to dynamically pre-compute all the possible

combinations between services. This part presents also the algorithm and queries required

to discover composite services.

The major contribution of this part is the specification of a minimal extension to MSM

ontology in order to specify complex control-flow in service composition as well as the

specification of a set of signature-based rules that allow us to infer complex control-flow

relationships among services. Specific contributions of our work are as follows; first we

improve the performance, in terms of response time, of generating composite services with-

out requiring in memory calculus, which may facilitate scalability of our approach through

horizontal scalability. Second we allow the generation of more elaborate compositions that

correspond to complex business patterns adopted in most real scenarios, without losing

performance when compared to approaches that only consider simple business patterns.

These contributions were published in the following journal: C. Vairetti, R. Alarcon

and J. Bellido. A semantic approach for dynamically determining complex composed ser-

vice behaviour. Journal of Web Engineering - Rinton Press. April 2016.

1.5.2. Eliciting BPA expertise

The second part of this thesis describes a spreadsheet-based approach for business

process model analysis that maps the problem of business process performance analysis

and verification to the problem of configuring and analyzing data in common spreadsheets.

It enables the generation of analysis spreadsheets from an extended business process model

9

editor for BPMN process models (Object Management Group (OMG), 2011); it enables

also the BPA to define their own metrics, assertions and analysis reports; and it automates

the simulation of BP and the generation of process execution logs.

A major contribution of this part is the development and specification of a formal ap-

proach to support the analysis and improvement of Business Process Models using Spread-

sheets. Some specific contributions of our work are: first we testify that the interaction

between the BPAs and the developers were well disposed and facilitated by our approach,

confirming the suitability of the approach for collaborative BP analysis. Second, we allow

BPAs to obtain a concrete feeling of how their processes behave if deployed in a real BP

system by emulating web services and visualizing process progress in a process-monitoring

dashboard.

These contributions were published in the following journal: J. Saldivar, C. Vairetti C.

Rodriguez , F. Daniel, F. Casati and R. Alarcon. Analysis and Improvement of Business

Process Models Using Spreadsheets. Information Systems - Elsevier. January 2016.

1.5.3. Closing the gap between BPAs and SAs

The third part of the thesis focuses on the importance of understanding the require-

ments inherent in bridging the software perspective (i.e. Web service implementation) and

the business perspective (i.e. which tasks can be executed by a particular service and which

conditions shall be considered during the process execution).

A major contribution of this part is the development and specification of six bridging

strategies to exploit the two perspectives and propose a methodology that integrates both

perspectives allowing to transfer expertise in both directions.

These contributions were submitted to the following journal: C. Vairetti, R. Alarcon, C.

Rodriguez , F. Daniel and F. Casati . Closing the gap between IT and business stakehold-

ers: The case of web service reuse, composition and analysis for service-based business

processes. Information Systems Journal - Wiley Online Library - June 2016.

10

1.6. Document Structure

The remainder of this thesis is organized as follows:

In Chapter 2, fundamental definitions and terminology are given to the reader regarding

the problem of how can we shorten the gap between BPAs and SAs. When we chose this

subject, different research directions inspired us. They are the researches in Web services,

Service Oriented Architecture, Functional Testing and Business/Information Technology

areas. Those directions are presented here as the background of the research subject in this

thesis.

Chapter 3 presents the paper that summarizes the results of the first part of the thesis

about automatic and dynamic web service composition. It consists of the paper A semantic

approach for dynamically determining complex composed service behaviour. The paper

presents a technique to derive complex composed service behaviour semantics, such se-

mantics make possible to dynamically and automatically discover complex services com-

positions. We have implemented and tested this technique with a known dataset with better

performance when compared to simple service composition strategies.

Chapter 4 explores the ability to test the business process model execution by a BPA. It

consists of the paper Analysis and Improvement of Business Process Models Using Spread-

sheets. This article presents a tool that faces the lack of suitable instruments for business

process analysts, who design the processes, and aims to provide them with the necessary

instruments to allow them to analyze their processes. A spreadsheet paradigm that allows

performing business process analysis tasks is presented. BPAs write metrics and assertions,

run performance analysis and verification tasks, and generates reports on the outcomes. The

results of two independent user studies demonstrate the viability of the approach.

Chapter 5 presents a methodology to enrich and close the gap between BPA and SA

in both directions. It consists of the paper Enriching Workflows with BPM expertise and

vice versa. In this paper two perspectives, the one of the BPA and the one of the SA, are

integrated under a methodology that allows expertise transference in both directions. We

11

consider also that the underlying software infrastructure is able to automatically infer work-

flows (service composition) so that it is capable of recommending certain implementations.

We propose six bridging strategies, which were tested with promising results.

Chapter 6 presents the main conclusion of this thesis and future research. The chapters

of this thesis are self-contained, that is, they can be read independently.

12

2. BACKGROUND

2.1. Introduction to Web Services

The World Wide Web is more and more used for application-to-application communi-

cation. Web services are programming language independent pieces of software that offer

a programmable interface that can be invoked via standardized Web communication proto-

cols, such as HTTP, in order to deliver the functionality they encapsulate (Erl, 2008).

A more precise definition is provided by the UDDI consortium, which characterizes

Web services as self-contained, modular business applications that have open, Internet-

oriented, standards-based interfaces (ORG, 2000). According to the World Wide Web con-

sortium (W3C), and specifically, to the group involved in the Web Service Activity: a Web

service is a software application identified by a URI, whose interfaces and bindings are

capable of being defined, described, and discovered as XML artifacts. A Web service sup-

ports direct interaction with other software agents using XML-based messages exchanged

via Internet-based protocols (Austin, Barbir, Ferris, & Garg, 2004).

2.2. Service Oriented Architecture

Web Services technologies encourage the reuse of software and software interoperabil-

ity not only across organizational boundaries but also within a large organization, by ex-

posing some functionality via the infrastructure of the Web, following open Web standards.

It allows also the reuse of legacy systems functionality, which is particularly attractive in

business scenarios. Web services facilitate the reuse of business components and native

Web applications. They allow consumers to find, combine and invoke functionality with

more accuracy, supporting automation, integration and the creation of B2B (Business to

Business) processes in a more dynamic, scalable and low cost manner.

Service-oriented computing (SOC) (Papazoglou, Traverso, Dustdar, & Leymann, 2008,

2007) main promise focuses on the notion of services as an essential element for the de-

velopment of software applications. Services are pieces of software that are published by

13

service providers who are responsible for its maintenance and implementation. Services

must be described and these descriptions are used to publish service capabilities. These ca-

pabilities must be discovered so that services could be used as components of new services.

Services may be atomic or composed if they invoke other services in order to complete

their actions. Composition is the action of combining the services functionality (compo-

nents) on a new service (compound). This new service provides added value and also

can be part of other compounds. For example, a business transaction may require three

steps: credit verification, the availability of a product and the issuing of a purchase order.

If each of these tasks is provided as an atomic service, the service that implements the

whole, complex transaction (invoking other services) is called a composite service. Web

services allow the use and combination of functional components distributed inside and

across enterprise boundaries. These services are loosely coupled between them, which al-

low to create scalable and heterogeneous applications that join organizations and diverse

computing platforms (Papazoglou et al., 2008).

Web service architecture includes three components: clients, providers and service

repositories. Providers publish their services in these repositories and clients discover these

registered services through queries. Traditionally, Web services infrastructure is based on

three basic standards, WSDL (Web Services Description Lenguages) (Chinnici, Moreau,

Ryman, & Weerawarana, 2007), SOAP (Simple Object Access Protocol) (Box et al., 2000)

and UDDI (Universal Description, Discovery and Integration) (ORG, 2000). WSDL is an

XML-based language used to describe the service interface (input and output parameters,

data types and the service URI endpoint). SOAP is a standard protocol for the exchange

of messages transmitted over HTTP between the service and the client. UDDI allows the

definition of global repositories where service information is published. Currently, UDDI

is not used. The idea behind UDDI was to discover web services and their capabilities in

some sort of web services marketplace. In the real world, description a web service, it can

be placed on the same server that is hosting the web service. Web services promote the

reuse of software, which reduces development costs, increases maintainability, and enables

organizations to create composed services (Erl, 2008).

14

As mentioned before, service composition can be static and dynamic, but in addition,

there are three strategies that are applied to both modes (Dustdar & Schreiner, 2005): a)

Model-driven composition where business processes can be built dynamically by compos-

ing web services in a model driven fashion where the design process is controlled and gov-

erned by a series of business rules, b) Declarative composition where composability rules

are used to determine whether two services are composable; c) Automated vs. manual web

services composition which differ from a) and b) in the way the components are selected

during the process of composition. Among the techniques for implementing dynamic com-

position, we can find wrappers, adapters, specific languages, workflows, declarative and

semantics composition as well as hybrid systems which have several advantages and dis-

advantages (Dustdar & Schreiner, 2005).

2.3. Semantic Web Services

In order to compose services automatically, additional information provided by WSDL

is needed because the WSDL annotation elements are essentially syntactic and meaningless

so that it is not possible to infer their purpose and way of use automatically. A popular way

of representing semantic aspects of a system is ontologies. Formally, an ontology is formal

and explicit specification of a shared conceptualization (Gruber, 1993). Conceptualization

refers to an explicit definition of an abstract model that characterizes a phenomenon in

the world through the identification of relevant concepts and restrictions of the phenome-

non. Formal represents the fact that the ontology should be understandable by machines.

Shared reflects the notion that an ontology captures consensual knowledge of a community

(Gruber, 1993), (Studer, Benjamins, & Fensel, 1998), (Borst, 1997).

There has been proposed various languages based on different logical formalisms for

representing ontologies. For instance KIF (Knowledge Interchange Format), IMCO (Op-

erational Conceptual Modeling Language) (Tanasescu, Domingue, & Cabral, 2004) and

F-Logic (Frame Logic) (Th & Schlepphorst, n.d.).

15

OWL is one of the most popular formal languages for representing ontologies; it is

presented as an XML schema that allows to describe concepts (e.g. Classes) and instances

(i.e. Objects) as well as relationships among them (Booth & Liu, 2007). There are three

variants of the language: OWL-Lite, OWL-DL and OWL-Full, in order of expressivity.

Each of these incorporates additional constraints (cardinality properties, transitivity, and

others). RDF (Lassila, Swick, et al., 1998) (Resource Description Framework) is another

language for representing ontologies but since it is less expressive than OWL, it requires

simpler parsers and query engines becoming very popular. Other popular languages are

N-Triples (Grant & Becket, 2004) or N3 and Turtle which have a compact format for ex-

pressing ontology triples. A triple is a statement in a < subject, predicate, object > form,

where the predicate semantically relates the subject and the object. The object can be a

concept (similar to the subject) or a literal (a simple datatype). In OWL and RDF, the three

elements are represented through IRIs (Dürst & Suignard, 2004).

Regarding the infrastructure required by ontology-based systems, we can distinguish

some key components like parsers and serializers that transform ontologies between var-

ious formats (eg. XML to N-Triples); Repositories (Sesame (Schenk & Petrák, 2008),

JENA (Reynolds, 2004)) that store both ontologies and their instances in a database that is

specialized in the storage and retrieval of triples; languages and search engines (SPARQL,

SeRQL (Broekstra & Kampman, 2004)) for retrieving information according to structured

queries and the applications on top of all these components. JENA is a Java framework

used for building Semantic Web applications, it consists of an API that provides mecha-

nisms for reading and writing triples in different formats (RDF N-Triples, Turtle, etc.), as

well as persistency and memory storage; it also provides an implementation of an SPARQL

query engine.

2.3.1. OWL, WSMO, WSDL-S, OWL-S, SAWSDL

Service semantics refer to the purpose and meaning of the service and the elements

that characterizes it (e.g. WSDL elements), as well as the meaning or interpretation of the

conditions that must be considered when invoking it and its results. Many research have

16

arisen in the area of Semantic Web Services, including proposals to W3C standards such

as WSMO (Domingue, Cabral, Hakimpour, Sell, & Motta, 2004), OWL-S (Martin et al.,

2004) and SAWSDL (Lausen & Farrell, 2007).

WSMO is a framework that comprises a meta-ontology, an architecture, and a com-

position model; it presents some implementations in different contexts such as education

(IRS III (Domingue et al., 2004)). In WSMO, the domain ontology remains separate from

the services implementation and relies on expressive knowledge representation formalisms

(WSML (De Bruijn, Lausen, Polleres, & Fensel, 2006a)) as well as rule languages to sup-

port tasks such as service discovery. These ontologies are rich and complex, and they

demand a strong knowledge of ontological design, as well as of the ontologies that de-

scribe specific services (which are based on F-Logic) and of the platforms and tools for

implementing them (such as WSMX (Haller, Cimpian, Mocan, Oren, & Bussler, 2005)).

Furthermore, WSMO is based on a sophisticated logical reasoning for automatic discov-

ery, mapping, composition and execution of composite services, requiring to centralize all

service descriptions which represents a significant limitation on the scalability of these ap-

proaches. Nevertheless, the core limitation of WSMO is that it fails to comply with W3C

standards (e.g. it requires WSML services description instead of WSDL), making it impos-

sible to extend existing Web services with WSMO technology although efforts have been

made to provide support for interoperability (Vitvar, Kopeckỳ, Viskova, & Fensel, 2008a).

OWL-S, on the other hand, proposes a meta-ontology of services, but does not pre-

scribe an architecture, a mechanism of composition or a way to connect existing Web

services with the ontology. OWL-S requires a domain ontology and a semantic descrip-

tion of services. The domain ontology remains separate from the services implementation

and relies on expressive knowledge representation formalisms (Martin et al., 2004). Like

WSMO, OWL domain ontologies are rich and complex, and demand a strong knowledge

of ontological design as well as the ontologies themselves. The meta-ontology proposed

by OWL-S involves three perspectives: support for Web service discovery (Service pro-

file), service usage (Service Model) and service access (Service Grounding) (Burstein et

al., 2004).

17

The Service Profile includes a description of what does the service, its limitations, ap-

plicability, quality and requirements that the service requester must satisfy in order to use

the service successfully. Service Grounding specifies the details of how an agent could

access a service, it specifies a communication protocol, message formats and other specific

details of service communication, such as port numbers used to contact the services. The

Service Model describes the service capabilities that enable service orchestration and de-

fines two components: Process that describes the service properties such as inputs, outputs,

conditions, parameters and effects; and Process Control that describes the process state for

atomic (simple request-response service invocation) or composed services (Burstein et al.,

2004). Process Control for composed services requires to specify the composite structural

semantics through control-flow instructions such as sequence, split, split-join, any-order,

choice, if-then-else, while and repeat-repeat-until (Coalition, 2004).

In addition, there are two recommendations of the W3C for semantic description of

Web Services, WSDL-S (Verma & Sheth, 2007) and SAWSDL (Lausen & Farrell, 2007)

that extend the WSDL language through lightweight semantic annotations. Semantic An-

notations for WSDL (SAWSDL) is a W3C recommendation that allows to add semantic

annotations to the terms of a WSDL description. This semantics, when expressed through

formal languages, can help to disambiguate the description of Web services. These terms

refer to an ontology to allow classification, discovery, matching, composition and invo-

cation of Web services. The advantage of this approach is the possibility to extend exis-

tent WSDL descriptions with semantic representations (e.g. RDF, OWL, WSML, or any

other proprietary language). SAWSDL does not prescribe what a semantic description of

a Web service could be (e.g. OWL-S, WSMO or any other model). SAWSDL introduces

three new annotations or elements of WSDL extensibility: the modelReference to specify

the association between a WSDL component and a concept in some semantic model, the

liftingSchemaMapping and loweringSchemaMapping elements that are added to WSDL

elements (parameters and data types) to associate them with conceptual definitions of an

ontology and XML data schemas respectively.

18

2.4. Service composition

The most popular technique for dynamic service composition is based on service sig-

nature; it considers the dependencies between inputs and outputs in order to generate a

composition plan at runtime. Plan generation uses techniques such as dynamic forward

or backward search, data dependency and control-flow. The plan can be represented as a

directed acyclic graph where nodes are services and arcs correspond to the dependencies

between them. Such dependency is established from the service signature (Input, Output),

services semantic distance, or services similarity (perfect-match, plug-in, subsume, y zero-

match, etc.) (D’Mello, Ananthanarayana, & Salian, 2011). The composition plan includes

the services invocation control-flow. Some approaches, such as Linked-OWL (Ahmad &

Dowaji, 2013), require that the user defines the composition plan as an abstract work-

flow, services are stored in a repository and each service component is searched for using

a SPARQL query. Others propose a Petri net-based algebra for modelling control-flow

(Hamadi & Benatallah, 2003). Service behaviour is modelled through six control-flow

patterns: sequence, alternative, iteration, arbitrary sequence, parallel with communication,

discriminator, selection, and refinement. OWL-S is a well-know semantic service model

that includes basic control flow patterns (invocation, sequence, alternative, join and split)

(Zhang, Zhang, & Liu, 2010). A UML- based universal language considering simple and

complex interaction has been also proposed (Kylau, Stollberg, Weber, & Barros, 2012).

Workflows are considered complex interaction patterns (sequence), but the authors do not

specify how such workflows could be modelled. In (van Der Aalst, Ter Hofstede, Kie-

puszewski, & Barros, 2003a; N. Russell, Ter Hofstede, & Mulyar, 2006) 43 control-flow

patterns are presented in great detail.

Service discovery is achieved by defining a matching degree between services (match-

making) and the client’s request. Matchmaking is considered logics-based, if an ontological

structure is used to determine a similarity between the services and the request; non-logical,

if syntactic, structural or numeral strategies are used, or hybrid. In YASA (Chabeb, Tata,

19

& Ozanne, 2010) a hybrid matchmaking mechanism pre-selects a set of services, and de-

termines a services matching degree using a IOPE (Input, Output, Preconditions, Effects)

logical approach (exact match, subsumption, etc.); finally, the matching degree is weighted

using non logical strategies (min-average, cupid, and combinatorial algorithms). Logical

and statistical matching degree is broader in IO OWLS- MX (Klusch, Kapahnke, & Zin-

nikus, 2009) the user determines the matching degree, and the similarity threshold, and

the service provider, requester and matchmaker share a minimal vocabulary with mapping

rules (synonyms based on a WordNet thesaurus) to classify service request’s input and out-

put concepts. In (Bener, Ozadali, & Ilhan, 2009), a hybrid PE (Preconditions, Effects)

algorithm ranks published services according to the semantic distance of concepts (count-

ing edges). WordNet is used to determine synonymy and concept subsumption. SAM is an

IO matchmaking algorithm for OWL-S that considers semantic descriptions for requested

and provided services (Brogi, Corfini, & Popescu, 2008). The algorithm simplifies services

into trees and creates a BF-hypergraph representing the dependencies among matched ser-

vices; the dependency graph in analysed to determine whether it satisfies the user request

or additional input requests are required from the client to produce a full match.

Semantic-based service composition techniques rely on semantically annotated ser-

vices to facilitate service discovery. Annotations make explicit the semantics of the input

and output parameters, as well as the service goals among others. For instance in Kill and

Nam (Kil & Nam, 2013), conceptual relationships between services parameters are used to

find the semantically close services that satisfy the user’s requirement. This technique is

based on model checking and a matchmaking process. Other solutions are based on various

description languages capturing different service’s semantics. For instance, OWL- S pro-

poses three ontologies specifying a service (a service profile indicating the service goals,

limitations, quality and requirements for the service consumer), usage (a service model),

and access (service grounding). A service model component, the Process, describes prop-

erties such as inputs, outputs, preconditions, parameters, and effects; the Process Control

20

component, describes the processing state and together they allow designers to create work-

flows. Unlike OWL-S, the Web Service Modeling Ontology (WSMO) includes an execu-

tion framework and a set of four ontologies that describe the information used by the other

ontologies; the objectives fulfilled when executing the service; the services’ capabilities

and signature; and the mapping between components. Service discovery is a three-step

process involving the service signature and goal, whereas service composition is generally

addressed through forward-chaining techniques that determine the set of valid state tran-

sitions (i.e. service invocation) in order to achieve a goal (Domingue, Galizia, & Cabral,

2005). WSMO-Lite service ontology (Vitvar, Kopeckỳ, Zaremba, & Fensel, 2007) is an ex-

tended Web service specification stack, adding semantic layers that offer richer descriptions

for Web services with the goal of the maximal compliance with Web standards. SAWSDL

(Semantic Annotations for WSDL) is a W3C recommendation for semantic service de-

scriptions, which extends XML-based WSDL with semantic annotations without imposing

a representation language (e.g. RDF, OWL, WSML, etc.), and without prescribing a ser-

vice semantic model (i. e. could be compatible with OWL-S, WSMO or other models).

Some WSDL elements can be annotated with a modelReference attribute that refers to the

equivalent concept in some semantic model through a URI.

On other hand, the DSD (Klein, Konig-Ries, & Mussig, 2005) language describes

services from a pure state-based approach; it requires services to declare its effects and

pre-conditions. Service’s domain is modelled through a hierarchical ontology specialized

in various layers down-to instances. Instance sets (instances subgraphs with constrained

attributes) serve as a medium to specify unambiguously consumer’s request and provider’s

capabilities. A service is composed dynamically from a request. In DSD, and such request

is an instance set that specifies the expected state of the world after a successful service

execution. For YASA, a query-formatted document (i.e. an extended SAWSDL description

with annotations on the interface, operation, input and output elements) representing an

abstract description of the expected service is used as the request specification. For WSMO,

the desired goals as well as the input values are specified (Domingue et al., 2005) through

21

abstract goal templates describing functional capabilities and constraints that are instanced

and customized by users.

Services orchestration aims to generate a composition plan determining the service

components, the data to be interchanged and the control-flow regulating services interac-

tion. Service orchestration is the most popular paradigm in REST service composition

research. For instance, the JOpera framework (Pautasso, 2009a) proposes a visual lan-

guage and an execution platform for building large applications including multiple REST

services. In JOpera, the orchestrator is implemented as a central (composite) resource that

drives the control and data flow. Both flows are visually modeled as two separate design

documents producing a BPEL compatible executable program for orchestration engines.

Other works such as a BPEL extension for REST (Pautasso, 2009b) and a BPEL-inspired

workflow composition language called Bite (Rosenberg, Curbera, Duftler, & Khalaf, 2008)

are used to describe control/data flow and data transformations for web service composition

and control flow dependencies are modeled and implemented using a Petri Net in (Alarcon

& Wilde, 2010). A set of control-flow patterns that implement stateless REST service

composition are described in (Bellido, Alarcón, & Pautasso, 2013). Authors describe a

technique for decentralized REST services composition that takes into account the con-

straints of REST architectural style in the composition process. The implemented control

flows follow a choreography paradigm implemented through callbacks and redirections.

Semantic REST service composition approaches model the composition as graph pat-

terns (Krummenacher, Norton, & Marte, 2010). For instance, Verborgh et al. propose

an RDF-based approach for describing RESTful services where a service composition is

implemented through SPARQL queries (N3). The control-flow is modeled as query pat-

terns following the RESTdesc language; data flow is dynamically resolved when the query

is performed and the served representations can be later processed (Verborgh et al., 2012).

Mismatches between data formats, fully supported in JOpera, are not considered (Verborgh,

Steiner, Deursen, Van de Walle, & Vallés, 2011). Semantic Web technologies are used to

model contextual information from users, sensors and things so that machine-clients can

make sense from the responses (He, Zhang, Huang, & Cao, 2012).

22

Other approaches for REST service composition focus on service description. Pro-

posals include WADL (Hadley, 2006), WSDL 2.0 (Chinnici et al., 2007), and SA-REST

(Lathem, Gomadam, & Sheth, 2007). These descriptions facilitate the automation of

machine-client and RESTful services interaction. These languages are strongly influenced

by existing imperative service description languages (input/output) and do not capture well

the resource-centric nature of RESTful WSs (transitions of resources). ReLL (Alarcon &

Wilde, 2010) differs from the other three in that it is hypermedia-centric, supports REST

architectural constraints requiring less coupling between clients and services. Semantic

REST service descriptions have been also proposed. For instance, hRESTS (Maleshkova,

Pedrinaci, & Domingue, 2009) proposes a microformat to annotate HTML service descrip-

tions that can be used also by crawlers and search engines to find services. The microformat

extends the HTML description with semantic annotations so that RESTful services can be

discovered, composed and invoked automatically. Four aspects of service semantics: infor-

mation model, functional semantics, behavioral semantics and nonfunctional descriptions,

instances are modeled by MicroWSMO (Maleshkova et al., 2009). SWEET (Maleshkova et

al., 2009) supports users in searching for suitable domain ontologies and in making seman-

tic annotations in MicroWSMO in order to provide a higher level of automation on tasks

with RESTful services, such as discovery and composition. WSMO-Lite (Vitvar, Kopeckỳ,

Viskova, & Fensel, 2008b) ontology is used for describing the content of semantic annota-

tions in WSDL.

2.5. Functional Testing

In software development, especially in quality control, one principal aspect is software

Testing and particularly, functional tests (Beizer, 1995). Functional testing is responsible

for verifying whether all the system works correctly or whether a particular application

behaves as expected; for this purpose, this kind of test needs a given set of controlled

execution scenarios or test cases (Gutiérrez, Escalona, Mejı́as, & Torres, 2005).

Functional testing typically involves three main steps (Howden, 1980), (Beizer, 1995):

23

• Planning what should be tested and the corresponding approach. In this step, it

is necessary to identify the functions that the software is expected to perform.

• Execution of a test. It also involves preparing the testing environment, to com-

plete or execute the test and to determine test results. For this purpose the cre-

ation of input data, based on the function’s specifications, and the determination

of expected output, based on the function’s specifications, are required.

• Evaluation. It means to compare the actual test outcome with what the correct

outcome should have been. The expected (correct) outcome should be easy to

record for this purpose.

There are three main testing methods: black box testing that bases its test cases on

the specifications of the software component under test. This type of test is characterized

by loading the input and examining its output without considering the program structure,

the outside world comes into contact with the test item only through a specified interface.

Task descriptions are necessary for creating all the test cases needed. On the other hand,

in white-box testing, the test cases are created based on the knowledge of the input-outputs

and the internal program structure. This method attempts to verify the correct behavior

knowing the whole structure of the system. Finally, gray-box testing is a combination of

both methods mentioned before. According to (Kaner, Falk, & Nguyen, 2000) functional

testing is a type of black box testing.

There are different testing levels based on the test target or in the objectives of testing

(Kaner et al., 2000). We have unit testing, integration testing, system testing and system

integration testing, which testing individual units of source code, testing software modules

that are combined and tested as a group, testing a completely integrated system and testing

software system’s coexistence with others, respectively. We also have regression testing,

acceptance testing, automated testing, alpha testing and beta testing.

In order to automate the testing process, it is possible to write a program that performs

the testing process, obtaining therefore a long maintenance that records the software life

24

cycle, because even minor patches over the lifetime are subject to testing. Software testing

utilizes a variety of tools to automate the testing process (Burnstein, 2006).

Alpha testing consists of simulated or actual operational testing performed by different

developers; it is a kind of internal acceptance testing that is executed before the software

goes to beta testing. Beta testing comes after alpha testing and can be considered a form of

external user acceptance testing, usually performed by the open public, with the purpose of

increasing the feedback field to a maximal number of future users (Beizer, 1995) .

An entirely different way of distinguishing among testing types is to look at the range

of possible input data. One way is to use input data generated at random to confront the

application under test, for instance, since typically testers pay no attention to expected data

types, a testing scenario is to feed a random sequence of numbers, letters and characters into

numeric data fields. Another way is to use spot check testing that resembles random data

testing, but in this approach, input data is selected from a mass of real data that the software

will encounter in its future use. To make this approach work, we need the largest quantity

of real world data possible. Then, we can use a random algorithm to select a manageable

subset from this pool of data and feed the data to the system. Finally, boundary value

tests are specific tests, which check the most extreme values of input data. Boundary value

tests are always individual tests with expected outcomes that can be precisely specified and

checked (Burnstein, 2006).

2.5.1. Testing in Business process

For the purpose of defining a business process as a collection of activities/tasks that

produces a specific service/product for a particular customer, it is common to think that

all this activities need a functional testing in order to check if the application behaves as

expected and all the components are working properly (Young, 2008).

The analysis of business process has triggered many research efforts, yielding a va-

riety of different approaches. In the following, we discuss those related works that fall

25

into the context of this chapter, which includes service-based BP testing, BP simulation,

compliance checking, process mining and modeling and testing spreadsheet.

The problem of service-based BP testing took significant relevance with the SOA

and its use to support the operation of BPs. In particular, many approaches have been

proposed to address this problem in the context of BPs represented with BPEL (Andrews

et al., 2003). For example, some of the works in this context are dedicated to perform

unit tests of web service compositions. Unit tests in this context means testing each web

service and their corresponding interfaces, i.e., each operation offered and invoked by the

service (Mayer & Lübke, 2006; Li, Sun, & Du, 2008). A side problem associated to the

testing of BPEL processes is the generation of test cases. Works like (Garcı́a-Fanjul, Tuya,

& De La Riva, 2006; Yuan, Li, & Sun, 2006; Yan, Li, Yuan, Sun, & Zhang, 2006) propose

approaches for the generation of test cases using techniques from model checking, graph

search and concurrent path analysis. Other types of tests performed on service-based BPs

include regression testing (Li, Tan, Liu, Zhu, & Mitsumori, 2008) and integration testing

(Bucchiarone, Melgratti, & Severoni, 2007). All these approaches require special software

testing and development skills.

BP simulation has been employed for the purpose of testing BPs. For example,

(Aguilar, Rautert, & Pater, 1999) propose a BP simulation methodology to analyze the

performance of financial BPs in unforeseen, potential situations. In the context of service-

based BPs, (Narayanan & McIlraith, 2003) propose the use of simulation to test the preser-

vation of properties (e.g., safety conditions) associated to the services responsible for the

BP execution by combining Petri-Nets and DAML-S. (Chandrasekaran, Miller, Silver,

Arpinar, & Sheth, 2003) use simulation to monitor and analyze the performance of in-

dividual web services involved in a BP. (Tan & Takakuwa, 2007) and (Wynn, Dumas,

Fidge, Ter Hofstede, & van der Aalst, 2008) use simulation to evaluate the impact of BP

re-engineering tasks on process performance.

In the context of process mining (van der Aalst, 2011), techniques such as conformance

checking and process discovery have been employed to check whether or not a BP behaves

26

as expected. Conformance checking (Rozinat & van der Aalst, 2008; van der Aalst, Du-

mas, Ouyang, Rozinat, & Verbeek, 2008) verifies whether the traces of execution of a BP

conform with a given BP model. In order to do so, the approach proposes to replay the real

process execution data on the BP model to detect if there are mismatches between the two.

Conformance checking therefore checks if the event log structurally matches the process

model, or, in other words, it checks if the control flow that underlies the event log matches

that of the process model. It therefore only considers the structure of the BP model as

the specification of the expected behavior and does not focus on process-specific metrics.

Moreover, while the main use case of conformance checking consists in using a real event

log to check against a predefined process model a posteriori (i.e., after a real execution

of the process), in our case we use a simulated log to check a priori (i.e., before the real

execution of the process) if a BP behaves as expected.

Process discovery is the task of inferring a BP model from process execution data

(van der Aalst, Weijters, & Maruster, 2004; Motahari-Nezhad, Saint-Paul, Casati, & Be-

natallah, 2011). Testing a BP with process discovery can be done by first inferring the

BP model from the process execution data and then comparing if the inferred model cor-

responds to the expected model. This comparison can be done either manually or using

automatic techniques such as those based on BP similarity (R. Dijkman, Dumas, & Garcı́a-

Bañuelos, 2009). There are a set of commercial (e.g., ARIS PPM, HP BPI, and ILOG

JViews) and academic (e.g., EMiT, Little Thumb, InWoLvE, Process Miner, and MinSoN)

process mining tools. The main goal of the academic tools is to extract knowledge from

event logs for discovering processes. The commercial tools are more oriented to the design,

analysis and optimization of BPs using for example, charts and dashboards. In addition,

HP BPI can discover a BP from event logs. Our approach differs from these process min-

ing techniques in that they are meant to be used after the real process has been executed.

This contradicts our purpose of using BP testing as an instrument to prevent unwanted be-

haviors. Moreover, these two approaches focus only on the structure of the BP, while our

approach tests the dynamics and data produced by the execution of the BP through the use

of user-defined metrics and assertions.

27

Compliance checking is the problem of verifying whether a BP model or its execu-

tion adheres to a set of compliance rules (i.e., the expected behavior) that typically emerge

from laws, regulations and standards. This problem has been addressed both statically and

dynamically. In static compliance checking, only the model of the BP is checked against

the compliance rules. For example, (Liu, Muller, & Xu, 2007) address the problem by

expressing the BP model in Pi-Calculus and the corresponding compliance rule in Linear

Temporal Logic. Using this representation, model checking techniques are used to check

whether the BP model complies with the compliance rules. (Governatori, Milosevic, &

Sadiq, 2006) proposes a logic-based formalism to represent both the semantics of contracts

and compliance checking procedures. The formalism used is Format Contract Language,

which is based on Deontic Logic and helps in representing and checking contrary-to-duty

obligations in contracts. In dynamic compliance checking, BP execution evidences are used

to check for compliance. Works by (Rodrı́guez et al., 2013) and (Silveira et al., 2010) pro-

pose the use of so-called Key Compliance Indicators (KCIs) to measure the compliance

level of service-based BPs from process execution data, e.g., to measure the fulfilment of

Service-Level Agreements (SLAs). In a similar approach, (Casati, Castellanos, Dayal, &

Salazar, 2007) and (Sayal, Casati, Dayal, & Shan, 2002) propose to warehouse process

execution data to enable the monitoring, analysis and reporting on the performance of BPs,

e.g., to check the duration of process execution instances when they are constrained in time.

The approach we present in this chapter is similar to dynamic compliance checking, with

the difference that we enable the use of simulated data, next to real data, to check differ-

ent execution scenarios. Our approach can thus be used for simulation-based compliance

checking if process properties provide access to the data necessary to express compliance

concerns (assertions).

A topic that is also related to our work is that of spreadsheet modeling and test-

ing. Here, the focus is put on modeling and testing the spreadsheet content itself. In

particular, spreadsheet testing and debugging is important because it positively influences

spreadsheet accuracy (Kruck, 2006). Burnet et al., who coined the term “end-user soft-

ware engineering”, proposed an approach to support assertions in spreadsheets (M. Burnett

28

et al., 2003). The assertions are built on top of cells to check the execution of formulas

contained in cells. The approach provides the possibility to create assertions by the end-

user, following an abstract syntax that is implemented through both graphical and textual

concrete syntaxes. Hermans proposes Expector, an Excel-based tool for helping users in

improving their testing practices, e.g., by helping them in achieving better testing cover-

age, more meaningful names for outcomes of the testing, among other features (Hermans,

2013). In the same paper, the author presents an interesting study on the use of testing

within spreadsheets. They found out that 8.8% of the spreadsheets from the EUSES corpus

(Fisher & Rothermel, 2005) contain testing formulas that use only the spreadsheet’s built-in

functions. Rothermel et al. present a methodology for the test adequacy criterion in form-

based visual programs (the authors place spreadsheets under this category) (Rothermel,

Li, DuPuis, & Burnett, 1998). In their methodology, the authors propose to check for the

definition-use adequacy of a test suite based on the all-uses data flow adequacy criterion.

The prototype, implemented in the research language Forms/3 (M. M. Burnett & Ambler,

1994), provides visual feedback to the users about the “testedness” of their spreadsheet.

The research works presented above focus more on modeling and testing the spreadsheets

itself. Our approach, instead, focuses on testing an external artefact with the help of spread-

sheets. Yet, the contributions made in these works can complement our solution because

they can help to improve the accuracy of the spreadsheets we used for BP analysis.

2.6. Reducing the gap between business and Information Technology areas

Enterprises and organizations focus their activities on business processes in order to

optimize or adapt their business processes to the new organizational needs, which are

widely recognized and supported by Business Process Management (BPM). Especially, on

business and technology areas are adopting this paradigm of Service Oriented Computing

(SOC), which is based specifically on the development of services that are implementing

business processes and help in reducing the gap between these two areas, easing the com-

munication and understanding of business needs (Delgado, Ruiz, de Guzmán, & Piattini,

2010).

29

A business process model (BPM) is used to document the representation of a busi-

ness requirements that appears during a business meeting been between users and process

owners and BPAs (Weske, 2007a). They are typically representing following a graphical

notation describing activities interconnected through control-flow elements. Business pro-

cesses are implemented through Web services by SAs creating a workflow or service com-

position schema or executable model, which is run by a workflow engine. An algorithm

that exploits some service’s description characteristics can create the service composition

schema automatically.

Reducing the gap between business and Information Technology (IT) areas is helped

through the implementation of business processes as services into a specific technology.

Achieving in this way promote the independence between the definition and modeling of

business processes and allowing changes in the implementation with minimal impact over

the processes.

Some of the most relevant works taken into account (1) the integration of Model Driven

Development (MDD) and SOC paradigms to business processes and (2) the introduction of

a middleware that sits between the models and executable workflows.

In the area comprising the integration of MDD and SOC paradigms to business pro-

cesses are as follows: (Chen & Buchs, 2006) defines a methodological framework based

on Petri Nets for modeling, verification and prototyping of business processes; (De Castro,

Marcos, & Lopez Sanz, 2006) focus on the development of service oriented Web Systems

defining models, metamodels and transformations to obtain a service composition model

which expresses the interaction of services. In (Castro, Mesa, Herrmann, & Marcos, 2008)

they integrate a business value model adding the business view and models, and transfor-

mation to use case model. In (Delgado, Ruiz, et al., 2010) the idea is very similar but it

based the generation of services on business process models using BPMN models as first

input. (Touzi, Benaben, Pingaud, & Lorré, 2009) proposes a model driven approach but for

collaborative SOA, to transform BPMN models into UML models and BPEL models.

30

Secondly, some in the area comprising the introduction of a middleware are as follows:

(Buchwald et al., 2011), propose to reduce the gap between business process models and

service compositions using EPCs as a graphical notation and Petri nets as executable work-

flow. The authors reconcile both worlds using transformations based on patterns that are

identified in the models; however, this approach does not focus on improving the business

process models and does not attempt to improve the selection and discovery of services

either.

AbuJarour et al. are also focused on both worlds, trying to find fine-grained linkage

patterns among the web services used in a BPM. The main objective of this approach is

to improve service discovery during the configuration of an executable process (AbuJarour

& Awad, 2014) (AbuJarour & Awad, 2011). The approach generates also additional in-

formation about web services based on the configuration of the business processes that

consume the web services. This information enriches the technical descriptions released

by the service providers. Various approaches to discover relationships between services

are also discussed by the authors, for instance input/output matching (Dong, Halevy, Mad-

havan, Nemes, & Zhang, 2004), semantics (Lecue & Leger, 2006) (Lin, Kwong, & Perni,

2006), service-based compositions (Basu, Casati, & Daniel, 2008) and consumer-consumer

similarity (Rong, Liu, & Liang, 2009), been the third one the approach chosen by the au-

thors.

Smirnov et al. use behavior profiles in order to detect patterns or association rules over

tasks models, and thus, it is possible to suggest to the BPA some improvements and help

him to detect errors in the models (Smirnov, Weidlich, Mendling, & Weske, 2009).

Taking into account the lack of suitable instruments for business process analysts

(BPAs) and their abilities to design only business processes (with a graphical notation),

Saldivar (Galli et al., 2015) uses the spreadsheet paradigm to allow the BPA to verify and

analyze the performance of business processes without the need for software development

skills. In this context, the BPA can write his own metrics and assertions in order to obtain

a process execution log, and he can design analysis reports to be able to autonomously

31

analyze the behavior of his business process. In addition, the BPA can easily discuss his

findings with the SA in charge of implementing processes. This work emphasizes the role

of the BPA, not only in providing input for the design of processes but also in analyzing

them.

Closing the gap between the two worlds of the BPA and the SA is an active research

field. Some approaches, such as Buchwald et al. (Buchwald et al., 2011), propose to reduce

the gap between business process models and service compositions through the introduc-

tion of a middleware that sits between the models (using EPCs as a graphical notation)

and the executable workflows (using Petri nets). The authors reconcile both worlds using

transformations based on patterns that are identified in the models, however, this approach

does not focus on improving the business process models (e.g. through suggestions to the

BPA), and does not attempt to improve the selection and discovery of services either.

32

3. A SEMANTIC APPROACH FOR DYNAMICALLY DETERMINING COM-

PLEX COMPOSED SERVICE BEHAVIOUR

Web service composition is the process of combining the functionality of diverse ser-

vices (components) into a new service that provides aggregated value and can be part

of another composed service (Dustdar & Schreiner, 2005). Service composition requires

defining the order and conditions to selected, bind and invoked services. These tasks can

be performed automatically or manually, at design-time (static) or at run-time (dynamic).

Dynamic and automatic composition is desirable because it contributes to reduce the de-

velopment costs of creating new services. It can also assists developers to discover ser-

vices among a myriad of existing services and to deal with the failure of a component or a

whole composed service on real time, facilitating composed services to adapt to contextual

changes.

A popular strategy for supporting dynamic and automatic service composition exploits

service signature, that is, service’s input and output to determine services dependencies,

deriving a composition plan that can be seen as a graph (D’Mello et al., 2011). Most

research focus on enriching services’ signature with additional information (pre and post

conditions, quality, conceptual semantic models, business rules, etc.) in order to improve

services’ dependencies. Standards such as SAWSDL (Kopecky, Vitvar, Bournez, & Farrell,

2007) allow service providers to annotate web service descriptions (WSDL) with references

to semantic elements without prescribing a semantic model, which is kept separated from

the description. Popular semantic approaches such as OWL-S and WSMO describe ser-

vice semantics reling on expressive knowledge representation formalisms such as OWL

(McGuinness, Van Harmelen, et al., 2004) and WSML (De Bruijn, Lausen, Polleres, &

Fensel, 2006b) respectively, along with rule languages. Domain ontologies for both OWL-

S and WSMO are rich and complex and the development on either platform demands sig-

nificant expertise and knowledge from designers and developers on subjects such as the

corresponding domain ontology, the platforms, and the tools that enable the execution of

semantic Web Services. These characteristics imply an important limitation to the scala-

bility of these approaches (Pedrinaci et al., 2011; Alowisheq, Millard, & Tiropanis, 2009),

33

for this reason, lightweight approaches such as WSMO-Lite (Dietze et al., 2010), and the

Minimal Service Model (MSM) (Pedrinaci et al., 2010). Research on semantic-based dy-

namic composition place a strong emphasis on the discovery of suitable candidates for a

composition (Brogi et al., 2008), while the behaviour of the composed service is either

highly complex, over-simplified (Kylau et al., 2012) or ignored, for instance, WSMO-Lite

does not support a control-flow infrastructure but instead this one is provided by WSMO.

Manual techniques on the other hand, allow full control on the specification of the service

behaviour, resulting into a variety of complex control flows patterns that satisfy the vari-

ous needs and constraints of the business processes (N. Russell et al., 2006; N. C. Russell,

van der Aalst, & Ter Hofstede, 2009).

Automatic composition is a challenge that tends to become more difficult when the

number of services increases, which is worsened if connections between services are com-

plex (i.e. when complex control-flow patterns are included). Some approaches that follow

artificial intelligence planning (Hoffmann et al., 2007; Sirin et al., 2004; Klusch et al., 2005;

Pistore et al., 2004; Xu et al., 2011) derive the sequence of actions required to reach a goal

state (required outputs) from a initial state (inputs and preconditions). These techniques

typically work well for small repositories with a high number of constraints. Most of these

proposals have some drawbacks: high complexity, high computational cost and inability to

maximize the parallel execution of web services. Others (Aversano et al., 2006; Ghafarian

& Kahani, 2009; Rodriguez-Mier et al., 2010) deal with a huge number of services but they

do not guarantee to obtain an optimal solution, are extremely slow and memory intensive.

An approach that is similar to us (Rodrı́guez-Mier et al., 2012) finds a valid composition

considering the matching of the input-output message at a semantic level. The approach

scales better than other techniques with huge number of services, and also shows a great

performance over large repositories. However, they can discover only two of the most

important control-flow patterns: sequence and parallel.

In this chapter, we present our approach for dynamic service composition (CompoSWS)

that exploits service signature and semantic annotations along with rules to identify simple

and complex control-flow patterns between services at publishing-time (i.e. when a service

34

provider makes its service available in our platform). Services are connected through such

patterns forming a graph that is pre-calculated and represent the behavioural semantics of

a potential composite service. A composite service can be dynamically and automatically

discovered and assembled into an executable service at consuming-time (i.e. when an con-

sumer requests a non existent service but whose functionality can be provided through a

services subgraph). We propose also to extend the Minimal Service Model (MSM), which

is a lightweight ontology that captures (part of) the semantics of both Web services and

Web APIs in a common model focuses on service’s signature and facilitates our approach’s

scalability. We validate our approach theoretically through a complexity analysis and ex-

perimentally on a known dataset of 980 services, both at publishing-time and consuming-

time, in terms of performance (response time), and scalability (compositions of various

sizes). Our results are promising and suggest that our approach could be used in an on-

line fashion. Our experience indicated some limitations of SPARQL 1.1. Specification

when querying subgraphs (Arenas, Conca, & Pérez, 2012) that was resolved by defining

incremental queries (i.e. progressively reducing the search space).

This chapter describes a technique to derive complex composed service behaviour se-

mantics that:

• Extends the MSM ontology in order to allow the specification of simple and

complex control-flow patterns based on the service’s signature;

• Enables the automatic discovery of such patterns through a set of rules;

• We also present the algorithms and queries required to dynamically pre-compute

all the possible combinations between services taking into account service be-

haviour (derived from the control-flow patterns); and the algorithm and queries

required to discover composite services.

The contributions of this chapter are two; first we improve the performance, in terms

of response time, of generating composite services without requiring in memory calculus,

which may facilitate scalability of our approach through horizontal scalability. Second we

allow the generation of more elaborate compositions that correspond to complex business

35

patterns adopted in most real scenarios, without losing performance when compared to

approaches that only consider simple business patterns.

3.1. Composing Web services considering complex control-flow patterns

Web service composition requires determining the service components as well as the

order in which services are invoked. Such choices can be made dynamically and auto-

matically at consuming-time (i.e. when a consumer requests a non existing service) by

examining the characteristics of a set of known services. As described before, services’

signature can be used to determine both service components and the dependencies among

them. Typically such dependencies are simple sequence and alternative control-flow pat-

terns (e.g. consume service A first in order to produce and output that serves as an input

for the subsequent service B).

Composite services in the real world, however, follow complex control-flow patterns in

order to fulfil the requirements and constraints of real world business processes (Ter Hofst-

ede, van der Aalst, Adams, & Russell, 2009). Furthermore, business process modelling

comprehends up to 43 well-known control-flow patterns (van Der Aalst et al., 2003a;

N. Russell et al., 2006). Semantic Web service composition, on the other hand, consid-

ers various properties to determine a composite service, however, the few service model

ontologies (OWL-S) that contain elements that make possible to produce complex control-

flow patterns are extremely complex and verbose and control-flow related concepts and

relationships cannot be derived automatically but have to be included in the model manu-

ally, at design-time.

In order to face such problem, in this chapter we extend a well-known and simple se-

mantic Web service ontology (MSM, the minimal service model), with minimal concepts

and relationships that make possible to represent relationships among services correspond-

ing to complex control-flow patterns. In this way it is possible to discover composite ser-

vices as subgraphs where services are interlinked following complex control-flow patterns.

36

In this section, we present a real-world business process model that includes various

control-flow patterns as a motivating example (subsection 3.1.1). Then, we extend the

MSM ontology to support complex control-flow patterns (subsection 3.1.2) and then we

present our approach to derive 6 control-flow patterns and the corresponding semantic re-

lationships (subsection 3.1.3).

37

3.1.1. Motivating and example: Finding a service to apply for a travel reimbursement

We introduce a business case scenario that is used along the chapter to illustrate our ap-

proach. It is inspired on the University of Minnesota travel reimbursement process (https :

//www1.umn.edu/ohr/pay/reimbursements/index.html). For demonstrating the ef-

fect of all the composition patterns we have added complexity to the final step (12) of the

process. Figure 3.1 presents a business process model for the business case; it comprehends

several steps that we summarize as follows:

(i) An employee must retain detailed itemized receipts for expenses of $25 or more,

excluding meals, and s/he must prepare an Employee Expense Worksheet.

(ii) The employee must sign the worksheet.

(iii) The employee must attach the receipts to the worksheet and for each receipt,

the system must validate if the costs are within the margins accepted by the

university.

(iv) After the worksheet is completed, it is sent to a Preparer and s/he verifies that

the expenses meet the University (and/or applicable sponsored fund) policy and

procedures.

(v) The Preparer ensures that receipts are included as required and asks the employee

for any missing receipts.

(vi) If any rates claimed for applicable charges (hotel, mileage, per diem, etc.) exceed

the University limits, the Preparer contacts the employee, and informs him/her

of any adjustments made to the total reimbursement.

(vii) The Preparer prints a barcoded Expense Report from the financial system after

submitting it for approval.

(viii) The Preparer also attaches the worksheet, receipts, and other support documen-

tation to the printed Expense Report and forwards it to the Approver(s).

(ix) The Approver reviews the Employee Expense Worksheet to verify if inadequate

substantiation exists for any expense item.

38

FIGURA 3.1. BPMN model of a travel expense reimbursement process based on
the Minnesota University reimbursement process.

(x) If there is an inadequate substantiation, the Approver must request the appro-

priate substantiation for the items in question. In addition, the Approver will

deny any unsubstantiated expense reimbursement if it is not accompanied by an

appropriate substantiation.

(xi) The Approver may choose to deny any reimbursement request not submitted

within the established timeline.

(xii) Once the Employee Expense Worksheet and attached information is appropriate,

s/he approves the transaction and determines the characteristics of the reimburse-

ment such as the sponsored funds from where the money must be transferred, the

payment mode (bank, cash or Paypal) and the number of payment installments.

Let’s suppose that even though various services provide a partial solution for the prob-

lem, a composite service providing the whole functionality is not yet available. In this

scenario, users (e.g. a business specialist, a software engineer, an IT analyst, etc.) issue a

composition request, which in our approach is an XML file indicating the desired charac-

teristics of a service, as seen in Figure 3.2. The request can be determined through dialogs

39

<?xml xmlns:sb=“http://soc.ing.puc.cl/CompoWS/ServiceBehavior”

 xmlns:reimbursement=“http://www.university.org/finance/reimburse.owl”

 targetNamespace="http://example.com/requestReimbursement.xls"

 xmlns:tns="http://example.com/requestReimbursement.xls"

 xmlns:rq=“http://www.soc.ing.puc.cl/CompoWS/request”

 version="1.0" encoding="UTF-8"?>

 <xsd:complexType name="Persona">

 <xsd:sequence>

 <xsd:element name=“names” type="xsd:string" />

 <xsd:element name=“surnames” type="xsd:string"/>

 <xsd:element name="dateBirth" type="xsd:date"/>

 <xsd:element name=“personalAccount” type="xsd:integer”/>

 </xsd:sequence>

 </xsd:complexType>

<rq:request>

 <sb:Goal> <!-- Describes the goal to be achieved -->

 <rq:modelref>reimbursement:ProcessedReimbursement </rq:modelref>

 </sb:Goal>

 <rq:parameters><!-- Describe inputs and the output to be obtained -->

 <rq:paramIn> <!-- Inputs can be more than one -->

 <rq:name>receipts</name>

 <rq:modelref>reimbursement:Receipts</rq:modelref>
 <rq:value>[id2014,id2023,id2314,id2456]</rq:value>

 </rq:paramIn>

 <rq:paramIn> <!-- Inputs can be more than one -->

 <rq:name>person</name>

 <rq:modelref> reimbursement:PersonalData</rq:modelref>
 <rq:value type="tns:Persona">P</rq:value>

 </rq:paramIn>

 <rq:paramOut>

 <rq:name>result</name>

 <rq:modelref>reimbursement:ReimbursementResult </rq:modelref>
 </rq:paramOut>

 </rq:parameters>

 <rq:guard> <!-- Used to contain the service behaviour of composite. XPath expressions -->

 <rq:expression> math:max(reimbursement:FundApprovalLimit) </expression>

 <rq:expression> contains:(reimbursement:ReimburseByBankAccount") </expression>

 <rq:expression> for-each(reimbursement:NumPaymentInstallments,3) </expression>

 </rq:guard>

</request>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

FIGURA 3.2. The user request as specified in an XML document.

as the composition is built, but since our focus is the composition itself, we will let out this

feature and will assume that the service request contains all the required information.

Let’s assume that a user issues the service request as described in Figure 3.2. In this

request, a goal element (Figure 3.2, line 4) is used to describe the desired activity that

an atomic or composite service will provide (e.g. to obtain a ProcessedReimbursement).

The parameters element (line 6) describes the input and output information that the user

requesting the service is providing. Note that we refer to the concept (semantics) associated

to such parameters, instead of considering it a data type or a value since the latter will be

provided at runtime. In addition, our algorithm requires at most one output but zero or

more input concepts (Figure 3.2, lines 6 to 21). Additional constraints may be provided,

40

for instance the user chooses the sponsored fund that allows maximum approval limits

(Figure 3.2, line 23), to reimburse through a bank account (payment mode: bank, cash or

paypal) (line 24) and the number of payment installments, in this case the request specifies

only three installments (line 25). These expressions follow an XPath notation, they are

resolved dynamically and bound to the appropriate control-flow pattern depending on the

concepts they refer to (i.e. input, output or goal).

As we can see in Figure 3.1 and the request issued by the client (Figure 3.2), a model

(e.g. an ontology) that supports real world service composition must be able to repre-

sent complex control-flow patterns such as those arising in the example (alternative ser-

vice selection, parallel invocation, and various synchronization patterns), as well as certain

constraints (conditional selection of responses, and iteration) that affect or result in addi-

tional control-flow patterns (e.g. iteration). Existing Web services ontologies that consider

control-flow do not consider complex control-flow (such as iteration or conditional selec-

tion of responses) and do not provide extensibility elements to model such new patterns

easily.

3.1.2. Extending MSM to support complex control-flow patterns

In order to support complex control-flow patterns, we propose a simple extension to the

MSM service ontology (Figure 3.1). In MSM, a Service (MSM:SERVICE) has an endpoint

represented by a URL (RDF:RESOURCE) that exposes one or more operations (MSM:OPERATION)

with Input/Output parameters (MSM:MESSAGECONTENTS and MSMMESSAGEPART); these

parameters refer to concepts in an application domain (RDF:RESOURCE). In Figure 3.1,

rounded rectangles represent concepts (e.g. MSM:SERVICE), arcs represent relationships

between concepts (e.g. MSM:HASINPUT), and the squared rectangles represent literals (e.g.

XSB:STRING).

In Figure 3.3, we can see our extension to the MSM service ontology in dotted line

and blue colour. We try to be minimalistic in our extension so that it can be applied to

other Web service ontologies as well. We use the sb (service behavior) namespace prefix

to refer to the elements of our proposed extension. Service goals (SB:GOAL) represent the

41

wl:NonFuctional
Parameter

wl:Condition

wl:NonFuctional
Parameter

wl:Effect

rdf:Resource

msm:
MessagePart

msm:
MessageContentmsm: Operationmsm: Service

sb: Goal sawsdl:modelReference
sawsdl:*SchemaMaping

sawsdl:modelReference

xsd:string

rdf:Resource

foaf:Agent

rdf:Literal

xsd:Date

dc:source

dc:terms:issued

dc:creator
rdf:label

rdf:label
rdf:label

msm:hasInput

msm:hasOutput

msm:hasOperation

sb:patterns

sb:hasGoal

sb:hasExpression

FIGURA 3.3. An MSM ontology extension considering control-flow patterns and
guard expressions in order to model service behavior.

activity that is performed when executing a service, at a high level of abstraction (i.e. is

not a service effect) described according to a domain specific ontology. The goal is related

to the service through a SB:HASGOAL relationship. Service composition may be restricted

according to certain constraints or guard expressions (SB:HASEXPRESION), and services

are related to other services through relationships that represent the semantics of control-

flow patterns (SB:PATTERNS). In this chapter we model six control-flow patterns that are

sub-properties of SB:PATTERNS (i.e. they specialize the SB:PATTERNS relationship), each

of them represent a relationship between two services: SB:SEQUENCE, SB:ALTERNATIVE,

SB:SYNCHRONIZE, SB:DISCRIMINATOR, SB:SELECT and SB:ITERATOR, which are de-

tailed in section 3.1.3. Some constraints or guard expressions that use the SB:HASEXPRESION

relationship can be seen in Figure 3.2, lines 23 to 25. These are XPath expressions that are

traduced to specific control-flow patterns, that is, they contribute to generate an SB:PATTERNS

relationship, and the guard expression itself is stored as XSD:STRING related to the service.

With these three specialized relationships and one concept, we are capable of intro-

ducing complex control-flow patterns support in the MSM semantic service model. That

is, services can relate to each other specifying the type of dependency between them as

well as refer to constraints and the goal they pursue. Furthermore, if we consider these

elements in addition to the service signature it is possible to determine such relationships

42

automatically. In the following subsection we extend the example presented in subsection

3.1 by including the ontology extension presented in this section. We use the resulting ser-

vice implementation to illustrate the application of a set of rules, which are also detailed.

The rules exploit our ontology extensions to derive control-flow patterns automatically.

3.1.3. Control flow patterns

In the case of the SAM algorithm (Brogi et al., 2008), the dependencies among atomic

services are modelled as an in-memory tree. The SAM algorithm is executed at run-time

for each client request. Since the graph of services can grow significantly as companies

merge, evolve and change their needs, we pre-compute the possible graph of services de-

pendencies and store the new graph in a specialized database (a NoSQL, graph oriented

database). A fragment of the resulting graph will serve as the basis of a new composite

service if it is eventually required. Our approach generates new relationships (triples) be-

tween services that are stored for later consumption. These relationships are sub-properties

of SB:PATTERN represented previous in the ontology (Figure 3.1).

Figure 3.4 illustrates a composition graph both at publishing and consuming time for

the previously introduced scenario. The control-flow patterns to derive are based on a set

of rules, detailed in the remainder of this section.

The widely known Workflow Patterns Initiative (van Der Aalst et al., 2003a) identifies

43 control-flow patterns divided into 8 categories. In our approach, we consider 3 of 5

basic patterns, 2 out of 14 advanced patterns and 1 pattern of the remaining 6 categories in

order to illustrate our approach. They are described below.

3.1.3.1. Basic Control Flow Patterns

In this section patterns capturing elementary aspects of process control are discussed. The

patterns we consider are sequence, synchronization, and exclusive choice.

Pattern 1: Sequence (SB:SEQUENCE)

43

1: RetainAndCheckReceipts
IN:Receipts
OUT: GetApproval
Goal: RetainReceipts

2: PrepareAndSignWorksheet
IN: GetApproval
OUT: Worksheet
Goal: PrepareWorksheet

7: P_VerifyLimits
IN: ObteinedApproval
OUT:ApprovalLimit
Goal: VerifyLimits

8: VerifiyUniversityLimits
IN: ObteinedApproval
OUT:ApprovalLimit
Goal: VerifyLimits

6:VerifyExceedULimits
IN: ObteinedApproval
OUT:ApprovalLimit
Goal: VerifyLimits

sb:sequence

sb:sequence

sb:sequence

sb:iterator

13:ApprovalAndEvaluation
IN:Receipts
IN:PersonData
OUT: ReinbursementResults
Goal: ProcessReimbursement

math:max(reimbursement:FoundApprovedLimit)

sb:hasExpression
sb:hasExpression

contains:

(reimbursement:ReimburseByBankAccount)

sb:select/
sb:discriminator

sb:select/
sb:discriminator

for-each(reimbursement:NumPaymentInstallment,3)

sb:hasExpression

9: VerifyMissingReceipts
IN: VerifyReceipts
OUT: ApprovalLimits
Goal: CompletedWorksheet

16: ReimburseByPayPal
IN: Substantation
OUT: ApprovedReinbursement
Goal: ReimburseByPayPal

15: P_ApprovedTransaction
IN: Substantation
OUT: AprovedReinbursement
Goal: Reimburse

14: ReimburseByBankAccount
IN: Substantation
OUT: ApprovedReinbursement
Goal: Reimburse ByBankAccount

17: ReimburseByCreditCard
IN: Substantation
OUT: ApprovedReinbursement
Goal: ReimburseByCreditCard

sb:sequence

sb:discriminator/
sb:alternative

sb:select/
sb:discriminator

3: PrepareWorksheetWithReceipts
IN:Receipts
IN:PersonalData
OUT: Worksheet
Goal: PrepareWorksheet

4: AttachAndSubmitWorksheet
IN: Worksheet
OUT: NewWorksheet
Goal: ApproveWorksheet

5:ReceiveAndVerifyExpense
IN: NewWorksheet
OUT: ObtainsApproval
Goal: ApproveExpences

sb:sequence

sb:sequence

sb:sequence

10: SendWorksheetFinantialSystem
IN: CompleteWorksheet
OUT: FinalWorksheet
Goal: SendWorksheet

sb:sequence

11: ReviewAndVerifyWorksheet
IN: FinalWorksheet
OUT: ApprovedWorksheet
Goal: ReviewWorksheet

12: VerifyInnadequateSubstantiation
IN: ApprovedWorksheet
OUT: Substantiation
Goal: VerifySubstantiation

sb:sequence

sb:sequence

13: DenyTheReinbursement
IN: Substantiation
OUT: ReinbursementResults
Goal: ProcessedReimbursement

18: PrintReportAndScanImg
IN: ApprovedReimbursement
IN:ApprovedWorksheet
OUT: ReimbursementResults
Goal: ProcessedReimbursement

sb:sequence

sb:sequence

sb:synchronize

sb:select/
sb:discriminator

sb:synchronize

sb:sequence

FIGURA 3.4. A composition example for the travel reimbursement scenario: Ser-
vices are progressively published into our triplestore as indicated by the numbers.
The composite service (19) is built from bottom to top (backwards) when a user
request is made.

A sequence pattern models dependencies between services so that a service s2 cannot

start before service s1 finishes. An SB:SEQUENCE operator is inferred when the goals of

both services (s1 and s2) are different, and service (s1) generates an output, which can be

used as an input service (s2).

Figure 3.4 shows an example including nineteen services, which are progressively pub-

lished by the provider. The publication process requires service descriptions to be annotated

with SAWSDL expressions that are taken into account to produce SPARQL 1.1 Update sen-

tences. These sentences generate triples that are stored into a triplestore implemented in

44

Jena. In the example, the process begins right after service 1 (RetainAndCheckReceipts) is

published. At this point, no relationships are generated since there are no other services.

When service 2 (PrepareandSignWorksheet) is published a SB:SEQUENCE relationship is

generated between both services because they have different goals and RetainAndCheck-

Receipts’ output matches PrepareandSignWorksheet’s input.

Pattern 2: Exclusive Choice (SB:ALTERNATIVE)

Pattern 2 is applied to services with the same goal and output, however; in this case

the condition is applied to the goal and optionally to the input parameters. The condition

is evaluated to determine which services will be actually invoked and it can be known only

when the user issues a request. In our example, an SB:ALTERNATIVE relationship is created

between services 14 (ReimburseByBankAccount) and 15 (P ApprovedTransaction), since

the client requests to pay using a bank account (Reimburse goal), which impacts only ser-

vice 14. The other candidate services, 16 and 17, will be discarded because their goals

are different to the request (Figure 3.3 line 24). In summary, depending on the guard ex-

pression, some services may be selected, others may be ignored and new relationships may

be created. Expressions applied to services with the same goal and output that evaluate the

output results, will cause the inclusion of services related through SB:SELECT relationships.

However, expressions that evaluate only the goal (and optionally the input) will cause to

ignore those services whose evaluation is negative, such services will be related through an

sb:alternative relationships. If no guard expressions are applied, then the services will be

related through the sb:discriminator relationship.

Pattern 3: Synchronization (SB:SYNCHRONIZE)

This pattern is applied when the inputs of a service can be obtained from the outputs of

other services, and not a single service can provide all the inputs. In the example, when ser-

vice 18 (PrintReportAndScanimg) is published, this pattern is applied; it requires the exe-

cution of service 11 (ReviewAndVerifyWorksheet) and service 15 (P ApprovedTransaction)

45

in order to start its execution. Hence, an sb:synchronize relationship is created between

service 18 and 11, and service 18 and 15. In the latter case, predecessors (e.g. service 15)

are preferred to final services (e.g. services 14, 16 and 17).

3.1.3.2. Advanced Branching and Synchronization Patterns

Advanced patterns refer mainly to parallel invocation. These patterns refer to the various

ways that the split and join part of a parallel invocation can arise in business processes. We

considered the Structured Synchronizing Merge, and the Structured Discriminator patterns.

Pattern 4: Structured Discriminator (SB:DISCRIMINATOR)

In this pattern the thread of control is passed to next service when the first incoming

service finishes its execution. That is, only the output of the first service providing a re-

sponse is considered. When a service is published, the algorithm searches for services with

the same goal and output. If there exists more than one service that share the same goal

and output, a predecessor node is created (or reused if already exists) and the services are

related to the predecessor with an sb:discriminator relationships.

In Figure 3.4 when the provider publishes service 8 (VerifyUniversityLimits) and ser-

vice 6 (VerifyExceedULimits), pattern 4 is applied, since the goal and outputs of both ser-

vices are the same. Note that service 7 (P VerifyLimits) is the predecessor service created

by the system. The same case applies to services 14 (ReimburseByBankAccount), 16 (Re-

imburseByPayPal) y 17 (ReimburseByCreditCard), which cause the generation of service

predecessor 15 (P ApprovedTransaction). Notice that in this case, the goals of services 14

(ReimburseByBankAccount), 16 (ReimburseByPayPal), and 17 (ReimburseByCreditCard)

are specializations (inheritance) of the goal of service 15 (Reimburse) as defined in the re-

imbursement ontology. Predecessors are not executable services (empty services); they are

generated automatically using the grouped services’ goal (or the super goal in the case of

inheritance) as the predecessor name.

Pattern 5: Structured Synchronizing Merge (SB:SELECT)

46

Similarly to pattern 4, services with the same goal and output are grouped together

under a predecessor using an sb:select relationship. However, unlike pattern 4, a condi-

tion applied to the services’ output must be evaluated at runtime in order to choose the

proper response and such condition can be known only when the user provides a service

request. That is, this pattern is not pre-computed at publishing time, but calculated when

the consumer issues its request (see Section 5, Connect2 algorithm).

In Figure 3.3, when the consumer issues a request and specifies a guard expression

on the FundApprovalLimit output parameter (line 23), pattern 5 is applied to services 6

(VerifyExceedULimits) and 8 (VerifyUniversityLimits) since the goal of both services and

their output parameters are the same and the output parameter is FundApprovalLimit. Since

a predecessor was generated in the previous example, the system connects services 6 and 8

with the predecessor with a SB:SELECT relationship.

3.1.3.3. Iteration Patterns

The following pattern deals with capturing repetitive behaviour in a workflow. We only

considered the Structured loop pattern.

Pattern 6: Structured Loop (Pre-Test) (SB:ITERATOR)

The iteration pattern occurs when the user requests that a simple or composite service is

executed more than once. This need can be only determined from the user request, at com-

posing time, based on the for-each guard expression applied on some goal. In Figure 3.4,

the client specifies that the payment shall be performed in 3 installments only (Figure 3.3

line 25). Then, an sb:iterator relationship is applied to service 15 (P ApprovedTransaction).

3.2. COMPO-SWS

In order to test our approach we designed and built Compo-SWS, a Web service com-

poser that follows a two sides approach. First, it acknowledges the different roles of the

service publisher and the service consumer, and for the former case it takes advantage of

47

Web Services
Container

Composed
Service
Bundle

Semantic Composer Server

Web Services
Container

Service

URL

SA-WSDL
inputs

outputs
goal

guards

Client Request
(XML)

TRIPLESTORE

1

4

Ask for a service
based on client

request

Control
Flow

Analyzer

Service
Discovery

3

Discover
patterns

Save triples
generated .class

URL

SA-WSDL

5a Get
subgraph

Parser
Transformation

Service
Composer

2

Publish
Composed

Service
Bundle

Return
Existing
Service

Save
Description

JENA SAIL Layer : SPARQL Parser

5

Existing
Service

Composed
Service

COMPOSWS SERVICE INTERFACE

Publish
Service

Provider

CompoSWS

CompoSWS Provider

7b

6

7c

7a

FIGURA 3.5. Compo-SWS Architecture.

the service availability by pre-calculating all possible relationships, so that, at consuming

time, the chances of finding and identifying a composite service are higher.

In Figure 3.5, we summarize the major architectural components of Compo-SWS. The

dotted rectangle (A) represents the Web services container on the side of the service pub-

lisher. The publishing process (step 1) requires that the provider interact with Compo-SWS

interface in order to submit the service description. Such description must be annotated

with SA-WSDL expressions in order to be transformed, according to our ontology, into

triples (step 2).

The SAWSDL descriptions contain annotations related to the service goal and data

types. The service goal annotation is an attribute of the WSDL’s portType element; data

types (used as input and output) annotations refer to concepts defined in an external ap-

plication domain through a modelReference element. Figure 3.6(A) shows a SAWSDL

48

description for the PrepareWorksheetWithReceipts service. The service’s goal is to allow

an employee to request a process REIMBURSEMENT (#PrepareWorksheet), the service’s in-

put includes the receipts (#Receipts) and the employee personal data (#PersonalData); and

the service’s output is the worksheet (#Worksheet) registered by the service. The SAWSDL

description is transformed (step 2) into a SPARQL 1.1 Update expression that populates the

triplestore. Figure 6(B) presents the SPARQL query generated to populate the triplestore

for the SAWSDL description shown in Figure 3.6(A).

The generated triples are stored into a Jena’s TDB triplestore. We use Apache Jena,

which is a Java framework providing functionality such as RDF and N3 parsers, and a

SPARQL engine among other features. It also provides a programming environment for

RDF, RDF(S), OWL, and SPARQL and includes an inference engine based on rules and

triplestores. Once translated, the service description is analysed by the Control Flow Anal-

yser component, which is responsible of executing the Connect algorithm, which connects

the services together (step 3 in Figure 3.12) using the different relationships corresponding

to the control-flow patterns. These relationships become new triples that are stored in the

database.

The client request can be provided as an XML document (see Figure 3.2) describing the

expected goal and output, and providing some inputs and guards (Figure 3.5, step 4). The

FindService algorithm is performed by the Service Discovery component (step 5), which

executes the SPARQL queries on the triplestore. If a service is found, the user is informed

(step 6). If no service is found, the FindService algorithm is executed (step 5a) by the

Service Composer component, obtaining a subgraph of services.

The identified subgraph is returned to the user (step 7a) who is asked for approval.

If the composite service is approved, a SAWSDL description is created and stored in the

triplestore (step 7b). An executable file (Java .class) implementing the component services

invocation under the control-flow patterns is created. The bundle, including the executable

file and the service description, is deployed on the CompoSWS Provider Web services con-

tainer (step 7c) in order to expose the created service’s endpoint. The composite service’s

49

<?xml xmlns:reimbursement=“http://www.university.org/finance/reimburse.owl" >
<wsdl:definitions ... >

 <wsdl:types>

 <xsd:schema targetNamespace="http://localhost:8080/axis2/service/PrepareWorkseetWithReceipts/“>

 <xsd:element name="request"> <xsd:complexType> <xsd:sequence>

 <xsd:element sawsdl:modelReference=“reimbursement:Receipts”/>

 <xsd:element sawsdl:modelReference="reimbursement:PersonalData”/>

 </xsd:sequence> </xsd:complexType></xsd:element>

 <xsd:element name="response"> <xsd:complexType><xsd:sequence>

 <xsd:element sawsdl:modelReference=“reimbursement:Worksheet”/>

 </xsd:sequence></xsd:complexType></xsd:element>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="op1Response"> <wsdl:part name="op1Response" type="tns:response" /> </wsdl:message>

 <wsdl:message name="op1Request"> <wsdl:part name="op1Request" type="tns:request" /> </wsdl:message>

 <wsdl:portType name="PrepareWorkseetWithReceipts">

 <wsdl:operation name="op1">

 <wsdl:input message="tns: op1Request" >

 <wsdl:output message="tns: op1Response" >

 <sawsdl:attrExtensions sawsdl:modelReference=“reimbursement:PrepareWorksheet”/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding … >

 <wsdl:service … >

</wsdl:definitions>

INSERT DATA {

 sd:s1 a sd:Service ;

 sd:hasUrl 'http://localhost:8080/axis2/service/PrepareWorkseetWithReceipts?wsdl';

 sd:hasGoal reimbursement:PrepareWorksheet ;

 sd:hasOperation sd:operations1 .

 sd:operations1 a sd:Operation .

 sd:operations1 sd:hasIn sd:in_s11 .

 sd:in_s11 a sd:In ; sd:hasParameters reimbursement:Receipts .

 sd:operations1 sd:hasIn sd:in_s12 .

 sd:in_s12 a sd:In ; sd:hasParameters reimbursement:PersonalData .

 sd:operations1 sd:hasOut sd:out_s1 .

 sd:out_s1 a sd:Out ; sd:hasParameters reimbursement:Worksheet . }

A

B

FIGURA 3.6. A: SAWSDL description for the PrepareWorksheetWithReceipts
service; goal, input and output are annotated. B: The N3 query using SPARQL 1.1
Update generated form the SAWSDL.

URL is also supplied to the user (step 7d). Our algorithms have been fully implemented

in Java and SPARQL using the Jena’s SAWSDL4J API and the OWL API as well as the

Pellet reasoner as inference engine for logic-based matchmaking. In the following section,

the composition algorithms for both sides, the publisher and the consumer, are presented in

detail.

3.3. Composition Algorithms

In this section we present the algorithms that implement the described control-flow patterns,

from the publisher and consumer perspective. When a service is published in our platform

(Figure 3.5, steps 1 and 2), the system pre-calculates all the possible relationships between

the services (Figure 3.5, step 3) through the Connect algorithm (See subsection 5.1). The

resulting graph includes the service’s goals, input and output characteristics, at the semantic

level, including the presented control-flow patterns and rules.

50

When a consumer requests a service (Figure 3.5, step 4), the system looks for an ex-

isting service (Figure 3.5, step 5) executing the Connect2 algorithm. If no service can be

found, the system finds a graph fragment that satisfies all or most of the user’s requests

(Figure 3.5, step 5a). The latter task is accomplished by executing the FindService algo-

rithm (See subsection 5.2). If the consumer approves the proposed service, the graph is

used as the behaviour (control-flow) of a composite service, which is created, deployed,

and publisher later in our system.

3.3.1. Pre-computing the graph: the Connect algorithm

SPARQL is an RDF query language that operates over the data graph model underlying a

triplestore. It has some limitations for expressing queries where the length of the path of

the consulted graph model is variable, that is, every arc of a graph must be statically and

explicitly defined in a SPARQL query. Since we are modelling service dependencies as

graphs, our workflows have unpredictable lengths. The Connect algorithm addresses this

issue by breaking down the graph query in two steps. Figure 3.7 presents the algorithm

following Gooneratne (Gooneratne, Tari, & Harland, 2007).

In lines 2 to 12 (Figure 3.7), the algorithm uses a SPARQL query to look for the

occurrence of the select, discriminator and alternative patterns. That is, it looks for services

with a goal and output that is equal to the published service’s goal and output. For instance,

when service 3 is published, the algorithm searches for services with a #PrepareWorksheet

goal and #Worksheet output (see Figure 3.8 (Q1)).

The resulting graph is evaluated to determine if all the nodes that share the same goal

and output are associated to a predecessor through a SB:SELECT, SB:DISCRIMINATOR, or

SB:ALTERNATIVE relationships. Figure 3.8 (Q2) presents a SPARQL query looking for

a predecessor for a specific service (PrepareWorksheetWithReceipts). If the predecessor

exists but the relationships are missing, nodes and predecessor are connected. If there is

not an available predecessor, it is created and the relationships are established (Figure 3.8

(Q3)).

51

Connect (S) {

 // FIND DISCRIMINATOR PATTERNS

 // Search services witch the same goal and output (Q1)

 C ← FindNode(Goal(S), Output(S))

 for each S’ ∈ C do

// find the predecessor of S’

P ← Predecessor(S’) (Q2)

if P is Null then

 P ← CreatePredecesor(S’) (Q3)

 // connect the service S with P

ConnectDiscriminator(S, P);

 end

 // FIND SEQUENCE AND SYNCHRONIZE PATTERNS

 // Search services with different goal and same output of S

 C ← FindNode(Goal(S), Output(S)) (Q4)

 for each S’∈ C do

 if relationship(S’, S) = sequence then

 connectSequence(S, S’);

 else

 if relationship(S’, S) = synchronization then

 connectSynchronize(S, S’);

 end

 I ← FindInput(S)

 for each I’∈ I do

 C ← FindNode(Goal(S), I) (Q5)

 for each S’ ∈ C do

 if relationship(S’, S) = sequence then

 connectSequence(S, S’);

 else

 if relationship(S’, S) = synchronization then

 connectSynchronize(S, S’);

 end

 end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

FIGURA 3.7. Connect algorithm, step 1 (lines 1 to 12) and Connect algorithm,
step2 (lines 13 to 30).

In lines 13 to 32 (Figure 3.7), the sequence and synchronize patterns are discovered

using two queries (see Figure 3.8 (Q4 and Q5)). Q4 looks for services with a goal different

than the published service’s goal and with an input parameter that matches the published

service’s output parameter (Figure 3.8 (Q4)). Q5 looks for services with a goal different

than the published service’s goal and with an output parameter that matches at least one of

the published service’s input parameters (Figure 3.8 (Q5)).

3.3.2. Consuming services

When a consumer requests a service, the system attempts to find an atomic service pro-

viding the requested functionality. Otherwise, the system looks for a subgraph of services

of variable length that satisfies client’s needs. The subgraph is a set of interrelated ser-

vices containing all or most of the information provided by the user (input), called origin

52

INSERT DATA {

 sd:s3P a sd:Service ;

 sd:hasUrl

 'http://localhost:8080/ws/sP5?wsdl';

 sd:hasGoal reimbursement:VerifyLimits;

 sd:hasOperation sd:operation3 .

 sd:operation3 a sd:Operation .

 sd:operation3 sd:hasOut sd:out .

 sd:out a sd:Out ; sd:hasParameters

 reimbursement:Worksheet.} (Q3)

 SELECT ?x ?url ?goal ?op ?in ?inT ?out ?outT

 WHERE { ?x rdf:type sd:Service. ?x sd:hasUrl ?url.

 ?op rdf:type sd:Operation.

 ?x sd:hasOperation ?op.

 OPTIONAL { ?op sd:hasIn ?in .

 ?in sd:hasParameters ?inT.}

 ?op sd:hasOut ?out .

 ?out sd:hasParameters ?outT .

 ?x sd:hasGoal ?goal .

 ?x2 rdf:type sd:Service .

 ?x sd:discriminator ?x2.

 ?x2 sd:hasUrl

 "http://localhost:8080/ws/

 PrepareWorksheetWithReceipts?wsdl".}

(Q2)

 SELECT ?x ?url ?op ?in ?inT ?out

 (reimbursement:PrepareWorksheet AS ?goal)

 (reimbursement:Worksheet AS ?outT)

 WHERE{ ?x rdf:type sd:Service. ?x sd:hasUrl ?url.

 ?op rdf:type sd:Operation .

 ?x sd:hasOperation ?op .

 OPTIONAL { ?in sd:hasParameters ?inT .

 ?op sd:hasIn ?in.}

 ?out sd:hasParameters reimbursement:Worksheet.

 ?op sd:hasOut ?out .

 ?x sd:hasGoal reimbursement:PrepareWorksheet .

 FILTER NOT EXISTS { ?y rdf:type sd:Service.

 ?y sd:discriminator ?x.

 FILTER (?x = ?y)} }

(Q1)

 SELECT ?x ?url ?goal ?op ?in

 (reimbursement:ApprovalLimit AS ?inT) ?out ?outT

 WHERE{ ?x rdf:type sd:Service . ?x sd:hasUrl ?url .

 ?op rdf:type sd:Operation .

 ?x sd:hasOperation ?op .

 ?in sd:hasParameters reimbursement:ApprovalLimit.

 ?op sd:hasIn ?in.

 ?out sd:hasParameters ?outT. ?op sd:hasOut ?out.

 ?x sd:hasGoal ?goal.

 FILTER(?goal != reimbursement:VerifyLimits).

 FILTER NOT EXISTS { ?y rdf:type sd:Service.

 ?y sd:discriminator ?x.

 FILTER (?x = ?y)} }

(Q4)

SELECT ?x ?url ?goal ?op ?in ?inT

 ?out (reimbursement:ObtainedApproval AS ?outT)

WHERE{ ?x rdf:type sd:Service . ?x sd:hasUrl ?url .

 ?op rdf:type sd:Operation.

 ?x sd:hasOperation ?op.

 ?op sd:hasOut ?out.

 ?out sd:hasParametersreimbursement:ObtainedApproval.

 ?op sd:hasIn ?in.?in sd:hasParameters ?inT.

 ?x sd:hasGoal ?goal .

 FILTER(?goal != reimbursement:VerifyLimits) .

 FILTER NOT EXISTS { ?y rdf:type sd:Service.

 ?y sd:discriminator ?x.

 FILTER (?x = ?y)} }

(Q5)

FIGURA 3.8. Q1 query finds all the services with the same goal and output. Q2
query looks for a specific service predecessor. Q3 creates a predecessor in no one is
available. Q4 and Q5 look for services with a goal other than the published service’s
goal, in particular (Q4): Finds services with an input parameter that matches the
published service output and (Q5): Looks for services with an output parameter
that matches one of the published service’ input parameter.

nodes; and containing the expected goal and result (output) required by the user, called

target nodes. Notice that it may be necessary various services in order to cover all the user

request’s input parameters, and there may be some parameters that no service in the system

support. Our approach minimizes the number of services required to cover the user request,

and additional parameters shall be required to the user in an interactive fashion if needed,

but such feature is out of the scope of this chapter.

For instance, let’s consider the example shown in the business scenario previously pro-

posed (See Figure 3.1). The requested goal is to determine the Reimbursement Conditions

(ProcessedReimbursement goal, ReimbursementResults output) given certain receipts an

employee personal data (Receipts, and PersonalData input parameters respectively). The

user also prefers that the fund maximum approval limit is granted (FundAppovalLimit,

53

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Connect2 (S) {

 // FIND ALTERNATIVE AND SELECT PATTERNS

 // Search services witch the same goal and output (Q1)

 C ← FindNode(Goal(S), Output(S))

 for each S’ ∈ C do

// find the predecessor of S’

P ← Predecessor(S’) (Q2)

if P is Null then

 P ← CreatePredecesor(S’) (Q3)

 // connect the service S with P

ConnectSelectAlternative(S, P);

 end

 // FIND ITERATOR PATTERN

 ConnectIterator(S);

end

FIGURA 3.9. The Connect2 algorithm generates sb:select, sb:alternative and
sb:iterator relationships as defined by the corresponding control-flow patterns.

see line 23 in Figure 3.2), and the payment option is through a bank account (Reimburse-

ByBankAccount, see line 24 in Figure 3.2), and indicates that 3 (NumPaymentInstalment,

see line 25 in Figure 3.2) will be the maximum number of payment instalments. Let’s

consider as well that only services 1 to 19, as described in the example (see Figure 3.4),

have been published in our system. That is, services 1 to 19 have been related through

the SB:SEQUENCE, SB:ITERATOR, SB:SYNCHRONIZE, SB:ALTERNATIVE, SB:SELECT and

SB:DISCRIMINATOR control-flow patterns.

Inputs, outputs and goals are described through concepts in an ontology. Some re-

searches (Chabeb et al., 2010) exploit the ontology structure and the concept syntax in

order to determine a more relaxed similarity degree among concepts, which increases the

candidate’s set. In this chapter we consider only exact similarity among concepts since

our focus is the composition that takes place once candidates have been found. We plan

to include such hybrid approaches as future work. As discussed in Section 3.1.3, patterns

3 (SB:SELECT), 4 (SB:ALTERNATIVE), and 5 (SB:ITERATOR) can be only applied when

the user issues his or her request. That is, the Connect2 algorithm looks for services with

the same goal and output and creates the predecessors if necessary connecting the services

with SB:SELECT, SB:ALTERNATIVE or SB:ITERATOR patterns. The Connect2 algorithm is

shown in Figure 9.

54

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

FindService (S)

 G ← Goal(S)

 O ← Output(S)

 I ← Inputs(S)

 // Search atomic service with similar goal, inputs and output (QF1)

 S* ← FindNode(G, I, O)

 if S* not is Null then

 C <- FindNode(G, O) (QF2)

 for each S’ ∈ C do

 Q ← CreateAndEnqueue(S)

P = Ø

 while not is empty Q do

 S ← FirstInQueue(Q)

 if S not visited then

 Visited(S)

 C ← FindRequireServices(S)

 for each S’ ∈ C do

 R ← Next(C)

 if R not visited then

 Enqueue(R)

 If R has equal input I then

 P ← P + R

 S* ← S* + P

 return S*

 end

FIGURA 3.10. The FindService algorithm is responsible for finding a simple ser-
vice or discovers the subgraph between a target and origin nodes, generating a
subgraph that represents the composed service behaviour.

Once the Connect2 algorithm completes the graph, the FindService algorithm seeks

for an atomic service that matches the request’s input, output and goal (line 5, query QF1

in Figure 3.10). If such service cannot be found, the algorithm searches for the set of nodes

that contains the goal and the output defined in the user request that is the set of target

nodes, using a SPARQL 1.0 Query (line 8, query QF2 in Figure 3.10).

Figure 3.10, lines 11 to 22 is a backtracking algorithm that, starting from a target node

(first element of a queue Q), builds a graph until the set of origin nodes are reached. The

algorithm incrementally finds services leaving out those that cannot allow it to arrive to

a valid solution (i.e. includes only services containing at least one input that matches the

user request input I). The resulting graph includes the services related through the defined

control-flow relationships.

Considering the patterns of our study, there are only two ways that services can cre-

ate compositions that include more than one service, that is, either they form a sequence

55

(at least 2 services) or they are invoked in parallel (at least 2 services). These cases cor-

respond to the SB:SEQUENCE and SB:SYNCHRONIZE patterns. The other patterns repre-

sent services that are connected either to themselves (SB:ITERATOR) or to an abstract ser-

vice (predecessor) but have connections among them (SB:DISCRIMINATOR, SB:SELECT,

SB:ALTERNATIVE). Since the nodes in the resulting subgraph are interlinked with control-

flow relationships, it is possible to create a composed service that implements the corre-

sponding logic. In our case, we generate a Java Web Service class that implements the new

composed service. That is, the composite is a bundle containing a SAWSDL description

and the functional modules (i.e. Java classes) implementing the invocation of services ac-

cording to the workflow represented by the subgraph. The description contains the set of

inputs and the output defined by the user request; it is also stored in our triplestore. It will

be possible to generate a BPEL description supporting the proposed control-flow patterns,

however such alternative will be considered for future work.

SELECT ?url (QF1)

 WHERE{?x sd:hasOperation ?op. ?x sd:hasUrl ?url.

 ?in0 sd:hasParameters reimbursement:Receipts.

 ?op sd:hasIn ?in0.

 ?in1 sd:hasParameters reimbursement:PersonalData.

 ?op sd:hasIn ?in1. ?out sd:hasParameters

 reimbursement:ReimbursementResult.

 ?op sd:hasOut ?out.

 ?x sd:hasGoal reimbursement:ProcessedReimbursement. }

SELECT ?x ?url ?operation ?in ?inT ?out (QF2)

WHERE { ?x sd:hasOperation ?op .

 OPTIONAL { ?in sd:hasParameters ?inT .

 ?op sd:hasIn ?in .}

 ?out sd:hasParameters. ?x sd:hasUrl ?url.

 ?operation sd:hasOut ?out reimbursement:ReimbursementResult.

 ?x sd:hasGoal reimbursement:ProcessedReimbursement. }

FIGURA 3.11. Query (QF1) seeks for an atomic service that matches the request’s
input, output and goal. Query (QF2) searches for the set of nodes that contains the
goal and the output defined in the user request that is the set of target nodes.

In our example, the origin service is service 3 (PrepareWorksheetWithReceipts) be-

cause it contains two input parameters (Receipts and PersonalData) that match the user

request input. The subgraph contains related services that include the output parameter

(ReimbursementResult) and the goal (ProcessedReimbursement) as requested by the user.

56

In our example, the algorithm finds one possible solution starting from service 3 (Prepare-

WorksheetWithReceipts) to service 18 (PrintReportAndScaimg) passing through services 3,

4, 5, 6, 9, 10, 11, 12, 14 and 18. Hence, a new composite service ApprovalAndEvaluation

will be created, and the guard expressions (line 23 for services 6 and 8; 24 for service 14;

and 25 for service 15 in Figure 3.2) will be triggered and evaluated at run-time, depending

on the user preferences (at run-time), additional control-flow relationships could be created

for the composite graph.

3.4. Evaluation

In this section, we evaluate our approach theoretically, through an analysis of complexity,

and experimentally by measuring performance and scalability. Our analysis considers one

operation per service, although it can be extended to include more operations. We also

consider a single output parameter and zero or more input parameters.

3.4.1. Provider complexity: publishing a new service

Complexity is calculated considering V , the number of nodes in a graph (services); E, the

edges between the nodes (relationships); and k, the number of input parameters for each

node. As described before, when a new service is registered in the platform, the possible

relationships between services are calculated. The worst-case time complexity analysis

of the Connect() algorithm, connect(V,E, k), considers three phases, a) finding the nodes

matching the new service goals and outputs (line 4 to 13, Figure 3.5); b) finding the services

with a goal that differs from the new service goal, but has at least one input that matches

the output of the new service (line 17 to 25, Figure 3.7), and c) finding services with a goal

different than the new service but with an output that matches the new service’s inputs (line

27 to 36, Figure 3.7).

Lets consider M , the number of nodes representing services with the same goal as the

new service, and M ′ the number of services with different goal, let be V the total set of

nodes, such that V =M +M ′.

57

For the case of a) the worst-case time complexity analysis occurs when M = V , that

is all the nodes matches the new service goal, hence, the order of this step is calculated as

TConnect(V,E, k) = V , that is the process of creating a relationship between the new

service and the previously existing services. For the case of b), the worst-case scenario

occurs when the new service output matches all the previously stored services input, in this

case, the order is TConnect(V,E, k) = V . For the case of c), the worst-case scenario

occurs when given the new service’s k inputs, every V node output matches the new ser-

vice’s input, hence the order is TConnect(V,E, k) = V ∗ k. That is, for each input of the

new service, a relationship is established with all the existing nodes. Therefore in the worst

case, the algorithm has order TConnect(V,E, k) = V ∗ k time complexity. Hence, the

algorithm is lineal.

3.4.2. Consumer complexity: atomic or composed (on the fly) service

When consuming a service, the algorithm FindService() recursively finds a graph of ser-

vices providing the desired functionality. The worst-case time complexity for FindSer-

vice() is defined as TFindService(V,E, k) = 1, that is, it performs a query searching

for an atomic service that matches users criteria (Figure 3.9, QF1, line 3). If there is no

atomic service, the algorithm will perform also a single query searching for the services

matching the user’s request goal and output. In this case the time complexity is calcu-

lated as TFindService(V,E, k) the query result will include a list of nodes N < V , the

algorithm performs a depth-first recursive search. The end of the recursion occurs when

a node’s or a set of nodes’ inputs (k) matches the user requirements inputs. The worst

case time complexity of the depth-first search is E (all the edges) and, since this search

must be performed for all the results obtained in the previous query the time complexity is

TCreatePath(V,E, k) = E ∗N . Hence, the order of complexity for the consumer phase

is E ∗N time complexity, that is, O(N2) complexity.

58

3.4.3. Experimental evaluation

In order to measure the performance and scalability of our approach, we used a SAWSDL

test-bed collection semi-automatically derived from a SAWSDL public dataset (SAWSDL-

TC3 WSDL11). Descriptions were annotated with a goal concept since the collection con-

sidered only input/output concepts. The original collection consisted of 1080 Web services

covering different application domains: education, medical care, food, travel, communi-

cation, economy and weaponry. We only used 980 services for this test and discarded all

services with no outputs. We ran our experiments on an Intel Xeon E5620 with 2,4 Ghz

4Core and 3 GB RAM, running on Linux Ubuntu 11.04. We performed the tests 10 times

and we averaged all the results in order to obtain a reliable measure. We evaluated the

pre-computing response time when publishing a new service (the connect algorithm) and

the response time when requesting a service (service discovery and composition).

3.4.3.1. Performance analysis: Publishing time

We measured the time it takes to add a new service to the graph, varying the number of web

services from 1 to 980. In order to avoid additions with no effects (no relationships) we

added first the biggest set of unique nodes arranged in a deep relationship (i.e. sequence

or synchronize) conforming a composite. In our dataset, the largest possible composed

service corresponds to a set of four nodes connected with a sequence relationship (three

edges). We added these services first and the remainder nodes were added in random order,

one by one. The experiment was run 10 times and the results averaged.

In Figure 3.12 the response time obtained when publishing services is shown as a his-

togram of 10 intervals; tables a) and b) presents some descriptive analysis. The response

time is 0 for a total of 79% of the added services; this result varies from 69% to 94% ac-

cording to the applied pattern. The average response time is 7 milliseconds, again varying

according to the pattern, the maximum response time (average) obtained is 105 millisec-

onds corresponding to the addition of a service that causes the generation of various select

(or discriminator) relationships. The standard deviation is about 17 milliseconds, which is,

three times the average.

59

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

!" (!!!" $!!!!" $(!!!" %!!!!" %(!!!"

!
"
#$
%
&
"
'(
)"
*
+
"
,
-
.
'

/,0")&$#1'2,'32##21"-4,51'

621047)$8'
! "#" $#% &'' "#&&(

$ $#% %#& $% "#"$(

) %#& *#$)$ "#"))

% *#$ +#' !$ "#"!$

(+#' !$#" !("#"!(

' !$#" !%#% % "#""%

* !%#% !'#& !* "#"!*

& !'#& !+#$ ("#""(

+ !+#$ $!#' $ "#""$

!" $!#' $%#" $ "#""$

,-./012-345 677/012-345 80/93/4:; </=>?@A/1B0/93/4:;

C>D

!"#$"%&" '() *+) *, -, *,'

!"."&/ (0) -*) ' *+ **1

234&5363%7/85 (0) -*) ' *+ **1

!9%&:58%3;" 0+) () , ' <-

=8/7. <0>?) ,1>?) < *< *1?

@AB

C7//"5% 1D4 E1

FG"57H"I

@64B

J7KI

@64B

!/>I2"G>I

@64B

L"4M8%4"I/36"

FIGURA 3.12. Descriptive analysis of the performance results when publishing services.

FIGURA 3.13. Accumulated maximum response time obtained from the connect algorithm.

Figure 3.14 shows the time response results (y-axis) when publishing the Web services

(x- axis), in seconds. The figure shows the distribution of such values. As can be seen

in the figure, the time for pre-computing services composition increases with the number

of web services, this is explained since the more available services, the more comparisons

must be performed and probably the more relationships must be created. Notice also that

the select and discriminator patterns have the same behaviour; this is because both relations

are created at the same time. In addition, the alternative relationship is created only when

a consumer requests this relation, hence it was not included in our analysis.

60

FIGURA 3.14. Response time considering the sequence, select, discriminator, and
synchronize patterns.

3.4.3.2. Performance analysis: Consumer time

We measured the response time needed to process Web services requests. Following a

similar strategy, we published first a set of four connected services and then added the

remainder services randomly. We performed queries asking for services that we knew

included 1 (SS), 2 (2CS), 3 (3CS) and 4 (4CS) services, however, we did not stored the

composite services into the triplestore (so that, they need to be discovered every time a

query is performed). The experiment was ran 10 times and the results averaged. Figure

3.14 shows the mean execution time required for processing the queries; as we can observe

the response time increases as the number of Web services in the triplestore increases. This

is explained because we perform deep and breadth searches, so that, the more services are

published, the more likely they conform complex composites and hence the time spent by

the createPathComposedService algorithm increases.

FIGURA 3.15. Response time when searching for atomic and composite services
including 1 (SS), 2 (2CS), 3 (3CS) and 4 (4CS) services.

61

3.4.3.3. Performance evaluation and metrics

We compared our approach using eight public repositories from Web Service Challenge

2008 (Bansal et al., 2008), CompoIT (Rodrı́guez-Mier et al., 2012; Rodriguez Mier, Pedri-

naci, Lama, & Mucientes, 2015b) and WSD (Nayak & Bose, 2015), since the datasets

present the same size and perform a similar task. However, notice that service composi-

tion implemented in such approaches correspond to simple control-flow patterns, namely

sequence and alternative, requiring deep search instead of both deep and breadth search,

which is our case. In addition, the WSC challenges as well as WSD perform only the search

task, leaving out the composition step (and time); CompoIT and WSD considers search by

similarity whereas we are limited to exact matches which causes that they can obtain a

high number of composite services while we are limited to exact matches. Figure 3.16(a)

summarizes the results of these approaches in terms of the number of relevant services

(Serv), that represents, the number of discovered services used in the generated service

compositions, dynamic service composition or discovery time (Time(ms)) in milliseconds;

that is, the time required to process a user service request and perform the discovery of

services and composition if possible. Figure 3.16(b) presents a comparison of the top-8

approaches. The number of I/O parameters however is around 5700 (taking into account

semantic concepts) for WSC while we keep 7 I/O parameters.

The quality of each composition includes also the complexity of the composite ser-

vices. The depth of a composite service in the WSC dataset falls between 5 to 8, compre-

hending also 10 to 20 services, whereas the deepest composite service in our dataset in-

cludes 5 composition layers and 43 services. However, our composite services include the

sequences/synchronize pattern (depth) as well as the select/discriminator pattern (breadth).

For the latter case, the broadest composite service includes 21 services.

3.5. Conclusions

In this chapter we propose a technique for automatically deriving simple and complex

composite service behaviour from the component service’s characteristics, dynamically. In

62

!"
#!!"
$!!"
%!!"
&!!"

'!!!"
'#!!"
'$!!"
'%!!"
'&!!"
#!!!"

()
*
+)
,-
,"
.",
/-

,0
1"

()
*
+)
23
"."
-
,(
4!
$"

()
*
+)
23
"."
-
,(
4!
&"

5
6)
78
79
:7
"."
-
,(
4!
$"

3;
87
9<
=>
"."
-
,(
4!
?"

3;
87
9<
=>
"."
-
,(
4!
$"

@>
;;
:A
"."
-
,(
4!
$"

-
0
,"
."B
*
:C
<)
D"

!
"
#$
%
&
'"
()
*+

"
(,
+
#-
(

.%+$/0/1%&(2"34""&(/$0%/'5"#(
!"#$%&'()(*%+%,-+ .,-#/ 012-(3245 ,$6(34-#/76-89+'5

:$2"$,;,()(,!;,*<)0:= >?@A@((((((((=B(((((((((((((((((((((((4$6(C=7(D

:$2"$E0()(;,:F@C >?@C>((((((((>@>((((((((((((((((((((4$6(>@(7(D

:$2"$E0()(;,:F@A >?@G@((((((((>A@((((((((((((((((((((4$6(H@(7(A

I#$8189-8()(;,:F@C >?@C>((((((((H>G((((((((((((((((((((4$6(>@(7(D

04189'J%()(;,:F@D >?@G@((((((((HD@((((((((((((((((((((4$6(H@(7(A

04189'J%()(;,:F@C >?@C>((((((((=>H((((((((((((((((((((4$6(>@(7(D

K%44-6()(;,:F@C >?@C>((((((((AHA((((((((((((((((((((4$6(>@(7(D

;*,()(L2-+'$M AB=(((((((((((>?A@@(((((((((((((((((

I#$8189-8()(;,:F@D >?@G@((((((((>C?B=C(((((((((((((((4$6(H@(7(A

N-884O6/%81%()(;,:F@C >?@C>((((((((HA?@BA(((((((((((((((4$6(>@(7(D

K%44-6())(;,:F@D >?@G@((((((((=@@?H>G(((((((((((((4$6(H@(7(A

N-884O6/%81%()(;,:F@D >?@G@((((((((BHP?@BA(((((((((((((4$6(H@(7(A

FIGURA 3.16. A comparison, based on number of services composed or discov-
ered versus response time and the quality of the solution, among our approach
(CompoSWS) and the WSC challenge, CompoIT and WDS.

order to deal with the resulting complexity, we also propose a strategy for pre-computing

possible relationships resulting in a control-flow graph. Later, queries can identify graph

fragments as potential candidates for a complete or partial composite service, automatically

and dynamically. Our results provide good evidence of the potential of our approach. De-

spite the increasing response time at publishing-time, 75% of such responses took almost 0

seconds. Regarding the consumer-time, our observations testify that as the composites are

stored, the service response time also decreases. An important limitation of our approach

is the need for providers, and consumers to know beforehand the ontologies describing the

concepts associated with inputs, outputs and goals as well as properly writing the request

and annotating the services. Possible solutions for such challenges include the emergence

of popular ontologies in various niches such as FOAF describing social relationships, Good

Relations describing e-Commerce, among others.

In this chapter we used semantic Web technologies but we placed an emphasis on the

graph nature of the data model rather than the semantic aspects. SPARQL 1.1 presents

some limitations to perform queries such as those needed in our work but other NoSQL

databases and languages such as Neo4J, Cipher, and Gremlin may serve to provide an

alternative implementation with better performance. In addition, we exploited only concept

specialization in order to implement goal queries as described in the ontologies, however,

other techniques that range from logical (plugin, subsumed-match, subsumed-by-match)

to statistical (similarity by nearest neighbour, pearson, jacquard, etc.) or a hybrid, will

be applied as future work. In such cases, we expect an explosive growth in the number

63

of relationships between services and possible a degrading performance and scalability.

Finally, we just explored 6 control-flow patterns out of the numerous existing and ones in

order to prove the feasibility of our approach, this work should be extended to determine

the feasibility of automatically deriving the remaining patterns.

64

4. ANALYSIS AND IMPROVEMENT OF BUSINESS PROCESS MODELS USING

SPREADSHEETS

The analysis of a piece of software, e.g., an algorithm or a mobile app, is a highly

technical and daunting task typically performed by developers or testers who have the

necessary technical background to know what to analyze and how. What is important is that

the piece of software is analyzed by someone with the right skills, tools and methodologies.

Interestingly, when it comes to business processes (BPs) this is not common practice.

In fact, the BP analysts, who design the processes to be executed, often do not have the

necessary instruments to analyze their artifacts, i.e., the business process models.

In the context of Business Process Management Systems (BPMSs), the tasks in the

process models are typically implemented using web services (Weske, 2007a). The web

services can be either fully automated or it can provide a web application that allows human

operators to perform the tasks through suitable user interfaces. For this type of business

processes, which implementation requires involving developers, the analysis is, therefore,

done again by the developers, if at all. This in turn means that the concerns of the actual

owners of the artifacts, the BP analysts, may not be properly taken into account before

implementing and running the production processes. Identifying issues at this late stage of

the process lifecycle can be time-consuming and costly.

Let us consider, for example, the travel expense reimbursement process in Figure

4.1(a). Furthermore, let us assume that the process is currently in use in a service-based

BPM system and that some problems has been identified by the BP analyst of the com-

pany. More concretely, he has noticed that with the current resources assigned to operate

this process, only 70% of all the reimbursement requests are processed on time. The BP

analyst would like to change the process in order to improve its performance without the

need of having to increase the amount of resources assigned to the process. In addition to

this, he has also noticed that the amount of many reimbursement requests are far below the

operational costs of having to run the BP to process the request and that, in such cases, it

65

< "Travel expense reimbursement", 637, "2010−03−13 10:13:55", "2010−03−13 15:16:21",
[<“Review completeness of the form”, "Duration", "Duration of trip in days", "Number", 21>....],
[<"T1", 1800>, <"T2", 2400>, ...] >

< "Travel expense reimbursement", 638, "2010−03−13 10:28:01", "2010−03−13 14:59:43",
[<“Review completeness of the form”, "Duration", "Duration of trip in days", "Number", 5>....],
[<"T1", 1500>, <"T2", 2200>, ...] >

(a) The travel expense reimbursement process

(b) Process execution evidences stored in a log

< "Travel expense reimbursement", 637, "2010−03−13 10:13:55", "2010−03−13 15:16:21",
[<“Review completeness of the form”, "Duration", "Duration of trip in days", "Number", 21>....],
[<"T1", 1800>, <"T2", 2400>, ...] >

< "Travel expense reimbursement", 638, "2010−03−13 10:28:01", "2010−03−13 14:59:43",
[<“Review completeness of the form”, "Duration", "Duration of trip in days", "Number", 5>....],
[<"T1", 1500>, <"T2", 2200>, ...] >

(a) The travel expense reimbursement process

(b) Process execution evidences stored in a log

Travel Reimbursement

Tr
av

el
 e

xp
en

se
 r

ei
m

bu
rs

em
en

t p
ro

ce
ss

Em
pl

oy
ee

Start

T1: Fill travel
expense

reimbursement
form

T7: Fix issues in
the expense

report

Fix issues?

End

Info required in
the form:
employID,
expense amount,
duration, etc.

Ad
m

in
is

tr
at

io
n

st
af

f T2: Review
completeness of

the form

Is the form
completed
correctly?

T3: Reject request
and notify the

employee
about issues found

in the form

T4: Check
amount

expended

Is the amount
expended below the
accepted threshold?

T5: Verify
receipts

attached to the
form

Are the receipts
complete and correct?

Tr
ea

su
re

r

T6: Reimburse
the employee

End

No

Yes

Yes No

Ye
s

Ye
s

N
o

N
o

FIGURA 4.1. BPMN model of a travel expense reimbursement process and a pos-
sible execution log.

may just be better to immediately reimburse the employee without having to run the whole

process and incur in costs that are not justified by the requested amount.

66

Before investing the necessary effort for implementing and deploying changes in the

process, the BP analyst needs to find answers to key questions, such as how many reim-

bursement requests, per quarter of the year, fall within the 30% of requests that are not

processed on time, what should the value be for the amount requested under which the

request is immediately reimbursed, and whether all these requests can be reimbursed with-

out exceeding the maximum amount of 15K euros imposed by the accounting department.

These are business questions that require the possibility to try different process execution

scenarios that reproduce different execution outcomes. The BP analyst needs to be able

to specify the typical behavior per quarter of the year, check whether the new fast track

reimbursement will comply with the constraints above, analyze and visualize the results to

propose a fine tuning of the process, and communicate with the software developer working

on the implementation of the process.

These tasks can be done manually if the BP is simple and the number of issues to be

analyzed are small. Otherwise, analyzing a BP can turn into a daunting task that requires

automation, programming and IT skills. BP analysts usually do not have these skills, and,

in practice, BPs are therefore mostly analyzed by software developers that, by nature, focus

more on implementation than on business aspects.

If the BP analyst nonetheless wants to analyze a given process, he needs to commu-

nicate his analysis goals, requirements and configurations to a software developer, who is

able to implement and run the analysis on behalf of the analyst. Once analysis results are

ready, the developer needs to communicate them back to the BP analyst, who in turn may

ask for a re-run of the analysis under new settings, and so on. Understanding well a process

may thus require several iterations between the analyst and the developer. This is not opti-

mal and suffers from the same difficulties already extensively reported in the literature on

software engineering in general and requirements analysis in particular, such as ineffective

communication channels, inexpressive notations, and its reliant nature (Bhat et al., 2006;

Sutcliffe, 2012; Wiegers & Beatty, 2013). We propose therefore an approach that enables

the BP analyst to analyze BP models on his own, with less reliance on and intervention of

software developers.

67

We rely on spreadsheets to accomplish this. Created in 1979, spreadsheets are nowa-

days a common business tool and the most widely used end-user programming environment

(M. Burnett, Cook, & Rothermel, 2004). Scaffidi and colleagues had estimated that only

in the United States, by 2012, more than 55 million people would have been using spread-

sheets at the workplace, mainly for business purposes (Scaffidi, Shaw, & Myers, 2005).

Considering the ubiquity of electronic spreadsheets in today’s business landscape, these

tools represent an ideal environment to build powerful user-centric solutions, such as BP

analysis instruments that target BP analysts.

This chapter describes a spreadsheet-based approach for business process model anal-

ysis that:

• maps the problem of business process performance analysis and verification to

the problem of configuring and analyzing data in common spreadsheets;

• enables the generation of analysis spreadsheets from an extended business pro-

cess model editor for BPMN process models (Object Management Group (OMG),

2011);

• enables the BP analyst to define own metrics, assertions and analysis reports;

• automates the simulation of BP executions and generates process execution logs.

Two independent user studies demonstrate the viability of the approach, which was im-

plemented in a prototype tool for spreadsheet-based BP model analysis, and a detailed

qualitative analysis of the state of the art in BP model analysis highlights the benefits of

the tool.

Before outlining the details of the approach (Section 4.2), next we formalize the con-

text and problem statement of the work. In Sections 4.3–4.5, we then explain the design,

execution and analysis of BP models. In Section 4.6, we report on how we implemented our

prototype tool, which we assess in Section 4.7. We conclude the article with a discussion

of related works and our final considerations on the results achieved.

68

start end

AND XOR OR

Events

Tasks

Gateways

Sequence
flows

Notation

FIGURA 4.2. BPMN elements related to control-flow specification.

4.1. Preliminaries and background

4.1.1. Business processes

As illustrated in Figure 4.1(a), in practice, BPs are typically expressed through pro-

cess models. In this chapter, we represent processes using BPMN (Object Management

Group (OMG), 2011), a BP modeling notation widely used both in industry and academy.

The core elements of BPMN related to control-flow specification include events, tasks,

gateways and sequence flows (R. M. Dijkman, Dumas, & Ouyang, 2008) (see Figure 4.2).

Events can be used to signal the start (start event) and end (end event) of a process. Tasks

represent atomic activities to be performed as part of the process. Gateways are routing

constructs that determine the execution flow of the process. They can be one of AND gate-

way (for creating concurrent execution flows), XOR gateway (to select one of a number of

mutually exclusive flows), or OR gateway (to select any number of flows from the set of

all outgoing flows). Sequence flows are used to represent the ordering relationship between

any two elements (events, tasks and gateways) presented before. BPMN includes a richer

set of elements, but in this chapter we focus only on the ones presented here.

69

For notational convenience, we define a business process model as a tuple BP =

〈pid, start, end,N,E, P 〉, where pid is a unique identifier, start and end are the events

that represent the start and end of a process, N = T ∪G is the set of nodes of the process,

with T being the set of tasks and G being the set of gateways of the process, E ⊆ N ×N

is the set of edges that connect pairs of nodes, and P is the set of properties that store

business data produced and consumed during the execution of BP . A a task t ∈ T , t =

〈tid, tname〉 is an activity of the process, where tid is a unique identifier and tname is the

name of the task. A gateway g ∈ G, g = 〈gid, C, gtype〉 is a control flow node, where

gid is a unique identifier, C is the set of conditions that controls the gateway, and gtype ∈

{AND,XOR,OR} is the type of the gateway that derives from C. Each condition c ∈ C

is a tuple c = 〈cid, e, expr〉, with cid being a unique identifier, e ∈ E being an outgoing

edge of the gateway, and expr being a Boolean expression over process properties in P

specifying the condition to follow the outgoing edge e. Process properties are of type p =

〈nid, pname, pdesc, datatype, pvalue〉, with nid being the identifier of the node producing

a value for p, pname being the name, pdesc being the description, datatype being the data

type, and pvalue being the value of the property (pvalue may be empty at the design time).

The BP model we introduce here is mapped to BPMN as follows. start and end in our

model corresponds to the start event and end event in BPMN. Tasks T and gateways G

map to the gateways and tasks in BPMN, respectively. Furthermore, the element gtype ∈

{AND,XOR,OR} in a gateway g ∈ G determines whether g refers to anAND,XOR or

OR gateway in BPMN. EdgesE in our model corresponds to the sequence flows in BPMN.

Finally, the conditions C and properties P in our model are represented in BPMN through

attributes associated to gateways and the process itself, respectively. It is worth noticing

that the formalization and mapping introduced here are simple and straightforward, and

that they are tailored to the notation needs of this chapter. The interested reader can find

a more detailed treatment of the formal semantics and analysis of BPMN process models

(e.g., using Petri Nets) in (R. M. Dijkman et al., 2008; R. M. Dijkman, Dumas, & Ouyang,

2007).

70

The execution of a BP is a business process instance (or process instance for short).

A business process instance bpi is a concrete case of operation of BP and can be rep-

resented as a tuple 〈pid, piid, startTs, endTs, PI, TD〉, where pid identifies the process

model BP , piid identifies the process instance, startTs and endTs are the start and end

timestamps of the execution, PI is the set of process properties produced by the execution

of BP , and TD is a set of task durations td = 〈tid, d〉, with tid being the task identifier

and d being the execution time of the task.

Process instances are typically tracked in the form of a process execution log (van der

Aalst, 2011) for later inspection and analysis. We define a process execution log as a set of

process instances L = {bpij}. For example, Figure 4.1(b) shows a possible log of the travel

expense reimbursement process with two process instances. This representation differs

from the more common, event-based representation of process logs, in that it proposes an

already aggregated view on execution events. As we will see later, this choice helps us to

simplify the presentation of process execution data to the BP analyst.

4.1.2. Business process analysis

The term business process analysis has a broad meaning and includes many different

types of analyses such as simulation, diagnosis, verification and performance analysis (Van

Der Aalst, Ter Hofstede, & Weske, 2003). In this chapter, we focus our analysis on the

combination of the last two. More specifically, we take the dynamic perspective of veri-

fication and performance analysis, i.e., we run our analysis based on the execution of the

business process models.

From this dynamic perspective, verifying a business process model means analyzing

whether or not the behavior of its instances matches a given expected behavior. For ex-

ample, in the scenario described in the introduction, the BP analyst may want to verify

whether, under different execution conditions, the sum of the amounts for the reimburse-

ment processed using the fast track option is kept under 15K euros in each quarter of the

year. In order to perform this verification, the BP analyst needs to be able to (i) specify the

expected behavior of the business process, (ii) provide the inputs for the process, run it, and

71

track its observed behavior, and (iii) analyze the expected and observed behavior in order

to verify if they match. We call the joint realization of these tasks business process ver-

ification and performance analysis. For conciseness, in the rest of the chapter we refer

to this simply as BP analysis and explicitly refer to verification and performance analysis

when needed.

The expected behavior of the process is partly specified by the process model BP .

However, the process model provides only static, structural information about the process;

if instead the object of the verification are the dynamics and data produced by the execution

of the process as we discuss here, additional constructs are necessary. This is where the per-

formance analysis part comes into play. More concretely, we use metrics, i.e., measures

that capture the performance of a process starting from process execution evidences. For-

mally, we can define a metric as a function m(L) = val, where L is the process execution

log and val ∈ R is the metric’s value. Although this definition allows for the computation

of cross-process metrics, i.e., of metrics computed over execution evidence from different

process models, for simplicity in this article we limit our attention to single-process metrics

only.

The availability of metrics further allows one to express expected behavior in terms of

conditions over metric values. Such conditions can be expressed as predicates, which

are Boolean statements over a metric m. Formally, we can represent a predicate as a

function pred(L,m) = bool, where L is a process execution log, m is a metric and

bool ∈ {true, false} holds the evaluation of the predicate. Predicates can be combined

using standard logical operators, such as AND, OR and NOT , to build assertions. An

assertion can be defined as a function a(L, Pred) = bool, where L is a process execution

log, Pred is a set of predicates and bool is as defined before. Assertions allow one to write

arbitrarily complex combination of predicates to specify and check the expected behavior

of a process.

In order to assess the behavior of a process, we need to run the process and record its

observed behavior. For already implemented processes or services, this behavior can be

72

extracted from the log L of the process. For processes or services that have not yet been

implemented, we need to find the way of generating L by exercising the process model

BP . We will get back to this issue in Section 4.1.3

The analysis of BP now requires evaluating the assertions and metrics over the col-

lected execution evidenceL and visualizing the respective outcomes. Doing so requires set-

ting up a suitable analysis report. We define a analysis report as a function r(L,M,A) =

V , where L is a process execution log, M is a set of metrics, A is a set of assertions and

V is a set of tables and charts that summarize the analysis outcomes. For example, v ∈ V

can be a pie chart that shows the percentages of true and false evaluations of an assertion

a ∈ A over the set of process instances in L. Such reports serve not only as a means to

convey the outcomes to the analyst but also as a communication tool between the analyst

and the software developer implementing the process.

4.1.3. Business process simulation

One way to obtain the event log L when it is not possible or convenient to run the

real process to generate it is to use business process simulation (van der Aalst, Nakatumba,

Rozinat, & Russell, 2008), which mimics the execution of process instances, given a busi-

ness process model BP and a suitable configuration. We propose to use this approach to

obtain the process execution log L.

We define a BP simulator as a functionBPsim(BP, SS) = L, whereBP is a process

model, SS represents the settings used to simulate the BP, and L is the process execution

log generated by the simulation. BP simulation thus enables the BP analyst to mimic

different process execution scenarios and obtain corresponding execution evidences.

4.1.4. Problem statement

The problem we aim to solve in this article is devising an approach that enables the BP

analyst to verify and analyze the performance of business processes without the need for

software development skills. The first goal is to enable the BP analyst to write own met-

rics M and assertions A, to obtain a process execution log L, and to design own analysis

73

reports r, so as to be able to autonomously analyze the behavior of a business process BP .

The second goal is to do so in a fashion that allows the BP analyst to easily discuss his

findings with the software developer in charge of implementing processes. Our hypothesis

is that mapping the BP analysis problem as defined in this article to the design of a spread-

sheet calculation allows us to achieve both goals at the same time, in particular, given that

spreadsheets are omnipresent in business and well-known by average BP analysts (Deloitte,

2009).

4.2. Spreadsheet-based business process analysis

We specifically consider the case of service-based BPs, where activities are executed

by web services; human actors are hidden behind web service interfaces. Obtaining a log

file for this type of BPs requires either invoking real web services (if such are available and

do not have any persistent side effects) or simulating web service invocations (if the web

services do have side effects or are not available at all). We assume that the BP analyst

is capable of designing coarse BP models using the Business Process Modeling Notation

(BPMN) and that he is familiar with spreadsheet tools like Microsoft Excel or Google

Spreadsheets. We also assume that there is a software developer implementing the process

and its web services, starting from the coarse BP models.

4.2.1. Requirements

Given these assumptions and the above problem statement, we identify a set of func-

tional requirements. We group them into categories that correspond to the BP analsys

phases (Section 4.1) they are related to:

Specification of expected behavior:

• R1: The solution shall enable the design of the BP model BP , along with its

process properties P .

• R2: The solution shall enable the writing of metrics M and assertions A over

the process execution log L.

74

• R3: The solution shall enable the storage of metrics and assertions for later

reuse.

Obtainment of observed behavior:

• R4: The solution shall enable the configuration and simulation of BP to obtain

a corresponding log L.

• R5: The solution shall enable the use of existing implementations of web ser-

vices used by BP that do not produce unwanted side effects.

• R6: The solution shall enable the configuration and simulation of web services

used by BP that do have unwanted side effects or that do not exist yet.

• R7: The solution shall enable the storage of the generated log L.

Analysis and reporting:

• R8: The solution shall enable the creation of analysis reports r based on BP ,

M , A and L.

• R9: The solution shall enable the storage of reports for future reuse, e.g., for

re-running the analysis under different conditions.

• R10: The solution shall enable the sharing of BP analysis configurations and

results with other stakeholders (e.g., with software developers).

The implicit, non-functional requirement is that the solution’s tools that target the BP

analyst shall not need any software development skills.

4.2.2. Approach

The overall approach proposed in this chapter takes into account the fact that there are

tasks that require specific technical skills that BP analysts may not have and that may pre-

vent them from being able to analyze BPs. For example, the detailed design of executable

process models in BPMN and the configuration of the more technical aspects is usually

out of the reach of typical BP analysts. The design of executable BP models may in fact

require the developer to use a larger set of modeling constructs than introduced in Section

75

FIGURA 4.3. Spreadsheet-based approach to BP analysis.

4.1.1 (e.g., events or messages); the analyst only needs to master the subset of constructs

introduced in Section 4.1.1 to be able to run his analysis. We therefore propose to separate

the tasks related to (i) the design and configuration of executable process models, and (ii)

the analysis of BPs. Task (i) is assigned to software developers, while task (ii) to BP ana-

lysts (see Figure 4.3). This separation of duties is not only practical and realistic, but it also

leverage on the skills and interests of each role.

In order to approach the requirements discussed in Section 4.2.1, we leverage on

BPMN and the spreadsheet paradigm to provide an approach for the analysis of BPs.

BPMN is used to model executable BPs. The spreadsheet is used as interface toward

the BP analyst and as communication instrument between the analyst and the developer.

Simulation is used to safely generate behavioral information for those web services of the

service-based BP that may have persistent side effects in the system or do not yet have a

readily usable implementation. Figure 4.3 illustrates our approach.

76

Starting from a draft of BP (step 1), the software developer refines and implements

the process (2) using an extended BPMN editor (R1). This produces BP , including the set

of process properties P that can be used for analysis. Given these ingredients, the BPMN

editor generates a so-called configuration spreadsheet (3), which contains the process prop-

erties and a set of simulation parameters. Simulation parameters are used to configure the

dynamics of the simulation (R4); they include parameters such as the number of process

instances to be simulated, the rate at which instances are to be generated, and the execution

time of simulated web services (R6). Process properties P are used to configure business

data for different process execution scenarios; they are associated to the nodes of BP and

may refer to both real or simulated web services (R5, R6). Activities of BP that refer

to real services are marked as such and pre-configured by the developer in the extended

BPMN editor; the BP analyst can configure the behavior only of simulated services. He

does so simply by editing the spreadsheet and defining values for the simulation parame-

ters and process properties (4). Once the simulation is configured, the BP simulator reads

the configuration and BP and runs the simulation, mimicking the web service behaviors

defined by the BP analyst and invoking existing web services. As a result, it generates (5) a

process execution log L that contains the observed behavior, which is again stored as a pro-

cess execution spreadsheet (R7). The actual verification and performance analysis, is again

done by the BP analyst using an analysis spreadsheet (6). In this spreadsheet, the analyst

defines the metrics M and assertions A over the generated log L as standard spreadsheet

functions (R2). The spreadsheet automatically performs the necessary calculations, and

allows the BP analyst to define charts or tables for the visualization of results (V), turning

the analysis spreadsheet into a report r that can easily be saved (R3, R8, R9) and shared

with the developer (R10) (7).

In the following, we detail how processes are modeled, how the simulation is per-

formed, and how predicates, assertions and analysis reports are calculated.

77

4.3. Business process modeling and simulation configuration

Setting up a BP analysis requires a suitable design of BP and the configuration of the

simulation to be performed. The definition of the process properties P by the developer and

their configuration by the BP analyst play an important role in setting up the BP analysis.

The relevance of process properties its twofold: First, gateway conditions that determine

the control flow of a process are defined over process properties. That is, they determine the

runtime scenarios of process instances. Second, they are the starting point for the design of

metrics and, hence, for the actual design of the verification and performance analysis. The

simulation parameters allow the BP analyst to define the time behavior of simulated tasks

and the number of task instances to be generated.

The developer models BPs using BPMN (Object Management Group (OMG), 2011),

which is a standard process modeling notation targeting both BP analysts and software

developers. The BPMN constructs presented in Section 4.1.1 allow him to associate pro-

cess properties to tasks. For example, Figure 4.4(a) shows the definition of three process

properties for the task Fill travel expense reimbursement form, namely, ExpenseAmount,

Duration and EmployID. Each property requires a name, description and datatype,

separated by commas, matching the model p = 〈nid, pname, pdesc, datatype, pvalue〉

introduced before. The value for nid is automatically derived by selecting a task in the pro-

cess editor; pvalues are defined by the BP analyst using a configuration spreadsheet CS.

In the same vein, by using standard BPMN constructs the developer can define conditional

rules to control the execution of the process. Conditions are defined over process proper-

ties. Figure 4.5(a) shows the conditions that regulate the execution flow over the outgoing

arcs of the highlighted decision point. Each condition is set by the developer, who defines a

Boolean expression, e.g., ExpenseAmount ≤ ExpenseThreshold, over each gateway’s

outgoing arc.

A spreadsheet is a bi-dimensional array s where each element s(i, j), with i repre-

senting the column index and j the row index, represents a cell. A cell s(i, j) can contain

one of (i) a value that consists of an alfa-numeric datum, such as in s(i, j)← “AJ487”, (ii)

78

A B C D
1 Process Name:
2 Description:
3
4
5 Property Name Description Accepted Value Value
6 NbrProcessInstances The number of times the process ... Number 100
7 ArrivalRate The rate in ms. in which the inst ... Number 200
8 ExpenseAmount Amount spent in the trip Number RANDBETWEEN(800, 1400)
9 Duration Duration of the trip in days Number RANDBETWEEN(1,21)

10 EmployID ID. of employee Text AJ938
11 ExpenseThreshold The company's threshold to appr ... Number 1.200,00
12 Fill travel expense form Exec. time The execution time of the task ... Number 400
13 Review completeness of the form Exec. time The execution time of the task ... Number 100
14 Reject request and nofiy employee Exec. time The execution time of the task ... Number 150
15 -
16 -
17 -

Travel expense reimbursement
Business process for the travel expense reimbursement

Please, fill in below just the column VALUE to set the variables needed for the process emulation

(a) Business process model editor

Definition of process properties

(b) Configuration spreadsheet CS

Values for process and
simulation properties

Simulation
parameters

Process properties
are added to the

spreadsheet

Data flow

Editor for Data inputs property

Id Name Is.. I..
1 ExpenseAmount,"Amount spent in the trip",number
2 Duration,"Duration of the trip in days",number
3 EmployID,"ID. of employee",text

Add Remove

OkCancel

FIGURA 4.4. The instruments used for BP modeling and simulation configuration.

a reference to a different cell, such as in s(i, j)← s(p, k), or (iii) a formula that combines

functions, values and references to other cells such as in s(i, j)← sum(13, s(p, k)).

The configuration spreadsheet CS imports the process properties P of BP for their

configuration. To do so, we can follow the simple rule of mapping each property pj ∈ P to

one spreadsheet row, like in CS(1, j)← pj.pname, CS(2, j)← pj.pdesc and CS(3, j)←

pj.datatype. Figure 4.4(b) shows how the properties are represented in the spreadsheet.

The spreadsheet’s cells are indexed using letters for columns and numbers for rows. For ex-

ample, the process propertyExpenseAmount associated to the BP model is mapped to row

8 in the spreadsheet using the mapping CS(A,8) ← "ExpenseAmount", CS(B,8)←

"Amount spent in the trip", and CS(C,8)← "Number". The last cell (CS(D,8))

is used to set the values of the property. The rest of the properties are mapped following

the same mapping logic.

79

A B C D
1 Process Name:
2 Description:
3
4
5 Property Name Description Accepted Value Value
6 NbrProcessInstances The number of times the process ... Number 100
7 ArrivalRate The rate in ms. in which the inst ... Number 200
8 ExpenseAmount Amount spent in the trip Number RANDBETWEEN(800, 1400)
9 Duration Duration of the trip in days Number RANDBETWEEN(1,21)

10 EmployID ID. of employee Text AJ938
11 ExpenseThreshold The company's threshold to appr ... Number 1.200,00
12 Fill travel expense form Exec. time The execution time of the task ... Number 400
13 Review completeness of the form Exec. time The execution time of the task ... Number 100
14 Reject request and nofiy employee Exec. time The execution time of the task ... Number 150
15 -
16 -
17 -

Travel expense reimbursement
Business process for the travel expense reimbursement

Please, fill in below just the column VALUE to set the variables needed for the process emulation

(a) Configuration of gateway conditions

Definition of arc conditions

(b) Configuration of properties associated to gateway conditions

Values for process and
simulation properties

Modelling
alternative

paths

ExpenseAmount >
ExpenseThreshold

ExpenseAmount <=
ExpenseThreshold

FIGURA 4.5. Modelling and configuring gateway nodes.

To define values for properties, the BP analyst can use a constant value, as in the

cell CS(D,10), or he can choose to write a formula that generates values for the cell. For

example, the cell CS(D,8) uses the function RANDBETWEEN(800, 1400) to compute

random values between 800 to 1400. By assigning non-constant values to the properties

involved in the conditional expressions of gateways, the BP analyst can model the execution

of alternative paths. As Figure 4.5(b) illustrates, the random function RANDBETWEEN,

used to define the values of the property ExpenseAmount, is what models the conditional

execution of either the Yes or No-labeled outgoing arcs of the gateway highlighted in Figure

4.5(a). The values obtained from these formulas are computed for each process instance at

BP simulation time.

Simulation parameters are configured similarly to process properties. The parameters

we consider are three: (i) the number of process instances to be simulated, (ii) the arrival

80

rate for process instances, and (iii) the task duration for each task t ∈ T in the process

model BP . These properties do not need to be explicitly defined by the developer or BP

analyst. They are added automatically to the spreadsheet at its generation time. Figure

4.5(b) shows that rows 6 and 7 are filled with the parameters NbrProcessInstances and

ArrivalRate, respectively. From row 12 on, rows are filled with parameters that define

the duration of the tasks. Values for these parameters are defined like values for process

properties.

Basic nondeterministic human-behaviors, such as task completion time, can be mod-

eled directly by the BP analyst on the spreadsheet. He can set, for example, a fixed or a

normally distributed task completion time. Modern spreadsheet software offers a vast col-

lection of built-in mathematical and statistical functions that enable BP analysts to model

the dynamics of human-based tasks by approximating it via mathematical or statistical for-

mulas. Predefined function can be employed also to define process properties, conditional

statements and simulation parameters of almost any complexity. If more complex human

interventions are required the software developer needs to implement additional pieces of

software, e.g., a text recognition algorithm.

The results of the business process modeling and analysis design are a business process

model BP and a configuration spreadsheet CS that are consumed by the BP simulator.

Our approach supports only the BPMN constructs introduced in Section 4.1.1. Tasks of

type service, exclusive, parallel and inclusive gateways and, sequence flows are supported,

while events of types different from start and end are not yet considered in this work.

4.4. Business process simulation

The BP simulator is in charge of simulating the execution of BP based on the configu-

rations provided in CS, thereby producing a process execution log. Refining our definition

of Section 4.1, the BP simulator can be seen as BPsim(BP,CS) = ES, where BP is

the process model, CS is the configuration spreadsheet and ES is the resulting process

execution spreadsheet (the log in spreadsheet format).

81

Values for process properties p Values for task durations td

FIGURA 4.6. Process execution spreadsheet ES containing logged process pro-
gression information.

The process execution spreadsheet ES is a spreadsheet that holds process execution

data that results from the simulation of BP . Each tuple in ES represents a business pro-

cess instance bpi, and each cell within the tuple stores the runtime values of the elements

of bpi as defined in Section 4.1.1. The idea of using this representation, as opposed to an

event-based representation, is to keep the querying of business process instances simple

and intuitive for the BP analyst and to avoid the need for writing complex event aggre-

gation logics to reconstruct process instances. Thus, to store a business process instance

bpij in ES, where the associated BP has a number of k properties and l tasks, we map

the elements of bpij to ES as ES(1, j) ← bpij.piid, ES(2, j) ← bpij.P [1].value, ...,

ES(k+1, j)← bpij.P [k].value, ES(k+2, j)← bpij.TD[1].dur, ..., ES(k+ l+2, j)←

bpij.TD[l].dur. In other terms, we store the piid in the first column, followed by all the

process properties of BP and by the durations of the tasks participating in the BP.

82

Chart for visualizing process
execution data

=DSUM(database, field, criteria)
Metric formula :

(a) Metrics spreadsheet MS

='Metrics MS'!B2 > 15.000

Assertion formula:

(b) Assertions spreadsheet AS

FIGURA 4.7. Designing analysis reports: spreadsheets for defining (a) metrics m
and (b) assertions a.

Figure 4.6 shows an example of how ES looks like for our travel expense reimburse-

ment process. Using letters to index columns, we have that row 8 holds the process instance

bpi439. The mapping is done as follows: piid is mapped to the first column ES(A, 8)←

439, then, we have the mapping for the process properties ExpenseAmount, Duration,

EmployID andExpenseThreshold as ES(B, 8)← 1.319, ES(C, 8)← 6, ES(D,

8) ← "AJ938" and ES(E, 8) ← 600, respectively. Finally, we have the task du-

rations, of which we show in Figure 4.6 only the one corresponding to the task Fill travel

expense reimbursement form as ES(F, 8) ← 550.

83

4.5. Analysis and Visualization of Results

Recall the definition of metrics as a function m(L) = val, where L is the process

execution log and val ∈ R is the metric’s value. Within a spreadsheet, m corresponds

to a formula that can be specified using the standard spreadsheet functions provided by

the adopted spreadsheet tool, L corresponds to the process execution log ES, and val

corresponds to the output produced by the spreadsheet formula. Figure 4.7(a) shows the

metrics spreadsheet MS we use for computing metrics.

In this example, if we consider Google Spreadsheets1 as our spreadsheet tool, the BP

analyst computes the metric Sum of expense amounts (first 30% of instances) using a combi-

nation of the spreadsheet functions SORT(range, sortColumn, isAscending,

sortColumn2,isAscending2) and

DSUM(database, field, criteria). The function SORT(...) sorts the pro-

cess instances in ascending order based on the expense amount. The function DSUM(...)

sums the amount requested for first 30% number of instances that appear in the sorted list.

Due to the lack of space to fully explain the use of the aforementioned spreadsheet func-

tions, we put in Figure 4.7(a) only the reference to the formula used to compute the sum.

An assertion was defined as a function a(L, Pred) = bool, where L is the process

execution log, Pred is a set of predicates and bool ∈ {true, false}. In turn, a predicate

is a function pred(L,m) = bool, where L, m and bool are as defined before. In order to

define assertions in a spreadsheet, we use the standard logical operators provided by spread-

sheet tools. Figure 4.7(b) shows an example of an assertions spreadsheet AS that can be

used to compute assertions. For instance, the spreadsheet formula ‘Metrics MS’!B2

> 15.000 checks whether or not the sum of expenses for the first 30% of the instances

exceeds the maximum amount allocated for the fast track reimbursement. This assertion

is composed of a single predicate that compares the metric Sum of expense amounts (first

1http://docs.google.com/spreadsheet/

84

30% of instances) (cell MS(B, 2)) with the maximum amount allowed (i.e., 15K eu-

ros). While this is a simple assertion, the BP analyst can construct fairly complex ones by

combining logical operators (such as AND, OR and NOT) and predicates.

Also the definition of analysis reports relies on the built-in data visualization tools

(charts and tables) provided by the spreadsheet. Recall that reports are of the form r(L,M,A) =

V , with L being the process execution log andM andA being the sets of metrics and asser-

tions, respectively. V are the visualization widgets (e.g., charts or tables) used to construct

the report. Charts and tables conveniently summarize the results obtained from the com-

putation of metrics and assertions. For example, Figure 4.7(a) uses a simple bar chart that

plots an histogram of the expense amounts requested. This enables the visual analysis of its

distribution. The dataset for this chart was prepared using metrics computed with standard

spreadsheet formulas (the details are skipped in this article). The exact design of the report

is up to the BP analyst, who knows best how to design the report so as to most effectively

communicate his findings to the developer.

Thus, using metrics, assertions and charts, operationalized with the help of the built-in

functions of the spreadsheet tool, the BP can analyze the outcomes of the simulations gen-

erated by different configuration settings that reproduce the various execution scenarios in

study. Back to our reimbursement process, we can see in Figure 4.7 that under the config-

uration settings of the simulation parameters, the BP analyst can learn that reimbursing all

30% of the of lowest request amounts is not possible (the total sum of amounts exceeds the

budget), and that, for example, either the target percentage should be lowered, the budget

for the fast track reimbursement option should be incremented, or the company should still

tolerate a delay in a (fewer) number of reimbursement requests.

4.6. Implementation

Figure 4.8 illustrates the functional architecture of the prototype of our solution. On

the client side, we have the process model editor used to design BPs and the spreadsheet

tool used to work with the spreadsheets CS, ES, MS and AS. On the server side, we have

85

Semantic Composer Server

Web Services
Container

Service inputs/output
goal

XML Request

TRIPLESTORE .

1

4

Control Flow
Analyzer

Service
Discovery

3 5a

Parser
Transformation

Service
Composer

2

SPARQL Parser

5

COMPOSWS SERVICE INTERFACE

Provider

Compo-SWS

6 7c

7a

FIGURA 4.8. Architecture of the proposed solution.

all the components that are in charge of configuring the environment for the simulation

and analysis of BPs. When a process model BP is ready for simulation, it is sent to

the simulation server, which is in charge of managing the requests for BP simulations.

This request is forwarded to the simulation configurator, which takes the model BP and

performs three tasks: First, it creates the mock services that mimic the tasks in BP at

simulation time and saves them in the service repository. Then, it stores BP into the BP

model repository for future use. Finally, it requests the spreadsheet manager to create the

templates for the spreadsheets CS, ES, MS andAS, which are stored into the spreadsheet

repository for reuse in the following phases.

Back to the client side, the BP analyst can use the spreadsheet tool to configure CS

and send it to the simulation server for the simulation of BP . The simulation server, in

turn, forwards BP and CS to the simulation manager, which is in charge of managing

the deployment of BP (using the configurations in CS) into the BP simulator. The latter

86

queries ES, the mock services and BP from the spreadsheet, service and BP model repos-

itories, respectively, simulates the BP, and stores the obtained process execution data into

ES. The resulting ES is stored back into the spreadsheet repository and made available,

together with MS and AS, to the spreadsheet tool for analysis.

The current implementation of our analysis suite uses Signavio2 as process model

editor, Google Spreadsheets3 as spreadsheet tool, and Activiti4 as internal engine of the

BP simulator. Signavio has been extended to enable the generation of the configura-

tion spreadsheet. Google Spreadsheets has been extended to interface with the simula-

tion back-end, acting as user interface of the BP analyst for simulation and BP analy-

sis. Both extensions are implemented via JavaScript; the back-end components are im-

plemented as standard web applications using Java. The screenshots in Figures 4.4–4.7

show the look and feel of the prototype at work. At http://goo.gl/v4k2Yj we

show a video of the tool in action. The source code of the tool can be downloaded from

https://sites.google.com/site/ssbptester/.

4.7. User studies

We ran two user studies to validate the viability of the proposed approach. First, we

assessed the suitability of spreadsheets with real BP analysts, then the whole approach

with master students. We summarize both studies next; details of the study (scenarios,

questionnaires, raw data) can be found at

http://sites.google.com/site/ssbptester.

4.7.1. Business process analysis with spreadsheets

The objective of this study was to understand whether our approach achieves the first

goal of our problem statement, i.e., enabling BP analysts to analyze business processes.

This study specifically focused on the configuration of the BP simulation and the analy-

sis of process execution data. The participants to the study were three employees of the
2http://code.google.com/p/signavio-core-components
3https://docs.google.com/spreadsheet
4http://www.activiti.org

87

http://goo.gl/v4k2Yj
https://sites.google.com/site/ssbptester/
http://sites.google.com/site/ssbptester
http://code.google.com/p/signavio-core-components
https://docs.google.com/spreadsheet
http://www.activiti.org

Positive
Mean
Median
W-value
p-value

9
1,909

2
3,5

0,014

Negative
Neutral

1
1

"I felt
comfortable"

9
2,090

2
8,5

0,052

1
1

9
1,545

1
0

0,006

0
2

9
1,636

1
0

0,007

0
2

8
2,272

2
9

0,052

2
1

9
1,818

2
0

0,007

0
2

9
1,727

2
0

0,007

0
2

8
1,727

1
0

0,010

0
3

10
1,636

2
0

0,005

0
1

"It took a
reasonable
amount of
time"

"It was
according to
my skills"

"I was able to
easily follow all
the tasks"

"I am overall
satisfied with
the
experience"

"The tasks
were easy to
understand"

"I felt confident
in doing the
given tasks"

"I felt skillful
enough to
perform the
tasks"

"I was
successful in
setup the
properties"

100%

75%

50%

25%

0%

P
er

ce
nt

ag
e

of
 p

ar
tic

ip
an

ts

FIGURA 4.9. Survey results for questions regarding the overall experience of soft-
ware developers.

Paraguayan subsidiary of DHL, who operate as BP analysts at an everyday basis. Each

BP analyst participated separately in a one hour session, conducted within the premises

of the company. All participants were familiar with spreadsheets; only one of them knew

Google Spreadsheets. None of them had a background in computer science. The user

study was structured as a usability test followed by a retrospective probing in the form of a

semi-structured interview (Lazar, Feng, & Hochheiser, 2010).

For the usability test, participants were introduced to our tool and watched a video

exemplifying the features of the tool. Then, they were presented with a analysis scenario

based on a simplified version of the BP model shown in Figure 4.1(a), provided with a

suitable configuration spreadsheet CS, and asked to analyze the BP according to the sce-

nario. For the retrospective probing, we asked participants questions about their experience,

thoughts and actions after the usability test.

All participants agreed that the BP analysis tasks were easy to understand, but in some

cases difficult to perform. The main reason for this was that, while participants did not have

problems in writing simple spreadsheet formulas like sums, averages and standard devia-

tions, they faced difficulties in defining complex formulas that involved conditional and

statistical distribution functions. This problem was exacerbated by the fact that the nomen-

clature of the functions in Google Spreadsheets differs from the one found in Microsoft

Excel, which they were more acquainted with. The language of the tool also contributed

88

Positive
Mean
Median
W-value
p-value

10
1,818

2
8,5

0,028

Negative
Neutral

1
0

"It was simple
to use the
software for
designing
processes"

9
1,545

1
1,5

0,006

1
1

8
1,909

1
6

0,046

1
2

8
2,000

2
6,5

0,057

1
2

8
1,818

2
0

0,012

0
3

6
2,636

2
15

0,390

3
2

8
1,909

2
0

0,012

0
3

9
2,000

2
0

0,006

0
2

9
2,000

2
8

0,047

1
1

"I was able to
effectively
complete my
tasks using the
software"

"I felt
comfortable
using the
software"

"It was easy to
setup process
properties for
the BP
simulation"

"It was easy to
generate the
spreadsheet
from the BP
model"

"The UI does
NOT differ
much with
respect to the
original
version of
Signavio"

"It was easy to
understand the
concepts
concepts
introduced in
Signavio"

"Overall, I am
satisfied with
the software"

"I would
recommend
this tool to
others"

5
2,636

3
8,5

0,386

2
4

"I would prefer
to use this tool
for BP analysis
instead of
others"

100%

75%

50%

25%

0%

P
er

ce
nt

ag
e

of
 p

ar
tic

ip
an

ts

FIGURA 4.10. Survey results for questions regarding the BP model editor.

to the issue: the spreadsheets for the analysis of the BP were all in English, and so were

the names of the functions. Although all participants declared good knowledge of English,

they were used to work with spreadsheets in Spanish, which made it sometimes difficult

to find even functions they knew. These problems were however easily overcome with a

small help from the person running the study.

As for the general feeling and mood after the study, two of the participants said they

felt comfortable, while the third one said the experiment was long and stressful. All three

agreed that they had to learn new concepts and terminology they were not familiar with re-

garding both BP simulation (e.g., arrival rates) and spreadsheet functions (e.g., conditional

and statistical distribution functions). All participants agreed that using spreadsheets for

analysing BPs is useful and close to their working experience for two main reasons: (i)

they are familiar with spreadsheets, and (ii) spreadsheets are suitable to analyze data in a

tabular format, helped by the pre-built spreadsheet formulas, filters and charts. When par-

ticipants were asked if they would use the tool, all of them responded positively and stated

that the approach would indeed be effective in helping them to autonomously analyze BPs,

provided they have a good working knowledge of the spreadsheet’s predefined functions.

89

Although this study was conducted with only three BP analysts and, hence, does not

have statistical relevance, we nevertheless consider the study a good indicator for the suit-

ability of using our spreadsheet-based approach for analyzing BPs. Participants intuitively

understood their tasks and unanimously agreed on the viability of the approach.

4.7.2. Modeling, analyzing and reporting

The second study aimed to provide end-to-end coverage of our approach and statis-

tical tests. The study therefore also aimed to understand whether the approach facilitates

the discussion of findings between the BP analyst and the software developer. To do so,

we involved a total of 22 MSc students taking part of a BPM course at the University of

Trento, Italy, all of them with a background in computer science, BP modeling (BPMN)

and spreadsheets. The study lasted around 1 hour and 15 minutes and it was carried out in

the laboratory of the university.

This study was also structured as a usability test with retrospective probing. We again

offered a training session in the form of a live demo to introduce the tool to the students.

The retrospective probing took the form of an online survey. Students were paired up,

one playing the role of the BP analyst and one the role of the software developer. Each

role was assigned a number of tasks related to the role, specified in two scenarios based

on a simplified version of the BP model in Figure 4.1(a). The first scenario consisted in

performing one analysis cycle as presented in Figure 4.3. The second scenario asked the

BP analyst to communicate a change in the BP model to the software developer and to

analyze the modified BP again.

To collect feedback, we prepared two surveys with 26 and 19 questions for the BP

analyst and software developer, respectively. The questions were answered using a Likert

scale of 1 (strongly agree) to 5 (strongly disagree) (Lazar et al., 2010). We consider answers

1 and 2 as positive answers, 3 as neutral answer, and 4 and 5 as negative answers. The

survey included also open questions that allowed participants to provide free feedback. The

results of the survey are reported in the form of descriptive statistics using the mean and

median of the sample. We also use a two-sided hypothesis test to test the significance of the

90

"I	 felt	
comfortable"

"The	 analysis	
took	 a	 reaso-‐
nable	 amount	
of	 7me"

"The	 analysis	
was	 accor-‐
ding	 to	 my	
skills"

"I	 was	 able	 to	
easily	 follow	
all	 the	 tasks"

"I	 am	 overall	
sa7sfied	 with	
the	
experience"

"I	 quickly	
acquired	 the	
necessary	
knowledge	
to	 perform	
the	 tasks"

Positive
Mean
Median
W-value
p-value

9
1,818

2
3

0,012

Negative
Neutral

1
1

7
2,091

2
0

0,019

0
4

8
1,909

1
5

0,021

2
1

9
1,636

1
0

0,007

0
2

9
1,727

2
0

0,007

0
2

9
1,727

1
2,5

0,010

1
1

100%

75%

50%

25%

0%

Pe
rc
en
ta
ge
	

of
	 p
ar
7c
ip
an
ts

FIGURA 4.11. Survey results regarding the BP analysts’ overall experience.

Positive
Mean
Median
W-value
p-value

9
1,545

1
0

0,006

Negative
Neutral

0
2

9
1,818

2
0

0,012

1
1

6
2,364

2
6

0,097

2
3

7
2,000

2
2

0,025

1
3

8
1,909

1
5

0,021

2
1

8
1,818

1
2

0,014

1
2

6
2,273

2
5

0,135

1
4

"It	 was	
simple	 to	
use	 the	
spread-‐
sheet"

"I was able
to effectively
complete
my tasks"

"I	 felt	
comfortable	
using	 the	
spreadsheet
"

"I	 find	
spread-‐
sheets	
convenient	
to	 simulate	
BPs"

"I	 find	
spread-‐
sheets	
intui<ve	 to	
simulate	
BPs"

"It	 was	 easy	
to	 setup	 the	
proper<es"

"The	 UI	 does	
NOT	 differ	
much	 with	
respect	 to	
the	 original	
version	 of	
the	 spread-‐	
sheet"

"I	 would	
recommend	
this	 tool	 to	
others"

"The process
property
names and
descriptions
were clear"

"The	 process	
property	
names	 and	
descrip<ons	
were	 useful"

"I	 would	
prefer	 to	 use	
this	 tool	 for	
BP	 analysis	
instead	 of	
others"

"It	 was	 easy	
to	 under-‐
stand	 the	
concepts	 and	
elements	
used"

"Overall,	 I	 am	
sa<sfied	 with	
the	
spreadsheet	
for	 the	
simula<on	 of	
BPs"

"The	 spread-‐	
sheet	 was	
convenient	 to	
analyze	 the	
output	 data"

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

Positive
Mean
Median
W-value
p-value

8
1,545

1
0

0,006

10
1,727

2
3,5

0,008

Negative
Neutral

0
3

1
0

10
1,727

2
0

0,005

6
2,455

2
14

0,172

0
1

4
1

8
1,909

1
5

0,021

2
1

9
1,727

1
2,5

0,010

1
1

8
1,727

1
1,5

0,010

1
2

Pe
rc
en

ta
ge

of
	 p
ar
<c
ip
an
ts

Pe
rc
en

ta
ge

of
	 p
ar
<c
ip
an
ts

FIGURA 4.12. Survey results regarding the use of spreadsheets for BP analysis.

answers for each single question. The test makes use of a Wilconox, signed rank test with

a significance level of p = 0, 05 and a null hypothesis H0 : η = 3 (where η represents the

median) and an alternative hypothesis HA : η 6= 3. In other words, the null hypothesis is

that participants of the study have a neutral answer for each question, against the alternative

hypothesis that they are lean towards positive or negative answers.

91

Software developers: Figure 4.9 shows the feedback from software developers regarding

their overall experience. Most questions were answered positively (which is confirmed by

our tests: p − values are lower than 0,05), with the exceptions of the questions regard-

ing the time taken by the experiment and the overall satisfaction with the experience, in

which we obtained rather neutral answers (for these two questions, the p − values where

slightly higher than 0,05). Figure 4.10 shows the feedback regarding the BP model editor.

Most questions were again answered positively, confirmed by our hypothesis tests. The

exceptions are the questions related to the easiness for setting up process properties, the

similarity of the BP editor’s UI w.r.t. the original version of Signavio and the preference

of our tool over the others, for which we obtained rather neutral answers (we cannot reject

H0). One participant pointed out positively that the joint use of the BP model editor with

Google Spreadsheets “permits teams to work together in real-time,” while another partic-

ipant recommended to improve the debugging functionalities of the editor “in order to be

able to find errors in the BP model before running the BP simulation.”

BP analysts: Figure 4.11 summarizes the overall experience by BP analysts. All ques-

tions were answered positively and confirmed by our statistical tests. Regarding the use of

spreadsheets, Figure 4.12 reports that most questions were also answered positively. The

three exceptions we have are the questions regarding the comfortability with the use of

spreadsheets, the similarity of the UI of the spreadsheet w.r.t. to the original version of

the tool, and the preference of the proposed tool over the others. For these questions, we

have a split preference on the answers and the average results yields a neutral answer (with

p − values equal to 0,097; 0,135 and 0,172, respectively, for each question). The reason

for this neutrality, despite the positive answers in the previous questions, may be motivated

by both the paradigm shift in the approach used to analyze BPs and the fact that our tool

is a prototype implementation, and thus, not yet meant to be ready for use in a production

environment.

92

4.7.3. Discussion of results

The results of both user studies provide good evidence of the potential of our approach.

Our observations testify that the interaction between the BP analysts and the developers

were well-disposed and facilitated by our approach, confirming the suitability of the ap-

proach for collaborative BP analysis. The company’s BP analysts were more inclined to-

wards the use of mainstream spreadsheet tools, such as Microsoft Excel, given their famil-

iarity with such tools. BPM students, instead, appreciated more the use of Google Spread-

sheets, due to its suitability for real-time collaboration. Given their higher familiarity with

conditional expressions and complex statistical functions compared to the BP analysts, the

BPM students felt much more comfortable in using spreadsheets to analyze the process

execution log. This suggests that, in order to bring our tool to a real setting, it is necessary

to make sure BP analysts have the necessary training in using spreadsheets. However, it is

important to note that all participants in both user studies easily understand the mapping

of the BP analysis problem to the problem of analyzing data in spreadsheets. Once par-

ticipants figured out the right spreadsheet functions to use, they were able to easily define

metrics and assertions over the process execution log organized into process instances. In

conclusion, we accept our hypothesis that mapping the BP analysis problem to the design

of a spreadsheet calculation enables the BP analyst to analyze BPs autonomously.

4.8. Qualitative Analysis

We complement the above user studies with a qualitative analysis of our tool (Spreadsheet-

based BP Analyzer). The analysis consists in a comparison of our tool against state of the

art solutions used for BP analysis and simulation.

The analysis includes today’s most representative commercial tools in the realm of

BP analysis as well as academic and open source solutions. In particular, we considered

Websphere Business Modeler (v. 6.2) (IBM, 2009), the licensed solution of IBM for sim-

ulation and analysis of BPs, TIBCO Business Studio (v. 3.9) (TIBCO, 2014), the proposal

93

of TIBCO Software Inc. for modeling, analysis, and simulation BPs. Free alternative solu-

tions are also included in our analysis. In concrete, we consider BizAgi Modeler (BizAgi,

2015), the free solution offered by BizAgi to document and analyze BPs, Bonita Open

Solution (v. 5.6) (Bonitasoft, 2011), the open-source proposal of BonitaSoft for modeling

and simulating BPs represented in BPMN, and Adonis Community Edition (BOCGroup,

2015), the free modeling and simulation BPM tool offered by BOC Group. Two academic

tools are also present in the comparative analysis. The first one, Signavio Process Editor (v.

9.0) (Signavio, 2015), started as an academic project and recently turned into a commercial

solution. The proposal targets business practitioners in the context of modeling and simu-

lation of BPs. The second one, SimQuick (Hartvigsen, 2004), is an entirely academic BP

simulation tool that uses spreadsheets and Microsoft Excel macros to enable the design and

simulation of BPs.

4.8.1. Comparison Framework

The comparison framework used to conduct the analysis is based on five categories of

functionalities, namely, BP modeling, simulation configuration, simulation, analysis, and

reporting. These five categories represent the typical phases of the BP design and analysis

process proposed by the analyzed tools. The framework in particular aims to highlight

those concerns that are related to the BP analyst inside this BP design and analysis process.

Although BP modeling is not the focus of our work, it was included in the analysis

given its crucial role in the proposed process lifecycle. The BP modeling capabilities of

the tools are analyzed under three dimensions: notation, i.e., which BP modeling notation

is supported by the tool, model verification, i.e., what types of modeling errors can be de-

tected, and debugging, i.e., what types of features are available to find and fix the modeling

errors.

The analysis of functionalities offered by the tools for the BP simulation configura-

tion is mainly focused on the statistical facilities offered by the tools to configure process

tasks, resources, and domain-specific parameters (e.g., expenses, interest rate). We also

94

analyze the variety of domain-independent variables (e.g., number of simulation instances,

instances arrival rate, loading period) that are possible to setup with the tools.

We capture the simulation capabilities of the tools through two dimensions, namely,

runtime monitoring and task behavior. The fist one is related to the features offered by

the tools to monitor the execution of the simulation, e.g., animation and runtime statis-

tics, while the second one is associated to the simulation capacities of the tools w.r.t. the

simulation of task behavior.

Regarding the analysis capabilities of the tools, we focus on understanding the flexi-

bility of the tools in giving BP analysts the freedom to write their own analysis instruments

(metrics and assertions) and the power of the tools in assisting analysts in obtaining infor-

mation about the behavior of the process.

The reporting dimension includes the flexibility of the tools to create custom analysis

reports, the features offered to foster collaborative analysis and reporting, and whether the

simulation output is accessible and in which format.

Because not all the tools could be installed for their study, we exclusively base our

analysis on the official documentation provided for each solution. We therefore highlight

the situations in which the documentation provides insufficient information to draw a con-

clusion about a particular dimension.

Figure 4.13 presents the analysis in a table where columns represent the description of

each tool. The gray-shaded column contains the descriptions of our Spreadsheet-based BP

Analyzer.

4.8.2. Analysis

BP modeling. All the tools offer similar modeling functionalities. Almost all of them

have BPMN editors equipped with features that perform automatic model checking (syn-

tax validation and deadlocks verification). They also provide model debugging functions

through warning and errors messages and by coloring the conflicting elements. In addi-

tion, TIBCO provides features to semi-automatically fix simple syntax errors. SimQuick

95

	 	 	 	
IBM	 WebSphere	

Business	
Modeler	

TIBCO	
Business	
Studio	

BizAgi	 Modeler	 Bonita	 Open	
Solu;on	

Adonis	
Community	
Edi;on	

Signavio	
Process	 Editor	

Spreadsheet-‐
based	 BP	
Analyzer	

SimQuick	

BP	

BP
	 M

od
el
lin
g	

Nota;on	 BPMN	 BPMN	 BPMN	 BPMN	 BPMN	 BPMN	 BPMN	
(Signavio)	

SimQuick	
specific	
nota;on	

Model	
Verifica;on	

Syntax,	 dead-‐
locks	

Syntax,	 dead-‐
locks	

Syntax,	 dead-‐
locks	

Syntax,	 dead-‐
locks	

Syntax,	 dead-‐
locks	

Syntax,	 dead-‐
locks	

Same	 as	
signavio	

Unavailable	
informa;on	

Debugging	
Error	 messages,	
highligh;ng	 of	
conflic;ng	
elements	

Warning	 and	
error	

messages,	
highligh;ng	 of	
conflic;ng	
elements,	

auto	
correc;on	

Error	 messages,	
highligh;ng	 of	
conflic;ng	
elements	

Error	 messages,	
highligh;ng	 of	
conflic;ng	
elements	

Error	
messages,	

highligh;ng	 of	
conflic;ng	
elements	

Warning	 and	
error	

messages,	
highligh;ng	 of	
conflic;ng	
elements	

Same	 as	
signavio	

Unavailable	
informa;on	

BP
	 S
im

ul
a;

on
	 C
on

fig
ur
a;

on
	

Task	
Configura;on	

Execu;on	 ;me	
through	

constants	 and	
sta;s;cal	

distribu;ons.	
Constant	 cost	

Execu;on	 ;me	
through	

historical	 data,	
constants	 and	
sta;s;cal	

distribu;ons.	
Constant	 cost	

Execu;on	 ;me	
through	

constants	 and	
sta;s;cal	

distribu;ons.	
Constant	 cost	

Execu;on	 ;me	
through	

constants	 and	
sta;s;cal	

distribu;ons.	
Constant	 cost	

Execu;on	 ;me	
and	 cost	
through	
constants	

Execu;on	 ;me	
through	

constants	 and	
sta;s;cal	

distribu;ons.	
Constant	 cost	

Execu;on	 ;me	
and	 cost	
through	

constants	 and	
sta;s;cal	

distribu;ons	

Execu;on	 ;me	
and	 cost	
through	

constants	 and	
sta;s;cal	

distribu;ons	

Domain-‐specific	
parameters	

Unavailable	
informa;on	

Constants,	
sta;s;cal	

distribu;ons,	
expressions	

Not	 supported	
Constants,	
sta;s;cal	

distribu;ons,	
expressions	

Constants,	
expressions	 Not	 supported	

Constants,	
sta;s;cal	

distribu;ons,	
expressions	

Not	 supported	

Domain-‐
independent	
variables	

Timespan,	
workload	
calendar	

Number	 of	
instances,	
workload	
calendar	

Number	 of	
instances,	 arrival	
rate,	 workload	

calendar	

Number	 of	
instances,	
workload	

calendar,	 arrival	
rate	

Number	 of	
instances,	
workload	
calendar	

Number	 of	
instances,	
arrival	 rate,	
;mespan,	
currency	

Number	 of	
instances,	
arrival	 rate	

Number	 of	
instances,	
instances	
dura;on	

Resource	
seSngs	

Quan;ty,	 work	
schedule	 and	
cost	 per	 units	

through	
constants	

Quan;ty	 and	
cost	 per	 units	

through	
constants	

Quan;ty,	 work	
schedule	 and	
cost	 per	 units	

through	
constants	

Quan;ty,	 work	
schedule	
through	
constants	

Unavailable	
informa;on	

Quan;ty	 and	
cost	 per	 units	

through	
constants	

Not	 supported	

Quan;ty	
through	

constants	 and	
sta;s;cal	

distribu;ons	

BP
	 S
im

ul
a;

on
	

Run;me	
monitoring	

Interac;ve	
anima;on,	
run;me	

sta;s;cs	 (max,	
min,	 avg,	 total)	

Interac;ve	
anima;on,	
run;me	

sta;s;cs	 (max,	
min,	 avg,	
total)	

Run;me	
sta;s;cs	 (max,	
min,	 avg,	 total)	

Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	

Tasks	 behavior	

Simula;on	 of	
execu;on	 ;me,	

cost	 and	
resource	
u;liza;on	

Simula;on	 of	
execu;on	
;me,	 cost,	
domain-‐
specific	

parameters	
and	 resource	
u;liza;on	

Simula;on	 of	
execu;on	 ;me,	

cost,	 and	
resource	
u;liza;on	

Simula;on	 of	
execu;on	 ;me,	
cost,	 domain-‐

specific	
parameters	 and	

resource	
u;liza;on	

Simula;on	 of	
execu;on	 ;me,	
cost,	 domain-‐

specific	
parameters	
and	 resource	
u;liza;on	

Simula;on	 of	
execu;on	

;me,	 cost	 and	
resource	
u;liza;on	

Simula;on	 of	
defined	 tasks	
behavior	 or	
invoca;on	 of	
real	 services,	
simula;on	 of	

domain-‐specific	
parameters	

Simula;on	 of	
execu;on	 ;me	
and	 resource	
u;liza;on	

BP
	 A
na
ly
sis
	

Metrics	

Pre-‐defined	
standard	

metrics	 and	 user	
defined	 metrics	

based	 on	
arithme;c	
opera;ons,	
sta;s;cal	

distribu;ons	

Pre-‐defined	
metrics,	 such	
as	 dura;on,	

cost,	
throughput,	
resources	

u;liza;on	 and	
idle	 ;me	

Pre-‐defined	
standard	

metrics	 (e.g.,	
dura;on,	 cost,	
throughput,	
resources	
u;liza;on,	
boTleneck)	

Pre-‐defined	
standard	
metrics	

Pre-‐defined	
standard	
metrics	

Pre-‐defined	
standard	
metrics	 	

User-‐defined	
through	
arithme;c	
opera;ons,	
sta;s;cal	

distribu;ons,	
expressions	

User-‐defined	
through	
arithme;c	
opera;ons,	
sta;s;cal	

distribu;ons,	
expressions	

Asser;ons	 Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	
Boolean	

expression	 over	
metrics	

Boolean	
expression	 over	

metrics	 	

Analysis	
Assistance	

What-‐if-‐
analysis,	 As-‐Is	
and	 To-‐Be	
comparison	

Resource	
u;liza;on	
comparison	
between	
instances	

What-‐if-‐analysis	 Not	 provided	 Not	 provided	 Not	 provided	 Not	 provided	 Not	 provided	

BP
	 A
na
ly
sis
	 R
ep

or
t	

Raw	 simula;on	
output	 Not	 provided	 Not	 provided	

Event-‐based,	
tabular,	

exportable	

Accessible;	 the	
format	 is	 not	
specified	 in	 the	
documenta;on	

Trace-‐based,	
tabular,	

exportable	

Event-‐based,	
downloadable	

in	 MXML	
format	

Accessible	 and	
trace-‐based,	
tabular,	

exportable	

Accessible	 and	
trace-‐based,	
tabular,	

exportable	

Type	 of	 reports	 User-‐defined	
Pre-‐defined.	
Textual	 and	
graphical	

Pre-‐defined.	
Textual	 and	
graphical	

Pre-‐defined.	
Textual	 and	
graphical	

Pre-‐defined.	
Textual	 and	
graphical	

Pre-‐defined.	
Textual	 and	
graphical	

User-‐defined	 User-‐defined	

Features	 for	
collabora;ve	
analysis	 and	
repor;ng	

Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	 Not	 supported	

Interac;ons	
through	

comments,	
notes,	 and	 real-‐

;me	 chat	

Built-‐in	 support	
for	 comments	
and	 notes	

FIGURA 4.13. Qualitative analysis of our tool (Spreadsheet-based BP Analyzer)
and state-of-art business process analysis and simulation solutions.

96

is an exception within this category because it has its own modeling notation implemented

through Microsoft Excel macros. In our case, the full modeling functionalities is based on

Signavio Core Components, the free and open-source version of Signavio Process Editor

and thus our modeling features are equivalent to that of Signavio.

BP simulation configuration. No big differences are appreciated when comparing the

features for configuring the simulation. All the tools enable the use of statistical distribu-

tions to configure the duration of the tasks. Spreadsheet-based BP Analyzer and SimQuick

allow for the use of distributions to set up the costs associated to the execution of the pro-

cess tasks while the rest of the tools allow only for the use of constant values to define task

execution costs. TIBCO provides features to set up tasks duration using historical data.

Half of the tools, namely TIBCO, Bonita, Adonis, and Spreadsheet-based BP Ana-

lyzer, offer the possibility to model, through constants, expressions, and even by statistical

distributions, the value of domain-specific parameters, such as interest rate, expenses, re-

turn of investment. All the tools enable the definition of domain-independent variables.

In SimQuick and Spreadsheet-based BP Analyzer a couple of variables can be configured,

i.e., number of simulation instances and arrival rate, while in the rest of the tools a large

variety of parameters can be defined, such as timespan in which the instances are created

and workload calendar.

Almost all the tools, excluding ours, enable the definition of quantity, work schedule

and cost per units of the resources associated to the process execution. Being a tool that

is constructed on top of a spreadsheet editor (Microsoft Excel), SimQuick provides the

chance to employ statistical distributions to model resources while in the other tools only

constant values can be used.

BP Simulation. Only TIBCO, WebSphere and BizAgi support runtime-monitoring

functions. The first two provide interactive animation features that allow users to follow

the execution of the simulation step-by-step. In addition, all of them display descriptive sta-

tistics at runtime, e.g., average tasks duration, most expensive simulation instance, number

97

of current idle resources and average waiting time. The main advantage of Spreadsheet-

based BP Analyzer in relation to the others is the possibility to go from 0% to 100% on

the simulation of the behavior of the process tasks. In other words, Spreadsheet-based BP

Analyzer provides the flexibility to choose whether a task in the BP should be simulated

or carried out by a real web service. This feature, which is not available in any other state-

of-art tools that offer the chance of simulating the execution time, cost, domain-specific

process parameters and resource utilization of the tasks, provides the possibility to verify

whether the real services operate as expected.

BP Analysis. Spreadsheet-based BP Analyzer and SimQuick are the only ones that

fully empower BP analysts to define their own metrics and assertions. In order to provide

such flexibility, they leverage on the power of the spreadsheet’s built-in functions. Sim-

ilarly, WebSphere provides user-defined metrics but from the documentation is not clear

whether this functionality is available to measuring simulation data or real data.

The rest of the tools offer standard, predefined metrics, e.g., duration, cost, through-

put and resource utilization, through which the analyst can get information about process

behavior. Also, only SimQuick and Spreadsheet-based BP Analyzer are the only ones that

give BP analysts the chance of writing assertions on top of the metrics computed over the

process execution data.

A useful and important feature is the possibility to assist analysts in the evaluation

of their business processes. Only TIBCO, IBM WebSphere and BizAgi offer additional

analysis functions. WebSphere and BizAgi provide features to conduct what-if-analysis

while TIBCO enables the comparison of resource utilization between simulation instances.

In addition, IBM WebSphere provides features that ease the comparison between the ideal

BP model (to-be) and the current version of the model (as-is).

BP Analysis Report. Most of the tools provide predefined reports. However, SimQuick

and Spreadsheet-based BP Analyzer offer the users the possibility to create their own re-

ports. By exploiting the graphical and analytical features of spreadsheets editor programs

98

(Excel, Google Spreadsheet) SimQuick and Spreadsheet-based BP Analyzer allow BP an-

alysts to draw custom reports of any complexity. Following a more restricted approach,

WebSphere also offers user-defined report features. By employing a drag-and-drop de-

signer, BP analysts are able to build custom reports which are based on a limited set of

predefined elements, such as text-fields, tables, and summary statistics (counts, sums, and

averages).

The spreadsheet editors used by SimQuick and Spreadsheet-based BP Analyzer offer,

in addition, built-in functionalities that enable the possibility to add comments and notes

on the reporting documents, which can facilitate the communication between BP analysts

and developers. In the case of Spreadsheet-based BP Analyzer this communication may

even happen in real-time thanks to the chat functionalities of Google Spreadsheet.

Neither IBM Websphere nor TIBCO provide the raw output of the simulations, which

limits the possibility of running further BP analyses. The rest of the tools do allow users

to access the simulation output promoting the use of alternative tools to further analyze

BPs. In this sense, BizAgi provides the output in a tabular, exportable and event-based

format; Signavio in an event-based, downloadable MXML format (van der Aalst, 2011),

while Adonis, Spreadsheet-based BP Analyzer, and SimQuick offer the raw simulation

output in a tabular, trace-based and exportable scheme. Bonita’s documentation states that

simulation outputs can be downloaded but their content and format are not specified.

4.8.3. Discussion

The above analysis helps to understand better the distinctive and innovative aspects of

the Spreadsheet-based BP Analyzer. The combination of BP simulation and a spreadsheet-

based UI (Google Spreadsheet) accompanied with a standard BPMN process model repre-

sentation equips also BP analysts with limited technical skills with a single tool that enables

them to simulate, verify and analyze the performance of BPs through personalized instru-

ments (metrics, assertions and custom reports). The use of a full-fledged BP engine to run

the simulation enables the flexible invocation of both simulation web services that mimic

the behavior of other web services as well as real, production web services. This turns the

99

Spreadsheet-based BP Analyzer into an instrument that can be used both by the BP analyst

for his BP verification and simulation and by the developer for the testing of how real web

services perform inside a simulated process. As an add-on, the live collaboration support

by Google Spreadsheet offers a new and dynamic communication alternative that can ease

the interaction between BP analysts and developers.

Two limitations of the Spreadsheet-based BP Analyzer w.r.t. to some of the tools pre-

sented in this comparative analysis are the lack of support for the simulation of human

resource utilizations (given our focus on service-based processes) and the lack of addi-

tional analysis aids such as what-if-analyses. We plan to extend the Spreadsheet-based BP

Analyzer with these functionalities in future work.

4.9. Conclusion

In this article we approached a relevant and timely issue in today’s business process

management practice, i.e., that of analysing processes. We specifically emphasized the

role of the BP analyst, not only in providing input for the design of processes but also in

analyzing them. In order to enable BP analysts to perform own analyses without the need

for programming skills, we conceived a technique that is specifically tailored to the average

skills of BP analysts. The intuition we followed for the implementation of the technique is

to adopt common spreadsheets as abstraction and user interface for both setting up analyses

and computing analysis reports.

As confirmed by our user studies, the spreadsheet abstraction has indeed the potential

to enable BP analysts to perform fairly complex analyses autonomously and to effectively

discuss findings with software developers, so as to iteratively improve their models. The

qualitative analysis of the approach complements the user studies with a discussion of its

strengths and weaknesses compared to the state of the art in BP model analysis.

The positive results we obtained encourage further extensions of the approach. Specif-

ically, we would like to allow BP analysts to also obtain a concrete feeling of how their

100

processes behave if deployed in a real BP system by emulating web services and visual-

izing process progress in a process monitoring dashboard. Comparing log data produced

during the analysis of a process with real log data obtained after the deployment of the

process would further enable the fine-tuning of the simulation/emulation. This, in turn,

would improve analysis precision and turn the simulator into a viable tool, for example, to

produce synthetic data for the testing of process mining algorithms.

101

5. CLOSING THE GAP BETWEEN IT AND BUSINESS STAKEHOLDERS: THE

CASE OF WEB SERVICE REUSE, COMPOSITION AND ANALYSIS FOR

SERVICE-BASED BUSINESS PROCESSES

It is very hard to imagine today a medium or large company that runs its business

operations without IT support. More specifically, it is hard to imagine one that does not

provide its own set of IT-supported services or interact with external ones in some way or

another. Even a simple e-mail sent by an Acquisition Manager of a company to a service

or product provider may trigger the execution of complex IT-supported, business process

that helps in fulfilling his needs.

Such processes are typically implemented through a combination of so-called web ser-

vices, i.e., software that expose functionalities through standardized Application Program

Interfaces (APIs) via the web. The design and instrumentation of such business processes

require a close involvement of both business and IT stakeholders, who have to join efforts in

order to come up with a solution that fulfills the business goals in a efficient way. Two rel-

evant stakeholders in the context of service-based business processes include the Business

Process Analyst (BPA) and System Architect (SA). A BPA is a business domain expert that

is typically concerned with the design and analysis of business processes that are employed

to achieve a set of business goals. He usually does not have IT-specific expertise such as

software engineering and development skills. A SA is the responsible for instrumenting a

business process through IT. He typically has software engineering and development skills

and is able to translate business process models into a software implementation thereof. A

close collaboration of these two roles is considered a healthy practice that can contribute to

building solutions that matter for a company.

Even though the literature (Buchwald et al., 2011) (AbuJarour & Awad, 2014) (AbuJarour

& Awad, 2011) has acknowledged the existence of a gap between these stakeholders and

it has proposed a number of approaches to close that gap, as of today, the problem still

remains open. We ascribe this to the lack of an appropriate methodology and a set of in-

struments that facilitate the mutual communication and coordination of the work between

these two key roles. We argue that in order to build successful business process solutions,

102

we necessarily need an approach that allows them to convey their needs and expose their

expertise to each other in an iterative manner. In this article, we specifically focus on the

case of web service reuse, composition and analysis for service-based business processes.

This case is an interesting one because it poses two key challenges. The first one relates to

the requirement of reusing and composing existing web services to exploit existing IT re-

sources. This is a challenging task because we need to align the implemented IT resources

to the business needs. The second one relates to the analysis of the reused and composed

web services. The challenge here lies in the analysis and validation of the proposed service

compositions from a business perspective and the provision of feedbacks to the IT experts

for the improvement thereof.

We therefore need to bring together both the BPA and SA perspective in order to ad-

dress any inconsistency or missing functionality that may emerge in the process. In order

to address these problems, in this article, we propose a methodology and set of tools aimed

at supporting the decision-making process and enabling the information to flow between

BPAs and SAs. We rely on two of our previous work, namely, Emulator (Galli et al., 2015)

and CompoSWS (Vairetti et al., 2016), to provide the support for the phases we propose in

our methodology. The concrete contributions of this article can be summarized as follows:

• We propose a methodology that facilitates the work performed by BPAs and SAs

in the reuse, composition and analysis of service-based business processes.

• We extend the Emulator and CompoSWS to support the information flow be-

tween BPAs and SAs. CompoSWS focuses on the pre-calculation and recom-

mendation of plausible relationships between services, while the Emulator pro-

vides support in the analysis and simulation of business processes built with such

services.

• We propose an integrated platform that (1) allows the BPAs to transfer their ex-

pertise to the SA by enriching and refining the service layer and (2) assists the

BPA design choices when constructing a business model using the recommen-

dations created from the workflow layer.

103

• We specify six bridging requirements and strategies to exploit the two perspec-

tives and propose a methodology that integrates both perspectives allowing for

the transferring of expertise in both directions.

• We validate our approach through a user study that demonstrates the viability

and usefulness of the integrated approach.

This chapter is organized as follows. Section ?? presents a summary of related work in

the areas of bridging the BPA/SA gap and dynamic and automatic Web services workflow

generation. Section 5.1 presents a motivating scenario that will be used along the chapter

to explain and evaluate our approach. Section 5.2 identifies key bridging requirements and

the changes in the scenario that can be done. Section 5.3 presents our approach for align-

ing business process models with workflow specifications and the methodology adopted.

Section 5.4 presents our approach and implementations for supporting such requirements.

Section 5.5 describes the experiment followed to test our approach. Section 5.6 presents an

analysis and discussion of results from the bridging requirements perspective, and, finally,

Section 5.7 presents our conclusions.

5.1. Motivating scenario

As our motivating scenario, let us consider the travel reimbursement processes (TR)

followed by the departments of a university. In this scenario, the employees working for

the university, such as the faculty members and research staff, typically need to travel to

different cities and countries to attend project meetings, conferences and other business

trips. As part of the rules of the university, such travels are fully organized and paid in

advance by the employee who then needs to ask for the reimbursement of the associated

costs. There are 3 main steps required by the university in order to successfully get the

reimbursement:

(i) Before the trip, the employee must prepare a travel authorization request,

including the budget for the trip, which needs to be approved by the head of the

department.

104

(ii) After the trip, the employee must prepare an expenses report including all the

expenses and the corresponding receipts and submit it to the accounting office.

(iii) The accounting office needs to verify and approve the expenses report based

on the university’s rules. If the expenses are approved, the reimbursement is

applied.

Traditionally, each department of this university has been granted the freedom to im-

plement the corresponding business processes in order to comply with these general steps.

As a result of this, over the years, each department has produced its own implementation

of the process using web service-oriented technologies that are composed in a way that

the above requirements are met. Figure 5.1 presents an outline of the business processes

followed by each department. In this figure, we can see that there are activities coming

from different departments that seem to pursue the exact same goal, such as the Request

authorization from the Engineering and CS departments. In other cases, a single activity

in a department subsumes more than one activity from another department. For example,

the activity Start TR procedures from the Law department includes both the Obtain autho-

rization to travel and Estimate total travel expenses from the Sociology department. Other

similar examples can be found, but the key message we want to convey here is that the var-

ious departments follow a somewhat similar process that consists of activities that match

across different departments to different extent.

Let us now consider a new mandate from the university that establishes that from next

year, all the processes from the different departments must be homogenized in order to

facilitate the control and auditing of the TR processes. In order to do so, the CS department

has been appointed as the main responsible for the analysis of both the business processes

and the web services in place and to propose a homogenized TR process. Given that each

department has invested time and money in designing and implementing their own TR

processes, the university has established that a key requirement for the proposed solution

is that of leveraging as much as possible on the existing TR processes (and best practices)

and technological implementations thereof so as to reduce the transition costs for each

105

department. This initiative requires the involvement and joint effort of both business and

IT stakeholders from the various departments in order to come up with a homogeneous

business process model that complies with the university mandate and the corresponding

IT instrumentation of web services that will support such model. In line with what we

discussed before, we assign the former tasks to BPAs while the latter falls into the domain

of SAs.

The scenario we present in this section provides a good foundation for the key chal-

lenges faced in similar, real-world situations such as the merger of companies or the reengi-

neering of processes within large companies. Other examples include multinational com-

panies, which have similar processes deployed in different companies with services that

can be reused and adapted across different deployments, and government institutions that

may require the versioning of their processes across different regions or states based, e.g.,

on local legislation. In the next sections, we will elaborate more on the requirements of

this scenario that will serve as the starting point for the analysis of the problem and the

proposed solution.

In order to frame this scenario from a technological perspective, let us consider that

the tasks in these processes are implemented through single or composed (more than one)

web services in a SaaS (Sofware as a Service) solution. SaaS means that an application

is running on a cloud infrastructure and is accessible from various client devices through

a thin client interface such as a web browser (e.g., web-based application). The consumer

does not manage or control the underlying cloud infrastructure (Mell & Grance, 2011).

Composed web services are workflows that result from the interconnection of more than

one service following simple (sequence, alternative, etc.) or complex (parallelism, itera-

tion, etc.) control-flow patterns such as those described in (van Der Aalst, Ter Hofstede,

Kiepuszewski, & Barros, 2003b).

106

 A breakdown of tasks designed by each department

REQUEST:
Prepare a travel
authorization
request

FORM:
Prepare a
expense report

SUBMIT:
Verify and
approve the
expense report

Engineering

Complete
form

Edit
Report

CS

Retain
Receipts

Prepare a
worksheet

Sign the
worksheet

Attach
receipts to
worksheet

Submit the
worksheet

Chemistry

Obtains
authorizatio
n to travel

Estimates
total travel
expenses

Creates
Request

Sociology Psychology

Send
Receipts
and
complete
a form

Wait for
the
response

Sign the form

Completes the
TR Form

Submits the
Form and
receipts

Submits a
missing receipt

Submits a copy
of the receipt

Law Medicine

Create a new
Expense Report

Fill out General
Information

Enter a
description for
each Expense

Generate a
printable View

Attach the
documentation

Submit for
approval

Attach
receipts

Submit
documents

have
receipts?

yes

no

Basic tasks
for TR

FIGURA 5.1. TR business processes from different departments of the university.

5.2. Requirements for closing the gap between BPAs and SAs

Sharing expertise between the person who knows about the business process (BPA)

and the one who implements it (SA) is a difficult task (Galli et al., 2015). In general, (1)

the BPA draws a business process model and sends it to the SA who first (2) creates or

reuses web service implementations for each task of a process model or a whole workflow

implementation and then (3) executes the implemented process (4) obtaining some results

that need to be validated by a BPA. Steps (1) and (4) are performed by a BPA and steps (2)

and (3) by a SA.

Discovering Web services and automatically building workflows based on a set of re-

quirements is a well established research topic that reduces the SA effort to choose and in-

terconnect Web services that satisfy a BPA request. This typically results in the automatic

discovery of workflows that satisfy current and potential needs. It is therefore possible

107

under this scenario to suggest, to the BPA, business process model design alternatives that

are enabled by the technological infrastructure but were not considered when modeling the

business processes. Whether such recommendations make sense or not depend on the busi-

ness constraints defined by the current business context. Let’s examine the effect of this

feature in our motivating scenario.

5.2.1. Changes in the scenario

According to what we discussed before, step (2) is performed after the BPA draws a

business process model and sends it to the SA. The SA, in turn, either creates or reuses

Web service implementations for each task of a process model. To do so, the SA needs

to identify services from a services workflow repository, validate the services’ signature

(inputs, output and goal) and choose the proper service for each task in the BP model. In

the example shown in Figure 5.2, we can see that each task has an implementation of a

web service that is stored in a repository. For instance, the task EditReport from the CS

department is implemented by service WS1. The service has only one input (receipts), one

output (approveReimb) and one goal (obtainReimb).

If we, playing the role of a BPA from the Law department, want to model a new TR

business process, we can leverage on the knowledge that stem from the various departments

of the university. Assuming that our goal is to obtain a reimbursement (obtainReimb), the

plausible recommendations are the CS atomic service WS1, the Chemistry workflow com-

prehending services WS2 to WS6, or the Psychology workflow comprehending services

WS7 to WS8. According to Figure 5.1, CS basic process lacks the request and submits

process, whereas Chemistry process implements the three main steps. Psychology, instead,

implements the form and submits steps, which is very similar to the Law process. How-

ever, Law differs from Psychology in the detail of its steps. Thus, Law may require the

implementation of additional services since existing services (WS7 and WS8) lack the in-

ternal tasks required by Law. Law contributes to the community with a new alternative of

implementing the TR steps.

108

 A breakdown of tasks implemented by each department

Edit
Report

CS

Retain
Receipts

Prepare a
worksheet

Sign the
worksheet

Attach
receipts to
worksheet

Submit the
worksheet

Chemistry Psychology

Send
Receipts
and
complete
a form

Wait for the
response

WS1
in: receipts
out: approveReimb
goal: obtainReimb

WS2
in: receipts
out: form
goal: retainReceipts

WS3
in: form
out: worksheet
goal: prepareWS

WS4
in: worksheet
out: signWS
goal: SignWS

WS5
in: signWS
out: finalForm
goal: attachReceipts

WS7
in: receipts
out: finalForm
goal: completeWS

WS6
in: finalForm
out: approveReimb
goal: obtainReimb

WS8
in: finalForm,
 worksheet
out: approveReimb
goal: obtainReimb

WS1

WS8
WS7

WS2

WS3

WS4

WS5

WS6

service’s
workflow

(REPOSITORY)

Basic
tasks
for TR

R
EQ

U
ES

T
SU

BM
IT

FO
R
M

sequence

sequence
sequence

sequence

synchronize
WSP1

alternative

alternative

alternative

alternative sequence

sequence

synchronize

FIGURA 5.2. Implementation of the TR business model as a service workflow for
various universities.

5.2.2. Bridging BPA and SA key requirements

There are essentially two bridging directions: the first one refers to transferring exper-

tise from the BPA to the SA, and thus, to the workflow implementation. The second direc-

tion is that of transferring workflow knowledge from the SA to the BPA, by leveraging on

the knowledge that stems from the workflow implementation. In the former direction, the

transfer occurs either in the typical case in which the BPA passes the BP model to the SA

for its instrumentation, or, when the BPA provides feedbacks to the SA about the imple-

mentation of a process model. In the latter direction, the SA can learn from the workflow

implementation, e.g., through available service discovery or composition features of the

109

platform, and then transfer this knowledge to the BPA in the form of new BP model de-

signs. Below, we present a list of requirements that need to be considered so as to build the

bridge between these two roles:

5.2.2.1. Transferring business knowledge from BPA to SA and workflow platform.

BR1: Extending BP model implementation based on the feedback provided

by the BPA.

Connections that are not evident in the workflow can be derived from the BP

models created by the BPA; some services should be connected at the business

level even though at the software level they cannot, e.g., because data transforma-

tions are required. In addition, let’s suppose that the BP is analyzed generating

an execution log that indicates the most frequent path followed by the end user.

This can be done because the simulation is based on actual business constraints

determined by the BPA.

BR2: Identifying inconsistencies between the workflow implementation and

the BP model.

Connections that are conceptually inconsistent at the business level can also be

detected. It is well known that users perform workarounds when the software

does not match the actual business process. The identification of mismatches

like these can be very important for a company, e.g., because it may allow for

the prevention of situations of non-compliance with the law.

5.2.2.2. Transferring implementation knowledge from the workflow platform to the

SA and BPA.

BR3: Assisting SAs in identifying Web service candidates for reuse. As dis-

cussed in Section ??, in CompoSWS is possible to determine the most suitable

candidates to be associated with a service from the service’s signature (i.e. in-

put, output and goals). Sometimes a workflow fragment (a composed service)

instead of a single service is required to implement a task.

110

BR4: Recommending plausible alternatives in the design of BP models based

on the workflow platform and existing web services.

Similarly, if the BPA adds a task to the BPM model, the service infrastructure

can be used to recommend single or composed services that may add business

functionality (or alternative implementations with various QoS) not envisioned

by the BPA but already available in the platform. Thus, the deployed capabilities

can be recommended to the BPA in order to improve the BPM models.

BR5: Recommending plausible alternatives in the design of BP models based

on their execution costs.

As discussed before, BP analysis may be implemented through simulations. In

this case, a business process log obtained during the analysis contains informa-

tion about its completion time, which goes beyond computational execution time

(e.g., the verification of a document from a clerk takes two business days to com-

plete). This information can be used to enrich the BPM and its implementation.

The BPA can analyze the costs associated to a process and determine whether or

not to make changes towards greater efficiency and lower cost.

BR6: Identifying inconsistencies between BP models and its implementation

as a workflow.

The workflow platform, enriched with the BPA expertise, captures business knowl-

edge that can prevent other BPAs to introduce business inconsistencies due to

new requirements, at different time frames. In addition, it is possible to prevent

changes that could have negative impact on other areas of the business.

5.3. BPM-SIC: Business Process Model - Service Implementation Collaboration method-

ology

This chapter presents a flexible approach for aligning business process models with

workflow specifications, so as to maintain the complex dependencies that exist between

high-level business process models (as used by BPAs) and technical workflow specifica-

tions (as used in IT departments by SAs). We propose a methodology that integrates these

111

two perspectives: A modeling layer allows BPAs to transfer their expertise to the SAs,

and, vice versa, through recommendations built from the workflow implementation and

integrated by the SA, assist BPAs by providing design alternatives when constructing a

business model.

In order to do that we combine two tools: CompoSWS (Vairetti et al., 2016) and the

Emulator (Galli et al., 2015). CompoSWS pre-computes all the possible relationships be-

tween the services so as to provide recommendations on the possible process design alter-

natives, while the Emulator focuses on the analysis and simulation of business processes.

5.3.1. CompoSWS server

CompoSWS (Vairetti et al., 2016) is an approach for dynamic service composition that

exploits service signature and semantic annotations along with rules to identify simple and

complex control-flow patterns between services at publishing-time. Services are connected

through such patterns forming a graph that is pre-calculated and represent the behavioral

semantics of a potential composed service. A composed service can be dynamically and

automatically discovered and assembled into an executable service at consuming-time.

Services’ signature can be used to determine both service components and the depen-

dencies among them. Typically such dependencies are simple sequence and alternative

control-flow patterns (e.g. consume service A first in order to produce and output that

serves as an input for the subsequent service B). However, in the real world, follow com-

plex control-flow patterns in order to fulfill the requirements and constraints of real world

business processes (Ter Hofstede et al., 2009). .

In this approach we extended a well-known and simple semantic Web service ontol-

ogy (MSM, the minimal service model), with minimal concepts and relationships that make

possible to represent relationships among services corresponding to complex control-flow

patterns. Such relationships are inferred from the dependencies between services signature

such as Input, Output and Goal. In this way it is possible to discover composed services

as subgraphs where services are interlinked following complex control- flow patterns. The

112

control flow relationships between services considered are sequence, alternative, synchro-

nize, discriminator, select, and iterator and they are briefly described below.

(i) A sequence pattern models the dependency between two services that

pursue different goals; one service produces the output to be used as an input

for the subsequent service. Both services are linked through an SB:SEQUENCE

relationship operator.

(ii) A alternative pattern is identified when two services share the same

goal and output, and they will be invoked depending on certain condition. Such

services are linked through an SB:ALTERNATIVE relationship.

(iii) A synchronize pattern is inferred when the inputs of a service can be

obtained from the outputs of other services, and not a single service can provide

all the inputs. The sb:synchronize relationship links all the involved services.

(iv) In a dicriminator pattern is identified when two services share the same

goal and provide the same output, but only the output of the first service provid-

ing a response is considered. Services are linked with an SB:DISCRIMINATOR

relationship.

(v) A select pattern is similar to a discriminator, but a condition is applied to

choose one of the services output. The relationship in this case is SB:SELECT

(vi) The iteration pattern occurs when a simple or composed service is ex-

ecuted more than once. The relationship in this case is SB:ITERATOR.

CompoSWS is a Web service composer that follows a two sides approach: service

publisher and the service consumer. When a new service is published in the platform

(or in the cloud if we use SaaS technology), the system pre-calculates all the possible

relationships between the services through a Connect algorithm described in (Vairetti et al.,

2016). The resulting graph includes the service’s goals, input and output characteristics, at

the semantic level, including the presented control-flow patterns and rules.

113

When a SA requests a service, the system looks for an existing service. If no service

can be found, the system finds a graph fragment that satisfies all or most of the SA re-

quests. The graph fragment is a set of interrelated services containing all or most of the

information provided by the user (input), called origin nodes; and containing the expected

goal and result (output) required by the user, called target nodes. The latter task is accom-

plished by executing a FindService algorithm described on (Vairetti et al., 2016). If the

SA approves the proposed service, the graph is used as the behavior (control-flow) of a

composed service, which is created, deployed, and published later in our system.

In the bottom part of Figure 5.2 we can see possible Web services implementations of

the TR business process of three departments: CS, Chemistry and Psychology. In this case,

CompoSWS, a SaaS cloud-based Web services workflow repository stores the services

from various institutions and their connection to the BP tasks. CompoSWS is capable of

exploiting the process knowledge implicitly derived from the service’s workflow in order

to infer possible control-flow relationships among them and recommend them.

Let’s suppose that at the beginning, WS1, which implements CS’s task EditReport is

uploaded to CompoSWS and then, WS2 that implements Chemistry’s RetainReceipts task

is uploaded. CompoSWS will analyze service’s signatures and will detect that both services

pursue the same goal and have the same output. They will be considered as alternative

implementations of the same goal that can be consumed according to the evaluation’s result

of some condition; this behavior corresponds to the discriminator pattern. In this case, an

abstract service WSP1, which is a superset of both services, will be created. If service WS3

(prepareWS task) is uploaded to CompoSWS, the sequence pattern will be detected since

WS2’s output (form) is the input of WS3 and both goals are different. Something similar

will occur when uploading the remaining implementations of Chemistry’s task, namely

WS4, WS5, and WS6. However, when uploading service WS7 corresponding to PUC’s

task completeWS, CompoSWS will detect the existence of another alternative to WS2 and

WS1 and will link WS7 to the abstract service WSP1.

114

5.3.2. Emulator analyzer

The Emulator (Galli et al., 2015) is a spreadsheet-based approach for business process

model analysis. This approach enables BPAs to simulate BP executions and generates pro-

cess execution logs in order to define own metrics, assertions and obtain analysis reports.

The overall approach takes into account the fact that there are tasks that require specific

technical skills that BP analysts may not have and that may prevent them from being able

to analyze BPs.

BPMN is used to model executable BPs. The spreadsheet is used as interface toward

the BPA and as communication instrument between the analyst and the developer. Sim-

ulation is used to safely generate behavioral information for those web services of the

service-based BP that may have persistent side effects in the system or do not yet have a

readily usable implementation.

The approach uses BP simulation for the generation of the observed behavior of the

process (van der Aalst, Nakatumba, et al., 2008). BP simulation allows us to safely and

easily generate different process execution scenarios to test different expected behaviors.

The combination of the ease with which spreadsheets can be used to analyze data and the

ability to quickly generate different process execution scenarios through BP simulation

provides the BPA with a powerful instrument for BP testing.

Starting from a draft of a BP model, the SA refines and implements the process using

an extended BPMN editor. Setting up a BP analysis requires also the configuration of

the simulation to be performed. Activities of BP that refer to real services are marked

as such and pre-configured by the developer in the extended BPMN editor; the BPA can

configure the behavior only of simulated services. Once the simulation is configured, the

BP simulator reads the configuration and BP and runs the simulation, mimicking the web

service behaviors defined by the BP analyst and invoking existing web services. As a result,

it generates a process execution log that contains the observed behavior, which is again

stored as a process execution spreadsheet. The BP analyst verifies and analyses processes

performance using an analysis analysis spreadsheet.

115

5.3.3. BPM-SIC methodology

Our methodology for bridging the roles of BPA and SA is represented in Figure 5.3.

The methodology advocates for a back and forth interaction between these two roles so

as to share their expertise and domain knowledge when reusing, composing and analyz-

ing workflows and their associated web services. Starting from a BP model draft (step

1) designed by the BPA, the SA refines and implements the process using a BPMN editor

(step 2). When a task is added to the editor, a query is sent to CompoSWS in order to ask

for services (or workflows) that could serve as the task implementation (step 2a). Com-

poSWS will recommend services based on its knowledge (similar workflows, BPs, and

costs). If the BPA has identified a relationship that does not exists in the CompoSWS plat-

form, such relationship is enforced and created between the corresponding services (i.e., a

+ relationship). If no service implementing the task is found, CompoSWS creates a service

description with no implementation. Whenever a new service or relationship is uploaded to

CompoSWS, the platform infers plausible, new workflows that can be created considering

the new situation.

Once the BP model is finished, the SA runs the BP emulator in order to generate a con-

figuration spreadsheet (step 3a). During this step, the BP emulator queries the workflows

stored in CompoSWS and associated to the BP created by the SA (step 3). For each work-

flow, it creates an entry in the configuration spreadsheet containing the process properties

and a set of simulation parameters.

Once the configuration spreadsheet is created, it is send to the BPA who introduces sim-

ulation parameters to configure the simulation dynamics (step 4). They include parameters

such as the number of process instances to be emulated, the rate at which instances are to be

generated, and the execution time of simulated web services. Process properties P are used

to configure business data for different process execution scenarios; they are associated to

the BP tasks and may refer to both real or simulated web services. Once the spreadsheet is

configured, the BPA runs the simulation, mimicking the web service behaviors defined by

116

Process execution log

BP analyst

System
Architect

designs
BP draft

1

2

BP Model Editor Configuration spreadsheet

designs a BPM

3a generates

BP analyst

introduce emulator
parameters

& run emulator

4

reads

BP Emulator

recommends
& detect

inconsistencies

retrieves workflows

6

5
generates

analyses

3

discuss
report

2a

inserts BP
relationships

annotates costs

CompoSWS

infers
workflows

7 4a
System

Architect

help in the
configuration

FIGURA 5.3. BPA and SA bridging methodology.

the BPA and invoking existing web services. This action consists in calculating the work-

flows execution costs, which are fed to CompoSWS to update its graphs (step 4a). The BP

emulator produces also an execution log (step 5) recording execution paths costs as well

as inconsistencies and CompoSWS recommendations to be analyzed by the BPA (step 6).

This analysis may create changes in the BP model, which are discussed with the SA (step

7).

When a SA requests that a service or task is added to the editor, the system looks up

for an existing service and if no service can be found, the system finds a graph fragment

that satisfies all or most of the user’s requests. If the SA approves the proposed service,

the graph is used as the behavior (control-flow) of a composed service, which is created,

deployed, and published later in the system. In order to determine a graph fragment costs

we use the Emulator tool.

In summary, we complement the Emulator with CompoSWS that is capable of discov-

ering alternative workflows from services’ signature but also use the Emulator to analyze

117

workflow recommendations. Thus, the Emulator and CompoSWS are jointly used to assist

in closing the gap between BPA and SA and to foster the interaction between these two

roles.

5.3.4. Key requirements examples

In order to better understand each of the presented requirements and, considering the

previously defined scenario, in this section we will show some real examples our applying

the BPM-SIC methodology.

5.3.4.1. Transferring business knowledge from BPA to SA and workflow platform.

BR1: Extending BP model implementation based on the feedback provided

by the BPA.

Let’s assume that the department of Chemistry decided to modify the diagram

shown in Figure 5.1 in order to allow the user to directly submit the signed work-

sheet rather than requiring him to attach the receipts. This change is reflected in

the process model by an arrow generated from the Sign the worksheet task to the

Submit the worksheet task.

In addition, let’s suppose that after running Missouri’s tasks Complete form and

Attach receipts, the execution log demonstrates that users prefer not to attach

receipts frequently. In this case, the BPA may dialogue with the SA to request a

new verification service in order to determine whether the requested reimburse-

ment amount is acceptable.

BR2: Identifying inconsistencies between the workflow implementation and

the BP model.

In Figure 5.2 we can notice a connection between services WS5 (attachReceipts

goal) and WS8 (obtainReimb goal); this occurs since CompoSWS detects that

WS5 output (finalForm goal) is an input of WS8. Also, WS8 is an alternative

implementation of WS6 (obtainReimb goal). Even though at an implementation

level such relationships are possible, at the business level, the Chemistry’s BPA

must evaluate whether to reuse Psychology’s service WS8 or using service WS6

118

which falls under its business scope. In the latter case, even though both services

coexist, Chemistry’s BPA must consider the relationship between WS5 and WS8

inconsistent at the business level.

5.3.4.2. Transferring implementation knowledge from the workflow platform to the

SA and BPA.

BR3: Assisting SAs in identifying Web service candidates for reuse. Solutions

such as CompoSWS can automatically calculate workflows and recommend it to

the SA, facilitating his tasks and fostering service reuse. For example, during the

implementation of Psychology’s BP model, CompoSWS will recommend either

service WS7 or a composite of services WS3, WS4 and WS5 for implementing

task 1 (Send receipts and complete form).

BR4: Recommending plausible alternatives in the design of BP models based

on the workflow platform and existing web services.

In our example, the platform can recommend to the department of Chemistry the

possibility of ignoring the tasks associated to services WS3 to WS5 and instead

implementing a BP similar to Psychology’s since the composed service WS7,

WS8 has the same input, output and goal of a composition including WS2, WS3,

WS4, WS5 and WS6 (i.e. ignoring the internal operations).

BR5: Recommending plausible alternatives in the design of BP models based

on their execution costs.

Let’s suppose that in our scenario, the task associated to CS’s WS1 has less per-

formance than the task associated to the Psychology’s composite WS7 and WS8.

Since both satisfy the same goal, CS’s BPA may decide to mimic Psychology’s

BP. Similarly, the SA shall receive the recommendation of reusing WS7 and

WS8 and shall implement CS’s task Edit Report as a service composite.

BR6: Identifying inconsistencies between BP models and its implementation

as a workflow.

At an implementation level, an automatic composition tool such as CompoSWS

may detect that WS8 requires two input parameters (finalForm, worksheet) that

119

can be provided by services WS2 to WS3 (worksheet) and services WS2 to WS5

(finalForm) or WS7 (finalForm). Let’s suppose that the user chooses the im-

plementation of services WS2 to WS3 that will be executed in parallel to WS7,

since it requires a shorter execution time. At certain point in time, WS7 may fail

and an alternative implementation should be chosen, in this case, WS2 to WS5.

Hence WS2 to WS3 will be executed in parallel to WS2 to WS5 (the former is

a subset of the latter), such possibility is detected as a inconsistency since WS2

to WS3 will be executed twice. Hence, WS2 to WS3 in parallel to WS7 is not a

valid workflow for CompoSWS.

5.4. Implementation

We extended the Emulator and CompoSWS to support the information flow between

BPAs and SAs. CompoSWS focuses on the pre-calculation and recommendation of plau-

sible workflows, while the Emulator provides support in the analysis and simulation of

business processes built with such services. Figure 7 shows the integration of both ap-

proaches. Both architectures complement each other and use the same service repository.

The extensions made to both architectures in order to achieve the proposed integration are

described below.

5.4.1. Extending CompoSWS

CompoSWS is a Web service composer that acknowledges the service publisher role

and the service consumer role. For the former case CompoSWS pre-calculates all possi-

ble workflows whenever a new services is available, so that, when the consumer requests

a composition (or workflow), the chances of finding an already identified workflow are

higher.

Figure 5.4 summarizes the major architectural components of CompoSWS. The pub-

lishing process (step 1) requires that the provider uploads a service description containing

annotations related to the service goal and data types (inputs/output). The description is

120

transformed (step 2) into a SPARQL expression and stored in a repository. Then, the ser-

vice description is analyzed (Control Flow Analyzer) to determine plausible workflows

(step 3) that follow various control-flow pattern relationships. These relationships become

new triples that are stored in the repository. A client request (e.g., an XML document)

includes an expected goal and output, and provides some inputs and guard conditions. The

client request is processed by the Service Discovery component (step 5), informing the

client if an existing service provides a solution (step 6), otherwise it creates a workflow

through the Service Composer component (step 5a). If the composed service (workflow) is

approved, a new workflow is created and stored in the triplestore (step 7b).

Semantic Composer Server

Web Services
Container

Service inputs/output
goal

XML Request

TRIPLESTORE .

1

4

Control Flow
Analyzer

Service
Discovery

3 5a

Parser
Transformation

Service
Composer

2

SPARQL Parser

5

COMPOSWS SERVICE INTERFACE

Provider

Compo-SWS

6 7c

7a

FIGURA 5.4. CompoSWS architecture.

The basis of CompoSWS is an ontology designed as a simple extension to the MSM

service ontology as shown in Figure 5.5. Circles represent concepts (e.g., msm:Service),

arcs represent relationships (e.g., msm:hasInput) between concepts, and the squared rect-

angles represent literals (e.g., xsd:string) (Figure 5.5). The sb namespace refers to elements

modeling service behavior, whereas msm represents the MSM ontology elements. A ser-

vice goal (sb:Goal) represents the activity performed when executing a service, according

to a domain specific ontology. The goal is related to the service through an sb:hasGoal re-

lationship. Service composition may be restricted according to certain constraints or guard

121

expressions sb:hasExpresion, and services are related to other services through relation-

ships that represent the semantics of control-flow patterns sb:patterns. Control-flow pat-

terns considered are: sb:sequence, sb:alternative, sb:synchronize, sb:discriminator, sb:select

and sb:iterator as detailed in section 5.3.1.

wl:Non
Fuctional
Parameter

wl:
Condition

wl:Non
Fuctional
Parameter

wl:
Effect rdf:

Resource

msm:
Message

Part

msm:
Message
Content

msm:
Operation

msm:
Service

sb:
Goal

sawsdl:modelReference sawsdl:*
Schema
Maping

sawsdl:
model

Reference

xsd:
string

rdf:
Resource foaf:

Agent
rdf:

Literal
xsd:
Date

dc:sourcedc:terms:
issued rdf:label rdf:label rdf:label

msm:
hasInput

msm:
hasOutput

msm:
has

Operation

sb:patterns

sb:hasGoal sb:has
Expression

dc:
creator

rdf:Literal

sb:Bpatterns

FIGURA 5.5. CompoSWS extended ontology supporting BPM-SIC strategy.

In order to face the BPM-SIC methodology we extended CompoSWS ontology as

detailed in Figure 5.5. We extended the proposed ontology with relationships identified

at business level (sb:Bpatterns), which are variations of the original control-flow patterns

(i.e., we support the same patterns but annotated with the + symbol). Triples of the form

〈msm:service, sb:pattern || sb:bpattern, msm:service〉 are annotated with a literal (in this

case a number) indicating the workflow fragment cost (e.g., 1200 milliseconds) or incon-

sistencies at the business (using the the ? symbol followed by the BP model id) and imple-

mentation level (using the * symbol); hence, with this additional annotations, they become

quads (Harth & Decker, 2005). Examples of the produced quads are presented in table 5.1.

For readability purposes, we present the quad elements including a namespace prefix. This

approach allows for higher flexibility in querying data, improving performance and provid-

ing the possibility to save a weight between services. The former version of CompoSWS is

not capable of annotating relationships or triples so that it cannot assign a weight to frag-

ments of the workflow which is a requirement generated by the business process analysis.

Likewise it makes impossible to annotate relationships or triples to indicate an inconsis-

tency or to force a control-flow relationships detected at a business level. This extension

122

Service
repository

.

Simulation
manager

BP
simulator

Simulation
server

Spreadsheet
manager

Client side

Process model editor Spreadsheet tool

Server side
BP model
repository

.

Spreadsheet
repository

.

FIGURA 5.6. Emulator architecture.

required modifying all the original queries and algorithms in order to support quads and

workflow paths weights (the forth parameter) when pre-calculating workflows.

5.4.2. Emulator server

Figure 5.6 illustrates the principal architectural components of the Emulator tool. On

the client side, we have a process model editor used to design BPs and a spreadsheet tool

used to configure the simulation and perform the BP analyses. When a process model is

ready for simulation, it is uploaded into the Simulation Server, which configures the simu-

lation environment, and performs three main tasks: First, it creates or selects the required

services, saving new services in the repository; then it stores the BP model into the cor-

responding repository. Finally, it requests the spreadsheet manager to create spreadsheet

templates and stores them into the spreadsheet repository for reuse in the following phases.

The Simulation Manager deploys the BP into the BP simulator, which runs the simulation.

The process execution data is stored back into the spreadsheet repository and made

available to the spreadsheet tool for analysis. The current implementation uses Signavio1

as process model editor, Google Spreadsheets2 as the spreadsheet tool, and Activity3 as the

internal engine of the BP simulator.

1http://code.google.com/p/signavio-core-components
2www.google.com/App
3http://activiti.org/

123

http://code.google.com/p/signavio-core-components
www.google.com/App
http://activiti.org/

5.4.3. Extensions made to support the key requirements.

In order to support the extension of the BP model implementation based on the feed-

back provided by the BPA (BR1), we enforce a business level relationship (sb:Bpatterns)

between services following the control-flow pattern established in the BP model. Hence,

relationships, such as sequence+, synchronize+, discriminator+, select+, alternative+, or

iterator+, between the services are supported. For example, a BPA may indicate that two

services with slightly different goals such as atachReceipts and completeWS can be invoked

in parallel following a synchronizing, conditional merge pattern. We relate such services

following a synchronization+ relationship.

In table 5.1 we can visualize an example of sb:Bpatterns; msm:Service1 is a sequence

that is not detected for the platform, sb:sequence+ relationship with service msm:Service3

was indicated by the BPA and stored in the platform on the triplestore (step 2). In addition,

as mentioned in Section 5.3.3, after performing a BPM analysis, the logs are examined

to determine the workflow paths’ cost. The services involved in such paths are marked

with a number indicating its priority which is stored in the forth parameter of a quad (sub-

ject, predicate, object, weight). Such information will serve for the platform to determine

deployment properties (e.g., replication, allocated resources, among other properties).

TABLA 5.1. Quad examples for CompoSWS extension.

Subject Predicate Object Context
msm:Service1 sb:sequence msm:Service2 ”1200”ˆˆxsd:string
msm:Service1 sb:sequence+ msm:Service3 ”980”ˆˆxsd:string
msm:Service4 sb:synchronize msm:Service3 ”?bpm12”ˆˆxsd:string
msm:Service3 sb:synchronize msm:Service7 ”*”ˆˆxsd:string

Whenever the BPA can identify inconsistencies between the workflow implementation

and the BP model (BR2), a copy of the offending relationship is created and annotated in

the forth element of the quad to indicate the inconsistency (using a symbol ? followed

by the BPA’s BP model id). This way, the relationship is marked as inconsistent only

in the BP model of such BPA. When such workflow fragment is recommended to other

BPAs, they are notified of the inconsistency so they can evaluate whether it applies to their

124

BP model or not. For instance, transparency laws may require that governmental funded

institutions make all its expenses publicly available, so that, a public university may require

that teachers’ expenses bills become available, while this may be unnecessary for private

institutions. An implementation example is presented in table 5.1: msm:Service4 is an

alternative service in relation to msm:Service3, but there is also another BP model in the

repository (bpm12) where such relationship is considered inconsistent at the business level.

The BR3 requirement: Assisting SAs in identifying Web service candidates for reuse is

supported in a straightforward way by CompoSWS, since the SA only requires to specify

the composition requirement (goal, input and output) so that CompoSWS finds a single

service, an existing workflow or creates a new workflow to satisfy such requirement.

In order to face BR4 request (Recommending plausible alternatives in the design of

BP models based on the workflow platform and existing web services), CompoSWS can

identify the various workflows that implement a request and suggest such workflows to the

BPA, so that he can enrich his BP model with alternative tasks and paths. In this case, a

BPA can extend the BP model in Signavio.

Since relationships between services are weighted, it is possible to calculated the cost

of a workflow path and determine a workflow priority when CompoSWS recommends

services to the BPA and SA. This means that it is possible to support BR5 (Recommend

plausible alternatives in the design of BP models based on their execution costs).

Recall that inconsistencies may arise when the platform can detect potential problems

at an implementation level that may have an impact at business level (e.g., a workflow

subset may be chosen to implement an alternative path of the whole workflow). The work-

flow fragments that are inconsistent according to CompoSWS are marked with a * symbol.

Every time a BPA creates a model including a path marked as inconsistent at the plat-

form level, the platform will notify the BPA and SA about it. Inconsistencies at this level

comprehend potential wrong patterns such as cycles between services, impossibility of im-

plementing sequences, since they require additional information, or incomplete fragments

125

TRIPLESTORE/ Service
repository

.

Emulator

Process model
editor Spreadsheet tool

Server side

BP model
repository

.

Spreadsheet
repository

.

inputs/output
goal

XML Request Service

Provider side

Web service
Container

BP
simulator

Spreadsheet
manager

Compo-SWS
Service

Discovery
Parser

Transformation
SPARQL Parser

Client side

FIGURA 5.7. BPM-SIC architecture.

such as the example of WS7 in section 5.2. Hence, BR6 (Identifying inconsistencies be-

tween BP models and its implementation as a workflow) is also supported.

5.5. Experimental setting

In order to test the BPM-SIC methodology we created a testing scenario including BP

experts in an educational domain. For the case of the BP models, we created a dataset

including 7 BP models for the TR process that are inspired by publicly available descrip-

tions of their practices by the universities of Missouri, Trento, Minnesota, Memphis, PUC

(general process), Place and Northwestern. We also created 15 BP models generated from

direct interviews with users in charge of processing reimbursement requirements at three

Universities in Chile, PUC (specific per department, fund type and labs), Santa Maria and

Los Andes as can be seen in Figure 5.1.

For the workflow platform, we used an existing dataset of 250 Web services focused

on the educational domain (Klusch, 2012), which included task implementations of TR

process.These services are implementations of the tasks in the BP models related to the

TR process and are stored in a common repository to be accessed by CompoSWS and

the Emulator tools. CompoSWS recommends workflows based on these services and the

Emulator analysis is based also on such implementation.

126

We ran a study to validate the viability of the proposed approach. The study followed

the methodology proposed in section 5.3.3, however, we separated the methodology into

three steps in order to clearly identify the effects of the recommendation on the BPAs. It

included an interview with 15 BPAs to generate BP models drawn by hand (step 1 in our

methodology), a second interview was performed to gather data in order to run a business

process analysis using the spreadsheet tool described in (Galli et al., 2015) (step 4 in our

methodology). A third interview with BPAs included the validation of the business process

analysis logs as well as the recommendations made by CompoSWS, implementing this way

the two-way bridge proposed in section 5.3.3 (step 6 in the methodology). In summary, the

user study was performed considering a set of 45 working sessions between the BPAs and

the SA/platform.

5.5.1. First interview: BPM identification

The objective of this study was to understand how the reimbursement process works

in each academic unit of the different universities. The participants of the study were 15

employees of various academy units from 3 different universities, as described in table

5.2, who operate as BPAs. Each BPA participated separately in a 40 minutes session. All

participants were familiar with spreadsheets; only 9 of them knew Google Spreadsheets.

Seven of them had a background in Computer Science. The user study was organized as a

semi-structured interview (Lazar et al., 2010).

The participants were introduced to a small explanation of the purpose of the exper-

iment, they were asked about the TR process and during the following conversation we

gathered data characterizing the BPs, and playing a facilitator role, we drew by hand the

BP models together with the BPA using BPMN.A list of requirements was recorded in

audio and paper notes were taken in this section.

127

TABLA 5.2. Participants to our study

University Unit Total
PUC Mechanical Engineering 1

Industrial Engineering 2
Construction Engineering 1
Computer Science 1
Chemistry and Bioprocess Engineering 1
Engineering Design Laboratory (DILAB) 1
Education 1
Agronomy 1
Semantic Web Research Center (CIWS) 1

Los Andes Research and Postgraduate Office 2
Engineering 1

Santa Maria Computer Science 2
TOTAL 15

5.5.2. Second interview: Business analysis

Playing the SA role, we processed the BP models gathered in the first interview before

interview 2 took place. Considering the requirements list, designed the BP models in Sig-

navio BPM editor and fed the BP models to CompoSWS. The resulting implementation is

shown in table 3. At this stage, we ignored CompoSWS alternative BPM implementations

(workflows). From the generated workflows, we created the configuration spreadsheet for

each BP model (steps 2, 2a, 3, 3a in our methodology).

Table 5.3 presents 7 columns showing the participant’s identification, the number

of workflow generated in the interview, the number of services that was obtained form

the modeled workflow, the number of connections between those services and the last

3 columns represent the number of require/synchronize/discriminator patterns generated

from the CompoSWS repository.

During the interview, the participants were presented with a small explanation of the

purpose of the experiment and the spreadsheet-based tool for performing a BP analysis.

At this point, we started a discussion so as to know what problems were present in the

models, or the most frequent delays. Thus, the study also aimed at understanding whether

the approach facilitates the discussion of findings between the BPA and the SA.

128

TABLA 5.3. BPA’s workflow implementation for each BP model as created by CompoSWS

Participant #workflow #services #connections #require #synchronize #discriminator
1 1 5 4 1 0 0
2 1 5 5 3 2 0
3 1 7 6 5 0 2
4 1 4 5 3 2 0
5 1 9 10 8 0 2
6 1 7 6 6 0 0
7 1 4 5 3 2 0
8 1 5 6 4 0 2
9 1 8 7 7 0 0

10 1 7 8 6 0 2
11 1 6 7 5 2 0
12 1 5 4 4 0 0
13 1 5 6 4 0 2
14 1 5 6 4 0 2
15 1 8 11 7 2 2

TOTAL 15 90 96 70 10 14

Participants were asked questions in order to characterize the BPs (step 4 in our method-

ology). We started with a discussion of the values of the tasks’ input data, expected output,

task duration, and delays they knew about when the processes are executed. For instance, if

the BPA indicated that simple reimbursements include values between 1.000 and 3.500 US

dollar, we configures such behavior in the spreadsheet tool so that the Emulator generates

random values within, in this range.

5.5.3. Processing the information

As described before, we uploaded 7 BP models corresponding to the TR process as

described in figure 5.2. Then, with the data gathered from the first interview, we created

a Web service description per task and participant. This resulted into 15 additional BP

models that were fed into CompoSWS, for a total of 22 models. The platform intercon-

nects the services using control-flow patterns, resulting in workflows that implement each

participant’s BP model as well as alternative implementations that are recommended to the

BPA. The recommendations for alternative workflows made by CompoSWS (step 2a in our

129

TABLA 5.4. CompoSWS recommendations to SA and BPA based on the BPM

Participant #model #
recom-
mended
work-
flows
(BR3,
BR4)

#services #incon-
sistencies
detected
by Com-
poSWS
(BR6)

#incon-
sistencies
detected
by the
BPA
(BR2)

Enforced
relation-
ships at
the BPM
level
(BR1)

- 7 - 43 2 - -
1 8 3 17 3 1 1
2 9 5 21 3 1 0
3 10 5 22 2 0 3
4 11 7 31 4 2 2
5 12 5 22 3 1 0
6 13 6 27 1 1 0
7 14 8 35 1 0 1
8 15 8 37 3 1 1
9 16 8 35 1 0 0
10 17 7 32 2 0 0
11 18 9 36 1 0 0
12 19 9 38 2 0 0
13 20 11 45 1 2 0
14 21 13 52 3 1 3
15 22 17 71 5 2 2

methodology) are shown in table 5.4. CompoSWS was capable of identifying a set of work-

flow inconsistencies at the implementation level (BR6) and inconsistencies detected by the

BPA (BR2). In addition, relationships that were present at the business level but could not

be inferred by CompoSWS were also detected and enforced into the platform (i.e., a busi-

ness process pattern +). Table 5.4 has 7 columns that include the participant’s identifier, the

number of models generated by CompoSWS, the number of workflows recommended by

CompoSWS (BR3, BR4), the number of services generated including all the recommended

workflows detected by CompoSWS, the implementation level inconsistencies identified by

CompoSWS (BR6), the number of inconsistences identified by the BPA participants in the

interview (BR2), and the enforced relationships identified by the participant (BR1).

130

Notice that we generate a configuration spreadsheet but only for the BPAs BP models,

not the alternative recommendations. The data gathered from BPAs were used by the BP

Emulator to calculate the costs of the paths in the workflow; such data was fed to Com-

poSWS to annotate the corresponding services’ relationships (step 4a in the methodology).

Table 5.5 presents the results of the Emulator. Notice that the BPA was able to assign a cost

to all the relationships between services in their model; CompoSWS was able to assign

such cost whenever a workflow recommendation included a path with a known cost. In

addition, CompoSWS was able to detect the less expensive path in a workflow (see Table

5.5) and later calculate the total cost of each workflow in order to recommend the optimized

workflow.

TABLA 5.5. CompoSWS recommendations to SA and BPA based on the spread-
sheet tool

Participant #workflows #recommended
workflows

#annotated
paths
(BR5)

#optimized
recom-
mended
path

1 7 3 0 0
2 8 5 0 1
3 9 5 0 3
4 10 7 0 2
5 11 5 0 0
6 12 6 0 0
7 13 8 1 2
8 14 8 0 1
9 15 8 0 1
10 16 7 0 2
11 17 9 0 1
12 18 9 1 0
13 19 11 0 0
14 20 13 0 1
15 21 17 0 2

Table 5.5 has 5 columns that represents: the participant’s identifier, the number of

workflows generated on CompoSWS, the number of recommended workflows that Com-

poSWS detected, the annotated paths that were reporting for CompoSWS after the execu-

tion of different paths and the last column represents the number of recommendations paths

131

accepted by the participants as an optimal path. Part of this information is taken from the

execution log of BP Emulator.

5.5.4. Third interview: Evaluating the recommendation

During this interview, we presented the results to the BPAs, i.e., the enforced rela-

tionships at the business level (BR1), the alternative workflows for implementing their BP

model (BR3), extensions to the BPM (BR4), paths costs (BR5) and recommendation gener-

ated for such paths, as well as inconsistencies detected at the platform (BR6) and business

(BR2) level as described in section 5.2. We asked the BPAs to provide feedbacks on this

information, which is summarized in table 5.6 and table 5.7. These results are discussed in

detail in section 5.6 .

TABLA 5.6. BPAs response to CompoSWS recommendations based on the BPM
and the spreadsheet tool

Results BR1 BR2 BR3
Enforced
connection at
BPM level

7 require+,
2 synchro-
nize+, 4
discrimina-
tor+

Recommendations
from BP Emu-
lator based on
the log

7 accepted,
2 rejected, 6
indifferent

Inconsistencies
at BP level

4 BPAs detected 1
or 2 inconsistencies
in their models,
7 BPA’s indicated
their models were
similar, and 4 BPAs
indicated their
models were totally
different

Recommending
Web services
from Com-
poSWS

12 participants ac-
cepted the recommen-
dations, 3 preferred
their own models

132

5.6. Analyzing the results

5.6.0.1. Transferring business knowledge from BPAs to SAs and the workflow plat-

form.

BR1: Extending BP model implementation based on the feedback provided

by the BPA.

We detected 7 BPAs that required the enforcement of a relationship between

services that CompoSWS did not manage to identify because the services’ sig-

natures differ. 7 participants needed to enforce a require+ relationship that oc-

curred when a service’s input, S1, included a set of receipts that were validated

by the subsequent service S2; however, if the receipts were invalid a require+

relationship needed to be established between services S2 and S1 creating this

way a cycle. CompoSWS considered this an invalid configuration since cycles

are considered an inconsistency. This is however a fundamental requirement at

the business level.

In 2 cases, CompoSWS detected that the output of a service, S3, did not matched

the input of another service, S4, and therefore no relationship was detected; how-

ever, BPAs identified that such parameters (an incomplete form and an unsigned

form) were equivalent at the business level and hence a synchronize+ relation-

ship should have been established since additional parameters provided from

other services were required.

Similarly, due to mismatches between input, output parameters and goals, Com-

poSWS was unable to detected alternative relationships that BPAs required. In

all 4 cases, BPAs indicated that such elements were equivalent at the business

level. For instance, three services S5, S6, and S7 share the same goal, to ver-

ify a worksheet, however, two of them shared the same output FinalWorksheet

whereas the third output was labeled as worksheet. CompoSWS required that

both, goal and output, are the same for identifying such services as related by a

133

discriminator pattern. In this case a discriminator+ pattern is enforced between

the services.

The feedback from the BP analysis logs indicated the costs related to the various

workflows in terms of process execution time (at the business level, not software

level); all the processes had very similar costs, so that, only those workflows

with less nodes (tasks) presented smaller costs and hence were recommended to

the BPAs. 15 recommendations were made, where 7 BPAs accepted the recom-

mendations, 2 BPAs rejected them, while 6 remained indifferent.

BR2: Identifying inconsistencies between the workflow implementation and

the BP model.

A total of 11 participants indicated that travel allowances were processed in the

same way of general reimbursements whereas four participants indicated their

models were totally different: Education(PUC) and Construction Engineering

(PUC) required that travel allowances should be granted before in order to initi-

ate a reimbursement process. Computer Science (Santa Maria) and Engineering

(Los Andes) required that travel allowances were requested separately from re-

imbursements. In these cases, the reimbursements were devoted only to expenses

other than travel tickets and hotels.

When evaluating their BP models against the others, 4 participants (3 from Los

Andes and 1 from Agronomy-PUC) identified inconsistencies in their own BP

models. The remaining 7 participants did not consider that their own BP models

were inconsistent.

5.6.0.2. Transferring implementation knowledge from the workflow platform to the

SA and BPA.

BR3: Assisting SAs in identifying Web service candidates for reuse.

When uploading the services corresponding to BP’s tasks into CompoSWS, the

platform recommended similar services for implementing the tasks. Thus, 3 to

17 workflows were recommended to the BPAs (see Table 5.4). 12 participants

were willing to accept the recommendations and 3 preferred their own models:

134

TABLA 5.7. BPAs response to CompoSWS recommendations based on the BPM
and the spreadsheet tool (second part)

Results BR4 BR5 BR6
Recommending
extensions by
CompoSWS

10 BPAs in-
dicated they
could extend
their BP models
and 5 BPAs did
not accepted to
make changes.

Workflows
suggested by
CompoSWS
based on
their costs
(execution
time)

13 BPAs
accepted de
recommen-
dations but 2
participants
rejected them

Inconsistencies
detected by
CompoSWS

5 BPAs accepted the in-
consistencies, 3 BPAs
rejected the inconsis-
tencies. 7 remained in-
different.

Agronomy (PUC), Education (PUC) and Research and Postgraduate Office (Los

Andes). The more workflows were uploaded the more services could be recom-

mended, making it a burden for the user to choose one service to reuse, or even

choose to implement a new one. Visualization strategies to alleviate the recom-

mendation strategy such as filtering (Konstan & Riedl, 2012), emphasis (Waldner

& Vassileva, 2014), or sophisticated hierarchical graph maps (Hernando, Moya,

Ortega, & Bobadilla, 2014) have been proposed in diverse areas to deal with

information overload when recommending items.

BR4: Recommending plausible alternatives in the design of BP models based

on the workflow platform and existing web services.

Due to the existence of control-flow patterns such as discriminator and synchro-

nize, it is possible to identify alternative implementations for the BP’s tasks. In

135

the study, 10 of the interviewed BPAs indicated they could extend their BP mod-

els so that the steps are followed more strictly. They also accepted that alternative

paths should be recommended in case of delays in the execution of tasks. 5 BPAs

from Agronomy (PUC), Education (PUC), Computer Science (Santa Maria) and

Research and Postgrad Office (Los Andes) did not accept making changes to

their own models.

BR5: Recommending plausible alternatives in the design of BP models based

on their execution costs.

We presented the workflows’ paths costs, in terms of execution time, to the BPAs

as well as an optimized workflow suggested by CompoSWS. Thirteen partici-

pants showed willingness to change their own BP model partially, in those as-

pects were their models were more expensive. Among these 13 participants,

there were 3 BPAs that formerly rejected our workflow recommendation (BR4)

but were willing to accept it when they knew about the workflow’s cost (Agron-

omy (PUC), Education (PUC), Computer Science (Santa Maria)). The remaining

two participants (2 from Research and Postgrad Office at Los Andes) preferred

to keep their own model unaltered. This demonstrates that our recommendations

were effective.

BR6: Identifying inconsistencies between BP models and its implementation

as a workflow. CompoSWS detected 4 inconsistencies in the use of the syn-

chronize pattern: two of them presented cycles; two required input parameters

that were not obtained except by directly asking them to the users. For exam-

ple, services with 4 input parameters, were 3 of them could be obtained through

the invocation of previous services, but 1 missing parameter that could not be

obtained.

5 BPAs (Computer Science (Santa Maria), Research and Postgrad Office (Los

Andes) and Industrial Engineering (PUC)) indicated that such inconsistencies

made sense at the business level. 3 BPAs (Agronomy (PUC), Education (PUC)

and CIWS) indicated that even though input data was missing, the workflows

136

were correct, and obtaining the missing parameter directly from the user could

solve it. The remaining 7 BPAs indicated that they did not present such cases in

their own BP models so they refrained of making a choice.

5.7. Conclusions

In this chapter we identified 6 mayor requirements for bridging BPA and SA roles

during the life cycle of a BP model and its implementation with Web services. Based

on such requirements, we propose a methodology that enables both roles to have a closer

collaboration. This methodology exploits the benefits of two instruments, CompoWS, a

platform capable of composing workflows automatically, and a BP Emulator that makes

it possible to analyze the business process models. Together, these instruments enable the

capturing of each roles’ expertise and generate recommendations that help in enriching

both roles.

We tested our approach and found that, in effect, BPAs were able to identify relation-

ships, at the business level, that could not be identified by an automatic tool. This follows

the work of (Buchwald et al., 2011), (Delgado, Garcı́a-rodrı́guez De Guzmán, Ruiz, & Piat-

tini, 2010) and (Bär, Schmidt, & Möhring, 2014) where they generate relationships directly

from the BP model to the workflow. In our case, we identified missing relationships and

inconsistencies between the BP model and its implementation and we were able to recom-

mend changes to the implementation that can benefit the SA role. In addition, we enriched

the workflow platform with business analysis results so that recommendations can be prior-

itized from the workflow costs. Knowledge sharing has proved of significant assistance to

detect also inconsistencies at the BP model level, by identifying such cases, the BP role was

also enriched with information related to the concerned BP model. In summary, the pro-

posed instrumentation (CompoSWS and BP Emulator) made possible to uncover valuable

information. Under the framework of our methodology, an iterative, close collaboration

scenario between business process and IT stakeholders was set up. This collaboration al-

lowed both stakeholders to exchange their knowledge in order to avoid mistakes, reuse, and

refine each other’s deliverables.

137

6. CONCLUSIONS AND FUTURE WORK

6.1. Automatic and dynamic functional service composition

In Chapter 3 we describe an approach to dynamic automatic Semantic Web service

composition. Our approach has been directed to meet the main challenges in service com-

position. First, it is autonomous so that the users do not required to analyze the huge amount

of available services manually. Second, it has positive scalability, therefore the composition

is better performed in a dynamic environment when compared to simple service composi-

tion strategies. Third, since Web services are often implemented by different organizations

using different conceptual models, we improve this problem using semantic descriptions

and the relationship between services for matching and composing Web services.

We focused on the matchmaking component and the use of W3C recommendations

as well as technologies available today for implementing highly scalable semantic solu-

tions. This approach allowed us a simple and scalable implementation, and allows highly

sophisticated components (such as SAM algorithm) could be replaced.

The main research question to be addressed in this part of thesis is: Given a set of

services, semantically described, can we design an scalable method to discover complex

service compositions (i.e. complex workflows)

The main conclusion from the experience is that we can discover and compose Se-

mantic Web services considering functional goals by exploiting the services’ signature,

as has been done in the literature, but to compose services that mimic the complexity of

industry level business processes we require to capture such semantics. In particular we

have extended the MSM ontology in order to allow the specification of simple and com-

plex control-flow patterns based on the service’s signature. Our solution considered some

control-flow patterns commonly used in business process modeling as well as the represen-

tation of such semantics in a graph and the rules that automatically determine its inference.

In addition, when adding such complexity to determine service composition perfor-

mance and scalability become relevant issues that must be faced. Our approach was to

138

keep a minimalist semantic model to control the graph growth, to precalculte potential ser-

vice compounds, and to define a composition algorithm that exploits SPARQL queries. A

semantic graph model allows discovering well-formed complex, composed services, au-

tomatically and dynamically under a reasonable response time. Furthermore, our perfor-

mance is twice as fast as the be performance reported, however, our approach is not fully

comparable since ether’s results consider much more parameters and produce simple ser-

vice composition (sequences).

Given the specification of available Web services and users requirement, an algorithm

can generate a composition of available services, which matches the requirement of the

user. The composition process is fully autonomous without the intervention from the user.

Additionally, the composite service generation should rely on the specification of Web

services that provides significant improvements regarding throughput and availability.

Finally, the presented approach allow the generation of compositions that correspond

to complex business patterns adopted in most real scenarios, without losing performance

when compared to approaches that only consider simple business patterns.

The fact remains that, we just explored 6 control-flow patterns out of the numerous

existing and ones in order to prove the feasibility of our approach, this work should be

extended to determine the feasibility of automatically deriving the remaining patterns.

6.2. Regarding eliciting BPA expertise

In Chapter 4, a spreadsheet-based approach for business process model analysis is used

to map the problem of business process performance analysis and verification. It means

that a user friendly analysis tool of business process was created to allow to the business

analyst to easily define metrics, assertions and test reports in order to elicit her expertise, in

particular, given that spreadsheets are omnipresent in business and well-known by average

BP analysts.

139

The main research question to be addressed in this part of thesis is: How can we

enable BPAs (without development experience) to analyze and improve their BPs on their

own, with less reliance on and intervention of SA?

The main conclusion is that the combination of a BP simulation and a spreadsheet-

based UI (Google Spreadsheet) accompanied with a standard BPMN process model repre-

sentation empowers BP analysts with limited technical skills to simulate, verify and ana-

lyze the execution time and real-time performance of BPs through personalized instruments

(metrics, assertions and custom reports).

Second, the presented user studies confirm that the spreadsheet abstraction has indeed

the potential to enable BP analysts to perform complex BP analyses and to effectively

discuss findings with software developers during the life cycle of a process in an iteratively

way. In addition, the qualitative analysis complements the user studies with a discussion of

its strengths and weaknesses compared to the state of the art in BP model analysis.

Finally, thanks to the positive results obtained this work should be extended allowing

BP analysts to also obtain a concrete feeling of how their processes behave if deployed in

a real BP system using as an example a process monitoring dashboard, and also we would

like to incorporate the log data comparison produced during the analysis of a process and

after the deployment of the process in order to improve analysis precision.

6.3. Regarding closing the gap between BPAs and SAs

In Chapter 5, we join the previous approaches, the first one focused on the automatic

and dynamic discovery of workflows from services’ signature and the second one focused

on the analysis and simulation of a business process, with the purpose to enrich and close

the gap between BPA and SA in both directions.

The main research question to be addressed in this part of thesis is: How can we

assist the BPA to transfer their BP knowledge to the SA and conversely, exploit the IT

infrastructure to assist the BPA design choices when constructing a BP model?

140

The main conclusion is that the combination of a development and analysis supporting

platform under a methodological framework increases the flexibility in the development of

service- and process-oriented information systems. Our approach enables the realization of

business requirements by an IT implementation with a higher quality and more quickly by:

ensuring bidirectional traceability between BPA and SA, enabling automatic identification

of inconsistencies in the business models and supporting the modeler (BPA and SA) when

resolving inconsistencies.

Finally, the development and specification of the six bridging strategies allows to trans-

fer the underlying expertise in both directions demonstrated that in effect the workflow

platform with business analysis capability was enriched in their capacity of finding in-

consistencies between what was technically possible versus what was required at business

level, and also sharing the knowledge gathered by the technical platform have prove of sig-

nificant assistance to detect also inconsistencies at the implementation and BP model level,

for the BPA.

In the future, we plan to extend this work by considering the missing cases and unim-

plemented details in the Emulator editor such as adding support to new BPMN modules

(like event support), adding the ability to simulate resource utilization and logging the

loops. In addition a new user testing is needed in order to test the methodology at inter-

organizational level with as least 20 real users from a international company.

141

References

AbuJarour, M., & Awad, A. (2011). Discovering linkage patterns among web ser-

vices using business process knowledge. In Services computing (scc), 2011 ieee in-

ternational conference on (pp. 314–321).

AbuJarour, M., & Awad, A. (2014). Web services and business processes: A round

trip. In Web services foundations (pp. 3–29). Springer.

Aguilar, M., Rautert, T., & Pater, A. (1999). Business process simulation: a fun-

damental step supporting process centered management. In Winter simulation (pp.

1383–1392).

Ahmad, H., & Dowaji, S. (2013). Linked-owl: A new approach for dynamic linked

data service workflow composition. Webology, 10(1), 21–30.

Alamri, A., Eid, M., & El Saddik, A. (2006). Classification of the state-of-the-art

dynamic web services composition techniques. International Journal of Web and

Grid Services, 2(2), 148–166.

Alarcon, R., & Wilde, E. (2010). Linking data from restful services. In Third work-

shop on linked data on the web, raleigh, north carolina (april 2010).

Alowisheq, A., Millard, D. E., & Tiropanis, T. (2009). Express: Expressing restful

semantic services using domain ontologies. Springer.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., . . . Thatte,

S. (2003). Business process execution language for web services. http://goo

.gl/kpBKUS. version.

142

http://goo.gl/kpBKUS
http://goo.gl/kpBKUS

Arenas, M., Conca, S., & Pérez, J. (2012). Counting beyond a yottabyte, or how

sparql 1.1 property paths will prevent adoption of the standard. In Proceedings of the

21st international conference on world wide web (pp. 629–638).

Austin, D., Barbir, A., Ferris, C., & Garg, S. (2004). Web services architecture

requirements. W3C Working Group Notes, 22.

Aversano, L., Di Penta, M., & Taneja, K. (2006). A genetic programming approach

to support the design of service compositions. International Journal of Computer

Systems Science & Engineering, 21(4), 247–254.

Bansal, A., Blake, M. B., Kona, S., Bleul, S., Weise, T., & Jaeger, M. C. (2008).

Wsc-08: continuing the web services challenge. In E-commerce technology and the

fifth ieee conference on enterprise computing, e-commerce and e-services, 2008 10th

ieee conference on (pp. 351–354).

Bär, F., Schmidt, R., & Möhring, M. (2014). Fabric-process patterns. In Enterprise,

business-process and information systems modeling (pp. 139–153). Springer.

Basu, S., Casati, F., & Daniel, F. (2008). Toward web service dependency discovery

for soa management. In Services computing, 2008. scc’08. ieee international confer-

ence on (Vol. 2, pp. 422–429).

Beizer, B. (1995). Black-box testing: techniques for functional testing of software

and systems. John Wiley & Sons, Inc.

Bellido, J., Alarcón, R., & Pautasso, C. (2013). Control-flow patterns for decen-

tralized restful service composition. ACM Transactions on the Web (TWEB), 8(1),

5.

Bener, A. B., Ozadali, V., & Ilhan, E. S. (2009). Semantic matchmaker with pre-

condition and effect matching using swrl. Expert Systems with Applications, 36(5),

9371–9377.

143

Bhat, J. M., Gupta, M., & Murthy, S. N. (2006). Overcoming requirements engineer-

ing challenges: Lessons from offshore outsourcing. Software, IEEE, 23(5), 38–44.

BizAgi. (2015). Bizagi process modeler - user guide [Computer soft-

ware manual]. (http://download.bizagi.com/docs/modeler/2904/

en/Modeler user Guide.pdf)

BOCGroup. (2015). Adonis community edition getting started series [Com-

puter software manual]. (http://en.adonis-community.com/welcome/

webinars-and-tutorials/adonisce-getting-started-series)

Bonitasoft. (2011, October). Bonita open solution - simulation guide [Com-

puter software manual]. (http://www.bonitasoft.com/system/files/

download/bos-5.6-simulation-guide.pdf)

Booth, D., & Liu, C. K. (2007). Web services description language (wsdl) version

2.0 part 0: Primer. W3C Recommendation, 26.

Borst, W. N. (1997). Construction of engineering ontologies for knowledge sharing

and reuse. Universiteit Twente.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,

. . . Winer, D. (2000). Simple object access protocol (soap) 1.1.

Broekstra, J., & Kampman, A. (2004). Serql: An rdf query and transformation lan-

guage draft.

Brogi, A., Corfini, S., & Popescu, R. (2008). Semantics-based composition-oriented

discovery of web services. ACM Transactions on Internet Technology (TOIT), 8(4),

19.

Bucchiarone, A., Melgratti, H., & Severoni, F. (2007). Testing service composition.

In Proceedings of the 8th argentine symposium on software engineering (assea07).

144

http://download.bizagi.com/docs/modeler/2904/en/Modeler_user_Guide.pdf
http://download.bizagi.com/docs/modeler/2904/en/Modeler_user_Guide.pdf
http://en.adonis-community.com/welcome/webinars-and-tutorials/adonisce-getting-started-series
http://en.adonis-community.com/welcome/webinars-and-tutorials/adonisce-getting-started-series
http://www.bonitasoft.com/system/files/download/bos-5.6-simulation-guide.pdf
http://www.bonitasoft.com/system/files/download/bos-5.6-simulation-guide.pdf

Buchwald, S., Bauer, T., & Reichert, M. (2011). Bridging the gap between business

process models and service composition specifications.

Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., & Wallace, C. (2003).

End-user software engineering with assertions in the spreadsheet paradigm. In Pro-

ceedings of the 25th international conference on software engineering (pp. 93–103).

Burnett, M., Cook, C., & Rothermel, G. (2004). End-user software engineering.

Communications of the ACM, 47(9), 53–58.

Burnett, M. M., & Ambler, A. L. (1994). Interactive visual data abstraction in a

declarative visual programming language. Journal of Visual Languages & Comput-

ing, 5(1), 29–60.

Burnstein, I. (2006). Practical software testing: a process-oriented approach.

Springer Science & Business Media.

Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S., . . .

others (2004). Owl-s: Semantic markup for web services. W3C Member Submis-

sion.

Casati, F., Castellanos, M., Dayal, U., & Salazar, N. (2007). A generic solution for

warehousing business process data. In Vldb (pp. 1128–1137).

Castro, V., Mesa, J. M. V., Herrmann, E., & Marcos, E. (2008). A model driven

approach for the alignment of business and information systems models. In Computer

science, 2008. enc’08. mexican international conference on (pp. 33–43).

Chabeb, Y., Tata, S., & Ozanne, A. (2010). Yasa-m: A semantic web service match-

maker. In Advanced information networking and applications (aina), 2010 24th ieee

international conference on (pp. 966–973).

145

Chandrasekaran, S., Miller, J., Silver, G., Arpinar, B., & Sheth, A. (2003). Perfor-

mance analysis and simulation of composite web services. Electronic Markets, 13(2),

120–132.

Chen, A., & Buchs, D. (2006). Generative business process prototyping framework.

In Rapid system prototyping, 2006. seventeenth ieee international workshop on (pp.

140–148).

Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S. (2007). Web services de-

scription language (wsdl) version 2.0 part 1: Core language. W3C recommendation,

26, 19.

Coalition, O. (2004). Owl-s 1.1 release.(2004).

De Bruijn, J., Lausen, H., Polleres, A., & Fensel, D. (2006a). The web service mod-

eling language wsml: an overview. Springer.

De Bruijn, J., Lausen, H., Polleres, A., & Fensel, D. (2006b). The web service mod-

eling language wsml: an overview. Springer.

De Castro, V., Marcos, E., & Lopez Sanz, M. (2006). A model driven method for

service composition modelling: a case study. International Journal of Web Engineer-

ing and Technology, 2(4), 335–353.

Delgado, A., Garcı́a-rodrı́guez De Guzmán, I., Ruiz, F., & Piattini, M. (2010). Tool

support for service oriented development from business processes. In 2nd interna-

tional workshop on model-driven service engineering (mose?10) in 48th int. conf. on

objects, models, components, patterns (tools?10), málaga, spain.

Delgado, A., Ruiz, F., de Guzmán, I. G.-R., & Piattini, M. (2010). A model-driven

and service-oriented framework for the business process improvement. Journal of

Systems Integration, 1(3), 45.

Deloitte. (2009). Spreadsheet management: Not what you figured..

146

Dietze, S., Benn, N., Yu, H. Q., Pedrinaci, C., Makni, B., Liu, D., . . . Domingue, J.

(2010). Comprehensive service semantics and light-weight linked services: towards

an integrated approach.

Dijkman, R., Dumas, M., & Garcı́a-Bañuelos, L. (2009). Graph matching algo-

rithms for business process model similarity search. In Bpm (pp. 48–63). Springer.

Dijkman, R. M., Dumas, M., & Ouyang, C. (2007). Formal semantics and analysis

of bpmn process models using petri nets. Queensland University of Technology, Tech.

Rep.

Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of busi-

ness process models in bpmn. Information and Software Technology, 50(12), 1281–

1294.

D’Mello, D. A., Ananthanarayana, V., & Salian, S. (2011). A review of dynamic web

service composition techniques. In Advanced computing (pp. 85–97). Springer.

Domingue, J., Cabral, L., Hakimpour, F., Sell, D., & Motta, E. (2004). Irs iii: A

platform and infrastructure for creating wsmo based semantic web services.

Domingue, J., Galizia, S., & Cabral, L. (2005). Choreography in irs-iii–coping with

heterogeneous interaction patterns in web services. In The semantic web–iswc 2005

(pp. 171–185). Springer.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., & Zhang, J. (2004). Similarity

search for web services. In Proceedings of the thirtieth international conference on

very large data bases-volume 30 (pp. 372–383).

Dürst, M., & Suignard, M. (2004). Internationalized resource identifiers (iris) (Tech.

Rep.).

Dustdar, S., & Schreiner, W. (2005). A survey on web services composition. Inter-

national journal of web and grid services, 1(1), 1–30.

147

Erl, T. (2008). Soa: principles of service design (Vol. 1). Prentice Hall Upper Sad-

dle River.

Fisher, M., & Rothermel, G. (2005). The euses spreadsheet corpus: a shared re-

source for supporting experimentation with spreadsheet dependability mechanisms.

In Acm sigsoft software engineering notes (Vol. 30, pp. 1–5).

Galli, J. S., Vairetti, C., Rodrı́guez, C., Daniel, F., Casati, F., & Alarcón, R. (2015).

Analysis and improvement of business process models using spreadsheets. Informa-

tion Systems.

Garcı́a-Fanjul, J., Tuya, J., & De La Riva, C. (2006). Generating test cases specifi-

cations for bpel compositions of web services using spin. In Ws-mate 2006 (p. 83).

Ghafarian, T., & Kahani, M. (2009). Semantic web service composition based on

ant colony optimization method. In Networked digital technologies, 2009. ndt’09.

first international conference on (pp. 171–176).

Gooneratne, N., Tari, Z., & Harland, J. (2007). Verification of web service descrip-

tions using graph-based traversal algorithms. In Proceedings of the 2007 acm sym-

posium on applied computing (pp. 1385–1392).

Governatori, G., Milosevic, Z., & Sadiq, S. (2006). Compliance checking between

business processes and business contracts. In Edoc (pp. 221–232).

Grant, J., & Becket, D. (2004). Rdf test cases-n-triples (Tech. Rep.). Tech. rep.,

W3C Recommendation.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.

Knowledge acquisition, 5(2), 199–220.

Gutiérrez, J., Escalona, M., Mejı́as, M., & Torres, J. (2005). Analysis of proposals

to generate system test cases from system requirements. In Caise’05 forum.

148

Hadley, M. J. (2006). Web application description language (wadl).

Haller, A., Cimpian, E., Mocan, A., Oren, E., & Bussler, C. (2005). Wsmx-a se-

mantic service-oriented architecture. In Web services, 2005. icws 2005. proceedings.

2005 ieee international conference on (pp. 321–328).

Hamadi, R., & Benatallah, B. (2003). A petri net-based model for web service com-

position. In Proceedings of the 14th australasian database conference-volume 17

(pp. 191–200).

Harth, A., & Decker, S. (2005). Optimized index structures for querying rdf from

the web. In Web congress, 2005. la-web 2005. third latin american (pp. 10–pp).

Hartvigsen, D. (2004). Simquick, process simulation with excel. Prentice-Hall, Inc.

He, J., Zhang, Y., Huang, G., & Cao, J. (2012). A smart web service based on the

context of things. ACM Transactions on Internet Technology (TOIT), 11(3), 13.

Hermans, F. (2013). Improving spreadsheet test practices. In Cascon (pp. 56–69).

Hernando, A., Moya, R., Ortega, F., & Bobadilla, J. (2014). Hierarchical graph maps

for visualization of collaborative recommender systems. Journal of Information Sci-

ence, 40(1), 97–106.

Hoffmann, J., Bertoli, P., & Pistore, M. (2007). Web service composition as plan-

ning, revisited: In between background theories and initial state uncertainty. In Pro-

ceedings of the national conference on artificial intelligence (Vol. 22, p. 1013).

Howden, W. E. (1980). Functional program testing. Software Engineering, IEEE

Transactions on(2), 162–169.

IBM. (2009). Tutorials and samples for websphere business modeler version

6.2 [Computer software manual]. (http://www-01.ibm.com/support/

docview.wss?uid=swg27013902)

149

http://www-01.ibm.com/support/docview.wss?uid=swg27013902
http://www-01.ibm.com/support/docview.wss?uid=swg27013902

Kaner, C., Falk, J., & Nguyen, H. Q. (2000). Testing computer software second

edition. Dreamtech Press.

Kil, H., & Nam, W. (2013). Semantic web service composition via model checking

techniques. International Journal of Web and Grid Services, 9(4), 339–350.

Klein, M., Konig-Ries, B., & Mussig, M. (2005). What is needed for semantic ser-

vice descriptions? a proposal for suitable language constructs. International Journal

of Web and Grid Services, 1(3-4), 328–364.

Klusch, M. (2012). Overview of the s3 contest: Performance evaluation of semantic

service matchmakers. In Semantic web services (pp. 17–34). Springer.

Klusch, M., Gerber, A., & Schmidt, M. (2005). Semantic web service composition

planning with owls-xplan. In Proceedings of the aaai fall symposium on semantic

web and agents, arlington va, usa, aaai press.

Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., & Bernstein, A. (2015). Semantic

web service search: A brief survey. KI-Künstliche Intelligenz, 1–9.

Klusch, M., Kapahnke, P., & Zinnikus, I. (2009). Hybrid adaptive web service se-

lection with sawsdl-mx and wsdl-analyzer. In The semantic web: Research and ap-

plications (pp. 550–564). Springer.

Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user

experience. User Modeling and User-Adapted Interaction, 22(1-2), 101–123.

Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). Sawsdl: Semantic annota-

tions for wsdl and xml schema. Internet Computing, IEEE, 11(6), 60–67.

Kruck, S. (2006). Testing spreadsheet accuracy theory. Information and Software

Technology, 48(3), 204–213.

150

Krummenacher, R., Norton, B., & Marte, A. (2010). Towards linked open services

and processes. In Future internet-fis 2010 (pp. 68–77). Springer.

Kylau, U., Stollberg, M., Weber, I., & Barros, A. (2012). Service functionality and

behavior. In Handbook of service description (pp. 269–293). Springer.

Lassila, O., Swick, R. R., et al. (1998). Resource description framework (rdf) model

and syntax specification.

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). Sa-rest and (s) mashups: Adding

semantics to restful services. In Semantic computing, 2007. icsc 2007. international

conference on (pp. 469–476).

Lausen, H., & Farrell, J. (2007). Semantic annotations for wsdl and xml schema.

W3C recommendation, W3C.

Lazar, J., Feng, J. H., & Hochheiser, H. (2010). Research methods in human-

computer interaction. Wiley.

Lecue, F., & Leger, A. (2006). Semantic web service composition based on a closed

world assumption. In Web services, 2006. ecows’06. 4th european conference on (pp.

233–242).

Lemos, A. L., Daniel, F., & Benatallah, B. (2015). Web service composition: A

survey of techniques and tools. ACM Computing Surveys (CSUR), 48(3), 33.

Li, Z. J., Sun, W., & Du, B. (2008). Bpel4ws unit testing: Framework and imple-

mentation. International Journal of Business Process Integration and Management,

3(2), 131–143.

Li, Z. J., Tan, H., Liu, H., Zhu, J., & Mitsumori, N. M. (2008). Business-process-

driven gray-box soa testing. IBM Systems Journal, 47(3), 457–472.

151

Lin, C., Kwong, A., & Perni, R. (2006). Discovery and development of vx-950, a

novel, covalent, and reversible inhibitor of hepatitis c virus ns3. 4a serine protease.

Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disor-

ders), 6(1), 3–16.

Liu, Y., Muller, S., & Xu, K. (2007). A static compliance-checking framework for

business process models. IBM Systems Journal, 46(2), 335–361.

Maleshkova, M., Pedrinaci, C., & Domingue, J. (2009). Supporting the creation of

semantic restful service descriptions.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., . . .

others (2004). Owl-s: Semantic markup for web services. W3C member submis-

sion, 22, 2007–04.

Mayer, P., & Lübke, D. (2006). Towards a bpel unit testing framework. In Workshop

on testing, analysis, and verification of web services and applications (pp. 33–42).

McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology language

overview. W3C recommendation, 10(10), 2004.

Medjahed, B. (2004). Semantic web enabled composition of web services (Unpub-

lished doctoral dissertation). Citeseer.

Mell, P., & Grance, T. (2011). The nist definition of cloud computing.

Mennie, D. W. (2000). An architecture to support dynamic composition of service

components and its applicability to internet security (Unpublished doctoral disserta-

tion). Citeseer.

Motahari-Nezhad, H. R., Saint-Paul, R., Casati, F., & Benatallah, B. (2011). Event

correlation for process discovery from web service interaction logs. VLDBJ, 20(3),

417–444.

152

Narayanan, S., & McIlraith, S. (2003). Analysis and simulation of web services.

Computer Networks, 42(5), 675–693.

Nayak, R., & Bose, A. (2015). A data mining based method for discovery of web

services and their compositions. In Real world data mining applications (pp. 325–

342). Springer.

Object Management Group (OMG). (2011). Business process model and notation

(bpmn) version 2.0. http://www.omg.org/spec/BPMN/2.0/.

ORG, U. (2000). Uddi executive white paper. OASIS.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented

computing: State of the art and research challenges. Computer(11), 38–45.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2008). Service-oriented

computing: a research roadmap. International Journal of Cooperative Information

Systems, 17(02), 223–255.

Pautasso, C. (2009a). Composing restful services with jopera. In Software compo-

sition (pp. 142–159).

Pautasso, C. (2009b). Restful web service composition with bpel for rest. Data &

Knowledge Engineering, 68(9), 851–866.

Pedrinaci, C., Lambert, D., Maleshkova, M., Liu, D., Domingue, J., & Krummen-

acher, R. (2011). Adaptive service binding with lightweight semantic web services.

Springer.

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., & Domingue, J.

(2010). iserve: a linked services publishing platform. In Ceur workshop proceedings

(Vol. 596).

153

http://www.omg.org/spec/BPMN/2.0/

Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., & Traverso, P. (2004). Planning

and monitoring web service composition. In Artificial intelligence: Methodology,

systems, and applications (pp. 106–115). Springer.

Reynolds, D. (2004). Jena 2 inference support. Online manual at http://jena.

sourceforge. net/inference/index. html.

Rodrı́guez, C., Schleicher, D., Daniel, F., Casati, F., Leymann, F., & Wagner, S.

(2013). Soa-enabled compliance management: instrumenting, assessing, and ana-

lyzing service-based business processes. SOCA, 1–18.

Rodriguez-Mier, P., Mucientes, M., Lama, M., & Couto, M. I. (2010). Composi-

tion of web services through genetic programming. Evolutionary Intelligence, 3(3-

4), 171–186.

Rodrı́guez-Mier, P., Mucientes, M., Vidal, J. C., & Lama, M. (2012). An optimal and

complete algorithm for automatic web service composition. International Journal of

Web Services Research (IJWSR), 9(2), 1–20.

Rodriguez Mier, P., Pedrinaci, C., Lama, M., & Mucientes, M. (2015a). An inte-

grated semantic web service discovery and composition framework.

Rodriguez Mier, P., Pedrinaci, C., Lama, M., & Mucientes, M. (2015b). An inte-

grated semantic web service discovery and composition framework.

Rong, W., Liu, K., & Liang, L. (2009). Personalized web service ranking via user

group combining association rule. In Web services, 2009. icws 2009. ieee interna-

tional conference on (pp. 445–452).

Rosenberg, F., Curbera, F., Duftler, M. J., & Khalaf, R. (2008). Composing restful

services and collaborative workflows: A lightweight approach. Internet Computing,

IEEE, 12(5), 24–31.

154

Rothermel, G., Li, L., DuPuis, C., & Burnett, M. (1998). What you see is what you

test: A methodology for testing form-based visual programs. In Proceedings of the

20th international conference on software engineering (pp. 198–207).

Rozinat, A., & van der Aalst, W. M. P. (2008). Conformance checking of processes

based on monitoring real behavior. Inf. Sys., 33(1), 64–95.

Russell, N., Ter Hofstede, A. H., & Mulyar, N. (2006). Workflow controlflow pat-

terns: A revised view.

Russell, N. C., van der Aalst, W. M., & Ter Hofstede, A. H. (2009). Designing a

workflow system using coloured petri nets. In Transactions on petri nets and other

models of concurrency iii (pp. 1–24). Springer.

Sayal, M., Casati, F., Dayal, U., & Shan, M.-C. (2002). Business process cockpit.

In Vldb (pp. 880–883).

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users

and end user programmers. In Visual languages and human-centric computing, 2005

ieee symposium on (pp. 207–214).

Schenk, S., & Petrák, J. (2008). Sesame rdf repository extensions for remote query-

ing. In Znalosti conf (Vol. 113, p. 125).

Signavio. (2015). Feature overview a signavio process editor [Computer software

manual]. (http://www.signavio.com/docs/en/pe-features.pdf)

Silveira, P., Rodrı́guez, C., Casati, F., Daniel, F., D’Andrea, V., Worledge, C., &

Taheri, Z. (2010). On the design of compliance governance dashboards for effective

compliance and audit management. In Icsoc/servicewave 2009 workshops (pp. 208–

217).

155

http://www.signavio.com/docs/en/pe-features.pdf

Sirin, E., Parsia, B., Wu, D., Hendler, J., & Nau, D. (2004). Htn planning for web

service composition using shop2. Web Semantics: Science, Services and Agents on

the World Wide Web, 1(4), 377–396.

Smirnov, S., Weidlich, M., Mendling, J., & Weske, M. (2009). Action patterns in

business process models. Springer.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: princi-

ples and methods. Data & knowledge engineering, 25(1), 161–197.

Sutcliffe, A. (2012). User-centred requirements engineering. Springer Science &

Business Media.

Tan, Y., & Takakuwa, S. (2007). Predicting the impact on business performance of

enhanced information system using business process simulation. In Winter simula-

tion (p. 2203 - 2211).

Tanasescu, V., Domingue, J., & Cabral, L. (2004). Ocml ontologies to xml schema

lowering.

Ter Hofstede, A. H., van der Aalst, W., Adams, M., & Russell, N. (2009). Modern

business process automation: Yawl and its support environment. Springer Science &

Business Media.

Th, J. F. R. H. P., & Schlepphorst, K. G. L. C. (n.d.). Florid: A prototype for f-logic.

TIBCO. (2014, November). Tibco business studio [Computer software manual].

(https://docs.tibco.com/pub/business-studio-bpm-edition/

3.9.0/doc/html/index.html)

Touzi, J., Benaben, F., Pingaud, H., & Lorré, J. P. (2009). A model-driven approach

for collaborative service-oriented architecture design. International Journal of Pro-

duction Economics, 121(1), 5–20.

156

https://docs.tibco.com/pub/business-studio-bpm-edition/3.9.0/doc/html/index.html
https://docs.tibco.com/pub/business-studio-bpm-edition/3.9.0/doc/html/index.html

Vairetti, C., Alarcon, R., & Bellido, J. (2016). A semantic approach for dynami-

cally determining complex composed service behaviour. Journal of Web Engineer-

ing, 15(3&4), 310–338.

van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P.

(2003a). Workflow patterns. Distributed and parallel databases, 14(1), 5–51.

van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P.

(2003b). Workflow patterns. Distributed and parallel databases, 14(1), 5–51.

Van Der Aalst, W. M., Ter Hofstede, A. H., & Weske, M. (2003). Business process

management: A survey. In Business process management (pp. 1–12). Springer.

van der Aalst, W. M. P. (2011). Process mining: discovery, conformance and en-

hancement of business processes. Springer.

van der Aalst, W. M. P., Dumas, M., Ouyang, C., Rozinat, A., & Verbeek, E. (2008).

Conformance checking of service behavior. ACM Transactions on Internet Technol-

ogy (TOIT), 8(3), 13.

van der Aalst, W. M. P., Nakatumba, J., Rozinat, A., & Russell, N. (2008). Business

process simulation: How to get it right. BPM Center Report BPM-08-07, BPMcenter.

org.

van der Aalst, W. M. P., Weijters, T., & Maruster, L. (2004). Workflow mining:

Discovering process models from event logs. TKDE, 16(9), 1128–1142.

Verborgh, R., Steiner, T., Deursen, D., Van de Walle, R., & Vallés, J. G. (2011).

Efficient runtime service discovery and consumption with hyperlinked restdesc. In

Next generation web services practices (nwesp), 2011 7th international conference

on (pp. 373–379).

Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés, J. G., & Van de Walle,

R. (2012). Functional descriptions as the bridge between hypermedia apis and the

157

semantic web. In Proceedings of the third international workshop on restful design

(pp. 33–40).

Verma, K., & Sheth, A. (2007). Semantically annotating a web service. IEEE In-

ternet Computing, 11(2), 83.

Vitvar, T., Kopeckỳ, J., Viskova, J., & Fensel, D. (2008a). Wsmo-lite annotations

for web services. Springer.

Vitvar, T., Kopeckỳ, J., Viskova, J., & Fensel, D. (2008b). Wsmo-lite annotations

for web services. Springer.

Vitvar, T., Kopeckỳ, J., Zaremba, M., & Fensel, D. (2007). Wsmo-lite: Lightweight

semantic descriptions for services on the web. In Web services, 2007. ecows’07. fifth

european conference on (pp. 77–86).

Waldner, W., & Vassileva, J. (2014). Emphasize, don’t filter!: Displaying rec-

ommendations in twitter timelines. In Proceedings of the 8th acm conference

on recommender systems (pp. 313–316). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/2645710.2645762 doi: 10.1145/

2645710.2645762

Weske, M. (2007a). Business process management: Concept, languages, architec-

tures. Springer.

Weske, M. (2007b). Concepts, languages, architectures (Vol. 14). Springer.

Wiegers, K., & Beatty, J. (2013). Software requirements. Pearson Education.

Wynn, M. T., Dumas, M., Fidge, C., Ter Hofstede, A. H., & van der Aalst, W. M. P.

(2008). Business process simulation for operational decision support. In Bpm (pp.

66–77).

158

http://doi.acm.org/10.1145/2645710.2645762

Xu, J., Chen, K., & Reiff-Marganiec, S. (2011). Using markov decision process

model with logic scoring of preference model to optimize htn web services composi-

tion.

Yan, J., Li, Z., Yuan, Y., Sun, W., & Zhang, J. (2006). Bpel4ws unit testing: Test case

generation using a concurrent path analysis approach. In Issre 2006 (pp. 75–84).

Young, M. (2008). Software testing and analysis: process, principles, and tech-

niques. John Wiley & Sons.

Yuan, Y., Li, Z., & Sun, W. (2006). A graph-search based approach to bpel4ws

test generation. In Software engineering advances, international conference on (pp.

14–14).

Zhang, Y., Zhang, X., & Liu, F. (2010). Semantic web service matchmaking based

on service behavior. In Anti-counterfeiting security and identification in communica-

tion (asid), 2010 international conference on (pp. 184–188).

159

	ACKNOWLEDGMENTS
	INDICE DE FIGURAS
	INDICE DE TABLAS
	RESUMEN
	ABSTRACT
	1. INTRODUCTION
	1.1. Motivation
	1.2. Research Questions
	1.2.1. Automatic and dynamic functional service composition
	1.2.2. Eliciting BPA expertise
	1.2.3. Closing the gap between BPAs and SAs

	1.3. Problem statement and General Goals
	1.3.1. Automatic and dynamic functional service composition
	1.3.2. Eliciting BPA expertise
	1.3.3. Closing the gap between BPAs and SAs

	1.4. Hypothesis
	1.5. Thesis Work and Main Contributions
	1.5.1. Automatic and dynamic functional service composition
	1.5.2. Eliciting BPA expertise
	1.5.3. Closing the gap between BPAs and SAs

	1.6. Document Structure

	2. BACKGROUND
	2.1. Introduction to Web Services
	2.2. Service Oriented Architecture
	2.3. Semantic Web Services
	2.3.1. OWL, WSMO, WSDL-S, OWL-S, SAWSDL

	2.4. Service composition
	2.5. Functional Testing
	2.5.1. Testing in Business process

	2.6. Reducing the gap between business and Information Technology areas

	3. A SEMANTIC APPROACH FOR DYNAMICALLY DETERMINING COMPLEX COMPOSED SERVICE BEHAVIOUR
	3.1. Composing Web services considering complex control-flow patterns
	3.1.1. Motivating and example: Finding a service to apply for a travel reimbursement
	3.1.2. Extending MSM to support complex control-flow patterns
	3.1.3. Control flow patterns

	3.2. COMPO-SWS
	3.3. Composition Algorithms
	3.3.1. Pre-computing the graph: the Connect algorithm
	3.3.2. Consuming services

	3.4. Evaluation
	3.4.1. Provider complexity: publishing a new service
	3.4.2. Consumer complexity: atomic or composed (on the fly) service
	3.4.3. Experimental evaluation

	3.5. Conclusions

	4. ANALYSIS AND IMPROVEMENT OF BUSINESS PROCESS MODELS USING SPREADSHEETS
	4.1. Preliminaries and background
	4.1.1. Business processes
	4.1.2. Business process analysis
	4.1.3. Business process simulation
	4.1.4. Problem statement

	4.2. Spreadsheet-based business process analysis
	4.2.1. Requirements
	4.2.2. Approach

	4.3. Business process modeling and simulation configuration
	4.4. Business process simulation
	4.5. Analysis and Visualization of Results
	4.6. Implementation
	4.7. User studies
	4.7.1. Business process analysis with spreadsheets
	4.7.2. Modeling, analyzing and reporting
	4.7.3. Discussion of results

	4.8. Qualitative Analysis
	4.8.1. Comparison Framework
	4.8.2. Analysis
	4.8.3. Discussion

	4.9. Conclusion

	5. CLOSING THE GAP BETWEEN IT AND BUSINESS STAKEHOLDERS: THE CASE OF WEB SERVICE REUSE, COMPOSITION AND ANALYSIS FOR SERVICE-BASED BUSINESS PROCESSES
	5.1. Motivating scenario
	5.2. Requirements for closing the gap between BPAs and SAs
	5.2.1. Changes in the scenario
	5.2.2. Bridging BPA and SA key requirements

	5.3. BPM-SIC: Business Process Model - Service Implementation Collaboration methodology
	5.3.1. CompoSWS server
	5.3.2. Emulator analyzer
	5.3.3. BPM-SIC methodology
	5.3.4. Key requirements examples

	5.4. Implementation
	5.4.1. Extending CompoSWS
	5.4.2. Emulator server
	5.4.3. Extensions made to support the key requirements.

	5.5. Experimental setting
	5.5.1. First interview: BPM identification
	5.5.2. Second interview: Business analysis
	5.5.3. Processing the information
	5.5.4. Third interview: Evaluating the recommendation

	5.6. Analyzing the results
	5.7. Conclusions

	6. CONCLUSIONS AND FUTURE WORK
	6.1. Automatic and dynamic functional service composition
	6.2. Regarding eliciting BPA expertise
	6.3. Regarding closing the gap between BPAs and SAs

	References

