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Abstract

Data series are a prevalent data type that has attracted lots of interest in recent years. Specifi-
cally, there has been an explosive interest towards the analysis of large volumes of data series in
many different domains. This is both in businesses (e.g., in mobile applications) and in sciences
(e.g., in biology). In several time-critical scenarios, analysts need to be able to explore these
data as soon as they become available, which is not currently possible for very large data series
collections.

In this thesis, we present the first adaptive indexing mechanism, specifically tailored to
solve the problem of indexing and querying very large data series collections. The main idea is
that instead of building the complete index over the complete data set up-front and querying
only later, we interactively and adaptively build parts of the index, only for the parts of the
data on which the users pose queries. The contents and the resolution of the index are purely
driven by query patterns; the more queries that arrive, the more data series are indexed and at a
higher resolution. Adaptive indexing significantly outperforms previous solutions, gracefully
handling large data series collections, reducing the data to query delay: by the time state-of-
the-art indexing techniques finish indexing 1 billion data series (and before answering even a
single query), our method has already answered 3 ∗ 105 queries. At the same time, we present
novel algorithms for both full indexing of data series collections, as well as for efficient exact
query answering. Our algorithms perform efficient skip-sequential scans of the data, avoiding
the need of costly random accesses on the disk.

Moreover, up to this point very little attention has been paid to properly evaluating data
series index structures, with most previous work relying solely on randomly selected data series
to use as queries (with/without adding noise). In this thesis, we show that random workloads
are inherently not suitable for the task at hand and we argue that there is a need for carefully
generating a query workload. We define measures that capture the characteristics of queries,
and we propose a method for generating workloads with the desired properties, that is, effec-
tively evaluating and comparing data series summarizations and indexes. In our experimental
evaluation, with carefully controlled query workloads, we shed light on key factors affecting the
performance of nearest neighbor search in large data series collections.

Finally, apart from ad hoc data exploration, we also investigate methods for the systematic
analysis of very large data series collections, supporting business intelligence applications. We
present techniques, which borrow ideas from Strategic Management, for a goal-oriented anal-



ysis of large collections of performance indicator data series. Such algorithms can additionally
be sped up through the use of the index structures presented in this work.

Keywords[Data series, time series, indexing, adaptive indexing, data exploration, data
mining, similarity search, nearest neighbors]
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Chapter 1

Introduction

Up until the 1920s, everyone thought the universe was essentially
static and unchanging in time. Then it was discovered that the

universe was expanding. Distant galaxies were moving away from us.
This meant they must have been closer together in the past. If we

extrapolate back, we find we must have all been on top of each other
about 15 billion years ago. This was the Big Bang, the beginning of the

universe.

Stephen Hawking

1.1 Data Series

In various scientific and industrial domains, it is often the case that analysts are re-
quired to measure quantities as they fluctuate over a dimension. These sets of fluctuat-
ing values are commonly called data series or sequences. The dimension over which data
series are captured, stored and ordered depends on the application domain and can
have various diverse physical meanings. Nevertheless, in every case, such sequences
of recordings have to be captured, stored and analyzed as discrete objects rather than
individual values. In this thesis, we concentrate on the problem of providing optimal
access methods for very large collections of data series.

Data series (a.k.a. sequences) are present in virtually every scientific and social do-
main: they can be networking information (i.e., number of packets send per second),
web usage data (number of requests per second etc.), environmental (weather, seis-
mic, oceanographic data etc.), biological (DNA sequences, cardiograms, fMRI data,
etc.), scientific (light-curves in astrophysics, mass-spectroscopy, etc.) as well as finan-
cial data (stock prices, sales, etc.) and industrial data (engine monitoring, power-



2 Introduction

Figure 1.1: Time-series plot of planetary orbits from the late 10th century [60].

grid monitoring, etc.), to practically any kind of ordered set of numerical informa-
tion [89, 187, 163, 140, 75].

Definition 1 (Data Series or Sequence) Formally, a data series D = (d1, ...dn) is defined
as a sequence of points di = (vi, pi) where each point is comprised of a value vi and a position
pi associated to the order of this value in the sequence.

Data series can be either streaming, where new values are continuously arriving,
or static, where the length of each sequence is fixed. Further on, they can include
uncertainty in the form of either a distribution or a set of distinct recordings for the
same position. Depending on the application, data series can be ordered across any
dimension. We continue our discussion with some of the most common dimensions
over which data can be ordered and some application domains where such data types
are frequently found.

1.1.1 Time-ordered Series (time-series)

By far, across most scientific disciplines and industrial domains, the most common di-
mension over which data are ordered is that of time. In this case we specifically talk
about time-series. Scientists have used time-series to identify trends since hundreds of
years ago. An interesting example can be seen in Figure 1.1, which is one of the earliest
depictions of data graphed in the form of time-series, ever discovered. It comes from
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Figure 1.2: Example data series: Adjusted closing price of Apple Inc.

a late 10th century manuscript, discovered by Sigmund Günther in 1877, and it repre-
sents “a plot of the inclinations of the planetary orbits as a function of the time” [60].
A more contemporary example of time-series can be seen in Figure 1.2, depicting the
closing price of Apple Inc.’s stock price as it fluctuates over time.

Through the years, there has been extensive research on time-series, both from a
theoretical perspective (e.g. theory of stochastic processes, limit theorems etc.) as well
as from a practical perspective of common statistics (e.g. regression, variance, etc.) [24].
Applications range from forecasting methods to correlation analysis, summarization,
representation methods, sampling, outlier detection and more.

Such data can be commonly found in the following domains.

• In biology as electrocardiograms (ECG) and electroencephalograms (EEG).

• In astrophysics as orbits, rotation/cycles, events, light intensities, etc.

• In environmental sciences as weather related time-series (i.e., temperature, humid-
ity, pressure, etc.).

• In the internet-of-things as distributed sensor readings.

• In high energy physics as particle fluxes, count rates, etc.

• In marine science as hydro-acoustic signals, seismic, gravimetric and magnetic
measurements [115].

• In finance as stock market prices, product prices, as well as demands and volume
of sales figures.
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Figure 1.3: An example electrophoretogram (or trace) of a DNA sequence [4].

• In industrial monitoring as sensor readings from engines and industrial equipment,
as well as power demand and consumption rates.

• In social sciences as various social indicators such as employment rates, education
levels, crime rates and various other quantities, as they fluctuate over time.

1.1.2 Position-ordered Series

There are various applications that produce series ordered over position, with the
most common being DNA sequences. In DNA data the precise order of each of the
nucleotides within a DNA molecule is captured. The process for acquiring DNA se-
quences is by measuring the intensity of light emission at various bands. This is called
an electrophoretogram trace and plots the intensity of each band at each position of
the DNA. The peaks in this plot allow scientists and specialized software to identify
the sequence of nucleotides. An example trace of a DNA sequence can be seen in Fig-
ure 1.3.

Another example of data ordered over position is word frequency counts in docu-
ments, which can be represented as sequences of frequencies. An example can be seen
in Figure 1.4, where the frequency of the word “Agamemnon” is measured in three
different versions of Homer’s Iliad, available in Project Guttenberg. We can notice the
interesting similarities in the trends among the three different books.

1.1.3 Mass-ordered Series

Mass-ordered series are commonly found in mass-spectroscopy. In this domain, sci-
entists measure intensity of the ion signal over the mass-to-charge ratio. It is used to
identify the structure of chemical compounds and it has applications in many diverse
domains such as environmental sciences, forensics, clinical research, proteomics and
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Figure 1.5: The mass spectrum of Zirconium (Zr) [2].

genomics. An example can be seen in Figure 1.5, where the mass spectrum of Zirco-
nium is displayed.

1.1.4 Angle-ordered Series

Data ordered over angle are frequent in Astrophysics, where scientists analyze light
curves at different viewing angles. Other cases where angle-ordered data are frequent
are in domains where scientists need to find similar shapes [183]. For example, paleon-
tologists need to identify similarities in the shapes of fossils and bones. In such cases,
the outlines of the objects can be converted into sequences of values, by measuring the
distance of each point of the contour to the center of the shape.
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Figure 1.6: Growth of worldwide DNA sequencing in number of genomes sequenced (left) and

in sequencing capacity (right) (taken from [169]).

1.2 Very Large Data Series Collections

Recent advances in sensing, networking, data processing and storage technologies
have significantly eased the process of generating and collecting tremendous amounts
of data series at extremely high rates and volumes, and very often the data volume is
larger than the available storage space [122]. In addition, the processing cost for the
data analysis is often bigger than the available processing power [172, 25]. It is not
unusual for applications to involve numbers of sequences in the order of hundreds of
millions to billions [5, 7]. As a result, analysts are unable to handle the vast amounts
of data series that they have to filter and process.

Consider for instance that for several of their analysis tasks, neuroscientists are re-
ducing each of their 3,000 point long sequences to just the global average, because they
cannot handle the size of the full sequences [5]. Additionally, there are more than 70TB
of spectroscopic sequence data from 200 million sky objects, collected by the Sloan Dig-
ital Sky Survey [7], allowing astronomers to study the universe. In biology, scientists
are expected to collect around 2-40 ExaBytes of DNA sequence data by 2025 [169], as
seen in Figure 1.6. In industry, there are various domains where huge data series col-
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lections are produced. For example, each engine of a Boeing Jet generates 10 TeraBytes
(TB) of data every 30 minutes [192]. Considering the length of flights and the amount
of flights operating worldwide at any given day, the amount of data that are currently
unexploited are in the order of exabytes.

All these data have to be processed and analyzed in their full detail, in order to
identify patterns, gain insights, detect abnormalities, and extract useful knowledge.
For this reason, there has been a significant interest in the data management com-
munity towards analyzing data series with the least possible processing and storage
cost [134, 180, 26, 145, 50, 51].

1.3 Data Exploration Scenarios and Query Types

When confronted with very large data series collections, analysts need to run vari-
ous monitoring, reporting or data mining applications. Simple monitoring and re-
porting applications usually involve simple Selection-Projection-Transformation (SPT)
queries [122], which aim at filtering, transforming and presenting parts of the stored
sequences. They are usually expressed as position/value constraints and transforma-
tion functions, and can be easily to implemented on existing database systems. On
the other hand, complex data mining (DM) applications such as clustering, classifica-
tion, deviation detection and more, involve expensive similarity search queries (near-
est neighbor and range search), which require specialized algorithms and indexes in
order to be efficiently processed.

1.3.1 Simple Selection-Projection-Transformation Queries

Selection-Projection-Transformation queries can be categorized under one or more of
the following primitives:

• Inter-sequence Filtering. This primitive is used for filtering complete sequences that
have specific properties at various positions. For example: “Bring all sequences
for which the value went above X at least 5 times in a specified day.”

• Intra-sequence Filtering. Queries in this category filter only a subset of the posi-
tions for all otherwise qualifying data series. An example is: “Bring the value for
recordings taken between times 12:00 and 13:00 for all sequences”.

• Data Transformation. Queries in this category apply a function on some positions
of all valid sequences. Such transformations could manipulate one or multiple
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sequences and can also perform aggregations across sequences or positions.

1.3.2 Complex Data Mining Queries

DM queries are more complex by nature: the processing has to take into consideration
the entire sequence, which may involve thousands, or even millions of real-valued
points. Examples are similarity queries, clustering, classification, outlier patterns, fre-
quent sub-sequences, and more. These queries are not supported by current database
systems, as they require specialized data structures, algorithms and storage methods
to be efficiently performed.

Note that the data series datasets and queries may refer to either static, or stream-
ing data. In the case of streaming data series, we are interested in the sub-sequences
defined by a sliding window. The same is also true for static data series of very large
size (e.g., an electroencephalogram, or a genome sequence), which we divide into sub-
sequences using a sliding (or shifting window). The length of these sub-sequences
corresponds to the patterns of interest. Because of their importance as the basis of
most data mining algorithms, in this thesis we are interested in efficiently supporting
similarity search queries.

1.4 Interactive Data Exploration

Firing exploratory queries, i.e., queries which are not known a priori, is becoming
quickly a common scenario. That is, in many cases, analysts and scientists need to
explore the data before they can figure out what the next query is, or even which ex-
periment to perform next; the output of one query inspires the formulation of the next
query, and drives the experimental process. In such cases, performing tuning and
initialization actions up-front suffers from the fact that we do not have enough knowl-
edge about which data parts are of interest [76, 80]. Such cases increasingly appear in
modern scientific scenarios and in combination with the ability to collect large collec-
tions of data create a strong need for techniques that favor exploration. For example,
the sequencing revolution in modern biology has given rise to the blooming fields of
genomics and systems biology. High-throughput sequencing, a technique by which
millions of DNA molecules can be read quickly and cheaply, turned the sequencing
of a genome from a decade-long expensive venture to an affordable, commonplace
laboratory procedure. Rather than painstakingly studying genes in isolation, we can
now observe the behavior of a system of genes acting in cells as a whole, in hundreds
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or thousands of different conditions. The sequencing revolution has just begun and a
staggering amount of data has already been obtained, bringing with it much promise
and hype for new therapeutics and diagnoses for human disease. For example, when
a conventional cancer drug fails to work for a group of patients, the answer might lie
in the genome of the patients, which might have a special property that prevents the
drug from acting. This calls for exploration of the data series to find out the interesting
patterns. With enough data comparing the relevant features of genomes from these
cancer patients and the right control groups, custom-made drugs might be discovered,
leading to a kind of “personalized medicine”.

As data sizes grow even bigger, indexing data in a way that favors all possible query
workloads means waiting for several days before even posing the first query. This can
be a major show-stopper for many applications both in businesses and in sciences.
For example, this is the case when high velocity financial tick data have to be pro-
cessed in real-time for computing risks [6], or in vehicle monitoring, where jet airplane
engine data need to be processed for early identification of potentially dangerous sit-
uations [146]. Similarly, in many applications, predefined queries are beneficial only if
they can track data patterns or events within a given time limit; e.g., traffic monitoring
applications for advertisement need to quickly determine user positions and interests.
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Query  Answering
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AnalystRaw  Data

Data  Series  Database
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Figure 1.7: Data-to-Query time gap and Query-to-Answer time gap.
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However, in order to provide quick response times for unknown workloads, data
have to be loaded in specialized data systems. Such data systems use efficient data lay-
outs and build indexes that allow for efficient query answering. However, constructing
these index structures and moving the data to the appropriate layout requires a con-
siderable amount of time to be spent, before even the first query is fired by the user.
This is what is called the data to query gap. On the other hand side, the amount of
time spent for answering the queries, given that the data are already loaded in such a
system, is called the query to answer gap. The highest these gaps the less interactive a
data exploration system is. A depiction of these gaps can be seen in Figure 1.7.

1.5 Contributions

In this thesis, we concentrate on the problem of providing efficient data structures and
algorithms for enabling interactive exploration on very large data series collections.
Our contributions can be broken down in five topics.
Minimizing the data to query gap. We initially target the problem of minimizing the
data to query gap, providing data structures that are specifically designed to minimize
the time that an analyst needs to wait before being able to answer the first query. Our
main idea is that instead of paying the cost of building the complete index over the
complete data set up-front, we adaptively build the index only for the parts of the
data that are related to the user queries. As a result, users can start answering queries
faster, while the index building process is purely driven by query patterns; the more
queries that arrive, the more data series are indexed and at a higher resolution. By
the time state-of-the-art indexing techniques finish indexing 1 billion data series (and
before answering even a single query), our adaptive index has already answered 3 ∗ 105

queries. Our work is described in detail in Chapter 3.
Minimizing the query to answer gap. In the second part of this thesis, in Chapter 4,
we describe methods for optimizing the query to answer gap in our data structures,
allowing analysts to get immediate answers to their queries once the data have been
loaded in the system. Our novel algorithms allow both full indexing, as well as effi-
cient exact query answering. This is achieved by performing efficient skip-sequential
scans of the data, avoiding the need of costly random accesses on the disk. In the case
of full indexing, we perform a double pass over the raw data, keeping in memory a
summarized version of the dataset. During the second pass, we move the raw data
to the right locations on the disk. Our exact query answering algorithm, facilitates
approximate search to get an initial answer. This answer is used to prune the data
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(based on the lower bounds of their in-memory summaries), while they are scanned in
a skip-sequential mode. Both our full indexing method and our exact query answer-
ing algorithm outperform the state-of-the-art and demonstrate that the most important
bottleneck in data series indexing is random access.
Interactive data series exploration. In Chapter 5, we present RINSE [196], a system
that allows users to explore large collections of data series, using an interactive user
interface. It facilitates our adaptive data series indexes and demonstrates their benefits
in large scale data processing scenarios. Users can draw queries (data series) using a
mouse, or touch screen, or they can select from a predefined list of data series. RINSE
can scale to large data sizes, while drastically reducing the data to query delay.
Generating workloads for data series indexes. Our fourth contribution is motivated
by the fact that up to this point very little attention had been paid on how to properly
evaluate data series index structures. Most previous work relied solely on randomly
selecting data series with or without adding noise, which were then used as queries. A
hardness analysis of these queries was always omitted, instead measuring index per-
formance as the average query answering time across a large number of queries. On
the contrary, in the context of relational databases, various benchmark workload gen-
eration techniques have been proposed through the years. Such techniques included
methods for generating queries with specific properties, carefully designed to stress
different parts of the database stack. In this thesis, we argue that apart from creat-
ing novel data structures for data series, there is also a need for carefully generating
a query workload, such that these structures are stressed at appropriate levels. To
solve this problem, in Chapter 6, we define measures that capture the characteristics
of queries, and we propose a method for generating workloads with the desired prop-
erties, that is, effectively evaluating and comparing data series summarizations and
indexes. In our experimental evaluation, with carefully controlled query workloads,
we shed light on key factors affecting the performance of nearest neighbor search in
large data series collections.
Exploring meta-data enriched data series in a systematic way. In addition to all afore-
mentioned contributions, which aim at speeding up and understanding ad hoc data
series exploration, in Chapter 7, we provide a study on how to effectively do system-
atic data series exploration in Business Intelligence applications [201]. This has been
a motivating scenario for our work, as real time business intelligence systems are in
the need for interactive similarity search. Such operations allow algorithms to perform
efficient clustering and deviation detection. As we will argue in this chapter, similarity
search is crucial for identifying threats and opportunities that organizations can exploit
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in a systematic way, which fits their strategic requirements [200].

1.5.1 Publications Produced

The work presented in this thesis has appeared in the following papers.

Indexing for interactive data series exploration

• K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for interactive exploration
of big data series. In SIGMOD, 2014

• K. Zoumpatianos, S. Idreos, and T. Palpanas. Rinse: Interactive data series explo-
ration. In VLDB, 2015

• K. Zoumpatianos, S. Idreos, and T. Palpanas. Ads: the adaptive data series index.
The VLDB Journal (accepted for publication), 2016

Generating workloads for data series indexes

• K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke. Query workloads for data
series indexes. In KDD, 2015

• K. Zoumpatianos, Y. Lou, I. Ileana, T. Palpanas, and J. Gehrke. Generating data
series query workloads. Under Submission, 2016

Meta-data enriched data series exploration

• K. Zoumpatianos, T. Palpanas, and J. Mylopoulos. Strategic management for real-
time business intelligence. In Enabling Real-Time Business Intelligence Workshop
(BIRTE), held in conjunction with VLDB, 2012

• K. Zoumpatianos, T. Palpanas, J. Mylopoulos, A. Maté, and J. Trujillo. Monitoring
and diagnosing indicators for business analytics. In CASCON, 2013

• A. Maté, K. Zoumpatianos, T. Palpanas, J. Trujillo, J. Mylopoulos, and E. Koci. A
systematic approach for dynamic targeted monitoring of kpis. In CASCON, 2014



Chapter 2

Background and Related Work

2.1 Data Series in Data Management Systems

Through the years, there has been a plethora of database systems, designed to handle
data in the form of data series. Such systems have either been designed specifically,
from top to bottom, to support sequential data, or they have been adapted to support
them. We list a brief overview of both academic and commercial systems, their differ-
ences and evolution over time. A time-line per category for those systems can be seen
in Figure 2.1.

2.1.1 Array Management Systems

One of the first systems used to analyze sequential data was the programming lan-
guage APL developed during the 60s by Kenneth Iverson at Harvard University. It
was a general purpose array manipulation language that operated on multidimen-
sional arrays, residing in main memory. In 1988 and subsequently in 1992, the financial
institution Morgan Stanley extended APL to A and A+ respectively [10]. These new
data manipulation languages where suitable for large scale, high performance, finan-
cial data series processing. In 1993, A+ transformed into the successful commercial
Financial Database Systems kdb and kdb+ by kx systems [155]. kdb+ is a proprietary
disk and in-memory column-oriented database system for financial applications. It
can be queried through Q and q-sql and allows for complex statistical operations to
be efficiently performed on large amounts of financial data. In a separate effort, one
of the first generalized large scale array processing systems, Rasdaman [16] was pre-
sented in 1997. It allowed for storage and retrieval of multi-dimensional array data on
an Object-Oriented DBMS, using an extension of SQL called RasQL. A top to bottom
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Figure 2.1: Time-line per category for systems that can support data series

array oriented database management system named SciDB was presented in 2009 [49].

2.1.2 Deductive Database Systems

Another type of database systems, which have been adapted to support data series, is
that of deductive databases. Researchers working at the MCC laboratories, in the LDL
deductive database system [46], have started Logical Information Machines in 1988. Its
purpose was to provide scalable database technology for the analysis of financial time
series. They developed a commercial database system, called Historis [108] (based on
Linear Temporal Logic) and the MIM system above it. Historis stores data on disk
in the form of compressed chunks and uses index structures in order to access them.
It further on uses data structures such as simple arrays, hashes, nested arrays, B-Trees
and can be disk based in full resolution and in-memory at lowest resolutions. It is heav-
ily domain specific and can even be queried in almost natural language. It considers
business related events when measuring time, such as specialized business calendars,
holidays etc, for providing identifiers to records. In a separate effort, the Coral deduc-
tive database system [137], which was introduced in the early 90s by the University
of Wisconsin-Madison, was adapted to offer similar to the MIM system, time series
management functionality. This was implemented as an extension to Coral, through
the MIMSY project [148] in 1993.
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2.1.3 Object-Relational Database Systems

One of the first Object-Relational Database Systems was POSTGRES [171], introduced
in 1986 at U.C. Berkeley. POSTGRES has been extended in 1993 to specifically support
financial time series processing [40]. Time series were described as arrays with meta-
data such as frequency, life span etc. It supported various transformation operations on
time series such as frequency change, mathematical operations and more. In the early
90s, POSTGRES served as the basis for the commercial database system: Illustra. Illus-
tra, at the time, supported what was known as Data Blade modules [173]. Each Data
Blade could introduce domain specific data types, access methods, and functions. The
Time Series Data Blade [157], which was introduced in 1994, allowed Illustra to sup-
port both regular and irregular time series, perform mathematical operations on them,
join different sequences based on their timestamps, and setup data feeds for stream-
ing data ingestion. Illustra was later acquired by Informix, and Informix by IBM. In
1994, the object-relational Shore storage manager [32] was developed at University of
Wisconsin-Madison. Above Shore, the SEQ system [133, 160, 159, 161] was developed
in 1995, as a component of the PREDATOR database system [162]. SEQ was able to
store and manipulate data series as a custom data type with specialized functions.
Finally, Oracle had also developed a Time Series Cartridge in 1997 for its database
system, which was later merged into Oracle’s SQL Analytic Functions [34].

2.1.4 OLAP/Data Warehouses

Another domain where sequential data gathered attention, albeit low, was that of on-
line analytical processing (OLAP). Specifically, the RED BRICK data warehouse [142,
143, 141] included support for time series query formulation in their RISQL language.

2.1.5 Data Series Extensions on Relational Databases

As it is expected, relational databases, by far the most popular database model, have
also been extended to support data series processing. One of the first attempts to do
so was SRQL [138], the Sorted Relational Query Language, introduced in 1998. It ex-
tends SQL with support for sorted relational data. In 2001, TS-SQL [149, 150] has been
proposed, additionally supporting pattern search queries, and new techniques for opti-
mizing such queries. Further on, the Aquery system [101], proposed in 2003, included
an ordered relational model and algebra, as well as query language that supported
sorted data from the ground up.
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2.1.6 Streaming Database Systems

During the early 2000s, there has been an intense interest in developing systems able
to cope with streaming data for sensor network applications [22]. Such data where
most of the times in the form of streaming time-series. One of the earliest systems
supporting querying on sensor data was Cougar [186], introduced in 2002. Other more
mature examples of streaming databases included TelegraphCQ [41], Aurora [33] and
Borealis [35], Nile [71], STREAM [116, 12]. In regards to commercial systems, there
were various products developed during the same period. Those included: Streambase
(later acquired by TIBCO), SQL Server StreamInsight, IBM InfoSphere Streams and
more.

2.1.7 MapReduce Data Processing Systems

In the recent years, there has been an explosion on data systems that operate on dis-
tributed data using the map reduce paradigm. Such systems are either based in Hadoop,
or developed as completely separate projects. OpenTSDB [121] is based on Hadoop
and HBase and provides time series data processing functionality. Druid [55] (2011),
which uses HDFS as the underlying storage system, provides an OLAP interface for
analytics on very large collections of time series. Another system specifically designed
for time series, called Newts [120] was introduced in 2014 and is based on Apache
Cassandra.

2.1.8 Specialized Systems for Data Series

A last category of systems that are able to perform analytics on data series is those
that have been specifically designed for this task and that do not fall in any of the
previously defined database paradigms. One of the first time series management sys-
tems was developed for the finance sector, it was called FAME (Forecasting, Analysis
and Modeling Environment) [1], and it was developed in 1982 by SunGuard (later ac-
quired by Citigroup, and sold to private investors). FAME contains a database engine
and analytical tools. It is structured as an object oriented database, where each time
series is an object. These databases are stored in the file system. It additionally offers a
4GL language for plotting data and issuing queries. Another similar database was Ca-
landa [53, 54], and it was a top to bottom database management system for managing
financial time series. It was developed in 1995 by the Union Bank of Switzerland (UBS)
and was later acquired by Ecofin. Finally, another database developed specifically for
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financial time-series is ONETICK [3]. It is specialized for stock market data and offers
multiple functions for domain specific data analytics, as well as a proprietary storage
engine. Other systems specifically designed for time-series processing are TempoIQ,
built for supporting IoT applications, Gorilla [129], which was developed by Facebook
for monitoring their infrastructure, and InfluxDB [82], which is an open source time
series managements system able to scale to very large data collections.

2.2 Data Series Exploration

Capturing trends, mining patterns, answering correlation and similarity queries are
often among the requirements that analysts demand from data series exploration sys-
tems. It can be generally said that the main target of such systems is to enable analysts,
or organizations in general, to achieve a set of goals or to discover new insights. These
goals are formed by the expectations of an analyst from the data, and can be verified
or dismissed. Insights on the other hand are unexpected information that might be de-
rived from the data, which on their turn could introduce new theories or alter existing
ones.

It is a job of a data mining system to assist the analyst to automatically or semi-
automatically assess the degree to which his or her pre-specified theories about the
data hold, as well as to propose different insights that were not present in them. These
insights may form surprises that an analyst may be willing to inspect [154, 153] and
explain [152]. This process can be offered in an ad-hoc way, where the analyst is issuing
a set of exploratory queries, or in a goal-oriented, systematic way, where analysts are
interested in automatically evaluating their formal expectations.

Such systems could operate both in raw data series, as well as in data series en-
riched with meta-data. Meta-data enriched data series are those that apart from the
raw values of the data series, also contain attributes that describe them. For example
time-series that record sales could have additional attributes that denote the location
of the sales, or the demographic group to which they refer to. Such attributes can
additionally form hierarchies and allow algorithms to aggregate data series over the
various dimensions. On the other hand, raw data series do not include any additional
information over which they can be categorized, and as a result are treated as bulk
collections of sequences.
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2.2.1 Meta-data Enriched Data Series

Traditionally, data enriched with multiple semantic dimensions of information, are
stored in data warehouses. Data warehouses support decision making by providing
On-Line Analytical Processing tools (OLAP) [48] for the interactive analysis of multidi-
mensional data [83]. Such tools allow a person (analyst) to quickly acquire important
information drilling in and out of the most interesting aggregates of a database. This
kind of data have a set of dimension features and a set of measures. Dimension features
are semantic facts about the data and they can form hierarchies. Example dimensions
are countries, product types, categories and more. An example hierarchy could be in
the country dimension which can include cities, regions and countries. Measures are
the quantities that an analyst is interested on capturing over the different dimensions.
Example measures are: sales, prices, counts and more. The common case for updates
to a data warehouse is the Extract-Transform-Load (ETL) processing [175, 88, 130, 124],
i.e., data are extracted from the sources and loaded to the data warehouse during spec-
ified time intervals.

Traditional data cube technology is good for static aggregates. However, it fails to
readily explain trends over the time dimension [45]. For this reason, linear regression
analysis in time series based data cubes has been presented in [72, 45]. Furthermore,
the efficient generation of logistic regression data cubes was studied in [182], where
the authors introduced an asymptotically loss-less compression representation (ALCR)
technique, as well as an aggregation scheme on top of it, in order to eliminate the need
of accessing the raw data for the calculation of each distinct cell in the data cube. With
regards to the special case of reducing the size of a time series based OLAP data cube,
a tilted time-frame scheme aiming at reducing the storage costs, as well as a popular-
path based partial materialization of the multi-dimensional data cube for reducing the
processing time are presented in [45]. Additionally, in [67] an extended Haar wavelet
decomposition technique has been proposed for reducing the amount of data, as well
as, for providing a reduced hierarchical based synopsis method for the time domain. In
Section 2.3, we give a brief overview of methods related to management and analysis
large collections of meta-data enriched data series.

2.2.2 Raw Data Series

In the previous section we talked about the importance of being able to manage data
series organized in a multi-dimensional data cube. Apart from efficiently monitoring
the hierarchies existing in a warehouse, we envision systems able to identify a wider
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range of anomalies (e.g., anomalies not directly correlated to the existing hierarchies).
In the case where such hierarchies are not available, groupings of related data segments
could be hidden.

Towards this direction, identifying insights in very large collections of raw data
series, across and beyond the multi-dimensional model, is not trivial. For this reason
various algorithms and techniques have been developed. All these methods fall in the
general category of Data Mining. According to Zaki and Meira [191], data mining is
“the process of discovering insightful, interesting and novel patterns” in data, as well
as being able to create predictive models from them.

There are various properties that make mining data series special [164]. One of
them is their extremely high dimensionality. For example, if we consider each record
of a sequence as a different dimension, then a data series of 2,000 points would corre-
spond to 2,000 distinct dimensions. It is well known in data mining that treating high
dimensional spaces is a hard problem [21]. Further on, data series have a natural order
in their values. In this setting, we are not simply talking about high-dimensional vec-
tors, but rather about sequences of recordings whose order is important. This property
can be exploited by summarization algorithms, since dimensions that are close to each
other tend to have similar values. As a result, raising opportunities for specialized data
reduction algorithms to be developed. In Section 2.4, we give a brief overview of data
series mining techniques, and their most important components, such as dimensional-
ity reduction and similarity search.

2.3 Management and Analysis of Meta-data Enriched Data Series

Semantically enriched data can be stored in data warehouses. Such warehouses, allow
analysts to perform analytics by aggregating data over various dimensions. In order to
reduce the aggregation costs, Gray et al. [65] demonstrated the need of pre-calculating
the possible Group-By combinations of the dimension attributes for all the measures.
The resulting structure is called a Data Cube (Figure 2.2).

Definition 2 Formally a Data Cube C is a multi dimensional cube, constructed over a set of
dimensions D = d1, ..., dn, a set of measures M = m1, ..., mk and a set of hierarchies over
H = h1, ..., hl, where each hierarchy hi is composed by a set of dimensions dhi ∈ D.

Finding the most informative parts of a data cube can be a fairly complex task,
considering cases where there are a lot of dimensions [154] with multiple values. In
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Figure 2.2: A sample Data Cube over Products, Countries and Time

such cases, it is crucial to assist and guide the analyst in an automated way, as the high-
dimensionality of the search space makes the process of discovering exceptions [154]
and explaining them [152] a daunting task. In the case where analysts have to deal
with very large amounts of sequential data, simple aggregations may not be enough,
as the dimension over which data are sequenced loses its significance. In such cases,
it is important to be able to do regression, trend and pattern analysis on the complete
sequences.

Traditionally data warehouses considered ordered dimensions the same way as all
other dimensions in a data cube. Although, as Chaudhuri and Dayal noticed, dimen-
sions such as time have a special significance [42]. To that end, there have been various
techniques proposed for maintaining data series based OLAP cubes.

Specifically, the notion of time has been studied from the perspective of temporal
databases, where it became known as temporal data warehousing [37, 112]. In such
systems two distinct temporal information types are identified: the validity time and
the transaction time. The validity time refers to the interval within which a record
”holds”, and the transaction time refers to temporal information (i.e., a point in time).
For a detailed review the reader can look at [62]. Even though temporal data ware-
houses solved the problem of dimension and record evolution, they did not provide
any means for monitoring trends and deviations in streams of data, and they also failed
to capture the evolution dynamics of specific market-segments.

It becomes clear at this point that treating order as a common dimension can be
rather limiting. This is especially clear in applications where predicting future inci-
dents or the demonstration of complex behaviors over time, as well as their causes, is



Management and Analysis of Meta-data Enriched Data Series 21

important. Moreover, when this kind of temporal analytics have to be provided in a
real-time and concise manner all over the data-set, data-warehouses have to treat the
dimension of time, wherever it is found (validity time or transaction time), as a first
class citizen and not solely rely on external tools for temporal data mining.

Various systems have been proposed in order to solve this problem, which adopt
time-centric data representation techniques. These include the CHAOS system, which
tackles the problem taking into account the business rules and their continuous eval-
uation against the data warehouse [67]. Other works have concentrated on creating
OLAP architectures able to handle sequential data. Chen et al. [45] in 2002 presented
a method for doing regression and trend analysis on top of a data cube of data series.
Their work introduced the stream cube architecture in [72], with a goal of allowing for
explanation of trends in the multi-dimensional space. Something that was not possible
with traditional data warehouses, as they fail to capture trends.

For representing the data series, they used a tilted time frame data series represen-
tation, where time is split with varying granularity. This allowed them to use more
information for the latest data and less for the older ones. They then fit a linear model
on the minimal interesting level of aggregation detail in which a user is willing to an-
alyze.

Definition 3 Formally a linear fit for a data series z(t) : t ∈ [tb, te] is a linear estimation
function ẑ(t) = θ̂ + η̂t.
Given the linear estimations (̂z)i(t), of a set of cells c1, ...ck and a cell ca which is calcu-
lated the aggregation of of the time-series in the cells c1 to ck, za(t) = ∑K

i=1 zi(t). It is
proved that one can calculate ẑa given just the linear estimations (̂z)i(t) of its descen-
dant cells.

Given this property, they are able to calculate all the cells based on the base cells.
Additionally they presented a technique that only materializes the most popular paths
of the Data Stream cube. Finally, in order to guide the analyst through the most inter-
esting trends, by using exceptional regression lines, i.e. regression lines with a slope
greater or equal than an exception threshold. They have implemented their methods
for mining alarming incidents in their system called MAIDS [27].

In 2007, Li and Han [105] proposed a framework for identifying the top-k subspace
anomalies in a multi-dimensional OLAP cube of time series. Using such a cube, one
of the key challenges is that of identifying the different possible aggregate levels that
are deviant. For example an aggregate level would be (Gender=M), where we get the
sales to all male clients as a time series. We could also have an aggregate level of
(Gender=F, City=Trento), where we would get the time series for all sales to women
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in Trento. Using these aggregates we are now interested on guiding the analyst to the
most deviant parts of the market. For example one could identify that women in Trento
behave different than the women all over Italy, in regards to their shopping habits, and
additionally to identify the trends of these differences.

Their system is able to create a multidimensional time-series cube, with the ag-
gregates at all the possible hierarchy levels. At each level it contains the aggregated
time series data of the most specific levels. For example in a database with Cities,
Age-Groups and Genders, the aggregation of (City=Trento, Age-Group=18-25) would
be defined as the linear aggregation of the time-series of the cells: (City=Trento, Age-
Group=18-25, Gender=F), (City=Trento, Age-Group=18-25, Gender=M). Their obser-
vation is that similar subjects should behave similarly, for example men in Trento
should behave “like all the men”, and women in Trento should also behave “like all the
women”. Their technique uses the “top” aggregate levels (e.g. Genre=”M”) in order to
calculate what the “expected” time series would look for the levels below it.

Definition 4 If p is a cell data-series cell in a Data Cube with data series sp, and c one of its
descendants with data-series sc. Then as —c— is the the sum of all of the points of sc and —p—
the sum of all the points of sp. As an expected time-series for c the following is defined:

ŝc =
|c|
|p| sp

It intuitively means that the time-series sc should behave like the time series of
the parent market segment sp, but in proportion to their size. Based on comparing
the expected time-series to the real time series they identify different types of outliers,
group them and present the top outlying groups to the user as exceptions.

While all of them tackled the problem from various perspectives, to the best of our
knowledge, there have been no comprehensive implementations that combine trend
identification, as well as deviation detection query answering mechanisms, with the
high-level information of the strategic objectives of a company. Additionally, there
have been no tools that allow this kind of analytics to be done in a systematic way, al-
lowing the automatic (and ad-hoc) generation and evaluation of such analysis queries.

2.4 Management and Analysis of Raw Data Series

There are various data mining procedures, which analysts can perform in large col-
lections of data series. Those include tasks such as clustering [95, 181, 145, 135], clas-
sification, deviation detection [26, 39] and frequent pattern mining. One of the most
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(a) A raw data series. (b) PAA representation of data se-
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Figure 2.3: Example PAA/SAX representation for a data-series.

integral components of all these algorithms though, is that of finding similar data se-
ries in a database [11]. The query comes in the form of a data series X and it says
“find me the data series in the database which are most similar to X”. Similarity is
then measured using a given distance function. A common approach for answering
such queries efficiently is to perform a dimensionality reduction technique and then
use this representation for indexing. Lower bounding functions in the lower dimen-
sionality spaces can be used to bound the true distances between data series, thus,
allowing search algorithms to perform pruning. At the same time, a large set of index-
ing methods have been proposed for this kind of representations, including traditional
multidimensional [68, 19] and specialized data series [165, 166, 30, 13, 180] indexes.

2.4.1 Summarizing Data Series

Since data series are inherently high-dimensional, different summarization techniques
are used in order to reduce the total number of dimensions (it has been shown that
the particular choice is of small importance [126, 125]). Popular techniques not only
include well known transforms and decompositions such as Discrete Fourier Trans-
forms (DFT) [131, 132, 103, 11], Discrete Haar Wavelets (DHWT) [103, 90, 38], Piece-
wise Constant Approximation (PCA), Adaptive Piecewise Constant Approximation
(APCA) [36], Piecewise Linear Approximation (PLA) [92] and Singular Value Decom-
position (SVD) [98, 139], but also data series specific data summarization techniques
such as the Symbolic Aggregate approXimation (SAX) [107], Piecewise Aggregate Ap-
proximation (PAA) [93], and the indexable Symbolic Aggregate approXimation (iSAX)
[165, 30]. We briefly describe the most prominent ones below.

Piecewise Aggregate Approximation (PAA). In 2000, Yi and Faloutsos [188], as
well as Keogh et al. [93], presented the idea of segmented means [188] or Piecewise
Aggregate Approximation (PAA) representation [93]. This representation allows for
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dimensionality reduction in the time domain, by segmenting the data series in equal
parts and calculating the average value for each segment. An example of PAA repre-
sentations can be seen in Figure 2.3; in this case the original data series is divided into
3 equal parts.

Discrete Fourier Transform (DFT)1 [131, 132, 103, 11] uses Fourier transforms to
convert a data series to the frequency domain and represents it as a list of coefficients.
Fourier transforms are linear transforms that can convert a series of values into a num-
ber of sinusoids. A direct implication of the well-known Parseval’s theorem is that Eu-
clidean Distance between the two series in the frequency domain is exactly the same
as in the original domain. As a result, a subset of the co-efficients can be used to esti-
mate a lower bound for the real distance. It is important to note that in the frequency
domain, the number of co-efficients is equal to the number of points of the original se-
quence, while each one of them (except the first) is a complex number. From a memory
complexity perspective, this means that almost twice the space is required for storing
the co-efficients over the raw data. However, as it has been shown in [132], the co-
efficients have a symmetric property with respect to the middle. For this reason only
half of them need to be stored and the others can be inferred. Additionally, when the
data series are normalized (to have a mean value of zero, and a standard deviation of
one), the first co-efficient is always zero [132]. Thus, it doesn’t have to be explicitly
stored. In regards to complexity, FFT can be computed in time O(nlogn), and as a re-
sult it is not as efficient as its competitors. However, a novel line of works on Sparse
FFT [73], is able to compute a subset k of the FFT co-efficients (the ones with the highest
energy) in O(logn

√
nklogn).

Discrete Haar Wavelet Transform (DHWT) [103, 90, 38] uses Haar wavelets in or-
der to transform a data series into a list of coefficients. Much like the Fourier Transform,
wavelets allow for the decomposition of a series using a function. Haar wavelets use a
square-shaped function and can be efficiently computed in O(n) time.

Symbolic Aggregate approXimation (SAX). Based on PAA, Lin et al. [106] intro-
duced the Symbolic Aggregate approXimation (SAX) representation. It works by par-
titioning the value space in segments of sizes that follow the normal distribution. Each
PAA value can then be represented by a character (or a small number of bits) that cor-

1In this work, we use the well known FFT algorithm.
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responds to the segment that it falls into. This leads to a representation with a very
small memory footprint, an important requirement for managing very large data se-
ries collections. A segmentation of size 3 can be seen in Figure 2.3, where the data
series is represented with the SAX word “10 01 10”.

Piecewise Linear Approximation (PLA). This family of algorithms approximates
data series using directed linear segments. They have been used since the 1960s [29]
and they are still used by data series summarization algorithms today [126]. They work
by identifying the set of longest running lines, which can describe a set of points with
an error less than a threshold. The collection of lines is used to reconstruct the signal.
Error can be measured using various distance measures.

2.4.2 Data Series Similarity Search

Given an input data series, similarity search refers to the methods that are able to an-
swer the following types of queries.

• Nearest neighbor queries, which return the top k nearest to the input data series
in the dataset.

• Range queries, which return the data series that are within a predefined range ε

of the input data series.

Data series similarity search methods fall in two broad categories. In the first category
there are methods that are based on serial scan. In this case, data are scanned without
any additional index structure to guide the search. In the second category, generic or
specialized indexes can be used. In this case data are summarized using a summariza-
tion method and an index structure is built above the summaries. The index is then
used to answer queries. In the rest of this section, we list works that fall in both these
categories, and additionally give a brief description of some of the most important
distance measures frequently used for mining data series.

Distance Measures

There are various distance measures that have been proposed for measuring similarity
between different data series.

Definition 5 (Distance Measure) Formally, a distance measure is a function d(x, y) :
Rn × Rn → R, which measures the distance between two data series x, y.
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When a set of properties hold, a distance measure is said to be a metric. One of those
is the triangle inequality, which can be used to prune the search space. This property
is exploited by metric indexes [190, 47] for performing efficient similarity search.

Definition 6 (Metric Distance Measure) When the following properties hold, a distance
function d, is said to be a metric.

• d(x, y) ≥ 0 (non-negativity)

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) = d(y, x)(symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Further on, in order to use data series summarizations and make exact query an-
swering feasible, indexes use lower and upper bounds of the distances between two
data series in the original data space. These bounds are computed based on the sum-
marizations of the data series. Throughout our study, we refer to the lower bounding
function of a given summary as function L.

Definition 7 (Lower Bounding Function) Formally, given two data series x, y, the lower
bounding function of their summaries L(x, y) : Rn × Rn → R returns a lower bound of
their true distance in the original space, such that: L(x, y) ≤ D(x, y) ∀ x, y.

We hereby list a few of the most important distance measures used in literature.
Euclidean Distance (ED). The most commonly used distance measure, usually chosen
for its simplicity, is the Euclidean Distance (ED) [11], alternatively called the L2 dis-
tance. It is the square root of the squared sum of the pair-wise point distances, and for
two data series x,y ∈ Rn, it can be computed as follows:

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (2.1)

It is generally known that Euclidean Distance on z-normalized data (mean 0, standard
deviation 1) is equivalent to Pearson’s Correlation [20]. However, this distance mea-
sure is unable to capture shifts in time or scaling differences across data series.

Dynamic Time Warping (DTW). DTW [176, 134] is a dynamic programming algorithm
rather than a distance measure itself. It is able to find the optimal match between points
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Figure 2.4: An example of the DTW algorithm. Taken from [104].

of different data series, thus allowing for local time shifts and variances in speed to be
considered. It internally facilitates a user defined distance measure, most commonly
the Euclidean Distance, to align points and find the optimal warping path. An exam-
ple of the DTW algorithm can be seen in Figure 2.4, where two data series that are
slightly shifted are displayed. The algorithm is able to align matching points and find
the optimal warping path in the pair-wise distances matrix, as seen in Figure 2.4c.

Longest Common Subsequence (LCSS). LCSS [177] is a variation of the Edit Dis-
tance [102]. It matches data series with support for stretching, while allowing some
of their points to remain unmatched. The idea intuitively is to use a threshold ε, and
two points are considered to match if their distance is less than this value.

Edit Distance on Real Sequences (EDR). Another distance measure, which is more ro-
bust to noise, shifts and scaling changes is Edit Distance on Real sequences (EDR) [43].
This measure is based on Edit Distance (ED) [102] and essentially counts the number
of edit operations required to convert one data series to the other. Such edit operations
are insert, delete and replace. Two points are considered equal if their L1 distance is
less than a user defined threshold ε. Further on, EDR allows for the two data series to
have different sizes.
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Serial Scan-based Similarity Search

One of the simplest ways to evaluate similarity search queries, is that of performing a
serial scan over the data series. Data series can either be in their raw form, or trans-
formed using wavelets or Fourier transformations. This last category relies on carefully
organizing and storing the data series representations on disk. Such techniques could
also be considered as indexes, as data have to be stored in a structured way. Using this
approach, data can be read in a step-wise function, where distance estimations for all
data series are gradually refined as we read the summarizations in increasing detail.
This technique has been first introduced in HierarchyScan [103], where data series were
transformed into Fourier co-efficients. They were then sorted based on their discrim-
inative power (i.e., their energy) and scanned on that order. This system was able to
answer range similarity queries in that way. This is because of the monotonic property
of Euclidean Distance, which also holds in the frequency space. When a candidate data
series’ distance increases above the similarity range threshold ε, this data series can be
pruned. As a result, this technique is able to avoid a full scan of the raw data file for
answering a query. A similar technique, but for DHWT, has been proposed by [90]. In
that case, nearest neighbor queries are additionally supported, through the introduc-
tion of novel upper and lower bounds for the distances of the transformed data. DWT
co-efficients are read in a step-wise fashion and candidates can be dismissed based on
these bounds. In another research direction, there are recent studies that have shown
that in certain cases sequential scans on the raw data themselves can also be performed
very efficiently [134]. Such techniques though, are only applicable when the database
consists of a single, long data series, and queries are looking for potential matches in
small subsequences of this long data series.

Index-based Similarity Search

As we’ve seen, nearest neighbor search can be an intensive task. The naı̈ve approach
requires a full scan of the dataset, while smarter scan approaches are able to re-organize
data in such a way that lower bounding functions on summarizations make it possible
to significantly prune the search space.

Apart from re-organizing data, index structures can also be build to speed up sim-
ilarity search. Such data structures hierarchically organize data series in one or many
levels of aggregation. At each level multiple groups of data series are summarized un-
der a common representation. This is illustrated in Figure 2.5. In this figure, each node
represents a summarization of all the data series below it, while the leaf level nodes
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Figure 2.5: An index structure built above a set of data series, pruning the search space for a

query.

correspond to a set of raw data series, usually stored on the disk. By computing lower
bounds at every level of summarization (internal node of the tree), one can perform
pruning. The higher in the tree the pruning, the more the data that are pruned are.
Because we operate on the summaries, we need to dismiss false positives. For this rea-
son, the raw data of the surviving leaves have to be read in full detail from the disk, in
a last step, in order to guarantee exact answers. Such hierarchical data series indexes,
supporting exact nearest neighbor search can be broadly divided in two categories as
follows.

Summarization & spatial access method. The first category involves the use of a
summarization technique and a (general) spatial access method. Data are summarized,
and only the summaries are used for constructing a spatial index. In the leaf level the
raw data series are stored in full detail, in order to guarantee correct answers. Previous
work has proposed the use of R-Trees with summarizations like DFT [11, 59, 131, 132],
DHWT [38] as well as Piecewise Linear Approximation (PLA) [44].

Data series specific summarization & index. The second category involves the use
of a summarization method specific to data series, and a specialized index that is built
on top of it. Such indexes include TS-Tree [13] (based on a symbolic summarization),
DS-Tree [180] (based on APCA), ADS [195] and iSAX index [165, 30, 31] (built on an
indexable version of SAX), and SFA index [156] (it uses a symbolic summarization of
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data series in the frequency domain based on DFT).
In this work we will concentrate on the SAX representation, which can be extended

to an indexable SAX (iSAX) [165]. This indexing method has been shown to scale very
efficiently to very large dataset sizes [30, 31]. iSAX considers variable cardinality for
each character of a SAX representation, and as a result variable degrees of precision.
An iSAX representation is composed of a set of characters that form a word. Each
word represents a data series available in the dataset. Each character in a word is ac-
companied by a number that denotes its cardinality (the number of bits that describe
this character). In the case of a binary alphabet, with a word size of 3 characters and
a maximum cardinality of 2 bits, we could have a set of data series (two in the fol-
lowing example) represented with the following words: 002102012, 002112012, where
each character has a full cardinality of 2 bits and each word corresponds to one data
series. If we now reduce the cardinality of the second character in each word, we could
represent both of them with a single iSAX representation: 00211012. That is because 11

corresponds to both 10 and 11, since the last bit is trailed when the cardinality is re-
duced. By starting with a cardinality of 1 for each character in the root node and by
gradually performing splits by increasing the cardinality by one character at a time,
one can build a tree index [165, 166]. Such cardinality reductions can be efficiently
calculated with bit mask operations.

The state-of-the-art iSAX 2.0 index is also based on this property [30, 31]; it is a data
series index that implements fast bulk loading. Figure 2.6 depicts an example where
each iSAX word has 3 segments and each segment a maximum cardinality of 4 (2 bits).
The root node has 2w children (23 in Figure 2.6) while each child node forms a binary
sub-tree. Each leaf node corresponds to a split in one dimension and points to a single
area of the domain.

A typical data series index, such as iSAX, contains both the summarized representa-
tions and the actual, raw data series values. The representations are used as index keys
to efficiently guide index creation, as well as for answering similarity search queries by
pruning the search space, i.e., eliminating candidate data series that cannot possibly be
part of the answer (true negatives). The actual data series are also needed in order to
eliminate the false positives, and produce the exact, correct answer.

Our contributions build on top of this line of work by enabling adaptive index-
ing using the state-of-the-art iSAX representations. Contrary to past work, our new
adaptive index allows for incremental, continuous and adaptive index creation dur-
ing query time. Initialization cost is kept low, bringing the ability to query the data
set much sooner than in past work. We show both the significant bottleneck faced by



Management and Analysis of Raw Data Series 31

d1

00 01

01

00

11

10

0 1

0

1

0
1

d2

d3

d1

00 01

11  0  0

1 0 0

ROOT

10  0  0

0 0 0

11  00  0 11  01  0

1 1 1

PAA data series ∈ R3  
Intermediate node
Leaf node
Possible split position
Active split position

Figure 2.6: An example of iSAX and its space partitioning.

state-of-the-art indexing as we grow to large data, as well as the drastic improvement
that adaptive indexing brings.

Evaluating Similarity Search

Although the problem of data series indexing has attracted considerable attention,
there is little research so far in properly evaluating those indexes. There are two prop-
erties that are important when evaluating an index structure. One is the construction
efficiency; i.e., the amount of time needed in order to construct an index. And the
other is the time that an index requires in order to answer a query workload. Evalu-
ating the first part is trivial, as it is simply a matter of measuring the time required in
order to construct the data structure. However, evaluating query answering is not so
easy, as there are various intrinsic query properties that affect the performance of an
index. Nevertheless, most of the research has relied on rather simple solutions, such
as either selecting a subset of the dataset as queries [30, 195], or on generating queries
by adding small amounts of noise to existing data series [59, 11]. Nevertheless, there
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is no work done on understanding the characteristics of the queries and their implica-
tions on query answering. In this thesis, we also focus on studying the properties of
data series query workloads. The aim is to better understand the characteristics of dif-
ferent queries, and how these can be used to effectively test a data series index under
different, but controllable conditions.

2.4.3 Data Mining Algorithms

Up to this point we have seen different distance measures, as well as methods for
summarizing data series, such that lower bounds can be computed and used by index
structures, in order to be able to perform efficient similarity search. All these tech-
niques can be used in order to support efficient data mining on very large collections
of data series. In this subsection we survey the most important work on data series
mining algorithms.

Clustering

Clustering is the process which separates a dataset in groups. The data series which
belong in each group should be very similar to one another, but data series belonging
to different groups should be dissimilar. Clustering in data series can refer to cluster-
ing whole sequences or subsequences, in static or streaming data. Further on, different
approaches can either operate on the raw data series, features extracted from the data
series, or model parameters extracted from the data series. There are various generic
clustering algorithms presented in literature that can be applied to clustering data se-
ries. Such methods can be split in multiple categories. However, the categories applied
to data series settings are the following [127].
Partitioning. These methods partition a dataset in k clusters, where each cluster is rep-
resented by a single representative point. It is common to use the centroid (or mean).
Such algorithms are the K-means [109] and its variants.
Hierarchical. The goal of hierarchical clustering is to split a dataset in a hierarchy
of clusters, which form a tree structure. There are two ways to perform hierarchical
clustering [191], agglomerative and divisive. Agglomerative methods start bottom up,
creating clusters which then they gradually group to create a hierarchical structure. On
the other hand, divisive methods start with one cluster, dividing it at each step of the
process, in order to create the hierarchical structure.
Spectral. Spectral clustering also reduces the dimensions of the similarity matrix, be-
fore clustering. This not only reduces the number of dimensions, but also allows for
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clusters to be found based on their connectivity and not strictly within convex bound-
aries. An example is two clusters in a two-dimensional space, forming concentric rings,
where the outer ring is one cluster and the inner ring is another cluster.

Classification

Classification algorithms seek to assign a label in an unlabeled data series. They are
trained using a dataset of labeled data series. Examples include the nearest neighbor
classifier, which uses the k nearest neighbors to decide the label of an unlabeled data
series. Decision trees that divide the dataset in a tree structure which is then followed
in order to assign a label in an unseen example. Naive Bayes methods, which train
a statistical model on the data. Neural networks that learn a function from the raw
data space to the class label space, as well as support vector machines that create linear
models for differentiating each class.

Deviation Detection

Given a model of normal behavior, deviation detection is the process of identifying
anomalous data series. There are various ways of defining an anomaly or a deviation.
Anomalies can be both within a data series itself, or across multiple data series. As a
result, we can either talk about deviating records of a data series, i.e., behavior that is
different from its previous points, or about deviating data series, which are sequences
that are unexpected in regards to the rest of the dataset. This is a hard problem as there
is no strict definition of an anomaly, and it can radically differ from one application
to the other [136]. However, a general description of anomaly has been given in [94],
where anomalous data series are defined as the ones that are the most different from
all other data series. In this case as well, similarity search is very important in order to
identify when a data series is similar to others.

Frequent Pattern Mining

Frequent patterns are subsequences that appear frequently in a data series database.
They are alternatively called “motifs”. In [185], the authors introduce an algorithm
that is able to identify such patterns with invariance to uniform scaling. Further on,
an algorithm for efficiently identifying motifs has been introduced in [118]. While a
method that is able to scale to dataset sizes that don’t fit in main memory has been
presented in [117].
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More Topics

There are various other more specialized topics related to mining data series, such
as segmentation and prediction (forecasting). The interested reader could look at the
following surveys [136, 58].

2.5 Adaptive Indexing for Interactive Data Exploration

As we’ve seen so far, most data mining procedures require expensive similarity search
computations in order to either identify clusters, anomalies, patterns or to assign la-
bels to sequences. In order to speed up such queries, data series indexes can be used.
However, such index structures require expensive initialization time, which could even
require days to be completed [30]. It has been recently shown that adaptive index-
ing can speed up data loading costs and thus improve interactivity. The concept of
adaptive indexing was recently introduced in the context of column-store databases
[78, 77, 79, 81, 69, 158, 63, 64]. The intuition is that instead of building database in-
dexes up-front, indexes are built during query processing, adapting to the workload.
In particular, the algorithms are focused on how to incrementally sort columns in main-
memory column-stores. The query predicates are used as pivots during the index re-
finement steps. Each index refinement step performed during a single query can be
seen as a single step of an incremental quick-sort action. As more queries touch a col-
umn, this given column reaches closer to a sorted state. The benefit is that adaptive
indexing avoids fully sorting columns up front at a high initialization cost, especially
when there is no idle time to do so, or no reliable workload knowledge that this is
indeed needed. These ideas have also been extended lately for Hadoop-based envi-
ronments [144].



Chapter 3

Minimizing the Data to Query Gap
with Adaptive Data Series Indexing

3.1 Introduction

In this work, we study the data to query time bottleneck, and focus on the index cre-
ation bottleneck for interactive exploration of very large collections of data series. We
propose the first adaptive indexing solution for data series, which minimizes the index
creation time, allowing users to query the data soon after its generation, and several
times faster compared to state-of-the-art indexing approaches. As more queries are
posed, the index is continuously refined and subsequent queries enjoy even better ex-
ecution times.

During creation time, our Adaptive Data Series index (ADS) performs only a few
basic steps, mainly creating the basic skeleton of a tree which contains condensed in-
formation on the input data series. Its leaves do not contain any raw data series and
remain unmaterialized until relevant queries come. As queries arrive, ADS fetches the
relevant data series from the raw data, and moves only those data series inside the
index. Future queries may be completely covered by the contents of the index, or al-
ternatively ADS adaptively and incrementally fetches any missing data series directly
from the raw data set. When the workload stabilizes, ADS can quickly serve fully con-
tained queries, while as the workload shifts, ADS may temporarily need to perform
some extra work to adapt before stabilizing again. In addition, ADS does not require
a fixed leaf size; it dynamically and adaptively adjusts the leaf size in hot areas of the
index. All leaves start with a reasonably big size to guarantee fast indexing times, but
the more a given area is queried, the more the respective leaves are split into smaller



36 Minimizing the Data to Query Gap with Adaptive Data Series Indexing

ones to enhance query answering times.
The net effect is that users do not have to wait for extended periods of time before

getting access to the data. Our results show that by the time state-of-the art indexing
approaches are still in the indexing phase (having answered zero queries), our pro-
posed approach allows users to answer several hundreds of thousands of queries.

Although the concept of adaptive indexing has been studied in the context of column-
store databases, there the main goal is to incrementally sort individual arrays (i.e.,
columns) for point or range queries over 1-dimensional points. In contrast, a data se-
ries index is a tree-based index that is tailored to answer similarity search queries over
data series collections, thus requiring very different techniques, able to simultaneously
index multiple arrays (i.e., data series).

3.1.1 Contributions

• We demonstrate the inability of state-of-the-art indexing to cope with exploratory
analysis of very large data series collections. We show that the index creation time
is a major bottleneck which becomes exponentially worse as data grows.

• We introduce the first adaptive data series index. Adaptive data series indexing
minimizes the data to query gap by delaying actions until they are absolutely
necessary. Initialization cost is kept at very low levels; only a minimal tree struc-
ture based on a summary of the data is built initially. Then, the index structure is
continuously enriched as more data and queries arrive and only for the hot part
of the data. Each query that is not covered by the current contents of the index,
triggers a sequence of actions that have as a side-effect more data to be brought
inside the index.

• We demonstrate that no special set-up is required regarding critical low-level de-
tails such as leaf size and tree depth. We propose adaptive data series indexing
algorithms that start with a rather big leaf size and a shallow tree in order to
minimize initialization costs for new data, but then as queries arrive and focus to
specific data areas, they adaptively and automatically expand hot subtrees and
adjust leaf sizes in the hot branches of the index to minimize querying costs.

• We present algorithms for both approximate and exact query answering. In both
cases, we make sure that new data are loaded in the index at a controlled rate (by
limiting the number of leaves that are materialized). This is particularly useful as
we want to amortize the index creation cost over multiple queries. For the exact
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(a) The data to query gap: building a state-of-the-art in-
dex and answering 105 queries for big data series collec-
tions.
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(b) The indexing to querying trade-off: bigger leaf sizes im-
prove indexing speed, but penalize query answering times.

Figure 3.1: The indexing bottleneck.

search, we describe an algorithm that clearly departs from traditional approaches.
Existing exact query answering algorithms suffer from a potentially large number
of random disk accesses, because of the need to visit leaves on a most-promising-
first order. In contrast, the exact algorithm we propose ensures a sequential disk
access pattern. It starts by computing lower bounds based on a summarized ver-
sion of the data (that fits in main-memory), leading to a skip-sequential access
pattern on the raw data on disk.

• We experimentally evaluate our approach using both synthetic and real-world
datasets, and demonstrate a drastic reduction in the data to query time. The
approximate search algorithm is able to handle several hundreds of thousands
of queries by the time that state-of-the-art data series (iSAX 2.0 [30]) and multi-
dimensional (R-trees [68], X-trees [19], KD-Trees [18]) techniques are still in the
index creation phase. Moreover, we show that our approach is faster than the
state of the art, also for the task of full index creation.

3.2 Minimizing the Data to Query Gap

For big data exploration, it is prohibitive to rely to full sequential scans for every single
query, and therefore, indexing is required. The target of indexing techniques is to make
query processing efficient enough, such that the analysts can repeatedly fire several
exploratory queries with quick response times. However, we show in our work that
the amount of time required to build a data series index can be a significant bottleneck;
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Figure 3.1(a) shows that it takes more than a full day to build a state-of-the-art data
series index (iSAX 2.0 [30]) over a data set of 1 billion data series in a modern server
machine. The main cost components of indexing are reading the data to be indexed,
spilling the indexed data and structures to disk, as well as incurring the computation
costs of figuring out where each new data entry belongs to (in the index structure). As
the data size grows, the total indexing cost increases dramatically, to a degree where it
creates a big and disruptive gap between the time when the data is available and the
time when one can actually have access to the data.

As Figure 3.1(b) shows (for a 500 million data series set), the smaller the leaf size
is the harder it becomes to build an index, while the bigger the leaf size is, the more
we penalize query answering times (105 queries in this case). Thus, simply choosing a
large leaf size does not resolve the data to query problem. To attack this problem, we
propose the first adaptive data series index, specifically tailored to solve the problem of
indexing and querying very large data series collections. The main idea is that instead
of building the complete index over the complete data set up-front and querying only
later, we interactively and adaptively build parts of the index, only for the parts of the
data on which the users pose queries. The net effect is that instead of waiting for extended
periods of time for the index creation, users can immediately start exploring the data
series. In the next section, we present a detailed design and evaluation of adaptive data
series indexing over both synthetic data and real-world workloads. We present three
versions of our adaptive data series index: ADS, ADS+ and PADS+, and use a synthetic
and 4 real datasets. Our data include DNA sequences, astronomical light-curves, SIFT
vectors representing images, and seismic data series. The results show that our ap-
proach can gracefully handle large data series collections, while drastically reducing
the data to query delay. Indicatively, by the time state-of-the-art indexing techniques
finish indexing 1 billion data series (and before answering even a single query), adap-
tive data series indexing has already answered 3 ∗ 105 approximate queries.

3.3 The Adaptive Data Series Family of Indexes

As we discussed earlier, dealing with very large amounts of data series leads to new
challenges in data series indexing. Specifically, we stressed the fact that state-of-the-art
indexing mechanisms need a prohibitively large amount of time to build a full index:
it may take up to several days to create a single index.

In this section, we describe our solution to this problem. We present adaptive data
series indexing in detail, and describe how it can reduce the data to query gap by
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(b) Buffered leaf state.
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Figure 3.2: The ADS index states during query answering.

shifting costly index creation steps from the initialization time to the query processing time. For
ease of presentation, we discuss adaptive data series indexing in two steps; initially we
present ADS, a design which introduces the concept of adaptively and incrementally
loading data series in the index. Then, we discuss ADS+ which introduces the concept
of adaptive splits and adaptive leaf sizes. Finally, we present PADS+, an aggressive
variation of ADS+, which is tailored for even better performance in skewed workloads.
3.3.1 The Adaptive Data Series (ADS) Index

In order to increase the exploration ability we need to decrease the data to query time.
That is, we need to decrease the amount of time needed until a user can access and
query new data with good response time. The main bottleneck is the index construc-
tion overhead. ADS attacks the index construction bottleneck by shifting the construc-
tion of the leaf nodes of the index (the only nodes that can carry raw values for the
data series, and have to be stored on disk) to query time. During the index creation
phase, ADS creates a tree which contains only the iSAX representation for each data
series; the actual data series remain in the raw files and are only loaded in an adaptive
way if a relevant query arrives. On the contrary, state-of-the-art indexes, such as iSAX
2.0, a priori load all raw data series in the index at the leaves of the tree (in order to re-
duce random I/O during query processing). The analysis of the performance of iSAX
2.0 in Figure 3.1(a) motivates our design choice for ADS; it shows that reading from
and writing to disk is the main cost component during the indexing phase of iSAX 2.0.
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The results show that a big part of these read and write costs is due to reading the
raw data series from disk and to writing the leaves of the index tree back to disk (after
insertions). Motivated by data exploration scenarios where we do not know a priori
which data series are relevant for our analysis, ADS avoids these costs completely at
initialization time; it pays such costs at query time, only when absolutely necessary,
and only for the data which are relevant to the workload. Below we describe ADS in
detail.

Index Creation

The index creation phase takes place before queries can be processed but it is kept
very lightweight. The process can be seen in Algorithm 22. The input is a raw file
which contains all data series in ASCII form. ADS builds a minimal tree during this
phase, i.e., a tree which does not contain any data series. The tree contains only iSAX
representations. The process starts with a full scan on the raw file to create an iSAX
representation for each data series entry. This can be seen in lines 2-5 of Algorithm 22.
For data series we also record its offset in the raw data file so future queries can easily
retrieve the raw values. To minimize random memory access and random I/O we
use a set of buffers in main memory (line 6) to temporarily hold data to be added in
the index. When these buffers are full (line 7), we move the data to the appropriate
leaf buffer in the index (see discussion in Buffering later on). If necessary, we perform
split operations on the way (lines 12-15). The split operation is described in detail in
Algorithm 8. Then we sequentially flush each leaf buffer to the disk (Algorithm 22, line
20), set each leaf to be in PARTIAL mode which means that we do not store any raw
data series in this leaf (line 21). This process continues until we have indexed all raw
data series. We will discuss how we handle new data (updates) later on.

Delaying Leaf Construction. The actual data series are only necessary during
query time, i.e., in order to give a complete and correct answer. During the index cre-
ation time, the iSAX representations are sufficient to build the index tree. In addition,
not all data series are needed to answer a particular set of queries. In this way, ADS first
creates all necessary iSAX representations and builds the index tree without inserting
any data series and only adaptively inserts data series during query processing (to be
discussed later on). There are numerous benefits that come with such a design deci-
sion, the most important being the significantly reduced cost to build the index. While
it is clear that materializing leaves on demand will incur a large random I/O cost, the
main benefit comes from the fact that (a) ADS avoids dealing with the raw data series
(i.e., other than the single scan on the raw file to create the iSAX representations), (b)
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it does not move the raw data series through the tree, and it (c) it does not place the
raw data series into the leaf nodes. The data series simply stay in the raw file. This
brings benefits in terms of I/O and memory bandwidth used during indexing. Espe-
cially when ADS comes to the point of spilling leaf nodes to disk (i.e., all leaves when
there is no more free memory), it has a big advantage in that its leaf nodes are very
lightweight, containing only iSAX representations, which can be orders of magnitude
smaller than the data series themselves. For example, a data series of 256 points with
a float precision of 4 bytes, can be efficiently summarized with 16 characters of 1 byte
each. Moreover, by not inserting the data series in the index, we significantly reduce
the cost of splits at the leaf level during the indexing phase; the I/O cost is minimized
as only iSAX representations are shuffled between index nodes. All ADS variations
maintain the main index tree in memory, while leaf nodes are kept on disk.

Buffering. ADS improves locality when inserting data by buffering data at two
levels of the index. Buffering amortizes random access (both in memory and on disk)
and is a common practice to improve locality in tree-based indexes, e.g., [193, 30], or
even in database query plans (which typically have a tree shape) [194]. During index
creation, instead of pushing iSAX representations through the index one at a time,
ADS initially keeps those in the First Buffer Layer (FBL), a set of buffers corresponding
to the children nodes of the index root. Once the FBL is full (i.e., all free memory is
consumed), these representations are then passed through the tree and moved to the
second layer of buffers corresponding to the leaf nodes of the index, called Leaf Buffer
Layer (LBL). Data is then flushed to disk one leaf at a time, ensuring sequential writes.
Additionally, every time that a leaf needs to be split and iSAX representations need to
be read from disk, we keep them in the LBL, until we run out of space (Algorithm 8,
lines 1-2). The leaves are flushed again when there is no more free memory.

Mapping on the Raw File. ADS reduces the index creation costs by not keeping
around the data series. However, the raw data series is needed when queries arrive.
For this reason, ADS needs an efficient way to quickly access a given data series entry.
To achieve this, ADS maintains a single pointer for each data series entry X in the leaf
node where data series X would normally reside. This is a pointer to the raw data file
that provides direct access to the raw data series. (As we will discuss later on, the first
time the leaf is accessed by a query all pointers are dropped and the corresponding
raw data series are loaded.)

Example. An example of ADS is shown in Figure 3.2; the figure depicts the state of
the index after certain events. An index is built on top of a set of iSAX words with a
word size of 3 characters and a maximum cardinality for each character of 2 bits. The



42 Minimizing the Data to Query Gap with Adaptive Data Series Indexing

Algorithm 1: createIndex(file, index, n)

1 while not reached end of file do

2 position = current file position;

3 dataSeries = read data series of size n from file;

4 isax = convert dataSeries to iSAX;

5 Move file pointer n points;

6 Add the (isax, position) pair in the index’s FBL buffer;

7 if the main memory is full then

8 // Move data from the First Buffers (FBL)
9 // to the appropriate Leaf Buffer (LBL)

10 for every (isax, position) pair ∈ FBL buffer do

11 targetLeaf = Leaf of index for putting (isax, position);

12 while targetLeaf is full do

13 Split(targetLeaf, isax);

14 targetLeaf = New leaf for putting (isax, position);

15 Insert (isax, position) in targetLeaf’s LBL buffer;

16 // Flush all Leaf Buffers containing
17 // (isax, position) pairs to the disk, and
18 // set them in PARTIAL mode (no raw data)

19 for every leaf in index do

20 Flush the LBL buffer of this leaf to the disk;

21 Set leaf to be in PARTIAL mode;

22 clear buffers;

leaf nodes are depicted as oval shapes with border lines and the intermediate nodes
without any border lines. Each intermediate node is split on a single character; the
one surrounded by a bold cycle. Each leaf node is connected to a file on disk, where
the full cardinality iSAX representations and the corresponding pointers to the raw
file are stored. Figure 3.2(a) shows how the index looks like immediately after the
initialization phase and before any query has been processed. In this case, all leaf
nodes are in PARTIAL mode, i.e., they do not contain any data series, since no query
has been executed yet. Figure 3.2(b) and Figure 3.2(c) show what happens when a
query arrives and we discuss that in the next subsection.
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Algorithm 2: Split(leaf)

1 diskData = get data from leaf’s disk pages;

2 Insert diskData in leaf’s buffer (LBL buffer);

3 Split leaf in the best point and create two new children leaves;

4 Set leaf as an intermediate node;

5 Set leaf.leftChild in PARTIAL mode;

6 Set leaf.right in PARTIAL mode;

7 for every (isax, position) pair ∈ leaf’s LBL buffer do

8 Insert (isax, position) pair in the appropriate child leaf;

Algorithm 3: approxSearchADS(dataSeries, isax, index)

1 targetLeaf = leaf of index where this isax should be inserted;

2 // Calculate the real leaf distance between the dataSeries

3 // and the raw data series that this leaf refers to or contains.

4 bsf = calculateRealLeafDistance(targetLeaf, dataSeries);

5 return bsf ;

Querying and Refining ADS

We continue our discussion by describing the process of query answering using ADS.
Contrary to static indexes, the querying process in ADS contains a few extra steps.
In addition to answering a query q, the query process refines the index during the
processing steps of q. These extra index refinement steps do not take place after the
query is answered; they develop completely on-the-fly and are necessary in order to
answer q. At any given time, ADS contains just enough information in order to handle
the current workload. Thus, when new queries arrive, which do not follow the patterns
in previous requests, ADS needs to enrich the index with more information.

We provide algorithms for both approximate search and exact search. Approxi-
mate search provides answers of good quality (returns a top 100 answer for the nearest
neighbor search in 91.5% of the cases for iSAX [165, 166]) with very fast response times.
On the other hand, exact search guarantees that we get the exact answer, but with po-
tentially much higher query execution time.

Approximate Search. When a query arrives (in the form of a data series), it is first
converted to an iSAX representation. Then, the index tree is traversed searching for
a leaf with an iSAX representation similar to that of the query (Algorithm 5). This is



44 Minimizing the Data to Query Gap with Adaptive Data Series Indexing

Algorithm 4: exactSearchADS(dataSeries, index)

1 isax = convert dataSeries to iSAX;

2 bsf = approxSearchADS(dataSeries, isax, index);

3 bsfDist = Infinite;

4 queue = Initialize a priority queue with the root nodes of the index;

5 while node = pop next node from queue do

6 if node is a leaf and MinDist(dataSeries, node) < bsfDist then

7 realDist = calculateRealLeafDistance(dataSeries, node);

8 if realDist < bsfDist then

9 bsf = node;

10 bsfDist = realDist;

11 else if MinDist(dataSeries, node) ≥ bsfDist then

12 // Found the nearest neighbor, break the loop
13 break;

14 else

15 // It is an intermediate node: push children to the queue.
16 minDLeft = MinDist(dataSeries, node.leftChild);

17 minDRight = MinDist(dataSeries, node.rightChild);

18 if minDLeft < bsfDist then

19 Put node.leftChild in queue with priority minDLeft;

20 if minDRight < bsfDist then

21 Put node.rightChild in queue with priority minDRight;

22 return bsf ;

the leaf where the query series would reside if it was a part of the indexed dataset.
Whether such a leaf exists already or not, depends not only on the data, but also on
past queries. If such a leaf does not exist, then the most similar leaf to the query is used
instead. In the case that the leaf node where the search ends is in PARTIAL mode, i.e., it
contains only iSAX representations but not any data series, then all missing data series
are fetched from the raw file. To enrich a partial leaf, ADS fetches the partial leaf from
disk and reads all the positions in the raw file of the data series that belong in this leaf.
(A partial leaf holds the iSAX representation for each data series and also its position
in the raw file.) Then, it sorts those positions (to ensure sequential access to the raw
file) and fetches the raw data series. The new data series are assigned to leaf nodes
and kept in memory in the LBL buffers (Figure 3.2(b)). The corresponding leaf node
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Algorithm 5: calculateRealLeafDistance(leaf, dataSeries)

1 // Check if the raw data have been fetched in the leaf
2 if leaf is in FULL mode then

3 if leaf has raw data series in LBL buffer then

4 bufferBSF = find closest to dataSeries record in LBL;

5 if leaf has raw data series on disk then

6 diskBSF = find closest to dataSeries record on disk;

7 if diskBSF < bufferBSF then

8 return diskBSF;

9 else

10 return bufferBSF;

11 else if leaf is in PARTIAL mode then

12 // Materialize leaf
13 records = Get all (isax, position) pairs from disk and LBL;

14 Sort records based on positions;

15 for every (isax, position) pair ∈ records do

16 Seek position in raw data file;

17 rawDataSeries = Fetch raw data series from raw data file;

18 Insert (isax, position, rawDataSeries) tuple in LBL buffer;

19 if main memory is full then

20 Flush all LBL buffers on disk;

21 Set leaf to FULL mode;

22 return calculateRealLeafDistance(node, dataSeries);

contains pointers to the buffered data. When there is no more free memory, the LBL
buffers are flushed to disk (as seen in Figure 3.2(c)). The corresponding leaf is then
marked as FULL. At this point the leaf data is fully materialized and future queries
that need to access the data series for this leaf node, need to fetch the binary leaf data
from disk or from the LBL buffer. Once the data series that match the current query are
available (either being fetched from the raw file, from the buffer, or from disk) then the
real distance from the query is calculated. The minimum distance found in the leaf is
used as the approximate answer.

Exact Search. When a query arrives, an approximate search is initially issued in
order to get an initial Best So Far answer (BSF). If the BSF is not 0, which means that
we did not find a perfect match, then the node with the best possible answer has to
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Figure 3.3: Examples of ADS+ and PADS+ states.

be identified. This is done in a recursive way as in the original iSAX index using the
MinDistPaaToiSAX [165], and until we are not able to improve BSF any further. The
difference is that if a new leaf is needed, which is in partial mode, ADS will enrich this
leaf on-the-fly.

The algorithm, described in Algorithm 4, starts by putting all the children of the
root in a min-stack ranked using their lower distance bound towards the query (line
4). Then the one with the best minimum distance is popped (line 5) and explored, as
long as this distance is better than BSF (lines 6-10). If the currently popped node is
an intermediate node (lines 14-21) then its children are pushed into the min-stack for
possible future exploration. The process continuous recursively, and stops when the
best lower bound is bigger than the BSF distance (lines 11-13), which means that it is
not possible to improve the current answer any further.

Example. Continuing the example of Figure 3.2, Figure 3.2(b) and Figure 3.2(c)
show what happens when a query arrives. Figure 3.2(b) depicts the case when a query
reaches a non materialized leaf. The raw data series are fetched in main memory
buffers, and the leaf now points to them. If the buffers become full, the raw data series
for each leaf are flushed to disk, thus converting them into fully materialized leaves.
This can be seen in Figure 3.2(c); the full leaf contains both the iSAX representations
and the raw data series.
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3.3.2 The ADS+ Index (Adaptive Leaf Size)

ADS drastically reduces the index creation time by avoiding the insertion of raw data
series in the index until a relevant query arrives. However, there is opportunity for
significant further optimizations; by studying the operations that get executed dur-
ing adaptive index building and refinement we found that the time spent during split
operations in the index tree is a major cost component.

Leaf Size and Splits. Splits are expensive as they cause data transfer to and from
disk (to update node data). The main parameter that affects split costs is the leaf size,
i.e., a tree with a big leaf size has a smaller number of nodes overall, causing less
splits. Thus, a big leaf size reduces index creation time. However, as we have shown
in Figure 3.1(b), big leaves also penalize query costs and vice versa: when reaching a
big leaf during a search, we have to scan more data series than with a small leaf. State-
of-the-art indexes rely on a fixed leaf size which needs to be set up front, during index
creation time, and typically represents a compromise between index creation cost and
query cost.

Adaptive Leaf Size. To further optimize the data to query time, we introduce a
lightweight variation of ADS, ADS+, with a more transparent initialization step. The
main intuition is that one can quickly build the index tree using a large leaf size, sav-
ing time from very expensive split operations, and rely on queries that are then going
to force splits in order to reduce the leaf sizes in the hot areas of the index. ADS+
uses two different leaf sizes: a big build-time leaf size for optimal index construction,
and a small query-time leaf size for optimal access costs. This allows us to make fu-
ture queries benefit from every split operation performed, finding the relevant data by
traversing the tree, and not by scanning larger leaves. Initially, the index tree is built as
in plain ADS (Algorithm 22), with a constant leaf size, equal to build-time leaf size. In
traditional indexes, this leaf size remains the same across the life-time of the index. In
our case, when a query that needs to search a partial leaf arrives, ADS+ refines its in-
dex structure on-the-fly by recursively splitting the target leaf, until the target sub-leaf
becomes smaller or equal to the query-time leaf size. This can be seen in Algorithm 5.
Additionally both Approximate and Exact search have been modified to use this policy,
a shown in Algorithm 9 (lines 2-5) and Algorithm 28 (lines 7-10), respectively.

Intuitively what happens is that the target leaf is split until it becomes small enough,
while all leaves created due to split actions but are not needed for this query are then
left untouched and thus with a leaf size which is between the big construction-time leaf
size and the small query-time leaf size. If and only if the workload shifts and future
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Algorithm 6: SplitADS+(leaf, targetLeafSize)

1 /* If the leaf size is bigger than the target leaf size, split node. */
2 if leaf’s leaf size > targetLeafSize then

3 Split(node);

4 SplitADS+(node.leftChild, targetLeafSize);

5 SplitADS+(node.rightChild, targetLeafSize);

Algorithm 7: approxSearchADS+(dataSeries, isax, index, queryTimeLeafSize)

1 targetLeaf = leaf of index where this isax should be inserted;

2 if targetLeaf’s leaf size > queryTimeLeafSize then

3 // It can be additionally split
4 SplitADS+(targetLeaf, queryTimeLeafSize);

5 targetLeaf = targetLeaf’s descendant where this isax should be inserted;

6 // Calculate the real distance between the dataSeries

7 // and the raw data series that this leaf points to.

8 bsf = calculateRealLeafDistance(targetLeaf, dataSeries);

9 return bsf ;

queries need to query those leaves, then ADS+ automatically splits those leaves even
further to reach a leaf size that gives good query processing times.

Example. An example of this process is shown in Figures 3.3(a) and 3.3(b). Figure
3.3(a) depicts the state of ADS+ after initialization and before any query has arrived,
while Figure 3.3(b) shows how a single query results in adaptive splits of the right
sub-tree until the target leaf node is fully materialized; intermediate nodes remain in
partial mode and with a variable leaf size.

Adaptive and on demand leaf splitting allow ADS+ to have both fast index building
and fast query processing. It does not waste time on creating fine-grained versions of
each sub-tree of the index, but rather concentrates on the parts that are related to the
current workload. When queries focus to a subset of the dataset, ADS+ does not need
to exhaustively index and optimize all data; it rather concentrates on the most related
sub-trees of the index. When the workload shifts and a new area of the index becomes
relevant, then the first few queries adaptively optimize the index for the new area as
well by expanding the proper sub-trees and adjusting leaf sizes.

Delaying Leaf Materialization. Another optimization that gives ADS+ a lightweight
behavior is that it delays leaf materialization even further. In particular, when travers-
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Algorithm 8: exactSearchADS+(dataSeries, index, queryTimeLeafSize)

1 isax = convert dataSeries to iSAX;

2 bsf = approxSearchADS+(dataSeries, isax, index, queryTimeLeafSize);

3 bsfDist = Infinite;

4 queue = Initialize a priority queue with the root nodes of the index;

5 while node = pop next node from queue do

6 if node is a leaf and MinDist(dataSeries, node) < bsfDist then

7 if node’s leaf size > queryTimeLeafSize then

8 // Need to split this leaf more
9 SplitADS+(node, queryTimeLeafSize);

10 Re-Insert node in queue;

11 else

12 // No need to split any more
13 dist = calculateRealLeafDistance(dataSeries, node);

14 if dist < bsfDist then

15 bsf = node;

16 bsfDist = dist;

17 else if MinDist(dataSeries, node) ≥ bsfDist then

18 // Found the nearest neighbor, break the loop
19 break;

20 else

21 // It is an intermediate node: push children to the queue.
22 minDLeft = MinDist+(dataSeries, node.leftChild);

23 minDRight = MinDist+(dataSeries, node.rightChild);

24 if minDLeft < bsfDist then

25 Put node.leftChild in queue with priority minDLeft;

26 if minDRight < bsfDist then

27 Put node.rightChild in queue with priority minDRight;

28 return bsf ;

ing the tree for query processing, which leads to adaptive leaf splitting, ADS+ does not
materialize the initial big leaf, nor all the leaves it creates on its way to the target small
leaf. For example, when ADS+ needs to split big leaf X and this results in X being
split recursively into n new nodes until we reach the target leaf Z with a small leaf
size, ADS+ fully materializes only leaf Z. For the rest of the leaves it uses the partial
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Algorithm 9: MinDist+(dataSeries, leaf)

1 if leaf is in FULL mode then

2 /* Use the coarse SAX representation of all the data series and calculate the minimum
distance .*/

3 return MinDist(dataSeries, leaf);

4 else

5 /* The node is not materialized yet. We can load the small iSAX representations file and
calculate a tighter minimum distance using the iSAX representations of all the data series. */

6 isaxValues = Get all isax representations from disk and LBL;

7 maxMinDist = 0;

8 for isax ∈ isaxValues do

9 minDist = MinDist(dataSeries, isax);

10 if minDist > maxMinDist then

11 maxMinDist = minDist;

12 return maxMinDist;

information contained in the leaves to perform the splits, i.e., the iSAX representations.
This results in (a) less computation as opposed to having to split based on raw data,
(b) less I/O as SAX representations are much smaller, and (c) it enhances the adaptive
behavior of ADS+ as it materializes only the truly interesting data that the queries are
targeting.

3.3.3 Partial ADS+ (PADS+)

Although the ADS variations described above help to reduce the indexing cost by omit-
ting the raw data from the index creation process, ADS and ADS+ still need to spend
time for creating the basic index structure. This means that users still have to wait until
this process finishes, and even though it is a much faster process than full indexing, still
certain applications may want even faster access to their data. To further optimize the
data to query time, we introduce a more lightweight technique which extends ADS+
with an even more transparent initialization step. It is tailored for scenarios where
users may want to fire just a few approximate queries, as well as for scenarios with
high query workload skew. The new approach is named Partial ADS+ (PADS+) and its
main intuition is to gradually build parts of the index tree, and only for small subsets
of the data as queries arrive. The concept is similar to the idea of partial indexes [170]
with the difference that the index is not static, i.e., it is not defined for a pre-decided
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set of the data; instead it continuously evolves to fit the workload.
Index Initialization. The initialization step of PADS+ is kept as lightweight as pos-

sible. PADS+ does not build an index tree at all; there is only a root node with a set
of FBL buffers that contain only the iSAX representations. The only step which takes
place during the initialization phase is that PADS+ creates the iSAX representations
based on the raw data (as in ADS+). This requires a complete scan of the raw data. But
then, instead of spending a significant effort using the SAX representations to create a
tree as ADS+ does, PADS+ stops at this point and is ready to process queries. The iSAX
representations are first kept in in-memory FBL buffers and then (contrary to ADS and
ADS+) spilled to disk when the buffers are full. Since these buffers persist on disk,
we refer to them as FBL persistent-buffers (FBL p-buffers). All these steps are similar to
a subset of the initialization effort that takes place for ADS+. This approach allows
PADS+ to significantly reduce the data-to-query time.

Adapting to Queries. PADS+ continuously and incrementally is refined as queries
arrive. As the workload shifts and requires new data areas, the nodes in the index tree
are adaptively and recursively split to smaller nodes that contain the required data. It
follows the same procedure as with ADS+ with the difference that the starting point
is an index with a just single root node with no children nodes. In this way, only the
parts of the index which are truly relevant for the workload are further developed as
queries arrive.

Skewed Workloads. Such an adaptive design favors scenarios where there is high
skew in the workload, i.e., only part of the dataset is interesting, or when there is
periodical skew in the sense that queries focus on a single area of the domain for a
given time before the focus shifts to another area.

Querying. When a query is issued, PADS+ converts the query to its iSAX represen-
tation and finds the corresponding FBL p-buffer. It then loads the iSAX representations
and adaptively splits the buffer data, until the query-time leaf size is reached, at which
point it loads the raw time series for that leaf. This process is repeated during query
answering, performing adaptive splits every time that algorithm has to calculate the
distance to a leaf node that has not yet been split to the query-time leaf size.

When the query answering algorithm needs data that are missing from the tree, it
needs to scan the data of the corresponding FBL p-buffer and perform an adaptive split
operation on it. In this process, the initial leaf size is set to infinite; thus, adaptive split
operations can be performed by splitting the large buffers and creating large leaf files,
which are split again only if there is a query that asks for them.

Furthermore, using 16 PAA segments (which is common in practice), we initially



52 Minimizing the Data to Query Gap with Adaptive Data Series Indexing

have 216 FBL buffers. As a result, given a dataset of 1 billion data series, each one of the
65536 FBL buffers will on average contain around 15 thousand iSAX representations.
Using a 1 byte representation for each iSAX character (i.e., cardinality 256), and given
the fact that we have 16 segments, we would need 16 bytes for representing each data
series. This means that the average FBL size would be around 235 KB: a file size that
makes it trivial to perform split operations on.

Example. An illustration of the PADS+ index can be seen in Figure 3.3(c). It repre-
sents a random instance after a few queries have arrived. The index is not fully built;
only a small part of the index is created and only some of the leaves are materialized,
following the workload. For example, the two leftmost children of the root point di-
rectly to FBL p-buffers on disk; no query has gone through this path. On the contrary,
the rightmost child of the root is split, leading to a subtree which reaches down to two
leaf nodes. This subtree is created as a side-effect of a query requesting for data series
that belong in the leaf that is now marked as FULL in Figure 3.3(c).

3.3.4 Handling Updates in ADS, ADS+ and PADS+
Efficiently supporting index updates is an important problem that has gathered a lot
of attention [61, 9]. ADS has been designed to efficiently support updates (insertion-
s/deletions), as well. This process can be seen in Figure 3.4, where we depict the status
of the index after a series of operations, involving insertions, leaf materializations and
deletions.

Inserts. Insertions is the main scenario of interest in data exploration environments,
i.e., in a scientific database new data is continuously created, but past data is not dis-
carded. Handling inserts in all ADS variations is done by simply appending the new
data series in the raw file, while only its iSAX representation and its position in the raw
file is pushed through the index tree. If the index leaf has already been materialized
and is in FULL mode, we create an additional PARTIAL file where the new data series
reside. We then set a bit that informs us that the PARTIAL file is not empty. No further
actions are needed for partial leaves. If a future query reaches a FULL leaf with pend-
ing inserts, then it fetches the new inserts on-the-fly and merges them in the leaf in the
same way it is done for PARTIAL leaves (as we discussed earlier).

Figure 3.4 illustrates the example of a single leaf in the presence of several updates.
Initially this leaf is empty, and at time t1, data series 01, 02 and 03 are inserted. During
t2 the leaf is materialized (as a result of a query that had to access it). This results in
the above three data series to be part of the FULL file after t2. In t3, two more data
series are inserted, and as a result they end up in the PARTIAL file. Since no query has
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Figure 3.4: Insertions and Deletions in ADS.

accessed this leaf after t3, the new data series is not materialized.

Deletes. When a data series needs to be deleted, we simply mark the data series as
deleted in its corresponding leaf (via an in-memory per-leaf bit-vector). Whether the
leaf is partial or full does not make a difference. Future queries ignore deleted data
series, while future insertions can exploit the space created in this leaf by these ghost
entries.

This case is also depicted in the example of Figure 3.4, where at time t4, data series
02 and 03 are deleted. We update the in-memory bit-vector of deleted records to in-
clude these two data series. Therefore, the data series are marked as deleted and their
locations can be overwritten with new data.

In the case where a leaf becomes completely empty, we destroy the leaf and clear
the memory that it occupies. If that leaf had no siblings, the parent node is also deleted.
This process is propagated upwards until we reach a node that has a non-empty sib-
ling.

3.4 Experimental Evaluation

In this section, we present our experimental evaluation. We demonstrate that adap-
tive data series indexing drastically reduces the initialization time, achieving up to one
order of magnitude smaller data-to-query time when compared to state-of-the-art ap-
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proaches. We show that our algorithms enable users to perform hundreds of thousands
of queries faster, while the index creation cost is spread across multiple queries.

Algorithms. We benchmark all indexing methods presented in this paper and we
compare all our adaptive indexing variations against the state-of-the-art iSAX 2.0 in-
dex [30] that supports bulk loading. We also compare against sequential scan, and two
state-of-the-art multi-dimensional indexes: R-Trees [68] and X-Trees [19]. Finally, we
implemented several main-memory performance optimizations in the iSAX 2.0 code:
we use an LRU buffer for recently queried nodes and also after loading we maintain
its last loading buffer in memory.

Infrastructure and Implementation. All the data structures and algorithms pre-
sented, as well as an optimized version of iSAX 2.0, are built from scratch in C and
compiled with GCC 4.6.3 under Ubuntu Linux 12.04.2. We used an Intel Xeon ma-
chine with 64GB of RAM and 4x 2TB, SATA, 7.2K RPM Hard Drives in RAID0. All
algorithms are tuned to make maximum use of all available memory.

Datasets. We use several synthetic datasets for a fine grained analysis, as well as 4
real datasets coming from different domains, in order to demonstrate the usefulness of
adaptive data series indexing in real-life scenarios.

For the synthetic datasets, we used a random walk data series generator. This is
a generator, where a random number is drawn from a Gaussian distribution N(0, 1),
then at each time point a new number is drawn from this distribution and added to the
value of the last number. This kind of data generation has been extensively used in the
past [11, 59, 131, 13, 165, 166, 30], and has been shown to effectively model real-world
financial data [59].

The real datasets are the following. The first dataset (TEXMEX) [84] contains 1 Bil-
lion vectors representing images. The second dataset (DNA) contains 20 Million DNA
sequences coming from the Homo Sapiens and Rhesus Macaque genomes [31]. The
third dataset (SEISMIC) contains 100 Million seismic data series collected from the IRIS
Seismic Data Access repository [8]. Finally, the fourth dataset (ASTRO) contains 200
Million astronomical data series representing celestial objects [168]. Each dataset is
z-normalized before being indexed. Unless mentioned otherwise, each data series con-
sists of 256 points and each point has a float precision of 4 bytes.

Workloads. The query workloads for every scenario are random. Each query is
given in the form of a data series q and the index is trying to locate if this data series or
a similar one exist in the database. We study query intensive workloads with various
patterns, including skewed workloads, as well as update workloads (the details are
provided in the description of the experiments).
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Figure 3.5: Reducing indexing costs.

3.4.1 Reducing the Data to Query Time

Motivation. In our motivation discussion in the introduction section of the paper, we
discussed Figure 3.1(a) as an example that demonstrates the limits of state-of-the-art
indexing techniques. For this experiment, we used a synthetic data set of up to 1 billion
data series (1 TB) and 105 random queries (73% of which need to fetch new data from
the raw file). The main observation is that as we try to index more and more data, the
initialization time to build a state-of-the-art data series index becomes a prohibitive
factor. With 1 billion data series it takes more than a full day in order to index all
data using the state-of-the-art iSAX 2.0 index even when a preferable leaf size is used
(Figure 3.1(a)).

Minimizing Indexing Costs. Let us now see how the adaptive data series indexing
ideas can help in reducing the index building costs. In this experiment, we use the
same set-up as before, but we now use a constant data size of 500 million data series
and we vary the leaf size. We test iSAX 2.0 against ADS.

Figure 3.5 depicts the results, where we show the total time needed to index all
data. ADS drastically reduces the index build time compared to iSAX 2.0 regardless
of the leaf size. For example, for the case of a leaf size of 20K data series, which is the
best case for iSAX 2.0 (we elaborate on this choice in the following paragraphs), ADS
builds the index in only half an hour, while iSAX 2.0 needs 8 hours.

The breakdown of the indexing costs in Figure 3.5 explains this behavior. Input is
the time spent reading data from disk. Output is the time spent writing data to disk.
CPU is the time spent doing any kind of computation during indexing. ADS avoids
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the expensive steps of placing each data series in its corresponding leaf node. The net
result is that the Input and Output costs, i.e., the I/O costs, drop drastically compared
to iSAX 2.0. At the same time, also the CPU cost drops as ADS does not have to go
through the index to place each data series. Overall, reducing the I/O and CPU costs
results in a major benefit for ADS during the indexing phase.

The Query Processing Bottleneck of Plain ADS. Having seen that ADS can reduce
the indexing costs, let us now see the effect on query processing. Figure 3.6 shows the
results. Using the same set-up as in the previous experiment, it depicts the total time
to build the index and to process all 105 queries. There are two observations from the
behavior seen in Figure 3.6. First, ADS allows its first few queries to access the data
faster than iSAX 2.0. For example, if we take the best leaf size case for ADS (2K) and
the best leaf size case for iSAX 2.0 (20K), we see (marked with the red arrow) that ADS
can answer 12,700 queries by the time iSAX 2.0 is still indexing and has not answered a
single query (9 hours). In this way, ADS provides a quick gateway to the data as it was
the original intention and motivation. However, as we process more and more queries
and regardless of the leaf size, ADS looses its initial advantage; queries take too long
to process and overall ADS does not present a feasible solution.

The main reason why ADS suffers is that even a single query might result in fetch-
ing a significant amount of raw data series. For example, if a query reaches a leaf
which is not yet materialized and the leaf size is set to 2K, then ADS needs to fetch
2K raw data series in order to materialize the leaf. Such costs, significantly penalize
queries and in the case of random workloads, as in the example of Figure 3.6, where
each query may hit a completely different area of the index, this brings a significant
overall cost. In a more focused workload, i.e., where queries focus on a given part of
the index, the overall performance is drastically different as we do not reach the point
where we need to fetch extra raw data very often. We discuss such examples later on.

Still though, ADS does not represent a robust solution, i.e., a solution that would be
globally applicable in arbitrary workloads.

Robustness with ADS+. This is exactly the motivation for ADS+. ADS+ maintains
the adaptive properties of ADS but it is also robust and scalable. To demonstrate this
behavior, we repeat the previous experiment, this time using also ADS+. Figure 3.7
shows that ADS+ significantly outperforms iSAX 2.0 not only during the index build-
ing phase but also during the query processing phase. For example, for the best case of
iSAX 2.0, i.e., with leaf size 20K, ADS+ can create the index and process all 105 queries
in only 3 hours while iSAX 2.0 needs roughly 15 hours. In fact, ADS+ can process the
queries even faster as it may use even smaller leaf sizes.
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Figure 3.6: The query processing bottleneck.

Next, we show that ADS+ is robust even when in inferior set-up. Using the same
set-up (data and queries) as before, we vary the available memory the algorithms can
exploit. In addition, for iSAX 2.0 we use a buffer pool with an LRU policy so that it
can hold recently visited nodes in memory. In Figure 3.8, it can be seen that even if we
use 10% of the main memory for ADS+, it can still answer all of the 105 queries before
iSAX 2.0 has finished indexing using 100% of the main memory.

The main novelty in ADS+ is that it can maintain a lightweight index-building step
due to only partially building the index but also due to using a large leaf size during
this phase. Then, as queries arrive, it adaptively splits leaves in hot areas of the index
such that queries in this area may be processed at a smaller cost. In this way, ADS+
solves the robustness and scalability problem of ADS by introducing adaptive node
splits, i.e., by being able to adjust the shape of the index based on the workload and
only for the areas which are hot and may cause expensive steps for individual queries.

Choosing the Query-Time Leaf Size. The query-time leaf size indicates the finest
granularity in which we will split a node with ADS+, and consequently it is directly
related to the amount of raw data that we store on disk under each leaf. We have
experimented with various query-time leaf sizes ranging from 1 data-series to 1000
data-series, and measured the average page utilization for 3 different page sizes, as
well as the average query answering time. We did this by running 105 queries on a
dataset of 500 million data-series. As we can see in Table 3.1, the smaller the query-
time leaf size is, the less data we have to fetch from the raw data file, and the faster
the materialization of the leaf node is. On the other hand, very small values of query-
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Figure 3.7: Reducing the data-to-query time with ADS+.

time leaf size adversely affect space utilization, since page occupancy will be small.
As a result, it is important to choose a leaf size that will allow for the maximum page
utilization while at the same time offers an acceptable query answering time. For the
rest of our experiments we use 10, since when using a page size of 8KB, we maximize
page occupancy at around 89% (Table 3.1 in bold) and the average query answering
time remains relatively low at 69 milliseconds.

Query-time leaf size 1 10 100 1000

Query time (millisec.) 11.27 67.64 499.95 4031.68

# of 4KB pages 0.25 1.79 17.23 171.48

# of 8KB pages 0.12 0.89 8.61 85.74

# of 16KB pages 0.06 0.45 4.30 42.87

Table 3.1: Varying query-time leaf size.

Scaling to 1 Billion Data Series. Next, we stress all indexing strategies to study
how they can cope with an increasing data set size. We study the behavior up to 1
billion data series and with 105 random queries. Regarding leaf sizes, we use the opti-
mal leaf size observed for each index strategy, i.e., 20K for iSAX 2.0, 2K for ADS, and
for ADS+ 2K build-time and 10 query-time leaf size. Figure 3.9 shows the total time
to build the index and answer all queries. Across all data sizes, ADS+ consistently
outperforms all other strategies by a big margin.
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Figure 3.8: Total indexing and query answering cost as we increase the buffer size for ADS+

and iSAX 2.0.
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Figure 3.9: Scaling to 1 billion data series.

For 1 billion data series, ADS+ answers all 105 queries in less than 5 hours, while iSAX 2.0
needs more than 35 hours.

By adaptively expanding the tree and adjusting leaf sizes only for the hot work-
load parts, ADS+ enjoys a 7x gain over full indexing in iSAX 2.0. In addition, ADS+
significantly outperforms ADS; even though ADS can significantly reduce indexing
costs for all data sizes, as we process more and more queries it suffers due to the high
cost of fetching unindexed data series for large leaves during query processing. ADS+
avoids this problem by adaptively splitting its leaves. Also, the rate at which the cost
of ADS+ grows is significantly smaller than that of iSAX 2.0; For example, going from
500M to 1B data series, iSAX 2.0 needs more than twice the time, while ADS+ enjoys a
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Figure 3.10: Reducing the data-to-query time with ADS+ as we scale to big data.

sub-linear cost increase.

Figure 3.10 provides further insights. Figure 3.10(a) depicts the number of queries
that ADS+ can answer within the time that iSAX 2.0 is still indexing. The bigger the
data set, the more queries ADS+ can answer before iSAX 2.0 answers even a sin-
gle query; for the case of 1 Billion data series ADS+ manages to answer nearly 3 ∗
105 queries while iSAX 2.0 is still indexing. this verifies the fact that ADS+ is more
suited towards very large data sets compared to traditional non-adaptive indexing ap-
proaches.

Data Touched. In addition, Figure 3.10(b) shows the amount of data actually touched
(indexed) as the query sequence evolves. To see the long term effect, we let a big num-
ber of queries run, i.e., 107 queries. For iSAX 2.0 the behavior in Figure 3.10(b) is a
flat curve as everything is indexed blindly up front. With ADS and ADS+ though, we
index a much smaller percentage of the data; as more queries are processed, more data
is indexed and only when needed. While ADS indexes all data by the time it processes
106 queries, ADS+ manages to touch even less data; since it splits leaves adaptively to
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much smaller sizes it needs to materialize much smaller leaves and thus it touches less
data overall. In this way, even after 107 queries it has touched only 10% of the data,
while it needs more than 190M queries in order to touch all the data (i.e., completely
build the index). In fact, since this is a random workload, this is the worst case for
adaptive indexing as most queries lead to fetching raw data series and enriching the
index. This is why ADS has touched all data by query 106; most queries will need to
materialize a partial leaf and thus they need to fetch 2 ∗ 103 new data series (its leaf
size); 2 ∗ 103 ∗ 106 adds up to well above 109 (the data set size). On the contrary, ADS+
uses a query-time adjustable leaf size of only 10 data series; thus even if all queries
need to fetch new data, by query 107 we would have fetched at most 108 data series
which is about the 10% (of the original 109 data set) we see in Figure 3.10(b). By doing
less work and only when necessary, ADS+ allows users to have quick access to their
data.

Per Query Performance. We continue our study with a discussion that focuses on
the individual query performance based on the previous 1 Billion data series experi-
ment and 10 Million random queries. Here we also include the scan strategy, i.e., when
we do not build an index; instead, every query performs a complete scan over all data
series. We will not use ADS from now on as ADS+ consistently outperforms ADS.

Figure 3.10(c) shows the cumulative per query response time as the query sequence
evolves. The scan strategy has a constant but slow response time; every query adds
the same cost to the total cumulative costs. Eventually, the scan strategy becomes pro-
hibitive if we want to repeatedly query the same big data; it takes close to 105 hours to
handle all queries. iSAX 2.0 pays a big cost to build the index (this is included in the
cost of Query 1) but then queries are very fast, i.e., the cumulative cost curve is flat as
every query adds very little cost. Once the index is built, every iSAX 2.0 query incurs
a constant cost; still though there is a big bottleneck to access the data due to the high
indexing costs which means that the first query needs to wait for several hours. On
the contrary, ADS+ enjoys quick data access time; it finishes building the index and
answering all queries by the time iSAX 2.0 is still indexing and has not answered a
single query.

In fact, while the crossover point of the scan strategy with iSAX 2.0 is at about 35
queries, for ADS+ it is only at 2 queries. This means that for iSAX 2.0 to be useful we
need to fire at least 35 queries while ADS+ starts bringing gains already after the first
2 queries. Moreover, while the average query answering time for ADS+ is about 50
milliseconds, that of iSAX 2.0 is 200 milliseconds. In other words, iSAX 2.0 is never
going to amortize its initialization overhead over ADS+ and thus it is always beneficial
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to use adaptive indexing as opposed to full a priori indexing. This is because of the
larger leaf size that is used by iSAX 2.0, in order to reduce the index building time by
compromising query times a bit. On the other hand, ADS+ adaptively splits leaves
for the hot part of the data and thus it can reduce access times even further. Further-
more, the cost of query answering for ADS+ (essentially, materializing the data of the
leaf) increases linearly with leaf utilization. This cost ranges from 20ms when the leaf
is already materialized to 160ms when the leaf contains all 10 data-series that need to
be loaded from the raw file. When ADS+ needs to perform splits, the query answer-
ing times are 129ms for 1-10 splits, 138ms for 10-20 splits, 148ms for 20-30 splits, and
160ms for 30-40 splits. All these times are significantly smaller than the required time
to answer a query using serial scan (more than 46min).

3.4.2 ADS+ vs. Multi-dimensional Indexes

One interesting question is how indexes which are tailored for data series search com-
pare against state-of-the-art spatial indexes. In this experiment, we compare ADS+ and
iSAX 2.0 against KD-Tree [18], R-Tree [68], and X-Tree [19], a state-of-the-art adaptive
version of R-Tree. X-Tree creates a tree with minimal overlap between nodes and it
allows for variable sized nodes in order to accommodate minimum overlapping. Such
spatial indexes can be used for indexing data series and performing similarity search;
the main idea is that we can use the PAA representations of data series to create a
KD-Tree, an R-Tree, or an X-Tree.

Here, we use a set of 100 million data series. In all the cases, the amount of dimen-
sions for the reduced dimensionality PAA representation is set to 16 while the original
size of each data series is 256 points. Figure 3.10(d) depicts the time needed to complete
the index building phase for each index. Overall, both data series tailored indexes,
iSAX 2.0 and ADS+, significantly outperform the more generic spatial indexes. For ex-
ample, iSAX 2.0 is one order of magnitude faster than R-Tree while ADS+ is two orders
of magnitude faster, and more than an order of magnitude faster than KD-Tree. The
raw benefit comes from the fact iSAX 2.0 and ADS+ are tailored to perform efficient
comparisons of SAX representations (with bitwise operations). ADS+ being adaptive
enjoys further benefits as we discuss in previous experiments as well. X-Tree is sig-
nificantly slower as a result of its more expensive index building phase which focuses
on minimizing overlap between nodes. Naturally, this helps query processing times
as less overlap allows queries to focus faster on data of interest. However, as we have
shown throughout the analysis in this paper, as we scale to big data, index building is
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Figure 3.11: Updates for 100 million data series and 100 thousand queries in 6 different batch

sizes.

the main bottleneck and thus X-Tree is prohibitively expensive.

3.4.3 Adaptive Behavior under Updates

In our next experiment we study the behavior of ADS+ and iSAX 2.0 with updates.
We use a synthetic data set of 100 million data series and 105 random queries. This
time, queries are interleaved with updates. In particular, we perform the experiment
in 6 steps. Each time a varying number of new data series arrive and at different query
intervals. Figure 3.11 shows the results. The first set of bars represents the case where
all data has arrived up front and all queries run afterwards. The second set of bars
(10M inserts every 10K queries) represents a scenario where every 104 queries 107 new
data series arrive until we reach a total of 108 data series (i.e., the complete data set)
and a total of 105 queries (i.e, the complete query workload). Similarly, the rest of the
bars vary the frequency and the rate of incoming data until the extreme case where we
get 1000 new insertions after every single query.

In all cases, ADS+ maintains its drastic performance advantage over iSAX 2.0. When
all data arrives up front, the cost is naturally higher; more data has to be queried. For
the rest of the cases where data arrives incrementally, interleaving with queries, we
observe that when data arrives more frequently the overall cost increases slightly. This
is a result of both the fact that merging of updates needs to happen more often and
of the fact that more queries need to be processed against more data. However, even
in the extreme case where we receive 1000 new data series after every query, ADS+
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Figure 3.12: (TEXMEX) Indexing 1 Billion images (SIFT vectors) and answering 104 queries.

maintains its adaptive behavior and good performance being able to outperform static
iSAX 2.0 by 2 orders of magnitude.

The behavior under deletions is similar. For example in experiments with a data
set of 100 million data series, indexed by ADS+, we could perform deletions with an
average deletion time at 0.2 milliseconds.

3.4.4 Reducing the Data-to-query Time in Real-life Workloads

Here, we demonstrate the ability of ADS+ to drastically reduce the data-to-query time
in real-life scenarios with real data. In all cases, we use the optimal settings found in
the synthetic benchmarks: for iSAX 2.0 uses a leaf size of 20K data series, while ADS+
uses a build time leaf size of 2K data series which adaptively drops down to 10.

Texmex Corpus (TEXMEX). The first real-life scenario is an image analysis scenario
from the Texmex corpus [84]. This dataset contains 1 Billion images which are trans-
lated into a set of 1 Billion data series (SIFT feature vectors) of 128 points each. The
scenario is that a user is searching the corpus for images similar to an existing image
that they already have. The corpus also contains 104 such example queries together
with information about which image in the corpus is the nearest neighbor, i.e., the
most similar one, for each query.

Figure 3.12 shows the results. Figure 3.12(a) shows the total cost to go through the
indexing phase and to process all queries. ADS+ maintains its drastic gains as we have
seen in the synthetic benchmarks study. Overall, ADS+ finishes answering all queries 6
times faster compared to iSAX 2.0. It is interesting to mention that ADS+ gains not only
during the indexing phase but also during the query processing phase, i.e., the time it
takes to answer all 104 queries is smaller with ADS+. This is because these real-life
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Figure 3.13: (DNA) Indexing 20 Million DNA subsequences from the Homo Sapiens genome

and answering 4 ∗ 105 queries.

queries are not completely random, i.e., the workload focuses in specific areas of the
index. In such cases, ADS+ has the benefit of working on an index which essentially
contains less data; it has loaded only the data which are relevant for the hot workload
set.

Figure 3.12(b) helps to understand this behavior even more by demonstrating the
evolution of the query processing costs, i.e., the graph shows how the indexing and
query processing costs evolve through the query sequence for each indexing strategy.
For iSAX 2.0 the first query needs to wait until the whole index is built which takes
almost 12 hours. From there on, each query can be processed quite fast. On the con-
trary, ADS+ allows the first query to access the data in less than 2 hours, while by the
time we reach the 2 hours mark all 104 queries have been processed. Overall, ADS+
process all queries in just 2 hours, while iSAX 2.0 needs more than 11 hours just for the
indexing phase and without processing a single query.

DNA Data (DNA). The second real-life scenario comes from the biology domain.
This dataset contains the full genome of the Homo Sapiens (human) which is translated
into 20 Million data series of 640 points each, obtained using a sliding window of size
16000, down-sampled by a factor of 25. The scenario is that a user is trying to identify
subsequences of the human genome that match subsequences in other genomes. In
this way, we create our queries from the genome of the Rhesus Macaque ape which
is also translated into 20 Million data series of 640 points each, obtained in the same
manner, and each one of these data series can be used as a query against the human
genome in search for similar patterns.

Figure 3.13 shows the results. Similarly to previous experiments, ADS+ brings a sig-
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Figure 3.14: (SEISMIC) Indexing 100 Million seismic data series and answering 104 queries.

nificant benefit both in terms of total costs and in terms of per query costs. With ADS+
we can index the data and process all queries 3 times faster, i.e., only after one hour,
while with iSAX 2.0 we need to wait for 3 hours. Compared to previous performance
examples, it is interesting to note that in this experiment we have a very different data
to queries ratio, i.e., we have a relatively small data set of 20 Million data series and
a relatively big query set of 4 ∗ 105 queries. Thus, the indexing cost is a much smaller
factor of the total cost compared to previous experiments. Still though, ADS+ brings a
major benefit and shows a scalable behavior, mainly due to its ability to adapt its shape
to workload patterns, by expanding sub-trees and adjusting leaf sizes on-the-fly.

Seismic Data (SEISMIC). The third real life scenario is one that comes from seismol-
ogy. We used the IRIS Seismic Data Access repository [8] to gather data series repre-
senting seismic waves from various locations. We obtained 100 million data series of
size 256 using a sliding window with a resolution of 1 sample per second, sliding every
4 seconds. The complete dataset size was 100GB. We additionally obtained 10,000 data
series with the same technique to be used as queries. We used iSAX 2.0 and ADS+ to
index the data and answer all the queries in the workload. Figure 3.14 shows the re-
sults. ADS+ can index the data more than 4 times faster than iSAX 2.0. With ADS+ we
need to wait just under 6 minutes before we fire our first query, while iSAX 2.0 needs
more than 25 minutes. In regards to query answering, we are able to index the data
and answer all the 104 queries in 11 minutes with ADS+, while iSAX 2.0 requires 37
minutes to complete the same task.

Astronomical Data (ASTRO) In the last real scenario, we used astronomical data
series representing celestial objects [168]. The dataset comprised of 200 million data
series of size 256, obtained using a sliding window with a step of 1. The total dataset
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Figure 3.15: (ASTRO) Indexing 200 Million astronomical data series and answering 104 queries.

Workload Cross-over point (PADS+ over ADS+)

Random 2899 queries

Low skew 2970 queries

Medium skew 3097 queries

High skew 3825 queries

Table 3.2: Fast access with PADS+ with varying skew.

size was 200GB. We obtained an additional 10,000 data series from the raw dataset
using the same technique to be used as a query workload, and used both iSAX 2.0 and
ADS+ to answer the complete workload. Figure 3.15 shows the results. In this case,
ADS+ is more than 6 times faster in indexing time than iSAX 2.0. With ADS+ we need
to wait about 12 minutes before we fire our first query, while iSAX 2.0 needs more than
75 minutes. In regards to query answering, we are able to index the data and answer
all 104 queries in less than 20 minutes with ADS+, while iSAX 2.0 requires 1.5 hours.

3.4.5 Providing Quick Insights with PADS+

Having shown that it is possible to reduce the user waiting time, without excessively
penalizing the query answering time, we now show that we can achieve even faster ac-
cess to the data for skewed workloads. In this experiment we analyze the performance
of ADS+, PADS+ and iSAX 2.0 over a dataset of 1 billion data series and a varying set
of query workloads, ranging from completely skewed to completely random queries.
In total, we run 104 queries. For low skew, 60% of the queries are picked from 40% of
the domain. In the medium skew workload, 80% of the queries are picked from 20% of
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the domain, while for the high skew workload 99.99% of the queries are picked from
0.01% of the domain.

For all workloads both ADS+ and PADS+ significantly outperform iSAX 2.0 being
10 to 20 times faster. iSAX 2.0 needs about 28 hours to index all data and process all
queries with the bulk of the time spent in indexing (included in the cost of Query 1).
Both ADS+ and PADS+ can do so in less than 1.5 hours for 103 queries, and less than
3 hours for 104 queries. ADS+ improves slightly as skew increases; less data has to
be fetched from outside the index. PADS+, though, as seen in Table 3.2, manages to
improve performance even more as skew increases, being faster than ADS+ and iSAX
2.0 for all skewness levels for the first 2000 queries and for almost 4000 queries in the
case of high skewness. When the workload is skewed, this means that PADS+ can
focus on certain parts of the index tree and avoid node splits and disk spilling once it
optimizes the index for the hot part.

While ADS+ provides the best overall solution being both fast and robust, PADS+
provides an attractive solution when we know we want to fire only a few thousands
of queries.

3.5 Summary

In this chapter, we showed that state-of-the-art data series indexing approaches can-
not cope with the data deluge. The time needed to build a data series index becomes
prohibitive as the data grows, and may take more than 24 hours to index a collection
of 1 billion data series. We proposed an adaptive indexing approach, where the in-
dex is built incrementally and adaptively, resulting in a very fast initialization process.
Both the shape of the tree index and the leaf sizes are tuned adaptively and automat-
ically to fit the workload on-the-fly. Using both synthetic and diverse real-life data,
we show that our new adaptive indexing approach copes significantly better with the
ever growing data series collections, and can answer several thousands of queries in
the time that state-of-the-art indexing approaches are still in the indexing phase.



Chapter 4

Minimizing the Query to Answer Gap
for Adaptive Data Series Indexing

4.1 Introduction

Approximate search on the iSAX family of indexes (of which ADS is a part of) has been
shown to be able to retrieve high quality nearest neighbors. Nevertheless, while ADS+
is able to outperform all state-of-the-art solutions in approximate query answering, it
suffers heavily in the case where an exact answer is required. This is because of the
need of materializing multiple leaves during query answering. This is especially true
in cases where queries are extremely difficult, and the index is unable to perform any
pruning. In such cases, ADS might need to materialize the complete index in just a
single query. In order to avoid this problem, there are two courses of action, either full
indexing or developing novel exact query answering algorithms.

4.1.1 Contributions

In this chapter, we study both the aforementioned directions and provide a new full
index construction algorithm, as well as a new exact query answering algorithm, both
outperforming previous work.

Efficient Full Index Construction with ADS-Full

If a highly uniform and large workload is expected, and exact queries are required,
one could consider constructing the complete data series index beforehand. This is
because the more queries are answered and the more uniform they are, the larger the
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percentage of the index that we will have to construct during adaptation will be. Nev-
ertheless, as we’ve seen in the previous subsection, full index construction can be really
time consuming. To overcome this problem, we propose a novel full index construction
method, based on ADS, which outperforms state-of-the-art indexing techniques, con-
structing the exact same tree with much less time overhead. Since very large data series
collections cannot completely fit in main memory, they have to be read in batches. Our
observation in this process, is that the most significant cost during traditional full index
construction is incurred by the action of writing intermediate results on disk and per-
forming split operations on them, which are mostly random I/O. Such random disk
operations dramatically decrease the performance of index construction algorithms.
Our approach can construct the complete index using just two sequential passes over
the complete dataset. Our key intuition is that while the raw data series cannot fit in
main memory, their summaries can, and that the complete index structure can be built
just using them. The raw data are then placed at the right leaves using a second se-
quential pass over the complete data set. Our method, called ADS-Full, is presented in
detail in Section 4.2, and is shown to be 40% faster than the state-of-the-art.

Efficient Exact Search for ADS+ with SIMS

When a very large and uniform workload is not expected, but we still need to answer
exact queries, we need a way to contain the cost of query answering. This means that
we need a way of controlling the percentage of the index that is materialized during
each query. Traditional exact search algorithms proceed to check an index node at a
time, sorting them in a most promising first fashion. While this case is a efficient in full
indexes, this is not the case for an adaptive index. This is because each node visited is
a node materialized. A process which includes visiting the raw data file and moving
data to the right position on the index. As a result, when queries need to check a
very large amount of nodes, the cost would be prohibitive for adaptive indexing. To
contain this cost we propose a novel algorithm for exact search called SIMS. The key
intuition is that a summarized version of the complete data set can fit in main memory.
These summaries can be used to perform pruning. We start the algorithm with an
approximate search, thus materializing only a fixed number of nodes at a time, and
then use the summaries in memory to prune data in the raw file. The summaries are
aligned to the raw data file and only data that cannot be pruned are accessed. We
describe our algorithm in detail in Section 4.3.
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4.2 Creating Fully Materialized Indexes with ADS-Full

In settings where a complete index is required, i.e., when there is a completely random
and very large workload, a full index can also be efficiently constructed with ADS.
Our approach, called ADS-Full, is comprised of two steps. In the first step, the ADS
structure is built by performing a full pass over the raw data file, storing only the iSAX
representations at each leaf. In the second step, one more sequential pass over the raw
data file is performed, and data series are moved in the correct pages on disk.

The benefit of this process is that it completely skips costly split operations on raw
data series: indeed, split operations are performed only on iSAX summarizations, and
mostly within the bounds of main memory. The reason is that iSAX summarizations
correspond merely to 1.5% of the raw data size, and as a result 1 TB of raw data series
can be summarized with 16 GB using iSAX summarizations. This means that a single
pass over the raw data file enables the construction of the complete index using the
iSAX summaries, entirely in main-memory. In this case, all split operations are per-
formed in main memory, and the data structure is flushed on disk only after the entire
process has finished.

During the second step, the raw data file is read again, and their appropriate loca-
tions on disk are identified by index lookup operations, as follows: we compare the
isax summary of each raw series to the ADS-Full nodes during a single path traversal
of the index, until we identify the leaf node in which this series belongs in. These are
mostly binary operations, and as a result, extremely fast. Data are then buffered at the
LBL level, and when there is no more free main memory, they are sequentially flushed
on disk. As we demonstrate in the experiments section, this approach is 40% faster
than building the complete index using iSAX 2.0.

4.3 The SIMS Exact Search Algorithm for ADS+

Approximate Search in ADS+ (Algorithm 9) works by visiting the single most promis-
ing leaf, and calculating the minimum distance to the raw data series contained in it.
This allows us to provide an approximate solution that is close to the actual answer,
while at the same time controlling the time spent on reading raw data from the index.

Exact Search on the other hand, requires visiting a much larger part of the dataset,
in order to guarantee that the returned answer is truly the closest match to the query in
the entire collection. Traditionally, such algorithms (like Algorithm 28 for ADS+) push
index nodes into a priority queue, based on their minimum distance estimation. The
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Figure 4.1: SIMS initial state.

“closest” ones are the nodes visited first, and the answer is gradually refined as more
leaves are visited.

While a large number of raw data may be pruned, the disk accesses involved in
this process are random. This is because the raw data-series for each leaf reside on a
different page of the disk, and leaves are visited in a most-promising-first fashion. In
this way, a significant number of CPU cycles is wasted waiting for data to be fetched
from disk.

To overcome this problem, we propose a skip sequential scan algorithm: it em-
ploys approximate search as a first step in order to prune the search space, it then
accesses the data in a sequential manner, and finally it produces an exact, correct an-
swer. We call this algorithm Scan of In-Memory Summarizations (SIMS). The main
intuition is that while the raw data do not fit in main memory, their summarized rep-
resentations, which can be orders of magnitude smaller, will fit. For example, the size
of a 16-segment iSAX representation for a single data series is 16 bytes, while a raw
data-series of 256 float points is 1,024 bytes. The iSAX summaries of 1 billion data
series occupy merely 16GB in main memory. By keeping these data in-memory and
scanning them, we can estimate a bound for every single data series in the dataset.

The algorithm (refer to Algorithm 10) starts by checking if the SAX data are in mem-
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Figure 4.2: SIMS during query answering.

ory (lines 2-3), and if not it loads them. It then proceeds to create an initial best-so-far
(BSF) answer (line 5), using the Approximate Search algorithm of ADS+ (Figure 4.2(a)).
A minimum distance estimation is performed between the query and each in-memory
SAX record (lines 7-10), using multiple parallel threads, operating on different subsets
of the data. For each lower bound distance estimation, if it is smaller than the real dis-
tance to the BSF, we fetch the complete data series from the raw data file and calculate
the real distance (lines 12-14). If the real distance is again smaller than the BSF, we
update the BSF value (lines 15-16).

Since the summaries array is aligned to the data on disk, what we essentially do
is a synchronized skip sequential scan of the raw (on-disk) data and the (in-memory)
mindists array. This property allows us to prune a large amount of data, while ensur-
ing that we do sequential reads in both main memory and on disk, as well as enable
modern multi-core CPUs to operate in parallel on the data (the SAX summaries in this
case) stored in main memory. The algorithm finally returns the final BSF to the user,
which is the exact answer to the query.

The initial state of the index is depicted in Figure 4.1, where the SAX data can be
seen alongside the index in main memory. Initially, SIMS performs an Approximate
Search operation, performing adaptive splits and loading data from the raw file as nec-
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Algorithm 10: exactSearchSIMS(dataSeries, isax, index, queryTimeLeafSize, file)

1 // If SAX summaries are not in-memory, load them
2 if SAXSummarizations = ∅ then

3 SAXSummarizations = loadSAXFromDisk();

4 // Perform an approximate search
5 bsf = approxSearchADS+(dataSeries, isax, index, queryTimeLeafSize);

6 // Compute minimum distances for all summaries
7 Initialize mindists[] array;

8 // Start multiple threads & compute bounds in parallel parallelMinDistsCompute(mindists,

SAXSummarizations, dataSeries);

9 // Read raw data for unprunable records recordPosition = 0;

10 for mindist ∈ mindists do

11 if mindist < bsf then

12 Move file pointer to recordPosition;

13 rawData = read raw data series from file;

14 realDist = Dist(rawData, dataSeries);

15 if realDist < bsf then

16 bsf = realDist;

17 recordPosition++;

18 return bsf

essary. This can be seen in Figure 4.2(a). Given a BSF solution produced by Approx-
imate Search a multi-threaded process computes the lower bounds to all in-memory
summarizations and a skip-sequential read of the raw file is performed. This is shown
in Figure 4.2(b).

It is important to notice, that SIMS works well even in the degenerate case where
our dataset comprises of identical data series. In such a case, even a single exact query
could lead to the materialization of the complete index. SIMS avoids this situation,
since the rate with which data are materialized is fixed across all queries, and data
loading happens only during the approximate part of the algorithm.

4.4 Complexity Analysis

We now provide a space complexity analysis for ADS, as well as a time complexity
analysis for all the search algorithms we have presented. Since the actual size of the
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index as well as the time needed to answer each query highly depends on the data
distribution [199], we concentrate in providing lower and upper bounds for indexing
and query answering.

Best Case. The ADS index is the most compact when (after all adaptive split oper-
ations) it has the smallest possible number of nodes, and all the leaf nodes are com-
pletely full. If we have N data series, and all leaves are full, then we have a total of
lmin = dN

the leaves, where th is the query-time leaf size. In order to have the shortest
possible tree, every level of the tree must have the highest possible fan-out. If w is
the number of iSAX segments used, the root node of ADS has 2w children that form
binary trees. In the best case we have one binary tree for every single root child, with
d2( lmin

2w )− 1e inner (in-memory) nodes, and lmin
2w leaf (on-disk) nodes each. In total, the

smallest possible ADS index will have nmin = 1 + 2w
⌈( d N

th e
2w−1

)
− 1
⌉

nodes (1 root node,

and 2w full binary trees with dN
the leaves equally distributed among them).

Approximate search in this case requires the traversal of a single path from the root

of the index to one of the leaves. This is Θ
(

log2

(⌈ d N
th e
2w

⌉))
in-memory accesses and 1

disk read of size Θ(th) (th << N).

Worst Case. In the worst case, all data series in the ADS index end up in just one of
the root children nodes, and all subsequent split operations are unable to separate the
data. This would happen only if all the data series were almost identical (in which
case using an index would be pointless anyways), and would result in an index with
one single leaf (with leaf size thexpanded = N). The maximum length of the path to
this leaf depends on the number of split operations. For w iSAX segments and s bits
per segment, the maximum number of split operations is then w(s− 1). Approximate
search in this case would require Θ(w(s− 1)) in-memory accesses and 1 disk read of
size Θ(N).

Exact Search. In the best case, exact search will need to pay the cost of one approximate
search and 2w in-memory accesses for retrieving and pruning all the root level children.
This is a constant number of in-memory accesses above approximate search.

In the worst case, exact search will access the entire index structure using random
disk accesses. Things are different in the case of SIMS, where it is ensured that all disk
accesses are sequential. In the best case, SIMS will do just one approximate search and
one complete scan over all the iSAX summarizations. In a typical setting, this should
be around 1.5% of the raw data size. In the worst case, SIMS will additionally need to
perform one full sequential pass over the raw data file as well.
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Figure 4.3: ADS-Full constructs the complete index in 38% of the time that iSAX 2.0 requires

for 1B data series.

4.5 Experimental Evaluation

4.5.1 Fast Full Index Construction

In this subsection, we demonstrate the benefits of ADS-Full for index initialization
even when building the whole index in one step. For this experiment, we indexed
500M, 750M and 1B randomwalk generated data series of size 256, and compared ADS-
Full with iSAX 2.0. Note that the indexes created by both ADS-Full and iSAX 2.0 are
exactly the same: they contain the same inner nodes, and the same leaf nodes (along
with the same corresponding raw data series). Following our earlier discussion, for
both iSAX 2.0 and ADS-Full we used a leaf size of 20K.

The results are depicted in Figure 4.3. We observe that for 500M and 750M data
series, ADS-Full requires 48% of the time of iSAX 2.0 in order to build the full index,
while for the case of 1B data series ADS-Full completes the task in just 38% of the
time required by iSAX 2.0. These results demonstrate that our approach outperforms
the state of the art, even for the task of building a full index, for which iSAX 2.0 was
initially designed.

4.5.2 Efficient Exact Query Answering using SIMS

Setup. In this subsection, we explore the benefits of using SIMS for answering exact
queries. We use both ADS+ and iSAX 2.0 to index 5 random walk generated datasets
with sizes of 100K, 1M, 10M, 100M, and 1B data series of length 256. Each data se-
ries has a record size of 1024 bytes. We generate queries by adding Gaussian noise
to randomly selected data-series from the original dataset. The more noise we add,
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Figure 4.4: Indexing 1 billion data series and issuing 100 exact queries.

the harder the queries become, as they drift away from their nearest neighbor. We use
queries with varying amounts of noise, in order to test the algorithms under differ-
ent conditions. For each dataset we generate 100 queries, and use the following four
methods to answer them.

• Serial Scan. This is a baseline approach, which has been shown to outperform
the exact search of iSAX 2.0 in several cases [90]. We answer each query by per-
forming a full sequential scan of the raw data file. This method implements the
early abandoning technique, where we stop scanning and evaluating the distance
for a data series when this distance becomes greater than the best-so-far solution.

• iSAX 2.0. This is the exact search algorithm of iSAX 2.0. We use the complete iSAX
2.0 index that we have built beforehand and visit nodes in a most-promising-first
fashion. All nodes are pushed in a queue and the one with the minimum lower
bound is popped. If this node is a leaf, then we check the full data series, retrieved
from disk.

• ADS+. This is ADS+ implementing the exact search algorithm of iSAX 2.0. The
only difference is that when we visit leaf nodes we first perform adaptive split
operations and then load the data from the raw data file in the index.

• ADS+ (SIMS). This is the SIMS exact search algorithm. We load all the iSAX
representations in main memory and perform a multi-threaded lower bound cal-
culation. We then visit the data on the raw file for only the records with a lower
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Figure 4.5: Extra time on top of ADS+ (with SIMS) for all other methods.

Dataset size Cross-over point (Serial Scan over ADS+)

100K 7 queries

1M 4 queries

10M 4 queries

100M 3 queries

1B 3 queries

Table 4.1: ADS+ outperforms serial scan after a few queries.

bound less than the best-so-far solution obtained using Approximate Search.

We have removed the square root computation from the Euclidean Distance, for all the
above approaches.

Evaluation. In Figure 4.4(a), we plot the indexing time for both iSAX 2.0 and ADS+.
Serial Scan has no initialization cost. ADS+ outperforms iSAX 2.0 by more than an
order of magnitude in terms of data-to-query time. In Figure 4.4(b), we plot the query
answering time for all algorithms, and in Figure 4.4(c), we plot the indexing and query
answering times combined, when the dataset varies between 100K and 1B data series.

ADS+ (SIMS) is the fastest method across the board. The speed-up is more pro-
nounced when the complete dataset fits in main-memory, where we are able to prune
at a per data series level. This is because data are transferred from main memory to the
CPU in cache-lines, which are much smaller than the data series size. Consequently, we
have fine control over the data series that are transferred to the CPU: these are only the
data series that need to be processed. On the contrary, in the case of large dataset sizes
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that exceed the main memory capacity (i.e., 10M and above in our experiments), we
are only able to prune at a per disk-page level. Since disk pages fit more than one data
series, we end up wasting a considerable amount of time on reading and transferring
from disk data series that are not needed.

We observe that the benefit of ADS+ (SIMS) in absolute numbers increases with the
dataset size. This is depicted in Figure 4.5, where we plot the amount of additional
time that all methods need in order to (index the dataset and) answer all the queries in
the workload, when compared to ADS+ (SIMS). For the 10M dataset, Serial Scan, iSAX
2.0, and ADS+ respectively need 2.1x, 2.4x, and 7.4x more time than ADS+ (SIMS),
which completes the task within 12.7 minutes. For the 1B dataset, Serial Scan needs
7 hours more than ADS+ (SIMS) in order to produce the results; iSAX 2.0 and ADS+
required more than 60 extra hours, at which point we stopped their execution.

Our experimental evaluation also shows that, even if Serial Scan has zero initializa-
tion cost, ADS+ (SIMS) very quickly outperforms it, after only a few queries (refer to
Table 4.1). With a dataset of 100K data series, Serial Scan becomes slower than ADS+
(SIMS) if we want to answer 7, or more, queries. Moreover, the relative benefit of
ADS+ (SIMS) increases with the dataset size: for the datasets with more 100M data
series, ADS+ (SIMS) is faster than Serial Scan after answering merely 3 queries. As a
result, ADS+ is the best option in all cases, even when analysts need to answer only a
few queries.

According to our complexity analysis of Section 4.4, being able to answer queries
faster than the Serial Scan, when including the indexing cost as well, means that we
are far away from the worst case scenario, efficiently pruning large parts of the raw
dataset.

4.6 Summary

In this chapter we presented algorithms that minimize the query answering time for
ADS+. We developed a full index construction method based on ADS, which outper-
forms the state-of-the-art, and a novel exact query answering algorithm that facilitates
sequential disk scans in order to speed up exact search. In conclusion, we show that
when data are stored in traditional disks, doing partial serial scans on scattered data
is always much more efficient than doing random access. This is also the case with
our new index construction algorithm, which instead of writing intermediate results,
it relies on a double serial pass of the raw dataset.
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Chapter 5

The RINSE Data Exploration System
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Figure 5.1: Interactive Data Series Exploration

In this chapter we present the RINSE system (a recursive acronym: RINSE Inter-
active Series Explorer), which is built around ADS+. RINSE provides a user interface
that manifests the benefits of adaptive indexing for interactive exploration of large data
series collections. The exploration process can be seen in Figure 5.1. Users can explore
large multi-gigabyte datasets in seconds, pose exact or approximate similarity queries
by drawing data series using the mouse or touch screen and issue random queries on
the click of a button. These queries guide the ADS+ index that lies inside RINSE to per-
form adaptive operations. Users can experience how the index adapts by looking at
statistics that are updated on the fly. Additionally, they can compare query answering
times, memory footprint, etc. across different access methods, such as a simple scan
or the use of a complete (non adaptive) index. Finally, they can also experience the
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Figure 5.2: RINSE Architecture

differences in terms of data-to-query time by building either a complete or an adaptive
index. Users can pose queries using their mouse (or touch screen) or select them from
other data collections.

5.1 The RINSE System

We now describe RINSE [196], and the use cases that demonstrate the functionality
and benefits of adaptive indexing via the ADS+ index.

The RINSE System

The overall 3-tiered architecture of the RINSE demonstration system can be seen in
Figure 5.2. More information can be found on the ADS+/RINSE website1.

Basic Infrastructure. We developed ADS+ in C and compiled it using GCC 4.6.3 as
a shared library (libads). We additionally created a TCP server, using libevent, to expose
its functionality as a network service. This is seen as the ADS+ Server in Figure 5.2.
In addition, we created language bindings for libads for the NodeJS JavaScript runtime
environment. Users connect to the ADS+ Server using a telnet client or a web interface.

The RINSE web interface is developed as a single page application in HTML5,
JavaScript and CSS. It connects to a NodeJS middleware using the Socket.IO library.

1http://daslab.seas.harvard.edu/rinse/



The RINSE System 83

The middleware has an always active connection to the ADS+ Server. The HTML5
client listens for user events which are pushed to the middleware. The middleware
then pushes results back to the client in a real-time event-based mode. This allows for
an intuitive and responsive experience where users can draw queries on screen using
the mouse (or a touch interface), and see the results appear on screen in near real-
time. They can also generate random queries, or choose queries from a list. Data series
query workloads [199] can also be used, in order to stress-test ADS+, and demonstrate
its performance benefits.

Supported Features. RINSE allows users to index data and issue nearest neigh-
bor queries, using three different access methods: 1) a simple serial scan, which reads
the complete raw data file for every query; also employing a simple early abandoning
technique for avoiding useless computations, 2) a complete iSAX 2.0 [30] index, which
is built before the users can start posing queries, and 3) an adaptive ADS+ index, which
takes considerably less time to construct. In all three cases, the distance measure used is
the Euclidean Distance. Each query can be re-run using a different data structure such
that users can see the differences. Furthermore, users have access to statistics measur-
ing the performance of each access method, the amount of data currently ingested by
the adaptive index and the memory footprint.

Figure 5.3: RINSE interface components explanation.
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Figure 5.4: An example telnet connection to ADS+.

5.2 Usage Scenarios

A screenshot of the interface is shown in Figure 5.3. In this figure we also describe
the main interface elements and components. There are buttons for issuing random
queries, continuous querying and loading data files. Additionally, on the left hand
side, there are various information components that describe the current status of each
data structure, as well as query answering times. For iSAX 2.0 and ADS+, users are
able to run both exact and approximate queries by selecting this option from the RINSE
interface. In this way, users can also compare the answering times and accuracy of the
various methods when using exact versus approximate processing modes.

Various datasets of different sizes can be easily loaded in the system by the user.
The goal of our system is to demonstrate the speed benefits of using partial adaptive
indexes over traditional ones for similarity search in large collections of data series,
and observe how the system adapts to their queries during data exploration. Bellow
we list a set of usage scenarios that showcase the functionality of RINSE.

5.2.1 Command Line Connection

All different access methods are socket services listening to different ports. There are
three different servers. One for the ADS+ index, one for the full iSAX 2.0 index and
one for the serial scan. Users can connect to all these services via telnet. After con-
necting, users are presented with a command line interface that allows them to query
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(a) Select Dataset (b) Confirm Indexing

(c) Indexing Process (d) Indexing Finished

Figure 5.5: Dataset Loading and Indexing.

and monitor each data structure. An example of this process can be seen in Figure 5.4,
where the user issues the “telnet localhost 8090” command to connect to ADS+. He is
then able to interact with the index. For example, as seen in the same figure, issuing
a “help” command presents to the user the list of available commands. Those include
commands for issuing both approximate and exact queries, for loading datasets, and
for getting information about the memory usage of the data structure.

5.2.2 Loading and Indexing Data

Using the web interface seen in Figure 5.3, users can experience how adaptive indexing
allows for quick access to data. We achieve this by directly comparing adaptive index-
ing to full indexing. The users can initially choose a dataset, by clicking the “Load”
button. This process is seen in Figure 5.5. The users can then choose between the three
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Figure 5.6: ADS+ After Multiple Queries.

methods and, in case the dataset is not yet indexed, they are presented with a panel that
allows them to perform the index construction process. They can then observe how the
difference between creating a complete or an adaptive index structure. By repeating
the process with increasing data sizes, it becomes evident that adaptive indexing is a
scalable approach, while full indexing quickly becomes a bottleneck.

5.2.3 Adaptivity Benefits

In this scenario, the users can experience the adaptive nature of ADS+. In particular,
we highlight how ADS+ grows incrementally and adaptively as more queries arrive.
To achieve this we provide a visual way of monitoring various statistics such as RAM
and disk usage. Users can also see the percentage of data indexed by ADS+ at any
point in time. In addition, they can observe the index expand as more queries are is-
sued, and also observe the impact that this has on memory usage. Breakdowns for
partial and raw data in the index are also provided. All these measures can be seen in
Figure 5.6 on the right hand side. As we can see, after multiple queries, the cumulative
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(a) Drawing Query (b) Result

Figure 5.7: Drawing Queries with the Mouse.

time to answer all of them is presented in “Exact Query Answering Time” graph of this
figure. While ADS+ (the red line), starts with an initial overhead of index construction,
it quickly outperforms the serial scan (blue line), which has no initialization cost. For
the case of iSAX 2.0 (green line), index construction is a big overhead, which hinders
interactivity, even when a big leaf size is used. Moreover, because of our novel exact
search algorithm in ADS+ (SIMS), we are still able to outperform the exact query an-
swering times of iSAX 2.0. As a result, iSAX 2.0 will always perform worse than ADS+
and serial scan makes sense only for cases when very few queries have to be answered.

Finally, we provide both a manual and an automatic query process: (a) in the man-
ual case, the index is enriched through queries, which users can draw; (b) in the auto-
matic case, the system automatically executes random queries and enriches the index.
To support this scenario, a Play/Pause button is additionally provided to control the
automatic query execution. While the system continuously executes random queries,
the user can observe the changing index characteristics by following the evolution of
the statistics reported graphically, i.e., memory overhead, percentage of data indexed,
and query answering times.

5.2.4 Data Exploration

In the last usage scenario, the users have the ability to explore large datasets at inter-
active speeds. The goal of this scenario is to showcase the ability of ADS+ to provide
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answers at interactive speeds even though it starts from a partial index state compared
to full indexing. Users can issue queries in multiple ways such as interactively drawing
data series on screen, as seen in the large plot area on the left hand side of Figure 5.7.
For this task one can either use the mouse or a touch screen (e.g., on an iPad). A query
is essentially a data series and the system tries to find the closest data series in the
database. Additionally, queries can be selected from within existing files of data se-
ries; in this scenario the user browses existing files and selects a specific data series to
see what is the closest one in the database. The result to each query, i.e., the nearest
neighbor, is displayed on screen alongside the query itself as shown in Figure 5.7 on
the right. This allows users to visually compare the shapes of the two data series. To
demonstrate the benefits of using an adaptive index, users also in this case can compare
the query answering times of ADS+ [195] to that of iSAX 2.0 [30], and serial scan.

5.3 Summary

In this chapter we presented RINSE, an interactive data exploration platform that
demonstrates the benefits of the adaptive data series index ADS+. This system allows
the users to experience how adaptive indexing provides quick access to data. It is de-
signed to provide visual access and querying of large data series collections, allowing
analysts to quickly browse through their data. Users can additionally use RINSE to
perform both full indexing, and simple serial scan, thus comparing the performance of
adaptive indexing to these methods. This can happen both in an automatic way, with
existing, or random workloads, and in a manual way, where users can draw queries
on the screen.



Chapter 6

Generating Query Workloads for Data
Series Indexes

6.1 Introduction

Nearest neighbor queries are of paramount importance, since they form the basis of
virtually every data mining and analysis task involving data series. However, such
queries become challenging when performed on very large data series collections [31,
134]. The state-of-the-art methods for answering nearest neighbor queries mainly rely
on two techniques: data summarization and indexing. Data series summarization is used
to reduce the dimensionality of the data [93, 131, 132, 103, 11, 103, 90, 38, 107] so that
they can then be efficiently indexed [131, 165, 30, 180, 13, 156].

We note that despite the considerable amount of work on data series indexing [59,
132, 38, 165, 90], no previous study paid particular attention to the query workloads
used for the evaluation of these indexes. Furthermore, since there exist no real data
series query workloads, all previous work has used random query workloads (follow-
ing the same data distribution as the data series collection). In this case though, the
experimental evaluation does not take into account the hardness of the queries issued.

Indeed, our experiments demonstrate that in the query workloads used in the past,
the vast majority of the queries are easy. Therefore, they lead to results that only re-
veal the characteristics of the indexes’ performance under examination for a rather re-
stricted part of the available spectrum of choices. The intuition is that easy queries are
easy for all indexes, and thus these queries cannot capture well the differences among
various summarization and indexing methods (the same also holds for extremely hard
queries as well). In order to understand how indexes perform for the entire range of
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possible queries, we need ways to measure and control the hardness of the queries in
a workload. Being able to generate large amounts of queries of predefined hardness
will allow us to stress-test the indexes and measure their relative performance under
different conditions.

In this work, we focus on the study of this problem and we propose the first prin-
cipled method for generating query workloads with controlled characteristics under
any situation, without assuming a single summarization and index or a specific test
dataset1. To this end, we investigate and formalize the notion of hardness for a data
series query. This notion captures the amount of effort that an index would have to
undertake in order to answer a given query, and is based on the properties of the
lower bounding function employed by all data series indexes. Moreover, we describe
a method for generating queries of controlled hardness, by increasing the density of
the data around the query’s true answer in a systematic way.

Intuitively adding more data series around a query’s nearest neighbor forces an
index to fetch more raw data in that area for calculating the actual distances, which
makes a query “harder”. In this work, we break down this problem into three sub-
problems.

• Determine how large the area should be around the query’s nearest neighbor

• Determine how many data series to add in that area

• Determine how to add data series

The proposed method leads to data series query workloads that effectively and
correctly capture the differences among various summarization methods and index
structures. In addition, these workloads enable us to study the performance of various
indexes as a function of the amount of data that have to be touched. Our study shows
that queries of increased hardness (when compared to those contained in the random
workloads used in past studies) are better suited for the task of index performance
evaluation.

Evidently, a deep understanding of the behavior of data series indexes will enable
us to further push the boundaries in this area of research, developing increasingly
efficient and effective solutions. We argue that this will only become possible if we
can study the performance characteristics of indexes under varying conditions, and
especially under those conditions that push the indexes to their limits.

1Website: http://disi.unitn.it/~zoumpatianos/edq

http://disi.unitn.it/~zoumpatianos/edq
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6.1.1 Contributions

• Index-dependent query answering effort. We identify the summarization- and
query-specific factors that make query answering on data series indexes expen-
sive. Such measures can capture the “effort” a given index needs to make in order
to answer a specific query.

• Intrinsic query hardness. We define summarization- and index-independent
measures that can effectively capture the “effort” of various summarization/in-
dex combinations. We call this intrinsic measure, the “hardness” of a query.

• Queries with meaningful intrinsic query hardness. We recommend a set of prin-
ciples that should be followed when generating evaluation queries such that the
intrinsic “hardness” measure can accurately capture various summarization/index-
specific query “efforts”.

• Generating workloads. We describe the first nearest neighbor query workload
generator for data series indexes, which is designed to stress-test the indexes at
varying levels of difficulty. Its effectiveness is independent of the inner-workings
of each index and the characteristics of the test dataset.

• Experimental evaluation. We demonstrate how our workload generator can be
used to produce query workloads, based on both real and synthetic datasets.

6.2 Preliminaries

A data series x = [x1, ..., xd] is an ordered list of real values with length d. Since data
series can be represented as points in a d-dimensional space, in this paper, we also call
data series as points. Given a datasetD = {xi}N

1 of N points and a query setQ = {qi}M
1

of M data series, a query workload W is defined as a tuple (D,Q, k, DIST), where each
query point qi ∈ Q is a k nearest neighbors (k-NN) query and DIST(·, ·) is a distance
function. When the context is clear, we use x(k) to denote k-th nearest neighbor of a
query q.

In this work, we focus on the nearest neighbor query, i.e., k = 1, and define MINDIST(q)
as DIST(x(1), q). However, our methods can be naturally extended to higher values of
k by employing the distance to the k-th nearest neighbor. For the rest of this study, we
consider the Euclidean distance DIST(x, y) = ‖x− y‖2, due to its wide application in
the data series domain [30, 165, 180]. Table 6.1 summarizes the notations in this paper.
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Symbol Description

x A data series

q A query data series

D A set of N data series

Q A set of M queries

DIST(x, q) Euclidean distance between x and q

MINDIST(q) Distance between q and its nearest neighbor

L(x, q) Lower bound of DIST(x, q)

ATLB(L, x, q) Atomic tightness of lower bound of L for x, q

TLB(L) Tightness of lower bound of L

µL(q) Minimum effort to answer q using L

N ε(q) ε-Near Neighbors of q

αε(q) Hardness of q for a given ε

Table 6.1: Table of symbols.

6.3 Characterizing Queries

In this section we investigate the factors that affect the query answering performance of
data series indexes and summarizations. We start in Section 6.3.1 with an introduction
on lower bounding functions used by summarizations, and study the minimum effort
that an index can make in order to answer a given query. We continue our discussion
with the requirements that should be satisfied for defining an index-dependent mea-
sure of query answering effort. In order to do this, we connect the de facto measure
for quantifying the quality of a summarization, called the tightness of the lower bound
(TLB), to the percentage of data that an index will need to check, in the best case, in
order to answer a query.

We note that there exists an implicit relationship between summarizations and in-
dexes: each node of an index corresponds to a summarization of all the data series
below it. As a result, data series indexes can be thought of as hierarchical (multi-level)
summarizations. This is illustrated in Figure 2.5, where each internal node of the index
includes a summary of all the data series below it.

Requirements for a reasonable hardness definition. Our goal in this work is
twofold. First, to be able to generate queries with meaningful effort values, effectively
capturing the quality of the summarizations, and second, to have a meaningful intrin-
sic hardness definition that effectively captures these efforts. For this reason, we need
queries and a hardness definition with the following properties:

1. Inter-index (intra-query) effort accuracy. Given a single query q1 and two indexes
I1 and I2, since data-series indexes are multi-level summarizations of data series,
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we can safely consider that at each level lI1 of index I1, this index summarizes
data series with a specific summarization Summarization(lI1). The summariza-
tion error is a commonly accepted measure of how good a summarization is, and
at each level lI1 of index I1, it is defined as SummError(lI1), and SummError(lI2)

for index I2. Given two summarization errors, for a specific level of each index
(or two different levels of the same index in a general case), the corresponding
efforts should capture how much bigger the error of one level is over the other
level. Formally, if the effort values for answering the query using each summary
are Effort(lI1 , q1), Effort(lI2 , q1), it should hold, for every level of each index that:

Effort(lI1 , q1)

Effort(lI2 , q1)
=

SummError(lI1)

SummError(lI2)

This property would ensure that the worse a summarization the more data it has
to check. Additionally, it would ensure that there are no cases where the distribu-
tion of the data is such that bad summarizations and good summarizations have
the same performance. It is important to note that this is a property of the queries,
and not a property of our hardness measure. We should either generate, or select
queries that respect this property.

2. Intra-index (inter-query) hardness accuracy. If for two queries q1, q2 and a single
index I1, the effort of answering these queries using this index, at every level lI1 is
Effort(lI1 , q1), Effort(lI1 , q2), an ideal intrinsic hardness definition would need to
accurately capture how much bigger the effort for q2 is over the effort of q1 for this
index level. Formally, if the hardness values for q1 and q2 are Hardness(q1) and
Hardness(q2), it should hold that:

Effort(lI1 , q1)

Effort(lI1 , q2)
=

Hardness(q1)

Hardness(q2)

We argue that a hardness definition that satisfies these criteria across different sum-
marizations/indexes and different queries is an ideal intrinsic hardness definition,
which will subsequently allow us to generate queries using a predefined hardness,
effectively causing the appropriate relative efforts to various different indexes/sum-
marizations.

Since, as we already mentioned, we consider data series indexes as multi-level sum-
marizations of data series, in the rest of the section we reason using summarizations.
We assume that a bad summarization, which does not allow a lot of pruning to be per-
formed, corresponds to a very rough representation of the indexed data, commonly
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found in higher level nodes of an index hierarchy, where it summarizes a large quan-
tity of data series. On the contrary, a good summarization corresponds to a very precise
representation of the data series, it allows more pruning to be performed, and is com-
monly found at the leaf level of an index, where it summarizes a smaller quantity of
the data; usually the size of a disk-page. We consider that the better the pruning at
each level, and the smaller the amount of levels, the better the performance of the in-
dex in overall will be, and as a result we can concentrate our study on summarizations
of varying precision as a proxy to quantifying global index effort and query hardness.

6.3.1 Index-dependent query answering effort

Lower Bounds, ATLB and TLB

When navigating an index, we make use of the lower bounds (computed based on
the summarizations) of the true distances of data series in the original space. This
technique guarantees that there will be no false negatives in the candidate set, but it
does not exclude the false positives. Therefore, the indexes will either have to move
to lower (and more precisely summarized) levels of the index that contain better sum-
marizations, performing further lower bound computations, or in the case of a leaf
node, when the summarizations cannot be further improved, they need to fetch the
raw data series as well, and check them before returning the answer, filtering out the
false positives, and thus guaranteeing the correctness of the final answer.

The use of lower bounds can be conceptually thought of as the cut-off point in
the distance between two summarized data series. Below this point, the correspond-
ing raw data, or lower and more precisely summarized levels of the index have to be
checked. To capture this notion, we can use the Tightness of Lower Bound (TLB) [179],
which is measured as the average ratio of the lower bound over the true distance. We
formalize this notion by first introducing here the Atomic Tightness of Lower Bound
(ATLB), which is the same ratio, but defined for a specific query and summarized data
series pair.

Definition 8 (Atomic Tightness of Lower Bound) Given a summarization with lower bound-
ing function L, the atomic tightness of lower bound (ATLB) between a data series q and a
summary of data series x is defined as

ATLB(L, x, q) = L(x, q)/DIST(x, q) (6.1)
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Figure 6.1: Two random queries with nearest neighbors depicted with “×”.

Definition 9 (Tightness of Lower Bound) Given a summarization with lower bounding
function L, a set of queriesQ and a set of data series D, the tightness of lower bound (TLB) for
this summarization is defined as

TLB(L) =
1

N ×M ∑
q∈Q

∑
x∈D

ATLB(L, x, q) (6.2)

Example 1 Figure 6.1(a) demonstrates the implications of the TLB . For simplicity, we rep-
resent each data series as a point in a two-dimensional space, i.e., d = 2. In this exam-
ple, we plot two queries q1, q2 and mark their nearest neighbors with a bold “×”. Assume
MINDIST(q1) = 0.33, MINDIST(q2) = 0.26, and all data series are summarized using
the same summarization method. Let the ATLB between the queries and any data point be 0.5,
i.e., the lower bound of the distances between q1 or q2 and all other points is 0.5 times their
actual distance. According to the definition of ATLB, a point x cannot be pruned if

L(x, q) ≤ MINDIST(q) (6.3)

⇔ DIST(x, q) ≤ MINDIST(q)
ATLB(L, x, q)

. (6.4)

This means that for q1, all points whose actual distance is within a radius ρ = 0.33
0.5 from

q1’s nearest neighbor can not be pruned, because their lower bound distances are less than the
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distance to the answer. Since ATLB(L, x, q) ∈ (0, 1], the right hand side of Inequality (6.4) is
always no less than MINDIST(q). These ranges are depicted as disks in Figure 6.1(a).

Note that the TLB is small for an inaccurate summarization, i.e. such summariza-
tion tends to significantly underestimate the distance. As a result, data series under
this summarization will look much closer than they actually are. Consequently, the
index will have to check more raw data, leading to a longer execution time. This is
indeed an important criteria for measuring index performance. To formalize such dif-
ference in the effort of more or less effective summarization/indexing techniques, we
hereafter introduce the notion of Minimum Effort. We will then examine in the follow-
ing subsections how this notion can be linked to a meaningful concept of hardness of
a query within a workload.

Index-dependent measure of Minimum Effort

We define Minimum Effort (ME) as the ratio of points over the total number of series
that an index has to fetch to answer a query, given that it uses the best summarization
that it contains for each distinct data series. This aims to describe the absolute mini-
mum amount of raw data that an index will have to touch in order to answer a query.

Definition 10 (Minimum Effort) Given a query q, its MINDIST(q) and a lower bound-
ing function L, the minimum effort that an index using this lower bounding function has to do
in order to answer the query is defined as

µL(q) = |{x ∈ D|L(x, q) ≤ MINDIST(q)}|/|D|

As we have seen in Example 1, given a fixed ATLB between the query and data
series, data series that contribute to ME are within a radius ρ = MINDIST(q)

ATLB(L,x,q) from the
query’s nearest neighbor and these data series cannot be pruned. The size of this radius
is inversely proportional to ATLB and proportional to MINDIST(q).

It is important to clarify that this is the minimum possible effort that an index will
have to undertake, and in most cases it will be smaller than the actual effort that the
index will actually do. This is because the search for the solution hardly ever starts with
the real answer as a best-so-far. Additionally, the more lower bounds are computed,
the slower the index becomes.

To demonstrate this we have run a small experiment with 100,000 synthetic data
series, generated with a simple randomwalk, a process which we will describe later on
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Figure 6.2: 100,000 random walk generated data series and 100 queries.

in the text, and 100 queries. We converted all data series into PAA with 32 segments
and built an R-Tree index above them. We then fired the 100 queries to the index and
measured the query answering time as well as the ratio of the data accessed in order
to answer each query. Further on, for every query we measured its minimum effort
as per our definition and we present the results in Figure 6.2. We can see that the
minimum effort is highly correlated to both the query answering time and the amount
of data that an index checks. Additionally, we can see that the grouping of data by
the index causes an additional overhead, since the ratio of data checked by the R-
Tree is constantly higher than the minimum effort and the time is higher than simply
accessing the data, because of the costly index traversal.

6.3.2 Intrinsic query hardness

E -dependent hardness

Recall that our goal is to investigate the general, summarization-independent, in-
trinsic hardness of queries in a workload. Since Minimum Effort is tied to a specific
summarization, we need a more general notion to capture how hard a query is. Intu-
itively, the hardness of a query is related to the number of points around its nearest
neighbor (true answer). Given this intuition, we define the ε-Near Neighbors (ε-NN)
of a query q as follows.
Definition 11 (ε-Near Neighbors) Given ε ≥ 0, the ε-near neighbors of a query q isN ε(q) =
{x ∈ D|DIST(x, q)
≤ (1 + ε)MINDIST(q)}, i.e., all the points in D that are within (1 + ε)MINDIST(q) of
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the query’s nearest neighbor.

The ε-NN naturally defines a hypersphere around the nearest neighbor of the query.
In the rest of this paper, we will refer to this hypersphere as the ε-area. Now we define
the ε-hardness of a query as follows.2

Definition 12 (E -hardness) Given ε ≥ 0, the ε-hardness of a query q is αε(q) = |N ε(q)|
|D| ,

i.e., the fraction of D that is within (1 + ε)MINDIST(q) of the query.

Example 2 Going back to the example in Figure 6.1(a) let us assume that the total number of
points in the dataset is 100. E -hardness computation for ε = 1.0 accordingly yields α1.0(q1) =

0.06 and α1.0(q2) = 0.18.

In the following, we will focus on showing under which conditions the ε-hardness
can be used as a meaningful intrinsic hardness measure for queries within a workload.

E -independent hardness

As sketched in the introduction, we are interested in an intrinsic hardness measure
for queries that would essentially enable a meaningful comparative analysis of the
performances of various summarization/indexing techniques.

We have introduced above the notion of Minimum Effort, which provides a good
indication of the efficiency of a summarization when dealing with a query. What we
would like now, are the following two objectives:

1. To select or generate queries (irrespective of their hardness values), which are
able to accurately differentiate, or discriminate, between more and less efficient
summarizations. This is the inter-index (intra-query) effort accuracy property
that we talked about in the beginning of Section 6.3.

2. Define an ε-independent intrinsic hardness measure, whose values, correspond-
ing to the queries in a workload are representative of the Minimum Effort, and this
moreover for all the summarizations under test. This is the intra-index (inter-query)
intrinsic hardness accuracy property.

We will focus hereafter on detailing the criteria needed for ε-hardness to hold as a
robust hardness measure for the queries within a workload, according to the require-
ments stated above.

2A similar definition can also be found in [21].
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The choice of an ε value. Let us go back to Examples 1 and 2 and assume as
previously a summarization with a (constant) ATLB of 0.5. As we have shown above,
points within a radius of 0.33

0.5 = 0.66 from q1 all participate in the Minimum Effort of
our considered summarization. This radius, on the other hand, corresponds to an ε-
area for ε=1. For this precise value of ε, we are indeed sure that the respective ε-area
covers exactly the points participating in the ME. It turns out that, following directly
from Inequality (6.4), to ensure that an ε-area around a query q in a workload covers all
the points that participate in the Minimum Effort of a specific summarization/index
with a constant ATLB, the following must hold:

ε ≥ 1
ATLB(L, x, q)

− 1 (6.5)

When enforcing an equality in the above formula, one obtains an ε value for which
the corresponding area contains all and precisely the points involved in the Minimum
Effort of the specific summarization. Accordingly, the ε-hardness is equal to the Mini-
mum Effort.

Let us assume now that for our example we had picked an ε = 0.1 for the hardness
computation. The computed hardness would then be expectedly lower that the Mini-
mum Effort of our considered summarization, since all ME points between ε = 0.01
and ε = 1.0 will be ”unaccounted for”. Assume further that in the interval between
ε = 0.01 and ε = 1.0 we would have a very large number of dataset points. The esti-
mated hardness of q1, computed as ε-hardness for ε = 0.01, would then be significantly
lower than the actual Minimum Effort. The particular difference would be furthermore
uncontrolled by the query hardness.

By the above, we argue that in order to be able to ensure that ε-hardness is a mean-
ingful hardness measure within a workload, the value of ε to be chosen should be
such that few/no points participating in the Minimum Effort of the summarizations
tested are located outside the ε-areas. Considering again the case of constant ATLBs,
it is obvious that if this ”coverage” property holds for a summarization it will hold for
”better” summarizations (i.e. with higher ATLB) as well. In fact, ensuring an equality
in equation 6.5 for the worst summarization tested guarantees that the ME points are
covered by ε-areas for all summarizations.

Let us now go back to our original question: which ε value should one choose to ensure
a meaningful hardness measure? The answer to this question can be seen as simply:
Any value, but the lower such value the lesser the range of summarizations that can in
principle be meaningfully tested by employing the respective workload. This ε value,
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should be chosen to correspond to the worst summarization that we are interested in
penalizing. Below this point all equally bad or worse summarizations will be facing
the same effort. As a result we need an ε value large enough to cover all reasonably
bad indexes, but not large enough for penalizing outlying bad summarizations as they
are already too slow.

Structure of the ε-area. The choice of a ”convenient” ε value ensuring that no
ME points are ”left aside” is a first necessary step towards turning ε-hardness into an
intrinsic hardness measure. However, as we will hereafter show, this first step is not
sufficient.

The intra-index (inter-query) hardness accuracy property. As we mentioned in the
second requirement of the beginning of Section 6.3, we need to ensure that the effort of
answering queries using a single summarization is accurately captured by our hard-
ness definition. That is, for any given index/summarization, the ratio of the efforts for
this single summarization and two queries should be equal to the ratio of the hardnesses
of those queries.

Going back to our example, we had there two queries q1 and q2 with respective
hardnesses (computed as ε-hardnesses for ε = 1.0) of 0.06 and 0.18 respectively. These
values suggest that q2 is 3 times harder than q1. This indeed, as shown, holds for
our example summarization technique with ATLB = 0.5, whose Minimum Effort is
indeed characterized by the ε-hardness for ε = 1.0. We will hereafter denote this
summarization by S1.

It is important to note that this property holds when a specific and common summa-
rization is used to answer both queries, and is easy to satisfy this requirement. Simply,
since ε is fixed, each area should have a specific amount of times more points than the
other. Let us then look at a ”better” summarization with a (constant) ATLB = 0.83,
denoted hereafter by S2. It is easy to show that S2’s Minimum Effort on q1 is 0.02.
However, S2’s ME on q2 is also 0.02! Accordingly, for S2, the two queries then appear
as equally hard.

The question that arises then is: how could one ensure q1 is 3 times harder than q2

for S2, and in general for any other summarization within the limits of those addressed
by the chosen ε? In other words, how can we make this property hold for all possible
summarizations. It turns out that, according to equation 6.5, S1’s Minimum Effort
is best characterized by the ε-hardness computed for ε = 0.2, which in fact yields
α0.2(q1) = 0.02 and α0.2(q2) = 0.02. What we would want instead is for the 1:3 ratio to
still hold at ε = 0.2 and for any other ε. As a result, for all summarizations we would
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like the following to hold:
αε(q1)

αε(q2)
=

αε̂(q1)

αε̂(q2)
, ∀ε̂ ≤ ε (6.6)

Note that the lack of this property for ε = 1.0 on our example’s query workload
comprising q1 and q2 makes this workload unsuitable for comparative analysis of S1 and S2,
and in fact for any summarization set comprising S2 and several other ”better” sum-
marizations. The issue here is indeed related to the structure of the ε-areas around q1

and q2, i.e. how points are distributed in these areas. To correct such issue, one needs to
either filter-out unsatisfying queries or alter their structure. We will show in Section 6.5
the operational means for such structure change.

The inter-index (intra-query) effort accuracy problem. Recall moreover that, we need
to also ensure that the first requirement defined in the beginning of Section 6.3 holds.
We need to ensure the discriminative power of each query. This means that, within a sin-
gle query, if ε-hardness does not increase proportionally to the summarization errors
and their corresponding ε values, this query could turn out as unfit for differentiating
the quality of the tested summarizations. The query could indeed appear as equally hard
for summarizations whose quality is objectively very different, or it could appear dis-
proportionately hard for some summarizations and disproportionately easy for others.
Intuitively, the difference in effort across different summarizations would not be repre-
sentative of the actual quality of the summarization, but instead it would be artificially
affected by a biased placement of points around the query. We will call this issue the
inter-index (intra-query) effort accuracy problem.

As we’ve already mentioned in the beginning of the section, to avoid this problem,
for any single query that we choose or generate, it should hold that the effort for a
specific summarization over the effort of any other one should be proportional to their
relative summarization errors.

Each summarization has a specific summarization error which can be meaningfully
measured as: 1− TLB. The smaller this number, the smaller the error (the better the
TLB), and the larger this number, the bigger the error (the worst the TLB). We would
like the following to hold for any query q1 and any two different summarizations S1

and S2:
µS1(q1)

µS2(q1)
=

1− TLB(S1)

1− TLB(S2)
(6.7)

Note that the criteria derived above are once again a structural condition that the
ε-areas in a workload need to respect for the workload to be valid.
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Figure 6.3: Histograms of query hardnesses.

In summary, an ε-independent hardness definition requires that the properties ex-
pressed in Equations (6.6) and (6.7) hold. In Section 6.5, we describe a method for
generating queries and injecting points in existing datasets in such a way that these
properties hold.

6.4 Evaluation of previous work

6.4.1 Datasets and Workloads

In this section, we review some common datasets and their corresponding workloads
that have been used in the literature. We use the same datasets in our experimental
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section as well. For capturing trends and shapes, we z-normalize (mean=0, std=1) all
data series following common practice.

RANDWALK [11, 59, 131, 38, 165, 13, 30, 90, 99, 31, 156, 195]. This dataset is synthet-
ically produced using a random walk data series generator. The step size in each data
series varies according to a Gaussian distribution. We start with a fixed random seed
and produce 200,000 data series of length 1024, 256 and 64.

EEG [189, 91, 13, 99, 134]. We use the electroencephalograms dataset from the
UCI repository [17], and sample 200,000 data series of length 1024, 256 and 64 from the
dataset to be used as the dataset.

DNA [30, 31, 195]. We use the complete Human DNA (Homo Sapiens), obtained
from the Ensembl project.3 We sample the dataset to create 200,000 data series of length
1024, 256 and 64.

The query workloads that have been used in all past studies are generated in one
of the following two ways.

1. A subset of the dataset is used for indexing and a disjoint subset is used as
queries [30, 90, 31, 195].

2. The entire dataset is used for indexing. A subset of it is selected and a small
amount of random noise is added on top. This is used as the query set [11, 103,
99].

In our study, we shuffle the datasets, and use half of each dataset (100,000 data
series) as queries, and the other half (100,000 data series) as the indexed dataset.

6.4.2 Hardness Evaluation

One of our key requirements is the ability to test how indexes scale as they need to
check an increasing amount of data. This is the case with hard queries, for which
indexes are not able to easily identify the true nearest neighbor. In this subsection, we
choose 1,000 random queries from our initial query set and evaluate the hardness of
each one of them for ε ∈ {0.25, 0.5, 1}.

The results are depicted in Figure 6.3. As the histograms show, for all data se-
ries (length 64, 256, 1024) the query workloads are mainly concentrated towards easy
queries. For ε = 0.5, the average hardness is less than 0.1, while for ε = 1.0, the aver-
age of hardness is less than 0.25. Additionally, as the ε decreases to 0, the hardness of
the queries drops very rapidly for both the RANDWALK and the DNA datasets. These

3ftp://ftp.ensembl.org/pub/release-42/
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low hardness values further motivate us for the need of a controlled way to generate
workloads with queries of varying hardness.

6.5 Query workload generation

As we demonstrated in the previous section, all the widely-used (i.e., randomly gen-
erated) query workloads are biased towards easy queries. In this paper, we argue that
an effective query workload should contain queries of varying hardness. Since most
existing queries are easy, we start with those easy queries and make them harder by
adding more points in their ε-areas, i.e. by a process of densification.

We start with a list of different hardness values in non-decreasing order [αε
1, ..., αε

n]

with respect to some ε that is provided by the user (∑n
i=1 αε

i ≤ 1, αε
i ≤ αε

j for i < j),
and an input sample query set Q that contains many easy queries (produced through
random generation).

We will split our workload generation in three stages:

• First, we will select a subset Q′ of Q comprising queries whose ε-areas do not
intersect. This will ensure that the densification process can be applied individu-
ally to each of the selected queries, without side-effects on the rest of Q′. Indeed,
figure 6.4 shows an example that q1 and q2 intersect, making individual hardness
difficult to control.

• Next, we will match (a subset of n chosen) queries in Q′ with the provided hard-
ness values and identify the amount of points we need to add in each ε-area.

• Finally, we will spread these points in such a way that as the TLB of the index
gets worse, the minimum effort captured by the workload increases, following
our intuitions described in Section 6.3 and Example 1.

The following subsections describe in more details each of the three stages listed
above.

6.5.1 Generating Non-intersecting Queries

Recall that the first stage in our query workload generation is that of selecting, within
the initial set of provided queries Q, a subset Q′ thereof comprising queries whose
pairwise ε-areas do not intersect. Clearly, we also wish that Q′’s cardinality be max-
imized, so as to accommodate a wide range of possible hardness values. We show
hereafter two approaches towards achieving our query selection goal.
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Figure 6.4: Example of 3 queries, where the ε-area of q1 and q2 intersect. As a result we cannot

control the hardness of these two queries independently, as densifying each one of the two

zones might affect also the hardness of the other query.

q1 q2

q4 q5 q6

q3
DIST(q1, q2) > Rε(q1) + Rε(q2)

DIST(q2, q6) > Rε(q2) + Rε(q6)

DIST(q2, q3) > Rε(q2) + Rε(q3)

DIST(q1, q5) > Rε(q1) + Rε(q5)

DIST(q4, q5) > Rε(q4) + Rε(q5)

DIST(q2, q5) > Rε(q2) + Rε(q5)

Figure 6.5: Maximal clique formed by q1, q2, and q5.

In our first approach of query selection, also presented in [199], we aim at reasoning
on ε-areas built by considering existing nearest neighbors, without altering them.

Our first step is to calculate the radius of each ε-area. In order to do this we need
to find the distance to the nearest neighbor and multiply it by (1 + ε). Since we are
using Euclidean distance (a metric), we can use the triangle inequality in order to find
non-intersecting queries.

Given a distance function DIST in metric space, we set Rε(q) = (1+ ε)MINDIST(q)
as the radius of the ε-area. Two queries qi, qj ∈ Q, qi 6= qj are non-intersecting if and
only if the following holds (by the triangle inequality):

DIST(qi, qj) > Rε(qi) + Rε(qj)

In order to validate this constraint, we first need to calculate all the pairwise dis-
tances for all the queries inQ, and for each query q, the distance to its nearest neighbor
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Algorithm 11: FindNonIntersectingQueries

1 Rε = createRadius(Q,D, ε);

2 g = createVerticesFromQueries(Q);
3 for (qi, qj) ∈ Q×Q do

4 if DIST(qi, qj) > Rε(qi) + Rε(qj) then

5 g.addEdge(qi, qj);

6 V = g.getSortedVertices(); // Sorted by ascending degree
7 Q′ = ∅;

8 for q ∈ V do

9 if isCompatible(q,Q′) then

10 Q′ = Q′ ∪ {q};
11 return Q′;

MINDIST(q).
Given the set of queries and their pairwise distances, we can create a graph G, where

each vertex represents a query, and an edge exists if two queries qi and qj do not inter-
fere with each other. Now it is clear that our problem is closely related to the maximum
clique problem. Figure 6.5 illustrates an example graph with 6 queries, where queries
q1, q2, q5 form the maximum clique, being mutually non-intersecting.

Note that finding the maximum clique in graph G is NP-complete, we therefore
employ a greedy approach to select queries by assigning a query q to some αε

i (denoted
as q(αε

i )) if its current hardness is smaller than αε
i and if its ε-area does not intersect

with the ε-areas of all previously assigned queries. This ensures that when densifying
the ε-area for q(αε

i ), the hardness of other selected queries q(αε
j ) (j 6= i) will remain

unaffected.
Algorithm 11 describes how to find non-intersecting queries. The algorithm sorts

the vertices of the graph based on their degree. The intuition is that high-degree
vertices have more compatible vertices. We then keep reading vertices in that order,
adding compatible ones to a list while skipping incompatible ones.

6.5.2 Generating Non-intersecting Queries with Synthetic Nearest Neighbors

Depending on the specific data and query set, as well as on the quantity of hardness
values provided, the strategy presented in the previous subsection may lead to insuf-
ficient selected queries. We hereafter focus on a new approach, which consists in syn-
thetically generating nearest neighbors for some (possibly all) of the queries in the initial
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set Q. The main advantage of this procedure is that upon exiting the synthetic nearest
neighbors generation,Q′ =Q, that is, all provided queries can be part of our workload.

Synthetic Nearest Neighbor generation

We will start by computing the minimum distances from each query inQ to each of the
other queries inQ. For a given query q we will denote this distance by MINDISTQ(q).
We will then set:

Rε(q) =
MINDISTQ(q)

2
−ω

where ω is a very small quantity necessary to avoid ε-areas tangency.
The above defines a valid radius for placing ε-spheres around each query in Q.

Based on this computed radius, we then define for each of the queries in Q a synthetic
nearest-neighbor distance:

MINDISTsyn(q) =
Rε(q)
1 + ε

Finally, for each query q, we either keep its existing (i.e. original dataset) nearest
neighbor or generate a new, synthetic one, according to the following:

• if MINDIST(q) ≤ MINDISTsyn(q) then the nearest neighbor stays unchanged.

• else, we set pq to be a new point, uniformly generated with respect to the con-
straint DIST(q, pq) = MINDISTsyn(q) and we let D = D ∪ pq.

Generating unconstrained normalized points. A (z-) normalized N-dimensional point
x = [x1, . . . , xN]

T has mean 0 and standard deviation 1, that is, it respects the follow-
ing two equations:

N

∑
i=1

xi = 0 (6.8)

N

∑
i=1

x2
i = N (6.9)

Note that these define the intersection of an N-hypersphere (of radius
√

N) with a
hyperplane, thus we naturally expect these points to be found on an (N-1)-hypersphere.
Our purpose, however, is an operational one, namely a procedure for synthetically
generating such points.
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To achieve this, we will first proceed to a change of basis. We consider the orthonor-
mal basis U = (U1, . . . , Un) where

U1 = [
1√
N

, . . . ,
1√
N
]T (6.10)

and the rest of the basis is obtained by starting with V2 = [0, 1, . . . , 0]T, . . . ,VN =

[0, 0, . . . , 1]T and applying the standard Gramm-Schmidt procedure

Ui =
Wi

||Wi||
, Wi = Vi −

i−1

∑
j=1

< Vi, Uj > Uj (6.11)

Let b1, . . . , bn be x’s coordinates in basis U.
Because of equation 6.8 it holds that < x, U1 >= ∑N

i=1 xi√
N

= 0. On the other hand,
with U being an orthonormal basis, it also holds that < x, U1 >= b1. It follows that:

b1 = 0 (6.12)

Equation 6.9 in turn can be equivalently written as < x, x >= N, leading to:

N

∑
i=1

b2
i = N (6.13)

Putting together equations 6.12 and 6.13 we end up with the (N-1) hypersphere
equation expected, namely:

N

∑
i=2

b2
i = N (6.14)

Generating the required x is then a two-fold process:

• First, we aim at producing uniform random points on the (N-1) hypersphere. To
achieve this, we use the standard procedure for sphere point picking that consists
in generating (N-1) Gaussian random variables bG

2 , . . . , bG
N and producing (partial)

b vectors as

[b2, . . . , bN]
T =

1√
∑N

i=2 bG
i

[bG
1 , . . . , bG

N]
T (6.15)
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• Then, using the U basis coordinates of x obtained above and the U basis previ-
ously computed (equations 6.10 and 6.11), we recover the canonical coordinates
of x as

xi =
N

∑
j=1

bj ∗Uji (6.16)

Generating normalized points constrained by distance

We can further extend the above reasoning to obtain a refined primitive useful for
workload generation, namely the ability of generating normalized points at a given
distance D from an existing normalized point p = [p1, . . . , pN]

T. Indeed, this implies
the required points x further verifying the following equation:

N

∑
i=1

x2
i +

N

∑
i=1

p2
i − 2 ∗

N

∑
i=1

xi ∗ pi = D2 (6.17)

where both x and p respect 6.8 and 6.9.
It follows that x must further respect the following:

N

∑
i=1

xi ∗ pi = N − D2/2 (6.18)

Note that the above is another hyperplane equation. Coupled with the restrictions
on x given by 6.8 and 6.9, it will thus unsurprisingly lead us to an (N− 2)-hypersphere
definition for the required x points. Indeed, proceeding similarly as above, we will
construct the orthonormal basis comprising:

U1 = [
1√
N

, . . . ,
1√
N
]T (6.19)

and

U2 = [
p1√
N

, . . . ,
pN√

N
]T (6.20)

Note that < U1, U2 >= 0 and that both U1 and U2 are unit vectors, because of p
respecting 6.8 and 6.9. We generate the rest of the basis U as above, by employing the
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Gramm-Schmidt procedure. As above, let b1, . . . , bN be x’s coordinates in the basis U.
We then have:

b1 =< x, U1 >= 0 (6.21)

because of 6.8, and also

b2 =< x, U2 >=
N − D2/2√

N
(6.22)

because of 6.18. Then, using 6.9, i.e. < x, x >= 1, we obtain the following equation
for the remaining b coordinates:

N

∑
i=3

b2
i = D2 ∗ (1− D2

4 ∗ N
) (6.23)

Note that this is indeed the equation of an (N − 2)-hypersphere as expected. To gen-
erate x points, we then sample b3, . . . , bN as described above and recover x’s canonical
coordinates accordingly.

6.5.3 Hardness assignment and number of points to add

Given the queries selected according to one of the procedures in the previous subsec-
tion and the input hardness values [αε

1, ..., αε
n], we next proceed to (i) assigning queries

to these hardness values and (ii) determining the number of points to be added so that
the respective queries attain their matching hardness.

Hardness assignment is in part arbitrary, that is, any hardness value αε
i can be

matched with any query q as long as the current ε-hardness value (for the given ε)
of q is lower or equal to αε

i . As we will detail in the next sections, additional con-
straints on the queries may be imposed (leading to a ranking function over queries), to
improve the overall workload quality.

Once each hardness value has a corresponding query, we need to identify the num-
ber of points to add to the ε-area of each query in order to achieve the target hardness.
Let xi be the number of points to add for N ε(q(αε

i )) and Ni = |N ε(q(αε
i ))| is the cur-

rent number of points in q(αε
i )’s ε-area, we have the following linear system.

αε
1 =

N1 + x1

N + ∑n
i=1 xi

, ..., αε
n =

Nn + xn

N + ∑n
i=1 xi

(6.24)
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Representing this linear system in matrix form, we have

(A− I)x = b, (6.25)

where

A =


αε

1 αε
1 ... αε

1

αε
2 αε

2 ... αε
2

... ... ... ...

αε
n αε

n ... αε
n


and

b = [N1 − αε
1N, ..., Nn − αε

nN]T.

This linear system can be easily solved and it will tell us how many points to densify
in the ε-area for each selected query.

6.5.4 Densification Process

As we mentioned in Section 6.3, meaningful queries for effective index comparison
should satisfy Equations (6.6) and (6.7). Given that for each summarization we can
infer the ε areas that best characterize it using Equation (6.5), then we can assign an ε

to each summarization. Given any two summarizations S1 and S2, a single query q1 it
should hold that:

µS1(q1)

µS2(q1)
=

1− TLB(S1)

1− TLB(S2)
=

αεS1 (q1)

αεS2 (q1)
(6.26)

Since this should hold for any summarization (and as a result for every TLB and every
ε, it automatically makes both Equations (6.6) and (6.7) hold.

In this section we describe how to densify the ε-areas for the selected queries for
the above condition to hold. Our solution is named equi-densification. The key idea is
that we add points in the right locations making sure that that our desired properties
hold.

Additionally, in order to demonstrate why Equations (6.6) and (6.7) should hold we
also consider two baseline candidate strategies for densification:

• RANDOM: randomly choosing points in N ε(q(αε
i )) and adding noise to create a

new points;

• 1NN: adding noise to the query’s nearest neighbor (ignoring all other points in
its ε-area).
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(a) Query with less sparse histogram
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(b) Query with more sparse histogram

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d 

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 
− 

0.
1

0.
1 

− 
0.

2

0.
2 

− 
0.

3

0.
3 

− 
0.

4

0.
4 

− 
0.

5

0.
5 

− 
0.

6

0.
6 

− 
0.

7

0.
7 

− 
0.

8

0.
8 

− 
0.

9

0.
9 

− 
1

ε bucket range

S
um

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

Min. Effort

(c) 1NN densified query
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(d) Equi-densified query

Figure 6.6: Two randomly densified, one 1NN densified and one equi-densified queries on

a 100,000 data series randomwalk dataset. Distribution of distances of all data series in the

dataset on top, minimum effort for each summarization technique on the right. Heat maps

represent the amount of points that are part of the effort located at the corresponding bucket of

ε.

To demonstrate the different densification strategies, we generate queries of hard-
ness 0.2 (ε = 1.0) for a dataset of 100,000 data series. This ε allows us to test less tight
representations with TLBs as low as 0.5. To evaluate the effort for every query, we use
four standard data series summarization techniques (SAX, FFT, DHWT, PAA) at vari-
ous resolutions, ranging from 8 to 64 bytes per data series. The data series are of length
256, and for each summarization we measure the minimum effort required.
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EQUIDENSIFICATION

As discussed in Section 6.3, we want to ensure that the hardness points are distributed
as uniformly as possible within the ε-area corresponding to each possible ATLB value.
This ensures that we capture the subtle differences for various summarizations. To this
end, we propose equi-densification that aims to distribute the extra points we need to
add in such a way that buckets that are originally almost empty get a large number of
points, and buckets that are almost full get a small number of points.

In order to achieve this, we bucketize ATLB values, and accordingly the ε values are
bucketized (in a non-uniform way). For each ATLB bucket we want to make sure there
is an equal amount of points we achieve this by placing points at the desired locations.
This action is done by creating linear combinations of points located within and outside
of each ATLB bucket. This ensures the diversity of the generated data series, allowing
us to control the location of the data points in the ε-area, and also ensures that the
resulting data series after z-normalization will fall in the desired location with high
probability. This algorithm produces the desired result but has a high complexity as
we need to exhaustively test various factors for the linear combination ranging from 0
to 1.

A query produced with equi-densification is depicted in Figure 6.6(d). The his-
togram on the top shows that the first few buckets have more points, while the last few
buckets have less. This happens because ε is inversely proportional to ATLB, and as a
result ε bucket ranges are small for large ATLB values and large for small ATLB values.
For example for ATLB values in [0.5, 0.6] the corresponding ε values are in [0.67, 1.0]
and for ATLB values in [0.6, 0.7] the corresponding ε values are in [0.43, 0.67] As we
can see in the heat map, the effort points are now evenly distributed in the ε-areas.
Note also that as the bounds of a summarization get worse, we need to increase the ε

to include all points that contribute to the minimum effort.
Therefore, equi-densification achieves the desired result, accurately capturing the

relative differences among different summarizations, and consequently leading to cor-
rect performance comparisons of indexes based on their TLB. We further validate this
claim in the experimental evaluation.

Baseline methods

RANDOM. A naı̈ve method to increase the hardness in an ε-area is to choose random
points from this area and add noise to them, thus producing the desired amount of
extra points. A property of this method is that the original distribution of the points
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will not change significantly. The problem with this method, however, is that for very
good summarization methods (large TLB values), as we increase the number of points
in the ε-area, the minimum effort will not necessarily increase relatively to it. As a
result, indexes with different TLB values might have the same effort to answer a query.

The result of a query generated with this method can be seen in Figure 6.6(a). The
histogram at the top of the figure displays the distribution of the points in the densified
ε-area. As we can see the further away we get from the nearest neighbor, the more
points we find at each area. The heat map in the center represents the locations of
the points that contribute to the minimum effort, i.e., L(x, q) ≤ MINDIST(q). The
color represents the portion of these points in the corresponding bucket of ε. Finally,
the vertical graph on the right side represents the minimum efforts of the different
summarization methods.

As expected, the results show that crude summarizations (SAX-8, DHWT-8, FFT-8,
PAA-8) that use less bytes for representing the data series have much larger minimum
efforts. From the plot we could infer that a significant portion of points that contribute
to minimum effort may not be included by this ε-area. On the other hand, fine sum-
marizations (SAX-64, DHWT-64, FFT-64, PAA-64) are well captured by this ε. Actually,
we only need ε = 0.6 to capture all points contributing to the minimum efforts. With
the histogram on the top, it is easy to see that the minimum effort is related to the dis-
tribution of points in the original space. For example, while the heat map for FFT-64,
DHWT-64 and PAA-64 spans a larger range of ε values, their minimum effort is not
much greater than that of SAX-64, which spans a much smaller range. This is because,
as we can see in the histogram at the top, there is a very small amount of data within
ε = 0.5 and it does not increase too much as ε increases. This situation is more pro-
nounced with another query example shown in Figure 6.6(b), where the distribution
of points in the ε-area is even more skewed.

1NN. Another naı̈ve method for increasing hardness in the ε-area is by just adding
noise to the query’s nearest neighbor itself. This will force all summarizations to make
(almost) the same effort, as the area very close to the nearest neighbor is now very
dense and all the rest of the ε-area is very sparse. In this case, all efforts for all sum-
marizations are almost identical. An example 1NN densified query is shown in Fig-
ure 6.6(c).
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6.6 Experimental Evaluation

In this section, we provide an experimental evaluation of the proposed method. We
generate query workloads on the three datasets in Section 6.4 using our method de-
scribed in the previous section. All our datasets contain 100,000 data series with length
256. Given a set of desired hardness values, ε, and the densification mode, our method
produces a new dataset that is the original dataset with extra points, and a set of
queries that forms the workload that matches the desired hardness values.

We performed three sets of experiments. The first investigates the amount of non-
interfering queries we can find for each dataset. The second is intended to compare the
three different densification methods with regards to the minimum effort of various
common summarization techniques, i.e., PAA, FFT, DHWT and SAX. For each one
of the summarizations, we used 8, 16, 32 and 64 bytes to represent each data series.
In the third set of experiments, we used two real world indexes, iSAX 2.0 [31] and
the R-Tree [68] using PAA as a summarization method. This last experiment aims to
show the impact of our benchmark on these indexes compared to choosing random
points from the dataset (queries are left outside of the indexed data). A comprehensive
experimental comparison of various data series indexes is out of the scope of this study
and is part of our future work.

6.6.1 Non-interfering Queries

In this experiment, we used 100,000 data series from each dataset as the indexed data,
and 100,000 data series as sample queries. We generated sets of 1,000 (100 sets), 2,000
(50 sets) and 4,000 (25 sets) queries, and run our non-interfering queries discovery
algorithm on each one of them for ε ∈ {0.25, 0.5, 1.0}. Our algorithm evaluates each
set of queries against the corresponding dataset, and we report the average number of
queries found per dataset, query set size and ε, as well as the corresponding error bars.

The results are depicted in Figure 6.7 (error bars are very small). We observe that
for RANDWALK and DNA, using a large ε only allows us to find an average of 7-10
non-interfering queries, and as ε decreases we can find up to 300-600 queries. For
the EEG dataset, the data distribution allows us to find a much higher number of
non-interfering queries, which is in the order of thousands. Note that since we are
mainly interested in generating queries with high hardness values, we do not need
too many queries. Furthermore, the constraint ∑n

i=1 αε
i ≤ 1 restricts the number of

hard queries that we could produce for one dataset. For example, we can generate 5
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Figure 6.7: Number of independent queries found for each dataset for various input sample

query sizes.

queries of hardness 0.2, but only 2 queries of hardness 0.5 and 0.5, respectively. Since
this number of queries is small for a comprehensive benchmark, the solution is to use
multiple datasets with corresponding query workloads; even in the case of ε = 1.0,
we can run our algorithm 100 times to get 100 different output datasets with at least 3
different queries each, for a total of 300 queries.

6.6.2 Densification Mode

In this experiment, we generated 3 different queries with a hardness of 0.2 for each
one of them (ε = 1.0). For each query we used a different densification method. Our
goal is to measure how well the different densification methods capture the relative
summarization errors of different summarization techniques. We use 1− TLB as the
summarization error for each technique. This number intuitively captures how far
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Figure 6.8: Minimum efforts for different summarization techniques at different resolutions (8-

64 bytes) representing 256 point data series, compared to the summarization error (1-TLB). All

the values have been normalized against SAX-64 which was the overall tightest summarization

method.

the lower bound of a summarization is from the true distance. We report the relative
summarization errors in the results (normalized by the smallest summarization error).
In our experiments, the summarization with the smallest error was SAX (64 bytes). The
TLBs for each summarization were computed by comparing the distances to the lower
bounds for 100 random queries against all the other points of the dataset, for each of
the datasets we generated.

Figure 6.8 shows the average relative summarization errors for each dataset (aver-
aged over the 100 different benchmarks generated). The results show that 1NN densifi-
cation results to almost equal effort for all summarizations, while random densification
tends to over-penalize bad summarizations and favor good ones. Both situations are
not desirable and cannot be useful. In contrast, equi-densification has an effort much
more closely related to the summarization error across all datasets. As a result, equi-
densification well captures the actual pruning power of each summarization and does
not over-penalize or under-penalize any of the summarizations.

6.6.3 Case Study on Actual Indexes

In our last experiment, we generated 85 datasets with 3 equi-densified queries corre-
sponding to each one of them, which we will refer to as EDQ, and 3 additional queries
(per dataset) that were randomly selected from the input queries sample without any
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Figure 6.9: Histogram of hardnesses for ε = 1.0.

densification. The 3 EDQ queries have hardness values of 0.1, 0.3 and 0.5 (ε = 1.0).
We generated 510 queries in total, half of which were random and half equi-densified.
Our goal for this study is to demonstrate the qualitative difference of using our query
workload versus a workload of randomly generated queries.

Figure 6.9 shows the histograms of the distribution of the hardnesses for the queries
on each workload for every dataset for ε = 1.0. Again, the random workloads are
concentrated on easy queries with only a very small number of hard queries. On the
contrary, the EDQ workload has been designed to produce queries of varying hard-
ness values, and as a result their histograms contain equal number of queries in the
0.1, 0.3 and 0.5 bucket. This confirms that our method produces queries with desired
properties.

In order to specifically evaluate the effect of hard queries, we further split the ran-
dom workload into two sets, resulting in 3 different workloads: Random, where we use
all the randomly selected queries, Random-H, where we only use queries with hard-
ness larger than 0.5, and EDQ generated by our method. We indexed all three datasets
with both iSAX [165] and R-Trees [68] with PAA [93], and measured the average query
answering time per workload. Figure 6.10 illustrates the normalized query answering
time. The results show that when the Random workload is used, queries are on av-
erage easy, and consequently, the two indexes seem to have similar performance. The
same observation also holds when only the hard queries are selected using Random-
H, indicating that simply selecting the hard queries of a randomly generated query
workload cannot lead to a good query workload.
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Figure 6.10: Average query answering time comparison between iSAX (256 characters, 16 seg-

ments) and R-Tree (PAA with 8 segments) normalized over iSAX.
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Figure 6.11: Distribution of points in ε = 1.0 area for 3 types of queries for RANDWALK.

The real difference comes when the workload becomes harder using the EDQ work-
load. In this case, the differences between the indexes become more prominent. The
reason behind this can be intuitively seen in Figure 6.11, where we plot the distribu-
tion of the distances to the query’s nearest neighbor in the ε-area for the three different
workloads. We can see that with random queries, (Random and Random-H), the vast
majority of the points are located towards the large ε values. The difference between
Random and Random-H is just on the number of points in each bucket. As we dis-
cussed earlier, such a distribution of points cannot capture the relative TLB of different
indexes, as there are fewer points in small range to the true answer and many more
points in larger range. On the other hand, the distribution of EDQ is very different
from the others, which ensures there are roughly equal number of points for the corre-
sponding ATLB bucket.
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(c) EEG

Figure 6.12: Number of non intersecting queries found using both methods.

6.6.4 Improving the Amount of Queries Found using Synthetic Nearest Neighbors

As we have seen in Figure 6.7 there is only a limited amount of non-interfering queries
that we can find. The amount of queries becomes even less as the ε increases, to the
point that for most of the datasets we can only find a handful of non-intersecting
queries, even when the sample size is large. In Section 6.5.2, we have presented a
technique that allows us to generate new nearest neighbors for each one of the queries
in our sample size. These nearest neighbors are placed in the appropriate distance,
such that they create non-intersecting areas. Moreover, they are generated in such a
way that they are already normalized. In Figure 6.12, we plot the ratio of non interfer-
ing queries found in a sample of 1500 queries and dataset sizes of 100,000 data series.
We include the ratios for both the old graph based method (named as GRAPH in the
plot), and the new Gram-Schmidt based method (named as GS in the plot). As we can
see, using the old method, even in the case of very small ε (hardly useful in practice),
we are able to use just above 10% of the queries from the sample for RANDWALK and
DNA. For the case of larger ε values, we can use less than 1% of the sample size for



Experimental Evaluation 121

●

●

●

●

100

200

300

400

500

0.5 1.0 1.5 2.0
εT

im
e 

sp
en

t p
er

 q
ue

ry
 fo

un
d 

(m
se

c) Algorithm ● GRAPH GS

(a) RANDWALK

●

●

●

●

200

400

600

800

0.5 1.0 1.5 2.0
εT

im
e 

sp
en

t p
er

 q
ue

ry
 fo

un
d 

(m
se

c) Algorithm ● GRAPH GS

(b) DNA

● ●
● ●

30

60

90

0.5 1.0 1.5 2.0
εT

im
e 

sp
en

t p
er

 q
ue

ry
 fo

un
d 

(m
se

c) Algorithm ● GRAPH GS

(c) EEG

Figure 6.13: Time spent per query found by each method.

these two datasets. Using the EEG dataset, nevertheless, we can use a larger number
of queries but only for a very small ε. As a result, for all the datasets, when an ε > 1.0
is used, we can hardly ever use more than 10% of the queries. On the contrary, for the
case of our Gram-Schmidt based method, we are able to select 100% of the sample size
as queries, in all cases and all datasets.

Time Complexity

In regards to time complexity, the overall time spent in order to solve the Gram-Schmidt
equations is much larger than the time spent for providing an approximate solution to
the graph problem. On the contrary, the amount of queries found using Gram-Schmidt
is much larger. If we normalize the time spent over the number of queries found, it be-
comes clear that the Gram-Schmidt based method is much more efficient. This means
the time spent per query found is much less than what is required by the graph based
approach. This can be seen in Figure 6.13, where we plot the time per query found
for both methods and different ε values. It is clear that in most cases, Gram-Schmidt
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outperforms the graph based method. In the case of the EEG dataset, we are able to
also generate many queries also using the graph based method, as a result the normal-
ized time of the graph based method is less. However, both methods need less 100
milliseconds per query.

6.7 Summary

In this chapter, we focused on the problem of how to systematically characterize a data
series query workload, and subsequently, how to generate queries with desired prop-
erties, which is a necessary step for studying the behavior and performance of data
series indexes under different conditions. We demonstrated that previous approaches
are not viable solutions as they are biased toward easy queries. We formally defined
the key concept of query hardness and conduct an extensive study on hardness of a
data series query. To solve this problem, we described a method for generating data
series query workloads, which can be used for the evaluation of data series summa-
rizations and indexes. Our experimental evaluation demonstrates the soundness and
effectiveness of the proposed method. Finally, since our baseline method is able to
generate only a limited amount of queries, we presented an additional method, which
is able to computationally place artificial nearest neighbors. This allows us to generate
an unlimited number of queries.



Chapter 7

Meta-data Enriched Data Series
Exploration

In the previous chapters we concentrated on optimizing interactive similarity search
for large data series collections. In this chapter we present a Business Intelligence sce-
nario that allows analysts to perform principled monitoring of meta-data enriched data
series. Specifically, we present a method that allows analysts to monitor business in-
dicators in a goal-oriented way. This has been a motivating scenario for our work, as
such kinds of real time business intelligence applications are in need of performing
efficient and interactive similarity search [200]. Such operations aim at speeding up
clustering algorithms, for identifying correlated market segments and indicators, as
well as for identifying outliers that could represent business threats or opportunities.

One of the future directions that we plan to investigate is that of integrating our
index structures in applications such as the one we present in this chapter. This is of
high relevance to various companies that are deluged by vast amounts of meta-data
enriched data series. For example, Wal-Mart generates 2.5 PetaBytes (PB) of transac-
tion data each hour [192]. Since all these events are associated to specific timestamps,
such data can be represented as time-series. Analysts are interested in monitoring
these data, finding trends, clusters and outliers that are relevant to the organization’s
strategic objectives.

7.1 Monitoring and Diagnosing Indicators for Business Analytics

Modeling the business strategy has been shown to be useful both for understanding a
business [15] as well as planning and guiding the activities within an enterprise [87].
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Most enterprises represent the business strategy in a textual fashion, captured in the
business plan. Then, once the business plan has been established, the business intel-
ligence system of the organization helps to monitor business performance by means
of Key Performance Indicators (KPIs) [128]. For example, an organization may have
the goal of “Increasing revenue” by achieving “Increasing market share”. These goals
could be monitored by the KPIs, “Revenue” and “Market share”.

Traditionally, organizations are interested in monitoring these KPIs in order to iden-
tify unwelcome or unexpected situations, either positive or negative, that affect their
goals. Currently, this kind of analysis is done by measuring how close or how far the
values of KPIs are from their targets [128], defined in terms of an acceptable range. It
is often the case, however, that these KPIs do not reflect the anomalies within the sub-
areas that are being monitored by the KPI, since they represent high levels of aggrega-
tion. We refer to these sub-areas as sub-markets. For example, sales may have decreased
dramatically in Trento, but this may not be noticeable by looking at national aggre-
gates for Italy. Moreover when KPIs do deviate significantly from their target values
it is mostly the task of an analyst to seek the reasons behind these exceptional events.
Finally, such KPI deviations are only monitored in isolation, non-systematically, rather
than within the context of the strategic model. As a result, the impact analysis for a
deviation is limited.

Although current dashboards and scorecards allow users to analyze the data in
detail, performing the monitoring and analysis processes manually can be a daunting
task, since (i) the underlying data warehouse commonly contains multiple dimensions
[96], thus making analysis a time-consuming process, (ii) identifying a significant event
is challenging, due to the knowledge required to interpret the data for each specific part
of the market, and (iii) explaining the results in the context of a strategic model is even
more difficult, since it presupposes understanding how the results may affect every
relevant goal and indicator.

In order to tackle these problems, we propose a semi-automated method for gener-
ating a set of monitoring and diagnostic queries from a strategic point of view, in order
to (i) identify unexpected and/or unwelcome situations in the context of a strategic
model, (ii) explain why these situations occur, and (iii) identify how they may affect
other strategic elements. Furthermore, we show how all the steps in our approach can
be applied to a real case by means of an illustrative running example based on the
Europe 2020 framework, to be described in the following section.

Specifically, in our approach, we monitor groups of related indicators for identify-
ing if certain goals are going to be achieved on time. Moreover, we are able to detect
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outliers within such groups that could point us to anomalies that should be either cor-
rected or confirmed, i.e., “Why Sales have dropped in Barcelona but not in Madrid?”.
Additionally, we are able to explain such outliers by focusing on specific areas of the
data warehouse that are responsible for these anomalies. Finally, we consider that our
approach could be applied to work with big data analysis techniques, thus allowing
the results to be evaluated from an strategic perspective and helping users to under-
stand what these results mean for the business.

The remainder of this section is structured as follows. Section 7.2 presents the back-
ground work, including an illustrative example. Section 7.3 describes an overview
of the steps involved in our approach applied to our case study. Finally, Section 7.4
discusses the results and summarizes our work.

7.2 Background & Problem Formulation

It is generally accepted that Strategic Management leads to better results among busi-
nesses. This is concerned with the continuous evaluation and control of a business
and the environment within which it operates; it assesses internal and external factors
that can influence organizational goals, and makes changes to goals and/or strategies
to ensure success. Strategic Management has been practiced since the ’50s, thanks to
seminal contributions by Alfred Chandler, Peter Drucker and others who emphasized
the importance of well-defined objectives and strategies that together determine and
guide organizational activities [119]. Specific analysis techniques have been developed
to support such processes, including the strengths-weaknesses-opportunities-threats
(SWOT) analysis technique widely used in practice [100].

SWOT analysis focuses on internal strengths and weaknesses, as well as external
opportunities and threats that may facilitate/hinder the fulfillment of organizational
objectives. Once such SWOT situations are identified, they need to be continuously
monitored in real-time to assess the degree to which they occur and keep track of their
evolution over time (monitoring). In addition, operational data need to be continu-
ously scanned in search of emerging SWOT situations or unexpected data (outliers).
Being able to identify such threats and opportunities requires systems able to process
data as they evolve, as well as, algorithms able to discover trends and deviations hid-
den among multiple layers of aggregated information.

The most common asset used for monitoring goals by enterprises until now has
been the Balanced Scorecard [87]. A scorecard integrates several high level KPIs in
order to provide an overall view of the performance of the business. However, a score-
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card only provides an aggregated view of the data and does not consider the relation-
ships between indicators. In an attempt to provide deeper analysis, businesses also
include several Dashboards [57] that provide more detail about each indicator. Despite
this effort, the potential number of different sub-market aggregations make it next to
impossible to ensure that no anomaly goes unnoticed.

In terms of business modeling, Strategy maps [86] provide an overall view of the
strategy of the enterprise. However, they are not (i) completely formal and (ii) they do
not provide an integrated view of the status of the business. Similarly, in other areas,
such as Software Engineering, proposals as [167] have been defined in order to spec-
ify monitoring conditions over requirements. Yet, in most cases the monitoring task
is still left to the user. In [28] the authors propose the Goal-Question-Metric approach
in order to monitor software development. However, when the approach is applied to
business environments, the result obtained is a set of KPIs for monitoring the business
performance that suffer from the drawbacks presented in the introduction. Finally,
In [97] the authors propose the Willow architecture for system survivability. It aims
at making systems avoid, eliminate and tolerate faults. It is able to monitor fault se-
quences, their inter-dependencies, as well as fault hierarchies. Each fault sequence is
modeled by a finite state machine (FSM) which is triggered by system events. When
certain FSMs reach a fault state, action is taken. In [110] the authors propose a way
to visualize the business strategy and the indicators associated with it in an integrated
way. Furthermore, the authors allow the user to define its own KPIs and keep track of
the dimensions related to the calculus of each indicator. However, this approach does
not cover any monitoring aspects and this task is left to be covered by the users. Yet,
although such systems work well for system survivability, their purpose is to iden-
tify events and perform actions accordingly, rather than monitor trends towards the
fulfillment of a set of goals as well as their statuses.

In order to effectively monitor their goals, organizations are required to precisely
define the Strategic Objectives they are trying to fulfill as well as the factors that affect
them. As a result, data analysis within them should also be done in this direction, as
analysts need to see the data that are related to their objectives and goals [14]. This
means that objectives that organizations are trying to fulfill form also their analysis
goals and targets. Towards this direction, there has been work on capturing these
goals in a modeling language such as the Business Intelligence Model (BIM) [85]. This
language can be paralleled to the Entity-Relationship Model, but with concepts such as
’goal’, ’situation’, ’indicator’, ’process’ etc. These kind of elements and their relations
can be formally captured using BIM. Such models are used for manually monitoring
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the degree to which certain situations hold and how they affect the goals of the orga-
nization. These degrees are captured by Indicators that are calculated on top of data
warehouses. Moreover, thresholds are provided to mark whether a goal is fulfilled,
partially fulfilled, denied, etc. [14]. Previous work, from which BIM draws inspiration,
has been also done in Goal-Oriented Requirements Engineering [52, 174], influence di-
agrams [70, 147] and the Business Motivation Model [66]. The BIM model includes the
following concepts.

• A Goal represents an objective of the business (e.g. Increase Market Share). De-
compositions of goals can also be defined with AND/OR relationships.

• A Situation is designed to represent the results of the SWOT (Strengths, Weak-
nesses, Opportunities and Threats) analysis commonly performed in strategic
management. They are internal or external situations that affect the fulfillment
of the goals

• An Influence from a situation to a goal, is a logical influence that positively or
negatively affects the goal’s fulfillment depending on the degree to which a situ-
ation occurs.

• An Indicator is a measure that can be attached to a Situation or a Goal in order to
measure the degree to which they occur. They model what is traditionally done
through Key Performance Indicators (KPI) in Management.

Such formal specifications of the Strategic Objectives, can also form the baseline
for the analysis objectives for the data warehouses of large organizations. Using such
formalizations, one is able to create systems that assist the users perform goal-oriented
analysis of the multi-dimensionally organized data series in the data warehouse.

Additionally a set of related works are the ones related to Sentinels [114] and the
OODA concept [113]. The OODA concept describes the loop of Observation (are
the data normal?), Orientation (what is wrong?), Decision (user analysis) and Action
(course of action) on top of a set of KPIs. Sentinels are causal relationships between
KPIs mined in the data warehouse, which are used to trigger early warnings, thus
helping the analyst perform OODA cycles efficiently. Such sentinels could be mined
and integrated in a Strategic Model as situations that can affect goals.

Modeling the Business Strategy: An Illustrative Example

In this subsection we describe the basic elements within the business strategy in our
approach, by means of an illustrative example based on the Europe 2020 framework.
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Figure 7.1: Excerpt of the European 2020 strategic model

The Europe 2020 framework aims to specify a set of strategic goals to be met by
the European Union (EU) by 20201. Some of these goals have clear target values and
indicators established, allowing the EU to monitor their performance and be aware
of deviations from the initial plan. Additionally, as the EU is integrated by several
countries, each one of them with its own characteristics such as population, industry,
etc., each country has its own particular objectives. As a result, under-performers may
be compensated by over-performers, resulting in a high level indicator that correctly
shows the UE is meeting its goal, without reflecting outliers that represent a potential
threat. Furthermore, much like in traditional business plans, the descriptions provided
in the framework only highlight a handful of relationships between goals, with no
claims of completeness or consistency. We can see an example of these goals, indicators
and the relationships between them in the Europe 2020 employment axis represented
in Figure 7.1.

In order to model the business strategy, we make use of a simplified version of the
Business Intelligence Model (BIM) [74]. According to this metamodel, the elements
involved in the Europe 2020 framework are as follows:

1For more information see: ec.europa.eu/europe2020/index en.htm
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First we have Goals, which capture the objectives of the organization to be achieved.
There are three kinds of goals: Strategic (long-term), Operational (medium-term) and
Tactic (short-term). Within the Europe 2020 framework we have Strategic Goals that
define the axis of the strategy, such as “Employment rate increased”, “Expenditure on
R&D increased”, or improve “Environmental care”. As some of these goals can not be
monitored directly, they are refined into additional strategic goals. For example, “En-
vironmental Care” is refined into diminishing “Green house gas emissions”, increase
the “Share of renewable energy in gross final consumption”, and diminish “Primary
energy consumption”. In order to achieve these high-level goals, a set of Operational
Goals, that influence the strategic goals, are defined. Examples of operational goals are
“Fast digital market created” or “Individual skills developed”. Finally, since Europe
2020 is a long-term plan, it includes no Tactic goals.

Second, we have a set of Indicators that monitor the performance of Europe 2020
goals, and alert about deviations in the targeted values. Some of the indicators in-
cluded in the Europe 2020 strategy are “Employment rate %”, “Early leaver % be-
tween 18 and 24”, or “Index of Greenhouse gas emissions”. Each of thse indicatorsr
presents a target value (value to be achieved), a threshold (margin between good and
bad performance), a current value and a worst value. According to these values we can
analyze how much we are deviating from our targets. In addition to these attributes,
in this work we extend BIM with two additional attributes. The first one is the “time
to target” often employed in scorecards and required in order to perform time series
analysis. This attribute describes how much time is left to achieve the expected target
value. The second attribute is the refresh rate of the indicator, which is required for
monitoring purposes, and describes how often the indicator should be monitored.

Third, we have Situations, which describe external or internal influences that may
affect the business strategy and its goals, positively or negatively. An example situ-
ation would be “Economic Crisis”. However, since the Europe 2020 framework does
not explicitly mention this situation (it is managed by the EU on its own), it has been
omitted from the model.

Finally, we add the concept of Strategic query over the model. A strategic query for-
malizes a goal, allowing to check if it is achieved or not. A simple query for “Employ-
ment rate increased” goal would be EmploymentRate >= 75%. However, these queries
can be made more complex, including subtargets ∀Ci ∈ Countries, EmploymentRateC >=

TargetC and trends EmploymentRate2020 >= 75%, or involving multiple goals [74].
By modeling these elements, and by associating KPIs to business goals, we obtain

a clear view of the strategy that our business is following, as well its current status.
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7.2.1 Monitoring a Business Strategy

Monitoring a business strategy by relying only on KPI information (current vs target
values, time left) can conceal lurking problems, especially when KPIs are highly ag-
gregated. Therefore, it is necessary to issue queries that monitor the evolution of both
KPIs and sub-areas within these KPIs periodically.

For example, consider again the case of Europe 2020. The aggregated indicator
for Employment Rate currently shows a deviation of less than 7% compared to its
target value. However, is this deviation distributed equally among each country? It
may be known that in some countries unemployment rates are increasing, leading to
increasing deviations from their targets. However, the community as a whole may
not be aware of these deviations until they become problems that threaten the global
target.

In order to adequately monitor these situations, we need to pose strategic queries.
For example, in the case of Europe 2020 a manager could pose queries described in
natural language such as “Is it expected that we meet our Employment Rate goal?”
This query would derivate into several other queries like “Are there other countries
displaying a similar pattern to those that are struggling?” “What countries are close to
their own sub-targets?” The information gathered from these queries helps to monitor
the status of the strategic goals and identify potential problems arising, even if the
aggregated indicator is not accurately reflecting them. However, it is often the case
that anomalies are latent and thus, the number of monitoring queries that can be posed
increases exponentially, thus complicating the monitoring task. Therefore, in order to
restrict the search space it is necessary to determine two aspects:

1. Dimensionality. What are the relevant dimensions that we are interested in an-
alyzing in detail? In Europe 2020, we are interested in finding anomalies within
Country and Time dimensions, whereas if we were analyzing the evolution of
sales we might be interested in Customer Segments. These relevant dimensions
are not necessarily those restricting the calculation of the indicator to be moni-
tored.

2. History. What are the relevant periods of time for the queries of interest? In the
case of Europe 2020, we may be interested in analyzing only the period after the
start of the economic crisis, or we may actually want to consider the data before
the beginning of the crisis.

Finally, once these aspects have been determined, we need to transform strategic
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Figure 7.2: Overall view of the monitoring process

queries into one or more data warehouse queries that monitor the strategy and identify
potential outliers and anomalies that can be highlighted for the analyst.

7.3 Proposed Approach

In this section we describe our proposal for monitoring the business strategy and de-
tecting anomalies. An overall view of our process can be seen in Figure 7.2. First, we
gather input from the user. This input is composed by the set of goals, situations, and
KPIs to be monitored. Then, for each KPI, we gather the relevant dimensions from the
data warehouse that should be considered (Dimensionality) and the relevant period
of time (History). As a data warehouse may contain several dimensions, performing
a search on every possible combination can be very costly, thus the initial knowledge
from the user can speed up the analysis process. After gathering the input from the
user, we proceed to the setup step. The setup step calculates the necessary data for
the analysis. Specifically, we identify the target values for each sub-market to be con-
sidered. Afterwards, we proceed to the monitoring step. In the monitoring step, a set
of algorithms analyze the data and identify the existence of deviations and outliers,
whether in the aggregated values or in any of the sub-markets.
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Our process requires us to be able to decompose business strategies into compo-
nents, and specialize them to lower level sub-markets. All of the above in an auto-
mated manner that will assist analysts to monitor their strategic goals by pointing out:

• The performance for each goal based on the targets for their KPI values. Either at
the highest level of aggregation, or at different sub-markets. For example we might
need to know that a specific goal has failed for Western Europe, even if it has succeeded
for Europe in overall.

• The KPIs that demonstrate unexpected behavior with regards to previously cor-
related markets, or their parent market segments. For example we might need to
know if Italy is following a different trend than the rest of Europe, or if Italy is following
a different trend than Greece, even though they were correlated in the past.

Based on the above requirements, we define two different kinds of diagnostics:

• Performance diagnostics: How are we doing with regards to a goal, based on the
KPI value and our targets?

• Expectation diagnostics: Is the current value/trend expected based on the data
in other parts of our data warehouse?

After providing an overall view of the process, in the following subsections we
describe our process in detail using the Europe 2020 framework, previously introduced
in Section 7.2.

7.3.1 User preferences

The first step in our process is gathering user preferences. Recently, employment rates
in certain countries as well as the importance of education have been a hot topic. The
current Employment and Education aggregated indicators do not show extreme devi-
ations, and we have no knowledge about the potential influences among them. There-
fore, as users, we will choose to focus on the Employment and Education axis from the
Europe 2020 framework. The description of these axis is as follows:

• Employment axis has the target of achieving a 75% aggregated Employment Rate
in the whole EU. Furthermore, each country has assigned its own sub-targets,
such as 74% for Spain, or 67% for Italy. This axis is modeled in Figure 7.1.
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Figure 7.3: Education axis within the Europe 2020 strategy

• Education axis is subdivided into two main indicators. The first, measures the
rate of Early leavers from education and training, and its target value is set to
10% or less of abandonment rate for people between 18 and 24 years. In addition
to having different sub-targets for each country, the comparability of this indica-
tor is restricted over countries and time, due to different implementations in the
way of measuring its value. Second, the EU aims to achieve a Tertiary educa-
tional attainment rate of 40% or more for people between 30 and 34 years, with
each country having its own sub-target. This axis is modeled in Figure 7.3.

Furthermore, each of these axis is supported by one or more initiatives planned
by the EU commission, and grouped into pillars. Each initiative represents a course
of action to be followed in order to achieve the strategic and operational goals, and
may include milestones and sub-indicators to measure their progress. The pillars that
support Employment and/or Education are:

1. Smart Growth pillar includes the initiatives “Creating a single digital market
based on fast and interoperable applications”, focused on increasing internet speeds
throughout Europe, and “Youth on the move”, focused on improving individual
skills and foster student mobility.

2. Inclusive Growth includes the initiatives “Creating an agenda for new skills and
jobs”, focusing on helping people acquire new skills and modernizing labor mar-
kets to raise employment levels.

In order to support the analysis of this strategic model we require a data warehouse.
A data warehouse stores information in terms of facts [96], and is structured according
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to a Dimension SchemaD, a Measure Schema, and a Fact table. The Dimension Schema
defines a set of dimensions that provide context information. The Measure Schema
contains all the measures available in the data warehouse. These are real numbers
on which we can apply functions and aggregate them over the different dimensions
defined in the Dimensions Schema. Finally, the Fact table stores the fact data. On
top of a data warehouse, analysts can define KPIs, by combining aggregations (KPI
terms) into complex formulas and by assigning target values. Further on, these KPIs
can be restricted to various sub-dimensions e.g. specific countries, via KPI-Restriction
operations that drill down in the data warehouse, for all the terms of a KPI.

An example Dimensions Schema is that of Figure 7.4, where the non-sequential di-
mensions are DNS = {Country, Euro}, the sequential2 are DS = {Time, Total area},
and we have the following hierarchies I = (iCountry = (Region, Country), iEuro =

(In Euro), iTime = (Year, Quarter, Month, Day, Hour), iTotal area = (Area in km2)).

Note that we make a distinction between sequential and non-sequential dimen-
sions, such that we are able to monitor trends of measures over the values of sequential
dimensions, and compare these trends among different parts of the data warehouse.
The most intuitive sequential dimension is that of Time, where analysts need to com-
pare how the values of various indicators fluctuate over the course of time. Other
examples can be relatively stable dimensions that can not be considered measures,
such as the area of a country, where analysts are interested on monitoring the trends
by using the area of each country in the horizontal axis.

2A sequential dimension contains instances that have an order established
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With these considerations, we gathered the data for our case study from the official
source for Europe 2020 data, the Eurostat3. Eurostat provides data in the form of tables
for each indicator both at aggregated EU level, as well as for each country. A subset of
the data warehouse schema can be seen in Figure 7.4.

According to this schema, we choose to use both Time and Country dimensions
for the analysis of Employment and Education indicators, and we include all the data
available since year 2000 into the analysis.

7.3.2 Setup Step

After the user preferences step, we proceed to the setup step. During the setup step, if
the user has not selected specific KPIs, we identify all the KPIs for each goal by scan-
ning the strategic model. Then, for each KPI, we need to identify all the KPI target
values for each of its sub-markets, in order to support Performance Diagnosis. This
can be done by either scanning a Knowledge Base where these projections are prede-
fined, or in case that it does not exist, use the data warehouse for adjusting these values
for each specific sub-market. This is done based on the relative size of this sub-market
with regards to the higher level aggregation. In our scenario, we want to analyze Em-
ployment Rate, where we can adjust the target value for specific countries by finding
the ratio of the historic average employment for a specific country, over the European
historic average. An issue that arises here is that there might be more than one parent
markets when we have sub-markets that are restricted by more than one dimension or
that have multiple hierarchies of aggregation. So we need to decide, for example, if
it makes sense to compare Italy to the countries that are in Eurozone (Eurozone clas-
sification), to the countries that are in South Europe (Region classification), or to all
the countries. One could consider all of them and average the ratios, or pick the one
that makes more sense. In the following subsections we analyze these aspects in more
detail.

KPI Value Segmentations for Performance Diagnostics.

Being able to produce sequences of observations for each KPI, and specialize them to
various sub-dimensions or hierarchy levels, will give us the raw data. But we still need
to address two important points in order to support Performance Diagnosis.

1. The first problem is that of missing values. There are cases where we have data

3http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
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for all the years except one, or cases where we are interested on extrapolating our
data for predicting future values based on the past trends. In such a scenario, we
need to be able to either interpolate the data, in order to produce an approxima-
tion of a missing value, or if we are interested in forecasting future values, use a
time-series forecasting algorithm to do so. This will help us in two directions:

• First, we will be able to create complete data series even if some of the inter-
mediate values are missing.

• Second, we will be able to produce ahead of time (if the sequential dimension
is time) performance analytics, and thus identify if a goal is going to fail or
succeed in the near future.

2. The second problem is that of measuring the degree of performance success for
different KPI-Restrictions. For example, given that a value > 1% of people in risk
of poverty is bad, we would like to find out what this number is for other di-
mension restrictions e.g. per country, in/out of Eurozone, or even different years.
This will help us automatically identify our target values for sub-markets as well
as sub-periods for a specific high-level KPI, that is defined in a strategic model.

Missing and Future Values.

Initially, given a set of observations seen so far for a KPI, we are interested in forecast-
ing its future values, such that we provide in-time insights. The values that compose
each KPI can be seen as a training set, based on which a prediction model p can be
trained. This prediction model can then be used to forecast the observations that have
not been recorded yet. For example, in Figure 7.5, we can see Employment Rate values
projected into the missing years, in order to analyze if we will meet our goal.

Definition 13 (KPI Data-Series Value Forecasting Query) Formally, given a KPI Data-

Series ds = DS
dj
ki
(is, ie) for a period is to ie, on a sequential dimension dj, we are interested in

training a prediction model p in order to predict values of ds for time points i f > ie.

f orecast(DS
dj
ki
(is, ie), p, i f ) returns x ∈ R

In the same spirit, we can define an operation that interpolates missing values
within a certain range. In both forecasting and interpolation, queries can be answered
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Figure 7.5: Total employment forecasting for EU

using well known statistics algorithms. Some common forecasting methods are those
of moving averages, ARIMA models and the Box-Jenkins methodology [23].

Projecting KPI Value Segmentations.

As we stated earlier, being able to project target KPI Value Segmentations to KPI-
Restrictions (sub-markets) is crucial for monitoring sub-markets. This is because we
need to be able to monitor our expectations on a higher-level market aggregation (e.g.
unemployment all over Europe) as well as for different sub-markets (e.g. unemploy-
ment in Italy, France, etc.) and not only in overall.

In order to do so we need to be able to extract the value segmentations for a KPI-
Restriction in any given dimension-instance pair, either sequential or not. So for exam-
ple, given that an Employment Rate of 75% is “good” for EU in overall, it is not trivial
to project what is good to different sub-markets such as different countries, countries
within Eurozone and more. Given this, we define a KPI Value Segmentation Projection
Query that should be able to mine a database for identifying such KPI-Segmentation
breakdowns.

This is a process that can be done either in an automatic, or in a manual way. This
means that either the system must be able to project the value segmentation [105] to
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lower level markets, for example by comparing market shares of previous years; or
that the analyst has to manually specify a projection function that maps segmentations
to the lower-level.

The most intuitive way of breaking down KPI segmentations is that of allowing the
analyst to manually define them. These are two examples that demonstrate this case.

Example 3 (Temporary Reforms: Manual Projection on the Time dimension) After ap-
plying some temporary economical reforms, we could specify that we expect a slight decrease
in unemployment within a certain period. As a result, we would need to specify a 20% unem-
ployment target for the first year, while for the second and third year we should have a 16%
and 10% unemployment rate, even if our final target was 10%. If we had not projected our
expectations for all the years, we would have been failing during each year until we
reached our target, even though this should not be the case.

Example 4 (Development Level: Manual Projection on the Space dimension) In the
same sense, one would expect that unemployment should be lower in more industrialized and
developed countries than in developing ones. As a result we might have expected that the
unemployment in a certain country should be lower than others over the years. This is the case
for Europe 2020, where the Employment Rate target for each country is set individually.

The second way for projecting segmentations is that of automatically mining the
data warehouse. Given a database with values from previous years and a KPI. We can
calculate, for every KPI-Restriction, the value of this KPI. Moreover, for each term of
the KPI we can identify what is the market share of this term when compared to the
“larger” parent market. This is an essential operation on data warehouses, where we
calculate what is the contribution of a base-cell on a higher level aggregation. Since
KPIs are complex functions, their values can not always additively calculate the higher
level KPI. However, we are able to identify the contribution of each simple aggregation
term of a KPI-Restriction to the general KPI. By feeding these ratios in the KPI calcula-
tion formula, we can identify the expected value for this KPI-Restriction. This process
can be seen in Algorithm 16, where we iterate over all the KPIs defined in the strategic
model. For each one of them, we identify every possible dimension-instance pair set
and we calculate the value of the KPI for it. We then find all the parent market seg-
ments of this sub-dimension, and calculate the ratio of its value to the value of the KPI
for the parent market segment. Then using an user defined function, we combine all
these ratios in order to choose either the most meaningful or an aggregation of them.

An example for the employment KPI is the following. Starting with the aggregation
of employment all over Europe, we calculate the employment for all countries, then for
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all regions and finally for the eurozone dimension. At each step we compare this KPI
to the KPI of its parent market segments. For example, we compare Spain to Europe,
Spain to Eurozone, Spain to Southern Europe. We then use the user defined function
to choose the most appropriate ratio, or to aggregate them, thus adjusting the global
target value to this sub-dimension. In the same way we compare Eurozone to Europe,
each Region to Europe, and adjust the target values for the related sub-dimensions.

Example 5 (Temporary Reforms: Automatic Projection on the Time dimension) As per
our previous example, we could take a look at similar situations, e.g., previous Temporary Re-
forms, and mine the percentages over the different years with regards to the overall target value.

Example 6 (Development Level: Automatic Projection on the Space dimension) We could
automatically calculate the average unemployment rates for the past years for all the countries
in East EU, and compare each country’s average to the total average. This ratio can then be
used to adjust the expectations for each country on its own.

Partial History Selection.

Further on, in our scenario we only want to select parts of the data warehouse (from
2000 onwards) for performing the target value projections, instead of the complete his-
toric knowledge. Partial history selection can become more complex, selecting isolated
parts of the history. An example could be an economic crisis, where we want to get un-
employment data only from periods where there was a financial crisis affecting some
parts of Europe, and use them to adjust the target values for each sub-market. In or-
der to deal with these situations, we can have a Knowledge Base that contains historic
situations pointing to parts of the data warehouse that contain data related to them.
Thus, we retrieve only the values from the relevant time intervals.

Summarizing, before proceeding to the monitoring step, we need to know how to
fill the missing and target values of the KPIs, both for the aggregated data and for each
sub-market. As we have shown, we can project segmentations using the previous data,
either by:

• Using the current information available about the evolution of each KPI.

• Performing Partial History Selection for focusing on specific situations that affect
this KPI that have occurred in the past, using a pre-annotated knowledge-base of
past situations and types of situations.
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Algorithm 12: Performance Diagnosis Setup
Data: KPIs: K, Predefined Target Value Projections: P, Data Warehouse: DW
Result: Kproj

1 Kproj = K;

2 foreach k ∈ K do

3 foreach Possible Sub-Dimensions d of k do

4 krestricted = SelectSubDimension(k, d);
5 if hasPredefinedTargetValues(krestricted, P) then

6 krestricted.targetValues = getTargetValues(k,d,P);

7 else

8 restrVal = calculateKPI(k, d, DW);

9 pall = findParentMarketDimensions(krestricted);

10 parentKPIValueRatios = [];

11 i = 0;

12 foreach p ∈ pall do

13 parVal = calculateKPI(k, p, DW);

14 parentKPIValueRatios[i++] = restrVal / parVal ;

15 krestricted.targetValues = calculateTargetValues(parentKPIValueRatios);

16 append(krestricted, Kproj);

Expectation Diagnostics.

In the previous sections we have focused on preparing the necessary data to answer
Performance Diagnostics questions such as “Will we meet our goal for Employment
Rate by year 2020?”. However, as introduced in Section 7.2, we are also interested in
being able to identify if there are hidden anomalies such as countries deviating from
their usual behavior. For example, it is relevant to know if Spain or Greece are deviat-
ing from the employment behavior of other countries and when they started deviating.
These questions fall into the Expectation Diagnostics category.

In order to support Expectation Diagnostics, we need to perform clustering at the
base level of our data warehouse, such that we group our data and introduce hidden
dimensions that can be used for aggregating their members, and producing trends
that describe them. These aggregated trends, can be used to monitor for parts of the
warehouse that are deviating from their previous clusters.

Expectation Diagnostics is the process that allows an automated monitoring sys-
tem to compare current KPI trends to expected KPI trends. Expectation differs from
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Figure 7.6: Cluster of Spain and Greece, over EU employment percentage

Performance in the sense that it tries to capture differences among different layers of
aggregation and different parts of the data warehouse, where the same trends should
traditionally be observed. An example is that sub-markets should most of the time fol-
low the same trends as their parent market segments. For example, unemployment in
Spain could be expected to follow the trend of unemployment of Europe. If this is not
the case, then Spain constitutes a special case that is worth being reported to an ana-
lyst. At the same time, this might not always be the case, as there might be sub-clusters
within a certain hierarchy level, that do not necessarily follow the same trends [200].
For our scenario, we can see the trends and clusters of Spain and Greece compared
with the trend of EU in Figure 7.6.

In order to be able to capture such insights, we need to support data series similarity
queries for performing the following actions.

1. Clustering data series from different parts of the data warehouse, thus produc-
ing more meaningful levels of aggregation, where the aggregations follow the
same trends as their components. An example would be the creation of clusters
of countries that follow the same unemployment trends, when this clustering is
not provided by any of the current dimensions (e.g. Region, Eurozone, etc.), but
rather from a hidden dimension that could be introduced by a clustering algo-
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rithm.

2. Comparing data series with their parent market segments, either computed via
clustering, or physically located in the Dimensions Schema, in order to identify
unexpected trends.

Consequently, similarity queries have to be used both while monitoring for unex-
pected deviations, and while periodically trying to find or update existing clusters in
the data warehouse. As a result, such systems should be able to efficiently answer
similarity queries on large collections of data series defined as follows.

Definition 14 (KPI Data-Series Similarity Query) Given a two KPI Data Series ds1 =

DSd1
k1
(p1s , p1e , p1in) and ds2 = DSd2

k2
(p2s , p2e , p2in) of equal size, for two KPIs k1 and k2, we

are interested in finding out the distance between ds1 and ds2, by using a distance function δ

that returns a real number representing this distance.

series similarity(ds1, ds2, δ) returns x ∈ R

The problem of answering similarity queries in databases of data series was first
introduced by [11] in 1993. As we have seen in the previous chapters, a common
approach to handle such queries is by reducing the dimensionality of the data using
a dimensionality reduction technique [38, 93] and then building a specialized index
structure [13, 166, 30]. Some example distance functions that can be used on top of
such indices are the Euclidean Distance, Dynamic Time Warping [151] and others.

After the setup step, we should end up with a set of KPIs and their corresponding
target value projections for each different sub-part of each KPI. Subsequently these
new Sub-KPIs will be used for Performance Diagnosis both at a high level as well as at
a lower level, thus allowing the analyst to adjust a strategy to all the important parts of
the data that demonstrate a bad performance. Moreover, for Expectation Analysis we
should end up with a new set of dimensions inserted in the Dimensions Schema, such
that we are able to use them as if they were preexisting in the data warehouse.

7.3.3 Monitoring Step

The last step in the process is the monitoring step. The monitoring step is responsible
for monitoring all the KPIs related to each goal, aggregate their statuses, and provide
insights for each one of them. The first step of the process is the one related to Perfor-
mance Diagnosis. Here, the system should be able to identify whether a goal is failing
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Algorithm 13: Performance Diagnosis Monitoring
Data: Goals: G, Data Warehouse: DW, Time Dimension: t, forecast step: f, forecast

prediction model: p

Result: statuses

1 statuses = [];

2 foreach g ∈ G do

3 foreach Possible Sub-dimensions d, except time do

4 goalKPIStatuses = [];

5 foreach k ∈ getKPIs(g) do

6 krestricted = SelectSubDimension(k, d);
7 kdata series = DataSeriesGrouping(k, t);
8 ds = ComputeDataSeries(kdata series);

9 futureVal = forecast(ds, p, f);

10 goalKPIStatuses.add(getKPIStatus(krestricted, futureVal));

11 statuses.add(aggregateKPIStatuses(kpiStatuses, g));

or not. In our scenario, we need to know if we are currently meeting or not our target
for Employment and Education.

• If the overall goal is failing, or about to fail, we need to drill down in our data
warehouse, by restricting the KPIs to various dimensions, in search of the sub-
markets responsible for the overall failure.

• If the overall goal is succeeding, we need to point out to the analyst the parts of
the Warehouse with the greatest success, that are probably responsible for this
good status, as well as the ones that can still be improved.

A baseline algorithm would start with the general, unrestricted KPIs, and gradually
produce restricted KPIs for all dimension-instance pairs. Subsequently, by calculating
their values it should be able to produce analytics for each sub-market. Moreover, by
performing Data-Series Grouping operations for each one of the restricted and unre-
stricted KPIs, forecasting algorithms can be used for performing this kind of analysis
ahead of time. The output of the algorithm should be an overall status for the general
goal and various insights for the status of this goal for various sub-markets. This algo-
rithm can be seen in Algorithm 11, where we start by iterating over all the goals, for
each goal we iterate over all the related KPIs and calculate every possible dimension
restriction in all dimension-instance pairs. For each one of them we calculate the KPI
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Figure 7.7: EU failing to meet its target, but Malta succeeds, Germany is about to succeed, and

Greece will probably fail.

Data Series on the time dimension, until the current time point. We then try to forecast
the value for a future time f , using a prediction model p, both of which we have as
input from the analyst. This future value (if f is set to 0, corresponds to now), is trans-
lated to a status. By aggregating all these statuses we can calculate the overall status of
each KPI-restriction, as well as of the general KPI.

Obviously, the search space can explode really fast, as the number of combinations
of dimensions and instances is very large. To overcome this problem various pruning
techniques can be used, such as stopping to drill in when a sub-market of the original
KPI has been marked as failed. For example, when we identify that East Europe is
failing, we could either choose to drill in to the Eurozone dimension, or report this to
the analyst and only drill in, on demand.

The last monitoring step is that of Expectation Diagnosis, where we are interested
in finding market segments that are outlying with regards to their parent market seg-
ments. This process can be done in a top-down way, as described in [105], where we
start at the highest level of aggregation and only explore the dimensions that are part
of the most dissimilar descendants of this aggregation. This step makes use of the KPI
Data Series and clusters previously calculated, and helps the user to find out diverging
trends within the data as will be shown in the following section.
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Figure 7.8: Spain failing to succeed as well as it deviates from its previous cluster in 2012

7.3.4 Result Analysis

In this section we present the results of following our process for analyzing Employ-
ment and Education with regards to Europe 2020 goals. As we can see in Figure 7.7,
the Performance Diagnosis suggests that we are not expected to meet our goal in Em-
ployment if we follow the current trend. However, if analyzed in detail, we can see
in Figure 7.7 that some countries present more significant differences with their tar-
gets than Europe overall. Malta for example, has already succeeded, while Germany
is about to succeed, and Greece will probably fail to do so. In order to discover such
insights, Algorithm 16 is run as a setup step to identify the target values for EU and
for all the other sub-dimensions in the Data Warehouse. In this case, EU has defined
specific targets for each country, and these targets are monitored in a top down fashion
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by Algorithm 11.
By means of Expectation Diagnostics, we can find out what countries started to

diverge from their traditional behavior, and when this started to happen. An example
can be seen in Figure 7.8, where we can see that Spain fails to succeed to its target,
something that constitutes a Performance Diagnostic. Moreover, while traditionally
correlated with the Baltic countries, it starts to deviate and this is an Expectation Diag-
nostic, as the last years’ course is not expected considering previous clusterings.

Finally, with regards to Education, Spain had been deviating from its target until
the beginning of the economic crisis, when, unexpectedly, it changed its trend.

As we can see, with our process, we can obtain Performance and Expectation Di-
agnostics that provide important information in order to analyze in-depth the perfor-
mance of the business. Furthermore, these results can be reflected into the strategic
model in order to analyze their impact. It is worth noting however, that finding the
reasons for latent anomalies requires additional considerations and is out of the scope
of this paper.

7.4 Summary
Monitoring the business requires an in-depth analysis of the Key Performance Indi-
cators (KPIs), as otherwise, problems within the sub-markets will go unnoticed until
they threaten the global target. However, given the complexity of the search space it
can become a daunting task if performed manually. In this chapter we presented a
semi-automatic approach to tackle this problem by (i) modeling the business strategy
and deciding on what KPIs should be monitored, (ii) describing a process to analyze
sub-markets and evaluate their performance, and (iii) specifying a set of algorithms to
perform this process. Furthermore, we tested our approach by means of a real case
study on the Europe 2020 framework, publicly available. The benefits of our proposal
are that we can identify anomalies, relationships, and deviations in the data that are
not reflected at an aggregated level. Therefore, we are able to diagnose the existence of
anomalies before they become threats for the business.
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Conclusions and Future Work

8.1 Conclusions

In this thesis, we have discussed the importance of efficient similarity search for a large
set of data mining operations. This is the case both for raw data series, as well as for
data series that are enriched with semantic meta-data, aimed at supporting business
intelligence applications. We have shown that full state-of-the-art indexes cannot cope
with the data deluge, often requiring multiple days before allowing the analysts to
start answering queries. As a result, hindering the interactivity of exploration systems.
Through our experiments, we have demonstrated that adaptive indexing can help sci-
entists cope with the vast amounts of data that they have to process. Such techniques
are able to allow scientists to perform similarity search at interactive speeds. Our pro-
posed approach, constructs the index incrementally and adaptively, resulting in a very
fast initialization process. The index structure then adapts to the query workload, as
a result saving time from indexing the complete dataset. This time is instead used to
create a more refined version of the index, for the parts of the data that are related to
the user’s queries.

Using this data structure we are able to answer approximate queries in multi-terrabyte
datasets in mere milliseconds, while we have also presented algorithms for efficient
exact query answering. Our exact search algorithm facilitates sequential disk scans in
order to speed up its operation. Further on, in the case where analysts are still inter-
ested in indexing the complete dataset, we have also developed a full index construc-
tion method based on ADS, which outperforms the state-of-the-art, by performing a
double pass over the raw dataset, instead of costly random I/O operations.

In order to demonstrate all these ideas, we have also developed RINSE, an inter-
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active data series exploration platform. This system allows the users to experience
how adaptive indexing works, and the quick access it provides to the data. It is also
a testbed for the creation of new data exploration user interfaces, as it allows users to
graphically explore data series using their mouse or touch screen.

In addition to speeding up similarity search, we also focused on the problem of
how to to systematically characterize a data series query workload, and subsequently,
how to generate queries with desired properties. This is an important step, that has
never been studied in the past in the context of data series indexes. The output of this
work was a query workload generator, which generates queries of predefined hard-
ness, given by the user as input.

Finally, we motivated the need for a system that is able to continuously monitor
a data warehouse based on queries generated from the Strategic Model of an organi-
zation and discussed the importance of data series similarity in such a context. Our
proposed systems should be able to efficiently identify trends in regards to these pre-
specified objectives, and also to monitor the warehouse for expected or unexpected
threats and opportunities in the data as well as their causes.

8.2 Future Work

Our future work can be organized in 4 distinct axes. These include the field of dis-
tributed adaptive indexing for data series, the development of a generic data series
storage and retrieval systems, the creation of novel interactive data exploration tech-
niques, and finally the enhancement of business intelligence systems with efficient data
series queries processing. We elaborate on each one of these axes in the following sub-
sections.

8.2.1 Distributed Adaptive Indexing

Adaptive data series exploration opens numerous future research opportunities. One
of the most challenging paths is the application of our initial ideas in massively dis-
tributed settings, which would allow the exploitation of cloud resources and enable
multiple scientists to co-explore massive data collections. While our current imple-
mentation is limited to a single node scenario, ADS can be naturally parallelized, e.g.,
by distributing different sub-trees to different nodes of a cluster system [178, 184, 56].
Moreover, in order to ensure uniform utilization of the complete infrastructure, each
node can host more than one sub-tree, including both hot and cold parts of the index.
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8.2.2 Data Series Management Systems

Massive data series collections are becoming a reality for virtually every scientific and
social domain. Systems like Relational and Array Databases are not a suitable solu-
tion, since none of these systems offers native support for data series. Our vision is to
design and develop general-purpose Data Series Management Systems [122, 123], able
to cope with big data series, that is, very large and fast-changing collections of data
series, which can be heterogeneous (i.e., originate from disparate domains and thus
exhibit very different characteristics), and which can have uncertainty in their values
(e.g., due to inherent errors in the measurements). Just like databases abstracted the
relational data management problem and offered a black box solution that is now om-
nipresent, we propose that Data Series Management Systems should rely on declar-
ative processing to allow analysts that are not experts in data series management, as
well as common users, to tap in the goldmine of the massive and ever-growing data
series collections they (already) have. Additionally, one of our goals is to also integrate
ADS+, as well as other data series indexes and summarizations into a general data
series management system [122]. This will optimize similarity search, and support
interactive exploration of big data series.

Data Series Storage Layer

The first step towards this direction is the development of novel data series storage
systems. While data series indexes have been proposed in the context of similarity
search for speeding up data mining algorithms, we claim that data series indexes can
be used to speed up other queries as well. This is the case for simple range queries,
which retrieve a subset of the positions for some of the data series. Such queries very
frequently refer only to a small subset of the data series collection, and in such cases,
query processing would be substantially improved by intelligently reorganizing data
accordingly. For example, by grouping together data series commonly accessed by the
same queries, or that share statistical properties. Additionally, data series could be
horizontally partitioned (over the positions axis) in a way that reflects the selectivity
(in number of points) of the queries of the current workload. Along these lines, our
long term vision is to develop a specialized data series storage layer that goes beyond
relational and array databases, by being able to both efficiently re-organize data series
in optimal groups, but also partition each group in a way that is optimal for the query
workload.
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8.2.3 Interactive Data Exploration

In regards to data exploration, there are various research topics, which cut across the
fields of interactive data exploration, human computer interaction, and data manage-
ment. Effectively browsing through large collections of data series in a visual way,
efficiently isolating the data of interest, is the holy grail of interactive data exploration
techniques. Our adaptive data series indexes can form the core of such products, al-
lowing analytics at speed-of-thought speeds.

8.2.4 Enhancing Business Intelligence Systems

Finally, business intelligence applications can also be enhanced by the introduction of
adaptive data series indexes. This will allow such tools to efficiently identify clusters
and outliers. Such applications, require scalable and efficient data structure to han-
dle the query workload. Further on the queries generated are targeted to the parts of
the data, which are related to the strategic goals of a company. As a result there are
various data layout choice (or index building) decisions that could be guided by an-
alyzing these goals. In regards to the enhancement of such tools, our future work is
additionally focused on identifying the potential causes and solutions of such outliers.
Finally, another interesting research path is that of identifying hidden relationships in
the strategic model through the use of clustering.
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J. Tueller. Long-term variability of agn at hard x-rays. Astronomy & Astrophysics, 563:A57, 2014.

[169] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and
G. E. Robinson. Big data: astronomical or genomical? PLoS Biol, 13(7):e1002195, 2015.

[170] M. Stonebraker. The case for partial indexes. SIGMOD Record, 18(4):4–11, 1989.

[171] M. Stonebraker and L. A. Rowe. The design of postgres. In Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 28-30, 1986., pages 340–355, 1986.

[172] A. Szalay. Extreme data-intensive scientific computing. Computing in Science & Engineering, 13(6):34–41, 2011.

[173] B. Thuraisingham. Data management systems: Evolution and interoperation. CRC Press, 1997.

[174] A. Van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elaboration of requirements for a meeting
scheduler: problems and lessons learnt. In RE, 1995.



Bibliography 159

[175] P. Vassiliadis, A. Simitsis, and P. Georgantas. A generic and customizable framework for the design of ETL
scenarios. Information Systems, 2005.

[176] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics and Systems Analysis, 4(1):52–57,
1968.

[177] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional trajectories. In ICDE, 2002.

[178] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi. Indexing multi-dimensional data in a cloud system. In SIGMOD,
2010.

[179] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Experimental comparison of
representation methods and distance measures for time series data. DMKD, 26(2), 2013.

[180] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A data-adaptive and dynamic segmentation index for
whole matching on time series. In VLDB, 2013.

[181] T. Warren Liao. Clustering of time series data - a survey. Pattern Recognition, 38(11):1857–1874, Nov. 2005.

[182] R. Xi, N. Lin, and Y. Chen. Compression and aggregation for logistic regression analysis in data cubes. TKDE,
21(4):479–492, 2009.

[183] X. Xi, E. J. Keogh, L. Wei, and A. Mafra-Neto. Finding motifs in a database of shapes. SDM, 2007.

[184] Y. Xie, D. Palsetia, G. Trajcevski, A. Agrawal, and A. N. Choudhary. SILVERBACK: scalable association
mining for temporal data in columnar probabilistic databases. In ICDE, 2014.

[185] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting time series motifs under uniform scaling.
In KDD, 2007.

[186] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks. SIGMOD
Record, 31(3):9–18, 2002.

[187] L. Ye and E. J. Keogh. Time series shapelets: a new primitive for data mining. In KDD, 2009.

[188] B. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary Lp Norms. In VLDB, 2000.

[189] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences under time warping. In
ICDE, 1998.

[190] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In SODA,
volume 93, pages 311–21, 1993.

[191] M. J. Zaki and W. M. Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University
Press, 2014.

[192] A. Zaslavsky, C. Perera, and D. Georgakopoulos. Sensing as a service and big data. arXiv preprint
arXiv:1301.0159, 2013.

[193] J. Zhou and K. A. Ross. Buffering accesses to memory-resident index structures. In VLDB, 2003.

[194] J. Zhou and K. A. Ross. Buffering database operations for enhanced instruction cache performance. In
SIGMOD, 2004.

[195] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for interactive exploration of big data series. In
SIGMOD, 2014.

[196] K. Zoumpatianos, S. Idreos, and T. Palpanas. Rinse: Interactive data series exploration. In VLDB, 2015.

[197] K. Zoumpatianos, S. Idreos, and T. Palpanas. Ads: the adaptive data series index. The VLDB Journal (accepted
for publication), 2016.



160 Bibliography

[198] K. Zoumpatianos, Y. Lou, I. Ileana, T. Palpanas, and J. Gehrke. Generating data series query workloads. Under
Submission, 2016.

[199] K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke. Query workloads for data series indexes. In KDD, 2015.

[200] K. Zoumpatianos, T. Palpanas, and J. Mylopoulos. Strategic management for real-time business intelligence.
In Enabling Real-Time Business Intelligence Workshop (BIRTE), held in conjunction with VLDB, 2012.

[201] K. Zoumpatianos, T. Palpanas, J. Mylopoulos, A. Maté, and J. Trujillo. Monitoring and diagnosing indicators
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