


	

 
 
 
 
 
 

“ […] This is what allows us to carry on the epic learning game that 
we call science. Science formalizes our special kind of collective 
memory, or species memory, in which each generation builds on 
what has been learned by those that came before, following in each 
other’s footsteps, standing on each other’s shoulders. Each 
generation values what it can learn from the one before, and prizes 
the discoveries it will pass on to the next, so that we see farther and 
farther, climbing an infinite mountain.” 

 
– Jonathan Weiner, The Beak of the Finch (1994) 
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Overview 

 
Object manipulation is central to our daily interactions with the 

environment. Failing to select, prepare or perform correct prehension 

movements results in dramatic limitations for the affected individual. 

Whereas we begin to have a better understanding of the neural mechanisms 

underlying the execution of object-directed movements, less is known about 

how exactly our brain makes the plan for action. The first chapter of this 

thesis (Chapter 1) provides the reader with a general introduction on 

movement planning of prehension movements in monkeys and humans, 

from neurophysiology to neuroimaging and the development of advanced 

multivariate analysis methods. Chapter 1 ends with open questions that are 

at the core of the following experimental chapters. 

Previous studies examining movement planning suggested that neuronal 

populations in parieto-frontal areas contain information about upcoming 

movements moments before they actually take place. However, such studies 

typically used experiments in which the participant was instructed about the 

movement to plan with visual or auditory cues, making it difficult to 

disentangle movement planning from the processing of cues and stimulus-

response (S-R) mapping. Chapter 2 describes a functional magnetic 

resonance imaging (fMRI) study (Study I) in which we compared an 

instructed condition with a free-choice condition that allowed participants 

to select which prehension movement to perform: a condition in which the 

task was not tied to specific external cues (i.e., no direct S-R mapping). Using 
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multi-variate pattern analysis (MVPA), we found contralateral parietal and 

frontal regions containing abstract representations of planned movements 

that generalize across the way these movements were generated (internally vs 

externally). 

The majority of previous studies were based on delayed-movement tasks, 

which introduce brain responses unrelated to movement preparation. 

Consequently, whether these findings would generalize to immediate 

movements remained unclear. Chapter 3 reports a second fMRI study (Study 

II), where we directly compared delayed and immediate reaching and 

grasping movements. Using time-resolved MVPA allowed us to reveal 

shared representations for delayed and non-delayed movement planning in 

human primary motor cortex and examine how movement representations 

unfolded throughout the different stages of planning and execution. 

The last chapter of this thesis (Chapter 4) begins with a short summary of 

the main experimental findings. Next, it discusses the results of the two 

experiments in the wider context of the existing literature on movement 

planning and how these extend our current knowledge with respect to 

previous neuroimaging studies on neurologically-intact human volunteers. 

The last sections of Chapter 4 are dedicated to a brief account of the 

limitations, future directions and possible implications for applied research. 
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Chapter 1. 

 

Introduction and Background 

 
1.1 The origin of movement 

 

“Why do we and other animals have brains? […] Now, you may reason that 

we have one to perceive the world or to think, and that’s completely wrong. 

[…] We have a brain for one reason and one reason only, and that’s to 

produce adaptable and complex movements. There’s no other reason to have a 

brain. Think about it, movement is the only way you have of affecting the 

world around you.” 

– Daniel Wolpert, TED talk “The real reason for brains” (2011) 

 

According to Daniel Wolpert, Professor of Neuroscience at the University of 

Cambridge (UK), understanding movement (i.e., the mechanisms and 

apparatus that allow our body to move) is key to understanding brain 

function as a whole. In his view there would be no evolutionary advantage to 

evolve sensory, memory, and other cognitive functions if it were not to 

somehow affect future behavior. Indeed, movement is the only way we have 

of interacting with the world around us. Everything we do, including any 

form of communication (e.g., speech, gestures, writing, drawing), is made 
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possible through contraction of muscles mediated via the motor system in 

the brain. 

Movement generation involves a series of interacting steps that transform 

the perception of the environment (the “what”) into an appropriate motor 

response (the “how”). In order to produce movement we need a mechanism 

that translates the abstract, general concept of a motor goal into a specific, 

concrete course of action (Fig. 1.1, Wong et al., 2015). This is what scientists 

in the field of movement research call movement planning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A classical example to showcase what this means in everyday life 

situations is offered by object manipulation. Let us suppose that we are 

thirsty and, with the overarching purpose to quench our thirst, we decide to 

grasp a glass of water that is placed on the kitchen table. Even for simple 

Figure 1.1 Movement planning comprises the sensorimotor processes that bridge the gap 
from perception to action. Adapted from Wong et al. (2015). 
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reach-to-grasp movements a large amount of information must be processed 

by the brain in order to prepare our body for action. For instance, before any 

movement occurs, a series of processes must unfold enabling the brain to 

perceive the surrounding environment (e.g., the kitchen), select a target 

object of interest (e.g., the glass), decide when, where and how to approach it 

(e.g., reach and grasp), and issue a motor command to achieve the desired 

outcome (e.g., drinking). Movement planning encompasses all the neural 

computations and sensorimotor transformations between the definition of a 

movement intention and the execution of a motor program. Clearly, this 

constitutes a complex process that can be described at different levels of 

analysis (e.g., from high-level motor goals to low-level movement 

kinematics) and which entails close links and interactions with other 

cognitive functions like perception, decision-making, language and memory. 

Nonetheless, in healthy individuals, planning of most actions can be 

normally achieved in just a few hundred milliseconds, with several brain 

regions working together in concert to orchestrate behavior. How exactly 

our brain enables us with this remarkable ability at the origin of every 

human movement is something that we do not yet fully understand. 

 

 

1.2 Prehension as a working model for movement research 

All movements that human and non-human animals are capable of 

performing require some level of preparation. Although certain aspects of 

movement planning (e.g., brain regions recruited, activity profiles, temporal 

dynamics) vary and can be very specific for different actions, planning itself 

is not a unique prerogative of any one particular type of movement (e.g., 
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jumping, throwing, looking), or movement effector (e.g., legs, arms, eyes). 

We do not only plan arm or hand movements. Rather, planning could be 

regarded as a (nearly automatic and often subconscious) component of the 

process by which our brain generates action. However, to investigate 

movement planning, researchers need to focus on a set of movements that 

can be studied in experimental settings and, at the same time, offer broader 

insight about brain functioning. Tool use and object manipulation fit the 

requirements in that they are very common and of great evolutionary 

importance, both for human and non-human primates, being at the very 

core of our daily interactions with the environment. Think about normal 

daily activities like giving, taking, opening, closing, cooking, writing, 

washing. They all have in common the need to deal with tools and objects. 

Moreover this class of actions can easily be used in a number of experimental 

ways to answer questions about sensory and motor processing in the brain. 

Experimenters can manipulate the type, the size or the weight of objects, 

their location in space, the task rules that determine the interaction (e.g., 

introducing delays, obstacles, occluders, specific instructions, etc.). 

Prehension, the ability to reach and grasp objects, is a particular case of 

object manipulation, often the first step preceding the use of a tool. It is 

generally subdivided in two main components: reaching (or transport), i.e., 

the hand approaching an object; and grasping, i.e., preshaping the hand to 

interact with the object according to its intrinsic properties (e.g., shape and 

size). Given the aforementioned qualities, a large number of studies focused 

on the neural basis of reaching and grasping (for recent reviews, Crawford et 

al., 2011; Turella and Lingnau, 2014). Furthermore, beyond a good balance 

between ecological and experimental validity, another advantage to the study 
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of these movements lies in the possibility of conducting comparative studies 

with non-human primates (mostly macaque monkeys) that can well 

complement human research. 

Indeed previous studies in both monkeys and humans have shown that 

both species have a dedicated circuitry to accomplish this kind of complex 

behavior, the “grasping network”, or “prehension system” (Filimon, 2010; 

Grafton, 2010; Davare et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This brain system (Fig. 1.2) comprises a widespread network of frontal 

(e.g., prefrontal, premotor, primary motor, supplementary motor), parietal 

Figure 1.2 Schematic representation of the anatomical connections in the cortical 
prehension system of non-human primates. Adapted from Davare et al. (2011). 
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(e.g., superior, inferior, posterior parietal, intraparietal, supramarginal), and 

temporal (e.g., superior, posterior, middle temporal) areas that, at different 

stages of movement generation, interact during the planning and execution 

of reaching and grasping movements. Given the central importance played 

by the prehension system in the present thesis, the following paragraphs will 

describe the studies concerning planning and execution of reaching and 

grasping movements, and what is known about the properties that are coded 

in these brain regions, in greater detail. 

 

 

1.3 Preparatory neural activity in primates encodes movement 

properties 

As mentioned above, movement planning must logically and causally 

precede the moment of execution. Before we perform any object-directed 

action, a motor goal must be formed and some movement parameters (e.g., 

direction, speed, amplitude, trajectory) specified, encoded in the firing of 

posterior parietal and premotor neurons of our brain. Evidence coming from 

neurophysiological studies confirmed this intuitive assumption. In several 

classical experiments, monkeys performed reaching or grasping movements 

while the electrical activity of single cells, or neuronal populations, was 

recorded in frontal (Rizzolatti and Camarda, 1988; Cisek and Kalaska, 2004, 

2005, Raos, 2004, 2005; Afshar et al., 2011) or parietal areas of the monkey 

prehension system (Murata et al., 2000; Andersen and Buneo, 2002; Cui and 

Andersen, 2007, 2011; Kuang et al., 2016).  

Typically, the delayed-movement paradigm is used to examine 

movement planning and execution: each trial starts with a fixation period of 
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Figure 1.3 Neural population activity with respect to baseline in the primate dorsal 
premotor cortex during a delayed-movement reaching task. Diagrams on the left show the 
stimuli presented to the monkey at different stages of an example trial. Adapted from 
Cisek and Kalaska (2010). 

baseline activity, usually in complete darkness to prevent unwanted visual 

stimulation. Next, the primate receives a cue instructing to prepare either 

one or multiple specific movements (e.g., reach, saccade), or movement 

directions (e.g., left, right). After a brief memory period a second cue appears 

specifying the actual target or action that, following a “Go” cue, has to be 

performed. At the “Go” cue the monkey moves the specified effector to the 

target, holds the position and, if the answer was correct, gets rewarded, 

before returning to the initial position. 

Several studies using this paradigm observed that during the delay period, 

before the “Go” cue, neuronal firing rates increased in correspondence to the 

selection of certain movement features (Crammond and Kalaska, 2000; 

Cisek and Kalaska, 2004, 2005; Cisek, 2006; Cui and Andersen, 2007, 2011; 

Fig. 1.3).  
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When information for selecting one feature over the other became 

available to the monkey, the neural representation of the chosen feature was 

strengthened, while that of the unchosen feature was suppressed. In other 

words, these results show that pre-movement brain activity is predictive 

about some aspects of the subsequent behavior, advancing our 

understanding of the neural mechanisms for action selection and movement 

preparation. 

Depending on the experimental design, the features encoded in neuronal 

firings for prehension movements could be spatial targets (Cisek and 

Kalaska, 2005), movement effectors (Cui and Andersen, 2007), or grip types 

(Raos, 2004). Additionally, experiments that included the possibility for the 

monkey to choose which effector to move (in contrast to being instructed to 

use a specific effector) found that pre-movement spike trains in parietal 

regions reflected the movement plans regardless of an internal choice or an 

external instruction (Cui and Andersen, 2007, 2011; Andersen and Cui, 

2009). 

Collectively, these observations shared between neurophysiological 

studies led to the conclusion that in monkeys preparatory brain signals 

across a network of frontal and parietal regions (i.e., the prehension system) 

represent relevant information about planned movements. Importantly, this 

information can be extracted and analyzed to understand what movement, 

or movement sequence (Pesaran et al., 2008), the monkey is going perform. 

In other words, it became possible to predict complex sensorimotor 

behaviors as arm or eyes movements on the basis of these changes in neural 

activity preceding movement onset (Andersen and Cui, 2009; Andersen and 

Buneo, 2002; Cisek and Kalaska, 2010). 
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However, until recent years, the ability to decode planning-related 

cortical signals to predict object-directed movements remained mostly 

confined to invasive neural recordings in non-human primates (Townsend 

et al., 2011). How and where specific movement plans are encoded in the 

human brain remained important yet unanswered questions. 

 

 

1.4 Neuroimaging evidence for movement planning in humans 

Previous functional magnetic resonance imaging (fMRI) experiments on 

movement planning in humans used slight variations of the delayed-

movement paradigm introduced for neurophysiological studies in non-

human primates (e.g., different cue modalities, delay period durations, task 

rules). However, due to technical difficulties intrinsic to the technique (i.e., 

limited space in the scanner and the need to reduce head-motion artifacts), 

early attempts to address movement preparation did not focus on 

prehension movements. Rather, these initial studies used simple button 

presses performed with the index and middle fingers of the right hand (Toni 

et al., 2001; Thoenissen et al., 2002; Cavina-Pratesi, 2006). Yet, in agreement 

with monkey studies, these studies reported widespread planning-related 

activations across a network involving not only frontal and parietal, but also 

extrastriate and mediotemporal regions. Furthermore, these results 

suggested a dissociation in the strategic roles played by posterior parietal and 

premotor frontal regions during the delay period of associative visuomotor 

tasks. While activity in parietal regions has been demonstrated to reflect 

stimulus-response (S-R) associations for multiple potential responses 

allowed by the task (Cavina-Pratesi, 2006), frontal regions have been 
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proposed to contain specific preparatory responses for the most likely 

movement (Thoenissen et al., 2002), leading to the preparation of the 

required motor program. 

Later neuroimaging research extended these findings by investigating 

perceptuo-motor interactions during planning with different actions. Using 

reaching (Bernier et al., 2012; Gertz and Fiehler, 2015), grasping (Verhagen 

et al., 2008) or saccadic eye movements (Pertzov et al., 2011), these studies 

contributed to our understanding of the complex parieto-frontal cortical 

interactions that subserve visuomotor processing.  

A study by Beurze and colleagues (2009) adopted a clever design to 

examine the planning of both hand and eye movements (i.e., reaches and 

saccades). In a two-stage delayed-movement paradigm, two successive visual 

cues instructed participants to prepare either which effector to use (eyes, 

right hand) or the spatial target location (left, right). The order of visual cues 

was randomized throughout the experiment so that in some trials the 

planning of the effector was independent of movement direction, and vice 

versa for the remaining trials. The researchers then examined which regions 

are selectively activated during the planning of an effector or a target 

location. Despite reporting a large overlap in the parieto-frontal network 

involved in planning eye and hand movements (i.e., limited effector 

specificity with clear target selectivity), they observed that the degree to 

which these brain areas responded more to target or effector information 

depended on the stage of movement generation (Fig. 1.4). 
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During an early planning delay, when only partial information was 

available (i.e., either target or effector), spatial target selectivity was 

predominant. During a later planning delay, when information for the actual 

plan was complete, they found intraparietal and the dorsal premotor regions 

selective to both target location and movement effector. 

Whereas findings like this provided important insights into several 

functional aspects of the human parieto-frontal prehension network, 

successive studies tried to take the characterization of brain activity during 

movement planning one step further. They did so by starting to ask 

qualitatively different kinds of research questions and by utilizing a new 

Figure 1.4 Effector specificity (saccades/eye vs. reaches/hand) in three stages of 
movement generation. A: first phase, effector cue in isolation: no significant effector 
specificity. B: second phase, combination of effector and target cues: effector selectivity in 
the neural circuitry involved in movement planning. C: movement execution stage: 
effector selectivity increases. Adapted from Beurze et al. (2009). 
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approach to look at the data that recent advances in fMRI analysis methods 

allowed. 

 

 

1.5 A novel approach for fMRI studies on movement preparation 

All of the neuroimaging studies referred to so far shared the same 

methodological limitations that are characteristic of standard fMRI analyses. 

Indeed, until the early 2010s, most neuroimaging studies on movement 

preparation typically used univariate approaches to analyze fMRI data. 

Borrowing from a different field of Cognitive Neuroscience (i.e., vision 

research, Haxby et al., 2001; Kamitani and Tong, 2005), more recent 

neuroimaging studies on sensorimotor control have begun adopting a 

method that promised to improve the sensitivity of conventional fMRI 

analysis while providing a new way to look at brain imaging data: 

multivariate pattern analysis (MVPA; for recent reviews, Haxby, 2012; 

Haxby et al., 2014). Univariate analyses of fMRI data assess differences in 

activation amplitude at the single voxel level (from here the term univariate), 

or, by averaging across voxels, within a region. By contrast, multivariate 

approaches preserve and exploit the information contained within the fine-

scale spatially-distributed patterns of voxels activity to test which brain 

regions encode different conditions (i.e., have a neural representation of 

those conditions) (Fig. 1.5). The goal of univariate methods is to determine 

whether stimuli or tasks differ in terms of the amplitude of the blood-oxygen 

level dependent (BOLD) signal.  
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To this aim, separately for each individual voxel in the brain, a general linear 

model (GLM) analysis estimates the BOLD amplitude (i.e., the Beta 

estimates) for different experimental conditions (e.g., reach vs grasp in Fig. 

1.5). If the relative voxel activation for one condition (e.g., grasp) is 

consistently and significantly greater than the other condition (e.g., reach), 

then that voxel is deemed to show a preference for grasp in comparison to 

reach. By identifying clusters of individual active voxels within particular 

areas of the brain, univariate GLM analyses allow researchers to show which 

regions are recruited, or preferentially involved, for one among competing 

tasks. 
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Figure 1.5 Main differences between univariate and multivariate analysis of fMRI data. 
The left side of the figure represents the differently active voxels (fMRI activity scale on 
gray levels) within a hypothetical region of interest (ROI) for reaching and grasping. The 
right side of the figure exemplifies the distinction between univariate (differences in mean 
activation, top) and multivariate analysis (classification of multi-voxel spatial patterns, 
bottom). Averaged activation indicates involvement or preference for a condition, pattern 
classification reveals the representational content of that ROI (i.e., that the ROI contains 
information about the condition). 
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However, one of the critical problems with this functional mapping 

approach is that, focusing solely on whether a region's averaged signal 

amplitude is higher or lower for one condition than another, it does not 

consider the information potentially contained in the relationships between 

multiple voxels within a voxel-population (i.e., the spatial patterns that these 

voxels form). Disregarding this kind of information, conventional GLM 

analyses may be less sensitive to subtle diffrences between conditions, such 

as movement plans for reaching and grasping. 

MVPA has at least two advantages compared to more common 

univariate GLM analyses. First, by examining the informational content 

encoded in voxel activation patterns, it allows to make inferences about the 

underlying neural representations for different experimental manipulations. 

Second, by considering even voxels that show weak but consistent 

differences between conditions, MVPA provides higher sensitivity in 

discriminating between conditions that show similar mass-univariate effects 

(i.e., similar activations; Oosterhof et al., 2016).  

One particular instance of MVPA methods (i.e., decoding analysis) 

consists of using classifiers (i.e., machine-learning algorithms such as 

support-vector-machines, SVMs, or linear discriminants, LDs) to 

discriminate between classes of stimuli on the basis of differences in the 

elicited spatial patterns of responses across multiple voxels. First, only a 

subset of the entire fMRI dataset is used to train the classifier to distinguish 

the voxel patterns that represent the different conditions. Next, the classifier 

is presented with the remaining, independent, subset of the data to test 

whether it can classify (i.e., decode) the learned associations between voxel 

patterns and conditions better than chance. The purpose of this analysis is to 
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determine whether the representational content elicited by two or more 

experimental conditions is encoded in a given brain region.  

Importantly, whereas univariate methods aim at addressing questions 

about the involvement or preference of a brain region for certain stimuli or 

tasks, MVPA gave rise to a whole new set of research questions (Mur et al., 

2009): how are hidden processes like intentions, goals and decisions 

represented in the brain? Which brain regions encode specific movements, 

effectors, or movement properties? Is it possible to decode movement plans 

by examining patterns of brain activity before movement onset, and thus 

predict upcoming behaviors? The answers to questions like these provided 

key insights into sensorimotor research and narrowed the gap between 

human neuroimaging and monkey neurophysiology. 

 

 

1.6 Decoding motor intentions in the human parieto-frontal network 

To recapitulate, while primate studies contributed to the intuition that 

preparatory neural activity encodes movement plans (Cisek and Kalaska, 

2010), human neuroimaging studies showed that cortical parietofrontal 

networks involved in hand and arm movements are highly distributed, 

highly overlapping, and possibly organized along sensory or effector-

dependent gradients (Filimon, 2010). MVPA of fMRI data proved to be a 

powerful analytical tool to uncover subtle differences in overlapping 

activations distributed across multiple voxels, and to access the cognitive 

contents (i.e., the neural representations) of the human mind (Haxby et al., 

2014). Not much time passed before the study of prehension movements 
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took advantage of the recent advances in human neuroimaging methods that 

MVPA offered. 

The first non-invasive attempt to decode upcoming object-directed 

actions using planning-related brain signals in humans was provided by 

Gallivan et al. (2011). The first challenge that the authors had to face 

concerned separating the brain activity associated with planning from the 

one elicited by execution of visually-guided reach or grasp movements 

towards a single centrally-located object. To do so, they used a modified 

version of the classical delayed-movement task. At the beginning of each 

trial an auditory instruction indicated to the participants which of the three 

hand movements to prepare (“grasp [the] top” part of the object with a 

pincher grip, “grasp [the] bottom” part of the object with a whole-hand grip, 

or “touch” the side of the target object with the knuckles). After a fixed 10 

seconds delay (the planning phase), a “beep” sound prompted the subjects to 

perform the instructed action (execution phase). Using a univariate group-

contrast (planning phase > baseline), the authors defined 14 regions of 

interest (ROIs) within the well-documented left-lateralized parieto-frontal 

network (Fig. 1.6) that are involved in movement planning.  

Subsequent pattern classification analysis revealed that upcoming 

movements could be reliably predicted from the preparatory brain signals of 

the planning phase in a number of ROIs, including the intraparietal sulcus 

(IPS), the superior parieto-occipital cortex (SPOC), the dorsal and ventral 

premotor cortex (PMd, PMv), and the primary motor cortex (M1).  
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This innovative study was quickly followed up by two publications by the 

same group in which, using a very similar paradigm and analysis methods, 

they showed that more information could be extracted from human 

preparatory activity in fronto-parietal networks. Namely, they were able to 

decode not only the type of upcoming movements (reach vs. grasp), but also 

the intended spatial directions (left vs. right) of planned reaches and 

saccades (Gallivan et al., 2011b), and which limb (ipsilateral vs. contralateral 

arm) would be used for subsequent reach or grasp movements (Gallivan et 

al., 2013b). From a theoretical standpoint, the pattern classification approach 

used in these studies supports the idea that predictive movement 

information is contained in the spatial patterns of preparatory responses 

Figure 1.6 Decoding of object-directed movement intentions across the parieto-frontal 
network. Voxels that exhibited larger responses (i.e., activation) during movement 
planning than baseline are shown in orange/yellow. General locations of selected ROIs are 
outlined in circles and color coded according to the pairwise discriminations they can 
decode during the planning phase: green, all pairwise discriminations; blue, grasp versus 
touch; black, no decoding. Adapted from Gallivan et al. (2011a). 
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within parieto-frontal regions, even, and crucially, in absence of differences 

in signal amplitude. Furthermore, these results offered a new understanding 

of previous notions (Filimon, 2010) on how frontal and parietal regions in 

the human brain contribute to the planning of object-directed prehension 

movements. First, by dissociating distributed overlapping networks for 

different actions; second, by identifying which areas carry the most 

discriminating signals for different sensorimotor functions (e.g., planning 

the movement direction, type, or effector). 

However, despite these remarkable achievements, this approach to the 

study of movement planning has some limitations. First, one potential issue 

shared by most experiments on movement preparation (Toni et al., 2001; 

Mars et al., 2008; Pertzov et al., 2011; Bernier et al., 2012) lies in the use of 

instructed movements. By only having an instructed condition, it becomes 

hard for experimenters to disentangle the various components that coexist 

during a planning phase that is both artifical and disproportionately long 

compared with the natural course of events. Motor preparation always co-

occurs and intermingles with the sensory processing of a visual or auditory 

instruction during the typical S-R mapping (Andersen & Cui, 2009). This is 

problematic because the brain activity measured during planning could in 

fact reflect a combination of movement preparation and other overlapping 

sensory or cognitive processes, undermining the specificity and accuracy of 

results, as well as the scope of the conclusions one may derive. 

Second, another potentially important limitation concerns the use of the 

delayed-movement framework to elucidate the neural mechanisms of 

movement planning. During the delay period (i.e., the planning phase), 

subjects are not only preparing a movement, but are also withholding the 
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response, waiting for the right moment to execute (Ames et al., 2014). 

Indeed, long and fixed (i.e., non-jittered) planning delays tend to introduce 

brain activity unrelated to movement preparation (e.g., event anticipation, 

mind wandering, etc.). Consequently, it is poorly understood to what degree 

delay-related brain signals specifically reflect movement preparation. 

Moreover to what extent previous results obtained with delayed-movement 

paradigms can be generalized to contexts without a delay is unclear. 

In my PhD I tried to address these issues related to movement 

preparation with the intent to better characterize the neural representations 

of movement plans observed within the human prehension system. The first 

fMRI study (Study I, Chapter 2) examined the problem related to instructed 

movements, whereas the second fMRI study (Study II, Chapter 3) addressed 

the problem related to delayed movements. 
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2.1 Abstract 

During movement planning, brain activity within parieto-frontal networks 

encodes information about upcoming actions that can be driven either 

externally (e.g., by a sensory cue) or internally (i.e., by a choice/decision). 

Here we used multivariate pattern analysis (MVPA) of functional magnetic 

resonance imaging (fMRI) data to distinguish between areas that represent 

(1) abstract movement plans that generalize across the way in which these 

were driven, (2) internally-driven movement plans, or (3) externally-driven 

movement plans. In a delayed-movement paradigm, human volunteers were 

asked to plan and execute three types of non-visually guided right-handed 

reaching movements towards a central target object, using a precision grip, a 

power grip, or touching the object without hand preshaping. On separate 

blocks of trials, movements were either instructed via color cues (Instructed 

condition), or chosen by the participant (Free-Choice condition). Using 

region-of-interest (ROI)-based and whole-brain searchlight-based MVPA, 

we found abstract representations of planned movements that generalize 

across the way these movements are selected (internally- vs externally-

driven) in parietal cortex, dorsal premotor cortex and primary motor cortex 

contralateral to the acting hand. In addition, we revealed representations 

specific for internally-driven movement plans in contralateral ventral 

premotor cortex, dorsolateral prefrontal cortex, supramarginal gyrus, and in 

ipsilateral posterior parieto-temporal regions, suggesting that these regions 

are recruited during movement selection. Finally, we observed 

representations of externally-driven movement plans in bilateral 

supplementary motor cortex and a similar trend in pre-supplementary 

motor cortex, suggesting a role in stimulus-response mapping. 
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Significance statement 

The way the human brain prepares the body for action constitutes an 

essential part of our ability to interact with our environment. Previous 

studies demonstrated that patterns of neuronal activity encode upcoming 

movements. Here we used multi-variate pattern analysis of human fMRI 

data to distinguish between brain regions containing movement plans for 

instructed (externally-driven) movements, areas involved in movement 

selection (internally-driven), and areas containing abstract movement plans 

that are invariant to the way these were generated (i.e., that generalize across 

externally- and internally-driven movement plans). Our findings extend our 

understanding of the neural basis of movement planning, and have the 

potential to contribute to the development of brain-controlled neural 

prosthetic devices. 
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2.2 Introduction 

In daily life we continuously select which movements to plan and execute. 

Parieto-frontal regions have been implicated in the planning, execution and 

online control of eye and hand movements in a number of human 

(Binkofski et al., 1999; Connolly et al., 2002; Tunik et al., 2005; Beurze et al., 

2009; Cavina-Pratesi et al., 2010; Filimon, 2010; Gallivan et al., 2011b, 2013b, 

2011a; Glover et al., 2012; Barany et al., 2014; Leoné et al., 2014; Brandi et al., 

2014; Fabbri et al., 2014; Gallivan and Culham, 2015) and monkey (Hoshi 

and Tanji, 2006; Andersen and Cui, 2009; Fattori et al., 2010; Afshar et al., 

2011; Townsend et al., 2011; Lehmann and Scherberger, 2013) studies. 

Furthermore, pre-movement activity in both parietal and frontal regions has 

been shown to encode different hand configurations (Murata et al., 2000; 

Raos, 2004, 2005; Begliomini et al., 2007; Tunik et al., 2007; Fluet et al., 2010; 

Gallivan et al., 2011b; Verhagen et al., 2013). 

Movements can be planned either on the basis of external cues in our 

environment (externally-driven), or in the absence of such cues (internally-

driven). While it has been reported that the same parieto-frontal areas 

involved during externally-driven movements are recruited during 

internally-driven movements in monkeys (Cisek and Kalaska, 2005, 2010; 

Cui and Andersen, 2007; Pesaran et al., 2008), no previous study directly 

compared the planning of internally- and externally-driven movements in 

humans. Studies that compared externally- and internally-driven 

movements did not intend to separate movement planning from execution 

(Oliveira et al., 2010; Zhang et al., 2012; Bode et al., 2013). By contrast, 

studies separating between planning and execution focused on externally-

driven movements and thus did not allow distinguishing between internally- 
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and externally-driven movements (Beurze et al., 2009; Gallivan et al., 2011a, 

2011b, 2013b; Pertzov et al., 2011; Bernier et al., 2012).  

Here we aimed to distinguish between brain regions representing abstract 

movement plans that are neither tied to specific external cues nor to 

internally-driven decisions, and brain regions representing movement plans 

specific for internally-driven or externally-driven movements (Fig. 2.1A). 

We asked participants to perform a delayed-movement task in which they 

had to plan and execute one of three different movements (i.e., reach to 

grasp with a precision grip, with a power grip, or reach to touch) toward a 

single centrally-located object (Fig. 2.1B). On each trial, a visual cue either 

instructed to plan a specific movement as instructed by the cue (Instructed 

condition, i.e., externally-driven), or it indicated to select and plan one of the 

three movements (Free-Choice condition, i.e., internally-driven; Fig. 2.1C). 

We used support-vector-machine (SVM)-based multivariate pattern analysis 

(MVPA) of fMRI data to compare the decoding of upcoming externally- and 

internally-driven movements. To examine abstract representations of 

movement plans that generalize across the planning conditions, we used 

cross-condition classification, i.e., training a classifier to distinguish between 

upcoming movements on the basis of externally-driven trials, and testing on 

internally-driven trials, and vice versa. 

We reasoned that areas containing abstract movement plans should show 

movement selectivity that generalize across the planning condition. By 

contrast, areas involved in action selection should show movement 

selectivity in the Free-Choice but not in the Instructed condition. Finally, 

areas involved in the processing of sensory cues and/or the mapping between  
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Figure 2.1 Experimental question, design, timing and setup. A. Schematic representation 
of the research question. B. 2x3 mixed factorial design: Planning condition (Instructed, 
Free-Choice), blocked, and Movement type (precision grip, PRG: two fingers only, index 
and thumb; power grip, PWG: whole hand open; touch, TCH: hand closed in a fist, 
without hand preshaping), randomized. C. Example trial with timing (Instructed block, 
PRG). Each trial began with participants fixating a dot (Baseline) for a variable amount of 
time randomly selected from a geometric distribution (p = 0.3, 2000 - 6000 ms). This 
interval was followed by a color fixation cross (500 ms) either instructing which 
movement to plan (Instructed blocks), or indicating to freely select one of the movements 
(Free-Choice blocks). The Planning phase consisted of a a jittered ISI (independently 
chosen from the same geometric distribution). After this delay, an auditory cue (100 ms) 
provided the GO-signal to start the movement (Execution phase, 2500 ms). In the 
Instructed condition the color of the fixation cross corresponded to one of the three 
movements. In the Free-Choice condition the cue always had the same, non-informative, 
color (in this example, blue). D. Lateral view of a participant with the right hand at the 
home position. Participants saw the screen through a mirror attached to the head coil 
(line of sight illustrated by black dashed line). This setup ensured that participants neither 
saw the target object nor their own movements. 
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such cues and the corresponding movements should show movement 

selectivity in the Instructed, but not in the Free-Choice condition.  

 

 

2.3 Materials and Methods 

2.3.1 Participants. Twenty-five right-handed volunteers (12 males, 13 

females; mean age: 27.2 years; age range: 21-54 years) took part in the study. 

All participants were neurologically intact and had either normal or 

corrected-to-normal vision. The experimental procedures were approved by 

the ethics committee at the University of Trento. Participants gave written 

informed consent and were paid for their participation. Seven participants 

were subsequently excluded from data analysis: one due to technical 

problems with video recordings (see Setup), one due to not completing the 

experimental session, and five due to severe head motion. Rapid (i.e., taking 

place within one volume) head motion was detected on the basis of the 3 

translation and rotation parameters resulting from 3D motion correction 

(cut-off criterion: > 1 mm for translation, > 1 degree for rotation). Overall, 

18 participants were included in the successive analyses. 

 

2.3.2 Setup. Visual stimuli (i.e., fixation cross and fixation dot) were back-

projected onto a screen (frame rate: 60 Hz; screen resolution: 1024 × 768 

pixels; mean luminance: 109 cd/m2) via a liquid crystal projector (OC EMP 

7900, Epson Nagano, Japan). Participants viewed the screen binocularly 

through a mirror mounted on the head coil (Fig. 2.1D). The screen was 

visible as a rectangular aperture of 17.8° x 13.4°. The auditory go-signal was 

delivered via MR-compatible headphones. 
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Participants performed unimanual (right hand only) reach-to-grasp 

movements (Fig. 2.1B) toward a single, centrally located object (according to 

each participant’s sagittal midline) mounted on top of a workspace that 

consisted of a transparent plexiglas board attached to the scanner bed above 

the waist of the participant (Fig. 2.1D). The target object consisted of two 

custom-made square pieces of wood, glued on top of each other (Fig. 2.1D). 

To exclude uncontrolled visual stimulation by the sight of the own hands 

and the object, or systematic eye movements towards the object, participants 

were scanned in a conventional fMRI configuration (i.e., horizontally, 

without tilting the head towards the body; Fig. 2.1D) and were instructed to 

maintain fixation throughout the experiment. This precluded direct viewing 

of their own limbs, or the target object, while performing the task without 

visual feedback. 

An MR compatible response button (Lumina LP 400, Cambridge 

Research Systems), attached to a custom belt around the waist, was pressed 

by the participant with the knuckles when at rest (home position, Fig. 2.1D). 

A microcontroller board (Arduino Uno) connected to the Lumina 

Controller positioned outside the magnet room was used to signal the release 

of that button. This time stamp was used to measure movement onset time. 

To enable movements as comfortable as possible, the position of the 

workspace and the response button were adjusted individually to match each 

participant’s arm length (mean distance hand-object: 16.6 cm). Head and 

trunk movements were minimized by stabilizing the head and the upper 

right arm with foam blocks and cushions. 

To monitor movement execution, we recorded each experimental session 

using an MR-compatible digital video camera (VP-D15i; Samsung 
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Electronics) mounted on a tripod in a corner of the MR room (outside the 

0.5-mT line). Stimulus presentation, response collection, and 

synchronization with the scanner were controlled using “ASF” 

(Schwarzbach, 2011), based on the Matlab Psychtoolbox-3 for Windows 

(Brainard, 1997). 

 

2.3.3 Design. We used a mixed design with the factors planning condition 

(Instructed, Free-Choice) and movement type (precision grip, PRG; power 

grip, PWG; touch, TCH; Fig. 2.1B). Planning condition was blocked, 

movement type was randomized within blocks. In Instructed blocks, each 

movement type occurred equally often (3 times), and the color of the 

fixation cross indicated which movement to perform. In Free-Choice blocks, 

participants were instructed to choose one of the three movement types with 

no restrictions. 

 

2.3.4 Procedure. To temporally isolate the neural processes associated with 

movement planning from movement execution, we used a delayed-

movement paradigm (Andersen and Buneo, 2002; Beurze et al., 2009; 

Gallivan et al., 2011a, 2011b, 2013b; Fig. 2.1C). Each trial started with a grey 

fixation dot lasting for a variable amount of time that served to alert 

participants of the upcoming trial. The duration of the fixation dot was 

chosen from a geometric distribution (p = 0.3; 2000 - 6000 ms, in steps of 

500 ms). The fixation dot was followed by a colored fixation cross for 500 

ms, either instructing the type of movement to perform (Instructed 

condition), or indicating to select one of the movements (Free-Choice 

condition). The colored fixation cross was followed by a jittered inter-
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stimulus-interval (ISI; Planning phase) independently chosen from a 

geometric distribution with the same parameters as described above. At the 

end of the delay period an auditory signal (duration: 100 ms, frequency: 350 

hz, amplitude: 0.6) provided the GO-cue to start the movement (Execution 

phase, 2500 ms), and to return to the home position after completion of the 

movement. Participants were asked to keep the hand still and relaxed in the 

home position throughout all the phases of the trial apart from the Execution 

phase. Reaction times were defined as the time when the response button 

was released time-locked to the GO-cue.  

While in the Instructed condition different color cues corresponded to 

different movement types, the cue always had the same, non-informative, 

color in the Free-Choice condition. We used two sets of color-cue 

assignments that were balanced across participants. Each participant 

completed a single experimental session consisting of a practice session 

outside the scanner (~20 min), the structural scan (~5 min), and 10 

functional runs (~6 min each). Each functional run started and ended with 

15 sec rest and contained 4 blocks of trials (2 blocks per planning condition) 

separated by 15 sec rest each. Between the second and the third block a 

longer rest period (25 sec) allowed participants to relax their right arm, wrist 

and hand. The order of block types (I = Instructed; F = Free-Choice) was 

pseudo-randomized such that the first two (or second two) blocks could 

never be of the same type (i.e., IFIF, FIFI, IFFI, or FIIF). Each block (~60 sec) 

consisted of 9 trials, for a total of 360 trials per participant. For the 

Instructed condition, after excluding error trials, we had an average of 58.70 

(range: 50-60) repetitions per movement type and planning condition per 

participant. For the Free-Choice condition, the number of trials per 
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movement type depended on the choices of the participant, with an average 

of 59.68 (range: 35-81) repetitions per condition per participant (see 

Multivariate pattern classification analysis section for further details). 

 

2.3.5 Data acquisition. Functional and structural data were collected using 

a 4T Bruker MedSpec Biospin MR scanner and an 8-channel birdcage head 

coil. Functional images were acquired with a T2*-weighted gradient-recalled 

echo-planar imaging (EPI) sequence. Acquisition parameters were a TR 

(time to repeat) of 2000 ms; voxel resolution, 3 x 3 x 3 mm; TE (time to 

echo), 33 ms; flip angle (FA), 73°; field of view (FOV), 192 x 192 mm; gap 

size, 0.45 mm. We used 28 slices, acquired in ascending interleaved order, 

slightly tilted to run approximately parallel to the calcarine sulcus. The 

number of volumes acquired in the main experiment for each functional run 

varied according to the length of variable delay periods (range: 178-183 

volumes). Before each functional run, we performed an additional scan to 

measure the point-spread function (PSF) of the acquired sequence, which 

served for distortion correction, expected with high-field imaging (Zaitsev et 

al., 2004). To be able to coregister the low-resolution functional images to a 

high-resolution anatomical scan, we acquired a T1-weighted anatomical 

scan (magnetization-prepared rapid-acquisition gradient echo; TR: 2700 ms; 

voxel resolution: 1 x 1 x 1 mm; TE: 4.18 ms; FA: 7°; FOV: 256 x 224 mm; 176 

slices; generalized autocalibrating partially parallel acquisition with an 

acceleration factor of 2; inversion time: 1020 ms). 
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2.3.6 Data analysis. 

Behavioral analyses. We measured reaction time (RT) as the time to release 

the response button (see Procedure) with respect to the auditory GO-cue. 

Moreover, we analyzed video recordings of the experimental sessions to 

ensure that participants performed the movements correctly, and to know 

which movements were performed during the Free-Choice condition. Trials 

were considered errors either when performed incorrectly (i.e., incorrect 

hand preshaping; temporal anticipation: RT < 100 ms; reaction time 

timeout: RT > 1500 ms) or, in the Instructed condition only, when 

participants executed a movement that was different from the one instructed 

by the cue. Using the videos, we also counted the number of correct trials per 

movement type, of particular importance for the Free-Choice condition. 

Next, to potentially detect participants that showed stereotyped selections 

(i.e., cognitive strategies) or excessively frequent movement choices, we 

created a transition matrix that showed the number of times each movement 

followed any other (3-by-3 matrix, trial_n x trial_n+1). This allowed us to 

calculate a measure of randomness (i.e., entropy) for movement selection in 

Free-Choice trials (separately per participant and run), the Shannon’s 

Entropy (Uncertainty) index (Shannon, 1948): 

 

! ! = − ! !!  !"#!
!

!!!
! !!  

 

where X is a random variable with n outcomes {x1, ..., xn}, and p(xi) is the 

probability mass function of the outcome xi. Shannon’s Entropy index (H) 
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ranges from 0 to !"#!! , where n is the number of states or possible 

outcomes.  

 

fMRI data analysis. 

Preprocessing. Data were preprocessed and analyzed using BrainVoyager QX 

2.8.0 (BrainInnovation, Maastricht, The Netherlands) in combination with 

the BVQX Toolbox and custom software written in Matlab R2012b 

(MathWorks, Natick, MA, U.S.A.). To correct for distortions in geometry 

and intensity in the echo planar imaging (EPI) images, we applied distortion 

correction on the basis of the PSF (see Data acquisition; Zeng and Constable, 

2002). To avoid T1 saturation, we discarded the first 4 volumes. The first 

volume of the first functional run of each participant was aligned to the 

high-resolution anatomy (6 rigid-body transformation parameters). Next, 

we performed 3D motion correction (trilinear interpolation for estimation 

and sinc interpolation for resampling) using the first volume of the first run 

of each participant as reference, followed by slice timing correction 

(ascending interleaved even-odd order) and high-pass temporal filtering (3 

cycles per run). Spatial smoothing was applied with a Gaussian kernel of 8 

mm full-width half maximum (FWHM) for univariate analysis only. For 

successive group analysis, both functional and anatomical data were 

transformed into a common Talairach space, using trilinear interpolation. 

 

Univariate analysis (GLM). To localize brain areas preferentially involved in 

movement preparation, we computed a group random-effects (RFX) general 

linear model (GLM) analysis in the volume. To avoid making assumptions 

about the shape of the HRF during the Planning phase, we used a 
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deconvolution analysis, estimating the amplitude of the BOLD signal 

separately for each predictor and time point (TR). We created six (2 

planning conditions x 3 movement types) predictors both for the Planning 

and Execution phases, and 1 predictor modelling the baseline between the 

first and second half of each run, leading to 13 (predictors) x 8 (time points) 

= 104 predictors. This led to independent estimates of the BOLD amplitude 

for each condition and time point resulting from the deconvolution analysis. 

Parameters from 3D motion correction (translation and rotation) and 

regressors for error trials (modelled separately for each time point) were also 

included in the model as predictors of no interest. For each voxel, the 

average of the estimated beta-value at the 3rd and 4th time points (i.e., 4 to 8 

sec after the onset of the planning cue) was used both for uni- and 

multivariate analyses (for a similar procedure, see Eisenberg et al., 2010). 

We aimed to identify regions of interest (ROIs) commonly reported to be 

involved in the planning and execution of prehension movements (see 

Beurze et al., 2009; Gallivan et al., 2011a, 2011b, 2013b; Fabbri et al., 2014; 

for a review see Turella and Lingnau, 2014). To do so, we contrasted the 

Planning phase against the Baseline [Planning > Baseline] (Fig. 2.2), 

collapsing across the two planning conditions. The resulting volumetric 

statistical map was corrected for multiple comparisons using a False-

Discovery-Rate (FDR) < 0.05 and projected on the group-averaged surface 

mesh for visualization (Fig. 2.2A). 

 

ROI definition. To identify individual ROIs objectively, we followed a similar 

procedure as recently used by Oosterhof, Tipper, and Downing (2012a). In 

brief, we first manually outlined the activations individuated through the 
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RFX-GLM contrast [Planning > Baseline] on the group-averaged surface 

mesh (for details on the creation of the group-averaged surface mesh, see 

Brain segmentation, mesh reconstruction, and cortex-based alignment), 

roughly circumscribing the ROIs around known anatomical landmarks (see 

also Gallivan et al., 2011a, 2011b, 2013b). Specifically, we used the following 

criteria: 

 

• Primary motor cortex (M1): around the hand-knob area in the 

anterior bank of the central sulcus; 

• Dorsal premotor cortex (PMd): at the junction of the superior frontal 

sulcus and the precentral sulcus; 

• Ventral premotor cortex (PMv): slightly inferior and posterior to the 

junction of the inferior frontal sulcus and the precentral sulcus; 

• Anterior intraparietal sulcus (aIPS): on the anterior segment of the 

intraparietal sulcus, at the junction with the postcentral sulcus; 

• Middle intraparietal sulcus (mIPS): on the middle segment of the 

intraparietal sulcus, not overlapping with aIPS; 

• Posterior intraparietal sulcus (pIPS): on the posterior segment of the 

intraparietal sulcus, not overlapping with mIPS; 

• Superior parietal lobule (SPL): the anterior portion of the superior 

parietal lobule, superior to the IPS and slightly posterior to the 

postcentral sulcus; 

• Supramarginal gyrus (SMG): the anterior portion of the 

supramarginal gyrus, slightly posterior to the postcentral sulcus and 

superior to the lateral sulcus; 
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• Dorsolateral prefrontal cortex (dlPFC): on the anterior portion of the 

middle frontal gyrus, around Brodmann area (BA) 46 (Badre and 

D’Esposito, 2009); 

• Supplementary motor area (SMA): on the medial wall of the superior 

frontal gyrus, anterior to the medial end of the central sulcus, posterior to 

the vertical projection of the anterior commissure; 

• Presupplementary motor area (preSMA): on the anterior segment of 

the cingulate sulcus, slightly anterior to the vertical projection of the 

anterior commissure; 

• Posterior superior temporal gyrus (pSTG): the posterior portion of 

the superior temporal gyrus, inferior to the supramarginal gyrus; 

• Posterior middle temporal gyrus (pMTG): the posterior portion of the 

middle temporal gyrus. 

 

Next, we projected these marked activation patches from the surface back 

to the volume. Within each of them, we looked for individual peak voxels 

coming from the single-subject GLM contrasts [Planning > Baseline], 

computed as described above. We defined individual ROIs, separately for 

each participant, as spheres (8 mm radius) centered around each individual 

peak voxel (for a summary of the Talairach coordinates of individual ROIs, 

see Table 1). To examine classification performance in regions that are not 

expected to show predictive power, we additionally included a non-brain 

control ROI outside the skull of the brain near the right frontal cortex (same 

size and shape as before, and identical location for all participants). 
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Table 2.1 TAL coordinates (x, y, z rounded mean and standard deviation 

across participants) of individual peak voxels for the ROIs identified by the 

group contrast [Planning > Baseline]. 
 

Region x y z SD x SD y SD z 

L-M1 -33 -25 50 2,7 2,7 2,4 

L-PMd -25 -11 48 3,1 3,3 4,0 

L-PMv -46 3 27 4,5 2,3 5,1 

L-aIPS -39 -34 39 3,5 3,6 2,2 

L-mIPS -35 -45 40 2,7 3,5 2,1 

L-pIPS -30 -57 42 2,5 2,8 2,8 

L-SPL -31 -51 54 2,9 5,5 2,9 

L-SMG -56 -28 29 2,3 5,0 4,8 

L-dlPFC -36 34 28 3,4 3,3 2,8 

L-SMA -7 -3 50 1,5 2,6 4,4 

L-preSMA -8 4 41 1,7 3,6 2,5 

R-pIPS 30 -50 42 2,3 3,3 2,5 

R-pSTG 53 -39 13 3,9 2,7 3,0 

R-pMTG 51 -51 4 3,4 5,2 3,7 

R-SMA 6 -4 51 2,3 3,1 2,8 

R-preSMA 7 7 39 1,6 3,3 2,3 

Out of brain 51 53 56 0 0 0 
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Abbreviations: L-M1, left primary motor cortex; L-PMd, left dorsal premotor cortex; L-PMv, 
left ventral premotor cortex; L-aIPS, left anterior intraparietal sulcus; L-mIPS, left middle 
intraparietal sulcus; L-pIPS, left posterior intraparietal sulcus; L-SPL, left superior parietal 
lobule; L-SMG, left supramarginal gyrus; L-dlPFC, left dorsolateral prefrontal cortex; L-SMA, 
left supplementary motor area; L-preSMA, left pre-supplementary motor area; R-pIPS, right 
posterior intraparietal sulcus; R-pSTG, right posterior superior temporal gyrus; R-pMTG, 
right posterior middle temporal gyrus; R-SMA, right supplementary motor area; R-preSMA, 
right pre-supplementary motor area. 

 

 

Multivariate pattern classification analysis. We ran both ROI- and 

searchlight-based MVPA using support-vector-machines (SVM) as 

implemented in LIBSVM (Chang and Lin, 2011). The ROI analysis served to 

test whether we could decode planned movements in the regions identified 

individually by the functional contrast [Planning > Baseline] as described 

above. In addition, to rule out that we missed potentially important regions 

in the ROI analysis, we carried out a whole-brain surface-based searchlight 

analysis (Oosterhof et al., 2011; see also Further observations in the 

Discussion). For the MVPA we estimated beta weights using the same design 

matrices as in the univariate analysis, except for the following: because 

participants freely selected which movements to plan and execute in the 

Free-Choice condition, the number of trials per movement type in this 

condition was not fully balanced. To prevent classification on the basis of the 

number of trials instead of the spatial patterns of brain activity, we balanced 

the number of trials per movement type in the Free-Choice and the 

Instructed condition by levelling to the minimum number of repetitions in 

either condition within each run, and discarding the trials in excess 

(randomly selected among the total). Beta maps containing the mean of the 

beta estimates of the 3rd and 4th timepoint for each predictor of interest (13, 
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see Univariate analysis), individual spherical ROI (133 voxels) and run (10) 

were created for each participant. These maps were then z-transformed and 

normalized into multivoxel patterns of t-values (beta estimates divided by 

their standard error) that we used as input for the classifier. This procedure 

resulted in 10 multivoxel patterns of t-values per planning condition (one 

per experimental run). Classification accuracies were computed using a 

leave-one-run-out cross-validation method, i.e., the classifier was trained 

using data from 9 patterns and tested on the data from the remaining 

pattern. Note that while for the within-condition decoding all 10 patterns 

came from the same condition, the classifier was trained with 9 patterns 

from one planning condition (e.g., Free-Choice) and tested on one pattern 

from the other planning condition (e.g., Instructed) for the cross-condition 

decoding. Training and testing was repeated for 10 iterations, using all 

possible combinations of train and test patterns. The average across these 10 

iterations constituted the mean decoding accuracy per participant and ROI.  

To decode upcoming hand movements from preparatory brain activity 

patterns, multiple binary classifiers were trained to discriminate between two 

movements within each of the three possible pairs of movements (i.e., 

precision grip vs power grip, precision grip vs touch, and power grip vs 

touch) during the Planning phase, separately for the Instructed and the Free-

Choice condition. Classification accuracies from the three binary classifiers 

were successively combined to produce an average accuracy per ROI.  

To test for representations of planned movement types independent of 

the planning condition, we carried out cross-condition decoding, i.e., 

training the classifier on discriminating movement pairs in one condition 

(e.g., precision grip vs power grip in the Instructed condition) and testing 
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the performance of the classifier to distinguish between the same pair of 

movements in the other planning condition (e.g., precision grip vs power 

grip in the Free-Choice condition), and vice versa. As before, the mean of the 

three binary classifiers was computed to produce one accuracy score per 

ROI. Results from the two cross-condition decoding analyses (i.e., train on 

Instructed condition, test on Free-Choice condition, and vice versa) were 

also averaged. Finally, we carried out the same within-condition decoding 

analysis described above for the Execution phase, but, given that no 

differences were expected after the movement had started, we collapsed 

across planning conditions. 

To assess statistical significance of the decoding accuracy, we entered the 

individual (N = 18) classification accuracies (averaged across the three 

binary classifiers) into two-tailed one-sample t-tests across participants 

against chance decoding (50%), separately for each ROI. Furthermore, to 

directly compare our main conditions of interest we performed post-hoc 

two-tailed paired samples t-tests between planning conditions for each ROI. 

Statistical results were corrected for multiple comparisons (number of ROIs 

x number of tests) using the False-Discovery-Rate (FDR) method (Benjamini 

and Yekutieli, 2001). 

 

Brain segmentation, mesh reconstruction, and cortex-based alignment (CBA). 

To create high quality 3D brain reconstructions, we gathered, when 

available, multiple anatomical scans from each participant collected in 

different experiments carried out at the Center for Mind/ Brain Sciences, 

which we aligned and averaged (min: 1, max: 13 scans). Individual surface 

meshes for each hemisphere were reconstructed along the border between 
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grey and white matter. Next, individual reconstructions of each hemisphere 

were used to generate individual spherical surfaces for each participant that 

were then morphed to a template surface (a standard sphere). A coarse-to-

fine moving target approach with four coarse-to-fine levels of smoothing 

was then used to extract multiscale surface curvature maps that reflect the 

gyral and sulcal folding patterns (Fischl et al., 1999; Goebel et al., 2006). This 

information allowed us to align the individual standardized spherical 

surfaces of all participants to a group-averaged spherical surface. 

Transformation matrices resulting from the cortex-based alignment of 

individual spherical surfaces to the group-averaged spherical surface were 

then used to align individual functional maps before entering group 

statistics. Finally, using the curvature maps from CBA, we combined (i.e., 

averaged) the individual reconstructions of folded surfaces of all participants 

(N = 18) to create one group mesh for each hemisphere. Group-averaged left 

and right hemisphere meshes were used to display statistical maps resulting 

from both uni- and multivariate group-analyses. 

 

Surface-based Searchlight SVM-MVPA. The spherical searchlight (8 mm 

radius) was restricted to the surface by only including voxels from -1 to 3 

mm along the grey/white matter boundary. Decoding procedures were very 

similar to the ones used for the ROI-based MVPA. For each hemisphere, we 

first created mesh time courses from the volume time courses. Next, we used 

mesh time courses to generate whole-brain t-maps (20 per participant: 2 

hemispheres x 10 runs), and finally we ran pairwise classifications on the t-

maps as described above. Decoding results of the spherical searchlight were 

assigned to the central voxel. Individual surface accuracy maps were 
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projected onto the group-averaged cortical surface mesh (see Brain 

segmentation, mesh reconstruction, and cortex-based alignment) and then 

anatomically aligned using the transformation parameters derived from 

cortex-based alignment. We successively performed a two-tailed one-sample 

t-test across individual cortical maps to identify vertices where classification 

was significantly greater than chance (50%). Statistical t-maps were 

thresholded at p < 0.01 and corrected for multiple comparisons (p < 0.05) 

using a cluster-size algorithm (Forman et al., 1995) based on Monte Carlo 

simulations (1000 iterations) as implemented in Brain Voyager 2.8.0. For 

each hemisphere, we generated t-maps and decoding accuracy maps 

separately for the Instructed condition, the Free-Choice condition, and 

across planning conditions. 

 

 

2.4 Results 

2.4.1 Behavioral results 

Reaction times (RTs). Participants responded slightly faster in the Instructed 

[602.12 ± 18.67 ms] compared to the Free-Choice condition [605.51 ± 18.65 

ms; F(1,17) = 8.37, p < 0.01]. However, RTs did not differ between 

movement types [F(2,34) = 0.42, p < 0.65], and the interaction between 

planning condition and movement type was not significant [F(2,34) = 2.66, p 

< 0.08]. 

 

Error rates (ERs). Participants were generally accurate in performing the 

delayed-movement task. Overall error rates were very low: 2.15% of all the 

trials in the Instructed condition, and 0.54% in the Free-Choice condition. 
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The fact that error rates were lower in the Free-Choice compared to the 

Instructed condition was expected given that, while errors in the Free-

Choice condition only concerned kinematics, timing, or hand preshaping of 

the movements, errors in the Instructed condition also included executing a 

movement that was different from the instructed movement type. 

 

Shannon’s Entropy in Free-Choice trials. To examine whether the movements 

selected in successive trials followed a regular pattern, we calculated a 

measure of randomness for movement selection in Free-Choice trials, 

defined as Shannon’s Entropy index (Shannon, 1948; see Materials and 

methods). A low entropy index (0 < H < 1) indicates that one of the 

outcomes was chosen more often than others, or that the participant used a 

stereotyped transition pattern (e.g., 1 2 3, 1 2 3, etc.). By contrast, a high 

entropy index (H > 1.5) indicates that it is very hard to predict the next 

outcome on the basis of the previous outcomes. In our study, the mean 

entropy index per participant was 1.53, which is close to the maximum 

entropy level for three alternatives (H = 1.584). This analysis indicates that 

participants did not choose movements in a systematic, predictable way. As 

an example, this is a sequence chosen in the two consecutive blocks of one 

run by a representative participant: 2,1,2,3,2,2,1,1,3 and 2,1,2,3,2,3,1,2,2 (1 = 

precision grip, PRG; 2 = power grip, PWG; 3 = touch, TCH). 

 

2.4.2 Univariate RFX-GLM results. To identify brain regions preferentially 

recruited during movement planning, we carried out a univariate random 

effects general linear model (RFX-GLM) contrast [Planning > Baseline] (Fig. 

2.2A).  
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Figure 2.2 Univariate RFX-GLM analysis. A. The univariate contrast [Planning > 
Baseline] collapsing across planning conditions. The statistical RFX group-map (N = 18) 
was corrected for multiple comparisons using a false discovery rate q(FDR) < 0.05 and 
projected on the group-averaged inflated surface mesh for visualization. Individual 
spherical ROIs (black circles) were defined as spheres (8 mm radius) around individual 
peak voxels resulting from single-subject statistical maps (see Table 1). B. Univariate 
contrast [Planning > Baseline], separately for each Planning condition ([Planning 
Instructed > Baseline], red; [Planning Free-Choice > Baseline], blue). Purple areas denote 
the overlap between the two statistical group maps.	
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Note that this contrast is unbiased with respect to comparisons between the 

Instructed and Free-Choice Planning condition, or between different 

movement types. The resulting statistical map was used to define 16 group-

ROIs: left primary motor cortex (L-M1); left dorsal and ventral premotor 

cortex (L-PMd, and L-PMv, respectively); left anterior, middle and posterior 

intraparietal sulcus (L-aIPS, L-mIPS, and L-pIPS, respectively); left superior 

parietal lobule (L-SPL); left supramarginal gyrus (L-SMG); left dorsolateral 

prefrontal cortex (L-dlPFC); left supplementary motor area (L-SMA); left 

pre-supplementary motor area (L-preSMA); right posterior intraparietal 

sulcus (R-pIPS); right posterior superior temporal gyrus (R-pSTG); right 

posterior middle temporal gyrus (R-pMTG); right supplementary motor 

area (R-SMA); and right pre-supplementary motor area (R-preSMA; for 

details on the definition of individual ROIs, see the section Univariate 

analysis (GLM) and ROI definition and Table 2.1). Additionally, we 

contrasted the Planning phase against the Baseline separately for the two 

planning conditions ([Planning Instructed > Baseline]; [Planning Free-

Choice > Baseline], Fig. 2.2B). Overall, the statistical maps for the Instructed 

and Free-Choice planning condition looked very similar, in particular in the 

left hemisphere, and the direct comparison [Planning Instructed > Planning 

Free-Choice] did not reveal any significant univariate effects. 

 

2.4.3 Multivariate results. 

ROI-based MVPA. In the ROI-based MVPA we tested whether upcoming 

movements could be decoded on the basis of patterns of preparatory brain 

activity within regions recruited during movement planning. To this end, for 

each ROI and planning condition we ran two-tailed one-sample t-tests (FDR 
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corrected for multiple comparisons) on the mean decoding accuracy across 

participants (N = 18) against chance (50%). Figure 3 shows the mean 

classification accuracy in each ROI for averaged pairwise comparisons of 

movement types in four types of ROIs: (1) During the Planning phase, i.e., 

before any movement occurred, we found significant decoding of movement 

type both within (red and blue bars) and across (yellow bars) planning 

conditions in L-mIPS, L-pIPS, L-PMd, L-SPL, L-aIPS and L-M1, suggesting 

abstract representations of planned movements that generalize across 

planning condition (i.e., Instructed vs Free-Choice; Fig. 2.3A). (2) In R-pIPS, 

L-dlPFC, R-pSTG, L-PMv and R-pMTG we were able to predict upcoming 

movements for the Free-Choice planning condition, but not for the 

Instructed planning condition (Fig. 2.3B). In L-SMG we found a similar 

trend (p = 0.044) that did not survive FDR correction for multiple 

comparisons. (3) In L-SMA we obtained above chance decoding for the 

Instructed, but not for the Free-Choice planning condition (Fig. 2.3C). R-

SMA (p = 0.018), L-preSMA (p = 0.033) and R-preSMA (p = 0.026) showed 

trends in the same direction that did not pass FDR correction. (4) As 

expected, decoding of movement type was not possible (i.e., chance 

performance for all experimental conditions) in the non-brain control 

region outside the brain (Fig. 2.3D). 

To further examine the nature of our effects, we performed post-hoc two-

tailed paired samples t-tests on the mean decoding accuracy between the two 

planning conditions for each ROI. After FDR correction for multiple 

comparisons (q < 0.05), these tests revealed a significant effect in L-PMv 

(t(17) = -4.44, p = 0.0004), indicating that decoding was significantly higher 

for Free-Choice compared to Instructed planning in this region.  
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Figure 2.3 ROI-based MVPA. Mean percentage decoding accuracies for movement type 
resulting from multiple binary classifiers. SVM classification accuracies for the three 
possible discriminations between movement pairs were averaged to produce a unique 
score per ROI and planning condition. Red bars, Planning Instructed; blue bars, Planning 
Free-Choice; yellow bars, Planning cross-condition (see Methods); green bars, Execution 
(collapsing across Planning conditions). Statistical significance was assessed via one-
sample t-tests (two-tailed) against 50% chance. Results were FDR-corrected for multiple 
comparisons (number of ROIs x number of tests). Significance levels: one black asterisk, 
uncorrected p < 0.05; two black asterisks, uncorrected p < 0.005; one red asterisk, FDR 
corrected q < 0.05. A. Regions where we found both significant within- and cross-
condition decoding. B. Regions where we observed significant effects (or trends) for the 
Free-Choice, but not for the Instructed Planning task. C. Regions where we observed 
significant effects (or trends) for the Instructed, but not for the Free-Choice Planning 
task. D. Control non-brain region outside the brain.	

 

 

 

 

 

 

 

 

 

 

Post-hoc comparisons that did not survive FDR correction for multiple 

comparisons include R-pIPS (p = 0.016), L-dlPFC (p = 0.027), R-pSTG (p = 

0.042) and R-pMTG (p = 0.045). 

Finally, during the Execution phase (Fig. 2.3, green bars), we were able to 

decode upcoming movements in all the ROIs, with the exception of R-pSTG 

(trend at p = 0.043), R-preSMA (p = 0.063) and the non-brain control 

region. Not surprisingly, we observed the highest decoding accuracy during 

the execution phase in the left (contralateral) primary motor cortex (L-M1), 

followed by the left aIPS. 

 

Searchlight-based MVPA. To identify additional regions beyond our ROIs 

that potentially represent information about upcoming movements, we 

conducted a whole-brain searchlight-based MVPA on the surface (Fig. 2.4, 

Fig. 2.5). Figure 2.4 shows the performance of the classifier across the two 

planning conditions superimposed on the group-averaged inflated surface 

mesh.  
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Figure 2.4 Searchlight SVM-MVPA: cross-condition decoding. The spherical searchlight 
(8 mm radius) was restricted to the surface (-1 to 3 mm). Decoding procedures were very 
similar to the ones used for the ROI-based MVPA (see Materials and Methods section). A. 
Group t-map (thresholded at p < 0.01 and then cluster-size corrected) for the cross-
condition decoding projected on the group-averaged surface mesh. White dashed lines 
indicate the outlines of the statistical map revealed by the univariate contrast [Planning > 
Baseline]. B. Group accuracy map (%) for cross-condition decoding.	
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The cross-condition decoding t-map (Fig. 2.4A) revealed significant clusters 

in left orbitofrontal (L-OFC) and fronto-polar cortex (L-FP), L-dlPFC, 

posterior dorsal L-SMA, L-PMd, left anterior superior temporal sulcus (L-

aSTS), L-IPS, inferior L-SPL, L-pSTG, L-SMG, left angular gyrus (L-AnG) 

and the left precuneus (L-preCu). In the right hemisphere, this analysis 

revealed significant clusters in R-FP, R-PMd, R-SPL, right superior parieto-

occipital cortex (R-SPOC), R-pSTG, R-MTG and right lateral occipital gyrus 

(R-LOG). 

Figure 2.5A shows the within-condition-decoding t-maps with cluster-

size correction (p = 0.05) for multiple comparisons (red, Instructed; blue, 

Free-Choice) and their overlap (purple). Overall, significant clusters for 

Instructed and Free-Choice Planning appeared in neighboring but mostly 

non-overlapping locations (except for the left anterior fronto-median cortex, 

bilateral superior dlPFC and pSPL), and generally more widespread for the 

Free-Choice in comparison to the Instructed condition, especially in frontal 

(FP, dlPFC, PMd) and parietal (IPS, pIPL, pSPL) areas. For the Free-Choice 

planning condition we obtained significant clusters in the left hemisphere in 

the anterior fronto-median cortex and L-OFC, L-FP, L-dlPFC, L-PMv, L-

PMd, L-aIPS, L-pSPL, L-SPOC, L-AnG. In the right hemisphere, this 

analysis revealed significant clusters in R-FP, superior R-dlPFC, R-aIPS, R-

SMG, R-pSTG, R-pIPS, the right posterior inferior parietal lobule (R-pIPL), 

R-pSPL, R-SPOC, and, medially, the right cuneus (R-Cu) and R-preCu. For 

the Instructed planning condition we obtained significant clusters in the left 

hemisphere in the superior L-dlPFC, the anterior fronto-median cortex 

(slightly anterior to L-SMA and superior to L-preSMA), L-PMd, L-SMG, L-

pSPL, and L-LOG.  
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For the right hemisphere, we obtained significant clusters in the superior 

R-dlPFC, the anterior R-SPL (right above R-aIPS), R-MTG (extending to the 

p < 0.01
cluster-size corrected

B
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Figure 2.5 Searchlight SVM-MVPA: within-condition decoding. A. Group t-maps 
(thresholded at p < 0.01 and then cluster-size corrected), separately for each planning 
condition (red, Instructed; blue, Free-Choice), projected on the group-averaged surface 
mesh. B. Group decoding accuracy maps (%) separately for each planning condition 
(Planning Instructed, left; Planning Free-Choice, right). All other conventions are the 
same as in Fig. 2.4.	
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superior temporal sulcus), R-pSPL and R-SPOC. When using a more 

conservative threshold of p < 0.001 (not shown here), only clusters in L-

dlPFC, L-PMd, L-IPS, for the cross-condition decoding, and in bilateral 

dlPFC, pSPL, L-aIPS, and R-pIPS for the Free-Choice planning condition 

survived (i.e., no clusters for Instructed planning condition). 

Figures 2.4B and 2.5B illustrate mean decoding accuracies for the cross-

condition (Fig. 2.4B) and within-condition (Fig. 2.5B) decoding. These 

figures show both significant and sub-threshold clusters of decoding 

accuracy to complement the information present in the searchlight t-maps. 

Although we observed slight discrepancies between the ROI-based and 

searchlight-based MVPA results in some regions (L-M1, L-aIPS, L-mIPS, L-

SMG, R-pMTG, R-pSTG), overall searchlight results appear to be largely in 

line with ROI results in several frontal (L-dlPFC, L-PMd, L-PMv, bilateral 

SMA and preSMA) and parietal (L-pIPS, R-pIPS, L-SPL) regions (for a 

comparison of the two MVPA approaches see section Further observations in 

the Discussion). 

 

 

2.5 Discussion 

Frontal and parietal regions recruited during movement planning encode 

information about upcoming movements (Andersen and Buneo, 2002; Cisek 

and Kalaska, 2005; Cui and Andersen, 2007). Here we aimed to distinguish 

between areas representing abstract movement plans, areas involved in 

movement selection, and areas involved in the mapping between arbitrary 

sensory cues and the corresponding responses. We obtained three key results 

(summarized in Fig. 2.6): (1) contralateral (i.e., left) SPL and IPS, PMd and 
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Figure 2.6 Summary of decoding results for the Planning phase. Circles superimposed on 
the group-averaged surface mesh represent examples of individual spherical ROIs color-
coded according to the results of the ROI MVPA (significant cross-condition decoding, 
yellow; preferential decoding for Free-Choice planning, blue; preferential decoding for 
Instructed planning, red). White-shaded areas with dashed outlines indicate the statistical 
map revealed by the univariate contrast [Planning > Baseline].	

M1 discriminate between planned movements irrespective of the planning 

condition (i.e., both within and across internally- and externally-driven 

movements); (2) contralateral (i.e., left) PMv, dlPFC, SMG and ipsilateral 

(i.e., right) pIPS, pSTG, and pMTG encode internally-driven but not 

externally-driven movement plans. (3) Bilateral SMA, possibly supported by 

pre-SMA, encodes the processing of externally-driven movement plans. 
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2.5.1 Areas representing abstract movement plans 

We obtained significant within-condition decoding of movement plans for 

both planning conditions, as well as significant cross-condition decoding, in 

the left (i.e., contralateral to the moving limb) SPL, pIPS, mIPS, aIPS, PMd 

and M1 (Fig. 2.3A, Fig. 2.6). Our results are in line with studies showing that 

premotor regions are sensitive to arbitrary instructing cues (i.e., which 

movement to perform, or which effector to use; Hoshi and Tanji, 2000, 2006, 

2007), while also participating in action selection, when movements are 

freely chosen (Cisek and Kalaska, 2005; Pesaran et al., 2008; Beudel and De 

Jong, 2009; Klaes et al., 2011). Our results thus show that contralateral 

parieto-frontal regions represent abstract movement plans that are invariant 

to the way these are generated rather than being tied to simple stimulus-

response mapping (Hartstra et al., 2011, 2012) or movement decisions. 

Movement plans can be abstract in a number of different ways. For 

instance, Gallivan et al. (2013a, 2013b) observed that bilateral posterior 

parietal cortex (PPC), PMd, posterior fusiform sulcus (pFs) and fusiform 

body area (FBA) contain representations of upcoming movements that 

generalize across the effector (left vs right hand). These studies provide 

further evidence for abstract representations of movement plans in frontal, 

parietal and ventral stream areas. 

During movement execution, aIPS and M1 have been shown to represent 

handwriting movements generalizing across letter scale (Kadmon Harpaz et 

al., 2014). During movement observation, a number of recent studies 

revealed abstract action representations that generalize across viewpoint and 

modalities (Oosterhof et al., 2012a), and the object on which these actions 

are performed (Wurm and Lingnau, 2015; Wurm et al., 2016), in aIPS and 
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lateral occipitotemporal cortex (LOTC). Further research is required to 

determine to which degree abstract movement representations are shared 

across planning, observation, and execution. 

 

2.5.2 Areas involved in action selection 

We were able to decode upcoming movements in the Free-Choice, but not in 

the Instructed condition in contralateral (left) PMv, dlPFC, SMG and 

ipsilateral (right) pIPS, pSTG, and pMTG (Fig. 2.3B, Fig. 2.6). The 

dorsolateral pathway has been historically associated with grasping 

movements (Jeannerod et al., 1995; Luppino et al., 1999; for a recent review 

see Turella and Lingnau, 2014). Our results extend these findings by 

revealing areas preferentially representing the selection rather than the 

planning of movements. 

In contrast to studies that found significant decoding for instructed 

movements in PMv (Gallivan et al., 2011a, 2013b), we were able to decode 

upcoming movements in PMv for internally-driven but not for externally-

driven movements, suggesting a more prominent role in action selection 

(i.e., deciding which movement to perform). It is possible that these 

inconsistencies are due to methodological differences. As an example, in 

contrast to the studies by Gallivan et al. (2011a, 2013b), participants in the 

current study neither saw the object nor their own hand throughout the 

experiment. Likewise, our planning phase was substantially shorter than the 

planning phase used by Gallivan et al. (2011a, 2013b). It is therefore possible 

that PMv represents both internally- and externally-triggered movement 

plans, depending on the availability of sensory cues and/ or time for 

movement planning. 
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We were able to decode internally-triggered movement plans in pMTG, a 

portion of the LOTC. LOTC is recruited during the processing of a variety of 

visual stimuli, e.g., basic and biological motion, tools, body parts and actions, 

but also has been implicated to host action concepts (for a recent review, see 

Lingnau and Downing, 2015). In addition, and perhaps more surprising, 

LOTC has been demonstrated to be recruited during the planning and 

control of actions (Astafiev et al., 2004; Johnson-Frey et al., 2005; Verhagen 

et al., 2008; Kühn et al., 2011; Gallivan et al., 2013a, 2015; Kilintari et al., 

2014). Integrating various kinds of information from the dorsal (e.g., visuo-

spatial, motoric) and the ventral stream (e.g., semantics), LOTC might be an 

optimal site of convergence to create a link between perceiving, 

understanding and interacting with the environment (Lingnau and 

Downing, 2015). Moreover, LOTC and the dorsal stream might exchange 

information about upcoming movements and/ or anticipated sensory 

consequences of selected actions (Verhagen et al., 2008; Kühn et al., 2011; 

Gallivan, 2014; Lingnau and Downing, 2015). Finally, some studies suggest 

that, in contexts that lack visual feedback, occipito-temporal regions could 

play a role in motor imagery, dynamically updating representations of the 

moving limbs (Astafiev et al., 2004; Kühn et al., 2011; but see Orlov et al., 

2010). 

 

2.5.3 Areas involved in stimulus-response associations 

We were able to decode externally-triggered movement plans in left SMA, 

with a similar trend in the right SMA and left preSMA (Fig. 2.3C, Fig. 2.5A), 

in agreement with previous studies (Hoshi and Tanji, 2004; Mars et al., 2008; 

Gallivan et al., 2011a, 2011b, 2013b; Hartstra et al., 2012). This suggests a 
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role for the fronto-median cortex in stimulus-response mapping, possibly in 

a broader network that includes also posterior parietal and premotor regions 

(Fig. 2.5). However, other studies have also linked SMA activity to voluntary 

action selection (Lau et al., 2004; Zhang et al., 2012, 2013) or self-initiated 

movements (Cunnington et al., 2002, 2003; Fried et al., 2011). Further work 

will be required to define the specific role of the SMA and preSMA, and 

possibly also posterior parietal and premotor regions, in stimulus-response 

mapping and movement planning. 

 

2.5.4 Further observations 

The univariate contrast [Planning > Baseline] revealed a more widespread 

recruitment of the contralateral in comparison to the ipsilateral hemisphere 

(Fig. 2.2), whereas the searchlight MVPA revealed significant clusters in 

both hemispheres (Fig. 2.4, 2.5). It thus appears that, despite weak activation, 

the hemisphere ipsilateral to the moving limb (in our study: the right 

hemisphere) also contains information about planned movements (see also 

Gallivan et al., 2013b; Leoné et al., 2014). This apparent inconsistency is 

likely due to the fact that MVPA relies on differences between activation 

patterns that can occur in the absence of amplitude differences (e.g., 

Kriegeskorte et al., 2006; Haxby, 2012). 

We found significant cross-condition decoding in regions that only show 

significant within-condition decoding for one of the two planning 

conditions (Free-Choice: R-pSTG, R-MTG; Instructed: L-SMA; Fig. 2.3). At 

first glance, this result might look implausible: if a region codes movement 

plans independent of the task, then it should also reveal decoding in both 

tasks alone. There are, however, theoretical reasons that can explain this 
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pattern of results. If condition A tends to evoke more consistent patterns in 

comparison to condition B, condition A might improve cross-condition 

decoding. If condition A is used for the training dataset, the classifier can 

more easily learn to distinguish the patterns. Likewise, if condition A is used 

for the testing dataset, even if the classifier was trained on condition B, it is 

more likely to guess correctly. In other words, training on more consistent 

patterns and testing on less consistent patterns (or vice versa) would produce 

better results than just training and testing within the same inconsistent 

pattern (see also Oosterhof et al., 2012b). 

While the ROI- and the searchlight-based MVPA overall reveal 

converging results, the ROI analysis tended to be more sensitive than the 

searchlight analysis, in line with previous studies (Oosterhof et al., 2012b; 

Wurm and Lingnau, 2015). This is likely due to methodological differences 

between the two approaches (see also Etzel et al., 2013a). In particular, the 

use of individual ROIs is less affected by individual differences in functional 

brain topography. By contrast, the searchlight approach is not limited to 

ROIs defined a priori, but requires stricter criteria to produce significant 

results: first, the exact same voxels in group space have to show significant 

decoding in the majority of participants. Second, given the number of voxels 

in the brain, correcting for multiple comparisons is a much harder problem 

for searchlight-based MVPA. Given the pros and cons of both approaches, 

we present both analyses to provide the reader with a more complete picture 

of the results.  

In conclusion, our results extend the existing literature on movement 

planning, distinguishing between regions containing abstract movement 

plans that are invariant to the way these were generated (externally vs 
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internally driven), areas involved in movement selection, and areas 

containing movement plans for instructed movements. 
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3.1 Abstract 

Different contexts require us either to react immediately, or to wait for the 

right moment. Previous studies that aimed at dissociating movement 

preparation and execution typically used delayed-movement paradigms. 

However, whether results obtained studying delayed movements can be 

generalized to the planning and execution of immediate movements remains 

unclear. In the present functional magnetic resonance imaging (fMRI) study 

we used a slow event-related design to directly compare delayed (delayed 

task), non-delayed (non-delayed task) and suppressed (no-go task) reaching 

and grasping movements. To examine how neural representations evolved 

throughout movement planning, execution and suppression, we performed 

time-resolved multivariate pattern analysis (MVPA). We were able to decode 

planned movements in contralateral parietal and premotor areas. Executed 

movements were best discriminated in widespread bilateral networks of 

motor, premotor and somatosensory areas. Finally, we found significant 

decoding across delayed and non-delayed tasks in contralateral primary 

motor cortex. Our results provide new insights into the dynamics of the 

prehension network and suggest early neural representations of movement 

plans in the primary motor cortex that are shared between delayed and non-

delayed contexts. 

 

Key words: movement planning, delayed-movement paradigm, immediate 

movements; neural decoding; time-resolved fMRI-MVPA 
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Significance statement 

Our actions vary with context: some demand immediate reaction, other 

allow time to fully prepare before moving. Previous studies on motor 

planning used delayed-movement tasks and focused on delayed movements. 

Here we used time-resolved MVPA of fMRI data to follow how movement 

classification (1) generalized across delayed motor plans and non-delayed 

movements, and (2) evolved throughout the planning phase. By revealing a 

common neural code for motor plans across delay conditions and by 

elucidating the temporal dynamics of movement decoding, our results 

extend the current understanding of how the human parieto-frontal 

prehension network represents planned hand movements. 
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3.2 Introduction 

Different contexts require different actions. While certain situations demand 

immediate action (e.g., suddenly crossing the street to chase after a leaving 

bus), others require to withhold our movements until the right moment 

(e.g., waiting at the traffic lights before crossing the street to the bus stop). 

Finally, some situations require getting ready but then to refrain from 

moving at all (e.g., not crossing the street to chase the bus when seeing an 

approaching car). How does the human brain exercise control on our actions 

in different contexts? 

Unlike motor reflexes, even relatively simple voluntary movements need 

to be prepared before they are executed (Haggard, 2005, 2008). 

Understanding how specific brain areas contribute to movement planning 

requires being able to dissociate neural preparation from movement activity. 

To do so, previous monkey (Cisek and Kalaska, 2004, 2005; Baumann et al., 

2009; Hwang and Andersen, 2009; Fluet et al., 2010; Afshar et al., 2011; Cui 

and Andersen, 2011; Townsend et al., 2011) and human studies (Toni et al., 

2001; Thoenissen et al., 2002; Mars et al., 2008; Baumann et al., 2009; Beurze 

et al., 2009; Gallivan et al., 2009, 2011a, 2011b, 2013a, 2013b, 2013d, 2016a, 

2016b; Lindner et al., 2010; Heed et al., 2011; Pertzov et al., 2011; Leoné et 

al., 2014; Ariani et al., 2015; Gertz and Fiehler, 2015) typically adopted 

delayed-movement paradigms in which movements are planned and 

withheld in memory for a certain amount of time before being released 

following a trigger cue. Such studies not only revealed a number of frontal 

and parietal regions recruited during movement planning of arm and hand 

actions, but also that preparatory activity in some of these regions can be 

used to decode upcoming movement properties (for a review see Gallivan 
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and Culham, 2015), implicating these regions in reach and grasp generation. 

However, only few human studies have directly compared this context with 

situations where no preparation time was allowed. Critically, this work either 

focused on action execution and online motor control only, neglecting the 

planning component (Cohen et al., 2009), or did not find differences 

between delayed and immediate movements (Himmelbach et al., 2009). 

Thus whether results obtained with delayed-movement paradigms in 

humans can be generalized to contexts without a delay remains unclear. 

To address this question, we carried out an fMRI experiment in which 

prehension movements had to be performed under three conditions. In the 

delayed task, there was a jittered delay between planning and execution. To 

further disencourage movement anticipation, and to ensure that neural 

responses to movement planning were not always followed (and thus 

systematically contaminated) by movement execution, delayed trials had an 

equal probability to end with an instruction to execute (delayed task) or to 

suppress the movement (no-go task). In the non-delayed task, participants 

had to execute the movement with no additional time to plan. 

We asked two main questions: (1) Are there shared neural 

representations for delayed and non-delayed motor plans? (2) How do 

movement representations evolve throughout the planning phase delay? 

Additionally, our design allowed us to explore whether regions recruited 

during movement suppression still carry information about the previously 

formed and then inhibited motor plans. To examine the time course of 

movement planning and execution, we performed multivariate pattern 

analysis (MVPA) of fMRI data with a “volume-by-volume” time-resolved 

approach (i.e., decoding separately for each acquired volume). To test 
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whether neural patterns obtained during the planning phase of delayed 

movements show similarities with those obtained for non-delayed 

movements, we performed cross-condition decoding: i.e., training a classifier 

on delayed movement planning and using independent data from non-

delayed execution for testing (and vice versa). 

 

 

3.3 Materials and Methods 

3.3.1 Participants. We recruited twenty-four right-handed volunteers (11 

males, 13 females; mean age: 28.21 years; age range: 18-38 years). All 

participants were neurologically intact and had either normal or corrected-

to-normal vision. Participants gave written informed consent and were paid 

30 € for their participation. The experimental procedures were approved by 

the ethics committee at the University of Trento. 

 

3.3.2 Setup. Visual stimuli were back-projected to a screen (frame rate: 60 

Hz; screen resolution: 1280 × 1024 pixels) via a liquid crystal projector (OC 

EMP 7900, Epson Nagano, Japan). Participants viewed the screen 

binocularly through an angled mirror mounted on the head coil (Fig. 3.1A). 

Auditory cues were delivered via standard MR-compatible headphones. 

Participants were scanned in a conventional fMRI configuration (i.e., lying 

horizontally, without tilting the head towards the body) and were required to 

maintain fixation (Fig. 3.1A). This setup prevented uncontrolled visual 

feedback from the sight of their own limbs and the target object, or 

systematic eye movements towards limbs or the target object, while 

performing the task. 
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The workspace consisted of a transparent plexiglas board attached to the 

scanner bed at waist level (Fig. 3.1A-3.1B). We instructed participants to 

perform unimanual right-handed movements towards a custom-made target 

object placed on the workspace and located centrally with respect to the 

participant’s sagittal midline. Whenever at rest, participants were required to 

keep their right hand in a fist resting on the keys (home position) of a button 

box (Lumina LP 400, Cambridge Research Systems) attached to a custom-

made belt around their waist. A microcontroller board (Arduino Uno) 

connected to the Lumina Controller positioned outside the magnet room 

was used to signal the release of the keys at movement onset. This time 

stamp was used to define and measure reaction times (RTs). To enable 

movements as comfortable as possible, the position of the workspace and the 

button box were adjusted individually to match each participant’s arm 

length (mean distance hand-object: 15.88±2.25 cm). Head and trunk 

movements were minimized by stabilizing the head and the upper right arm 

with foam blocks and cushions. To control for task execution we recorded 

each experimental session using an MR-compatible digital video camera 

(VP-D15i; Samsung Electronics) placed on a tripod in a corner of the 

scanner room (outside the 0.5 mT line). Stimulus presentation, response 

collection, and synchronization with the scanner were controlled using ASF 

(Schwarzbach, 2011), based on the Matlab Psychtoolbox 3 for Windows 

(Brainard, 1997). 

 

3.3.3 Experimental design and timing. To compare delayed, non-delayed 

and suppressed movement plans, we used a slow event-related design with 

factors movement (reach-to-touch, T; reach-to-grasp, G; Fig. 3.1B) and task 
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(delayed, D; non-delayed, ND; no-go, NG; Fig. 3.1C). Both factors were 

pseudo-randomized within each experimental run. A brief change in 

brightness of the grey fixation cross (alert cue, 500 ms) informed 

participants about the beginning of each trial and an upcoming cue. In the 

delayed task (Fig. 3.1C, first row), the alert cue was immediately followed by 

a change in color of the fixation cross (color cue, 500 ms) instructing which 

of the two movements to prepare (e.g., green fixation cross = reach-to-touch; 

yellow fixation cross = reach-to-grasp). We asked participants to start 

preparing for the instructed movement right after the presentation of the 

color cue (planning phase), and then to wait until the go cue (darkening of 

the fixation cross) to execute the movement. A variable delay from 8 to 14 

seconds (in steps of the TR, 2 s) preceded the go cue. Delay durations (i.e., 8 

s, 10 s, 12 s, 14 s) were equally distributed within each run (4 trials per delay 

duration, or, one trial per factorial combination of movement, 2, task, 2, and 

delay, 4). The dark fixation lasted for 2s, ensuring enough time to start and 

complete the instructed movement to the target object (execution phase). 

After movement completion, participants were instructed to keep their hand 

on the target object until the fixation cross returned to the initial grey color 

(go-back cue), and then to return to the home position (see Setup). In the 

non-delayed task (Fig. 3.1C, second row), following the alert cue, an auditory 

cue (‘beep’, 500 ms) simultaneous to the go cue indicated which movement 

to perform (e.g., high-pitch sound = reach-to-touch; low-pitch sound = 

reach-to-grasp). For this task participants were asked to prepare and execute 

movements immediately (i.e., no delay between auditory instruction and go 

cue), and to remain on the target object until the go-back cue.  
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Figure 3.1 Experimental setup, design and timing. A. View of the setup from the side. 
Unimanual right-handed movements were performed towards a target object mounted on 
a plexiglas workspace positioned at waist level. The wooden graspable object was 
composed of two small cuboids glued to each other (2x2x1 and 7x7x2 cm). Participants 
lied horizontally and maintained fixation on a screen that was visible binocularly through 
a mirror attached to the head coil (line of sight illustrated by black dashed line). This setup 
prevented visual feedback from the target object, or the participants’ own movements. B. 
Screenshots from video recordings to illustrate movement types. Whenever at rest 
participants were required to keep their right hand in the home position (closed in a fist 
and pressing the response buttons, left panel; see also A). The two movement types were 
reach-to-touch (no hand preshaping, central panel) and reach-to-grasp (whole-hand grip, 
right panel). C. Task types with respective trial timing. 
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Note that the reason to use, respectively, visual and auditory cues for the 

delayed and non-delayed task was to prevent cross-decoding based on 

shared low-level features. Finally, during no-go trials (Fig. 3.1C, third row), 

the planning phase was followed by a no-go cue (a red fixation cross, 500 

ms), indicating to suppress the previously instructed movement and to 

remain as still as possible in the home position while waiting for the next 

trial to start. To keep participants focused throughout the experiment and to 

prevent psychological effects of task habituation or event anticipation with 

increasing number of trials, we also included a small proportion of catch 

trials (~15%, 4 per run, 2 per movement) for the delayed condition only, in 

which the delay duration was noticeably shorter (from 2 s to 6 s, in steps of 2 

s, randomly sampled from a geometric distribution with p = 0.3). We 

subsequently excluded these trials from successive analyses.  

Each run started and ended with 12 s rest and contained 4 repetitions per 

factorial combination of movement x task, plus catch trials (i.e., 24 + 4 = 28 

trials per run; 280 trials per participant). The stimulus-response (S-R) 

mappings between cues (i.e., colors and sounds) and movements were 

counterbalanced across subjects. Trial randomization and inter-trial-interval 

(ITI) jittering were determined by Optseq2 (Greve, 2002; Optseq Home Page, 

available online at: http://surfer.nmr.mgh.harvard.edu/optseq). Each 

experimental session consisted of: training outside the MR scanner and 

setup preparation (~25 min), structural scan (~5 min), main experiment (10 

functional runs, ~7 min each), for a total of ~100 min per participant. At the 

end of the session, participants filled out a post-session questionnaire asking 

them about movement verbalization during the tasks. Moreover, separately 

for each of the three tasks, we asked them to rate during which phase of the 
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trial they had the strongest subjective impression to actively plan the 

instructed movement. 

 

3.3.4 Data acquisition. Functional and structural data were collected using 

a 4T Bruker MedSpec Biospin MR scanner and an 8-channel birdcage head 

coil. Functional images were acquired with a T2*-weighted gradient-recalled 

echo-planar imaging (EPI) sequence. Acquisition parameters were a TR 

(time to repeat) of 2000 ms; voxel resolution, 3 x 3 x 3 mm; TE (time to 

echo), 28 ms; flip angle (FA), 73°; field of view (FOV), 192 x 192 mm; gap 

size, 0.45 mm. We used 30 slices, acquired in ascending interleaved order, 

slightly tilted to run approximately parallel to the calcarine sulcus. The 

number of volumes acquired in the main experiment for each functional run 

varied according to the length of variable delay periods (range: 190-200 

volumes). Before each functional run, we performed an additional scan to 

measure the point-spread function (PSF) of the acquired sequence, which 

served for distortion correction, expected with high-field imaging (Zaitsev et 

al., 2004). To be able to coregister the low-resolution functional images to a 

high-resolution anatomical scan, we acquired a T1-weighted anatomical 

scan (magnetization-prepared rapid-acquisition gradient echo; TR: 2700 ms; 

voxel resolution: 1 x 1 x 1 mm; TE: 4.18 ms; FA: 7°; FOV: 256 x 224 mm; 176 

slices; generalized autocalibrating partially parallel acquisition with an 

acceleration factor of 2; inversion time: 1020 ms). 

 

3.3.5 Data analysis. 

Behavior. Reaction times (RTs) were measured as the time to release the 

response buttons (see Setup) with respect to the go cue. Video recordings of 
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the experimental sessions were analyzed offline to ensure that participants 

had performed the movements correctly. Trials were considered errors 

either when performed incorrectly (i.e., imprecise hand preshaping; 

temporal anticipation: RT < 100 ms; reaction time timeout: RT > 1500 ms) 

or when participants executed a movement that was different from the one 

instructed by the visual or auditory cues. 

 

fMRI preprocessing. Data were preprocessed and analyzed using 

BrainVoyager QX 2.8.0 (BrainInnovation, Maastricht, The Netherlands) in 

combination with the NeuroElf v1.0 toolbox and custom software written in 

Matlab R2012b (MathWorks, Natick, MA, U.S.A.). To correct for distortions 

in geometry and intensity in the echo planar imaging (EPI) images, we 

applied distortion correction on the basis of the PSF (see Data acquisition; 

Zeng & Constable, 2002). To avoid T1 saturation, we discarded the first 4 

volumes of each run. The first volume of the first functional run of each 

participant was aligned to the high-resolution anatomy (6 rigid-body 

transformation parameters). Next, we performed 3D motion correction 

(trilinear interpolation for estimation and sinc interpolation for resampling) 

using the first volume of the first run of each participant as reference, 

followed by slice timing correction (ascending interleaved even-odd order) 

and high-pass temporal filtering (3 cycles per run). Spatial smoothing was 

applied with a Gaussian kernel of 3 mm full-width half maximum (FWHM) 

for univariate and multivariate analyses. For successive group analysis, both 

functional and anatomical data were transformed into Talairach space, using 

trilinear interpolation. 
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Brain segmentation and surface mesh reconstruction. We used BrainVoyager 

to reconstruct individual surface meshes for each hemisphere of each subject 

along the border between grey and white matter. Next, separately for the left 

and right hemisphere, we combined the individual reconstructions of folded 

surfaces of all participants (N = 24) using cortex-based alignment as 

implemented in BrainVoyager QX 2.8.0. Group-aligned left and right 

hemisphere meshes were used to display statistical maps resulting from both 

uni- and multivariate second-level analyses. 

 

Univariate RFX-GLM analysis. To examine brain responses during the three 

tasks, we ran a group random-effects (RFX) general linear model (GLM) 

analysis (N = 24; Fig. 3.3). We created six predictors, one for each factorial 

combination of movement x task. Additionally, for tasks with a delay (i.e., 

delayed and no-go), we created separate predictors for movement planning 

(time-locked to the instructing cue) and movement execution/suppression 

(time-locked to the go/no-go cue), leading to a total of 10 predictors of 

interest (delayed planning/execution of touch/grasp, no-go 

planning/execution of touch/grasp, non-delayed execution of touch/grasp). 

Each predictor was modeled with a standard duration of 1 s and convolved 

with the canonical hemodynamic response function (HRF). In addition, 

catch trials, error trials and 3D motion correction parameters (3 translations 

and 3 rotations) were included in the model as nuisance regressors. To 

identify brain regions involved in the preparation of prehension movements 

irrespective of whether the movement plan was subsequently executed or not 

we contrasted the planning phase of both go and no-go trials (collapsed 

across the two movement types) against the implicit baseline (Fig. 3.3A). 
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Similarly, to identify brain regions recruited during movement planning and 

execution, we contrasted the execution phase in the non-delayed task 

(collapsed across both movement types) against baseline (Fig. 3.3B). Finally, 

to examine whether there are any brain regions that respond more strongly 

during no-go trials in comparison to go trials, we computed the contrast 

delayed no-go vs delayed go trials (Fig. 3.3C). The resulting volumetric 

statistical maps were corrected for multiple comparisons using Threshold 

Free Cluster Enhancement (TFCE, corrected p < 0.05, montecarlo 

permutations for 10000 iterations) as implemented in the CoSMoMVPA 

toolbox for Matlab/GNU Octave (Oosterhof et al., 2016), and projected on 

the group-averaged surface mesh for visualization purposes. 

 

 

ROI definition. We defined regions of interest (ROIs) on the basis of both 

anatomical and functional criteria using a similar procedure as in Ariani et 

al., 2015. First, on the group-averaged surface mesh we manually outlined 

bilateral ROIs around anatomical landmarks known to be involved in 

movement planning (Fig. 3.2), using the following anatomical criteria: 

• Dorsolateral prefrontal cortex (dlPFC): on the anterior portion of the 

middle frontal gyrus, around Brodmann area (BA) 46 (Badre & 

D’Esposito, 2009); 

• Ventral premotor cortex (PMv): slightly inferior and posterior to the 

junction of the inferior frontal sulcus and the precentral sulcus (Gallivan 

et al., 2011a); 
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• Dorsal premotor cortex (PMd): at the junction of the superior frontal 

sulcus and the precentral sulcus; 

• Supplementary motor area (SMA): on the medial wall of the superior 

frontal gyrus, anterior to the medial end of the central sulcus, posterior to 

the vertical projection of the anterior commissure; 

• Primary motor cortex (M1): around the hand-knob area in the 

anterior bank of the central sulcus;  

• Anterior intraparietal sulcus (aIPS): on the anterior segment of the 

intraparietal sulcus, at the junction with the postcentral sulcus; 

• Superior parietal lobule (SPL): the middle portion of the superior 

parietal lobule, superior to the IPS and posterior to the postcentral sulcus; 

• Superior parieto-occipital cortex (SPOC): the posterior portion of 

the superior parietal lobule (Brodmann area 7b), located medially, 

superior to the IPS and anterior to the parieto-occipital sulcus 

(Scheperjans et al., 2008; Gallivan et al., 2011b);  

• Lateral occipito-temporal cortex (LOTC): portion of the middle 

temporal gyrus (MTG), inferior to the superior temporal sulcus (STS) 

and anterior to the lateral occipital sulcus (LOS) (Lingnau and Downing, 

2015). 

Next, we projected these marked patches from the surface back to the 

volume. Within each of them, we looked for individual peak voxels resulting 

from the single-subject GLM contrasts [planning + execution > baseline x 2], 

computed as described above. Finally, we defined individual ROIs, separately 

for each participant, as spheres (10 mm radius, ~230 voxels) centered 
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Figure 3.2 Regions of interest (ROIs). Black circles represent approximate locations of 
group-defined ROIs involved in movement generation. Actual ROIs used in the ROI-
MVPA were defined, individually for each participant, as spheres (10mm radius) around 
individual peak voxels coming from single-subject statistical maps of the univariate 
contrast [delayed planning + non-delayed execution > baseline x 2] (collapsing across 
movement types). For additional details, see Materials and Methods section and Table 3.1. 
All the other figure conventions are the same as in Fig. 3. 

around each individual peak voxel (for Talairach coordinates of individual 

ROIs, see Table 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 TAL coordinates (x, y, z rounded mean and standard deviation 

across participants) of individual peak voxels for the regions of interest 

(ROIs) identified by the group contrast [delayed planning + non-delayed 

execution > baseline x 2]. 

Region x y z SD x SD y SD z 
       
L-dlPFC -34 33 32 4,7 4,1 3,5 

R-dlPFC 31 35 32 3,1 3,8 3,6 

L-PMv -44 1 30 4,6 2,8 3,6 
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R-PMv 40 2 33 4,2 2,4 2,3 

L-PMd -27 -11 52 3,9 3,1 4,0 

R-PMd 27 -10 52 3,2 4,0 4,7 

L-SMA -4 -11 53 1,0 3,5 2,9 

R-SMA 6 -5 52 2,3 2,8 2,6 

L-M1 -33 -24 50 2,3 2,9 1,9 

R-M1 35 -22 50 2,8 3,1 2,3 

L-aIPS -39 -35 38 3,5 3,5 2,3 

R-aIPS 35 -37 40 3,8 3,7 2,6 

L-SPL -27 -55 55 2,8 4,4, 3,3 

R-SPL 29 -52 57 1,7 5,6 3,3 

L-SPOC -6 -71 43 2,7 3,0 3,9 

R-SPOC 8 -70 43 2,7 3,1 4,5 

L-LOTC -43 -63 4 3,3 2,3 2,9 

R-LOTC 49 -54 3 4,3 3,2 3,7 

 
Abbreviations: L-, left hemisphere; R-, right hemisphere; dlPFC, dorsolateral prefrontal 
cortex; PMv, ventral premotor cortex; PMd, dorsal premotor cortex; SMA, supplementary 
motor area; M1, primary motor cortex; aIPS, anterior intraparietal sulcus; SPL, superior 
parietal lobule; SPOC, superior parieto-occipital cortex; LOTC, lateral occipito-temporal 
cortex. 
 

 

Time-resolved ROI-MVPA. To track the temporal unfolding of decoding of 

movement type for different brain regions and tasks, we used a time-

resolved decoding approach (Soon et al., 2008; Bode and Haynes, 2009; 
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Linden et al., 2012; Gallivan et al., 2013c) for both ROI- and searchlight-

based MVPA. The ROI analysis (Fig. 3.4-3.6) was intended to test previously 

reported regions known to play a role during movement planning and 

execution. The whole-brain searchlight analysis (Fig. 3.7-3.8) was carried out 

to prevent missing potentially important regions not covered in the ROI 

analysis. Both analyses were performed in volume space. To implement the 

time-resolved ROI-MVPA we repeated the following steps separately for 

each run of each participant and ROI. First, for each voxel included in the 

ROI, we normalized the raw volume time-course (VTC) by demeaning it. 

Next, for each factorial combination of movement x task, we extracted N 

volumes starting from the onset of the condition (N = 5 for delayed 

planning, N = 7 for all the other conditions), separately for each run and 

participant. For each classification pair (e.g., reach-to-touch vs reach-to-

grasp, within the planning phase) this procedure resulted in a dataset matrix 

of samples [N volumes (e.g., 7) x movements (2) x runs (10)] x features [N 

voxels in the ROI] for each subject, task and ROI. In each matrix, the rows 

constituted the different multi-voxel patterns of fMRI data (i.e., vectors of 

mean BOLD values with a length equal to the number of voxels in the ROI). 

Classification accuracies were computed separately for each volume (i.e., 

movements (2) x runs (10) = 20 patterns) using a leave-one-run-out cross-

validation method: a linear discriminant analysis (LDA) classifier was 

trained on 18 patterns (2 movements x 9 runs) and tested on the data from 

the remaining run (2 patterns, one per movement type). Training and testing 

was repeated for 10 iterations, using all possible combinations of train and 

test runs. The average across these 10 iterations constituted the mean 

classification accuracy of the two movements per participant per ROI. To 
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test for representations of planned movements across delay conditions 

(delayed, non-delayed), we carried out cross-condition decoding: we trained 

the classifier on discriminating between reaching and grasping in one task 

(e.g., delayed planning) and tested the performance of the classifier to 

distinguish between reaching and grasping in the other task (e.g., non-

delayed execution), and vice versa. Results from the two cross-condition 

decoding analyses were successively averaged to produce one score per 

cross-condition decoding. To assess statistical significance of the decoding 

accuracy, separately for each ROI, we performed one-sample t-tests on 

decoding accuracies across participants against chance decoding (50%) at 

each time-point. We note that 50% is chance level because the cross-

validation scheme was balanced, i.e., for each fold the training and test set 

both used the same number of patterns for each of the movement types. 

Statistical results were corrected for multiple comparisons (number of ROIs 

x time-points) using TFCE (p < 0.05, 10000 iterations) as implemented in 

CoSMoMVPA. 

 

Time-resolved searchlight-MVPA. Decoding procedures for the time-

resolved whole-brain searchlight analysis in the volume were nearly identical 

to the ones used for the ROI analysis. The main difference was that we used a 

spherical searchlight (~250 voxels) approach instead of predefined ROIs and 

decoding results for each searchlight were assigned to the central voxel. 

Resulting group mean decoding accuracy maps at each time-point were then 

projected onto the group-aligned cortical surface mesh (see Brain 

segmentation and surface mesh reconstruction) for visualization purposes 

(Fig. 3.7-3.8, top rows). To identify voxels where classification was 
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significantly greater than chance (50%) we performed a two-tailed one-

sample t-test across individual whole-brain maps. Statistical t-maps were 

then corrected for multiple comparisons using TFCE (1000 iterations). For 

descriptive purposes (i.e., to show statistical trends) we thresholded the 

uncorrected t-maps at t = 2 and marked significant clusters that survived 

TFCE correction with black outlines (Fig. 3.7-3.8, bottom rows). Cluster-

based TFCE was done using a neighborhood in which clusters could form 

along the spatial dimensions (i.e., voxels sharing an edge) but not along the 

temporal dimension. This means that inferences about significance can be 

made at the single volume level along the temporal dimension, but not at the 

single voxel level (i.e., only at the cluster level) along the spatial dimension. 

We created whole-brain t-maps and decoding accuracy maps at each time-

point, separately for the three tasks (within-condition decoding), and for the 

decoding across delayed planning and non-delayed execution (cross-

condition decoding). Overall, the novel methods used in this study provided 

two main advantages with respect to conventional MVP analyses: (1) thanks 

to the time-resolved MVPA we were able to show how movement planning 

evolves during the delay period; (2) using raw time-course data as input for 

the classifier (e.g., instead of beta-weights or t-values coming from a GLM) 

made our findings less dependent on assumptions about the shape of the 

hemodynamic response function (HRF). 

 

 

3.4 Results 

3.4.1 Behavior. Participants responded faster in the delayed (660.48 ± 

11.54 ms) in comparison to the non-delayed task (905.54 ± 12.83; t(23) = -
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9.58, p < 0.0001). Error rates were comparable for the delayed (7.39% ± 1.48) 

and non-delayed task (6.25% ± 1.55; signed-rank z(23) = 0.78, p = 0.43). In 

the no-go task participants made an average of 0.42% ± 0.18 ‘false start’ 

errors. From the post-session questionnaires we obtained a mean rating of 

3.63 ± 1.21 for movement verbalization during the planning phase (on a 

scale from 1 = “not at all” to 6 = “quietly naming”). Additionally, 13/24 

participants reported to have actively planned the instructed movements 

“Right after the presentation of the color cue”; 7/24 “Within a couple of 

seconds following the presentation of the color cue”; and 4/24 “Right after 

the presentation of the Go cue”. 

 

3.4.2 fMRI. 

Univariate RFX-GLM analysis. A univariate RFX-GLM analysis was used to 

identify brain regions recruited during movement planning, execution and 

suppression (for details, see Materials and Methods, Univariate RFX-GLM 

analysis). First, the contrast [delayed planning > baseline] (Fig. 3.3A) 

revealed a widespread bilateral network of frontal, parietal and temporal 

regions, in line with previous studies (Gallivan et al., 2011a, 2011b; Ariani et 

al., 2015). Second, the contrast [non-delayed execution > baseline] (Fig. 

3.3B) revealed a network of areas comparable to that involved in movement 

planning. As expected, in comparison to the statistical map resulting from 

the contrast [delayed planning > baseline], the statistical map resulting from 

the contrast [non-delayed execution > baseline] was more widespread and 

showed considerably stronger effects in primary motor and auditory areas 

(likely due to the auditory cues instructing which movement to perform in 

this task). Third, the contrast [delayed no-go > delayed go] (Fig. 3.3C) did 
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not reveal any areas that survived TFCE (at a more liberal threshold, this 

contrast revealed dorso-medial prefrontal areas, not shown in Fig. 3.3C). As 

expected, the reverse contrast [delayed go > delayed no-go] showed a 

widespread network of areas comparable to those recruited during 

movement planning and execution.  

To define a set of group-ROIs known to be recruited during movement 

planning and execution for the time-resolved within- and cross-condition 

decoding analysis, we computed the contrast [delayed planning + non-

delayed execution > baseline x 2] (Fig. 3.2). Note that we chose this contrast 

to prevent biasing the decoding analysis towards planning or execution 

related areas, which is relevant in particular for the cross-decoding analysis. 

At the same time, this contrast does not introduce any bias towards one of 

the two movement types (or the contrast between the two) and thus prevents 

circular analysis (Kriegeskorte et al., 2009). On the basis of this contrast, we 

selected 18 bilateral frontal, parietal and temporal ROIs, individually for 

each participant (see ROI definition and Table 3.1): left and right dorsolateral 

prefrontal cortex (dlPFC); left and right ventral premotor cortex (PMv); left 

and right dorsal premotor cortex (PMd), left and right supplementary motor 

area (SMA); left and right primary motor cortex (M1); left and right anterior 

intraparietal sulcus (aIPS); left and right superior parietal lobule (SPL); left 

and right superior parieto-occipital cortex (SPOC); left and right lateral 

occipito-temporal cortex (LOTC). 
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Figure 3.3 Univariate RFX-GLM analysis (N = 24). A. Univariate contrast [delayed 
planning > baseline], collapsing across movement types and go/no-go trials. B. Univariate 
contrast [non-delayed execution > baseline], collapsing across movement types. C. 
Univariate contrast [delayed no-go > delayed go], collapsing across movement types. All 
statistical group-maps were corrected for multiple comparisons using Threshold Free 
Cluster Enhancement (TFCE) as implemented in CoSMoMVPA (Oosterhof et al., 2016), 
thresholded at p < 0.05 and projected on the group-aligned inflated surface mesh for 
visualization purposes. White lines on the surface meshes denote main brain sulci as 
landmarks (see legend at the bottom of the figure). 
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Time-resolved ROI-MVPA. We ran the ROI-MVPA with a time-resolved 

approach (i.e., classification performed separately at each acquired volume, 

starting from the onset of an event) to follow the temporal unfolding of 

movement decoding for the different tasks in selected brain regions (Fig. 3.4-

3.6). For each ROI in Figures 4-6, the overlapping line plots represent the 

classification accuracy of movement type (expressed in percentage correct) 

at each time-point for the different conditions. On the left column, the x-axis 

is time-locked to the onset of the visual/auditory instructing cue (0-2 s/vol. 

1). The yellow line refers to decoding for delayed planning (collapsed across 

go and no-go trials), the bright green line to decoding for non-delayed 

execution and the blue line to the cross-condition decoding (i.e., training the 

classifier on delayed planning using non-delayed execution for testing, and 

vice versa). On the right column, the x-axis is time-locked to the go/no-go 

cue (0-2 s/vol. 1). The dark green line refers to decoding for delayed 

execution, and the red line to decoding for delayed suppression (i.e., after the 

no-go cue). The bright green line plot is identical to the one presented in the 

left column and serves for ease of comparison between decoding results 

across conditions. Figure 3.4 shows the results in bilateral frontal motor 

regions, Figure 3.5 in bilateral parietal sensorimotor regions, and Figure 3.6 

in bilateral fronto-temporal ventral stream regions. During the planning 

phase of delayed trials (i.e., yellow line plots) we observed significant 

decoding of movement type in L-PMd at 4-6s (vol. 3; Fig. 3.4), L-aIPS at 2-4 

s (vol. 2; Fig. 3.5), and L-SPL at 8-10 s (vol. 5; Fig. 3.5). Other trends that did 

not survive correction for multiple comparisons were found in L-M1 at 6-8 s 

(vol. 4; Fig. 3.4), bilateral aIPS at 6-8 s (vol. 4; Fig. 3.5), L-SPOC at 4-8 s (vol. 

3-4; Fig. 3.5) and bilateral LOTC at 6-8 s (vol. 4; Fig. 3.6).  
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Figure 3.4 Time-resolved ROI-MVPA in bilateral frontal motor regions. Mean 
percentage decoding accuracy of movements at each time-point (Volume = TR = 2 s) in 
selected ROIs (for details see Fig. 3.2 and Table 3.1). For each ROI, line plots on the left 
panel are time-locked to the onset of the visual instructing cue in the delayed task (D 
Plan, yellow), the auditory instructing cue in the non-delayed task (ND Exe, bright green), 
or both instructing cues for the cross-condition decoding (Cross D-ND, blue). On the 
right panel, line plots are time-locked to the onset of the go cue for the delayed execution 
(D Exe, dark green) and the non-delayed execution (ND Exe, bright green), or the onset 
of the no-go cue for the no-go task (D No-Go, red). The bright green line (identical on the 
two panels of each figure) was intended to facilitate direct comparison across conditions. 
Error bars represent within-subject standard error of the mean (SEM). Statistical 
significance was assessed via one-sample t-tests against 50% chance (grey horizontal line 
in each ROI plot) at each time-point separately. Results were corrected for multiple 
comparisons (number of time-points x number of ROIs) using TFCE (asterisk = 
uncorrected p < 0.05; star = TFCE corrected at p < 0.05). 
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Figure 3.5 Time-resolved ROI-MVPA in bilateral parietal sensorimotor regions. Legend 
and figure conventions are the same as in Fig. 3.4. 

Results for delayed and non-delayed execution (i.e., dark and bright green 

line plots) were very similar: significant decoding starting as early as 4-6 s 

(vol. 3) and continued until as late as 10-12 s (vol. 6) in most motor and 

sensorimotor areas (bilateral M1, PMd, SMA, and aIPS). Comparable trends 

were obtained in bilateral SPL and R-LOTC.  
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For the no-go task (i.e., red line plots) we observed some trends in L-PMd at 

2-4 s (vol. 2), L-SMA at 2-6 s (vol. 2-3), and L-dlPFC at 2-4 s (vol. 2), but 

none of these survived correction for multiple comparisons.  
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Figure 3.6 Time-resolved ROI-MVPA in bilateral fronto-temporal ventral stream regions. 
Legend and figure conventions are the same as in Fig. 3.4. 
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Regarding shared representations across delayed and non-delayed 

movement plans (i.e., blue line plots), we were able to decode movement 

types across delay conditions at 2-4 s (vol. 2) in L-M1. Similar trends were 

observed in R-M1 at 2-4 s (vol. 2) and L-PMd at 2-6 s (vol. 2-3), but these 

did not survive corrections for multiple comparisons.  

 
Time-resolved searchlight-MVPA. The time-resolved searchlight-based 

MVPA (Fig. 3.7-3.8) was intended to provide a whole-brain overview of 

regions discriminating between reaching and grasping, including regions not 

specifically covered by the ROI analysis. Decoding results are in line with 

what we observed in the selected ROIs. Figure 3.7 shows mean classification 

accuracy maps (top) and group t-maps (bottom) at each time-point (i.e., 

volume/TR, time-locked to either visual or auditory cues) for delayed 

planning (collapsing go and no-go trials, Fig. 3.7A), non-delayed execution 

(Fig. 3.7B), and the cross-decoding of the two delay conditions (Fig. 

3.7C).,Decoding results during delayed planning (Fig. 3.7A) showed some 

trends in L-PMd, bilateral aIPS and L-SPL 6-8 s after the onset of the 

instructing cue (vol. 4, the last time-point before the earliest go/no-go cue 

considering all the trials), although none of the clusters identified by the t-

test against chance survived TFCE correction. Searchlight results for non-

delayed execution (Fig. 3.7B) confirmed the results of the ROI-based MVPA: 

significant clusters emerged in bilateral somatosensory, sensorimotor and 

motor regions at 4-6 s (vol. 3) and reached the peak of classification accuracy 

at 8-10 s (vol. 5) in the left primary motor cortex (i.e., contralateral to the 

acting limb). Finally, for the cross-condition decoding (delayed planning on 

non-delayed execution, and vice versa, Fig. 3.7C) no clusters survived TFCE  
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correction, but a trend in bilateral primary motor cortex (L-M1, R-M1) 

mirrored the effect found in the ROI-MVPA at 2-4 s (vol. 2). Figure 3.8 is a 

comparison of whole-brain mean accuracy maps (top) and group t-maps 

(bottom) for delayed execution (time-locked to the go cue, Fig. 3.8A) and 

delayed suppression (time-locked to the no-go cue, Fig. 3.8B). During 

delayed execution clusters discriminating reach-to-touch vs reach-to-grasp 

reached significance even earlier than during non-delayed execution, at 2-4 s 

(vol. 2) in bilateral posterior parietal, motor and premotor regions. 

Additionally, as anticipated by the ROI-MVPA results, thanks to the time-

resolved decoding approach one can appreciate how, after gradually rising 

and peaking at 8-10 s (vol. 5), most regions no longer discriminated the 

movements (i.e., chance decoding) after 10-12 s (vol. 6). For delayed 

suppression (Fig. 3.8B) we did not find any significant clusters 

discriminating the previously planned movements. Similar to the results of 

the time-resolved ROI-MVPA, were were unable to reveal inhibitory brain 

signals carrying information about suppressed movement plans (i.e., after a 

no-go cue). Finally, comparing results during movement execution 

Figure 3.7 Time-resolved whole-brain searchlight-MVPA for delayed and non-delayed 
tasks. Decoding procedures were identical to the ones used for the ROI-MVPA except for 
the use of a spherical searchlight (~250 voxels) approach (see Materials and Methods). 
Group (N = 24) mean decoding accuracy (in %, top) and uncorrected t-scores (bottom) 
whole-brain maps projected on the group-averaged surface mesh are shown at each time-
point for each within-condition decoding and the cross-condition decoding. Accuracy 
maps, intended for descriptive purposes only, have different accuracy ranges across 
conditions. All t-maps are thresholded at t = 2. Clusters surviving TFCE correction for 
multiple comparisons (p < 0.05) are outlined in black. White lines on the surface meshes 
denote main brain sulci as in Fig. 3.2-3.3. A. Delayed Planning. Whole-brain maps are 
time-locked to the onset of the visual instructing cue (0-2 s/vol. 1). Due to jittered 
planning delays the earliest possible go or no-go signal was after 8 seconds (4 volumes). B. 
Non-delayed execution. Whole-brain maps are time-locked to the auditory instructing/go 
cue (0-2 s/vol. 1). C. Cross-condition decoding. Whole-brain maps are time-locked to 
both visual (for delayed planning) and auditory (for non-delayed execution) cues (0-2 
s/vol. 1).  



Chapter 3 – Study II 

	94 

separately for the delayed (Fig. 3.8A) and non-delayed (Fig. 3.7B) task, we 

noticed that the overall decoding seemed to evolve slightly more slowly for 

the non-delayed execution.  
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Figure 3.8 Time-resolved whole-brain searchlight-MVPA for delayed and no-go tasks. All 
figure conventions are the same as in Fig. 3.7. A. Delayed execution. Brain maps are time-
locked to the onset of the Go cue (0-2s/vol.1) for delayed trials only. B. Delayed 
suppression. Brain maps are time-locked to the onset of the No-Go cue (0-2s/vol.1). 
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It is possible that in more realistic situations where we do not have to plan 

and withhold an action for several seconds movement representations result 

delayed in time (see vol. 1, 2, 3 in Fig. 3.7B), whereas under conditions with a 

delay already prepared patterns might be simply released from the first 

volume of the execution to the next (see vol. 1, 2 in Fig. 3.8A). 

 

 

3.5 Discussion 

Here we compared three tasks in which movements had to be planned, 

withheld, and then executed (delayed task: both planning and execution); 

immediately executed (non-delayed task: execution without planning); or 

planned, withheld, and then suppressed (no-go task: planning without 

execution). Thanks to the time-resolved MVPA, we were able to examine 

how movement representations evolve throughout different stages of 

planning, execution and suppression. Below we discuss the main findings. 

 

3.5.1 Shared early neural representations for delayed and non-delayed 

movement plans 

We obtained significant cross-condition decoding between delayed planning 

and non-delayed execution in the left primary motor cortex at 2-4 s (vol. 2; 

Fig. 3.4). In other words, in primary motor cortex, multi-voxel activity 

patterns during early stages of planning reach-to-touch and reach-to-grasp 

movements are similar to the patterns obtained at early stages of immediate 

movement execution (i.e., not preceded by a delay).  

To the best of our knowledge, only two recent studies on macaques 

directly compared the planning of delayed and non-delayed arm movements 
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(Crammond and Kalaska, 2000; Ames et al., 2014). Both studies recorded 

from monkey PMd and M1 while macaques performed delayed and non-

delayed reaching movements in separate blocks of trials. They found that 

neuronal responses to the instruction cue and the go cue (prior to movement 

onset) are highly similar across delay conditions, possibly constituting a 

neural correlate of early planning stages (e.g., response parameters 

selection). Our findings resonate with these observations, suggesting that 

human primary motor cortex contains similar information about upcoming 

hand movements regardless of the presence of a delay. Crucially, these 

neural representations of planned movements shared across delayed and 

non-delayed contexts occur early within their respective phases (vol. 2), soon 

after the occurrence of the cues, and before brain activity for planning and 

execution starts diverging both in terms of overall activation and spatial 

patterns of voxel activity.  

One potential reservation could be that decoding is driven by the sensory 

properties of the instructing cues (e.g., stimulus-response mapping), but it 

should be noted that in the delayed task instructing cues for each movement 

type were visual (i.e., colors), whereas in the non-delayed task they were 

auditory (i.e., sounds). Therefore, unless primary motor cortex is shown to 

contain multi-modal (audio-visual) representations of sensory stimuli, we 

consider this explanation rather unlikely.  

Another potential reservation when interpreting the significant cross-

condition decoding in L-M1 at 2-4 s (vol. 2) lies in the fact that we obtained 

trends (Fig. 3.7), but no significant within-condition decoding, neither for 

delayed planning, nor for non-delayed execution (Fig. 3.4). A possible 

explanation for this seemingly discrepancy that is the fact that more trials 
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can be used for training and testing the classifier for cross-decoding (e.g., 

train on all delayed planning trials, and test on all non-delayed trials, and 

vice versa), whereas within-condition decoding has to rely on fewer trials 

(half as many, 40 vs. 80). Moreover, it is worth mentioning that previous 

studies using cross-decoding made similar observations, i.e., demonstrated 

the possibility of stronger cross-decoding than within-condition decoding 

(Gallivan et al., 2011b, 2013; Oosterhof et al., 2012; Ariani et al., 2015). 

 

3.5.2 Movement planning: sustained or transient neural process? 

Extending previous reports using more conventional MVPA (Gallivan et al., 

2011a, 2013; Ariani et al., 2015), our time-resolved ROI-MVPA revealed 

decoding of hand movements during delayed planning in premotor (L-

PMd) and parietal (L-aIPS) areas (Fig. 3.4-3.5). One might argue that these 

results might be partially driven by (1) decoding of the color cues or (2) by 

decoding of stimulus-response mapping rather than movement planning. 

Regarding the first point, our regions are not part of the inferior temporal 

neural networks typically associated with color perception, or knowledge 

about colors (Martin et al., 1995; Simmons et al., 2007). Regarding the 

second point, we recently compared internally- and externally triggered 

movements to address this issue and found abstract representations of 

planned hand movements (i.e., that did not depend on specific instruction 

cues) both in L-PMd and L-aIPS (Ariani et al., 2015). In agreement with 

previous studies (Cavina-Pratesi, 2006; Hartstra et al., 2012), this suggests 

that dorsal premotor and anterior intraparietal regions are indeed engaged 

in representing and preparing instructed movements.  
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Significant decoding appeared early within the planning delay (vol. 2 and 

vol. 3) and only lasted for one volume. This suggests, at least at the level of 

movement decoding, transient neural representations of motor plans in 

parieto-frontal regions. Other delayed-movement studies (Toni et al., 2001; 

Curtis et al., 2004; Lindner et al., 2010; Chapman et al., 2011; Gallivan et al., 

2011b) have argued that planning is a sustained neural process that begins 

with an instructing cue and persists throughout the whole delay until the 

trigger.  

Our results however are compatible with an alternative possibility: 

planning as a double transient process. Movement preparation in delayed-

movement paradigms could occur once right after the instructing cue (i.e 

when information about the movement to plan first becomes available) and 

then again after the go cue (i.e., during RTs, when participants have to 

retrieve and release the motor plan; e.g., see Crammond and Kalaska, 2000; 

Pertzov et al., 2011; Confais et al., 2012). We do not exclude that during 

movement planning the brain could respond differently depending on task 

demands (i.e., on the experimental paradigm; see Mauritz and Wise, 1986). 

Studies with long, fixed, planning delays could elicit a more sustained brain 

response, whereas studies with short, jittered, delays could evoke a more 

transient response. Indeed, thanks to the use of jittered delays, catch trials, 

and randomized go/no-go conditions, the best behavioral strategy for our 

participants to handle the different tasks was to prepare to move as soon as 

possible. Subjective reports in post-session questionnaires filled right after 

each experimental session confirm this view (see last paragraph of Behavior 

in Results). Future studies will be needed to clarify this controversy. 
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3.5.3 Unspecific suppression of movement plans 

Despite not being the main focus of this study, our design enabled us to 

examine also neural representations of suppressed movement plans. One 

possible outcome was that information about planned movements in multi-

voxel patterns of fMRI activity is still present after a No-Go cue, meaning 

that some brain regions are involved in suppressing specific movement plans 

(i.e., that these inhibitory signals are movement specific). The alternative was 

that, regardless of the preceding movement plan, the No-Go cue would 

trigger unspecific suppression, similarly for different movement types, thus 

not allowing their decoding. Despite some trends in L-dlPFC (vol. 2), L-PMd 

(vol. 2) and L-SMA (vol. 2-3), we failed to obtain significant decoding of 

suppressed movement plans at any time-point or ROI. This outcome would 

be compatible with the view of unspecific suppression of movement plans, 

but care needs to be taken in interpreting this null-effect. For instance, it 

could be that due to poor spatio-temporal resolution fMRI is not a good 

method to answer this research question (Dubois et al., 2015). Furthermore, 

the lack of significant decoding could be due to a statistical power issue 

intrinsic to time-resolved MVPA (i.e., having many separate time-points and 

having to correct for multiple comparisons for all of them). Further work 

specifically focusing on the inhibitory aspect of motor control, and 

employing complementary research techniques, will help elucidating the 

neural dynamics and neural representations of movement suppression. 

 

3.5.4 Conclusions and future directions 

In agreement with previous work on non-human primates, we provided 

evidence for early shared representations between delayed and non-delayed 



Chapter 3 – Study II 

	100 

movement plans in humans. We also showed that movement 

representations do not necessarily remain constant throughout the planning 

phase, suggesting planning as a more transient process than previously 

hypothesized. Our findings were made possible by a time-resolved decoding 

approach that allowed us to examine the unfolding of movement 

representations across different stages of movement generation. Building on 

our current results, using complementary high-temporal-resolution 

techniques (e.g., multi-band fMRI, magneto-electroencephalography, M-

EEG, and transcranial magnetic stimulation, TMS), future studies should try 

to clarify the relationship between delayed and non-delayed movement 

planning and further elucidate the neural dynamics of movement 

representations during planning, execution and suppression within the 

human prehension network. 
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Chapter 4. 

 

Discussion and Future perspectives 

 
4.1 Thesis recap 

Movement planning constitutes the critical link from perceiving to 

interacting with the world. In the context of object manipulation, it has been 

suggested to consist of several intermediate, hierarchically-organized steps, 

including the identification of potential targets, the formation of abstract 

action goals, and the specification of concrete motor programs. 

Early human neuroimaging studies built upon years of pioneering work 

on non-human primates (for reviews, Jeannerod et al., 1995; Rizzolatti and 

Luppino, 2001; Andersen and Buneo, 2002; Andersen and Cui, 2009; Cisek 

and Kalaska, 2010) to reveal several brain areas within parietal and frontal 

cortices involved in the planning, execution and control of hand (e.g., 

reaching, grasping) and eye movements (i.e., saccades) on the basis of 

specific motor goals (Gallivan and Culham, 2015). Although these regions 

were initially grouped by their specialization for certain effectors 

(Medendorp et al., 2005; Heed et al., 2011; Bernier et al., 2012; Leoné et al., 

2014) or movement types (Begliomini et al., 2007; Brandi et al., 2014; Turella 

and Lingnau, 2014), the recent development of more complex and sensitive 

analytic tools such as MVPA (Haxby et al., 2014) has taken current fMRI 



Chapter 4 – Discussion 

	102 

research one step beyond the original functional mapping approach. These 

studies have shown that a broad range of action-related information (e.g., 

which effector, grip type, movement sequence, wrist orientation, etc.) can be 

extracted from multivariate patterns of activity within widespread networks 

of brain regions across the whole cerebral cortex (Gallivan et al., 2011a, 

2011b, 2013b, 2016b; Pistohl et al., 2012; Barany et al., 2014; Ariani et al., 

2015; Nambu et al., 2015). Critically, even regions showing no activation 

amplitude differences between tasks or against a baseline have been 

demonstrated to contain enough information to allow above-chance 

decoding of particular planned and executed movements. 

One of the key challenges that emerges from these more recent studies is 

to refine our understanding of the specific aspects of information that can be 

decoded. In other words, future work should try to identify the essential 

contributions given by these regions to the movement generation process. 

In the present thesis, I aimed at addressing two important gaps in the 

field. First, given that research on planning has primarily focused on 

externally-triggered movements, I aimed to compare externally driven and 

internally driven movement plans (Study I, Chapter 2). This comparison 

allowed us to study planning-related brain activity devoid of co-occurring 

confounding sensorimotor processes, such as S-R mapping. Second, by 

comparing movement preparation for delayed and immediate movements 

(Study II, Chapter 3), I was able to address the issues related to the use of 

instrumental delays in delayed-movement tasks (e.g., unrelated brain 

activity), while still dissociating planning from execution. 

Our approach included both univariate and multivariate analyses of fMRI 

data. That is, we looked at differences and similarities in both the coarse 
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amount of regional activation and the fine-grained spatial patterns of voxel 

activity elicited by the different experimental conditions. The univariate 

approach informed us about the regions recruited during the planning of 

prehension movements. By contrast, the multivariate approach revealed the 

spatial activity patterns within these regions that allowed us to discriminate 

different movement plans (i.e., the way movement plans are represented, or 

encoded, at the neural level). 

 

4.1.1 Summary of main experimental findings 

In Study I, we aimed at disentangling movement planning from overlapping 

delay-related neural computations. To do so, we compared an instructed 

(externally driven) condition with a free-choice (internally driven) condition 

that enabled us to investigate not only action selection, but also which areas 

represent movement plans in a more abstract way that is not tied to specific 

external cues, or internal decisions. Our decoding results revealed that a set 

of contralateral parieto-frontal brain regions (SPL, IPS, PMd, and M1) can 

discriminate planned movements across planning conditions. Conversely, 

other regions encoded planned movements only when these were internally 

(i.e., contralateral PMv, dlPFC, SMG, and ipsilateral pIPS, pSTG, pMTG) or 

externally (i.e., bilateral SMA, pre-SMA) driven. In addition to replicating 

and corroborating previous findings about parieto-frontal regions encoding 

instructed plans for prehension movements (Baumann et al., 2009; Fluet et 

al., 2010; Gallivan et al., 2011b; Leoné et al., 2014), these results suggest that 

neural representations in contralateral regions of the human prehension 

system reflect movement planning rather than arbitrary associations 

between stimuli and responses. 
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In Study II, we aimed at better characterizing the neural coding of 

movement plans for reaching and grasping by filtering out unrelated brain 

activity present in the planning phase of delayed-movement tasks (e.g., 

working-memory, decision-making, mental wandering, etc.). To do so, we 

asked which substrates and computations are shared between delayed and 

non-delayed movement planning, and whether decoding results obtained 

with delayed-movement tasks can be generalized to immediate movements. 

We compared three main experimental conditions: a delayed task (i.e., 

planning with execution), a non-delayed task (i.e., execution without 

planning), and a no-go task (i.e., planning without execution). Additionally 

we took advantage of time-resolved MVPA to explore the temporal 

unfolding of movement classification throughout the different stages of 

movement planning, execution and suppression. Using this approach, we 

were able to decode planned movements across delayed and non-delayed 

tasks in contralateral primary motor cortex (M1), revealing early shared 

representations between delayed and non-delayed movement plans. This 

suggests that human primary motor cortex contains similar information 

about upcoming hand movements regardless of the presence of a delay. 

 

 

4.2 Searching for core representations of movement planning 

Previous studies that investigated neural representations of movement 

planning within the human prehension system were based on delayed-

movement paradigms and instructed movements (Eisenberg et al., 2011; 

Gallivan et al., 2011b; Pertzov et al., 2011; Leoné et al., 2014; Turella et al., 

2016). For understandable pragmatic reasons, researchers usually presented 
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subjects with visual or auditory cues to guide their actions and then measure 

delay-related responses in relation to them. Indeed, movement preparation 

has proven hard to study experimentally. First, like other cognitive functions 

(e.g., memory, imagery, or attention), planning is a covert process, and as 

such cannot be directly observed, but only inferred from indirect measures 

(e.g., brain responses, or effects on subsequent behavior, reaction times, etc.). 

Second, particularly for human fMRI studies, which typically lack the 

temporal precision of neuronal recodings in monkeys, another source of 

difficulty is given by the temporal coupling between movement planning and 

execution. If planning is always immediately followed by execution (i.e., 

perfectly correlated), then it becomes hard to disentangle the respective 

contributions of each stage of movement generation to the measured brain 

effects. 

In this respect, the use of instructed movements and instrumental delays 

has been quite successful, enabling researchers to study planning and 

execution in isolation from each other. Additionally, inserting a delay 

between the presentation of a visual or auditory instructing cue and the 

subsequent movement has the advantage of separating sensory and motor 

related brain responses.  

This delayed-movement approach has provided important contributions 

to the study of sensorimotor control, both in humans and monkeys. For 

instance, previous work elucidated the neural correlates of movement 

preparation and execution for saccades and manual actions, such as 

reaching, grasping and tool use (Cisek and Kalaska, 2004; Afshar et al., 2011; 

Brandi et al., 2014; Turella and Lingnau, 2014). Other studies proposed 

organizing principles for this network of brain areas (Eisenberg et al., 2010; 
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Heed et al., 2011; Verhagen et al., 2013) and revealed specific sensorimotor 

contributions to movement planning by regions within the prehension 

system (Hoshi and Tanji, 2004, 2006; Medendorp et al., 2005; Verhagen et 

al., 2012; Zimmermann et al., 2016). 

However, even when properly dissociated from execution, our ability to 

plan future actions remains a complex phenomenon, with close links to 

several other sensory and cognitive processes (e.g., visual perception, S-R 

mapping, memory, decision-making). For example, during visually-guided 

prehension movements, vision is required to select the object that will be the 

target of our action plan and to know our position in the environment 

relative to the object's own (i.e., the distance between us). On the other hand, 

during memory-guided prehension movements, we also need to remember 

the association between a cue and a response, as well as the spatial location 

of the target object in order to plan where to grasp for it. 

One key aspect that the studies presented in this thesis have in common 

is the search for regions that (1) were specifically involved in movement 

preparation (i.e., univariate results) rather than in co-occurring brain 

computations, and (2) encoded representations of movement plans (i.e., 

multivariate results) distinctly from those of other overlapping delay-related 

brain processes. In other words, we tried to carve out what lies at the core of 

movement preparation, addressing factors often mixed up in previous 

paradigms. 

First, to disentangle the S-R mapping and action selection components of 

the planning delay, we explored the relationship between movement 

planning and voluntary action by comparing internally and externally driven 

hand movements in Study I. Previous studies on internally driven actions 
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have typically opted for instructions that, keeping some aspects of a 

movement fixed while letting participants choose others, only partially 

determine the outcome of a task. Most frequently, subjects are requested to 

perform an action at a specified time but are allowed to select either a spatial 

target (Watanabe et al., 2006; Pastor-Bernier et al., 2012) or a moving 

effector (Oliveira et al., 2010; Bernier et al., 2012), a type of movement 

(Zhang et al., 2012) or movement sequence (Pesaran et al., 2008). Other 

studies instead entail the repetition of predefined actions (e.g., pressing a 

button), leaving the timing of execution up to the participants – whenever 

they “feel the urge to [move]” (Libet et al., 1983; Haynes, 2011; Soon et al., 

2008). In our experiment, we gave participants the choice of which 

prehension movement to plan and execute. We hypothesized that areas 

representing chosen movements should reflect action selection processes. 

Conversely, areas representing instructed movements should reflect the 

association between sensory cues and the corresponding motor responses. 

Finally, this design allowed us to study areas representing movement plans 

across instruction conditions. These abstract neural representations should 

not depend on any component or process that is specific to either condition; 

rather, they should reveal what they have in common, thus better reflecting 

the core of movement planning. 

Second, to further remove delay-related brain activity that was unspecific 

to movement preparation, in Study II we compared delayed and non-

delayed movements, looking for shared neural representations across these 

conditions. We reasoned that while delayed movements are planned, 

withheld, and then released, non-delayed movements are planned and 

immediately executed (Ames et al., 2014). Therefore, by studying the shared 
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planning component of both movement types, we should be able to reveal 

the key regions and neural representations at the core of movement 

planning. On the one hand, we would remove delay-related brain activity 

that does not strictly pertain to planning (e.g., working-memory). On the 

other hand, we would remove execution-related brain activity that, in 

natural non-delayed movements, is always intermingled with planning and 

tends to overshadow the weaker planning-related brain responses. 

Despite requiring a conceptually opposite approach by the participants 

(i.e., choosing and acting vs not-choosing and reacting to a stimulus), it 

seems reasonable to expect that planning an externally determined 

movement and a movement of choice present similarities at the neural level 

(Cisek and Kalaska, 2005; Cui and Andersen, 2007, 2011; Pesaran et al., 

2008). Likewise, preparing to execute a movement immediately should at 

least partially intersect with preparing a movement and withholding in 

memory for some time before releasing it (Crammond and Kalaska, 2000; 

Ames et al., 2014). In support of these hypotheses, and in agreement with 

previous human and monkey studies, we confirmed that the same parieto-

frontal network involved in movement planning also participates when 

actions are freely chosen or internally driven (Pesaran et al., 2008; Andersen 

and Cui, 2009; Cisek and Kalaska, 2010). Indeed, premotor, prefrontal and 

posterior parietal regions have been reported for a variety of motor tasks, 

from choosing a reaching target (Cisek and Kalaska, 2005; Scherberger and 

Andersen, 2007; Thura and Cisek, 2014) to selecting a limb for giving the 

response (Dirnberger et al., 1998; Beudel and De Jong, 2009; Garcia 

Dominguez et al., 2011). Similarly, we observed a large overlap in the brain 

regions recruited during movement planning for delayed and non-delayed 
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movements (Fig. 3.2A-B). Despite the overall stronger activation for non-

delayed execution compared to delayed planning, a widespread bilateral 

network of frontal, parietal and temporal regions was involved during both 

conditions (Himmelbach et al., 2009). 

Observing comparable brain activations for externally and internally 

driven movements (see univariate results), or between delayed and 

immediate movements, one might think that neural representations of 

planned movements do not substantially change with respect to the mode of 

action selection (i.e., internal vs. external), or the presence of an 

instrumental delay. However, our decoding results highlighted some 

differences between these experimental conditions, which seem to lead to a 

partially different conclusion. For instance, in Study I, we showed that 

internally driven movement plans are represented in a larger and more 

widespread network than externally driven movement plans (Fig. 2.5). This 

network included also regions that did not encode externally driven 

movements (Fig. 2.3B). On the other hand, we found trends for regions 

encoding externally but not internally driven movements (Fig. 2.3C). 

Moreover, only a subset of the regions showing univariate effects during 

planning encoded upcoming movements across instruction conditions (Fig. 

2.4, Fig. 2.6). In Study II we found that several bilateral parieto-frontal areas 

of the brain contained representations of non-delayed movements (Fig. 

3.7B), whereas fewer regions (particluarly in the contralateral hemisphere) 

seemed to encode delayed movement plans (Fig. 3.7A). With the exception 

of the contralateral primary motor cortex, where we found similar multi-

voxel activity patterns during early motor preparation of delayed and 

immediate movements (Fig. 3.4), neural representations elicited by delayed 
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and non-delayed movement plans appeared to be quite different (i.e., no 

cross-condition decoding). 

Collectively, these results suggest that not all the regions showing 

univariate activations during movement planning contain neural 

representations of the planned movements. Rather, we found that only 

regions in contralateral dorso-lateral parietal and frontal cortices encoded 

movement plans regardless of the way they were generated, and only the 

contralateral primary motor cortex contained neural representations that 

generalize across delayed and non-delayed movement plans. Our 

experimental manipulations ruled out the possibility that these neural 

representations reflected simple stimulus-response mapping (Hartstra et al., 

2012) or movement decisions (Zhang et al., 2012). Overall our studies 

contributed to a better characterization of brain regions in the human 

parieto-frontal network, clarifying the kind of motor and non-motor 

representations previously lumped together under delayed planning of 

instructed prehension movements. 

 

 

4.3 Exploring the temporal dynamics of movement decoding with 

fMRI 

Functional magnetic resonance imaging is generally known for high spatial 

resolution but limited temporal precision (Sladky et al., 2011; Turner, 2016). 

The sluggishness of the hemodynamic blood-oxygen-level dependent 

(BOLD) response and the time needed to acquire each single brain volume 

(i.e., the repetition time, TR, usually about 2 seconds) make it generally 

difficult to infer neural processing taking place at a millisecond time-scale 



Chapter 4 – Discussion 

	 111 

(but see Ogawa et al., 2000). Nonetheless a certain amount of temporal 

information can still be extracted from fMRI datasets, particularly for 

behaviors and events extending over a few seconds. As already mentioned in 

the Introduction section of this thesis, in the context of neuroimaging 

research on movement planning, the delayed-movement paradigm (also 

known with the more general term delayed-match-to-sample, from studies 

on perceptual decision-making) can be thought of as an experimental device 

to spread out in time fast-occurring and largely overlapping brain 

computations (e.g., planning and executing, deciding and giving a response). 

In other words, by artificially creating separate trial phases for movement 

preparation and execution, it became possible to focus on either aspect of 

motor control temporally isolated from the other. 

Typical univariate analyses in previous studies consisted of modeling the 

planning phase with a boxcar function lasting almost if not the entire delay-

period duration (e.g., Toni et al., 2001; Cavina-Pratesi, 2006; Mars et al., 

2008; Beurze et al., 2009; Heed et al., 2011; Gertz and Fiehler, 2015). This 

approach followed the assumption that, after the voluntary selection or 

external specification of a motor program, planning-related brain responses 

rise and remain sustained, basically invariant, over time. Even when 

analyzing fMRI datasets with more sensitive multivariate methods that allow 

decoding neural representations of planned movements, the standard 

approach was to feed machine-learning classifiers with the outcome of 

univariate analyses, often taking a windowed average of brain activity over 

several seconds of the planning phase (Gallivan et al., 2011a, 2011b, 2013a, 

2013b, 2016b; Leoné et al., 2014). The clear trade-off is gaining more 

statistical power over losing information about temporal dynamics of 
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decodable information (e.g., motor plans). In other words, larger windows of 

averaged brain activity are more robust but allow for fewer time points to 

reconstruct the variations in decoding accuracy over time, and vice versa. 

In our second study (Study II, Chapter 3) we tried to address this 

methodological aspect by adopting and further developing a novel MVPA 

approach. We took advantage of a time-resolved method in which 

movement classification was performed separately at each acquired volume. 

This allowed us to track how decoding accuracies evolved at different time 

points within the delay period. Previous studies with delayed-movement 

tasks and standard analysis methods suggested sustained brain activity 

throughout movement planning (Toni et al., 2001; Curtis et al., 2004; 

Lindner et al., 2010; Chapman et al., 2011; Gallivan et al., 2011b). Using 

time-resolved MVPA we observed that, at least at the level of decoding (in 

comparison to univariate analyses), neural representations of delayed hand 

movement plans appear to be less constant over time than previously 

hypothesized. Moreover, thanks to this method, we were able to compare 

delayed and immediate movements at various stages of movement 

generation. In the primary motor cortex, we obtained significant cross-

condition decoding early within the respective phases of delayed planning 

and non-delayed execution, but not at later time points. This could suggest 

that neural representations of planned prehension movements are initially 

similar across delay contexts and then diverge when movements are actually 

executed in one condition but not (yet) in the other. 

Overall, we took conventional MVPA methods one step further by 

providing further insight about the temporal dynamics of movement 

representations within the human prehension system. Previous fMRI studies 
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used similar methods to examine the flow of information from sensory 

stimuli to motor responses in the human brain (Soon et al., 2008, 2013; Bode 

and Haynes, 2009; Linden et al., 2012; Gallivan et al., 2013c). Our time-

resolved MVPA differs from these previous studies in at least two important 

ways. First, we did not simply subdivide the delay period into arbitrary bins 

of time averaging windows of brain activity spanning over several seconds 

(e.g., Bode and Haynes, 2009; Linden et al., 2012). Rather, our analysis was 

truly performed volume-by-volume and the temporal resolution depended 

solely on the TR, that is, on the time for the fMRI scanner to collect one full 

brain volume. Second, instead of beta-weights or t-scores coming from a 

GLM (e.g., Leoné et al., 2014), we used volume-time-course data as input for 

the MVPA classifier. This carries the advantage that our findings are less 

dependent on specific assumptions regarding the expected shape of the 

hemodynamic response function (HRF). Overall, we believe that time-

resolved MVPA constitutes a powerful tool for fMRI data analysis to 

substantially improve the temporal resolution of a technique that can already 

provide very good spatial information about neural representations of 

movement planning in the human brain. 

 

 

4.4 Future directions 

In the following section I am going to take into consideration three classes of 

limitations and caveats that might hinder the scope of our conclusions: 

limitations about (1) the technique, (2) the analysis methods, and (3) the 

task. At the same time I will discuss possible ways to address these issues. 

This is not intended to be a comprehensive list of the problems and solutions 
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for neuroimaging research on prehension movements, but rather an 

opportunity to hopefully foster new ideas and stimulate future studies. 

Finally, I will briefly address potential applications for this branch of 

research. 

 

4.4.1 Limitations, possibilities, and open questions 

Several limitations are intrinsic to the technique used in this thesis to collect 

data – fMRI shortcomings have been known for years (Logothetis and 

Wandell, 2004; Logothetis, 2008; Turner, 2016). As already mentioned, 

depending on the TR and on a hemodynamic response (in the order of 

seconds), the temporal resolution is quite poor for fast-occurring neuronal 

computations. The spatial resolution, with the size of voxels typically around 

3x3x3 mm, is far from the cellular level. Moreover, fMRI is based on an 

indirect measure of neuronal activity (the hemodynamic BOLD response), 

which has been shown to correlate with local field potentials (LFP) of a given 

neuronal population, rather than the spiking activity (Logothetis et al., 2001; 

Logothetis, 2003). For instance, this could be problematic when comparing 

fMRI experiments and experiments in monkeys. Despite using the same 

tasks or stimulation conditions, BOLD fMRI could reveal significant 

activation in the absence of spiking activity, leading to results that are 

inconsistent with those from monkey neurophysiology. 

Another factor to consider in neuroimaging research on movements is 

that experiments need to focus on actions that are compatible with the 

environment of the fMRI scanner (i.e., that can actually be performed while 

lying inside such a narrow space). This is one of the reasons why prehension 

movements have been investigated so extensively in recent years. In order to 
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limit the risk of signal artifacts, researchers conducting fMRI experiments 

have to be careful when studying actions that might trigger head motion by 

the participants. For the experiments described in this thesis, we used foam 

blocks and cushions to stabilize the shoulder and elbow of the moving arm. 

Furthermore we adjusted the distance from the target object according to 

each participant’s arm length. This setup ensured that participants could 

perform reaching and grasping movements comfortably, while minimizing 

head and trunk movements. 

A way to address these fMRI-related issues is to ask the same or similar 

research questions but using complementary techniques. Future studies 

could exploit the temporal resolution of magnetoencephalography (MEG; in 

the millisecond scale) to further investigate the temporal dynamics of 

movement planning with greater temporal precision (e.g., Hinkley et al., 

2011; Turella et al., 2016). For example, such studies could focus on the 

shared representations that we observed across delayed and immediate 

movement plans and ask when exactly they emerge, or how long they last. 

The same could be done with electroencephalography (EEG; e.g., Ball et al., 

1999; Llanos et al., 2013). It could be noted that MEG and EEG are very 

susceptible to movement artifacts, even more than fMRI, but ultimately 

every technique has its own characteristic strengths and limitations. This is 

why the best approach is to address the same topic from different angles, 

asking questions that are most suitable for each technique. 

 

Among fMRI analysis methods, MVPA is a recent innovation, increasingly 

used as it proved to be effective at discriminating response patterns that are 

distributed at a fine spatial scale (i.e., decoding more subtle aspects of neural 
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representations). However, regardless of the approach or the specific method 

used, fMRI data analysis always relies on certain assumptions and comes 

with technical limitations (Smith et al., 2011; Etzel et al., 2013; Todd et al., 

2013; Dubois et al., 2015). As an example, given the massive number of 

voxels that virtually fit within a brain volume (>100.000), one of the key 

problems with searchlight MVPA concerns low statistical power when 

correcting results for multiple comparisons. Indeed, it is important to be 

aware of all these different issues when looking at the results of 

neuroimaging studies, as they might be the cause of inconsistencies and thus 

lead to difficulties in interpretation. 

Related to the experiments and analyses present in this thesis, it should be 

noted that we chose to focus particularly on the effects and contributions of 

the cerebral cortex. We thus neglected the role and importance of subcortical 

brain structures, or the cerebellum, in our studies. For us, this was motivated 

in part by technical choices (e.g., deciding whether to cover the entire 

cerebellum at the expense of a portion of the parietal lobe within a 

reasonably short TR) and in part by pragmatic reasons (e.g., focusing on the 

ROIs that are typically discussed in the literature). However this cortico-

centric view of the brain appears to be a widespread tendency in the field of 

movement research, and as such it should at least be acknowledged, with the 

hope that future studies will further explore the neural correlates and 

representations of movement planning even in subcortical and cerebellar 

areas. 

I believe that gradual advances in analysis methods will address and 

possibly solve, or at least improve, many of the current problems with 

MVPA of fMRI data. However one more aspect that was relevant to my PhD 
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project should be discussed. In accordance with previous work, we 

demonstrated that it is possible to decode planned movements from brain 

activity that precedes movement onset. One key challenge for future studies 

will have to be moving beyond simply decoding motor plans, or just 

revealing movement representations. Classification should be just the first 

step for this kind of analysis. Once we have shown that two planning 

conditions are discriminable on the basis of neural activity patterns we 

should ask: in what ways are they different? Or, how different are they from 

each other (e.g., see pattern information in Leoné et al., 2014)? How do these 

different representations specifically relate to subsequent behavior? In other 

words, how does the planning of one movement in one condition affect the 

way this movement will be executed differently from another condition? 

And again, what do these neural representations tell us about the underlying 

neural computations for movement planning? Open questions like these 

should be at the core of future developments in neuroimaging research on 

movements. 

 

As mentioned in the introduction section of this thesis, movement planning 

is not a prerogative of prehension movements. Ideally, research on the 

preparation of reaching, grasping and eye movements should generalize to 

all kinds of possible actions, at least in terms of underlying principles 

(perhaps the specific regions recruited will slightly differ according to e.g., 

the effector used, Heed et al., 2011; Leoné et al., 2014). Just like we plan to 

grasp our smartphone, we can prepare for throwing a dart, climbing a rock, 

or kicking a ball. However, because the great majority of studies investigated 

the planning of reaching, grasping and saccades, this generalizability aspect 
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remains an open question. I think there is a need to include a wider range of 

ecologically-valid actions in the tasks of future experiments (e.g., Fabbri et 

al., 2016). While it is true that the boundaries of this range are often dictated 

by the technique used or by a specific research question, it would be 

informative to compare motor preparation of prehension with that of more 

complex and natural hand movements (e.g., writing, drawing, gesturing). 

Another aspect of the tasks used to study movement planning, which to 

date remains unclear, concerns individual differences across participants, 

with particular emphasis on the influence of different strategies to handle 

different tasks. Do all people think of planning in the same way? When 

confronted with delayed-movement paradigms, do participants approach 

the delay period similarly? Could some manipulations, or experimental 

conditions, trigger a different planning strategy? In our two experiments we 

always administered post-session questionnaires to our participants, and one 

of the questions was about the strategy used to handle the task. Although we 

did not report major differences in the responses by participants, this is 

something that seems to be worth delving into in future research. 

 

4.4.2 Potential practical applications 

Several brain diseases and injuries (e.g., Parkinson’s disease, amyotrophic 

lateral sclerosis, spinal cord injury, limb amputation) result in the loss of the 

ability to make purposeful and accurate movements, dramatically affecting 

the quality of life of these patients. Developing therapeutic interventions for 

such patients is a major area of research. Within the biomedical field, devices 

named brain-computer interfaces (BCIs) constitute a relatively recent 

invention. Also known as neural prostheses, BCI systems are built to 
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measure a patient’s intention-related brain signals (e.g., with 

electrocorticography, ECoG), use them to decode a planned movement, and 

to convert this information into output commands capable of controlling 

external devices that range from computer cursors to robotic limbs, thus 

bypassing the compromised body parts (Andersen and Buneo, 2002; 

Hochberg et al., 2006; Schalk and Leuthardt, 2011). Knowledge about how 

movements and intentions are encoded in patterns of neural activity is at the 

basis of BCI technologies (Gallivan et al., 2011b). A deeper understanding of 

the cortical circuitry responsible for generating complex sensorimotor 

behaviors (e.g., prehension movements), and the identification of brain areas 

containing representations of motor plans for specific effectors (e.g., right 

hand, left hand) and contexts (e.g., internally driven, non-delayed), will be 

beneficial for the further development of ever more sophisticated, precise 

and effective neural prostheses (e.g., informing about optimal positioning for 

electrode arrays to capture appropriate intention-related signals). The hope 

is that, with the increasing number of studies on these topics, eventually this 

class of BCI devices will be able to reconstruct highly specific movement 

plans and thus restore the lost motor functionality for movement-impaired 

patient populations (e.g., Orsborn et al., 2014; Shenoy and Carmena, 2014; 

Shanechi et al., 2016). 

 

 

4.5 Conclusions 

This thesis explored how the human brain represents planned reaching and 

grasping movements in different behavioral contexts. In neuroimaging 

experiments using delayed-movement paradigms, delay-related neural 
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activity includes cognitive processes intermingled with movement 

preparation. The studies reported here aimed at clarifying this aspect, as well 

as the different roles of regions within parieto-frontal networks. Collectively, 

our results provided evidence for neural representations that, invariant to 

the mode of action selection, or the presence of a delay, more specifically 

reflect motor-related processes during movement planning. We also further 

improved a novel fMRI-MVPA method that allowed us to follow how these 

representations change throughout the stages of movement generation. 

Overall, our findings expand previous understanding of the regions 

implicated in movement planning and offer new insights into the dynamics 

of the human prehension system. 

By addressing several open questions and limitations in this branch of 

research, I hope that my work will contribute to a deeper understanding of 

the cortical basis and neural representations of movement planning. The 

resulting knowledge might ultimately find application in the improvement 

of brain-controlled prostheses to assist movement-impaired patients. 

Beyond therapeutic possibilities, like for all basic research, the benefits of 

exploring how the nervous system generates purposeful movement are 

manifold, laying the theoretical foundations for discoveries and 

technological advances in various related fields. 
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