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Abstract

The way humans learn the meaning of words is a fundamental question in many
different disciplines and, from a computational perspective, an answer to this question
could lead to important advances in artificial intelligence. While the details of the
learning process are still an open question, what we do know is that humans make
use of the very rich perceptual input present in the communicative setups in which
learning takes place.

In this work, we will present three models of human learning from naturalistic
multi-modal input. We will start by introducing a model that assumes a purely pre-
dictive learner existing in a non-communicative setup and show that such a computa-
tional learner when tested displays comparable learning behaviour to human learners
on a novel word learning setup. We will then relax some of the learning assump-
tions and present a model that, instead of exposing the computational learner to a
passive environment, such as the text corpora tradionally used in semantic learning
experiments, it exposes the learner to communicative episodes, simulated in our ex-
periments by corpora capturing multi-modal interactions between children and their
caregiveres, allowing the learner to make use of information beyond words and passive
percept during learning. Finally, we will present on-going work towards interactive
learning between two agents.
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Title: Associate Professor
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Chapter 1

Introduction

How do humans learn and use language? This is fundamental question addressed

by many different disciplines such as cognitive science, natural language processing

but also machine leanring, and from a computational perspective, an answer to this

question could lead to important advances in artificial intelligence. Traditionally,

computational models of meaning relying on corpus-extracted context vectors, such as

LSA [57], HAL [62], Topic Models [37] and more recent neural-network approaches [20,

70] have successfully tackled a number of lexical semantics tasks, where context vector

similarity highly correlates with various indices of semantic relatedness [107]. Given

that these models are learned from naturally occurring data using simple associative

techniques, various authors have advanced the claim that they might be also capturing

some crucial aspects of how humans acquire and use language [57, 61].

However, the models induce the meaning of words entirely from their co-occurrence

with other words, without links to the external world. This constitutes a serious blow

to claims of cognitive plausibility in at least two respects. One is the grounding prob-

lem [38, 87]. Irrespective of their relatively high performance on various semantic

tasks, it is debatable whether models that have no access to visual and perceptual

information can capture the holistic, grounded knowledge that humans have about

concepts. Even from an empirical perspective, there is increasing evidence in the

literature in favor of grounded cognition, suggesting that humans acquire and use

language within a multi-modal environment. In one of the classic studies of embodied

19



cognition, [78] found that when participants simply read the word for an action,

the motor system became active to represent its meaning. In another study, [77]

replaced words with pictures, and found that this did not disrupt sentence process-

ing, suggesting that the pictures were integrated into multi-modal representations of

sentence meaning. [36] showed that gestures can convey an emerging conceptualiza-

tion that cannot yet be articulated in speech, thus complementing spoken language

during communication. In [39] it was reported that sentence processing was faster

when when participants’ faces were configured discretely into states associated with

particular emotions and when facial emotion matched sentence emotion (see [10] for

a complete review).

From both theoretical and empirical perpective it becomes clear that the compu-

tational models of meaning should have access to extra-lingusitic information during

learning. One possible source of such extra-linguistic information used by several

studies on multi-modal learning [2, 89] is offered by subject-derived feature norms.

Feature norms are procuded by human participants and aiming at capturing knowl-

edge about concepts that is acquired by making use of our rich sensori-motor system

(e.g., tigers has stripes, lemons taste bitter, elephants are big etc.). While this is a

great proxy to our conceptual knowledge, feature norms are only available for a limited

number of concrete concepts, preventing large-scale multi-modal learning. Moreover,

since feature norms are the output of humans rather than naturalistic input, they

are not suited for conducting realistic similations of multi-modal learning. As a way

to circumvent the short-comings of feature norms, very recently, a number of papers

have exploited advances in automated feature extraction form images and videos to

conduct multi-modal learning [16, 28, 49, 88].

Multi-modal learning, while a necessary condition for having human-like machines

to which we can talk, is hardly a sufficient one. One important aspect of language

is its interactive nature, the fact that we use language to communicate. This aspect

however is heavily neglected in the current mainstream approach to train natural

language systems, which instead expose machines to large amounts of text and hav-

ing them perforom passive learning (e.g., as in cases of image captioning or machine

20



translation [101, 117]). However, while this paradigm is an excellent way to learn

general statistical associations between sequences of symbols, it focuses on the struc-

ture of language rather than on its purpose, that is, the fact that we use words to

make things happen [3]!

In this work, we will present three models of human learning from naturalistic

multi-modal input. We will start by introducing a model that assumes a purely

predictive learner existing in a non-communicative setup and show that such a com-

putational learner displays comparable learning behaviour as human learners on a

novel word learning setup. We will then relax some of the learning assumptions

and present a model that instead of placing the computational learner in a passive

environment, such as corpora like Wikipedia tradionally used in semantic learning

experiments, it places the learner in communicative episodes, simulated in our ex-

periments by corpora capturing multi-modal interactions between children and their

caregiveres, allowing the learner to make use of information beyond words during

learning. Finally, we will present on-going work towards interactive learning between

two agents.

The thesis is structured as follows:

Chapter 2 We introduce two new models for multi-modal learning, the Multi-modal

Skipgram A and Multi-modal Skipgram B (MSG-A and MSG-B respectively), which

build upon the very effective skip-gram approach of [71]. Unlike previous work on

multi-modal models of semantic learning that assumes access to both linguistic and

visual information for all words, our model, because its joint language-vision objective

encourages the propagation of visual information to representations of words for which

no direct visual evidence was used, thus allowing knowledge generalization across

modalities. The resulting multimodally-enhanced vectors achieve remarkably good

performance both on traditional semantic benchmarks, and in their new application

to the “zero-shot” [31, 96] image labeling and retrieval scenario. Moreover, we show

that indirect visual evidence also affects the representation of abstract words, paving

the way to new cognitive studies and novel applications in computer vision.
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Chapter 3 We report a study on multimodal semantic learning from minimal ex-

posure to natural text. In this study, we first run a set of experiments investigating

whether minimal distributional evidence from very short passages extracted from re-

alistic corpora suffices to trigger successful word learning in subjects, testing their

linguistic and visual intuitions about the concepts associated to new words. After

confirming that subjects are indeed very efficient distributional learners even from

small amounts of evidence, we test the previously-introduced MSG-B model on the

same multimodal task, finding that it behaves in a remarkable human-like way. We

conclude that distributional semantic models provide a convincing computational ac-

count of word learning even at the early stages in which a word is first encountered,

and that the way they build meaning representations can offer new insights into

human language acquisition.

Chapter 4 We take a step towards a more realistic setup by introducing a model

that operates on naturalistic images of the objects present in a communicative episode.

We build upon MSG-A and enhance it to handle cross-referential uncertainty. More-

over, we extend the cues commonly used in multimodal learning (e.g., objects in the

environment) to include social cues (e.g., eyegaze, gestures, body posture, etc.) that

reflect speakers’ intentions and generally contribute to the unfolding of the commu-

nicative situation [100]. Specifically we incorporate information regarding the objects

that caregivers are holding. We show that our model, Attentive Social MSG, is

able to integrates linguistic and extra-linguistic information (visual and social cues),

handles referential uncertainty, and correctly learns to associate words with objects,

even in cases of limited linguistic exposure.

Chapter 5 We present a proposal for developing intelligent agents with language

capabilities, that breaks away from current passive supervised regimes; agents co-

exist and are able to interact with each other. In our framework, we consider the

most basic act of communication, i.e., learning to refer to things, and we designed

a “grounded” cooperative task that takes the form of referential games played by
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two agents. The first experiments, while encouraging, revealed that it is essential

to ensure that agents will not “drift” into their own language, but instead they will

evolve one that is aligned to our natural languages.
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Chapter 2

Multimodal Skip-gram Model

2.1 Introduction

Distributional semantic models (DSMs) derive vector-based representations of mean-

ing from patterns of word co-occurrence in corpora. DSMs have been very effectively

applied to a variety of semantic tasks [19, 71, 107]. However, compared to human

semantic knowledge, these purely textual models, just like traditional symbolic AI

systems [38, 87], are severely impoverished, suffering of lack of grounding in extra-

linguistic modalities [35]. This observation has led to the development of multimodal

distributional semantic models (MDSMs) [16, 28, 90], that enrich linguistic vectors

with perceptual information, most often in the form of visual features automatically

induced from image collections.

MDSMs outperform state-of-the-art text-based approaches, not only in tasks that

directly require access to visual knowledge [15], but also on general semantic bench-

marks [16, 90]. However, current MDSMs still have a number of drawbacks. First,

they are generally constructed by first separately building linguistic and visual rep-

resentations of the same concepts, and then merging them. This is obviously very

different from how humans learn about concepts, by hearing words in a situated

perceptual context. Second, MDSMs assume that both linguistic and visual informa-

tion is available for all words, with no generalization of knowledge across modalities.

Third, because of this latter assumption of full linguistic and visual coverage, current
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MDSMs, paradoxically, cannot be applied to computer vision tasks such as image

labeling or retrieval, since they do not generalize to images or words beyond their

training set.

We introduce the multimodal skip-gram models, two new MDSMs that address

all the issues above. The models build upon the very effective skip-gram approach

of [70], that constructs vector representations by learning, incrementally, to predict

the linguistic contexts in which target words occur in a corpus. In our extension,

for a subset of the target words, relevant visual evidence from natural images is pre-

sented together with the corpus contexts (just like humans hear words accompanied

by concurrent perceptual stimuli). The model must learn to predict these visual

representations jointly with the linguistic features. The joint objective encourages

the propagation of visual information to representations of words for which no direct

visual evidence was available in training. The resulting multimodally-enhanced vec-

tors achieve remarkably good performance both on traditional semantic benchmarks,

and in their new application to the “zero-shot” image labeling and retrieval scenario.

Very interestingly, indirect visual evidence also affects the representation of abstract

words, paving the way to ground-breaking cognitive studies and novel applications in

computer vision.

2.2 Related Work

There is by now a large literature on multimodal distributional semantic models. We

focus here on a few representative systems. [16] propose a straightforward approach

to MDSM induction, where text- and image-based vectors for the same words are

constructed independently, and then “mixed” by applying the Singular Value Decom-

position to their concatenation. An empirically superior model has been proposed

by [90], who use more advanced visual representations relying on images annotated

with high-level “visual attributes”, and a multimodal fusion strategy based on stacked

autoencoders. [49] adopt instead a simple concatenation strategy, but obtain empir-

ical improvements by using state-of-the-art convolutional neural networks to extract
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visual features, and the skip-gram model for text. These and related systems take

a two-stage approach to derive multimodal spaces (unimodal induction followed by

fusion), and they are only tested on concepts for which both textual and visual la-

beled training data are available (the pioneering model of [28] did learn from text and

images jointly using Topic Models, but was shown to be empirically weak by [16]).

[42] propose an incremental multimodal model based on simple recurrent net-

works [25], focusing on grounding propagation from early-acquired concrete words to

a larger vocabulary. However, they use subject-generated features as surrogate for

realistic perceptual information, and only test the model in small-scale simulations of

word learning. [41], whose evaluation focuses on how perceptual information affects

different word classes more or less effectively, similarly to Howell et al., integrate per-

ceptual information in the form of subject-generated features and text from image

annotations into a skip-gram model. They inject perceptual information by merg-

ing words expressing perceptual features with corpus contexts, which amounts to

linguistic-context re-weighting, thus making it impossible to separate linguistic and

perceptual aspects of the induced representation, and to extend the model with non-

linguistic features. We use instead authentic image analysis as proxy to perceptual

information, and we design a robust way to incorporate it, easily extendible to other

signals, such as feature norm or brain signal vectors [32].

The recent work on so-called zero-shot learning to address the annotation bot-

tleneck in image labeling [31, 58, 97] looks at image- and text-based vectors from

a different perspective. Instead of combining visual and linguistic information in a

common space, it aims at learning a mapping from image- to text-based vectors. The

mapping, induced from annotated data, is then used to project images of objects that

were not seen during training onto linguistic space, in order to retrieve the nearest

word vectors as labels. Multimodal word vectors should be better-suited than purely

text-based vectors for the task, as their similarity structure should be closer to that

of images. However, traditional MDSMs cannot be used in this setting, because they

do not cover words for which no manually annotated training images are available,

thus defeating the generalizing purpose of zero-shot learning. We will show below
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that our multimodal vectors, that are not hampered by this restriction, do indeed

bring a significant improvement over purely text-based linguistic representations in

the zero-shot setup.

Multimodal language-vision spaces have also been developed with the goal of

improving caption generation/retrieval and caption-based image retrieval [45, 53, 64,

98]. These methods rely on necessarily limited collections of captioned images as

sources of multimodal evidence, whereas we automatically enrich a very large corpus

with images to induce general-purpose multimodal word representations, that could

be used as input embeddings in systems specifically tuned to caption processing.

Thus, our work is complementary to this line of research.

2.3 Multimodal Skip-gram Architecture

2.3.1 Skip-gram Model

We start by reviewing the standard Skip-gram model of [70], in the version we use.

Given a text corpus, Skip-gram aims at inducing word representations that are good

at predicting the context words surrounding a target word. Mathematically, it maxi-

mizes the objective function:

1

𝑇

𝑇∑︁
𝑡=1

(︃ ∑︁
−𝑐≤𝑗≤𝑐,𝑗 ̸=0

log 𝑝(𝑤𝑡+𝑗|𝑤𝑡)

)︃
(2.1)

where 𝑤1, 𝑤2, ..., 𝑤𝑇 are words in the training corpus and 𝑐 is the size of the window

around target 𝑤𝑡, determining the set of context words to be predicted by the in-

duced representation of 𝑤𝑡. Following Mikolov et al., we implement a subsampling

option randomly discarding context words as an inverse function of their frequency,

controlled by hyperparameter 𝑡. The probability 𝑝(𝑤𝑡+𝑗|𝑤𝑡), the core part of the ob-

jective in Equation 2.1, is given by softmax:

𝑝(𝑤𝑡+𝑗|𝑤𝑡) =
𝑒
𝑢′
𝑤𝑡+𝑗

𝑇𝑢𝑤𝑡∑︀𝑊
𝑤′=1 𝑒

𝑢′
𝑤′

𝑇𝑢𝑤𝑡

(2.2)
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the cute

cat

sat on the matlittle CAT

+

=

maximize context prediction maximize similarity

map to visual space

Figure 2-1: “Cartoon” of MMSkip-gram-B. Linguistic context vectors are actually
associated to classes of words in a tree, not single words. Skip-gram is obtained
by ignoring the visual objective, MMSkip-gram-A by fixing 𝑀𝑢→𝑣 to the identity
matrix.

where 𝑢𝑤 and 𝑢′
𝑤 are the context and target vector representations of word 𝑤 respec-

tively, and 𝑊 is the size of the vocabulary. Due to the normalization term, Equa-

tion 2.2 requires 𝑂(|𝑊 |) time complexity. A considerable speedup to 𝑂(log|𝑊 |), is

achieved by using the hierarchical version of Equation 2.2 [74], adopted here.

2.3.2 Injecting visual knowledge

We now assume that word learning takes place in a situated context, in which, for a

subset of the target words, the corpus contexts are accompanied by a visual repre-

sentation of the concepts they denote (just like in a conversation, where a linguistic

utterance will often be produced in a visual scene including some of the word refer-

ents). The visual representation is also encoded in a vector (we describe in Section

3.2 below how we construct it). We thus make the skip-gram “multimodal” by adding

a second, visual term to the original linguistic objective, that is, we extend Equa-

tion 2.1 as follow:

1

𝑇

𝑇∑︁
𝑡=1

(ℒ𝑙𝑖𝑛𝑔(𝑤𝑡) + ℒ𝑣𝑖𝑠𝑖𝑜𝑛(𝑤𝑡)) (2.3)
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where ℒ𝑙𝑖𝑛𝑔(𝑤𝑡) is the text-based skip-gram objective
∑︀

−𝑐≤𝑗≤𝑐,𝑗 ̸=0 log 𝑝(𝑤𝑡+𝑗|𝑤𝑡), whereas

the ℒ𝑣𝑖𝑠𝑖𝑜𝑛(𝑤𝑡) term forces word representations to take visual information into ac-

count. Note that if a word 𝑤𝑡 is not associated to visual information, as is systemati-

cally the case, e.g., for determiners and non-imageable nouns, but also more generally

for any word for which no visual data are available, ℒ𝑣𝑖𝑠𝑖𝑜𝑛(𝑤𝑡) is set to 0.

We now propose two variants of the visual objective, resulting in two distinguished

multi-modal versions of the skip-gram model.

2.3.3 Multi-modal Skip-gram Model A MSG-A

One way to force word embeddings to take visual representations into account is to

try to directly increase the similarity (expressed, for example, by the cosine) between

linguistic and visual representations, thus aligning the dimensions of the linguistic

vector with those of the visual one (recall that we are inducing the first, while the

second is fixed), and making the linguistic representation of a concept “move” closer to

its visual representation. We maximize similarity through a max-margin framework

commonly used in models connecting language and vision [113, 31]. More precisely,

we formulate the visual objective ℒ𝑣𝑖𝑠𝑖𝑜𝑛(𝑤𝑡) as:

−
∑︁

𝑤′∼𝑃𝑛(𝑤)

max(0, 𝛾 − 𝑐𝑜𝑠(𝑢𝑤𝑡 , 𝑣𝑤𝑡) + 𝑐𝑜𝑠(𝑢𝑤𝑡 , 𝑣𝑤′)) (2.4)

where the minus sign turns a loss into a cost, 𝛾 is the margin, 𝑢𝑤𝑡 is the target

multimodally-enhanced word representation we aim to learn, 𝑣𝑤𝑡 is the corresponding

visual vector (fixed in advance) and 𝑣𝑤′ ranges over visual representations of words

(featured in our image dictionary) randomly sampled from distribution 𝑃𝑛(𝑤𝑡). These

random visual representations act as “negative” samples, encouraging 𝑢𝑤𝑡 to be more

similar to its own visual representation than to that of other words. The sampling

distribution is currently set to uniform, and the number of negative samples controlled

by hyperparameter 𝑘.
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2.3.4 Multi-modal Skip-gram Model B MSG-B

The visual objective in MSG-A has the drawback of assuming a direct comparison

of linguistic and visual representations, constraining them to be of equal size. MSG-

B lifts this constraint by including an extra layer mediating between linguistic and

visual representations (see Figure 2-1 for a sketch of MSG-B). Learning this layer

is equivalent to estimating a cross-modal mapping matrix from linguistic onto visual

representations, jointly induced with linguistic word embeddings. The extension is

straightforwardly implemented by substituting, into Equation 2.4, the word represen-

tation 𝑢𝑤𝑡 with 𝑧𝑤𝑡 = 𝑀𝑢→𝑣𝑢𝑤𝑡 , where 𝑀𝑢→𝑣 is the cross-modal mapping matrix to

be induced. To avoid overfitting, we also add an L2 regularization term for 𝑀𝑢→𝑣

to the overall objective (Equation 2.3), with its relative importance controlled by

hyperparamer 𝜆.

2.4 Experimental Setup

The parameters of all models are estimated by back-propagation of error via stochas-

tic gradient descent. Our text corpus is a Wikipedia 2009 dump comprising approx-

imately 800M tokens.1 To train the multimodal models, we add visual information

for 5,100 words that have an entry in ImageNet [23], occur at least 500 times in

the corpus and have concreteness score ≥ 0.5 according to [106]. On average, about

5% tokens in the text corpus are associated to a visual representation. To construct

the visual representation of a word, we sample 100 pictures from its ImageNet entry,

and extract a 4096-dimensional vector from each picture using the Caffe toolkit [43],

together with the pre-trained convolutional neural network of [54]. The vector corre-

sponds to activation in the top (fc7) layer of the network. Finally, we average the

vectors of the 100 pictures associated to each word, deriving 5,100 aggregated visual

representations.

1http://wacky.sslmit.unibo.it

31



Hyperparameters For both Skip-gram and the MSG models, we fix hidden layer

size to 300. To facilitate comparison between MSG-A and MSG-B, and since the

former requires equal linguistic and visual dimensionality, we keep the first 300 dimen-

sions of the visual vectors. For the linguistic objective, we use hierarchical softmax

with a Huffman frequency-based encoding tree, setting frequency subsampling option

𝑡=0.001 and window size 𝑐=5, without tuning. The following hyperparameters were

tuned on the text9 corpus:2 MSG-A: 𝑘=20, 𝛾=0.5; MSG-B: 𝑘=5, 𝛾=0.5, 𝜆=0.0001.

2.5 Experiments

2.5.1 Approximating human judgments

Benchmarks A widely adopted way to test DSMs and their multimodal exten-

sions is to measure how well model-generated scores approximate human similarity

judgments about pairs of words. We put together various benchmarks covering di-

verse aspects of meaning, to gain insights on the effect of perceptual information on

different similarity facets. Specifically, we test on general relatedness (MEN, [16],

3K pairs), e.g., pickles are related to hamburgers, semantic (≈ taxonomic) similarity

(Simlex-999, [40], 1K pairs; SemSim, [90], 7.5K pairs), e.g., pickles are similar to

onions, as well as visual similarity (VisSim, [90], same pairs as SemSim with different

human ratings), e.g., pickles look like zucchinis.

Alternative Multimodal Models We compare our models against several recent

alternatives. We test the vectors made available by [49]. Similarly to us, they derive

textual features with the skip-gram model (from a portion of the Wikipedia and the

British National Corpus) and use visual representations extracted from the ESP data-

set [110] through a convolutional neural network [75]. They concatenate textual and

visual features after normalizing to unit length and centering to zero mean. We also

test the vectors that performed best in the evaluation of [16], based on textual fea-

tures extracted from a 3B-token corpus and SIFT-based Bag-of-Visual-Words visual
2http://mattmahoney.net/dc/textdata.html
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Model MEN Simlex-999 SemSim VisSim
100% 42% 100% 29% 100% 85% 100% 85%

Kiela and Bottou - 0.74 - 0.33 - 0.60 - 0.50
Bruni et al. - 0.77 - 0.44 - 0.69 - 0.56
Silberer and Lapata - - - - 0.70 - 0.64 -
CNN features - 0.62 - 0.54 - 0.55 - 0.56
Skip-gram 0.70 0.68 0.33 0.29 0.62 0.62 0.48 0.48
Concatenation - 0.74 - 0.46 - 0.68 - 0.60
SVD 0.61 0.74 0.28 0.46 0.65 0.68 0.58 0.60
MSG-A 0.75 0.74 0.37 0.50 0.72 0.72 0.63 0.63
MSG-B 0.74 0.76 0.40 0.53 0.66 0.68 0.60 0.60

Table 2.1: Spearman correlation between model-generated similarities and human
judgments. Right columns report correlation on visual-coverage subsets (percentage
of original benchmark covered by subsets on first row of respective columns). First
block reports results for out-of-the-box models; second block for visual and textual
representations alone; third block for our implementation of multimodal models.

features [93] extracted from the ESP collection. Bruni and colleagues fuse a weighted

concatenation of the two components through SVD. We further re-implement both

methods with our own textual and visual embeddings as Concatenation and SVD

(with target dimensionality 300, picked without tuning). Finally, we present for

comparison the results on SemSim and VisSim reported by [90], obtained with a

stacked-autoencoders architecture run on textual features extracted from Wikipedia

with the Strudel algorithm [7] and attribute-based visual features [26] extracted from

ImageNet.

All benchmarks contain a fair amount of words for which we did not use direct

visual evidence. We are interested in assessing the models both in terms of how

they fuse linguistic and visual evidence when they are both available, and for their

robustness in lack of full visual coverage. We thus evaluate them in two settings. The

visual-coverage columns of Table 2.1 (those on the right) report results on the subsets

for which all compared models have access to direct visual information for both words.

We further report results on the full sets (“100%” columns of Table 2.1) for models

that can propagate visual information and that, consequently, can meaningfully be

tested on words without direct visual representations.
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Target Skip-gram MSG-A MSG-B
donut fridge, diner, candy pizza, sushi, sandwich pizza, sushi, sandwich
owl pheasant, woodpecker, squirrel eagle, woodpecker, falcon eagle, falcon, hawk
mural sculpture, painting, portrait painting, portrait, sculpture painting, portrait, sculpture
tobacco coffee, cigarette, corn cigarette, cigar, corn cigarette, cigar, smoking
depth size, bottom, meter sea, underwater, level sea, size, underwater
chaos anarchy, despair, demon demon, anarchy, destruction demon, anarchy, shadow

Table 2.2: Ordered top 3 neighbours of example words in purely textual and multi-
modal spaces. Only donut and owl were trained with direct visual information.

Results The state-of-the-art visual CNN features alone perform remarkably well,

outperforming the purely textual model (Skip-gram) in two tasks, and achieving the

best absolute performance on the visual-coverage subset of Simlex-999. Regarding

multimodal fusion (that is, focusing on the visual-coverage subsets), both MMSkip-

gram models perform very well, at the top or just below it on all tasks, with com-

parable results for the two variants. Their performance is also good on the full data

sets, where they consistently outperform Skip-gram and SVD (that is much more

strongly affected by lack of complete visual information). They’re just a few points

below the state-of-the-art MEN correlation (0.8), achieved by [8] with a corpus 3

larger than ours and extensive tuning. MSG-B is close to the state of the art for

Simlex-999, reported by the resource creators to be at 0.41 [40]. Most impressively,

MSG-A reaches the performance level of the [90] model on their SemSim and Vis-

Sim data sets, despite the fact that the latter has full visual-data coverage and uses

attribute-based image representations, requiring supervised learning of attribute clas-

sifiers, that achieve performance in the semantic tasks comparable or higher than that

of our CNN features (see Table 3 in [90]). Finally, if the multimodal models (unsur-

prisingly) bring about a large performance gain over the purely linguistic model on

visual similarity, the improvement is consistently large also for the other benchmarks,

confirming that multimodality leads to better semantic models in general, that can

help in capturing different types of similarity (general relatedness, strictly taxonomic,

perceptual).

While we defer to further work a better understanding of the relation between

multimodal grounding and different similarity relations, Table 2.2 provides qualita-
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tive insights on how injecting visual information changes the structure of semantic

space. The top Skip-gram neighbours of donuts are places where you might en-

counter them, whereas the multimodal models relate them to other take-away food,

ranking visually-similar pizzas at the top. The owl example shows how multimodal

models pick taxonomically closer neighbours of concrete objects, since often closely

related things also look similar [16]. In particular, both multimodal models get rid of

squirrels and offer other birds of prey as nearest neighbours. No direct visual evidence

was used to induce the embeddings of the remaining words in the table, that are thus

influenced by vision only by propagation. The subtler but systematic changes we

observe in such cases suggest that this indirect propagation is not only non-damaging

with respect to purely linguistic representations, but actually beneficial. For the con-

crete mural concept, both multimodal models rank paintings and portraits above less

closely related sculptures (they are not a form of painting). For tobacco, both models

rank cigarettes and cigar over coffee, and MSG-B avoids the arguably less common

“crop” sense cued by corn. The last two examples show how the multimodal models

turn up the embodiment level in their representation of abstract words. For depth,

their neighbours suggest a concrete marine setup over the more abstract measure-

ment sense picked by the MSG neighbours. For chaos, they rank a demon, that is,

a concrete agent of chaos at the top, and replace the more abstract notion of despair

with equally gloomy but more imageable shadows and destruction (more on abstract

words below).

2.5.2 Zero-shot image labeling and retrieval

The multimodal representations induced by our models should be better suited than

purely text-based vectors to label or retrieve images. In particular, given that the

quantitative and qualitative results collected so far suggest that the models propagate

visual information across words, we apply them to image labeling and retrieval in the

challenging zero-shot setup (see Section 2.2 above).3

3We will refer here, for conciseness’ sake, to image labeling/retrieval, but, as our visual vectors
are aggregated representations of images, the tasks we’re modeling consist, more precisely, in labeling
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Setup We take out as test set 25% of the 5.1K words we have visual vectors for.

The multimodal models are re-trained without visual vectors for these words, using

the same hyperparameters as above. For both tasks, the search for the correct word

label/image is conducted on the whole set of 5.1K word/visual vectors.

In the image labeling task, given a visual vector representing an image, we map

it onto word space, and label the image with the word corresponding to the nearest

vector. To perform the vision-to-language mapping, we train a Ridge regression by 5-

fold cross-validation on the test set (for Skip-gram only, we also add the remaining

75% of word-image vector pairs used in estimating the multimodal models to the

Ridge training data).4

In the image retrieval task, given a linguistic/multimodal vector, we map it onto

visual space, and retrieve the nearest image. For Skip-gram, we use Ridge regression

with the same training regime as for the labeling task. For the multimodal models,

since maximizing similarity to visual representations is already part of their training

objective, we do not fit an extra mapping function. For MSG-A, we directly look for

nearest neighbours of the learned embeddings in visual space. For MSG-B, we use

the 𝑀𝑢→𝑣 mapping function induced while learning word embeddings.

Results In image labeling (Table 2.3) Skip-gram is outperformed by both mul-

timodal models, confirming that these models produce vectors that are directly ap-

plicable to vision tasks thanks to visual propagation. The most interesting results

however are achieved in image retrieval (Table 2.4), which is essentially the task the

multimodal models have been implicitly optimized for, so that they could be applied

to it without any specific training. The strategy of directly querying for the nearest

visual vectors of the MSG-A word embeddings works remarkably well, outperforming

on the higher ranks Skip-gram, which requires an ad-hoc mapping function. This

suggests that the multimodal embeddings we are inducing, while general enough to

a set of pictures denoting the same object and retrieving the corresponding set given the name of
the object.

4We use one fold to tune Ridge 𝜆, three to estimate the mapping matrix and test in the last
fold. To enforce strict zero-shot conditions, we exclude from the test fold labels occurring in the
LSVRC2012 set that was employed to train the CNN of [54], that we use to extract visual features.
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P@1 P@2 P@10 P@20 P@50
Skip-gram 1.5 2.6 14.2 23.5 36.1
MSG-A 2.1 3.7 16.7 24.6 37.6
MSG-B 2.2 5.1 20.2 28.5 43.5

Table 2.3: Percentage precision@𝑘 results in the zero-shot image labeling task.

P@1 P@2 P@10 P@20 P@50
Skip-gram 1.9 3.3 11.5 18.5 30.4
MSG-A 1.9 3.2 13.9 20.2 33.6
MSG-B 1.9 3.8 13.2 22.5 38.3

Table 2.4: Percentage precision@𝑘 results in the zero-shot image retrieval task.

achieve good performance in the semantic tasks discussed above, encode sufficient

visual information for direct application to image analysis tasks. This is especially

remarkable because the word vectors we are testing were not matched with visual rep-

resentations at model training time, and are thus multimodal only by propagation.

The best performance is achieved by MSG-B, confirming our claim that its 𝑀𝑢→𝑣

matrix acts as a multimodal mapping function.

2.5.3 Abstract words

We have already seen, through the depth and chaos examples of Table 2.2, that the

indirect influence of visual information has interesting effects on the representation

of abstract terms. The latter have received little attention in multimodal semantics,

with [41] concluding that abstract nouns, in particular, do not benefit from prop-

agated perceptual information, and their representation is even harmed when such

information is forced on them (see Figure 4 of their paper). Still, embodied theo-

ries of cognition have provided considerable evidence that abstract concepts are also

grounded in the senses [10, 56]. Since the word representations produced by MSG-A,

including those pertaining to abstract concepts, can be directly used to search for

near images in visual space, we decided to verify, experimentally, if these near images

(of concrete things) are relevant not only for concrete words, as expected, but also
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for abstract ones, as predicted by embodied views of meaning.

More precisely, we focused on the set of 200 words that were sampled across the

USF norms concreteness spectrum by [50] (2 words had to be excluded for technical

reasons). This set includes not only concrete (meat) and abstract (thought) nouns,

but also adjectives (boring), verbs (teach), and even grammatical terms (how). Some

words in the set have relatively high concreteness ratings, but are not particularly

imageable, e.g.: hot, smell, pain, sweet. For each word in the set, we extracted

the nearest neighbour picture of its MSG-A representation, and matched it with

a random picture. The pictures were selected from a set of 5,100, all labeled with

distinct words (the picture set includes, for each of the words associated to visual

information as described in Section 3.2, the nearest picture to its aggregated visual

representation). Since it is much more common for concrete than abstract words

to be directly represented by an image in the picture set, when searching for the

nearest neighbour we excluded the picture labeled with the word of interest, if present

(e.g., we excluded the picture labeled tree when picking the nearest neighbour of

the word tree). We ran a CrowdFlower5 survey in which we presented each test

word with the two associated images (randomizing presentation order of nearest and

random picture), and asked subjects which of the two pictures they found more closely

related to the word. We collected minimally 20 judgments per word. Subjects showed

large agreement (median proportion of majority choice at 90%), confirming that they

understood the task and behaved consistently.

We quantify performance in terms of proportion of words for which the number

of votes for the nearest neighbour picture is significantly above chance according to a

two-tailed binomial test. We set significance at 𝑝<0.05 after adjusting all p-values with

the Holm correction for running 198 statistical tests. The results in Table 2.5 indicate

that, in about half the cases, the nearest picture to a word MSG-A representation

is meaningfully related to the word. As expected, this is more often the case for

concrete than abstract words. Still, we also observe a significant preference for the

model-predicted nearest picture for about one fourth of the abstract terms. Whether

5http://www.crowdflower.com
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global |words| unseen |words|
all 48% 198 30% 127
concrete 73% 99 53% 30
abstract 23% 99 23% 97

Table 2.5: Subjects’ preference for nearest visual neighbour of words in Kiela et
al. (2014) vs. random pictures. Figure of merit is percentage proportion of significant
results in favor of nearest neighbour across words. Results are reported for the whole
set, as well as for words above (concrete) and below (abstract) the concreteness rating
median. The unseen column reports results when words exposed to direct visual
evidence during training are discarded. The words columns report set cardinality.

freedom theory

god together place

wrong

Figure 2-2: Examples of nearest visual neighbours of some abstract words: on the
left, cases where subjects preferred the neighbour to the random foil; on the right,
cases where they did not.

a word was exposed to direct visual evidence during training is of course making

a big difference, and this factor interacts with concreteness, as only two abstract

words were matched with images during training.6 When we limit evaluation to

word representations that were not exposed to pictures during training, the difference

between concrete and abstract terms, while still large, becomes less dramatic than if

all words are considered.

Figure 4-1 shows four cases in which subjects expressed a strong preference for

the nearest visual neighbour of a word. Freedom, god and theory are strikingly in

agreement with the view, from embodied theories, that abstract words are grounded

in relevant concrete scenes and situations. The together example illustrates how visual

6In both cases, the images actually depict concrete senses of the words: a memory board for
memory and a stop sign for stop.
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data might ground abstract notions in surprising ways. For all these cases, we can

borrow what [42] say about visual propagation to abstract words (p. 260):

Intuitively, this is something like trying to explain an abstract concept like love to a

child by using concrete examples of scenes or situations that are associated with love.

The abstract concept is never fully grounded in external reality, but it does inherit

some meaning from the more concrete concepts to which it is related.

Of course, not all examples are good: the last column of Figure 4-1 shows cases

with no obvious relation between words and visual neighbours (subjects preferred the

random images by a large margin).

The multimodal vectors we induce also display an interesting intrinsic property

related to the hypothesis that grounded representations of abstract words are more

complex than for concrete ones, since abstract concepts relate to varied and composite

situations [11]. A natural corollary of this idea is that visually-grounded representa-

tions of abstract concepts should be more diverse: If you think of dogs, very similar

images of specific dogs will come to mind. You can also imagine the abstract no-

tion of freedom, but the nature of the related imagery will be much more varied.

Recently, [50] have proposed to measure abstractness by exploiting this very same

intuition. However, they rely on manual annotation of pictures via Google Images

and define an ad-hoc measure of image dispersion. We conjecture that the represen-

tations naturally induced by our models display a similar property. In particular, the

entropy of our multimodal vectors, being an expression of how varied the information

they encode is, should correlate with the degree of abstractness of the corresponding

words. As Figure 2-3(a) shows, there is indeed a difference in entropy between the

most concrete (meat) and most abstract (hope) words in the Kiela et al. set.

To test the hypothesis quantitatively, we measure the correlation of entropy and

concreteness on the 200 words in the [50] set.7 Figure 2-3(b) shows that the entropies

of both the MSG-A representations and those generated by mapping MSG-B vec-

tors onto visual space (MSG-B*) achieve very high correlation (but, interestingly,

7Since the vector dimensions range over the real number line, we calculate entropy on vectors
that are unit-normed after adding a small constant insuring all values are positive.
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(a)

Model 𝜌
Word frequency 0.22
Kiela et al. -0.65
Skip-gram 0.05
MSG-B 0.04
MSG-A -0.75
MSG-B* -0.71

(b)

Figure 2-3: (a) Distribution of MSG-A vector activation for meat (blue) and hope
(red). (b) Spearman 𝜌 between concreteness and various measures on the [50] set.

not MSG-B). This is further evidence that multimodal learning is grounding the

representations of both concrete and abstract words in meaningful ways.

2.6 Discussion

We introduced two multimodal extensions of Skip-gram. MSG-A is trained by di-

rectly optimizing the similarity of words with their visual representations, thus forcing

maximum interaction between the two modalities. MSG-B includes an extra medi-

ating layer, acting as a cross-modal mapping component. The ability of the models

to integrate and propagate visual information resulted in word representations that

performed well in both semantic and vision tasks, and could be used as input in sys-

tems benefiting from prior visual knowledge (e.g., caption generation). Our results

with abstract words suggest the models might also help in tasks such as metaphor

detection, or even retrieving/generating pictures of abstract concepts. Their incre-

mental nature makes them well-suited for cognitive simulations of grounded language

acquisition, an avenue we are exploring in the next chapter.
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Chapter 3

Multimodal word meaning induction

from minimal exposure to natural

text

3.1 Introduction

In the previous chapter we presented MSG, a computational learner able to learn

word meanings from both linguistic and extra-linguistic input. While MSG allevi-

ates many of drawbacks of the purely text-based distibutional models of meaning, it

inherites some of their unrealistic learning assumptions. Specifically, in both MSG

and text-based DSMs, the learner is asked to learn the meanings of word after process-

ing corpora containing billions of words. Even simulations focusing on incremental

learning tested performance changes in large steps (e.g., blocks of 100,000 words of

running text in [9]). Humans, however, learn words one-by-one in an incremental

fashion, and they can learn the meaning of new words from very limited exposure.

Often, a single encounter suffices [105]. Can the distributional mechanisms shown by

DSM simulations to be so effective in the long run also play a role in the initial stages

of word learning from limited linguistic context?

There are a priori reasons to be doubtful that this would be the case. By its very
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nature, distributional learning proceeds by progressive accumulation of association

statistics. Single co-occurrences are not expected to be very telling, and it is only af-

ter extended periods of linguistic exposure that robust distributional patterns are ex-

pected to emerge. This is rather problematic if one wants to claim that distributional

learning is a plausible mechanism employed by humans to learn word meaning, as it

suggests that most day-to-day word learning must happen by different mechanisms,

and only at a much later stage (and only for sufficiently frequent words) whatever

has already been learned about a word is complemented with evidence from long-run

distributional learning. Distributional learning thus starts looking like it is largely

redundant with respect to other, more fundamental mechanisms. Indeed, one-shot

learning, our ability to learn from just one example of a new word or concept, is often

mentioned as a strong objection against the cognitive plausibility of distributional

and more generally associationist learning mechanisms (e.g., [55], [105]). We think

that this conclusion might be premature. Since discourses are generally coherent,

even single word co-occurrences might often be at least broadly informative about a

word meaning (a factor we will quantify below), making small-sample distributional

learning generally reliable. Moreover, as a learner is progressively exposed to more

language, we might observe a distributional bootstrapping effect, such that known

words occurring as contexts of a new word help establishing a reasonable distribu-

tional profile for the new term quickly. Thus, in this study we decided to tackle, both

experimentally and through a computational DSM simulation, the issue of whether it

is possible for a learner to induce a reasonable semantic representation of a word from

just very few (minimally 2, maximally 6) occurrences of the word in sentence contexts

sampled to be representative of what one would encounter by chance in natural text

(the minimum is set to 2 occurrences instead of 1 for technical reasons related to how

we build our stimuli). Our results suggest that subjects (and DSMs) can indeed come

up with at least a basic representation of a word meaning from this minimal amount

of purely distributional evidence. We take this to be an important result that, com-

bined with the many studies that have shown how distributional models of meaning

naturally account for many linguistic and psychological phenomena, both at the ag-
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gregate and at the item level, brings strong support for the view that distributional

learning, specifically as implemented in DSMs, constitutes a plausible (although by

no means unique) mechanism explaining our remarkable word learning capabilities.

Despite the theoretical importance of the issue, there is relatively little work fo-

cusing on fast learning of new word meanings from limited contexts. [65] proved that

the distributional characteristics of short made-up linguistic contexts surrounding

rare or nonce words significantly affect subjects’ semantic similarity intuitions about

these words. Recent ERP work has moreover shown that subjects can learn novel

word meanings from minimal exposure to artificial sentences containing the words.

Borovsky and colleagues [13, 12] found that a single exposure to a novel word within

an informative sentence context (i) suffices to trigger plausibility effects (signaled by

N400 patterns) concerning the felicity of the new word as a grammatical object of

an existing verb (for example, after being presented with “He tried to put the pieces

of the broken plate back together with marf ”, subjects displayed a semantic violation

effect for “She drove the marf ”); and (ii) the novel word primes a semantically related

target (as measured by reduction in N400 amplitude) just like a known word would.

Using similar methods, [67] showed that, when a nonce word is presented in highly

informative sentence contexts, three exposures suffice for the word to prime semanti-

cally related terms in a way that is indistinguishable from the effect of a comparable

real word. In all these experiments, contextual effects were triggered by embedding

the novel word in carefully constructed sentences. Thus, the results constitute proof

of principle that, in the presence of highly informative surrounding words, subjects

can learn new word meanings from minimal exposure, but they do not establish the

result beyond artificial contexts. Put differently, they do not tell us whether real

linguistic contexts, of the sort that one would encounter during everyday reading

or conversation, are informative enough for subjects to be able to exploit them for

similarly rapid word learning.

There are two further potential shortcomings that often affect word learning stud-

ies. First, learning a new word is not the same as learning a new meaning. It is

easy to think about situations in which we acquire new words for familiar meanings
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(synonym learning). We may find out, for example, that the buffalo is also called

bison (actually, the latter is a more proper term). One can also attach new meanings

to familiar words, as in the case of polysemy. We may have originally known, for

example, that spam denotes a type of canned meat, and only subsequently extended

the word to denote junk e-mail. However, arguably, most often a speaker must learn

how new words refer to new meanings (e.g., learning the word iPad the first time

you heard about it, or saw one). That is, new word and concept acquisition typi-

cally proceed in parallel. Still, in much of the previous literature on word learning,

including the studies we reviewed, participants are de facto asked to associate new

labels to familiar meanings, that is, they are faced with a synonym learning task. In

the example above, subjects must discover that marf is a new synonym of glue ([67],

report that, in 91% of their informative-condition sentences, subjects were able to

guess the real word masked by the nonsense string, or a closely related term).

Second, the relevant literature follows two main strategies to verify successful

learning. A classic approach is to test if a subject can associate a new word with

the right visual referent: e.g., the subject hears “Oh look, a marf ” while seeing im-

ages of glue and a number of distractors, and the experiment measures whether she

directs her gaze at glue [105]. Being able to pick the right referent is a fundamental

aspect of learning the meaning of a (concrete) word, but, as [12] observe, “our lexical

knowledge is often far richer than simple associations between labels, physical objects

and features. Word representations are complex and multi-faceted. [. . . The] meaning

[of a novel word . . . ] must be appropriately situated within the local context and

dynamic semantic landscape of the mental lexicon.” The studies discussed above ad-

dress this criticism by probing purely language-based semantic properties of the novel

word (e.g., whether it primes a related term). However, this method, in turn, gives up

the link to visual referents as an important component of meaning. Especially when

investigating the role of purely linguistic distributional evidence, it is fundamental

instead to test whether subjects are not only getting lexical relations right (which

might be explained away by relatively superficial textual co-occurrence effects), but

also inferring the likely perceptual properties of the concept they are learning about.
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In the present study, we adopt a novel experimental paradigm that is aimed at

addressing these unrealistic assimptions of current DSM models. First, we do not

employ artificially constructed texts to probe word learning. We extract natural sen-

tences from existing corpora, substituting a target word with a non-word. Second,

inspired by the perception literature, in which “chimeric” images are generated by

mixing visual features of different objects or animals [84], we try to trigger genuine

novel-meaning learning (as opposed to synonym matching) by mixing sentences refer-

ring to two related but distinct words. For example, the context of one of our lexical

chimeras is a small random sample (that we call a passage) of sentences originally

containing either the word bear or the word gorilla, both replaced by the non-word

mohalk. Because gorillas and bears are related, the passage will paint a coherent

picture of mohalks as large mammals, but subjects won’t be able to play a synonym

guessing game, since there is no single word that mohalk is masking. Third, partic-

ipants are asked to evaluate a series of probe items for their similarity to the novel

term meaning, thus going beyond the simple labeling tasks criticized by Borovsky and

colleagues. However, since we aim at testing both strictly linguistic and more general

conceptual knowledge that subjects associate to the novel word, we employ as probe

items both words (Experiment 1), and images (Experiment 2) of objects that are

expected to be more or less related to the chimeric concept. Finally, after measuring

human performance on our distributional learning task, we simulate it with a MSG,

our novel DSM architecture combining linguistic and visual knowledge.

Our results confirm that (i) (adult) subjects can extract basic knowledge about the

meaning of a new word, including both linguistic and visual aspects of the denoted

concept, from a very small number of sentences randomly extracted from natural

texts, and that (ii) a DSM exposed to the same kind of limited evidence induces

multimodal knowledge about the new word in a way that is remarkably similar to

what we observe in subjects.

The rest of the chapter is organized as follows: Section 3.2 describes our exper-

imental materials and introduces the computational model. The two experiments

are reported in sections 3.3 and 3.4, respectively. The final discussion in Section 5.4
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summarizes our main results, and looks at our computational learning method from

the broader perspective of word learning models.

3.2 Experimental setup

3.2.1 Experimental materials

We investigated the generation of novel concepts from short passages in adult human

participants (see, e.g., [34], for general motivation to study word learning in adults).

In particular, we created novel concepts, that we call chimeras, by combining two

related but distinct words, the chimera components. A passage then consisted of a

mixture of natural corpus sentences (minimally 2, maximally 6) that contained the

two components, except that all instances of either component were masked by the

same nonce word. Subjects were induced to believe that the sentences all pertained to

the same novel concept, and they were tested for their intuitions about the meaning of

this novel concept by being asked relatedness judgments between the latter and other

terms, that we call probes. For example, Figure 3-2 below shows materials pertaining

to the chimera with gorilla and bear as components. In one trial, illustrated in the

figure, the shared nonce word masking the components was mohalk. Subjects (and

the computational model) were presented a passage composed of 4 sentences where

instances of gorilla and bear were replaced by mohalk, and immediately asked to rate

the degree of relatedness of mohalk with, e.g., dishwasher or (in a separate trial) lion.

As the figure shows, the probes were presented verbally in Experiment 1 and visually

in Experiment 2.

Chimeras

To obtain the chimeras, we started with 33 basic-level concrete concepts that were

also used by [30] (three of their concepts were excluded due to technical reasons). We

call each of these concepts a pivot, and we match it with another concept, that we

call a compatible term, by using the following procedure. For each pivot, we ordered
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all the terms in the norms of [66] by similarity to the pivot, using the pre-compiled

similarity table available with these concept norms (which is based on conceptual

feature overlap, where concept features were elicited from subjects). We traversed

the resulting ranked lists, picking as compatible term the first word that was not a

synonym, close co-hyponym or hyper-/hyponym of the pivot. Whenever possible, we

tried to match pivot and compatible terms with similar usage (e.g., both mass terms,

or both likely to frequently occur in the plural) and reasonably similar in visual

shape and function. No pivot was picked as compatible term of another pivot, and no

compatible term was repeated across pivots. Except for plane/ship, the compatible

term was always among the 10 most similar items to the pivot (for plane, the most

similar concepts were birds). A chimera is given by the combination of a pivot and

the corresponding compatible term (the chimera components). The first two columns

of Table 3.1 report the full list of matched components forming our chimeras.

Probes

Each chimera was associated with 6 words, whose degree of relatedness to the chimeras

had to be assessed by the subjects based on the limited contexts surrounding the

latter. We refer to such words as probe terms. We obtained probes spread across

the relatedness spectrum by sampling them from different bins based on averaged

McRae-norms similarity to chimera components. Examples of probes sampled in this

way include turnip for the corn/yam chimera (in the top similarity bin according to

the McRae norms) and chipmunk for toaster/microwave (bottom similarity bin).

In order to measure the degree of success of subjects and computational model in

positioning a chimera in the right zone of conceptual space, we needed ground-truth

chimera-probe relatedness (CPR) judgments. Since the chimeras are novel concepts,

we estimated this quantity indirectly, by averaging similarity ratings between the (ex-

plicitly presented) chimera components and the probes, produced by a control group

in a preliminary crowdsourcing experiment [85], using the Crowdflower platform.1

The ratings for the two components of a chimera with each probe were collected sep-

1http://www.crowdflower.com
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arately. Subjects in the control group were given no cue that we intended to combine

such ratings. Subjects were asked to rate the semantic relatedness of each chimera

component word to the corresponding probes, for a total of 396 pairs (66 compo-

nents by 6 probes), using a 7-point scale ranging from 1 (“completely unrelated”) to

7 (“almost the same meaning”). Ten judgments were collected for each pair. In the

instructions, we stressed that we were interested in intuitions concerning word mean-

ings, and that the relation between the element pairs could be more or less strict. The

CPR of a chimera-probe pair was computed as the average rating of the two chimera

components with the probe. For example, given the bear/gorilla chimera and the lion

probe, we used averaged bear-lion and gorilla-lion ratings obtained from the control

group as our CPR estimate.

Since participants’ semantic intuitions about chimeras in the experiments below

were elicited through short text passages that pertain, in equal amounts, to the two

components, it is reasonable to assume that the full chimera concept is an average

of the component meanings (the bear/gorilla chimera denotes an animal somewhere

in-between bears and gorillas), and that the “real” CPR score should be close to that

obtained by averaging component-probe ratings. Note that one chimera’s components

are very similar concepts. Consequently, they will in general have very comparable

similarities to the probes (correlations between ’component’-specific CPRs across all

chimeras and probes are quite high: 𝑟 = .73 for word-to-word judgments and 𝑟 = .69

for the word-to-image judgments we use in Experiment 2 as discussed next). It is thus

unlikely that the CPR scores of a chimera as a genuine separate concept would be very

different from the means of the two component CPR scores. If subjects find both bears

and gorillas very different from a dishwasher, it is probable that they would assign

a similarly low dishwasher score to the bear/gorilla chimera, if such creature existed.

Relatedness scores averaged across the two chimera components worked better as

CPR estimates (in the sense of fitting our experimental results more closely) than

relying on maximum or minimum component-to-probe relatedness. Even using the

ground-truth scores for the most informative component in each passage (in the sense

discussed below) did not lead to an improvement in model fit. To conclude, although
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averaging component CPR scores can only provide an indirect estimate of a chimera’s

CPR score, we have good reasons to believe that such estimate is quite accurate.

For Experiment 2, we replaced the probe words with images of the corresponding

concepts. As seen in Figure 3-2 below, images were not artificially edited to represent

the probe concepts in stereotypical settings. They were instead natural pictures of

the relevant objects (that is, they were shot by amateur or professional photographers

for their own purposes), taken from the ImageNet database we will briefly describe

in Section 3.2.2.

Table 3.1 presents, for each chimera, its components together with the 6 probes

and the respective control-group-generated word- and image-based CPR values. For

example, the first row reports that one chimera was formed by the alligator pivot and

by the compatible term rattlesnake, that the McRae similarity between these concepts

is 0.39 (on a 0-1 scale), that rattlesnake is the second most similar term to alligator in

the McRae norms (thus, it has rank 2 in the sorted neighbour list). It further shows

that the crocodile probe received an average CPR of 4.15 (on a 1-7 scale) with this

chimera when crocodile was presented as a word, and of 4.20 when it was presented

as a picture, and similarly for all the other probes associated to the chimera.

Passages

Each chimera was associated to 10 passages consisting of 6 sentences each (3 sentences

per component). The latter were randomly extracted, in comparable proportions,

from two corpora representative of written and spoken English (British National Cor-

pus)2 and Web texts (ukWaC, see Section 3.2.2 below), respectively (we avoided other

commonly used textual sources likely to provide overly informative text, such as the

Wikipedia). The sentences were manually checked to make sure they did not predi-

cate mutually contradictory properties of the chimera (as the chimera components are

related but different concepts). We also substituted sentences in which a component

word was not used as intended (e.g., bear used as a verb). The sentences were not

edited in any way. On average, they contained 17.6 words each. All occurrences of

2http://www.natcorp.ox.ac.uk
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Pivot Compat. Sim(Rank) Probes
Word-based CPR - Image-based CPR

alligator rattlesnake 0.39 (2) crocodile iguana gorilla banner buzzard shovel
4.15 4.20 2.95 2.65 1.75 1.55 1.15 1.00 2.10 1.40 1.05 1.05

bomb missile 0.64 (1) bazooka gun bayonet bullet buckle canoe
3.60 3.25 3.10 2.55 2.40 2.50 3.85 3.10 1.20 1.10 1.20 1.00

broccoli spinach 0.74 (1) celery radish grape salamander budgie pot
2.80 2.70 2.85 2.30 2.45 1.80 1.40 1.00 1.45 1.00 1.15 1.70

cannon rifle 0.43 (2) pistol bomb harpoon trolley lion bagpipe
3.45 2.80 3.35 2.55 2.55 3.55 1.00 1.20 1.20 1.15 1.20 1.20

car van 0.60 (1) skateboard jeep train fridge shed parakeet
1.70 1.20 5.10 6.05 3.20 2.35 1.25 1.05 1.30 1.05 1.30 1.00

caterpillar cockroach 0.33 (1) beetle grasshopper spider shack porcupine crane
2.90 2.45 3.30 2.85 3.30 2.20 1.20 1.20 1.80 1.80 1.55 1.45

cello bagpipe 0.45 (8) harmonica drum racquet cabin house bolt
2.75 1.80 2.55 1.75 1.20 1.10 1.25 1.15 1.15 1.00 1.30 1.00

clarinet trombone 0.67 (2) banjo gorilla whistle worm dress pine
2.85 2.60 1.15 1.00 2.85 1.60 1.25 1.20 1.20 1.10 1.25 1.00

corkscrew grater 0.38 (5) machete hook crane rocket bookcase pickle
1.55 1.55 1.90 1.25 1.10 1.15 1.10 1.25 1.35 1.15 1.40 1.10

corn yam 0.29 (6) turnip eggplant parsley peach buffalo buggy
3.20 2.50 3.10 2.25 2.80 1.60 2.60 1.80 1.20 1.35 1.15 1.05

cucumber celery 0.66 (1) rhubarb onion pear strawberry limousine cushion
3.15 2.40 3.05 2.45 2.45 1.85 2.60 2.45 1.20 1.00 1.25 1.05

dishwasher oven 0.37 (4) stove microwave kettle cage wastebin leopard
3.60 4.70 3.85 3.40 2.10 1.75 1.15 1.00 1.45 1.10 1.20 1.00

drums tuba 0.55 (2) bagpipe harmonica whistle shotgun bear bouquet
3.05 2.60 2.70 1.90 2.65 1.60 1.20 1.00 1.05 1.10 1.10 1.00

elephant bison 0.46 (5) caribou groundhog hare spider catapult bolt
3.00 2.40 1.90 1.80 2.15 1.45 2.05 1.25 1.10 1.10 1.15 1.05

gorilla bear 0.42 (5) lion horse chipmunk bayonet raisin dishwasher
2.90 1.90 2.15 1.95 2.40 1.80 1.30 1.10 1.25 1.00 1.05 1.00

guitar harpsichord 0.76 (3) tuba racquet barrel shack ladle pumpkin
2.65 2.35 1.30 1.10 1.25 1.05 1.25 1.00 1.20 1.00 1.10 1.05

harp banjo 0.75 (3) harpsichord harmonica peg sled shed bedroom
3.80 2.95 3.20 1.95 1.25 1.00 1.40 1.05 1.35 1.05 1.10 1.00

kettle pan 0.23 (8) toaster bucket hatchet razor pistol helmet
2.25 1.70 2.45 1.30 1.25 1.10 1.15 1.05 1.05 1.05 1.20 1.10

ladle colander 0.51 (3) tongs corkscrew kettle stool pencil sellotape
2.70 1.85 1.55 1.40 2.50 1.40 1.10 1.05 1.25 1.00 1.10 1.10

mittens socks 0.51 (3) sweater boot trousers carpet bra corkscrew
2.15 1.50 2.35 1.80 2.25 1.85 1.25 1.80 2.20 1.35 1.20 1.00

owl partridge 0.61 (2) duck swan jet platypus pig armour
2.60 2.85 3.00 2.00 1.20 1.10 1.85 1.40 2.05 1.80 1.20 1.05

peacock goose 0.70 (2) eagle airplane bear ox crane cucumber
3.30 1.90 1.40 1.10 2.10 1.60 2.35 1.45 2.25 1.00 1.45 1.00

piano accordion 0.61 (3) harpsichord trumpet typewriter penguin olive lettuce
3.70 4.10 3.20 2.10 1.50 1.45 1.20 1.10 1.05 1.05 1.20 1.10

plane ship 0.20 (36) jet yacht hawk stork corkscrew nightgown
4.90 4.45 3.65 3.15 1.25 1.10 1.30 1.30 1.25 1.05 1.10 1.15

potato turnip 0.54 (1) broccoli onion tomato trout cantaloupe cork
2.90 1.95 3.05 2.30 2.85 2.25 1.70 1.30 2.30 3.00 1.20 1.00

refrigerator closet 0.38 (4) cupboard basement mixer dishwasher ladle boat
3.15 2.60 1.65 1.40 1.85 1.20 1.85 2.35 1.40 1.00 1.30 1.05

saxophone harmonica 0.49 (8) clarinet harp buckle wrench urn mackerel
3.60 2.75 3.25 2.25 1.20 1.00 1.05 1.00 1.45 1.10 1.15 1.05

scarf sweater 0.47 (2) glove robe tie swimsuit nylons spear
3.25 2.30 2.95 2.40 3.35 2.15 2.05 1.05 2.55 1.40 1.30 1.00

scooter skateboard 0.50 (5) cart jeep boat toy pencil tomato
2.35 1.30 2.15 1.15 1.65 1.40 3.65 1.00 1.00 1.00 1.05 1.00

toaster microwave 0.55 (3) pot apron kettle tongs cheetah chipmunk
1.90 1.85 1.50 1.50 2.35 2.05 1.85 1.30 1.15 1.05 1.20 1.05

train bus 0.35 (3) jet taxi buggy submarine crane grasshopper
2.70 2.05 2.70 2.45 2.35 2.45 2.15 1.35 1.40 1.60 1.10 1.00

trouser shirt 0.35 (2) pants shawl cape curtain pajama cart
4.25 4.15 2.90 1.60 2.50 2.55 1.50 1.20 3.35 3.90 1.15 1.15

violin flute 0.50 (6) harp drum racquet colander rocket radish
3.20 2.55 2.75 2.05 1.25 1.00 1.15 1.05 1.20 1.15 1.20 1.05

Table 3.1: Chimeras and probes. For each chimera, the table reports, in this order,
the chimera pivot and compatible components, their McRae similarity (and rank of
compatible item among neighbours of pivot) and the probes with (left) word-based
and (right) image-based CPR scores.
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It was illustrated by a picture of Bernie Grant, the black Labour candidate, 
with the hairy body of a MOHALK. [gorilla]

ANCHORAGE-- During September an unusually high number of MOHALKS were sighted 
in Alaska's North Slope oil fields. [bear]

But watch out for nerds running up the down escalators, down the up escalators and generally 
acting as MOHALKS on crack. [gorilla]

Of interest, during these cleaning activities he unearthed what appeared to be a 
trap wedged in a crack. [bear]

Experiment 1

Experiment 2

DISHWASHER LION

MOHALK

Figure 3-1: Example of the materials used in an experimental trial for the gorilla/bear
chimera, corresponding to the nonce string MOHALK (the original word in each
sentence, shown in squared brackets, was not presented to subjects). Unrelated and
related probes are shown bottom left and right, respectively (in Experiment 1, only
word probes were presented, in Experiment 2, only images).

either original component in a passage were replaced with the same non-word (for

example, all the occurrences of gorilla and bear in a given passage were replaced

by mohalk). The 330 non-words (33 chimeras by 10 passages) were generated using

WUGGY [48]. They were 2- or 3-syllable-long nonsense strings respecting English

orthotactics, and not containing productive affixes (e.g., -ing).

In order to quantify the amount of context that is needed to learn new meanings,

we manipulated the number of sentences by creating shorter passages from the original

ones. Three possible passage length levels were considered (2, 4, 6 sentences), each of

them including an even number of sentences for either component (incidentally, this

is the reason why we can’t go down to 1 occurrence per chimera).

We calculated an a-posteriori estimate of passage informativeness with respect to

the chimeras they contain. A passage is informative if it contains words that are de-

scriptive of the chimera component concepts: e.g., a bear/gorilla passage containing

words such as fur or animal, that are likely to be used in definitions or prototypical

descriptions of bears and gorillas, is more informative than a passage that does not

contain such words. Concretely, the informativeness score of a passage is the number
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of distinct words in the passage that are identified as properties of the component

concepts in the conceptual norms of [66]. We checked that informativeness was dis-

tributed not only across different passages, but also within each chimera. The average

informativeness range was 0-4.5, going from car-van (with an informativeness range

of 0-2) to caterpillar-cockroach and guitar-harpsicord (with an informativeness range

of 0-7). Moreover, the correlation between passage length and informativeness was

relatively low (𝑟 = .38), indicating that one variable could not be reduced to the

other.

One possible concern with our design is that many passages could be so informative

about the chimera components that subjects could have guessed these items and based

their ratings on them, rather than trying to infer a genuinely new meaning from the

passage. To address this concern, we ran an additional crowdsourcing experiment via

Crowdflower. In this control experiment, we asked subjects if they could guess the

word or words that were masked in each of the 330 6-sentence passages. A total of 101

subjects took part in the experiment. Each passage was presented to 10 subjects, and

a single subject could maximally rate 50 passages. Note that, whereas the subjects of

our main experiments, to be introduced below, were instructed to think of the passages

as involving a new concept, the current control group was explicitly instructed to try

to guess existing words for the masked slots. Moreover, unlike the main experiment

subjects, the control group was told that different sentences in the same passages

could involve different masked words, and they were allowed to list more than one

word per passage. Given these differences, this control experiment is testing a worst-

case scenario, in which no main-experiment subject followed our instructions, they

decided to use a word-guessing strategy instead, and they also figured out that the

passages might refer to different concepts. Despite the facilitated setup, for only 17%

of the passages more than half of subjects were able to guess at least one of the two

chimera components. However, in many of these cases the subjects guessed a chimera

component simply because they produced a list of related concepts, that included

the component. For example, for an harmonica/saxophone passage, a subject wrote

harp, guitar, bass, saxophone, suggesting he/she understood that the passage referred
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to a musical instrument, but he/she was not really able to tell which one. But this

is exactly the sort of effect we are after, with subjects being able to tell that the

“new” harmonica/saxophone chimera is an instrument, without being able to map it

precisely to a existing one. The proportion of passages in which more than half the

subjects were able to guess at least one chimera component without also producing

irrelevant concepts is 10%. There is no single passage for which more than half the

subjects were able to guess both chimeras.

3.2.2 Computational model

Model training

Simulating the acquisition of adult-like competence, we pre-train MSG-B (see Chap-

ter 2) on ukWaC, a text corpus of about 2 billion running words from random Web

pages.3 We associate all corpus occurrences of 3,825 distinct concrete words (about

5% of the total word tokens) with their visual representations. These words are se-

lected as follows: They must have an entry in ImageNet (see next paragraph), occur

at least 500 times in ukWaC and have concreteness score ≥ 0.5 according to [106].

There were 5,100 words matching these constraints, but 25% of them (1,275) were

set apart to estimate the mapping function described in the next section. In total,

116 out of the 155 probes and 50 out of the 66 chimera components were associated

to visual representations during training.

Visual representations are obtained by randomly sampling 100 images labeled

with the word of interest from ImageNet [23], a large database of “natural” pictures

downloaded from the Web and annotated with words. We automatically extract a

4096-dimensional vector from each image using the Caffe toolkit [43], together with

the state-of-the-art convolutional neural network of [54]. Convolutional neural net-

works, taking inspiration from biological vision, extract multiple layers of increasingly

abstract features from images. Our vectors correspond to activation on the top (fc7)

layer of the network, that captures complex, gestalt-like shapes [121]. For compu-

3http://wacky.sslmit.unibo.it
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tational reasons, we reduce the vector to 300 dimensions through Singular Value

Decomposition. The visual representation of a word is simply the centroid of the

vectors of the 100 images labeled with the word.

The following hyperparameters are fixed without tuning: word vector dimension-

ality: 300; subsampling: 𝑠=0.001; window size: 𝑐=5. The following hyperparameters

are tuned on the text9 corpus:4 𝑘=5, 𝛾=0.5, 𝜆=0.0001. The remaining model pa-

rameters are estimated by back-propagation of error via stochastic gradient descent

on the input corpus and associated visual representations.

Simulating relatedness judgments

Given the passage in which a chimera occurs, simulating the chimera-to-probe (CPR)

relatedness judgments requires the generation of a vector representation for the chimera

(that, recall, from the participants’ point of view, is a novel word only occurring in

the passage). Taking inspiration from early work on contextualizing word meaning

in DSMs [86], we represent a chimera in a sentence context as the centroid of the

MSG vectors of all other (known) words in the sentence. The centroids obtained

from each sentence in a passage are normalized and averaged to derive the passage-

based chimera vector. This approach can leverage more information (harnessing the

full vectors of all words in the passage) than simply updating a new chimera vector

in a single step of the MSG prediction task.

In Experiment 1, we quantify the degree of relatedness of chimera and probe word

by measuring the cosine formed by the angle of the chimera vector (constructed as

just described) and the pre-trained MSG vector of the probe word.

In Experiment 2, we need to measure the relatedness of the chimera with an

image probe. To represent the probe, we extract a visual feature vector from the

image presented to subjects with the same convolutional neural network used for

MSG training (see previous section). Since the probe and the chimera vectors lay in

different spaces (visual and linguistic, respectively), their mutual relatedness cannot

be directly assessed as in Experiment 1. The two representations could be connected

4http://mattmahoney.net/dc/textdata.html
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in two ways: by estimating a linguistic equivalent of the probe visual vector by means

of a vision-to-language mapping function, or, alternatively, inducing a visual vector

from the chimera linguistic vector through the inverse mapping. We report results

obtained with the former procedure because the resulting relatedness scores were

more in line with human judgments.

Specifically, we learn to map visual representations onto linguistic space. The

mapping, consisting of weight matrix 𝑀 𝑣2𝑤, is induced with a max-margin ranking

loss objective, analogously to what is done in MSG estimation. The loss for pairs of

visual and linguistic training items (x𝑖,y𝑖) and the corresponding mapping-derived

predictions ŷ𝑖 = 𝑀 𝑣2𝑤x𝑖 is defined as

𝑘∑︁
𝑗 ̸=𝑖

max{0, 𝛾 − cos(ŷ𝑖,y𝑖) + cos(ŷ𝑖,y𝑗)} (3.1)

where 𝛾 and 𝑘 are tunable hyperparameters denoting the margin and the number of

negative examples, respectively. The optimal hyperparameters 𝛾 = 0.7 and 𝑘 = 2

were chosen on a set of 300 validation concepts from the training set. To train

the mappings, we use word and visual representations derived from 1,275 concrete

concepts (selected as described in the previous section). We estimate the mapping

parameters 𝑀 𝑣2𝑤 with stochastic gradient descent and per-parameter learning rates

tuned with AdaGrad [24].

3.3 Experiment 1: Estimating relatedness of chimeric

concepts to word probes

3.3.1 Methods

Participants

Participants were recruited through crowdsourcing, and in particular using the Crowd-

flower platform. As is standard for Crowdflower studies, participants were free to

abandon a job at any time, and there were no restrictions on how many jobs a par-
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It was illustrated by a picture of Bernie Grant, the black Labour candidate, 
with the hairy body of a MOHALK. [gorilla]

ANCHORAGE-- During September an unusually high number of MOHALKS were sighted 
in Alaska's North Slope oil fields. [bear]

But watch out for nerds running up the down escalators, down the up escalators and generally 
acting as MOHALKS on crack. [gorilla]

Of interest, during these cleaning activities he unearthed what appeared to be a 
trap wedged in a crack. [bear]

Experiment 1

Experiment 2

DISHWASHER LION

MOHALK

Figure 3-2: Example of the materials used in an experimental trial for the gorilla/bear
chimera, corresponding to the nonce string MOHALK (the original word in each
sentence, shown in squared brackets, was not presented to subjects). Unrelated and
related probes are shown bottom left and right, respectively (in Experiment 1, only
word probes were presented, in Experiment 2, only images).

ticipant could perform. The subjects eventually participating in the experiment were

213. As an average, each chimera was rated by 143 distinct subjects.

Procedure

Relatedness ratings between the chimeras in each passage and the associated probes

were collected. Passage length and probes were counterbalanced across items using a

Latin-square design, so that a given combination of passage and probe appeared only

once in each list. Each of the resulting 18 lists (6 probes by 3 passage lengths) included

330 items (33 chimeras by 10 passages). Each list was administered as a separate

Crowdflower job, resulting in a full within-subject design (that is, participants were

presented all possible levels of factorial predictors, and a representative distribution

of continuous predictors). In order to avoid large familiarity effects between different

lists, jobs were presented in separate days. Moreover, non-words were randomized

across lists, so that each non-word was associated to a different passage in each list.

Participants were asked to judge how related a familiar word (the probe) was to

the concept denoted by the unknown word in the presented sentence. An example
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trial is presented in Figure 3-2 (ignore the images). Participants were told that the

unknown word could be thought of as referring to a new or very rare concept, or to

a thing that might exist in the parallel universe of a science fiction saga. We also

specified that the relation could be stricter or looser, and that we were specifically

interested in the word meanings, rather than forms or sounds. Relatedness was rated

on a 5-point scale. Seven judgments were collected for each item.5

Data analysis

Human ratings were analyzed through mixed-effects models [4] including random

intercepts for subjects and chimeras. The main predictor was CPR. In the analysis

we also included covariates as potential modulators of this effect. We considered

the interaction of CPR with passage informativeness. Moreover, passage length was

also made to interact with CPR, to assess whether the raw amount of contextual

information contributes to the quality of the generated novel representation. All

predictors were mean-centered. We started from a full factorial model, and removed

effects that did not contribute significantly to the overall fit. Having identified the

best model, atypical outliers were identified and removed (employing 2.5 SD of the

residual errors as criterion). The models were then refitted to ensure that the results

were not driven by a few overly influential outliers. Statistics of the refitted models

are reported.

To assess the performance of MSG, we ran the same statistical analysis using as

dependent variable MSG-generated passage-based chimera-probe similarity scores in

place of human intuitions. The only difference with respect to the analysis of human

behavior is that, in the case of model predictions, there are no subjects as aggregation

unit, resulting in a simpler random effect structure including only the chimera random

intercept. The rationale behind this approach is that a good computational model

should not (only) be correlated with human scores, but, more importantly, reproduce

the statistical structure subtending behavioral measures: for example, if we observe a

5The full datasets of Experiment 1 and Experiment 2 are available from: http://clic.cimec.
unitn.it/Files/PublicData/chimeras.zip
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particular interaction in the analysis of participants’ response, this very same pattern

should be observed in the computational simulation predictions (see [5], for a similar

approach). Still, we also report direct correlation between average human ratings and

model predictions.

As an additional control, we further tested the data by including random slopes in

the statistical models. These random parameters are meant to capture the variability

of a given fixed effect (e.g., CPR) between a series of aggregator units (e.g., subjects),

and permit to evaluate whether the considered fixed effect is reliably observed across

the considered units. Random slopes of each included predictor were tested in associ-

ation with chimeras for the analysis on model data, and in association with chimeras

and subjects for the analysis on human data. Random slopes were included in the

model only if their contribution to the overall model fit was significant. This was

tested by a goodness-of-fit test comparing the model before and after the inclusion of

the additional random parameter.

3.3.2 Results

Table 3.2 presents a summary of the data collection results for the first experiment.

Figure 3-3 represents the association between the two dependent variables (human

ratings and model predictions) with respect to the observed data points. This direct

correlation is at a highly significant 𝑟 = .39 (𝑝 = .0001). Figure 3-4 represents the as-

sociation between CPR and human responses (left-hand panel) and model predictions

(right-hand panel).

Table 3.3 and Figure 3-5 report the results of the mixed-effects analysis on human

responses and model predictions. As a result of the outlier-removal procedure, 3.4%

of the data points were excluded from the human-rating dataset, and 2.3% of the

data points were excluded from the model-prediction dataset.

Subject results are reported in the first three columns of Table 3.3. We observe

a significant interaction between CPR and informativeness: the more informative

the presented sentences are, the more markedly subject intuitions match ground-

truth CPR. This is also evident from the left panel of Figure 3-5, representing the
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Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6
Low inf. 2.65 2.56 2.39 2.31 2.06 2.02
Medium inf. 2.75 2.73 2.41 2.29 2.07 2.07
High inf. 2.87 2.72 2.42 2.27 2.08 2.03
2 sentences 2.71 2.69 2.42 2.28 2.07 2.02
4 sentences 2.74 2.68 2.41 2.28 2.06 2.05
6 sentences 2.83 2.67 2.40 2.31 2.09 2.05

Table 3.2: Rating distributions in Experiment 2. Average ratings (in different
columns) are reported for set of probes grouped and ranked by their ground-truth
CPR, crossed with passage informativeness (upper table) and passage length (lower
table).

Predictor Human responses Model predictions
b SEM t b SEM t

Intercept 2.138 0.066 32.44 0.166 0.007 21.87
Informativeness 0.019 0.005 5.73 0.008 0.001 10.49
CPR 0.305 0.003 65.96 0.056 0.001 51.27
Informativeness * CPR 0.031 0.004 8.48 0.008 0.001 9.56

Table 3.3: Experiment 1 (word probes): Results when analyzing either human re-
sponses or model predictions.

interaction captured in the mixed-effects analysis. Different lines in the plot represent

the effect of (mean-centered) CPR at different level of informativeness: the higher

the informativeness, the steeper the slope, the more aligned human reponses are to

ground-truth CPR. Moreover, the plot shows how the effect of CPR is evident also for

trials in which informativeness is very low. This crucially indicates that participants

are able to learn something meaningful from contexts that are not only short, but

also poor in explicit evidence. Passage length (that is, the number of sentences

forming the context) has no significant modulation on participants’ performance (and

consequently it is not part of the final model): even when only two sentences are

presented, the CPR effect does not significantly decrease.

The next set of columns in Table 3.3 reports the results when testing the MSG

scores for passage-based chimera representations and probes. The pattern is close to

what observed for human responses: we found no reliable effect of passage length,

and a significant interaction between CPR and informativeness. The latter is also
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Figure 3-3: Experiment 1 (word probes): association between by-item average hu-
man responses and model predictions. Yellow circles: 2-sentence passages; orange
triangles: 4-sentence passage; red squares: 6-sentence passages.

qualitatively very similar to the one found for human participants (compare left and

right panel of Figure 3-5).

The mixed-effects models significantly improved following the inclusion of CPR

random slopes for subjects and chimeras (human rating analysis) and for chimeras

(model prediction analysis). However, the reported effects (Table 3.3) still hold fol-

lowing the inclusion of random slopes, and the pattern of results remains consistent

with the one reported in Figure 3-5.
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Figure 3-4: Experiment 1 (word probes): association between CPR and by-item
average human responses (left-hand panel) and between CPR and model predictions
(right-hand panel). Yellow circles: 2-sentence passages; orange triangles: 4-sentence
passage; red squares: 6-sentence passages.

3.4 Experiment 2: Estimating relatedness of chimeric

concepts to image probes

3.4.1 Methods

Participants

As for Experiment 1, participants were recruited through the Crowdflower platform.

Eventually, 168 subjects participated in Experiment 2. As an average, each chimera

was rated by 120 distinct subjects.

Procedure

We used the same materials and followed the same procedure as in Experiment 1

above, running 18 separate Crowdflower jobs on as many lists generated through a
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Figure 3-5: Experiment 1 (word probes): Interaction between informativeness and
CPR for human responses (left panel) and model predictions (right panel).

Latin-square design. The only difference is that probe words were substituted with

images of the corresponding concepts, and ground-truth CPR scores (see Section 3.2.1

above) based on component-word-to-probe-image similarity judgments.

Participants were asked to rate the relatedness between the meaning denoted by

the unknown word and the presented image. In the instructions, we stressed the visual

aspect of the task, asking participants to base their ratings on their impression, from

the passage, of how the unknown concept would look like.

Data Analysis

The data were analyzed as described above for Experiment 1.
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Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6
Low inf. 2.52 2.33 2.23 2.12 1.87 1.85
Medium inf. 2.59 2.37 2.19 2.05 1.86 1.82
High inf. 2.71 2.49 2.19 2.01 1.82 1.82
2 sentences 2.59 2.39 2.20 2.08 1.86 1.86
4 sentences 2.60 2.41 2.20 2.02 1.85 1.82
6 sentences 2.65 2.40 2.20 2.06 1.84 1.79

Table 3.4: Rating distributions in Experiment 2. Average ratings (in different
columns) are reported for set of probes grouped and ranked by their ground-truth
CPR, crossed with passage informativeness (upper table) and passage length (lower
table).

3.4.2 Results

Table 3.4 presents a summary of the results of the data collection for the second ex-

periment. Figure 3-6 represents the association between the two dependent variables

with respect to the observed data points. The correlation between them is at 𝑟 = .34

(𝑝 = .0001). Figure 3-7 represents the association between CPR and human responses

(left-hand panel) and model predictions (right-hand panel).

Table 3.5 and Figure 3-8 report the results of the mixed-effects analysis on human

responses and model predictions. As a result of the outlier-removal procedure, 1.6%

of the data points were excluded from the human-rating dataset, and 2.1% of the

data points were excluded from the model-prediction dataset.

Results parallel Experiment 1. First, we observe significant effects of CPR, infor-

mativeness and their mutual interaction. Second, the modulation of passage length

did not hold against the statistical controls, and was hence removed from the model.

Third, the overall pattern observed in human judgments and model predictions is

similar.

Also in this case, the mixed-effects models significantly improved following the

inclusion of random slopes. Both CPR and informativeness random slopes (associated

to both subjects and chimeras in the human rating analysis, and to chimeras in the

model prediction analysis) significantly improved the model fit. Again, this more

complex random structure does not change the overall pattern of the reported effects.
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Figure 3-6: Experiment 2 (image probes): association between by-item average hu-
man responses and model predictions. Yellow circles: 2-sentence passages; orange
triangles: 4-sentence passage; red squares: 6-sentence passages.

One advantage of a model closely mimicking subject behaviour, such as MSG,

is that it can offer insights on the inner workings of word meaning formation. As

an example of the possibilities offered by computer simulations, Figure 3-9 visualizes

how MSG “imagines” the thing denoted by a novel word, based solely on the word

representation it extracted from a single passage. We stress that what we report

here is just an informal analysis of these visualizations, providing preliminary quali-

tative insight into how distributional concept formation might work, and we leave a

systematic study using this methodology to future work.

To generate the images in Figure 3-9, we first obtained a visual vector by mapping

the relevant passage-based chimera representation to visual space (using a mapping

function from linguistic to visual representations analogous to the inverse one de-

scribed in Section 3.2.2 above). Then, we retrieved the 50 pictures in our image pool

(Section 3.2.2) whose visual feature vectors were nearest to the mapped chimera,

and we superimposed them. Intuitively, if we have never seen an object, we might
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Figure 3-7: Experiment 2 (image probes): association between CPR and by-item
average human responses (left-hand panel) and between CPR and model predictions
(right-hand panel). Yellow circles: 2-sentence passages; orange triangles: 4-sentence
passage; red squares: 6-sentence passages.

associate it to a mental image that is an average of those objects that we think are

similar: Before ever seeing a papaya, we might expect it to look somewhere in between

a mango and a banana (see [60], for further details on this image generation method).

The first two images in the figure correspond to two-sentence passages about

the caterpillar/cockroach chimera. The first passage was “easy” for subjects (in the

sense that averaged passage-based judgments across probes were highly correlated

with ground-truth CPR, 𝑟 = 0.95), and indeed, when deriving its representation of

the novel word from this context, MSG visualizes a brownish blob in the middle

of green, suggesting a very sketchy bug. The second passage is harder (subjects-

CPR correlation: 𝑟 = 0.46), and MSG is misled by the metaphorical usage in the

second sentence, visualizing a city landscape. The third passage (pertaining to the

potato/turnip chimera) is relatively easy for subjects (𝑟=0.71), as well as for MSG,

that is clearly pushed by the first sentence to emphasize the edible aspect of the
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Predictor Human responses Model predictions
b SEM t b SEM t

Intercept 2.245 0.056 39.98 0.045 0.006 7.81
Informativeness 0.014 0.004 3.75 0.004 0.001 6.08
CPR 0.346 0.006 56.93 0.033 0.001 31.05
Informativeness * CPR 0.039 0.005 8.55 0.006 0.001 7.45

Table 3.5: Experiment 2 (image probes): Results when analyzing either human re-
sponses or model predictions.

chimera. The fourth passage was particularly difficult (𝑟 = 0.07), and again we see

how MSG is also misled (the image seemingly dominated by peppermint and/or field).

3.5 Discussion

Despite the fact that distributional learning is typically seen as a long-term process

based on large-corpus statistics, our experimental and computational results suggest

that this mechanism supports the construction of a reasonable semantic representation

as soon as a new word is encountered.

Our experimental data confirmed that purely linguistic distributional evidence

constitutes a precious source of information in acquiring word meaning, and that very

limited amounts of uncontrolled text, of the sort one naturally encounters in everyday

life, suffice for human participants to form reasonably accurate semantic representa-

tions, that involve both intuitions about the position of the concepts denoted by the

new words in language-based semantic space (Experiment 1), and predictions about

their visual aspect (Experiment 2).

Contrary to expectations about evidence accumulation in incremental learning,

the length of the passage presented to subjects had no effect on the quality of the

representations they extracted. The length difference of our stimuli was limited,

ranging from 2 to 6 sentences, and it is likely that more marked differences will

significantly impact human performance. Still, the present results indicate that, when

evidence is very limited, human learning is mostly determined by the quality of the

supplied information (captured here by the informativeness measure), rather than by
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Figure 3-8: Experiment 2 (image probes): Interaction between informativeness and
CPR on human responses (left panel) and model predictions (right panel).

its quantity.

A version of the MSG distributional semantic model, that we equipped with

adult-like semantic competence by pre-training it on natural linguistic and image

data, performed the word learning tasks in ways that are remarkably close to those

of human subjects. Indeed, the reported simulations mirror the interaction between

informativeness and CPR observed in our participants, suggesting that the model is

not just generating cognitively plausible representations, but also exploiting, in this

process, the same type of information that guides human learning.

Our results suggest that the simple context-prediction mechanisms encoded in

MSG might suffice to explain the human ability to extract conceptual representations

from minimal textual contexts. Specifically, MSG has been trained to produce word

representations that are highly predictive of the linguistic contexts in which words

occur, and of the visual features of the objects that they denote. Such architecture,
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caterpillar/cockroach

1) 2) 3) 4)

potato/turnip

1) Their food consists of virtually any invertebrate small enough to swallow, including grasshoppers, spiders and enefies.
    Returning home, they were half way through a portion of lime pickles before finding a 25mm-long enefy in the food.
2) The enefies come in two colour forms - black and a yellow green, both with yellow markings down each flank.
    If capitalism can be credited with historic levels of prosperity for many, the inner city is the enefy at its heart.
3) It started with a green salad, followed by a mixed grill with rice, chips and scrunts.
    I may be wrong but I don't think scrunts would give their farmers the same profit margin as opium poppies.
4) If we insert a gene for making oil of peppermint, we'll end up with peppermint flavoured scrunts.
    The field was resown with ordinary scrunt, which only now is starting to make headway.

Figure 3-9: How MSG visualizes the novel word in each of 4 passages, two constructed
from caterpillar/cockroach contexts, and two from potato/turnip contexts.

when presented with a new word in a passage, can immediately derive a linguistic

representation for the word by interpolating over the known words in the context.

This produces a representation for the new term that can be used to estimate its

degree of relatedness to other words. Moreover, through cross-modal mapping, the

model can simulate human intuitions about how the new concept must look like. In

this perspective, the MSG architecture plausibly illustrates how previously acquired

knowledge (both linguistically and visually connoted) is exploited to generate novel

representations when a new word is first encountered.

The feature-level associationist learning process implemented in MSG can be seen

as complementary to the widely studied cross-situational statistics tracking methods

needed to link words to their referents [95]. The MSG learning procedure assumes

that the right referent of (a subset of) words is known, and it relies on visual properties

of referents (as well as linguistic contexts) to build word meaning representations.

It is thus natural to assume that MSG learning operates on input that has been

referentially disambiguated through standard cross-situational word-referent linking.

On the other hand, MSG captures aspects of learning that are problematic for

classic cross-situational models. For example, it can explain why similarity and con-

text play an important role in the computation and retention of cross-situational

statistics [109]: similar instances of an object will have similar visual features, speed-

ing up learning. It can explain why word learning, as [95] put it, is “incremental and
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slow”, and simply associating a new word to a new referent in an unambiguous context

(“fast mapping”) is not guarantee of genuine word learning, that is, full understanding

and long-term retention of the word meaning. In the MSG model, the meaning (=

vector) of a word is updated at each encounter with the word based on linguistic

and visual contexts, as well as indirect influence from other words whose meaning

is being constructed in the same representational space. Thus, meaning is indeed

acquired incrementally: As our experiments showed, the model can already build a

rough sketch of a word meaning from very few exposures, but the representation will

keep becoming more precise (leading to better linguistic and cross-modal prediction)

as more evidence is seen. Finally, by learning also from purely linguistic contexts,

MSG accounts for abstract words, or even learning about concrete terms in absence

of a referent, which remains a mystery for standard cross-situational learning models.

In the future, we intend to pursue the issue of whether word-level cross-situational

learning and feature-level MSG-style learning have to be treated as connected but

distinct processes, or if they can instead be unified into a single computational archi-

tecture.
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Chapter 4

Attentive Social Multimodal

Skip-gram Model

4.1 Introduction

In the previous chapters we introduced MSG, a model of semantic learning that

enriches linguistic vectors with extra-linguistic informantion captured in real images.

While we showed that MSG is an effective learner, even in case of minimal exposure

to natural text, it makes strong assumptions not found in real learning scenarios.

First, so far we assumed that we know the right object to be associated with a word,

i.e., when somebody utters “cat” our learner knows exactly were to look in order to

extract extra-linguistic information for learning the meaning of “cat”. However, this

is clearly unrealistic during language acquisition, since children apriori do not know

the meaning of words (moreover, cats do not carry labels!). Second, MSG induced

word meaning by being presented with arbitrarily chosen sentences and objects that

did not belong to a real learning episode, i.e., (Wikipedia) senteces were paired with

(ImageNet) objects even though the former were not uttered in the presence of the

latter.

In this chapter, we address all this limitations and present the Attentive Social

Multimodal Skip-gram Model. Like the original MSG, our model learns multi-

modal word embeddings by reading an utterance sequentially and making, for each
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word, two sets of predictions: (a) the preceding and following words, and (b) the visual

representations of objects co- occurring with the utterance. However, unlike MSG,

we do not assume we know the right object to be associated with a word. We consider

instead a more realistic scenario where multiple words in an utterance co-occur with

multiple objects in the corresponding scene. Under this referential uncertainty, the

model needs to induce word-object associations as part of learning, relying on current

knowledge about word- object affinities as well as on any social clues present in the

scene. Moreover, the objects to be presented alongside text are not chosen arbitralily.

Instead, we use CHILDES Database [63], a corpus of transcribed interactions between

children and their caregives, that contains (among others) multi-modal information

in the form of which objects were present during these interactions (see Section 4.4).

Finally, while multi-modal semantic learning has focused so far on incorporating

extra-linguistic information extracted from images of objects, in this chapter we take a

step towards incorporating social cues that are found in real communicative episodes

between people, i.e., eye-gaze, gestures, body posture. Social cues reflect speakers’

intentions and generally contribute to the unfolding of the communicative situation

[100]. Moreover, in the context of language learning it, children who engage in joint

attention (e.g. looking at particular objects together) with their caregivers have shown

learn words faster [18]. As a first step towards developing full-fleged learning systems

that leverage all signals available within a communicative setup, in our extended

model we incorporate information regarding the objects that caregivers are holding.

4.2 Related Work

Computational models of word learning typically approximate the perceptual context

that learners are exposed to through artificial proxies, e.g., representing a visual scene

via a collection of symbols such as cat and dog, signaling the presence of a cat, a dog,

etc. [119, 27, inter alia].1 While large amounts of data can be generated in this way,

1See [44] for a recent review of this line of work, and another learning model using, like ours, real
visual input.
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they will not display the complexity and richness of the signal found in the natural

environment a child is exposed to.

There is however work on learning from multimodal data [82, 118, a.o.] as well as

work on learning distributed representations from child-directed speech [9, 51, a.o.],

to the best of our knowledge ours is the first method which learns distributed rep-

resentations from multimodal child-directed data. For example, in comparison to

[118]’s model, our approach (1) induces distributed representations for words, based

on linguistic and visual context, and (2) operates entirely on distributed represen-

tations through similarity measures without positing a categorical level on which to

learn word-symbol/category-symbol associations. This leads to rich multimodal con-

ceptual representations of words in terms of distributed multimodal features, while in

Yu’s approach words are simply distributions over categories. It is therefore not clear

how Yu’s approach could capture phenomena such as predicting appearance from a

verbal description or representing abstract words–all tasks that our model is at least

in principle well-suited for. Note also that [29]’s Bayesian model we compare against

could be extended to include realistic visual data in a similar vein to Yu’s, but it

would then have the same limitations.

Our work is also related to research on reference resolution in dialogue systems,

such as [47]. However, unlike Kennington and Schlangen, who explicitly train an ob-

ject recognizer associated with each word of interest, with at least 65 labeled positive

training examples per word, our model does not have any comparable form of supervi-

sion and our data exhibits much lower frequencies of object and word (co-)occurrence.

Moreover, reference resolution is only an aspect of what we do: Besides being able to

associate a word with a visual extension, our model is simultaneously learning word

representations that allow us to deal with a variety of other tasks—for example, as

mentioned above, guessing the appearance of the object denoted by a new word from

a purely verbal description, grouping concepts into categories by their similarity, or

having both abstract and concrete words represented in the same space.
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4.3 Attentive Social MSG Model

Similar to the standard skipgram, the model’s parameters are context word embed-

dings W′ and target word embeddings W. The model aims at optimizing these

parameters with respect to the following multi-task loss function for an utterance 𝑤

with associated set of objects 𝑈 :

𝐿(𝑤,𝑈) =
𝑇∑︁
𝑡=1

(ℓ𝑙𝑖𝑛𝑔(𝑤, 𝑡) + ℓvis(𝑤𝑡, 𝑈)) (4.1)

where 𝑡 ranges over the positions in the utterance 𝑤, such that 𝑤𝑡 is 𝑡th word. The

linguistic loss function is the standard skip-gram loss [68]. The visual loss is defined

as:

ℓvis(𝑤𝑡, 𝑈) =
𝑆∑︁

𝑠=1

𝜆𝛼(w𝑡,u𝑠)𝑔(w𝑡,u𝑠) + (1− 𝜆)ℎ(u𝑠)𝑔(w𝑡,u𝑠) (4.2)

where w𝑡 stands for the column of W corresponding to word 𝑤𝑡, u𝑠 is the vector

associated with object 𝑈𝑠, and 𝑔 the penalty function

𝑔(w𝑡,u𝑠) =
∑︁
u
′
max(0, 𝛾 − cos(w𝑡,u𝑠) + cos(w𝑡,u′)), (4.3)

which is small when projections to the visual space w𝑡 of words from the utterance are

similar to the vectors representing co-occurring objects, and at the same time they

are dissimilar to vectors u′ representing randomly sampled objects. The first term

in Eq. 4.2 is the penalty 𝑔 weighted by the current word-object affinity 𝛼, inspired

by the “attention” of [6]. If 𝛼 is set to a constant 1, the model treats all words in

an utterance as equally relevant for each object. Alternatively it can be used to

encourage the model to place more weight on words which it already knows are likely

to be related to a given object, by defining it as the (exponentiated) cosine similarity

between word and object normalized over all words in the utterance:

𝛼(w𝑡,u𝑠) =
exp(cos(w𝑡,u𝑠))∑︀
𝑟 exp(cos(w𝑟,u𝑠))

(4.4)
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let me have that

ahhah whats this

what does mom look like with the hat on

do i look pretty good with the hat on

Figure 4-1: Fragment of the IFC corpus where symbolic labels ring and hat have been
replaced by real images. Red frames mark objects being touched by the caregiver.

The second term of Eq. 4.2 is the penalty weighted by the social salience ℎ of the

object, which could be based on various cues in the scene. In our experiments we set

it to 1 if the caregiver holds the object, 0 otherwise.

We experiment with three versions of the model. With 𝜆 = 1 and 𝛼 frozen to 1,

the model reduces to the original MSG, but now trained with referential uncertainty.

The Attentive MSG sets 𝜆 = 1 and calculates 𝛼(w𝑡,u𝑠) using Equation 4.4 (we use

the term “attentive” to emphasize the fact that, when processing a word, the model

will pay more attention to the more relevant objects). Finally, Attentive Social

MSG further sets 𝜆 = 1
2
, boosting the importance of socially salient objects.

All other hyperparameters are set to the values found by [59] to be optimal after

tuning, except hidden layer size that we set to 200 instead of 300 due to the small

corpus (see Section 4.4). We train the MSG models with stochastic gradient descent

for one epoch.

4.4 The Illustrated Frank et al. Corpus

[29] present a Bayesian cross-situational learning model for simulating early word

learning in first language acquisition. The model is tested on a portion of the Rollins

section of the CHILDES Database [63] consisting of two transcribed video files (me03

and di06), of approximately 10 minutes each, where a mother and a pre-verbal infant
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play with a set of toys. By inspecting the video recordings, the authors manually

annotated each utterance in the transcripts with a list of object labels (e.g., ring,

hat, cow) corresponding to all midsize objects judged to be visible to the infant while

the utterance took place, as well as various social cues. The dataset includes a gold-

standard lexicon consisting of 36 words paired with 17 object labels (e.g., hat=hat,

pig=pig, piggie=pig).2

Aiming at creating a more realistic version of the original dataset, akin to sim-

ulating a real visual scene, we replaced symbolic object labels with actual visual

representations of objects. To construct such visual representations, we sample for

each object 100 images from the respective ImageNet [23] entry, and from each image

we extract a 4096-dimensional visual vector using the Caffe toolkit [43], together with

the pre-trained convolutional neural network of [54].3 These vectors are finally aver-

aged to obtain a single visual representation of each object. Concerning social cues,

since infants rarely follow the caregivers’ eye gaze but rather attend to objects held

by them [120], we include in our corpus only information on whether the caregiver is

holding any of the objects present in the scene. Note however that this signal, while

informative, can also be ambiguous or even misleading with respect to the actual ref-

erents of a statement. Figure 4-1 exemplifies our version of the corpus, the Illustrated

Frank et al. Corpus (IFC).

Several aspects make IFC a challenging dataset. Firstly, we are dealing with lan-

guage produced in an interactive setting rather than written discourse. For example,

compare the first sentence in the Wikipedia entry for hat (“A hat is a head covering”)

to the third utterance in Figure 4-1, corresponding to the first occurrence of hat in

our corpus. Secondly, there is a large amount of referential uncertainty, with up to 7

objects present per utterance (2 on average) and with only 33% of utterances explic-

itly including a word directly associated with a possible referent (i.e., not taking into

account pronouns). For instance, the first, second and last utterances in Figure 4-1 do

not explicitly mention any of the objects present in the scene. This uncertainty also

2http://langcog.stanford.edu/materials/nipsmaterials.html
3To match the hidden layer size, we average every k = 4096/200 original non-overlapping visual

dimensions into a single dimension.
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Model Best-F
MSG .64 (.04)
AttentiveMSG .70 (.04)
AttentiveSocialMSG .73 (.03)
ASMSG+shuffled visual vectors .65 (.06)
ASMSG+randomized sentences .59 (.03)
BEAGLE .55
PMI .53
Bayesian CSL .54
BEAGLE+PMI .83

Table 4.1: Best-F results for the MSG variations and alternative models on word-
object matching. For all MSG models, we report Best-F mean and standard deviation
over 100 iterations.

extends to social cues: only in 23% of utterances does the mother explicitly name an

object that she is holding in her hands. Finally, models must induce word–object as-

sociations from minimal exposure to input rather than from large amounts of training

data. Indeed, the IFC is extremely small by any standards: 624 utterances making

up 2,533 words in total, with 8/37 test words occurring only once.

4.5 Experiments

We follow the evaluation protocol of [29] and [52]. Given 37 test words and the

corresponding 17 objects (see Table 4.2), all found in the corpus, we rank the objects

with respect to each word. A mean Best-F score is then derived by computing, for

each word, the top F score across the precision-recall curve, and averaging it across

the words. MSG rankings are obtained by directly ordering the visual representations

of the objects by cosine similarity to the MSG word vectors.

Table 4.1 reports our results compared to those in earlier studies, all of which

did not use actual visual representations of objects but rather arbitrary symbolic

IDs. Bayesian CSL is the original Bayesian cross-situational model of [29], also

including social cues (not limited, like us, to mother’s touch). BEAGLE is the best

semantic-space result across a range of distributional models and word-object match-
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ing methods from [52]. Their distributional models were trained in a batch mode,

and by treating object IDs as words so that standard word-vector-based similarity

methods could be used to rank objects with respect to words. Plain MSG is outper-

forming nearly all earlier approaches by a large margin. The only method bettering

it is the BEAGLE+PMI combination of Kievit-Kylar et al. (PMI measures direct

co-occurrence of test words and object IDs). The latter was obtained through a grid

search of all possible model combinations performed directly on the test set, and

relied on a weight parameter optimized on the corpus by assuming access to gold

annotation. It is thus not comparable to the untuned MSG.

Plain MSG, then, performs remarkably well, even without any mechanism at-

tempting to track word-object matching across scenes. Still, letting the model pay

more attention to the objects currently most tightly associated to a word (AttentiveMSG)

brings a large improvement over plain MSG, and a further improvement is brought

about by giving more weight to objects touched by the mother (AttentiveSocialMSG).

As concrete examples, plain MSG associated the word cow with a pig, whereas

AttentiveMSG correctly shifts attention to the cow. In turn, AttentiveSo-

cialMSG associates to the right object several words that AttentiveMSG wrongly

pairs with the hand holding them, instead.

One might fear the better performance of our models might be due to the skip-

gram method being superior to the older distributional semantic approaches tested by

[52], independently of the extra visual information we exploit. In other words, it could

be that MSG has simply learned to treat, say, the lamb visual vector as an arbitrary

signature, functioning as a semantically opaque ID for the relevant object, without

exploiting the visual resemblance between lamb and sheep. In this case, we should

obtain similar performance when arbitrarily shuffling the visual vectors across object

types (e.g., consistently replacing each occurrence of the lamb visual vector with,

say, the hand visual vector). The lower results obtained in this control condition

(ASMSG+shuffled visual vector) confirm that our performance boost is largely due

to exploitation of genuine visual information.

Since our approach is incremental (unlike the vast majority of traditional distri-
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butional models that operate on batch mode), it can in principle exploit the fact that

the linguistic and visual flows in the corpus are meaningfully ordered (discourse and

visual environment will evolve in a coherent manner: a hat appears on the scene, it’s

there for a while, in the meantime a few statements about hats are uttered, etc.). The

dramatic quality drop in the ASMSG+randomized sentences condition, where At-

tentiveSocialMSG was trained on IFC after randomizing sentence order, confirms

the coherent situation flow is crucial to our good performance.

Minimal exposure. Given the small size of the input corpus, good performance

on the word-object association already counts as indirect evidence that MSG, like

children, can learn from small amounts of data. In Table 4.2 we take a more specific

look at this challenge by reporting AttentiveSocialMSG performance on the task

of ranking object visual representations for test words that occurred only once in

IFC, considering both the standard evaluation set and a much larger confusion set

including visual vectors for 5.1K distinct objects (those of [59]). Remarkably, in all

but one case, the model associates the test word to the right object from the small

set, and to either the right object or another relevant visual concept (e.g., a ranch for

moocows) when the extended set is considered. The exception is kitty, and even for

this word the model ranks the correct object as second in the smaller set, and well

above chance for the larger one. Our approach, just like humans [105], can often get

a word meaning right based on a single exposure to it.

Generalization. Unlike the earlier models relying on arbitrary IDs, our model is

learning to associate words to actual feature-based visual representations. Thus, once

the model is trained on IFC, we can test its generalization capabilities to associate

known words with new object instances that belong to the right category. We focus

on 19 words in our test set corresponding to objects that were normed for visual

similarity to other objects by [90]. Each test word was paired with 40 ImageNet

pictures evenly divided between images of the gold object (not used in IFC), of a

highly visually similar object, of a mildly visually similar object and of a dissimilar
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word gold 17 objects 5.1K objects
object nearest r nearest r

bunny bunny bunny 1 bunny 1
cows cow cow 1 lea 7
duck duck duck 1 mallard 4

duckie duck duck 1 mallard 3
kitty kitty book 2 bookcase 66

lambie lamb lamb 1 lamb 1
moocows cow cow 1 ranch 4

rattle rattle rattle 1 rattle 1

Table 4.2: Test words occurring only once in IFC, together with corresponding gold
objects, AttentiveSocialMSG top visual neighbours among the test items and in a
larger 5.1K-objects set, and ranks of gold object in the two confusion sets.

one (for duck : duck, chicken, finch and garage, respectively). The pictures were

represented by vectors obtained with the same method outlined in Section 4.4, and

were ranked by similarity to a test word AttentiveSocialMSG representation.

Average Precision@10 for retrieving gold object instances is at 62% (chance: 25%).

In the majority of cases the top-10 intruders are instances of the most visually related

concepts (60% of intruders, vs. 33% expected by chance). For example, the model

retrieves pictures of sheep for the word lamb, or bulls for cow. Intriguingly, this

points to classic overextension errors that are commonly reported in child language

acquisition [80].

4.6 Discussion

Our very encouraging results suggest that multimodal distributed models are well-

suited to simulating human word learning. We think the most pressing issue to move

ahead in this direction is to construct larger corpora recording the linguistic and

visual environment in which children acquire language, in line with the efforts of

the Human Speechome Project [83, 81]. Having access to such data will enable us to

design agents that acquire semantic knowledge by leveraging all available cues present

in multimodal communicative setups beyond visual context, such as learning agents
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word gold nearest Accuracy top10
bear bear bear 20%
book book book 70%
books book book 70%
cow bull cow 50%
cows cow cow 50%

moocow bull cow 50%
moocows cow cow 60%

bird duck duck 50%
birdie duck duck 70%
duck duck duck 70%

duckie duck duck 70%
lamb lamb lamb 70%

lambie lamb lamb 70%
mirror mirror mirror 20%
oink pig pig 90%
pig pig pig 80%

piggie pig pig 70%
piggies pig pig 70%

Table 4.3: Generalization experiment. Search space of each concept containing 40
elements. 10 gold, 10 visually similar, 10 less similar, 10 random

that can automatically predict eye-gaze [79] and incorporate this knowledge into the

semantic learning process.
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Chapter 5

Towards Multi-Agent

Communication-Based Language

Learning

5.1 Introduction

One of the most ambitious goals of AI is to develop intelligent conversational agents

able o communicate with humans and assist them in their tasks. Thus, solving lan-

guage processing is a key step toward such agents. In the previous chapters, we

aimed at designing computational learners that learn language without strong super-

vision (see Attentive Social MSG presented in Chapter 4) within communicative

episodes in the form of recorded multimodal interactions between children and their

caregivers. However, training on canned conversations does not allow these “passive”

learners to experience the interactive aspects of conversations. While this paradigm

is a good way to learn general statistical associations (in the case of Attentive So-

cial MSG, these would consist in associations between words and their referents in

the external world) it focuses on the structure of language rather than on its purpose,

that is, the fact that we use words to make things happen [3]!

In the language community, after the seminal work on the “blocks-world” environ-
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ment of [115], we are now experiencing a revival of interest in language learning frame-

works that are centered around communication and interaction (e.g., the Roadmap of

[69] or the more recent dialogue-based learning proposal of [112]). Similar trends are

also taking place in other fields of Artificial Intelligence, witness the revival of interest

in game playing with the recent ground-breaking results of DQN on Atari [73] and

AlphaGo [91], following precursors such as DeepBlue [17] and TD-Gammon [104].

Focusing on language, current approaches to communication-based language learn-

ing simulate interactive environments in diverse ways, e.g., by having agents inter-

acting directly with humans or other scripted agents. Both approaches exhibit po-

tentially important limitations. The human-in-the-loop approach (e.g., the SHRLDU

program of Terry Winograd, robots learning via interacting with humans as in [103])

faces serious scalability issues, as active human intervention is obviously required at

each step of training. Scripted Wizard-of-Oz environments [69] shift the burden of

heavy manual engineering from the learning agent to designing the right behaviour

for the programmed teaching agents.

In this chapter, we are proposing a radically different research program, namely

multi-agent communication-based language learning within a multimodal environment.

The essence of this proposal is to let computational agents co-exist, so that their co-

existence constitutes the interactive environment. In this multi-agent environment,

agents need to collaborate to perform a task, and we hypothesize that (with the right

priors and constraints) developing language production and understanding will be

prerequisites to successful communication. Note that we are not suggesting that the

“passive” setup should be abandoned, as, even in the interactive paradigm, large-scale

statistical learning is expected to be important, e.g., to let agents discover how to

produce grammatical sentences, how to recognize object categories in general or even

how to provide generic descriptions of what is present in a scene. Still, interaction is

required for many other tasks, that only make sense within a communicative setup,

e.g., how to refer to specific things, or how to ask a good question or respond to it.

Several points make this proposal attractive. First of all, this framework requires

minimum human intervention for designing agents, the environment and its physics,
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hank you! Thank you!

Agent A1 Agent A2

blue this!

Figure 5-1: Schematic representation of the referential game. Agent A1 has to de-
scribe the dashed object with an attribute. Agent A2, has to guess which object A1
was referring to. In this example, the agents agree on the referent, so the commu-
nicative act was successful.

e.g, rewards, although humans do still need to specify the nature of the tasks that

agents need to perform. Computational agents will co-exist (co-operate or antagonize)

and self-organize freely, interacting with each other and being encouraged to learn

in order to achieve communication. For example, imagine the simple case in which

an agent needs to have some object that some other agent possesses, and she starts

asking for it in various ways. Only when she manages to make herself understood she

will be able to get hold of that object. The sort of learning taking place in such setup

will have to be based on active request for information, and it will probably foster

incremental agreement by interaction.

We start by considering the most basic act of communication, namely referring

to things. We design multimodal riddles in the form of referential games (see Figure

5-1) [33]. The speaker in this game is asked to refer to one of the visible objects by

uttering an expression. The listener, who sees the same objects but has no knowledge

regarding which object the speaker was asked to describe, needs to identify it based

on the speaker’s expression. Similar simulations with signaling games have been

studied in traditional literture of the emergence of language (see, e.g., [111] and [94]

for surveys). While there is much there to be learned for our situation, given the

focus of these works on studying the origins of language, the simulations from this

period were rather restricted with respect to the nature and size of of input data,
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i.e, mostly artificial input and small networks. In this work, we are arguing in favor

of a multi-agent communication framework as the foundation of building machines

that can communicate with us, thus focusing on more realistic data/input and less

assumptions about their nature.

Importantly, the agents start in a tabula rasa state. They do not possess any

form of language or understanding. They have no prior notion of the semantics of

words. Meanings are assigned to words (that is, the arbitrary symbols used in our

initial simulations) by playing the game and are reinforced by communication success.

Thus, agents can agree to any sort of conceptualization and assign to any word any

kind of interpretation that help them effectively solve the tasks. This essentially

aligns with the view of [116] that language meaning is derived from usage.

We will report next a set of pilot experiments showing that, while it is feasible,

within this multi-agent environment, to learn efficient communication protocols suc-

ceeding in the referential game, such protocols might not necessarily be aligned with

the sort of semantics that exists in natural language. Interestingly, in the seminal

language evolution experiment “Talking Heads” of [99], when two robots were left free

to interact with each other, they developed an artificial language bearing little re-

semblance to natural language. Thus, we anticipate that, if we want to move forward

with this research programme, grounding the agents’ communication into natural lan-

guage will be crucial, since our ultimate goal is to be able to develop agents capable

of communication with humans.

5.2 A two-agent referential game simulation

5.2.1 The game

We propose a simple referential game with 2 agents, A1 and A2. The game is defined

as follows:

∙ A1 is shown a visual scene with two objects and is told to describe the referent

with a word that constitutes the referring expression (RE ).
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ReferIt Objects Shapes

visual scenes
gold terms yellow hamster limegreen

#unique images 22.5k 46k 2.4k
#visual scenes 25k 495k 100k
#gold terms 3467 100 18

Table 5.1: Examples of ⟨𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡⟩ pairs from our 3 datasets. Referents are
marked with a green square.

∙ A2 is shown the same visual scene without information on which is the referent,

and given the RE has to “point” to the intended object

∙ if A2 points to the correct object, then both agents receive a game point.

Note that this game resembles the ReferItGame [46] played by humans and designed

to collect RE annotations of real scenes.

We observe that this is a co-operative game, i.e., our agents must work together

to achieve game points. A1 should learn how to provide accurate expressions that

discriminate the object from all others, and A2 should be good at interpreting A1’s

REs in the presence of the objects, in order to point to the correct one. Thus, with

this game A1 and A2 learn to perform referring expression generation and reference

resolution respectively.

5.2.2 Visual Scenes

Our current setup consists of visual scenes with only two objects, the referent and the

context. Towards this end, we created 3 games from 3 different datasets by controlling

the type of objects being paired in the visual scene. Each dataset focuses on some

particular aspect of the referential game.

While our framework does not require obtaining gold annotations for the RE of

the referent, we apply a number of heuristics to annotate each ⟨referent, context⟩
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pair with gold words acting as REs. This will allow us to conduct various analyses

regarding the nature of the semantics that the agents assign to the induced words.

Table 5.1 exemplifies an instance of the game for the different scenarios, and reports

descriptive statistics for the 3 datasets.1

ReferIt The first game scenario uses data derived from the ReferItGame [46]. In its

general format, ReferItGame contains annotations of bounding boxes in real images

with referring expressions produced by humans when playing the game. In order

to create plausible visual situations consisting of two objects only, we synthesize

scenes by pairing each referent (as denoted by a bounding box in the image) with a

distractor context that comes from the same image (i.e., some other bounding box in

the image). Each bounding box in the initial RefetItGame is associated with a RE,

which we pre-process to eliminate stop words, punctuation and spatial information,

deriving single words attributes. We then follow a heuristic to obtain the gold words

acting as the referring expression for a given ⟨referent, context⟩ pair, by selecting

words that were produced to describe the intended referent but not the context.

The rationale for this decision is that a necessary condition for achieving successful

reference is that REs accurately distinguish the intended referent from any other

object in the context [21]. For maximizing the quality of the generated gold words,

(i) we disregarded any distractor context whose bounding box overlapped significantly

with the referent’s bounding box and (ii) we disregarded distractor contexts that had

full word overlap with the referent, thus resulting in a null referring expression for

the ⟨referent, context⟩ pair.

Objects To control for the complexity of the visual scenes and words while main-

taining real images, we created a simpler dataset in which referent and context are

always different objects. For a list of 100 concrete objects ranging across different

categories (e.g., animal, furniture etc), we synthesized ⟨referent, context⟩ pairs by

taking all possible combinations of objects and, for each object, sampling an image

1Our datasets will be made available.
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from the respective ImageNet [23] object label entry. The RE/gold words for a given

pair is then straightforwardly obtained by using the object name of the referent.

Shapes Finally, we introduce a third dataset which controls for the complexity that

real images have, while allowing referent and context to differ in a diverse number

of words, exactly like in real scenes. Following [1], we created a geometric shapes

dataset consisting of images that contain a single object. We generate such single-

object images by varying the values of 6 types of attributes and follow a similar

approach as in the ReferIt dataset to annotate ⟨referent, context⟩ pairs with gold

words (i.e., by taking the difference of the attributes in the referent and context).2

5.2.3 Agent Players

Agent A1 (Referring Expression Generation) Agent A1 is performing a task

analogous to referring expression generation. Unlike traditional REG research [22,

72, 46] that produces phrases or words as RE, in our current framework, agent A1

learns to predict a single word that discriminates the referent from the context. Note

however that word meaning is not pre-defined. Instead, it emerges “on-demand” via

their usage in the referential game. In particular, ideally agent A1 will learn to

associate the words to systematic configurations of lower-level perceptual features

present in the images. In the current experiments, the words are simply represented

by numerical indices, but it would of course be trivial to associate such indices with

phonetic strings.

Figure 5-2 illustrates the network architecture of A1. The model is presented with

the two images that constitute a visual scene. We assume that agents are already

equipped with a pre-trained visual system that converts the raw pixel input of the

referent and the context to higher-level visual vectors v (i.e., activation patterns on a

high layer of a pre-trained convolutional network. For games using the ReferIt and

Objects dataset we used the pre-trained VGG-network [92]. For the Shapes, given

2The 18 attributes grouped by type: shape=⟨triangle, square, circle⟩, border color=⟨fuchsia,
indigo, crimson, cyan, black, limegreen, brown, gray⟩, horizontal position=⟨up, down⟩, vertical
position=⟨right, left⟩, shape size=⟨small, medium, big⟩
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Figure 5-2: Neural network of player A1. In this particular game, A1 produces the
reference vector that activates word_2 as the RE, which is going to be passed over to
A2.

that the nature of the images is different from that of usual ImageNet data used to

train these networks, we trained our own model. Specifically, we trained a smaller

network, i.e., AlexNet [54] on predicting bundles of two words. For both models, we

use the second-to-last fully connected layer to represent images corresponding to 4096-

D vectors. These visual vectors are mapped into word vectors of dimensionality |𝑉 |

(cardinality of all available words, where this vocabulary size parameter is decided

by the experimenter), with weights Ma ∈ R4096×|𝑉 | shared across the two objects.

Intuitively, this layer learns which words are active for specific objects.

Pairwise interactions between word vectors of referent and context are captured

in the discriminative layer. This layer, processes, for each word, the two units, one

for each object, and by applying a linear transformation with weights Md ∈ R2×ℎ,

followed by a sigmoid activation function, finally derives a single value by another

linear transformation with weights MD ∈ Rℎ×1, producing 𝑑𝑣 which encodes the

degree of discriminativeness of word 𝑣 for the specific referent. The same process with

the same shared weights Md and MD, across words is applied to all words 𝑣 ∈ 𝑉 ,
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to derive the estimated discriminativeness vector d. Finally, the discriminativeness

vector is converted to a probability distribution, from which the player samples one

word 𝑎 acting as the referring expression. This word is encoded in the reference vector

with one-hot like representation, and is passed over to A2. The learnable parameters

of A1 are 𝜃𝐴1 = ⟨Ma,Md,MD⟩.

A1 does not receive supervised data regarding the words that are appropriate in

pictures, nor regarding which words should be used to refer to the referent. The

only supervision regarding the “goodness” of words to the given ⟨referent, context⟩

pair comes from the success of the interaction between the agents while playing the

referential game.

Agent A2 (Reference Resolution) For the purposes of the game, A2 needs to

perform a task similar to reference resolution. Given the same visual input as A1 (we

assume that the agents share the same visual system) and the produced word 𝑎, A2

has to choose which of the 2 objects in the scene is the intended referent. Note that

A2 sees the two images in random order.

attribute layer

pre-trained
visual model

visual vectors

o1

reference 

vector

dot product

o2

soft-max and sampling

Ma' Ma'

Figure 5-3: Network of A2. In this example, given the two objects and the reference
vector encoding the predicted word produced by A1, she correctly predicts that the
referent is the second object.

Following this reasoning, we design a simple implementation of A2 depicted in

Figure 5-3. A2 is presented with the two objects 𝑜1 and 𝑜2, without knowing which is
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Figure 5-4: Communication success across different datasets over training epochs.
For each dataset, we vary the number of words available in the vocabulary of the
agents, with the corresponding curves depicted in different colors in the figure Note:
Best viewed in color.

the referent, and embeds them into a word space using weights shared across the two

objects Ma′ ∈ R4096×|𝑉 |.3 Note, that as is in the case of A1, A2 will receive no direct

image-word supervision. The resulting word vectors encode how active the words

are across the two objects. Following that, A2 computes the dot product similarities

between the reference vector (i.e., the one-hot representation of the selected word 𝑎)

and the word vectors of the objects. Intuitively, the reference vector encodes which

word characterizes the referent best in the current context and as a result, the dot

similarity will be high if the word 𝑎 is very active in the word vector. These two

dot similarities are converted to a probability distribution 𝑝(𝑜|𝑜1, 𝑜2, 𝑎) over the two

image indices, and one index is sampled indicating which of the two objects is the

chosen referent. The learnable parameters of A2 are just 𝜃𝐴2 = ⟨Ma′⟩

5.3 Experiments

5.3.1 General Training Details

The parameters of the 2 agents, 𝜃 = ⟨𝜃𝐴1, 𝜃𝐴2⟩, are learned jointly while playing the

game. The only supervision used is communication success, i.e., whether the agents

agreed on the referent. This setup can be naturally modeled with Reinforcement

3While we could tie Ma′
and Ma, here we do not enforce any such constraint, essentially allowing

the agents to develop their own “visual” understanding.
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Learning [102]. Under this framework, the parameters of the agents implement a

policy. By executing this policy, the agents perform actions, i.e., A1 picks a word

and A2 picks an image. The loss function that the two agents are minimizing is

−IE𝑜∼𝑝(𝑜|𝑜1,𝑜2,𝑎)[𝑅(𝑜)], where 𝑜1 and 𝑜2 are the 2 objects in the visual scene, 𝑝(𝑜|𝑜1, 𝑜2, 𝑎)

is the conditional probability over the 2 objects as computed by A2 given the objects

and the word produced by A1, and 𝑅 is the reward function which returns 1 iff 𝑜 =

referent. The parameter updates are done following the Reinforce update rule [114].

We do mini-batch updates, with a batch-size of 32 and train in all datasets for 3.5k

iterations.4

The agents are trained and tested separately within each dataset. At test time,

visual scenes (i.e., combination of referent and contexts images) are novel but indi-

vidual images might be familiar. For test and tuning we use 1k visual scenes, and

leave the rest for training (see Table 5.1 for exact numbers).

5.3.2 Results

Our pilot experiments aim to ascertain whether our proposal can result in agents that

learn to play the game correctly. Moreover, given that the agents start from a clean

state (i.e., they possess no prior semantics other than the relatively low-level features

passed to them through the visual vectors), it is worth looking into the nature of the

induced semantics of the words. Simply put, is communication-based learning enough

to allow agents to use the words in such a way that reflects high-level understanding

of the images?

Can agents learn to develop a communication protocol within the refer-

ential game? Figure 5-4 shows the communication success performance, i.e., how

often the intended referent was guessed correctly by A2 (chance guessing would lead

to 0.5 performance). Overall, agents are able to come up with a communication pro-

tocol allowing them to solve the task, but it takes them approximately 500 iterations

(i.e., 16k training examples) before they start communicating effectively. This is to

4The model-specific hidden size of discriminative layer hyperparameter is set to 20.
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be expected, as the agents have no knowledge of the game rules nor of how to refer

to things, and must induce both by observing the rewards they receive. Moreover,

fewer words in the vocabulary translates to faster, but not necessarily better learn-

ing. As a sanity check, we restricted the vocabulary to 2 words only. In this case,

the agents also came close to solving the task (and that was done faster than in the

other cases), although without approaching 100% performance, a tendency observed

across the datasets. At first glance this might seem suspicious; even if we, as humans,

use language flexibly through polysemy, still it will not be possible to come up with

2 words being able to reliably distinguish all possible combinations of objects!

However, when we closely inspected the way A1 used the 2 words (e.g., by looking

into the induced weights Ma), it became clear that the agent was in a sense “cheating”.

Instead of communicating about high-level semantics, the agents agreed to exploit the

words to communicate about low-level embedding properties of ⟨referent, context ⟩

pairs (e.g., pick word 1 if the value in dimension 3 is greater in the referent than

the context etc). While this might seem odd, such strategies are in fact the best

in order to communicate efficiently with only 2 words. This resembles the so-called

conceptual pacts that humans form to make conversation more efficient, i.e., mutually

agreeing in using “unconventional” semantics to refer to things [14]. Still, the “words”

discovered in this way have a very ad-hoc meaning that will not generalize to any

useful task beyond the specifics of our game, and we would not want the agents to

learn them. We thus turn now to an analysis of the semantic nature of the induced

words when the agents have a larger vocabulary available than just 2 words, to see

if they learn more general meanings, corresponding to (clusters of) high-level visual

properties such as “red” or “cat”.

What is the meaning of the induced words? Revealing the semantics assigned

to the induced words 𝑎 is not trivial. We tested whether the semantics of the induced

words align with the semantics of the referring expressions as expressed by the gold

terms. We focused on the Objects and Shapes datasets that have a relatively small

number of words (100 and 18 respectively) and trained the agents using as word
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Figure 5-5: Inferred alignment of gold terms to the induced ones in the Shapes
dataset.

vocabulary size |𝑉 | 100 and 18 respectively. After the training, we assign to each

induced word 𝑎 the gold term that appears most often in the annotations of the

⟨referent, context⟩ pairs for which 𝑎 was predicted by A1, enforcing a 1-1 mapping

(an induced word can by paired only with one gold word). A1 had a tendency not

to make use of all the available words 𝑎 in the vocabulary, thus either using words

in a polysemous way, or assigning them some semantics different than the one that

the gold terms encode. As an example, we plot in Figure 5-5 the inferred alignment

between induced and gold terms in the Shapes dataset.

Irrespective of the exact interpretation of words, meanings induced within this

referential framework should be consistent across ⟨referent, context⟩ pairs. For exam-

ple, if an agent used the word red to refer to the object X in the context of Y, then

red cannot be used again to refer to the object Z in the context of X, since red is also

a property of the latter. However, the “cheating” approach we reported above for the

2-word case, in which the same word is used communicate about whether a low-level

feature is higher in the referent or the context, would not respect this consistency

constraint, as X might have a higher value of the relevant feature when compared to

Y but lower with respect to Z.

To capture this, we devised a measure that we termed “referential inconsistency”

(RI ). Specifically, for each image 𝑖 we compute a set 𝑅(𝑖) containing all the induced
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words
datasets ReferIt Objects Shapes

2 1.0 1.0 1.0
100 0.0 0.03 0.05

Table 5.2: Proportion of referentially inconsistent words, i.e., 𝑅𝐼(𝑎) > 0, across
different datasets and with different word vocabulary size |𝑉 |. Smaller values reflect
consistent use.

words that were activated when 𝑖 was in the referent slot and 𝐶(𝑖) in the context slot.

Then, the referential inconsistency 𝑅𝐼 of a word 𝑎 is computed as
∑︀

𝑖 [𝑎∈𝑅(𝑖)∩𝐶(𝑖)]∑︀
𝑖 [𝑎∈𝑅(𝑖)∪𝐶(𝑖)]

,

which counts the number of images for which 𝑎 was both in the referent and context

sets, normalized by the times it appears in either. Ideally, this value should be 0, as

this happens when it was never the case that an induced word was activated both

when an image was in the referent and in the context slot.

Table 5.2 reports the proportion of induced active words that have 𝑅𝐼 > 0 across

datasets (smaller values reflect consistent use of words). As expected, when commu-

nicating with 2 words only, agents do not seem to be using them in a semantically

meaningful way, since referential consistency is violated. However, we ought to men-

tion that it is also possible is that the agents in this case have learned to assign a

comparative meaning to words [76]. Imagine that we pair an image of Mona Lisa

once with an image of a frowning face as the context, and once with an image of a

broadly smiling face. It would be acceptable then to use “the smiling one” to denote

Mona Lisa in the first pair, but it would also be possible to refer in this way to the

more overtly smiling face in the second case, as Mona Lisa is more smiley than the

frowning face, but definitely less so than a fully smiling face! In any case, for all

datasets, with 100 words referential consistency is largely respected.

Finally, we consider a third way to assess the degree to which the induced words

reflect the intuitive semantic properties of the images. Our hypothesis is that, if the

induced words are used coherently across visually similar referents, then they should

reflect properties that are typical of the class shared by the referents (e.g., “furry” for

mammals). For this experiment, we focus on the Objects dataset that is annotated
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Figure 5-6: Pairwise cosine similarities of gold terms in induced-word vector space in
the Objects dataset when ordered randomly (up) and according to their category
(down).

with 100 gold terms denoting the objects depicted in the pictures (e.g., cat, dog etc).

For each gold term 𝑔, we construct a vector that records how often the induced

word 𝑎 was used for a ⟨referent, context⟩ pair that was annotated with 𝑔, essentially

representing gold terms in a vector space with induced words as dimensions. We then

compute the pairwise cosine similarities of the gold terms in this vector space, plotted

in Figure 5-6 up. As is, there is no structure in the similarity matrix. However, if we

organize the rows and columns in the similarity matrix, as in Figure 5-6 down, so

that objects of the same category cluster together (e.g., the first 2 rows and columns

correspond to appliances, the next 4 to fruits), then a pattern along the diagonal

starts to emerge, suggesting that the induced words reflect, at least to same degree,

the similarity that exists between objects of the same category.

5.4 Discussion

We have presented here a proposal for developing intelligent agents with language

capabilities, that breaks away from current passive supervised regimes. Agents co-

exist and are able to interact with each other. In our proposed framework we do

not restrict the number of agents, nor their role in the games, i.e., we envision a

community of agents that all interact with each other having to perform different

tasks and taking turns in them, requiring them to either co-operate or antagonize in

min-max sort of zero-sum games, in which agents aim at minimizing the opponents
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gain (e.g., as in the case of the famous tic-tac-toe game).

In our test case, we considered the most basic act of communication, i.e., learning

to refer to things, and we designed a “grounded” co-operative task that takes the form

of referential games played by two agents. The first experiments, while encouraging,

have revealed that it is essential to ensure that agents will not “drift” into their own

language, but instead they will evolve one that is aligned to our natural languages.

Thus, inspired by the success of AlphaGo [91], that combines both passive learning

(experiencing past human games and using a convolutional network to learn valid

moves) and interactive learning (learning by playing what is the best move given a

particular situation/state), we believe that it is crucial to combine dynamic interactive

learning with static statistical learning of patterns from association, something that

should ensure the grounding of communication into natural language.

We plan to move along a similar direction, introducing our agents to multi-tasking.

As an example, we could expose A1 to large collections of texts and train her on

language modeling, a task requiring no manual annotation, from which basic word

associations patterns can be learned. Similarly, A2 could be trained on an image

retrieval task, from which basic concept recognition and naming capabilities can be

acquired, i.e., associating the phonetic string “cat” to instances of cats. Still, the

agents would be trained via playing the game for producing good referring expressions,

which is a task that depends predominantly on the success of communication (i.e.,

did our listener understood what we were referring to?)
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Chapter 6

Conclusion

In this work, we have presented three models of human learning from naturalis-

tic multi-modal input. We first introduced the Multimodal Skip-gram Model

(Chapter 2), a model that assumes a purely predictive learner existing in a non-

communicative setup and showed that such a computational learner displays com-

parable learning behaviour as human learners on a novel word learning setup (cf.

Chapter 3). In Chapter 4, we relaxed some of the learning assumptions and pre-

sented the Attentive Social MSG, which instead of exposing the computational

learner to a passive environment, such as text corpora tradionally used in semantic

learning experiments, it exposes the learner in communicative episodes, simulated

in our experiments by corpora capturing multi-modal interactions between children

and their caregiveres, allowing the learner to make use of information beyond words

and passive percepts during learning. Finally, in Chapter 5, we presented on-going

work towards fully interactive learning between two agents who learned to develop a

language through the need to communicate in order to co-operatively solve a task.

We believe that the most promising direction towards developing agents that can

work together with us is to place emphasis on the interactive aspect of language.

After all, human-machine co-ordination, just like the human-human one, is impossible

without communication, and the bulk of communication happens through natural

language, supplemented of course with other non-linguistic cues contributing to rich

multi-modal interactions. Along these lines, we advocate a research program that
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creates interactive environments between a community of artificial agents. The agents

will be given tasks to solve (i.e., games to play similar to the ones we presented in

Chapter 5), that will be designed in order to foster emergence of key properties of

language. Language will not be the goal of these games, but rather the by-product

of achieving situated goals in this environment.

Connecting the emerged comminication to human natural language is a key chal-

lenge for this framework; supervised learning and interactive learning should both

come together to achieve this goal. We think that predictive learning should be re-

tained as an important building block of intelligent agents, but rather should focused

on teaching them primitive properties of language (e.g., basic word-object associa-

tions as we also did in Chapters 2 and 4) rather than complex behaviours, such as

how to hold a conversation [108].

102



Bibliography

[1] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learn-
ing to compose neural networks for question answering. arXiv preprint
arXiv:1601.01705, 2016.

[2] Mark Andrews, Gabriella Vigliocco, and David Vinson. Integrating experiential
and distributional data to learn semantic representations. Psychological Review,
116(3):463–498, 2009.

[3] John Langshaw Austin. How to do things with words. Harvard University Press,
Cambridge, MA, 1962.

[4] R. H. Baayen, D. J. Davidson, and D.M. Bates. Mixed-effects modeling with
crossed random effects for subjects and items. Journal of Memory and Lan-
guage, pages 390–412, 2008.

[5] R Harald Baayen, Petar Milin, Dusica Filipović Durdević, Peter Hendrix, and
Marco Marelli. An amorphous model for morphological processing in visual
comprehension based on naive discriminative learning. Psychological Review,
118(3):438, 2011.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of ICLR
Conference Track, San Diego, CA, 2015. Published online: http://www.iclr.
cc/doku.php?id=iclr2015:main.

[7] Marco Baroni, Eduard Barbu, Brian Murphy, and Massimo Poesio. Strudel: A
distributional semantic model based on properties and types. Cognitive Science,
34(2):222–254, 2010.

[8] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict!
a systematic comparison of context-counting vs. context-predicting semantic
vectors. In Proceedings of ACL, pages 238–247, Baltimore, MD, 2014.

[9] Marco Baroni, Alessandro Lenci, and Luca Onnis. ISA meets Lara: An in-
cremental word space model for cognitively plausible simulations of semantic
learning. In Proceedings of the ACL Workshop on Cognitive Aspects of Compu-
tational Language Acquisition, pages 49–56, 2007.

103



[10] Lawrence Barsalou. Grounded cognition. Annual Review of Psychology, 59:617–
645, 2008.

[11] Lawrence Barsalou and Katja Wiemer-Hastings. Situating abstract concepts. In
D. Pecher and R. Zwaan, editors, Grounding Cognition: The Role of Perception
and Action in Memory, Language, and Thought, pages 129–163. Cambridge
University Press, Cambridge, UK, 2005.

[12] Arielle Borovsky, Jeffrey Elman, and Marta Kutas. Once is enough: N400
indexes semantic integration of novel word meanings from a single exposure in
context. Language Learning and Development, 8(3):278–302, 2012.

[13] Arielle Borovsky, Marta Kutas, and Jeff Elman. Learning to use words:
Event related potentials index single-shot contextual word learning. Cognition,
116(2):289–296, 2010.

[14] Susan E Brennan and Herbert H Clark. Conceptual pacts and lexical choice
in conversation. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 22(6):1482, 1996.

[15] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam Khanh Tran. Distribu-
tional semantics in Technicolor. In Proceedings of ACL, pages 136–145, Jeju
Island, Korea, 2012.

[16] Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal distributional
semantics. Journal of Artificial Intelligence Research, 49:1–47, 2014.

[17] Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1):57–83, 2002.

[18] Malinda Carpenter, Katherine Nagell, Michael Tomasello, George Butterworth,
and Chris Moore. Social cognition, joint attention, and communicative compe-
tence from 9 to 15 months of age. Monographs of the Society for Research in
Child Development, 63(4), 1998.

[19] Stephen Clark. Vector space models of lexical meaning. In Shalom Lappin
and Chris Fox, editors, Handbook of Contemporary Semantics, 2nd ed., pages
493–522. Blackwell, Malden, MA, 2015.

[20] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of
ICML, pages 160–167, Helsinki, Finland, 2008.

[21] Robert Dale and Nicholas Haddock. Content determination in the generation
of referring expressions. Computational Intelligence, 7(4):252–265, 1991.

[22] Robert Dale and Ehud Reiter. Computational interpretations of the gricean
maxims in the generation of referring expressions. Cognitive science, 19(2):233–
263, 1995.

104



[23] Jia Deng, Wei Dong, Richard Socher, Lia-Ji Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of CVPR, pages 248–
255, Miami Beach, FL, 2009.

[24] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[25] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[26] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects
by their attributes. In Proceedings of CVPR, pages 1778–1785, Miami Beach,
FL, 2009.

[27] Afsaneh Fazly, Afra Alishahi, and Suzanne Stevenson. A probabilistic compu-
tational model of cross-situational word learning. Cognitive Science, 34:1017–
1063, 2010.

[28] Yansong Feng and Mirella Lapata. Visual information in semantic representa-
tion. In Proceedings of HLT-NAACL, pages 91–99, Los Angeles, CA, 2010.

[29] Michael Frank, Noah Goodman, and Joshua Tenenbaum. A Bayesian framework
for cross-situational word-learning. In Proceedings of NIPS, pages 457–464,
Vancouver, Canada, 2007.

[30] Diego Frassinelli and Frank Keller. The plausibility of semantic properties
generated by a distributional model: Evidence from a visual world experiment.
In Proceedings of CogSci, pages 1560–1565, 2012.

[31] Andrea Frome, Greg Corrado, Jon Shlens, Samy Bengio, Jeff Dean,
Marc’Aurelio Ranzato, and Tomas Mikolov. DeViSE: A deep visual-semantic
embedding model. In Proceedings of NIPS, pages 2121–2129, Lake Tahoe, NV,
2013.

[32] Alona Fyshe, Partha P Talukdar, Brian Murphy, and Tom M Mitchell. Inter-
pretable semantic vectors from a joint model of brain-and text-based meaning.
In In Proceedings of ACL, pages 489–499, 2014.

[33] Bruno Galantucci, Simon Garrod, and Gareth Roberts. Experimental semiotics.
Language and Linguistics Compass, 6(8):477–493, 2012.

[34] Jane Gillette, Henry Gleitman, Lila Gleitman, and Anne Lederer. Human sim-
ulations of vocabulary learning. Cognition, 73(2):135–176, 1999.

[35] Arthur Glenberg and David Robertson. Symbol grounding and meaning: A
comparison of high-dimensional and embodied theories of meaning. Journal of
Memory and Language, 3(43):379–401, 2000.

105



[36] Susan Goldin-Meadow. Hearing gesture: How our hands help us think. Harvard
University Press, 2005.

[37] Tom Griffiths, Mark Steyvers, and Josh Tenenbaum. Topics in semantic repre-
sentation. Psychological Review, 114:211–244, 2007.

[38] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phe-
nomena, 42(1-3):335–346, 1990.

[39] David A Havas, Arthur M Glenberg, and Mike Rinck. Emotion simulation
during language comprehension. Psychonomic Bulletin & Review, 14(3):436–
441, 2007.

[40] Felix Hill, KyungHyun Cho, Sébastien Jean, Coline Devin, and Yoshua Bengio.
Not all neural embeddings are born equal. In Proceedings of the NIPS Learning
Semantics Workshop, Montreal, Canada, 2014. Published online: https://
sites.google.com/site/learningsemantics2014/.

[41] Felix Hill and Anna Korhonen. Learning abstract concept embeddings from
multi-modal data: Since you probably can’t see what I mean. In Proceedings of
EMNLP, pages 255–265, Doha, Qatar, 2014.

[42] Steve Howell, Damian Jankowicz, and Suzanna Becker. A model of grounded
language acquisition: Sensorimotor features improve lexical and grammatical
learning. Journal of Memory and Language, 53:258–276, 2005.

[43] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[44] Ákos Kádár, Afra Alishahi, and Grzegorz Chrupała. Learning word mean-
ings from images of natural scenes. Traitement Automatique des Langues,
2015. In press, preprint available at http://grzegorz.chrupala.me/papers/
tal-2015.pdf.

[45] Andrej Karpathy, Armand Joulin, and Li Fei-Fei. Deep fragment embeddings
for bidirectional image sentence mapping. In Proceedings of NIPS, pages 1097–
1105, Montreal, Canada, 2014.

[46] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L Berg. Refer-
itgame: Referring to objects in photographs of natural scenes. In EMNLP, pages
787–798, 2014.

[47] Casey Kennington and David Schlangen. Simple learning and compositional
application of perceptually grounded word meanings for incremental reference
resolution. In Proceedings of the Conference for the Association for Computa-
tional Linguistics (ACL), 2015.

106



[48] Emmanuel Keuleers and Marc Brysbaert. Wuggy: A multilingual pseudoword
generator. Behavior research methods, 42(3):627–633, 2010.

[49] Douwe Kiela and Léon Bottou. Learning image embeddings using convolutional
neural networks for improved multi-modal semantics. In Proceedings of EMNLP,
pages 36–45, Doha, Qatar, 2014.

[50] Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen Clark. Improving multi-
modal representations using image dispersion: Why less is sometimes more. In
Proceedings of ACL, pages 835–841, Baltimore, MD, 2014.

[51] Brent Kievit-Kylar and Michael Jones. The Semantic Pictionary project. In
Proceedings of CogSci, pages 2229–2234, Austin, TX, 2011.

[52] Brent Kievit-Kylar, George Kachergis, and Michael Jones. Naturalistic word-
concept pair learning with semantic spaces. In Proceedings of CogSci, pages
2716–2721, Berlin, Germany, 2013.

[53] Ryan Kiros, Ruslan Salakhutdinov, and Richard Zemel. Unifying visual-
semantic embeddings with multimodal neural language models. In Pro-
ceedings of the NIPS Deep Learning and Representation Learning Workshop,
Montreal, Canada, 2014. Published online: http://www.dlworkshop.org/
accepted-papers.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. ImageNet classification
with deep convolutional neural networks. In Proceedings of NIPS, pages 1097–
1105, Lake Tahoe, Nevada, 2012.

[55] Brenden Lake, Tomer Ullman, Joshua Tenenbaum, and Samuel Gershman.
Building machines that learn and think like people. https://arxiv.org/abs/
1604.00289, 2016.

[56] George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied Mind
and Its Challenge to Western Thought. Basic Books, New York, 1999.

[57] Thomas Landauer and Susan Dumais. A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2):211–240, 1997.

[58] Angeliki Lazaridou, Elia Bruni, and Marco Baroni. Is this a wampimuk? cross-
modal mapping between distributional semantics and the visual world. In Pro-
ceedings of ACL, pages 1403–1414, Baltimore, MD, 2014.

[59] Angeliki Lazaridou, Nghia The Pham, and Marco Baroni. Combining language
and vision with a multimodal skip-gram model. In Proceedings of NAACL,
pages 153–163, Denver, CO, 2015.

107



[60] Angeliki Lazaridou, Dat Tien Nguyen, and Marco Baroni. Do distributed
semantic models dream of electric sheep? Visualizing word representations
through image synthesis. In Proceedings of the EMNLP Vision and Language
Workshop, pages 81–86, Lisbon, Portugal, 2015.

[61] Alessandro Lenci. Distributional approaches in linguistic and cognitive research.
Italian Journal of Linguistics, 20(1):1–31, 2008.

[62] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces
from lexical co-occurrence. Behavior Research Methods, 28:203–208, 1996.

[63] Brian MacWhinney. The CHILDES Project: Tools for analyzing talk. Lawrence
Erlbaum Associates, 3rd edition, 2000.

[64] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan Yuille. Explain images
with multimodal recurrent neural networks. In Proceedings of the NIPS Deep
Learning and Representation Learning Workshop, Montreal, Canada, 2014.
Published online: http://www.dlworkshop.org/accepted-papers.

[65] Scott McDonald and Michael Ramscar. Testing the distributional hypothesis:
The influence of context on judgements of semantic similarity. In Proceedings
of CogSci, pages 611–616, 2001.

[66] Ken McRae, George Cree, Mark Seidenberg, and Chris McNorgan. Semantic
feature production norms for a large set of living and nonliving things. Behavior
Research Methods, 37(4):547–559, 2005.

[67] Anna Mestres-Missé, Antoni Rodriguez-Fornells, and Thomas Münte. Watching
the brain during meaning acquisition. Cerebral Cortex, 17(8):1858–1866, 2007.

[68] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. http://arxiv.org/abs/1301.3781/,
2013.

[69] Tomas Mikolov, Armand Joulin, and Marco Baroni. A roadmap towards ma-
chine intelligence. arXiv preprint arXiv:1511.08130, 2015.

[70] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Proceedings of NIPS, pages 3111–3119, Lake Tahoe, NV, 2013.

[71] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of NAACL, pages 746–
751, Atlanta, Georgia, 2013.

[72] Margaret Mitchell, Kees van Deemter, and Ehud Reiter. Natural reference
to objects in a visual domain. In Proceedings of the 6th international natural
language generation conference, pages 95–104. Association for Computational
Linguistics, 2010.

108



[73] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness,
Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518:529–533,
2015.

[74] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. In Proceedings of AISTATS, pages 246–252, Barbados, 2005.

[75] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and trans-
ferring mid-level image representations using convolutional neural networks. In
Proceedings of CVPR, 2014.

[76] Devi Parikh and Kristen Grauman. Relative attributes. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages 503–510. IEEE, 2011.

[77] Mary C Potter, Judith F Kroll, Betsy Yachzel, Elisabeth Carpenter, and Janet
Sherman. Pictures in sentences: Understanding without words. Journal of
Experimental Psychology: General, 115(3):281, 1986.

[78] Friedemann Pulvermüller, Olaf Hauk, Vadim V Nikulin, and Risto J Ilmoniemi.
Functional links between motor and language systems. European Journal of
Neuroscience, 21(3):793–797, 2005.

[79] Adria Recasens*, Aditya Khosla*, Carl Vondrick, and Antonio Torralba. Where
are they looking? In Advances in Neural Information Processing Systems
(NIPS), 2015. * indicates equal contribution.

[80] Leslie Rescorla. Overextension in early language development. Journal of Child
Language, 7(2):321–335, 1980.

[81] Brandon C. Roy, Michael C. Frank, Philip DeCamp, Matthew Miller, and Deb
Roy. Predicting the birth of a spoken word. Proceedings of the National Academy
of Sciences, 112(41):12663–12668, 2015.

[82] Deb Roy. A computational model of word learning from multimodal sensory
input. In Proceedings of the International Conference of Cognitive Modeling
(ICCM2000), Groningen, Netherlands, 2000.

[83] Deb Roy. New horizons in the study of child language acquisition. In Proceedings
of Interspeech, 2009.

[84] Margarita Sarri, Richard Greenwood, Lalit Kalra, and Jon Driver. Prism adap-
tation does not change the rightward spatial preference bias found with am-
biguous stimuli in unilateral neglect. Cortex, 47(3):353–366, 2011.

[85] Tyler Schnoebelen and Victor Kuperman. Using Amazon Mechanical Turk for
linguistic research. Psihologija, 43(4):441–464, 2010.

109



[86] Hinrich Schütze. Ambiguity Resolution in Natural Language Learning. CSLI,
Stanford, CA, 1997.

[87] John Searle. Minds, Brains and Science. Harvard University Press, Cambridge,
MA, 1984.

[88] Carina Silberer, Vittorio Ferrari, and Mirella Lapata. Models of semantic rep-
resentation with visual attributes. In Proceedings of ACL, pages 572–582, Sofia,
Bulgaria, 2013.

[89] Carina Silberer and Mirella Lapata. Grounded models of semantic representa-
tion. In Proceedings of EMNLP, pages 1423–1433, Jeju, Korea, 2012.

[90] Carina Silberer and Mirella Lapata. Learning grounded meaning representa-
tions with autoencoders. In Proceedings of ACL, pages 721–732, Baltimore,
Maryland, 2014.

[91] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529:484–503, 2016.

[92] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[93] Josef Sivic and Andrew Zisserman. Video Google: A text retrieval approach
to object matching in videos. In Proceedings of ICCV, pages 1470–1477, Nice,
France, 2003.

[94] Brian Skyrms. Signals: Evolution, learning, and information. Oxford University
Press, 2010.

[95] Linda Smith, Sumarga Suanda, and Chen Yu. The unrealized promise of infant
statistical word-referent learning. Trends in Cognitive Sciences, 18(5):251–258,
2014.

[96] Richard Socher, Danqi Chen, Christopher Manning, and Andrew Ng. Reasoning
with neural tensor networks for knowledge base completion. In Proceedings of
NIPS, pages 926–934, Lake Tahoe, NV, 2013.

[97] Richard Socher, Milind Ganjoo, Christopher Manning, and Andrew Ng. Zero-
shot learning through cross-modal transfer. In Proceedings of NIPS, pages 935–
943, Lake Tahoe, NV, 2013.

[98] Richard Socher, Quoc Le, Christopher Manning, and Andrew Ng. Grounded
compositional semantics for finding and describing images with sentences.
Transactions of the Association for Computational Linguistics, 2:207–218, 2014.

110



[99] Luc Steels. The Talking Heads experiment: Origins of words and meanings,
volume 1. Language Science Press, 2015.

[100] Tanya Stivers and Jack Sidnell. Introduction: Multimodal interaction. Semiot-
ica, pages 1–20, 2005.

[101] Ilya Sutskever, Oriol Vinyals, and Quoc Le. Sequence to sequence learning with
neural networks. In Proceedings of NIPS, pages 3104–3112, Montreal, Canada,
2014.

[102] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[103] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, and Nicholas Roy. Ask-
ing for help using inverse semantics. 2014.

[104] Gerald Tesauro. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3):58–68, 1995.

[105] John Trueswell, Tamara Medina, Alon Hafri, and Lila Gleitman. Propose but
verify: Fast mapping meets cross-situational word learning. Cognitive Psychol-
ogy, 66(1):126–156, 2013.

[106] Peter Turney, Yair Neuman, Dan Assaf, and Yohai Cohen. Literal and
metaphorical sense identification through concrete and abstract context. In
Proceedings of EMNLP, pages 680–690, Edinburgh, UK., 2011.

[107] Peter Turney and Patrick Pantel. From frequency to meaning: Vector space
models of semantics. Journal of Artificial Intelligence Research, 37:141–188,
2010.

[108] Oriol Vinyals and Quoc Le. A neural conversational model. In Proceedings
of the ICML Deep Learning Workshop, Lille, France, 2015. Published online:
https://sites.google.com/site/deeplearning2015/accepted-papers.

[109] Haley Vlach and Catherine Sandhofer. Developmental differences in children’s
context-dependent word learning. Journal of Experimental Child Psychology,
108(2):394–401, 2011.

[110] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In
Proceedings of CHI, pages 319–326, Vienna, Austria, 2004.

[111] Kyle Wagner, James A Reggia, Juan Uriagereka, and Gerald S Wilkinson.
Progress in the simulation of emergent communication and language. Adap-
tive Behavior, 11(1):37–69, 2003.

[112] Jason Weston. Dialog-based language learning. arXiv preprint
arXiv:1604.06045, 2016.

111



[113] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annota-
tion: learning to rank with joint word-image embeddings. Machine learning,
81(1):21–35, 2010.

[114] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[115] Terry Winograd. Procedures as a representation for data in a computer program
for understanding natural language. Technical Report AI 235, Massachusetts
Institute of Technology, 1971.

[116] Ludwig Wittgenstein. Philosophical Investigations. Blackwell, Oxford, UK,
1953. Translated by G.E.M. Anscombe.

[117] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In Proceedings of ICML, pages
2048–2057, Lille, France, 2015.

[118] C. Yu. The emergence of links between lexical acquisition and object catego-
rization: A computational study. Connection Science, 17(3):381–397, 2005.

[119] Chen Yu and Dana H. Ballard. A unified model of early word learning: Inte-
grating statistical and social cues. Neurocomputing, 70(13-15):2149–2165, 2007.

[120] Chen Yu and Linda B. Smith. Joint attention without gaze following: human
infants and their parents coordinate visual attention to objects through eye-
hand coordination. PLoS ONE, 8(11), 2013.

[121] Matthew Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In Proceedings of ECCV (Part 1), pages 818–833, Zurich, Switzer-
land, 2014.

112


