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Abstract

In the era in which the robots have started to live and work everywhere and in close

contact with humans, they should accurately know their own location at any time to be

able to move and perform safely. In particular, large and crowded indoor environments

are challenging scenarios for robot accurate and robust localization. The theory and the

results presented in this dissertation intend to address the crucial issue of wheeled robots

indoor localization by proposing some novel solutions in three complementary ways, i.e.

improving robots self-localization through data fusion, adopting collaborative localization

(e.g. using the position information from other robots) and finally optimizing the place-

ment of landmarks in the environment once the detection range of the chosen sensors is

known.

As far as the first subject is concerned, a robot should be able to localize itself in a given

reference frame. This problem is studied in detail to achieve a proper and affordable

technique for self-localization, regardless of specific environmental features. The proposed

solution relies on the integration of relative and absolute position measurements. The

former are based on odometry and on an inertial measurement unit. The absolute posi-

tion and heading data instead are measured sporadically anytime some landmark spread

in the environment is detected. Due to the event-based nature of such measurement data,

the robot can work autonomously most of time, even if accuracy degrades. Of course, in

order to keep positioning uncertainty bounded, it is important that absolute and relative

position data are fused properly. For this reason, four different techniques are analyzed

and compared in the dissertation.

As far as the problem of optimal landmark placement is concerned, this is addressed by

suggesting a novel and easy-to-use geometrical criterion to maximize the distance between

the landmarks deployed over a triangular lattice grid, while ensuring that the absolute

position measurement sensors can always detect at least one landmark.

Once the local kinematic state of each robot is estimated, a group of them moving in

the same environment and able to detect and communicate with one another can also

collaborate to share their position information to refine self-localization results. In the

dissertation, it will be shown that this approach can provide some benefits, although per-

formance strongly depends on the metrological features of the adopted sensors as well as

on the communication range.
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Chapter 1

Introduction

1.1 Motivation and contribution

Today robots are no longer (and not only) the stiff and dangerous machines used in

factory automation throughout the last decades. They have evolved into intelligent and

flexible agents that interact closely with their users, improve their quality of life and

do not pose significant safety threats. They can be used as entertaining machines, tour

guides, cleaning staff and other assistance applications of human activities. A major issue

in robotics is safety since robots are often supposed to work in close relationship with

humans. Due to the fact that users usually trust and rely on such agents, any kind of

mistake or fault can result in some dangers.

Navigation is one of the fundamental challenges in designing mobile robots. Robots

navigation requires four key properties [93]:

• Perception, i.e. the ability to collect suitable and accurate information about the

robot and its surrounding environment,

• Localization, i.e. the ability to estimate the position and orientation in a given

reference frame,

• Path planning, i.e. the ability to plan to reach the wanted destination safely,

• Guidance, i.e. the ability to drive the robot over the planned route.

Of course, robot navigation highly depends on how accurately the robot knows its own

position at anytime. Since localization is essential to support both path planning and

robot guidance, this problem deserves a special attention and will be deeply investigated

in this dissertation in the case of robots moving indoors. While the outdoors case can

be indeed easily addressed by means of global positioning systems (GPS), this kind of
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solution can be hardly used indoors due to various limitations [53]. This has led to a large

amount of research in the context of indoor localization in the recent years. The market

of indoor location technologies has a very high growth rate and has been predicted to

worth $23.13 billion by 2021, at a Compound Annual Growth Rate (CAGR) of 37.4%

from 2016 to 20211.

Therefore, the contribution of this dissertation is about the planar localization of

wheeled robotic agents which are supposed to navigate, work and communicate very close

to and in contact with humans in large indoor environments such as airports, stations and

shopping malls. In particular, the goal is to find a solution to the localization problem

which is sufficiently accurate, trustworthy, reliable and robust and at the same time is

affordable and suitable for real environments. For such a purpose, most of the solutions

available in the literature have some disadvantages. Some of them are not affordable due

to high hardware or computational costs, others are not suitable for real environments

because they require a strongly instrumented environment. Several other techniques suffer

from robustness and accuracy issues in the presence of dynamic obstacles (e.g. crowd).

For all the reasons mentioned above, this dissertation describes various affordable

techniques able to integrate different sensing technologies, as well as estimators of relative

and absolute position and heading measurements. In particular, the idea is to rely on

relative position tracking techniques running on the mobile agent most of time, while

relying occasionally on external landmarks spread in the environment to ensure bounded

estimation uncertainty. This approach leads to a challenging position estimation problem

due to time varying system observability, that depends on which sensors data are available

at every sampling time. In particular, absolute position and orientation measurements

are inherently event-based, as they depend on the detection of external landmarks or

any other information sent to the agent externally. As a consequence, the placement of

landmarks in the environment is prominent and should be also taken into account.

An interesting application area of the proposed approach for indoor localization is

Ambient Assisted Living (AAL). As known, the median age in developed countries is

expected to grow from 28.6 in 1950 to more than 46.4 in 2050 and the number of elderly

people (over 65) will be around three times more than the number of children (less than 15)

by 2050 [62]. This will lead to an increasing number of people with some sorts of mobility

problems, such as physical impairment, degraded cognitive ability and visual or auditory

ability reduction. In this situation, ICT based AAL devices will play a key role to increase

elderly people confidence and independence. Various types of AAL devices exist. Some

examples are the small wearable devices and service robots such as smart walkers and

1MarketsandMarkets report, October 2016, http://www.marketsandmarkets.com/Market-Reports/indoor-

positioning-navigation-ipin-market-989.html
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smart wheelchairs. The localization specifications and requirements of wheeled robotic

AAL devices are definitely compatible with the aim of this research. Therefore, the case

study used in this dissertation to experiment the proposed localization techniques is a

smart walker.

In such systems, any kind of information about the robot location can be helpful to

increase the accuracy and to decrease the cost of the device. In addition, if two or more

agents know their location and their relative position, they can exchange and share this

information to achieve more accurate localization. Such a collaborative localization is

another topic covered in this dissertation.

1.2 Structure of the Thesis

The main contributions of this dissertation can be classified into three groups, namely

self-localization, landmark placement and collaborative localization.

1.2.1 Self-localization

Each robotic agent moving indoors should be able to localize itself without any cen-

tralized information. To this aim, some multi-sensor data fusion techniques explained,

parametrized and compared in this dissertation are used to combine odometry, inertial

and vision-based measurement data. The vision system relies on sporadic detection of QR

codes stuck on the ground and is used to correct the position and orientation estimation.

To this aim, after a review of some technologies and estimation techniques used for indoor

localization (Chapter 2), the robotic platform used as the case study of this dissertation

is described in Chapter 3. Moreover, the proposed sensing technologies, i.e. encoders,

an inertial measurement unit (IMU), a passive RFID system and a vision system for QR

code detection are described and characterized.

Chapter 4 deals with four possible recursive position estimators for the sensor fusion

problem at hand. In particular, an Extended Kalman Filter (EKF), an Unscented Kalman

Filter (UKF), a Particle Filter (PF), and an Extended H∞ Filter (EHF) are defined

and their desired parameters are chosen properly. The performance of such estimation

techniques is evaluated and compared in Chapter 5. The comparison of various properties

shows that the EHF is the best choice for the system at hand and provides the most

accurate estimation with acceptable convergence times and computational burden.2

2Some parts of this work has been published by IEEE, DOI: 10.1109/TMECH.2017.2762598, (c) 2017 IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including

reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for

resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
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1.2.2 Landmark Placement

Although the landmark detection events occur sporadically, the occurrence rate highly

depends on the distance between the landmarks and the detection range of the corre-

sponding sensor. The larger the distance between landmarks, the less the environment

has to be instrumented and the more autonomous the system becomes. However, accuracy

generally degrades. This problem is described in Chapter 6 and a solution is proposed

assuring that at any location or situation at least one landmark can be detected. The

solution is given for sensors with a limited range. In general, the landmark placement

problem is an NP-hard problem even if the sensor has an omni-directional detection area

[9]. The proposed solution in this dissertation adds another complicated parameter of the

angular range,since the solution should take into account not only the position but also

the orientation of the agent in a given reference frame.3

1.2.3 Collaborative localization

If a number of agents with self-localization ability are moving in the same environment,

each agent can inform the others, in a given detection range, about its own location.

In this situation, if the relative position of such agents is measurable, it can be used as

another source of information to refine localization. This is another kind of event-based

position measurements. A distributed solution for such a problem is given is Chapter 7

based on an Interlaced Extended Kalman filter (IEKF).4

A summary of all subjects addressed in the dissertation, the main results and an

overview of ongoing and future activities are finally reported in Chapter 8.

3Some parts of this work has been published by IEEE, DOI: DOI: 10.1109/IPIN.2016.7743631, (c) 2016 IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including

reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for

resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
4Some parts of this work has been published by IEEE, DOI: DOI: 10.1109/I2MTC.2016.7520443, (c) 2016

IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users,

including reprinting/ republishing this material for advertising or promotional purposes, creating new collective

works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other

works.



Chapter 2

Indoor Positioning Technology

A variety of technologies and techniques have been used to localize agents moving indoors

which are mainly different due to the positioning system model and available information

in the system. Since both system model and available information depend on the measure-

ment technique(s) used in the system, the sensors and the type of information gathered

by them have a fundamental role. A large variety of sensors can be used for this purpose

observing various kinds of pose or motion in different coordinate frames. According to

the sensors variety, a measurement system can observe various variables such as position,

orientation, velocity, acceleration or any other information which can be used to identify

the agent’s location. Moreover, the data gathered by a sensor can be usually explained

in one of the three following coordinate frames:

• Global navigation frame (Earth-centered rotational frame) is world’s reference frame

with origin at the center of mass of the earth and global X, Y and Z axes defined

through the international reference pole and international reference meridian. GPS

measures the location in this frame.

• Local navigation frame is a tangent plane defined for a limited-size space. The

Z axis is usually selected parallel to the gravity vector while the origin and zero

heading are defined by the user. Usually the goal of indoor localization is to find the

location of the agent of interest with respect to this frame. Thus, for the systems

providing information in other navigational frames, a coordinate transformation is

required. Different wireless technologies used for localization, such as ultra-wide

band (UWB) or radio frequency identification systems (RFID), magnetic, ultrasonic

and initialized odometry systems are among the measurement technologies which

can gather information directly in this frame.

• Local sensor frame is defined with respect to the sensitivity axis of the sensor. Many

types of sensor can measure a relative or absolute position in their own frame. Some
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examples of such sensors are optical systems, like cameras, dynamic laser scanners

and Inertial measurement units (IMUs).

Note that, in fact, sensor measurement data can be only in its own local frame; how-

ever, in some of them, the output we can access from the whole sensing system is given

in another frame.

Depending on the way the sensor measurements can result in location estimation,

indoor localization technologies can be classified into two groups: relative localization

and absolute localization [39, 14]. Each method has some advantages and disadvantages

which should be taken in to account in the localization system design according to the

application.

2.1 Relative Localization systems

In relative localization systems, the agent’s acceleration, velocity or displacement from

one time to another can be observed. In this situation, the position estimation at a given

time is related to the position estimations at previous times.

Hence, in relative localization, estimation accuracy depends on the total uncertainty

accumulated on the way. The relative localization methods are self-contained, as the

agent can estimate its own location autonomously, although a very limited support from

external stations is needed to initialize the system. Nonetheless, the incremental process

of position estimation leads the estimation error to accumulate unboundedly. Therefore,

regardless of the accuracy of the sensor, the pose estimation is not trustworthy after some

time.

2.1.1 Odometry

Odometry systems usually measure the distance traveled between any two desired times.

Encoders mounted on the wheels are the most common odometry sensors used for wheeled

robot localization. They can estimate the displacement by measuring the wheels rotation

or the steering orientation [14]. Knowing the system mechanical and geometrical param-

eters such as wheels radius and the motion model, the displacement and the pose can

be simply estimated. Encoders are cheap, fast, reliable and very simple to use. Also,

they can give information about position and orientation at the same time. However,

the displacement computation depends on the geometrical parameters which may change

from agent to agent. Moreover, the position estimation accuracy, highly depends on the

wheels mechanical behavior since the encoders cannot detect and measure any undesired

mechanical event happening in the wheels like slippage and blockage.
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Nowadays, optical sensors are also used for odometry. In visual odometry, the distance

traveled over time is estimated by processing sequential camera images [68]. Usually, the

features of two or more consecutive images are analyzed and extracted to construct an

optical flow field of the motion [88]. Unlike encoders, the visual odometry does not depend

on the agent’s geometrical parameters. It also can be used in non-wheeled devices and the

accuracy of estimation can be much higher than encoders if an appropriate optical flow

determination algorithm is available. However, such systems are more complicated and

costly than common encoders. Besides, they require a proper fast embedded platform for

real-time applications. Such optical systems are used in many applications for localization

and tracking, e.g. the NASA’s Mars Exploration Rover [20].

The computational cost can be decreased significantly by using two optical sensors and

the algorithms which are currently used in optical computer mouse. In practice, the pose

can be estimated by the same odometry method as encoders [13]. However, the wheels

mechanical behavior affects the estimation less than usual encoders. Unfortunately, like

computer mice, they need to continuously track the ground and usually their detection

range is very small. Hence, they should be installed very near to the ground which is

not feasible in many robotic systems. Moreover, an initial calibration is essential to have

good performances.

2.1.2 Inertial Measurement Units

Inertial measurement units (IMUs) are sensing devices which can derive the pose by

integrating the measured velocity or acceleration. The development of Micro Electro

Mechanical Sensors (MEMS) during the last two decades, has made small and cheap

IMUs widely available. This fact as well as their simple installation have made these

devices very popular and they are expected to be further used in the future. They are

suitable for many robotic systems and can estimate the pose with a simple and lightweight

dead reckoning technique. However, the large noise propagation of such MEMS devices

results in a quick uncertainty accumulation. Another problem of the MEMS is that their

metrological characteristics differ from sensor to sensor. Thus, we can hardly predict

estimation uncertainty growth. Besides, an accurate information about the initial position

is needed when using such devices. The main sensors used in IMUs are accelerometers,

gyroscopes and often magnetometers.

Accelerometers measure the specific force1 (also called g-force or proper acceleration)

of the movement. They often do not directly measure the coordinate acceleration2. More-

over, their measurement outputs are given in the sensor local frame. Hence, in order to use

1Specific force is the non-gravitational force per unit mass fs =
fnon-g

m
2Coordinate acceleration is the derivative of velocity
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the measured data for localization, a proper method is needed to achieve the coordinate

acceleration in the local navigation frame from the specific force data in the local sensor

frame. This is a complicated process and many techniques have been introduced to solve

this problem using magnetometers or calibrated gyroscopes [22, 47, 107]. After determin-

ing the coordinate acceleration in the navigation frame, the position can be identified by

integrating the acceleration twice. On the other hand, gyroscopes measure the angular

rate at every time which can be integrated to estimate the orientation. Again gyroscopes

output data is given in the sensors frame and should be referred to the navigation frame

to become useful.

2.2 Absolute Localization systems

Absolute localization includes a wide variety of sensing technologies able to directly mea-

sure the position and/or orientation with respect to a given frame. Such systems can

estimate the agent’s pose with a bounded error depending on the sensors’ uncertainty. In

general, they rely on static or dynamic references, such as beacons, landmarks or satel-

lites with known position and/or orientation in a given reference frame. Hence, the robot

localization is not completely autonomous. Moreover, in some situations, the detection

of such reference devices may be hard or even impossible.

Global positioning system (GPS), is a common measurement system, usually used

outdoors. The GPS can measure the absolute position and time if its receiver mounted

on the robot can have unobstructed line of sight connection with at least four global

positioning satellites at the same time. Not only the accuracy of GPS data is low for the

service robots assuming to move very accurately in public places, but also the GPS signal

is too weak to be received indoors. The connectivity problem can be overcome using high

sensitivity GPS receivers [89] or Ground-based GPS signal transmitters, usually referred

as Pseudolites [103]. a Pseudolite system consists of a location server with GPS reference

data and some transmitters to send the location data to the GPS receivers. Although

Pseudolites may be able to provide position data continuously, their ability and usage is

limited due to some legal and technical issues such as GPS-Pseudolite cross correlation,

the receiver saturation and synchronization [48].

Various types of wireless signal techniques such as ultra-wide band (UWB), wifi, Zig-

Bee and radio frequency identification (RFID) have been used for indoor localization.

Like GPS, these techniques also need to detect several reference points, such as beacons.

After gathering information (usually relative distance and/or direction) from the reference

points, a triangulation technique is usually used to estimate the position using lateration

or angulation algorithms [58]. In lateration, the location is determined by measuring the



2.2. Absolute Localization systems 9

agent’s distance to various reference points. This distance can be measured using differ-

ent techniques such as time of arrival (TOA) [42], time difference of arrival (TDOA) [42],

received signal strengths (RSS) [66, 75], time of flight (TOF) [37] and phase of arrival

[27]. The lateration techniques are significantly affected by the static and dynamic obsta-

cles in the environment and also have several problems due to limited synchronization,

multi-path propagate phenomena (especially in crowded environments) and scalability.

With angulation techniques, the location is estimated as the intersection of the line of

sight signals from the agent to various reference points. The angulation techniques do

not need the references to be synchronized. Moreover, for 2D positioning, accessibility to

two reference points at each time is sufficient. However, the hardware and computational

cost of such techniques are high and the estimation error grows significantly if the agent

is located far from the reference points [54].

RFID systems have become very popular in the area of localization in the recent

years. They are cheap, simple, user-friendly and reliable. RFID tags, usually installed

in the walls or on the ground, can be detected rapidly by a reader mounted within the

mobile agent [112]. The active RFID tags have large reading range. However, they are

more expensive than the passive tags and since a power source is needed inside each tag,

the battery should be replaced after a while. Passive RFID tags do not need internal

power source, replacement and maintenance and can work for several years. They can

provide higher accuracy than the active tags due to their shorter detection range. This

characteristic requires to deploy a large number of tags in the environment. Like other

wireless techniques, the RFID tags also need direct line of sight connection to the reader,

mounted on the agent, to assure optimal performance. This problem can be partially

overcome by sticking the passive tags on the ground [74]. In this situation, anytime the

agent passes over a tag, there is no obstacle between them. However, an RFID reader

cannot provide any information about the orientation. For this reason, Nazari et al. [92]

mounted four RFID readers on the agent providing an accurate algorithm to estimate

both position and orientation. The solutions based on only passive RFID tags, require

sticking a very large number of RFID tags on the ground which may not be practical in

large environments.

Ultrasonic sensors can provide very accurate measurements of the distance to reference

points [1, 46]. However, similar to other wireless techniques, their performance is affected

by the change of crowd and dynamic obstacles.

Positioning systems based on magnetic fields are not affected by multi-path and

can operate in non-line of site conditions. Moreover, the use of magnetic fields based

technologies typically result in a lower complexity with respect to RF and microwave

technologies[77, 76]. However, magnetic positioning systems are characterized by rela-
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tively short operating ranges and high power consumption requirements, although the

power consumption can be significantly reduced by using resonant systems. Other draw-

backs of such systems are the distortion of magnetic fields due to metal objects, the

influence of terrain, and the interferences in indoor environments [78].

A large variety of methods for localization is based on optical measurement tech-

nologies. The solutions based on image feature extraction typically exploit sequences

of images to estimate motion and velocity. Therefore, they should be discussed under

relative localization systems. The vision-based absolute positioning systems using static

cameras installed in different parts of the environment [109] can be very accurate but have

significantly large computational burden and cannot provide decentralized solutions.

The vision-based egomotion techniques are commonly used for Simultaneous Localiza-

tion and Mapping (SLAM) [36]. Such methods require to detect some natural or artificial

landmarks spread in the environment. Natural landmarks commonly exist in the envi-

ronment, e.g. corners and doors [90]. Artificial landmarks are intentionally deployed in

the environment to aid the navigation [35]. The detection of such landmarks is usually

easy. However, since the environment should be instrumented previously, this approach

cannot be used in the case of unprepared environments. The artificial landmarks can be

just arrows showing the direction, special unique shapes or some codes encoding sufficient

information for the localization system. A code can be ad-hoc for the application [29, 101]

or standard, such as the Quick Response (QR) code [7, 110]. The egomotion solutions are

generally quite heavy from the computational point of view (specially the ones based on

natural landmarks), suffer from robustness problems due to their sensitivity to change-

able light conditions and to the type of landmarks and are sensitive to the landmark

initialization errors. Nonetheless, If the landmarks are easy to detect and if their density

in the environment is reasonably low, the data fusion of vision-based measurements and

dead reckoning could be a viable solution to achieve accurate, scalable and trustworthy

localization. The visible light provided by fast flashing LED patterns also is a suitable

resource of position information. Such technology provides very accurate localization.

However, the environment should be completely instrumented by LEDs which makes a

costly and complicated infrastructure implementation.

The absolute localization technologies have a common problem. Since the sensors

need to detect some special external reference points, not only the environment should be

instrumented properly but also the performance can be severely affected in the presence

of different types of static and dynamic obstacles. Hence, many of them, even if provide

excellent accuracy in lab experiments, are not appropriate to be used solely for localization

in real large and crowded environments. In addition, if the room size is very large,

accessibility to walls and doors is very limited.
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2.3 Multi-sensor Data Fusion

Each of the relative and absolute position measurement technologies have specific advan-

tages and disadvantages explained shortly in the previous sections. Therefore, since in

many applications, using just one technology is not enough, we need to integrate different

technologies and use the benefits of each of them. In particular, integrating relative and

absolute localization methods can make the system robust, reliable and more accurate

as it can benefit from the autonomous property of the relative measurements while keep-

ing position estimation uncertainty bounded. Hence, an appropriate approach for high

performance and scalable indoor localization should rely on multi-sensor data fusion [60].

Multi-sensor data fusion is the process of combining data received from several sources to

extract maximum possible information from them [50].

In indoor positioning applications based on multi-sensor data fusion two major issues

usually arise. First, the most suitable sensing technologies for a given application should

be selected and second, an appropriate estimation technique should be used to optimally

combine the sensors data.

2.3.1 Sensing technologies for multi-sensor data fusion

All the technologies mentioned as either relative or absolute position measurement sensors

in the previous sections can be combined together. A vast amount of research has been

done integrating two or more of the available measurement technologies. Each technique

has some advantages and drawbacks which should be taken into account in order to select

the most suitable one depending on the application. A brief overview of some of the

multisensory systems used in the literature is given in Table 2.1.

According to Table 2.1, we can now summarize the main properties and specifications

for robotic applications.

Autonomy

The absolute position measurement systems provide bounded localization uncertainty,

but require external devices and reference points. If the system autonomy is prominent,

an appropriate relative localization system is the best option.

Accuracy

Accuracy is usually a key requirement in every positioning system. None of the relative

localization systems can guarantee bounded position estimation uncertainty accumulation

and hence they are not reliable for long distance travels. At all, if an accurate system is



12 Indoor Positioning Technology

Table 2.1: Main features of various position tracking techniques used in the literature

Paper Highlights Pros Cons

[25] - Odometry and Gyroscope

- Sensor data fusion depends on

their uncertainties in different

conditions of motion

- Very accurate for short

run after calibration

- Initialization required

- Bounded positioning un-

certainty is not guaranteed

in the long run

[17] - Fusion of active sensing and

passive RFID reads

- Cameras on the ceiling to

detect the position of the robot

- Absolute localization

- Accurate

- Large number of RFIDs

- It relies on external cam-

eras

- Difficult to use in large

rooms

[16] Combines global RFID-based po-

sitioning with local ultrasound-

based distance measurements

- Absolute localization

- Very accurate

- Large number of RFID

tags

- Position refinement diffi-

cult in

spaces with moving obsta-

cles.

[55] - Use of encoders

- Position correction through

RFID mats

- Absolute localization

- Mats are easy to

deploy and they can be

sparse (due to the use

of encoders)

- Works well in corridors,

but not suitable in large

rooms

- Unclear data fusion tech-

nique

- Compass not always suit-

able in indoor environ-

ments

[12] - Camera-IMU fusion

- Vision system uses an egomo-

tion method for optical flow

- Accurate for short and

medium distance runs

- No artificial landmark

to be deployed

- Computationally costly

- Unbounded positioning

error

[69] - Camera- Dead reckoning fusion - Accurate

- Obstacle avoidance

- Affected by environment

and crowd change - High

computational burden
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Paper Highlights Pros Cons

[71] - Camera-IMU fusion

- A low computationally cost

feature extraction algorithm -

On-line IMU calibration

- Accurate for short and

medium distance runs

- Less computational

cost than other optical

flow methods

- On-line IMU calibra-

tion

- Unbounded positioning

error - Still high computa-

tional cost for a simple em-

bedded platform

[86] - Camera- Encoder- Gyroscope

fusion

- Camera reads position infor-

mation coded inside ceiling-

mounted artificial landmarks

- Absolute localization

available

- less affected by crowd

change

- Not standard landmark

(using ad hoc custom land-

marks) - affected by envi-

ronment change (height of

the ceiling)

[79] - Magnetic-IMU fusion - Very low affected by

crowd

- Affected by environment

change (due to magnetic

field change)

needed, with the current available technologies, the usage of absolute position measure-

ment systems is unavoidable. However, to provide some autonomy as well, the fusion

of absolute and relative localization techniques seems to be the most appropriate way

to localize mobile agents in indoor environments. The selection of the absolute sensing

technology highly depends on the required accuracy and the type of environment. In lab-

oratory experiments, the localization uncertainty can range from several meters, to less

than few centimeters depending on the chosen technology. However, in real applications,

the environmental variations can significantly affect the accuracy.

Environmental features

As shown in Table 2.1, the accuracy of absolute localization technologies that need to de-

tect some features or landmarks by scanning their surrounding horizontal plane, is less in

crowded environments simply because obstacles can affect the line of sight connection be-

tween the sensor and a landmark or reference point. For instance, the ultrasonic methods

can work very accurately in empty places but may not able to give correct measurements

in the presence of a large number of obstacles. Therefore, in applications such as ambient

assisted living where the system performance should be stable at any time and in every
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condition, the most reliable absolute localization systems are the ones based on floor or

ceiling landmarks.

The ceiling landmarks are less affected by the presence of crowd than the floor ones.

However, they are more affected by the environment changes due to the differences in

the ceiling height. Thus, if the same performance is required, the landmarks size should

be different according to the ceiling height. Despite this, there exists some environments

(e.g. airports and stations) where the ceiling height is larger than the reading range of

the adopted sensors. Obviously, another noticeable drawback of the ceiling landmarks is

the difficulty of landmarks installation and repair. Therefore, selecting between floor- or

ceiling-mounted landmarks requires a kind of trade-off between robustness and simplicity.

2.3.2 Estimation algorithms for Data Fusion

The main reason of using various sensors is to achieve more accurate and reliable results.

Hence, a major challenge when dealing with multisensor systems is how to combine the

sensor measurements to optimally estimate the desired unknown states. The majority

of the methods used for optimal estimation in sensor fusion can be classified into the

following two groups [60]

1. Batch processing in which all available measurements are processed at the same time.

2. Sequential (or recursive) processing in which each measurement is processed and

update the state estimation as soon as it becomes available. This is the case of

Bayesian estimators.

In batch processing, all the measurements data should be stored. Thus, anytime a new

measurement data is received, the estimation problem dimension increases. Such estima-

tors are not very suitable for real-time on-line robot position tracking.

Among the recursive methods, the ones based on recursive filtering are the most popular.

Depending on the application, measurement methods and sensor noise, different filtering

techniques can be used for sensor data fusion.

Kalman filters (KF) are probably the most popular dynamic estimation techniques

used for sensor fusion. A KF is a formalized recursive Bayesian technique and is optimal

for linear models that rely on inaccurate and uncertain observations with normally dis-

tributed zero-mean white noise. A KF produces an estimation of the desired unknown

variables minimizing the mean square estimation uncertainty. In other words, Kalman

filtering is the process of estimating a-posteriori state vector given the set of measure-

ments up to the current time, with the minimum a-posteriori estimation error covariance.

However, to be the optimal estimator, the following assumptions should hold: [6]
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• The system is linear;

• The mean and covariance of the initial state, ŝ0|0 and P0|0, are reasonably known;

• The process and measurement noises are Gaussian and white with zero-mean and

known covariances;

• The initial state has no correlation with the process and measurement noises;

A variety of other kinds of filters have been designed to address the case when any one

of the assumptions above, especially linearity, does not hold. The extended Kalman fil-

ters (EKF) are well-known nonlinear Bayesian filters. They can be used either to merge

heterogeneous odometer and inertial measurement data [94], or to mitigate the uncer-

tainty growth due to Inertial Measurement Units (IMU) through additional contextual

information [18].

In the case of strongly nonlinear systems, the unscented Kalman filters (UKFs) gen-

erally provide better results than EKFs, as they usually rely directly on the nonlinear

model. UKFs can be effectively applied to problems where posterior distributions are

unimodal and they can be fitted, at each time step, by a Gaussian model using a limited

number of state space points. Unfortunately, when the process and/or the measurement

noise are far from being normally distributed or white, the performance of such dynamic

estimators can be far from optimal and estimation accuracy becomes hardly predictable.

In such cases, an effective alternative is the Particle filter (PF). A PF estimates the pos-

terior distributions of the internal state variables of a dynamic system heuristically by

using a genetic mutation-selection sampling approach. In this way, the relevant points

of the state space for given noisy or partial observations are selected adaptively, without

any a-priori knowledge about the state-space model or noise distributions [41]. Unfor-

tunately, the inherent heuristic nature of this class of algorithms does not allow to keep

the maximum estimation error under control. In addition, PF computational complexity

usually grows with the number of particles. Therefore, a trade-off between convergence

time and processing burden has to be found. A possible solution to this problem is offered

by the H∞ filters (HF). Similarly to PFs, HFs do not rely on the upfront knowledge of

noise distributions and do not require noises to be white, but are purposely designed to

minimize the worst-case estimation error with maximum likelihood [95]. The usage of

HFs has become increasingly interesting over the last few years [105, 45]. Although the

normal HFs provide linear solution, the theory can be extended for nonlinear systems

using similar approaches of Kalman filters to achieve extended H∞ filters (EHFs) [108] or

unscented H∞ filters (UHFs) [57]. In conclusion, the estimation method used in the sys-

tem highly depends on the available measurements and should be studied separately for
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each sensor fusion system. In this dissertation, various kinds of filters (e.g. EKF, UKF,

PF and EHF) have been designed, implemented and compared to find their advantages

and disadvantages for wheeled robots position tracking.



Chapter 3

Platform Description and Sensor

Characterization

In general, the localization problem requires to estimate the position and heading of an

agent in a given environment using both a-priori information and heterogeneous sensors

data. If the agent of interest is dynamic, like a mobile robot, its location changes over time.

As described in previous chapters, the solutions proposed in this dissertation are based on

the integration of various relative and absolute position measurement technologies. The

robot should be able to estimate its planar position and heading with high accuracy in

large indoor environments even in the presence of dynamic obstacles. This is a challenging

problem due to the fact that in large crowded environments usual reference points, such as

walls, columns and even sometimes ceilings are out of the sensors range. A suitable robotic

platform to study this problem is the smart walking assistant, c-Walker, developed in the

EU 7th framework programme project DALi1. The c-Walker (Figure 3.1) is supposed to

support older adults with some mobility or cognitive problems when they move in large

public environments, such as airports or shopping malls. As AAL devices are used by

people with different types of disabilities, assuring high position accuracy is of crucial

importance. Therefore, the c-Walker offers the opportunity to analyze the benefits of

combined relative and absolute localization techniques in a key case study. In particular,

the system should be designed according to the following specifications:

• The position estimation uncertainty should be smaller than 1 m with 99% probabil-

ity.

• The localization system should be mainly autonomous , i.e. it should rely on the

external absolute measurements as less as possible.

1Devices for Assisted Living, www.ict-dali.eu
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Figure 3.1: The smart cognitive walking assistant (c-Walker)

• Position tracking accuracy and scalability should be marginally affected by environ-

mental features.

• The computational burden should be low enough to ensure real-time performance

using low-cost embedded platforms.

• The cost of the overall system should be as low as possible for the desired accuracy.

This chapter describes the c-Walker prototype, hardware and the measurement tech-

nologies used for the localization. The system model, localization algorithms and perfor-

mance analysis are instead reported in Chapters 4 and 5.

3.1 The c-Walker prototype

A general architectural overview of the c-Walker is shown in Figure 3.2. Users can select

a destination in a given map using a touchscreen and a graphic interface. In general, the

c-Walker is supposed to provide the user with navigation systems and methods to analyze

the environment situation, estimate the current location, plan the optimal route to the

destination and suggest the optimal trajectory to reach the destination. The Guidance is

based on a haptic or an audio system [70].

The sensors used for localization have been selected according to the specifications

listed above. In addition to the sensors for localization purposes, a front Kinect is used for

object recognition, anomaly detection and obstacle tracking. Some sensors measurements

are transferred to the embedded platform via a CAN bus system while the others (optical

sensors) are connected through USB-3 ports.
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Figure 3.2: Functional block diagram of the c-Walker

The main processing platform for robot’s localization, is an ARM BeagleBone white

embedded platform. Some other algorithms, such as image processing, run on an Intel

Nuc mini-PC. The specifications of both platforms are shown in table 3.1.

Table 3.1: Main components of the embedded platforms used in the c-Walker

Item Features

S
e
n

so
rs

a
n

d

lo
c
a
li
z
a
ti

o
n Platform Beagle Bone White embedded board

Processor AM335x ARM Cortex-A8 at 720 MHz

Memory 256-MB DDR2 RAM

Storage 8-GB Secure Digital (SD)

OS Ubuntu Linux 14.04 LTS

O
th

e
r

a
lg

o
ri

th
m

s Platform Intel Nuc mini-PC

Processor Intel I7 5557U at 3.40 GHz

Memory 8-GB DDR3 RAM

Storage 256-GB solid state drive (SSD)

OS Ubuntu Linux 14.04 LTS

3.2 Sensing technologies for the localization

The basic idea to provide the accurate localization in large indoor environments is to

rely mainly on continuous relative localization techniques while adjusting position and

orientation with data obtained from floor or ceiling landmarks. We discarded ceiling

landmark systems because a) the system is supposed to be deployed in large places such

as airports where the ceiling height may differ significantly from one room to the other,

b) the installation is more difficult and complicated. Among various technologies which
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can detect some landmarks stuck on the floor, those explored in this research are, i) a

Radio Frequency Identification (RFID) system detecting and reading passive tags and

ii) a vision system detecting and reading Quick Response (QR) codes. Such sensors are

required to complement the data measured by odometers (e.g. encoders) and an IMU.

Of course, in all cases, the metrological characteristics of all sensors should be properly

analyzed, regardless of the chosen localization algorithm.

In the following, an overview of the sensors used for the position tracking as well as

their characterization is provided.

3.2.1 Incremental encoders

In every wheeled robot, a common technique for position tracking is encoders-based odom-

etry. Incremental encoders provide incremental counts related to the rotation of shaft.

The encoders are usually connected to the wheels shaft through a gearing system. Hence,

from the counting number, the total rotation of the wheels can be estimated as

Φw =
C

N ∗G
∗ 2π + εΦ (3.1)

where Φw is the total distance rotation of the wheel in rad, C is the number of

pulses counted by the encoder, N is the number of pulses per revolution (PPR) factor,

G is the gear ratio and ε is the uncertainty associated with the encoder measurements.

Given a sampling time Ts, the wheel displacement ∆Φw and angular velocity ωw at time

kTs (k ∈ N) are

∆Φw,k = Φw,k − Φw,k−1

ωw,k = ∆Φw,k/Ts
(3.2)

In the c-Walker, a CUI Inc. AMT10X incremental encoder set to 2048 ppr is installed

at each rear wheel, with gear ratio of four, to measure the angular velocity of the right

and left wheel, i.e. ωr,k and ωl,k, respectively.

Encoders characterization

To characterize the encoders, the optical incremental encoders were installed on the rear

wheels of the Bluebot2 and several data records were collected with the robot moving along

both straight and circular paths. The displacement and time values of the encoders were

measured at known positions marked by some stickers put on the floor of our laboratory.

Since the robot’s velocity in each experiment is constant, knowing the time and distance

passed from one reference point to the other, the actual encoders displacement at each

2Bluebot is a unicycle robot developed in the Embedded Electronics systems lab, university of Trento, in order

to emulate the unicycle-like robotic projects of the lab, such as the smart walker.
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sampling time can be estimated and compared with the values returned by the encoders.

In all experiments the measurement uncertainty, εΦr and εΦl , between the angular dis-

placements measured by both right and left wheel encoders and the corresponding values

estimated at every reference point were calculated. The mean and standard deviation of

εΦr and εΦl were computed and plotted as a function of the angular displacements of ei-

ther wheels. Such plots are shown in Figures 3.3 and 3.4. In the figures, to determine the

mean and standard deviation at each displacement value, a sufficient number of points,

ranging from around 100 to several thousands have been used.
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Figure 3.3: Encoders displacements measurement bias as a function of the actual displacement.
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Figure 3.4: Standard deviation of angular displacement measured by encoders as a function of

the actual displacement.

The mean of εΦr and εΦl grows with angular displacement. To a fast approximation,

such a bias can be estimated with a linear fitting as shown in Figure 3.3, i.e.{
µΦr,k = 0.01∆Φr,k [rad]

µΦl,k = 0.01∆Φl,k [rad]
(3.3)
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On the other hand, as shown in Figure 3.4, the standard deviation of angular dis-

placements is quite independent of the actual angular displacements. Therefore, to a fast

approximation, we can assume that the standard deviation is constant and can be set to

σΦr,k = σΦl,k = 1.35 · 10−3 rad (3.4)

3.2.2 Inertial Measurement Units

In normal situations, odometry based on encoders can be reliable and gives accurate

position estimation over short distances. However, in some situations where two wheels

do not behave properly or similarly for some time (e.g. when a wheel blocks or slips), the

odometry heading estimation error may grow considerably leading the pose estimation

to be inaccurate after a while. Thus, to allow the system to work autonomously for a

longer time and to prevent the heading estimation to drift away suddenly, it is advisable

to measure robot orientation with an IMU as well. Although the accuracy of MEMS

IMUs is usually quite low, they still can bring some benefits. In our system, we are just

interested in estimating the yaw angle, i.e. the robot’s heading, using the IMU.

The gyroscope provides angular velocity data which can be integrated to estimate

the orientation. Since the output of the gyroscope is given in its local sensor frame, a

method to rotate and to refer such data to the navigation frame is needed [23]. After

calibration and rotation, the z-vector of the angular velocity ωg can be integrated to

estimate the heading angle θg provided that the initial heading is known. Hence the

gyroscope measurement model used in this system is

θ̇g = ωg + εg (3.5)

or in discrete form

θgk = θgk−1 + T gs (ωgk + εgk) (3.6)

where T gs is the inertial platform sampling time and εg is the uncertainty of the angular

velocity estimation using the IMU.

In experiments with the system at hand, an IMU including an Invensense 3000 3-

axis gyroscope, a Bosch BMA180 3-axis accelerometer and a Honeywell HMC5883 3-axis

magnetometer are used [22]. The inertial measurements data is processed by a 32bit ARM

Cortex M3 microelectronic (MCU) running at 72 MHz, with 64 kB of RAM memory and

512 kB of flash memory. As a result, the localization system can just use the orientation

estimates returned by the IMU platform.
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Gyroscope characterization

The accuracy of the gyroscopic platform was evaluated by means of a calibrated orbital

rotator Stuart SB3. The IMU was put on the rotator in 6 different directions to char-

acterize all three axes of the Gyroscope. First the angular velocity values measured by

the gyroscopic platform for different fixed angular velocities of the rotator were collected.

Then, the histograms showing the velocity uncertainty in different stationary conditions

were built. The data analysis showed that in all cases the noise patterns exhibit a white

power spectral density and a normal distribution. However, as can be seen in figures

3.5 and 3.6, both the mean value µg and the standard deviation σg of such distributions

tend to grow with the angular velocity ω. The slope of µg is quite large and, to a first

approximation, it can be roughly regarded as constant. This result means that the sys-

tematic error introduced by the gyroscope can be approximated by a linear model as a

function of angular velocity (ω) estimated by the gyroscope. Furthermore, even if the

noise distribution is globally normal, the value of σg is inherently non-stationary due to

its dependence on ω.
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Figure 3.5: The mean error of the Gyroscope yaw angular velocity measurements

In conclusion, we found that

µg,k = 0.15ωg,k

σg,k = 0.07|ωg,k|+ 0.02
(3.7)

3.2.3 Absolute Measurement Unit

As explained previously, considering the pros and cons of different techniques for absolute

position measurement, two approaches based on detection of landmarks stuck on the floor

at known positions were chosen to adjust robot localization.
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Figure 3.6: The standard deviation of the Gyroscope yaw angular velocity measurements

Passive RFID systems

Passive RFID tags have a very low cost and do not need any maintenance (e.g. battery

replacement). Therefore, they are preferable for localization in large environments. The

tags can be buried in carpets or stuck on the floor. They can be even installed under

the mosaics or floor covers. Initially, we installed a high-frequency (HF) ISC.MR101-

USB evaluation RFID reader made by Feig Electronics operating at 13.56 MHz inside the

c-Walker. The reader is designed to detect passive tags compliant with Standards ISO

15693 (Vicinity Cards) and ISO 18000-3 (Smart Labels).

The performances of the passive RFID system for localization purposes were analyzed

using the reader at hand. The main steps of the testing procedure are listed below.

• A tag was placed on the floor and the RFID reader was moved radially towards the

tag and backwards in eight directions (i.e. north, north-east, east, south-east, south,

south-west, west, north-west), while keeping the antenna parallel to ground.

• The reading range of the device in every direction was estimated by measuring

repeatedly the distances at which the tag was detected or stopped being detected.

• After checking the omni-directional behavior of the reader, a histogram of the mea-

sured range values was built.

The results showed that the reader range has approximately a circular symmetry with

radius R = 15 ± 1 cm. Hence, to a first approximation, anytime a tag is detected, the

reader position measurement uncertainty is uniformly distributed over a circle centered

in the tag and with radius R.

A variety of different experiments in various conditions were done for robot localiza-

tion using passive RFID system [63, 64, 65]. The results show that the passive RFID
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systems provide fast, reliable and accurate position information although the reading

range is quite limited. However, when the tags are not read continuously, but sporad-

ically with an unknown detection time, they cannot return any information about the

absolute robot’s heading. Hence, the heading estimation uncertainty accumulates causing

a possible drift of position estimation as well. Thus, using another technology to measure

absolute orientation is unavoidable [65]. Therefore, despite the valuable benefits of the

passive RFID technology, we shifted to a complete vision-based solution able to measure

the robot’s absolute position and heading at the same time.

Vision systems based on floor mounted artificial landmarks

Although ad-hoc artificial landmarks can be designed for very fast image processing al-

gorithms, they suffer the lack of generality. So, the whole image processing and detection

algorithms should be redesigned as soon as landmarks change. If a standard coding tech-

nique is used, there is no need to design new artificial landmarks. For instance, a barcode

is an optical label readable with various types of optical sensors. The label can contain

different information such as a product code, a link or, in our application, a position. A

QR code is a two-dimensional barcode invented in Japan in 1994. It consists of black

squares inside a square grid with a white background (Figure 3.7). Using such squares,

large amount of data can be stored. Also, they can be easily read by simple cameras. To

this aim, three larger squares at the corners of a QR code, called Finder Patterns are used

to locate the QR in the image, while one (or multiple) smaller squares near the fourth

corner, called alignment patterns, are used to normalize the image for orientation and size

[11]. The advantages of QR codes (mainly fast detectability and high capacity) have made

them the most popular type of barcodes. As a consequence, their applications are rapidly

increasing. They have been used as reference landmark points for pedestrian localization

[8] and can be attached to the ceiling for mobile robots [106] and AAL applications [38]

A simple RGB-D camera can be used to detect the QR codes spread in the environ-

ment. The QR code can contain its absolute position or a simple number representing the

position in a look-up table. Efficient open source libraries and algorithms are available

to detect and read a QR code, such as Zbar library for C++3. Several algorithms have

been developed to find the distance of the camera from the detected code as well as the

orientation angle of the QR code with respect to the optical axis of the camera [32].

In this research, a cheap RGB-D camera (a simple USB PSeye RGB 640 × 480 we-

bcam) viewing the floor is mounted in front of the robot. It is installed about 80 cm

above the floor level with an orientation of about 60 degrees towards ground. In this

way, the camera field of view ranges from 0.2 to 1.2 meters in front of the robot. The

3http://zbar.sourceforge.net/
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Figure 3.7: A sample QR code
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Figure 3.8: The camera observations: (a) A specifications of a QR code inside the reference

frame, (b) the vision system measures the camera relative position and heading w.r.t the QR

code in the camera frame

camera aperture angle is 30 degrees. Figure 3.8 shows how QR codes could be deployed

in a given reference frame. In the proposed approach, a QR code stores only an integer

number q, which is associated with the planar coordinates (xq, yq) and the direction θq

of the QR code with respect to the x-axis of the given reference frame. This approach

is very flexible, since the table associating each QR code number to (xq, yq, θq) can be

easily changed and adapted to different environments, without reprinting the QR codes.

Also, in this way just low-density numeric-only codes can be used. The choice of using

low-density QR codes increases the ability to detect them at larger distances. The QR
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codes used in the experiments are of version-1 QR codes with 21×21 black-and-white cells

and a type L (i.e. low-level) Reed-Solomon error correction coding (ECC) is adopted. All

QR codes were generated according to the ISO/IEC Standard 18004:2006 and printed on

regular papers with a resolution of 600 dpi. A prominent specification of the QR codes is

their size which should be chosen according to the maximum distance from the camera.

As a rule of thumb, QR code size should be at least one order of magnitude smaller than

the scanning range. Also, their size should be proportional to a data density factor given

by the ratio between the number of columns (or rows) of the chosen QR code type (i.e.

21 in the case considered) and the number of columns (or rows) of a standard version-2

code (i.e. 25). Since the scanning range is about 1.2 m on average, after some tests, the

QR codes size was set equal to 15× 15 cm. QR code detection relies on the open-source

Zbar library. QR code landmark recognition is instead implemented in C++ using the

primitives of the OpenCV library. QR code detection and recognition is performed by

the Intel Nuc Mini-PC. The distance between the camera image plane and the central

point of the QR code is estimated in the camera local frame 〈Xc, Yc〉 to determine ∆xc

and ∆yc (see Figure 3.8-b). The image is then rotated to make the QR code coordinate

frame 〈Xq, Yq〉 parallel to the camera frame coordinates 〈Xc, Yc〉. The rotation gives the

heading difference ∆θc. Finally, the measurements returned by the camera and image

processing system at time kTs (if a QR code is detected at this time) are

∆̂x
c

k = ∆xck + ζcx,k

∆̂y
c

k = ∆xck + ζcy,k

∆̂θ
c

k = ∆xck + ζcθ,k

(3.8)

where ζcx,k, ζ
c
y,k and ζcθ,k are the uncertainties of ∆xck, ∆yck and ∆θck measurements at time

kTs, respectively.

The vision system characterization

In order to estimate the probability density functions (PDFs) of uncertainty terms ζcx, ζ
c
y

and ζcθ , the robot was repeatedly driven towards a target landmark in different directions

and at different speeds till detecting the QR code. Every time, the robot was stopped as

soon as the triple of values [∆̂x
c
, ∆̂y

c
, ∆̂θ

c
]T measured by the vision system was available.

The actual values of ∆xc and ∆yc after halting the robot were measured with a yardstick

and a square ruler (with a residual uncertainty of about ±1 cm). The values of ∆θc

instead were estimated with a goniometer centered in the intersection point between the

virtual optical axis of the camera and the reference direction of the QR code when θq = 0.
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Figures 3.9, 3.10, 3.11 show the PDFs of ζcx, ζ
c
y and ζcθ , respectively, estimated using about

100 experimental data. The black lines obtained from a nonlinear fitting of the underlying

histograms correspond to a log-logistic, a triangular and a Gaussian distribution for ζcx, ζ
c
y

and ζcθ , respectively. It is worth noticing that the latencies to extract the measures from

the collected images are random and can be so large as 150 ms. As a result, the displayed

distributions of ζcx, ζ
c
y and ζcθ are significantly affected by such latencies. On the contrary,

the worst-case uncertainty values when the robot is stock-still are about one order of

magnitude smaller than those shown in figures 3.9, 3.10, 3.11. Experimental evidence

showed that ζcx, ζ
c
y and ζcθ are quite correlated when the robot is still. However, they

tend to become uncorrelated when the robot is in motion probably because the random

processing latencies affect ζcx, ζ
c
y and ζcθ independently.
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Figure 3.9: The PDF of the error corresponding to the measurement of ∆xc. The best fitting

distribution is Log-logistic with scale parameter αxc ≈−2.15 and shape parameter βxc ≈ 0.17.

The vision method computational burden effects the measurment significantly.

The difference between the distributions of ζcx and ζcy is mainly due to the adopted

setup. Since in the experiments considered (as well as in typical scenarios) the camera field

of view is maximum in the direction of its optical axis, the impact of image acquisition and

processing latencies is much larger on ∆xc than on ∆yc. Also, ∆xc is always overestimated

because the robot mainly moves forwards. As a result, the distribution of ζcx is skewed with

a mean value of about 12 cm, whereas ζcy exhibits a zero mean because the probabilities of

detecting a QR code located on the right or on the left of the optical axis are approximately

the same. Similarly, the mean value of ζcθ is zero, as the robot can be reasonably assumed

to turn left and right with equal probability. Therefore, just the mean value of ∆xc has

to be properly compensated (i.e. subtracted from ∆̂x
c
) prior to using the measured data

in the localization algorithms.
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Figure 3.10: The PDF of the error corresponding to the measurement of ∆yc. The best fitting

distribution is Triangular with lower limit ayc≈−0.015, upper limit byc≈0.015 and mode cyc≈0.
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Figure 3.11: The PDF of the error corresponding to the measurment of ∆θc. The best fitting

distribution is Gaussian with mean µθc≈0 and standard deviation σθc≈0.033.

3.2.4 A summary of the proposed measurement techniques

In conclusion, the proposed localization system relies on odometry using two encoders,

a gyroscope and absolute pose measurements given by a vision system detecting QR

codes stuck on the floor. While Figure 3.12 shows an overview of the proposed sensing

technologies, Table 3.2 summarizes the main characteristics of the sensors described in

this chapter.
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Figure 3.12: An overview of the total sensing technologies.

Table 3.2: Overview of all the sensors

Sensor Parameter Noise Distribution Noise properties

Left odometer ∆Φl Gaussian
µφl =0.01∆Φl rad

σΦl = 0.002 rad

Right odometer ∆Φr Gaussian
µφr =0.01∆Φr rad

σΦr = 0.002 rad

Gyroscope ωg Gaussian
µg=0.15ω rad/s

σg=0.07|ω|+0.2 rad/s

Camera

∆xc Loglogistic
αxc≈−2.15

βxc≈0.17

∆yc Triangular
ayc≈−0.015

byc≈0.015

∆θc Gaussian
µθc =0 rad

σθc =0.033 rad



Chapter 4

Multi-sensor Data Fusion

Algorithms for Localization

In this chapter, some of the multi-sensor data fusion algorithms, introduced in Chapter 2

are applied and properly designed for robot position tracking using the sensing technolo-

gies described in Chapter 3. To this purpose, the first step is to define the proper state

space model of the system and to find the state variables that could be observed using the

available measurements. Therefore, a process model and a measurement model should be

first defined.

4.1 Process model

The process model of mobile robots describes the system locomotion using the current

states and inputs to the system. It usually depends on the motion dynamics or kinematics

of the mobile agent and can be defined as

ẋ = f(x,u,ν) (4.1)

where x is the vector of states used in the localization system, u is the vector of system

inputs and ν represents the uncertainty of the states. Various types of state variables

can be defined in a system depending on the localization technique. Some possible state

variables for this purpose are [67]:

• Position (in 1, 2 or 3 dimensions)

• Forward or angular velocity (in 1, 2 or 3 dimensions)

• Acceleration (in 1, 2 or 3 dimensions)

• Orientation (in 1, 2 or 3 dimensions)
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• Position and/or orientation of reference points in the environment (in 2 or 3 dimen-

sions)

• Sensors systematic biases and offsets

• Measurement or communication delays

After determining the desired states, the process model should be defined appropriately.

Although the nature of motion is continuous, it can be discretized with a sampling time

Ts as follows

xk+1 = fk(xk,uk,νk) (4.2)

where k denotes the k-th sample.

4.1.1 Unicycle Robots

Standard models of wheeled robots include unicycle, car-like and omni-directional models.

Although the methods and technologies used and discussed in this dissertation are general

and can be applied to different models, only the unicycle model will be used in the rest

of this dissertation. The unicycle-like robots are indeed commonly adopted in service

robotics and the unicycle model is the best one to describe the dynamics of c-Walker.

Unicycle-like robots are non-holonomic vehicles whose motion relies on two paral-

lel wheels which are mounted on the sides of a center of mass. Their movement is

path dependent and cannot have any kind of instantaneous lateral motion. A qualita-

tive overview of an unicycle-like vehicle moving inside a local navigation reference frame

〈W 〉 = {Xw, Yw, Zw} is shown in Figure 4.1.

The robot’s generalized coordinates are given by p = [x, y, θ]T , where (x, y) are the pla-

nar coordinates of the mid-point of the wheels axle and θ is the heading of the robot with

respect to Xw. Point p which coincides with the origin of the robot reference frame [93]

is referred to as robot reference point in this dissertation. The unicycle robot locomotion

can be described by the following model [93]

ṗ =

ẋẏ
θ̇

 =

v cos θ

v sin θ

ω

 =

cos θ 0

sin θ 0

0 1

[v
ω

]
, (4.3)

o = h(p)

where v and ω are the linear and angular velocities of the robot, o represent the system

output, and h(·) denotes a generic system output function. The inputs of (4.3), namely
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Figure 4.1: A unicycle-like vehicle

v and ω, are linearly related to the right and left wheels velocities by

v =
r

2
(ωr + ωl),

ω =
r

d
(ωr − ωl),

(4.4)

where r is the wheels radius, d is the length of the wheels axle, and ωr, ωl are the angular

velocities of the right and left wheel, respectively.

4.2 The proposed system model

The wheels angular velocities, i.e. ωr and ωl, can be measured using the encoders data as

follows

ωr=
∆Φr

Ts

ωl=
∆Φl

Ts

(4.5)

Therefore, the encoders can be used to estimate the inputs v and ω of the system

as well. However, the inputs estimated by the wheels displacement and encoders, are

usually affected by some uncertainty due to noise, and wheels and system uncertainties.

In particular, the major systematic contributions to angular velocity uncertainties are due

to poor calibration of encoders, wheels radius and axle length tolerances, and mechanical
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gearboxes imperfections. In general, the systematic contributions to angular and linear

velocity should be added to the system model. As a result of the encoders characterization

(see Chapter 3), some further experimental results and some references in the literature,

e.g. [21], the systematic contributions can be approximately regarded as linear functions

of the corresponding velocities. Thus, the augmented state space model based on (4.3) is

ṡ =


ẋ

ẏ

θ̇

µ̇

δ̇

 =


(1 + µ)v cos θ

(1 + µ)v sin θ

(1 + δ)ω

0

0

 (4.6)

where µ and δ are the relative systematic offsets affecting the values of v and ω respectively.

Thus,

ṡ = fw(s)Ω, (4.7)

where

fw(s) =


r
2
(1 + µ) cos θ r

2
(1 + µ) cos θ

r
2
(1 + µ) sin θ r

2
(1 + µ) sin θ

r
d
(1 + δ) − r

d
(1 + δ)

0 0

0 0

 ,

is the process function and Ω = [ωr, ωl]
T is the input vector. Finally, if (4.7) is discretized

with sampling time Ts, it can be rewritten as

sk+1 =sk+Tsfw(sk)Ωk=sk+fw(sk)∆Φk,= f(sk,∆Φk) (4.8)

where sk is the state vector at time kTs and ∆Φk = [∆Φrk , ∆Φlk ]
T is the vector containing

the right and left wheels angular displacement between time kTs and (k + 1)Ts. Since

the wheels displacements are measured by encoders, the real input is an estimation of the

wheels displacement, i.e. ∆Φk = ∆̂Φk + εΦ
k . Hence, the system model is rewritten as

sk+1 = f(sk, ∆̂Φk + εΦ
k ) (4.9)

4.3 Measurement Model

The measurement model describes the sensor measurements as a function of the states. In

fact, the state variables should be chosen properly such that they can explain the sensors’
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observations. In general, the measurement model is defined as

y = h(x,u, ζ) (4.10)

where y is the vector of sensors measurements, h(.) is the function relating the sensor

measurements to the state variables and ζ represents the measurements uncertainty. The

corresponding discretized measurement model is

yk = hk(xk,uk, ζk) (4.11)

4.3.1 Measurement model of the selected sensors

In the case study described in Chapter 3, the sensors chosen for the measurement model

are the vision system measuring ∆xc, ∆yc and ∆θc, and the IMU estimating the heading

angle, θg. In total, the measurement can be divided into two groups, i.e.

1. Measurements of relative position ∆̂x
c

= ∆xc + ζcx and ∆̂y
c
=∆yc + ζcy

2. Measurements of heading that can be obtained by merging ∆̂θ
c

= ∆θc + ζcθ and

θ̂g = θg + εg

Position measurement model

The vision system has to be able to measure the distances ∆xc and ∆yc between the cam-

era and the point (xq, yq) associated with the center of any detected QR code. However,

if the camera is not co-located in the robot reference point used to define the position of

the robot (as it typically occurs in practice), the coordinates of the reference point are

functions of ∆xc and ∆yc through a constant rigid transformation. If the position of the

camera is fixed, this transformation can be computed once and for all by measuring the

relative position of the camera with respect to the robot reference point. Therefore, given

the detected QR code position pq = [xq, yq], the transformation vector from robot refer-

ence point to the camera position lc = [lcx, l
c
y] and the system states vector, the position

measurement model can be defined as

ock=hc(sk)=

[
(xq−xk) cos θk+(yq−yk) sin θk+lcx
−(xq−xk) sin θk+(yq−yk) cos θk+lcy

]
. (4.12)

Moreover, since the elements of ock are measured by the vision system, the corresponding

measurement model becomes

ôck=

[
∆̂x

c

k

∆̂y
c

k

]
= hc(sk) + ζck (4.13)

where ζck = [ζcx,k, ζ
c
y,k]

T is the measurement uncertainty vector, as explained above.



36 Multi-sensor Data Fusion Algorithms for Localization

Heading measurement model

Let q = [θg, bg]T be a vector composed of the yaw angle θg and the relative angular velocity

uncertainty offset bg associated with the gyroscope-based platform. If bg is assumed to

be approximately constant and is not properly estimated and compensated, then the

systematic error affecting the angular velocity observed by the gyroscope is proportional to

ω. If the sampling period of the gyroscope is Ts, then the discretized heading measurement

model is

qk+1=

[
θgk+1

bgk+1

]
=

[
θgk+T gs (1+bgk)ω

g
k

bgk

]
+εgk

oθk=hθ(θgk)

(4.14)

where εg denotes the noise introduced by the gyroscope-based platform and hθ(·) is the

output function which depends on the yaw angle only, since bg usually cannot be observed

in practice. If the vision system is used to measure ∆θc, then it can be shown that

oθk =hθ(θgk)=∆θck =θq−θgk. Therefore, the corresponding measurement equation becomes

ôθk=∆̂θ
c

k=oθk+ζck, ζ
c
k being the heading measurement uncertainty due to the vision system

at time kTs. If the elements of εg and ζc are uncorrelated and normally distributed with

zero mean, the values of q can be suboptimally estimated by an EKF based on (4.14).

As known, an EKF relies on two iterative steps (namely, prediction and update) applied

to the linearized dynamic [6]. In this case, the equations of the prediction step are

q̂k+1|k = q̂k|k + g(q̂k|k)ω̂k,

Qk+1|k = AkQk|kA
T
k +Bkσ

2
ω,kB

T
k ,

(4.15)

where q̂k and q̂k+1|k denote the estimated and predicted state, respectively, g(q̂k) =[
T gs (1 + b̂gk)

0

]
is the input function, ω̂k is the angular velocity value given by the gyroscope-

based platform at time kT gs , Ak =

[
1 T gs ω̂k

0 1

]
and Bk =

[
T gs (1 + b̂gk)

0

]
are the Jacobians

of the process model (4.14) with respect to q and ω, respectively, computed at (q̂k, ω̂k);

Qk|k and Qk+1|k are the estimated and predicted state covariance matrices at times kTs
and (k + 1)Ts, respectively. Finally, σ2

ω,k is the variance of the gyroscope noise at time

kT gs .

Using the same notation, the update step equations of the EKF, when a QR code is

detected, are

Kθ
k+1 = Qk+1|kC

T
(
CQk+1|kC

T + σ2
θc,k+1

)−1

q̂k+1|k+1 = q̂k+1|k +Kg
k+1(ôθk+1 − Cq̂k+1|k)

Qk+1|k+1 = (I2 −Kθ
k+1C)Qk+1|k

(4.16)
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where Kθ
k+1 is the Kalman gain at time (k + 1)Ts, C =

[
−1 0

]
is the system output

matrix and σ2
θc,k+1 is the variance of ζcθ . Note that if no landmark is detected at time kTs,

no update is possible. Thus, the EKF works in open loop. In conclusion, the heading

estimation θgk is used as the heading measurement in the main system model.

The overall measurement model

According to the description reported above, we have an event-based measurement model

that depends on which sensors data are available at each sampling time Ts. Indeed, the

available measurements at time kTs can be

ôk =


∆̂x

c

k

∆̂y
c

k

θ̂gk

 QR detected

θ̂gk Only IMU data available

This results in the following output model

ôk=h(sk)+ζk=


[
hc(sk)

θk

]
+

[
ζck
ζgθ,k

]
QR detected

θk+ζ
g
θ,k Only IMU data available

(4.17)

where ζgθ,k is the heading estimation uncertainty of θ̂gk. In particular, the variance of ζgθ,k
should coincide with the (1, 1) element of the covariance matrix Qk defined in (4.16).

4.4 Estimators for Sensors Data Fusion

As introduced in Chapter 2, depending on the application, different dynamic estimators

can be used. System (4.6) is non-linear, the process noise is non-additive and as shown in

section 3.2, some of the measurements uncertainty contributions are not Gaussian. Hence,

four different types of estimators are analyzed and compared in the following, i.e.

1. The Extended Kalman Filter (EKF)

2. The Unscented Kalman Filter (UKF)

3. The Particle filter (PF) based on Sequential Importance Sampling

4. The Extended H∞ Filter (EHF)

In the rest of this chapter each technique is introduced, described and applied to the

problem at hand. In all methods, the estimation is based on the discretized model (4.8).
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Even if the estimation can be performed in one step, it is more convenient to use the usual

prediction-update two-step approach. In all cases, the prediction step is based on the same

process model (4.9) while the update step relies on the measurement model (4.17). This

two-step approach is specially required when the measurements are event-based, like in

the problem of this dissertation. The aim of the prediction step is to find an optimal a

priori estimation of the current states given the previous states, i.e. sk|k−1. When any

measurement is available, the update step will modify the predicted state variables, thus

returning the updated state at the current time, i.e. sk|k. When dealing with intermittent,

multi-rate or at all every event-based measurements, the two-step estimation approach

allows the system to work in open-loop, i.e. using only the prediction step when no

measurement is available. In this situation, the predicted estimates are also accepted as

the a-posteriori information, i.e. sk|k = sk|k−1

4.4.1 Extended Kalman Filter (EKF)

The extended Kalman filter is in fact a nonlinear version of the Kalman filters which

linearizes the system about the current state mean and estimated covariance.

Initialization

Usually, the mean and covariance of the initial state should be known. If improper initial

values are used, filter may diverge. This does not mean that the initial state, i.e. the

robot initial position, must be known; but it means that we should have knowledge about

how accurate the initial state is. So,

ŝ0|0 = ŝ0 = E[s0]

P0|0 = P0 = E[(s0 − ŝ0)(s0 − ŝ0)T ]
(4.18)

Prediction

In the EKF, the state is predicted using the previous state values, the previous sample

inputs and the nonlinear process model, i.e.

ŝk+1|k= f(ŝk|k, ∆̂Φk), (4.19)

The predicted covariance results from a Taylor-based linearization, i.e.

Pk+1|k = FkPk|kF
T
k +GkEkG

T
k . (4.20)
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where Fk is the Jacobian of the state space model with respect to sk|k at [̂sk|k, ∆̂Φk], i.e.,

Fk =
∂[f(ŝk|k, ∆̂Φk)]

∂ŝk|k

∣∣∣[̂sk|k, ∆̂Φk] =

=


1 0 F 13

k F 14
k 0

0 1 F 23
k F 24

k 0

0 0 1 0 F 35
k

0 0 0 1 0

0 0 0 0 1

 , (4.21)

with

F 13
k =−r

2
(1 + µ̂k)

(
∆̂Φrk+∆̂Φlk

)
sin θ̂k

F 14
k =

r

2

(
∆̂Φrk+∆̂Φlk

)
cos θ̂k

F 23
k =

r

2
(1 + µ̂k)

(
∆̂Φrk+∆̂Φlk

)
cos θ̂k

F 24
k =

r

2

(
∆̂Φrk+∆̂Φlk

)
sin θ̂k

F 35
k =

r

d

(
∆̂Φrk−∆̂Φlk

)
Moreover, Gk is the Jacobian of the state space model with respect to ∆̂Φrk and ∆̂Φlk

computed at [̂sk|k, ∆̂Φk], i.e.,

Gk=
∂[f(ŝk|k, ∆̂Φk)]

∂∆Φk

∣∣∣[̂sk|k, ∆̂Φk]=


r
2

cos θ̂k
r
2

cos θ̂k
r
2

sin θ̂k
r
2

sin θ̂k
r
d

− r
d

0 0

0 0

 . (4.22)

Ek is the covariance matrix associated with the encoders uncertainty εk. Since the

encoders are nominally identical, but independent, their uncertainty contributions are

weakly correlated in practice. Therefore, Ek is a 2 × 2 diagonal matrix with σ2
Φr,k

and

σ2
Φl,k

(defined in (3.4)) on the main diagonal.

Update

Whenever, measurement data are available, a Kalman gain can be computed and used to

update the predicted estimates of the states. The Kalman gain is given by [6]

Kk+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 +Rk+1

)−1
, (4.23)
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where Hk+1 is the Jacobian of the output h(s) and depends on the set of available mea-

sures. The Kalman gain and the measurement data record ôk+1 are finally used to update

the system state estimate and the corresponding covariance matrix as follows

ŝk+1|k+1 = ŝk+1|k +Kk+1

(
ok+1 − h(̂sk+1|k)

)
,

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k.
(4.24)

4.4.2 Unscented Kalman Filter (UKF)

The sigma-point Kalman filters are other members of the nonlinear Kalman filtering family

which provide a linearization solution using weighted statistical linear regression. They

linearize a nonlinear function of a random variable through a linear regression between

some specific points, called sigma points, drawn from the prior distribution of the random

variable. This results in two major advantages comparing with the EKF [100], i.e.

1. The actual uncertainty of the system states are taken into account while EKF dis-

regards the probabilistic spread of the noise during the linearization.

2. The first order Taylor series linearization of EKF results in first order accuracy of

the propagated mean and covariance while the accuracy in sigma-point filters is of

the second order

The unscented Kalman filter (UKF) is a kind of sigma-point filter in which the sigma

points are chosen in such a way that they can capture the most important statistical

properties of the prior state.

The first step in designing the UKF is to specify the number of sigma points Ns. In

the normal method of UKF, Ns = 2L + 1 where L is the dimension of system state. In

the presence of nonlinear or non-additive model uncertainties, some of them should be

regarded as additional state variables [102]. In the case considered, the augmented state

for the UKF would be sa = [s, ε, ζ]T where ε and ζ are the process and measurement

noise vectors respectively. According to the model proposed in this dissertation, only the

system uncertainty is non-additive while the measurement noise is linear and additive.

Hence, the augmented states can be only variables associated to the encoders noise. i.e.,

sak =

[
sk
εΦ
k

]
=
[
xk yk θk µk δk εΦr

k εΦl
k

]T
(4.25)

Hence, in this system L = 7, Ns = 2L+ 1 = 15 and X a is the matrix of Ns sigma vectors:

X a =
[
X a

0 ,X a
i,i=1...2L

]
(4.26)
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Initialization

The proper initial augmented state is defined as

ŝ0 = E[s0]

P0 = E[(s0 − ŝ0)(s0 − ŝ0)T ]

ŝa0 = E[sa0] =

ŝ0

0

0


P a

0 = E[(sa0 − ŝa0)(sa0 − ŝa0)T ] =

[
P0 05×2

02×5 E

]
(4.27)

where 0m×n is a zero matrix of size m × n. Moreover, each sigma point affects the

estimation with a predefined weight as follows

Wm
0 = λ/(L+ λ)

W c
0 = λ/(L+ λ) + 1− α2 + β

Wm
i = W c

i = 1/[2(L+ λ)] for i = 1 : 2L

(4.28)

where λ = α2(L+ κ)− L is the UKF scaling parameter which should be chosen a priori.

Parameter α can be used to obtain the sigma points spread around mean estimate E[s]

and usually set to a small positive value, κ is a scale factor to be chosen (usually set to

zero) and β is used to incorporate prior knowledge of the distribution of s. Wm is used

for the state estimation while W c is the weight vector for the covariance estimation.

Sigma point calculation

The state variables for Ns sigma points should be computed at every sample time kTs

X a
k =

[
X a
k,0 X a

k,i ... X a
k,2L+1

]
=

[
X s
k

X ε
k

]
X a
k,0 = ŝak

X a
k,i = ŝak + (

√
(L+ λ)P a

k ) for i = 1, ..., L

X a
k,i = ŝak − (

√
(L+ λ)P a

k ) for i = L+ 1, ..., 2L+ 1

(4.29)

The sigma points are then used to find a suboptimal Gaussian propagation of the state

variables.
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Prediction

Each sigma point is first passed through the system model to predict the states of the

sigma points.

X s
k+1|k,i = f(X s

k,i, ∆̂Φk,X ε
k,i) for i = 0, ..., 2L (4.30)

Finally, the predicted state and covariance are determined as

ŝk+1|k =
2L∑
i=0

Wm
i X s

k+1|k,i (4.31)

Pk+1|k = (
2L∑
i=0

W c
i [X s

k+1|k,i − ŝk+1|k][X s
k+1|k,i − ŝk+1|k]

T ) (4.32)

Update

Each sigma point is passed through the measurement function to achieve the sigma point

observation matrix Z

Zk+1,i = h(X+
k,i) (4.33)

From the observation matrix, the output can be estimated

ẑk+1 =
2L∑
i=0

Wm
i Zk+1,i (4.34)

Using (4.33) and (4.34) the Kalman gain can be computed

Pzz =
2L∑
0

W c
i [Zk+1,i − ẑk+1][Zk+1,i − ẑk+1]T

Pxz =
2L∑
0

W c
i [Xi − ŝk+1|k][Zk+1,i − ẑk+1]T

Kk+1 = Pxz(Pzz +Rk)
−1

(4.35)

At last, the Kalman filtering updated state and covariance are given by

ŝk+1|k+1 = ŝk+1|k +Kk+1(ok+1 − ẑk+1) (4.36)

Pk+1|k+1 = Pk+1|k −Kk+1(Pzz +Rk+1)KT
k+1 (4.37)
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4.4.3 Particle Filter (PF)

The Particle filters are suboptimal Bayesian filters which provide a point mass representa-

tion of the states estimation probability density using sequential Monte Carlo approaches

[84, 2]. After developing in 1990s [40, 26], the PFs have rapidly become proper alternatives

to the Kalman filters for nonlinear and non-Gaussian systems. A large variety of different

PF algorithms have been introduced so far. Among them, the Sequential Importance Re-

sampling (SIR) technique is used in this dissertation since it is a suitable standard method

with less computational cost than other well-known techniques, although it has a much

higher computational burden than Kalman filters. Like other estimators, due to the inter-

mittency of measurements, the technique should be defined in a two-level predict-update

way.

Initialization

The main parameter to be defined in the initial step is the number of particles Np. The

larger the number of particles, the better the estimation probability density becomes and

the more the computational burden grows. A PF estimates the state of each particles.

Hence, an initial state vector is defined for every particle depending on the a-priori knowl-

edge of the agent’s initial position. The estimated state at each sample is the weighted

average of the estimated particles.

si0 =E[si0] , i ∈ Z , i ∈ [1, Np]

wi
0 =

1

Np

ŝ0 =

Np∑
i=1

Wi
0s
i
0

(4.38)

where wi
0 is the weight associated with particle number i.

Prediction

Starting from sample k = 1, the prediction is simply done by propagating each particle

using the system model.

sik+1 = f(sik|k, ∆̂Φk, ε
Φ
k ) (4.39)
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Update

Once the measurements from sensors are collected, the particle weights are modified by

computing the measurements and system PDFs, i.e .

w̃i
k+1 = wi

k +
p(ok+1|sik+1)p(sk+1|sik)

q(sk+1|sik,ok+1)
(4.40)

where q is the measurement importance (or proposal) density which should be chosen

appropriately. Despite some drawbacks, the most common approach is to use the tran-

sition prior probability distribution as the importance function, i.e. q(sk+1|sik, ok+1) =

p(sk+1|sik). This simplifies the recursive weight computation to

w̃i
k+1 = wi

k + p(ok+1|sik+1) (4.41)

The computed weight should be normalized to be used in a weighted average, i.e.

wi
k+1 =

w̃i
k+1∑Np

i=1 w̃i
k+1

(4.42)

Thus, the state estimation can be updated as follows:

ŝk+1|k+1 =

Np∑
i=1

wi
k+1s

i
k+1 (4.43)

Note that the covariance matrix Pk+1|k+1 can be determined by computing the variance

of each state variable from all particles. Furthermore, in the systems with event-based

measurements, the weights are unchanged if no measurement is available at time kTs, i.e.

in such situation, wi
k+1 = wi

k.

Sample depletion and resampling

Since the weight associated with each particle at any time kTs depends on both its value

in the previous samples and the current value, the weight of some particles would contin-

uously decrease and approach to zero. Because of this problem, which is called sample

depletion or degeneracy, after some iterations only few (or even sometimes one) particle

will remain and contribute to state estimation. Some solutions to this problem have been

discussed in the literature. One of the solutions which is usually used in every kind of

particle filtering technique is resampling.

In resampling, the particles with negligible weights are substituted by some new par-

ticles with higher weights. This can partially solve the depletion problem but kills some

of information of the measurements PDFs and the Monte Carlo random sampling uncer-

tainty increases. Therefore, the resampling should not be applied at every sample but
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only when depletion is probable. To this aim, the number of particles whose associated

weight is not negligible (called effective number of particles) are found at every sampling

time [84], i.e.

Neff =
Np

1 +N2
p · var(wk+1)

(4.44)

A threshold for the minimum number of effective particles (Nth) is chosen as a scale factor

of the total particles number,

Nth = βNp, β ∈ (0, 1)

and the resampling is applied only if Neff < Nth. The resampling process aims at re-

moving samples with very low importance and booting those with high importance. The

Select with Replacement technique have been used in many applications so far, specially

for mobile robot localization [83]. It is simple, effective and solves most of the sample

depletion problems. But, on the other hand, its computational burden is pretty large due

to the need for random number generation and sorting. A complete overview of some

effective resampling algorithms can be found in [56].

Nonetheless, resampling cannot guarantee a complete solution of the depletion prob-

lem. Usually some other parameters need to be selected properly and/or modified de-

pending on the system and application. A major parameter which should be selected

appropriately rather than the resampling strategy, is the proposal distribution. If the

measurement is very accurate, the actual noise distribution may lead to very small prob-

abilities which increases the probability that the particles are depleted. To avoid this, the

following ad-hoc modifications are sometimes recommended and applied in practice:

• The domain of the distribution chosen for the measurements (p(ok+1|sik+1) in (4.41))

should be R. This prevents generating zero probabilities.

• Some references, like [40], recommend to use larger system and measurement noise

models than the real sensor uncertainty models. This solution, which is called jit-

tering, increases the propagation area and hence, decreases the potential number of

depleted particles in every sampling time.

4.4.4 Extended H∞ filter

The H∞ filters provide a worst case optimal estimation approach to improve robustness

to unmodelled noise and dynamics. They can robustly estimate the system states in the

lack of statistical knowledge on the uncertainties model [61, 43]. Like the Kalman filters,

for nonlinear systems the estimation is done sub-optimally using extended or unscented
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approaches. However, the goal is to estimate a linear combination of the state at time

kTs, i.e.

yk = Lksk (4.45)

where Lk should be chosen appropriately.

As explained in [95], H∞ filters can be obtained following a game theory approach.

In particular, they are conceived to minimize a scalar cost function given by the ratio

between the total weighted estimation error of a linear function of the desired state and

a term depending on the initial estimation error as well as the model uncertainty and

the measurement disturbances. In general, both the individual state estimation errors

and the various uncertainty contributions can be weighted differently, depending on the

nature of the problem at hand. In the robotic system of this dissertation, the objective

function is

Jk,

∑k
j=0 ‖Ljsj − Lj ŝj‖2

Ilj

‖s0−̂s0‖2
P̃−1
0

+
∑k

j=0 ‖εΦ,j‖2
Ẽ−1
j

+
∑k

j=0 ‖ζj‖2
R̃−1
j

, (4.46)

where where I lj is an identity matrix whose dimension is equal to the number of rows of

Lj, operator ‖v‖2
M , vTMv (with v and M being a generic vector and square matrix,

respectively), the three weighting matrices at the denominator of (4.46), i.e. P̃−1
0 , Ẽ−1

j ,

R̃−1
j , offer various potential degrees of freedom for H∞ filter design, the only constraint

being that they must be symmetric and positive definite.

The cost function (4.46) should be properly minimized for any k. Unfortunately, the

direct minimization of Jk generally is not a tractable problem. Nonetheless, a suboptimal

solution can be obtained by finding the values of ŝk such that J < γ2, with γ being a

specified bound. This relaxed problem can be solved by using an array algorithm [43]

and, in particular, the technique proposed in [57]. Following this approach, the EHF

implementation can be split into a prediction step and an update step, similarly to an

EKF.

Initialization

The initial state can be defined as in the EKF, i.e. based on (4.18). However, the EHF

allows more flexibility in the choice of the initial state.
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Prediction

As a result of all the discussions for EHF, the equations of the prediction step become the

same as (4.19) and (4.20), with the only difference that Ẽk replaces Ek. i.e.

ŝk+1|k= f(ŝk|k, ∆̂Φk)

Pk+1|k = FkPk|kF
T
k +GkẼkG

T
k .

(4.47)

Update

The equations of the update step instead are [57]

ŝk+1|k+1 = ŝk+1|k +Kk+1

(
ok+1−h(̂sk+1|k)

)
,

Pk+1|k+1 =

(
I5−Pk+1|k

[
HT
k+1 LTk+1

]
U−1
k+1

[
Hk+1

Lk+1

])
Pk+1|k,

(4.48)

where Hk+1 is the Jacobian of the output function h(·) in (4.17) computed at ŝk+1|k,

Kk+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 + R̃k+1

)−1

(4.49)

and

Uk+1 =

[
R̃k+1 0

0 −γ2
k+1I

l
k+1

]
+

[
Hk+1

Lk+1

]
Pk+1|k

[
HT
k+1 LTk+1

]
, (4.50)

Notice that, using this formulation, the implementation of the proposed EHF is similar

to an EKF, although the computational burden of the former estimator is a bit larger.

The EHF design consists of several parameters to be chosen appropriately. It can be

shown that if the weighting matrices are equal to the corresponding EKF covariances,

Lk = I5 and γ → ∞, then EHF and EKF tend to coincide. However, by selecting

appropriate parameters the EHF results can be more robust and/or accurate than the

EKF.

Selection of Lk

The EHF may become unstable if the state is not observable. In other words, the H∞
minmax technique can be applied to the observable states. Hence, in the current system

with intermittent and event-based measurements, the output linear function Lk defined

in 4.45 should be changed in order to extract only the observable states at time kTs. Note

that this does not mean that we do not estimate the other states but means that the

minimax filter is applied only to the observable quantities. In particular, due to the fact
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that when only gyroscope data is available, just θ is observable and when a QR code is

detected, x, y, and θ are observable, Lk is defined as

Lk =


[
I3 03×2

]
QR detected

[
0 0 1 0 0

]
Only IMU data available

(4.51)

Selection of the weight matrices

The weighting matrices P̃0, Ẽj, R̃j can influence the cost function and hence, estimation

accuracy. If some a-priori knowledge is available, P̃0, Ẽj, R̃j should keep into consider-

ation the relevance of different uncertainty contributions in vectors s0 − ŝ0, εΦ,j and ζj,

respectively. If these uncertainty contributions are white and normally distributed with a

zero mean, then P̃0, Ẽj, R̃j should coincide with the respective covariance matrices P0, Ej
and Rj defined for the EKF [95]. On the contrary, if such assumptions do not hold, the

weighting matrices offer various degrees of freedom for EHF design. Indeed no univocal

criteria for the selection of matrix parameters usually exist, besides the fact that P̃0, Ẽj
and R̃j must be symmetric and positive definite. Moreover, if some a-priori knowledge is

available, Ẽj and R̃j can leverage the relative importance of the process noises by selecting

different weights, i.e.

Ẽk=α2
E,kEk (4.52)

Ek being the odometry covariance matrix, αE = diag(αΦr,k, αΦr,k) being a scale factor

matrix, and

R̃k=α2
R,kRk (4.53)

where

αR,k=

{
diag(αx, αy, αθ) QR detected

αθ Only IMU data available
(4.54)

Selection of γ

The γ parameter of the EHF needs to be chosen with care. If γk → +∞, EHF behavior

tend to become the same as EKF. On the contrary, the smaller γk, the more the EHF

achieves optimality in a minimax sense. Unfortunately, if γk is too strict, matrix Pk

in (4.48) might be no longer positive definite [28]. As a result, the solution of the relaxed

optimization problem Jk < γ2
k might not exist, and the estimated trajectories could

suddenly diverge. If the system is always observable, this problem can be addressed by

changing γk adaptively, so that Pk|k (as well as its inverse) is positive definite for any k.
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In particular, by applying the matrix inversion lemma to (4.48), the condition of positive

definiteness of P−1
k|k can be expressed as

P−1
k|k = P−1

k|k−1 +HT
kR̃
−1
k Hk − LTkγ−2

k Lk > 0. (4.55)

Hence, it is shown in [91] that P−1
k is positive definite for all

γ2
k > λ(LTkLk(P

−1
k|k−1 +HT

kR̃
−1
k Hk)

−1) (4.56)

where the function λ(M) returns the maximum eigenvalue of matrix M . Unfortunately,

in the problem at hand, state variables xk and yk are not always observable, unless a

QR code is detected at every sampling time. Because of such a lack of observability

(which actually depends on the density of the QR codes in the room), the estimated

trajectory might occasionally diverge, even if condition (4.56) holds and even if θk is

observed. To avoid such divergence when only data from IMU is available (namely when

Lk = [0, 0, 1, 0, 0] and R̃k = α2
θσ

2
θ,k is a scalar), γk should be set larger than in (4.56),

even if this choice may lead to suboptimal results. In particular, since Pk|k−1 is positive

definite and HT
kR̃
−1
k Hk is positive semi-definite, it can be easily shown that if

P−1
k|k−1− L

T
kγ
−2
k Lk > 0 and HT

kR̃
−1
k Hk − LTkγ−2

k Lk ≥ 0 (4.57)

then P−1
k|k in (4.55) is certainly positive definite. Thus, in this case the values of γk result

respectively from

γ2
k > λ(LTkLkPk|k−1) and γ2

k ≥ R̃k = α2
θσ

2
θ,k. (4.58)

Observe that the rightmost expression of (4.58) results from the fact that Lk = Hk and,

consequently, HT
k Hk(R̃

−1
k − γ−2

k ) ≥ 0. Ultimately, in order to avoid finite escape time

phenomena while keeping accuracy as high as possible, γk can be computed adaptively

by merging conditions (4.56) and (4.58) as follows:

γ2
k=

ξλ
(
LTkLk(P

−1
k|k−1+H

T
kR̃
−1
k Hk)

−1
)

QR detected

max{ξλ
(
LTkLkPk|k−1

) 1
2 , α2

θσ
2
θ,k} QR not detected

(4.59)

where ξ is a constant coefficient to be set slightly larger than 1.
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Chapter 5

Experimental Results

To evaluate and compare the performance of position tracking methods described in

Chapter 4, multiple experiments were conducted using the c-Walker robotic platform.

A square-patterned grid of QR codes was regularly deployed on the floor of a 10 m×15 m

room. The QR codes were placed at various distances D (i.e. 1, 2, 3, 4 m) from each other.

The c-Walker was guided randomly in the room over different paths. Figure 5.1 shows

the c-Walker moving randomly in the room.

Incremental encoders 
(odometers) 

Processing platforms 

Camera 
Accumulator 

QR code 

Gyroscope 

Figure 5.1: The c-Walker prototype moving randomly in an open space

To reconstruct the actual position of the robot (i.e. the ground truth), a SICK-S300

Expert laser scanner was placed in the origin of the navigation frame 〈W 〉 (i.e. in one

corner of the room) to measure the coordinates of the user along each route in real-

time. The laser scanner has an angular resolution of 0.5◦, a maximum scanning angle of

up to 270◦ (but this was limited to 90◦ to increase the scanning rate) and a maximum

reading range of about 30 m. The laser scanner can detect any object in the environment
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and measure the position in the chosen reference frame. The robot can be identified

by removing all the objects with static position after each experiment. To reduce the

laser scanner estimation uncertainty the user was always trying to stand on the c-Walker

reference point and the scanner was put on top of a 2-m-high shelf to detect just a hat

wore by the user instead of the whole c-Walker. In this way, the cluster of points collected

from the scanner at a given time was quite concentrated around robot reference point and

finding the position of the centroid of the cluster was simpler. The heading ground-truth

was instead reconstructed by differentiating points of consecutive positions. such data

were interpolated with spline algorithm to smooth the trajectories.

Around 45 experiments of 180 seconds each were done in the room for each value of D

and the sensors and ground-truth data were saved for further analysis. Also, the results

of the localization algorithms running on the c-Walker and the ground truth were aligned

in time. The system , encoders and IMU sampling times were set to Ts = T gs = 4 ms with

the camera capturing 10 frames per second. The time intervals between two subsequent

QR code detections are random, as they depend on the robot’s trajectory. An example of

a 180 second trajectory with a distance between QR codes of D = 2 m is shown in Figure

5.2. This trajectory is called the ”sample trajectory” in the rest of this chapter.

x [m]
0 2 4 6 8 10

y 
[m

]

0

5

10

15

Figure 5.2: An 180 s random trajectory. The QR codes are deployed in a square grid with

distance D = 2 m. The Asterisk markers show the QR codes positions.

The accuracy of EKF, UKF, PF and EHF was tested starting from both known and un-

known initial positions and headings. In both cases, the initial value of linear and angular

velocity systematic contributions (i.e. µ and δ) was set to zero supposing that their un-

certainty is uncorrelated and has zero-mean normal distribution with εµ,0 ∼ N (0, 0.003)

and εδ,0 ∼ N (0, 0.0016)
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5.1 Extended Kalman filter

To use the EKF, the variance of noise of each sensor should be known. Using the same

data used in sensor characterization, the uncertainty associated with ∆xc measurement

(ζcx), has mean µζcx ≈ 0.11 m (which can be compensated) and standard deviation σζcx ≈
0.04 m. Similarly, the uncertainty associated with ∆yc measurement (ζcy) is µζcy ≈ 0 m and

σζcy ≈ 0.007 m. On the other hand, the uncertainty associated with the heading estimation

can be supposed to be zero-mean and normally distributed with variance equal to element

(1,1) of matrix Qk in (4.16) described in Chapter 4. Hence,

Rk=

{
diag(σ2

ζcx
, σ2

ζcy
, σ2

ζgθ
) QR detected

σ2
ζgθ

Only IMU data available
(5.1)

Figure 5.3 shows the EKF estimation of the sample trajectory while Figure 5.4 rep-

resents the corresponding estimation error. It can be seen that the estimated trajectory

completely follows the actual one. However, due to sporadic and event-based updates

from the QR codes, the estimation error accumulates before a QR code detects and de-

clined significantly when a new QQ code is detected. This fact leads to some spikes in

the estimated trajectory which can be easily seen in Figure 5.3.
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Figure 5.3: The EKF estimation of the sample trajectory

All the experiments with different QR distances (D ∈ 1, 2, 3, 4 m) have been analyzed

and the estimation error has been computed for each trajectory. The root mean square

(RMS) position and heading estimation errors for all the experiments over 180 seconds

are shown in Figure 5.5. Note that, in this chapter, the term position estimation error

refers to the euclidean distance between the actual and estimated positions.
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Figure 5.4: Estimation errors associated with the EKF for the sample trajectory.
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Figure 5.5: The RMS pose estimation error for DM =1 m, 2 m, 3 m, 4 m using EKF
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5.2 Unscented Kalman filter

The Unscented Kalman filter (EKF) described in section 4.4.2 can also be used for the

position tracking of the wheeled robots. The same measurement uncertainty model as

EKF was used and UKF scale parameters were set to: α=0.01, β=2, κ=0.

The sample trajectory estimated by UKF and the corresponding estimation errors are

shown in Figure 5.6 and Figure 5.7 respectively.
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Figure 5.6: The UKF estimation of the sample trajectory
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Figure 5.7: Estimation errors associated with the UKF for the sample trajectory.

Besides, Figure 5.8 shows the RMS position and heading estimation errors over time.

5.3 Particle filter

The PF parameters used in the experiments are summarized in the following:

1. Number of the particles Np = 1000.
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Figure 5.8: The RMS pose estimation error for DM = 1 m, 2 m, 3 m, 4 m using UKF

2. The threshold for the effective sample size was set to 75%, i.e. in this case Neff =

750.

3. All the sensors measurement noises were supposed to have zero-mean Gaussian dis-

tribution with standard deviation 10 times larger than the ones used in EKF and

UKF.

Even if all the particles should have probability density functions larger than zero, some

zero probabilities are computed when the probability is less than the embedded platform

precision. Hence, the probabilities computed as zero were set equal to smallest system

precision, i.e. 2−52 in double precision floating point format. Figure 5.9 shows the EKF

estimation of the sample trajectory. The corresponding estimation errors are shown in

Figure 5.10.
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Figure 5.9: The PF estimation of the sample trajectory
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Figure 5.10: Estimation errors associated with the PF for the sample trajectory.

Finally, Figure 5.11 shows the RMSE of the position and heading estimation for all

the experiments over time.

5.4 Extended H∞ filter

Although the Extended H∞ filter (EHF) has the advantage of not being influenced by the

noise distribution, it requires to set a variety of parameters. Fortunately, the method is

adaptive and ensures a robust behavior in different operating conditions. Nonetheless the

weight matrices Ẽk and R̃k are not required to coincide with the measurement covariance

matrices and can be tuned to optimize the accuracy. Since the noises associated with

the encoders are white, the best Ẽk will coincide with the covariance [95]. Therefore,

αE,k = I2 and Ẽk = Ek = diag(σ2
φr
, σ2

φl
).

The problem of finding the best αR, described in (4.54), is intractable analytically.

So it was addressed through simulations based on experimental data. To this end, the
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Figure 5.11: The RMS pose estimation error for DM = 1 m, 2 m, 3 m, 4 m using PF

EHF was repeatedly applied off-line to the same set of raw sensor data collected by the c-

Walker, for different values of αx, αy and αθ. From the comparison between the estimated

results and those obtained with the laser scanner, it was observed empirically that:

1. The best results are obtained when αx ≈ αy. Thus, a single common coefficient

(called αp in the following) can be replaced to both αx and αy in (4.54).

2. Two suboptimal values of coefficients αp and αθ can be derived heuristically by

finding the pair which minimizes the 99th percentile (computed over all available

paths) of the Euclidean distance between actual and estimated positions.

The choice of using the 99th percentile of the position error as a performance index is

dictated by the fact that the EHF is optimal in a minimax sense. So the EHF parameters
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should be chosen to minimize the worst-case errors, while filtering possible outliers that

could make the estimated maxima excessively noisy. Figure 5.12 shows the 99th percentile

curves for different values of αp and αθ, and for (a) D=2 m and (b) D = 3 m, respectively.

To better highlight the configuration providing the best accuracy, the 99th percentiles

of the position errors have been plotted as a function of the ratio αθ/αp for several values of

αθ. Most of curves in Figure 5.12 exhibit a minimum which does not change significantly

when αθ ≥ 100. Thus, the EHF estimator accuracy is maximized for αθ ≈ 100 and

αp = αθ/101.25 ≈ 5.6.
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Figure 5.12: 99th percentiles of the position estimation error for various values of αθ as a function

of ratio αθ/αp

The estimation of the sample trajectory based on EHF and the corresponding errors

are shown in figures 5.13 and 5.14 respectively.
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Figure 5.13: The EHF estimation of the sample trajectory

Besides, Figure 5.15 shows the RMSE of the position and heading estimation for all

the experiments over time.
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Figure 5.14: Estimation errors associated with the EHF for the sample trajectory.
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Figure 5.15: The RMS pose estimation error for DM = 1 m, 2 m, 3 m, 4 m using EHF
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5.4.1 A note on the H∞ parameter selection

The choice of different parameters selection adds some degrees of freedom in designing

H∞ filters. However, it should be noticed that although proper parameter selection can

result in more optimal estimation, inappropriate parameter selection can lead the system

to instability, divergence or finite escape problems or sometimes decrease the robustness.

The prominent parameter to avoid the finite escape is γ which was set as explained

in Chapter 4. The weighting parameters instead affect the accuracy, robustness and

reliability. They can robustly define a weight between measurements and provide much

better estimation accuracy if selected appropriately. However, in some situations, they

can affect the filter performance and robustness. For instance, in the case that the agent’s

location is lost, due to various reasons such as unknown or improper initialization or the

so-called kidnapping problem, this can affect the estimation convergence since the system

relies on the measurements less than the Kalman filters using the suboptimal weights

calculated heuristically. In short, the smaller the values of αp, αθ and especially γ, the

more robust the minimax filter becomes. On the contrary, the larger γ, the more stable

the system is. Hence, depending on the application, such problems may need to be studied

and addressed.

5.5 Filter comparison

After clarifying each filtering method and showing the results, in this section, all the four

estimators are compared and their advantages and disadvantages are discussed.

5.5.1 Accuracy

Figure 5.16 shows the RMSE of the position and heading estimation using all the filters

for D = 2 m. To provide a better clarification and accuracy comparison, the total RMS

and 99th percentile estimation error values of x, y and θ have been computed in the steady

state conditions. It was observed that to reach the steady state at least five updates from

QR code detection are needed. The results are shown in Table 5.1. It can be clearly

recognized that the proposed EHF outperforms other estimators, especially in the worst-

case, although the PF also provides more accurate estimation compared with EKF and

UKF.

5.5.2 Computational burden

Table 5.2 shows the average computational times of the proposed recursive filters running

in the c-Walker embedded platform. It can be seen that in terms of average computation



62 Experimental Results

time [s]
0 50 100 150

R
M

S
 p

os
iti

on
 e

st
im

at
io

n 
er

ro
r 

[m
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7
EHF
EKF
UKF
PF

(a)

time [s]
0 50 100 150

R
M

S
 h

ea
di

ng
 e

st
im

at
io

n 
er

ro
r 

[r
ad

]

0

0.05

0.1

0.15

0.2
EHF
EKF
UKF
PF

(b)

Figure 5.16: RMS position and heading estimation errors of all four proposed filters with D=2 m

Table 5.1: RMS and 99th percentiles of the x, y and θ estimation errors (in steady state)

obtained with various algorithms using regular grids of QR codes of a different granularity.
D = 1 m D = 2 m D = 3 m D = 4 m

EHF EKF UKF PF EHF EKF UKF PF EHF EKF UKF PF EHF EKF UKF PF

x
RMSE [cm] 10 20 15 10 15 30 30 20 20 40 35 25 20 45 40 30

99th Perc. [cm] 35 60 55 40 65 120 110 85 80 135 130 90 80 145 135 110

y
RMSE [cm] 10 20 15 10 15 30 30 20 20 40 35 30 20 45 40 35

99th Perc. [cm] 35 60 50 40 50 115 105 85 70 130 125 95 80 145 140 120

θ
RMSE [crad] 5 10 10 5 10 15 15 10 10 15 15 10 10 15 15 10

99th Perc. [crad] 20 30 30 25 25 40 40 35 30 45 45 35 25 50 50 45

time, the EHF is just slightly slower than the EKF, but it is much faster than both the

UKF and PF, especially when a QR code is used to update the state of the system.

Moreover, the distribution curves of computation times show that the EKF and the EHF

can always return a result in real-time (i.e. within Ts = 4 ms), whereas in the worst
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case the UKF and, above all, the PF may occasionally miss the deadline. This is evident

especially in the PF case, since its average computation time is always larger than 4 ms

when a QR code is detected.

Table 5.2: Computation time of the proposed EHF, EKF, UKF and PF for D = 1 m.

EHF EKF UKF PF

Computation time (no QR code update) [ms] 0.09 0.06 0.25 0.80

Computation time (with QR code update) [ms] 0.26 0.16 0.60 6.69

5.5.3 Unknown initial pose and convergence time

The results shown till now have been all obtained with known initial positions, due to

the available ground-truth. In practice, the initial position is often unknown and the

estimator should be able to converge to the actual ones after some updates.

The convergence time was evaluated with unknown initial position for D = 1 m. In

particular, the initial pose was defined randomly while the initial variances were set to

proper large values. The RMS estimation error of all the trajectories over time using

known and unknown initial pose were determined and compared. The convergence time

was estimated as the time at which the estimation difference goes and remains below

10 cm for x and y and 10 crad for θ. The results are summarized in Table 5.3.

Table 5.3: Convergence time of the EHF, the EKF, the UKF and the PF for D = 1 m.

EHF EKF UKF PF

Convergence time [s] 18 9 2 11

As can be seen in Table 5.3, the UKF provides the shortest as its RMS estimation

error rapidly approaches to the steady state value.

In the case of completely wrong initialization or case of kidnapping, the proposed EKF,

UKF and EHF could overcome the problem in most situations (although sometimes after

a significant time), with EHF showing the most robustness. However, the PF was not

able to converge the estimation in this case. This is due to the natural behavior of the

SIR particle filtering. To solve this problem, other PF methods such as marginal particle

filters may be used. However, such methods have more computational cost than the SIR.

Observe that the proposed EHF converges more slowly than the others. As described

in section 5.4, this can be due to the chosen weight matrices. To show this, the same

approach described above was applied to the EHF in the case that the scale factors αp
and αθ are set to one. The result decreased the convergence time from 18 to around 9

seconds.
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Figure 5.17: Sample paths (Path A and Path B) in a real-world scenario. Both the actual

(dashed line) and the trajectory estimated by the EHF (solid line) are reported.

5.6 EHF in real environments

In order to evaluate the performances of the proposed EHF with the best weighting

coefficients in a real environment, the EHF was implemented in the c-Walker and the robot

was driven along two paths in the premises of the Department of Industrial Engineering

of the University of Trento1. The map of a possible environment is shown in Figure 5.17.

In this setup the distance between adjacent QR codes was set equal to D= 2 m, as this

choice provides a reasonable trade-off between performances and deployment time. Path

A is a closed-loop trajectory starting and ending within the same room and in the same

position. Path B instead starts in the upper left room and finishes in the room on the

right side of the map. In Figure 5.17, both the estimated trajectory (solid line) and the

ground truth (dashed line) are reported. The estimation errors of state variables x, y and

θ in both cases are shown in Figure 5.18. This real experiment shows the obvious fact that

the estimation error cannot converge asymptotically to zero due to the sporadic absolute

position QR-based updates. For instance, in the central part of Path B, the length of the

path actually traveled without QR code detection is much larger than the average value

(i.e. in the order of some tens of meters). In such cases, the EHF is updated only by the

gyroscopic platform for a long time. Hence, the whole state estimation uncertainty grows

due to dead reckoning.

1These experiments were a part of the final Demo of DALi project.
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Figure 5.18: EHF estimation errors of state variables x, y and θ as a function of time when the

FriWalk moves along Path A (solid line) and Path B (dashed line) depicted in Figure 5.17.



66 Experimental Results



Chapter 6

Optimal Placement

In the previous chapters, the problem of indoor position tracking of wheeled robots us-

ing fusion of relative and absolute position measurements was addressed. When dealing

with absolute position measurement systems, a common and general problem concerns

with how to optimally place the landmarks in order to assure the detection of at least

one landmark at every sample time of the sensor. This problem has been solved for

omni-directional sensors, like RFID readers. However, to the best of our knowledge, no

analytical solution exists in the literature for sensors with a limited angular detection

range, such as the vision-based system used in the previous chapters.

6.1 An Introduction to Landmark Placement

Landmark placement is a prominent issue in every absolute position measurement tech-

nology. If the landmarks are located too far from each other, the localization system may

occasionally miss them, thus reducing accuracy. On the other hand, if they are located

too close, some of them would be redundant thus just increasing cost and complexity,

especially in large places.

Depending on the application and on the chosen sensing technology, landmarks can

be detected continuously or intermittently. In the former case, the optimal landmark

placement is the one for which, ideally, just one landmark is detected at every sampling

time. In the latter case, the number of landmarks can be much smaller, thus reducing

deployment complexity and costs. However, a localization system should be also able

to keep on tracking the agent’s position with a reasonable level of confidence when no

landmarks are detected. Of course, in both cases, the landmark placement problem

strongly depends on the detection area of the sensor in use.

If the sensor detection area (SDA) is omni-directional, as shown in Figure 6.1, the

agent’s direction does not affect the landmark placement problem and only its location
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should be analyzed. This problem has been addressed in several papers. In [51] a strip of

RFID tags is deployed in such a way that, in every position, at least one RFID tag lies

within the detection range of the on-board reader. The strip has an equilateral triangular

shape, with the RFID tags being located in the vertices. In [104] authors show that,

YW

ZW

XW

Detectable
Landmark

Sensor

SDA
Omni-directional

Figure 6.1: An agent with an omni-directional sensor moving in an environment with instru-

mented landmarks. The landmarks detection does not depend on the agent direction

in the case of landmark patterns consisting of equilateral triangles, the maximum side

length is
√

3 times larger than the detection range. However, other kinds of patterns are

also possible, and they can consist of up to 8-sided polygons [19]. A complete discussion

about the landmark placement over rectangular patterns in the case of sensors with an

omni-directional reading range is presented in [111]. An NP-hard placement problem

was defined and analytically solved assuming the robot trajectory is known [9]. Such a

solution was modified, using some observability constraints, to increase the robustness if

some landmarks are missed [10].

Some solutions to the so-called ”art gallery problem” can be also used for optimal

landmarks placement [87, 31]. In the ”art gallery problem” the area of a given environment

(i.e. the art gallery) has to be partitioned into regions, in order to minimize the number

of ”guards” (i.e. the landmarks in this case) that can view every point of each region.

The simulated annealing technique is frequently used to solve this kind of problems [31].

The art Gallery solution is mostly suitable for active landmarks. However, for systems in

which the sensor is installed on the mobile agent, the art Gallery can just assure landmark

detection over specific trajectories.

If the sensor reading range is not omni-directional, i.e. the sensor has limited detec-
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tion angle, landmark detection depends not only on the relative position of agent and

landmarks, but also on their relative orientation. This problem, clarified in Figure 6.2,

happens, for instance, when well-known low-cost systems, such as simple cameras or ultra-

sonic sensors, are employed. However, a similar scenario holds even when wireless systems

with strongly directional antennas are used. For this reason, the goal of this chapter is to

find a general solution to the landmark placement problem, when the Sensor Detection

Area (SDA) has a limited angular range and regardless to the agent’s trajectory.

YW

ZW

XW

Detectable
Landmark

SDA
Limited Angle Range

Figure 6.2: An agent with a limited angular range sensor moving in an environment with

instrumented landmarks. The landmarks detection depends on the agent direction

Assuming to represent the SDA (e.g. the field of view of a standard RGB-D camera)

with a polytope, first an optimal solution based on numerical techniques is introduced

and discussed. Then, it will be shown that similar results can be achieved analytically.

6.2 Optimal Landmarks Placement

As explained previously, the goal is to determine the minimum number of landmarks to

be deployed in a given environment so that, for any given configuration of the sensing

system, at least one landmark lies within the SDA. This problem is often treated in the

literature as a tiling problem, where the vertices of the tiles coincide with landmarks’

positions. It is known that only three periodic, monohedral and regular tiling patterns

exist in R2 (namely over the plane), i.e. triangles, squares and hexagons [5, 99]. Using

triangle and square tiles (which are the easiest to deploy in practice) the vertices of all

polytopes belong to an A2 point lattice and a square point lattice, respectively. Thus, if
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Figure 6.3: Points of an A2 lattice representing the possible landmark positions in a wide-open,

unbounded room. The sensor detection area (SDA) is represented by the shadowed region inside

polytope P.

the polytope P represents the SDA, the original optimization problem can be regarded

as “the problem of finding whether the polytope contains a lattice point” for any possible

position and orientation of P [99]. Limiting the analysis to the case of triangular tiles only

(the extension to the square case is similar and is left for future work), a convenient way to

represent the lattice points on a plane is to assume that one of the triangle sides is parallel

to the Xw axis of the reference frame 〈W 〉 = {Ow, Xw, Yw}, as shown in Figure 6.3. If

p0,0 = [x0, y0]T denotes a given lattice reference point, the coordinates of any other point

of the lattice can be expressed as

pi,j =

[
xi,j

yi,j

]
= p0,0 +

[
j d

2
+ id

jhd

]
, ∀i, j ∈ Z, (6.1)

where d, αd = π/6 and hd = d cos(αd) are the side length, the semi-angle and the height

of any equilateral triangle, respectively. Observe that d is also the distance between every

pair of adjacent landmarks. For the sake of simplicity, but without loss of generality, the

polytope P defining the SDA is approximated with an isosceles triangle with a vertex

angle of 2α, α ∈ (0, π/2) and height h (see Figure 6.3). In this case, the two equal sides

of the triangular SDA have length r = h/ cos(α). Moreover, if γ denotes the orientation

angle of the SDA with respect to axis Xw, the polytope is defined as the plane portion

P ,

{
2∑
i=0

λiqi|
2∑
i=0

λi = 1, λi ∈ [0, 1] for i = 0, 1, 2

}
, (6.2)
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Figure 6.4: Possible landmark positions in the rectangle Rd and corresponding partitions.

where q0 = Ow = [0, 0]T ,

q1 = r

[
sin(β + γ)

− cos(β + γ)

]
, q2 = r

[
sin(β − γ)

cos(β − γ)

]
, (6.3)

are the SDA vertices and β = π/2 − α is the angle between segment q0q1 and axis Xw

when γ = π/2, as shown in Figure 6.3.

Notice that, due to the symmetry and periodicity of the triangular lattice, in order to

generate all the possible lattice positions, it is sufficient to move the reference point p0,0 in

the rectangle Rd with base d and height hd, as pictorially explained in Figure 6.4. There-

fore, with reference to the notation introduced above, the optimal landmarks placement

problem can be formulated as follows, i.e.

Problem 1 Maximize the landmark distance d such that ∀p0,0 ∈ Rd and ∀γ ∈ [0, 2π)

there exists at least one pi,j ∈ P with i, j ∈ Z.

In the following subsections, first a numerical solution to solve this problem is presented.

Then, a closed-form analytical solution is also derived.

6.2.1 Optimal Numerical Solution

According to Problem 1, a solution should be found ∀p0,0 ∈ Rd. Hence, we can rewrite

p0,0 =

[
x0

y0

]
+

[
kxd

kyhd

]
=

[
x0

y0

]
+

[
kxd

kydc6

]
,

where c6 = cos(π/6) and kx, ky ∈ [0, 1]. This parametrization is shadowed as single

region in Figure 6.4. Given that [x0, y0]T is generic, we can choose [x0, y0]T = [0, 0]T for
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simplicity. As a consequence, it follows from (6.1) that

pi,j =

[
kxd+ j d

2
+ id

kydc6 + jdc6

]
= d

[
1
2
(2kx + j + 2i)

c6(ky + j)

]
. (6.4)

According to the definition of polytope (6.2), a point pi,j ∈ P if and only if ∃λ1, λ2 ∈ [0, 1]

such that λ1q1 + λ2q2 = pi,j, with λ1 + λ2 ≤ 1. Recalling (6.3), if we define

Qγ = [q1, q2] = r

[
sin(β + γ) sin(β − γ)

− cos(β + γ) cos(β − γ)

]
, (6.5)

and Λ = [λ1, λ2]T , it follows that

QγΛ = pi,j ⇒ Λ = Q−1
γ pi,j, (6.6)

Since det(Qγ) = r sin(2β), the inverse of Qγ always exists and can be determined as

Q−1
γ =

1

r sin(2β)

[
cos(β − γ) − sin(β − γ)

cos(β + γ) sin(β + γ)

]
, (6.7)

the constraints on coefficients λ1 and λ2 can be expressed as

λ1 ≥ 0 ⇔
[
1 0

]
Λ ≥ 0⇔

[
1 0

]
Q−1
γ pi,j ≥ 0,

λ2 ≥ 0 ⇔
[
0 1

]
Λ ≥ 0⇔

[
0 1

]
Q−1
γ pi,j ≥ 0,

λ1 + λ2 ≤ 1 ⇔
[
1 1

]
Λ ≤ 1⇔

[
1 1

]
Q−1
γ pi,j ≤ 1,

(6.8)

which yields to
cos(β − γ)xi,j − sin(β − γ)yi,j ≥ 0,

cos(β + γ)xi,j + sin(β + γ)yi,j ≥ 0,

(cos(β − γ) + cos(β + γ))xi,j + (sin(β + γ)− sin(β − γ))yi,j ≤ r sin(2β).

(6.9)

Hence, after some algebraic steps it follows that
cos(β − γ)xi,j − sin(β − γ)yi,j ≥ 0,

cos(β + γ)xi,j + sin(β + γ)yi,j ≥ 0,

cos(γ)xi,j + sin(γ)yi,j ≤
r

2

sin(2β)

cos(β)
.

(6.10)



6.2. Optimal Landmarks Placement 73

Thus, by replacing the elements xi,j and yi,j of (6.4) as well as r
2

sin(2β)
cos(β)

= r sin(β) = h

into (6.10), the following system of inequalities results

cos(β − γ)

2
(2kx+j+2i)−sin(β−γ)c6(ky+j)≥0,

cos(β + γ)

2
(2kx+j+2i)+sin(β+γ)c6(ky+j)≥0,

d

[
cos(γ)

2
(2kx+j+2i) + sin(γ)c6(ky+j)

]
≤h.

(6.11)

Therefore, a point pi,j ∈ P if and only if ∃i, j ∈ Z satisfying (6.11) and to solve Problem 1,

we have to find a solution to system (6.11) for any possible value of variables γ, kx and

ky. Notice that:

1. All the inequalities of (6.11) are linear in i, j ∈ Z for given values of γ, kx and ky.

2. Since the coefficients of (6.11) depend on periodic trigonometric functions, just the

values of γ in the interval [0, π/2] should be taken into consideration. This is a direct

consequence of the regular, periodic lattice structure. While the possible values of

γ are infinite, being the range of variation limited and i, j ∈ Z, in practice just a

finite amount of γ values (e.g. chosen with a resolution of π/40) can be explored to

find the optimal solution.

3. Given that the objective of Problem 1 is to maximize d, the first two inequalities

in (6.11) provide the constraints to the possible values of i, j ∈ Z, whereas the third

inequality represents the actual cost function to optimize. By adding the first two

inequalities and by using basic trigonometric functions properties, it can be easily

proved that cos(γ)
2

(2kx + j + 2i) + sin(γ)c6(ky + j) > 0. Therefore, since cos(γ) ≥ 0,

sin(γ) ≥ 0 and kx, ky ∈ [0, 1], it ensues immediately that the maximum of d for

a given γ (denoted as dγ in the following) is obtained for those value of i, j ∈ Z
minimizing the cost function fγJ , where

fγ =
[
cos(γ) cos(γ)

2
+ sin(γ)c6

]
, (6.12)

and J = [i, j]T .

In light of the previous remarks, we can rewrite in a compact, matrix form the first

two linear inequalities of (6.11) as A1J ≥ B1K1 and A2J ≥ B2K2, respectively, where

A1 =
[
cos(β − γ) cos(β−γ)

2
− sin(β − γ)c6

]
A2 =

[
cos(β + γ) cos(β+γ)

2
+ sin(β + γ)c6

]
,
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B1 =
[
− cos(β − γ) sin(β − γ)c6

]
,

B2 =
[
− cos(β + γ) − sin(β + γ)c6

]
,

and K1 = [kx1 , ky1 ]
T and K2 = [kx2 , ky2 ]

T are the values that, in the worst case, maxi-

mize B1K and B2K, respectively, K = [kx, ky]
T being the vector of generic coefficients.

Therefore, for a given γ ∈ [0, π/2], the solution i?, j? ∈ Z of the following optimal problem

min
i,j

fγJ

s.t. A1J ≥ B1K1,

A2J ≥ B2K2,

i, j ∈ Z,

(6.13)

can be used to compute the maximum distance dγ for a given γ, i.e.

dγ =
2h

cos(γ)(2kx + j? + 2i?) + 2 sin(γ)c6(ky + j?)
. (6.14)

It is worthwhile to note that a solution to Problem (6.13) always exists since det([AT1 , A
T
2 ]) =

sin(2β)c6 6= 0. However, the pair i?, j? ∈ Z defines a point lattice pi?,j? ∈ P , ∀kx, ky ∈
[0, 1]. In other words, the solution determines a single point that belongs to the SDA

∀p0,0 ∈ Rd. This is clearly an overkill, since it is sufficient that at least one point belongs

to the SDA, even if this is not the same point ∀kx, ky ∈ [0, 1]. To address this issue,

Rd can be partitioned into smaller sub-regions (i.e. by bisecting kx and ky iteratively)

in order to compute the optimal pair i?, j? ∈ Z for each sub-region (see the Partitioned

region in Figure 6.4 for reference). In this way, if J ? denotes the set of optimal i?, j?

pairs of all sub-regions, the optimal distance between landmarks for a given γ results

d?γ = min
i?,j?∈J ?

2h

cos(γ)(2kx+j?+2i?)+2 sin(γ)c6(ky+j?)
. (6.15)

Finally, the optimal solution to Problem 1 is given by

d?= min
γ∈[0,π/2]

d?γ. (6.16)

The results of some simulations confirming the validity of the proposed optimal solution

are reported in Section 6.3.

6.2.2 Optimal Analytical Solution

This Section reports an analytical expression of the optimal distance between landmarks,

when an A2 lattice in a wide-open unbounded room is considered. Let b = 2r sin(α) be
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Figure 6.5: Pictorial examples of missed landmark detection, when the geometrical constraints

d ≤ r (e.g. P1) and d ≤ b (e.g. P2) are not satisfied.

the SDA maximum width, i.e. the length of the base of the isosceles triangle P . In order

to solve Problem 1, two geometrical constraints must be satisfied, i.e. d ≤ r and d ≤ b.

Indeed, if these constraints are not met, at least one triple of values kx, ky and γ exists

such that the sensor cannot detect any landmark (e.g. P1 and P2 in Figure 6.5). This

can happen in some situations even if these constraints are met, like P3 in Figure 6.5.

However, in the case of P3 since the SDA base is larger than d (b > d), the base is

obviously situated inside more than one tile and hence there exists a rectangular area in

front of the base comprising one vertex (landmark).

Let us consider a virtual sensor with a triangular SDA included into P . Similarly

to (6.2), the SDA of the virtual sensor is defined as follows, i.e.

Pv,

{
2∑
i=0

λiq
v
i |

2∑
i=0

λi = 1, λi ∈ [0, 1] for i = 0, 1, 2

}
, (6.17)

where qv0 = q0 and

qv1 = rv

[
sin(β + γ)

− cos(β + γ)

]
, qv2 = rv

[
sin(β − γ)

cos(β − γ)

]
,

with rv ≤ r, d ≤ rv and d ≤ bv = 2rv sin(α), in accordance with the constraints specified

above. Let Rv be the rectangle, with base bv and height H = h − hv = (r − rv) cos(α),

which lies just beyond the SDA of the virtual sensor (see Figure 6.6 for reference). Observe

that, in general, {Pv ∪Rv} ⊆ P . So {Pv ∪Rv} can be regarded as an inner approxi-

mation of polytope P , which becomes increasingly accurate as rv → r. In light of this

approximation, a sub-optimal version of Problem 1 can be formulated as follows, i.e.
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Figure 6.6: The rectangle Rv in front of the FoV Pv.

Problem 2 Maximize the landmark distance d such that ∀p0,0 ∈ Rd and ∀γ ∈ [0, 2π)

there exists at least one pair i, j ∈ Z with pi,j ∈ {Pv ∪Rv}.

To find an analytical solution to this problem, first of all notice that, since bv ≤ b, then

max d = min(r, bv). Given that α, b and r are known parameters of the sensor, but bv is

unknown, using simple geometric arguments, it can be shown that

bv = 2 tan(α)(r cos(α)−H). (6.18)

Therefore, in order to maximize bv it is sufficient to minimize H. Let us suppose that, for

a given choice of kx, ky and γ, then pi,j 6∈ Pv for any i, j ∈ Z (otherwise Problem 2 would

be straightforwardly solved). Under this assumption, we need to have one landmark in

Rv. This in turn implies that Rd ⊆ Rv, where the areas of Rd and Rv are equal to d · hd
and H · bv, respectively. Since d ≤ bv, the minimum value of H ensuring that Rd ⊆ Rv is

H = hd = d

√
3

2
. (6.19)

Thus, by plugging (6.19) into (6.18), it finally results that

d ≤ d† = bv = r
2 sin(α)

1 +
√

3 tan(α)
. (6.20)

where d† denotes the analytical solution to Problem 2. Notice that 0 < d† < r, because

α ∈ (0, π/2).

6.3 Simulation-based Validation of Numerical and Analytical

Optimal Solutions

In order to confirm that the optimal landmark distances obtained both numerically and

analytically are correct and converge to the same solution, some meaningful simulation
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have been performed. Figure 6.7 shows the normalized optimal landmark distances (i.e.
d?

r
and d†

r
) as a function of the sensor angular semi-range α ∈ (0, π/2). In the numerical

case, three sets of results are reported for different partitions of Rd (i.e. assuming to find

a solution in the entire Rd, in 8 sub-regions and in 64 sub-regions of Rd, respectively).

Notice that as the number of partitions used to compute d? grows, the sub-optimal nu-
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Figure 6.7: Optimal landmark distances (normalized by r) computed numerically and analyt-

ically as a function of the sensor angular semi-range α. The numerical results refer to three

different partitions of Rd.

merical values exhibit smaller fluctuations (due to the finer granularity of the regions

explored) and ultimately they converge to the analytical results, as expected. Observe

also that, with a partition of Rd into 64 sub-regions, analytical and numerical results are

no longer distinguishable.

In addition, Figure 6.8 reports dual results when the optimal landmark distance as a

function of α ∈ (0, π/2) is normalized by h (i.e. d?

h
and d†

h
). Notice that the trend of

the curves in Figs. 6.7 and 6.8 is completely different, although numerical and analytical

results are consistent. This is due to an essential geometric difference in the two cases. In

Figure 6.7 the SDA triangle is indeed inscribed within a circle of constant radius r. This

implies that as α changes the actual sensor range h is not fixed, but it reaches a maximum

for 2π
9

and then it decreases as α approaches π
2
. On the contrary, in Figure 6.8 the SDA

triangle has a constant height h, and the value of the circle radius r steadily increases with

α. As a result, the normalized optimal landmark distances grow monotonically, as well.

Consider that both situations may occur in real scenarios, as they depend on the setup

of the sensing system (e.g. camera orientation with respect to the floor). Observe also

that, in both cases, when Rd is partitioned into 64 sub-regions, analytical and numerical
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Figure 6.8: Optimal landmark distances (normalized by h) computed numerically and analyt-

ically as a function of the sensor angular semi-range α. The numerical results refer to three

different partitions of Rd.

Table 6.1: Optimal landmark distances (computed analytically and normalized by r) and min-

imum values of factor δ for which no landmark is detected in at least one out of 105 randomly

generated positions and orientations of the sensor.

α [rad] 0.2 0.4 0.6 0.8 1 1.2 1.4

d†

r 0.32 0.46 0.53 0.53 0.46 0.35 0.18

δ 1.08 1.02 1.02 1.02 1.02 1.01 1.01

results are hardly distinguishable.

In order to evaluate more clearly to what extent the estimated landmark distance

values are close to the optimal ones, some Monte Carlo simulations (of 105 runs each

for given values of α) have been performed by randomly changing sensors’ position and

orientation over different lattices of type A2, in which the distance between landmarks

was set purposely larger than d† by a variable factor δ. Tab. 6.1 reports both the optimal

values of d†

r
and the minimum values of factor δ for which if we set d=δ · d†, there exists

at least one configuration of the sensor in which no landmark is detected. It shows that

for very small values of α, d† is slightly far from the optimal d, e.g. approximately 8% for

α = 0.2 rad, but it tends to the optimal value when α increases.
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6.4 Simulation Results for the c-Walker

In order to evaluate the impact of optimal landmark placement on localization accuracy

in a real case study, the results of some Monte Carlo simulations in two different indoor

environments are reported in the following, i.e. a large wide-open room without any ob-

stacle, and a more realistic scenario based on the map of the Department of Information

Engineering and Computer Science (DISI) of the University of Trento. The main param-

eters of the camera’s SDA are supposed to be: r ≈ 4 m and α ≈ π/6 rad. Thus, it follows

from (6.20) that d† ≈ 2 m.

6.4.1 Wide-Open Room

In the ideal case of a wide-open room without obstacles where an A2 lattice of landmarks is

deployed on the floor with distances between adjacent landmarks given by (6.16) or (6.20),

the front camera of the c-Walker is always able to detect at least one landmark, regardless

of camera’s position and orientation. To verify this, 200 random-walk trajectories of 180 s

each have been generated within a 10×10 m wide-open room. The results obtained in this

case are comparable with those reported in Tab. 6.1. Indeed, by increasing the distance

between adjacent landmarks by just a few percent, it may happen that no landmarks are

detected. To evaluate the landmark detection, d† was multiplied by a coefficient δ, i.e.

d = δd†, and the probability of not detecting any landmark is computed by finding the

samples in which no landmark is detected during all 100 trajectories. Figure 6.9 shows

the probability for δ ∈ [1, 1.5].

It is worthwhile to note that setting d = d† ensures that at least one landmark is in

view for any position and orientation of the robot. Therefore, in general, more than one

landmark can be actually detected. Figure 6.10 reports the average number of detected

landmarks versus δ, with δ ·d† being the parametric distance between adjacent landmarks

on the lattice considered. It is evident that more than 2 landmarks can be detected on

average when d=d†.

Figure 6.11 shows the root mean square (RMS) estimation errors associated with

variables (x, y, θ) as a function of time, when 200 simulated trajectories are considered.

Observe that all RMS patterns quickly converge to the respective lower bounds that can

be obtained using the EKF described in Chapter 4. Notice that these lower bounds can

be reached if and only if the optimal landmark deployment is adopted, i.e. if there is at

least one visual landmark inside the SDA of the camera.
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Figure 6.9: Probability of being in a position where no landmark can be detected for various

adjacent landmark distances δ · d† in the case of wide-open room with no obstacles
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Figure 6.10: Average number of detected landmarks for various adjacent landmark distances

δ · d† in the case of wide-open room with no obstacles.

6.4.2 Realistic Environment

To evaluate the method in a real environment, three users are supposed to move simulta-

neously in the building of DISI1. Department. For each user, 50 trajectories, whose initial

1Department of Information Engineering and Computer Science, University of Trento
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Figure 6.11: RMS estimation error of robot’s planar Cartesian coordinates and orientation

computed over 200 random trajectories in the case of a wide-open room with no obstacles.

and final destinations are generated randomly, have been computed using a Social Force

Model described in [44] to simulate human-like trajectories and avoid collisions.
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Figure 6.12: Trajectories planned for six agents’ moving in the premises of the Department of

Information Engineering and Computer Science of the University of Trento.

Figure 6.12 shows the map of DISI along with one example of six users’ trajectories.
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Figure 6.13: Qualitative relationship between the SDA of the robot’s camera, the position of a

detected landmark and its six neighbors over a portion of A2 lattice in the case of wide-open

room (a) and obstacles (e.g. walls) (b).

While initial position and final destinations are generated randomly, the main difference

with respect to the wide-open room case is that now the optimal landmarks placement is

affected by the presence of obstacles and walls. Anytime a point of the lattice is located

inside a wall or an obstacle reported in the DISI map, obviously the corresponding land-

mark is not available in practice. This problem can be partially addressed by shifting the

reference landmark position p0,0 ∈ Rd until the maximum number of available landmarks

is reached. However, while in the wide-open room case, anytime the camera detects a

landmark, any one of its six neighbors can be detected next (as depicted in Figure 6.13(a)),

the presence of walls and obstacles can make the transition from one landmark to another

impossible or much longer (e.g. because the trajectory is constrained by a wall as shown

in Figure 6.13(b)).

This fact influences RMS estimation errors even if the layout of landmarks is as close as

possible to the optimal one. To evaluate the impact of obstacles on localization accuracy,

the RMS estimation errors over time associated with variables (x, y, θ) and averaged over

200 trajectories have been computed for three different values of r (i.e. 1 m, 4 m and

8 m) and are reported in Tab. 6.2 in the case of wide-open room and DISI premises,

respectively.

It is clear that, in the case of a wide-open room, the SDA size does not affect local-

ization accuracy significantly, as lattice optimality for a given SDA is preserved. On the

contrary, when walls and obstacles are present, the RMS position errors tend to increase
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Table 6.2: Average RMS estimation errors associated with variables (x, y, θ) for different values

of r and in the case of wide-open room and DISI premises, respectively.

Wide-open room DISI premises

r [m] 1 4 8 1 4 8

RMSEx [cm] 1.5 1.6 1.7 2.2 3.3 4.2

RMSEy [cm] 1.5 1.6 1.7 1.5 2.2 2.9

RMSEθ [mrad] 8.0 8.0 8.0 24.0 25.0 25.0

as the camera SDA grows. This is indeed due to the fact that the probability of detecting

a landmark decreases from 96% when r = 1 m to 87% when r = 8 m. To emulate and

to analyze the effect of the presence obstacles more in depth, an increasing amount of

landmarks has been randomly removed from the optimal layout, recomputing the RMS

position errors every time. Figure 6.14 shows the RMS position error accumulated, on

average, along the path between pairs of subsequent landmarks, when an increasing per-

centage of landmarks cannot be detected. Notice that the RMS position error increases

as expected, in accordance with the results reported in Tab. 6.2.
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Figure 6.14: RMS position errors between two subsequent landmark detections as a function of

the percentage of landmarks randomly removed from the optimal layout.



Chapter 7

Collaborative Localization

In the previous chapters, the localization problem was defined and solved for individual

wheeled robots. However, if several agents are moving in the same environment, they can

be another source of information for each other. In other words, they can inform each

other about what happens in their surroundings. In this case, if one agent can estimate

its own relative position with respect to the others and it receives the others location, it

can reconstruct its own position as well. This collaboration between different agents can

be combined with the self-localization system, described in previous chapters, to achieve

higher estimation accuracy.

The localization of multiple mobile agents is typically a difficult problem if it is ad-

dressed in a centralized way, especially in non-line-of-sight (NLOS) conditions and when

multiple targets are present in the same environment. However, when each agent has its

own autonomous localization system, the problem can be tackled in a distributed way. In

this situation, the presence of multiple agents can possibly turn into an advantage, pro-

vided that different robots are able to cooperate. This general idea, often called synergic

or collaborative localization, has proved to be successful in different contexts involving

groups of robots [97, 49].

An early study on collaborative localization is presented in [85]. In [34] the authors

envision a fully wireless collaborative localization system based on the potential ability of

clusters of 4G mobile devices to measure their reciprocal distances through a hybrid time

of arrival/angle of arrival (TOA/AOA) technique. The case of collaborative localization

of wireless mobile platforms has been also addressed in [15], where the so-called paral-

lel projection method is used to improve the localization accuracy in NLOS conditions.

Taniuchi et al. suggest using a spring model to reduce the pose estimation uncertainty

associated with distance measures obtained using WiFi and Bluetooth RSS data [98].

In the field of robotics, Fox et al. propose a Markov-based probabilistic method in

which each robot’s belief about its own position is refined as soon as other robots are
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detected [33]. A different Markovian approach is adopted in [4]. In this case, first the

egocentric measurement data are fused locally to create a Markov chain of robot pose

estimates. Then, both inter-robot measurement data and state estimates are transferred

to a central server, where localization is refined by minimizing the mean square error of

agents’ positions.

An alternative statistical method for collaborative localization is instead described

in [82]. This relies on a decentralized, real-time particle filter coupled with a reciprocal

sampling algorithm to reduce the overall computational burden. In spite of the accuracy

improvements achieved by applying computationally demanding optimization strategies

to the collaborative localization problem [52], the simplest general technique for fully-

distributed, multi-robot localization is still the extended Kalman filter (EKF) [85]. In [3]

the update step of a distributed EKF is modified by an algorithm preventing data reuse

in order to avoid inconsistent (i.e. overconfident) covariance estimates.

Panzieri et al. address the collaborative localization problem by means of an interlaced

extended Kalman filter (IEKF) [72, 73] based on the fact that the state evolution of

each robot and its observation depend also on the state of other robots. The IEKF

is inherently distributed, computationally acceptable and easy to implement. Therefore,

[72, 73] was the starting point for the research work proposed in this chapter. However, the

implementation of the original IEKF disregards the possibility of Event-based observations

while in real environments it is unlikely to detect other robots at every time. Hence, in this

chapter the IEKF is modified by separating the individual and collaborative localization

with the latter being used only when proper information from other agents is available.

In other words, the proposed solution is a two-layer localization approach in which layer

1 relies on the local sensing features of each robot to estimate its own pose and layer 2

instead exploits the results of layer 1 in order to refine the local estimates through an

IEKF. An overview of the proposed two-layer solution is depicted in Figure 7.1.

A key challenge in collaborative localization of mobile agents is the sensing technol-

ogy used to observe the relative position of nearby agents. This chapter reports several

simulation results comparing two different techniques to measure the relative position

of pairs of agents a) a low-rate RGB-D camera and b) a wireless ranging system. The

former provides more accurate measurements but at a very low rate, while the latter is

less accurate but returns data at a higher rate and covers a larger area.

7.1 System Model Description

Collaborative localization of a team of agents refers to the ability to refine the position

and the heading estimated by each agent in a common reference frame by using both local
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Figure 7.1: An overview of the proposed two-layer collaborative localization system. The self-

localization process can be run independently if no collaborative data is available

positioning data and relative distance and/or attitude measures between pairs of devices.

The main underlying assumptions are summarized below.

1. N agents can move freely in a large room. The dynamic of each agent does not de-

pend on any other agent, since each user may act independently. The only constraint

to robot motion is collision avoidance.

2. The state of each agent i (with i = 1, . . . , N) at time kTs is represented by vector

p
(i)
k = [x

(i)
k , y

(i)
k , θ

(i)
k ]T

3. Each agent is able to estimate its own state autonomously (namely without the help

of other agents) using the EKF technique described in Chapter 4.

4. Besides the sensors used by each robot for its own local state estimation, every agent

is supposed to be equipped with two alternative types of exteroceptive sensors for

collaborative localization, i.e. either an omni-directional wireless ranging system

(case A) or a front RGB-D camera (e.g. a Kinect) (case B).

In case A, the ranging system is used to measure just the distance between a robot

and any other agent located within an (approximately) circular range, as shown in

Figure 7.2. On the contrary, in case B, the stereo vision system is employed to

recognize and to measure the relative position between the robot’s camera and any

other agents located within its detection range as shown in 7.3.

5. All agents are equipped with a radio transceiver ensuring complete connectivity

between pairs of robots as well as high-rate and low-latency communication. Long
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Term Evolution (LTE) wireless modules can indeed meet such requirements [30].

d1

d2

d3

d4

Figure 7.2: Qualitative overview of an omni-directional wireless ranging system mounted on

each agent for distance measurement only

ΔX

ΔY

Figure 7.3: Qualitative overview of a front RGB-D camera measuring the relative position of

two agents

Since the focus of this chapter is on Layer-2 localization, the local (layer-1) localization

system has been simplified as follows:

• The effect of velocity drifts, i.e. µ and δ in (4.6), has been discarded. Thus, the

system state has just three variables x,y,θ.

• The gyroscope has been removed from the sensing technologies, i.e. the layer-1 lo-

calization is performed by the fusion of odometry and QR code-based vision system.
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Hence, the EKF for heading measurement is removed and the event-based local

measurement model (4.17) becomes

ôk=h(sk)+ζk=


∆̂x

c

k

∆̂y
c

k

∆̂θ
c

k

=

[
hc(sk)

θq − θk

]
+

[
ζck
ζcθ,k

]
QR detected (7.1)

Therefore, if each robot is modeled as a unicycle-like vehicle, the overall state transition

of all agents in the navigation reference frame is given by the following non-linear discrete-

time system [72], i.e.

pk+1=

p
(1)
k+1
...

p
(N)
k+1

=

 f(p
(1)
k ,u

(1)
k ,ε

(1)
k )

...

f(p
(N)
k ,u

(N)
k ,ε

(N)
k )

 (7.2)

where

p
(i)
k+1= f(p

(i)
k ,u

(i)
k ,ε

(i)
k )= f(p

(i)
k ,∆Φ

(i)
k ,ε

(i)
k ) i=1, . . . , N, (7.3)

describes the process model of the i−th robot at time kTs explained in (4.9) supposing

that µ and δ in (4.9) are zero.

The observation model associated with system (7.2) includes two types of output

functions, i.e.

• the geometrical relationship between the position and heading of each agent and

those of any detected visual landmark in the same reference frame;

• the geometrical relationship between the pose of each robot and those of the other

N − 1 agents in the room.

As a result, the overall observation equation at time kTs becomes

zk=

z
(1)
k
...

z
(N)
k

=

 h̃(1)(pk)
...

h̃(N)(pk)

+

η
(1)
k
...

η
(N)
k

 , (7.4)

where vector z
(i)
k =

[
z

(i,1)
k , . . . , z

(i,N)
k

]T
includes all possible observations from agent i,

η
(i)
k =

[
η

(i,1)
k , . . . ,η

(i,N)
k

]T
is the vector comprising the respective measurement uncertainty
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contributions, and, finally,

h̃(i)(pk)=



h(p
(i)
k ,p

(1)
k )

...

h(p
(i)
k ,p

(i−1)
k )

o(p
(i)
k )

h(p
(i)
k ,p

(i+1)
k )

...

h(p
(i)
k ,p

(N)
k )


, i = 1, . . . , N, (7.5)

is the vector including all observations from agent i. Note that the i−th function of the

vector, referred to as o(·), is the ith agent local (layer 1) observation model as (7.1). Each

function h(·, ·) consists of M equations and depends on how the state variables of agents

j = 1, . . . , N for j 6= i are actually observed by the i−th robot. Hence, the equations of

h(·, ·) differ in case A and case B, respectively, in accordance with assumption 4.

7.2 Position estimation algorithm

The proposed estimation technique is an interlaced extended kalman filter (IEKF) based

on the process and measurement models described above. The state evolution in the

process model of each agent does not depend on the state of the other robots. Therefore,

the Kalman filtering prediction step is similar to the individual agent’s prediction precess

explained in previous chapters. The only difference in the prediction is that we now have

N independent standard EKFs.

p̂
(i)
k+1|k= f(p̂

(i)
k|k, ∆̂Φ

(i)

k )

P
(i)
k+1|k=F

(i)
k P

(i)
k|kF

(i)T

k +G
(i)
k Q

(i)
k G

(i)T

k

i = 1, . . . , N (7.6)

Observe that (7.6) depends just on local quantities. Therefore, the prediction step

equations can be computed locally, i.e. on board of each robot, thus ensuring a fully

distributed implementation.

The update step takes in to account the new event-based measurements depending on

which agents can connect and detect each other. Due to the definition of the measurement

model (7.4), the updated state estimate of the i−th agent and its covariance matrix depend

not only on the respective predicted values and on the measurement data, but also on

the predicted state and on the predicted covariance of the other agents. Nevertheless,

generally an agent is not able to observe all the other agents simultaneously. This means

that all observations are inherently intermittent, as they depend on the reading range of
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the chosen measurement systems and on the distance between each robot and both the

other agents and one of the landmarks. As a result of all the issues above, the update step

of the proposed IEKF is inherently stochastic and event-based in the case considered.

In the IEKF described in [72], the computation of the innovation term associated with

a generic pair of agents (i, j) relies on the predicted state of j regarded as an additional

measure. Therefore, both p̂
(j)
k+1|k and its covariance matrix P

(j)
k+1|k have to be transmitted

to agent i, thus “interlacing” the two subsystems. In particular, P
(j)
k+1|k has to be included

in the Kalman gain, as it will be shown in the following, to keep into account the fact

that p̂
(j)
k+1|k is affected by some uncertainty.

By extending a similar approach of EKF with event-based measurements to the system

at hand for all pairs of agents i and j, we can define a binary random variable τ
(i,j)
k , to be

set to 1 if agent i is able to observe agent j at time kTs, or 0 otherwise. Similarly, τ
(i,i)
k

is set to 1 if robot i is able to detect a landmark at time kTs, or 0 otherwise. Starting

from the basic update step equations of an EKF and assuming to replace the variance

of real measurements with a large dummy value anytime τ
(i,j)
k = 0, after some algebraic

steps it can be shown that, if the dummy variance tends to infinity [96], then the update

equations of the IEKF running on agent i become

p̂
(i)
k+1|k+1 = p̂

(i)
k+1|k+K

(i)
k+1T

(i)
k+1[z

(i)
k+1−h̃(i)(p̂k+1|k)]

P
(i)
k+1|k+1 =P

(i)
k+1|k−K

(i)
k+1T

(i)
k+1H̃

(i,i)
k+1P

(i)
k+1|k

(7.7)

where

T
(i)
k+1=



τ
(i,1)
k+1 IM 0 · · · · · · 0

...
...

...
...

...

· · · · · · τ
(i,i)
k+1I3 · · · 0

...
...

...
...

...

0 · · · · · · 0 τ
(i,N)
k+1 IM


(7.8)

is an M · (N−1)+3 ×M · (N−1)+3 diagonal matrix made of binary random variables

(as all observations can be reasonably assumed to be independent) and IM is the Identity

matrix of size M . Besides, H̃
(i,i)
k+1 is the Jacobian of h̃(i)(·) with respect to p(i) computed

at p̂k+1|k and

K
(i)
k+1=P

(i)
k+1|kH̃

(i,i)T

k+1

[
H̃

(i,i)
k+1P

(i)
k+1|kH̃

(i,i)T

k+1 +S̃
(i)
k+1+R̃

(i)
k+1

]−1

(7.9)

is the Kalman gain of the IEKF running on the i−th agent. Observe that (7.9) com-

prises two measurement covariance matrices instead of just one, i.e. the block diagonal
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covariance matrix

R̃
(i)
k+1 =



R
(i,1)
k+1 0 · · · · · · 0
...

...
...

...

· · · · · · R
(i,i)
k+1 · · · 0

...
...

...
...

...

0 · · · · · · 0 R
(i,N)
k+1


(7.10)

and

S̃
(i)
k+1 =

N∑
j=1∧j 6=i

H̃
(i,j)
k+1P

(j)
k+1|kH̃

(i,j)T

k+1 . (7.11)

Matrix (7.10) includes both the covariance matrix R
(i,j)
k+1 associated with the relative pose

measurements between each pair of agents (i, j) and the covariance matrix R
(i,i)
k+1 due to the

absolute position and heading measures injected into the IEKF anytime a local localization

measurement is available, i.e. a QR code is detected by i−th agent. Matrix (7.11) instead

takes into account the covariances P
(j)
k+1|k of the states predicted by the agents different

from i, with H̃
(i,j)
k+1 being the Jacobian of (7.5) with respect to p(j) for i 6= j and computed

at p̂k+1|k.

It is worth emphasizing that expressions (7.6) and (7.7) are absolutely general; how-

ever, the actual implementation of (7.7) depends on the observation model used which

differs according to the sensing technology used to measure the relative location of an

agent with respect to the others. As introduced in Section 7.1, we use two different

measurement sources and compare them in this chapter.

Case A: Omni-directional wireless ranging system

As shown in Figure 7.2, a wireless ranging system can cover a large area. Such system can

measure the distance from its corresponding agent to any other agent which is located

inside its detection area. In this case

h̃(i)(pk)= h̃
(i)
A (pk)=[hA(p

(i)
k ,p

(1)
k ), . . . ,o(p

(i)
k ), . . . ,hA(p

(i)
k ,p

(N)
k )]T (7.12)

where

hA(p
(i)
k ,p

(j)
k )=

√
(x

(j)
k −x

(i)
k )2+(y

(j)
k −y

(i)
k )2 (7.13)

and o(p
(i)
k ) = o

(i)
k is as (7.1).

Case B: RGB-D front camera system

The RGB-D front cameras, like Kinect, can capture the area in front of them, detect

another agent and measure the planar 2-dimensional distance between two agents in the
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camera frame. The process is very similar to how the camera can measure the ∆xc and

∆yc distance to the QR code as explained in Chapter 4. Supposing that ∆xi,jk and ∆yi,jk
are the measured distance from the i − th to j − th agent in the x − axis and y − axis
direction of the camera frame respectively, we have

h̃(i)(pk)=̃h
(i)
B (pk)=[hB(p

(i)
k ,p

(1)
k ),. . .,o(p

(i)
k ),. . .,hB(p

(i)
k ,p

(N)
k )]T (7.14)

with

hB(p
(i)
k ,p

(j)
k )=

[
(x

(j)
k −x

(i)
k ) cos θ

(i)
k +(y

(j)
k −y

(i)
k ) sin θ

(i)
k

−(x
(j)
k −x

(i)
k ) sin θ

(i)
k +(y

(j)
k −y

(i)
k ) cos θ

(i)
k

]
(7.15)

Of course, a similar notation can be extended to all variables used in expressions (7.6)-

(7.11). For instance, R
(i,j)
A,k+1 and R

(i,j)
B,k+1 denote the covariance matrices associated with

the relative measurements between agents i and j in case A and case B, respectively, at

time (k+1)Ts. Since such matrices can be assumed to be stationary, the time index can be

omitted in the following. Notice that both (7.13) and (7.15) are nonlinear, but the number

of observations M when another agent is detected is different in either case. In case A,

M = 1 since low-cost wireless ranging systems can just measure the distance between

transmitter and receiver, whereas in case B, M = 2 because the relative offsets between

agents i and j along axes x and y can be easily extracted from the image collected by

the RGB-D camera. On the contrary, measuring the relative orientation between i and j

requires more sophisticated image processing algorithms and it is a measurement problem

on its own. This is why this kind of measurements has not been included in the present

analysis.

A final remark is on communication latency, which may influence measurement un-

certainty significantly, due to the difference between the time when the predicted state of

agent j is sent to agent i and the moment when the relative pose of j is actually measured

by i. If assumption 5 defined in Section 7.1 holds, then the impact of communication

latencies is negligible, provided that robots move so slowly that their linear and angular

displacements during the time interval spent for communication is reasonably small. On

the contrary, if the communication latency becomes significant, then the uncertainty con-

tributions affecting all measurements of position, distance and heading should be properly

estimated and used to boost the elements of R
(i,j)
A and R

(i,j)
B .

7.3 Simulation results

In order to evaluate the positioning accuracy with and without collaborative localization

in case A and B, respectively, the results of some Monte Carlo simulations in different

conditions are reported in the following. The main simulation parameters are listed below:
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• Duration of each simulated path: about 120 s;

• Number N of agents in the room: between 2 and 10;

• Room size: 100 m2;

• Number of random paths of each robot: 24;

• Robots linear velocity range: [0, 2] m/s (at such speeds assumption 5 holds, so the

effect of communication latencies can be assumed to be negligible);

• Robots angular velocity range: [−π
2
, π

2
] rad/s;

• Odometers sampling period: Ts = 4 ms;

• The uncertainty associated with the encoders and the camera for QR code reading

are the same as determined and used in the previous chapters.

• Distance between QR codes: 2 m;

• Wireless system detection range: about 10 m;

• Rate of wireless range measurements: about 25 Hz;

• Variance of indoor wireless distance measurement data anytime agent j is detected:

R
(i,j)
A ≈ 0.45 m2, in accordance with the experimental results published in the scien-

tific literature [80, 59];

• RGB-D camera reading range (according to Kinect-like specifications): from 0.8 m

to 3.5 m with a horizontal aperture angle of about 57◦;

• Covariance matrix of stereo camera measurements anytime agent j is detected (based

on Kinect’s v.2 average accuracy reported in [24]): R
(i,j)
B = diag(6.1·10−7d(i,j)2m2, 6.25·

10−6m2), with d(i,j) being the distance between agents i and j along the focal axis

of the camera.

• Camera and Kinect image acquisition rate: about 10 Hz.

Tab. I shows the simulated probabilities (expressed in %) that agent i detects some other

agent in Case A and B, respectively. The reported values keep into consideration the

actual data rates of the sensors employed for collaborative localization. Given that the

RGB-D image acquisition and processing rate is notoriously quite low and its reading

range is also much more limited than the range of a wireless system, the probability of

agent detection in Case B is about 10 times smaller than in Case A. Observe that while
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in Case B the detection probability slightly grows with the number of agents, in Case

A it saturates to about 10%. This is reasonable, because, even though the size of the

room is smaller than the nominal wireless reading range, the rate of wireless distance

measurements is 10 times smaller than the system sampling frequency. Thus, only once

out of 10 times at least one of binary variables τ (i,j) is equal to 1 for i 6= j.

Table 7.1: Relative frequency of detection (expressed in %) of some other agents in Case A and

in Case B, respectively.

No. Agents 2 3 4 5 6 7 8 9 10

Case A 9.8 9.9 10 10 10 10 10 10 10

Case B 0.2 0.4 0.5 0.7 0.9 1.0 1.2 1.3 1.4

Figure 7.4 shows the average root mean square estimation errors (RMSE) of state

variables x (a), y (b) and θ (c) of one of the agents as a function of the number of robots

N moving freely in the room. First, the RMSE values for each path are computed. Then,

they are averaged together. Different bars refer to Case A, Case B and without collabo-

rative localization, respectively. Notice that the results without collaborative localization

do not depend on N , as expected, because the same 24 paths are used in all tests. On

the other hand, both collaborative localization strategies greatly enhance the accuracy

in estimating the state variables. Of course, such an improvement is more evident when

the number of agents grows, due to the availability of a larger amount of relative mea-

surement data from nearby robots. Quite interestingly, in spite of some fluctuations due

to the limited set of simulated paths, the estimation accuracy of x and y in Cases A, B

is comparable for a given N . The greater amount of available information due to both

larger wireless coverage and higher data rate indeed compensate the poorer accuracy of

wireless ranging. As far as state variable θ is concerned, estimation accuracy is generally

clearly better in Case B. Also, the accuracy gap compared to Case A tends to grow with

N , because wireless ranging cannot measure the relative position of two agents in a 2D

reference frame.
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Figure 7.4: Average RMS estimation errors of state variables x (a), y (b) and θ (c) for one of

the agents as a function of the number of robots in the room and in case A, case B and without

collaborative localization, respectively.



Chapter 8

Conclusion

This dissertation proposes affordable localization techniques for wheeled robots moving

in large indoor environments. As introduced in Chapter 1, the main contributions of this

dissertation cover three complimentary subjects.

8.1 Self-localization

The approach described in this dissertation is based on multi-sensor data fusion tech-

niques integrating absolute and relative position measurement technologies. For large

environments, the systems detecting landmarks or reference points stuck on the floor are

used for absolute position measurement. Hence, a low cost RGB-D camera is used to de-

tect QR codes placed on the floor at known positions. The sporadic event-based camera

measurements are fused with odometry and IMU data using various recursive estimators.

A comparative performance analysis based on experiments conducted on the field show

not only that the proposed idea provides an acceptable trade-off between accuracy, com-

plexity, cost and robustness, but also that the EHF provides the most accurate estimation

for the problem at hand.

A major issue of using event-based measurements is the switching measurement model

which leads to temporary lack of observability. This brings about some correlations be-

tween the state variables which sometimes results in noticeable updates of the position

variables (i.e. x and y) while they are not observable. The observability problem should

be studied more in depth. Maybe some changes in the system model can partially over-

come this problem. For instance, if the IMU outcome is regarded as an input rather than

an output where the angular velocity is estimated as a Bayesian fusion of encoder and

gyroscope measurements, the filters update step will be executed only when a QR code

is detected. In this situation, both position and heading are observable.

Moreover, the proposed localization technique claims that it is appropriate for wheeled
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robots regardless of the room size and crowd amount. The technique has been tested in

environments of different size. In all cases, the environment size did not significantly

influence the results. However, due to lack of resources, no test was conducted in crowded

environments.

The vision system also needs some further studies, e.g. to include measurement and

computational delays as the new state variables in the model and adding some techniques

to observe them.

The results of the proposed estimators are shown in Chapter 5. A summary and

possible future directions for the proposed estimators are described in the following.

EKF

The EKF has been designed using the real sensors characteristics. In the future, one may

like to test the second-order EKF or some kinds of adaptive Kalman filters. However,

the adaptive filters should be designed with significant care since improper parameter

adaptation may result in filter divergence.

UKF

In this dissertation, UKF has proved to converge to the steady state much faster than

the other filters. However, the computational cost is a problem. Besides, it does not

offer significant benefits in terms of accuracy compared with the EKF. Nonetheless, in

the experiments, the UKF scaling parameters, i.e. α, β and κ were fixed and derived from

the literature. For the problem at hand, the values of such parameters could be further

optimized.

PF

Particle filters include a large family of estimators and selecting the best one for the

current problem can be a research project itself. The major issue in Particle filters is the

high computational cost which is mostly due to the large number of particles and the

resampling procedure. Other kinds of particle filtering may be able to reduce the required

number of particles and hence, decrease the computational time.

EHF

It has been shown that for the system at hand, EHF is noticeably the most accurate

estimator. However, the parameters chosen for the EHF may affect filter robustness.

This problem should be better analyzed in the future in order to achieve a better trade-

off between accuracy and robustness.
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8.2 Optimal Placement

In Chapter 6, an optimal placement strategy of landmarks for indoor localization is pre-

sented. In particular, assuming to have i) a regular triangular lattice of landmarks in a

wide-open room and ii) a sensor with a limited detection area (approximated as a trian-

gle, as well), the optimal distance between pairs of adjacent landmarks was derived both

numerically and analytically. Both solutions converge to the same results. The analytical

solution is particularly valuable because it provides a very simple, closed-form expression,

which depends just on the radial and angular detection ranges of the sensor adopted,

regardless of the specific sensing technology. Therefore, it can be applied in a multitude

of contexts.

The results of several Monte Carlo simulations confirm that, if an optimal layout for

a given type of sensors is deployed in a wide-open room without obstacles, localization

accuracy is limited mainly by the uncertainty associated with the measurement of position

and orientation between sensor and landmarks. Of course, in real indoor environments,

where also walls and obstacles are present, a perfect optimal layout can be hardly de-

ployed. As a consequence, just suboptimal results can be achieved, either because some

landmarks could be difficult to detect or because they could not be placed at all. In such

conditions, the longer the sensor detection range is, the higher the probability of missing

some landmark becomes, thus potentially degrading localization accuracy.

The results of this part of research can pave the way to various future activities. First

of all, other kinds of lattices, e.g. squares and hexagons should be studied. Then, more

realistic sensor detection areas should be taken into account. In fact, sensors may have

other detection area shapes, e.g. trapezoidal or cone shape. Another issue to be addressed

is that some sensors may need to detect more than one landmark at the same time. Thus,

for such sensors, the solution should be extended in order to ensure detection of at least

n landmarks instead of one.

The problem of landmarks placement in real environments paves the way to further

research on placement optimization, which should take into account not only the geometry

of the environment, but also the probabilities of transition between pairs of adjacent

landmarks. In order to address this problem, a lattice of landmarks could be turned into

a Markov chain model, in which nodes and edges of the graph represent, respectively, the

available landmarks and the transitions between pairs of them (with a given probability)

because of the motion of the agent to be localized. The main challenge of using this model

is that the transition probabilities depend on both the real users paths and the constraints

imposed by the environment. On the other hand, a considerable advantage of using this

approach is that those landmarks that are unlikely to be detected or encountered (thus
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marginally affecting localization accuracy) could be easily identified. As a consequence,

it would be possible to find the minimum number of landmarks that ensure a localization

uncertainty below a certain threshold with a given level of confidence.

8.3 Collaborative Localization

Collaborative or synergic localization refers to the ability of a group of robots to refine

their own estimated positions by using both neighbors’ states and relative measurements

of distance and/or position. In this dissertation, the performances of two alternative

collaborative localization strategies, both based on a common underlying Interlaced Ex-

tended Kalman Filter (IEKF), were compared through simulations. The reported results

confirm that the effectiveness of collaborative localization becomes more evident when

the probability of detecting other agents in the environment grows. In the two cases con-

sidered, the use of an RGB-D camera seems to be globally preferable to wireless ranging,

although the difference, in terms of accuracy, was not so impressive as it was expected.

Future work could be focused on a more in-depth analysis of the trade-off between these

two scenarios, possibly finding an analytical relationship between detection probability,

measurement accuracy and target performance. Another interesting research work which

can be taken in to account is to define and investigate the possibility of using an Interlaced

H∞ extended Kalman filter.
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