
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Ontological foundations for feature-based

product modelling

Emilio M. Sanfilippo

Advisor

Stefano Borgo

Laboratory for Applied Ontology (ISTC-CNR)

Co-Advisor

Nicola Guarino

Laboratory for Applied Ontology (ISTC-CNR)

January 2017

Contents

Acknowledgements 4

Abstract 5

1 Introduction 6
1.1 Research problem . 6
1.2 Research contributions . 9
1.3 Research methodology . 10
1.4 Thesis overview . 14

2 State of the art review 15
2.1 Design . 15
2.2 Product information modelling 17

2.2.1 Feature-based modelling: An overview 17
2.2.2 Features in standards 22
2.2.3 Features in information models 24

2.3 Open problems . 29

3 DOLCE 32
3.1 Introduction . 32
3.2 Particulars . 33
3.3 Mereology . 34
3.4 Qualities . 35
3.5 Concepts and roles . 39
3.6 Objects and events . 40
3.7 Material and immaterial objects 42

4 Technical products and product types 44
4.1 Artefacts . 44

4.1.1 Products . 45
4.1.2 Compliance . 46
4.1.3 Taxonomy of artefactual notions 48

4.2 Design properties . 49
4.2.1 Product types as concepts 52

1

4.3 Comparison with the literature 54

5 Engineering features 60
5.1 What do engineering features represent? 60
5.2 Feature types and physical features 63
5.3 Ontological features: An informal overview 65
5.4 Components . 67
5.5 Form features . 69
5.6 Comparison with the literature 73

6 Formal representation 75
6.1 Ontological features . 76
6.2 Design properties . 79
6.3 Product types and technical products 83
6.4 Engineering features . 85
6.5 Form features: Three modelling views 87

6.5.1 First view: Form features for shape qualities 87
6.5.2 Second view: Form features for shaped parts 88
6.5.3 Third view: Form features for shaped immaterial objects 89
6.5.4 Discussion and comparison 90
6.5.5 An integrated perspective 92

6.6 Remarks . 95

7 Case studies 98
7.1 Form features representation: An example 98
7.2 Towards a feature-based meta-model 106

7.2.1 Unified Feature Model 106
7.2.2 Feature-based Meta-Model 108
7.2.3 Critical remarks . 110
7.2.4 Ontology-based restructuring of the meta-models . . . 112

8 Conclusion 115
8.1 Limits of the approach . 117
8.2 Future work . 118

Appendices 123

A The missing and replaceable artefact 124

B Glossary of terms 129

Bibliography 131

2

Simply as a mental exercise,
without any assertion that it is
true, let me indicate a possible line
of thought. It is, I admit, mere
imagination; but how often is
imagination the mother of truth?

Sherlock Holmes

There are more ontological options
than kinds of co↵ee.

Huw Price

3

Acknowledgements

I could not have written this thesis without the scientific and personal sup-
port of di↵erent people. I wish to thank Stefano Borgo, Claudio Masolo,
Nicola Guarino and Daniele Porello for their patient and willingness in shar-
ing their knowledge and experience. I am particularly thankful to Stefano
for his precious mentorship and to Claudio for the uncountable discussions.
I wish also to thank Roberta Ferrario, Laure Vieu, Tiago Sales, Francesco
Setti, Nicolas Troquard, Isabella Distinto, Emanuele Bottazzi, Chiara Bas-
setti, as well as colleagues at the Institute of Industrial Technologies and
Automation (ITIA-CNR), Walter Terkaj, Alexandra Sojic and Marco Sacco
for their support.

I am grateful to Michael Grüninger and Bob Young for their reviews. I
wish to thank the latter, together with Esmond Urwin and Clair Palmer,
also for the visiting period I spent at Loughborough University. The Italian
Association for Artificial Intelligence (AIXIA) supported me with a grant
during the visiting. I am thankful for that.

Ulf Schwarz, Mathias Brochhausen and Luc Schneider introduced me to
the adventure of Applied Ontology. I wish to thank all of them; the thesis
is part of what they started.

The path that brought me to the ICT Doctoral School in Trento started
with Giovanni Camardi, who has been since many years a key figure in my
life. I am grateful to him for his precious advices.

The thesis is dedicated to Barbara, to her curiosity, music and eyes.

4

Abstract

Product modelling and design data management are knowledge intensive
tasks carried out by means of computer systems that allow experts to rep-
resent, share and possibly integrate disparate quantitative and qualitative
models. Feature-based modelling is the leading approach for computer-based
product representation. Traditionally, features are represented via object-
oriented methods for information management. However, the development
of advanced computer systems calls for ontologies, which provide formal
means to share and integrate heterogeneous knowledge in a way that is
transparent to experts and is accessible to automated reasoners.

Despite their relevance, the development of feature-based ontologies has
not been supported by a systematic treatment of the notions at hand, nor
by an exploration of the various alternatives by which features can be inter-
preted and modelled. At the state of art, it remains unclear what features
are and how di↵erent modelling perspectives can be coherently represented
within a larger theory for product knowledge representation.

The work presented in this thesis strives from the need of providing
ontological foundations for product knowledge management; in particular,
it provides an ontological characterisation of engineering features on the
grounds of foundational theories of ontology engineering.

Inasmuch as feature-based models are employed for disparate application
tasks, on the one side we develop a high-level understanding of features by
distinguishing the domain entities that are modelled in their terms. In this
manner, we aim at an ontology that is not strictly committed to specific
application requirements but it is broadly applicable to product knowledge
representation. On the other hand, we focus on the representation of (some
aspects of) the physical layouts of material products. The notion of form
feature plays a relevant role in this context and attention will be paid in the
di↵erent ways in which it can be understood and represented according to
engineering conceptualisations.

5

Chapter 1

Introduction

1.1 Research problem

Engineering design concerns the ideation and development of products. It
involves disparate communities of experts, from market analysts and busi-
ness experts, to engineers, designers and technicians, among others, each
community speaking with its own terminology and looking at the product
to be developed from its own perspective [PDS05, MCT08]. A seller, for
instance, may be interested in the novelties of a product with respect to
similar devices available in the market, whereas a technician responsible for
product realisation may look at a product in terms of the materials and
tools necessary for its production.

Nowadays, Computer Technologies (CAx) like Computer-Aided Design
(CAD) or Computer Aided Process Planning (CAPP) systems are inten-
sively used to support di↵erent product development phases [DWGB04].
CAx systems allow not only for the representation and management of
quantitative (geometrical, topological, algebraic) product data, but also
for the embedding of qualitative constraints concerning, e.g., design in-
tents, functional descriptions and business strategies into product mod-
els [CMS07, JGAB09]. The exploitation of these systems call for expres-
sive and integrated data models and approaches that are able to capture
and manage relevant product information. In particular, experts have been
looking for modelling approaches that are able to abstract from single appli-
cations and scenarios to explicitly represent the semantics of the employed
terms. This raises the issue of how to specify technical knowledge in a
way that reflects experts’ understanding of domain entities,1 is semantically
transparent to third parties, is possibly tractable by automated reasoners
and is able to guarantee inter-systems interoperability [EKGT+16].2

1With domain entities we refer to the things experts or companies talk about in their
everyday practises [Bor14].

2According to [Weg96], “[i]nteroperability is the ability of two or more software [...]

6

Feature-based modelling is the leading approach for computer-based
product development and information management, since it enables the
specification of qualitative data into pure geometric models [Ma13, RRB15].
For example, a feature-based model can be used to represent both product
geometry and the operations for its manufacturing, allowing in this way for
the integrated representation of design and manufacturing data [DGG+07].
Accordingly, ‘feature’ – the key notion in feature-based approaches – refers
to modelling elements that are used to codify experts’ knowledge in a way
that integrates multiple expertise perspectives.

Traditionally, features are represented in CAx applications as lists of val-
ues and rules. At the level of data management, they are treated as classes
of entities with common attributes classified into taxonomies, from the most
general to the most specific classes [TCM13]. However, the development of
knowledge-based CAx systems calls for computational models that do not
limit to the taxonomical representation of the classes at hand. They rather
require the exploitation of theories, whose modelling elements (classes, rela-
tions, axioms) reflect technical knowledge in a systematic and unambiguous
manner. These theories are called ontologies (see [Sect. 1.3] below).

Although the great e↵orts towards the formal treatment of product
knowledge, the development and exploitation of information models have
not been systematically carried out. More specifically, ontologies grounded
on feature-based approaches su↵er from di↵erent drawbacks.

First, they either under-specify the meaning of the represented terms
(semantic underspecification), or make tacit and often unclear assumptions
about them, therefore about the domain entities to which they refer (opaque
ontological commitments).3 For instance, the term ‘product’, whose mean-
ing should be clearly represented given its relevance for product knowledge
representation, is generally represented as something that has a name, an
identifier or production date [San15]. Informally, however, experts assume
much more about what products are, e.g., whether they are the result of
human labour, or whether they are necessarily constituted by materials.4

Semantic underspecification and the opacity in the ontological commitments
of current information models raise the problems of data management and
semantic interoperability; computer systems can indeed hardly exchange
data if the semantics behind is unclear.

to cooperate despite di↵erences in language, interface, and execution platforms”, where
‘cooperation’ has to be understood in terms of the systems ability to share (and possibly)
integrate their data while keeping the intended semantics.

3In the literature about ontology (covering both philosophy and computer science), the
expression ‘ontological commitment’ (or ‘existential commitment’) refers to the entities
that are assumed to exist in a domain according to a theory [Gua98]. For example, the
ontological commitment of biology is about living organisms, cells, etc.

4We shall dig into the di↵erent ways of understanding products in [Ch. 4]. For the
time being, we note that products may not be material objects; services and software are
two examples.

7

Second, information models have not been developed within broader
ontological theories, which distinguish in a clear manner between di↵erent
domain entities, e.g., products, components and their features. To be more
precise, current works do distinguish between various classes of entities, but
the motivations behind these distinctions are not motivated. In [RRB15], for
example, some features are represented as components, but the rationale for
such a modelling approach is unclear (see [Sect. 7.2] in [Ch. 7] for details).

Third, focusing on the very notion of feature, which is at the core of our
study, after more than 30 years of feature-based approaches, it is neither
clear what a feature is meant to represent, nor how it distinguishes from
non-feature entities. For instance, a feature is sometimes treated as a prod-
uct’s quality and sometimes as a physical object that can be present in space
and time only if attached to some non-feature entity but without reducing
to qualities. However, neither the rationales behind these two views are
motivated, nor it is made explicit when one approach should be preferred
over the other. More generally, if on the one hand features are extensively
employed for disparate modelling scenarios and applications (see [Ch. 2]),
on the other hand there is no systematic treatment of the various ways in
which features are understood. As stressed in [EKGT+16, SB16], before im-
plementing software solutions or algorithmic procedures to support product
development, the terms relevant for the applications have to be identified
and understood.

In a more general perspective, the development of ontologies for product
knowledge representation has not been supported by principled methodolo-
gies for the analysis of domain knowledge and its formal specification. The
emblematic example is the current e↵ort towards the codification of data
modelling standards in logical languages [BVLDV09, KBF+09, PT16]. On
the one side, this will facilitate automatic reasoning procedures, as well as
the exploitation of Semantic Web technologies [HKR09] for product design.
On the other hand, formal logic is notoriously a tool that for knowledge
representation purposes needs to be supported by domain theories (ontolo-
gies), which organise the represented knowledge in a principled manner,
avoiding rules of thumb and ad hoc modelling strategies. Codifying stan-
dards in formal logic does not necessarily clarify the intended meanings of
the represented notions, nor does it support by itself, e.g., smoothness and
meaningful data sharing, since it does not guarantee the coherent treatment
of technical knowledge with respect to experts’ conceptualisations.

8

1.2 Research contributions

The overall purpose of this research project is to contribute to the devel-
opment and application of ontologies for product knowledge representation.
More specifically, our aim is to explore and provide the foundational basis
of feature-based models in product design on the grounds of foundational
theories of ontology engineering (see [Sect 1.3]). Foundational basis means
that notions relevant for product modelling are characterised in terms of a
high-level ontological perspective by which their meaning is specified within
a broader understanding of the domain entities that are assumed to exist
according to experts’ background knowledge. Additionally, our theory – al-
though grounded on engineering practise and knowledge – is not directly
based on application concerns, in the sense that it abstracts from specific
modelling scenarios and is therefore exploitable (at least in principle) in
disparate applications. As we will see, this means that in order for the pro-
posed ontology to be used in real-world modelling scenarios, it needs to be
integrated with knowledge suitable for specific application requirements.

The following research goals are at the core of the proposed work:

Goal 1: Development of a high-level ontological framework for product
knowledge representation. As said, the ontological modelling of fea-
tures has to be contextualised within a broader ontological interpre-
tation of engineering knowledge. In particular, given the relevance of
product models for product development and data sharing, we shall
propose an approach that maintains a sharp distinction between (gen-
erally speaking) physical entities (e.g., products, components) and
(what we call) the design properties that they are required to sat-
isfy. This distinction will lay at the ground of our approach and will
be also adopted to represent features;

Goal 2: Identification of the domain entities represented in feature ap-
proaches. By reviewing the state of the art relevant to our work, we
will identify the basic notions to be systematically analysed to support
the development of feature-based product models. In particular, as we
shall see throughout the thesis, form features are core elements in fea-
ture modelling. We will therefore look at how they are conceptualised
across the literature to provide their ontological foundations;

Goal 3: Ontological analysis and formal representation of the concepts pre-
viously identified. As stated earlier, we shall rely for this purpose on
a methodology based on the use of a foundational ontology. Since
feature-like notions are heterogeneously understood across the liter-
ature, we do not in first instance prescribe a monolithic ontological
characterisation, which may fail in meeting both experts’ views and

9

application concerns. Rather, we firstly look at the di↵erent concep-
tualisations proposed across the literature; we then evaluate their pros
and cons on the basis of some recurrent modelling scenarios, and fi-
nally propose how di↵erent perspectives can be integrated in an unified
view. Also, our work does not attempt a formal representation of fea-
tures that can convey geometric or topological information. These
types of information can be indeed well handled in current modelling
approaches. As said, our aim is to provide a formal, ontological char-
acterisation of features. Once this has been done, the ontology can be
enriched with more specific geometric and/or topological constraints.

Since product design and product knowledge representation are broad
fields of research, we narrow the scope of our work to material products.
Hence, services and software are out of the scope of this thesis.

1.3 Research methodology

The analysis of product knowledge and its formal representation is based on
the foundational and formal methods of ontology engineering [SS13, GW00].
This choice relies on the fact that, as we previously saw, ontologies are
broadly exploited in product design for disparate applications [EKK15].

Traditionally, Ontology is one of the oldest branch of philosophy con-
cerned with the question of what there exists [Var10].5 Its core aim is to
define a system of inter-related categories of individual entities (namely an
ontology or ontological theory), whose existence is either given for granted in
reality, or it is assumed in some background theory or common sense world-
view. Di↵erently from other research enterprises such as natural sciences,
ontologists typically abstract from specific cases and provide very general
yet fundamental categories of what exists, ‘fundamental’ in the sense that
everything else is grounded on these categories. A biologist, for example,
may ask what is the di↵erence in shape and size of di↵erent animal cells. On
the other hand, an ontologist would ask whether cells, shapes and sizes can
be classified by the same category in virtue of the properties they satisfy.
As another example, a mathematician may calculate complex numerical ex-
pressions via the rules of calculus, whereas an ontologist may wonder about
what a number is, e.g., whether numbers exist on their own independently
of human mind, or whether they are some sort of human-made constructs.
From this perspective, Ontology is sometimes understood as providing a
rigorous methodology for conceptual analysis, namely to investigate and
compare di↵erent systems of thinking and to lighten their (often hidden)
existential assumptions. For the purposes of our work, formal Ontology

5We borrow from [GG95] the use of ‘Ontology’ (with the capital ‘o’) to refer to the
philosophical discipline.

10

plays a key role, because it is concerned with the axiomatic treatment of
very general categories, which are (at least in principle) independent of any
specific domain of reality or theory thereof. Formal Ontology distinguishes
from material Ontology, which analyses specific categories concerning, e.g.,
physics or biology [Var10, Coc91].

The core ideas of what is nowadays called ontology engineering or ap-
plied ontology [GPFLC04, MS08] root back at the beginnings of Artificial
Intelligence (AI), although the term ‘ontology’ made its first explicit appear-
ance in computer science in a work related to the foundations of data mod-
elling (see [Gui05, Ch.3]). In a seminal paper, McCarty and Hayes [MH69]
claimed that an agent has to be provided with a model of the world, an
ontology indeed, in order to act intelligently. The first definition of ontol-
ogy in computer science was given later by Gruber [Gru93] in the context
of knowledge-based systems; it was then systematically revised by Guar-
ino [Gua95, Gua98], who bridged AI research and philosophical Ontology.
Accordingly, an ontology is a formal and explicit specification of a shared
conceptualisation [GOS13, SBF98], namely a theory whose interpretations
reflect someone’s knowledge about an application domain (e.g, engineering
design or geospatial science). A conceptualisation is a world-view about the
entities that are assumed to exist in the domain at stake, their properties
and the relationships they share; a conceptualisation has to be shared in
order to capture consensual knowledge. An ontology is explicit because it
has to provide a transparent representation of the meaning of its terms so
that its vocabulary can be accessible without the risk of missing relevant
information. An ontology is formal because represented in a language with
formal semantics, which provides a rigorous mechanism to control the inter-
pretations of the ontology.6

More precisely, given a domain D and a language L with vocabulary V ,
an ontology O ofD is a set of V -propositions formulated in L by which (some
of) the entities inD and (some of) their properties are represented [HH06]. If
L is a first-order language (FOL), then O is a first-order theory, whose inter-
pretations (should) correspond to a shared world view.7 As Guarino [Gua98]
pointed out, an ontology can only approximately represent a domain, be-
cause it abstracts those aspects that are relevant for some application from
the perspective of a community.

6Ontologies in computer science are not necessarily formalised in computer tractable
languages and are sometimes expressed in natural language, especially when employed for
inter-human communication rather than computer implementations [SW01]. The label
‘computational ontology’ is often used with reference to computer tractable ontologies
such as ontologies in Description Logics [BCM+03].

7Given a first-order vocabulary V with function, relation and constant symbols, and a
V -structure (call it S), namely a non-empty set U of individuals along with an interpre-
tation function I that associates individuals of U to constants in V , functions from U

n

to U to each n-ary function in V , and subsets of Un to n-ary relations in V , a first-order
theory of S (denoted as Th(S)) is a set of V -propositions which hold in S [Hed04].

11

Although ontologies are currently employed for various application tasks,
their purposes are mainly twofold: firstly, to provide theories for knowl-
edge representation. From this perspective, there is a strong link between
ontology engineering and qualitative knowledge representation and reason-
ing [Sto98, Gal00]. They both provide, indeed, theories that do not aim at
the same preciseness given by quantitative, mathematical models but reflect
everyday human reasoning. Secondly, an ontology can be used to repre-
sent the meaning of a vocabulary. An ontology is thus a way to convey the
semantics of terms employed within a community [GOS13, GM05]. This
facilitates communication, information retrieval, database management and
data sharing, among others, because the meaning of the employed vocabu-
lary is constrained to rule out undesired interpretations.

Since ontologies are models that describe (portions of) reality for practi-
cal needs, a comment is due on the distinction between ontologies and other
models developed in computer science. The distinction is rather challenging
and despite the scientific debate [Gua94, SC10, HS12], no standardised view
is available. We assume that an ontology, di↵erently from other models,
has to be explicit about the high-level distinctions between the entities that
exist in the represented domain. For example, if an ontology only recognises
entities located in both space and time, it has to avoid altogether abstract
entities like numbers.8 Also, an ontology should avoid the use of mixed cat-
egories that bring together incompatible properties [Bor14], e.g., ‘being an
idea’ and ‘being a physical object’. If we assume that instances of the former
property are abstract entities, di↵erently from instances of the latter, then
the properties are incompatible because an entity cannot both have and lack
spatio-temporal location.9 More importantly, an ontology has to specify the
identity conditions of the domain entities it deals with, namely the proper-
ties that an individual has to necessarily satisfy. Notoriously, the definition
of these properties is a complex task [GW00]. Without entering into the
philosophical debate, from an engineering perspective to model an entity’s
identity means to represent the properties whose change involves a change
in the entity’s nature. Consider, e.g., John, who is both a person and a
student. We may think that John can stop being a student while remaining
the same, whereas it cannot stop being a person without changing in some
radical way. From this perspective, ‘being a person’ is a necessary property
that determines John’s identity. Similarly, when one deals with engineering
knowledge, attention has to be paid in individuating the properties that
the represented entities have to necessarily satisfy. For example, a certain
product may be designed with a specific functionality so that if the product
cannot perform the functionality, it cannot be considered as a product at

8For the sake of the example, let us assume that numbers are abstract entities, i.e.,
entities that are neither in space nor in time.

9See [ABAS16] for a violation of this constraint.

12

all. Accordingly, ‘having a designed functionality’ may be seen as a property
that determines products’ identities, di↵erently from a property like ‘having
an identifier’.

As claimed at the beginning of the section, we rely on a foundational ap-
proach to ontology engineering. Generally speaking, a foundational ontology
is an upper-level ontology that captures the meaning of domain-independent
notions [Sch03, Kee11]. Di↵erently from other upper-level ontologies, a foun-
dational ontology is richly axiomatised and grounded on theories of philo-
sophical Ontology, artificial intelligence, linguistics and often also cognitive
science (e.g., [MBG+03, Gui05]). The idea is to provide a trust source
of knowledge to avoid relying on ad hoc and scarcely reusable representa-
tional approaches. Foundational ontologies are thus strictly related to formal
(philosophical) ontologies, because of their focus on the axiomatisation of
general categories of entities.

From an application perspective, foundational ontologies are exploitable
in computer systems only when specialised with specific knowledge and for-
malised in tractable languages. For this reason, they are commonly adopted
as starting frameworks for the development of domain- or application-driven
ontologies, or to compare and possibly integrate di↵erent ontologies by their
alignment under the same upper-level umbrella [AHYC12b]. Recall that
di↵erent foundational ontologies are currently available; the idea, indeed,
is not to rely on a single foundational ontology, but to have a library by
which di↵erent foundational ontologies can be compared in terms of both
their existential commitments, representational choices and application sce-
narios [MBG+03].

13

1.4 Thesis overview

The thesis is structured as follows. In [Ch. 2] we present the state of the
art relevant for our purposes. Given our focus on feature-based product
representation, we dig into various interpretations of features found across
the engineering literature. We then look at current data modelling resources
and by the end of the chapter address the open issues, which we address in
the remaining chapters. In [Ch. 3] the dolce foundational ontology is in-
troduced as reference theory for the development of our work. As previously
said, indeed, one of the main motivation behind our work is to contextualise
an ontological representation of features within an overall theory of entities
assumed to exist in (common-sense) reality. Also, an ontology for features
needs to explain how features relate and distinguish from other entities rel-
evant for product development, products foremost. In [Ch. 4] we thus dig
into the analysis of what a product is meant to be in engineering conceptu-
alisations. Furthermore, we address in the same chapter a basic distinction
between physical products and the design representations where experts cap-
ture the properties that products have to satisfy. As we will better see, this
distinction plays a fundamental role and lays at the heart of our approach.
In [Ch. 5], the notion of feature is taken into account; the purpose is to iden-
tify the main entities modelled in feature-based approaches. A particular
emphasis is given to the notion of form feature, because of its relevance for
product modelling. In [Ch. 6] we present the axiomatisation of the ontology
in first-order logic. The formulas are explained and exemplified throughout
the chapter. In [Ch. 7] we show how the ontology can be used to model form
features in an ontological coherent manner, and how current meta-models
for feature representation can be restructured on an ontological basis. We
conclude the thesis by addressing future research lines that deserve some at-
tention as a consequence of our work [Ch. 8]. In [Appendix A] we show how
our approach can deal with a problem concerning the ontological status of
missing and replaceable physical products. In [Appendix B] we summarise
the terminology used in our ontology.

14

Chapter 2

State of the art review

In this chapter we review the literature relevant for our purposes; we there-
fore focus on the formal treatment of product knowledge and, more specifi-
cally, on feature-based product modelling approaches.

Our analysis of the literature is driven by theoretical insights and formal
approaches of ontology engineering [SS13, Gua98]. The state of art hereby
presented, instead of evaluating technological solutions or algorithmic pro-
cedures by which most product models are implemented, focuses on the
conceptual models behind these implementations and aims at isolating the
foundational assumptions by which features are identified and represented
within the context of product knowledge representation.

2.1 Design

Most of the objects we daily handle, if not all of them, have been created on
purpose. Pencils, silvers, laptops, washing-machines and cars are only a very
few examples of items that have been carefully designed and manufactured
for market requests. To put it with the words of Simon [Sim96]: “The world
we live in today is much more a man-made, or artificial, world that it is a
natural world. Almost every element in our environment shows evidence of
human artifice. The temperature in which we spend most of hours is kept
artificially at 20 degrees Celsius; the humidity is added to or taken from
the air we breathe; and the impurities we inhale are largely produced (and
filtered) by man” [ibid., p.2]. Along the same lines, Gareth [Gar15] claims
that: “Almost everything we experience has been designed, and not only the
myriad of products that we buy. It is possible to talk about the design of
services and systems, such as welfare, education and health, often informed
by political and economic dogmas but nonetheless containing a belief in their
capacities to deliver progress and create a better world” [ibid., p.10]. To put
it shortly, “design completely surrounds us” [ibid.].

What is design then? There is no straightforward reply to this ques-

15

tion (see [Hor04, Sti90, CB14, PB13, AHC15] among others) and some even
doubt about the attainability (and even desirability) of a unified design the-
ory concerning the general principles and practical methodologies of prod-
uct design [Gal08]. The term ‘design’ itself is used with di↵erent meanings.
Flusser [Flu03] provides the following etymological analysis for the term: “In
English the word ‘design’ is both a noun and a verb [...]. As a noun it means
– among others – ‘intention’, ‘purpose’, ‘aim’, ‘plan’ [...]. As a verb (to de-
sign) it means ‘to plan something’, ‘to simulate’, ‘to create’, ‘to sketch’, ‘to
organize’ [...]. The term comes from the latin signum, which means ‘sign’
[...]”.1 Flusser’s analysis matches with the current uses of ‘design’ across
the specialised literature. The term is indeed associated either to models by
which the properties of the products to be developed are described, or to
“problem solving process[es]” [Gar15] by which (generally speaking) “techni-
cal solutions” to practical needs are created. Interestingly, di↵erent authors
understand (the activity of) designing as aimed at changing and possibly
improving the world around us. Simon [Sim96] claims that “everyone de-
signs who devises courses of action aimed at changing existing situations into
preferred ones” [ibid., p.111]. Galle [Gal08] revises Simon’s claim in order to
constrain designing to the development of artefacts: “Everyone designs who
devises courses of action aimed at the production of an artefact”. Similarly,
according to Gero [Ger90] “[d]esign exists because the world around us does
not suit us, and the goal of designers is to change the world through the
creation of artifacts” (see also Gareth [Gar15] on the same lines).

A designing activity typically consists of di↵erent phases during which
expert teams (e.g., designers and manufacturers) interact to produce arte-
facts that satisfy pre-collected requirements. The so-called conceptual and
detail designing are examples of such phases [UE00, PB13]. In the former
experts explore the possible solutions to meet customers’ demands, as well as
technical requirements (e.g., manufacturing constraints); the solution space
is then progressively narrowed until a decision is made about the product
to be realised. In the latter phase the identified solution is accurately devel-
oped to lead to production. The output of the detail designing phase is a
documentation describing the nominal geometry of the product under devel-
opment along with tolerances, constituting materials and the plan necessary
for production, among other information [UE00].

For its very nature designing is collaborative and experts involved in
product development continuously interact to share their expertise [Gar15].
For instance, the interaction between designers and manufacturers is funda-
mental to establish production constraints since the early designing phases.

Nowadays, computer systems are heavily employed to model the entire
product lifecycle, from the early product conception to its eventual disposal,
to simulate and analyse products’ behaviours, to create feasible manufactur-

1The translation from the Italian edition is our.

16

ing plans and (more importantly for our purposes) to share product models
within and across organisations. We shall provide a more detailed overview
of the application of computer systems in design in the next sections.

2.2 Product information modelling

Computer-based technologies (CAx) are applied for various designing tasks,
from functional modelling, to detailed designing, process planning and engi-
neering analysis, among others. From an historical perspective, Computer-
Aided Design (CAD) systems have been primarily employed for the specifica-
tion of product geometry but they lack short of enabling the representation
of qualitative aspects about design intents [AH15, CRT10]. This stimulated
the development of the so-called feature-based systems and approaches to
allow for the explicit embedding of qualitative knowledge into geometric
models [SM95, Xu09]. Nowadays, knowledge-based CAx systems support
both the quantitative and the qualitative specification of product knowl-
edge, but also the integration of multiple models developed by di↵erent
working teams, as well as data sharing and reasoning procedures over prod-
uct data [CRS+13, PDS05, MCT08]. The success of CAx systems pushes to
expand the representation of product knowledge via formal theories, which
reflect experts’ conceptualisations and are accessible to computer agents.
Ontologies are the state of art formal tools for these purposes [EKGT+16].

2.2.1 Feature-based modelling: An overview

Feature-based modelling is nowadays the leading approach in computer-
aided product modelling [UM15].2

Features were introduced in the late ’70s as modelling elements in CAx
systems to represent and reason over both quantitative and qualitative data
relevant for engineering [SM95, HT96]. The starting idea was to have (soft-
ware) libraries of pre-defined elements to be reused without the need of re-
defining them every time it was required. Initially, features were especially
used to organise part programs for Computer Numerical Control (CNC) ma-
chines [SR88]. From this perspective, a feature like a hole or a pocket was a
set of surfaces in a computer model associated to some rules for manufactur-
ing. At the programming level, features were represented as object-oriented
classes characterised by attributes; this led to develop taxonomies of features
by allowing for attribute inheritance from the most general to the most spe-
cific classes within a taxonomy (e.g., [PH96]). For instance, threaded hole
feature classified as a subclass of hole feature since the former, being char-
acterised via the threaded attribute, is more specific than the latter. The

2Tang and colleagues [TCM13] talk about “feature-based informatics” to stress the
impact of feature-based approaches. For conciseness, we will also talk of ‘feature modelling’
across the thesis (instead of ‘feature-based modelling’).

17

figure below (Fig. 2.1) shows a product model (Fig. 2.1a) with the legend of
the employed features (Fig. 2.1b).

(a) Features in a CAD model (b) Legend

Figure 2.1: Examples of feature-based product model (from [BB00])

The initial geometrical view of features was augmented with other types
of information making features themselves irreducible to geometrical enti-
ties. According to ElMaraghy [ElM91] “[...] features refer to recognizable
shapes which cannot be further decomposed, otherwise they will reduce to
meaningless geometric entities such as lines, points, and surfaces”. Di Ste-
fano and colleagues [DSBDA04] observed that “the overall aim of feature-
based representation is to convert low level geometrical information into
high level description in terms of form, functional, manufacturing or as-
sembly features.” On the other hand, from the very beginning some pro-
posed to see features as real-world constituents of products. In their sem-
inal work, Shah and Mäntylä [SM95] employ two readings of ‘feature’, on
the one side as an “information cluster” for the integrated representation
of engineering data, on the other side as “[...] a physical constituent of
a part” [ibid., p.97]. This ambiguous use of the term has not been with-
out consequences. Brunetti [Bru03], for instance, claims that “a feature is
not limited to physical elements and exists only in the world of informa-
tion models” (see also [BG00]). On the other side, Nepal et al. [NSFPZ13]
take features to be “meaningful real world entities to which one can as-
sociate construction-specific information”. According to van Holland and
Bronsvoort [VHB97], “a feature [is a] physical part of an object mappable
to a generic shape and having functional significance”. These remarks show
that the meaning of ‘feature’ is not fixed, it is chosen depending on appli-
cations and contexts and, unfortunately, without a systematic treatment.
Table 2.1 presents some recurrent definitions for ‘feature’; its double under-
standing, as a modelling element and as a physical entity, emerges clearly
from the definitions.

As said, historically much of the work in feature-based product mod-

18

Feature definitions
“A region of interest in a part model” [WP88]
“[...] modeling entities that allow commonly used shapes to
be characterised [...] with a set of attributes relevant to an
application” [SM95]
“An information unit describing an aggregation of properties
of a product model that are relevant in the scope of a specific
view on the product” [Den99]
“The characteristics of a product that result from de-
sign” [Gro07]
“[...] a physical entity that makes up some physical
part” [SM95]
“[...] any geometric or non-geometric attribute of a discrete
part whose presence or dimensions are relevant to the prod-
uct’s or part’s function, manufacture, engineering analysis,
use [...]” [DSBDA04]
“A physical constituent of a component” [Imr13].
“A physical part of an object mappable to a generic shape
and having functional significance” [VHB97].

Table 2.1: Feature definitions across the literature

elling has been focused on form features, namely feature specifications in
terms of shapes recurrently used for product development purposes like hole,
slot, pocket, boss and chamfer [BBB00, PH96]. However, the exploitation
of feature-based modelling to design, manufacturing or engineering analy-
sis [UM15, HPR00, LY15, DS13], among others, led to disparate feature
categories, see Table 2.2.3 Currently, there is no shared methodology for
feature classification, since it depends on application requirements and sce-
narios; doubts have also been raised about the possibility of an exhaustive
categorisation of all feature categories [HPR00, NK07].

The dependency on applications has led to the characterisation of the
very same features in di↵erent ways depending on the modelling perspective
one adopts [SVHK93, WRP06, BG00]. A through hole, for instance, is
classified as a functional feature if described from the perspective of its
functionality in a product, while it is classified as a machining feature if
emphasis is put on the operations required for the hole realisation [BJ93].
Interoperability problems arise among di↵erent classifications, because the

3The table is neither an exhaustive list of the categories found across the literature,
nor it shows the relationships between the categories. Assembly features, for instance, are
sometimes conceived only from a geometric perspective [Den99, MBTJ07], while in some
other cases their description is enriched with manufacturing details [CMV03, VHB00,
IY15].

19

Feature class Feature use Example Reference
Assembly feature Used to repre-

sent assembly
knowledge

Shaft for assem-
bly

[Den99, MBTJ07,
CMV03, VHB00,
IY15]

CAE feature Used to represent
engineering analy-
sis knowledge

Stress analysis
feature, fluid
flow analysis
feature

[Xu09, LY15,
Lee05, SBOW04,
HLGF10]

Form feature Used to represent
elements charac-
terised via shape
properties

Hole, pocket,
chamfer

[KYDH06,
SVHK93, BJ93,
Han96, HPR00,
CMV03, SM11,
QD04]

Functional feature Used to repre-
sent functional
knowledge

Hole for assem-
bly

[SVHK93, BJ93,
WRP06, Bro03,
SWS93, UIY+96]

Geometric feature Used to represent a
geometric element

Surface, edge,
vertice

[KYDH06, SM95,
BJ93, Han96]

Machining feature Used to represent
the e↵ects of ma-
chining processes

Amount of
material swept
during a drilling
process

[HF06, MSS02,
HHPS13, Han96,
HPR00, Xu09,
DS13, FOL+03,
ZTT12, LLCN15]

Material feature Used to represent
material properties

Ceramic feature [SM95, QD04,
SM11, UM15]

Structure feature Used to represent
components

Wall, column,
screw

[BJ93, SFFK+03,
RRB15]

Table 2.2: A partial list of feature categories (ordered alphabetically) with
use information and examples.

20

semantics of the represented notions changes. A hole as a functional feature,
for instance, is meant as a void space in a product, sometimes called a
negative volume [SG05]. It is because of a void that an assembly functionality
can be attributed to a hole used to accommodate a screw. On the other
hand, process planners reason in terms of volumes of material to be removed
from the workpiece undergoing a manufacturing process. Thus, a hole as
a machining feature is a part to be removed from the workpiece. Fig. 2.2
shows a feature-based product model, while the table in Fig. 2.3 shows
how the features in Fig. 2.2 can be di↵erently classified from a design or a
manufacturing perspective.

178

9.1 Chapter overview
The description given in chapter 8 covers all the intricate design aspects of the proposed

knowledge verification framework. An implementation scenario was also presented in the

last chapter to further clarify the scope and working of the framework. In continuation with

that, this chapter presents the validation of this proposed framework. This validation is done

through an API developed to mediate between experimental domain ontologies aligned

with a central experimental foundation and core-concepts ontology. This API is designed to

work on the principles of the proposed verification framework and is tested on real

industrial manufacturability issues observed during the case study explained in chapter 7.

9.2 Design of experiment
To validate the workability of the proposed verification framework, an experiment was

conducted which involved the development of a few experimental ontologies and the

population of these ontologies through a Java API specially designed and developed to

automatically perform the tasks of knowledge verification as explained in steps 1 to 6 in the

previous chapter. Following is the detailed description of the components, working, and

results of this experiment.

9.2.1 Experimental ontologies

The first step in validating the framework is the conversion of the component shown in

figure 9.1 into the form of a shape feature based ontological model. A methodology to

create such a model has already been explained in chapter 6. The ontological formalism i.e.

Figure 9.1. A hypothetical component used for the validation of the verification framework

Base Plate

Collar
Fillet

Seal loading slots
Circular Groove

Holes

3D view

Sectioned
side view

Feature
based view

Base Plate

Collar

Fillet

Slots

Circular Groove

Holes

Exploded
view

Figure 2.2: Product model (from [AHYC12a])

Figure 2.3: Multiple perspectives on the same features (from [AHYC12a])

Nowadays, the notion of feature is used with a variety of meanings, not
only with reference to holes, bosses and the like, but “anything having an
attribute of interest” [UYC+13]. Features include components (sometimes
called structural features [RRB15]), but also qualitative characteristics like
colours, dimensions and shapes among others [Bro03, RGB11, SFFK+03].
This generality is not surprising and from the very beginning some have
proposed to understand features as any element that is relevant for product
development purposes. In De Fazio and colleagues [DFEG+90], for instance,

21

a feature is “any geometric or non-geometric attribute of a discrete part
whose presence [is] relevant to the products function [..]”. Recently, Pour-
talebi and Horvath [PH16] propose looking at features as complex properties
of cyber-physical systems. In this perspective, a feature is not just a prod-
uct’s (roughly speaking) aspect, e.g., its dimension or a hole in one of its
parts; it is rather a property that is structured in (possibly simpler) further
properties.

The interoperability problem raised by heterogeneous and fragmented
treatments of features calls for representational methodologies that can (at
least) clarify the di↵erent types of information at stake. Hopefully, we can
also organise such information in a way that is coherent with the di↵erent
modelling perspectives. This would allow for reliable data integration while
preserving the intended semantics. Yet, at the moment this does not seem
possible and each community adopts its own representational approach rely-
ing on specific application requirements, as we will see in the next sections.

2.2.2 Features in standards

Di↵erent standards have been proposed over the years to handle prod-
uct data in a way that is independent from specific software formats and
can support data exchange, although with several limitations [UYC+13,
MCT08]. We shortly present in this section two well-known standards,
STEP and STEP-NC, given their wide application for feature-based prod-
uct data management. We select these standards among others, because of
their impact on the development of ontologies for product data management
(see [Sect. 2.2.3]). We shall comment on other standardisation initiatives
throughout the thesis.

The ISO standard Automation systems and integration–Product data
representation and exchange, commonly known as STEP (ISO10303) [fSI94],
is considered the most relevant e↵ort towards the standardisation of product
data [SFKS01] and the development of engineering environments for data
sharing and management across the entire product life-cycle [ZHX09]. STEP
provides a set of models formalised in the EXPRESS modelling language
[DP94], as well as an application-independent data format to represent and
share product data. According to a report of the U.S. National Institute of
Standards and Technology (NIST) [GOP02], it is estimated that STEP gives
the possibility of saving million of dollars by reducing interoperability prob-
lems between information systems used in industrial applications. The ISO
10303-AP203 is the main application protocol within STEP for geometric
design data exchange between CADs, whereas manufacturing features are
at core of the AP224.

STEP has been combined with the Data Model for Computerized Numer-
ical Controllers data structure resulting in STEP-NC (ISO 14649) [fSI04] –
NC standing for Numerical Control. This standard supports the integrated

22

representation of products, machining operations and machining tools; it is
thus used to link CAD and Computer-Aided Manufacturing (CAM) appli-
cations to CNC systems. The core class for feature representation in STEP-
NC is manufacturing feature, which is understood along with STEP; see Fig.
2.4 where the attribute its operations is used to define the set of machining
operations required for manufacturing the feature at hand; its workpiece
refers to the workpiece the feature is part of; its id is the unique identifier
of the feature. The class manufacturing feature is the superclass of re-
gion,4 two5D manufacturing feature and transition feature. Note that
in the EXPRESS syntax, manufacturing feature is modelled as an abstract
supertype (aka superclass) in the sense that it only instantiates through its
subclasses.

Figure 2.4: STEP-NC manufacturing feature class (from [fSI04])

The application, advantages and disadvantages of both STEP and STEP-
NC are well-documented across the literature. The reader can refer to [AK07,
BN00, ZHX09] for reviews of STEP-based systems and approaches to feature
modelling.

4The term ‘region’ is used in manufacturing to refer to products’ parts that are not
components. We will have more to say about components in [Ch. 5].

23

2.2.3 Features in information models

Several initiatives focus on the development of feature specifications in terms
of models in the Unified Modeling Language (UML) [RJB04], taxonomies
or computational ontologies for disparate applications within the product
lifecycle data modelling.

Tang and colleagues [TCM13] propose a UMLmeta-model, called Unified
Feature Model, to manage feature-based information across CAx systems
(see also [UM15]). The meta-model is built around the so-called Generic
feature class, which aggregates quantitative and qualitative constraints, and
is meant to be the most general class for representing features in engineer-
ing applications. The Unified Feature Model has been applied for di↵erent
modelling scenarios [UM15, MBTJ07, YM16] and has been used as concep-
tual basis for further extensions [RRB15]. In the latter work, Romero and
colleagues propose the so-called Feature-based Meta-Model, which shares
the aim of the Unified Feature Model, but also provides a basic feature tax-
onomy. Both approaches, however, have not been developed by means of
an ontological methodology aimed at individuating the domain entities at
stake. (In [Ch. 7] we consider how the work proposed in [TCM13, RRB15]
can be grounded on an ontological basis.)

The Core Product Model (CPM) [FFBS08], as the name suggests, is
proposed as a core model for the representation of product knowledge. The
CPM is specified in UML (see Fig. 2.5). In the CPM a product, called arte-
fact, is represented as an aggregation of form, function and feature (see the
figure below). The latter is related to artefact via the hasFeature association
and is represented as the aggregation of form and function. A feature is a
physical entity in a product that has a shape and a functionality.

The CPM is reused across di↵erent ontologies. Dartigues and colleagues
[DGG+07] propose the so-called Feature Ontology to enable data exchange
between CAD and Computer-Aided Process Planning (CAPP) systems. The
ontology is formalised in both UML and the Knowledge Interchange Format
(KIF) [GF+92]. The class feature is here specified as the aggregation of
di↵erent constraints by which application-driven knowledge can be specified.
Additionally, the Feature Ontology includes a taxonomy of form features
based on STEP, covering, e.g., subtraction and protrusion features, among
others. In [RHF+06, FGL+07, SFSW05] the CPM is specialised for assembly
design applications, resulting in the so-called Open Assembly Model (OAM),
which is formalised in UML. Assembly features play a fundamental role in
the OAM to represent the physical means by which connection relationships
can hold among the components of assembled products.

The Common Design-Feature Ontology (CDFO) [AGGSP07, AGGS+14]
is an ontology for CAD systems interoperability. Various feature classes
(e.g., hole, counterbore, countersunk) are extracted from systems like Catia
V5, Pro/ENGINEERING and SolidWorks, and classified into a taxonomy

24

Figure 2.5: Core Product Model (CPM) (from [FFBS08])

represented in the Web Ontology Language (OWL) [MVH+04]. For exam-
ple, a general class for hole features taken from CATIA is specialised via the
SolidWorks classes simple drilled, tapered drilled, counterbore drilled, etc.

Deshayes and colleagues [DEBB05] propose a formal representation of
machining processes by means of the Process Specification Language (PSL,
ISO 18629) [Grü09]. The ontology includes notions like tool, workpiece, vol-
ume and machine tool, which are relevant for process representation. In this
framework features result from cutting operations performed by machining
tools. Most of the terms used in the ontology are only informally defined,
rather than constrained in a formal manner. Fig. 2.6 shows the formal defi-
nition of the class cutting process, which is an event5 that realises a so-called
‘cutting feature’ in a workpiece. Informally, a cutting process removes some
portion of material in order to change the shape of the workpiece at hand.

Researchers at the Wolfson School of Mechanical and Manufacturing En-
gineering at Loughborough University propose di↵erent ontologies to deal

5We shall use ‘event’ as general label for process-like entities, see [Ch. 3] for details.

25

Figure 2.6: KIF representation for cutting process in [DEBB05]

with product lifecycle information. The ontologies are formalised in the
Extended Common Logic Interchange Format (ECLIF), which is the ex-
tended version of Common Logic embedded in the commercial HighFleet
environment used for ontology development. As an extension of Common
Logic, ECLIF allows for the formalisation of more expressive constraints
than OWL, e.g., n-ary predicates. Usman and colleagues [UYC+11] pro-
pose the Manufacturing Core Ontology (MCCO) as a common semantic
foundation for knowledge representation in manufacturing; the ontology is
extended and exploited in [AHYC12a] for manufacturability analysis and
verification. Among its classes, the MCCO includes realised part, part ver-
sion, manufacturing facility andmanufacturing process, which are associated
via di↵erent relationships. In these works the notion of feature is understood
as “anything having an attribute of interest” [UYC+13]; e.g., a form feature
is a feature that has form as attribute of interest, whereas production method
is the attribute of interest for production feature. Formally, form feature is
represented as showed in Fig. 2.7. Although the semantics of the hasAttribu-
teOfInterest relationship is unspecified, it recalls the general understanding
of features as entities that are (in some sense) relevant for some application.

Figure 2.7: FormFeature class as represented in [UYC+13]

In [IY15] feature-based assembly constraints are represented in KIF for

26

data sharing in assembly design and planning. In [UY14] features are used
to share product data across design and machining experts. Fig. 2.8 shows
part of the UML taxonomy of feature classes proposed in [CYG+13] along
with their representation in ECLIF.6 In all these works it remains unclear
how features relate to products. The authors adopt relationships like associ-
atedTo [UYC+13], holds feature [CY11], or hasFeature [Anj11] to link, e.g., a
gear (product) to a hole (form feature), while the semantics of the relation-
ships is underspecified. It is, e.g., unclear whether a hole is spatially located
in a product, namely whether the spatial region where a hole locates is occu-
pied by the product, too. Informally, the authors seem to conceive features
as some sort of spatial parts. Usman, for example, claims that “the concept
Form Feature should represent a certain portion of a component” [Usm12,
p.117]. Along the same lines, a feature is (informally) defined in [Anj11] as
a “distinct part of an engineering component”. As we have previously seen,
the understanding of features as products’ parts is not uncommon across
the specialised literature (see Table 2.1).

Figure 2.8: Example of feature representation in ECLIF (from [CYG+13])

Kim and colleagues [KYDH06] use assembly features to represent join-
ing constraints. In this sense an assembly feature is a form feature that
is functional for the assembly of components. The proposed ontology in-

6Axioms in ECLIF are called soft or hard. When a ECLIF ontology is populated in a
knowledge base, the violation of an hard constraint stops the user, while the violation of
a soft constraint just triggers a warning message.

27

cludes general classes like product, feature and manufacturing [process], but
also more specific information concerning, e.g., whether two components are
welded via a butt- or T-joint. The ontology is formalised in both OWL and
the Semantic Web Rule Language (SWRL) [HPSB+04].

Ramos et al. [RGB11] propose an ontology-based approach for auto-
matic feature recognition to facilitate the linkage between CAD and CAM
applications. The authors provide the so-called CAD Ontology and Fea-
ture Ontology. The former specialises the general class CAD features in
qualitative features and quantitative features. Then, materials, colors and
primitives (e.g., line, arc) are subsumed under qualitative features, whereas
angle, point and parameter under quantitative features. The Feature Ontol-
ogy is used to model more specific classes, such as round slot, circular hole,
among others. Both ontologies are expressed in OWL and are related to
each other by a formal map.

In the same direction, Wang and Yu [WY14] present an ontology that
is split in two modules, the STEP Box and the Feature Box. The former
consists of a partial OWL formalization of the ISO10303-AP203 [138] and
includes classes like loop, edge, face and surface, among others, which are
the basic building blocks of feature classes. The latter ontology describes
features as combinations of geometric elements as introduced in the STEP
Box. For example, the feature class through cut is represented a set of inner
wall faces that are circularly connected.

Štorga and colleagues [ŠAM10] develop the so-called Design Ontology
based on the Genetic Design Model System theory [EH08, And92, AHC15].
The ontology is developed as a domain extension of the Suggested Upper
Level Ontology7 (SUMO) by using the OntoEdit tool. By means of SUMO,
the ontology distinguishes between physical and abstract entities, where the
former, di↵erently from the latter, exist in space and time. Then, form
feature is subsumed under material object, the latter being a subclass of
physical entity. Despite the subsumption relationship, what the authors
mean is that a form feature cannot exist without a material object.8 Form
feature is thus subsumed under material object in the sense of ontological
dependence.

7http://www.adampease.org/OP/, last access on January 2017.
8Personal communication.

28

http://www.adampease.org/OP/

2.3 Open problems

The exploitation of feature-based approaches for the representation of fea-
tures as classes of entities sharing common attributes has been focused on
application concerns leaving aside the semantic clarification of feature no-
tions. Even approaches that propose application independent frameworks
treat features as aggregations of attributes and values, without addressing
what a feature is meant to represent in terms of domain entities. As we
previously saw, features are sometimes treated as non-physical elements,
i.e., entities in product models that lack spatial properties, while in some
other case they are real-world elements in physical products. The two views
model important aspects that engineers need to take into account, but their
integration in an information system requires careful analysis: to claim,
e.g., that a non-physical feature constitutes a physical product would easily
lead to logical inconsistencies. The development of computational models in
languages with formal semantics (e.g., OWL) does not guarantee per se the
clarification of the represented notions. Formal semantics is a logical tool by
which the interpretations of a language can be controlled and constrained to
the desired ones. However, it does not support by itself coherent and trans-
parent knowledge representation [Gua94, BSŠT15, SBM14]. To provide a
concrete example, the codification of standards in Semantic Web languages
(e.g., [KBF+09, BVLDV09]) surely improves the computational tractability
of the developed models; di↵erently from models in EXPRESS, for exam-
ple, one can automatically reason over a STEP model in OWL. However,
the mere codification does not necessarily lead to the disambiguation of the
represented notions. STEP AP224, for example, treats manufacturing fea-
tures as both materials to be removed from workpieces and the results of
such removal [fSI06, §4.1.5]. This can lead to ambiguities, especially when
software agents are in play. For example, a hole manufacturing feature can
be both a negative space in a workpiece and a removed amount of material;
a direct codification of the AP224 in OWL would not remove this ambiguity.

Current approaches su↵er from (at least) the following drawbacks:

⌅ Lack of a product knowledge theory to support the analysis and rep-
resentation of engineering notions. To overcome this problem, distinc-
tions between the di↵erent entities represented in information models
have been introduced in an ad hoc manner leading to scattered and
application-driven models. As we will see across the thesis, features
cover qualities (e.g., shape, dimension), components, amounts of ma-
terial, entities like holes, slots and ribs, among others. In order to
develop robust information models, one has to identify and distin-
guish these entities and provide a framework by which they can be
related to each other, as well as to products. This means that a for-
mal representation of features has to be developed within a broader

29

theory for product knowledge representation by which features can be
distinguished from and related to non-feature elements.

⌅ Hidden assumptions in the terms specification. This problem is com-
mon in specialised domains where general terms are assumed to be im-
plicit to the domain of interest and, thus, their meaning is not explicitly
stated. Examples are notions like functionality, feature, product and
activity. In these cases, there is an implicit assumption that members
of the community know how to understand these terms. This assump-
tion particularly applies to standards. As noted in [UY14, UYC+13],
experts within the same research institution or in di↵erent depart-
ments within the same company attribute di↵erent meanings to the
terms daily used for product development. It is therefore relevant
that these meanings are formally captured to ensure automated data
interoperability and inter-humans communication.

⌅ Lack of an ontological characterisation of features. Feature-based mod-
els formally describe various constraints on features, especially at the
morphological level, but do not model ontological constraints about
what features are meant to be. Bidarra and Bronsvoort [BB00], for
example, propose an approach to maintain features geometry through-
out the modelling process. They do not introduce constraints to bind
features to other entities: a hole can be inserted in a model without
being related to some non-feature entity. Along the same lines, Wang
and colleagues [WY14] axiomatise a variety of geometric constraints
on features, but no rule is given to bind instances of feature classes to
other entities. Ontological constraints of this kind are not only needed
to explicitly characterise assumptions on what features are, but also to
verify product models against experts’ assumptions [IY15, AHYC12a].

⌅ Lack of an approach that describes the various understandings of fea-
ture notions and allows for their comparison and possibly integration.
This is however necessary to clarify the space of engineering features
and to develop a solid comparison of di↵erent views. The approaches
developed today tend to reduce features to morphological descriptions.
In [UYC+13], for instance, a screw hole (functional feature) in a design
model is declared equivalent to a web hole (machining feature) in a
manufacturing model about the same product. The rationale is that
features sharing the same geometry can be identified (see [BG05] for
a similar approach). Although geometric properties seem to provide
an anchor to identify or at least combine features, geometry does not
provide a solid base to deal with non-quantitative properties. The risk
is to miss the design intents behind heterogeneous perspectives. In the
example in [UYC+13], instead of identifying the features, one should
integrate the functional and manufacturing constraints they provide

30

to preserve all available information.

⌅ Lack of ontological distinctions in formal models. Approaches like
[KYK08, DMK12] use mereo-topological theories (theories based on
parthood and connection relationships) for the representation of as-
sembly features. This is a promising line of research since mereo-
topologies are robust theories and their exploitation in design and
manufacturing has been advocated for almost twenty years [GBM97,
Sal02]. However, the relationship of parthood has di↵erent properties
when applied to objects, processes or space; without a previous on-
tological distinction of the entities, the formal consequences of these
theories can be easily misinterpreted.

⌅ Erroneous use of taxonomical relationships. As we have seen, taxo-
nomical (is-a) relationships are used to relate features to other classes
within the same ontology, whereas the semantics of the relationship is
meant to grasp, e.g., the dependency of a feature on a certain type of
objects [ŠAM10]. More generally, there is not a systematic treatment
of the relationships that link features to each other, or to the prod-
ucts that they are meant to characterise. In some case, one and the
same relationship is used to relate a product to a feature, the latter
understood as a product’s part, and to relate a product to a shape,
the latter understood as an abstract entity [Anj11].

From this list of problems emerges the need for a theory of engineer-
ing concepts, among which feature, that on the one side represents experts’
perspectives and application concerns, and on the other side is clear on the
domain entities at play. Otherwise said, the theory has to capture the mean-
ing of the employed notions as used in the practise of product development
and has to discriminate between di↵erent domain entities on the grounds of
their ontological properties. Thus, the theory has to include an ontology for
feature-based representation that, relying on fundamental distinctions like
material vs immaterial object, can make sense of the heterogeneity of data
in product models.

In order to fulfil this purpose, we reckon on the theoretical insights and
formal methods of Ontology Engineering [SS13].

31

Chapter 3

DOLCE

In this chapter we introduce the Descriptive Ontology for Linguistic and
Cognitive Engineering (dolce), the foundational ontology that is used across
the thesis to analyse and formalise notions relevant for product modelling.

3.1 Introduction

The Descriptive Ontology for Linguistic and Cognitive Engineering (dolce)
[MBG+03] is a foundational ontology explicitly designed to capture the onto-
logical categories underlying natural language and common-sense thinking.
dolce is part of our methodology for the analysis and formal representation
of product knowledge, because it has been already employed for similar ap-
plications [BL07, BCGV09, FCG+15, SRR16, DD15]. Additionally, its core
classes are based on a worldview that meets product experts’ conceptions
of reality, e.g., the distinction between objects (e.g., a drilling machine),
qualities (the machine’s weight) and events (drilling operations).

Currently, three versions of dolce are available:

1. dolce [MBG+03] comprises the entire axiomatisation of the ontology
in first-order modal logic. Its taxonomy distinguishes between di↵er-
ent categories at di↵erent levels of generality. For example, the class
perdurant is specialised in event, process, achievement and accomplish-
ment;

2. dolce-core [BM13] comprises only the core categories of dolce, i.e.,
object, event, individual quality, region, concept, arbitrary sum and it
is formalised in classical first order logic without modality;1

3. dolce-Lite 2 consists of a partial axiomatisation of dolce in OWL
[BCM+03].

1Terminologically, dolce-core object and event replace dolce endurant and perdurant,
respectively.

2http://www.loa.istc.cnr.it/old/DOLCE.html, last access October 2016.

32

http://www.loa.istc.cnr.it/old/DOLCE.html

In the following presentation we mainly refer to dolce-core, because
its classes are reused throughout the thesis. It will be made explicitly
when classes and formulas from dolce are reused. As a remark on no-
tation, we write DCn for dolce-core axioms, where n is the axiom num-
ber in [BM13]; DCn⇤ is used for the axioms described but not formally
given in [BM13]. We write DLn for axioms taken from dolce [MBG+03]
and DLn⇤ for dolce axioms that are slightly revised for our purposes, as
we will explain. We adopt closed formulas and the variables not explicitly
quantified are assumed as being universally quantified.

3.2 Particulars

dolce-core is an ontology of particulars, i.e., entities that exist in time,
like the Pisa tower, the event of climbing Cerro Torre on a specific day
performed by certain alpinists, and the weight of a reamer.

The relationship PRE(x, t) is used to specify the time at which a partic-
ular (PT) exists,3 see (DC7); PRE(x, t) is read as “x is present at t”. Being
present – the property represented by the PRE predicate – is dissective and
cumulative. Dissectivity (DC8) says that if an entity x is present at t, then
x is present at all parts t0 of t, whereas cumulativity (DC9) establishes that
if x is present at both t0 and t00, then x is present also in their (mereological)
sum (Sum) t. (The predicates P and Sum refer to mereological notions, see
[Sect. 3.3].) Finally, axiom (DC10) establishes that particulars are present
in time.4 Recall that being present distinguishes from logical existential
quantification, traditionally represented with the symbol 9 in classical first
order logic. The former is used to refer to the time at which particulars are
located, whereas the latter allows us to consider (to quantify over) the enti-
ties in the quantification domain but in an atemporal manner (see [Sid01,
p. 59]).

DC7 PRE(x, t) ! TQ(t)

DC8 PRE(x, t) ^ P(t0, t) ! PRE(x, t0)

DC9 PRE(x, t0) ^ PRE(x, t00) ^ Sum(t, t0, t00) ! PRE(x, t)

DC10 PT(x) ! 9t (PRE(x, t))
3‘To exist’ and ‘to be present in time’ are interchangeably used throughout the thesis.
4dolce includes abstract entities, which are neither in space nor in time; regions

are examples of abstracts. dolce-core does not comprise a category for abstracts and
treats regions as particulars, therefore as entities in time by (DC10). This choice is
due to the idea of understanding regions, among others, as entities that can be created
within certain conceptualisations and therefore exist in time. Also, note that concepts
and regions, although are both represented as particulars in dolce-core, can instantiate,
whereas particulars are commonly understood as entities that do not instantiate. This
because particulars in dolce-core are understood in terms of presence in time, rather
than instantiation.

33

3.3 Mereology

Mereology is the formal study of parthood relationships. It was firstly for-
malised in Lesniewski’s Mereology (also called Calculus of Manifold) and
Leonard and Goodman’s Calculus of Individuals. Lesniewski’s Mereology
was an attempt – within foundational studies of mathematics – to deal with
Russell’s paradox about naive set theory. On the other hand, Goodman
and Leonard embraced a nominalistic stance in philosophy and looked for a
theory dispensing abstract entities and quantifying over only physical indi-
viduals. In their perspective the Calculus was a formal replacement of set
theory as a theoretical tool for philosophical investigation. Mereology has
been however developed independently from the foundational issues that led
to its initial development. Nowadays, mereological theories play a relevant
role in computer science for the qualitative representation of space, among
other applications [CR08, CV99, Gal00].

dolce-core adopts the axioms (DC1)–(DC4) of extensional mereology.5

By (DC1–DC3), the relationship of parthood is a partial order (reflexive,
transitive and anti-symmetric). (DC4) is the axiom of strong supplemen-
tation, which says that if x is not part of y, there is a part z of x which
does not overlap with y. The predicate overlap (O) stands for the property
of part sharing (DCdf1). The mereological sum (Sum) of two entities, x and
y, is defined as the entity s, such that anything overlaps s if and only if it
overlaps either x or y. (The uniqueness of s is guaranteed by (DC4).) Fi-
nally, (DCdf1⇤) defines the proper part relationship (irreflexive, asymmetric,
transitive).6

DC1 P(x, x)

DC2 P(x, y) ^ P(y, z) ! P(x, z)

DC3 P(x, y) ^ P(y, x) ! x = y

DC4 ¬P(x, y) ! 9z (P(z, x) ^ ¬O(z, y))

DCdf1 O(x, y) , 9z (P(z, x) ^ P(z, y))

DCdf2 Sum(s, x, y) , 8w(O(w, s) $ (O(w, x) _ O(w, y)))

DCdf1⇤ PP(x, y) , P(x, y) ^ ¬P(y, x)

dolce-core also adopts an extensional mereology with an extra tem-
poral parameter, which is of key relevance for representing parthood rela-
tionships between physical objects. According to (DC11), if two entities
are related via parthood at time t, then they are both present at t, whereas
(DC14) is the axiom of temporary extensionality. (DCdf3) defines the re-
lationship of temporary overlap. The existence of temporary sums is not
guaranteed.

5According to extensional mereology di↵erent entities cannot share the same parts.
6See [Sim87, CV99] for an overview on mereology.

34

DC11 P(x, y, t) ! PRE(x, t) ^ PRE(y, t)

DC12 PRE(x, t) ! P(x, x, t)

DC14 ¬P(x, y, t) ^ PRE(x, t) ^ PRE(y, t) ! 9z (P(z, x, t) ^ ¬O(z, y, t))

DCdf3 O(x, y, t) , 9z (P(z, x, t) ^ P(z, y, t))

(DCdf5) defines constant part (CP). By (DC16) parthood simpliciter can
be defined on the basis of temporary parthood.

DCdf5 CP(x, y) , 9t (PRE(x, t)) ^ 8t(PRE(x, t) ! P(x, y, t))

DC16 9t (PRE(x, t)) ! (CP(x, y) $ P(x, y))

3.4 Qualities

Everyday objects can be compared in a number of ways on the basis of
their “characteristics”.7 For example, a drill weighs 1,5 kg, whereas a table
weighs 10kg, therefore the drill is less heavy than the table; Cerro Torre is
3128mt high, whereas K2 is 8609mt, therefore the former is shorter than the
latter; John’s and Mary’s eyes are blue, therefore they are both blue-eyed.
The representation of what we roughly called “characteristics” is based in
dolce-core on the distinction between individual quality, quality kind and
quality space.

Individual quality. An individual quality is the quality of a specific par-
ticular and characterises only that particular. In this sense, even if John’s
and Mary’s eyes are both blue, the colour of John’s eyes di↵ers from the
colour of Mary’s eyes, because they are the two individual qualities of two
di↵erent persons.

In dolce-core the relationship between an individual quality and the
entity it characterises is called inherence (D20); I(x, y) is read as “x inheres
in y”, where x is an individual quality and y is called the quality’s bearer.
An individual quality is ontologically bound to its specific bearer in the
sense that (i) it cannot migrate across di↵erent particulars (DC21) and
(ii) it cannot exist without the existence of the bearer (DC22). Axiom
(DC23) states that qualities exist during the whole life of their bearers.
Individual qualities are similar to tropes [Lou98], the di↵erence being that
individual qualities in dolce-core can change across time, whereas tropes
are substituted [BM13, p.368]. For instance, a particular object ob# may
be red at time t and green at t0. In this case, one would commonly assume
in a trope theory that two di↵erent tropes, trrd (the red trope) and trgr (the
green trope), inhere in ob# but at di↵erent times; when ob# undergoes a

7We rely hereby only on an intuitive interpretation of objects, whereas their ontological
understanding within dolce-core is presented in [Sect.3.6].

35

colour change from red to green, trgr substitutes trrd. On the other hand,
quality change is understood in dolce-core in terms of location of the
same individual quality in di↵erent regions within the same quality space.
This idea will be made clear throughout the section.

DC20 I(x, y) ! Q(x)

DC21 I(x, y) ^ I(x, y0) ! y = y0

DC22 Q(x) ! 9y (I(x, y))

DC23 I(x, y) ! 8t(PRE(x, t) $ PRE(y, t))

Quality kind. Individual qualities are grouped into n non-empty quality
kinds, e.g., the colour quality kind or the weight quality kind. Thus, given
a quality x, we write an index i, with 1  i  n, such that Qi(x) is read as
“the individual quality x is of quality kind i”, see (DCdf2⇤). The grouping
of qualities into quality kinds may depend on metaphysical or cognitive
assumptions. In the first sense, one can assume that qualities – as they exist
in reality – partition into kinds. In the second sense, which we assume in
accordance to dolce cognitive bias, the grouping of qualities into kinds may
rely on di↵erent considerations, e.g., human’s sensory system and cognition,
or measurements methods.

Axiom (DC24) states that an entity can have at most one individual
quality for each specific quality kind. In this perspective it remains to be
clarified what it means for an object to be, e.g., multi-coloured (see Example
3 below).

DCdf2⇤ Q(x) , W
iQi(x)

DC24 I(x, y) ^ I(x0, y) ^Qi(x) ^Qi(x0) ! x = x0

Quality space. Qualities of the same kind can be organised into tax-
onomies or more sophisticated arrangements, from orderings (e.g., for weights
and lengths) to complex topological or geometrical structures (the colour
spindle or the taste tetrahedron, see [Gär04]). These structures are called
quality spaces in dolce-core and consist in a formal variation of conceptual
spaces as proposed by Gärdenfors [Gär04]. The idea is that qualities can
be di↵erently conceived and represented according to disparate principles
such as measurement tools or cultural systems [MB05]. Temperature, for
instance, can be measured via the Celsius or the Fahrenheit scale, as well as
lengths via the International Metric System (IMS) or the British Imperial
System (BIS). Therefore, each conceptualisation provides its own principles
for organising qualities, e.g., grams in the IMS and grains in the BIS for
mass qualities.8

8An approach similar to quality spaces is adopted in [Chu10, p.79] to provide the
semantics of measurement values for ontology-based modelling in manufacturing.

36

In dolce-core each quality kind Qi can be associated to one or more
spaces; we write SPij for quality spaces, where the first index i refers to
a quality kind and the second index j to the corresponding space. For
example, SPij and SPik stand for the spaces SPj and SPk associated to
the quality kind Qi. Entities in a space are called regions; since spaces are
disjoint, regions are partitioned into disjoint spaces.

Axiom (DC28) is used to establish that regions do not change over the
time when they exist. The location relationship (L) provides the association
between qualities and quality spaces; L(x, y, t) is read as “the individual
quality y is located in the region x at time t” (DC30). By (DC31), the
location of a quality at time t implies the presence of y at t. Each individual
quality has to be located in (at least) one of the spaces SPij associated to
the corresponding quality kind (DC34–DC35). By (DC36), the location of
a quality in a single space is unique.

DC28 R(x) ^ PRE(x, t) ^ PRE(x, t0) ! 8y(P(y, x, t) $ P(y, x, t0))

DC30 L(x, y, t) ! R(x) ^Q(y)

DC31 L(x, y, t) ! PRE(y, t)

DC34 L(x, y, t) ^Qi(y) !
W

j SPij(x)

DC35 Q(y) ^ PRE(y, t) ! 9x (L(x, y, t))

DC36 L(x, y, t) ^ L(x0, y, t) ^ SPij(x) ^ SPij(x0) ! x = x0

Example 1. Consider two drilling machines, dm1 and dm2, each one being
2,5kg heavy. In dolce-core for an object x to have a certain weight means
that there is an individual quality y inhering in x, such that y is of the quality
kind weight (Qwg) and y is located in a region (2,5kg in our example) of the
weight-space (SPwg).9 In this sense, the quality space provides a structure to
attribute values to individual qualities. See (f1), where Weight(x, 2.5kg, t)
is read as “x weighs 2,5kg at t”.10

f1 Weight(x, 2.5kg, t) ,
9y (I(y, x) ^Qwg(y) ^ L(2.5kg, y, t) ^ SPwg(2.5kg))

(example: x weighs 2.5kg at t means that there is a
quality y inhering in x, such that y is of the weight quality kind and y
is located in the 2.5kg region within the weight quality space)

Accordingly, when two drilling machines dm1 and dm2 have the “same”
weight, this means that their di↵erent individual qualities are located in the
same region within the weight-space.

9For the sake of the example we assume that each quality kind is associated to only
one quality space.

10We shall use fn throughout the thesis to write axioms and definitions for examples.

37

Example 2. Consider a particular object that undergoes a colour change,
e.g., it is red at time t and green at t0. Recall that in dolce-core for
an entity x to undergo a quality change means that there is an individual
quality v of kind Qi inhering in x such that v is located in two di↵erent
regions, y and z, of the space SPj associated to Qi. See formula (f2), where
QualityChange(x, y, z) is read as “x undergoes a quality change from y to
z”.

f2 QualityChange(x, y, z) ,
9vtt0

W
ij(I(v, x) ^Qi(v) ^ L(y, v, t) ^ L(z, v, t0) ^ ¬(y = z) ^

SPij(y) ^ SPij(z))
(example: x undergoes a quality change from y to

z means that there is an individual quality v of kind i that inheres in
x, such that v is located in the region y at t and in the region z at t0

within the quality space j associated to i)

For example, the formula QualityChange(ob1, red, green) represents the
particular object ob1 undergoing a colour change from red to green; by (f2),
this means that the individual colour of ob1 is located in the red and green
regions but at di↵erent times.

Example 3. Consider a multi-coloured object, namely, an object that
is half red and half green. Recall by axiom (DC24) that an entity can
have at most one individual quality per quality kind. The example can be
represented in (at least) two di↵erent ways.

(i) We may ascribe the di↵erent colours to di↵erent parts of the object
x being considered, that is, x is red in y and green in z, where y and z
are proper parts of x, see (f3). In this approach, we need to assume that x
reduces to the sum of y and z, otherwise there might be parts of x that are
neither red nor green.

f3 RedGreenColoured(x, t) , 9yzvw (Sum(x, y, z) ^ I(v, y) ^ I(w, z) ^
Qcl(v)^Qcl(w)^L(red, v, t)^L(green,w, t)^SPcl(red)^SPcl(green))

(example: x is both red and green at t means that x is
the mereological sum of two parts, y and z, such that y is red and z is
green)

38

(ii) We can refer to a quality y of x such that y is located in the region
which is the sum of the red and green regions within the colour quality
space.

f4 RedGreenColoured(x, t) , 9ys (I(y, x) ^Qcl(y) ^
L(s, y, t) ^ Sum(s, red, green) ^ SPcl(s))

(example: x is red and green coloured at
t means that the quality y inhering in x is located in the mereological
sum of the red and green regions within the colour quality space)

First, note that colours are summative, in the sense that the mereological
sum of two colours is still a colour. Second, the sum of two colours is not a
new colour but a region that comprises both of them.

3.5 Concepts and roles

dolce-core includes concepts (CN) amongst particulars (DC1⇤). For-
mally, concepts are reified in the domain of quantification, therefore treated
as individuals. The classification relationship is used to talk about the in-
stances of a concept; see (DC17) where CF(x, y, t) is read as “concept x
classifies y, which is present at time t”, or (equivalently) “y, as it exists at
t, satisfies a concept x”. Classification thus implies the presence at t of the
classified entity (D18). (Note that the temporal parameter in CF does not
refer to the time at which the classification is done but to the time at which
y is present.)

DC1⇤ CN(x) ! PT(x)

DC17 CF(x, y, t) ! CN(x)

DC18 CF(x, y, t) ! PRE(y, t)

Concepts can be adopted to represent properties that have a contextual
or dynamic nature. In [MVB+04] they are employed to represent roles.
These are properties created within social contexts in accordance to some
conventions; roles are thus dynamic, anti-rigid and relationally dependent
(see also [VBM08]). Dynamic means that they are played by particulars
at certain times; e.g., John has the role of being a student at t, whereas
he has the role of being a professor at t0. Anti-rigidity means that it is
not necessary for a particular to play a role, so that acquiring or loosing
a role does not a↵ect its identity. Finally, relational dependence is a form
of dependence holding between properties; in [MVB+04] it is understood
in terms of definitional dependence, that is, a property � is definitionally
dependent on a property , if any definition of � involves . Roles can thus
be defined on the basis of relationships whose arguments are characterised by
certain desired properties, namely the properties they are meant to satisfy

39

according to some background conceptualisation. This can be represented
by defining the predicate that corresponds to a role. For example, students
are (roughly said) persons enrolled at schools. Thus the role of being a
student (Student for conciseness) can be defined in terms of Person, School
and the relationship enrolled, see (f5).

f5 Student(x, t) , Person(x) ^ 9y (School(y) ^ enrolled(x, y, t))
(example: x is a student at t means that x is a person who is

enrolled at a school at t)

If roles are treated as concepts, Student has to be reified in the domain.
For example, we can say that x instantiates the concept student11 if and
only if it is a person who is enrolled at a school (f6).12

f6 CF(student, x, t) $ Person(x) ^ 9y (School(y) ^ enrolled(x, y, t))
(example: x is classified by the concept student if and only if x is a

person enrolled at a school)

3.6 Objects and events

Along with a common sense conceptualisation of reality, dolce-core dis-
tinguishes between objects and events. In philosophy, an object is sometimes
understood as an endurant (also said continuant), i.e., an entity that (i) un-
dergoes some change through time while preserving its own identity, (ii) is
extended in space and (iii) is wholly present at every time t in which it ex-
ists, namely all its spatial parts at t are present. On the other hand, events
are called perdurants (also occurrents); these are particulars that unfold in
time and at any time t in which they exist, only their temporal parts at t
are present (see [Sim87] on the endurant/perdurant distinction).

Philosophers lively debate whether the (fundamental) inhabitants of re-
ality are either endurants or perdurants. Four-dimensionalism (4D), for
instance, assumes a basic ontology of perdurants [Sid01], where objects are
“spatio-temporal worms” that happen in time by loosing and accumulating
temporal parts. Take John, a particular object. In a 4D perspective, at each
instant of time t at which John exists, he exists only in his temporal part
that is present at t.13 The whole John, who existed from t (his birth) to t0

(his death), is the sum of all the temporal parts that existed during the t-t0

interval. Three-dimensionalism (3D) argues that objects are endurants with

11We employ lowercase labels for reified concepts.
12Note that (f6) defines the concept of student in an extensional manner, namely by

referring to the classified individuals in the domain of quantification. However, concepts
may be defined only intensionally, therefore without relying on the entities they classify.

13A temporal part x of y is a part of y that exists only at a certain time t and overlaps
every spatial part of y that exists at t, namely it is a maximal part of y with respect to
time [Sid01].

40

spatial but not temporal parts. In this perspective events are not always
admitted in the inventory of reality. According to [Low06], for example, “an
event occurs when a particular object takes on a particular property [...]”.
An example is “a particular object [that] changes from being round to being
oblate in shape”. In this view, events do not exist as particulars; they rather
reduce to objects satisfying di↵erent properties at di↵erent times.

dolce-core avoids reducing one category to the other one on the ground
of common sense. Moreover, the distinction between objects and events is
assumed in di↵erent disciplines, from medicine to design, manufacturing
and geoscience. Thus, the lack of recognising both categories of entities
may threaten the applicability of the ontology itself.

Axiom (DC2⇤) represents objects (OB) as particulars with a spatial
quality (SQ). Along the same lines, (DC46) captures the notion of event
(E) as the bearer of a temporal quality (TQ), which locates the event in
time (see DC45).

DC2⇤ OB(x) ! 9y (SQ(y) ^ I(y, x))

DC46 E(x) ! 9y (TQ(x) ^ I(y, x))

DC45 TQ(y) ^ L(x, y, t) ! x = t

Objects and events are bounded to each other via the participation re-
lationship; see (DC39, DC40, DC41) where PC(x, y, t) is read as “object x
participates in event y at time t”. Axiom (DC42) states that if an object x
participates in an event y, which is part of a larger event y0, then x partici-
pates in y0; according to (DC43), all parts x0 of x participate in y. Finally, if
a quality kind is related to events, it cannot be related to objects, and vice
versa (DC44).

DC39 PC(x, y, t) ! OB(x) ^ E(y)

DC40 OB(x) ^ PRE(x, t) ! 9y (E(y) ^ PC(x, y, t))

DC41 E(x) ^ PRE(x, t) ! 9y (OB(y) ^ PC(y, x, t))

DC42 PC(x, y, t) ^ P(y, y0, t) ^ E(y0) ! PC(x, y0, t)

DC43 PC(x, y, t) ^ P(x0, x, t) ! PC(x0, y, t)

DC44 I(x, y) ^E(y) ^Qi(x) ^ I(z, v) ^OB(v) ^Qj(z) ! ¬Qj(x) ^ ¬Qi(z)

We shall now consider the extension of dolce-core with some high-level
classes that are useful for our purposes.

41

3.7 Material and immaterial objects

In the full dolce ontology a material object is an object that is constituted
by some amount of matter, where the distinction between material objects
and amounts of matter is based on both unity and persistence conditions.
A material object is a whole entity under some form of (e.g., topological or
functional) connection, whereas (the parts of) amounts of matter (e.g., sand
or gold) are not connected into wholes, at least they are not connected in
the topological sense. Additionally, dolce assumes that a material object
can acquire or loose some of its parts while remaining the same object; on
the contrary amounts of matter undergo a change in their identity when
their parts change.

The constitution relationship (K) holds between amount of matter (M)
and object (DL1⇤);14 K(x, y, t) is read as “x constitutes y at time t”. By
(DL24) and (DL25) constitution is asymmetric and transitive, respectively;
axiom (DL26) relates constitution to the property of being present.

DL1⇤ K(x, y, t) ! M(x) ^OB(y) ^TQ(t)

DL24 K(x, y, t) ! ¬K(y, x, t)

DL25 K(x, y, t) ^ K(y, z, t) ! K(x, z, t)

DL26 K(x, y, t) ! PRE(x, t) ^ PRE(y, t)

We define a material object as a physical object that is generically con-
stituted by some amount of matter (DL2*).15 Generic constitution means
that at every time at which a material object exists, it is constituted by
some matter, even though the latter may change over time.16

DL2⇤ MaterialObject(x) , 8t (PRE(x, t) ! 9y (K(y, x, t))

By (Def1), we introduce immaterial objects as objects that are not
constituted by any amount of matter. (This definition is not given in
dolce/dolce-core, therefore it is hereby introduced with a di↵erent enu-
meration.) As we will see in [Ch. 6], this notion is useful to talk about
hole-like entities.

By axiom (Ax1), we establish that object covers only immaterial objects,
material objects and amounts of matter. By (Ax2), amount of matter is
disjoint with both immaterial object and material object. Finally, by (Ax3)
material object and immaterial object are disjoint.

14Axiom (DL1⇤) is based on dolce (Ad20) in [MBG+03].
15Axiom (DL2⇤) is a formal variation of dolce (Ad30) [MBG+03]. We write ‘material

object’ instead of using an acronym, because it is a notion hereby introduced that does
not belong to dolce-core. The same for ‘immaterial object’ in (Def1).

16dolce distinguishes between generic and specific constitution; di↵erently from the
former, in the latter case an object is constituted always by the same material; refer to
[MBG+03] for details.

42

Def1 ImmaterialObject(x) , OB(x) ^ 8t (PRE(x, t) ! ¬9y (K(y, x, t))

Ax1 OB(x) $ ImmaterialObject(x) _MaterialObject(x) _M(x)

Ax2 M(x) ! ¬(ImmaterialObject(x) _MaterialObject(x))

Ax3 ImmaterialObject(x) ! ¬MaterialObject(x)

dolce includes the feature predicate, which refers to objects that cannot
exist in space and time if detached from some other object. Examples are
(material) surfaces, stains and bumps. In philosophy features are known as
parasitic entities [CV94], a wording that emphatically stresses their depen-
dence on the objects to which they are related, known as features’ hosts.
Features are of key relevance for our work; therefore we will dig into their
conceptual analysis and formal representation in [Ch. 5] and [Ch. 6].

The figure below (Fig. 3.1) shows the taxonomy of the classes presented
throughout the chapter (the arrows between the classes are subsumption
relationships).17

Figure 3.1: Upper-level classes of dolce-core adapted for our purposes

17The dolce-core taxonomy shown in the figure does not comprise the class arbitrary
sum, which is not relevant for our study.

43

Chapter 4

Technical products and
product types

In this chapter we present the notions of technical artefact and product type
by exploring also the relationship of compliance between them. By the end
of the chapter we compare our approach with some relevant studies. We
motivate our approach by relying on both the engineering and the philo-
sophical literature, as well as on formal ontologies for product knowledge
representation.

4.1 Artefacts

Most of the objects we daily interact with are the result of human craft. The
houses we live in, the buses and airplanes we catch to reach our destinations,
laptops, chairs, zebra crossings, bridges, bikes are just a few examples. At
a larger scale, airports, nuclear factories, dams, universities, space-stations
and entire metropolis are purposely invented by humans. Interestingly, an-
thropologists and historians “measure” the evolution of human civilisations
also on the basis of our ancestors’ abilities to handle materials and produce
the items they needed to survive (e.g., the Stone and Bronze ages). There
is no surprise that the study of artefacts – the general category employed to
cover created objects – is at the focus of di↵erent disciplines, from history,
anthropology and ethology, to philosophy, cognitive science and applied on-
tology (see [Hil11, Kro12, VCBG13] for further references).

Since (at least) Aristotle, artefacts are contrasted to natural objects,
particulars which are not created by human intervention. The distinction
is however rough and it is challenging to individuate the red line between
artefacts and natural objects. Is a genetically modified plant a natural or
artefactual object? Is a pebble used as paperweight an artefact? Is a bird
nest an artefact? These are only some of the questions artefact theories need

44

to deal with [Kro12, HV09].1

Independently from the notion of natural object, the category of (human-
made) artefact is broad enough in itself. Some artefacts, for example, re-
quire some sort of social convention, because they exist as far as there is
some agreement among the people living in a community [Sea95]. This con-
sideration, admittedly general, applies, e.g., to laws and salaries but also to
airports and factories, among others, which are socially regulated. A fur-
ther challenge in the analysis of the latter artefacts, called socio-technical
systems (STS) [BS11], is that they involve organisations in which humans
interact with each other, as well as with machines. STSs thus require an
analysis of social roles, duties and responsibilities that regulate such interac-
tions. Artefact theories cover also works of art, understood as artefacts made
for aesthetic rather than practical purposes [Dip93]. Modern art, however,
reminds us the slippery distinction between art and non-art; Duchamp’s
Fountain is a notorious example.

For the purposes of our work, we leave behind most of the issues that
artefact theories need to face and focus on engineering artefacts, commonly
called products. Also, because our research strives from the need of providing
the foundations for ontologies about designed and manufactured material
objects, we leave aside services and software from our analysis.2

4.1.1 Products

The Industry Foundation Classes (IFC) provides the following comment on
the notion of product:3 “Products include manufactured, supplied or created
objects [...]. Products are defined by their properties and representations”.
This view is widely shared across engineering.

First, note the tight relationship – usually called compliance [Gal98] –
between products and the properties they are required to satisfy. According
to IFC, indeed, a product is “defined by” its properties, which are inten-
tionally identified in designing activities to meet customers’ requirements.
We call these properties design properties throughout the thesis. Second,
although IFC informally distinguishes between “manufactured”, “supplied”
and “created” products, it remains unclear how these distinctions apply. In
particular, it is unclear whether supplied products are meant to undergo
some production process. However, given the explicit (albeit ambiguous)
reference to “manufactured” and “created” products in the standard, it is

1Interestingly, the U.S. Food and Drug Administration (FDA) recently faced the defi-
nition of ‘natural’ for food labelling by recalling some of the issues addressed in artefact
theories about the natural/artefactual distinction; see the FDA website, entry: “Natural”
on Food Labeling, last access October 2016.

2See [FG08, WGGM14, Kas10] for readings on these topics.
3See IfcProduct at http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/,

last access October 2016.

45

http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/

plausible to consider “supplied” products as not being human-made. For in-
stance, coal is mined but its existence does not rely on design e↵orts. There
is, indeed, a sense in engineering in which natural objects are products, too.
For instance, according to the STEP standard (Part 1) [fSI94] a product is
“[a] thing or substance produced by a natural or artificial process”. The
standard does not explain its conceptualisation; it nevertheless recognises
natural objects within the range of products.

In some other cases what is a product is not fixed but it depends on
application contexts. For instance, a company that produces automobiles
may buy engines, wheels and brakes from di↵erent producers and assemble
them together; thus the company may consider the automobiles as products,
whereas the engines, wheels and brakes as resources. In this perspective, a
product is something that a company produces and sells, rather than buys
(see, e.g., [PUPS+16]). Therefore, one and the same particular is a product
for the producing or selling company and a resource for the buying company.

4.1.2 Compliance

From a general perspective, we characterise compliance as the relationship
that holds between an object x and a list of design properties, call it �, if
and only if x satisfies �. This list of properties is di↵erently called across
the literature; we call it product type.

In [Sect. 4.2] the notion of product type is presented in more details.
For the sake of clarity, we note that a type is a complex entity provided
with a structure, that is, it is not just a plain list of properties but dif-
ferent constraints and relationships hold between the properties in a type.
For example, a product type may establish that if the dimension of the de-
signed product varies within the pre-defined tolerances, the dimensions of
the product components have to be accordingly adjusted.4

It is also reasonable to assume that a product type satisfies a unity
criterion by which its properties form a whole. We shall not enter into the
specification of these unity criteria, since it would require an analysis of the
(meta-) properties that properties lists have to satisfy to be product types.
We shall now turn to compliance.

Artefact theories for engineering commonly ask whether non-compliant
objects are products at all [BFG+14]. On the one side, one may answer
negatively to this question if the object at hand does not satisfy the design
properties it was meant to satisfy. On the other side, this view is too strict.
For example, it is nowadays common to find shops specialised in selling
items, especially clothes, which have production defects. Perhaps, one would
not pay thousands of Euros for a Valentino suit which is badly sewed and

4It goes behind the purposes of this work to enter into the details of the structures of
types. We introduce in [Ch. 6] the formal axioms that allow for the modelling of types
from a general perspective.

46

likely the Valentino company would not even put its logo on such a suit.
Nevertheless, the suit may be dressed and it would be odd to not consider
it as a product. Clearly, the assumption is that the product still satisfies
some of its design properties, if it can be dressed although the defects.

From this perspective, one may distinguish between (at least) two dif-
ferent senses of compliance, i.e., total and partial compliance. In the first
case, an object x is totally compliant with �, if and only if x satisfies all
the design properties in � (within the pre-defined tolerances). In the latter
case, an object x is partially compliant with � means that x is compliant
only with some of the design properties in �. For example, Valentino suit
was meant to be grey and 16 sized, whereas it is grey and 12 sized.

The question is now whether totally non-compliant objects and partially
compliant objects are products.

In the second case, the answer likely relies on the design properties being
satisfied. For instance, Valentino stylists may design men suits of the Spring
Collection 2016 as being grey, made of cotton and produced in a specific
tailor factory. Therefore, if the production fails in meeting one of these
properties, the designers have to make a choice about whether the created
items are Valentino suits of that collection. The example suggests that
there are some design properties, upon which experts agree, that an object
has to necessarily satisfy to be the realisation of a certain product type.
We call them essential (or mandatory) design properties along with [EH08,
JGAB09]. On their grounds we define the notion of strict compliance as the
relationship that holds between an object x and a product type �, when x
satisfies the essential design properties in �.5

In the case of non-compliance, an object does not satisfy (by definition)
any property of the corresponding product type. It is therefore unlikely that
it can be considered as the physical realisation of the type. It is however
hard to deny, if possible at all, that it exists because of intentional human
creation.

5It is up to experts to decide which (design) properties in a product type are essential,
therefore strict compliance can be either total or partial, depending on whether all or only
some of the properties are essential. Also, along with [Gua14, HV09, Tho14] we do not
assume functionalities as being necessarily essential properties.

47

4.1.3 Taxonomy of artefactual notions

From the considerations above we distinguish between:

1. Technical product, a material object that complies (at some degree)
with a corresponding product type and is the outcome of intentional
production events;6

2. Technical role, the role of a material object which is attributed with
a property that is relevant for someone’s purpose and is accordingly
used.

Therefore, being a technical product is a production- and design- depen-
dent property. ‘Production-dependent’ means that an object is a technical
product if it is intentionally created.7 ‘Design-dependent’ is to say that being
a technical product means to comply with a product type. As a consequence,
a produced object that does not satisfy the design properties deemed to be
essential by the corresponding designers is not a technical product. However,
it is still an artificial object, which distinguishes from a natural object be-
cause it is human-made, although it fails in satisfying the design properties
it was meant to comply with. We call it defective artefact. Finally, by-
products are physical entities that result from intentional production events,
even though the events are not performed for their creation, e.g., the material
waste that results from cutting a plank. In artefact theories, it is commonly
said that by-products are not intentionally produced, because they are not
at the intentional focus of the agent who performs the production event
leading to their creation [BFG+14].

Fig. 4.1 represents the taxonomy of the notions discussed throughout
this section. We use the general notion of artificial entity to refer to created
particulars in opposition to natural particulars. Artificial entity specialises
in both artefact and by-product. Di↵erently from a by-product, an artefact is
(generically) understood as an intentionally created entity. Artefact covers
both technical product and defective artefact. As said, technical products
are both intentionally created and compliant (at some degree) with their
product types, whereas the latter constraint does not hold for defective
artefacts. (The taxonomy is not meant to be exhaustive.)

6We employ the notion of ‘technical’ product to terminologically stress its engineering
nature (see [BFG+14, Kro12] for a similar terminology). We use the term ‘product’ for
conciseness.

7Philosophers usually talk of being an artefact as an historical property [Gal98, Dip93]
that an object satisfies because of its history. In this sense, one cannot know whether an
object is an artefact only by looking at its physical layout; rather, one has to know that
it is the result of some intentional production.

48

Figure 4.1: Taxonomy of natural and artificial objects

4.2 Design properties

We just saw that a technical product complies (at some degree) with a struc-
tured list of design properties. These are di↵erently called across the litera-
ture; for instance, some talk about product designs, others about product de-
scriptions, productmodels or product types [TCM13, Gal98, AS09, BZSL10].
Additionally, at the current state of ontology engineering, design properties
are not well understood, nor there exists a stable methodology for their
representation (see [Sect. 4.3]).

The Industry Foundation Classes (IFC) [Int16] adopts a modelling ap-
proach that distinguishes between the classes IfcProduct and IfcTypeProduct
to model the distinction between products and the properties they are re-
quired to satisfy. The latter is informally defined as “[...] the specific product
information that is common to all occurrences of that product type” (em-
phasis is ours). The distinction between type-like (e.g., IfcTypeProduct) and
occurrence-like (e.g., IfcProduct) classes is widely used across the standard;
it applies, e.g., to IfcEvent and IfcEventType, or IfcDoor and IfcDoorType,
among others. Type and occurrence classes are linked via the (reified) rela-
tionship IfcRelDefinesByType.

An example based on IFC is shown in the figure below (Fig. 4.2). Ac-
cording to the IFC taxonomy, IfcProduct and IfcTypeProduct are subsumed
by IfcObject and IfcTypeObject, respectively. For the purposes of the exam-

49

ple, both IfcProduct and IfcTypeProduct are specialised in OccCar and Type-
Car.8 The latter is used to specify, from a general perspective, the properties
that instances of OccCar have to satisfy. For example, TypeCar may in-
clude the properties having engine size and having bodywork dimension,
among others. TypeCar is thus the list of properties:

TypeCar = {having bodywork dimension, having engine size}.

Figure 4.2: Example of IFC (based on [BSŠT14, BSŠT15])

At the instance level, Fig. 4.2 shows some individual automobiles (e.g.,
Fiat500#001, Fiat500#002, etc.) (bottom right of the figure) and their
corresponding type-instance, Fiat500 (bottom left).9 Accordingly,
Fiat500#001, which instantiates OccCar, is the individual car that one
owns and drives; it satisfies the properties modelled with specific values
by Fiat500, which instantiates TypeCar, namely:

8These classes do not belong to the standard; therefore, they are not labeled with the
Ifc- prefix.

9In this case Fiat500 is unique for di↵erent particular cars. However, IFC practition-
ers also use di↵erent instances for the same type-class to model di↵erent properties of
occurrence-class instances.

50

Fiat500 = {having engine size : 1248cm3,
having bodywork dimension : 355/163/149cm}.

Along the lines of IFC, Bock and colleagues [BZSL10] distinguish be-
tween products and their design properties, which the authors call product
models. Accordingly, Product model is a UML meta-class having (the sub-
classes of) the class Product as instance(s). Then, Product classifies indi-
viduals like John’s car or my computer, whereas Product model describes
“[e]xisting or potentially existing things”. Additionally, the authors add
that “[p]roduct models do not describe documents or other engineering data
recording requirements and design [...]”.

A similar approach, in this case on temporal entities, is employed in PSL
(ISO18629) [Grü09] where the class Activity is distinguished from the class
Activity occurrence. In PSL an activity-occurrence is an event occurring at
a certain time and satisfying the constraints established by a corresponding
activity. The very same activity can constrain several activity-occurrences
since it is meant as “[...] a repeatable pattern of behaviour” [Grü09].10

Activity thus provides the properties (e.g., ordering constraints) that some
activity-occurrences have to satisfy.

For example, the activity hole making can constrain the happening of
some occurrences of the activities spot drilling, drilling and reaming, oc-
curring in this order. In this sense, hole making is a complex activity hav-
ing spot drilling, drilling and reaming as sub-activities. The PSL-based
formula below11 says that for each activity occurrence x of hole making
there is an activity occurrence y of spot drilling, z of drilling and w of
reaming, such that y precedes both z and w, and z precedes w. Recall
that in PSL occ of(x, y) is read as “x is an activity occurrence of y”, and
min precedes(x, y, z) as “the activity occurrence x precedes the activity oc-
currence y in the activity tree for z”; see [Grü09] for an overview of PSL.

8x occ of(x, hole making) ! 9yzw (occ of(y, spot drilling) ^
occ of(z, drilling)^occ of(w, reaming)^min precedes(y, z, hole making)^
min precedes(y, w, hole making) ^min precedes(z, w, hole making))

Discussion. The modelling approaches above distinguish between partic-
ulars (objects or events) and the design properties they are required to
satisfy, although the distinction lacks clear ontological foundations and in
some case it is not treated in a systematic manner. Instances of IfcProduct
are material objects, whereas it is not clear what instances of IfcTypeProduct
are, e.g., whether they exist in space and/or time. Similarly, PSL Activity

10The reader should not confuse the meaning of ‘occurrence’ in PSL and IFC; in the
latter standard, occurrence is a non-technical term used to refer to some classes; in the
former the term refers to particular events occurring in time, as it is common in formal
ontologies.

11The example is based on [Grü09].

51

occurrence is a class of events occurring in time, but the ontology leaves
unspecified what it means for an instance of Activity to be “a repeatable
pattern of behaviour”. Interestingly, Bock and colleagues [BZSL10] stress
that in their approach a product model is not a document; what it is then
remains however unclear.

From a formal perspective, PSL represents activities via reification. As
briefly mentioned in [Sect. 3.5], reification is a technique used in logic and
knowledge representation that allows us to quantify over predicates in a
first-order setting. In the PSL formula above, hole making is an example
of reified predicate, where occ of(x, hole making) is the instance of-like re-
lationship used to say that x instantiates hole making. In the case of IFC,
type-like classes can have instances, therefore also in this case properties
are treated as individuals. However, IFC is not represented in formal logic,
therefore reification is not technically specified. Instances of the reified rela-
tionship IfcRelDefinesByType may be understood as providing an instantia-
tion constraint. Bock et al. [BZSL10] employ a di↵erent modelling approach
based on UML meta-classes, by which Product model is a second-order class
having the first-order class Product as instance (see also [PZMY94, DPZ02]).
If the approach were to be represented in formal logic, reification would be
a suitable technique to avoid the use of a high-order logic and to stick on
a first order setting. However, reification as formal technique is of no help
in understanding the ontological nature of the entities being represented.
We shall now propose how design properties can be understood from an
ontological perspective.

4.2.1 Product types as concepts

In order to address the distinction between products and design properties,
we find useful the adoption of the semiotic triangle as developed in semiotics.
Recall that in the triangle the word ‘red’ in its predicative sense is related
to the concept of being red (its intension) and to the class of things that are
red (its extension) (see Fig. 4.3). Di↵erent interpretations of the semiotic
triangle are proposed [GV99]; we rely on the notions of intensionality and
extensionality, because of their use in logics and applied ontology.12

being red

‘red’ red objects

Figure 4.3: Semiotic triangle

12Our use of the semiotic triangle is not meant as a proposal for a new interpretation
of the triangle itself; as said, we find it helpful to present our approach.

52

By means of the semiotic triangle we distinguish between (see Fig.4.4):

⌅ Technical product type (product type for simplicity), a structured list
of properties that a particular has to satisfy (at some degree) to be
a technical product; for example, ‘Fiat500’ or ‘Iphone6’ are product
types;

⌅ Technical product, a produced particular that complies (at some de-
gree) with a product type (see [Sect.4.1]);

⌅ Technical specification (specification), the encoding of a product type
in a (representational) language.

Product type

Specification Product

Figure 4.4: Semiotic triangle for design

Some clarification are due. First, product types are not identifiable with
products. This view copes with the fact that design properties may be about
not yet realised physical items. Practitioners can interact about the product
to be realised, even if there is no physical counterpart of the properties. In
principle, some product types may be created even if their corresponding
products are never produced.

Second, a product type is not a specification, the latter being a repre-
sentation of the former in a technical language. For example, the product
type Fiat500 is a (structured) list of properties whose specification may be
provided in a graphical CAD language or in plain English. Also, a specifica-
tion is not to be confused with the technical support where the specification
is concretised, e.g., a blueprint, a paper-made catalogue or a computer pdf
file. Supports are physical objects in space and time, which are sometimes
constituted by material.

We shall thus treat product types as having an intensional nature, namely
as being independent from their extensions, i.e., the particular entities they
classify. After the work of Carnap, intensional properties are usually ap-
proached in logic from a modal perspective, i.e., as functions from possible
words to domain of entities. On our side, we shall pursue a di↵erent ap-
proach based on the theory of concepts presented in [Sect.3.5] and further
developed in [Ch. 6]. We assume that a product type is created and can be
possibly destroyed; it is therefore some sort of particular that can classify
some physical objects, in the sense that the latter are its instances. However,
di↵erently from these, a product type is not per se located in the physical

53

space. Also, we share Galle’s remark [Gal98] in that a modal framework
does not make justice of the way designers think about their daily work,
since they do not describe products in terms of “[...] possible worlds other
than the actual world in which [they] [live]” [Gal98, p.71].

Finally, note that when designers talk about product models, e.g., assem-
bly or geometric models, the distinction we have just drawn between product
type, specification and support is blurred. Therefore, to talk about, e.g., the
model of a car, one should distinguish the properties that the car satisfies
from the encoding of the properties in a language and their concretisation
in, e.g., a paper-made catalogue.13

4.3 Comparison with the literature

In the following we compare our notions of product and product type with
some relevant works across engineering, applied ontology and philosophy.

Products. At the current state of art there is a proliferation of ontologies
for product knowledge representation, given their increasing application in
advanced modelling systems. However, most of these ontologies are poorly
axiomatised and the motivations behind the formalisms are hardly provided,
as we saw across [Ch. 2]. We shall here compare our approach with the anal-
ysis presented in [BFG+11, BFG+14], where the authors provide a unified
perspective about artefacts. The purpose is to contextualise our approach
within the larger framework they provided.

The work of Borgo and colleagues [BFG+11, BFG+14] aims at inte-
grating, via ontological methods, three di↵erent perspectives on technical
artefacts embraced in applied ontology (the ontological artefact view), engi-
neering design (the engineering artefact view) and philosophy of technology
(the technological artefact view). The authors argue at length the principles
motivating their perspectives and adopt dolce as common foundational
theory for the comparison of the proposed views. The authors propose the
following three definitions for the notion of technical artefact on the grounds
of the three aforementioned perspectives:14

Ontological Artefact view (OA): “A technical artefact a is a physical
object which an agent (or group of agents) creates by two, possibly
concurrent, intentional acts: the selection of a material entity (as the
only constituent of a) and the attribution to a of a technical quality”
(see also [BV09]);

13Admittedly, a product model may be also understood as a physical prototype, i.e., a
physical object that resembles (at some extent) the final product and is used by experts,
e.g., for testing purposes. The ontological characterisation of prototypes is behind the
purposes of our work.

14The following quotations are taken from [BFG+14].

54

Engineering Artefact view (EA): “A technical artefact a is a physical
object which an agent (or group of agents) creates by an intentional
act: the carrying out of a production process with the goal of obtain-
ing a physical object a that is expected to realise a given behaviour or
a given property when participating in given generic technical situa-
tions”;

Technological Artefact view (TA): “A technical artefact a is a physical
object which is, firstly, created by the carrying out by an agent (or
group of agents) of a make plan for a physical object with a physical
description id (which includes performing a checking procedure that
establishes that the object su�ciently answers to the description id)
and for which, secondly, a use plan exists” (see also [HV09]).

The OA is the most general view; accordingly, a technical artefact is
not necessarily the outcome of a production process by which the physical
properties of an object are intentionally changed to meet design properties.
Rather, an OA exists because a physical object is cognitively selected and
ascribed with a technical quality. For instance, a pebble is selected and
ascribed with the ability of performing as a paperweight.15

The EA prescribes for a technical artefact to be the result of an inten-
tionally performed production process, whose purpose is to realise a physical
object that is able to exhibit a specific behaviour under a given situation.
For instance, a screwdriver is an EA if and only if (i) it is the outcome of
an intentional production process and (ii) it is able to realise the behaviour
for which it was designed. Additionally, a physical object that is defectively
produced may still be an EA as long as it can manifest the behaviour it was
intended to exhibit.

Finally, a TA is the outcome of a production process that is intentionally
realised on the basis of a production plan (make plan in the authors’ termi-
nology), which is carried out to realise a certain design specification (physical
description). Thus, a produced object has to satisfy its corresponding design
(at the physical properties level) to be a TA, and the compliance has to be
checked. Additionally, this latter view emphasises the role of use plans for
TAs, where a use plan describes how a technological artefact has to be used
to realise a goal.

We share with [BFG+14] the core idea that technical products (tech-
nical artefacts) are intentionally created. Di↵erently from the OA view,
we share with the TA and EA views the overall understanding of techni-
cal products as particulars that are the outcomes of production activities

15The notion of ‘technical quality’ is not defined in [BFG+14] and is borrowed from
[Dip93]. Informally, it is a quality that an agent attributes to an object and that is meant
to grasp why the object is useful for the agent.

55

by which their physical properties are manipulated to meet design proper-
ties. The OA strives, indeed, from a more general and foundational layer,
whereas our focus is on design and manufacturing. Our notion of techni-
cal product can thus be subsumed under OA, when an agent intentionally
selects an object via physical manipulation. Di↵erently from the EA, we
hold a more relaxed view on functionalities, in the sense that it is up to
experts to decide which design properties an object has to necessarily sat-
isfy to comply with its corresponding product type. From this perspective,
our notion of technical product is more general than the EA as we cover
compliance with design properties, the latter being generally understood.
Our approach allows designers to constrain to functionalities the essential
properties that an object has to satisfy to be a technical product. Therefore,
in our framework an instance of EA is a technical product that complies at
least with the functional properties of its product type. Finally, we hold a
more general perspective than the TA for at least three reasons: first, we do
not prescribe the existence of make plans. Accordingly, a product type (or
its specification) may or not include production constraints; in our view, it
is up to expert to decide whether the latter are mandatory or not. Second,
in our view checking procedures provide engineering relevant information
about the compliance status of the checked object. Di↵erently, according
to the TA view, a check a↵ects a TA’s identity in the sense that an object
is not a technological product if it does not pass a check. Third, we do
not force a technical product to be released with a use plan; an object is
a technical product because it is produced in compliance with its product
type. If it is used in a way that is not supported in the corresponding type
(e.g., a chair as door-stopper), the product can play a technical role, but the
(mis-)use does not a↵ect the product identity. A TA can thus be seen in our
approach as a technical product that is released with a use plan, passes a
checking procedure and has a product type (or specification) which includes
manufacturing constraints.

Product types. In the philosophical analysis of design and technology,
product types (designs, descriptions, etc.) are not well understood. Kroes
[Kro12], for example, states that: “When referring to a car design [...] what
is meant is [...] something that has more to do with the properties of the
car itself, irrespective of whether the car actually exists or how (if it indeed
exists) it was actually produced. It is not easy to grasp what this ‘something’
is” [Kro12, p.146] (emphasis is ours).

Hilpinen [Hil93] provides an artefact theory according to which a person
designs a product under some description that defines the product’s intended
properties: “When a person intends to make an object, the content of the
intention is not the object itself, but some description of an object or some
‘concept’ under which the intended object is conceived; the agents intends

56

to make an object of a certain kind or type [...] which the artifact should
exemplify” [ibid., pp.157–58]. Accordingly, a description is not a written
document, but a concept which describes the properties that some objects
have to satisfy. Also, Hilpinen distinguishes type descriptions (also called
sortal descriptions) from adjectival descriptions. The former “determines
the identity of an object and the criteria by which it can be distinguished
from other objects” [ibid., p.158], whereas the latter describes what Hilpinen
calls the “character” of an artefact, namely the properties that do not a↵ect
an artefact identity, e.g., qualities. To use his examples, house and shirt are
type descriptions, whereas red is an adjectival description.

In di↵erent papers, Galle [Gal97, Gal98, Gal08] provided a systematic
analysis of design representations in terms of what he calls design objects,
namely the (generally speaking) entities that are at the focus of designing
practises. The starting point of Galle’s investigation is the consideration
that during a designing activity, designers talk as if there were a physical
artefact in the world, e.g., talking about its qualities, when actually there is
no such an artefact. For example, a designer may say that the building she
designed complies with some regulations about fire safety and energy con-
sumption, even though there is no physical building at the time she speaks.
What is then the building (a design object indeed)? This is what Galle calls
the problem of the absent artefact [Gal98]. In [Gal97, Gal98], he proposes
looking at design objects as artefact ideas “in the sense of states or objects
of the mind, or non-material entities accessible through cognition” [Gal98,
p.72]. From this perspective, recalling the example above, it is the idea of
the building that complies with some regulation, as Galle himself recognises
[ibid., p.80]. Then, a design representation is a material object that a de-
signer produces driven by her artefact-ideas. More recently, Galle [Gal08]
presents di↵erent interpretations for design objects. Although his purpose
is to provide a method for the conceptual analysis of design, rather than
giving the last world on the problem of the absent artefact, he seems to put
forward the claim that design objects are “abstract entities [...] existing but
not in space-time” [ibid., p.290]. He recalls Thomasson’s [Tho99] under-
standing of abstracts as entities that can be created and destroyed, despite
of their lack of spatial-temporal location. In a di↵erent interpretation, Galle
recalls Alexander’s [Ale79] view concerning architecture objects (i.e., design
objects within architecture) understood as complex patterns of relationships
between their composing elements. For example, a church aisle (as architec-
ture object) is a “pattern of relationships between its length, its width, the
columns which lie on the boundary with the nave, the windows which lie on
the other boundary [...]” (quoted in [Gal08, p.284]).

To the best of our knowledge, Galle provided the most systematic anal-
ysis of product types (design objects) assessing the pros and cons of their
interpretation according to di↵erent philosophical theories. As himself con-
cludes in [Gal08], these interpretations require however to be evaluated

57

against their “theoretical relevance to design” to understand if and how
they are suitable to capture design practises. The analysis of product types
given in [Sect. 4.2] is on the one hand in line with some of the interpretations
given in [Gal08], while on the other hand it is grounded on the specialised
literature to be relevant for modelling purposes. Additionally, we distin-
guish between di↵erent entities (i.e., product types, specification, physical
support), whereas these distinctions are only vaguely addressed by Galle.

In applied ontology the TA view in [BFG+14] assumes that a particular is
a technological artefact if it satisfies “a physical description id”, among other
things. Its proponents also argue that it is a description that determines
which type of technical artefact a particular is. However, they do not provide
an explanation for descriptions.

In the analysis of technical artefacts given in [Gua14], Guarino argues:
“[...] I do not require a design specification to be explicitly encoded on
a publicly accessible physical substratum: it could also be encoded in the
mind of an agent [...]”. Recently, Guarino and Stufano [GSM15] propose
to understand a product type as some sort of “virtual object” that lacks
spatial location. They claim16 that a virtual object is some sort of fictional
entity that exists because of experts’ talks and that can be possibly realised
in a material object. Their approach is however preliminary. The authors
should clarify (at least) what a virtual object is, as well as its relationship
with physical products. In [Appendix A] we compare Guarino’s approach
and our theory of technical products with respect to the so-called missing
and replaceable artefact problem.

The Information Artifact Ontology (IAO) [SMR+13, SC15] is an ontol-
ogy for the representation of documents, mainly used to represent health care
records. It has been developed by specialising the Basic Formal Ontology
(BFO) [ASS15]; Fig. 4.5 shows the core classes of the IAO as specialisation
of BFO.

Figure 4.5: IAO core classes (from [SMR+13]).

16Personal communication.

58

An information content entity (ICE) is an generically dependent contin-
uant that is “about something in reality”.17 As a continuant, an ICE is a
particular that exists in space and preserves its identity through time. It
is generically dependent, in the sense that whenever it exists, there exists
some object upon which it relies. An example of ICE is the “content” (also
called information in [SMR+13, SC15]) of John’s health record, which is
about John’s health status and generically depends on some computer file,
or piece of paper. These latter two are called information bearing entity
(IBE) and are material objects that bear information. An information qual-
ity entity (IQE) is “the pattern on an IBE in virtue of which it is a bearer
of some information”. An example of IQE is an ink mark in a book; it is
a specifically dependent continuant, because it depends on a very specific
IBE. According to the IAO, an information content entity is concretised
by an information quality entity of some information bearing entity. The
following quotation provides a clarification: “A journal article is an infor-
mation [content entity] that inheres in some number of printed journals. For
each copy of the printed journal there is some quality that carries the jour-
nal article, such as a pattern of ink. The quality (a specifically dependent
continuant) concretizes the journal article (a generically dependent continu-
ant), and both depend on that copy of the printed journal (an independent
continuant)” (quoted in [Gar16]). Finally, an information structure entity
(ISE) “is a structural part of an ICE; speaking metaphorically, it is an ICE
with the content removed: for example an empty cell in a spreadsheet; a
blank Microsoft World file”.

We share with the IAO the overall idea of distinguishing between a phys-
ical support and what is specified in the support by means of a language.
Di↵erently from our approach, however, the IAO sticks on the ambiguous
notion of information (information content entity). This is conceived as a
continuant that generically depends on some object and, according to some
agent, is always about some portion of reality.18 Recall that according to
[SC15], if information x is about y, then y exists, i.e., it is physically present.
On our side, what we call product type does not always classify physical
products, since it can describe not yet produced products. From this per-
spective, product types do not correspond to information content entities in
the IAO sense.

17Quotations concerning the IAO are taken from [SMR+13] if not otherwise specified.
18The ontological nature of information is highly debated in the literature [Adr13],

whereas the IAO does not attempt any comparison with current existing theories of in-
formation.

59

Chapter 5

Engineering features

In this chapter we provide an analysis of engineering features, which – as we
saw in [Ch. 2] – are core elements to model product knowledge. By looking
at how engineering features are used and understood across the literature,
we individuate from a general perspective the entities that they are meant to
model [Sect. 5.1]. This will bring us into the high-level distinction between
feature types and physical features [Sect. 5.2], as well as into the analysis
of ontological features [Sect. 5.3] and components [Sect. 5.4]. By the end of
the chapter we look at form features [Sect. 5.5], because of their relevance
for product modelling.

As a remark, the terminology is unfortunate; we talk of ‘ontological
feature’ with reference to ontological dependent objects [Sect. 5.3] and ‘en-
gineering features’ with reference to the notion of feature as used across
the product modelling literature. We say more about the relation between
engineering and ontological features throughout the chapter.

5.1 What do engineering features represent?

Engineering features have been understood from the very beginning of feature-
based modelling approaches in tight connection with cognitive phenomena
and the need of abstracting from pure geometry in the practise of product
modelling. In their seminal work, Shah and Mäntylä state that “[...] features
are stereotypical knowledge structures embedded in cognitive processes in
design, analysis, planning, and all other engineering activities [...]” [SM95,
p.13]. The authors also stress that a feature is a “significant” element for a
product lifecycle management task [SM95, p.97], namely, something that
has to be taken into account for some application purpose. This view
is recalled in various definitions proposed over the years (see [Ch. 2], Ta-
ble 2.1); e.g., a feature as “the engineering significance of the geometry of

60

a part” [Win91] or “a region of interest in a part model” [BJ93].1 More
explicitly, Rossignac [Ros90] introduces the notion of intentional feature as
“an abstraction of geometric elements”, by stressing terminologically that a
feature is intentionally created and used for certain design purposes.

As stated earlier, features are used in a variety of ways to model dis-
parate entities. However, not everything is a feature; a whole product, for
example, is never considered a feature; it is rather said to be an “aggregation
of features” [SM95, YJ06, Chu10]. The implicit idea seems to be that fea-
tures model (generally speaking) entities that “characterise” products and
exist as far as products exist. More specifically, from the review of the liter-
ature [SB16], it emerges that – from a high-level perspective – (engineering)
features are employed to model (see Fig. 5.1):

⌅ Ontological features like holes, slots and bumps;

⌅ Qualities like shapes, dimensions and weights;

⌅ Materials like wood and plastic;

⌅ Components like screws and building walls.

Ontological features are the main ontological entities modelled in feature-
based approaches. For example, form features model ontological features
(see [Sect. 5.3]) along with their shapes;2 machining features attach machin-
ing knowledge to ontological features, e.g., in order to specify the resources
necessary for creating a slot on a workpiece; functional features ascribe func-
tionalities to ontological features, e.g., a hole for assembly purposes.

Qualities are used to specify products’ characteristics, shapes and dimen-
sions foremost, along with their quantitative values. Qualities are also used
to characterise form features; e.g., a hole may be ascribed with a cylindrical
shape and a nominal diameter of 12mm with a tolerance of ± 0.8mm.

The representation of materials is adopted to specify the amount of mat-
ter constituting a product, a workpiece or a form feature like a bump. Ma-
terial information is relevant in various phases of product lifecycle; e.g., it
is necessary to know which material constitutes a workpiece to select the
proper tools for machining.

The representation of components in terms of (engineering) features is
also found across the literature, despite it is less common than ontological
features or qualities. In feature-based approaches components are sometimes
called structural features [RRB15].

1Recall that ‘region’ is commonly used in product modelling with the meaning of
product’s part [YB92].

2To be precise, form features are di↵erently used with reference to various entities; we
dig into the analysis of form features in [Sect. 5.5].

61

Figure 5.1: Entities represented by engineering features

The variety of entities modelled in feature-based approaches is not sur-
prising; recall that it is common to look at features as anything being rel-
evant for the modelling task at hand [UYC+13]. From an ontological per-
spective, it is important to individuate what domain entities are represented
by engineering features, because of the di↵erences in the nature of these en-
tities and, consequently, the di↵erent ways in which they relate to other
entities. For instance, the relationship that a product holds with a shape
quality di↵ers from the one it holds with a hole. Di↵erently from a quality,
indeed, a hole is not spatially included in a product, at least if holes are
understood as immaterial objects (see [Sect. 5.3]).

As we saw in [Sec. 2.2.3], most of the data modelling resources used to
handle feature-based data adopt underspecified relationships between ma-
terial objects and features. In our approach, once the entities modelled by
engineering features are identified (see Fig. 5.1), the high-level relationships
with material objects, products foremost, can be easily derived. To be more
precise, when a product is loosely said to “have” an engineering feature, the
following relationships have to be distinguished:

⌅ Hosting, when engineering features model ontological features, e.g.,
a hole or a bump. As previously said, ontological features are the
main entities represented in feature-based approaches. The hosting
relationship thus plays a fundamental role. Informally, when a product
hosts, e.g., a hole, the latter cannot be present in time-space without
the former. In this sense, hosting establishes the existential dependence

62

of an ontological feature on its specific host (see [Sect. 6.2]);

⌅ Inherence (see [Sect. 3.4]), when engineering features model quali-
ties, e.g., shapes. Accordingly, a product has a form feature means
that there is some individual quality of the shape kind that inheres in
the product. As we saw in [Sect. 3.4], individual qualities in dolce-
core are organised into quality spaces. For product knowledge rep-
resentation, quality spaces are useful to represent quantitative values
attached to qualities, e.g., dimension values;

⌅ Parthood (see [Sect. 3.3]), when engineering features model prod-
ucts’ components. Parthood is indeed the most common relationship
employed – at the high-level – for assembly representation [FGL+07,
KYK08, RHF+06]; although, more specific parthood-like relations may
be needed when dealing with specific assembly knowledge;3

⌅ Constitution (see [Sect. 3.7]), when engineering features are used to
specify the materials making up a product.

Finally, note that the entities modelled by engineering features are rep-
resented as both physical particulars and design properties. We explore this
distinction in the next section.

5.2 Feature types and physical features

In the previous chapter we stress the distinction between physical objects
and the design properties that they are required to satisfy in order to be
considered as technical products (see Fig. 4.4 in [Sect. 4.2]). The same
reasoning applies to engineering features. As a design property, a feature
like a hole is not a physical entity and it only exists within a product type,
where the hole design property can be characterised, e.g., in terms of shape
and dimension. On the other hand, a physical hole in a product can be
considered as the realisation of the hole design property if it is created to
comply with such a property.

We thus propose the following distinction between feature types and phys-
ical features:

Feature type A design property used in a product type to represent an
“aspect” of the product type. The intended meaning of design feature
is captured in the literature by definitions like: “An information unit
describing an aggregation of properties of a product model that are
relevant in the scope of a specific view on the product” [Den99], “a set

3An initial investigation of parthood-like relationships for assembly is presented
in [SMBP16].

63

of information related to a part’s description”, “a region of interest in
a part model” (the latter two are both quoted in [BJ93]);

Physical feature A physical entity that is related to a physical product
and that satisfies a feature type. This reading is captured by def-
initions like: “The characteristics of a product that result from de-
sign” [Gro07], or “[...] a physical constituent of a part” [SM95].

As said, the two notions are strictly related: physical features are the
physical entities that instantiate feature types, e.g., a physical hole feature in
a gear that instantiates a hole feature type. Note that not all feature types
are instantiated, e.g., because they are introduced as design alternatives
or because the product type to which they are related is never physically
produced. Despite their relation, the notions of feature type and physical
feature cannot be confused: physical features are in space and time, whereas
feature types only exist within product types, therefore they are not in
space. Additionally, both feature types and physical features cannot exist
in isolation. This means that an engineering feature is ultimately related to
a product type or product.

These considerations suggest that the notion of feature in engineering
has a relational and dependent nature. This is a shared view across the lit-
erature, even though it is not always represented. In IFC, for example, the
class IfcFeatureElement is defined as “the generalization of existence depen-
dent elements” (emphasis is ours). In the Design Ontology [ŠAM10], as we
saw in [Ch. 2], the class form feature is subsumed by material object, mean-
ing that its instances cannot exist without being related to material objects.
Explicit dependence links between features and products are represented in
[TCM13, VHB00], although their semantics is not formally given.

The distinction between feature types and physical features has been
existing for a long time, although it has been blurred and not treated in
a systematic manner. Salomons and colleagues [SVHK93], for example,
refer to feature types when claiming that a feature is “a carrier of prod-
uct information that may aid design or communication between design and
manufacturing, or between other engineering tasks”. Similarly, in their sem-
inal work Shah and Mäntylä [SM95] see a feature as an “information clus-
ter” for integrated product representation. The authors, however, muddle
the distinction when adding that “a feature is a physical constituent of a
part” [SM95, p.97] (emphasis is ours).

To sum up, at the type level a feature is a (possibly complex) design
property related to a product type;4 e.g., a hole feature type that char-
acterises a gear product type, such that each instance of the latter has a

4In the next chapter we provide a systematic treatment of the relationships holding
between feature types and product types.

64

physical hole with a certain shape and diameter. Generalising, physical fea-
tures are physical particulars (ultimately) related to products that comply
(at some degree) with corresponding feature types.

In the remaining part of the chapter, we analyse (some of) the entities
being modelled by engineering features. The notions of quality and material
(amount of matter) were already introduced in [Ch. 3] (see [Sect. 3.4] and
[Sect. 3.7], respectively). We now investigate how ontological features and
components can be understood in a way that reflects engineering knowledge.
By the end of the chapter we look at form features, given their relevance in
feature-based modelling approaches.

5.3 Ontological features: An informal overview

As said in the previous sections, ontological features are amongst the most
common entities represented in feature modelling approaches. Despite this,
their ontological nature is neither analysed, nor formally represented in on-
tologies for product representation.

In [Sect. 3.7] we mentioned that ontological features in dolce are partic-
ulars that exist as long as they are ultimately related to some non-feature ob-
ject. The ontological nature of these entities has raised some interest in phi-
losophy, although at the current state there is no unified theory that covers
surfaces, holes or bumps, among other ontological features. Stroll [Str88], for
instance, proposes an ontological analysis of surfaces, whereas [LL70, CV94]
have stimulated the debate on the nature of holes.

Taking the latter as paradigmatic examples of ontological features, de-
flationary philosophical theories hold that holes are not objects on the par
of, e.g., desks or cars. A hole is an object quality [Mea15]; e.g., a holed
(physical) gear is a gear with a concave shape but there is no hole-object in
the gear. On the other side, on the grounds of a common sense understand-
ing of reality, also supported by cognitive studies [GB00, BC14], inflationary
theories claim that holes exist as dependent objects [CV94].5 In this per-
spective, a holed gear is said to host a hole-object, where – as said – the
hosting relationship establishes that the latter cannot be present in time
without the former.

Philosophers that agree on the existence of holes as objects, however,
disagree about what holes are, e.g., whether they are material [LL70] or
immaterial [CV94]. In the latter case, a hole is a void space in an object,
while in the former it is an object material surface with a concave shape.6

For the purposes of our work, ontological features like bumps need to

5The distinction between deflationary and inflationary theories of holes is borrowed
from [Mil07].

6In the philosophical debate about holes, there are di↵erent variations of these posi-
tions; see [CV14] for an overview.

65

be taken into account as well, because of their use for product modelling.
As in the case of holes, one may assume either that a bump is an object on
its own, or that it is a shape quality that characterises a certain object. In
the former case, bumps are doubtless constituted by material. In this view,
a bump may be seen as an object’s part that is therefore located within
the region where the whole object locates. Additionally, along with holes, a
bump cannot exist if not related to some other object. In this sense, it can
be understood as a material ontological feature.

Discussion. As regards the ontological nature of holes, we will see in
[Sect. 5.5] that the philosophical views concerning whether they are shape
qualities, material or immaterial (dependent) objects are all found in en-
gineering for form feature modelling. Also, we will see by the end of the
chapter [Sect. 5.6] that in formal ontologies holes are commonly treated as
immaterial objects. For the time being, let us recall that ontologies taking
holes in the immaterial sense do not treat them as objects’ parts.7 The
reason is that when mereology is used for parthood relationships between
physical objects, there is a bridging relation between the properties being
part of and being spatially located in [CV99]. Consider, e.g., a car’s body-
work: the bodywork – as part of the car – locates in a space region within
the (larger) region of the car. Di↵erently, a region where a hole locates is
not within the region where its host locates. Rather, a hole locates in the
convex hull of the host, namely in the smallest convex region occupied by
the host [HB12]. We will go back to this in [Sect. 5.6].

7‘Part’ is here used in the mereological sense (see [Sect. 3.3]).

66

5.4 Components

Most technical products consist in the (structured) aggregation of various
components. These can be either constructional parts or assemblies. The
former form the lowest level of the structural hierarchy in the sense that they
“[...] are not normally capable of further disassembly” [EH08, p.4] without
being destroyed. Examples include screws and resistors. The latter, as the
name suggests, result from the composition of components, which in turn
can be constructional parts or (simpler) assemblies. Products like airbuses,
laptops and chairs are some examples (see [Whi04] for assembly design).

Constructional parts and assemblies are di↵erently represented. Graph-
ical models of the latter usually specify (although in di↵erent manners) the
components making up an assembly [IY15, DFEG+90, Boo94] whereas this
is not done for the former, see Fig. 5.2.

Eder: “47655_C010” — 2007/5/18 — 16:29 — PAGE 464 — #20

464 Design Engineering: A Manual for Enhanced Creativity

FIGURE 10.16 Example of a form structure for a constructional part. (Adapted by permission
of Mirakon AG, Switzerland, http://www.mirakon.com.)

ABB-Turbo-Systems, Eidgenössische Technische Hochschule (ETH) Zürich, and
Mirakon.

Much of the engineering design information used by experienced designers in
industry is held as tacit knowing, which can be lost to the organization when a designer
retires or resigns, unless it can be captured. Several computer-based expert systems
can capture information, mainly for diagnostics. The program application described
here [195] is intended to capture design knowledge by relating a design situation
(see Chapter 3) and its structure to the elements of the situation and appropriate
masters (see Section 9.2).

The situation elements and masters formulate the collected information as a view
of the actual range of situations. A knowledge structure can be defined for the inform-
ation to be captured, preferably using TS-function structure, organ structure, and
design properties as a basic pattern, for example, similar to Figure 10.14 (see also
Figure 6.2).

The information must then be elicited and formatted, generally as lessons to be
learned from particular situations that happened in previous design projects in which
the experienced designers were involved; see the right-hand side of Figure 10.17. The
information should be brought into a system of statements that is free of redundancy.
Each item of information should be unique, and appear only in one place in the
scheme. Limiting values for variables should appear as explicit statements. Each
item of information must also be accompanied by a source statement, showing when
and where the statement originated.

Each elicited item of information should be categorized by a thematic hier-
archical ordering scheme based on practical and pragmatic considerations related to

(a) Constructional part (from [EH08]) (b) Assembly (from [SMBP16])

Figure 5.2: Examples of graphical representations of components

In ontological terms a component can be understood as a particular
that is intentionally designed to be assembled. For example, a car engine
is a component, because it is designed to be assembled to a car, whereas
the car is not a component, because it is not designed to be assembled to
anything else. As we will see, this is a common view across the literature and
international standards. However, two questions arise, namely (i), whether
it is a necessary condition for a component to be a technical product, (ii)
whether it is necessary for a particular to be assembled to some other object
in order to be a component.

Regarding the first issue, a stone (natural object), for example, may well
be used to build a wall; we may thus think of the stone as a wall’s component
without inferring for the stone to be a technical product.8 Data modelling
resources adopt di↵erent perspectives on this point. The STEP standard

8We assume in this example that the stone is not physically modified, i.e., it is used in
the wall in the same shape, material volume, etc., as it was before its usage in the wall.

67

AP224 application protocol, for example, holds that the class Component
“[...] specifies either a single piece part, or another manufactured assembly
used to define an assembly” [fSI06, §4.2.128.2]. In the same standard, the
class Part refers to “[...] the physical item which is intended to be produced
through the manufacturing process” [fSI06, §4.2.155]. It is thus assumed
for a component to be a technical product; then, the stone of our example
is not a component of the wall, even though it is amongst its parts. On
the other hand, the standard ISO 19439 defines a component as an “[e]ntity
that is part of, or capable of becoming part of, a larger whole” (quoted
in [UYC+13]). The standard thus seems to assume a more general per-
spective compared to STEP-AP224, since components are not necessarily
products.9 In this perspective, a stone in a wall is a component.

As regards the second question mentioned above (whether it is neces-
sary for a particular to be assembled to some other object in order to be a
component), consider, e.g., a car engine that at time t is not amongst the
components of any car; it just lays in a storehouse ready to be used. The
question is whether the engine is a component at t. On the one hand, it
seems reasonable to think of an object as a component because it is part of
another object. For example, we may assume that John’s car includes the
engine amongst its components at time t, because the engine is indeed part
of the car at t. It would be odd to classify the engine as a component at
t, if it were not part of John’s car at that time. This reading seems to be
behind the STEP-AP224.

On the other hand, it is also reasonable to think of a component in virtue
of its design properties. An object is, indeed, developed as a component,
i.e., it is explicitly designed as such. In this sense, an object is a component
at a certain time not because it is part of some other object at that time,
rather because it has been designed to be assembled to some other object.
This seems the reading of the ISO 19439, where a component is or is capable
of becoming part of a larger whole, to rephrase the definition quoted above.

Discussion. In our understanding, at least two notions of component have
to be distinguished:

1. Technical component (simply, component), a produced object that
complies (at some degree) with a product type, which establishes that
the component may be part of a product at a certain time. A compo-
nent is thus a technical product.

2. Component role, an object that is intentionally used as part of another
object.

9We draw this conclusion from the generality of the term entity in ISO 19439, whereas
STEP-AP224 is explicit about the artefactual nature of the entities classified under Part.

68

According to the second definition, a natural object can have a compo-
nent role. For example, a stone is used as a certain wall’s component and
the artisan who builds the wall assumes that the stone can bear a certain
weight, possibly in virtue of (some of) its qualities like volume and shape.
The artisan thus assumes that the stone will not break and, on the contrary,
will support the stones (or bricks) on its top.

5.5 Form features

In this section we provide an ontological analysis of form features by looking
at how they are understood across the specialised literature. Amongst the
various classes of features used in engineering, we focus on form features
because of their fundamental relevance.

First, form features are likely the most used engineering features. They
are traditionally employed to represent both hole-like and protrusion-like
entities. Recall that the former are called subtractive and the latter addi-
tive features [TCM13].10 Second, di↵erent engineering feature classes are
form features enriched with application specific knowledge. For instance,
machining features attach to form features the relevant details for manufac-
turing; functional features enrich form features with the functionality they
play within a product. In [UYC+13], for example, the form feature class
subsumes all classes of engineering features.

By reviewing the state of art, we individuate three di↵erent ways of
conceptualising form features.

In the first view, a form feature models an object’s shape for which
nominal dimensions (and their tolerances) are commonly given [SVHK93,
UY14, IY15]. According to Shah and Mäntylä, for example, form features
are “recurring, stereotypical shapes” [SM95, p.98]. For instance, a physical
hole11 (or a protrusion) is a product’s shape. Hence, according to this view,
a sentence like “The product has a hole (protrusion)” has to be rephrased
in “The product bears a hole-like shape (protrusion-like shape)”. Fig. 5.3
shows (the sections of) two (solid) objects, one with a protrusion-like shape
(Fig. 5.3a) and one with a hole-like shape (Fig. 5.3b).

10This terminology is due to the fact that physical holes are obtained by ‘subtracting’
material, whereas physical protrusions by ‘adding’ materials.

11We often use holes as examples of engineering features, because these are mostly
discussed in the specialised literature [CY11, BNM08, YJ06, EKK+13].

69

(a) Object with
protrusion-shape

(b) Object with
hole-shape

Figure 5.3: Form feature: first view

In the second view, a form feature models an object’s part, which
bears a characterising shape [AHYC12b, WP88, VHB97]. As previously
said, it is indeed common in engineering to talk of form features as shaped
products’ regions [SVHK93, KWMN04]. Accordingly, a sentence like “The
product has a hole (protrusion)” is rephrased in “The product has a holed-
part (protrused-part)”. This reading is particularly adopted when experts
refer to the material properties of form features [EKK+13]. For example,
a so-called reamed hole is a hole obtained by a reamer and whose material
surfaces are smoother than the ones of a so-called drilled hole.12 This per-
spective on the materiality of holes as objects’ parts share some similarity
with the philosophical theory proposed in [LL70] and briefly presented in
[Sect. 5.3]. Fig. 5.4 shows (a section of) an object with a protrused part
(Fig. 5.4a), and (a section of) an object with a holed part (Fig. 5.4b).

Note that di↵erently from the first view, a protrusion (or a hole) here
does not reduce to an object’s shape; it is rather an object with a character-
ising shape. From an ontological perspective it is challenging to determine
the exact nature of, e.g., a holed-part. Is it an object material boundary (a
hole-lining in the terminology of [LL70]), or is it rather an extended object
part? In the former case, which is the hole-lining to be considered in an
object? In Fig. 5.5b, for example, one may consider either the red, or the
violet or the orange hole-linings, among others. A similar consideration can
be done for protrusion form features; e.g., does a protrused-part extend as in
Fig. 5.4a, or does it rather extend through the entire object as in Fig. 5.5a?
Di↵erent point of views can be assumed for these cases, depending on the
ontological understanding of the entities at hand. From an engineering per-
spective, we leave to experts to decide – within this second view about form
features – which is the form feature part in an object to be considered. In
our experience, it seems that engineers tend to consider material holes in
the sense of hole-linings as in Fig. 5.4b, e.g., because these are the (mate-
rial) parts that undergo manufacturing operations, or because they can be
ascribed with certain design properties. For example, if a drilled holed-part

12The use of a reamer allows for the realisation of finer surfaces; see, e.g., http://www.
custompartnet.com/wu/hole-making, last access October 2016.

70

http://www.custompartnet.com/wu/hole-making
http://www.custompartnet.com/wu/hole-making

has to be ascribed with some property regarding its roughness, it would be
misleading to consider it as the hole-lining marked in orange in Fig. 5.5b;
this is indeed an internal part of the object, which cannot be accessed by
a machining tool and cannot therefore undergo a change in its roughness.
Similarly, the case depicted in Fig. 5.4a likely reflects with more preciseness
than Fig. 5.5a experts’ understandings of protrusions.

(a) Object with
protrused-part

(b) Object with
holed-part

Figure 5.4: Form feature: second view

(a) Object with
protrused-part

(b) Object with
holed-part

Figure 5.5: Which form feature?

Finally, in the third view a form feature models an immaterial ob-
ject, i.e., a void space in the sense introduced in [Sect. 5.3]. Di↵erently
from the two approaches above, this view is adopted only for hole-like sub-
tractive features, which are also called negative spaces (or negative clear-
ances)13 [SLF+13, SG05] or, more explicitly, voids [Int16, Ros90]. This
perspective on subtractive form features is particularly adopted for assem-
bly modelling, when experts need to refer to void spaces in material objects
where some component can be allocated [RS15]. Clearly, in order for this
perspective to represent the broad spectrum of form features and not only
the subtractive ones, it needs to be integrated with one of the approaches
previously mentioned. Fig. 5.6 shows an immaterial hole; di↵erently from
the previous views, here the hole is the void space marked in grey.

13This terminology is due to the fact that, as previously said, hole-like form features
are obtained by material removal; a subtractive feature is thus ‘negative’ in the sense of
lacking material.

71

Figure 5.6: Form feature: third view; object with immaterial hole

Discussion. When we look at the three views above, experts shift from
one to the other depending on application contexts and background con-
ceptualisations. For instance, an immaterial understanding of subtractive
features may be better suited for assembly modelling, whereas a material
view may be required if experts want to talk about (what they think as)
the material surfaces of holes. In some case the three readings are mixed
within the same information modelling resource at the expenses of consis-
tency [Anj11]. From an ontological perspective, indeed, the classification of
an individual entity as both a shape quality, a material and an immaterial
object leads into inconsistency, because of the incompatible properties of
these entities. A hole as an immaterial object (third view), indeed, is not
constituted by material; di↵erently, a hole is a material object if understood
as a product’s part with a characterising shape (second view). Finally, it
would be misleading to talk about the materiality of qualities, since these
are not entities that can be constituted by materials.

From our perspective, on the one hand, the three views may be sepa-
rately kept, as long as they are clearly represented in an ontological coher-
ent manner that explicitly acknowledges for their di↵erences. However, on
the other hand, this approach may raise some interoperability issue when,
e.g., feature-based models developed according to di↵erent perspectives are
shared and eventually integrated.

In the next chapter we shall firstly look at how the three modelling
views presented through this section can be formally represented in our
approach. We then look at some modelling issues that each perspective
has to face and investigate how the three views can be integrated within a
unified perspective.

72

5.6 Comparison with the literature

Holes in the ontological literature The understanding of holes as im-
material objects is broadly adopted in ontology engineering. In the devel-
opment of formal ontologies for bio-medicine, for example, the representa-
tion of holes is necessary along with the representation of human anatomy.
In [Don04] a hole is a void space in, e.g., a blood vessel within which blood
flows. In ontologies for geology, holes are void spaces in minerals that allow
for the storage of liquids [HB12]. In these views, a hole is a void space in an
object in the sense that it is not constituted by any material, but it does not
for this coincides with a region of space. A hole, indeed, moves when its host
moves, whereas regions cannot move [Gal00], at least if space is understood
in the absolute sense as a “container” where physical objects are located.
Donnelly [Don05] suggests to look at holes as subkinds of relevant places,
which are regions of space that are relative to certain objects and therefore
move along with them. In [HB12] a physical hole is a physical void that
is located in a void region; the latter is a spatial region within the convex
hull of an object (the hole’s host) that is disjoint from the object occupied
region. Finally, in [CV94, Gal00] holes are immaterial objects that depend
on their hosts; the authors however do no represent void regions.

Components. Ontologies and product models maintain a sharp distinc-
tion between constructional parts and assemblies [RHF+06, KYDH06]. How-
ever, the terminology can vary across and within communities, sometimes
because of compliance with standards. For example, Lin and colleagues
[LFB96], who presented one of the first ontologies for product knowledge,
use ‘part’ instead of ‘product’ and distinguish between ‘primitive part’ and
‘assembly’. A similar terminology is employed by [UYC+13, CY11, IY15].
In [RRB15, SFFK+03, AHYC12a, ZS04], among others, components are
modelled as engineering features (called structural features in [RRB15, ZS04]),
although the di↵erence between, e.g., a hole feature and a component feature
is not explicitly addressed.

Form features. At the state of art, form features are formally represented
in di↵erent ways depending on application scenarios.

Traditional approaches in engineering adopt mathematical formalisms,
which employ geometric notions like line, vertex, concavity, perpendicular-
ity [ZQH+07, PH96, FGM99]. These approaches are applied in a variety of
ways, e.g., to support recognition algorithms to individuate features in CAx
models. The core application of these works is not indeed the qualitative
representation of form features but their quantitative modelling in terms of
geometric constraints. Additionally, these approaches do not specify what
form features are, or how they distinguish from non-feature elements. Even

73

approaches that are meant to provide the basic, high-level modelling con-
structs for feature-based representations usually model form features as the
aggregation of low-level geometric entities without explicitly saying to which
domain entities a form feature refers [RRB15, TCM13]. Since the ontologi-
cal nature of form feature is not taken into account, there is no surprise that
(semantically) underspecified relationships between features and products
are stated.

In another modelling approach, engineering features are represented in
logical formalisms, even though the semantics of geometric and topological
notions is commonly left unspecified. In [CY11], for example, a cylindri-
cal hole (form feature) is represented as an entity with connected circular
surfaces, even though connection, circularity and surfaces are not formally
characterised. In [WY14, WPY10, EKK+13] the authors combine OWL
taxonomies with SWRL rules. Also in these cases, however, the meaning
of geometric notions is not formally captured. Di↵erently, Borgo and col-
leagues [BGM96] propose a mereo-geometry14 and show how it can be ap-
plied for feature-based modelling. More recently, the application of mereo-
topologies to formalise assembly constraints obtained by means of engineer-
ing features has been investigated in [KYK08, DMK12, GDD+15]. How-
ever, the application of the proposed theories is threaten by formal flaws.
Moreover, the approaches in [KYK08, DMK12, GDD+15] lack an ontologi-
cal theory by which to make sense of fundamental distinctions between the
represented entities.

Other proposal abstract from geometric modelling and focus on the qual-
itative representation of form features for data sharing and interoperabil-
ity across CAx systems. The overall idea is to abstract from geometry
and to avoid reducing form features to the aggregation of lines, points or
surfaces [ElM91, DPD16]. From this perspective, a form feature conveys
qualitative design intents, or quantitative properties which are not how-
ever geometrically expressed. For example, in [FFBS08, RHF+06, UYC+13,
CCF+09], among others, holes and the like are characterised by shape qual-
ities, which are not geometrically represented.

Our approach contextualises within these latter approach, since we do
not aim at providing a geometry-like formalism, but rather an ontological
coherent way for feature-based product knowledge representation by which
design intents can be conveyed.

14Mereo-geometries are logical theories that combine mereological, topological and ge-
ometrical primitives [BM10].

74

Chapter 6

Formal representation

In this chapter we present the formal representation of some of the notions
informally introduced in the previous two chapters. We focus only on the
notions by which a high-level ontological characterisation of engineering fea-
tures can be provided. In [Sect. 6.2] ontological features are represented in
a way that reflects engineering knowledge. [Sect. 6.2] presents the overall
approach to distinguish between the type and the physical levels of product
knowledge representation. This approach is specialised in [Sect. 6.3] and
[Sect. 6.4] to cover the notions of technical product, technical component
and engineering feature. Finally, the representation of form features is given
in [Sect. 6.5].

Remarks on notation:

⌅ c1, c2, . . . , c3: variables for concepts (CN);

⌅ r1, r2, . . . , r3: variables for regions in quality spaces (SP);

⌅ x, y, . . . , z: variables for physical entities (OB, E); also, variables
within mixed predicates, e.g., (Def13);

⌅ t1, t2, . . . , t3: variables for temporal qualities (TQ);

⌅ q1, q2, . . . , q3: variables for qualities (Q) other than temporal ones;

⌅ Uppercase acronyms: predicates taken from previous works, e.g., CF
for dolce-core relationship of classification;

⌅ Lowercase bold labels: relational predicates hereby introduced, e.g.,
hosts for the relationship of hosting;

⌅ Lowercase italic labels: constants for regions in quality spaces and
concepts; e.g., fiat500 (the concept of being a fiat500); red (the red
region within the colour quality space);

⌅ Lowercase italic label#: constant for a physical particular; e.g.,my car#
(the constant referring to my physical car).

75

6.1 Ontological features

As we saw in [Sect. 5.3] ontological features are objects that, whenever
are present, are related to other objects, namely their hosts, and cannot
exist if detached from them. In order to characterise the link between an
ontological feature and the corresponding host, we firstly introduce a general
relationship of hosting between objects.

By axiom (Ax4), hosting holds between either material or immaterial
objects; hosts(x, y) is read as “x hosts y”. The axiom establishes that at
all times in which the hosted object y is present, x is present, too. For
example, if a car’s bodywork has a bump, this is represented by saying that
the bodywork hosts the bump, whose presence implies the presence of the
bodywork. By (Ax5) and (Ax6) hosts is irreflexive and asymmetric.

Note that (Ax4) establishes the existential dependence of y on a specific
x; this means that y does not survive a host replacement and if x stops
existing, y stops existing, too. In the philosophical literature, Casati and
Varzi [CV94] assume that when a hole is the entity being hosted, it just
generically depends on its host; this means that the host can change without
a↵ecting the hole identity. Our perspective, although based on philosophical
theories, is driven by engineering conceptualisations. From an engineering
perspective, it is indeed reasonable to assume that hole-like (or bump-like)
entities are related to specific objects and therefore cannot undergo hosts
replacement, nor they can continue existing when the identity of their hosts
changes. We thus assume that an object host is unique (Ax7), namely, if y
is hosted in both x and x0, than x and x0 are the same.1

Ax4 hosts(x, y) ! (ImmaterialObject(x) _ MaterialObject(x)) ^
(ImmaterialObject(y) _MaterialObject(y)) ^

8t (PRE(y, t) ! PRE(x, t))
(host holds between either material or immaterial objects; also, if x

hosts y, whenever y is present, x is present, too.)

Ax5 ¬ hosts(x, x)
(hosts is irreflexive)

Ax6 hosts(x, y) ! ¬ hosts(y, x)
(hosts is asymmetric)

Ax7 hosts(x, y) ^ hosts(x0, y) ! x = x0

(if y is hosted in both x and x0, then x and x0 are the same entity)

By axiom (Ax8), we introduce the primitive relationship of indirect host-
ing, written as indHosts(x, y). Accordingly, x indirectly hosts y if an only
if x hosts y, or there exists a z such that x indirectly hosts z and z hosts y.

1When a hole is drilled through two assembled objects, e.g., the components making
up an assembled product, the hole is hosted in the whole assembly.

76

For example, the axiom allows us to say that if a hole hosts its own (imma-
terial) surface and the hole is hosted in a gear, the gear indirectly hosts the
hole surface. A similar constraint can be introduced to talk about indirect
hosting when the host is part of another object. For instance, we may want
to say that if a bodywork hosts a bump and the bodywork is part of a car,
then the car indirectly hosts the bump. By (Def2), if z hosts y and z is a
proper part of x at time t, this means that x indirectly hosts y at t according
to parthood (indHostsPP (x, y, t)). The relationship is temporally qualified
and the t argument refers to the time at which parthood holds between z
and x.

Ax8 indHosts(x, y) $ hosts(x, y) _ 9z(indHosts(x, z) ^ hosts(z, y))
(x indirectly hosts y if an only if x hosts y or there exists a z such

that x indirectly hosts z and z hosts y)

Def2 indHostsPP (x, y, t) , 9z(PP(z, x, t) ^ hosts(z, y))
(x indirectly hosts y at t according to parthood means that there is a
proper part z of x, such that z hosts y)

A hosted object can in turn host something else; as we saw in one of the
previous examples, a hole that is hosted in a gear hosts its own (immaterial)
surface. By (Ax9) we establish that if x hosts y, either x is not hosted, or
it is indirectly hosted in a v, which in turn is not hosted. This guarantees
that whenever an object is hosted, the hosting chain has to come to an end
and cannot infinitely regress. (Note however that we do not know a priori
how long a hosting chain can be.)

Ax9 hosts(x, y) ! ¬9z(hosts(z, x)) _
9v8w(indHosts(v, x) ^ ¬hosts(w, v))

(if x hosts y, then either x is not hosted, or it is indirectly hosted in
a v, which in turn is not hosted)

Axioms (Ax10)–(Ax13) constrain the relations between hosting and part-
hood between material and immaterial objects. By (Ax10), if x is part of
y at t and y is a material object, then x is a material object. Similarly, if
x is part of y and y is an immaterial object, then x is an immaterial ob-
ject, see axiom (Ax11). By (Ax12), if a material object is hosted in another
material object, then they stand in the relationship of constant parthood.2

By (Ax13), any object y hosted in an immaterial object x is an immaterial
constant part of x.

Ax10 P(x, y, t) ^MaterialObject(y) ! MaterialObject(x)
(if x is part of y at t and y is a material object, then x is a material

2Recall from [Sect. 3.3] that constant parthood (CP) is defined in dolce-core; accord-
ingly, x is a constant part of y means that at all times t in which x is present, x is part of
y at t.

77

object, too)

Ax11 P(x, y, t) ^ ImmaterialObject(y) ! ImmaterialObject(x)
(if x is part of y at t and y is an immaterial object, then x is an

immaterial object, too)

Ax12 MaterialObject(x) ^ hosts(x, y) ^
MaterialObject(y) ! CP(y, x)

(if a material object y is hosted in a material object x, y is a
constant part of x)

Ax13 ImmaterialObject(x) ^ hosts(x, y) !
ImmaterialObject(y) ^CP(y, x)

(any object y hosted in an immaterial object x is an immaterial
constant part of x)

By means of these axioms, we define the notion of ontological material
feature (material feature for short) as a hosted material object (Def3), and
ontological immaterial feature (immaterial feature) as a hosted immaterial
object (Def4). By (Def5), an ontological feature (F) is either a material or
an immaterial feature.3

Def3 MaterialFeature(x) , MaterialObject(x) ^ 9y (hosts(y, x))
(a material ontological feature x is a hosted material object)

Def4 ImmaterialFeature(x) , ImmaterialObject(x) ^
9y (hosts(y, x))

(an immaterial ontological feature x is a hosted immaterial object)

Def5 F(x) , MaterialFeature(x) _ ImmaterialFeature(x)
(an ontological feature is either a material or an immaterial feature)

An example of material feature is a bump, whereas a hole is an example
of immaterial feature.4 These are ontological features because cannot be
present in space-time if detached from other objects.

3We use the acronym F for ‘ontological feature’ in order to avoid confusion with the
engineering notion.

4For the sake of the example, we assume holes as immaterial objects, but as stated
earlier in [Sect. 5.3] this is not necessarily the case. See [Sect. 6.5] for a further discussion
about the ontological nature of holes in engineering.

78

6.2 Design properties

In [Ch. 4] we informally introduce design properties as properties that are
developed and used within engineering contexts for product modelling. Re-
call that it is relevant to distinguish between physical objects, e.g., technical
products and their components, and the design properties that these objects
are meant to satisfy, properties that are accurately defined during designing
tasks and represented in product specifications (see Fig. 4.4 in [Sect. 4.2]).
From now on, we shall talk about the physical and the type (or design) levels
of product knowledge representation to refer to physical objects and design
properties, respectively. As we previously saw, the distinction between the
two levels is common in standards like PSL and IFC (see [Sect. 4.2]).

Among design properties, we distinguish those that are created (and can
be eventually destroyed) from those that are assumed in the experts’ back-
grounds within larger conceptual systems. For instance, the property of
being a gear is created at a certain time in terms of shape, dimension, colour
and weight, among others, where each property is associated to a certain
value (e.g., 5kg weight, cylindrical shape). Also, one may assume that these
latter properties are not created ex novo, but are already given in experts’
backgrounds. We do not list the design properties that are created and
the ones that are assumed, since this choice may depend on specific mod-
elling applications. Colours, for example, may be either given for granted
in experts’ conceptual systems, or considered as being created in designing
activities. The distinction between created and assumed design properties
is more motivated by the designing practise rather than by an ontological
distinction between design properties. In designing tasks, indeed, on the one
hand experts assume a variety of notions, which they have learned during
their studies and practises. On the other hand, by means of these notions,
they elaborate and create new notions.

In dolce-core properties are represented either by extensional predi-
cates, or by concepts or by quality spaces. Concepts are used for properties
that do not reduce to their extensions and are related to some contextual as-
pect, e.g., they depend on some agent. For example, one may distinguish be-
tween the properties being a Bosch-hammer and being a Demoltech-hammer,
because they are developed by di↵erent companies, even though both prop-
erties may classify exactly the same particulars. Predicates are adequate
for the basic elements of an ontology, namely to capture the entities that
are assumed to exist in the domain of quantification and do not depend
on contexts. Thus, di↵erently from concepts, predicates reduce to their ex-
tensions. Finally, quality spaces organise individual qualities of the same
(quality) kind, whereas the structure of a space depends on some reference
conceptual system, e.g., the values provided by a measurement instrument.

Accordingly, we adopt concepts (CN) to model design properties for
which we want to stress their being the results of designing development

79

tasks and quality spaces (SP) for design properties that are assumed within
experts’ conceptual systems. For instance, being a gear (gear for short) is
a concept, whereas weight and shape are quality spaces whose structure is
defined according to some background knowledge. We might also use ex-
tensional predicates for some design properties; e.g., gear may be taken as
a basic element in design conceptualisations. However, we treat it as a
dolce-core concept, by stressing in this way that it is a property inten-
tionally created to meet some engineering requirement.

Axiom (Ax14) introduces the primitive notion of design concept, which
informally captures design properties that are created in designing tasks.

Ax14 DesignConcept(c) ! CN(c)
(a design concept c is a dolce-core concept)

We now introduce relationships between design concepts in order to cap-
ture some useful constraints between their instances for product modelling
purposes. In particular, we present two relationships, qualitative character-
isation (CHQ) and structural characterisation (CHST).

Qualitative characterisation (Q-characterisation for short) holds be-
tween design concepts and regions in quality spaces. The definition (Def6)
says that when a design concept c is Q-characterised by r1, the latter is the
smallest region within the space to which r1 belongs. (Recall from [Sect. 3.5]
that classification (CF) is the relationship used in dolce-core to state that
an entity at a certain time is an instance of a concept.)

Def6 CHQ(c, r1) , DesignConcept(c) ^ 8xt (CF(c, x, t) !
9qr2 (I(q, x) ^ L(r2, q, t) ^ P(r2, r1))) ^ 8r39r2xqt (PP(r3, r1) !

CF(c, x, t) ^ I(q, x) ^ L(r2, q, t) ^ ¬P(r2, r3))
(c is qualitatively characterised by r1 means that c is a design

concept and whenever it classifies an entity x, there exists a quality q
that inheres in x, and q is located in r1)

Q-characterisation is used to specify that the instances of a design con-
cept are characterised by a quality, which is associated to a specific value.
For example, a company may design Italian moka-pots whose weight is 700
grams, among other qualifying properties. Accordingly, moka pot is a de-
sign concept Q-characterised by 700gr, which is a region within the weight
quality space (SPwg), see (f7).5 In this sense, 700gr is a design property but,
di↵erently from moka pot, it is not created; it rather belongs to designers’
shared knowledge and is (re-)used for product development purposes.

5Di↵erently from dolce-core, we assume that a quality kind is associated only to one
quality space, which is the space selected by design experts.

80

f7 CHQ(moka pot, 700gr) ^ SPwg(700gr)
(example: the design concept moka pot is Q-characterised by 700gr,

which is a region in the weight space)

The relationship of structural characterisation (S-characterisation) is
defined in terms of other relationships, which are used to specify hosting
(hostsCN), parthood (PCN) and constitution (KCN) relationships between
concepts and their instances.

By (Def7), we define parthood between design concepts; PCN (c1, c2) –
read as “c1 is part of c2” – means that whenever x instantiates c2, there exists
some instance y of c1 that is part of x. From a high-level perspective, this
relationship is useful to represent assembly constraints between products.6

For example, we can establish that instances of car have bodyworks as parts,
see (f8).

Def7 PCN (c1, c2) , DesignConcept(c1) ^DesignConcept(c2) ^
8xt(CF(c2, x, t) ! 9y(CF(c1, y, t) ^ P(y, x, t)))

(c1 is part of c2 means that whenever x instantiates c2, there exists
some instance y of c1 that is part of x)

f8 PCN (bodywork, car)
(example: bodywork is part of

car means that whenever car instantiates, there exists an instance of
bodywork that is part of the instance of car)

By (Def8), hostsCN (c1, c2) – read as “c1 hosts c2” – means that when-
ever c2 instantiates, there exists an instance x of c1 that hosts y. For exam-
ple, (f9) says that when instances of hole1 are present, they are related via
hosting to instances of gear.

Def8 hostsCN (c1, c2) , DesignConcept(c1) ^DesignConcept(c2) ^
8yt(CF(c2, y, t) ! 9x(CF(c1, x, t) ^ hosts(x, y)))

(c1 hosts c2 means that whenever y instantiates c2, there exists an
instance x of c1 that hosts y)

f9 hostsCN (gear, hole1)
(example: whenever hole1 instantiates, there exists some instance of

gear that hosts the instance of hole1)

6As said in the previous chapter, parthood is commonly treated as the most general
relationship for assembly representation.

81

By (Def9), the design concepts c1 and c2 are related via constitution;
KCN (c1, c2) – read as “c1 constitutes c2” – means that whenever x instanti-
ates c2, there exists some y that instantiates c1, such that y constitutes x.
For example, instances of gear are made of metal, see (f10).

Def9 KCN (c1, c2) , DesignConcept(c1) ^DesignConcept(c2) ^
8xt (CF(c2, x, t) ! 9y (CF(c1, y, t) ^ K(y, x, t)))

(c1 constitutes c2 means that whenever x instantiates c2, there
exists some y that instantiates c1, such that y constitutes x)

f10 KCN (metal1, gear)
(example: instances of gear are constituted by instances of metal1)

S-characterisation – read as “c1 is structurally characterised by c2” – is
defined in (Def10) as either parthood, hosting or constitution between design
concepts. The relationship is useful from a high-level to represent structural
aspects of products, namely to talk about their components, ontological
features and constituting materials (see the comment below).

Def10 CHST (c1, c2) , PCN (c2, c1) _ KCN (c2, c1) _ hostsCN (c1, c2)
(c1 is structurally characterised by c2 means either that c1 has

c2 as part, or that c1 is constituted by c2, or that c1 hosts c2)

We include only structural- and qualitative characterisation as relation-
ships between design concepts, because they capture the constraints we
need when discussing about engineering features (see [Sect. 6.6]). Further
characterisation-like relationships can be introduced, if needed by applica-
tions.7 Also, for each relationship additional constraints may be defined
when dealing with specific modelling cases. For example, in order to deal
with assembly representations, parthood may be strengthen in order to cap-
ture specific engineering knowledge.

Finally, by means of the relationships introduced in this section, specific
notions of design concepts may be defined. For example, it may be argued
that most (if not all) design concepts used in engineering are qualitatively
characterised. Then, (something like) a qualitative design concept can be
easily defined by means of CHQ. The same for CHST for design concepts
structurally characterised.

7In the next chapter, for the sake of the test cases we introduce further characterisation-
like relationships to talk about topological connection and functionalities.

82

6.3 Product types and technical products

In [Sect. 4.2] we present the notion of product type as a design property
to be satisfied (at some degree) by an intentionally created object in order
for the latter to be a technical product. As said, a product type comprises
di↵erent design properties, which are related to each other; also, a product
type satisfies a unity criterion, whose analysis is not hereby considered.

By axiom (Ax15), product type is introduced as a primitive. Accord-
ingly, it is a design concept that classifies only artefacts. Recall that the
notion of artefact is heterogeneously conceived across the philosophical and
engineering literature (see [Sect. 4.1]). We use it to refer to entities that are
not naturally given in the quantification domain and whose existence pre-
supposes an intentional creation. We do not however constrain its meaning
axiomatically, so that each user of the ontology can characterise it accord-
ing to his/her own application requirement. Note that axiom (Ax15) also
establishes that the entity classified by a product type is not an ontological
feature (F). The idea is that product types are only about (artefactual) en-
tities that can exist on their own, whereas – as we have seen – the existence
of ontological features always depends on non-feature objects. This seems a
reasonable modelling choice in the domain of product design hereby consid-
ered, where products can host ontological features but are not ontological
features on their own.8

Ax15 ProductType(c) ! DesignConcept(c) ^ 8xt (CF(c, x, t) !
Artefact(x) ^ ¬F(x))

(if c is a product type, then it is a design concept that classifies
artefacts but not ontological features)

By (Ax16), if x is a technical product, x is a material artefact that,
whenever is present, is classified by a product type. The axiom also estab-
lishes that a product is something that is not hosted. Given the generality
of the notion of artefact, we explicitly say in the formula that a product is
a material object.

Ax16 TechProduct(x) ! Artefact(x) ^MaterialObject(x) ^
8t (PRE(x, t) ! 9c(ProductType(c) ^ CF(c, x, t))) ^

¬9y (hosts(y, x))
(if x is a technical product, x is a material artefact that, whenever is
present, is classified by a product type c and is not hosted by any y)

The dolce-core relationship of classification holding between product
and product type is meant to capture the notion of compliance discussed

8In some engineering contexts products are indeed ontological features, e.g., water wells
that are realised by removing plots of land without any additional artefactual object such
as, e.g., supporting walls. Our notion of product type does not cover this case.

83

in [Sect. 4.1]. From this perspective, a product x classified by a product
type c complies with the properties in c. More specific classification-like
relationships can be introduced to explicitly distinguish between partial and
total compliance, as discussed in [Sect. 4.1].

A technical component is a product explicitly designed to be part of
another product, even though it can exist without being part of any (see
[Sect. 5.4]). The formal representation of this notion is challenging, because
it requires to acknowledge the fact that a component can be possibly part
of another product. From this perspective, to talk about a component, one
has to consider a possible product of which the component is part of, an
approach requiring an ontological account of possible (artefactual) objects.
Following [PBCV11], this may be done by adopting the notion of engineer-
ing possible object, which is meant to capture an object that only possibly
exists in the domain of quantification according to some engineering con-
ceptualisation. For the time being, we rely only on a weak representation of
technical components; by (Ax17), if x is a technical component, then x is a
technical product.

Ax17 TechComponent(x) ! TechProduct(x)
(if x is a technical component, then x is a technical product)

84

6.4 Engineering features

We now introduce the formal representation of engineering features, firstly
at the type level and then at the physical level, according to the distinction
presented in [Sect. 5.2]. The former are called feature types, the latter
physical features.

Feature types. We distinguish between two notions of feature types,
namely structural feature type and qualitative feature type. The
former are design concepts that represent structural properties of product
types; the latter are used to model qualitative properties (and their val-
ues) of both product types and structural feature types. Both notions are
formally specified by binary predicates to stress their relational nature. Re-
call, indeed, that engineering features are always defined in relation to other
entities.

By (Def11), c1 is a structural feature type in c2 means that c1 is associ-
ated via S-characterisation to the product type c2.9 By (Def12), a qualita-
tive feature type is the quality space r that Q-characterises either a product
type or a structural feature type c1. (See example below.)

Def11 FeatureTypeST (c1, c2) , CHST (c2, c1) ^ ProductType(c2)
(c1 is a structural feature type in c2 means that c1 structurally

characterises c2, which is a product type)

Def12 FeatureTypeQ(r, c1) , CHQ(c1, r) ^
(ProductType(c1) _ (9c2(FeatureTypeST (c1, c2))))

(r is a qualitative feature type in c1 means that r Q-
characterises either a product type or a structural feature type c1)

Recalling the example in (f9), we can represent hole1 as a structural
feature type in the product type gear, such that hole1 is Q-characterised
by the qualitative feature types cylindrical shape and 12mm � diameter,
see (f11) – (f13). To be more precise on the relationship between hole1 and
gear, we assume that instances of the former are hosted in instances of the
latter, see (f11).10

f11 FeatureTypeST (hole1, gear) ^ hostsCN (gear, hole1)
(example: hole1 is a structural feature type hosted in the product

type gear)

9If needed, one may also add structural sub-features, namely structural features of
other structural features, e.g., the immaterial surface of a hole. This is done in the test
case presented in [Sect. 7.2].

10For the sake of the example, we attribute the dimension qualitative feature type
directly to the hole in (f13). We shall better see in [Sect. 6.5] that this representational
approach should not be taken for granted.

85

f12 FeatureTypeQ(cylindrical shape, hole1)
(example: cylindrical shape is a qualitative feature type in hole1)

f13 FeatureTypeQ(12mm diameter, hole1)
(example: 12mm diameter is a qualitative feature type in hole1)

By (Def13), engineering feature type is defined in terms of either
qualitative or structural feature types.

Def13 FeatureType(x, y) , FeatureTypeQ(x, y) _
FeatureTypeST (x, y)

(x is an engineering feature type in y means that x is either a
qualitative or a structural feature type in y)

Physical feature. At the physical level, we distinguish between qualita-
tive physical feature (qualitative ph-feature) and structural physical fea-
ture (structural ph-feature).

By (Def14), a quality q is a qualitative ph-feature in x means that x is
classified by a concept Q-characterised by the qualitative feature type r, so
that q is the quality of x located within r.

Def14 PhysicalFeatureQ(q, x) , I(q, x) ^ 8t(PRE(q, t) !
9cr1r2(FeatureTypeQ(r1, c) ^ CF(c, x, t) ^ L(r2, q, t) ^ P(r2, r1)))

(q is qualitative ph-feature in x means that q inheres in x
and whenever q is present x is classified by a concept Q-characterised
by r1, so that q is located in the region r2 within r1)

By (Def15), x is a structural ph-feature in y means that its classifying
concept c1 is a structural feature type in c2, which classifies y.

Def15 PhysicalFeatureST (x, y) , 8t(PRE(x, t) !
9c1c2(CF(c1, x, t) ^ CF(c2, y, t) ^ FeatureTypeST (c1, c2))

(x is a structural ph-feature
in y means that, whenever x is present there are two design concepts,
c1 and c2, such that c1 classifying x is a structural feature type in the
design concept c2 that classifies y)

Definition (Def16) defines engineering physical feature in terms of
either qualitative ph-feature or structural ph-feature.

Def16 PhysicalFeature(x, y) ,
PhysicalFeatureQ(x, y) _ PhysicalFeatureST (x, y)

(x is an engineering physical feature in y means that x is either
a qualitative or a structural physical feature in y)

86

6.5 Form features: Three modelling views

In this section we represent the three views about form features individuated
across the literature and presented in [Sect. 5.5]. The purpose is to show how
form features can be represented within our approach according to di↵erent
conceptualisations. After presenting each view, we discuss their pros and
cons by showing the modelling issues they need to face. We then propose
how the three views can be integrated in a unified perspective.

In the following subsections, we enumerate axioms by V1, V2 and V3,
referring to the first, second and third view, respectively. For example,
Def(V1).1 is the first definition in the first view. Also, we represent form
features only at the type level; at the physical level the formalisation follows
on the lines of (Def14) and (Def15).

6.5.1 First view: Form features for shape qualities

Recall from [Sect. 5.5] that form features are understood as products’ shapes
according to the first view.

In our approach, this perspective can be represented by defining a form
feature as a qualitative feature type r in a design concept c, such that r is
a region within the shape quality space (SPSH), see (Def(V1).1). In this
sense, all instances of c have (at least) a shape quality.

Def(V1).1 FormFeature(r, c) , FeatureTypeQ(r, c) ^ SPSH(r) ^
ProductType(c)

(r is a form feature in c means that r is a qualitative feature type,
such that r is a region within the shape quality space)

For example, for a gear to have a cylindrical hole means that the gear
is cylidrical-hole-like shaped. In formulas, we write that the product type
gear has the form feature cylindrical hole shape, see (f(V1.)1).

f(V1.)1 FormFeature(cylindrical hole shape, gear)
(example: cylindrical hole shape is a form feature in gear)

A similar modelling approach can be employed for form features like
protrusions and bosses. Also in these cases, indeed, for a product to have a
protrusion (or boss) means that the product is protrusion-like shaped, i.e.,
it bears a protrusion-shape quality.

87

6.5.2 Second view: Form features for shaped parts

In this perspective, a form feature is a physical part of a product char-
acterised by a shape. Despite the explicit reference to products’ parts in
this view, a form feature is not meant to model components, but – as said
throughout the thesis – entities like holes, bosses or protrusions. Again,
according to the engineering literature, the core distinction between form
features and components is that the former are necessarily related to prod-
ucts and cannot exist if detached from them.

In our approach, by (Def(V2).1) we define a form feature c1 in c2 as
a structural feature type that is hosted in c2 and has a qualitative feature
type r, which is within the shape quality space. Also, in order to be explicit
about the existential dependence between form features and products, we
establish that all entities classified by c1 are material ontological features.
Accordingly, all instances of c1 are hosted in instances of c2, so that they
cannot be present without the latter and bear shape qualities.

Def(V2).1 FormFeature(c1, c2) , FeatureTypeST (c1, c2) ^
hostsCN (c2, c1) ^ 9r(FeatureTypeQ(r, c1) ^ SPSH(r)) ^

8xt(CF(c1, x, t) ! MaterialFeature(x))
(a form feature c1 in c2 is a structural feature type hosted in c2, such
that c1 has a qualitative feature type r for shapes, and classifies only
(ontological) material features)

We know from [Sect. 6.2] that material features are parts of their material
hosts. Therefore, the entity x classified by a form feature c1 is part of the
product that instantiates c2.

Recalling the example in the previous section, a gear has a cylindrical
hole means that the gear has a material feature as part, which bears a
cylindrical shape. In formulas, hole part is the form feature of gear, see
(f(V2).1); hole part has cylindrical shape as qualitative feature type, see
(f(V2).2).

f(V2).1 FormFeature(hole part, gear)
(example: hole part is a form feature in gear)

f(V2).2 FeatureTypeQ(cylindrical shape, hole part) ^
SPSH(cylindrical shape)

(example: cylindrical shape is a qualitative feature type in
hole part)

88

6.5.3 Third view: Form features for shaped immaterial ob-
jects

Recall from [Sect. 5.5] that the third view about form features is only em-
ployed for the representation of hole-like subtractive features, which are
understood as immaterial objects associated to products.

In our approach, we say that c1 is an immaterial form feature in c2
(FormFeatureIMT), which means that c1 is a structural feature type
hosted in c2, such that c1 is characterised by a qualitative feature type r,
which is located within a shape quality space; also, c1 classifies immaterial
ontological features, see (Def(V3).1).

Def(V3).1 FormFeatureIMT (c1, c2) , FeatureTypeST (c1, c2) ^
hostsCN (c2, c1) ^ 9r (FeatureTypeQ(r, c1) ^ SPSH(r)) ^

8xt(CF(c1, x, t) ! ImmaterialFeature(x))
(c1 is an immaterial form feature in c2 means that c1

is a structural feature type hosted in c2 that has a qualitative feature
type r for shapes and that classifies immaterial ontological features)

According to this perspective, to say that a gear has a cylindrical hole
means that the it hosts an immaterial form feature. In formulas, hole1 is
the immaterial form feature of gear and hole1 has the qualitative feature
type cylindrical shape, see (f(V3).1) – (f(V3).2).

f(V3).1 FormFeatureIMT (hole1, gear)
(example: hole1 is an immaterial form feature in gear)

f(V3).2 FeatureTypeQ(cylindrical shape, hole1) ^
SPSH(cylindrical shape)

(example: cylindrical shape is a qualitative feature type in hole1
that is located in the quality space of shapes)

89

6.5.4 Discussion and comparison

In this section we consider three representational needs that often arise in
feature-based modelling and look at how each form feature view can deal
with them. In [Sect. 6.5.5] we discuss how to integrate the three views within
a unified perspective.

Dimensions of form features

The representation of form features is often associated with the representa-
tion of form features dimensions. For instance, a hole form feature may be
ascribed with both a cylindrical shape and a (nominal) diameter of 12mm
with a tolerance value of ± 0.8mm.

From a representational perspective, to enrich a form feature with di-
mensional information, one may rely on an individual quality that is located
in a quality space, which provides specific shapes together with their dimen-
sion. In the designing practise, it is indeed common to represent “complex
qualities”, namely qualities that mix di↵erent types of information. For ex-
ample, according to the first view, when a hole-shape inheres in an object,
the latter is characterised by a shape associated to a certain dimension. The
same modelling approach can be applied for the second and the third views;
in the latter, for example, for an object to have an immaterial hole means
to have an hole whose shape is dimensionally characterised.

The assumption behind this approach is that the space for shapes is so
structured to provide dimensional information.11 Also, because dimensions
are usually given according to certain measurement systems, the regions of
the shape space should be organised with reference to, e.g., the Imperial or
the Metric measurement systems.

However, it may be also reasonable to maintain separate the shape and
the dimension quality spaces. Gärdenfors [Gär14, Ch.6], for example, re-
ports on approaches for shape representation that do not rely on dimen-
sions, e.g., because they are based on how humans distinguish shapes inde-
pendently from how big or small they are. Focussing on engineering appli-
cations, in representing shapes together with their dimensions, one should
choose whether to adopt an approach for the representation of exact quan-
titative values, or an approach based on a qualitative characterisation of
dimensions, or maybe an approach that mixes quantitative and qualitative

11For the sake of the discussion, we talk about a quality space for dimension, whereas
the definition of such a space may be done in di↵erent manners. A quality space, e.g., for
diameter qualities may di↵er from the space for depth qualities; although both qualities are
(possibly) measured by the same tools, these are di↵erent used in measurement practises,
and the quality spaces might thus acknowledge these distinctions. On the other hand,
one may have a general space for dimensions and operators that map di↵erent qualities
(e.g., diameter, depth) to the same space, by specifying how their values are obtained in
measurement practises.

90

values. Some CAx systems used for conceptual design, for example, do not
model only the exact quantitative dimension of shapes; they also allow for
the qualitative representation of dimensions by using linguistic entries like
‘large’ or ‘small’ [DPD16].

The representation of shapes for engineering modelling purposes remains
an open issue to be faced in future work. In particular, further research is
required to understand how shape and dimension information can be inter-
linked for CAx applications.

Multiple form features

One and the same product often comprises multiple form features, e.g., two
or more holes, or a hole and a protrusion.

According to the first form feature view, one cannot say that one and the
same object bears (as a whole) di↵erent shapes. However, one may rely on
a quality like being hole-like shaped and being protrusion-like shaped, which
includes both hole-like and protrusion-like qualities. From this perspective,
it is therefore needed a quality space that provides complex shapes, e.g., on
the basis of shapes used in CAx libraries.

In the second view, when a product has di↵erent form features, the
product is “cut” across its di↵erent material features, each one being char-
acterised by a specific shape. For example, for a table to have both a cylin-
drical hole and a rectangular protrusion means that the table has two ma-
terial form features, one with a cylindrical shape and the other one with a
rectangular shape.

Finally, in the third view, when the same object has multiple immaterial
form features, it hosts di↵erent ontological immaterial features, each one
with its own shape quality.

Material properties of form features

We have already seen that it is common to distinguish between additive
and subtractive form features, both of which can be ascribed with material
properties. Recall from [Sect. 5.5] that experts distinguish between di↵erent
hole-like form features depending on the conditions of (what they think as)
their material surfaces (e.g., the surface of a reamed hole is smoother than
the one of a drilled hole).

In the first view, a form feature quality cannot be characterised by mate-
rial properties, since it would be odd to claim that shapes are made of mate-
rial. It may be, however, reasonable to attribute materiality to the quality’s
bearer. In this sense, to (loosely) say, e.g., that a protrusion is made of
metal actually means that the bearer of the protrusion-shape is made of
metal. More precisely, when the bearer is not entirely constituted by the
same material, it is necessary to refer to a specific part of the bearer that

91

is made of a certain material. From this perspective in order to represent
a product with a protrusion made of metal, one has to distinguish between
the protrusion-shape of the product and the part of the product constituted
by metal. Then, it would be more correct to say that the protrusion-shape
does not inhere in the whole product, but in that part made of metal.

The third view is explicit about the immaterial nature of hole-like form
features. Therefore, one cannot talk about the properties of their material
surfaces, e.g., their roughness. These properties have to be attributed to the
holes’ hosts. In the case of, e.g., a drilled hole, one may say that the part of
the host surrounding the hole satisfies certain roughness properties.

Only in the second view material properties can be directly ascribed to
form features, being these – at the physical level – material features. For
example, representing a drilled hole means representing a material feature,
whose surface satisfies certain roughness properties.12

6.5.5 An integrated perspective

The three form feature views discussed above are three di↵erent alternatives
to model form features. For example, as said in [Sect. 5.5], the immaterial
understanding of hole-like form features may be better suited for assembly
design to explicitly model the void space in a product where another prod-
uct (or some part thereof) can be allocated. If a hole form feature were
indeed understood in the material sense, it might be unnatural to claim,
e.g., that a shaft has to be inserted into a hole, as it is commonly said in
engineering [IY15].13

From an ontological perspective the assumptions of each view can be
coherently represented within a foundational ontology specialised with en-
gineering knowledge. However, as we have seen, each view has to face some
issues. To sum up:

⌅ The first view cannot ascribe material properties to form features, e.g.,
cannot talk about a protrusion made of a specific material, nor about
the material surfaces of holes. As said, it would be ontologically mis-
leading to ascribe material properties to (shape) qualities. Also, when
a product has multiple form features (e.g., a hole and a protrusion),
the shape space has to be structured to allow for the representation of
complex shape qualities;

⌅ The second view treats all form features as material entities. Hence,
it forces to consider hole-like features in the material sense, whereas
the immaterial perspective is useful in some modelling scenarios. Also,

12See [Str88, Var15, Smi96, Hah13] for the ontological treatment of surfaces.
13Varzi [Var03] claims that the understanding of holes as immaterial objects is of key

relevance to make sense of the semantics of spatial containment relationships like ‘in’.

92

some information modelling resources are explicit about the immate-
rial treatment of hole-like features, e.g., the IFC standard;

⌅ The third view is limited to immaterial form features and therefore, as
said, it necessarily needs to be integrated with one of the views above
to provide an overall approach for form features representation.

In all three cases, when a form feature is attributed with multiple qual-
ities, e.g., shapes and dimensions, it is necessary to define a quality space
that allows to represent their combination.14

We propose in the following a unified treatment of form features that
reflects the three di↵erent conceptualisations discussed above and also pro-
vides an overall framework by which form features data can be represented
across communities in a similar way. As said in the previous chapter, instead
of unifying the three perspectives, one may keep them apart and develop
mappings by which data modelled according to a certain view can be com-
pared with data represented according to the other views. The engineering
community, however, explicitly calls for integrated modelling approaches by
which to make sense of heterogeneous data produced by di↵erent communi-
ties [EKGT+16, UYC+13]. Integrated approaches, indeed, provide common
terminologies and modelling theories that help in overtaking interoperability
issues across communities and applications.

We propose to consider form features as structural feature types for the
representation of shaped ontological features. Form features, therefore, do
not model shape qualities per se; they rather represent (dependent) objects
that are characterised by shapes, among other qualities. To make sense
of the engineering distinction between additive and subtractive form fea-
tures, we distinguish between material (FormFeatureMT) and immaterial
(FormFeatureIMT) form features.

Definition (Def17) defines material form feature; note that the definition
corresponds to (Def(V2).1) as presented in [Sect. 6.5.2]. Accordingly, for a
product to have a material form feature, e.g., a bump, means that it hosts
an ontological material feature characterised by a shape.

Def17 FormFeatureMT (c1, c2) , FeatureTypeST (c1, c2) ^
hostsCN (c2, c1) ^ 9r(FeatureTypeQ(r, c1) ^ SPSH(r)) ^

8xt(CF(c1, x, t) ! MaterialFeature(x))
(material form feature, as defined in (Def(V2).1))

By (Def18), immaterial form feature is defined along with the third view
previously presented in [Sect. 6.5.3]. Then, a product has an immaterial
form feature means that it hosts a shaped ontological immaterial feature.

14The adoption of quality spaces for the representation and organisation of objects
qualities is just a modelling approach among others. However, even if a di↵erent modelling
strategy is adopted, it is anyway relevant to make sense of the fact that the representation
of a form feature needs to consider the combination of qualities of di↵erent kinds.

93

Def18 FormFeatureIMT (c1, c2) , FeatureTypeST (c1, c2) ^
hostsCN (c2, c1) ^ 9r (FeatureTypeQ(r, c1) ^ SPSH(r)) ^

8xt(CF(c1, x, t) ! ImmaterialFeature(x))
(immaterial form feature, as in defined (Def(V3).1))

Finally, form feature is defined in terms of either material or immaterial
form features (Def19).

Def19 FormFeature(c1, c2) , FormFeatureMT (c1, c2) _
FormFeatureIMT (c1, c2)

(c1 is a form feature in c2 means that c1 is either a material or an
immaterial form feature in c2)

Looking back at the three modelling cases discussed above, the integrated
approach allows us to deal with them as follows.

(i) Multiple form features. This issue can be straightforwardly repre-
sented for both material and immaterial form features. As stated earlier, a
product has two or more form features in the sense that it hosts di↵erent
immaterial or material objects. Since form features are not shape qualities
per se, there is no need to model complex shape qualities, like being hole-like
shaped and being protrusion-like shaped.15

(ii) Material properties of form features. The notion of material form
feature allows us to explicitly represent form features that are constituted
by material. In the case of hole-like form features, although the distinction
between material and immaterial form features gives to experts the opportu-
nity to decide whether holes are material or immaterial objects, we propose
to represent them in the immaterial sense for the reasons we have discussed
throughout the chapter. Then, to (loosely) talk about the material surfaces
of holes in our approach means to talk about the surfaces of their hosts.
For example, a drilled hole is an immaterial object hosted in a product,
such that the product surface (partially) surrounding the hole satisfies some
roughness property.

(iii) Multiple qualities. As stated earlier, when a form feature bears
multiple qualities, the shape space is meant to be complex, e.g., it integrates
shape and dimensional values. The definition of complex quality spaces
remains however an open issue.

In the test case given in [Sect. 7.1] we show how form features can be
represented in our approach.

15In the first test case presented in the next chapter [Sect. 7.1], we formally represent a
product type with multiple-form features.

94

6.6 Remarks

As argued throughout the thesis, an ontological understanding of engineer-
ing features needs to be provided within a broader ontology for product
knowledge representation. For this purpose, we introduce the notion of de-
sign properties, which are represented in terms of dolce-core concepts and
quality spaces. Accordingly, when emphasis is given to the fact that a prop-
erty is intentionally created for product modelling needs, it is represented as
a concept, which is called design concept; the properties that are assumed
in experts’ conceptual systems are represented as regions in quality spaces.
We then introduce the formal representation of technical product, technical
component and product type.

Looking at engineering features, on the one side they are design prop-
erties related to product types; on the other side, they are physical entities
related to physical products. This distinction is grasped by the notions of
feature type and physical feature. As we saw, the two notions are strictly
related, since the latter are the entities that (generally speaking) satisfy the
former.

As said in [Ch. 5], from a high-level perspective engineering features are
employed to model ontological features, components, qualities and materials
constituting products. In our approach, this can be represented as follows:

⌅ Engineering features for ontological features. At the type level
they are represented by the notion of structural feature type and related
to product types via the relationship of hosting (hostsCN). At the
physical level, they are represented as structural physical features.
More specifically, we argue that ontological features are the entities
represented by form features. Therefore, the more specific notions of
immaterial form feature and material form feature are to be adopted,
depending on whether the ontological features at hand are meant to
be constituted by material or not;

⌅ Engineering features for qualities. At the type level they are rep-
resented by the notion of qualitative feature type; at the physical level
by qualitative physical feature. The relationship of qualitative charac-
terisation (CHQ) has been introduced to relate qualitative feature types
to other design concepts. At the physical level, a quality relates to an
object via inherence;

⌅ Engineering features for components. A component is a technical
product that is designed to be (possibly) related via parthood to some
product. When engineering features model components, structural
feature types and structural physical features are to be used at the
type and physical levels, respectively. Di↵erently from the case of
material ontological features (e.g., a bump), a component does not

95

relate via hosting to other products. As said throughout the chapter,
indeed, a hosted object cannot exist if detached from its host; e.g., a
bodywork bump cannot be detached from the bodywork. Di↵erently,
a component does exist even if it is not parthood-related to some other
object;

⌅ Engineering features for constituting materials. When engi-
neering features are used to model the materials constituting products
(and therefore components), they are represented as structural feature
types and structural physical features. The relationship used to link
them to the constituted objects is constitution (KCN between design
concepts; K between physical entities).

The figure below (Fig. 6.1) shows the taxonomy of the notions repre-
sented throughout the chapter. Classes whose diagram is depicted as a dot-
ted box (e.g., Feature type) have to be understood as “application classes”,
i.e., linguistic entries to organise the taxonomy.16 For example, Feature type
subsumes both Structural feature type and Qualitative feature type; the for-
mer is subsumed by Concept, the latter by Quality space. These latter two
classes are disjoint in dolce-core, which means that Feature type cannot
be subsumed by both Concept and Quality Space. Feature type is however
useful to group Structural feature type and Qualitative feature type under a
common upper-level entry.

16Application classes are called domain categories in [Bor14].

96

F
ig
u
re

6.
1:

T
ax

on
om

y

97

Chapter 7

Case studies

In this chapter we present two cases where the ontology previously presented
is applied to represent form features [Sect. 7.1] and to restructure meta-
models for feature-based knowledge representation [Sect. 7.2]. In the next
chapter we discuss the advantages and limits of our approach.

7.1 Form features representation: An example

In this section we show how the form features of the product in Fig. 7.1,
which is called housing product, can be represented by means of the ontology
given in the previous chapters. (The figure is taken from [Chu10] and slightly
modified.)

The form features included in the figure are:

⌅ ThroughHoleA, . . . ThroughHoleG;1

⌅ CounterboreHoleA;

⌅ CompoundHoleA;

⌅ BossA;

⌅ FlangeA.

Note that CompoundHoleA is a hole that comprises both ThroughHoleG
and CounterboreHoleA.

Looking at Fig. 7.1, the first thing to be noticed is that it conveys in-
formation at the type level. One could indeed assume that it represents the
design properties that instances of the entities depicted in the figure have to
satisfy if physically realised. Consider, for example, the ThroughHoleA. The
hole has a diameter of 12mm with a tolerance of ± 0.8mm. If the hole were

1ThroughHoleC cannot be seen in the figure.

98

Figure 7.1: Example (adapted from [Chu10])

meant as a physical hole in a product, it would be misleading to attribute it
a tolerance value.2 From this perspective, Fig. 7.1 does not convey any infor-
mation about physical entities; looking at the figure, we do not know, e.g.,
whether the diameter of a physical instance of ThroughHoleA has a value
within the 12±0.8mm tolerance. From the perspective of our ontology, the
product depicted in Fig. 7.1 is a product type and each of its engineering
features is a feature type. Accordingly, ThroughHoleA, . . . ThroughHoleG
and the other features in Fig. 7.1 are (generally speaking) design concepts.

Second, as we have just seen, di↵erent features in the figure are simi-
larly named3 (ThroughHoleA, . . . , ThroughHoleG), although they have dif-
ferent properties. In particular, ThroughHoleA, . . . , ThroughHoleD have
the same properties, namely cylindrical shape, depth of 10mm and diameter
of 12±0.8mm. This means that when the housing product type is cre-
ated at the physical level, it will have four di↵erent physical through holes,
among others, whose di↵erent shape, diameter and depth qualities will (ide-
ally) have the same values. Similarly for ThroughHoleE and ThroughHoleF,
both of which have indeed the same characterising properties. However,

2For product knowledge representation purposes, it is reasonable to assume that when-
ever a physical hole is present, it has a precise diameter.

3This labelling choice is due to [Chu10].

99

their diameter and depth values are not the same of the ones character-
ising ThroughHoleA, . . . , ThroughHoleD. Finally, the diameter and depth
values of ThroughHoleG di↵er from the values of both ThroughHoleA, . . . ,
ThroughHoledD, and ThroughHoleE and ThroughHoleF.

From an ontological perspective, it is necessary to understand whether
ThroughHoleA, . . . , ThroughHoleG are the same design concept, or they
should be rather considered as di↵erent ones. This has to do with identity
criteria for concepts, an issue that has been extensively discussed in the
literature [ML99], although no shared agreement has been reached so far.

For product knowledge representation one may assume that two design
concepts are the same when they are characterised by the same properties.
Consider, for example, ThroughHoleA, . . . , ThroughHoleD; we know that
they are characterised by the same shape, diameter and depth. They may
be therefore considered as the same design concept, which di↵ers from the
design concept ThroughHoleE and ThroughHoleF, as well as from the design
concept ThroughHoleG, given that these are di↵erently characterised.4

Following this line of thought, looking at Fig. 7.1, for the sake of the
example we distinguish between the following feature types in order to rep-
resent the housing product type:

⌅ hole: a general form feature for the representation of physical holes;

⌅ thr hole (read as: through hole): a sub-concept of hole. It is qualita-
tively characterised by a (complex) qualitative region, which provides
shape information along with its diameter and depth;

⌅ thr hole1: a sub-concept of thr hole. It is qualitatively characterised
by a qualitative region, which specifies that instances of thr hole1
have a cylindrical shape with diameter within the value 7.5±0.1mm
and depth of 30mm;

⌅ thr hole2: a sub-concept of thr hole. It is qualitatively characterised
by a qualitative region, which specifies that instances of thr hole2’
have a cylindrical shape with diameter within the value 12±0.8mm
and depth of 10mm;

⌅ thr hole3: a sub-concept of thr hole. It is qualitatively characterised
by a qualitative region, which specifies that instances of thr hole3
have a cylindrical shape with diameter within the value 15±0.8mm
and depth of 20mm;

4In this approach it is assumed that the characterising properties of a design concept
are always completely specified. However, one may also develop a theory that allows
for the partial specification of design concepts to acknowledge their evolution over time.
An initial study of concept partial characterisation and evolution for design is presented
in [SMP15].

100

⌅ ct hole (read as: counterbore hole): a sub-concept of thr hole for
representing physical counterbore holes;

⌅ ct hole1: a sub-concept of ct hole. It is qualitatively characterised by
a qualitative region, by which instances of ct hole1 bear a cylindrical
shape with diameter within the value 30±0.8mm and depth of 10mm;

⌅ cmp hole (read as: compound hole): a sub-concept of hole; it is used
for representing holes that comprise di↵erent holes;

⌅ cmp hole1: a form feature that comprises both thr hole 3 and ct hole1;

⌅ boss: a general form feature for representing physical bosses. It is
qualitatively characterised by a (complex) qualitative region, which
provides shape information along with its diameter and height;

⌅ boss1: a subconcept of boss. It is qualitatively characterised by a qual-
itative region, which specifies that instances of boss1 have a cylindrical
shape with diameter within the value 60±0.8mm and height of 20mm;

⌅ flange: a form feature for the representation of physical flanges. It
is qualitatively characterised by a (complex) qualitative region, which
provides shape information along with its diameter and height;

⌅ flange1: a subconcept of flange. It is qualitatively characterised by
a qualitative region, which specifies that instances of flange1 have
a cylindrical shape with diameter within the value 100±0.8mm and
height of 10mm.

Some comments are required. First, for the sake of the example, we
assume a general hole feature type, which specialises in the sub-concepts
thr hole, ct hole, cmp hole and their subclasses. This allows us to make
sense of the fact that the form features named ThroughHoleA, . . . , Through-
HoleG, CounterboreHoleA and CompoundHoleA in Fig. 7.1 are holes. The
same approach is adopted for boss and flange, which – as general feature
types – are specialised to cover the form features in the example.

Second, thr hole1, thr hole2 and thr hole3 are introduced for represent-
ing ThroughHoleE/ThroughHoleF, ThroughHoleA, . . . , ThroughHoleD and
ThroughHoleG, respectively. The introduction of these feature types is nec-
essary to make sense of the idea that some of the holes in Fig. 7.1 share
some common property (they are through holes, indeed) while having dif-
ferent dimensions. If we would introduce only one feature type (through
hole), it would be di�cult to say that the product type in Fig. 7.1 comprises
di↵erent through holes with di↵erent dimension properties. The use of spe-
cific design concepts is coherent with the overall understanding of concepts
presented throughout the thesis; nothing indeed prevents the use of general
concepts, which then specialise to classify specific objects.

101

Third, the feature type for compound holes (cmp hole) is used to repre-
sent holes that are designed as being formed from (at least) two other holes.
From an ontological perspective, this requires the definition of unity crite-
ria, as well as an approach to represent how di↵erent (whole) holes connect
to result in a bigger hole. The investigation of unity criteria for holes goes
however behind our purposes. The reader can refer to [CV94, Hah13].

Finally, in order to represent form features along with their shapes and
dimensions, we assume that the quality space for shapes is complex, so that
each shape is associated with information regarding its dimensions. As we
saw in the previous chapter, this approach should not be taken for granted
and further research is required for a well-established representation of shape
spaces for engineering applications.

For the sake of the test case, we introduce the primitive relationship
of subsumption (v) between design concepts.5 The relationship is used to
represent taxonomies, from the most general to the most specific design
concepts. The formula (tcf.1) establishes that if c1 is subsumed by c2, then
they are both design concepts and all instances of c1 are instances of c2, too.

tcf.1 c1 v c2 ! DesignConcept(c1) ^DesignConcept(c2) ^
8xt (CF(c1, x, t) ! CF(c2, x, t))

(c1 is subsumed by c2 if they are both design concepts and all
instances of c1 are instances of c2, too)

Formulas (tcf.2)–(tcf.11) represent subsumption relationships between
the subconcepts of hole, boss and flange.6

tcf.2 thr hole v hole
(thr hole is a hole)

tcf.3 thr hole1 v thr hole
(thr hole1 is a through hole)

tcf.4 thr hole2 v thr hole
(thr hole2 is a through hole)

tcf.5 thr hole3 v thr hole
(thr hole3 is a through hole)

tcf.6 cmp hole v thr hole
(cmp hole is a through hole)

tcf.7 cmp hole1 v cmp hole
(cmp hole1 is a compound hole)

5We prefix the formulas below by tcf.n standing for test case formula.
6We do not formally define the distinction between, e.g., a through and a counterbore

hole. This would require the adoption of a formal language that allows for the representa-
tion of topological and geometrical constraints (see, e.g., [Hah13]). As said in [Sect. 5.6],
our work addresses the need of a qualitative representation of form features that abstracts
from geometry.

102

tcf.8 ct hole v thr hole
(counterbore hole is a through hole)

tcf.9 ct hole1 v ct hole
(ct hole1 is a counterbore hole)

tcf.10 boss1 v boss
(boss1 is a boss)

tcf.11 flange1 v flange
(flange1 is a flange)

Formulas (tcf.12)–(tcf.19) say that thr hole1, thr hole2, thr hole3, ct hole1,
cmp hole1, boss1 and flange1 are (material or immaterial) form features in
the product type housing product. (Formula (tcf.12) can be actually de-
rived from, e.g., (tcf.13) together with (Def18) and (Def11). It is however
introduced for clarity.)

tcf.12 ProductType(housing product)
(housing product is a product type)

tcf.13 FormFeatureIMT (thr hole1, housing product)
(thr hole1 is an immaterial form feature in housing product)

tcf.14 FormFeatureIMT (thr hole2, housing product)
(thr hole2 is an immaterial form feature in housing product)

tcf.15 FormFeatureIMT (thr hole3, housing product)
(thr hole3 is an immaterial form feature in housing product)

tcf.16 FormFeatureIMT (ct hole1, housing product)
(ct hole1 is an immaterial form feature in housing product)

tcf.17 FormFeatureIMT (cmp hole1, housing product)
(cmp hole1 is an immaterial form feature in housing product)

tcf.18 FormFeatureMT (boss1, housing product)
(boss1 is a material form feature in housing product)

tcf.19 FormFeatureMT (flange1, housing product)
(flange1 is a material form feature in housing product)

Formulas (tcf.20)–(tcf.25) represent the qualitative characterisation of
the form features introduced above. For example, formula (tcf.20) says
that an instance of thr hole1 has a quality with cylindric shape (cy sh),
which is deep 30mm (30mmDP) and whose diameter ranges from 7.4mm
to 7.6mm (7.4 7.6mmDM). In this sense, 30mmDP;7.4 7.6mmDM;cy sh is
a non-atomic region in a complex qualitative space, which provides shape
information along with its depth and diameter. (As said, the formal repre-
sentation of regions within complex quality spaces requires further research.)

103

tcf.20 FeatureTypeQ(30mmDP ; 7.4 7.6mmDM ; cy sh, thr hole1)
(an instance of thr hole1 has a quality with cylindric shape

(cy sh), which is deep 30mm (30mmDP) and whose diameter ranges
from 7.4mm to 7.6mm (7.4 7.6mmDM))

tcf.21 FeatureTypeQ(10mmDP ; 11.2 12.8mmDM ; cy sh, thr hole2)
(an instance of thr hole2 has a quality with cylindric shape

(cy sh), which is deep 10mm (10mmDP) and whose diameter ranges
from 11.2mm to 12.8mm (11.2 12.8mmDM))

tcf.22 FeatureTypeQ(20mmDP ; 14.2 15.8mmDM ; cy sh, thr hole3)
(an instance of thr hole3 has a quality with cylindric shape

(cy sh), which is deep 20mm (20mmDP) and whose diameter ranges
from 14.2mm to 15.8mm (14.2 15.8mmDM))

tcf.23 FeatureTypeQ(10mmDP ; 29.2 30.8mmDM ; cy sh, ct hole1)
(an instance of ct hole1 has a quality with cylindric shape

(cy sh), which is deep 10mm (10mmDP) and whose diameter ranges
from 29.2mm to 30.8mm (29.2 30.8mmDM))

tcf.24 FeatureTypeQ(20mmHG; 59.2 60.8mmDM ; cy sh, boss1)
(an instance of boss1 has a quality with cylindric shape

(cy sh), which is high 20mm (20mmHG) and whose diameter ranges
from 59.2mm to 60.8mm (59.2 60.8mmDM))

tcf.25 FeatureTypeQ(10mmHG; 99.2 100.8mmDM ; cy sh, flange1)
(an instance of flange1 has a quality with cylindric shape

(cy sh), which is high 10mm (10mmHG) and whose diameter ranges
from 99.2mm to 100.bmm (99.2 100.8mmDM))

For the sake of the test case the formulas (tcf.26)–(tcf.27) are introduced
to represent that housing product comprises multiple form features with
the same properties. By (tcf.26), whenever x instantiates housing product,
there are two instances of thr hole1 that are hosted in x. Similarly, (tcf.27)
says that when x instantiates housing product, there are four instances of
thr hole2 hosted in x.

104

tcf.26 CF(housing product, x, t) ! 9yz (CF(thr hole1, y, t) ^
CF(thr hole1, z, t) ^ hosts(x, y) ^ hosts(x, z) ^

¬(y = z) ^ 8v (CF(thr hole1, v, t) ^ hosts(x, v) ! (v = y _ v = z)))
(if x instantiates housing product, there are two instances of

thr hole1 that are hosted in x)

tcf.27 CF(housing product, x, t) ! 9yzvw (CF(thr hole2, y, t) ^
CF(thr hole2, z, t) ^ CF(thr hole2, v, t) ^ CF(thr hole2, w, t) ^

hosts(x, y) ^ hosts(x, z) ^ hosts(x, v) ^ hosts(x,w) ^ ¬(y = z) ^
¬(y = v) ^ ¬(y = w) ^ ¬(z = v) ^ ¬(z = w) ^ ¬(v = w) ^

8u (CF(thr hole2, u, t)^hosts(x, u) ! (u = y_u = z_u = v_u = w)))
(if x instantiates housing product, there are four instances of

thr hole2 that are hosted in x)

Finally, as we have seen, the form features called ThroughHoleG and
CounterboreHoleA in Fig. 7.1 form a bigger hole that comprises both of
them. This can be represented by saying that cmp hole1 is related via part-
hood (PCN) to both thr hole3 and ct hole1. However, to stress that an
instance of cmp hole1 is a hole that comprises instances of the two latter
form features as connected parts, we need to add a further constraint. This
may be done by introducing a (topological) connection-like relationship be-
tween design concepts, by which the instances of the related concepts are
topologically connected. In (tcf.28) we use the primitive predicate CCN to
say that instances of thr hole3 and ct hole1 are topologically connected.

tcf.28 PCN (thr hole3, cmp hole1) ^ PCN (ct hole1, cmp hole1) ^
CCN (thr hole 3, ct hole1)

(an instance of cmp hole1 comprises instances of thr hole3 and
ct hole1 as connected parts)

105

7.2 Towards a feature-based meta-model

The engineering community lacks a common way to represent features suit-
able to support data sharing and interoperability between systems and com-
munities. To tackle this problem some UML meta-models have been pro-
posed. In particular, the works presented by [TCM13, RRB15] go in our
direction, since they are both meant to provide the high-level framework to
create feature-based models. Nevertheless, these meta-models have not been
developed on the grounds of an ontological theory for product knowledge
representation and su↵er from some flaws when looked from an ontological
perspective.

In this section we consider how the ontological understanding of engi-
neering features presented in the previous chapters can provide the onto-
logical basis for the meta-models proposed in [TCM13, RRB15]. From this
perspective, our ontology acts as a methodology for improving the semantic
transparency of existing works.

The section is structured as follows. We first introduce the meta-models
developed in [TCM13, RRB15] and then address their drawbacks from an
ontological perspective. Finally, we show how the meta-models can be re-
structured and integrated by means of our ontology.

Note that the notion of meta-model is used with di↵erent meanings
across the literature. In some case, given a diagrammatic language like UML,
the set of the available graphic modelling primitives forms the so-called con-
crete syntax of the language, whereas the meta-model of the language defines
the rules for the creation of well-formed models in that language [Gui05]. In
some other case, a meta-model is a model that does not describe a particu-
lar situation in the domain at stake, but it is rather employed to provide a
general picture of the domain. From this perspective, there is tight relation
between ontologies and meta-models [HS12].

7.2.1 Unified Feature Model

The Unified Feature Model is a meta-model aimed at providing a high-level
conceptual structure to manage and share feature data [TCM13, CMTT06,
CTCM13]. The representation of the meta-model in UML is showed in
Fig. 7.2.

Generic Feature (previously called Unified Feature [CMTT04]) is “the
most basic [...] entity template” [TCM13, p.90], i.e., the key class in the
meta-model for the representation of features. Indeed, any feature class (e.g.,
form or functional feature) is meant to be subsumed by Generic Feature.
As showed in Fig. 7.2, Generic Feature is related to five classes, namely
Attribute, Topological Entity, Parameter, Constraint and Feature Model.

Attribute plays a fundamental role within the meta-model to repre-
sent qualitative or quantitative information, including relationships. It spe-

106

Figure 7.2: Unified Feature Model (from [TCM13])

cialises in Self-described Attribute and Association Attribute (see Fig. 7.2):

⌅ Self-described Attribute covers information of various types. For ex-
ample, features’ (roughly speaking) characteristics like height, depth,
diameter, surface roughness, among others, including their specific
values; features’ elements (authors’ terminology), e.g., a hole’s top
or bottom surface; features’ names, IDs, nature (whether a feature
is additive or subtractive) and domain (e.g., a feature defined within
a manufacturing task). However, the authors of the Unified Feature
Model do not provide a complete list of information that can be cov-
ered by Self-describedAttribute;

⌅ Association attribute is adopted to represent relationships between fea-
tures, as well as features and other classes specified in a product model.
For instance, an association attribute may be established between a
feature and the manufacturing operations and resources required for
its physical realisation on a workpiece; or, an association attribute may
be adopted to establish dependencies between features and products,
e.g., between a slot and the gear to which it is related.

Topological entities “are those that can be shown to the user on the
screen, such as a point, line, cylinder, or cube” [TCM13, p.91].

Constraint is meant to cover geometric and algebraic relationships, among
others, between the topological entities specified in a model. For example,
a constraint may establish that the bottom and top surfaces of a feature
are parallel. Constraints in the Unified Feature Model are associated to
programming rules by which they can be, e.g., controlled throughout the

107

designing phase. For example, a rule may be used to control the parallelism
constraint between two surfaces in a feature in order to avoid running into
mistakes when the model undergoes some change.

Parameters specify interlinked values between the features or topological
entities in a model; e.g., a parameter may establish that if the diameter value
of a hole changes, the dimension value of the shaft to be allocated in the
hole has to be accordingly adjusted.7

Finally, Feature Model refers to the computer-aided model where feature
information is specified.

7.2.2 Feature-based Meta-Model

The Feature-based Meta-Model proposed in [RRB15] is presented as a high-
level modelling framework to manage and share feature-based data. The
meta-model in UML is shown in Fig. 7.3. For the purposes of our work, we
focus on ObjectFeature and its subclasses, since these are the core classes
used to convey feature information; some of the other classes, which may be
useful to understand how features are understood in the meta-model, will
be just briefly presented.

Object Feature is the most general class for representing features related
to objects; its subclasses – Parameter Feature, Geometric Interface Feature,
Structure Feature and Function Feature – are taken from [ZS04, Rie03].
According to [RRB15], these are the most fundamental feature classes and
any other feature class can be represented by specialising them with the
needed information.8

In order to link object features to existing resources for product data
management and to represent their semantics, the subclasses of Object Fea-
ture are subsumed by the Product-Process-Organization-Model (PPO) [NR08,
ZBLDE14]. The latter is a UML (meta-)model developed to support the in-
tegrated representation of product, process and organizational knowledge
for mechatronic system development. Fig. 7.4 shows the inclusion of the
subclasses of ObjectFeature in the PPO.9

Accordingly, Structure Feature is a PPO Component, the latter repre-
senting the components making up assemblies. Geometric Interface Feature
is a PPO Interface and represents “geometric properties through which a
component can be linked to [an]other component” [RRB15, p.1131]. Basi-
cally, an interface is an entity within a product that is explicitly designed
to allow for the assembly of the product; e.g., a hole designed for assembly.

7Parameters are used in CAx systems to facilitate the update of product models; when
the dimensional values of an element in a model change, indeed, such changes often need
to be propagated across the di↵erent elements defined within the model [SM95].

8Personal communication.
9Fig. 7.4 only shows the PPO classes reused in [RRB15]. The reader can refer to [NR08]

for an overview of the PPO.

108

Figure 7.3: Feature-based Meta-Model (from [RRB15])

By ‘geometric interface feature’, the authors stress that interface features
are geometrically described. Functional Feature and Parameter Feature are
both subsumed under PPO Function and refer to functional features and
their parametric specification, respectively.

The class Application Feature (see Fig. 7.3) is meant to capture the ob-
ject features specified within a specific model (Feature Model). Along the
same lines of the Unified Feature Model [TCM13], features are specified in
the Feature-based Meta-Model by means of attributes (Attribute), whose
semantics is not however specified in [RRB15]. Relationships between fea-
tures are represented by the classes ObjectFeatureAssociation and Applica-
tionFeatureAssociation. The latter are used to relate features within and
across models, whereas the former establishes relationships between object
features. The authors, however, do not provide a detailed explanation for
these classes.

109

Figure 7.4: Object feature classes subsumed by the PPO (from [RRB15])

7.2.3 Critical remarks

Both the Unified Feature Model and the Feature-based Meta-Model su↵er
from some flaw when looked from an ontological perspective.

As regards the Unified Feature Model, the class Attribute covers a variety
of domain entities. As said, both features’ elements and characteristics (in
the authors’ terminology) are modelled as (UML) attributes. From an on-
tological perspective, “elements” and “characteristics” di↵er in their nature
and have to be represented by di↵erent classes in order to enhance the gener-
ality, transparency and re-usability of the meta-model. For example, both a
hole’s surface and a hole’s depth are attributes. From the previous chapters,
we know that surfaces may be treated as ontological features, whereas the
representation of the depth requires to distinguish between qualities, quality
kinds and quality spaces. If, on the one side, the distinction between on-
tological features and qualities brings more classes into the picture, on the
other side it is necessary to ascribe a clear semantics to data.

Also, it is not plain clear in the Unified Feature Model whether there is
a semantic distinction between Constraint and Association Attribute. Take,
e.g., the relationship of parallelism that – as we have seen – may hold between
two surfaces in a feature. It is not clear why parallelism should be repre-
sented as a geometric constraint, rather than as an association attribute,
given that both classes are meant to capture relationships. The distinction
between Constraint and Association Attribute makes, however, sense from a
programming perspective, given that the former is linked to a rule to check
the validity of a constraint throughout the designing process. From this
perspective, it seems that the Unified Feature Model mixes ontological in-
formation and the representation of the linguistic elements that are used for
the specification of such information. Association Attribute might be un-
derstood as a class for representing relationships between features, whereas
Constraint as a class for programming rules. If this is correct, the Unified
Feature Model su↵ers from the ambiguity which characterises the very no-
tion of meta-model, as we have seen at the beginning of this section. On the
one hand, the Unified Feature Model is meant to capture the semantics of
the notions that are used to represent and share feature-based data; on the

110

other hand, it also represents the elements of the modelling language used
for the representation. This is not a problem per se but a cut-o↵ distinction
has to be maintained between ontological knowledge (domain entities and
their properties) and the linguistic elements used for their representation.10

In the Feature-based Meta-Model the semantics of object feature classes
is modelled in a debatable manner with respect to the PPO. First, as we
have seen, Function Feature and Parameter Feature are both subsumed by
PPO function, which is meant to represent engineering functionalities. Dif-
ferently, Function Feature and Parameter Feature are not functionalities on
their own; they rather represent features that are functionally characterised
and described in parametric terms, respectively. Therefore, both classes
should not be subsumed under PPO function; rather, they should be related
to PPO function by means of suitable relationships. Second, looking at the
very notion of Parametric Feature, if it is meant to capture the parameters
of an object feature, as it seems, an analysis of what parameters are – in an
ontological sense – is required. Indeed, they are not simply dimensional val-
ues associated to dimensional qualities; as said, to model, e.g., a parameter
on a feature’s diameter means to model how the diameter value can change
according to other elements associated to the feature. In this sense, the rep-
resentation of parameters has to be considered within a larger approach for
the representation of dependency relationships between features. This re-
mains an open issue. Third, as previously said, Geometric Interface Feature
captures (object) features that are developed to connect products. From
an ontological perspective, the property of being an interface is functional,
because it refers to the fact that a certain entity can function as connection
element between two (or more) other entities. Accordingly, the notion of
geometric feature has to be distinguish from the notion of interface feature,
the latter being useful to functionally characterise the former with respect
to assembly modelling.

In a more general perspective, both the Unified Feature Model and the
Feature-based Meta-Model are not explicit about the meaning of the notion
of feature for which they are meant to provide the core modelling elements.
The Unified Feature Model seems to be limited to the representation and
management of engineering features like slots, holes and protrusions. On
the other hand, the Feature-based Meta-Model embraces a more general
perspective, since it also covers components. Also, both approaches are
limited to the type level, since features are represented in relation to CAx
models.

10In the ontological analysis of product models presented in [Sect. 4.2], we informally
characterise the distinction between physical entities and their design properties on the
one hand, and the specification of such properties in modelling languages on the other
hand.

111

7.2.4 Ontology-based restructuring of the meta-models

The figure below (Fig. 7.5) shows how (parts of) the meta-models previously
presented can be restructured according to the ontological understanding of
engineering features proposed in the previous chapters. Inasmuch as both
the Unified Feature Model and the Feature-based Meta-Model represent
features at the type level, we focus hereby on feature types.

Figure 7.5: Partial restructure and integration of the meta-models in
[TCM13, RRB15]

Looking at Fig. 7.5, the class Feature type covers structural Structural
feature type, Structural sub-feature type and Qualitative feature type. Note
that Feature type is marked with an asterisk in the figure; the reasons will
be shortly explained.

Structural feature type – as we saw throughout the previous chapter –
represents feature types that structurally characterise product types. It cor-
responds to the ontology-based counterpart of Generic Feature in [TCM13]
and Object Feature in [RRB15], and subsumes both Form Feature and Com-
ponent type.

We know from [Sect. 6.5] that Form feature models (at the type level)
entities like holes and bosses attached to product types. For the sake of

112

the test case, Component type is introduced to make sense of the Structure
Feature class in [RRB15], which is meant to capture information about com-
ponents. The relationship of structural characterisation (written as CH-st
in Fig. 7.5) holds between Form feature and Component type, meaning that
the latter is structurally characterised by the former.

Form feature is further specialised in Functional feature. As previously
said, this captures form feature functionally characterised. This notion is not
analysed in the thesis and further research is required to understand what it
means for a feature to be functional and to represent it from an ontological
perspective. The literature on feature-based modelling is of little help in
interpreting the notion of functional feature. For the sake of the example we
introduce the primitive CH-ft relationship between Functional feature and
Functionality standing for functional characterisation. A functional feature
might be understood as a form feature which represents what the form
feature is designed for, namely, what it contributes to obtain. For example,
a functional feature for assembly is used to represent that the product to
which the feature is related can be assembled with another object to obtain
an assembled product. As it can be seen in the figure, Interface feature is a
subclass of Functional feature.

We have seen that the representation of attributes plays a central role
in both the Unified Feature Model [TCM13] and the Feature-based Meta-
Model [RRB15]. In [TCM13] attributes cover features’ elements and charac-
teristics (Self-described Attribute), as well as relationships between features
and other entities specified in the models (as Association Attribute). On the
other hand, attributes seem to cover only features characteristics in [RRB15].
We leave aside the representation of attributes as relationships, since they
are not clearly represented in the meta-models. We distinguish between
Qualitative feature type and Structural sub-feature type. The former class
has to be used to capture qualitative information along with their quanti-
tative values; e.g., the shape or the dimension of a hole form feature. The
latter covers (structural) sub-features of (structural) feature types, e.g., the
surface of a hole.11 Note that this class is not introduced in the formal rep-
resentation presented in the previous chapter, even though it can be easily
represented by means of our formalism. This is the reason why the Feature
type class is marked with an asterisk in Fig. 7.5; it is indeed meant to be
di↵erently defined from the notion of feature type in [Ch. 6] in order to cover
structural sub-features, too. The relationship of qualitative characterisation
(CH-q in Fig. 7.5) holds between Structural sub-feature type, Structural fea-
ture type and Qualitative feature type. Accordingly, instances of the latter
class qualify instances of the former two classes.

Di↵erently from the Feature-based Meta-Model, the taxonomy in Fig. 7.5
does not include Parameter Feature. As said, further research is required

11The label ‘sub-feature’ is borrowed from [TCM13, p.94].

113

on the ontological representation of parameters, possibly in terms of de-
pendence relationships between the values of features’ dimension qualities.
Also, di↵erently from the Unified Feature Model, the taxonomy does not in-
clude a Constraint class, since its semantics is not clear in the meta-model.
Finally, di↵erently from both the Feature-based Meta-Model and the Uni-
fied Feature Model, our approach allows for a transparent representation of
the relationships between engineering features and products. As we saw in
[Ch. 5], hosting has to be used when engineering features represent ontolog-
ical features and parthood when they represent components; inherence is the
relationship holding between instances of Qualitative feature type and the
qualified objects.

114

Chapter 8

Conclusion

As argued across the previous chapters, the development of feature-based ap-
proaches for representing, sharing and eventually integrating multiple prod-
uct models cannot avoid a systematic and unambiguous treatment of the
meaning of engineering relevant notions, that of feature foremost. In order
to manage data in a reliable and transparent way for both automated agents
and humans, its meaning – in terms of the domain entities referred to in data
models – has to be explicitly represented.

Computational ontologies and other types of information models em-
ployed for product knowledge representation currently treat features as bun-
dles of attributes without principled approaches to distinguish features from
non-features elements. Also, as we saw, they employ underspecified relation-
ships between features, as well as between features and other elements to
which they are linked, and often also combine di↵erent types of information
without addressing relevant distinctions. To tackle these problems and sup-
port the development of well-founded feature-based modelling approaches,
our proposal was to contextualise the treatment of feature-like notions within
a broader ontological understanding of engineering knowledge. The result
is a high-level ontological characterisation of engineering features.

For our purposes we adopted the core release of the dolce foundational
ontology, namely dolce-core. This provides the basic high-level classes,
relationships and axioms to represent technical knowledge. We found par-
ticularly useful the dolce-core distinction between concepts and quality
spaces, distinction that we adopted and extended to represent design prop-
erties. In our ontology, design properties are either design concepts or quality
spaces, possibly concretised in physical supports for communication. Design
properties are thus either created (as design concepts) or adopted (as quality
spaces) in designing activities to define the properties that designed objects
have to satisfy when physically realised. The notion of design property al-
lowed us to distinguish between the type and the physical levels of product
knowledge representation. Among design concepts, product types have a

115

special role, because they define the properties that intentionally produced
objects have to satisfy to be technical products. These distinguish from both
by-products and defective artefacts. The former are not intentionally pro-
duced and result as a consequence of performing production events. The
latter are intentionally produced, although they fail in satisfying the design
properties which are mandatory according to design experts.

Looking at engineering features, we individuated in components, quali-
ties, amounts of matter and ontological features the high-level entities that
they are meant to represent. The di↵erences between these entities are not
usually acknowledged in the engineering literature and this has led to poor
conceptual frameworks. In our work the ontological treatment of quali-
ties and amounts of matter was inherited from dolce-core. The analysis
and formal representation of ontological features were proposed by taking
into account the philosophical literature and previous works in the area of
applied ontology, as well as by considering engineering design and manu-
facturing knowledge. We also proposed an ontological understanding of the
notion of component. Accordingly, a component is a technical product that
is explicitly designed to be assembled, even though it can exist without be-
ing related to any product. The distinction between qualities, amounts of
matter, components and ontological features allows us to identify clearly
the relationships holding between engineering features and the products to
which they relate. Moreover, given the aforementioned distinction between
the physical and the type levels of product knowledge representation, we
distinguished among engineering features between feature types and physical
features. The former are design concepts used to characterise either qual-
itatively or structurally product types; the latter are the physical entities
that instantiate feature types. The distinction between feature types and
physical features is common in the literature but it is often blurred, or not
addressed in a systematic way.

Given the relevance of form features in modelling approaches, we anal-
ysed how they are understood across the literature. More specifically, we
found that form features are commonly treated as either shape qualities,
material or immaterial objects. By discussing the pros and cons of these
di↵erent perspectives, we propose how they could be integrated within a
unified ontological view.

Finally, note that the ontological distinctions proposed across the the-
sis are based on a descriptive approach aimed at representing in a coherent
manner experts’ world-views. Each notion has been indeed introduced in
our work only after a careful analysis of the literature. For example, the
distinction between the type and the physical levels of product knowledge
representation is recurrently proposed in engineering without a systematic
treatment. On the other hand, some high-level distinctions also depend on
the author’s personal view; for instance, we saw in [Ch. 4] that technical
products are distinguished from technical roles. Even in these cases, how-

116

ever, we took the approach that could better fit with engineering technical
knowledge.

8.1 Limits of the approach

(i) Lack of geometric/topological information. When feature-based
approaches are adopted in CAx systems, especially in CADs, they are
employed also to cover quantitative information, especially concerning
the geometry or the topology of the products at hand. For example,
the distinction between di↵erent form feature types like through and
blind holes may be done in topological and geometric terms. Our
approach is limited under this respect, since we did not provide a
formal treatment of the ontology that is able to convey geometric or
topological information.

However, the starting point of our research was the lack of trans-
parency in current approaches about the domain entities that features
are meant to represent. This means that before moving to a formal
representation of features in a language that allows for the specification
of geometric and/or topological constraints, the ontological clarifica-
tion of feature-like notions is necessary. As seen in [Sect. 7.2], the
adoption of geometric constraints is useful to specify that, e.g., the
surfaces of a form feature are parallel. On the other hand, modelling
this constraint means to assume that a form feature is something that
has surfaces which can stand in a specific relationship to each other.
However, this should not be taken for granted; if a form feature is, e.g.,
understood as a shape-quality, to be parallel are (some of) the prod-
uct’s surfaces where the form feature inheres, rather than the feature’s
surfaces. The characterisation of the ontological nature of features is
therefore prior to their representation in a language suitable to catch
geometric and/or topological information. Actually, the ontological
understanding of features supports their geometric and/or topological
treatment, because it provides an overall framework of what features
are. (In the next section we comment on how our ontology may be
enhanced with geometric/topological knowledge.)

(ii) Limited coverage of feature classes. We saw that feature-based
approaches include a variety of feature classes. The ontology we pro-
posed only covers form features and needs to be therefore extended,
when further classes are required by applications. As claimed across
the chapters, the choice of including the notion of form feature in
the ontology relies on its relevance in feature approaches, since di↵er-
ent feature classes are form features enriched with specific knowledge,
e.g., about functionalities or manufacturing. Despite the limited cov-

117

erage of feature classes, the ontology provides the overall conceptual
framework to allow for the inclusion of specific classes in a principled
manner.

In a broader perspective, the generality of the proposed ontology may
represent a limitation when the ontology is looked from its ability
to handle real-world data processed within CAx systems. As said
throughout the thesis, the purpose of the presented work is to pro-
vide an ontological sound basis for feature-based product knowledge
representation. As such, the ontology is not committed to specific
modelling scenarios or CAx applications. Therefore, in order to func-
tion as reference ontology for engineering data management, further
research work is needed for its extension. We address this issue in the
next section.

(iii) Implementation. At the state of the art, ontologies employed within
the area of product knowledge representation are mainly developed in
the languages of the Semantic Web initiative, OWL and SWRL fore-
most. These languages are supported by tools which allow for the
creation of ontologies and their population with specific data; they
are also provided with reasoning mechanisms to check ontology con-
sistency, as well as to derive theorems from the stated axioms. At
the moment, our ontology is formalised in first-order logic and its rep-
resentation in OWL, or another language suitable for applications is
addressed as future work.

8.2 Future work

In addressing future work following up the research developed in the thesis,
we distinguish between research lines concerning the further development
of the presented ontology and more general issues about the interaction
between applied ontology and product knowledge representation.

A) Further developments of the presented ontology

(i) Representation of the notions informally introduced in
the thesis. We presented a number of notions across the thesis
distinguishing, e.g., between technical products and by-products,
or between the relationships of partial and total compliance. How-
ever, only a subset of these notions were formalised to support
feature modelling. Further work is necessary to axiomatise the
remaining notions;

(ii) Complex quality spaces. We saw in the previous chapters
that the adoption of qualities spaces should allow for the repre-
sentation of (complex) qualities, which combine di↵erent quality

118

kinds, e.g., dimensions and shapes. Di↵erent strategies may be
adopted to purse this line of research. Two examples are hereby
given.

One the one hand, one may develop a framework for the system-
atic treatment of multi-dimensional quality spaces, whose inter-
linked dimensions allow for the integrated representation of the
required information. A multi-dimensional shape space may in-
clude, e.g., a dimension for shape along with a dimension for
depth and a dimension for diameter. Relationships between the
dimensions are then needed to establish their mutual dependen-
cies. For example, one may establish that a certain shape goes
along with some diameter and depth values. According to this
perspective, when an individual quality is located in a multi-
dimensional shape space, it is located in a multi-dimensional re-
gion, which provides shape, diameter and depth values.1

On the other hand, one may keep separate the spaces associated
to di↵erent quality kinds and model a complex individual quality
as comprising qualities of di↵erent kinds. For example, a complex
individual shape quality may consist in a shape quality, a depth
quality and a diameter quality, where each of these qualities is
located in (a region of) the space associated to its correspond-
ing kind. As in the previous approach, dependencies between
the spaces are needed to constrain the relationships between the
values of the qualities.

Further research is required to firstly analyse engineering mod-
elling cases and application requirements concerning the use of
complex qualities, and to secondly investigate which ontological
approach is better suited for their representation. The second
approach aforementioned seems at first glance more flexible than
the first one, because it does not necessarily constrain the shape
space to the depth and the diameter spaces.2

(iii) Enrichment of the ontology with geometric and topolog-
ical knowledge. We foresee at least two di↵erent approaches to
combine our ontology with a geometric and/or topological repre-
sentation of features.

First, one may enrich the formal representation of the ontology
by means of a mereo-topological or mereo-geometrical formal-

1This is the approach proposed in [Gär14] to represent colours. The colour space
is, indeed, multi-dimensional, since it comprises a dimension for hue, a dimension for
brightness and a dimension of saturation. Dependencies between the dimensions establish
that having a certain hue value implies having certain brightness and saturation values.

2We saw in [Sect. 6.5] that shapes are sometimes only qualitatively described in engi-
neering.

119

ism. A number of modelling approaches based on the adop-
tion of these formalisms have been recently proposed [GDD+15,
KYK08]. They nevertheless su↵er from logical flaws and have not
been developed on sound ontological basis. Mereo-topologies and
mereo-geometries are, however, hardly tractable by computer sys-
tems, because they are developed in expressive logical languages.
If the representation of topological and geometrical constraints is
meant to support the computational treatment of product knowl-
edge, a di↵erent approach may be required. (See second mod-
elling alternative.)

Second, to trade-o↵ the ontological representation of technical
knowledge and its geometric/topological representation in a com-
puter amenable way, one may distinguish between two di↵erent
representational layers, an ontology and what may be called fea-
ture box. The ontology can be used for a qualitative treatment of
domain knowledge that identifies and distinguishes between the
domain entities at play for product knowledge representation, as
well as to provide the overall vocabulary for its unambiguous
treatment. The feature box, on the other side, would consist in
the specification of the form features needed in an application
by means of a suitable mathematical language. For example,
the ontology may include a taxonomy of hole form features that
distinguishes between blind, through and counterbore holes; the
feature box, e.g., coded in MathLab, may provide the represen-
tation of these classes using geometric and topological formulas.
A mapping system is then required to associate classes from the
ontology to the formulas in the feature box.

(iv) Specialisation of the ontology. To foster the applicability of
the ontology to specific modelling scenarios, the ontology needs
to be extended with technical knowledge. This line of research
may be pursued by exploring further the application of feature
approaches in, e.g., CAD/CAPP integrated systems or Product
Lifecycle Management (PLM) systems, and by specialising the
ontology with the required classes, relationships and axioms. For
example, the representation of manufacturing features may fa-
cilitate the application of the ontology to handle manufacturing
data about the realisation of products in production systems;
or, the representation of functional features may be used to ex-
plicitly convey functional knowledge to support, e.g., assembly
modelling. The representation of both manufacturing processes
and functionalities is however challenging, and requires a careful
analysis of how they can be represented in a way that is both
ontologically coherent and sound with respect to experts’ con-

120

ceptualisations.

(v) Formalisation of the ontology for applications. The formal
representation of our ontology in a Semantic Web language would
likely enhance its applicability within an information system to
handle engineering data. Recall, however, that languages like
OWL have been explicitly designed to trade-o↵ expressivity and
computational tractability; they are therefore less expressive than
FOL. The codification of our ontology in OWL will thus limit its
ability to represent experts’ conceptualisations, which – as we
have seen across the thesis – require the handling of complex
knowledge and the use of expressive formal languages.

B) Ontology-based product knowledge representation

(i) Ontology-based modelling patterns. As argued throughout
the thesis, the development of ontologies in the area of product
knowledge representation is seldom guided by principled method-
ologies. For example, it is not uncommon to find “ontologies”
that erroneously use taxonomical relationships between classes,
where the intended semantics of the relationships would instead
require the adoption of horizontal (non-taxonomical) links be-
tween the classes at hand. A methodology like OntoClean [GW00]
is scarcely used for product knowledge representation, whereas its
application can support the development of principled ontologies.
Notoriously, however, OntoClean only distinguishes between dif-
ferent meta-properties (e.g., rigidity, identity, unity), whereas a
methodology for ontology development in design or manufactur-
ing has to support the ontological analysis and representation of
more specific and recurrent modelling cases within these domains.
An example that we start addressing in the thesis is how to rep-
resent the distinction between products, as physical objects, and
product types, as design properties. Another example previously
mentioned is how to ontologically represent qualities that com-
bine multiple quality kinds.

To purse this line of research one should firstly look for recur-
rent modelling patterns for product knowledge representation;
secondly, analyse the patterns from the perspective of an ontol-
ogy for product knowledge representation, like the one we pro-
posed; thirdly, represent the patterns independently from specific
application platforms in order to foster their re-usability; finally,
codify the patterns within a modelling application. The latter
task may be carried out by means of OntoUML,3 which provides

3http://www.menthor.net/ontouml.html, last access October 2016.

121

http://www.menthor.net/ontouml.html

a guided methodology based on (the extension of) OntoClean
and a UML tool to develop ontologies. A library of manufac-
turing modelling patters may be integrated in the tool to assist
domain experts in the development of application ontologies. As
claimed in the third bullet point of the (A)-list above, modelling
tools for engineering knowledge representation should also sup-
port the integration of ontologies with (generally speaking) boxes
to specify topological and/or geometric constraints.

(ii) Ontological analysis and representation of relationships.
The representation of relationships between the classes in an in-
formation model is notoriously a hard task [GW08, GG15]. We
have already mentioned that models developed for product knowl-
edge representation often adopt ad hoc strategies in establishing
relationships between the represented classes. The rigorous treat-
ment of relationships on ontological bases has already proven its
impact in improving the structure of information models, as well
as their integration [SCK+05, GW08]. A similar research line
may be pursued for product knowledge representation aimed at
individuating, analysing and representing core relationships to be
adopted by various information modelling resources.

As a general and conclusive comment, it is needed in our understanding
the establishment of a scientific community whose goal is to put forward
the research and the application of the technics and technologies of applied
ontology in the broad area of product knowledge representation. At the mo-
ment, disparate and disconnected research e↵orts are carried out, most of
the time ignoring their respective problems and results. If di↵erent research
e↵orts are not coordinated under an overall research agenda, it becomes hard
to understand the long-terms goals that the design/manufacturing commu-
nity would like to reach by the application of ontologies; consequently, it
becomes hard to settle mature research initiatives that do not just aim at
solving the issues of specific modelling scenarios, but contextualise these
issues within a general research picture.

122

Appendices

123

Appendix A

The missing and replaceable
artefact

In discussing about the ontological nature of artefacts for engineering knowl-
edge representation, Guarino [Gua14] presents the problem of the missing
and replaceable artefact. The problem goes as follow: Imagine to bring your
car to the garage, because the left headlamp is damaged, and the technician
who assists you observes that the car’s headlamp has been already replaced
twice in the last few weeks. Nothing more than an everyday scene of life, but
let us ask: What is the ontological picture of this scene? More specifically,
what kind of thing is the headlamp, which is meant as having been replaced
twice in the car?

Apart form the thought experiment, it is common in the everyday par-
lance to express sentences which are meaningful only if a certain ontology is
admitted. In the sentence “The lamp of my car has been replaced twice”, it
seems that the expression ‘the lamp’ refers to an object with its identity and
unity conditions. ‘The lamp’, however, cannot denote a physical (and mate-
rial) object, since it would be misleading to consider an object as something
that can be replaced, while still preserving its own identity. The very notion
of replacement indeed alludes to the fact that an object is substituted with
something else. What is then ‘the lamp’ replaced twice in your car?

According to Guarino, the lamp is “[...] a special imaginary, conventional
entity”, which we shall call conventional artefact in the remaining of this
section.1 A conventional artefact is understood as follows in Guarino’s view:

1. It is an entity that, whenever it is present in time, has a spatial loca-
tion. It is therefore an object in dolce-core sense;

2. It is an artefact, because it is intentionally designed and therefore
complies with a design specification;2

1Guarino talks about ‘conventional component’; we use ‘artefact’ to be more general.
2As noted in [Sect. 4.3], a design specification for Guarino establishes the properties

124

3. It is constantly specifically dependent for its existence on another arte-
fact, called its host. For example, the conventional lamp depends on
the car, which is thus the host of the conventional lamp. Note that
Guarino explicitly stresses that the dependence has to be on a specific
artefact, which means that the conventional left headlamp of my car
exists as long as my car exists. (Recall the di↵erence between generic
and specific dependence mentioned in [Sect. 6.2].)

4. It is present in time in two di↵erent ways, namely:

(a) Actual presence: a conventional artefact is actually present at a
certain time t in the physical location r established by the cor-
responding design specification ds, if there is a physical object
that is located in r and that complies with ds. The physical ob-
ject is called the physical constituent of the conventional artefact.
For example, the conventional left headlamp cv l# of my car is
actually present in the dedicated location r# of my car estab-
lished by the design specification ds#, when there is a physical
lamp ph l# located in r# that complies with ds#. (The latter
constraint guarantees that in order for a physical object to be
“attached to” an artefact, it has to meet some pre-defined design
properties.)

(b) Virtual presence: a conventional artefact is virtually present at a
certain time t in the physical location established by the design
specification, if it is not actually present at t but its host is present
at t. Accordingly, when the conventional left headlamp cv l# of
my car is virtually present at t in the dedicated location r# of
the car established by the design specification ds#, this means
the car is present at t but there is no physical lamp ph l# located
in r# at t.

5. It is characterised by a number of nominal qualities. When it is ac-
tually present, a conventional artefact inherits the properties of its
constituent. Guarino provides the following example: “[...] when a
lamp di↵erent from the recommended one is mounted [in a car], we
can say that the headlamp has a nominal power of 35W, while the
actual power is, say, 50 W”.

Following this line of reasoning, Guarino himself recognises that a con-
ventional object is some sort of ontological feature (in dolce sense). More
specifically, he is inclined to see a conventional object as a relative place (see
[Sect. 5.6]) in an artefact that is empty in the case of virtual presence and
filled with matter (in his terminology) when actually present.

that some physical object has to satisfy to be considered as a realisation of the specification.
A design specification can be a mental entity in a designer’s head.

125

To summarise, in order to make ontologically sense of the missing and
replaceable artefact problem, Guarino proposes to consider (at least) the fol-
lowing entities: design specifications, physical artefacts, conventional arte-
facts and their physical constituents. We argue in the following that Guar-
ino’s notion of conventional artefact is both problematic and unnecessary.
We show how the ontological theory presented in the previous chapters can
deal with the missing and replaceable artefact problem by getting rid alto-
gether of conventional objects.

Our main concern with the notion of conventional object is the idea that
it is a physical object which can be actually present at some time or only
virtually present at some other time. Assuming Guarino’s perspective, let
us consider John’s car car# whose left physical headlamp was removed at
a certain time t from the car’s location r#. Following Guarino, even if a
physical headlamp is not in place, there is still the conventional headlamp
located in r#. Also, as long as a physical headlamp is not there, the con-
ventional headlamp is only virtually present, but once a physical headlamp
is placed in r#, the conventional headlamp turns into actual presence.

What does it mean that a conventional object can turn from pure vir-
tual to actual presence and vice versa? It seems that a conventional object
is sometimes immaterial and sometimes material. In some case, indeed, it
is present in space and time as something immaterial (virtual presence),
whereas in some other case it is present “in flesh and blood” in virtue of the
presence of a physical object by which it is constituted (actual presence).
But what kind of object can be either immaterial or material at di↵erent
times while preserving its own identity? The idea that an object can com-
pletely loose and acquire materiality (and vice versa) while remaining the
same is hard to swallow. Apart from this and other ontological concerns
that may be raised,3 even from a common sense perspective it seems unnat-
ural to think that talking about the lamp of my car, when there is no lamp
in the car, means referring to some object, which is in the car but in an
immaterial way. It is true that a technician may (ambiguously) pronounce
the sentence “The lamp has been changed twice this year”, as if he or she
referred to a specific object, but conventional objects demand more of what
they are meant to solve.

Moving now to the pars construens of the discussion, we argue that the
notion of design concept along with an overall understanding of physical
artefacts is enough to face the missing and replaceable artefact problem.
Consider once again the example: John’s car is there at t with the left
headlamp removed, that is, there is no left (physical) headlamp in the car at

3Just to briefly mention another issue, it remains unclear what it means that a conven-
tional object inherits the qualities of the constituting object. Note that if a conventional
object is designed, it may not inherit (whatever it means) qualities that are not defined
in the corresponding design (specification).

126

t. Then, John brings the car to the garage where it gets its new left headlamp
at t0. This new lamp, call it ph l#1, can be installed in (a component of)
the car just because it complies with the product type of the car. The
product type, indeed, establishes that the headlamps to be installed in the
car need to have, e.g., a certain dimension and voltage. To be more precise,
in our theory we would say that ph l#1 has to comply with the (design)
type that structurally characterises the product type of the car. In other
words, there are some design properties dp# within the product type pt#
that enjoy identity and unity conditions, and that have to be satisfied by
physical lamps, in order for the latter to be installed in the car. Accordingly,
when a physical lamp is missing from the car, this means that there is no
physical object located in the dedicated location of the car that satisfies the
type dp#; when the physical lamp ph l#1 is replaced with another lamp
ph l#2, then both of them complies (at least at certain times) with dp# (in
a relevant way).

In this picture there is no object within a product that is either virtually
or actually present, whenever a product’s component is missed or replaced.
There are artefacts which can be substituted within larger artefacts on the
basis of their design properties. From the perspective of a common sense
statement like “The lamp of my car has been already replaced twice”, its
surface semantics should not bring us into ontological quagmires. One may
assume that common sense is sometimes loose in its way of speaking. The
expression ‘the lamp’ in the sentence above may, indeed, refer to the physical
objects that were placed in and removed from the car. The sentence above
only apparently refers to a single object, whereas it refers to two di↵erent
lamps, which satisfy some common design properties. The sentence may not
represent a coherent way of speaking with respect to an underlying ontology
of physical objects and artefacts, but we are not forced to get common sense
seriously from an ontological perspective.

To conclude, Guarino succeeds in the semantic analysis of common sense
sentences, when the latter seem to refer to objects that can miss from or
can be replaced within other objects while preserving their own identity.
However, his ontology brings into the picture conventional objects as enti-
ties whose identity conditions raise some doubts, since they are meant as
being material at some times and immaterial at some other times. On the
other hand, our ontology faces the missing and replaceable artefact problem
while getting rid of conventional objects, by relying on the distinction be-
tween design properties and the artefacts that comply with these properties.
This should not be seen as an Occamist strategy that simply cuts away the
problem; it is rather a di↵erent approach to deal with it. Accordingly, the re-
placement of an artefact a1 with another artefact a2 within a larger artefact
a3 is done on the basis of the (design) type ty that both a1 and a2 satisfy (in
some relevant way). When an artefact a1 is missing from a larger artefact

127

a3, it means that there is no artefact in a3 that complies with ty, namely,
with the type that a1 would satisfy, were it included in a3. This approach
may, however, require to rephrase common sense sentences in order to get
rid of their superficial semantics. As a methodological remark, this does not
mean that common sense is completely misguided in its ontological claims;
it rather means that its ambiguity is a source of traps for the ontologist.

128

Appendix B

Glossary of terms

Artefact Artefact
DesignConcept Design Concept
FeatureTypeQ Qualitative feature type;

FeatureTypeQ(c1, c2), “c1 is a
qualitative feature type in c2”

FeatureTypeST Structural feature type;
FeatureTypeST (c1, c2), “c1 is a
structural feature type in c2”

FeatureType Feature type; FeatureType(x, y),
“x is a feature type in y”

PhysicalFeatureQ Qualitative physical feature;
PhysicalFeatureQ(q, x), “q is a
qualitative ph-feature in x”

PhysicalFeatureST Structural physical feature;
PhysicalFeatureST (x, y), “x is a
structural ph-feature in y”

PhysicalFeature Physical feature;
PhysicalFeature(x, y), x is a
physical feature in y

FormFeature Form feature; FormFeature(x, y),
“x is a form feature in y

Table B.1: Glossary

129

F Ontological feature
MaterialFeature Ontological material feature
ImmaterialFeature Ontological immaterial fea-

ture
MaterialObject Material object
ImmaterialObject Immaterial object
ProductType Product type
TechComponent Technical component
TechProduct Technical product

Table B.2: Glossary cont’d

CN Concept
E Event
M Amount of matter
OB Object
PT Particular
Q Individual quality
SP Quality space

Table B.3: Glossary of dolce-core classes

130

Bibliography

[ABAS16] A. Abadi, H. Ben-Azza, and S. Sekkat. An ontology-based
framework for virtual enterprise integration and interoperabil-
ity. In Electrical and Information Technologies (ICEIT), 2016
International Conference on, pages 36–41. IEEE, 2016.

[Adr13] P. Adriaans. Information. In E.N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Fall 2013 edition, 2013.

[AGGS+14] S. Abdul-Ghafour, P. Ghodous, B. Shariat, E. Perna, and
F. Khosrowshahi. Semantic interoperability of knowledge in
feature-based CAD models. Computer-Aided Design, 56:45–57,
2014.

[AGGSP07] S. Abdul-Ghafour, P. Ghodous, B. Shariat, and E. Perna. A
common design-features ontology for product data semantics
interoperability. In Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Web Intelligence, pages 443–446. IEEE
Computer Society, 2007.

[AH15] F. Ahmed and S. Han. Interoperability of product and manu-
facturing information using ontology. Concurrent Engineering,
23(3):265–278, 2015.

[AHC15] M.M. Andreasen, Claus T. Hansen, and P. Cash. Conceptual
Design: Interpretations, Mindset and Models. Springer, 2015.

[AHYC12a] N. Anjum, J. A. Harding, R.I.M. Young, and K. Case. Man-
ufacturability Verification through Feature-based Ontological
Product Models. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 22,
2012.

[AHYC12b] N. Anjum, J.A. Harding, R.I.M. Young, and K. Case. Media-
tion of foundation ontology based knowledge sources. Comput-
ers in Industry, 63(5):433–442, 2012.

131

[AK07] S.M. Amaitik and S.E. Kiliç. An intelligent process planning
system for prismatic parts using STEP features. The Interna-
tional Journal of Advanced Manufacturing Technology, 31(9-
10):978–993, 2007.

[Ale79] C. Alexander. The timeless way of building. Oxford University
Press, 1979.

[And92] M.M. Andreasen. Designing on a designer’s workbench (DWB).
In Proceedings of the 9th WDK Workshop, pages 233–249, 1992.

[Anj11] N. Anjum. Verification of Knowledge shared across Design and
Manufacture using a Foundation Ontology. PhD thesis, Lough-
borough University, 2011.

[AS09] S. Ahmed and M. Storga. Merged ontology for engineering de-
sign: Contrasting empirical and theoretical approaches to de-
velop engineering ontologies. AI EDAM, 23(4):391–407, 2009.

[ASS15] R. Arp, B. Smith, and A.D. Spear. Building Ontologies with
Basic Formal Ontology. Mit Press, 2015.

[BB00] R. Bidarra and W.F. Bronsvoort. Semantic feature modelling.
Computer-Aided Design, 32(3):201–225, 2000.

[BBB00] M. Belaziz, A. Bouras, and J-M. Brun. Morphological analysis
for product design. Computer-Aided Design, 32(5):377–388,
2000.

[BC14] M. Bertamini and R. Casati. Figures and holes. In J. Wage-
mans, editor, Handbook of Perceptual Organization, pages 281–
293. Oxford University Press, 2014.

[BCGV09] S. Borgo, M. Carrara, P. Garbacz, and P.E. Vermaas. A for-
mal ontological perspective on the behaviors and functions of
technical artifacts. AI EDAM, 23:3–21, 1 2009.

[BCM+03] F. Baader, D. Calvanese, D.L. McGuinnes, D. Nardi, and
P.F. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[BFG+11] S. Borgo, M. Franseen, P. Garbacz, Y. Kitamura, R. Mizoguchi,
and P.E. Vermaas. Technical artifact: An integrated perspec-
tive. In P.E. Vermaas and V. Dignum, editors, Formal Ontolo-
gies Meet Industry. Proceedings of the 5th International Work-
shop (FOMI), pages 3–15. IOS Press, Amsterdam, 2011.

132

[BFG+14] S. Borgo, M. Franssen, P. Garbacz, Y. Kitamura, R. Mizoguchi,
and P.E. Vermaas. Technical artifacts: An integrated perspec-
tive. Applied ontology Journal, 9(3-4):217–235, 2014.

[BG00] G. Brunetti and B. Golob. A feature-based approach towards
an integrated product model including conceptual design infor-
mation. Computer-Aided Design, 32(14):877–887, 2000.

[BG05] G. Brunetti and S. Grimm. Feature ontologies for the explicit
representation of shape semantics. International Journal of
Computer Applications in Technology, 23(2):192–202, 2005.

[BGM96] S. Borgo, N. Guarino, and C. Masolo. Qualitative spatial
modelling based on parthood, strong connection and congru-
ence. Internal report, Laboratory for Applied Ontology (ISTC-
CNR), 1996.

[BJ93] W.F. Bronsvoort and F.W. Jansen. Feature modelling and
conversion. key concepts to concurrent engineering. Computers
in Industry, 21(1):61–86, 1993.

[BL07] S. Borgo and P. Leitao. Foundations for a core ontology of
manufacturing. In R. Sharman, R. Kishore, and R. Ramesh,
editors, Ontologies. A Handbook of Principles, Concepts and
Applications in Information Systems, pages 751–775. Springer
US, 2007.

[BM10] S. Borgo and C. Masolo. Full mereogeometries. The review of
symbolic logic, 3(4):521–567, 2010.

[BM13] S. Borgo and C. Masolo. Foundational choices in DOLCE.
In S. Staab and R. Studer, editors, Handbook on Ontologies.
Springer Science & Business Media, 2013.

[BN00] M.P. Bhandarkar and R. Nagi. STEP-based feature extraction
from STEP geometry for agile manufacturing. Computers in
Industry, 41:3–24, 2000.

[BNM08] B. Babic, N. Nesic, and Z. Miljkovic. A review of automated
feature recognition with rule-based pattern recognition. Com-
puters in Industry, 59:321–337, 2008.

[Boo94] G. Boothroyd. Product design for manufacture and assembly.
Computer-Aided Design, 26(7):505–520, 1994.

[Bor14] S. Borgo. An ontological approach for reliable data integration
in the industrial domain. Computers in Industry, 65(9):1242–
1252, 2014.

133

[Bro03] D.C. Brown. Functional, behavioral and structural features. In
ASME 2003 International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Con-
ference, pages 895–900. American Society of Mechanical Engi-
neers, 2003.

[Bru03] G. Brunetti. Feature-based virtual engineering. In R. Soenen
and G.J. Olling, editors, Feature based product life-cycle mod-
elling. Conference on Feature Modelling in Advanced Design
for the Life Cycle Systems (FEATS), June 12-14, 2001, Valen-
ciennes, France. Springer Science Business Media New York,
2003.

[BS11] G. Baxter and I. Sommerville. Socio-technical systems: From
design methods to systems engineering. Interacting with com-
puters, 23(1):4–17, 2011.

[BSŠT14] S. Borgo, E.M. Sanfilippo, A. Šojić, and W. Terkaj. Towards
an ontological grounding of IFC. In A. Rademaker and V.K.
Chaudhri, editors, Proceedings of the 6th Workshop on Formal
Ontology Meets Industry (FOMI), volume 1333. Ceur workshop
proceedings, 2014.

[BSŠT15] S. Borgo, E.M. Sanfilippo, A. Šojić, and W. Terkaj. Ontological
analysis and engineering standards: An initial study of IFC.
In Ontology Modeling in Physical Asset Integrity Management,
pages 17–43. Springer, 2015.

[BV09] S. Borgo and L. Vieu. Artefacts in formal ontology. In A. Mei-
jers, editor, Handbook of Philosophy of Technology and Engi-
neering Sciences, pages 273–308. Elsevier, 2009.

[BVLDV09] J. Beetz, J. Van Leeuwen, and B. De Vries. IfcOWL: A case
of transforming EXPRESS schemas into ontologies. Artificial
Intelligence for Engineering Design, Analysis and Manufactur-
ing, 23(01):89–101, 2009.

[BZSL10] C. Bock, X-F. Zha, H-W. Suh, and J-H. Lee. Ontological prod-
uct modeling for collaborative design. Advanced Engineering
Informatics, 24(4):510–524, 2010.

[CB14] A. Chakrabarti and L.T.M. Blessing. An Anthology of Theories
and Models of Design: Philosophy, Approaches and Empirical
Explorations. Springer Science & Business Media, 2014.

[CCF+09] C.E. Catalano, E. Camossi, R. Ferrandes, V. Cheutet, and
N. Sevilmis. A product design ontology for enhancing shape

134

processing in design workflows. Journal of Intelligent Manu-
facturing, 20(5):553–567, 2009.

[Chu10] N. Chungoora. A Framework to Support Semantic Interoper-
ability in Product Desing and Manufacture. PhD thesis, Lough-
borough University, 2010.

[CMS07] G. Colombo, A. Mosca, and F. Sartori. Towards the design of
intelligent CAD systems: An ontological approach. Advanced
Engineering Informatics, 21(2):153–168, 2007.

[CMTT04] G. Chen, Y-S. Ma, G. Thimm, and S-H. Tang. Unified
feature modeling scheme for the integration of CAD and
CAx. Computer-Aided Design and Applications, 1(1-4):595–
601, 2004.

[CMTT06] G. Chen, Y-S. Ma, G. Thimm, and S-H. Tang. Associations in
a unified feature modeling scheme. Journal of Computing and
Information Science in Engineering, 6(2):114–126, 2006.

[CMV03] O. Coma, C. Mascle, and P. Veron. Geometric and form feature
recognition tools applied to a design for assembly methodology.
Computer-Aided Design, 35:1193–1210, 2003.

[Coc91] N. Cocchiarella. Formal ontology. In H. Burkhardt and
B. Smith, editors, Handbook of Metaphysics and Ontology,
pages 640–647. Philosophia Verlag, 1991.

[CR08] A.G. Cohn and J. Renz. Qualitative spatial representation and
reasoning. In F. Van Harmelen, V. Lifschitz, and B. Porter, ed-
itors, Handbook of Knowledge Representation, pages 551–596.
Elsevier, 2008.

[CRS+13] S.K. Chandrasegaran, K. Ramani, R.D. Sriram, I. Horváth,
A. Bernard, R.F. Harik, and W. Gao. The evolution, chal-
lenges, and future of knowledge representation in product de-
sign systems. Computer-Aided Design, 45(2):204–228, 2013.

[CRT10] X. Chang, R. Rai, and J. Terpenny. Development and uti-
lization of ontologies in design for manufacturing. Journal of
Mechanical Design, 132(2):1–12, 2010.

[CTCM13] Z. Cheng, S-H. Tang, G. Chen, and Y-S. Ma. Unified feature
paradigm. In Y-S. Ma, editor, Semantic Modeling and Inter-
operability in Product and Process Engineering, pages 117–142.
Springer, 2013.

135

[CV94] R. Casati and A. Varzi. Holes and other Superficialities. Mit
Press, 1994.

[CV99] R. Casati and A. Varzi. Parts and Places: The Structures of
Spatial Representation. MIT Press, 1999.

[CV14] R. Casati and A. Varzi. Holes. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Spring 2014 edition,
2014.

[CY11] N. Chungoora and R. I.M. Young. Semantic reconciliation
across design and manufacturing knowledge models: A logic-
based approach. Applied Ontology, 6(4):295–315, 2011.

[CYG+13] N. Chungoora, R.I.M. Young, G. Gunendran, C. Palmer, Z. Us-
man, N. Anjum, A.F. Cutting-Decelle, J.A. Harding, and
K. Case. A model-driven ontology approach for manufacturing
system interoperability and knowledge sharing. Computers in
Industry, 64(4):392–401, 2013.

[DD15] I. Dragos and M.R. Dijmarescu. Configuration management by
DOLCE upper-level ontology. In 7th International Conference
on Manufacturing Science and Education, 2015.

[DEBB05] L.M. Deshayes, O. El Beqqali, and A. Bouras. The use of pro-
cess specification language for cutting processes. International
Journal of Product Development, 2(3):236–253, 2005.

[Den99] D. Deneux. Introduction to assembly features: An illustrated
synthesis methodology. Journal of Intelligent Manufacturing,
10(1):29–39, 1999.

[DFEG+90] T.L. De Fazio, A.C. Edsall, R.E. Gustavson, J.A. Hernandez,
P.M. Hutchins, H.W. Leung, S.C. Luby, R.W. Metzinger, J.L.
Nevins, and K.K. Tung. A prototype of feature-based design
for assembly. Advances in Design Automation, 1, 1990.

[DGG+07] C. Dartigues, P. Ghodous, M. Grüninger, D. Pallez, and R. Sri-
ram. CAD/CAPP integration using feature ontology. Concur-
rent Engineering, 15(2):237–249, 2007.

[Dip93] R.R. Dipert. Artifacts, art works, and agency. Temple, 1993.

[DMK12] F. Demoly, A. Matsokis, and D. Kiritsis. A mereotopologi-
cal product relationship description approach for assembly ori-
ented design. Robotics and Computer-Integrated Manufactur-
ing, 28(6):681–693, 2012.

136

[Don04] M. Donnelly. On parts and holes: the spatial structure of the
human body. In Proceedings of the 11th World Congress on
Medical Informatics (MedInfo-04), pages 351–356, 2004.

[Don05] M. Donnelly. Relative places. Applied Ontology, 1(1):55–75,
2005.

[DP94] D.Schenck and P.Wilson. Information Modeling: the EX-
PRESS way. Oxford University Press, 1994.

[DPD16] D. Decriteau, J-P. Pernot, and M. Daniel. Towards a declar-
ative modeling approach built on top of a CAD modeler.
Computer-Aided Design and Applications, pages 1–10, 2016.

[DPZ02] M. Dahchour, A. Pirotte, and E. Zimanyi. Materialization and
its metaclass implementation. IEEE Transactions on knowledge
and data engineering, 14(5):1078–1094, 2002.

[DS13] M. Deja and M.S. Siemiatkowski. Feature-based generation
of machining process plans for optimised parts manufacture.
Journal of Intelligent Manufacturing, 24(4):831–846, 2013.

[DSBDA04] P. Di Stefano, F. Bianconi, and L. Di Angelo. An approach for
feature semantics recognition in geometric models. Computer-
Aided Design, 36(10):993–1009, 2004.

[DWGB04] C.W. Dankwort, R. Weidlich, B. Guenther, and J.E. Blaurock.
Engineers’ CAx education– it’s not only CAD. Computer-Aided
Design, 36(14):1439–1450, 2004.

[EH08] W.E. Eder and S. Hosnedl. Design Engineering: A Manual for
Enhanced Creativity. CRC Press, 2008.

[EKGT+16] S. El Kadiri, B. Grabot, K-D. Thoben, K. Hribernik, C. Em-
manouilidis, G. von Cieminski, and D. Kiritsis. Current trends
on ICT technologies for enterprise information systems. Com-
puters in Industry, 79:14–33, 2016.

[EKK+13] K. Eum, M. Kang, G. Kim, M.W. Park, and J.K. Kim.
Ontology-based modeling of process selection knowledge for
machining feature. International Journal of Precision Engi-
neering and Manufacturing, 14(10):1719–1726, 2013.

[EKK15] S. El Kadiri and D. Kiritsis. Ontologies in the context of prod-
uct lifecycle management: state of the art literature review. In-
ternational Journal of Production Research, 53(18):5657–5668,
2015.

137

[ElM91] H.A. ElMaraghy. Intelligent Product Design and Manufacture.
In D.T. Pahm, editor, Artificial Intelligence in Design, pages
147–168. Springer Verlag London, 1991.

[FCG+15] S.R. Fiorini, J.L. Carbonera, P. Gonçalves, V.A.M. Jorge, V.F.
Rey, T. Haidegger, M. Abel, S.A. Redfield, S. Balakirsky,
V. Ragavan, et al. Extensions to the core ontology for robotics
and automation. Robotics and Computer-Integrated Manufac-
turing, 33:3–11, 2015.

[FFBS08] S.J. Fenves, S. Foufou, C. Bock, and R.D. Sriram. CPM: a core
model for product data. Journal of Computing and Information
Science in Engineering, 8(1), 2008.

[FG08] R. Ferrario and N. Guarino. Towards an ontological foundation
for services science. In Future Internet Symposium, pages 152–
169. Springer, 2008.

[FGL+07] X. Fiorentini, I. Gambino, V-C. Liang, S. Rachuri, M. Mani,
C. Bock, C.M. Gutierrez, and J.M. Turner. An ontology for
assembly representation. 7436, NIST, 2007.

[FGM99] M. Fontana, F. Giannini, and M. Meirana. A free form feature
taxonomy. In Computer Graphics Forum, volume 18, pages
107–118, 1999.

[Flu03] V. Flusser. Filosofia del design. Mondadori Bruno, 2003.

[FOL+03] M.W. Fu, S-K. Ong, W.F. Lu, I.B.H. Lee, and A.Y.C. Nee.
An approach to identify design and manufacturing features
from a data exchanged part model. Computer-Aided Design,
35(11):979–993, 2003.

[fSI94] International Organization for Standardization (ISO). Indus-
trial Automation Systems and Integration - Product Data Rep-
resentation and Exchange. Part 1: Overview and fundamental
principles. ISO Geneve, 1994.

[fSI04] International Organization for Standardization (ISO). Indus-
trial Automation Systems and Integration - Physical device con-
trol - Data model for computerized numerical controllers - Part
10: General Process Data. ISO Geneve, 2004.

[fSI06] International Organization for Standardization (ISO). Indus-
trial Automation Systems and Integration - Product Data Rep-
resentation and Exchange - Part 224, Mechanical Product Def-
inition for Process Planning Using Machining Features. ISO
Geneve, 2006.

138

[Gal97] P. Galle. In defense of types in knowledge-based CAAD. In
J. Pohl, editor, Advances in Collaborative Design and Decision-
Support Systems, pages 111–119. CAD Research Center, Cal
Poly, 1997.

[Gal98] P. Galle. Design as intentional action: A conceptual analysis.
Design studies, 20(1):57–81, 1998.

[Gal00] A. Galton. Qualitative Spatial Change. Oxford University
Press, 2000.

[Gal08] P. Galle. Candidate worldviews for design theory. Design Stud-
ies, 29(3):267–303, 2008.

[Gär04] P. Gärdenfors. Conceptual spaces: The geometry of thought.
MIT press, 2004.

[Gär14] P. Gärdenfors. The Geometry of Meaning: Semantics based on
Conceptual Spaces. MIT Press, 2014.

[Gar15] W. Gareth. Design: An essential Introduction. Goodman-Fiell,
2015.

[Gar16] P. Garbacz. A formal ontology of texts. In Roberta Ferrario and
Werner Kuhn, editors, Formal Ontology in Information Sys-
tems. Proceedings of the 9th International Conference (FOIS).,
volume 283, pages 345–358. IOS Press, 2016.

[GB00] N. Giralt and P. Bloom. How special are objects? children’s
reasoning about objects, parts, and holes. Psychological Sci-
ence, 11(6):497–501, 2000.

[GBM97] N. Guarino, S. Borgo, and C. Masolo. Logical modelling
of product knowledge: Towards a well-founded semantics for
STEP. In Proceedings of European Conference on Product Data
Technology, pages 183–190. Citeseer, 1997.

[GDD+15] E. Gruhier, F. Demoly, O. Dutartre, S. Abboudi, and S. Gomes.
A formal ontology-based spatiotemporal mereotopology for in-
tegrated product design and assembly sequence planning. Ad-
vanced Engineering Informatics, 29(3):495–512, 2015.

[Ger90] J.S. Gero. Design prototypes: A knowledge representation
schema for design. AI magazine, 11(4), 1990.

[GF+92] M.R. Genesereth, R.E. Fikes, et al. Knowledge interchange
format-version 3.0: Reference manual. Technical report, Com-
puter Science Department, Stanford University Stanford, Cal-
ifornia, USA, 1992.

139

[GG95] P. Giaretta and N. Guarino. Ontologies and knowledege bases:
Towards a terminological clarification. Towards Very Large
Knowldege Bases: Knowldege Building and Knowledge Shar-
ing, 25, 1995.

[GG15] N. Guarino and G. Guizzardi. “We need to discuss the re-
lationship”: Revisiting relationships as modeling constructs.
In International Conference on Advanced Information Systems
Engineering, pages 279–294. Springer, 2015.

[GM05] N. Guarino and M.A. Musen. Applied ontology: Focusing on
content. Applied Ontology, 1(1):1–5, 2005.

[GOP02] M.P. Gallaher, A.C. O’Connor, and T. Phelps. Economic im-
pact assessment of the international standard for the exchange
of product model data (STEP) in transportation equipment in-
dustries. Technical Report Planning report 02-5, NIST, 2002.

[GOS13] N. Guarino, D. Oberle, and S. Staab. What is an Ontology? In
S. Staab and R. Studer, editors, Handbook on ontologies, pages
1–17. Springer Science & Business Media, 2013.

[GPFLC04] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Onto-
logical Engineering with Examples from the Areas of Knowledge
Management, e-Commerce and the Semantic Web. Springer
Verlag Berlin Heidelberg, 2004.

[Gro07] M.P. Groover. Fundamentals of Modern Manufacturing: Ma-
terials, Processes, and Systems. John Wiley & Sons, 2007.

[Gru93] T. Gruber. A Translation Approach to Portable Ontology Spec-
ifications. Knowledge acquisition, 5(2):199–220, 1993.

[Grü09] M. Grüninger. Using the PSL ontology. In S. Staab and
R. Studer, editors, Handbook on Ontologies, pages 423–443.
Springer-Verlag Berlin Heidelberg, 2009.

[GSM15] N. Guarino and M.R. Stufano Melone. On the ontological sta-
tus of design objects. In F.A. Lisi and S. Borgo, editors, Pro-
ceedings of the 1st Workshop on Artificial Intelligence & Design
(AIDE), volume 1473, pages 27–32. CEUR, 2015.

[Gua94] N. Guarino. The ontological level. In R. Casati, B. Smith,
and G. White, editors, Philosophy and the Cognitive Sciences.
Hölder-Pichler Tempsky, 1994.

[Gua95] N. Guarino. Formal ontology, conceptual analysis and
knowledge representation. International Journal of Human-
Computer studies, 43(5):625–640, 1995.

140

[Gua98] N. Guarino. Formal ontology and information systems. In
N. Guarino, editor, Formal Ontology in Information Systems.
Proceedings of the First International Conferece (FOIS), pages
3–15. IOS Press, 1998.

[Gua14] N. Guarino. Artefactual systems, missing components and re-
placeability. In M. Franseen, P. Kroes, T. Reydon, and P.E.
Vermaas, editors, Artefact Kinds. Ontology and the Human-
Made World, pages 191–206. Springer-Verlag Berlin Heidel-
berg, 2014.

[Gui05] G. Guizzardi. Ontological Foundations for Structural Concep-
tual Models. PhD thesis, Centre for Telematics and Information
Technology, University of Twente, 2005.

[GV99] B. Giovanni and P. Vidali. Filosofia della scienza. Bruno Mon-
dadori, 1999.

[GW00] N. Guarino and C. Welty. Towards a methodology for ontology-
based model engineering. In Proceedings of the ECOOP 2000.
Workshop on Model Engineering, Cannes, France, 2000.

[GW08] G. Guizzardi and G. Wagner. What’s in a relationship: An
ontological analysis. In International Conference on Conceptual
Modeling, pages 83–97. Springer, 2008.

[Hah13] T. Hahmann. A Reconciliation of Logical Representations of
Space: From Multidimensional Mereotopology to Geometry.
PhD thesis, University of Toronto, 2013.

[Han96] J.H. Han. Survey of feature research. Technical Report IRIS-96-
346, Institute for Robotics and Intelligent Systems, USC,USA,
1996.

[HB12] T. Hahmann and B. Brodaric. The void in hydro ontology.
In M. Donnelly and G. Guizzardi, editors, Formal Ontology
in Information Systems. Proceedings of the 7th International
Conference (FOIS)., volume 239, pages 45–58, 2012.

[Hed04] S. Hedman. A First Course in Logic. Oxford University Press
Oxford, 2004.

[HF06] M. Hou and T.N. Faddis. Automatic tool path generation
of a feature-based CAD/CAPP/CAM integrated system. In-
ternational Journal of Computer Integrated Manufacturing,
19(4):350–358, 2006.

141

[HH06] H. Herre and B. Heller. Semantic foundations of medical infor-
mation systems based on top-level ontologies. Knowledge-Based
Systems, 19(2):107–115, 2006.

[HHPS13] A.S.M. Hoque, P.K. Halder, M.S. Parvez, and T. Szecsi. In-
tegrated manufacturing features and design-for-manufacture
guidelines for reducing product cost under CAD/CAM envi-
ronment. Computers & Industrial Engineering, 66(4):988–1003,
2013.

[Hil93] R. Hilpinen. Authors and artifacts. In Proceedings of the Aris-
totelian Society, volume 93, pages 155–178. JSTOR, 1993.

[Hil11] R. Hilpinen. Artifact. In E.N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Winter 2011 edition, 2011.

[HKR09] P. Hitzler, M. Krotzsch, and S. Rudolph. Foundations of Se-
mantic Web Technologies. CRC Press, 2009.

[HLGF10] O. Hamri, J-C. Léon, F. Giannini, and B. Falcidieno. Software
environment for CAD/CAE integration. Advances in Engineer-
ing Software, 41(10):1211–1222, 2010.

[Hor04] I. Horvath. A treatise on order in engineering design research.
Research in Engineering Design, 15(3):155–181, 2004.

[HPR00] J. Han, M. Pratt, and W.C. Regli. Manufacturing feature
recognition from solid models: A status report. IEEE Trans-
actions on Robotics and Automation, 16(6):782–796, 2000.

[HPSB+04] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, M. Dean, et al. SWRL: A semantic web rule lan-
guage combining OWL and RuleML. W3C Member submission,
2004.

[HS12] B. Henderson-Sellers. On the Mathematics of Modelling, Meta-
modelling, Ontologies and Modelling Languages. Springer Sci-
ence & Business Media, 2012.

[HT96] I. Horvath and V. Thernesz. Morphology-inclusive conceptual
modeling with feature objects. In Y. Shuzi, Z. Ji, and L. Cheng-
Gang, editors, Proc. SPIE 2644, Fourth International Confer-
ence on Computer-Aided Design and Computer Graphics, pages
563–572, 1996.

[HV09] W. Houkes and P.E. Vermaas. Produced to use. Techné: Re-
search in Philosophy and Technology, 13(2):123–136, 2009.

142

[Imr13] M. Imran. Towards an Assembly Reference Ontology for As-
sembly Knowledge Sharing. PhD thesis, Wolfson School of Me-
chanical and Manufacturing Engineering, Loughborough Uni-
versity, 2013.

[Int16] BuildingSmart International. Industry Foundation Classes
(IFC), version 4 - addendum 1, 2016.

[138] International Standards Organization (ISO). Industrial Au-
tomation Systems and Integration - Product Data Representa-
tion and Exchange - Part 203: Application Protocol, Configu-
ration controlled Design 3D Designs of Mechanical Parts and
Assemblies. ISO Geneve, 2004.

[IY15] M. Imran and R.I.M. Young. The application of common logic-
based formal ontologies to assembly knowledge sharing. Journal
of Intelligent Manufacturing, 26(1):139–158, 2015.

[JGAB09] J.T. Jagenberg, E.A. Gilsdorf, R. Anderl, and T. Bornkessel.
Knowledge driven design features for the product life cycle of
engine parts. In ASME 2009 International Design Engineer-
ing Technical Conferences and Computers and Information in
Engineering Conference, pages 721–728. American Society of
Mechanical Engineers, 2009.

[Kas10] G. Kassel. A formal ontology of artefacts. Applied Ontology,
5(3-4):223–246, 2010.

[KBF+09] S. Krima, R. Barbau, X. Fiorentini, R. Sudarsan, and R.D.
Sriram. OntoSTEP: OWL-DL Ontology for STEP. In Pro-
ceedings of 6 th International Conference on Product Lifecycle
Management, 2009.

[Kee11] C.M. Keet. The use of foundational ontologies in ontology
development: An empirical assessment. In The Semantic Web:
Research and Applications, pages 321–335. Springer, 2011.

[Kro12] P. Kroes. The dual nature of technical artefacts: Creations
of Mind and Matter. A Philosophy of Engineering Design.
Springer, 2012.

[KWMN04] K-Y. Kim, Y. Wang, O.S. Muogboh, and B.O. Nnaji. Design
formalism for collaborative assembly design. Computer-Aided
Design, 36(9):849–871, 2004.

[KYDH06] K-Y.Kim, D.G.Manley, and H.Yang. Ontology-based assem-
bly design and information sharing for collaborative product
development. Computer-Aided Design, 38:1233–1250, 2006.

143

[KYK08] K-Y. Kim, H. Yang, and D-W. Kim. Mereotopological as-
sembly joint information representation for collaborative prod-
uct design. Robotics and Computer-Integrated Manufacturing,
24(6):744–754, 2008.

[Lee05] S.H. Lee. A CAD–CAE integration approach using feature-
based multi-resolution and multi-abstraction modelling tech-
niques. Computer-Aided Design, 37(9):941–955, 2005.

[LFB96] J. Lin, M. Fox, and T. Bilgic. A requirement ontology for en-
gineering design. Concurrent Engineering, 4(3):279–291, 1996.

[LL70] D. Lewis and S. Lewis. Holes. Australasian Journal of Philos-
ophy, 48(2):206–212, 1970.

[LLCN15] J. Liu, X. Liu, Y. Cheng, and Z. Ni. An approach to mapping
machining feature to manufacturing feature volume based on
geometric reasoning for process planning. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engi-
neering Manufacture, 2015.

[Lou98] M.J. Loux. Metaphysics: A contemporary Introduction. Cam-
bridge University Press, 1998.

[Low06] J.E. Lowe. The Four-Category Ontology. A Metaphysical Foun-
dation of Natural Science. Oxford University Press, 2006.

[LY15] L. Lei and M. Yongsheng. CAD/CAE associative features for
cyclic fluid control e↵ect modeling. Computer-Aided Design
and Applications, 2015.

[Ma13] Y-S. Ma, editor. Semantic modeling and interoperability in
product and process engineering. A technology for engineering
informatics. Springer-Verlag London, 2013.

[MB05] C. Masolo and S. Borgo. Qualities in formal ontology. In Foun-
dational Aspects of Ontologies (FOnt 2005) Workshop at KI,
pages 2–16, 2005.

[MBG+03] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltra-
mari. WonderWeb deliverable D18. Technical report, Labora-
tory for Applied Ontology ISTC-CNR, 2003.

[MBTJ07] Y-S. Ma, G.A. Britton, S.B. Tor, and L.Y. Jin. Associative
assembly design features: Concept, implementation and ap-
plication. International Journal of Advanced Manufacturing
Technology, 32(5-6):434–444, 2007.

144

[MCT08] Y-S. Ma, G. Chen, and G. Thimm. Paradigm shift: Unified
and associative feature-based concurrent and collaborative en-
gineering. Journal of Intelligent Manufacturing, 19(6):625–641,
2008.

[Mea15] P. J. Meadows. Holes cannot be counted as immaterial objects.
Erkenntnis, 80(4):841–852, 2015.

[MH69] J. McCarthy and P.J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. Readings in artificial
intelligence, pages 431–450, 1969.

[Mil07] K. Miller. Immaterial beings. The Monist, 90(3):349–371, 2007.

[ML99] E. Margolis and S. Laurence. Concepts: Core Readings. Mit
Press, 1999.

[MS08] K. Munn and B. Smith, editors. Applied Ontology: An Intro-
duction. Walter de Gruyter, 2008.

[MSS02] H.K. Miao, N. Sridharan, and J.J. Shah. CAD-CAM integra-
tion using machining features. International Journal of Com-
puter Integrated Manufacturing, 15(4):296–318, 2002.

[MVB+04] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario,
A. Gangemi, and N. Guarino. Social roles and their descrip-
tions. In D. Dubois, C. Welty, and M.A. Williams, editors,
Principles of Knowledge Representation and Reasoning, pages
267–277. AAAI Press, 2004.

[MVH+04] D.L. McGuinness, F. Van Harmelen, et al. OWL: Web ontology
language overview. W3C recommendation, 2004.

[NK07] E.A. Nasr and A.K. Kamrani. Computer-Based Design and
Manufacturing: An Information-Based Approach. Springer
Verlag Berlin Heidelberg, 2007.

[NR08] F. Noël and L. Roucoules. The PPO design model with re-
spect to digital enterprise technologies among product life cy-
cle. International Journal of Computer Integrated Manufactur-
ing, 21(2):139–145, 2008.

[NSFPZ13] M.P. Nepal, S. Staub-French, R. Pottinger, and J. Zhang.
Ontology-based feature modeling for construction information
extraction from a building information model. Journal of Com-
puting in Civil Engineering, 27(5):555–569, 2013.

[PB13] G. Pahl and W. Beitz. Engineering Design: a Systematic Ap-
proach. Springer Science & Business Media, 2013.

145

[PBCV11] G. Pawel, S. Borgo, M. Carrara, and P. Vermaas. Two
ontology-driven formalisations of functions and their compari-
son. Journal of Engineering Design, 22(11-12):733–764, 2011.

[PDS05] L. Patil, D. Dutta, and R. Sriram. Ontology-based exchange of
product data semantics. Automation science and engineering,
IEEE transactions, 2(3):213–225, 2005.

[PH96] B. Poldermann and I. Horvath. Surface design based on
parametrized surface features. In Proc. Int. Symposium on
Tools and Methods for Concurrent Engineering, Institute of
Machine Design, Budapest, pages 432–446, 1996.

[PH16] S. Pourtalebi and I. Horvath. Towards a methodology of system
manifestation features-based pre-embodiment design. Journal
of Engineering Design, pages 1–37, 2016.

[PT16] P. Pauwels and W. Terkaj. EXPRESS to OWL for construc-
tion industry: Towards a recommendable and usable IfcOWL
ontology. Automation in Construction, 63:100–133, 2016.

[PUPS+16] C. Palmer, E.N. Urwin, J.M. Pinazo-Sánchez, F.S. Cid, E.P.
Rodŕıguez, S. Pajkovska-Goceva, and R.I.M. Young. Reference
ontologies to support the development of global production net-
work systems. Computers in Industry, 77:48–60, 2016.

[PZMY94] A. Pirotte, E. Zimanyi, D. Massart, and T. Yakusheva. Ma-
terialization: A powerful and ubiquitous abstraction pattern.
In Proceedings of the 20th International Conference on Very
Large Data Bases, pages 630–641, 1994.

[QD04] X. Qian and D. Dutta. Feature-based design for heterogeneous
objects. Computer-Aided Design, 36:1263–1278, 2004.

[RGB11] L. Ramos, A. Garcia, and J. Bateman. Ontology-based feature
recognition and design rules checker system. In K. Baclawski,
J. Bateman, A.G. Castro, C. Lange, and K. Viljanen, editors,
Proceedings of the Workshop Ontologies come of Age in the
Semantic Web (OCAS 2011), 10th International Semantic Web
Conference, 2011.

[RHF+06] S. Rachuri, Y-H. Han, S. Foufou, S.C. Feng, U. Roy, F. Wang,
R.D. Sriram, and K.W. Lyons. A model for capturing product
assembly information. Journal of Computing and Information
Science in Engineering, 6(1):11–21, 2006.

146

[Rie03] M. Riebisch. Towards a more precise definition of feature mod-
els. In M. Riebisch, J.O. Coplien, and D. Streitferdt, editors,
Modelling Variability for Object-Oriented Product Lines, pages
64–76. Norderstadt, 2003.

[RJB04] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling
Language. The Reference Manual. Pearson Higher Education,
2004.

[Ros90] J.R. Rossignac. Issues on feature-based editing and interroga-
tion of solid models. Computers & Graphics, 14(2):149–172,
1990.

[RRB15] F. Romero, P. Rosado, and G.M. Bruscas. Application fea-
ture model for geometrical specification of assemblies. Procedia
Engineering, 132:1128–1135, 2015.

[RS15] A. Rétfalvi and M. Stampfer. Aspects of clamping a workpiece
over a through hole. In IEEE 13th International Symposium
on Intelligent Systems and Informatics (SISY), pages 61–66.
IEEE, 2015.

[Sal02] F. Sallustri. Mereotopology for product modelling. a new
framework for product modelling based on logic. Journal of
Design Research, 2, 2002.

[ŠAM10] M. Štorga, M.M. Andreasen, and D. Marjanovic. The design
ontology: Foundation for the design knowledge exchange and
management. Journal of Engineering Design, 21(4):427–454,
2010.

[San15] E.M. Sanfilippo. Towards an ontological formalization of tech-
nical product for design and manufacturing. In R. Cuel and
R.I.M. Young, editors, Formal Ontologies Meet Industry., vol-
ume 225, pages 75–87. Springer, 2015.

[SB16] E.M. Sanfilippo and S. Borgo. What are features? an ontology-
based review of the literature. Computer-Aided Design, 80:9–
18, 2016.

[SBF98] R. Studer, V.R. Benjamins, and D. Fensel. Knowledge engi-
neering: Principles and methods. Data & knowledge engineer-
ing, 25(1):161–197, 1998.

[SBM14] E.M. Sanfilippo, S. Borgo, and C. Masolo. Events and ac-
tivities: Is there any ontology behind BPMN? In P. Garbacz
and O. Kutz, editors, Formal Ontology in Information Systems.

147

Proceedings of the 8th International Conference on Formal On-
tology in Information Systems (FOIS), volume 267, pages 147–
156. Springer Verlag Berlin Heidelberg, 2014.

[SBOW04] M.S. Shephard, M.W. Beall, R.M. O’bara, and B.E. Webster.
Toward simulation-based design. Finite Elements in Analysis
and Design, 40(12):1575–1598, 2004.

[SC10] B. Smith and W. Ceusters. Ontological realism: A methodol-
ogy for coordinated evolution of scientific ontologies. Applied
ontology, 5(3-4):139–188, 2010.

[SC15] B. Smith and W. Ceusters. Aboutness: Towards foundations
for the information artifact ontology. In Proceedings of the In-
ternational Conference on Biomedical Ontology (ICBO) 2015,
2015.

[Sch03] L. Schneider. How to build a foundational ontology. In KI 2003:
Advances in Artificial Intelligence, pages 120–134. Springer,
2003.

[SCK+05] B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lo-
max, C. Mungall, F. Neuhaus, A.L. Rector, and C. Rosse. Re-
lations in biomedical ontologies. Genome biology, 6(5):1–15,
2005.

[Sea95] J.R. Searle. The construction of social reality. Simon and
Schuster, 1995.

[SFFK+03] S. Staub-French, M. Fischer, J. Kunz, K. Ishii, and B. Paulson.
A feature ontology to support construction cost estimating. AI
EDAM: Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 17(02):133–154, 2003.

[SFKS01] S. Szykman, S.J. Fenves, W. Keirouz, and S.B. Shooter. A
foundation for interoperability in next-generation product de-
velopment systems. Computer-Aided Design, 33:545–559, 2001.

[SFSW05] R. Sudarsan, S.J. Fenves, R.D. Sriram, and F. Wang. A product
information modelling framework for product lifecycle manage-
ment. Computer-Aided Design, 37(13):1399–1411, 2005.

[SG05] S. Subramani and Balan Gurumoorthy. Maintaining associa-
tivity between form feature models. Computer-Aided Design,
37(13):1319–1334, 2005.

[Sid01] T. Sider. Four-Dimensionalism: An Ontology of Persistence
and Time. Oxford University Press, 2001.

148

[Sim87] P. Simons. Parts. A Study in Ontology. Clarendox Press Ox-
ford, 1987.

[Sim96] H.A. Simon. The Sciences of the Artificial. MIT press, 1996.

[SLF+13] A. Shahwan, J-C. Léon, G. Foucault, M. Trlin, and O. Palombi.
Qualitative behavioral reasoning from components’ interfaces
to components’ functions for DMU adaption to FE analyses.
Computer-Aided Design, 45(2):383–394, 2013.

[SM95] J.J. Shah and M. Mäntylä. Parametric and Feature-Based
CAD/CAM. Concepts, Techniques, Applications. John Wiley
and Sons, 1995.

[SM11] M. Sy and C. Mascle. Product design analysis based on life
cycle features. Journal of Engineering Design, 22(6):387–406,
2011.

[SMBP16] E.M. Sanfilippo, C. Masolo, S. Borgo, and D. Porello. Fea-
tures and components in product models. In R. Ferrario and
W. Kuhn, editors, Formal Ontology in Information Systems.
Proceedings of the 9th International Conference (FOIS), vol-
ume 283, pages 227–240, 2016.

[Smi96] B. Smith. Mereotopology: A theory of parts and boundaries.
Data & Knowledge Engineering, 20(3):287–303, 1996.

[SMN94] J.J. Shah, M. Mäntylä, and D.S. Nau. Advances in feature
based manufacturing. Elsevier, 1994.

[SMP15] E.M. Sanfilippo, C. Masolo, and D. Porello. Design knowldege
representation: An ontological perspective. In F.A. Lisi and
S. Borgo, editors, Proceedings of the 1st Workshop on Artifi-
cial Intelligence & Design (AIDE), volume 1473, pages 41–54.
CEUR, 2015.

[SMR+13] B. Smith, T. Malyuta, R. Rudnicki, W. Mandrick, D. Salmen,
P. Moroso↵, D.K. Du↵, J. Schoening, and K. Parent. IAO-intel:
An ontology of information artifacts in the intelligence domain.
In STIDS, 2013.

[SR88] Jami J. Shah and Mary T. Rogers. Functional Requirements
and Conceptual Design of the Feature-based Modelling System.
Computer-Aided Engineering Journal, 5(1):9–15, 1988.

[SRR16] L. Solano, F. Romero, and P. Rosado. An ontology for inte-
grated machining and inspection process planning focusing on
resource capabilities. International Journal of Computer Inte-
grated Manufacturing, 29(1):1–15, 2016.

149

[SS13] S. Staab and R. Studer, editors. Handbook on Ontologies.
Springer Science & Business Media, 2013.

[Sti90] G. Stiny. What is a design. Environment and Planning B:
Planning and Design, 17(1):97–103, 1990.

[Sto98] O. Stock, editor. Spatial and Temporal Reasoning. Springer
Science & Business Media, 1998.

[Str88] A. Stroll. Surfaces. University of Minnesota Press, 1988.

[SVHK93] O.W. Salomons, F. Van Houten, and H.J.J. Kals. Review of re-
search in feature-based design. Journal of Manufacturing Sys-
tems, 12(2):113–132, 1993.

[SW01] B. Smith and C. Welty. Ontology: Towards a new synthesis. In
B. Smith and C. Welty, editors, Formal Ontology in Informa-
tion Systems. Proceedings of the 2nd International Conference
(FOIS), pages 3–9. ACM, 2001.

[SWS93] M. Schulte, C. Weber, and R. Stark. Functional features
for design in mechanical engineering. Computers in Industry,
23(1):15–24, 1993.

[TCM13] S-H. Tang, G. Chen, and Y. Ma. Fundamental concepts of
generic features. In Y-S. Ma, editor, Semantic Modeling and
Interoperability in Product and Process Engineering, pages 89–
115. Springer, 2013.

[Tho99] A.L. Thomasson. Fiction and metaphysics. Cambridge Univer-
sity Press, 1999.

[Tho14] A.L. Thomasson. Public artifacts, intentions, and norms. In
M. Franseen, P. Kroes, T. Reydon, and P. Vermaas, editors,
Artefact Kinds. Ontology and the Human-Made World, pages
45–62. Springer-Verlag Berlin Heidelberg, 2014.

[UE00] K.T Ulrich and S.D. Eppinger. Product design and develop-
ment. MacGraw-Hill, 2000.

[UIY+96] Y. Umeda, M. Ishii, M. Yoshioka, Y. Shimomura, and
T. Tomiyama. Supporting conceptual design based on the
Function-Behavior-State modeler. Artificial Intelligence for
Engineering, Design, Analysis and Manufacturing, 10(04):275–
288, 1996.

150

[UM15] M. Uddin and Y-S. Ma. A feature-based engineering methodol-
ogy for cyclic modeling and analysis processes in plastic prod-
uct development. Computer-Aided Design and Applications,
pages 1–12, 2015.

[Usm12] Z. Usman. A Manufacturing Core Concepts Ontology to Sup-
port Knowledge Sharing. PhD thesis, Wolfson School of Me-
chanical and Manufacturing Engineering, Loughborough Uni-
versity, 2012.

[UY14] E.N. Urwin and R.I.M. Young. The reuse of machining knowl-
edge to improve designer awareness through the configuration
of knowledge libraries in plm. International Journal of Produc-
tion Research, 52(2):595–615, 2014.

[UYC+11] Z. Usman, R.I.M. Young, N. Chungoora, C. Palmer, K. Case,
and J. Harding. A manufacturing core concepts ontology for
product lifecycle interoperability. In M. van Sindered and
P. Johnson, editors, Enterprise Interoperability. Proceedings
for the Third International IFIP Working Conference., volume
LNBIP 76, pages 5–18, 2011.

[UYC+13] Z. Usman, R.I.M. Young, N. Chungoora, C. Palmer, K. Case,
and J. Harding. Towards a formal manufacturing refer-
ence ontology. International Journal of Production Research,
51(22):6553–6572, 2013.

[Var03] A.C. Varzi. Reasoning about space: The hole story. Logic and
Logical Philosophy, 4:3–39, 2003.

[Var10] A.C. Varzi. On the boundary between material and formal
ontology. Interdisciplinary ontology, 3:3–8, 2010.

[Var15] A. Varzi. Boundary. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Winter 2015 edition, 2015.

[VBM08] L. Vieu, S. Borgo, and C. Masolo. Artefacts and roles: Mod-
elling strategies in a multiplicative ontology. In C. Eschen-
bach and M. Grüninger, editors, Formal Ontology in Informa-
tion Systems. Proceedings of the 5th International Conference
(FOIS)., volume 183, pages 121–134. IOS Press, 2008.

[VCBG13] P.E. Vermaas, M. Carrara, S. Borgo, and P. Garbacz. The
design stance and its artefacts. Synthese, 190(6):1131–1152,
2013.

151

[VHB97] W. Van Holland and W.F. Bronsvoort. Assembly features and
sequence planning. In M.J. Pratt, R.D. Sriram, and M. J.
Wozny, editors, Product Modeling for Computer Integrated De-
sign and Manufacture, pages 275–284. Springer, 1997.

[VHB00] W. Van Holland and W.F. Bronsvoort. Assembly features in
modeling and planning. Robotics and computer-integrated man-
ufacturing, 16(4):277–294, 2000.

[Weg96] P. Wegner. Interoperability. ACM Computing Surveys (CSUR),
28(1):285–287, 1996.

[WGGM14] X. Wang, N. Guarino, G. Guizzardi, and J. Mylopoulos. To-
wards an ontology of software: a requirements engineering per-
spective. In P. Garbacz and O. Kutz, editors, Formal Ontology
in Information Systems. Proceedings of the 8th International
Conference (FOIS), volume 267, pages 317–329, 2014.

[Whi04] D.E. Whitney. Mechanical Assemblies: Their Design, Manu-
facture, and Role in Product Development. Oxford University
Press, 2004.

[Win91] L. Wing̊ard. Introducing form features in product models: a
step towards CAD/CAM with engineering terminology. PhD
thesis, Dep. of Manufacturing Systems, Royal Institute of Tech-
nology, Stockholm, 1991.

[WP88] P.R. Wilson and M.J. Pratt. A taxonomy of features for solid
modeling. In H.W. McLaughlin and J.L. Encarnacao, edi-
tors, Geometric Modeling for CAD Applications, pages 125–
136. North-Holland, 1988.

[WPY10] Q. Wang, W. Peng, and X. Yu. Ontology based geometry recog-
nition for STEP. In IEEE international Symposium on Indus-
trial Electronics (ISIE 2010), pages 1686–1691. IEEE, 2010.

[WRP06] W.F.Bronsvoort, R.Bidarra, and P.J.Nyirenda. Developments
in feature modelling. Computer-Aided Design and Applications,
3(5):655–664, 2006.

[WY14] Q. Wang and X. Yu. Ontology-based automatic feature recog-
nition framework. Computers in Industry, 65(7):1041–1052,
2014.

[Xu09] X. Xu. Integrating Advanced Computer-Aided Design, Manu-
facturing, and Numerical Control: Principles and Implementa-
tions. Information Science Reference, Hershey New York, 2009.

152

[YB92] R.I.M. Young and R. Bell. Machine planning in a product
model environment. International Journal Of Production Re-
search, 30(11):2487–2513, 1992.

[YJ06] H. Yongtao and M. Jingying. A knowledge-based auto-
reasoning methodology in hole-machining process planning.
Computers in Industry, 57(4):297–304, 2006.

[YM16] Y. Yusuf and Y-S. Ma. Design of a simulation tool for steam as-
sisted gravity drainage: Based on the concept of unified feature
modeling scheme. In I. Horvath, J-P. Pernot, and Z. Rusak, ed-
itors, Proceedings of TMCE 2016, 2016.

[ZBLDE14] C. Zheng, M. Bricogne, J. Le Duigou, and B. Eynard. Survey
on mechatronic engineering: A focus on design methods and
product models. Advanced Engineering Informatics, 28(3):241–
257, 2014.

[ZHX09] Y.F. Zhao, S. Habeeb, and X. Xu. Research into integrated de-
sign and manufacturing based on STEP. International Journal
of Advanced Manufacturing Technology, 44:606–624, 2009.

[ZQH+07] X. Zhou, Y. Qiu, G. Hua, H. Wang, and X. Ruan. A feasible
approach to the integration of CAD and CAPP. Computer-
Aided Design, 39(4):324–338, 2007.

[ZS04] X.F. Zha and R.D. Sriram. Feature-based component model for
design of embedded systems. In Optics East, pages 226–237.
International Society for Optics and Photonics, 2004.

[ZTT12] Y. Zheng, J.M. Taib, and M.M. Tap. Decomposition of inter-
acting machining features based on the reasoning on the design
features. The International Journal of Advanced Manufactur-
ing Technology, 58(1-4):359–377, 2012.

153

	Acknowledgements
	Abstract
	Introduction
	Research problem
	Research contributions
	Research methodology
	Thesis overview

	State of the art review
	Design
	Product information modelling
	Feature-based modelling: An overview
	Features in standards
	Features in information models

	Open problems

	DOLCE
	Introduction
	Particulars
	Mereology
	Qualities
	Concepts and roles
	Objects and events
	Material and immaterial objects

	Technical products and product types
	Artefacts
	Products
	Compliance
	Taxonomy of artefactual notions

	Design properties
	Product types as concepts

	Comparison with the literature

	Engineering features
	What do engineering features represent?
	Feature types and physical features
	Ontological features: An informal overview
	Components
	Form features
	Comparison with the literature

	Formal representation
	Ontological features
	Design properties
	Product types and technical products
	Engineering features
	Form features: Three modelling views
	First view: Form features for shape qualities
	Second view: Form features for shaped parts
	Third view: Form features for shaped immaterial objects
	Discussion and comparison
	An integrated perspective

	Remarks

	Case studies
	Form features representation: An example
	Towards a feature-based meta-model
	Unified Feature Model
	Feature-based Meta-Model
	Critical remarks
	Ontology-based restructuring of the meta-models

	Conclusion
	Limits of the approach
	Future work

	Appendices
	The missing and replaceable artefact
	Glossary of terms
	Bibliography

