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Abstract

We live in exciting times. The fast paced growth in mobile computers
has put powerful computational devices in the palm of our hands.
Blazing fast connectivity has made human-human, human-machine, and
machine-machine communication effortless. Wearable devices and the
internet of things have made monitoring every aspect of our lives easier.
This has given rise to the domain of quantified self where we can continuous
record and quantify the various signals generated in everyday life. Sensors
on smartphones can continuously record our location and motion profile.
Sensors on wearable devices can track changes in our bodies’ physiological
responses.

This monitoring also has the capability to revolutionise the health care
domain by creating more informed and involved patients. This has the
potential to shift care-management from a physician-centric approach to
a patient-centric approach allowing individuals to create more empowered
patients and individuals who are in better control of their health.

However, the data deluge from all these sources can sometimes be
overwhelming. There is a need for intelligent technology that can help
us navigate the data and take informed decisions.

The goal of this work is to develop a mobile, personal intelligent agent
platform that can become a digital companion to live with the user. It can
monitor the covert and overt signal streams of the user, identify activity
and stress levels to help the users’ make healthy choices regarding their
lives. This thesis particularly targets patients suffering from or at-risk of
essential hypertension since its a difficult condition to detect and manage.

This thesis delivers the following contributions: 1) An intelligent
personal agent platform for on-the-go continuous monitoring of covert and



overt signals. 2) A machine learning algorithm for accurate recognition of
activities using smartphone signals recorded from in-the-wild scenarios.
3) A machine learning pipeline to combine various physiological signal
streams, motion profiles, and user annotations for on-the-go stress
recognition. 4) We design and train a complete signal processing and
classification system for hypertension prediction. 5) Through a small
pilot study we demonstrate that this system can distinguish between
hypertensive and normotensive subjects with high accuracy.

Keywords

[Personal mobile agent, physiological sensing, activity recognition, stress
recognition, hypertension detection]
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1

Introduction

“We live in an information economy. The problem is that
information’s usually impossible to get, at least in the right place,
at the right time."

– Steve Jobs

We live in a connected world. There are (in early 2016) over 2.5 billion
smartphones [18], and 4.9 billion connected devices being used worldwide.
78.1 million units of consumer wearable devices [10] were sold in the year
2015 alone. Gartner forecasts [4] that by the end of 2016, connected devices
in the realm of the internet of things will grow to a staggering number of
6.4 billion devices. Everything we do, from browsing to driving generate an
immense amount of data about us - our mouse clicks generate data about
our behaviour in the virtual world, while the sensors in our smart devices
generate data about our activities in the physical world. This data

Navigating, visualizing and making sense of this vast amount of data is
a challenging task. Especially when the data is regarding our health and
wellbeing - the

Navigating this vast amount of data and making sense of it is a very
challenging task. Data may be relevant, irrelevant or noisy. There is a need
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for intelligent technology which can sift through all this data and help us
make decisions by providing us with meaningful, intelligible and actionable
information “in the right place, at the right time".

Traditional software systems help us accomplish tasks - in most cases
they act as tools to support us. With the growing complexity of the
information world, there is a need for them to evolve from mere tools
we use, to assistants that help us to solve complex problems. An alarm
application that wakes you up at a predefined time is a tool. A smart
alarm which monitors your sleep state, gently wakes you up when you are
in a light sleep stage, and also provides early warnings for sleep disorders
becomes an intelligent sleep assistant. A map application that shows you
the driving direction from point A to point B is a tool. An intelligent map
which knows where you work, and provides you driving directions based
on current traffic conditions and ensures that you are not late for work
is an intelligent driving assistant. A news reading application is a tool,
but an application which learns from the news you read and proactively
provides you with the news articles which are most relevant to you is a
news curation assistant.

Smartphones and wearable devices with their array of sensors have made
the creation of such intelligent applications possible. These devices, which
live with us, have opened up the opportunity to continuously monitor us,
interact with us and learn about our preferences and behaviour. Intelligent
applications may schedule our meetings and remind us if we are late; track
our calorie consumption and help us stay on our diet; and even know
how much we sit, walk, run or sleep and warn us if we are being lazy.
Intelligent Virtual Assistants such as Siri [17] and Cortana [11] can perform
simple tasks such as making calls, setting alarm, answering questions, and
occasionally entertaining the user with smart and funny replies.

There is a great potential for applying these intelligent agents or
assistants to healthcare management. Using data from wearable devices
which can continuously monitor our physiology, these agents can keep an
eye on our health. By interacting with the user and learning his or her
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behaviour, these systems can act as early warning systems. In this work
we explore the applicability of such an intelligent agent for the detection
and management of conditions such as stress and hypertension.

1.1 Motivation

Global increase in ageing population and incidence of chronic conditions
such as hypertension has created new challenges for healthcare systems.
According to the World Heart Federation there are at least 970 million
people worldwide suffering from hypertension [19]. Hypertension, defined
as a systolic blood pressure at or above 140 mmHg and/or a diastolic
blood pressure at or above 90 mmHg is the single most important risk
factor for stroke and other cardiovascular diseases. According to a report
by the World Health Organization (WHO) [20] every year over 17.5 million
people die from cardiovascular diseases alone. In Europe, cardiovascular
disease is the most common cause of death; and every year over 4 million
Europeans die of cardiovascular diseases. Over 40% deaths among men
and 50% deaths among women are attributed to cardiovascular diseases
(Figure 1.1).

(a) men (b) women

Figure 1.1: Proportion of deaths due to major causes in Europe among men and women
for 2015. No data available for Andorra. Source: WHO Mortality Database. [258]

Research suggests that most of these deaths are preventable through
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early intervention and lifestyle changes such as increase in physical activity
[256], decrease in smoking [24], healthy diet [208], and stress reduction. To
achieve these, a paradigm shift is needed in moving the focus of healthcare
from a disease-centred approach to a wellness-centred approach.

Doctors can only spend a limited time with patients. Often, this time
is not enough to gain a complete understanding of a patient’s lifestyle
and evaluate all the underlying causes and and risk-factors for predicting
diseases. Checking physiological signals such as heart rate and blood
pressure in the clinical setting may not always yield accurate results.
Conditions such as masked hypertension (where a patient’s blood
pressure is < 140/90 mm Hg in clinical settings, but home blood pressure
monitoring is in hypertensive range) or white-coat hypertension (where
a patient’s blood pressure is ≥ 140/90 mm Hg in clinical settings, but
home blood pressure monitoring is in normal range) increases the risk of
erroneous diagnosis. Symptoms and conditions are reported by patient,
and can suffer from bias in memory and perception. Patients often forget
or mis-state certain critical conditions and symptoms, and over-emphasize
others which they perceive as important. The use of technology can help
to alleviate some of these problems.

Mobile health (mHealth) technologies such as remote monitoring,
telemedicine, and home-based monitoring have become effective tools
shifting the focus towards a more patient-centric healthcare. Adoption
of wearable devices have provided the ability of continuous monitoring of
physiological signals to provide a more complete timeline of the patient’s
health condition. Mobile applications are being successfully integrated into
the clinical process for the continuous monitoring and treatment of chronic
conditions such as diabetes, asthma and epilepsy. They are enabling
easier disease management by improving medical adherence, symptom
and condition tracking, patient awareness and early warnings. They
are enabling a transition in the field of medical care from a reactive
to a proactive approach of treatment. This new concept of proactive
medical care-based smart health is characterized by 4 Ps - Prevention,
Participation, Prediction and Personalization [268].
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However, all these medical and technological advances produce a
large amount of data. Continuously tracking, managing and analysing
these large and high-dimensional datasets, identifying anomalous patient
behaviour from the unstructured data, and applying individual patient
specific interventions at the right time is a challenging task. This
necessitates the development of smart medical care - where medical
doctors and caregivers are supported by smart personalized digital health
assistants. These digital health assistants should be able to support
doctors to take more informed decisions about the patients by providing
the most relevant information during the patient’s visits, and also support
the patient while out of clinic.

Digital health assistants have to include a synergistic combination
of methodologies from fields of machine-learning and human computer
interaction. Machine learning has the potential to learn about the
behaviour and health condition of the individual patient. Applications
of techniques from human computer interaction (HCI) can help lower the
adoption barrier of these technologies into users’ daily lives. Machine
learning has made automatic detection of anomalies in the behaviour of
the patients easier. Machine learning techniques have shown that they
have the potential to improve medical adherence [73], can help in detecting
hypertension [109], and even predict occurrences of heart attacks [245].

Another challenge is that in most cases these technologies are applied
only once the disease has been diagnosed. Early intervention is one of
the key factors for prevention of cardiovascular and mental diseases. A
personal mobile health agent which can live with us, and collect, analyse
and learn from our covert and overt signals provides enormous possibilities
for continuous monitoring and early intervention. It can support us in our
daily lives by facilitating an overall healthier lifestyle and well-being.

The work presented in this thesis is a small step towards this larger goal.
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1.2 Thesis Goals

A key goal of this thesis is to present and demonstrate the utility of the
Personal Agent in Healthcare. Personal Mobile Agent that can be used as
a companion and live with the user. It can monitor the user’s behaviour
from the way he or she interacts with the world. Using wearable devices
it can continuously monitor the physiological signals of the user, in order
to provide early warnings. It can find relationships among physiological
signals and discover underlying causes.

This thesis particularly targets patients suffering from or at-risk of
essential hypertension. Essential hypertension is a critical condition, and
managing it requires a holistic approach for prevention and cure. This
thesis targets the identification of various parameters which affect the
disease condition.

1.3 Thesis Contributions

The contributions of this thesis are at the intersection of the fields of human
computer interactions, machine learning, and healthcare informatics. One
overarching goal of this work is to take computational approaches out of
laboratory and simulation settings and apply them to real world scenarios.
All work has been done in the wild with real participants who carried on
with their daily lives while using our system. The contributions are listed
as follows:

1. An intelligent personal agent platform for on-the-go continuous
monitoring of covert and overt signals from patients suffering from
essential hypertension.

2. A machine learning algorithm for accurate recognition of activities
from smartphone sensors. We demonstrate how audio signals can

6



improve the accuracy of activity recognition even at low sampling
rates in on-the-go scenarios.

3. A pipeline that combines various physiological signal streams, motion
profiles, and user annotations for on-the-go stress recognition.

4. Demon how such a such a system can help in identifying and
predicting diseases such as Essential Hypertension and can be used
to continuously monitor patients suffering from it.

5. A complete signal processing and classification pipeline for detection
of essential hypertension. Through a pilot study we demonstrate that
this system can distinguish between hypertensive and normotensive
subjects with high accuracy.

1.4 Structure of the Thesis

The thesis outline is as follows:

Chapter 1 - Introduction - This chapter describes the research
plan of the thesis. It presents the research approach, and the theoretical
and practical motivations. It also highlights the goals and contributions
of the thesis, and provides an outline for the rest of the content to follow.

Chapter 2 - Mobile Personal Agents - This Chapter provides
an overview of the Mobile Personal Agents. It talks about what a mobile
personal agent is, and its characteristics. It then discusses how such an
agent can contribute to the field of healthcare. It reviews the various
approaches which have been taken.

Chapter 3 - Covert and Overt Signals - This chapter discusses
the various covert and overt signals which can be utilized for the digital
and computational description of a person’s lifestyle.
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Chapter 4 - HEAL Platform - In this chapter we discuss the
architecture of our Personal Healthcare Agent. We discuss the various
design decisions, and the challenges.

Chapter 5 - Hypertension - In this chapter we discuss about the
hypertensive disease state. We discuss about the conventional method of
diagnosis. We also discuss about the management of hypertension and the
challenges involved, and how we can solve those challenges. We discuss
about the various physiological markers other than blood pressure and
how we can use these markers to come up with a better diagnosis and
disease management.

Chapter 6 - Activity Recognition - Classifying human activities
is an important task. Identifying the amount of time spent in different
activities such as walking, sitting or commuting can contribute to the
recognition of stress in daily life. In this chapter we discuss how the
various smartphone signals can be applied to build a robust activity
recognition algorithm.

Chapter 7 - Stress Recognition - Stress is one of the key debilitating
lifestyle factors. Detection and timely prevention of stress can help in
preventing diseases such as hypertension. In this chapter we provide our
stress recognition algorithm which uses the previously discussed HEAL
Platform.

Chapter 8 - Hypertension Detection - In this chapter we discuss
about our pilot study on Hypertensive patients. We discuss how by using
a combination of various physiological signals we are able to distinguish
them from normotensive subjects.

Chapter 9 - Conclusion - This chapter provides the closing remarks
and the vision of the future work.
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2

Intelligent Personal Agents

Baymax: Hello. I am Baymax, your personal healthcare companion.
Baymax: I heard a sound of distress. What seems to be the trouble?
Hiro: Oh, I just stubbed my toe a little. I’m fine.
Baymax: On a scale of one to ten, how would you rate your pain?

– Big Hero 6, Don Hall, Chris Williams, 2014

An intelligent personal digital agent that can live with us, assist us in our
daily lives, and take care of us has been a dream of science fiction authors
as well as computer scientists for a long time. From HAL 1, who would
not open the pod bay door for Dave, to the more recent Baymax, which
can help identify health problems, movie scripts abound with references to
such intelligent agents. In recent years, developments in machine learning,
artificial intelligence and mobile computing has taken this dream a few
steps closer to reality. They have enabled putting intelligent agents into
our browsers and our pockets. We seek help from machines as they ask
“How may I help you?"; we have them monitor our lives, schedule our
meetings and remind us to take medicines on time.

The concept of an intelligent agent has been around since the early
1movie :2001 a space odyssey
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nineteen-nineties. In the Artificial Intelligent community, an agent is
generally defined as [220]:

“an autonomous entity which perceives its environment through
sensors and acts upon it through actuators."

2.1 Types of Intelligent Agents

Intelligent agents have been adopted in a variety of domains ranging from
task management to personal healthcare. Depending on their domain of
application and the roles they play, they are referred by different names.
Agents which assist the user in their daily tasks are aptly referred to as
Assistants; Agents which accompany users in their daily lives and focus
on relationship building with the user are referred to as Companions. The
following are some of the broad types and categories of intelligent agents:

• Expert Systems: Expert systems are computer systems that emulate
human problem solving skills by taking the experience of a human
specialist or expert and transfering it to a computer system. Expert
systems codify these experiences as a set of rules which are used to
solve problems. They gained popularity in the late 1970s and 1980s
and found applications in real time monitoring of system behaviour
[136], analysis of sensor data for mineral exploration [126] and even
speech recognition (the HEARSAY-II speech understanding System
[90]). They were also applied in the field of computer-assisted medical
decision systems. TheEXPERT a system from mid 1970s, [207] was
an expert system which simulated clinical cognition and applied it
to the treatment of eye diseases. The SMH.PAL [135] was another
expert system which was used to identify interventions for students
with severe disabilities.
Training an expert system required the acquisition of a large amount of
knowledge from human experts. The underlying assumption was that

12



the knowledge of the experts in a domain consisted of a set of rules and
by identifying these rules, this knowledge could be transferred from the
experts to the system. This task of identifying and transferring the
knowledge faced two important challenges: a) Acquiring knowledge
from human experts could not be performed fast enough, and hence
posed as a major hurdle to the growth of this field. b) The transferred
knowledge in the form of rules was often brittle - the system could not
robustly tackle problems which deviated from the set of rules. Due to
these challenges, by early 1990s, interest in expert systems dwindled.

• Information Management Agents: The world wide web has made the
entire information of the world available at our fingertips. However,
organizing all this information and effectively and easily seeking
out the most relevant one at the right time can often be very
challenging. Intelligent Agents systems can help us navigate through
the information space and effectively extract, summarize, and present
the required information. Intelligent agents have been designed for
extracting information from the web, managing personal information
of individuals, and for managing collaborative information involving
multiple participants.

Intelligent agent which supports the acquisition, organization,
maintenance, retrieval, and sharing of personal information in our
daily lives are called personal information management agent (PIMA).
The goal of a personal information management agent is to facilitate
the easy management of information such as contacts, calendars, and
to-do lists. Recent studies with personal information management
agents [278, 249] demonstrate that they can improve ease of use of a
system, and decrease the cognitive load of the user.

Information management agents are also common in the travel and
tourism domain where smart tourist assistants can help in every aspect
of a tour including providing personalized recommendations of what
to visit [34], scheduling and planning a route for the tour [262], as well
as acting as intelligent context-aware tour guides [21, 62].

Systems such as the IBM Watson cognitive computing system [7] can
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acquire and manage information from diverse sources. IBM Watson
has been applied to question answering [36], information extraction,
discovery and management from diverse streams [8], and even clinical
studies [9].

• Task Execution Agent: Often aptly referred to as an assistant, the
main goal of a task execution agent system is to assist the users in
performing their daily tasks. Intelligent assistants have been deployed
in different domains to solve problems such as organizing emails [233,
100], scheduling meetings [260], managing time [197, 193], fetching
and summarizing information such as news and communication [41]
among others.
The CALO (Cognitive Assistant that Learns and Organizes) [1]
funded by DARPA aimed at providing the users assistance in
organizing and prioritizing information from emails; automate routine
tasks such as travel authorizations for the user; mediate human
communication as the user interacts with others 2.1. One of the
spin-offs of the CALO project was the Siri intelligent software system
which powers Apple’s Siri conversational agent. Siri can set reminders
and calendar entries, make calls and send messages, and find directions
for the user.
Recently commercial intelligent assistant applications such as x.ai 2.2,
slackbot, and google inbox use machine learning to perform simple
tasks such as automate meetings, reply to emails, manage expenses
and even book restaurant tables.

• Personal Monitoring and Lifelogging Agents: Lifelogging is the process
of digitally capturing (logging) different aspects of our lives. Dodge
and Kitchin [79] defines life-logging as “... a form of pervasive
computing consisting of a unified digital record of the totality of an
individual’s experiences, captured multimodally through digital sensors
and stored permanently as a personal multimedia archive". This
continuous massive logging of personal data has given rise to the
concept of “Quantified Self" [254] which involves two steps: 1) gather
all the data about oneself, and 2) analyze and quantify all this data.
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Figure 2.1: Project Execution Assistant (PExA) from the CALO project (2007)

Figure 2.2: X.AI - an assistant for scheduling meetings (2015)
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The goal of the quantified self movement is to be able to act upon
the information which is tracked to improve one’s life. A variety of
personal attributes and signals may be tracked and analysed using a
variety of devices. The trackable signals and attribues include weight,
energy level, mood, sleep quality, health, and daily activities, heart
rate among others. The objective of quantifying oneself can range
from general tracking of various signals to improving physical and
mental performance to creating digital memories.
Intelligent lifelogging agents can assist in signal acquisition, storing,
analysis and retrieval. The iScout agent [99] is a lightweight lifelogging
assistant for acquisition, sharing and annotation of experience-based
corpora via mobile devices. iScout allows the collection and curation
of memories and experiences in everyday lives. The collected memories
can be browsed, searched, and annotated with speech and notes for
later reference.

(a) iScout Mobile Agent (b) iScout Server

Figure 2.3: The iScout Lifelogging Agent can be used for collecting, organizing and
curating memories. a)The iScout client is capable of recording and tracking several
different kinds of signals. b) The iScout server integrates with various services which
can be used for analysis and visualization of the data.

• Relational Agents: Relational agents, often referred to as Companions,
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are computational entities designed for relationship building with
a user. Relational agents can interact with the user through
conversation (voice or text), learn about the user’s needs and
preferences, and form long-term relationships with the user. They
learn about the emotional and physical state of the users they
accompany.
The EC-funded COMPANIONS project developed a conversational
relational agent prototype system which acts as a health and fitness
companion [248] . The Companion (Figure 2.4a) has a stationary
embodied home component, and a mobile component which runs on
a smartphone, and can be used during physical exercise to track the
distance, pace, duration, and calories burned. The CIRDO [46] is
Smart Companion project which aims to ensure safety at home to
enable seniors to “age in place". The project consists of a smart
companion that can live with the user and uses audio and video
processing to detect critical events such as falls, and other situations
of distress. The MemoryLane [184] is a mobile intelligent storytelling
companion for the elderly which composes excerpts selected from a
lifetime of memories and conveys these past memories as stories.
The How Was Your Day (HWYD) Companion [57] is an embodied
conversational agent which provides advice and support to the user
about his or her everyday problems (See Figure 2.4b).

(a) COMPANIONS Project (b) HWYD Project

Figure 2.4: The a) Health and Fitness Companion from COMPANIONS project and b)
The How Was Your Day(HWYD) Companion (HWYD) are both examples of virtual
companions which live with the user
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2.2 Characteristics of Intelligent Agents

Over the course of the last two decades Agents have been adopted into
real-life applications. The ability to perceive and to act are the two
fundamental characteristics of intelligent agents. However, depending on
the domain of application and the needs of the system, certain additional
characteristics and qualifiers have started to define today’s intelligent
agents. Qualifiers such as Mobile, Intelligent, Virtual, Personal , embodied,
conversational have been used to define these agent systems. It is
important to clarify these terms before proceeding.

1. Mobile: In the history of computer science mobility has been used
in different contexts at different times. In the early days of AI, there
was a great interest in logical mobility of software components. A
mobile agent was used to refer to a software whose code could be
relocated from one software system to another. Over time, with
the introduction of client-server systems, such software mobility is no
longer a challenge. We are interested in mobility as used in the context
of physically mobile systems related to the use of untethered mobile
devices as computational units. This physical mobility of devices opens
up unique opportunities in terms of autonomy and sensing. It also
introduces new challenges due to added noise from inaccuracies of the
sensors.

2. Intelligent: An intelligent agent is one which can achieve its
objectives and goals. It can act autonomously and take decisions on
behalf of its user. One important characteristic of an intelligent agent
is its context-awareness. The knowledge of the user’s context is very
important while taking decisions on behalf of the user.

3. Interactive: A Personal Agent system should be able to interact
with the user and the surroundings. This interaction is an important
factor for the agent to learn about the user. This interaction could
be either reactive or proactive. In a reactive interaction paradigm the
agent responds (reacts) to user’s queries and requests. Most agents
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that answer questions or provide reminders and perform tasks on the
basis of the user’s request fall under this category. In the proactive
form of interaction, the agent decides to initiate the interaction. This
could be in the form of questions to elicit information from the user
or in the form of notifications or information which the agent deems
important for the user.

4. Virtual: An agent is a virtual piece of software. While there is
research on how to embody agents, and in some cases agents have
been embodied within physical objects, the agent itself is accepted to
be a virtual entity.

5. Personal: A personal agent is one which can adapt its own behaviour
based on the user’s preference and behaviour. Just as a human agent
or assistant learns about his or her employer over time, the digital
counterpart should also be able to learn about the user, and customize
and personalize interactions. This personalization could be as simple
as learning to turn off the ringer when the user reaches work, or
knowing what kind of food to suggest to user based on the user’s
restaurant check-ins, or being able to identify what increases user’s
stress based on changes in his or her physiological signals.
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(a) Lark (b) Siri

Figure 2.5: Conversational Agents like Lark and Siri can engage user’s in conversation.
They can accomplish tasks and elicit information

6. Conversational: A conversational agent can interact (converse)
with the user through natural language. This interaction can be
either voice based, text based, or through a multi-modal interface.
Conversational Agents can understand commands and queries in
natural language, and respond back with answers. These queries could
be simple information extraction tasks such as “What is the time
in New York now?" or commands like “Remind me to call mom in
the evening". Conversational agents have recently gained popularity
and have seen applications in e-commerce, travel booking, finance,
and mobile applications. They can be used to replace human agents
for answering queries for website visitors, or automating tasks in call
centers.
Conversational Agents like Lark [12] (Figure 2.5a) elicit information
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from users to learn about the user (thus leading to improved
personalisation). Smartphone based agents such as Apple’s Siri [17]
(Figure 2.5b) or Microsoft’s Cortana [11] can tap into the various
sensors of the mobile phone and thus provide contextual answers to
the user. For a query like “Which is the best Indian restaurant in the
city", smartphone based conversational agents can use the location
sensor on the phone to disambiguate the “in the city".

7. Embodied: Embodied agents (Figure 2.6) are agents that have a
perceivable digital representation. This digital representation which
may be anthropomorphic in nature is designed to be lifelike or
believable with the ability to act or react to human users. Embodied
agents are designed to emulate the experience of face-to-face
conversation. Embodied conversational agents can be enriched by
a variety of facial expressions, gestures, and postures which can make
the conversation more lifelike.

(a) The SpeaktoIt Embodied Agent (b) Molly from Sense.ly

Figure 2.6: Embodied Agents a) The SpeaktoIt Embodied Agent - emulating face-to-face
conversations b) Molly the Virtual Nurse from sense.ly
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2.3 Components of Personal Agent Systems

2.3.1 Smartphones

Until recently development and deployment of such an agent was limited
by the low physical mobility and connectivity of computing systems. In
the last decade, smartphones with their ever increasing physical mobility,
connectivity, computing power and on-board sensing capabilities have
successfully removed these limitations. Their ubiquity and penetration
into our lives have made them perfect delivery vehicles for such intelligent
assistive systems.

Smartphones have become an indispensable part of people’s daily lives.
They have combined and compacted the power of everyday objects such
as cameras, maps, calendars and schedulers and placed them all in a
single device in the users’ pockets. They have also become powerful
programmable computational platforms that allow their capabilities to be
augmented through applications (called Apps) which can be downloaded
from online application stores.

Smartphones have a plethora of sensors embedded in them. Most
smartphones come equipped with at least an accelerometer and a gyroscope
on them. These sensors can be used to detect the motion of a user. This
can be used to identify whether a user is stationary, walking, running or
travelling by a vehicle. The Geographical Positioning System (GPS) sensor,
can pinpoint the user’s location. The ambient light sensor can be used to
detect the light around the user, which can be used to automatically adjust
the brightness of a smartphone screen, or track when a user usually goes
to sleep. The bluetooth, and wifi sensors can sense the network around
the user. This information can be used to identify who the user is with.
Even the simple microphone sensor can be used to detect ambient noise
and to profile whether the user is alone, or in a crowded place. Apart from
this, the smartphone can connect to wearable devices which can monitor
a range of physiological signals of the user such as his or her heart rate,
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skin temperature, and galvanic skin response. These signals can be used
to track different dimensions of a user’s mental and physical health and
wellbeing, and provide deeper insights into his or her lifestyle.

Smartphone applications regularly utilize the signals from these sensors
to intelligently track and monitor users. Smartphone applications such as
Human [6] and Runkeeper [16] (Figure 2.7a) can keep track of our activities;
applications such as Myfitnesspal [15] (Figure 2.7b) and Lark [12] can keep
us on track towards our weight loss goals by rating the food we consume;
Google Now [5] can remind us about our upcoming meetings and inform us
when our bus is late; and Siri [17] or Cortana [11] can answer questions, set
reminders, hold limited conversations, and occasionally even demonstrate
humor.

(a) Runkeeper (b) MyFitnessPal

Figure 2.7: Commercial Smartphone Agents to keep track of activity and nutrition. a)
Runkeeper keeps track of the activities such as walking and running b) MyFitnessPal
keeps track of nutrition content and calories consumed
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2.3.2 Wearable Sensing Devices

Wearable sensing devices (Figure 2.8), a recent addition to the health and
fitness market consist of a range of devices including health and fitness
trackers, activity monitors, and physiological sensors. Wearable sensors
can monitor a variety of health and fitness parameters and signals which
can be used to understand both mental and physical health of the user
wearing them. Some of the typical parameters that can be monitored are:

1. Activity: Most wearable devices at least serve as activity and fitness
monitors. Because of this, the tri-axial accelerometer is the most
common sensor present on these devices. Similar to their smartphone
counterpart, this sensor can measure movement (acceleration along
the three axes) to determine the activity profile of the user.

2. Heart Rate: The measurement of heart rate can provide interesting
information about an individual. Heart rate is an important
determinant for health and disease. It is an indicator for stress
[37, 141], hypertension and cardiovascular diseases. Reduced heart
rate recovery after exercise has been shown to be an indicator of
increased risk for death from cardiovascular disease [259, 201].

3. Skin Temperature: Thermo-regulation is an important
physiological characteristic. Continuous high skin temperature can
often be an indicator of disease. The variation in body temperature
can be used to detect the symptoms of mental stress that might
lead to various health conditions, including stroke, heart attacks and
shock.

4. Electrodermal Activity: Electrodermal Activity or Skin
Conductance is the change in the electrical property of the skin. The
conductance of the human skin varies with changes in the moisture
level (due to perspiration). Since the sweat glands are controlled
by the sympathetic nervous system, skin conductance is used as an
indicator for psychological and physiological arousal.
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5. Electroencephalograph (EEG): Although not a common sensor
in wearable devices, measurement of EEG is becoming popular for
brain sensing experiments. EEG detects the electrical activity of the
brain and can be used to measure concentration, stress, and workload
among other things.

(a) Apple Watch
(b) Empatica E4

Figure 2.8: Wearable Devices can keep track of physiological signals. The Apple watch can
measure activity and heart rate. The Empatica E4 can measure heart rate, electrodermal
activity, and skin temperature.

2.3.3 Internet of Things

From refrigerators to parking meters the internet of things is turning
everyday objects into smart systems which can sense their surroundings
and connect and communicate with each other. While wearable devices
help intelligent agents learn about the user, the internet of things can help
an intelligent agent learn about the environment of the user.

An intelligent agent can connect to the smart fridge in a user’s home to
identify what the user is eating in order to ascertain if the user is following
his diet. It can connect to data coming from traffic sensors to suggest a
less busy route to the user’s office. It can switch on the smart thermostat
at home when it detects that the user has left office. It can connect to
the environmental sensors in the park where the user runs every morning
to identify the pollution and pollen level, and notify the user accordingly.
Intelligent agents can utilize the sensing capabilities of the internet of things
to improve the everyday convenience and safety of a user.
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2.4 Healthcare Agents

Healthcare is a diverse and complex system with knowledge,
decision-making, and care-coordination being distributed and shared
among different entities ranging from practitioners, patient-families and
patients themselves. Traditional treatment plans and understanding of
patient health risks are based on a limited subset of data - historical data,
patient and family reports, and clinical test data. While advanced data
analytic and machine learning techniques are already popular in fields such
as retail, finance and telecommunication, they have been quite slow to
enter the domain of patient management. Intelligent agent based systems
can be applied to healthcare to increase quality and efficiency of care
management, reduce cost of healthcare delivery, and improve compliance
and patient management.

Certain characteristics of intelligent personal agent systems make them
highly desirable for applying to the healthcare domain. They enable
the application of personalized medicine to patient care. Personalized
Medicine blends diverse information sources, including genetic profile,
behavioural and historical data with clinical reports. Combining all these
diverse data sources ensures that medical treatments can be tailored to
the individual characteristics of each patient. Social, environmental, and
activity data can be highly indicative of the health of an individual. It
has been shown that in the case of mental diseases such as depression,
individual responses vary widely to specific treatments. This requires that
patients are closely followed to detect how they are respond to treatment.
While self-reporting and diaries can help the doctors obtain records of
a patient perception about his or her disease, combining these records
with physiological signal and other sensor data can help generate a more
complete disease timeline and can provide a better prognosis. A recent
study [224] by Saeb et. al demonstrated that it is possible to predict the
severity of depressive symptoms by monitoring the mobile sensor data such
as location and phone usage.
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Intelligent agents can be applied at each stage of health care - for the
chronically ill - to manage their condition in their everyday lives; for the
sick - while they are hospitalized; for a discharged patient - for managing
post-discharge rehabilitation. Intelligent agents can also be helpful in
preventive care for providing early warnings.

• Chronic Condition Management - Life-long conditions such as
hypertension, diabetes, asthma and mental health conditions are
presenting new care-management challenges. Chronic conditions
require continuous monitoring and care management which can often
be overwhelming for patients suffering from such diseases. There is a
need for applying technology for helping such people to self manage
their condition and stay autonomous in their home environment.
A number of personal monitoring technologies have been suggested
for improving chronic care management. For most patients, recording
their food and medication intake, and activity level is a regular part
of management. For patients suffering from hypertension, doctors
recommend regular recording of blood pressure for disease tracking.
For diabetic patients, blood sugar monitoring is a regular part of
their disease management regimen. For patients with mental health
problems, psychologists often suggest expressive writing techniques
such as end-of-the-day diary writing to record their daily experience
and activities.
Patients are already burdened by the complications of their disease.
There is a need to simplify the monitoring and recording process. The
need of the moment is simple, unobtrusive continuous monitoring for
better care management. In recent years there has been a lot of
research to simplify monitoring and management. One important
factor for chronic condition management is personalization of the
management and therapy. Each therapy depends on a lot of
individualized factors and an intelligent agent system which can
learn about the individual patient’s characteristics and behaviour can
improve care.
The MONARCA system [32] showed that use of an intelligent
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personal health monitoring and feedback agent for patients suffering
from bipolar disorder improved patient experience, disease awareness
and self-treatment. They demonstrated that a smartphone
based companion system improved monitoring and self-assessment
adherence compared with paper-based forms.

• During Hospitalization Care - The experience of being
hospitalized can be extremely stressful for a patient. Improving
patient comfort and satisfaction is often a necessary factor for better
treatment and early recovery. In this setting intelligent agents can be
applied in healthcare systems to improve patient experience. Evidence
suggests that informed patients who understand their clinical situation
are more adherent to their care plans and engaged in clinical
decision-making [112].
A study by Wilcox et al. [271] showed that in emergency departments
patient comfort and satisfaction can be greatly improved by keeping
them informed of their health status and treatment progress.
Vardoulakis et al [209] showed that this can be achieved by using
an interactive mobile agent that can increase patient engagement.
Bickmore et al. in [38] demonstrated “Hospital Buddy" (Figure 2.9)
- a virtual agent designed to chat with patients about their hospital
experience. The buddy integrated with multiple sensors to make the
agent aware of events in the hospital environment and more aware of
the status of the patient. This information was used by the agent to
interact with the patient to converse about his or her health and daily
experience during the hospital stay. They showed that this interaction
greatly enhanced a patient’s hospitalization experience, and provided
rich companionship to the patient. In [39] they demonstrated that
such an agent was also useful for educating and counseling patients
with inadequate health literacy at the time of discharge.

• Post Discharge Care - Post discharge care is one of the most
complicated and critical step in a patient’s recovery process. Patients
are extremely vulnerable in the early days after discharge and this
can often lead to relapse and re-hospitalisation. Engaging patients
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Figure 2.9: A patient interacting with the Hospital Buddy - this greatly enhanced the
patient’s hospitalization experience, and provided rich companionship to the patient

and families in the discharge planning process can help to make
this transition in care safe and effective. For psychiatric patients,
continuous monitoring during post-hospitalization phase can help to
increase patient safety, and recovery while preventing relapse. For
cardiovascular patients, post-discharge observation might often be
necessary for proper rehabilitation.

Personal health monitoring agent systems which can automatically
monitor and collect heart rate, electrocardiogram (ECG) and
blood-oxygenation levels can support the rehabilitation process of
patients after heart surgery or recovering from a heart attack. Such
agents can employ algorithms for analysis of physiological activity
based on the heart rate and other physiological signals thus providing
advance notice of any critical events. For patients with mental health
issues, these devices can track physiological signals and detect any
signs of excess stress or agitation.

• Preventive Management - Personal agent systems which can
continuously monitor the health of an individual is not only beneficial
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for the sick. It can also be effective in maintaining the wellness of an
individual. Preventive health management is an important factor for
obesity control, fall detection, stress reduction, and cardiovascular
monitoring. Continuous monitoring of activity levels can be used
to motivate a user to get an adequate level of exercise or sleep.
Continuous monitoring of eating habits can be used to motivate a
user to eat healthy. Monitoring of physiological signals such as heart
rate, blood pressure, or skin conductance can help a user avoid stress.

Mobile Personal Agents can monitor, and learn about our health and
behaviour. They not only have the potential to be assistants to help us, but
also guardian angels who can look after our health, and provide us advance
warnings. In this work we explore how we can apply mobile personal agents
for monitoring stress and hypertension. We demonstrate the potential of
mobile personal agents for out-of-clinic monitoring. We show that they can
be used to detect and continuously monitor the activity and stress levels of
patients. By interacting with the patients to elicit information, they also
enable the patients to be more engaged in their own care.

2.5 Challenges for Personal Agents in Healthcare

Deploying personal agents in healthcare scenarios have their own
challenges. As soon as the sensing environment changes from controlled to
on-the-go, personal agents have to deal with challenges of noisy signals, as
well as be aware of the users’ contexts in order to interact with the user.
Some of the challenges, and the approach used in this thesis to deal with
these challenges are explained as follows:

• In-the-wild testing - Most agent systems are built with data and
models collected in controlled environments. While these might yield
accurate results in controlled experimentation, they fail in realistic
settings and their usability in real-life on-the-go scenarios are greatly
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diminished. In our work, to avoid this serious limitation, all the data
was collected in real-life on-the-go scenarios.

• Learning from noisy physiological signals - Physiological signals such
as heart rate and electrodermal activity are highly susceptible to noise
and artifacts arising due to motion, pressure or nervous fidgeting.
Learning from these individual signal streams is not effective. In this
work we solve this problem by applying signal processing techniques
to reduce artifacts and then combining different signal streams for
learning.

• Modeling the activity profile of the user - In healthcare scenario,
it is very important for a personal agent to model the context of
the user. Identifying the physical context of the user (whether he
is walking, driving, sleeping) can help the agent disambiguate other
signals. An increase in the patient’s heart rate while sitting needs to
be interpreted differently that an increase while he is on a run. In
our work our Intelligent Agent uses the accelerometer signals of the
user’s smartphone to model the user’s activity profile. We identify
six different activity profiles of the users - walking, standing, sitting,
travelling by bus, travelling by train, driving/travelling by car.

• Eliciting information from the user - Eliciting information from the
user is always a challenge. In our work we use a multi-level elicitation
strategy which combines free text and speech-based annotations, with
directed questions and list-based annotations.

2.6 Conclusion

In this chapter we briefly explored the history and evolution of intelligent
agents. We highlighted the characteristics of such agents and described the
components that make up a personal agent system. Intelligent agents have
been applied to the healthcare domain for improving the experience of
patients during and after hospitalization. In combination with wearable
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sensors, an intelligent agent can also be used to continuously monitor
and manage chronic conditions. In the following chapters we will explore
how we use this to detect stress and manage patients suffering from
hypertension.
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3

Hypertension

Hypertension is one of the most prevalent diseases of the modern world.
According to a recent report by the World Health Organization (WHO)
[204], hypertension affects more than 40% of the adults over the age of 25.
In 2008 over 1 billion people worldwide were found to be suffering from
hypertension. If left untreated it can lead to serious cardiovascular and
cerebrovascular complications, and even death due to renal failure [215],
heart attack [50], or stroke [195]. Every year there are over 9.4 million
deaths from heart disease related to hypertension [204].

Hypertension has been called the “silent killer" because at early stages
it is usually asymptomatic apart from a rise in blood pressure. Since most
otherwise healthy people do not regularly check their blood pressure, due to
the lack of early overt symptoms, hypertension can go undetected for years.
By the time symptoms start appearing, significant damage to the heart,
arteries and other organs is already underway. Since blood pressure is
one of the only observable early predictors of this disease, physicians often
recommend regular monitoring of blood pressure to enable early diagnosis.
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3.1 What is Hypertension?

The cardiovascular system, which consists of the heart, veins, arteries and
blood vessels is responsible for transporting oxygen and nutrients to all the
tissues in the body. The pumping action of the heart which circulates the
blood around the body determines the cardiac output (CO). The cardiac
output, along with the systemic vascular resistance (the resistance offered
to the blood flow by the peripheral circulation) determines the blood
pressure.

Blood pressure can be measured using either a conventional
sphygmomanometer and stethoscope or an automated electronic blood
pressure monitor 3.1. It is recorded in terms of millimeters of mercury
(mm Hg) and is reported as a pair of two numbers. The higher number,
called the systolic blood pressure (SBP) is the highest blood pressure
in the blood vessels which occurs when the heart contracts. The lower
number, called the diastolic blood pressure (DBP) is the pressure in
the blood vessels when the heart distends. Normal adult blood pressure is
defined as a systolic blood pressure of 120 mm Hg, and a diastolic blood
pressure of 90 mm Hg.

(a) Conventional Sphygmomanometer (b) Automatic Electronic BP Monitor

Figure 3.1: Blood pressure can be measured using either a a) conventional
sphygmomanometer and stethoscope or b) an automatic electronic blood pressure
monitor.

Hypertension refers to an increase in the systolic and/or diastolic
blood pressure. There are two main types of hypertension - primary
hypertension and secondary hypertension. Primary or essential
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hypertension is defined as persistent high blood pressure without any
identifiable causes. In primary hypertension, the resting systolic blood
pressure (SBP) is ≥ 140 mm and/or the diastolic BP (DBP) is ≥ 90 mm
Hg. Primary hypertension accounts for 90% cases of hypertension.

When the high blood pressure is due to other underlying disease factors
such as primary aldosteronism, renovascular disease, or obstructive sleep
apnea, it is called Secondary Hypertension. Controlling or curing the
underlying medical condition usually results in blood pressure reduction in
case of secondary hypertension.

3.1.1 Complications Arising from Hypertension

Hypertension greatly affects the cardiovascular system. Most of the
changes in the organ system happens because the human body tries to
adapt to the increase in blood pressure. This elevated blood pressure often
leads to structural changes to the body. Hypertension can lead to diseases
that affect the heart, the brain or the vascular system. The data from
the Framingham Heart Study demonstrates that sustained hypertension
increases the risk of myocardial infarction which can result in disability or
death [272]. High blood pressure due to hypertension can often affect and
damage specific organs. This phenomenon, called “Target Organ Damage"
can lead to diseases of specific organ systems such as the heart, brain,
kidney or retina:

Heart and blood vessels : Hypertension has been known to cause
coronary artery disease, and left ventricular hypertrophy which may lead
to subsequent heart failure. Hypertension has been known to be a factor
which can acclerate atherosclerosis [101], a condition where plaque builds
up inside the arteries. When atherosclerosis affects the coronary artery it is
called coronary artery disease (also called coronary heart disease) which is
one of the leading causes of death in the modern world. Hypertension can
also cause left ventricular hypertrophy which is the enlargement, thickening
(hypertrophy) and weakening of the walls of the left ventricle. If not treated
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in time, the end result of most of these conditions which affect the heart
and the blood vessels is subsequent heart failure.

Brain : Studies have shown that hypertensive target organ damage of
the brain is associated with cognitive impairment and decline in memory
[55]. Hypertension and high blood pressure in early or early or mid-life
increases the chances of brain atrophy in later life [146]. A recent study
[261] demonstrated that the increase of the signs of target organ damage
due to hypertension is correlated with decrease in the memory functions of
the brain. The Framingham Heart Study demonstrated that untreated
hypertension leads to decrease in cognitive performance, attention and
memory [87, 88]. One of the most common causes of death due to
hypertension is stroke or cerebrovascular accident (CVA) where decrease
in blood flow to the cells of the brain can lead to cell death.

Kidney : Hypertension also affects the renal system and is one of the
major causes for the development of chronic kidney disease which damaged
the blood vessels in the kidneys. Chronic kidney disease can lead to the
build up of fluid and waste products in the body which in turn affects the
normal bodily functions. Controlling blood pressure has been shown to
slow down kidney damage. Unless controlled, chronic kidney disease can
progress to end-stage renal disease (also known as renal failure).

Eyes : Hypertensive retinopathy is a condition where high blood
pressure causes changes in the retina leading to the narrowing of the retinal
arterioles. This might lead to headaches, double or reduced vision.

If hypertension is treated at an early stage and blood pressure is lowered,
it may stop the progression of the diseases of the target organs. In some
cases the lowering of blood pressure, if done early enough, can reverse the
target organ damage to a certain extent. This highlights the urgent need
for early detection and treatment of hypertension.
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Figure 3.2: Complications arising out of hypertension which can cause target organ
damage.

3.2 Diagnosis of Hypertension

According to the clinical practice guidelines published jointly by the
American Society of Hypertension and the International Society of
Hypertension [266], individuals are classified into their blood pressure
stages on the basis of their systolic and diastolic blood pressures (SBP
and DBP) as shown in table 3.1. When there is a disparity between the
SBP and DBP, then the patient is classified into the higher stage [257].

Blood Pressure Stage Blood Pressure Range
Normal SBP <120 and DBP <80 mm Hg
Prehypertension SBP 120 - 139 or DBP 80-89 mm Hg
Stage 1 Hypertension SBP 140 - 159 or DBP 90-99 mm Hg
Stage 2 Hypertension SBP >= or DBP >= 100 mm Hg

Table 3.1: The clinical practice guideline for the classification of hypertension.

The most common method of diagnosis of hypertension is the detection
of high-blood pressure using a brachial cuff-based measurement device or an
automated electronic measurement device. The guidelines for diagnosis of
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hypertension [266] jointly written by the American Society of Hypertension
and the International Society of Hypertension specify a strict protocol for
measurement of blood-pressure under clinical settings. It states, among
other rules, that blood pressure should be measured in both arms and the
higher reading should be used for diagnosis. It recommends that at least
two readings, 1-2 minutes apart be taken, and the average be used. It also
states that standing blood pressure using the same protocol be recorded to
account for differences in posture. Even if all the guidelines are followed
to the letter, there are other factors which can affect the diagnosis of
hypertension. Conditions such as “white-coat hypertension" and “masked
hypertension" can often lead to misdiagnosis. White-coat hypertension
is defined as elevated blood pressure (BP ≥ 140/90 mmHg) under clinical
settings but normal otherwise. Masked hypertension is defined as a normal
blood pressure (BP) in the clinic or office (≤ 140/90 mmHg), but an
elevated BP out of the clinic (ambulatory daytime BP or home BP ≤
135/85 mmHg). Even for patients not suffering from such conditions,
accurate recording of blood pressure is not an easy task. Blood pressure is
affected by the time of the day, the stress level of the patient, and factors
such as whether the patient has recently smoked or drank coffee. Owing to
all these factors, it has been argued that a limited number of measurements
within a short period of time may not be enough for the accurate diagnosis
of hypertension under clinical settings, and repeated monitoring is the only
safe and sure way of diagnosis of hypertension.

Ayaman and Goldshine [29] in 1940 demonstrated the effectiveness
of home based blood pressure monitoring for the accurate diagnosis of
hypertension. They identified that home blood pressure could be 30 to 40
mm Hg lower than that measured by the physician under clinical settings.
Home-based self monitoring has the practical advantage of eliminating the
white-coat effect and also allows for monitoring the patient’s response to
anti-hypertensive treatment. While doctors have advocated the use of
ambulatory blood pressure measuring devices for continuous monitoring,
they are usually adopted by patients who are already hypertensive or
have been diagnosed with a high risk of hypertension. It is not very
common for healthy people to regularly monitor their blood pressure.

38



One main issue with large scale adoption is that regular measurement
is not easy. Even for those suffering from hypertension the patient or
patient-families have to bear the burden of regular measurement. The
complexity of use and calibration of blood-pressure measurement devices
by the patients makes this frequent measurement cumbersome. There is
a need to develop techniques for continuously and unobtrusively monitor
the status of hypertension among people.

3.2.1 Physiological Markers for Hypertension

While presence of elevated blood pressure is used as the most common
definition of hypertension, a recent (2009) paper [110] published by the
American Society of Hypertension in the Journal of Clinical Hypertension
defines hypertension as a “progressive cardiovascular syndrome arising
from complex and interrelated etiologies". It states that progression of
hypertension is strongly associated with functional and structural changes
to the cardiac and vascular system, and early markers of these changes are
often present before elevated blood pressure is detected. Due to this, the
authors concludes that “hypertension cannot be classified solely by discrete
blood pressure thresholds."

Studies have demonstrated that continuous increase in the activity of
the sympathetic nervous system is indicative of health problems. Our
sympathetic nervous system controls our “fight or flight" response[145].
Increase in the activity of the sympathetic nervous system is a major
determinant of elevated blood pressure. Sympathetic over-activation leads
to stimulation of the heart and the peripheral vascular system. This leads
to increased cardiac output. Since blood pressure is a product of cardiac
output, elevation of heart rate also leads to elevation of blood pressure.
Measurement of Heart Rate Variability (HRV) has thus been shown to
be an effective measure for the detection and prediction of hypertension
[94]. Studies [179, 231] have demonstrated that the sympathetic activation
is an important indicator for early diagnosis of hypertension. Population
studies such as the Coronary Artery Risk Development in Young Adults
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(CARDIA) study [102], have shown a positive correlation between heart
rate and the development of hypertension.

Figure 3.3: Sympathetic activation affects the peripheral nervous system and leads to
changes in heart rate, skin temperature and electrodermal activity (EDA) among others.

This sympathetic activation also affects the peripheral nervous system
causing changes in other physiological signals such as skin temperature
and electrodermal activity (EDA) [251]. Variations in these physiological
signals can thus be indicative of sympathetic activation, and have long
been studied for research into the analysis of the stress response of
the human body [52, 130, 30]. In this research we hypothesize that
tracking and measuring the variations of these physiological signals
(electrodermal activity, skin temperature, heart rate) also hold potential
for the detection and monitoring of hypertension. A big motivation
behind using physiological signals such as skin temperature, heart rate
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and electrodermal activity in hypertension research is that, unlike blood
pressure monitors, there exist wearable, lightweight and unobtrusive
devices for the measurement of these signals. In recent years there has
been an increase in the adoption of wearable devices such as Empatica
E3 and E4 [3], Microsoft Band [13] and Basis Armband [14]. Using these
devices for tracking and monitoring physiological signals has opened up an
opportunity for early detection and intervention for hypertension. In the
following chapters we demonstrate the use of wearable device for continuous
monitoring of these physiological signals and how they can be used to
detect stress and hypertension. We show that combinations of heart rate,
electrodermal activity and skin temperature signals can be successfully
used for the detection of hypertension.

3.3 Factors Affecting Physiological Signals

Continuous monitoring of physiological signals is not without its challenges.
Physiological signals (blood pressure, heart rate, electrodermal activity and
skin temperature) are affected by a number of internal and external factors
and show considerable variations throughout the day. They are affected
by the environmental factors such as temperature and humidity, and our
current context such as activity level.

Consumption of caffeine, alcohol and nicotine are known to affect these
physiological signals. Alcohol consumption can decrease heart rate [221]
while caffeine increases it [274]. Cigarette smoking increases sympathetic
outflow which raises both heart rate and blood pressure [199]. Physical
activities such as walking, running, and exercise raise the values of all
physiological signals. Emotional Stress can produce marked increase in
heart rate, blood pressure and electrodermal activity. Even talking or
reading aloud raises both heart rate and blood pressure.

There is a need to determine these contextual factors while employing
ambulatory monitoring of physiological signals. In controlled experimental
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scenarios this monitoring can be done by a third party observer who can
note down the user’s context. In case of home-based monitoring of blood
pressure, doctors advise patients to self-report the conditions to note down
their current or recent activity and state in the form of a diary. However,
in on-the-go scenarios, a paper based diary is not an effective and usable
solution and a continuous digital tracking system is necessary to simplify
the note-taking and context detection.

We demonstrate the use of a intelligent personal mobile agent which can
simplify the annotation and note-taking process for the patients through a
multi-modal note-taking approach using both text and voice. This personal
mobile agent can also continuously and automatically detect the activity of
the user. These details can contextualize the changes in the physiological
signals and can help to identify the factors that affect these signals in
real-world on-the-go scenarios.

3.4 Management of Hypertension

Management of Hypertension consists of both pharmacological and
non-pharmacological approaches. Pharmacological interventions are
necessary for patients at a later stage of hypertension. However,
for patients with pre-hypertension or mild primary hypertension, a
non-pharmacological approach through lifestyle modification can help
keep blood pressure under control. Even for patients taking drugs for
hypertension, non pharmacological methods have been shown to provide
further health benefits.

3.4.1 Non-Pharmacological Approach Towards Hypertension
Management

Lifestyle modification has been shown to be beneficial for patients
suffering from hypertension. Following a healthy diet and increasing
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exercise regimens have been shown to be effective non-pharmacological
factors for decreasing blood pressure as well as reducing the risk of
cardiovascular diseases. The following factors have been shown to be
effective non-pharmacological interventions for hypertension management:

Decreasing obersity: Obesity, specifically visceral obesity, is an
important risk factor for hypertension and cardiovascular disease [242]. A
recent research discovered that the hormone leptin which is secreted by the
adipose tissue is significantly elevated following weight gain. The original
function of Leptin is a) to decreases appetite, and b) increase energy
expenditure through sympathetic activation. It has been shown that during
obesity the body develops resistance to the appetite-decreasing effect of
leptin. However, it still contributes to the sympathetic activation of the
nervous system, thus increasing blood pressure. Because of this, weight-loss
is one of the key non-pharmacological advice given to hypertensive patients.

Diet and Salt Reduction: Proper diet can thus be a very important
factor in controlling hypertension. The Dietary Approaches to Stop
Hypertension (DASH) [223] confirmed that a healthy diet can benefit
people suffering from hypertension. It demonstrated that an alteration
in diet with increased fruits, vegetables, and low-fat dairy products and
decreased amounts of total and saturated fat and cholesterol is beneficial
in lowering blood pressure.

Primary hypertension is more common in populations with a high intake
of sodium. It has been shown that hypertension is mostly absent in
populations consuming less than 3 grams of sodium per day, and is highly
prevalent in populations consuming more than 20 grams per day [191]. A
reduction of salt intake can lead to decrease in both systolic and diastolic
blood pressure in hypertensive as well as normotensive subjects. The World
Health Organization recommends that the daily intake of salt should not
be more than 5 grams per day [129].

Exercise: A long term, regular exercise regimen has been shown to
decrease blood pressure [118, 92]. Although blood pressure and heart
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rate temporarily increases during exercise, it rapidly returns to normal
levels after the completion of exercise. There is even an acute fall in
blood pressure after an exercise session, and this is called a post-exercise
hypotension [119]. Researchers have suggested that this phenonomenon
of post-exercise hypotension can be exploited as a non-pharmacological
and practical intervention for the management of hypertension [174]. A
16-week study performed on 56 patients suffering from hypertension [80]
demonstrated that regular exercise led to a significant reduction of both
systolic and diastolic blood pressure compared with controls.

Decrease in Alcohol consumption: Although several studies
have shown that moderate alcohol consumption (especially red wine)
is beneficial for the heart, research also points out that regular
over-consumption of alcohol can increase blood pressure [212]. There is
evidence to show that this is a reversible process and cessation of alcohol
consumption by hypertensive patients who are heavy drinkers lowers blood
pressure [177].

Smoking cessation: Smoking is one of the major risk factors for
cardiovascular disease. The INTERHEART study [275] which investigated
the risk factors associated with myocardial infarction demonstrated that
even smoking between 1 to 5 cigarettes daily increases the risk of acute
myocardial infarction by 40%. Smoking increases myocardial oxygen
consumption and leads to rise in both heart rate and blood pressure. Thus
a reduction or complete quitting of smoking can be effective for control of
hypertension and improvement of overall cardiovascular health.

Non-pharmacological approaches are hard to implement because it
is difficult to track them and motivate people to comply with them.
There is a need for developing technologies which can make these
non-pharmacological management techniques easier by increasing the
agency of the patients. In the following chapters we describe how a
intelligent personal mobile agent can elicit annotations, and also track
stress and activity levels to engage patients in their own care.
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3.4.2 Models of Hypertension Management

The standard care model consists of patients visiting their physicians on a
regular basis for diagnosis and tracking of symptoms (eg. blood pressure).
However, there are there are two major problems with this standard care
model:

a) Limited time with each patient: A Physician can spend a very
limited amount of time with a patient. This short time may not be
adequate to identify and treat all the multiple complex problems underlying
a disease. In the case of hypertension, which is a condition related to
lifestyle, there may be several personal and social factors which can affect
diagnosis and care management. It may be difficult for a physician to
glean all the information and understand all the underlying causes during
a patient’s visit.

b) Difficulty in enforcing adherence: Once a patient leaves the
clinic, there is very little a physician can do to ensure that the patient
is compliant with the provided advice. Ascertaining that the patient is
adhering to the treatment protocol is often done by simply asking the
patient. Once the patient has left the clinic, it is difficult for the physician
to enforce adherence to the treatment regime.

Due to this, care providers are trying out new care models. Two
popular care models which can complement the physician led care model
are self-management and team-based care management. We discuss
both these models below, and suggest a third model for hypertension
management involving an intelligent personal agent.

Self-management of Hypertension

Self-management of hypertension primarily involves keeping track of the
disease condition through regular home-based blood pressure monitoring.
While paper and diary based monitoring methods have been used
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traditionally, in recent times mobile technologies have been used to promote
self-management among hypertensive patients. Studies have shown that
home-based blood pressure monitoring can provide improvement in blood
pressure control among hypertensive patients. The THOP trial [247]
showed that home based blood pressure monitoring is more beneficial
than conventional measurement of blood pressure at a doctor’s office. In
this trial 25.6% of the patients in the home-based BPM group were able
to achieve recommended blood pressure levels compared to only 11.3%
patients in the office BP measurement group.

The TASHMIN2 Trial [189] demonstrated the effectiveness of
self-management of hypertension. It included 536 patients with elevated
BP levels ( > 140/90 mm Hg) who were split into self-management
(n=263) and usual care (n=246). The group using self-monitoring also
used self-titration of antihypertensive drugs according to a predefined plan.
Over a six month period the self-management group observed greater
reductions in mean systolic blood pressure compared to the usual care
group (difference between groups 3.7 mm Hg). Over a one-year period, the
reduction in systolic BP was 5.4 mm Hg greater in the intervention group
than in the control (usual care) group.

However, one major concern with self management of hypertension is
that for certain patients self-measurement of blood pressure can induce an
added anxiety. For patients who might become obsessed with their blood
pressure reading, self-monitoring can be counter-productive and even lead
to an increase in the blood pressure.

Team-based Care Management of Hypertension

The team based care model [44] goes a step ahead of the self-management
model. It aims to improve the primary care of chronic illnesses by
increasing the number of participants involved in the care of a patient. It
suggests that the physician-patient model should evolve into a wholesome
care delivery plan which involves getting the entire community (including
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the health care organization, local community, clinical information systems
and the patient himself) included in the care. The team-based care model
suggests that a care team consisting of non-physician members should
follow the patient to assist in care-management. This care team could
include pharmacists, nurses, social workers, and other members depending
on the needs of each individual patient. These members of the care team
can provide different levels of support to the patient when he or she is not
with the physician. A recent meta review [63] of clinical trials in the United
States found that including pharmacists in providing care to the patient
showed statistically significant improvement in blood pressure, cholesterol,
and medical adherence among patients. In another study, Lindsay et al
[171] applied a a team based care bundle to the chronic care model for blood
pressure management among diabetic patients across 4 sites in the United
States of America. Results showed a statistically significant decrease in the
proportion of patients with uncontrolled blood pressure in 3 out of the 4
sites, and a statistically significant improvement in the satisfaction survey
among the patients.

3.4.3 Intelligent Personal Agent Based Care Management for
Hypertension

While the Team-based Care Model is more successful than simple
self-management with home-based blood pressure monitoring,
implementing it requires a complex team-based effort. Getting a
community of players involved in patient-care introduces complexities in
large scale implementation. There is a need for simplification of the care
by bridging the gap between self-management and the team-based care
model and automating some aspects of the latter.

Technology assisted models such as mobile health (mHealth) involves
the use of technologies such as mobile phones and connected devices for
simplifying care management of patients suffering from chronic diseases.
mHealth empowers the patient by providing new ways to improve
home-based self-monitoring. In a connected health scenario, monitoring
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devices can be automatically connected to mobile phone networks to ease
the burden of measurement and record keeping. Mobile applications can
help in taking notes and tracking symptoms. This data can automatically
be transmitted to the doctors, thus avoiding careful physical maintenance
of the notes by the patient. Automatic reminders for medication can
help in improving adherence and management while avoiding the cost
and complexity of a human team-based effort required in the chronic-care
model.

However, mobile health technologies, by themselves are not intelligent.
They only improve connectivity among the various participants in the
healthcare scenario. Ambulatory monitoring, as mentioned before, needs
to identify and understand the context of the user. It also needs to
analyse the collected data and extract useful knowledge from it to make it
actionable. While in the team-based care model, this can be done by the
care team, in a self-management model this is challenging. Understanding
the user’s behaviour including activity level and stress of the user is even
more difficult. Continuous annotation of stress and activity levels can be a
tedious process for a user. There is a need for automatic detection of these
metrics.

This is where we propose the use of an intelligent personal agent-based
care management plan where the intelligent agent replaces most of the tasks
done by the chronic care team. An intelligent agent can help the patient
in recording and maintaining notes. It can automatically seek annotations
when required, monitor the activity level, and learn to detect the stress
level of the user. Using wearable devices which can record the physiological
signals such as heart rate, electrodermal activity, and skin temperature,
the intelligent agent can identify the level of stress of the patient. Using
the motion sensors on the patient’s mobile phone the intelligent agent
can detect the activity level of the user. Using this data, the intelligent
agent can build up a personal model which accurately represents the user.
Use of an intelligent personal agent need not be restricted to patients
who have been diagnosed with hypertension (or other chronic diseases)
- its use by healthy individuals can help in better lifestyle management by
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increasing their awareness about their stress and activity levels. Such an
agent can also detect the early signals for hypertension and help prevent
the occurrence of the disease. In the following chapters we present the
intelligent agent platform and discuss about its application in the various
aspects of health care management.

3.5 Conclusion

Hypertension is a complex disease which can be difficult to track and
manage. In this chapter we explore the traditional methods of diagnosis
and management of hypertension. We also discuss how physiological
markers such as heart rate variability and electrodermal activity are
affected by the condition of hypertension. We propose the use of these
signals for the detection of hypertension. We also explore the various
approaches for management of hypertension, and propose a novel model of
using an intelligent personal agent for the management of the disease.
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4

The Health Analytics (HEAL)
Platform

“A doctor who cannot take a good history and a patient who cannot give
one are in danger of giving and receiving bad treatment."

– Paul Dudley White , Clues in the Diagnosis and Treatment of Heart Disease
(1956)

Knowledge of the complete clinical history, lifestyle, behaviour,
medication adherence data, and underlying symptoms all affect treatment
outcomes. Collecting, analyzing and using all this data while treating a
patient can often be very challenging. A doctor can spend only a limited
time with a patient. This time is often not enough to learn about all the
lifestyle and underlying conditions of a patient’s life. The data reported
by a patient also suffers from bias in memory. A doctor might advise a
patient to walk more, eat healthier, and decrease their stress level, but
once a patient is out of the clinic, it is very difficult to ensure that the
patient actually follows all these directives. Often patients are asked to
maintain diaries of their daily activities. Diaries can help to improve
adherence by increasing the conciousness of the patients, and can also
serve as a way for the doctors to validate this adherence. However, diaries
can be cumbersome to parse, and hence increases the task of the doctor.
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The role of an intermediary care team which can follow the patient [190]
and ensure adherence and protocol has been suggested as a solution.
However, setting up a care-team is complex and expensive. There is a
need for a technological solution which can monitor and assist patients in
their daily lives and ensure that the doctor receives a clear picture of the
patient’s lifestyle.

The recent growth in the sensing and processing power of smartphones
have turned them into ubiquitous computing devices. They are always
there with the users and have become an emerging platform for social,
behavioural and environmental data science. Smartphones have become
a time and cost effective platform for research in social [214], health
[175], behavioural [77], and clinical [206, 93] sciences. Smartphones,
in conjunction with wearable devices can provide a complete long-term
understanding of the user’s physical, environmental, and behavioural
patterns. They have been successfully applied for detecting and tracking
and managing complex symptoms such as diabetes [156], depression [42],
bipolar disorder [213], and pulmonary diseases [180] . Smartphones have
also been shown to be highly effective in improving medical adherence [75]
and patient empowerment in chronic diseases [252].

4.1 Motivation and Goals

Effectively caring for patients suffering from chronic diseases is a
challenging task. There is a need of decreasing the burden of the primary
care physician in treating chronic patients, while increasing the quality of
the care provided to the patient. This requires adoption of new policies as
well as technological methodologies.

Mobile health platforms which automate some parts of the care
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management process have shown to lower costs while increasing patient
engagement. Mobile health has been shown to work effectively in medical
adherence, as well as disease condition management. One criticism of
mobile health platforms are that they are only recommendation or data
collection tools and most of them lack the capability of understanding the
patient’s context. They are also not personalized and lack the ability to
adapt according to the state of the user (patient). Because of this, clinical
intervention which includes a human caregiver (human in the loop) to
follow the patient has been shown to be more effective than mobile health
alone.

In this work we wanted to address this challenge of understanding the
user’s state to personalize care-management. A mobile personal agent
capable of tracking and understanding a patient can greatly improve and
personalize chronic care management. We apply our agent technology to
patients suffering from essential hypertension and show that a intelligent
personal mobile agent is capable of monitoring, analyzing and tracking
several characteristics of hypertension management. Patient reports also
show improved patient satisfaction with using a personal mobile agent.

4.2 Platform Overview

The Health Analytics (HEAL) Intelligent Agent platform 4.1 consists of
three components:

• Empatica wristband: The Empatica E31 wristband is a bluetooth
enabled wearable device capable of sensing physiological signals. It is
an unobtrusive, wearable, lightweight, wireless, multi-sensory signal
acquisition device which is worn on the wrist like a watch. Its small
form factor makes it ideal for ambulatory recording of physiological

1www.empatica.com
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Figure 4.1: The three components of the HEAL platform. The Empatica E3 wristband,
the HEAL intelligent agent, and the HEAL cloud

signals in the wild, with possible applications in research and health
care domains. It has four inbuilt sensors which are capable of
measuring and reporting a) Electrodermal Activity (EDA), b) Blood
Volume Pulse (BVP), c) Inter Beat Interval (IBI), and d) Tri-Axial
Acceleration.

• HEAL intelligent agent: The HEAL intelligent personal agent is
a custom designed companion application which resides on the user’s
iPhone. The HEAL mobile companion runs on any iOS device which
supports the bluetooth low energy (BLE) protocol (iPhone 4s and up).
It is a personal companion application which records and securely
uploads the physiological signals from the Empatica E3 wristband
to the server. The personal companion also acts as an agent to elicit
information from the user through questionnaires and text and speech.

• The HEAL cloud - The Health Analytics (HEAL) cloud is the
server component of the HEAL Intelligent Agent platform. All the
individual HEAL mobile companions upload their data to the HEAL
cloud. The HEAL cloud encrypts and stores the data for secure access.
At the back-end, the HEAL cloud stores, parses, structures, cleans
and runs machine learning algorithms on the data to learn about the
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user’s behaviour including the user’s activity and stress levels. The
cloud also provides a web visualization platform which can be accessed
by the patient as a lifelogging tool, and also by the doctors for keeping
track of their patients.

4.3 The Empatica E3 wristband

The Empatica E3 (Figure 4.2) has four integrated sensors a) an
electrodermal activity (EDA) sensor b) a photoplethysmography (PPG)
sensors c) a temperature sensor d) a tri-axial accelerometer. When active,
it continuously records signals from these sensors. It and can connect
to a bluetooth enabled smartphone (Android or iOS) over the bluetooth
low energy (BLE) protocol to stream the recorded data to a companion
application on the phone. On a single charge the E3 device lasts for about
10 to 12 hours in streaming mode, making it ideal for ambulatory data
collection during a typical workday.

Figure 4.2: Empatica E3 wristband - wearable, lightweight, wireless, multi-sensory data
acquisition device

4.3.1 Recorded Signals

The sensors on the Empatica E3 record the following signals at the
following sampling rates:
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• Blood Volume Pulse (BVP): The E3 reports BVP at a 64 Hz rate.
• Electrodermal Activity (EDA): EDA is reported at a 4 Hz rate.
• Inter Beat Interval (IBI): IBI is reported as a time-IBI pair.
• Skin Temperature: Skin Temperature is reported at a 2 Hz rate.
• Tri-Axial Acceleration: XYZ Acceleration of the wristband is reported
at a 32 Hz rate.

4.4 The HEAL Intelligent Agent

The HEAL intelligent agent runs on any iOS device supports the bluetooth
low energy (BLE) protocol (iPhone 4s and up). The HEAL intelligent agent
has four main functions:

• It connects to the Empatica E3 device to continuously record and
upload the streaming physiological signals from the wristband.

• The agent also records the data from the sensors on the smartphone.
• The agent transmits the data for analysis on the HEAL cloud.
• The agent elicits information from the user using multiple strategies
including predefined questionnaires, list-based activity annotations,
and free open text and voice notes.

4.4.1 Signal Storing and Streaming

The HEAL intelligent agent connects to the E3 device and continuously
stores all the physiological signals in a time, value pair format. The HEAL
intelligent agent uploads the data to the cloud in two steps:

(a) Streaming mode: Whenever the HEAL intelligent agent is actively
collecting data, it continuously streams a down-sampled version of the
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data to the HEAL cloud. This downsampled data is used for live
visualization of the physiological and activity signals. This data is
streamed once every minute. The data is uploaded in a json format.

(b) Bulk mode: At the end of the day, the user can upload the entire signal
stream to the HEAL cloud. This upload is also triggered automatically
if the HEAL agent detects that the user has not manually uploaded
the data for some time (2 days) and the iPhone is connected over a
wifi-network ( Due to restrictions on the iOS platform, this automatic
upload can only occur when the iPhone is also connected to the
empatica device - otherwise background uploads on the iOS have a
timeout). Since the data for two days can be quite large, this upload
is done over the wifi-network to decrease the mobile data consumption
by the application while ensuring that the data is uploaded to the
analytics platform. At the time of the upload, the data for each session
is compressed and a MD5 (Message-Digest algorithm 5) checksum for
the file is calculated. The compressed file along with its checksum is
uploaded to the server.

4.4.2 Overt Signal Acquisition

The HEAL platform uses both interval-contingent and event-contingent
recording strategies. In interval-contingent recording, data are collected
at regular intervals determined, i.e. once every three hours (when the
user wears the device, after three hours, and at the end of the daily data
collection). In event-contingent reporting, users can record a report every
time he or she appreciates that an stressful event has occurred. Using these
strategies the HEAL platform collects the following overt signals:

1. Periodic Structured Information in the form of anticipated and
perceived stress and workload questionnaire

2. Spontaneous Structured Information in the form of event
annotations

3. Spontaneous Structured Information in the form of user diaries
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(a) Stress Workload Questionnaire (b) Reporting the Stress Level

Figure 4.3: The HEAL Companion for recording anticipated and reported stress and
workload

Anticipated and Perceived Stress and Workload Questionnaire

The HEAL intelligent agent uses interval-contingent strategies to
periodically record information about a user’s stress and workload level
(Fig. 4.3).

Anticipated Stress and Workload Reporting : This is a user report of the
level of stress and workload for the upcoming period.
Perceived Stress and Workload Reporting : This is a user report the level
of stress and workload perceived for the period which has passed.

At the beginning of the day the user is asked to record the anticipated
stress and anticipated workload levels for their morning session.

(a) The Stress annotations are obtained on a five point likert scale as
follows:

• Not at all stressful (per niente stressante)
• Little stressful (poco stressante)
• Moderately Stressful (abbastanza stressante)
• Quite stressful (stressante)
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• Very Stressful(molto stressante)

(b) The Workload annotations are also obtained on a similar five point
likert scale:

• Not at all busy (per niente piena)
• Little busy (poco piena)
• Moderately busy (abbastanza piena)
• Quite busy (piena)
• Very busy(molto piena)

Around noon, the users are asked the same question as above, but this
time they are required to assess how their morning really was, and provide
their prediction for the afternoon. At the end of the afternoon they will
be asked to assess how stressful and busy their afternoon really was.

Event Annotations

The HEAL intelligent agent encourages the user to annotate events
and activities during the day. These annotations can provide a deeper
understanding of the user’s activity level and habits. These annotations
are also used later to ground the automatic activity recognition done on
the analytic cloud. Analysis of these activities can also be used to identify
the stress inducing activities in a user’s everyday life.

User Diaries

Our experiences are inherently temporal in nature. After some time we
tend to forget the exact nature of the event and the emotions it invoked
at the time. Diaries are self-reports to capture daily events, interactions,
mood and reflections. Diaries are a popular tool for life-logging for memory
aiding and recollection [150]. The reflective nature of the process of writing
and reading one’s own diary has been shown to increase self-awareness
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(a) Add a new activity (b) today’s activites

Figure 4.4: The HEAL intelligent agent application allows the user to add and annotate
activities throughout the day.

(a) text notes (b) audio notes

Figure 4.5: The HEAL intelligent agent application for diary keeping - the user can either
write down text about his feelings and situations, or narrate it using speech.

about physical activity or emotional states in different situations.

Diaries have been shown to be very effective in gaining a deep insight
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into a patient’s well-being and can be used by a therapist for learning
about the patient’s behaviour and routines. They can also be used
for tracking medicine adherence and compliance to treatment regimes.
In psychology research diaries have been shown to be an effective tool
in promoting psychological recovery for patients suffering from various
symptoms like anxiety, depression, and post-traumatic stress [22].

One of the main challenges of diary-keeping is the need to carry around
the physical diary, and finding the right place and time to record one’s
thoughts. The growth of mobile phones in our lives has resolved this
problem - it provides an easy interface to write or speak to. The HEAL
mobile companion encourages the user to maintain a multimodal diary
(Figure 4.5) - the user can either take frequent notes or record speech
about his or her feelings, current state, and elicit about the surroundings,
and how his day is.

4.5 The Health Analytics cloud

The analysis and machine learning for the intelligent agent is performed on
the Health Analytics (HEAL) cloud. The HEAL cloud has three parts - (1)
Data Processing Engine (2) Analytic Engine (3) Visualization Dashboard
(see Figure 4.6).
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Figure 4.6: The Health Analytics Cloud Pipeline. The pipeline consists of the (1) Data
Processing Engine (2) Analytic Engine (3) Visualization Dashboard

4.5.1 Data Processing Engine

The data preprocessing engine performs the various subtasks involved in
preparing the data and signals for feature extraction and machine learning
performed by the analytic engine. It consists of four components:

(a) Data aggregation and verification : The data from the intelligent agent
application is uploaded to the Health Analytics cloud. The backend
uses a mysql database to store all the structured data. The database
uses row level encryption for sensitive user profile data. The signals and
the audio themselves are stored on the disk, and their references are
saved to the database table.The json files from the streaming data are
parsed and entered into the mysql database for continuous visualization
through the HEAL dashboard. For the end of the day data, the
compressed files are decompressed and their validity is checked against
their md5 checksum. In case a problem is detected a message is
returned to the HEAL application to re-compress and upload the file
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which doesn’t match the checksum. The same step is taken for the
audio files uploaded from the HEAL intelligent agent.

(b) Signal Conditioning: The signal conditioning module is responsible
for signal processing. The electrodermal activity (EDA) and skin
temperature signals are passed through a low pass filter and detrended.
The accelerometer signal is used for active noise cancellation from the
blood volume pulse (BVP) signal (as described in [109]) which is used in
the inter-beat-interval (IBI) estimation module. Based on the specific
application (activity recognition, stress detection and hypertension
detection), different signal processing techniques are applied in the
HEAL Data Processing Engine. The individual signal processing
techniques will be discussed in their respective chapters.

(c) Artifact Removal: Physiological signals are highly susceptible to
artifacts which can limit their usage for identification of the mental
state of the user. Removing artifacts is therefore a very important and
essential part of the activity and recognition pipeline. The HEAL
analytic engine identifies and removes artifacts such as local noise,
artifacts due to pressure, nervous fidgeting and gross body movements.
This process is explained in Section 7.6.3.

(d) IIBI Estimation: This module estimates the interpolated
inter-beat-interval signal from the conditioned blood volume pulse
(BVP) signal. This process is explained in Section 8.6.1.

4.5.2 Analytic Engine

The analytic engine consists of the following modules:

(a) Feature extraction: The feature extraction module extracts various
features from the physiological, motion, and user profile data.

(b) Activity recognition: The activity recognition module performs activity
recognition explained in Chapter 6, to identify the current activity of

63



the user. The activities recognized include walking, standing, sitting,
travelling by bus, travelling by car/driving, and travelling my train.

(c) Stress recognition: The stress recognition module performs stress
recognition using the physiological signals of the user. The stress
process is explained in Chapter 7.

(d) Hypertension detection: Using all the data above (including the
stress and activity data), the analytic engine can distinguish between
normotensive and hypetensive users. This can help in early detection
of hypertension. This work is explained in detail in Chapter 8.

4.5.3 Visualization Dashboard

The HEAL Dashboard acts as a visualization, annotation and analysis
platform for the users/patients and the care team. The dashboard
visualizes the streaming physiological signal data and adds context to it
by adding the patient supplied notes, and the annotations on the signal
timeline. The patients have their individual login and can view their own
data, and at the end of the day edit, delete or add their data. This can
be used as a reflective tool by the patient to perceive their physiological
response to the various stressors in their life (Figure 4.7).

The healthcare team has access to the data to keep track of the
most important vital signs of the patients during the day (Figure 4.7).
In the streaming mode, they can see minute by minute update of the
physiological signals of the patients. They also have access to summaries
and visualizations highlighting differences between different patient. This
information can be used to instantly observe any differences between the
hypertensive patients and normotensive control groups (Figures 4.8 and
4.9) .
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Figure 4.7: HEAL Dashboard visualizing the physiological signals along with the
annotations

Figure 4.8: HEAL Overview Dashboard for Doctors - the dashboard shows the summary
of the hypertensive patients and normotensive controls in the experiment
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Figure 4.9: HEAL Overview Dashboard showing the mean heart rate distribution of the
patient and control groups over days of the week. The RED dots are hypertensive patients
and the BLUE dots are normotensive controls

4.6 Conclusion

The Health Analytics (HEAL) platform is a multi-component platform
which can help to manage and track various aspects of a chronic disease.
In this thesis we apply the HEAL platform for the management of
hypertension. In the later chapters we demonstrate how this platform
can be used for continuous monitoring of stress in daily life, and can be
used also for detecting patients suffering from hypertension.
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5

Covert and Overt Signals

In recent years advances in sensor technologies and pattern recognition has
made it possible to generate computational models of human behaviour.
These computational models have opened up new possibilities of developing
advanced commercial, societal, health and educational applications.
Building these computational models of behaviour is not an easy task
- behaviour is a complex phenomenon which can be affected by both
external and internal factors or states of an individual. External factors
can be contextual like time of the day, location, environment, company,
noise-level, etc. or societal like attitude, perception, culture, and social
norms. Internal factors which can affect can affect the behaviour are the
psychological or cognitive states of the individual - if the individual is
stressed, worried or suffering from some mental condition it can affect the
way he or she behaves.

Human behaviour produces both observable and hidden cues. The
observable cues of human behaviour generate changes in the produced
overt signals - speech, text, gesture, and posture among others. In an
interactional scenario these signals are mostly presented with the intention
of communication. The hidden cues or the covert signals produce changes
to the individual’s physiological, psychological and mental state - heart
rate, amount of sweating, skin temperature. These hidden or covert signals
are indicative of the psychphysiological state or response of a person and
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are important sources of information for the analysis of behaviour. They
signals can be used to determine a person’s mental state variables in terms
of arousal, valence, or activation, or cognitive load. Identifying these state
variables can also be useful for analyzing and explaining the underlying
causes of some of the overt responses - such as is the person behaving
differently because he is stressed or afraid ?

Both overt and covert signals have been extensively studies in literature
for the analysis of human behaviour. Overt signals such as speech and
language have been investigated for the analysis of different dimensions of
human behaviour. Human speech is an information rich stream with both
linguistic and paralinguistic components. While the linguistic part defines
the content of the speech, the underlying prosody, speaking style, pitch,
accent, stress on certain words can help to identify the emotional and
behavioural state of the speaker. Both the linguistic and paralinguistic
features of speech have been studied to detect human emotion [157],
personality traits[178, 60] and mental state (such as stress level) [161].
Other overt signals such as facial expressions, gaze, posture, and motion
patterns have also been well studied for understanding, analyzing and
predicting behavioural and mental state. Posture and has been used
to gauge socio-emotional states of people such as frustration [153, 78]
engagement [226], and attention [164]. Motion patterns such as gross
body movements and gesture have also been studied for the detection
of frustration [83], and emotions such as fear and anger [76, 56]. Micro
changes in facial expression of people observing video streams [185] have
been used for detecting emotional responses towards advertisements.

Covert physiological signals have also been used identify an individual’s
psychological state. The predictive power of physiological signals for
mental state has been long exploited in polygraph tests [142] where changes
in mental stress due to cheating or lying are reflected through changes in the
various physiological signals such as heart rate, electrodermal activity and
skin temperature and their combinations. Subsequently in later years, this
power of physiological signals to indicate the mental and cognitive state
of a person was exploited in different fields of study from healthcare to
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commerce. Neuroimaging techniques such as EEG, fMRI, and MEG have
been used in neuromarketing to detect consumers’ brain activity to predict
their attitude towards a product [28, 167]. Analysis of electrodermal
activity and facial expression has been used to classify response of children
suffering from autism spectrum disorder [227]. Behavioural signals such
as motion patterns, mobile phone usage, and gesture have been used
for detecting conditions such as depression[61], bipolar disorder [33].
Physiological signals such as electrodermal activity (EDA), heart rate
variability (HRV), and skin temperature have been used to detect stress
[107] and hypertension [109]. Analysis of the EDA of employees has been
used to detect stress and performance in call centers [134].

It is difficult to continuously observe and analyze overt signals such as
speech, facial expression, and gesture due to limitations of technology as
well as concerns of privacy. The recent development in the field of wearable
computing on the other hand, has made continuous unobtrusive monitoring
of physiological signals possible. Recent large scale adoption of wearable
devices has opened up new avenues for research into understanding the
mental state of an individual. In this thesis we combine periodic recordings
of overt signals (speech/text) with continuous recordings of covert signals
(heart rate, electrodermal activity, skin temperature recorded using a
wearable wrist-based monitor) to develop algorithsm to identify the mental
state of the subjects. In later chapters we use various combinations of these
signals to identify stress, workload, and activity of the user - and ultimately
we demonstrate how these signals can be used to identify patients suffering
from hypertension. In the rest of this chapter we discuss in brief the
characteristics of the various covert and overt signals collected in this
research.

5.1 Overt Signals

In traditional and controlled research scenarios, multiple overt signals can
be recorded and used to observe and identify human behaviour. Signals
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such as speech, activity, gait, posture, eye-gaze among others have been
extensively studied for the analysis of human behaviour in controlled in-lab
conditions. In most in-lab experimental scenarios, apart from the technical
ease of recording, the privacy issues are also diminished. Since that the
experimental subjects are already aware and have agreed to being recorded,
it can be argued that within reasonable ethical parameters, the privacy
concerns are not high. However, when recording signals in on-the-go
realistic scenarios, where the subjects go about in their everyday life,
privacy issues can be very high - it is not possible to record any overt signal
which might compromise the subject’s reasonable expectation of privacy.
All recordings under such scenarios should be voluntary in nature, and the
subject should be able to review, edit, and delete any such recorded data.
Due to these prerequisites of privacy, in this research all overt signals were
based on voluntary registration (recording) of the signals by the subjects.

In this work we collect two kinds of overt signals:

1. Structured overt signals: Structured overt signals are responses
collected from users through structured questionnaires. For this
work, we collect annotations from users based on three different
psychological questionnaires.

2. Unstructured overt signals: Unstructured overt signals are richer in
terms of content since they allow users to provide more information.
In this work we collect user diary annotations as short free-form speech
and text annotations from the user.

5.1.1 Structured Overt Signals

Structured overt signals have a predefined standard format. Elicitation of
such signals may be through structured interviews, forms or multiple-choice
questionnaires. Such signals are extremely important in the field of
psychological assessment. Psychological assessment is “the systematic
evaluation of a person’s behaviour" [128]. It is an important part
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of many clinical processes and includes several dimensions such as
behavioural assessment, personality assessment and social assessment. It
can provide underlying information for evaluation of behaviour, analysis
of job satisfaction identification of diseases and detection of stress.
Questionnaires are a popular method of psychological assessment as
they provide a fast and efficient method for collecting large amounts of
information from a lot of people. They have been extensively used in
psychology for carrying out research for psychological assessment. They
are also widely used for research in several domains ranging from marketing
to healthcare. In our work we use three types of questionnaires:

Stress Perception Questionnaires

The way a person perceives a stressful event impacts how stress affects
the individual’s health [166]. Different individuals respond differently to
the same stressful event. If one person perceives an event as extremely
stressful while another person doesn’t, then the effect of the same stress
on the latter is much lower than that on the former. Hence the perceived
stress scale [69] has become a widely used measure for stress perception
and its validity and reliability has been replicated in a large number of
studies [26, 70, 71].

In our work we use a stress perception questionnaire which consists
of questions about anticipated and perceived stress and workload
administered thrice a day.

Emotion Regulation Questionnaire

Emotion regulation refers to the process that individuals use to feel,
express, and control the emotions they experience in their daily lives [113].
It is used by individuals to modify their emotional experiences, expressions,
and physiology as well as manage the situations eliciting such emotions
in order to produce appropriate responses to life events. The emotional
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reactions to stressful events entail emotion regulation [263].

Two underlying dimensions have been proposed as primary factors of
the emotion regulation process - cognitive reappraisal and expressive
suppression [115]. Cognitive reappraisal is an antecedent-focussed
strategy that acts before the activation of an emotional response, while
suppression is a response-focussed strategy that occurs when an emotional
response has already been deployed. Different individuals use these
dimensions differently and this can affect the way they experience and deal
with stress in their daily lives. It has been suggested that the suppression
strategy may require some effort to manage the emotional response thus
reducing the cognitive and affective resources of an individual. It has been
shown that use of response-focusses strategies like expressive suppression
are correlated with self-reported depression [181].

The emotion regulation questionnaire (ERQ) is a ten item scale [116]
designed by Gross and John (2003) to measure how the respondents use
cognitive reappraisal and expressive suppression strategies for emotion
regulation. Studies using the emotion regulation questionnaire have
demonstrated that increased use of expression suppression strategies
is linked to mental problems such as anxiety [188], stress[53] and
depression[246].

Holme’s and Rahe Stress Scale

The social readjustment rating scale [139], more popularly known as the
Holme’s and Rahe Stress Scale is a list of 43 life-changing events used to
generate an overall score for the stress level of a person. It is a widely
validated scale and it has been shown that there is a correlation between
the score of the stress scale and the occurrence of illness [240, 170].

In this work we use this scale to assess the occurrence of any life-altering
stressful events before the onset of the hypertension in the patient group.
This scale was also used as one of the metrics to select normotensive
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subjects - people scoring high on this scale were eliminated from the
normotensive group.

5.1.2 Unstructured Overt Signals

Overt signals such as speech and text notes provide information about
users which might be otherwise difficult to collect through structured
questionnaires. While multiple-choice questionnaires provide a rating,
unstructured annotations can provide groundings for those ratings.
Written text is more rich in emotional and affective content than structured
ratings. They can be analyzed and used as determinants for the
communicative, affective, and social behaviour of the author by providing
underlying information about his/her mental state. Text messages sent
through short messaging services (SMS) or social media status messages
have been used to identify personality traits [273, 58] of a person. Written
comments have been used to identify opinions and sentiments from
customer surveys [250]. Analysis of short unstructured customer product
reviews have been shown to be more effective in predicting conveyed
sentiment than user-provided ratings [105, 104].

Collection and analysis of user diaries in the form of spontaneous
speech and text annotations have been widely used in psychology and
organizational research. A fundamental benefit of using such diaries
to collect user annotations is that they allow expression of thoughts,
feelings, events and experiences in natural and spontaneous manner [217].
Such diaries have been used to study persons’ affective states [280], job
performance [103], as well as their emotions at work [45].

However, the use of diary studies is not without its difficulties - the
significant demands on the participants for regular diary-keeping often
leads to a high level of attrition [183]. There is a need for creating a diary
recording process which is easier and more straightforward for the subjects,
while at the same time increases the richness and quality of the collected
content. One way of achieving this is using audio or speech based diaries.
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Audio diaries involve the audio recording of participants’ responses, notes
and reflections which serve as a verbal monologue [51]. With the recent
development of smartphones which can capture audio data easily without
the need of any additional recording device, audio diaries have become
easy to use and have gained a wider acceptance and popularity [160]. The
speech recorded using these diaries can be easily transcribed using speech
to text services for further analysis of the content. The features of the
speech signals themselves can be indicative of the emotional and mental
state of the user.

In our research we collect spontaneous speech and text diaries to help
us to understand and ground the other covert signals collected.

5.2 Covert Signals

In this work the covert signals analysed were either physiological -
electrodermal activity (EDA), heart rate variability (HRV), and skin
temperature (ST), or corresponded to the motion profile (from an
accelerometer and a gyroscope) of the user. These signals were collected
using the sensors on a wrist based wearable devices and a user’s
smartphone. While physiological signals help to detect the stress level
of the user, the accelerometer and gyroscope signals are used to identify
the activity profile of the user.

5.2.1 Covert Physiological Signals

Research in psychophysiology and affective computing have demonstrated
how affective and cognitive states manifest themselves through changes in
the human physiology [54, 203]. Studying physiological signals can help in
creating computational models of the human mind. Emotion [72, 211, 86],
stress [30, 130], and workload [132] are intrinsically tied to the activity of
the autonomic nervous system (ANS). Empirical evidence has shown that
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sympathetic activation of the ANS which occurs during stress and anxiety
and in some diseases (eg. cardiovascular disease) is manifested through
changes in the human physiology [43, 159, 168]. These changes can be
detected by observing changes in physiological signals like electrodermal
activity (EDA), heart rate variability (HRV) and skin temperature (ST).

Electrodermal Activity

Electrodermal Activity (EDA) refers to the change in the electrical
property of the human skin. The electrical property of the skin was
observed for the first time in 1849 by DuBois-Reymond in Germany.
In 1878 , Hermann and Luchsinger of Switzerland demonstrated that
this property was linked to the human sweat glands. In the same year
a French electrotherapist Romain Vigouroux discovered the relationship
between psychological factors and the electrodermal activity of the skin. In
1888, the French neurologist Féré demonstrated that emotional stimulation
produced changes in the skin resistance activity. Since then it has been
widely used in psychological research.

Historically electrodermal activity has been referred to by various names
such as galvanic skin response (GSR), electrodermal response (EDR), and
psychogalvanic reflex (PGR). In 1966 Johnson and Lubin [147] introduced
electrodermal activity (EDA) as a common term for all the electrical
properties of the skin.

Electrodermal activity (EDA), or the changes in the skin’s electrical
property in caused due to the activation of the sweat glands in the skin.
This activity is a normal part of the process of homeostatic thermal
regulation by the human autonomic nervous system. The sweat glands
are also activated under various emotional or psychophysiological changes
in the body, particularly due to increase in stress or arousal. Measurement
of electrodermal activity for identifying emotional arousal has been used
in research for the detection of affective scenes in movies [244], for the
identification of user response to listening to music [225], and detection
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Figure 5.1: Changes in skin conductance level for affect detection in movie scenes

of driver fatigue[52]. Figure 5.1 shows an example of changes in the skin
conductance levels on the forearm during movie scene viewing.

There are two main components of EDA, both of which have been shown
to provide high discriminatory power for different levels of arousal, stress
and workload. The tonic EDA or the skin conductance level (SCL) is the
baseline level of EDA in the absence of any external stimuli. Every person
has a distinct tonic EDA which ranges typically between 10−50µSeimeins.
Phasic EDA or the skin conductance response (SCR) is the rapid change
in skin conductance due to sympathetic neuronal activity. This change
could be due to external physical changes (shock, heat, cold, fall) or due to
emotional or cognitive changes (surprise, fear, anxiety etc). SCRs usually
are short-term and last between 10 and 20 seconds followed by a return to
the tonic or baseline level of skin conductance (SCL) (See Fig.5.2).

Both distress (negative stress) and eustress (positive stress) which cause
changes in the autonomic measures of the nervous system, are manifested
through changes in the electrodermal activity. For long, EDA has been
used for studying mental stress and is one of the main physiological signals
used in a polygraph [123]. Due to the ease of acquiring EDA, it has
also been applied for stress recognition in real-life scenarios ranging from
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Figure 5.2: Skin conductance level (SCL) and skin conductance responses (SCR) in a
longitudinal Electrodermal Activity recording

driving [130] to job related stress recognition [30]. Electrodermal activity
has been shown to be sensitive to cognitive load in real-life conditions
[132]. Rutenfranz and Wenzel [47] showed that increase in either physical
or mental workload led to changes in the electrodermal activity. Engstrom
et al. [89] showed that mean skin conductance significantly varied with
increase in cognitive load during driving scenarios. EDA has also been
used for emotion detection [198]. A detailed discussion of the literature of
electrodermal activity and techniques for its measurement is provided in
[47].

In this work we find that Electrodermal Activity is an important
indicator for stress. Combined with other physiological signals we use
it for the identification of hypertensive patients.

Heart Rate Variability

Heart Rate Variability (HRV) is the measure of the variations of the
time-interval between heart beats. These variations are produced by the
change in the modulation of the sympathetic control of the heart and can
be used as a non-invasive technique to examine autonomic nervous function
[23].

These variations can be evaluated by using time-domain or frequency
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domain measures. The simplest measure, the detection of the
instantaneous heart rate is one of the most common methods used in
clinical and everyday practice for understanding the state of a patient.
Using an electro-cardiogram (ECG) or photoplethysmograph (PPG), it is
possible to analyze longer segments of heart rate variability features. The
recommendation for clinical analysis of HRV is to use data from a 24-hour
ECG or holter based recording. However, short-term HRV features of as
low as 10 minutes have been shown to be highly predictive of hypertension
[196]. Short term HRV analysis is a major indicator of the risk of sudden
cardiac death in chronic heart failure patients [162]. HRV features can
be extracted from a recording of blood volume pulse (BVP) from a pulse
oxymeter, or the recording of an ECG signal.

Figure 5.3: Detection of QRS complex

For the analysis of the HRV, the first step is the identification of the
N-N interval from which other features are extracted. From an ECG, or
BVP signal, first the QRS complex is detected 5.3, and then the distance
between two consecutive QRS complex is determined 5.4. This distance or
interval between two consecutive QRS complex is called the N-N interval
(or R-R interval).

Next features are extracted from the sequence of N-N interval
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Figure 5.4: Identification of N-N Intervals from ECG signal

datapoints. Popular time-domain measures of the heart rate variability
are mean heart rate, mean N-N interval and the standard deviation of
the NN interval (SDNN). Differences between N-N interval yield measures
such as root mean square of standard deviation (RMSSD), which is the
square root of the mean squared differences of successive N-N intervals.
Other statistical features such as pNN30 and pNN50 which represent the
percentage of N-N intervals greater than 30 or 50 ms respectively are also
calculated.

HRV is indicative of the heart’s ability to adapt to the autonomic
neural regulation. Events and conditions such as exercise, stress, workload,
anxiety and cardiovascular diseases which lead to sympathetic stimulation
has been shown to increase the heart rate while decreasing it variability.
A reduction of heart rate variability has been linked to a poor prognosis of
several clinical conditions. In 1965 Hon and Lee [141] observed a decrease in
the inter-beat interval value of HRV as a signal of fetal stress. A reduction
of HRV has been accepted as a correlate for stress among individuals [37],
and in several cases is associated with increased mortality and morbidity.
Reduced HRV has been shown to be correlated with an increase in risk in
cardiovascular mortality [259, 201].

In this thesis we analyze the heart rate variability features and discover
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that simple time-domain features such as average heart rate, and mean
N-N interval differ between hypertensive and normotensive subjects.

Skin Temperature

The normal temperature of the human body is 98.6 degrees fahrenheit (37
degrees celsius). However, it is not uniform throughout the body and shows
a standard variation of 2 to 4 degrees at different surfaces. Variations in the
skin temperature is a part of the body’s normal thermo-regulation process
and occur due to a combination of perspiration and changes in the vascular
resistance or arterial blood pressure.

The core body temperature can be recorded from the oesophagus,
pulmonary artery or urinary bladder [236]. However, the methods
required for measuring temperature from these sites are quite invasive
and hence difficult to implement. For everyday monitoring, the peripheral
temperature is recorded from the surface the skin. While the core-body
temperature is tightly regulated, peripheral temperature varies due to
changes in environmental as well as health factors. Monitoring and control
of peripheral body temperature has been used to prevent hyperthermia
(overheating during hot temperatures, and extreme physical activity) or
hypothermia (overcooling due to exposure to cold temperatures).

In our work skin temperature when combined with other physiological
signals demonstrates improved predictive power for classifying between low
and high stress.

5.2.2 Motion Profile

Most modern smartphones come equipped with accelerometer and
gyroscope motion sensors. The accelerometer sensor detects the motion
- it measures the linear acceleration of movement. The gyroscope sensor
detects the angular motion. Most accelerometer and gyroscope sensors
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measure these values (acceleration and rotation) along the three axes and
hence are called tri-axial accelerometer or gyroscopes. The accelerometer
sensor is normally used to detect the orientation of the phone, or shake to
undo, etc. The gyroscope sensor works with the accelerometer to detect
rotation or twist. These sensors can be used to detect when a phone is
falling, or whether the user is interacting with the phone. We show that
these signals can be used to identify the user’s motion activity (such as
walking, running, cycling, etc). We use a combination of features extracted
from the accelerometer and gyroscope to train advanced machine learning
models to accurately estimate a user’s motion activity. We show that
adding the audio sensor makes it possible to identify and distinguish
between complex and similar activities.

In our work we use combinations of the above physiological signals
and motion sensors to build intelligent algorithms for assisting a mobile
personal agent in learning about the physical and mental state of the user.

5.3 Conclusion

In this chapter we discussed the various covert and overt signals which
are indicative of human behaviour. We provided a brief introduction
to and the history of the use of each type of signal we shall use in our
research. We discussed that these signals have been used separately and
in-combination to detect and analyze complex human behavioural and
mental states. In later chapters we shall demonstrate how these covert
and overt signals can help to identify activity and stress levels. We also
demonstrate that combination of the various covert signals can accurately
identify hypertensive patients.
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6

Recognizing Human Activities

6.1 Introduction

Our daily activity patterns highly affect our health and well being. It is
well known that lack of adequate physical activity can lead to obesity, and
increases the risk of various diseases including hypertension, cardiovascular
diseases among men [264] and coronary artery disease among women [84].
Research has demonstrated far reaching effect of physical activity which
affects our entire body system. Regular physical activity in the form
of exercise is known to reduce resting blood pressure [216] and increase
the capacity of coronary arteries to carry blood [256]. Physical exercise
has often been prescribed for prevention and reduction of the risk of
cardiovascular diseases, type 2 diabetes, depression, hypertension and
obesity [35, 49].

While physical activity in terms of exercise is beneficial to our health,
certain activities such as our daily commute can have the exact opposite
effect on our health. How and when we travel can affect our overall
mental an physical well-being. Travelling to work by a crowded bus, or
biking in heavy traffic may have negative effects on the mental health and
decrease well-being. Traffic congestions which can increase the length of
the commute have been shown to elevate psychophysiological stress [228].
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Among automobile commuters this effect has been shown to extend beyond
the period of commute - it has been shown to decrease affective well-being
even after the commute [202]. Commuter stress has been highly linked
to workplace aggression [133]. The modality of transport also affects the
stress of commute. Both driving a car [117] or taking a train [239] to
work has been shown to increase the stress response of an individual.
Travelling by bus is less stressful than either driving or taking the train,
but longer commuting time can increase the exposure to environmental
pollutants thus in turn increasing the chances of respiratory diseases.
Longer commuting time, whether it is by bus or train also decreases the
tolerance for frustration [269]. It has also been shown to raise daytime
cardiac autonomic activity and short-term heart rate variability [149].
The recognition of daily user activities is therefore an important task for
tracking and managing stress and overall well-being of a user.

6.2 Activity Recognition Techniques

In recent years, the development and proliferation of various sensor
platforms has given rise to the field of automatic activity recognition.
Automatic activity recognition aims to identify the current activity of a
user through the use of various sensors and algorithms. Activity recognition
systems may be vision based, sensor based or hybrid (combination of the
two). Vision based systems use external cameras [267] to monitor the users.
This can often limit their usage scenario to cases where the user can be
observed - such as indoor or controlled environment. This also raises the
question of user’s privacy - users may not be comfortable being recorded.

Sensor based activity recognition systems, use various sensors (external
and wearable) to recognize human activities. They are less privacy
intrusive than vision based activity recognition systems. External sensors
may be based on infra-red sensors which use heat signatures for activity
recognition[122] or be based on doppler-effect using a doppler radar to
detect activities [155]. However, like vision based systems, they are effective
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in specific scenarios (where the system is aware of the user’s position - hence
mostly in indoor or controlled outdoor environments) and can have limited
usability in on-the-go scenarios where the user is free to go anywhere.

To tackle these mobility challenges of external sensor based activity
recognition systems,there has been a recent rise in the use and adoption
of wearable sensor based systems. These wearable sensor based systems
are on the body of the user, and hence can monitor users in unconstrained
environments. Till recent years in most wearable sensor-based approaches,
users had to attach multiple dedicated motion sensors [182] to various parts
of the body such as legs, arms, and waist. While such systems have been
able to achieve high recognition performances, they require elaborate set
up and can be uncomfortable to wear and hence are not very suitable for
long-term monitoring. These systems also have other drawbacks.

Due to the traditional method of in-lab evaluation of activity recognition
systems, most of them suffer from the drawback of failing in real-life
scenarios. While in controlled experimental scenarios, most activity
recognition algorithms perform quite well, in naturalistic settings the
performance drop drastically. Foerster et al. in [97] achieved a 95.6%
accuracy for in-lab detection of nine different activities (3 different
modalities of sitting, standing and lying, walking, climbing stairs and
cycling) using four sensors attached to different parts of the body. However,
when the same setting was used in the wild, this accuracy fell down to 66%.

6.2.1 Smartphones for Activity Recognition

The recent proliferation of smartphones with their plethora of sensors
have opened up a new frontier in context aware human computer
interaction. Most modern smartphones have embedded sensors such as
microphone, camera, accelerometer and gyroscope. Accelerometer and
gyroscope sensors have been successfully used to detect human activity
[27], understand human mobility patterns [64], and monitor Activities
of Daily Living [279]. Scientists have also exploited the microphone on
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smartphones for daily activity recognition. The SoundSense [173] project
used the microphone on a smartphone for detecting and modeling sound
events in everyday life. Bieber et al [40] combined the accelerometer and
microphone sensors for detecting everyday activities. Schuller et al in
[232] used the microphone of a smartphone for acoustic geo-sensing to
automatically determine a cyclists route.

However, smartphone sensors are not robust, and performance of
a single-sensor based classification systems leads to sub-optimal and
non-robust performances. The quality and response of on-board
accelerometer and gyroscope sensors vary across manufacturers and
devices. Certain smartphones do not have dedicated gyroscope hardware,
and implement it in software propagating errors from accelerometer
into gyroscope readings. The accelerometer performance for activity
recognition task degrades rapidly when the user is playing a game on
the smartphone or using an application. Similarly, as reported in [173]
audio data cannot be the sole source of information when the phone is in
a backpack or the user is on a call. The solution is to use multiple weak
signals and combine them to improve the recognition of a user’s activity
state. Combining multiple sensors can also lead to opportunistic sensing,
thus improving the energy consumption of the phone by smart decisions
on turning on/off sensors at appropriate times.

Proper evaluation of an activity recognition system is another challenge.
Although activity recognition using smartphone data is a popular research
field, very few publicly available corpora have raw data available. Among
those available, most of the corpora were created under controlled
environments with static phone placements, or scripted activities where
the user does not otherwise use the smartphone during the data collection.
Therefore in this work we carried out our own data collection on the
Android and iOS platforms in a naturalistic settings. We also collected
a smaller “stress-test" corpus where the data was collected while the
participants were actively using the phone. We develop an activity
recognition algorithm for detection of the modality of commute and
whether the user is sedentary. We use these two factors in Chapter 7
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for the recognition of the stress level of an individual.

6.3 HEAL Activity Recognition Experiments

The HEAL platform collects and analyzes data from a variety of sensors.
Among these, the data from the accelerometer and gyroscope sensors of the
iPhone are also recorded. In this chapter we describe the use of these signals
for developing advanced activity recognition algorithms for the continuous
monitoring of users/patients.

To develop the activity recognition algorithm for recognition of human
activity in the wild, we performed a set of targeted data collection and
analysis. The data from the various sensors were combined to come up with
an effective algorithm that is accurate as well as efficient. In the following
sections we discuss the data collection, experiments, and analysis.

6.3.1 Data Collection

The goal was to develop an activity recognition algorithm which can be
used in the wild. We performed two different sets of data collection
experiments for our system. Each experiment involved 15 (9 male and
6 female) participants. Participants varied in age between 25 and 40.
The devices used were smartphones running android 1 (10 participants)
and iOS2 (5 participants) operating systems. Participants were located
in various cities in Italy, Spain, and India, thus providing our data a
wide geographic variability. The participants were provided with a mobile
application 6.1 which they installed on their phones. While a separate
application was developed for each platform, both applications had the
same functionality and recorded data from the same set of sensors. The
applications sampled the tri-axial accelerometer sensor, gyroscope sensor,

1version 4.0 and higher
2iOS 6 and higher

87



location sensor, and microphone during the data collection phase.

Figure 6.1: The Activity Annotaion Application - This application was used for the
collection of in-the-wild activity annotations from users.

The data from the following sets of sensors were collected:

1. accelerometer at 40 Hz

2. gyroscope at 40 Hz

3. audio was recorded with a 8 KHz sampling rate

4. Location data was collected at the rate of 1 sample per 5 minutes

The location data was used only for validation and was not a part of
the activity recognition process. Also, the participants often turned off
location service on their phone to decrease power consumption.
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Semi-controlled data collection

The first data collection experiment was a controlled scenario where the
participant did not interact with the phone during the duration of the
experiment. Data was collected for six activities. The activities are
Walking, Standing, Sitting, Driving, Travelling by bus, and Travelling by
train.

The data collection protocol involved the following steps:

1. The participants launched the application before the start of the
activity.

2. The participants marked the activity start point on the application.
3. The participants annotated where the phone was carried.
4. The participants marked the end point once the activity was over.

Participants were free to carry the phone as they wanted, but had to
annotate the phone placement (pocket, purse, in hand, etc) at the start of
the activity using a multiple choice drop-down in the application 6.1. The
participants were asked to upload the data to the HEAL servers at the end
of the day.

From the collected data we observe that in the majority of cases, the
phone was carried on the body (front or back trouser/jacket pocket), with
three instances of the phone being placed in the purse. We ignored two
instances where the participant was sitting and the phone was kept on the
table.

Since we collected the audio data during the process, in order to respect
the privacy of the participants, they were provided with the option to
delete the recorded session. The participants were free to delete sessions in
case there was any undesired characteristic to the data. This could include
personal data (audio, location) which the participants did not wish to
share.
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We collected approximately 31 hours 35 minutes of data (See Table 6.1),
with each individual activity session ranging from five minutes (mostly
walking) to one hour (commuting). Examples of collected data can be
seen in Figures 6.2, 6.3 and 6.4. While the difference between walking and
the other two activities is quite clear from only the accelerometer signal,
the gyroscope data helps to distinguish (even visually) between driving 6.3
and travelling by bus 6.4.

Figure 6.2: The accelerometer and gyroscope signals from an example session while
walking

Walking Standing Sitting Driving By Bus Train
4.12 8.31 8.23 3.13 2.19 5.12

Table 6.1: Activity Distribution in hours for normal activities. The participants
placed the phones in pre-defined positions and did not interact with the phone during
the experiment. Reported numbers are in hours.

In-the-wild data collection

For the second data collection, our goal was to collect data while the
participants were actively using the phone. Most activity recognition
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Figure 6.3: The accelerometer and gyroscope signals from an example session while driving

Figure 6.4: The accelerometer and gyroscope signals from an example session while
travelling by bus
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Walking Standing Sitting By car By Bus By Train
0.32 1.21 3.23 2.19 2.47 1.3

Table 6.2: Activity Distribution for noisy activities. The participants were
actively using their phones(playing games,texting or typing emails) during this
experiment.Reported numbers are in hours.

experiments using smarphones have low performance in real life scenarios
because they ignore the fact that people interact with their smartphones.
During this data collection, the participants were asked to play games or
type email or use text messaging services for the duration of the data
collection. We replaced the driving scenario with Travelling by car during
this experiment to ensure the safety of the participant. Approximately 10
hours of data (See Table 6.2) was collected for this scenario.

6.4 Experiments and Results

Figure 6.5: The process diagram. The embedded smartphone sensors record data and stream
them to the server where pre-processing, segmentation, feature-extraction, and classification
steps are performed.

The Figure 6.5 displays the entire process diagram of the HEAL Activity
recognition system. Once the initial signal streams are acquired they go
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through four stages a) preprocessing b) segmentation c) feature-extraction
and d) classification for the recognition of the activities. The steps are
explained in detailed as follows:

6.4.1 Preprocessing

Figure 6.6: Boundary Removal - remove the first and last N seconds where N depends on the
total length T (as given by equation 6.1)

The first step in the algorithm was the preprocessing of the data to
remove unwanted noise from the beginning and end of each activity session.
Since in most cases, there is a lag between the time the user annotated the
start of the activity and when the activity actually started, we remove the
first and last few seconds of the data. This boundary removal 6.6 involved
the removal of the first and last N seconds of the data. N was taken at
T/10 seconds with a max value of N=30 seconds where T was the duration
of the activity session (see equation 6.1). We only consider sessions which
lasted at least 5 minutes for our experiments.

N =
T/10, if N < 300

30, otherwise
(6.1)
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6.4.2 Segmentation

A big challenge for activity recognition algorithms is effective segmentation
of sessions. While longer sessions lead to very good activity recognition
performances, uses them means that there will be a delay in the activity
and it its actual recognition. This delay will add on top of the usual
network, and algorithm processing delays. Due to this an effective window
needs to be identified. We experimented with different window sizes and
selected a three second sliding window with 50% overlap. This window
size has also been established in literature [27, 218] to achieve superior
performances for the activity recognition task using smartphones.

6.4.3 Feature Extraction

Next we extract features from each of the three collected signal streams a)
Accelerometer b) Gyroscope c) Audio sensors.

Accelerometer and Gyroscope

Accelerometer and Gyroscope sensors each have 3 axes x,y,z. The sensor
data records the signal streams of these three axes. We first compute the
acceleration magnitude, given by:

Anorm =
√
Ax

2 + Ay
2 + Az

2

Now for each of the x, y, z, axes and norm of the accelerometer and
gyroscope data we extract standard features for each 3-second window.
We calculate the mean, standard deviation, min, max, number of peaks,
number of zero crossings, inter-peak distances, etc for each of the
accelerometer and gyroscope axes.
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Audio

We use the same window size for processing and extracting features from
the audio signal. While extracting features, we segment the audio stream
into small uniform frames. Standard frame-sizes for audio processing
lie between 25-46 milliseconds. In our case we use a 23 milliseconds
half-overlapping subframes of audio as used by McKinney et al [187].

For the audio signal, we use Opensmile [91] to extract features. The
following are the main features for each window:

1. Zero crossing rate - ZCR is defined as the number of time-domain
zero-crossings within a frame.

2. RMS Energy - We use the Simple Moving Average of the mean,
standard deviation, skewness, max, min, and range of the RMS energy
of each window.

3. MFCCs which are very commonly used in Speech and Speaker
recognition, have been recently used for recognition of environmental
Sound [66]. We use the Simple Moving Average of the mean, standard
deviation, skewness, max, min and range of 12 MFCCs for each
window.

Durrent et al. [82] defines sensor fusion configuration as complementary
if the sensors do not directly depend on each other. While older
smartphones use a software gyroscope, modern smartphones (which were
used for our experiments) have a dedicated gyroscope chip. So in
our experiment we treat the sensor channels as complimentary and
use the absolute time for each sensor event (recorded during our data
collection) to align the data. We perform a feature-level fusion (early
fusion) of the different streams by concatenating the time-aligned feature
sets before the learning stage. For each classification experiment we
perform feature-vector normalization before training. For each window,
all feature-vectors form a m × n matrix where m is the window size ×
sampling rate for that window and n is the length of each feature vector.
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Signal Acc Gyro Audio Acc & Gyro Acc Gyro & Audio
SVM 0.85 0.79 0.79 0.87 0.91

Decision Trees 0.85 0.82 0.83 0.85 0.90
Random Forest 0.91 0.84 0.85 0.93 0.98

Table 6.3: Average F-measure of 15-fold (one-fold-per-user) cross validation for the
classification algorithms tested with the full feature set with data sampled at 40
samples/second and a 3-second sliding window

For each feature fij in the feature vector where i=1 . . . n is the number of
the feature ,and j is the jth row we normalize the feature using:

fij = fij −Min(fij)
Max(fij) −Min(fij)

, i = 1 . . . n; j = 1 . . .m

6.4.4 Classification and Results

For the recognition of the activities, we perform a classification task
using the above defined features. We tested three different classifiers :
Support Vector Machines, J48 decision trees, and random forests. Random
forests provided us with the best F-measures (see Table 6.3), hence
further classification was done with random forest for the different sets
of experiments. For all classification experiments results were obtained by
15-fold (leave-one-subject-out) cross validation where each fold corresponds
to the data for one subject. We used the full feature set with data sampled
at 40 samples/second.

A major problem with using sensors on smartphones is that polling them
continuously can lead to power drain. Krause et. al in [158] had shown
that sampling rate of sensors has a direct effect on the battery life of a
wearable device and decreasing sampling rate lowers power consumption.
One of the goals of our experiment was to determine how gracefully the
recognition quality decreases when the sampling rate is decreased. Since
Random Forest was found to provide the highest recognition results for the
full samples, further experiments were done using this algorithm.
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Figure 6.7: Effect of stepwise decrease of sampling rate (from 40 to 1 samples/sec) on
F-measure. We see that adding audio leads to better accuracy at lower sampling of acc
and gyro sensors.

We performed stepwise downsampling of the accelerometer and
gyroscope signals from 40 sample/sec to 1 sample/sec. From Figure 6.7
we see that accelerometer performance(F-measure) drops from 0.91 to 0.69
when the sampling rate is decreased from 40 to 1 sample/sec. Gyroscope
performance (F-measure) drops more steeply from 0.84 to 0.49 in this
range. A combination of Accelerometer and Gyroscope fairs comparatively
better, degrading from 0.93 to 0.77. Adding audio signals from the
microphone not only helps to provide better results at higher sampling
rate (0.98 at 40 samples/sec), but also helps to balance the drop to only
0.89 at the lower end. However, we did not experiment with different
sampling rates of the audio because of the limitation of the audio format
for recording. AAC audio coding, which is the standard audio codec on
both iOS and android does not support compression below 8 kHz. So all
experiments with audio were carried out at this sampling rate.

From Table 6.4 we see that under controlled experimental conditions,
accelerometer performance can be a good measure for understanding a
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Signal Average precision Average Recall Average F-measure
Acc 0.90±0.02 0.91±0.03 0.91±0.03
Gyro 0.83±0.08 0.84±0.07 0.84±0.08
Audio 0.85±0.06 0.86±0.07 0.85±0.07

Acc Gyro 0.93±0.06 0.92±0.06 0.93±0.06
Acc Gyro Audio 0.98±0.05 0.97±0.05 0.98±0.05

Table 6.4: Average Precision, Recall and F-measure using random forests. For this
experiment the participants were requested to place the phones at pre-defined location
and not use it during the experiment

participant’s current motion profile. In this experiment the participants
were expected not to interact with the phone for the duration of the
experiment. While post-processing we ensured that we removed all
instances where the screen of the phone was unlocked for durations longer
than 10 seconds during a data collection session since it indicated that the
participant was using the phone. However, since the participants were free
to carry the phones as they wanted, this data collection is less controlled
than other controlled data collection [27, 64] for activity recognition.

Table 6.5 shows the recognition results when the participants were
actively using the device phone while performing an activity. Average
precision for single sensor channels is lower than in the controlled
experiments reported in Table 6.4 . The accelerometer and gyroscope
individually perform lower (F-measures 0.76 and 0.72 respectively) than
in the controlled scenario (F-measures 0.91 and 0.84 respectively).
While combining the two sensor streams improves the recognition rates
(F-mseasure 0.80), combining the motion sensor channels with audio
achieves the best results (F-measure 0.87) under this scenario.

6.5 Conclusions

In this chapter we have explored the use and combination of multiple weak
smartphone sensors. We show that while activity recognition performance
using smartphone sensors drop heavily during real-world usage, combining
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Signal Average precision Average Recall Average F-measure
Acc 0.75±0.13 0.77±0.10 0.76±0.11
Gyro 0.70±0.17 0.74±0.16 0.72±0.16
Audio 0.85±0.08 0.85±0.09 0.85±0.08

Acc Gyro 0.79±0.13 0.80±0.12 0.80±0.13
Acc Gyro Audio 0.86±0.11 0.88±0.11 0.87±0.12

Table 6.5: Average Precision, Recall and F-measure of sensor channels using random
forests. For this experiment the participants were actively using the phone during data
collection

multiple signal streams can lead to better recognition results. We show
that by using a combination of features from accelerometer and gyroscope
signals we can achieve a high recognition rate in real world scenarios. If
we also exploit the less-used microphone sensor on a smartphone we can
achieve an even higher recognition accuracy. By combining audio features
with other weak sensor features we can come up with a robust activity
recognition scheme. We use the activity recognition algorithm in the next
chapter for classifying the activity level as a step towards stress recognition.
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7

Identifying and Tracking Stress and
Workload

Stress is a complex phenomenon which plays an important role in our daily
lives. It has become a common explanation for disturbed human behaviour,
failure and psychological breakdown among people. Stress plays a very
important role in the management of hypertension. According to a recent
report by the European Agency for Safety and Health at Work (EU-OSHA)
[127], stress is the second most frequent problem among European workers
after musculoskeletal disorders. Stress affects one in five of the working
population irrespective of their job roles. It affects people from different age
groups, professions, and social situations. An editorial preface published
in the Annals of the New York Academy of Sciences [65] stated that “stress
fully pervades our life and influences us as individuals, communities, and
humanity".

7.1 What is Stress?

Hans Seyle defined stress for the first time in 1936 [235] as “A Syndrome
produced by diverse Nocuous (noxious) Agents". Later in 1973, in a more
elaborate paper “The Evolution of the Stress Concept" he defined stress
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as “the non-specific response of the body to any demand made upon
it" [234]. So, any kind of demand, whether it is physical such as a pin
prick, or emotional, such as a sad or happy moment can elicit to a stress
response from our body. Subsequently, Mason et al in 1976 showed that
psychological stress such as fear, threat, or challenge, produced different
reactions (for eg. cortico-steroidal secretions) than physical stress such as
heat, hunger, and pin prick.

In this work we focus primarily on psychological or mental stress and
its corresponding physiological reactions. We define stress as an imbalance
between the demands upon a person and their ability to meet them. Studies
have shown that the perception of stress can affect the health outcome
differently than the actual stress itself. The difference between actual stress
on an individual and the ability of the person to cope with the stress is
referred to as “Perceived Stress". Studies have shown that the perception
of stress can affect the health outcome differently than the actual stress
itself [166].

7.2 Effects of Stress

It is normal for the human body to be exposed to a limited amount of
stress. Unless the stress is prolonged and chronic, the human physiology
is capable of handling and recovering from it. However, being exposed
to continuous high stress can have negative effects on a person’s physical
and mental well-being. It has been strongly linked to numerous chronic
health risks, such as cardiovascular disease, diabetes mellitus, obesity,
hypertension, and coronary artery disease. It is also a contributory cause
for unsuitable human behaviour, failure, and psychological breakdown
among people from different age groups, professions, and culture, and has
become a growing concern in workplaces around the world.
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Stress has been widely linked to mental workload which is defined as
the relationship between the demands of a task and the capacity of the
employee [151]. High mental workload is one of the most frequently cited
causes of work-related stress and increased level of [169]. A high perceived
workload, along with high perceived stress has been shown to increase the
level of fatigue [169] among employees and even increase the risk factors
of cancer[144].

While it is possible to identify the source of physical stress or severe
acute psychological stress, subtle and chronic stress due to continuous
workload is more challenging to detect. Because of this most people are
unaware of the level of stress in their lives. By the time people decide to
seek medical help they are already in the advanced stages of stress induced
exhaustion or are suffering from some noticeable ailment. To prevent this,
there is a need for early detection of stress.

Stress causes the activation of the sympathetic nervous system and
trigger the human “fight-or-flight response" [145]. This response, also
called as the "acute stress response" was first described by Walter Cannon
in the 1920s as the theory that animals (including humans) react to
threats by activating specific physiological actions in the sympathetic
nervous system. This activation is to prepare the body to either fight the
threat, or run away from it. The immediate action is an increase in the
secretion of epinephrine (adrenaline), norepinephrine (noradrenaline), and
cortisol.

Adrenaline increases heart rate, elevates blood pressure and boosts
energy supplies. The effect of increase of norepinephrine is to heighten
alertness. These hormones lead to physiological changes to deal with the
threat - they increase oxygen availability by increasing heart rate and
breathing. They increase blood flow to the organs essential to fighting the
threat such as heart, brain, and muscles and restrict blood flow to organs
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which are non-essential to deal with the stress response, such as the skin
and digestive system. Cortisol, also called the “stress hormone", increases
blood glucose level and enhances the brain’s glucose absortion.

The human body is quite capable of handling bursts of short-term stress.
Once the stressor or the threat is removed, the homeostatic process of the
body decreases the hormone secretion, and returns the bodily functions to
their baseline. However, the body cannot sustain such bursts of energy for
a long term - the increase is heart rate, blood pressure, and blood glucose
level over a long period of time can disrupt the body’s normal processes
and can lead to weight gain, sleep loss, digestive problem, hypertension
and cardiovascular problems.

7.3 Detection of Stress

Psychologists, clinicians and researchers have developed and tested
techniques for early detection of stress and workload. While some
techniques such as the application of questionnaires for stress detection
has been popular for over thirty years, other techniques such as the mobile
and wearable devices for stress detection is fairly new. We discuss these
techniques as under:

• Questionnaires
Since the early 1980s psychologists have used validated questionnaires
for detecting stress. Psychosomatic medicine often relies on
questionnaire-based assessment of perceived stress [96]. Self
assessment questionnaires are also widely used for evaluating stress
coping strategies.
Emotion Regulation Questionnaire Emotion regulation refers
to the process that individuals use to feel, express, and control the
emotions they experience in their daily lives [113]. The emotional
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reactions to stressful events entail emotion regulation [263]. Different
individuals use different emotion regulation strategies which can
affect the way they experience and deal with stress. It has been
shown that individuals who use antecedent-focussed strategies such
as Cognitive Reappraisal, experience and cope with stress differently
than individuals who use response-focussed strategies like Expression
Suppression.

• Visual Features
Emotion theories state that non-verbal features or visual cues include
features such as facial expression, eye gaze, posture, and head
and body movements can be highly indicative of the mental state
of a person. Spontaneous facial expression can provide accurate
information about emotional experience. In a study published in 1978
Ekman and Friesen presented the facial action coding [85] scheme
to identify six basic emotions (happiness, disgust, surprise, sadness,
anger, and fear) based on facial expressions shown by people across
cultures. Hirokazu and Kazuhito [176] used a technique called Facial
Expression Spatial Charts (FECS) to analyze the effect of stress on
facial expression of subjects. Kumano et. al in 2009 did a study on
smile to indicate and assess emotion and attention in interpersonal
meetings. In 2005, Kapoor and Picard [153] studied facial expressions
and postural shifts to classify children’s affective state, including
frustration while solving puzzles.

• Speech Features
Vocal indications of emotional stress have been widely studied in
literature due to the ease of collection of speech data compared to
other forms of signals. The first study of vocal expressions and
emotion was done by Charles Darwin [74] who concluded that there
is a direct correlation between the emotional state of a person and his
vocal communicative actions. Research in speech characterization has
shown that analysis of voice patterns based on vocal tract, prosodic,
and glottal source can be used for identifying emotion and stress in
voice [229, 229, 163].
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• Neurological Features
Since the theories of stress detection derive from the broader field
of cognitive thoeries for emotion detection, several works have used
electroencephalography (EEG), magnetic resonance scan (MRI) and
functional magnetic resonance imaging (fMRI) for stress detection.
Khosrowabadi et al [154] proposed a brain computer interface (BCI)
for classifying EEG correlates of chronic mental stress. This study
showed the various brain region activation changes with respect to the
mental stress level.In [120] Hamid et al used Perceived Stress Scale and
EEG Power spectrum recording to detect human stress level. Lanius
et al in [165] used fMRI to study the activation of the thalamus for
patients who suffer from post traumatic stress disorder.

• Physiological Signals
Physiological signals such as galvanic skin response (also known
as electrodermal activity), heart rate variability (HRV) and skin
temperature have been used to recognize stress and workload under
different experimental conditions. Galvanic Skin Response (GSR) has
been a widely representative signal under various settings ranging from
driving scenarios [131] to working in an office [67] or a call center [134].
Heart rate variability has been effective in tracking and measuring
both stress and workload. Jovanov et al. [148] demonstrated the use of
a distributed body area network for recording Heart Rate Variability
(HRV) from different points on the body to quantify stress level. Cinaz
et al. [67] used a wearable heart rate monitor to track mental workload
for controlled experiments using present during an office workday.
In [243] Soga et al. physiological responses are studied to evaluate
the intensity of generated stress induced by mental workload. By
watching out for risk factors such as sudden blood pressure drops [95]
or abnormal heart rate [241] it is possible to provide early life saving
warnings.

• Smart Phone Signals
In recent years smart phones have increased in their computational
powers and sensing capabilities. A mobile phone has become an
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integral part of our lives and is a powerful sensing machine which
can provide a deep insight into its user’s lifestyle. Just looking at
the call and message logs provides a view into his or her social life.
Communication channels like Bluetooth and Wifi can also act as
passive sensors for determining where we are, who is in the user’s
vicinity. The selection of the most frequently used applications
provides a look into the user’s personality. Most smart phones come
equipped with embedded location (GPS), and motion (Accelerometer
and Gyroscope) sensors which can be used to determine the motion
profile of the user. These sensors can report the daily activity level of
the user. Longitudinal monitoring can provide deep insight into both
the physical and mental well being of the user.

7.4 Challenges in Stress Detection

Stress is a fuzzy and highly subjective concept, and it is difficult to quantify
it. One of the major hurdles in identifying and preventing stress in life is
that the same stressful conditions does not always generate the same stress
response. There is emperical evidence that supports the view that some
subjects are more resilient to exposure of stressful events in daily life than
others. While for some a certain stressor may invoke a highly negative
stress response, for others the effect can be quite negligible. Yet, for
others, research has shown that stress can even improve performance [81].
There are individual difference in the cognitive variables and personality
traits of people which need to be taken into account while judging their
response to stress. A widely held opinion in the current psychological
literature says that resilience to stress is related to personality traits and
adaptive life-styles including well developed feelings of self-awareness and
styles of emotion regulation.

Using laboratory and controlled experiments for measuring stress
response of individuals may thus be confounded by their emotion

107



regulation and resilience in real life conditions. To identify how an
individual responds to stress, there is a need to observe the individual’s
stress response under ecological settings. However, on-the-go stress
recognition has its limits. Its not possible to use visual features for
continuous recognition - its not practical to continuously have a camera
pointing at a person outdoor. The possibility of using neurological features
is also limited by the fact that EEG devices are cumbersome to wear.
However, the use of physiological and smartphone signals do offer such an
opportunity for in-the-wild stress monitoring.

The first attempt at recognizing stress in the wild was done by Healy
and Picard in 2005 for measuring stress during real world driving tasks
[131]. They used a complex setup of various sensors (one electrocardiogram
on the chest, an electromyogram on the shoulder, a chest cavity respiration
sensor, and two electrodermal activity sensors) (See Figure. 7.1) which
connected to a computer to monitor the changes in the physiological
signals and facial expressions of subjects as they navigated different road
conditions. They were able to recognize three different levels of stress
(low, medium and high) with a 97.4% accuracy. However, their setup was
cumbersome and not practical for everyday monitoring.

Hong et al. [172] in the StressSense project proposes to use human
voice for continuous unobtrusive stress monitoring. They demonstrated
that it is possible to identify stress from a person’s vocal features during
job interview, marketing and natural reading scenarios. They achieved
accuracies of 81% and 76% for indoor and outdoor scenarios respectively.
Hernandez et al. [134] demonstrated that using a wearable electrodermal
activity senror its possible to identify the stress of call center employees
with an accuracy of upto 73.41%. Muaremi et al. in [194] in 2013 achieved
an accuracy of 61% by combining smart phone features with heart rate
features extracted from a chest based wearable heart rate monitor.

Continuous ambulatory monitoring of stress in naturalistic settings
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Figure 7.1: The subject wore different sensors which captured the physiological responses
as the subject. Healy and Picard 2005 [131].

suffers from a few challenges:

• It is difficult to obtain the stress related annotations from subjects in
real life: Stress perception of an event changes or is often forgotten
after a stretch of time;

• Physiological signals are highly susceptible to noise from motion;

• A system for stress recognition based on a single physiological signal
is not robust.

We tackle these challenges through the Health Analytics (HEAL)
intelligent personal agent platform. The HEAL mobile personal agent
regularly and continuously elicits information from the user. Also it
uses activity recognition algorithms which provides additional information
about the user’s context.

We hypothesize that rather than using a single physiological feature for
stress recognition, combining various physiological features such as heart
rate variability along with electrodermal activity and skin temperature
will provide better recognition of the user’s stress level. Also, since
stress responses are person specific, we also need to take into account
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the characteristics of the user. Therefore we employ a multi-dimensional
strategy which consists of a combination of various covert (physiological)
and overt (patient annotations) signals for a robust stress recognition
system which performs well under noisy real-world scenarios.

7.5 EXPERIMENTAL DESIGN

The HEAL platform was used in this study. In this preliminary study
for detection of stress, five healthy subjects (three males and two females,
between ages of 30 and 45) holding regular desk jobs were recruited.
The subjects were selected after an initial prescreening interview with a
psychologist to eliminate the possibility of underlying mental condition
such as hidden hypertension which might affect the study. The protocol
for this research study was approved by the ethics committee of the
Università degli Studi di Trento. The subjects were provided with the
Italian version of the emotion regulation questionnaire by Balzarotti et al
[31] as described in chapter 3. It is a ten-item self-report questionnaire
which uses the cognitive reappraisal and expression suppression scales
to evaluate an individual’s tendency to regulate his or her emotion and
respond to stress.

Subsequently, each subject was provided access to the (HEAL)
intelligent personal agent platform.

7.5.1 Protocol and Data Collection

Each subject was provided with the HEAL intelligent agent application,
and an Empatica E3 wristband. As a part of the protocol each subject
used the HEAL Platform for a period of seven days (five working days and
a weekend) for 8-10 hours, every day from morning till evening. Thrice
during the day (once in the morning, at lunchtime, and at the end of
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the day) the subjects used the HEAL Agent Application to report their
anticipated and perceived stress and workload status. The answers were
selected from a six-point Likert scale which ranged from “Very Peaceful"
to “Very Stressful" for perceived stress; and “Completely free" to “Very
Busy" for perceived workload. The subjects were also asked to take regular
text and voice notes annotating activities, and events such as consumption
of alcohol, nicotine and any other caffeinated beverage during the day.
At the end of the day, they noted a brief textual or verbal description of
their day, and using the online platform, reviewed, added or edited any
information provided.

A total of 206 hours of sensor data was collected. The subjects
annotated 61 instances of reported stress, and 60 instances of reported
workload using the application.

7.6 EXPERIMENTS AND RESULTS

In most stress-related studies, workload is taken as the cognitive demand
of the task. In such controlled experiments, the mental workload is
increased by varying task complexity, and its effect on the stress response
of the subject is observed. Our goal is however, to study and predict stress
and workload individually under naturalistic settings. For our experiments
we observed a low correlation (pearson = 0.58 p-value < 0.05) between
perceived stress and perceived workload.

In this section we discuss the initial preprocessing of the collected
data to minimize noise. Then we discuss the feature extraction and
classification experiments.

To detect the stress state and workload of the subject we need to extract
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useful information-bearing features from the different signal streams. We
extract and combine features from the different physiological and inertial
sensors on the Empatica Wristband and iPhone with the personal
features of the subject. The personal features of the subject are the
features extracted from the motion profile of the subject, the emotion
regulation questionnaire and the daily subject feedback.

7.6.1 Data Analysis Pipeline

The complete end-to-end data analysis pipeline is presented in Figure 7.2.
The pipeline consists of five layers:

1. Input Layer: The input layer consists of three input streams - 1)
physiological and accelerometer signals from the user’s wristband 2)
accelerometer and gyroscope signals from the user’s smartphone 3)
the notes from the users which comprises of answers to questionnaires
and annotations of events.

2. Preprocessing Layer: The preprocessing layer performs the
activity recognition from the smartphone motion sensor data. This
information is used for removing artifacts from the physiological signal
which can affect the stress recognition algorithm.

3. Artifact Removal Layer: The artifact removal layer uses the
activity data from the above preprocessing layer to generate cleaner
physiological signal streams.

4. Feature Extraction Layer: The feature extraction layer extracts
features from the various signal streams.

5. Classification Layer: The classification layer uses the features
extracted above to distinguish between the stress and workload levels.
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Figure 7.2: End-to-end signal processing pipeline & classification system which shows the
steps starting from the signal acquisition to the classification.

7.6.2 Data Preprocessing

Wrist based physiological sensing devices are affected by artifacts due
to local or gross motion, so they need to be preprocessed before feature
extraction. As a first step we recognize the activity profile of the subject,
then use this for artifact removal and signal estimation.

Activity Recognition: The activity recognition model is learned
using the approach, data and features of [108] as explained in Chapter 6.
For the activity recognition task, as described before, we use the onboard
inertial sensors of the user’s iPhone. We identify six activities - Walking,
Standing, Sitting, Driving, Travelling by bus, and Travelling by Train
and segment our data with continuous labels. In chapter 6 we show that
combining the features from accelerometer and gyroscope signals provides
a good recognition accuracy at lower sampling rates. In order to conserve
the battery of the iPhone we use a sampling rate of 5 Hz. To reduce the
noise of the recognition, for every 3 minutes, we take the majority of the
recognized activities and label the 3 minute segments as belonging to that
activity class.
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7.6.3 Artifact Removal

Commute Detection: We combine the three activity classes Driving,
Travelling by bus, and Travelling by Train into a single class “commute".
Research has shown that the length and quality of commute can contribute
to stress. City commuting can be extremely stressful. Factors such as
traffic congestion, how crowded the bus or train is, what is the noise level
of the commute, can all affect the stress level of an individual. Hence the
duration of commute becomes an important factor for stress recognition.
Stutzer and Frey in a 2008 study [253] conducted in Germany showed that
greater commuting time decreased life-satisfaction. However, due to lack
of other grounding signals, further analysis of stress during commute can
be quite challenging. We only use the total commute duration as a feature
to create a daily Activity Profile of the subject.

Using the above algorithm, for the collected user data, we recognized
88.5 hours of sitting, 16.6 hours of walking and 20.3 hours of standing
and 79.3 hours of commute. All these factors contribute to the personal
features of the subject. We consider the periods for which the subject was
either walking, sitting or standing for our stress and workload recognition
tasks.

Artifact Removal from Wristband Signals: Local fidgeting of the
wristband, and motion artifacts arising out of posture and activity are
common sources of artifacts experienced in a wearable monitoring system.
From user feedback we learnt that a new wrist-based device can cause
local discomfort for the first couple of days which may increase nervous
fidgeting. This fidgeting introduces unwanted noise in the physiological
signals which can confound the recognition algorithm. We use a heuristic
approach for identifying and removing these local artifacts. Whenever we
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observe abrupt changes in the accelerometer of the wristband which are
concurrent with abrupt changes in all the physiological signals, we classify
that segment as a local artifact. We therefore remove the next 30 seconds
of the data from the time of the artifact initiation from our subsequent
processing.

7.6.4 Feature Extraction and Machine Learning

Physiological Features - We extract features from the Electrodermal
Activity (EDA), Blood Volume Pulse (BVP), Inter-Beat-Interval (IBI),
and Skin Temperature (SKT) signals recorded from the Empatica E3
wristband. The Electrodermal activity which refers to the variation in
the electrical properties of the skin due the variable activation of the
sweat glands, is arguably one of the most useful indicators of sympathetic
arousal. We extract features from both the skin conductance level (SCL)
(the slow moving tonic EDA) and the skin conductance response (SCR)
(rapid short-lasting change in the EDA). First we remove the baseline
for each subject and normalize the values to lie in the [0,1] range.
Then we extract a total of 24 features from the SCL and SCR for each
session. Features extracted from the EDA included statistical features
such mean, standard deviation, maximum, and minimum. Characteristic
features extracted from the skin conductance responses includes the
number and sum, minimum and maximum of the areas under the peaks
of the SCRs exceeding a threshold and the sum of the duration of the SCRs.

We smooth the PPG data provided by the Empatica E3 wristband to
derive the Blood Volume Pulse (BVP) signal, and extract 8 statistical
features from this BVP signal stream. The Empatica E3 wristband
reports the Inter Beat Interval (IBI) at a discrete rate. The IBI or the
N-N interval, is the time difference between two normal sinus beats. The
heart rate can be calculated from this signal as HR = 60/IBI.
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Heart Rate Variability (HRV) is an important measure of stress and
mental activity of a person. We extract well explored HRV features such
as SDNN (Standard Deviation of the N-N interval), pNN50 (percentage
of consecutive N-N intervals which differ by more than 50 milliseconds),
RMSSD (root mean square of the successive difference of N-N interval)
[192, 200, 67] among others, extracting a total of 10 features from this IBI
signal stream. We extract a further 8 statistical features from the Skin
Temperature (ST) signals.

Inertial Sensor Features - The Empatica wristband has an
accelerometer to calculate the tri-axial acceleration. We also have at
our disposal the accelerometer and gyroscope channels from the iPhone.
From each of these channels these we extract 10 statistical features
(including mean, SD, min, max, number of peaks per minute).

Personal Features - The personal features for each subject comprise
of three sets of features. The first source is the activity profile of the user.
This consists of the duration of the commute of the user, along with the
duration of sitting, standing, and walking for each session. The second set
of features is derived from the Emotion Regulation Questionnaire which
the subjects had filled in. We calculate the Emotion Suppression (ES) and
Cognitive Reappraisal (CR) scores for each subject. The third source is
the event tagging done by the subjects. We consider the counts of the
beverage, caffeine and alcohol intake which was reported by the subjects
using the agent application.

Machine Learning - To perform classification, we formulate our daily
stress and workload recognition as two independent binary classification
tasks. Stress is classified into two classes as “Stressed" and “Not Stressed",
and workload as “High Workload" and “Low Workload". We use a “Leave
One Subject Out" (LOSO) cross validation scheme for all classification
tasks. We perform classification on both individual and combined signal
streams. For signal stream combination we perform a feature level fusion
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Signal Streams Avg F-measure
BVP 0.74
GSR 0.79
IBI 0.69
ST 0.44
Inertial 0.56
BVP + GSR 0.82
IBI + BVP + GSR 0.89
IBI + BVP + GSR + Inertial 0.82
IBI + BVP + GSR + Personal Features 0.91

Table 7.1: Classification results for individual and best combinations of features for
perceived stress using Random Forest Algorithm with LOSO evaluation.

Signal Streams Avg F-measure
BVP 0.63
GSR 0.44
IBI 0.73
ST 0.37
IBI+BVP 0.69
Inertial 0.72
IBI+Inertial 0.78
IBI + BVP + Inertial 0.71
IBI + Inertial + Personal Features 0.75

Table 7.2: Classification results for individual and best combinations of features for
perceived workload using Random Forest algorithm with LOSO evaluation.

of the physiological features with the features from the activity profile and
the personal features of the subjects.

We use the Random Forests algorithm for all classification tasks. The
Random Forests algorithm, which was introduced by Breiman in [48], is an
ensemble learning method and is a conglomeration of tree-based classifiers.
The results of classification of the level of stress and workload are reported
in Tables 7.1 and 7.2 respectively. We report the classification results
for individual signal streams and the results for the best combinations.
We observe that a combination of physiological and personal signals give
the highest F-measure for the stress classification task. Combining the
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physiological features with person specific features, we arrive at a high
value of F-measure of 0.91. However, adding inertial features leads to
a drop in performance. From Table 7.2 we observe that individually,
features extracted from the IBI stream are the best indicators of perceived
workload (0.73). Combining them with the features from the inertial
sensors provide an improvement (0.78) in classification performances. The
personal features which were indicative of stress, do not provide any
improvement in the workload classification task.

7.7 Conclusion

In this chapter we demonstrate a method to continuously track and
measure stress and workload in naturalistic settings which can be deployed
for on-the-go acquisition and monitoring of subjects. We show that the
performance of the combinations of weak signal streams is greater than
that of individual signals for predicting stress and workload.

Stress is a contributing factor for hypertension - continuous high
stress can weaken the immune system and lead to cardiovascular diseases
including hypertension. There is a need for early automatic detection of
stress. Using a combination of physiological, and smart phone signals
along with profile data can enable this early detection, and subsequent
intervention to implement stress reduction.
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8

Detection of Hypertension

The main and final goal of this thesis is the early detection of hypertension.
The early diagnosis of essential hypertension can support the prevention
of cardiovascular disease, a leading cause of death. As explained in the
earlier chapters, the traditional method of identification of hypertension
involves periodic blood pressure measurement using brachial cuff-based
measurement devices. These devices, however, require careful set-up for
each measurement, and they are not generally suitable for use outside
clinical settings. While doctors have advocated the use of ambulatory
blood pressure measuring devices for continuous monitoring, their adoption
is still lagging. Recently, electronic blood pressure monitoring devices have
made regular home based blood pressure monitoring easier. However, they
are mostly used by the elderly who are already suffering from the disease,
or by people who are aware of their risk of hypertension. There is a need
to develop techniques for continuous unobtrusive monitoring and detection
of hypertension which can be deployed on a large scale.

In this chapter we explore alternative ecological methods of detection
of hypertension. In chapter 7 we already demonstrated that combining
multiple signal streams from wearable devices and smart phones can be
used to detect stress with a high accuracy. In this chapter we explore how
these physiological signals from wearable devices can be used for detecting
hypertensive patients. We also explore the relationship between perceived
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stress and hypertension to confirm that perceived stress is an indicator of
hypertension.

8.1 Use of Wearable Devices for Hypertension
Detection

In recent years, wearable devices with multiple connected sensors have
made healthcare ubiquitous and patient-centric. Unlike ambulatory blood
pressure monitoring devices, most wearable devices are comfortable and
aesthetic, and are being rapidly adopted by the general population.
Devices like the Basis Armband [14], Microsoft Band [13], Empatica
Embrace [2] amongst others, are capable of measuring multiple motion
and physiological signals such as Electrodermal Activity (EDA), Skin
Temperature (SKT), Blood Volume Pulse (BVP), and Heart Rate. Such
devices have opened up a great unprecedented opportunity for continuous
remote monitoring and predictive diagnosis for various medical conditions.
Researchers have achieved a wide level of success in the detection and
monitoring of people suffering from stress, epilepsy, bipolar disorder, and
sleep apnoea [107, 210, 213, 219] using wearable sensors.

However, one major drawback of using wearable sensors is the presence
of artifacts which can contaminate the signal. Artifacts can be caused
due to movement of the device arising out of body motion, or pressure
on the device due to clothing, nervous fidgeting by the person wearing the
device, or even vasoconstriction due to cold weather [237]. Hence there is a
need to develop effective signal processing methodology for artifact removal
before these signals can be effectively used for experiments in detection
of hypertension. In this chapter we describe a robust signal processing
pipeline as used in [109] to improve the quality of the signals.

Previously while recognizing stress from physiological signals, we
observed that combining multiple signal streams improve the accuracy of
the recognition of stress under real-life scenarios. In this chapter we apply
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the same approach to explore how individual and combinations of various
physiological signals can be used to detect hypertensive patients.

8.2 Stress and Hypertension

High life stress, especially occupational stress is considered to be an
important factor that contributes to the development and persistence of
hypertension [255]. People with occupations which are designated as more
stressful (air traffic controllers [68], nurses [98], etc.) have a higher resting
blood pressure and an increased risk of developing hypertension.

Non-occupational stress like living in high stress urban areas [25] or
in communities which have experienced terrorist attacks [137] can also
elevate blood pressure and increase the risk of incidence of hypertension
and cardiovascular ailments. Research suggests that psychological distress
and psychosocial factors may be associated with the pathogenesis and the
prognosis of cardiovascular events[59, 125, 230, 270, 152]. The results
reported in [222] suggest that anxiety is also significantly associated with
hypertension. In this study we explore the differences in stress responses
between normotensive and hypertensive subjects.

8.3 Study Objectives and Design

An observational and non-interventional pilot study was designed to
investigate the following:

(1) Investigate the differences in the stress response of normotensive and
hypertensive subjects.

(2) Create a signal processing pipeline for reducing artifacts in the
physiological signals recorded from wearable devices.
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(3) Identify differences in the features of physiological signals (especially
HRV) of normotensive and hypertensive subjects.

(4) Create and test a machine learning pipeline for automatic detection of
hypertensive patients.

(5) Understand the attitude of patients towards continuous ambulatory
monitoring of physiological signals using an intelligent personal agent
and a non-intrusive wearable wristband.

The study sample consisted of fourteen hypertensive patients (8 male
and 6 female) and 12 normotensive controls (6 male and 6 female) between
the age of 30 and 65. At the time of the study the hypertensive
patients were receiving treatment at theCentro Ipertensione Ospedale
Molinette in Turin, Italy. The healthy control (normotensive) subjects
were selected to be of similar demographics as the patients and were
checked by a psychologist to rule out masked hypertension or any other
underlying health problem that might affect the study. The institutional
ethics committee of Azienda Ospedaliera Città della Salute e della Scienza
di Torino and the ethics committee of the Università degli Studi di Trento
approved the present research study. The patients suffered from Essential
Hypertension(EH) with no underlying malignancies. At the time of this
study they had been diagnosed with EH grade I or II controlled by therapy,
without organ damage (average age 49,2, average body mass index (BMI)
of 25,43 Kg/m2, mean office arterial pressure 127.57/83.57, average heart
rate 73.5, average number of drugs 1.5). Patients performed blood pressure
monitoring for 24 hours (ABPM) to rule out "white coat effect".

8.4 Study Protocol

The data collection protocol for the study was the same for both groups
of subjects (both patients and controls). Each of the participant was
provided with an Empatica E3 wristband, and an iPhone with an installed
HEAL intelligent agent application as described in chapter 5. The HEAL
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agent continuously acquired physiological signals and stress and lifestyle
related annotations throughout the duration of the experiment and securely
transmitted them to the HEAL analytics cloud.

8.4.1 Psychological Assessment and Surveys

At the beginning of the study we conducted psychological evaluation of
the hypertensive (patient) and normotensive (control) groups to identify
differences between them. One of the hypotheses of our study is that
individual differences in coping strategies toward stress is an indicator
of hypertension and this difference can be observed between the two
groups of subjects (controls and patients). This hypothesis is grounded on
the observation that people respond to stressful events in different ways,
depending on the life event and on the regulatory styles they adopt. To
overcome the vagueness of the concepts of stress and psychosomatic factors,
psychological models have been designed to account for coping and emotion
regulation.

Emotion regulation is a process by which individuals modify their
emotional experiences, expressions, and physiology and the situations
eliciting such emotions in order to produce appropriate responses to
life events [114]. Two underlying strategies have been proposed as
primary factors of the emotion regulation process; they are reappraisal
and suppression. Reappraisal is a strategy which acts before the activation
of emotional response, while suppression is a strategy that occurs when an
emotional response has already been deployed. Which strategy a person
employs is an indicator of their resilience. It has been suggested that
the suppression strategy may require some effort to manage the emotional
response thus reducing the individual cognitive and affective resources.

For investigating the possible differences in emotion regulation styles
between the hypertensive and normotensive groups of subjects we used the
Italian version of the Emotion Regulation Questionnaire [31]. Moreover,
for assessing the possible differences in individual stress perception, we
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administered the Perceived Stress Scale [265] Questionnaire. During the
psychological interview with each subject, the psychologist also assessed
the occurrence of long term stress events before the onset of the disease
[138].

8.4.2 Data Collection

Each subject wore the Empatica E3 wristband for a period of seven days
(five working days and a weekend) for a duration of 8-10 hours from
morning, till evening. The signals continuously recorded were:

a) Electrodermal Activity (EDA)

b) Blood Volume Pulse (BVP)

c) Skin Temperature

d) Inter Beat Interval (IBI)

e) Tri-axial accelerometer signal from the wristband

f) Tri-axial accelerometer and gyroscope signals from the iPhone

Thrice during the day, the participants used the mobile application to
report the following stress state:

a) Anticipated Stress and Workload Reporting

b) Perceived Stress and Workload Reporting

Using the HEAL agent application, the participants also noted down
the caffeine (tea, coffee, cola), nicotine, and alcohol consumption during
the day. They were also encouraged to take frequent voice and text notes.
At the end of the day, they noted a brief textual or verbal description of
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their day, and using the online platform, reviewed, added or edited any
information they wanted.

A total of 2356 hours (1203 hours from hypertensive patients and 1154
hours from normotensive control subjects) of sensor data was collected. We
obtained a total of 533 instances of stress annotations from hypertensive
patients and 457 instances from normotensive subjects. The total counts
of the stress annotations are shown in Table 8.1.

Anticipated Stress Reported Stress
Normotensive 233 224
Hypertensive 273 243

Table 8.1: Number of Stress Annotations from each group of subjects

8.5 Differences in Stress Response between
Normotensive and Hypertensive Subjects

Figure 8.1: Distribution of anticipated stress annotations of Normotensive and
Hypertensive Subjects

Analyzing the anticipated and perceived stress values of the
normotensive and hypertensive subjects, we observe that the distributions
of their stress responses differ. Overall hypertensive subjects recorded
a higher stress value (abbastanza stressante, or stressante, or molto
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stressante) for anticipated stress 39.5% of the time compared to
normotensive subjects who reported values in this range only 33.9% of the
time. For perceived stress, hypertensive subjects reported a higher value
31.8% of the time as compared to normotensive subjects whose perceived
stress value lay in this range 28.7% of the time.

Figure 8.2: Distribution of reported stress annotations of Normotensive and Hypertensive
Subjects

The differences in stress responses were more pronounced in the female
subjects. We find statistically significant differences for both anticipated
and perceived stress annotations between normotensive and hypertensive
female subjects. For female hypertensive subjects anticipated stress
values were in the higher range of the stress scale (abbastanza stressante,
stressante, and molto stressante) 46.3% of times, while this was 26%
for female normotensive subjects (p = 0.003). For perceived stress this
difference was equally significant - 37.3% of the perceived values were in
the higher range for hypertensive female subjects compared to only 22.67%
for normotensive females (p = 0.003). We did not find any significant
differences between the responses of the male subjects.
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8.6 Signal Processing Pipeline for Physiological
Signals

Physiological signals collected from everyday ecological settings suffer from
a variety of artifacts and noise. The Empatica E3 reports Electrodermal
Activity (EDA) and Skin Temperature (ST) at 4 Hz, Photoplethysmograph
(PPG) data at 64 Hz, and tri-axial acceleration at 32 Hz. Prior to any
analysis, the signal streams need to be preprocessed for artifact removal
and normalization.

When a subject wears the E3 device, there is initial local perspiration
because of the contact of the device with the skin. This causes an initial
rapid increase in the EDA signal which requires a few minutes to stabilize.
The Empatica E3 photoplethysmograph sensor also calibrates itself before
it can start reporting the PPG data. Hence for every session, we remove
the first five minutes. Then for each individual signal we preprocess it to
decrease the amount of noise. For the EDA and Skin Temperature (ST)
we first use a low pass Butterworth filter. Then we detrend the EDA to
remove the temporal low frequency drift.

8.6.1 Estimating an Accurate Interbeat-Interval

Photoplethysmography data is highly susceptible to motion artifacts and
this can lead to detection of unrealistic values of heart rate. The Empatica
E3 performs on board signal processing to remove motion artifacts from the
PPG signal [106]. However, we observed that the reported PPG data still
contained certain local motion artifacts, which conditioned the resulting
signal entropy. In the physiological signal literature, different methods
have been proposed to remove artifacts from PPG data for the derivation
of Blood Volume Pulse (BVP) and Heart Rate signals. Adaptive filters
schemes [238], (e.g. NLMS, RLS), [276] and smoothing algorithms (e.g.
Moving average filters) [186] support the accelerometer subtraction for
noise removal.
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Figure 8.3: Pipeline for Hypertension prediction from Wearable Devices. We define
four different blocks, a) Active noise Cancellation, b) R-peak IIBI estimation c) Signal
conditioning and d) Classification

We process the PPG signal with the Active Noise Cancelation method
as proposed in [121] to derive a clean IBI signal. This method consists
of a Least-Mean-Squares (LMS) adaptive algorithm, used to minimize the
error with respect to the desired filter impulse response coefficients. In this
chapter we use the same approach as in [121], and define a 32nd order FIR
passband filter as our desired response defined by [0.5 − 5]Hz bandwidth.

Due to the lack of a ground truth for the Inter-Beat Interval (IBI) signal
for the Empatica E3, we evaluate our algorithm on the publicly available
TROIKA dataset [277] proposed in the 2015 IEEE signal processing cup,
which closely mimics real-life motion activities. This dataset is composed
of 5 minute long treadmill trials, performed by 12 different subjects. The
signals recorded are PPG, accelerometer and include an ECG ground-truth.
Each 5 min trial is divided into 6 different exercise tasks as follows: 30
seconds - rest (1-2 km/h), 1 min - Walking (6-8 km/h), 1 min - Running
(10-12 km/h), 1 min - Walking (6-8 km/h), 1 min - Running (10-12
km/h) and finally 30 seconds - rest (1-2 km/h). This dataset consists
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of a collection of photoplethysmograph and Accelerometer data along
with ground truth electrocardiogram (ECG) data collected We evaluated
our algorithm Active Noise Cancellation and prediction methods on the
TROIKA data and obtained an absolute error of 12.1% and a relative
error rate of 8.9% for Heart Rate estimation.

Consequently we apply this methodology to our dataset for estimating
a continuous Inter-Beat-Interval signal. With the filtered BVP signal,
we detect the R-peak positions that are above 50% of the BVP signal
amplitude. For each detected consecutive R-peak pair, we calculate the
time difference between them and detect any variation along the entire
BVP signal. Thus when we detect a new R-peak according to the above
criterion, we update the inferred IBI value. Finally we run a smoothing
spline algorithm, in order fix the resultant IBI signal and avoid undesirable
harmonics related with IBI discontinuities. This signal is commonly called
interpolated-IBI (IIBI) [186]. We can see both these signals in figure Fig.
8.4.

Figure 8.4: Example for inferred IBI and Smoothed IIBI.
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8.7 Analysis of HRV

From the inferred Inter-beat-Interval signal we calculate heart rate
variability. Heart rate variability (HRV) is a popular and useful noninvasive
tool to assess cardiac autonomic regulation. Heart rate Variability is
used to describe the variations in the instantaneous heart rate or the
RR intervals. A reduction of heart rate variability has been linked to a
poor prognosis of several clinical conditions. In 1965 Hon and Lee [141]
observed a decrease in the inter-beat interval value of HRV as a signal of
fetal stress. A reduction of HRV has been accepted as a correlate stress [37],
and in several cases is associated with increased mortality and morbidity.
Reduced HRV has been shown to be correlated with an increase in the risk
of cardiovascular mortality [201, 259].

Heart Rate Variability is an important physiological factor for people
suffering from hypertension. Studies have reported the reduction of HRV
in hypertensive patients when compared to normotensive subjects [143,
231]. Continuous monitoring of HRV has been recommended for patients
suffering from essential hypertension.

In this study we analyzed the time domain features of the Heart Rate
Variability - the normal-to-normal R-R interval length (R-R interval),
the standard deviation of the R-R intervals (SDNN), the Root Mean
Squared Standard Deviation (RMSSD) and the average heart rate. All
these features have been shown to be lowered in hypertensive patients
[231] as compared to normotensive subjects. As shown in Table 8.2, all
these parameters are lowered in hypertensive patients compared to the
normotensive subjects.

From Table 8.2 we observe significant differences in the HRV features of
normotensive and hypertensive subjects. R-R interval, RMSSD, and SDNN
was significantly reduced in case of hypertensive patients compared to
normotensive subjects. While this reduction was observed in both genders,
it was more pronounced in the male group. The mean difference between
the mean R-R interval of female hypertensive patients and normotensive
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All Male Female
Normo
tensives

Hyper
tensives

Normo
tensives

Hyper
tensives

Hyper
tensives

Hyper
tensives

Heart
Rate (bpm)

66.3 ±
5.8

72.4 ±
7.6

66.4 ±
5.4

74.1 ±
4.9

66.18 ±
6.3

69.10 ±
10.19

R-R
interval (ms)

911 ±
84

838 ±
95

909 ±
78

813 ±
56

915 ±
93

885 ±
12

RMSSD
(ms)

29.4 ±
3.7

26.8 ±
4.5

29.9 ±
3.1

26.7 ±
3.8

28.7 ±
4.3

27.1 ±
5.6

SDNN
(ms)

49 ±
12

39 ±
13

51 ±
11

39 ±
12

45 ±
12

39 ±
16

Table 8.2: Heart Rate Variability Features between Normotensive and Hypertensive
Subjects. We can observe a marked lowering of RR-Interval and SDNN in Hypertensive
Subjects. We also observe that Heart Rate is elevated for Hypertensive subjects than the
Normotensive. All values are significant with p-value below 0.005

patients was 20 milliseconds. This difference was of 96 milliseconds in the
male group.

Elevated Heart Rate has been shown a positive association with
mortality [111, 205]. Reduction of heart rate among hypertensive patients
should therefore be a goal of anti-hypertensive therapy. In Figure 3 we can
see the distribution of the heart rates of the hypertensive and normotensive
subjects. We observe that the average heart rate for hypertensive patients
is higher than that of normotensive subjects. The mean heart rate of the
hypertensive group was found to be 72.4 beats per minute, while that of
the normotensive control group was 66.3 beats per minute. This elevation
is marked in case of male patients, with make hypertensive subjects having
a mean heart rate of 74.1 beats per minute, compared to 66.4 beats per
minute for normotensive males.

The evaluation of the data collected from the psychological assessment
showed some interesting differences between subject and control group.
Table 3 reports in the first column the different areas that have been
explored during the psychological structured interview. The psychologist
asked the subjects to describe their family life: as we expected, the
participants from the patient group were more available in describing
their private life, including the details of the history of their disease.
In particular, the perception the patients had of their health status was
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Figure 8.5: Distribution of mean heart rate for the Normotensive and Hypertensive
Subjects

somewhat unrealistic. Notwithstanding their being well controlled by
therapy, and without organ damage – both conditions were among the
inclusion criteria of the study, they reported a perception of being affected
by a severe disease. Compared to the control group, they also reported a
higher value for stressful events in the past six months (Holmes & Rahe
scale). In addition, from the interviews it was revealed that at the time of
the onset of their disease the patients had been exposed to varying levels
of life-changing events. While some of them has been confronted with loss
events, like divorce, illness or death of a relative, others had experienced
potentially positive events like job change, and newborns in family. As
for the personality profiles, from the psychological observation it resulted
that in the patient group 8 out of 14 subjects could be classified as Type
D personalities vs 2 out of 12 in the control group. Finally, the analysis
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of the personality traits showed that in the patients’ group traits such as
neuroticism and consciousness were more represented.

8.8 Analysis of Electrodermal Activity

Figure 8.6: Distribution of mean skin conductance level (SCL) for male Normotensive
and Hypertensive Subjects

Electrodermal activity (EDA) is an important indicator for stress. In this
study we observed that features of EDA can also be used as indicators
for hypertension. We studied the normalised skin conductance level (SCL)
which is the skin conductance level in the absence of any external stimuli
obtained from durations where the electrodermal activity did not show any
skin conductance response (SCR). We observed significant difference in the
normalized mean skin conductance level (SCL) between the hypertensive
and normotensive groups. Since we did not have any ground truth
for the type of external stimuli which the subjects experienced during
their daily lives, the study of skin conductance responses (SCRs) for
making conclusions was avoided - however, we observed that features
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from SCR can provide additional benefit to the classification algorithm.
For our comparison, in order to account for person specific differences,
we normalised the SCL. We observe that the mean normalized SCL of
normotensive controls was 0.37 as compared to 0.43 for the hypertensive
group. We observed a significant different in the SCL levels in both male
and female groups.

Figure 8.6 shows the density distribution of the skin conductance level
of the normotensive and hypertensive males while the 8.7 shows the same
for the female groups.

Figure 8.7: Distribution of mean skin conductance level (SCL) for female Normotensive
and Hypertensive Subjects

8.9 Automatic Detection of Hypertension

One of the goal of this work is to automatically identify hypertensive
patients. For this we
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8.9.1 Feature Extraction and Classification

Feature Extraction

The window size of the physiological signal not only affects the quality of
the hypertension detection algorithm but also determines the duration for
which a subject needs to be monitored for such a task. We experimented
with different window sizes to discover the optimal window for continuous
monitoring of physiological signals and how the performance varies. We
extracted features for window sizes ranging from 15 minutes to 2 and a half
hours. For the feature extraction we consider all the signals. We extract
features from the preprocessed Electrodermal Activity (EDA), the Skin
Temperature (ST) signals as well as the cleaned Blood Volume Pulse (BVP)
and Interpolated Inter-beat-interval (IIBI) signals which were derived from
the PPG data. The raw inter-beat interval data provided by the Empatica
E3 was sparse and noise and for this work we did not use that signal. Here
we discuss the various features extracted from the individual physiological
signal streams.

From the Electrodermal Activity (EDA) we extract statistical features
(mean, SD, min and max) for each session. We also extract the
counts of the startle responses (instantaneous changes in response to
external stimuli) of the EDA signal and their average rise and fall
durations. The duration and amplitude of a the startle response of
the Electrodermal Activity has been shown to be highly correlated with
sympathetic activation of a person, and its long term monitoring can be
useful in detecting subjects who may be hypertensive . In total we extract
24 features from the EDA signal. We further extract 17 more features
form the cleaned Blood Volume Pulse Signal and 8 features from the Skin
Temperature Signal.

From the Interpolated Inter-Beat Interval (IIBI) we extract 17 features
from the time and frequency domain. The time domain features of IIBI
are related to the parasympathetic and sympathetic baroflex function and
hence are indicative of Heart Rate Variability. Hence, we extract the
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maximum and minimum of Heart Rate, RMSSD (root mean square of the
successive difference of NN interval), SDNN (Standard Deviation of the NN
interval), pNN50 and pNN30 (percentage of consecutive NN intervals which
differ by more than 50 and 30 milliseconds respectively). We also derive
frequency domain features as indicated in [124, 140]. These features are
related to the sympathovagal balance index and indicative of sympathetic
and parasympathetic neural activity. We also extract the ratio of the Low
Frequency and High Frequency values (LF/HF ratio), and the statistical
features given by each frequency range, (e.g. LF and HF: mean, variance,
max and min peaks).

Machine Learning

For distinguishing between hypertensive and normotensive subjects, we
perform a Leave One Subject Out (LOSO) cross-validation classification.
Since each test fold contains instances from either a hypertensive subject
or a normotensive subject, we compute the final global confusion matrix
by combining the individual classes per fold for each subject.

True Positive comprises of all hypertensive subjects classified as
hypertensive. True Negative comprises of all the normotensive subjects
classified as normotensives. False Positive is all normotensives classified as
hypertensives, and all the hypertensives classified as normotensives makes
up the False Negative class.

We perform classification with both individual and combined signal
streams. A feature-level fusion of the different physiological signal streams
is done before running different classification tasks. We perform feature
normalization to scale all features to the range [0,1]. We evaluate
the performance of five different classification algorithms: K-Nearest
Neighbours, Naive Bayes, Decision Trees, SVM with Linear kernel, and
two ensemble learning algorithms - Adaptive boosting and Random Forest.
The ensemble based classifiers outperform the other classifiers for both
individual and fusion of features, with Adaptive Boosting performing
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Figure 8.8: Effect of the different sampling window sizes (in seconds) for the Adaboost
classifier for different Feature combinations.
the best. Adaptive Boosting (Adaboost) is a meta-learner that uses
greedy search on a linear combination of weak classifiers to generate a
single composite strong learner. We use AdaBoostM1 which is a binary
classification algorithm.

When considered separately, individual signal streams have low
classification accuracies, with Blood Volume Pulse having the highest
F-measure of 0.62. However, combination of features of different signal
streams significantly improves the classification results. EDA-IIBI and
EDA-BVP-IIBI combinations providing the best discrimination between
hypertensive and normotensive subjects. We observe that we are able to
achieve a high F-measure of 0.83 using a combination of features from the
BVP, EDA and IIBI signals.

The length of the feature extraction windows as discussed in section
8.9.1, affect the classification results. From Figure 8.8 we can observe that
the best F-measure is obtained at a window size of two and a half hours
(9000 seconds). The classification results can be seen to improve with
increase in the signal window.

Table 8.3 summarizes the best performance results which are obtained
for a 9000 seconds (two and a half hour) window for the various classifiers.

137



SIGNAL Adaboost RandomFor SVM
BVP 0.62 0.64 0.59
EDA 0.36 0.44 0.25
IIBI 0.52 0.49 0.33
ST 0.50 0.55 0.53

BVP+EDA 0.52 0.60 0.41
BVP+IIBI 0.63 0.56 0.51
BVP+ST 0.68 0.65 0.59
EDA+IIBI 0.83 0.78 0.59
EDA+ST 0.48 0.41 0.27
IIBI+ST 0.57 0.52 0.50

BVP+EDA+IIBI 0.83 0.72 0.60
BVP+EDA+ ST 0.64 0.53 0.40
BVP+IIBI+ST 0.57 0.57 0.42
EDA+IIBI+ST 0.80 0.71 0.67

EDA+BVP+IIBI+ST 0.81 0.76 0.63

Table 8.3: Classification Results (F-measure) for the three best classifiers for different
signal combinations for LOSO evaluation for 9000 seconds (2 and a half hour) window.
The best performance for each classifier is marked in bold.

8.10 Attitude of Patients Towards Continuous
Monitoring

Self monitoring of blood pressure is an effective tool for early detection
and management of hypertension. However, self-monitoring can sometimes
be difficult and induce added anxiety. This work explores techniques for
decreasing the effort involved in continuous monitoring. We explored the
patient’s attitude towards the protocol for continuous monitoring. The
patient-reports are summarized below:

1. Increase in awareness: Seven out of the twelve patients reported that
self-monitoring and keeping a diary increased their awareness of daily
situations they were usually involved, but that went unnoticed before.
For example they became more aware of the total amount of time
spent in their cars not only for commuting, but also of moving for
shopping, picking the children up from school, etc. In some cases
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they observed that some of those activities could have been done by
walking. Self-monitoring had also impact on the dietary and smoking
habits.

2. Feeling of self-commitment: 9 out of 12 patients reported that during
the days of the data collection they were more self-committed with
being compliant with the suggestions they had received in the past
by their doctors. As an example, they reported that during the data
collection they were more precise with the dietary requirements, and
with medication intake.

3. Assistance by an Intelligent Agent: 10 out of 12 patients reported
that they were interested in the opportunity of “being assisted" by
the intelligent agent and wearable device. They did not feel either the
agent or the wristband as intrusive, but rather felt them as something
that their doctors gave them for taking care of their health throughout
their everyday lives.

8.11 Conclusion

In this chapter we demonstrate the use of an intelligent personal agent and
a wearable device for hypertension detection. We explore the differences
in the stress responses between hypertensive patients and normotensive
control subjects. We design and train a complete signal processing and
classification system for hypertension prediction. We demonstrate that the
proposed computational pipeline which combines several individual signal
streams is able to distinguish between hypertensive and normotensive
subjects with high accuracy. We find that such an intelligent personal
agent is well accepted among patients and can aid in effective management
of hypertension.
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9

Conclusion

Management of chronic conditions such as hypertension is complex and
challenging. Keeping track of blood pressure, stress, activity levels, food
and beverage consumption everyday can be a tedious job. For people who
are already unwell and suffering, this increases the burden of their disease
management. In this thesis we present the Health Analytics (HEAL)
intelligent agent platform to reduce challenges faced by the patients
suffering from hypertension.

The HEAL platform can monitor both covert and overt signals from
a smartphone and a wearable device. The HEAL platform, using the
Empatica E3 wearable wristband automatically tracks physiological signals
continuously in real-world scenarios. The Empatica E3 is an aesthetic,
unobtrusive and comfortable wearable wristband which makes its adoption
in daily life easier. The digital multi-modal diary component of the
HEAL intelligent agent eases the burden of record-keeping for hypertensive
patients. It elicits timely and relevant annotations from patients through
structured (questionnaires and lists) and unstructured (voice and text)
notes. This information can be aligned with the covert signals to provide
grounding for automatically detected events from the signals.

The HEAL platform contains modules for automatic activity recognition
under real-world scenarios (Chapter 6). It also contains a pipeline for
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in-the-wild stress and workload recognition (Chapter 7). Through a pilot
study we demonstrate that the HEAL platform can distinguish between
hypertensive and normotensive subjects with high accuracy (Chapter 8).
The HEAL intelligent agent platform opens up the opportunities for
detection and monitoring of a diverse set of chronic conditions. Below
we list some of the applications of the HEAL intelligent agent platform:

Monitoring Other Diseases

The technologies developed in this work can be applied for tracking and
managing cardiovascular diseases or other chronic conditions. Increasing
activity level is an important step for treating different diseases. Automatic
classification of activity level as described in Chapter 6 can benefit patients
suffering from a broad range of diseases like obesity, diabetes, asthma,
and arthritis. Some patients in the hypertension trial reported that the
knowledge of the level of activity and time spent driving motivated them
to walk more whenever they could.

Physiological signals and digital diaries can be used to detect and
monitor diseases such as anxiety, epilepsy and depression. Digital diaries
have also been applied for managing and tracking conditions such as eating
disorders, obesity, and irritable bowel syndrome. The HEAL platform,
which comprises of both these components, can thus be used to simplify
the detection, monitoring and management of such chronic conditions.

Monitoring Healthy Individuals

Knowledge of the stress and activity level can benefit healthy individuals.
Automatic early detection of stress and workload as described in Chapter
7 can improve the identification of stress factors and help to avoid
them. Knowledge of the activity level in general can be used to motivate
individuals to get more exercise. Tracking food and beverage intake can
increase mindfulness.
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The HEAL platform presents techniques which can assist in all these
aspects. There is a potential to apply this technology to larger groups of
healthy individuals from different communities and job profiles. Observing
and learning from a more diverse group of individuals will help to improve
the robustness of the stress and activity recognition algorithms.

Long-term Disease Monitoring and Management

In this work we used the HEAL agent to monitor hypertensive patients for
a period of 10 days. Even with this short monitoring period, patients
reported that using the agent increased their awareness regarding the
lifestyle factors which affect their disease. It also increased their feeling
of empowerment and commitment towards their treatment regime.

Although these are encouraging results, there is a need for a continued
longitudinal study to prove that these positive effects are sustainable and
can lead to long-term increase in patient engagement. A short time study
did not offer us an opportunity to observe changes in the disease state.
A Longitudinal study which can track the progress of the disease over a
period of a few months or years can yield useful information that can be
used for management of the disease.

Studying Large Diverse Patient Group

The HEAL pilot study for hypertension was conducted with a small group
of 14 hypertensive patients (8 male and 6 female) and 12 normotensive
controls (6 male and 6 female). While the results were promising, a
larger and more diverse study is required to improve the robustness of the
algorithms developed in this work. Using the HEAL Application platform
opens up the opportunity to conduct such a research. The only requirement
for participating in this study is an iPhone and a wearable device (as of now
an Empatica E3 - but it is possible to expand to include other devices).
The HEAL intelligent agent application is an iPhone application which
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can be installed in any iPhone anywhere in the world. A patient group
with diversity in terms of age, ethnicity and job profile will increase the
generality and applicability of the algorithms developed in this research
work.

In conclusion, an intelligent agent platform has the potential to
change the care-management for chronic conditions. It can help
empower and engage patients and improvement detection and subsequent
self-management of diseases such as hypertension. Although this work is
challenging and there is a need to scale the scope and implementation
of this study, the early results are promising and shows the potential for
making disease management easier.
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