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Abstract  

The presence of networks of correlation between gray matter volumes of brain regions - as 

measured across subjects in a group of individuals - has been consistently described in several 

human studies, an approach termed structural covariance MRI (scMRI). Complementary to 

prevalent brain connectivity modalities like functional and diffusion-weighted imaging, this 

approach can provide valuable insight into the mutual influence of regional trophic and plastic 

processes occurring between brain regions. 

Previous investigations highlighted coordinated growth of these regions within specific 

structural networks in healthy populations and described their derangement in pathological 

states. However, a number of fundamental questions about the origin and significance of these 

couplings remains open and the mechanisms behind the formation of scMRI networks are still 

poorly understood. To investigate whether analogous scMRI networks are present in lower 

mammal species amenable to genetic and experimental manipulation such as the laboratory 

mouse, I coupled high resolution morpho-anatomical MRI with network-based approaches on 

a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J). To this purpose, I first 

developed a semi-automated pipeline enabling reliable Voxel Based Morphometry (VBM) of 

gray matter volumes in the mouse. To validate this approach and its ability to detect plastic 

changes in brain structures, I applied it to a cohort of aged mice treated with omega-3 

polyunsaturated fatty acids (n3-PUFA). This study revealed that treatment with n3PUFA, but 

not isocaloric olive oil preserved gray matter volume of the hippocampus and frontal cortices, 

an effect coincident with amelioration of hippocampal-based spatial memory functions. I next 

employed VBM to investigate scMRI networks in inbred mice using a seed-based approach. In 

striking resemblance with human findings, I observed the presence of homotopic (i.e. bilateral) 
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architecture in several scMRI cortical and subcortical networks, a finding corroborated by 

Independent Component Analyses. Subcortical structures also showed highly symmetric inter-

hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic 

regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six 

identifiable clusters of cortical and sub-cortical regions corresponding to previously described 

neuroanatomical systems. This work documents for the first time the presence of homotopic 

cortical and subcortical scMRI networks in the mouse brain, and is poised to pave the way to 

translational use of this species to investigate the elusive biological and neuroanatomical 

underpinnings of scMRI network development and its derangement in neuropathological states.  

Keywords 

Structural Covariance Networks; Magnetic Resonance Imaging, Voxel Based Morphometry, 

Mouse Brain 
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1. Structural Covariance Networks of the Brain 

1.1. Background 

“Segregation” vs “integration” represents a long-standing controversy that has polarized 

neuroscientists in opposite and complementary views in the challenge of studying, modelling 

and explaining the structural and functional architecture of the human brain. On the one hand, 

the theory of segregation emphasizes the role of highly specialized brain areas - i.e. the brain 

has different modules that are specialized for different functions. By contrast, the theory of 

interactionism stresses the role of communication between brain units to produce organized 

and integrated networks that underlie virtually unlimited brain states and behaviors.  

 

Figure 1. From phrenology to cytoarchitecture. According to phrenology, character and emotions 

were located in specific districts of the brain (A). After one century, Brodmann classified the cerebral 

cortex in regions defined by their histological compositions and cell organization (B). 

Historically, early contributions had the merit of shedding light on the functional specialization 

of brain areas. For example, Franz Joseph Gall associated the uneven geography of the skull 

to the pressure exerted from more developed brain districts (Gall, 1818). Although this naïve 
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theory had no scientific basis, it prepared the ground for following studies aimed at mapping 

“which part of the brain does what”. A first step towards this direction was made by the French 

neurologist Paul Broca, who identified the anatomical localization of a highly specialized brain 

function like the language by post-mortem studies on patients with aphasia (Broca,1865). Also, 

the studies of Korbinian Brodmann (Brodmann 1909) were fundamental to postulate an 

association between histological properties of the cortex and brain functions (Figure 1). 

Throughout the twentieth century, these early findings gave a great impulse to modern 

neuroscience that, in turns, provided unparalleled amount of evidence on the association 

between single neuroanatomical substrates and brain functions.  

However, it is now clear that the brain does not work as a segregated collection of single units 

and the simple one-to-one correspondence between structure and function is not sufficient to 

explain its enormous complexity. For example, although the application of brain mapping 

techniques on patients produced a tremendous quantity of data both in healthy and patient 

populations, the etiology and neurobiology of brain disorders is far from being convincingly 

described in terms of regional dysfunction. The increasing awareness of these intrinsic 

methodological limitations shifted the perspective of the scientific community, spurring the 

development of integrative approaches aimed at describing the brain’s structural and functional 

connectivity. According to this view, the interplay within and among highly specialized areas is 

mediated by connections, intended as a pattern of anatomical links or statistical dependencies 

among distinct specialized units. From the micro to the macroscale, the units may correspond 

to individual neurons, populations of neurons, or entire brain regions. Connectivity patterns are 

constituted by structural links such as synapses or fiber pathways, or may represent 

statistical/causal relationships between the activity of neurons or synchronized spontaneous 

blood fluctuations among brain regions. 
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Many of these conceptual advancements have been made possible by the usage of non-

invasive neuroimaging techniques like magnetic resonance imaging (MRI), which allow to 

obtain high-resolution three-dimensional reconstructions of the brain. Since their advent, MRI-

based methods have emerged as valuable tools to study the topology of the brain and the 

elusive interplay between segregation and integration (Bullmore and Sporns 2009). To date, 

the vast majority of MRI mapping of brain connectivity is based on two main techniques, 

diffusion weighted MRI and resting state functional MRI. Diffusion weighted MRI (Figure 2) is 

a technique that exploits the anisotropic diffusion of water molecules in myelinated fibers to 

map the organization of white matter pathways connecting different brain districts.  

 

Figure 2. White matter fiber architecture of the brain. Diffusion MRI is sensitive to water molecules 

that diffuse preferentially along fiber tracts, i.e. groups of axons. Different from post-mortem dissection 

and chemical tracing, that are still the gold standard for the identification of axonal connections, diffusion 

MRI provides information about the position and the integrity of fiber tracts in vivo. Fibers with similar 

orientation are shown in the same color (http://www.humanconnectomeproject.org). 

Resting state functional MRI is based on statistically correlated low frequency hemodynamic 
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fluctuations between brain regions and is used to map the functional architecture of the brain 

in no task conditions. 

 

Figure 3. Multiple cerebral networks can be identified with functional MRI in healthy subjects 

during resting state. In healthy subjects performing no specific task (“resting state”), time courses of 

voxels within functionally connected regions of the brain exhibit high correlation coefficients. These 

networks reflect “higher-order” cognitive (i.e., default mode, left and right executive control, salience 

networks), and “lower-order” sensorimotor, and sensory (i.e. auditory, visual) function. (Heine, Soddu et 

al. 2012).  

Importantly, MRI is highly versatile and these two popular modalities have been recently 

complemented by a novel class of measurements that provide an alternative index of coupling 

between brain areas at the population level. The main idea behind these measurements is that 

regions that are anatomically connected could express structural covariance in their growth 
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dynamics (Mechelli, Friston et al. 2005). According to this hypothesis, inter-individual 

differences in size (or thickness) of a brain region could have a statistical association with inter-

individual differences in size (or thickness) of other brain regions across subjects. Intuitively, a 

simple but robust approach to probe the existence of structural covariance is to assess the 

correlation between the size of one brain region and that of another brain region in a population 

of subjects. For instance, if a significant correlation between the size of the left and right motor 

cortex was observed in a population of subjects, we could infer that these two regions exhibit 

coordinated growth dynamics and then are part of the same anatomical or structural covariance 

(scMRI) network (Figure 4). The presence of this sort of coupling could thus expand the 

concept of brain connectivity by incorporating population level trophic influences that gray 

matter regions such as the cortex, basal ganglia and hippocampus exhibit on each other and 

then complement white matter-based (e.g. DTI) or hemodynamic based measurements of 

connectivity. 

 

Figure 4. Structural covariance (scMRI) networks of the human brain. If we find a statistical 

association between the size of two brain regions, for example between the left and the right motor 

cortex, in a population of subjects, these two brain districts show a coordinated volumetric expansion or 

contraction and therefore constitutes two units of a scMRI network. Commonly, the linear dependence 

between these two datasets is expressed by the Pearson’s correlation coefficient, although independent 

component analysis, graphs and cluster analysis could be used. 
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The existence of scMRI coupling in humans was proved in a seminal study carried out on a 

large cohort of healthy subjects (Mechelli, Friston et al. 2005), where robust patterns of positive 

correlation were identified between mean gray matter volumes of primary sensory-motor, 

emotional and cognitive areas, and their homotopic regions in the contralateral hemisphere. 

Symmetric patterns were consistently observed in males and females, with gender related brain 

asymmetries limited only to the amygdalar network (Figure 5).  

 

Figure 5. Homotopic scMRI in the healthy population. Seed based analysis revealed for the first time 

in the literature the existence of homotopic scMRI networks between 12 regions of interest and their 

mirror regions in the contralateral hemisphere (Mechelli, Friston et al. 2005). 

Since its description, scMRI has been employed by a number of investigators who have 

provided an important source of information about inter-regional connectivity (Alexander-Bloch, 

Raznahan et al. 2013). While  the determinants underlying the establishment and distribution 

of structural covariance networks remain still poorly understood, a role of genetic, 
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developmental, aging and experience related plasticity has been described by previous 

investigations (Mechelli, Friston et al. 2005, Evans 2013).  

Covariance between brain regions was first described within the visual (Andrews, Halpern et 

al. 1997) and motor (White, Andrews et al. 1997) systems in early post mortem studies. 

However, the extensive usage of computer-automated analysis of morphoanatomical MRI has 

multiple advantages compared to post mortem studies and provided valuable insights in the 

understanding of structural covariance. In particular, MRI enables in vivo investigation of gray 

matter networks, it can be carry out on a multitude of individuals in a relatively limited time, and 

it also allows the investigation of these networks at high-resolution and on multiple brain regions 

(Alexander-Bloch, Raznahan et al. 2013).  

Exploiting these advantages of MRI, an increasing amount of findings have been produced on 

structural connectivity, suggesting a consistent degree of overlap between scMRI networks and 

cognitive functions. For instance, the gray matter volume of the hippocampus showed 

significant correlations with that of the contralateral hippocampus, amygdala, rhinal and 

orbitofrontal cortices, a set of brain regions involved in memory and spatial navigation tasks. 

Moreover, studies on emotion and empathic responses produced evidence of extensive 

correlations between the thickness of anterior insula and multiple regions within the cerebral 

mantle (Bernhardt, 2013). Albaugh and colleagues (Albaugh, Ducharme et al. 2013) described 

a network of cortical regions, including prefrontal, orbitofrontal and parietal cortices, whose 

thickness was anti-correlated with the volume of the amygdala. Altogether, these results 

provide evidence of scMRI coupling among brain regions involved in emotion regulation. 

Further, anterior and posterior areas devoted to the processing of language in the left 

hemisphere were found to be strongly correlated in terms of cortical thickness (Lerch, 2006). 

Even though a relation between covariance patterns and functional-cognitive systems in the 
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brain has been reported in the literature, only very few studies have investigated the 

establishment and evolution of scMRI networks from a neuro-developmental perspective. One 

study monitored the growth trajectory of normally developing cohort of subjects across 

childhood and adolescence (Zielinski, 2010), reporting early development of primary sensory 

and motor networks and their overexpansion during early adolescence, with a subsequent 

reduction to the extent of the adult scMRI patterns (Figure 6). 

 

Figure 6. Development of scMRI networks in children and adolescents. Visual, auditory and other 

sensory-motor scMRI networks are already well developed in early childhood and expands in early 

adolescence before pruning to a more restricted topology resembling adult intrinsic connectivity network 

patterns. In contrast, cognitive scMRI networks - including the homolog of the functional salience 

network - are not fully developed in children and mature to an adult distributed topology only during 

adolescence (Zielinski, 2010). 

On the other hand, language, social, emotional and cognitive networks were found to be 
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underdeveloped in early childhood and exhibited increasingly distributed topology in older 

children (Zielinski, Gennatas et al. 2010). Also, the findings of later studies support the 

hypothesis that across-subjects structural correlation between anatomical regions may reflect 

to a certain extent longitudinal maturational trajectories of those regions, as measured by 

change of volume across development as the age increase (Alexander-Bloch, Raznahan et al. 

2013). This observation is of particular importance in the interpretation of results produced in 

cross-sectional studies because it is in line with the view that regions that are correlated in size 

across-subjects, also show a volumetric correlation during development (Figure 7).  

 

Figure 7. Association between scMRI, maturational coupling, and functional connectivity. The 

correlation between scMRI and maturational coupling, across all pairs of brain regions (scatterplot) 

and for each region separately (Alexander-Bloch et al., 2013). 

Intriguingly, the architecture of structurally based networks was found to partially overlap with 

well-known functionally defined brain networks (He, Chen et al. 2007, Zielinski, Gennatas et al. 

2010, Zielinski, Anderson et al. 2012), supporting the view that the architectural organization of 
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gray matter scMRI between brain structures reflects functional connectivity. For example, a 

distributed network of regions co-varying with the volume of the posterior cingulate cortex was 

found (He, Chen et al. 2008, Zielinski, Gennatas et al. 2010) closely resembling the functional 

default mode network described by Greicius (2003). Also, an anatomical homolog of the 

functional salience network (Seeley et al., 2007) was recently identified (Zielinski, Anderson et 

al. 2012). 

Further, clustering of the insula into sub-regions revealed overlapping boundaries when the 

clustering is based either on task free functional connectivity or on grey matter scMRI, 

suggesting the intriguing hypothesis that functional coupling may somewhat reflect structural 

covariance (Kelly, Toro et al. 2012). The correspondence between brain structural and 

functional networks is in line with results obtained with graph analysis that reported a strong 

convergence of scMRI and resting state functional connectivity, especially in terms of global 

efficiency (Alexander-Bloch et al., 2013). However, a recent study challenges this view and 

suggests that rs-fMRI and scMRI likely capture different aspects of brain function and 

maturation, since the degree of correspondence between the two modalities varies 

considerably across seed regions (Reid, Hoffstaedter et al. 2016). These discrepancies call for 

additional research into the determinants of this phenomenon and its relationship with functional 

network coupling.  

Recently, scMRI has also been applied to clinical populations and offered initial insights into 

the abnormal structural organization of scMRI networks in brain disorders. Two recent studies 

on autism spectrum disorders report a reduced extension of the structural salience network of 

autistic patients (Zielinski, 2012) (Figure 8) and decreased covariance in the autistic group 

relative to controls (Valk, Di Martino et al. 2015), corroborating the current view that autism is 

a “connectivity disorder”.  
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Figure 8. scMRI maps of the structural homolog of the salience network in autism and controls. 

Autistic patients exhibit reduced structural covariance patterns in the sc-MRI salience network (Zielinski, 

Anderson et al. 2012). 

A more recent study also suggests the application of scMRI networks to identify specific 

patterns of reduced gray matter volume in patients with frequent auditory verbal hallucinations 

compared to non-hallucinating schizophrenic patients (Kubera, Sambataro et al. 2014). In 

Alzheimer’s disease, patients showed decreased scMRI between homotopic parietal regions 

and increased correlations compared to healthy controls in several other regions, including 

temporal, cingulate and medial frontal cortex (He, Chen et al. 2008). These initial studies 

highlight the possibility of using scMRI networks as population based signature of brain 

disorders and development which can complement univariate regional mapping.   

1.2. Can We Map Structural Covariance Networks in the Mouse? 

The application of scMRI has generated new insights on the trophic development of gray matter 
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correlations between brain regions in healthy and diseased populations. However, a number of 

fundamental questions about the origin and significance of these networks remains open and 

the mechanisms behind the formation of scMRI networks are still poorly understood, also due 

to the impossibility to employ interventional approaches to causally probe the emergence of 

these correlated response in human populations.  

 

Figure 9. Preliminary description of scMRI networks in the mouse brain. Significant volumetric 

correlations were described among components of the limbic system, including hippocampus, amygdala 

and fimbria in the BXD mouse strain. The area under the diagonal illustrates the cross-correlation map 

for (N=22) individuals (Badea, Johnson et al. 2009).  

For example, recent evidence has linked genetic polymorphisms with the development of 

specific functional and anatomical networks (Pezawas, Meyer-Lindenberg et al. 2005), 
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however, the genetic determinants underlying the emergence of these networks remain poorly 

understood. Moreover, although correlations between cortical gray matter thickness and 

structural connectivity have been described (Lerch, Worsley et al. 2006), with recent estimates 

suggesting that white matter MRI connectivity explains approximately 35–40% of the thickness 

correlations across the cerebral cortex (Gong, He et al. 2012), whether anatomical covariance 

requires intact axonal connectivity, or can develop in the face of altered connectional substrates 

like in the case of congenital callosal alterations or white matter abnormalities (Tyszka, 

Kennedy et al. 2011, Sforazzini, Bertero et al. 2016), remains to be determined. Finally, 

although both genetic and environmental factors have been identified to play a role in shaping 

these networks (Schmitt, Lenroot et al. 2008, Schmitt, Lenroot et al. 2009, Rimol, Panizzon et 

al. 2010), the relative contribution of these components is poorly understood and it is not clear 

what is the relative contribution of genetic influence, development and aging, or experience-

related plasticity to the establishment of scMRI “connectivity” (Evans 2013). 

Brain imaging research in simple model organisms like the laboratory mouse, where genetic 

and environmental conditions can be tightly controlled, could help to clarify the mechanisms 

underlying the emergence of covariance networks and increase both the clinical value of scMRI 

for neuropsychiatric patients and the capacity to test specific network hypotheses about disease 

mechanisms (Alexander-Bloch, Giedd et al. 2013). Possibly more significant, showing the 

existence of scMRI networks in inbred mice would lead to the application of this technique on 

transgenic mice that model a variety of human brain diseases, thus making it possible to 

elucidate the relation between genetic deletions and derangement of scMRI networks in brain 

disorders. The ever-increasing repertoire of transgenic mice available to preclinical community 

may be employed to model a variety of human brain diseases, thus allowing the investigation 

of neurobiological determinants underlying the reorganization of scMRI networks in 
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pathological conditions.  

Despite the great interest in this approach, the application of scMRI mapping to animal models 

has been so far very limited, with only preliminary demonstration of its application in non-human 

primate research (Alexander, Chen et al. 2008, Spocter, Hopkins et al. 2010). One of such 

studies reported the effects of aging in a non-human primate model (Alexander, Chen et al. 

2008), where reductions of gray matter volumes were found in prefrontal regions and in the 

superior temporal sulcus. An exploratory scMRI analysis in rodents has been previously 

reported (Badea, Johnson et al. 2009), leading to the identification of a large putative limbic 

network. However a fine grained description of homotopic cortical and subcortical scMRI 

analogous to those previously reported in humans (Figure 9) has not so far been described in 

rodents.  

1.3. The Scope of this Thesis 

The main aim of the set of studies presented in this thesis is to probe the presence and map 

the topology of scMRI networks in the mouse brain to enable investigations of the factors 

determining the genesis of scMRI, and its altered expression in disease states. An essential 

prerequisite for a reliable mapping of scMRI is the development of robust VBM assessment of 

gray matter volumes in the mouse brain. To this purpose, we morphed a mouse gray matter 

VBM pipeline based on ANTs advanced image processing tools originally developed for human 

neuroimaging studies  (Pagani, Damiano et al. 2016).  We next validated this VBM pipeline in 

a study aimed to evaluate the trophic gray matter effect of dietary supplementation with omega-

3 polyunsaturated fatty acids (n3-PUFA). The approach  revealed robust  gray matter volumetric 

increase in the hippocampus and medial prefrontal cortex (mPFC) in  mice treated with n3-

PUFA compared to the isocaloric control group (Cutuli, Pagani et al. 2016), thus contrasting the  

natural loss of gray matter which has been associated to aging. 
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Having showed that our methods can detect plastic gray matter volumetric changes, we next 

applied VBM to map local gray matter volumes and scMRI networks in a large cohort of 

genetically homogeneous inbred C57Bl6/J mice. In agreement with findings of human studies, 

our results highlighted that gray matter scMRI coupling emerge in the mouse brain. Specifically, 

whole brain voxel-wise correlation maps based on seed region analysis revealed the existence 

of homotopic scMRI networks in primary and associative cortical as well as subcortical brain 

regions. The bilateral topology of the cortical networks was further confirmed in an unbiased 

fashion with source based morphometry based on independent component analysis (ICA). 

Using hierarchical agglomerative clustering, we also show that communities of brain regions 

sharing similar patterns of scMRI form plausible clusters overlapping with well-known 

neuroanatomical districts, providing evidence that scMRI networks overlap with the anatomical 

organization of the brain. The observation of scMRI networks in genetically homogeneous 

C57Bl/6 inbred mice further suggests that reduced environmental stimulation is sufficient to 

morph these correlational networks, in keeping with the emerging view of a key role of 

environmental factors in shaping scMRI. 

1.4. Main Contributions of this Work 

The study of scMRI networks and gray matter volumetric alterations in transgenic mice - where 

a wide repertoire of genetic, molecular and cellular manipulations can be readily implemented 

- is poised to complement human research by enabling the understanding of genetic and 

environmental underpinnings in normal subjects and in genetic models of neuropsychiatric 

disorders.  

The main contributions of this work are methodological and neurobiological. Methodological 

contributions include: 



16 
 

I. Development and validation of semi-automated gray matter VBM and volumetric 

anatomical labelling methods to map gray matter, cortical thickness and brain volumes 

in the mouse brain. 

II. A proof of concept validation of this approach and its validation in a system model 

amenable to trophic remodeling (with nPUFA dietary supplementation) 

III. Implementation of hypothesis-driven and data-driven network approaches to describe 

scMRI topology, producing new powerful translational tools for gray matter connectivity 

investigations in studies with transgenic mice. 

From a more neurobiological standpoint, the contributions of the present work are: 

I. By using VBM, we showed that n-3 PUFA dietary supplementation counteracts the 

natural brain atrophy related to aging in hippocampus and medial prefrontal cortex, and 

that this effect is behaviorally relevant. 

II. In line with findings in humans, we describe for the first time that the architecture of 

scMRI networks in the mouse brain is homotopic, with gray matter regions in one 

hemisphere exhibiting positive correlations with their counterpart in the opposite 

hemisphere. 

III. The identification of scMRI networks in genetically homogeneous C57BL/6 inbred mice 

corroborates the emerging view of a key role of environmental factors in shaping these 

correlational networks.  

IV. Our work supports the use of mice in future studies to generate hypotheses about 

derangement of anatomical covariance in pathological states of clinical relevance. 

All the contributions presented in this thesis have been published in the form of peer-

reviewed manuscripts and conference communications (Chapter 2, 3 and 4). The structure 

of the present thesis comprises a description of the brain morphometry methods 
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implemented and validated for the mouse brain (Pagani, Damiano et al. 2016) (Chapter 2), 

followed by a proof of concept of these methods in a study aimed at testing the efficacy of 

omega3 in counteracting the brain atrophy and cognitive decline related to aging (Cutuli, 

Pagani et al. 2016) (Chapter 3). The identification and description of scMRI network 

mapping (Pagani, Bifone et al. 2016) is reported in Chapter 4, followed by conclusions of 

the thesis (Chapter 5). The last two sections include a complete list of the references and 

the publication list.  
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2. Voxel Based Morphometry in the Mouse Brain 

All the material presented in this chapter has been recently published in the article “Pagani M, Damiano M, 

Galbusera A, Tsaftaris SA, Gozzi A (2016). Semi-automated registration-based anatomical labelling, voxel based 

morphometry and cortical thickness mapping of the mouse brain, Journal of Neuroscience Methods, 11:62-73.” 

Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, 

substantial differences in the anatomical organization of human and rodent brain prevent a 

straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, 

the vast majority of the published approaches rely on tailored routines that address single 

morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex 

workflow required to process images and quantify structural alterations. Here we provide a 

detailed description of semi-automated registration-based procedures for voxel based 

morphometry, cortical thickness estimation and automated anatomical labelling of the mouse 

brain. The approach relies on the sequential use of advanced image processing tools offered 

by ANTs, a flexible open source toolkit freely available to the scientific community.  

To illustrate our procedures, we described their application to quantify morphological alterations 

in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison 

recently described by us and other research groups. We show that the approach can reliably 

detect both focal and large-scale gray matter alterations using complementary readouts. No 

detailed operational workflows for mouse imaging are available for direct comparison with our 

methods. However, empirical assessment of the mapped inter-strain differences is in good 

agreement with the findings of other groups using analogous approaches. The detailed 

operational workflows described here are expected to help the implementation of rodent 

morphoanatomical methods by non-expert users, and ultimately promote the use of these tools 

across the preclinical neuroimaging community.   
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2.1. Background 

A deep understanding of the genetic, physiological and anatomical underpinnings of brain 

disease is essential for the development of improved therapies. A milestone towards this goal 

is the generation of genetically modified mouse lines that recapitulate targeted genetic 

mutations in experimentally controlled studies. Genetically modified mouse lines permit to relate 

genetic mutations to clinically relevant endophenotypes without the complexity of genetic 

heterogeneity and the uncontrolled impact of gene-gene and gene-environment interactions in 

adult human populations (Nestler and Hyman 2010). 

MRI methods offer a privileged point of view to study genetically altered mouse models of 

neuropsychiatric disorders in many respects. First, the use of comparable imaging readouts in 

men and mice permits a cross-species comparison of brain endophenotypes of translational 

relevance, thus enhancing the transfer of information from and to the clinic. At the same time, 

MRI readouts can also be employed to assess the extent to which mouse models of central 

nervous system pathology replicate neuroimaging findings observed in clinical populations, 

informing preclinical researchers on the translational validity of these models. Moreover, high 

resolution morphometric MRI, achievable at ultra-high field strength or in ex vivo formalin-fixed 

samples (Lerch, Gazdzinski et al. 2012, Tucci, Kleefstra et al. 2014) can be employed to obtain 

a fine-grain assessment of structural brain alterations that could serve as a convenient 

surrogate for labor intensive manual morphometric measurements in ex vivo brain slice 

preparations, with the additional advantage of being non-invasive and multi-dimensional.  

Structural MRI based imaging methods - such as voxel based morphometry (VBM) of gray 

matter (GM), cortical thickness mapping and anatomical labelling - have been widely employed 

to study brain morphology in human populations (Mueller, Keeser et al. 2012). The application 

of analogous readouts to map genetically determined brain alterations in transgenic mouse 
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lines has been recently proposed, an effort collectively referred to as MRI phenotyping 

(Johnson, Ali-Sharief et al. 2007, Borg and Chereul 2008, Lerch, Sled et al. 2011). Recent 

improvements in MRI sequences and hardware, together with the development of fixation 

protocols for ex vivo imaging of stained brain specimens (Lerch, Gazdzinski et al. 2012), have 

made it possible the acquisition of artefact-free and high resolution – with a voxel size less than 

80 µm – mouse brain volumes even at relatively low magnetic field strengths. This efforts have 

resulted in the publication of several examples or the application of morphoanatomical imaging 

to transgenic mouse models (Yushkevich, Piven et al. 2006, Lerch, Carroll et al. 2008, Sawiak, 

Wood et al. 2009, Xie, Yang et al. 2010). 

The development of standardized preprocessing and analytical pipelines for human imaging 

data, and their implementation in popular software toolkits such as such as FMRIB Software 

Library (FSL) (Jenkinson, Beckmann et al. 2012), Statistical Parametric Mapping (SPM) 

(Friston, Holmes et al. 1994) and Advanced Normalization Tools (ANTs) (Avants, Tustison et 

al. 2009), have been instrumental to the widespread use of MRI in human brain research. 

However, substantial differences in the dimensions and anatomical organization of the human 

and rodent brain prevent a straightforward extension of these tools to morphoanatomical mouse 

brain mapping. As a result, several research groups have developed  tailored procedures for 

the preprocessing and analyses of morphoanatomical brain MRI readouts in mouse models 

(Nieman, Bock et al. 2005, Delatour, Guegan et al. 2006, Johnson, Ali-Sharief et al. 2007, Borg 

and Chereul 2008, Sawiak, Wood et al. 2009, Lee, Ruffins et al. 2010, Lerch, Sled et al. 2011, 

Badea, Gewalt et al. 2012, Sawiak, Wood et al. 2013). However, the vast majority of the 

published approaches typically address single morphoanatomical readouts (e.g., VBM or 

anatomical labelling or cortical thickness), and lack a detailed description of the complex 
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workflow and computational parameters required to process, analyze and quantify structural 

MRI alterations, thus complicating the implementation of these procedures by non-expert users. 

To begin to address these issues, here we provide a detailed methodological description of a 

semi-automated operational workflow for VBM, cortical thickness estimation and automated 

anatomical mapping of the mouse brain. To simplify and streamline operations, we based 

image processing mainly on ANTs (Avants, Tustison et al. 2009), a flexible and powerful open 

source toolkit freely available to the scientific community. Importantly, our approach has been 

recently applied by our research group to map fine-grain brain anatomy alterations in different 

mutant mouse lines (Dodero, Damiano et al. 2013, Minervini, Rusu et al. 2014, Sannino, Gozzi 

et al. 2014, Tucci, Kleefstra et al. 2014, Lassi, Priano et al. 2015) and to describe scMRI large-

scale networks between gray matter regions in wild-type mice (Pagani, Bifone et al. 2016), with 

excellent agreement between MRI and manual morphometric measurements (Sannino, Gozzi 

et al. 2014), exhibiting corresponding morphoanatomical features in mice and reference clinical 

populations (Tucci, Kleefstra et al. 2014, Cutuli, Pagani et al. 2016). Below, we provide a 

detailed description of our procedural workflow and show its capabilities by describing its 

application to quantify morphological alterations in socially-impaired BTBR T+Itpr3tf/J mice with 

respect to normosocial C57BL/6J controls (Dodero, Damiano et al. 2013, Squillace, Dodero et 

al. 2014), a comparison that has been recently described by our research group (Dodero et al., 

2015) and others (Ellegood, Babineau et al. 2013), thus permitting an empirical cross-laboratory 

assessment of the validity of our findings.   
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2.2. Materials and Methods 

2.2.1. Ethical Statement  

All in vivo studies were conducted in accordance with the Italian law - D.L. n° 116, 1992, 

Ministero della Sanità, Roma - and following the recommendations in the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health. The animal research 

protocol was approved by the Animal Care Committee of the Istituto Italiano di Tecnologia 

(Permit Date 07-2012). All surgical procedures were performed under deep anesthesia.   

2.2.2. Sample Preparation and MR Acquisition 

High-resolution morphoanatomical T2-weighted MR imaging of mouse brains was performed 

in paraformaldehyde (4% PFA; 100 ml, Sigma, Milan) fixed specimens, a procedure employed 

to obtain high-resolution images with negligible confounding contributions from physiological or 

motion artefacts (Cahill, Laliberté et al. 2012). Sample preparation and MRI acquisition of BTBR 

T+Itpr3tf/J (BTBR) and C57BL/6J (B6) mice has been recently described in previous work 

(Dodero, Damiano et al. 2013, Sforazzini, Bertero et al. 2014, Sforazzini, Schwarz et al. 2014) 

and is briefly summarized  here. Male BTBR (N=9, 15-26 weeks old) and age-matched control 

B6 (N=9) mice were deeply anaesthetized with an intraperitoneal Avertin injection (375 mg/Kg, 

Sigma, Milan) and their brains were perfused in situ via cardiac perfusion. The perfusion was 

performed with phosphate buffered saline followed by paraformaldehyde (4% PFA; 100 ml). 

Both perfusion solutions were added with a Gadolinium chelate (Prohance, Bracco, Milan) at a 

concentration of 10 and 5 mM, respectively, to shorten longitudinal relaxation times (Lerch, 

Gazdzinski et al. 2012).  

A multi-channel 7.0 Tesla MRI scanner (Bruker Biospin, Milan) was used to acquire anatomical 

images of the brain, using a 72 mm birdcage transmit coil, a custom-built saddle-shaped 
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solenoid coil for signal reception, and the following imaging parameters: 3D RARE spin-echo 

sequence, TR=550 ms, TE=33 ms, RARE factor=8, echo spacing 11ms, matrix size of 192x 

170x170 and voxel size of 0.09 mm (isotropic), with a total acquisition time of 4 hrs and 25 

mins. 

2.2.3. Image Preprocessing and Analysis 

A detailed description of the image processing workflow employed to create a study based 

template, to estimate cortical thickness, and to perform automated anatomical labelling and 

VBM is reported below for structural images acquired at 7 Tesla. We refer to our approach as 

“registration-based” as several preprocessing and estimation steps (e.g. cortical thickness) are 

executed via a combination of affine and symmetric diffeomorphic transformations as 

implemented in antsRegistration command (Avants, Tustison et al. 2014). The tool entails the 

application of affine registration with twelve degrees of freedom to coarsely normalize the 

overall shape of a source image to a reference image. Afterwards, a non-linear transformation 

is applied to create a differentiable and invertible diffeomorphic map which locally aligns source 

and reference image by adjusting for local inter-individual morphological differences.   

Flowcharts are provided as a visual reference to guide the description of each computational 

step, where light grey shading denotes image inputs, dark grey shading denotes the final output 

and computational processes are outlined in the form of rectangular boxes. All the 

computational steps have been carried out using tools and algorithms implemented within the 

ANTs toolkit (version 1.9 http://sourceforge.net/projects/advants/) and employed to process 3D 

RARE morphoanatomical images acquired at 7 Tesla with the image sequence parameters 

described above. The parameter employed for the preprocessing steps were optimized in pilot 

assessments using both empirical (e.g. segmentation) and quantitative approaches (e.g. 

registration). 

http://sourceforge.net/projects/advants/
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Image Preprocessing  

Basic image preprocessing includes bias field correction and skull stripping (Figure 10). As a 

first step, all the images are corrected for intensity non-uniformity using N3BiasFieldCorrection, 

an automated algorithm implemented within the ANTs toolkit using 50 fitting levels. This step 

reduces bias field signal related to the reception profile of MRI receive coils, a low frequency 

amplitude modulation of the signal that produces regional variation in voxel intensity as a 

function of  coil proximity. The correction of this bias is an important pre-requisite for subsequent 

intensity based MR image processing, such as tissue segmentation.  

 

Figure 10  Preprocessing workflow. Each MRI subject image undergoes a first correction for intensity 

non-uniformity bias using the N3BiasFieldCorrection. To create individual subject masks, a masked 

representative reference subject is registered to each subject, and the transformation of this registration 

is then applied to the reference subject mask. The application of this mask permits to remove most extra 

brain tissue. Non-uniformity bias is subsequently estimated for individual masked brains. The 

preprocessing procedure outputs a skull-stripped bias-corrected image and a companion binary brain 

mask for each subject.  
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Skull stripping is required to remove extra brain tissue, thus crucially improving the accuracy of 

subject-to-template registration. In order to automate skull-stripping and avoid tedious and 

error-prone manual segmentation, an automatic registration-based approach to skull stripping 

was devised. This is carried out by registering the bias adjusted MRI volumes to a skull stripped 

reference image using an affine and diffeomorphic registration algorithm. The skull stripped 

reference image should ideally be chosen from the study population or from comparable 

experiments of the same laboratory.  

 

Figure 11 Preprocessing results. In this illustrative example, the original subject image (a) is bias 

corrected before (b) and after (e) skull stripping (d). Note the improved bias field correction after skull 

stripping (f) with respect to the bias correction prior skull stripping (c), especially in the ventral part of 

the brain and in the ventricles. Voxels intensity is represented in shades of red to magnify image 

contrast. 

A companion brain binary mask of the reference image can be segmented manually. While 

potentially labor intensive in high resolution brain images, this process can be performed only 

once, and it is instrumental to automating skull stripping for all the subsequent subjects and 
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analyses. After the registration, the diffeomorphic map is applied to non-linearly transform the 

brain mask of the reference image into the subjects’ space using WarpImageMultiTransform. 

The subject’s brain mask is then applied to each original subject image to obtain skull stripping. 

An additional bias correction is subsequently performed on the skull stripped subject image to 

achieve a more accurate estimation of the bias field, devoid of the contribution of non-brain 

related protrusions.   

An illustrative example of the advantage of performing two independent bias corrections, 

(before and after skull stripping, respectively) is reported in (Figure 11). Even though the first 

step does not flawlessly compensate for signal inhomogeneity in all brain regions (i.e. the 

ventral areas of the brain and in the ventricles), its use provides a first normalization of signal 

intensity that results in an improved the accuracy of registration based estimation of brain mask, 

and the removal of brain extra tissue. After this skull stripping step, the bias field of the original 

subject image is re-estimated, leading to a more accurate bias correction. The results of this 

first-pass skull stripping are typically visually inspected for imperfections, usually present in a 

minority of subjects, which can be easily manually corrected, for example using the brushtool 

of  ITKsnap (Yushkevich, Piven et al. 2006). For each subject, the result of preprocessing is a 

skull stripped and bias corrected brain image, exhibiting uniform contrast within the same tissue 

class, and its binary mask.  

Study Based Template  

A critical element in our approach is the construction of a study based template to establish a 

common reference space for all the subsequent analyses. In cross-sectional mouse studies, 

the most adopted experimental designs for mouse phenotyping with transgenic lines, this 

involves the creation of an average template from a reference population, typically the control 

subjects (B6 in this study). This leads to the generation of a template recapitulating 
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neuroanatomical features of “healthy” or reference population, avoiding the combination of 

conflicting morphoanatomical traits which could affect subsequent computational steps (e.g. 

segmentation). For example, the use of both normo-callosal B6 and acallosal BTBR mice for 

template creation would result in a chimeric image exhibiting a blurred and hypo-intense corpus 

callosum, a feature that could negatively affect the quality of subsequent segmentation priors. 

The creation of different templates for different studies can help minimizing confounding effects 

related, for instance, to perfusion, age, sex and brain sizes.   

Study-based template creation was implemented via the use of the buildtemplateparallel script 

available within the ANTs toolkit (Avants, Yushkevich et al. 2010). This script entails an 

automated and iterative intensity-based registration approach to automatically create a study 

based template using a predefined list of subjects (Kovacevic, Henderson et al. 2005). A 

representative subject is selected as initial reference and each subject is linearly registered to 

the reference subject using an affine transformation. After intensity averaging all registered 

images to obtain a first linear group average, an iterative five-generation multi-scale non-linear 

alignment process is performed using a Greedy Syn diffeomorphic registration algorithm 

(Avants, Epstein et al. 2008) with a maximum of 120 iterations for each step. This process 

entails an initial diffeomorphic registration of each subject to the reference linear group average 

to obtain individuals’ warps using cross correlation as similarity metric. These warps are then 

averaged and applied to the template to update its shape and conform it to the population 

shape. The process is iteratively repeated four more times, by using as reference the warped 

template from the previous iteration. The final outcome is an average template volume 

exhibiting clear structural boundaries, incorporating fine grain neuroanatomical descriptions of 

the reference population, and reduced intensity variation.  



28 
 

Anatomical Labelling  

The assessment of subtle anatomical differences in gross morphology via manual delineation 

of brain structures is a laborious and time consuming task that may introduce intra- and inter-

observer bias (Badea, Gewalt et al. 2012).  

 

Figure 12. Automated anatomical labelling and cortical thickness estimation. Upper box: 

Anatomical labels of the MRI atlas are registered into each subject space via the study based template 

through a combination of linear and diffeomorphic mapping, using antsRegistration and 

WarpImageMultiTransform. A propagation of the labels from the MRI atlas to each subject space is then 

performed via the study based template. Lower box: Anatomical labels of the cortical mantle in the 

subject space are merged together to build a unified cortical label. This cortical label and subject brain 

mask of the subjects are used to create the inputs needed to estimate the cortical thickness using 

DiReCT. The obtained cortical thickness maps are eventually warped again into the study based space 

and smoothed for subsequent statistical comparison. 
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The procedures described here allows for volumetric estimation via anatomical labelling, a 

procedure whereby brain regions can be labelled and classified depending on their anatomical 

location. The process employed in our workflow relies on the availability of preprocessed 

images, a study-based template and two neuroanatomical labelled reference MRI atlases for 

cortical (Ullmann, Watson et al. 2013) and subcortical (Dorr, Lerch et al. 2008) areas, 

respectively. The output of automated anatomical labelling is a fine-grained projection of a given 

anatomical label in the subject’s coordinate space. The anatomical labels thus registered can 

be used both to measure the volume of anatomical regions of interest for cross-strain statistical 

comparison, or as intermediate input for further analyses, such as cortical thickness estimation 

(Figure 12). The volume of specific anatomical regions in individual subjects is computed using 

a template based  anatomical labelling strategy (Avants, Yushkevich et al. 2010). As previously 

reported in the literature, the propagation of labels from the anatomical labelled atlas to the 

subject space is more accurate when performed via the study based template to minimize 

variation due to registration errors (Jia, Yap et al. 2011). To this purpose, a composition of affine 

and diffeomorphic (SyN) registration between the reference neuroanatomical atlas and the 

study based template is performed to project the anatomical labels in the coordinate system of 

the study based template (Avants, Tustison et al. 2009) For the anatomical images and RARE 

sequence used in this study we adopted cross correlation as similarity metric, with a window 

radius of 5 and a gradient step length of 0.25. The optimization was performed over four 

resolutions for both transformations with a maximum of 100 iterations for the coarse levels and 

10 at the full resolution. 

A simple propagation of the neuroanatomical labels mapped in the study-based template space 

to the subjects’ space can then be achieved via the registration of each subject to the study 

based template and the subsequent propagation of the labels to each subject. The efficiency 
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of the registration procedures can  evaluated using the Dice coefficient (DiceAndMinDistSum 

command from ImageMath), which quantifies the overlap between a manually defined label 

and the same label resulting from our automated labelling, in the subject space (Dice 1945). 

Label volumes can then be easily computed using tools included in several MRI software 

packages (e.g. LabelStats command from ImageMath, or FSL’s fslstats).  

 

Figure 13. VBM. Each preprocessed subject image is mapped on the study based template space 

through a combination of linear and diffeomorphic mapping, using antsRegistration and 

WarpImageMultiTransform. Registered volumes are segmented using the study based template priors. 

Grey matter probability maps for each subject are then modulated using Jacobian maps obtained from 

the registration process and smoothed for subsequent statistical comparison.  



31 
 

Voxel Based Morphometry 

VBM is a whole-brain technique for characterizing regional brain volume and differences in 

tissue concentration, in particular GM, across subjects. In our procedure, it consists of five main 

steps (Figure 13). First, a study based template is created using brain anatomical images from 

reference population described above. Second, the original images of the two groups of 

subjects are registered to the study based template via the same affine and diffeomorphic 

mapping used for anatomical labelling.  

 

Figure 14. Registration of mouse brains to the study based template. Each preprocessed subject 

image is registered to a common reference space, i.e. the study based template space by using a set 

of linear and diffeomorphic transformation.  

Third, spatially normalized images are segmented using a Markov Random Field model, 

implemented by the Atropos command of the ANTs toolkit (Avants, Tustison et al. 2011). To 

classify tissues we applied a smoothing factor of 0.0125, a radius of 1 and the maximum number 

of iterations was set at 10. The separation of GM (i.e. the readout of interest) from white matter 
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(WM) and cerebrospinal fluid (CSF) is improved by initializing the process with the study based 

template, previously segmented using standard k-means clustering included in the Atropos 

command (Figure 15, B-C). The procedures described here allows for volumetric estimation 

via anatomical labelling, a procedure whereby brain regions can be labelled and classified 

depending on their anatomical location. The process employed in our workflow relies on the 

availability of preprocessed images, a study-based template and two neuroanatomical labelled 

reference MRI atlases for cortical (Ullmann, Watson et al. 2013) and subcortical (Dorr, Lerch et 

al. 2008) areas, respectively. The output of automated anatomical labelling is a fine-grained 

projection of a given anatomical label in the subject’s coordinate space. The anatomical labels 

thus registered can be used both to measure the volume of anatomical regions of interest for 

cross-strain statistical comparison, or as intermediate input for further analyses, such as cortical 

thickness estimation (Figure 12). 

The volume of specific anatomical regions in individual subjects is computed using a template 

based  anatomical labelling strategy (Avants, Yushkevich et al. 2010). As previously reported 

in the literature, the propagation of labels from the anatomical labelled atlas to the subject space 

is more accurate when performed via the study based template to minimize variation due to 

registration errors (Jia, Yap et al. 2011). To this purpose, a composition of affine and 

diffeomorphic (SyN) registration between the reference neuroanatomical atlas and the study 

based template is performed to project the anatomical labels in the coordinate system of the 

study based template (Avants, Tustison et al. 2009). For the anatomical images and RARE 

sequence used in this study we adopted cross correlation as similarity metric, with a window 

radius of 5 and a gradient step length of 0.25. The optimization was performed over four 

resolutions for both transformations with a maximum of 100 iterations for the coarse levels and 

10 at the full resolution. 
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Figure 15. Study based template and tissue segmentation. Orthogonal slice view of a study based 

template of the B6 mice population obtained using the iterative diffeomorphic registration process of the 

buildtemplateparallel script and its corresponding tissue segmentation (a). The template is segmented 

using Atropos in 6 different tissue classes which are used as a-priori information for individual estimation 

of gray matter in VBM. The different tissue classes of the template are combined to obtain gray matter 

(b) and non gray matter components (c, white matter, plus ventricular regions and CSF). 

This step is especially critical and it is therefore here described in greater detail. In pilot work, 

we explored the number of tissue classes leading to optimal separation of GM from non-GM 

components (WM plus CSF). A canonical three-class segmentation of ex vivo mouse brain 

using Atropos results in inefficient GM/WM segmentation, leading to an overestimation of WM 

fraction at the expense of GM (Figure 16).  
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Figure 16. Segmentation of the study based template using six tissue classes provides accurate 

GM/WM separation. A: Standard three-class segmentation of our ex vivo brains using Atropos did not 

produce an accurate GM/WM separation, with a great overestimation of white matter fraction. 

Anatomical template (left), plus the segmentation classes obtained with a three-cluster segmentation 

approach (WM, mixed WM/GM and GM matter maps, from left to right, respectively). B: The combined 

use of six independent segmentation classes leads to a more accurate separation of GM and WM. The 

final GM map is the combined result of three GM classes (middle row). Additional non-GM tissue can 

be obtained by merging the remaining three classes. 

The use of six independent classes results in three GM clusters that can be merged to provide 

a final accurate GM map (Figure 15). A similar approach has been employed by other 

investigators (e.g. (Li, Cheung et al. 2009)). Our segmentation procedure results in a two-voxel 

layer on the outmost edge of the cortex which is labelled as “non gray matter” and, as such, is 

not included in subsequent analysis. These voxels are characterized by low or very-low signal 

intensity and reflect a combination of partial volume effects between gray matter and non MRI 

visible skull signal, and possibly also small inaccuracies due to registrations. In our workflow, 
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these “low confidence” gray matter voxels are discarded to improve the robustness of 

subsequent voxelwise statistical mapping.  

In our procedure, the quality of segmentation is assessed empirically by comparing individual 

and merged tissue classes with the anatomical distribution of known high-density WM 

structures such as the corpus callosum, anterior and posterior commissures, as seen in the 

study based template (Figure 15). These structures are easily identifiable and their extension 

can be compared with their segmented counterparts. Future developments of our initial 

workflow could employ quantitative approaches to estimate goodness of cluster separation  

(Chou, Su et al. 2004, Wu and Yang 2005), although operator dependent assessments of tissue 

class separations are ultimately warranted to ensure biologically meaningful results.  

It should be noted that the segmentation procedure employed in our work does not always lead 

to a clear separation of WM and CSF, at least on brain volumes acquired ex vivo. Besides 

differences in the anatomical organization of the mouse brain and image contrast in the PFA 

perfused brain (Cahill, Laliberté et al. 2012), a contributing reason for this is the occurrence of 

CSF loss from the brain in a large proportion (ca. 70%) of the subjects as a consequence of 

the ex vivo fixation procedure, leading to the presence of signal voids in ventricular space. 

These low signal-intensity intra-ventricular foci are typically classified as WM, leading to mixed 

or incomplete separation between these two brain components. Such incomplete separation 

however does not limit the validity of our approach, because both CSF and WM (even if 

separate) would invariably end up being discarded from subsequent GM-based analyses (i.e. 

VBM and cortical thickness).  

After tissue segmentation, the Jacobian determinants of the deformation are calculated with 

ANTSJacobian command of the ANTs toolkit and used to modulate the GM probability maps 

calculated during the segmentation step. This step permits the analysis of GM probability maps 
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in terms of local anatomical variation instead of tissue density (Ashburner and Friston 2000). 

Jacobian determinants can be also normalized by the total intracranial volume to further 

eliminate overall brain volume variations and calculate relative GM volumes. Fifth, the resulting 

modulated GM probability maps are smoothed using a Gaussian kernel with a sigma of three 

voxel width (FWHM=0.64mm) and employed for voxel-wise statistical comparison. 

Cortical Thickness 

The proposed registration-based cortical thickness DiReCT estimation approach (Figure 12) is 

a voxelwise computational approach based on the method presented by Das and colleagues 

(Das, Avants et al. 2009) and relies on the KellyKapowsky command within ANTs toolkit. The 

method provides cortical thickness measurements at the voxel level using cortical and non-

cortical labelled volumes as inputs. From an anatomical standpoint, the cortical labelled volume 

employed (cortical ribbon) is limited between  an external outline corresponding to the outer 

layer of the cortex and an  internal outline identified by the inner layer of the cerebral cortex 

adjacent to callosal WM fibers. The method identifies a continuous one-to-one correspondence 

between inner and outer cortical surfaces and the cortical thickness is estimated via a distance 

measure on the basis of this diffeomorphic correspondence. The inner surface is used as a 

reference to initialize a thin layer of about 1 voxel width. This layer, which replicates the shape 

of the outer layer of the cortex, is then allowed to expand under the diffeomorphic deformation. 

The deformation is introduced through the cortical label until the layer reaches the outer cortical 

surface and the obtained deformation map can eventually be used to compute the cortical 

thickness. The final result of this process is a cortical voxelwise map with a nominal “thickness” 

value in each voxel, reflecting the deformation field that voxel has been subjected to (Das et 

al., 2009). Figure 17 shows an illustrative example of the obtained voxelwise cortical thickness 

map where the presence of parallel columns of voxels exhibiting constant thickness is apparent.  
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Figure 17. Cortical thickness estimation. In lissencephalic brains, DiReCT measurement results in a 

string of voxels exhibiting constant thickness. This appears in the form of parallel cortical “columns” in 

coronal brain slices clearly visible in the magnified view, where colors represent the norm of the 

deformation field that is the estimated thickness.  

The obtained maps are then typically cross-compared using standard voxelwise statistics. The 

original method (Das, Avants et al. 2009) was optimized to identify deep sulci of the human 

brain by forcing the algorithm to recover lost sulci, but can also be applied to map lissencephalic 

cortices like those of the rodent brain. The estimation process is carried out separately for right 

and left hemisphere to preserve the Neumann boundary (Lee, Ehlers et al. 2011). The cortical 

thickness estimation includes four main steps. First, a right and the left cortical label need to be 

created, as well as the non-cortical label. In the present study this was achieved  by combining 

all cortical labels mapped (enthorinal cortex, frontal, occipital and parieto-temporal lobe) of the 

Dorr MRI atlas of the mouse brain (Dorr, Lerch et al. 2008) into one single hemispheric label. 

A non-cortical label was generated by merging all the remaining non-cortical regions. Second, 
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cortical thickness is estimated using KellyKapowsky, with a prior anatomical constraint of 

cortical thickness of two millimeters and a gradient step size for optimization of 0.02. Number 

of iterations, threshold and window size for convergence were left unchanged (e.g. default 

parameters). Third, maps of cortical thickness are combined into a joint volume and 

transformed to template space using available registration maps obtained previously. Fourth, 

the transformed cortical maps are smoothed using a Gaussian kernel with a sigma of two voxel 

width (FWHM=0.42). This process yields images that can be used for univariate or multivariate 

analysis at the voxel level. Despite the use of non-callosal mice our automated anatomical 

labelling correctly labelled the cortical mantle of BTBR in virtually all cortical areas, with possible 

minor underestimations of cortical thickness in medial anterior cingulate regions. As a result, 

intergroup alterations in those regions may be interpreted cautiously when acallosal mice are 

used as reference strain. However, most mouse lines commonly used in neuroscience and 

preclinical research exhibit normal callosal integrity and are therefore to be considered immune 

to this potential artefact.  

To further evaluate the accuracy of the cortical thickness estimation process, manual 

measurement was also performed by an experienced operator blinded to the results of the 

cortical thickness estimation (Figure 18). In a randomly chosen subject, three coronal slices 

were extracted and cortical thickness was measured for secondary motor cortex (M2), 

secondary somatosensory cortex (S2) and auditory cortex (Au) using the ruler tool available in 

the ITK Workbench. 
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Figure 18. Correlation plot between DiReCT outputs and manual measurements of cortical 

thickness. Secondary motor (M2), secondary somatosensory (S2) and auditory cortex (Au) were 

chosen as representative cortical areas to validate our cortical thickness methodology. Representative 

measures from DiReCT and manual estimates are reported for selected cortical regions (middle panel). 

A correlation plot of manual and automatic measurements highlighted an excellent correspondence 

between the twee readouts in terms of Pearson’s correlation (r=0.99; p<0.001). 

Statistical Analysis 

All statistical analysis of the smoothed and modulated GM probability maps and cortical 

thickness maps were conducted using FSL. Firstly, maps were concatenated in a 4D dataset, 

using fslmerge. Subsequently, standard non-parametric Monte Carlo test with 5000 random 

permutations was performed using randomise. Threshold-free cluster enhancement was 

employed to include voxels’ neighbourhood information without defining a-priori cluster 

threshold. P-values were corrected for multiple comparisons using a cluster-based threshold of 

0.01 (Salimi-Khorshidi, Smith et al. 2011). Two-tailed voxelwise statistics were used for inter-

group VBM and cortical thickness mapping. Brain volumes, resulting from the segmentation 

process, were tested for statistical differences between the two strains using a two-tailed 

Student’s t-test, followed by Hochberg’s correction for multiple comparisons. 
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2.3. Results  

As an illustrative example of the approach, we tested our set of methods to map and quantify 

morphological variations in inbred socially impaired BTBR mice with respect to normosocial B6 

(Squillace, Dodero et al. 2014). A biological interpretation of the differences mapped has been 

recently reported by us (Dodero, Damiano et al. 2013) and others (Ellegood, Babineau et al. 

2013), and will not be re-discussed here. 

2.3.1. Study Based Template and Volumetric Analysis  

A study based template created following the procedure herein explained is depicted in Figure 

15. The template was created using the scans of nine normosocial B6 mice, which have been 

used as reference population for this illustrative study. The template reveals clear structural 

boundaries and high WM-GM contrast, depicting fine-grain anatomical features that can be 

used to describe the population more effectively and reliably than a single representative 

subject (Tucci, Kleefstra et al. 2014). 

In pilot studies, we assessed the accuracy of registrations as a function of varying registration 

parameters (i.e. window radius and gradient step for symmetric normalization) as recently 

described (Badea, Gewalt et al. 2012). By varying registration parameters, the approach can 

be used to identify the best set of parameters matching the results of manual parcellation. We 

varied windows radius between 3 and 9 voxels, and gradient step for symmetric normalization 

between 0.10 and 2 voxels. The results of this analysis (Figure 19) show that the parameters 

choses (5 and 0.5 voxels, respectively) produce a good registration accuracy in all the brain 

regions tested. These parameters are in agreement with those previously selected by Badea 

and colleagues using ex vivo brain samples imaged at 9.4 Tesla.  
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Figure 19. Optimization of registration parameters for anatomical labelling. Accuracy of 

registration (Dice coefficient) for varying registration parameters (window radius for cross correlation 

and gradient steps). Top: as in Badea et al., (2012), we varied windows radius between 3 and 9 voxels. 

The chosen value (5 voxels) produces a good performance in all the brain regions tested. Bottom: the 

gradient step parameter for the symmetric normalization was varied between 0.10 and 2 voxels. The 

chosen parameter (0.5 voxels) produces a good performance in all the tested regions. 

Using these validated parameters, cross-strain volumetric analysis using anatomical labels 

from the two atlases highlighted the presence of a general reduction in cortical volume in BTBR 

mice with respect to B6 mice. Also major subcortical structures, including caudoputamen, 

hippocampus and hypothalamus reported a statistical significant reduction in volume (Figure 

20). These results are in good agreement with recent comparative neuroanatomical mapping 

of these two strains performed by other labs (Ellegood, Babineau et al. 2013), where a similar 

significant decrease in the volume of cortex and corpus callosum was shown. 
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Figure 20. Anatomical labelling. The labels of the reference atlas employed are warped into subjects’ 

space via the study based template using the combination of affine and diffeomorphic mapping obtained 

after the registration process. The registered labels permit to calculate volumes of brain areas of interest 

and perform t-tests between the mouse samples.  (Cpu: caudoputamen; Th: thalamus; OB: olfactory 

bulbs; HP: hippocampus; Hyp: hypothalamus, CC: corpus callosum; OF: orbitofrontal cortex; RS: 

retrosplenial cortex; M1: primary motor cortex; V1: primary visual cortex; Rh: rhinal cortex). **p<.01; 

***p<.001).  

3.3.2. Voxel Based Morphometry 

Whole-brain VBM revealed widespread and bilateral reductions in GM volume across 

dorsofrontal, cingulate, retrosplenial, occipital and parietal cortex (Figure 21, Z>3.1, p-

corrected<.001), in BTBR compared to B6 controls. These findings are in agreement with the 

results of anatomical labelling. GM volume reductions were also evident in subcortical areas, 

including the lateral and posterior thalamus (longitudinal fasciculus), the posterior 

hypothalamus and the ventral hippocampus. Interestingly, VBM highlighted also small bilateral 

foci of increased GM volume in the olfactory bulbs, in the medial pre-frontal and insular cortex, 

in the amygdala and in the dorsal hippocampus. The detection of small focal effects that could 

not be revealed when integrated over large anatomical volumes is one of the main advantages 
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of the VBM approach over classic neuroanatomical volumetric mapping. These results are in 

good agreement with recent comparative neuroanatomical mapping of these two strains 

performed by other labs using tensor based morphometry (Ellegood, Babineau et al. 2013), 

which showed similar significant alterations (using Tensor Based Morphometry, see discussion 

below) in hippocampal and cortical areas.  

 

Figure 21. VBM. Differences in local gray matter volumes are assessed combining gray matter 

probability maps and local Jacobian determinants. Statistical comparison (p<.01, threshold-free cluster 

enhancement followed by cluster-based thresholding) showed widespread and bilateral reductions in 

grey matter volumes across dorsofrontal, cingulate, retrosplenial, occipital and parietal cortex as well as 

in subcortical structures in BTBR compared to B6 controls. VBM highlighted also small bilateral foci of 

increased gray matter volume in the olfactory bulbs, in the medial pre-frontal and insular cortex, in the 

amygdala and in the dorsal hippocampus. (Cb: cerebellum; Cpu: caudoputamen; DHyp: dorsal 

hypothalamus; dPFC: dorsal prefrontal cortex; LTh:  lateral thalamus; mPFC: medial prefrontal cortex; 

OB: olfactory bulbs; Rh: rhinal cortex; RS: retrosplenial cortex). 

3.3.3. Cortical Thickness Estimation 

 Further investigation of the presence of local alterations of GM in BTBR mice compared 

to B6 controls was performed in terms of cortical thickness estimation. Average spatially-

normalized voxel-based thickness maps were calculated separately for each of the two strains 

and three-dimensionally rendered for visualization purposes (Figure 22). In good agreement 
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with the results of automated anatomical labelling and VBM mapping, a widespread reduction 

in mean cortical thickness (Z>2.3, p-corrected<0.01) was observed in BTBR mice compared to 

B6 controls. Importantly, inter-group voxel-wise statistics revealed significantly increased 

cortical thickness in medial prefrontal and insular regions in the BTBR cohort (Z>2.3, p-

corrected<0.01). 

 

Figure 22. Cortical thickness estimation. Three-dimensional rendering views of average cortical 

thickness in BTBR and B6 mice (a). Statistical comparison showed significant cortical thickness thinning 

(p<0.01, threshold-free cluster enhancement followed by cluster-based thresholding) in parietal, 

temporal and peri-hippocampal cortex of BTBR mice. Increased thickness was observed in medial 

prefrontal and anterior insular regions of this strain (b).  

2.4. Discussion 

Here we described semi-automated procedures for automated anatomical labelling, VBM and 

cortical thickness estimation in the mouse brain. The approach has been recently applied to 

detect fine-grained morphoanatomical alterations in different mutant mouse lines, including 

alterations in β-catenin mouse mutants (Tucci, Kleefstra et al. 2014), acallosal and socially-

impaired mice (Dodero, Damiano et al. 2013) and to identify sexually divergent effects on 

cortical anatomy in catechol-O-methyltransferase mutant lines (Sannino, Gozzi et al. 2014). In 
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the latter study, we showed remarkably consistent intergroup differences in regional GM volume 

as assessed with our VBM pipeline, or manual morphometric measurements of cortical 

thickness in post-mortem brain slices (Sannino et al., 2014), thus underscoring  the accuracy 

and sensitivity of our workflow.  

The image processing described here adopts the methodologies and toolkits originally 

developed for human brain imaging and can be straightforwardly extended to other areas of 

research and mouse models of disease. For example, we also used VBM to describe symmetric 

scMRI networks in the cortex of inbred mice complementary to those previously identified in 

humans, providing a new tool to study gray matter disrupted connectivity in brain disorders with 

transgenic mice (Pagani, Bifone et al. 2016).  Although prominent examples of the use of 

morphoanatomical methods in the mouse have been recently described by other labs (Nieman, 

Bock et al. 2005, Delatour, Guegan et al. 2006, Johnson, Ali-Sharief et al. 2007, Borg and 

Chereul 2008, Sawiak, Wood et al. 2009, Lee, Ruffins et al. 2010, Lerch, Sled et al. 2011, 

Badea, Gewalt et al. 2012, Budin, Hoogstoel et al. 2013, Sawiak, Wood et al. 2013, Oguz and 

Sonka 2014), the vast majority of these contribution lack a detailed description of the complex 

workflow required to process and analyse different morphoanatomical readouts, thus 

complicating the replication of these methods by other groups. The methodological workflow 

presented in this work was designed to facilitate the implementation of fine-grained 

morphoanatomical mapping tools by non-expert users, and promote forward and back 

translation of MRI preclinical and clinical research evidence. We also point out that a preliminary 

account on the implementation of these procedures in parallel computing cloud environment 

has been recently reported (Minervini, Rusu et al. 2014), a strategy that can streamline and 

accelerate image processing time by exploiting large high-performance-computing 

infrastructures.  
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A dominant feature of our unified approach is the coupling of standard intensity based affine 

registration with a symmetric diffeomorphic normalization algorithm to obtain optimal MR image 

registration (Avants, Epstein et al. 2008). This approach, which has been successfully 

employed both in human (Kim, Avants et al. 2008, Klein, Andersson et al. 2009, Klein, Ghosh 

et al. 2010) and small animal imaging studies (Avants, Yushkevich et al. 2010, Lerch, Yiu et al. 

2011), is based on the ANTs open source software library and is adopted to create a study 

based template, carry out skull stripping and perform anatomical labelling via label propagation. 

Our cortical thickness estimation approach is also registration-based, and employs DiReCT, an 

advanced diffeomorphic registration algorithm implemented in ANTs toolkit that has been 

recently validated on human imaging data (Das, Avants et al. 2009) and used for research 

studies with clinical population (Avants, Cook et al. 2010). To the best of our knowledge, this is 

the first example of the application of this approach to map cortical thickness in small rodent 

species.  

The cortical thickness mapping and anatomical labelling approaches employed rely on the 

availability of three dimensional labelled MRI atlases with delineated cortical and subcortical 

morphology. While a universally accepted MRI atlas of the mouse brain is still not available, a 

number of mouse brain MRI atlases have been published based on high resolution acquisitions 

of a single subject (Maheswaran, Barjat et al. 2009, Xie, Yang et al. 2010, Zhang, Peng et al. 

2010, Badea, Gewalt et al. 2012) or constructed from several animals, with data gathered either 

in vivo (Ma, Smith et al. 2008, Aggarwal, Zhang et al. 2009, Maheswaran, Barjat et al. 2009) or 

from ex vivo fixed specimens (Kovacevic, Henderson et al. 2005, Badea, Ali-Sharief et al. 2007, 

Dorr, Lerch et al. 2008, Aggarwal, Zhang et al. 2009, Johnson, Badea et al. 2010, Ullmann, 

Watson et al. 2013). In this study, a combination of two atlases was employed to obtain a fine-

grained parcellation of both cortical (Ullmann et al., 2013) and subcortical (Dorr, Lerch et al. 
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2008, Ullmann, Watson et al. 2013) regions. However, our method is not atlas-dependent and 

can be flexibly adapted to a number of published or custom mouse brain MRI anatomical 

partitions.  

An important benefit of our approach is the possibility to measure different and complementary 

morphoanatomical brain metrics - including volumetric analysis, VBM and cortical thickness - 

in a single reference space. This aspect is of crucial importance, as it broadens the scope of 

application of MRI-based brain morphometry and it augments its translational potential by 

permitting a multi parametric comparison with analogous clinical readouts. In the illustrative 

example reported here, an overall agreement between the three readouts was found. Apparent 

discrepancies between readouts (e.g., the lack of inter-strain differences in insular volume, due 

to the presence of VBM foci of increased and decreased regional volume in anterior and 

posterior portions of this region) are the result of different sampling scales (label vs. voxel level) 

of the readouts employed. We also note that the combination of complementary approaches 

can help disambiguate morphological alterations of pathological origin, as the relationship 

between thickness and local GM volume has not been thoroughly clarified, and may probably 

change across pathologies and populations (Hutton, De Vita et al. 2008). Within this scenario, 

the use of complementary metrics coupled to histological staining can help to pinpoint the 

pathological bases of brain morphometric changes of neuropathological origin.  

In addition, our preprocessing workflow can be straightforwardly extended to perform tensor 

based morphometry (TBM). As in VBM, TBM entails the local computation of the Jacobian 

determinants of the deformation field used to map subjects’ images to the study based 

template. The Jacobian determinant (i.e. the local scaling factor) encodes for local anatomical 

expansions and contractions of subjects’ areas relative to the study based template, and 

therefore Jacobian maps can be used to localize inter-group differences in the local shape of 
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brain structures at the voxel level. TBM analysis can be simply performed by omitting the tissue 

segmentation step in the VBM procedure herein described. As TBM does not entail tissue 

classification, it can be used for the simultaneous investigation of WM and GM alterations, and 

may robustly detect alterations in areas of mixed WM-GM structures, such as the thalamus and 

brain stem, which are especially sensitive to the accuracy of intensity based tissue classification 

algorithms.  

A few methodological limitations in our approach deserved to be mentioned. The procedure 

described here has been developed and optimized or fixed ex vivo brain samples imaged at 7 

Tesla using T2-weighted images. While the application of our workflow to different field 

strengths and image contrast is conceivable, adjustments in single preprocessing parameters 

may be required to adapt our procedure to different contrast mechanisms or images acquired 

at different field strengths. One limitation of our cortical thickness mapping is its poor 

performance in resolving thickness at the level of inter-hemispheric fissure in medial regions of 

the mouse cortex such as cingulate or retrosplenial areas (Figure 17). As a result, inter-group 

differences in cortical thickness in these regions should be interpreted with caution. 

Researchers interested in mapping gray matter alterations in these regions with high 

confidence, should consider cross validating thickness mapping with voxelwise methods 

described in our workflow that are immune to this limitation, such as VBM and TBM. Similarly, 

the segmentation of the anterior cingulate in acallosal mice such as BTBR should be considered 

tentative, as the lack of clear white matter gray matter boundary prevents an empirical 

assessment of its accuracy. Once again, voxelwise-based morphoanatomical mapping 

together with histological measurements can help validate cortical thickness measurements in 

these areas when acallosal mice are employed. Caution should also be exercised in interpreting 

inter-group differences in mouse models characterized by profound demyelination and 
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neurodegeneration, two conditions that can reduce GM/WM contrast and affect segmentation 

accuracy for VBM. Notwithstanding these limitations, the possibility of using a unified workflow 

to map multiple complementary morphoanatomical parameters should be emphasized as a 

major point of strength of our approach, owing to the possibility of cross-comparing different 

readouts to dissect specific neuroanatomical features with increased confidence.  

In conclusion, we described a registration-based approach for anatomical mapping, VBM and 

cortical thickness estimation in the mouse brain. The application of these procedures enabled 

the identification of subtle volumetric differences across subjects without prior knowledge of 

structures of interest. Our unified approach based on diffeomorphic registration permits to 

integrate complementary MR morphoanatomical techniques, and is based on popular open 

source software (ANTs), which has been extensively employed in priori MRI morphometric 

studies. The detailed operational workflow described in the present work is expected to help 

the implementation of rodent morphoanatomical methods by non-expert users, thus ultimately 

promoting the use of these tools across the preclinical neuroimaging community. 
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3. VBM Applied to Aged Mice Treated with Omega-3 

All the material presented in this chapter has been recently published in the article “All the material presented in 

this chapter has been recently published in the article “Cutuli D, Pagani M, Caporali P, Galbusera A, Laricchiuta 

D, Foti F, Neri C, Spalletta G, Caltagirone C, Petrosini L, Gozzi A (2016). Effects of Omega-3 Fatty Acid 

Supplementation on Cognitive Functions and Neural Substrates: A Voxel-Based Morphometry Study in Aged Mice, 

Frontiers in Aging Neuroscience, 4:8-38” 

Human and experimental studies have revealed putative neuroprotective and pro-cognitive 

effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing positive 

correlations between peripheral n-3 PUFA levels and regional grey matter (GM) volume, as well 

as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently 

showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic 

functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus 

supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To 

corroborate these initial results and develop new evidence on the effects of n-3 PUFA 

supplementation on brain substrates at macro-scale level, here we expanded behavioral 

analyses to the emotional domain (anxiety and coping skills), and carried out a fine-grained 

regional GM volumetric mapping by using high-resolution MRI-based voxel-based 

morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on 

cognitive (discriminative, spatial and social) and emotional (anxiety and coping) abilities of aged 

(19 month-old at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed 

better mnesic performances as well as increased active coping skills. Importantly, these effects 

were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, 

and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased 

dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and 
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function, an effect present also when the supplementation starts at late age. Our data are 

consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive 

decline, emotional dysfunctions and brain atrophy. Importantly, the present findings also 

suggest the efficacy of our pipeline in detecting gray matter variations of neurobiological 

relevance. 

3.1. Background 

The constant worldwide growth of the elderly population has amplified the interest in the 

prevention and improvement of age-related cognitive decline. Such a process is characterised 

by a progressive and irreversible loss of grey matter (GM) in many brain regions, with a 

prominent atrophy of the hippocampus and prefrontal lobes (Jernigan, Archibald et al. 2001, 

Driscoll, Howard et al. 2006, Masliah, Crews et al. 2006). Research on environmental factors 

that affect age-related cognitive decline has aroused growing interest in cost-effective 

interventions, such as nutritional supplementation (Gómez-Pinilla 2008, Maruszak, Pilarski et 

al. 2014). 

As major components of neuronal membranes and key modulators of neuroinflammation, 

oxidative stress, and neurogenesis (Luchtman and Song 2013, Denis, Potier et al. 2015), 

omega-3 polyunsaturated fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), 

eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA), may exert beneficial and 

neuroprotective effects on the aging brain. Consistently, rodent studies have shown that n-3 

PUFA supplementation improves neurogenesis and synaptogenesis, executive functions and 

learning abilities, while n-3 PUFA deficiency is associated with memory deficits and impaired 

hippocampal plasticity (Fedorova and Salem 2006, Hooijmans, Pasker-de Jong et al. 2012, 

Denis, Potier et al. 2013, Luchtman and Song 2013, Maruszak, Pilarski et al. 2014). Human 

longitudinal studies based on direct or indirect indices of n-3 PUFA consumption have also 
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provided evidence of n-3 PUFA beneficial role in aging. Namely, increased n-3 PUFA 

consumption correlates with better cognitive functioning and reduced risk for dementia 

(Dullemeijer, Durga et al. 2007, Whalley, Deary et al. 2008, Cunnane, Plourde et al. 2009, 

Kröger, Verreault et al. 2009, Samieri, Maillard et al. 2012), higher total brain and regional GM 

volumes (Conklin, Gianaros et al. 2007, Samieri, Maillard et al. 2012, Tan, Harris et al. 2012, 

Titova, Sjögren et al. 2013, Pottala, Yaffe et al. 2014) and reduced white matter (WM) 

hyperintensity (Virtanen, Siscovick et al. 2013). However, interventional studies aimed at 

establishing a causative effect of n-3 PUFA supplementation on GM volumes and cognitive 

functions have produced inconclusive results.  In fact, although some studies reported that n-3 

PUFA supplementation improves cognition in healthy elderly subjects (Yurko-Mauro, McCarthy 

et al. 2010, Witte, Kerti et al. 2013) and in patients with mild cognitive impairment (Chiu, Su et 

al. 2008), other studies failed to reveal any significant effect in healthy subjects (van de Rest, 

Geleijnse et al. 2008, Dangour, Allen et al. 2010, Geleijnse, Giltay et al. 2012) and in patients 

with Alzheimer’s disease (AD)(Quinn, Raman et al. 2010). Uncontrolled confounding factors, 

such as socio-economic status, genetic background as well as healthy habits and lifestyle (e.g., 

exercise, not smoking, sleep, social support, use of vitamin supplement, etc.) may contribute 

to these inconsistent results and make it difficult to isolate the specific neuroprotective impact 

of n-3 PUFA-enriched diet on cognitive functions of elderly people (Denis, Potier et al. 2013, 

Raji, Erickson et al. 2014). Furthermore, the enormous variation in n-3 PUFA supplement kind 

and dosage, and a general failure in controlling for n-6 PUFA dietary intake may also account 

for the huge variability in human clinical and interventional studies.  

As a result, the impact of n-3 PUFA supplementation on cognitive functions in the aging human 

brain and the underlying neuronal substrates is still a matter of debate. Studies under controlled 

environmental and genetic conditions in animal models can help to disambiguate the complex 
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relationships among n-3 PUFA intake, cognitive performance and GM morphometry. We 

recently demonstrated that 8-week n-3 PUFA supplementation in aged mice robustly 

ameliorates hippocampal functions via increased neurogenesis and reduced 

neurodegenerative processes (Cutuli, De Bartolo et al. 2014). However, whether cellular-scale 

hippocampal changes can result in macro-scale structural alterations detectable through 

volumetric MRI, and whether n-3 PUFA effects are limited to hippocampal areas or affect other 

neocortical and/or subcortical regions remain to be determined.  

In order to address these issues, in the present study MRI volumetric measures of the entire 

brain (and not just of hippocampal regions) as well as cognitive and emotional functions not 

previously evaluated were assessed. To this aim in aged inbred mice undergoing n-3 PUFA 

supplementation with respect to isocaloric control conditions we measured cognitive abilities in 

different spatial and discriminative tasks, and in tasks assessing sociability and social memory. 

Age-related disorders are in fact reported to affect social memory abilities (Riedel, Kang et al. 

2009). Notably, since in older populations cognitive decline is frequently associated with 

depressive-like symptoms (Steffens, Otey et al. 2006) and n-3 PUFA are reported to exert 

antidepressant action (Freeman, Hibbeln et al. 2006, Sublette, Ellis et al. 2011), the behavioral 

assessment was extended to emotional competencies in facing coping skills. A control of 

anxiety levels was also performed. Then, regional GM volumes were mapped by using high 

resolution MRI-based whole-brain voxel-based morphometry (VBM). Finally, ex vivo brain 

levels of n-3 PUFA and individual behavioral scores were correlated with regional GM volumes 

to assess whether n-3 PUFA levels can be considered reliable predictors of volume changes 

and behavioral outcomes.  
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3.2. Materials and Methods 

3.2.1. Ethical Statement 

All experimental procedures were performed in accordance with the Italian law (D.L. 116, 1992 

Italian Ministry of Health, Rome), and in agreement with the European Union Directive 

(2010/63/EU). All surgical procedures were performed under deep anesthesia and all efforts 

were made to minimize suffering and reduce the number of animals that were used. All 

experimental procedures were approved by the Italian Ministry of Health (Ministerial Decree 

number 232/2012-B, 10-2012).  

3.2.2. Animals 

Male aged C57B6/J mice (19 month-old at the onset of study; 35.57 ± 0.69 g) were used in the 

present research (Charles River Laboratories, Italy). The animals were group-housed (three-

four mice/cage) with temperature (22-23°C) and humidity controlled (60 ± 5%), under a 12:12 

h light/dark cycle with free access to food and water. Animals were randomly divided in two 

groups: 1) mice supplemented with an n-3 PUFA mixture by daily gavage for 8 weeks (5 

day/week) (Group name: n-3 PUFA; n = 11); 2) mice supplemented with olive oil by daily gavage 

for the same period used as controls of an isocaloric intake, as reported in previous studies 

(Kotani, Sakaguchi et al. 2006, Oarada, Tsuzuki et al. 2008, Nakamoto, Nishinaka et al. 2010, 

Sinn, Milte et al. 2010, Danthiir, Burns et al. 2011, Vinot, Jouin et al. 2011, Cutuli, De Bartolo 

et al. 2014) (Group name: Control; n = 10) (Fig. 1). Animals’ weight was recorded weekly 

throughout the study. No significant differences between groups were found in mice body 

weight during the entire experimental period (two-way ANOVA (group x week): group: F1,19 = 

0.32, p = 0.58; week: F9,171 = 3.57, p = 0.0004; interaction: F9,171 = 0.47, p = 0.89).  
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Food supplementation was performed by daily gavage to ensure that all cagemates received 

the same controlled amount of dietary supplements regardless of social hierarchy or appetitive 

drive. n-3 PUFA group was supplemented with a volume of 0.015 ml of fatty acids mixture 

(Pfizer, Italy) corresponding to a dose of 360 mg/kg/day of n-3 PUFA (Calviello, Palozza et al. 

1997) mainly constituted by eicosapentaenoic acid (EPA, 20:5 n-3; 63%), docosahexaenoic 

acid (DHA, 22:6 n-3; 26%), docosapentaenoic acid (DPA, 22:5 n-3; 4%), and α-linolenic acid 

(ALA, 18:3 n-3; 1%) (Cutuli, De Bartolo et al. 2014). Control group was supplemented with the 

same volume of olive oil (Trasimeno, Italy) containing ≈ 4 mg/kg/day of n-3 PUFA constituted 

only by ALA (1%) (Cutuli, De Bartolo et al. 2014). The two groups of animals were fed ad libitum 

with standard food pellets (Mucedola 4RF21 standard diet GLP complete feed for mice and 

rats; Mucedola, Italy). 

3.2.3. Behavioral Testing  

Starting from the 5th supplementation week, mice were tested in a number of behavioral tasks 

tapping distinct cognitive and emotional functions: Dark/Light test, Y-maze test with objects, 

Morris Water Maze (MWM), Sociability and Social Memory test, Elevated Plus Maze (EPM), 

and lastly Porsolt test. After behavioral testing, the animals were sacrificed to perform VBM and 

biochemical analyses.  

Dark/Light test  

At the beginning of behavioral testing, anxiety levels and exploratory behaviors were tested by 

means of the Dark/Light test that is based on the innate rodent tendency to avoid brightly 

illuminated areas and to spontaneously explore novel environment (Crawley and Goodwin 

1980). Dark/Light test was performed in an apparatus consisting of a parallelepiped box 

containing two compartments: a dark compartment (18x42x21 cm) with black walls, and a 

lighted compartment (36x42x21 cm) with white walls. The two compartments were separated 
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by a wall pierced with an open door (7x7 cm). The mouse was placed in the lighted 

compartment facing the wall and allowed to freely explore both compartments for 10 min. The 

following parameters were analyzed: time spent in each compartment; latency of first entrance 

into the dark compartment; number of transitions to the dark compartment; number of 

defecations. 

Y-Maze test with objects 

To assess novel object recognition memory we used a Y-Maze test with objects (Winters and 

Bussey 2005). The Y-Maze apparatus was made of grey Plexiglas and consisted of three 

identical arms (8x30x15 cm) with a 120° angle between adjacent arms. The three arms were 

designated as: start arm, from which the mouse started to explore the maze, and two choice 

arms, containing or not objects. Y-Maze test with objects was performed in a dimly lighted room 

and consisted of three trials. During the first trial (habituation phase) lasting 5 min the mice 

placed in the start arm were allowed to freely explore the Y-Maze arms containing no objects. 

After 3 min-inter-trial interval (ITI) the mice underwent the second trial (training phase) lasting 

5 min during which moving from the start arm they were allowed to explore two identical objects 

put at the end of the choice arms. After 1 h-ITI the mice underwent the last 5 min-trial (retention 

phase) during which they were allowed to freely explore one copy of the familiar object and a 

novel object put at the end of the choice arms. During the ITI mice were put in their homecages. 

Maze floor and walls were cleaned after each trial to remove olfactory cues. Trials were 

recorded by a ceiling-mounted camera and analyzed by a video analyzer (Ethovision XT, 

Noldus, The Netherlands). To evaluate the preference for the novel object (novelty) total time 

spent in contact with the familiar vs. novel object during the retention phase was analyzed. The 

discrimination index was calculated: contact time with the novel object (Tno) minus contact time 

with the familiar one (Tfo)/total contact time with both objects. 
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Morris Water Maze (MWM)  

MWM test is a well validated test to assess localizatory abilities in rodents during aging (Chen, 

Chen et al. 2000, Carrie, Smirnova et al. 2002). The mice were placed in a circular white pool 

(diameter 140 cm) filled with 24°C water made opaque by the addition of atoxic acrylic white 

color (Giotto, Italy). An escape platform (diameter 5 cm) with a rough surface was placed in the 

middle of the NW quadrant 20 cm from the side walls. It was submerged 0.5 cm under the water 

level. The pool located in a room uniformly lighted by four lamps (25 W each) was surrounded 

by several extra-maze cues. The water maze was surmounted by a video camera whose signal 

was relayed to a monitor and to the image analyser (Ethovision XT, Noldus, The Netherlands). 

The protocol consisted of a 16-trial Place phase and a 1-trial Probe phase. During the Place 

phase, mice were submitted to four consecutive sessions made by four 60 s-trials (with 30 s-

ITI). During the 15 min-inter-session interval mice were put in their home cages. At the 

beginning of each trial, mice were gently released into the water from pseudo-randomly varied 

starting points and were allowed to swim around to find the hidden platform. Mice that did not 

locate the platform within 60 s were gently guided there by the experimenter. After mice climbed 

the platform, they were allowed to remain on it for 30 s. After 24 h, mice were submitted to the 

Probe phase, in which the platform was removed and the mice were allowed to search for it for 

30 s. To evaluate localizatory memory the following MWM parameters were analyzed: time 

spent and distance swum to reach the platform during the Place phase; distance swum in the 

previously rewarded quadrant during the Probe phase. The navigational strategies were 

classified in three main categories, regardless of whether the platform was reached or not: 

Circling (C): circular swimming with inversion of direction and counter-clockwise and clockwise 

turnings; Searching (S): swimming around the pool in all or some quadrants, visiting the same 

area more than once; direct Finding (F): swimming towards the platform without any foraging 

around the pool. Two researchers unaware of the individual specimen’s group categorized the 
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swimming trajectories drawn by the image analyzer. They attributed the dominant behavior in 

each trial to a specific category. Categorization was considered reliable only when their 

judgments were consistent. 

Sociability and social memory test 

Sociability and social memory test assesses social motivation and interest in social novelty, 

respectively (Nadler, Moy et al. 2004, Cutuli, De Bartolo et al. 2013). Rodents normally prefer 

to spend more time with another rodent (sociability) and investigate a novel intruder more than 

a familiar mouse (social novelty). Age-related disorders are reported to affect social memory 

abilities (Riedel, Kang et al. 2009). The apparatus consisted of a white rectangular wooden box 

(54x42x21 cm) divided in three 18 cm-wide chambers by two transparent Plexiglas walls with 

an open middle door (3.5x3.5 cm). Each lateral chamber contained a small metal cage (9x8 

cm) with mesh-like holes in which stranger mice were confined for social interactions. The test 

comprised 3 trials: habituation, Sociability and Social Memory Test (SMT). During the 

habituation trial, the mice were allowed to freely move in the apparatus for 5 min. During 

Sociability trial, an unfamiliar juvenile (35-45 pnd) mouse conspecific (Stranger 1) was placed 

inside the small metal cage in one of the lateral chambers (randomly selected and 

counterbalanced for each group). The experimental mouse was placed in the apparatus and it 

was allowed to freely explore the three chambers and contact the small metal cages for 5 min. 

During SMT, another unfamiliar juvenile mouse (Stranger 2) was placed inside the metal cage 

in the opposite lateral chamber that was empty during the Sociability session. The experimental 

mouse was allowed to freely move and contact the metal cages for 5 min. ITI between 

habituation and Sociability trials lasted 3 min, while ITI between Sociability trial and SMT lasted 

1 h. Mice behavior was recorded by a video camera mounted on the ceiling. The resulting video 

signal was relayed to a monitor and to an image analyzer (Ethovision XT, Noldus, The 
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Netherlands). Time spent in each lateral chamber during Sociability and SMT was recorded. 

Discrimination indexes were calculated: sociability index = contact time with the Stranger 1 

(TS1) minus contact time with the empty cage (Te)/total contact time; social memory index = 

contact time with the Stranger 2 (TS2) minus contact time with the Stranger 1 (TS1)/total contact 

time. 

Elevated Plus Maze (EPM) 

EPM is a well validated test to assess anxiety levels in rodents based on their natural aversion 

to open spaces (Ruehle, Remmers et al. 2013, Cutuli, De Bartolo et al. 2014). The maze was 

formed by a wooden structure in the shape of a cross with a central platform and four 35x6 cm 

arms raised 100 cm above the ground. The north and south arms were open, the east and west 

arms were enclosed by walls 20 cm high. During a 5-min trial the mouse was placed in the 

central platform and allowed to freely explore the maze. Since mice avoid open areas by 

confining movements to enclosed spaces or to the edges of a bounded space, a typical mouse 

tends to spend the majority of trial time in the closed arms. The entire apparatus was cleaned 

after each trial to remove olfactory cues. Trials were recorded by a ceiling-mounted camera 

and analyzed by an image analyzer (Ethovision XT, Noldus, The Netherlands). The following 

EPM parameters were measured: total entries and total time spent in the open and closed 

arms; number of defecations. 

Porsolt test 

Mice were gently placed in individual glass cylinders (height 40 cm; diameter 18 cm) containing 

20 cm water at 28±2°C. Mice were exposed to the apparatus for 10 min. At the end of the test 

mice were removed from the cylinder, allowed to dry in a small cage placed under a heat source 

and returned to their homecages. The behavior exhibited by each animal during the test was 

recorded by using a frontally-mounted camera. Later, an observer blind to the treatment 
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received by each animal manually scored the videos (Ethovison XT, Noldus, The Netherlands). 

Duration and frequency of the following behaviors were taken into account (Keers, Pedroso et 

al. 2012, Costa, Vieira et al. 2013): - passive behaviors: immobility = total absence of 

movement; paddling = small movements of one of the posterior paws not producing 

displacement; - active behaviors: swimming = large and horizontal movements of the paws 

leading to displacement of the body around the cylinder; climbing = vigorous vertical 

movements of the forepaws, directed against the wall of the tank, leading to displacement the 

body around the cylinder. 

3.2.4. MR Acquisition and Image Analysis 

High-resolution morpho-anatomical T2-weighted MR imaging of ex vivo mouse brains was 

performed in paraformaldehyde (4% PFA; 100 ml) fixed specimens. Standard sample 

preparation and MRI acquisition have been recently described (Dodero et al., 2013). Briefly, 

C57Bl/6 mice supplemented with n-3 PUFA (all 87-week-old) and age-matched controls 

supplemented with olive oil were deeply anaesthetized with an intraperitoneal avertin injection 

(375 mg/kg) and their brains were perfused in situ via cardiac perfusion. The perfusion was 

performed with phosphate buffered saline followed by paraformaldehyde (4% PFA; 100 ml). 

Both perfusion solutions were added with a Gadolinium chelate (Prohance, Bracco, Milan) at a 

concentration of 10 and 5 mM, respectively, to shorten longitudinal relaxation times. Brains 

were imaged inside intact skulls to avoid post-extraction deformations. A multi-channel 7.0 

Tesla MRI scanner (Bruker Biospin, Milan) was used to acquire anatomical images of the brain, 

using a 72 mm birdcage transmit coil, a custom-built saddle-shaped solenoid coil for signal 

reception, and the following imaging parameters: FLASH 3D sequence with TR=17ms, 

TE=10ms, α=30°, matrix size of 260x160x180, field of view of 1.83x1.26x1.26cm and voxel size 

of 0.07 mm (isotropic). 
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Inter-group morpho-anatomical differences in local GM volumes were mapped with VBM 

(Ashburner and Friston, 2000) using ANTs (Avants et al., 2009). Registration-based VBM 

procedure on the mouse brain has been thoroughly described in the previous chapter and is 

briefly reported herein to provide a comprehensive description of all the experimental 

procedures involved.  

First, all the high-resolution T2W images were corrected for intensity non-uniformity and skull 

stripped to remove extra-brain tissue. Second, a study-based template was created aligning 

pre-processed images to a common reference space using affine and diffeomorphic 

registrations. Third, individual images of the two groups were registered to the study-based 

template using affine and diffeomorphic registrations. Fourth, spatially normalized images were 

segmented to calculate tissue probability maps using Markov Random Field to enforce the 

spatial smoothing of the tissues. The separation of the different tissues is improved by 

initializing the process with the probability maps of the study based template previously 

segmented. Fifth, the Jacobian determinants of the deformation field were extracted and 

applied to modulate the grey matter probability maps calculated during the segmentation. This 

procedure allowed the analysis of grey matter probability maps in terms of local volumetric 

variation instead of tissue density. Jacobian determinants were also normalized by the total 

intracranial volume to further eliminate overall brain volume variations. Sixth, the resulting 

modulated grey matter probability maps were smoothed using a Gaussian kernel with a sigma 

of three voxel width and employed for voxel-wise statistics and thresholded with a cluster-based 

procedure as implemented in FSL.  

Regional GM volume differences between n-3 PUFA and olive oil supplemented mice were 

mapped using a two-sample t-test (p < 0.01) followed by a cluster correction using a significant 

cluster threshold of p=0.01 (Worsley et al., 1992). To ensure inter-group differences were not 
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due to segmentation-artefacts reflecting indirect alterations in grey matter intensity, we 

performed tensor based morphometry (TBM) on the same subjects. TBM is a procedure that 

does not require tissue segmentation and can be used to map inter-group differences in local 

brain volume independent of the nature of the tissue quantified. The pre-processing steps 

employed for TBM are the same of VBM, with the exception of the segmentation, which is not 

performed.  

To assess the correlations among the regional GM volumes, n-3 PUFA level and behavioral 

performances, we also performed voxel-wise Pearson’s correlation mapping by using individual 

n-3 PUFA brain concentration levels and behavioral scores as regressors (p < 0.05, followed 

by cluster level significance correction with a threshold of p = 0.01). To explicit the correlative 

relationship between variables obtained in univariate maps, mean GM volumes were quantified 

in representative bilateral cubic (9x9x9voxels) regions of interest (ROIs) centered in 

hippocampal foci exhibiting inter-group differences or areas of significant correlation. The exact 

anatomical location of the hippocampal ROIs selected for correlations is shown in Figure 23. 

 

Figure 23. Anatomical location of the hippocampal bilateral cubic ROIs. Three-dimensional 

rendering and slice representation of the anatomical location of the bilateral cubic (9x9x9 voxels) ROIs 

centred in hippocampal foci exhibiting significant correlations with behavioral scores and PUFA (p < 

0.01, cluster-based correction at a significance level of 0.01). HPC = hippocampus. 
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3.2.5. n-3 PUFA Quantification by GC/MS 

After imaging, the brain content of n-3 PUFA was quantified. Fatty acids were extracted using 

the method reported by Folch (Folch, Lees et al. 1957) with slight modifications. Briefly, brains 

were homogenized in CHCl3/MeOH (2:1 v/v) to a final dilution of 20-fold of the original sample 

volume, assuming that the tissue has the same specific gravity of water. Heptadecanoic acid 

was used as internal standard. The resulting organic phase was evaporated to dryness in a 

speed-vac at room temperature and then derivatized with BSTFA-TMCS 99:1 v/v (Sigma-

Aldrich, Italy) for 1 hour at 60°C. Derivatized samples were transferred in the injection vial and 

added with 20% v/v of Acetone. GC/MS analyses were performed using a Focus GC (Thermo 

Scientific, USA) equipped with 30 m×0.25 mm fused silica capillary column SLBTM-5MS 

(Supelco) and connected to a PolarisQ mass spectrometer (Thermo Scientific, USA). 2µL of 

samples were injected in split mode (1:10 ratio), the injector temperature was set at 200°C; the 

carrier gas was Helium and the flow rate was maintained constant at 1ml/minute. The initial 

oven temperature of 100°C was held for 1 minute and then raised to 250°C at 10°C/minute and 

maintained for 6 minutes. After then the oven temperature was increased up to 310°C at 

20°C/minute and held for 5 minutes. Mass transfer line was maintained at 280°C and the ion 

source at 200°C. Analyses were performed in Selected Ion Monitoring (SIM) mode and fatty 

acids were identified by comparison with commercial standards.  

All data were tested for normality (Shapiro-Wilk’s test) and homoscedasticity (Levene's test) 

and presented as mean ± SEM. Behavioral data and biochemical correlates were analyzed by 

using one- and two-way ANOVAs (with group as between-factor and compartment, session, 

strategy, arm and behavior as within-factors) followed by Tukey's HSD tests. Values of p < 0.05 

were considered significant (Statistica 7, Statsoft).   
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3.3. Results  

3.3.1. n-3 PUFA Supplemented Mice Exhibit Improved Cognitive Functions 

To verify the ability of n-3 PUFA supplementation to improve mnesic function in the aged brain, 

both experimental aged mice groups were submitted to a battery of behavioral tests measuring 

hippocampal-dependent cognitive abilities Figure 24. n-3 PUFA supplemented mice 

demonstrated better novelty recognition abilities in the Y-Maze test with objects (F1,19 = 6.13, p 

= 0.02) as well as in the MWM. In the latter test, no inter-group differences were observed 

during Place in latency (group: F1,19 = 0.52, p = 0.48; session: F3,57 = 4.85, p = 0.004; interaction: 

F3,57 = 0.74, p = 0.53) and distance swum (group: F1,19 = 0.17, p = 0.69; session: F3,57 = 17.23, 

p < 0.000001; interaction: F3,57 = 0.30, p = 0.82) to reach the hidden platform. No differences 

were also observed in navigational strategies (group: F1,19 = 1.55, p = 0.22; strategy: F2,38 = 

310.94, p < 0.000001; interaction: F2,38 = 1.66, p = 0.20), with Searching as the most used 

strategy (p=0.0001). 

 

Figure 24. n-3 PUFA supplementation effects on mnesic performances. A: Discrimination index in 

Y-Maze test with objects. B: Distance (cm) swum in the previously rewarded quadrant during Probe 

phase of MWM. C: Social memory index in SMT. Asterisks inside the graphs indicate the significance 

levels of comparisons between groups: *p < 0.05, **p ≤ 0.01. 

However, during Probe phase n-3 PUFA mice exhibited higher platform location retention as 

measured by distance swum in the previously rewarded (platform) quadrant (F1,19 = 6.14, p = 
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0.02), thus supporting a beneficial effect of n-3 PUFA supplementation on hippocampal mnesic 

functions. Accordingly, while all mice displayed an equal preference for social stimuli (sociability 

index: F1,19 = 0.41, p = 0.53), n-3 PUFA supplementation significantly improved mnesic 

performances in SMT as indicated by the increased social memory index observed in n-3 PUFA 

supplemented mice (F1,19 = 10.88, p = 0.004).  

 

Figure 25. n-3 PUFA supplementation effects on coping skills. A: Swimming duration (s) and 

frequency in Porsolt test. B: Paddling duration (s). C: Climbing frequency. D: Active vs. passive behavior 

duration (s). Asterisks inside the graphs indicate the significance levels of comparisons between groups: 

*p < 0.05, **p ≤ 0.01, or ***p ≤ 0.001. 

As reduced hippocampal volumes, depression and cognitive deterioration are frequently 

associated in older populations (Videbech and Ravnkilde 2004, Steffens, Otey et al. 2006), 
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Porsolt test was used to assess depressive-like behaviors and coping strategies in the two 

experimental groups (Figure 25). Depressive-like traits appeared to be less prominent in n-3 

PUFA supplemented mice with respect to controls as evidenced by higher duration (F1,19 = 4.69, 

p = 0.04) and frequency of swimming (F1,19 = 45.10, p < 0.000001), as well as higher frequency 

of climbing (F1,19 = 19.55, p = 0.0003) and lower duration of paddling (F1,19 = 8.61, p = 0.008). 

No treatment differences were observed for the remaining parameters (immobility, duration: 

F1,19 = 0.37, p = 0.55; frequency: F1,19 = 2.42, p = 0.14; paddling, frequency: F1,19 = 3.01, p = 

0.09; climbing, duration: F1,19 = 1.47, p = 0.24). Interestingly, ANOVA performed on active vs. 

passive behaviors (group: F1,19 = 1.33, p = 0.26; behavior: F1,19 = 3.53, p = 0.08; interaction: 

F1,19 = 4.68, p = 0.04) revealed that the total duration of active behaviors (swimming + climbing) 

was significantly higher than the total duration of passive behaviors (immobility + paddling) in 

n-3 PUFA supplemented mice than in controls (p = 0.04), indicating increased use of active 

coping strategies in n-3 PUFA supplemented mice.  

Importantly, no inter-group differences in terms of anxiety levels and explorative behaviors were 

observed. In the Dark/Light test all mice spent more time in the dark compartment than in the 

lighted one (group: F1,19 = 0.09, p = 0.76; compartment: F1,19 = 9.26, p = 0.007; interaction: F1,19 

= 0.98, p = 0.33), without differences in the latency of first entrance (F1,19 = 1.87, p = 0.19), 

number of transitions into the dark compartment (F1,19 = 0.53, p = 0.48), and total defecations 

(F1,19 = 0.07, p = 0.79). These findings were confirmed also in the EPM test during which all 

mice spent significantly more time in the closed than open arms (group: F1,19 = 0.05, p = 0.82; 

arm: F1,19 = 1450.51, p < 0.000001; interaction: F1,19 = 0.12, p = 0.73), showing similar total 

entries (F1,19 = 0.03, p = 0.87) and no differences in defecation number (F1,19 = 2.59, p = 0.12). 

3.3.2. Treated Mice Exhibit Foci of Increased Hippocampal and Cortical GM Volume 

High-resolution voxel-wise VBM mapping revealed prominent bilateral areas of increased GM 
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volume in the posterior hippocampus, plus additional foci of GM increase in the retrosplenial 

and medial prefrontal cortices in n-3 PUFA supplemented mice compared to controls (p < 0.01, 

cluster-based correction, Figure 26).  

 

Figure 26. n-3 PUFA supplementation increases hippocampal and prefrontal GM volume. VBM 

morphometric analysis revealed significantly increased (p < 0.01, cluster corrected at a significance 

level of 0.01) regional GM volume in hippocampal formation, prefrontal and retrosplenial cortex in n-3 

PUFA supplemented compared to control mice. 3D rendering of the sagittal and coronal slices is also 

visualised. HPC = hippocampus; mPFC = medial prefrontal cortex; RS = retrosplenial cortex. 

No foci of significant GM volume reduction were observed throughout the brain in n-3 PUFA 

supplemented mice (p < 0.01, cluster-based correction).  

 

Figure 27. Tensor Based Morphometry (TBM) corroborates supplementation-specificity of 

increased GM volume mapped with VBM. n-3 PUFA supplementation increases hippocampal and 

prefrontal GM volume as seen with TBM (p < 0.01, cluster-based correction at a significance level of 

0.01). Note the overlap with VBM analysis. HPC = hippocampus; mPFC = medial prefrontal cortex; RS 

= retrosplenial cortex; OFC = orbitofrontal cortex. 
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TBM of n-3 PUFA and control groups produced similar inter-group difference maps with clear 

involvement of foci of hippocampal, retrosplenial and prefrontal areas (p < 0.01, cluster-based 

correction Figure 27). The presence of analogous findings in VBM and TBM maps corroborates 

a supplementation-specific impact on the GM volumes mapped with VBM. 

3.3.3. Behavioral Performances Correlate with Fronto-Hippocampal GM Volume 

In an attempt to probe the relationship between cognitive and behavioral performance and 

regional GM volumes, and locate the brain substrates underlying the different performance 

levels of the two groups, voxel-wise regression of individual behavioral parameters was 

performed on GM maps at the subject level.  

 

Figure 28. Behavioral performances are positively correlated with hippocampal GM increase. 

Voxel-wise correlation mapping of behavioral scores and GM volume. Foci of correlation between GM 

volume and enhanced MWM spatial mnesic performances (a) and increased coping skills in the Porsolt 

test (b) were found in the same regions exhibiting univariate increased GM volume. Scatter plots indicate 

significant Pearson’s correlations between n-3 PUFA concentrations and hippocampal mean GM 

volume (continuous lines), and the 95% CI (dotted lines). Red triangles indicate n-3 PUFA supplemented 

subjects, yellow triangles indicate the control group subjects. HPC = hippocampus; MWM = Morris Water 

Maze; PT = Porsolt test.  
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Figure 28 depicts significant voxel-wise correlation mapping obtained by using individual 

behavioral scores as regressors. Consistent with univariate mapping of supplementation 

effects, foci of significant voxel-wise correlations were observed in hippocampal formation when 

behavioral scores from MWM and Porsolt test were used (p < 0.05, cluster-based correction).  

 

Figure 29. Behavioural performances are positively correlated with fronto-hippocampal GM 

volume. Consistent with univariate inter-group mapping, voxel-wise correlation of behavioral scores 

and GM volume prior to cluster-based correction revealed foci of significant correlation in hippocampal 

and prefrontal regions. GM-behavioral performance correlation map for MWM spatial mnesic 

performances (a) and coping skills in the Porsolt test (b). The prefrontal effects did not survive cluster-

based correction (p = 0.01, Fig. 5). HPC = hippocampus; mPFC = medial prefrontal cortex; RS = 

retrosplenial cortex. 

In good agreement with univariate inter-group maps, additional foci of significant correlation 

were found in retrosplenial and medial prefrontal cortices, an effect that however did not survive 

cluster-based correction (Figure 29). Overall, these findings support the involvement of the 
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mapped GM substrates in the improved cognitive and increased coping skills exhibited by n-3 

PUFA supplemented mice. No significant correlations were found for any of the remaining 

behavioral variables mapped.   

 

Figure 30. Positive correlations between n-3 PUFA levels and fronto-hippocampal GM volume. 

Voxel-wise correlation mapping of total brain EPA (a), DHA (b) and n-3 PUFA/AA concentrations (c) 

and GM volume revealed foci of significant correlation in the same regions exhibiting univariate 

increased GM (hippocampal, prefrontal, retrosplenial, and orbitofrontal areas). Histograms report mean 

concentrations with error bars indicating SEM. Scatter plots indicate significant Pearson’s correlations 

between n-3 PUFA concentrations and hippocampal mean GM volume (continuous lines), and the 95% 

CI (dotted lines). Red triangles indicate n-3 PUFA supplemented subjects, yellow triangles indicate the 

control group subjects.  HPC = hippocampus; mPFC = medial prefrontal cortex; RS = retrosplenial 

cortex; OFC = orbitofrontal cortex; EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; AA = 

arachidonic acid. Asterisks inside the graphs indicate the significance levels of comparisons between 

groups: **p ≤ 0.01 , or ***p ≤ 0.001. 



71 
 

3.3.4. n-3 PUFA Supplemented Mice Exhibit Increased EPA and DHA Brain Levels 

To assess effectiveness of the supplementation regime, the concentrations of EPA, DHA, and 

DPA, the three major n-3 PUFA components of cell membranes, were measured.  

EPA+DHA+DPA/Arachidonic Acid (AA) ratio was also measured given its postulated role in 

cognitive dysfunction and neuroinflammation (Rao, Ertley et al. 2007, Labrousse, Nadjar et al. 

2012).  

 

Figura 31. Positive correlations between n-3 PUFA levels and fronto-hippocampal GM volume. 

Consistent with univariate inter-group mapping, voxel-wise correlation between total brain EPA (a), DHA 

(b) and n-3 PUFA/AA concentrations (c) and GM volume prior to cluster-based correction revealed foci 

of significant correlation in hippocampal and prefrontal regions. For EPA, prefrontal effects did not 

survive cluster-based correction (p = 0.01, Fig. 6). HPC = hippocampus; OFC = orbitofrontal cortex; 

mPFC = medial prefrontal cortex; RS = retrosplenial cortex; EPA = eicosapentaenoic acid; DHA = 

docosahexaenoic acid; AA = arachidonic acid. 
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EPA and DHA, but not DPA, levels were found to be increased in the n-3 PUFA group in 

comparison to controls, as revealed by one-way ANOVAs (EPA: F1,19 = 68.36, p < 0.000001; 

DHA: F1,19 = 7.11, p = 0.01; DPA: F1,19 = 0.10, p = 0.75). Moreover, one-way ANOVA on the 

EPA+DHA+DPA /AA ratio revealed a significant increase of EPA+DHA+DPA/AA ratio in n-3 

PUFA group in comparison to controls (F1,19 = 7.55, p = 0.01) (Figure 30).  

3.3.5. Brain Levels of n-3 PUFA Positively Correlate with Fronto-Hippocampal GM 

Volume 

To further probe the relationship between n-3 PUFA supplementation and GM morphometric 

alterations mapped, voxel-wise correlations of n-3 PUFA levels of individual subjects were 

generated. Voxel-wise correlation of total EPA, DHA and n-3 PUFA/AA concentrations revealed 

foci of significant correlations in the hippocampal, retrosplenial and prefrontal regions, as well 

as orbitofrontal areas (p < 0.05, cluster-based correction; Figure 30). Additional foci of 

significant voxel-wise correlations between GM volumes and DHA levels were found in the 

medial prefrontal cortex in uncorrected statistics maps (Figura 31). The anatomical location of 

these correlations is consistent with the effects of n-3 PUFA supplementation on GM volume 

and behavioral performance changes. 

3.4. Discussion 

As main components of synaptic membranes, n-3 PUFA have an important role in keeping 

structure and function of aged brain, a feature that has promoted research on their dietary 

supplementation as a strategy to counteract aging-related cognitive decline. However, despite 

encouraging epidemiological evidence linking enhanced peripheral n-3 PUFA levels to 

improved cognitive performance and brain structure (Denis, Potier et al. 2015), interventional 

studies on n-3 PUFA supplementation have so far produced inconsistent results. This issue 
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could reflect methodological inconsistencies such as the contribution of genetic and 

environmental factors that cannot be effectively controlled in human studies. In the present 

work we sought to overcome these limitations by investigating the relationships between GM 

volumes, cognitive and emotional performances, and n-3 PUFA cerebral levels in genetically 

homogeneous inbred aged mice reared in controlled laboratory conditions. In particular, we 

investigated whether long-term n-3 PUFA supplementation starting at old age may produce 

behavioral improvements and how the eventual improvements can be related to underlying 

neuroanatomical substrates. The present results strongly corroborate the emerging view of a 

pro-cognitive and neuroprotective function of n-3 PUFA supplementation on the aged brain 

(Varteresian and Lavretsky 2014). Specifically, n-3 PUFA supplemented mice exhibited 

improved mnesic functions and coping skills, and presented foci of greater GM volumes in 

fronto-hippocampal areas. The increased GM volumes correlated with better mnesic 

performances, increased active coping skills, and enhanced total brain n-3 PUFA 

concentrations. Collectively, these findings indicate that the n-3 PUFA-induced neuroprotective 

effects are able to take place even when the supplementation starts at late age. Importantly, 

the present results were obtained through commonly available supplements (i.e., commercially 

available n-3 PUFA mixture and olive oil) and employing a well-established brain structural VBM 

readout to maximize ecological validity and translational value.  

The effects here reported develop our recent evidence of a beneficial cognitive effects of n-3 

PUFA supplementation in aged mice (Cutuli, De Bartolo et al. 2014) and indicate that the n-3 

PUFA-induced hippocampal changes observed at the cellular scale are associated to the 

macro-scale structural alterations detectable with MRI mapping. Furthermore, the here 

observed improvements in many facets of mnesic (localizatory, discriminative and social) 

function, convincingly support an overall n-3 PUFA pro-cognitive action in aging. n-3 PUFA 
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interventional studies in humans also sustain this view evidencing delayed cognitive decline in 

elderly people with (Yurko-Mauro, McCarthy et al. 2010) or without (Danthiir, Burns et al. 2011) 

subjective memory complaints, and in patients with mild cognitive impairment (Chiu, Su et al. 

2008) or very mild AD (Freund-Levi, Eriksdotter-Jönhagen et al. 2006).  

Importantly, in the present research n-3 PUFA supplementation exerted beneficial effects not 

only on cognitive, but also on emotional behaviors. Specifically, n-3 PUFA supplemented mice 

showed more active coping responses, without inter-group differences in anxiety levels. It is 

well-known that depression is a multifaceted disorder frequently associated with aging, 

metabolic disorders and neurodegenerative diseases (Lang and Borgwardt 2013), and that it is 

linked to prefrontal and hippocampal atrophy (Erickson, Miller et al. 2012, Vu and Aizenstein 

2013). In agreement with the few previous experimental and clinical findings (Puri, Counsell et 

al. 2001, Schipper, Kiliaan et al. 2011, Samieri, Maillard et al. 2012, Lang and Borgwardt 2013), 

our results indicate that n-3 PUFA supplementation is able to improve coping abilities by 

preserving fronto-hippocampal functionality. As a further note, it is important to remember that 

the n-3 PUFA deficiency has been associated with the dysfunction of neuronal membrane 

stability and catecolaminergic neurotransmission linked to the aetiology of depressive 

symptoms (Su 2009). Recently, it has been proposed that EPA and DHA 

increase serotoninergic transmission by reducing prostaglandin levels and increasing neuronal 

membrane fluidity (Patrick and Ames 2015). Given that in the Porsolt test selective serotonin 

and norepinephrine reuptake inhibitors are reported to increase swimming and climbing 

behaviors respectively (Renault and Aubert 2006), we cannot exclude that the n-3 PUFA 

beneficial effects may be ascribed also to an influence of these nutrients on serotoninergic and 

noradrenergic neurotransmission. 

The use of a three-dimensional hypothesis-independent GM mapping approach allowed us to 

https://en.wikipedia.org/wiki/Norepinephrine
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identify following n-3 PUFA supplementation extra-hippocampal foci of increased GM volume, 

such as retrosplenial and prefrontal areas. Analogous findings have been recently reported in 

an interventional study in aged humans receiving prolonged n-3 PUFA supplementation 

describing improved cognitive functions and increased GM volumes in the hippocampus, 

precuneus (area reciprocally connected with the adjacent retrosplenial cortex) and frontal areas 

(Witte et al., 2014). Although the exact mechanisms underlying the involvement of cortical 

regions remain to be determined, it can be advanced that in n-3 PUFA supplemented mice the 

preservation of prefrontal structural integrity is functionally driven by the direct afferents 

stemming from CA1 and subicular hippocampal regions (Hoover and Vertes 2007). This 

hypothesis is consistent with enhanced neuroplasticity phenomena (such as increased neurite 

outgrowth, synaptogenesis, angiogenesis), and decreased neurodegenerative processes (such 

as apoptosis, astrocytosis) observed in the hippocampus of n-3 PUFA supplemented animals 

(Gómez-Pinilla 2008, Thomas and Baker 2013, Cutuli, De Bartolo et al. 2014, Dyall 2015). 

Speculatively, it can be hypothesized that the same neuroplastic processes may act at 

prefrontal and retrosplenial level promoting structural preservation.  

Finally, the contribution of WM changes should also be taken into account. Indeed, recent 

correlational studies reported positive associations between n-3 PUFA levels and GM or WM 

volumes (Samieri, Maillard et al. 2012, Tan, Harris et al. 2012, Titova, Sjögren et al. 2013, 

Virtanen, Siscovick et al. 2013, Pottala, Yaffe et al. 2014, Raji, Erickson et al. 2014). Recently, 

Witte et al. (2014) suggested that the superior WM microstructural architecture of n-3 PUFA 

supplemented older adults could be linked to higher myelination, increased fiber packing 

density and reduced axonal damage that sustain better cognitive performances by improving 

axonal transmission.  

The presence of positive regional association between n-3 PUFA brain levels and GM volumes 
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might be linked to increased regional volume resulting from n-3 PUFA induced increased 

membrane fluidity and reduced neuroinflammation processes. Specifically, research on the 

aging brain has shown that major biochemical changes affect the neuronal membrane that is 

the site of action for many essential functions, such as neurotransmission, regulation of 

membrane-bound enzymes, control of the ionic channels structure and activity, and receptors 

maintenance (Yehuda 2012). During aging, the level of cholesterol and its toxic metabolites 

greatly increases in neuronal membranes, thus reducing the membrane fluidity. On the other 

hand, n-3 PUFA concentration in aged neuronal membranes decreases(Yehuda, Rabinovitz et 

al. 2002). Interestingly, in the present study EPA and DHA levels, and n-3 PUFA/AA ratio 

increased following n-3 PUFA supplementation. Thus, it can be argued that by increasing 

membrane fluidity, n-3 PUFA supplementation may prevent and/or counteract brain aging.  

In addition, EPA and DHA have an anti-inflammatory role by giving rise to mediators, such as 

resolvins and neuroprotectin D1 (Bazan, Musto et al. 2011, Calder 2011), and decreasing age-

related microglial activation, oxidative stress, and increased pro-inflammatory cytokines 

(Martin, Lonergan et al. 2002, Maher, Martin et al. 2004, Lynch, Loane et al. 2007, Kelly, Grehan 

et al. 2011, Trépanier, Hopperton et al. 2015). Accordingly, the present increased n-3 PUFA 

brain concentrations may result in anti-inflammatory effects, thus contributing to 

neuroprotective actions against brain atrophy and cognitive decline. Among the multifactorial 

processes underlying n-3 PUFA beneficial effects on brain structural parameters, cognition, 

and affective regulation, also the increased monoaminergic and cholinergic neurotransmission 

should be taken into account (Willis, Shukitt-Hale et al. 2009, Jiang, Liang et al. 2012). In any 

case, future research on this topic is warranted to pinpoint the cellular and sub-cellular 

determinants of n-3 PUFA induced volumetric enhancement at cortical level.  

Collectively, the present findings suggest that n-3 PUFA supplementation in old age helps 

http://www.nutri-facts.org/no_cache/eng/cs2-glossarypopup/rgmoodalbox-tmpl/tag/208/
http://www.nutri-facts.org/no_cache/eng/cs2-glossarypopup/rgmoodalbox-tmpl/tag/184/
http://www.nutri-facts.org/no_cache/eng/cs2-glossarypopup/rgmoodalbox-tmpl/tag/162/
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maintaining brain functionality by counteracting reductions in GM volume in prefrontal and 

retrosplenial cortices, as well as in hippocampus. In this respect, n-3 PUFA appear ideal 

candidates for cognition-enhancing and antidepressant nutritional interventions aimed to 

promote active and healthy aging. This issue is of growing relevance, given the pressing need 

to maintain cognitive functions in the elderly Western population, whose life expectancy 

increasingly rises. Moreover, our study supports the use of VBM measurements in human 

population as a surrogate mechanistic marker for n-3 PUFA pro-cognitive action in controlled 

supplementation trials assessing their therapeutic use in the healthy and diseased aged brain. 
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4. Gray Matter scMRI Networks in the Mouse Brain 

All the material presented in this chapter has been recently published in the article “All the material presented in 

this chapter has been recently published in the article “Pagani M, Bifone A, Gozzi A (2016). Structural covariance 

networks in the mouse brain, NeuroImage, 129:55-63.” 

The presence of networks of correlation between regional gray matter volume as measured 

across-subjects in a group of individuals has been consistently described in several human 

studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent 

brain mapping modalities like functional and diffusion-weighted imaging, the approach can 

provide precious insights into the mutual influence of trophic and plastic processes in health 

and pathological states. To investigate whether analogous scMRI networks are present in lower 

mammal species amenable to genetic and experimental manipulation such as the laboratory 

mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-

homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based 

approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both 

primary and associative cortices, a finding corroborated by independent component analyses 

of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric 

correlations, with evidence of distributed antero-posterior networks in diencephalic regions of 

the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters 

of cortical and sub-cortical regions corresponding to previously described neuroanatomical 

systems. Our work documents the presence of homotopic cortical and subcortical scMRI 

networks in the mouse brain, thus supporting the use of this species to investigate the elusive 

biological and neuroanatomical underpinnings of scMRI network development and its 

derangement in neuropathological states. The identification of scMRI networks in genetically 
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homogeneous inbred mice is consistent with the emerging view of a key role of environmental 

factors in shaping these correlational networks.  

4.1. Background 

Correlation analyses of magnetic resonance imaging (MRI) data have produced evidence of 

integrated structural and functional networks of brain regions, thus providing information on 

brain organization beyond the segregated local properties classically revealed by univariate 

methods (Bullmore and Sporns 2009). Complementary to networks mapped with resting state 

functional MRI and white matter pathways reconstructed with diffusion weighted imaging, large 

scale scMRI networks represent an additional valuable source of information about inter-

regional connectivity (Alexander-Bloch, Raznahan et al. 2013). Specifically, this approach 

permits to study the extent to which inter-individual differences in regional structures are 

coherently organized within networks of gray matter volumes or cortical thickness that emerge 

across a population of individuals (Alexander-Bloch, Giedd et al. 2013, Evans 2013). 

Sc-MRI has provided valuable insight into the structural organization of the brain. Recent scMRI 

studies have substantially expanded and corroborated early post-mortem evidence of  

anatomical covariance between regions of the visual and motor systems  (Andrews, Halpern et 

al. 1997, White, Andrews et al. 1997) by highlighting robust correlations between inter-

hemispheric homotopic regional gray matter volume in  motor, somatosensory and associative 

cortical regions of the human brain (Mechelli, Friston et al. 2005, Zielinski, Gennatas et al. 

2010). Similarly, limbic cortical and non-cortical regions have been shown be part of more 

distributed covariance network that encompass wide portion of prefrontal and temporal regions 

(Bernhardt, Klimecki et al. 2013).  
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Anatomical covariance mapping has also offered initial insights into the abnormal structural 

organization of networks in brain disorders. For example, reduced extension of the right anterior 

insular network has been reported in patient diagnosed with autism spectrum disorder 

(Zielinski, Anderson et al. 2012). Analogously, basal ganglia, parietal and fronto-temporal 

scMRI networks exhibit reduced gray mater content in schizophrenic patients compared to 

healthy controls (Xu, Groth et al. 2009), and decreased inter-hemispheric correlations between 

postcentral gyrus and parietal lobule have been observed in patients diagnosed with 

Alzheimer’s disease (He, Chen et al. 2008). 

Despite the increasing interest in scMRI and its emerging use to investigate the trophic 

development of gray matter, fundamental questions regarding the origin and significance of 

these correlative networks remain unanswered. For example, recent evidence has linked 

genetic polymorphisms with the development of specific functional and anatomical networks 

(Pezawas, Meyer-Lindenberg et al. 2005), however, the genetic determinants underlying the 

emergence of these networks remain poorly understood. Moreover, although correlations 

between cortical gray matter thickness and structural connectivity have been described (Lerch, 

Worsley et al. 2006), with recent estimates suggesting that white matter MRI connectivity 

explains approximately 35–40% of the thickness correlations across the cerebral cortex (Gong, 

He et al. 2012), whether anatomical covariance requires intact axonal connectivity, or can 

develop in the face of altered connectional substrates like in the case of congenital callosal 

alterations or white matter abnormalities (Tyszka, Kennedy et al. 2011, Sforazzini, Bertero et 

al. 2014), remains to be determined. Finally, although both genetic and environmental factors 

have been identified to play a role in shaping these networks (Schmitt, Lenroot et al. 2008, 

Schmitt, Lenroot et al. 2009, Rimol, Panizzon et al. 2010), the relative contribution of these 
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components is poorly understood and it is not clear to what extent covariance is a causal result 

of genetic influence, development and aging, or experience-related plasticity (Evans 2013). 

The investigation of networks of anatomical covariance in laboratory mice - where a wide 

repertoire of genetic, molecular and cellular manipulations can be readily implemented - could 

complement human research on the emergence of gray matter covariance networks, and 

generate novel hypothesis about the etiopathological origin of aberrant scMRI findings in 

human brain diseases (Alexander-Bloch, Giedd et al. 2013). In the present work, we used high 

resolution structural imaging and voxel-based morphometry (Dodero, Damiano et al. 2013, 

Sannino, Gozzi et al. 2014) to probe the presence of cortical and subcortical networks of 

anatomical covariance in the mouse brain. To this end, scMRI mapping was carried out in a 

large cohort (N=53) of genetically-homogeneous inbred C57Bl6/J mice, thus permitting to 

assess the emergence of these networks under controlled genetic and environmental 

conditions, an essential prerequisite for the implementation of scMRI approaches in transgenic 

models. Our result demonstrate the presence of robust homotopic scMRI gray matter networks 

in cortical and sub-cortical regions of the mouse brain, paving the way to the application of 

interventional approaches to study the physiological and pathological effectors of this 

phenomenon. 

4.2. Materials and Methods  

4.2.1. Ethical Statement 

All research involving animals were carried out in accordance with the European directive 

86/609/EEC governing animal welfare and protection, which is acknowledged by the Italian 

Legislative Decree 116 - 27 January 1992, and following the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. Animal research 
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protocols were also reviewed and consented by the Animal Care Committee of the Istituto 

Italiano di Tecnologia (Permit date 07-2012). 

4.2.2. Sample Preparation and Image Data Acquisition 

High-resolution morphoanatomical T2-weighted MR imaging of C57Bl6/J male mouse brains 

(n=53) was performed in paraformaldehyde (4% PFA; 100 ml) fixed specimens, a procedure 

employed to obtain high-resolution images with negligible confounding contributions from 

physiological or motion artefacts (Cahill, Laliberte et al. 2012). Standard sample preparation 

and MRI acquisition has been recently described (Dodero, Damiano et al. 2013, Sforazzini, 

Bertero et al. 2014) and is reported below to provide a comprehensive description of all the 

experimental procedures involved. Briefly, male B6 mice were deeply anaesthetized with an 

intraperitoneal Avertin injection (375 mg/Kg) and their brains were perfused in situ via cardiac 

perfusion. The perfusion was performed with phosphate buffered saline followed by 

paraformaldehyde (4% PFA; 100 ml). Both perfusion solutions were added with a Gadolinium 

chelate (Prohance, Bracco, Milan) at a concentration of 10 and 5 mM, respectively, to shorten 

longitudinal relaxation times. A four-channel 7.0 Tesla MRI scanner (Bruker Biospin, Milan) was 

used to acquire anatomical images of the brain, using a 72 mm birdcage transmit coil, a custom-

built saddle-shaped solenoid coil for signal reception, and the following imaging parameters: 

FLASH 3D sequence with TR=17ms, TE=10ms, α=30°, matrix size of 260x160x180, field of 

view of 1.83x1.26x1.26 cm, voxel size of of 90 µm3 (isotropic). 

4.2.3. Image Data Preprocessing and VBM 

VBM of gray matter was performed using ANTs (Avants, Yushkevich et al. 2010), a flexible 

open source toolkit widely adopted for mice and human studies. Nonlinear registration-based 

VBM procedure on the mouse brain has been thoroughly described in a previous 
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methodological study and it is only briefly reported herein (Pagani et al. under review). Each 

high-resolution T2W image was corrected for intensity non-uniformity and skull stripped to 

remove extra brain tissue. A study based template was created by aligning pre-processed 

images to a common reference space using affine and diffeomorphic registrations. After 

registering individual images to the study based template, spatially normalized images were 

segmented to calculate tissue probability maps. The separation of the different tissues is 

improved by initializing the process with the probability maps of the study based template 

previously segmented. The Jacobian determinants of the deformation field were extracted and 

applied to modulate the grey matter probability maps calculated during the segmentation. This 

procedure permits the analysis of grey matter probability maps in terms of local volumetric 

variation instead of tissue density. Jacobian determinants were also normalized by the total 

intracranial volume (range 390 - 531 mm3) to account for inter-subject variability in total brain 

volume (Bassett, Bullmore et al. 2008, Zielinski, Anderson et al. 2012). The resulting modulated 

grey matter probability maps were then smoothed using a Gaussian kernel with a sigma of 

three voxel width. 

4.2.4. Grey Matter Variance Map 

Ninety-nine neuroanatomical (68 cortical and 31 extracortical) volumes from previously 

published parcellated reference neuroanatomical atlases of the mouse brain (Dorr, Lerch et al. 

2008, Ullmann, Watson et al. 2013) were registered to each image. This procedure 

standardizes the location and size of each brain region, thus avoiding operator-dependent bias 

related to manual anatomical recognition and improves replicability of findings. We used this 

method also to identify VOIs for agglomerative hierarchical clustering and for seed-based 

correlation mapping (described below). The variance of grey matter volumes in each 
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neuroanatomical volume was then calculated across subjects, yielding a region-by-region map 

of the gray matter variability of our inbred mice.  

4.2.5. Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering is a bottom-up data driven approach that aims to find 

clusters based on a similarity measure and has the advantage of requiring no a priory 

information on the number of cluster to be computed. We used the R package ‘gplots’ 

(http://cran.r-project.org/web/packages/gplots/index.html) to calculate the correlation matrix of 

the mean grey matter volumes of major neuroanatomical volumes of interest (VOIs) and to 

perform the agglomerative hierarchical cluster analysis adopting Euclidean distance as 

similarity measure (Schmitt, Lenroot et al. 2008). Color coding to highlight the diverging nature 

of the correlation matrix was obtained using the R package ‘RColorBrewer’ (http://cran.r-

project.org/web/packages/RColorBrewer/index.html). A dendrogram was also displayed both 

to visualize the degree of similarity between the VOIs - where similar vectors of correlation are 

visualized more proximal - and to identify the most informative higher level clusters of the 

correlation matrix. Hierarchical clustering provides an overview of the connectivity patterns of 

gray matter over the whole brain. The approach however suffers from a limited spatial 

resolution, determined by the size of the VOIs employed. To overcome this limitation, a 

subsequent seed based analysis was performed to calculate whole brain voxelwise correlations 

on the gray matter volumetric maps between 14 seeds and the rest of the brain voxelwise. 

4.2.6. Seed Region Analysis  

Preprocessed images were employed for a seed-based correlation analysis to examine 

voxelwise gray-matter covariance patterns with respect to neuroanatomical VOIs of interest. To 

this purpose, unilateral right or left cortical and subcortical anatomical VOI were used as 

http://cran.r-project.org/web/packages/gplots/index.html
http://cran.r-project.org/web/packages/RColorBrewer/index.html
http://cran.r-project.org/web/packages/RColorBrewer/index.html
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correlation seeds. All the VOIs were selected from cortical and sub-cortical VOIs from 

parcellated reference atlases previously registered to each image (Dorr, Lerch et al. 2008, 

Ullmann, Watson et al. 2013). The anatomical volumes probed are: primary auditory, motor, 

somatosensory, visual, cingulate, retrosplenial, insular and medial prefrontal cortex, amygdala, 

striatum, dorsal and ventral hippocampus, hypothalamus and thalamus. To map anatomical 

networks at a high spatial resolution, the mean grey matter volume of each seed was used as 

a regressor for each voxel in the brain to generate a voxel-wise correlation map. This permits 

to identify positive networks when an increase of gray matter in the seed is associated to an 

increase of gray matter in the voxels, and, similarly, negative networks when an increase in 

gray matter of the seed is associated to a decrease of gray matter in the voxels. Correlations 

were performed using FSL randomise non parametric permutation testing and statistical results 

where threshold at p<0.05 upon  familywise error (FWE) correction for multiple comparisons 

(Mechelli, Friston et al. 2005).  

4.2.7. Source Based Morphometry with Independent Component Analysis  

After preprocessing, individual cortical images were concatenated in a single 4D gray matter 

image that was analyzed by means of source based morphometry (SBM), using the MATLAB 

GIFT toolbox (http://icatb.sourceforge.net). SBM exploits Independent Component Analysis 

(ICA) to map cortical scMRI networks at the voxel level by identifying maximally independent 

sources (Xu, Groth et al. 2009). We converted each gray matter image into a one-dimensional 

vector and we arrayed those vectors into a 53 row (subjects) by 163.401 column (voxels) matrix. 

This matrix was then decomposed into a mixing and a source matrix - where the mixing matrix 

expresses the relationship between subjects and components, and the source matrix 

expresses the relationship between the components and the voxels - using the Infomax 

approach (Bell and Sejnowski 1995). The number of independent components used for the 

http://icatb.sourceforge.net/
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analysis (N = 15) was estimated after pilot studies performed with varying component numbers 

(3, 5, 10, 15, 20).  

 

Figure 32 Inter-subjects gray matter volume variance. The diencephalon, cerebellum and midbrain 

showed higher grey matter variance whereas the cerebral cortex displayed the lowest volumetric 

variability across subjects. Intermediate variance was found in the hippocampal formation, in the 

striatum, in the basal ganglia and in the olfactory bulbs. Coronal (top), horizontal (bottom, left) and 

sagittal (bottom, right) slices are displayed with relative 3D renderings to show the exact location of the 

cuts. Cb: cerebellum; CPu: caudate putamen; ctx: cortex; Hypo: hypothalamus; HPC: hippocampus; 

OB: olfactory bulbs; Thal: thalamus. 

We used ICASSO to test the statistical reliability of the independent component decomposition, 

by running Infomax 100 times with different initial conditions and bootstrapped data sets. All 

the other default parameters of GIFT (included PCA data reduction) were left unaltered. These 

source maps were then scaled to unit standard deviation (Z map) and thresholded at a value 

of |Z|> 2.0. Visual inspection of the estimated independent components allowed to separate 

meaningful components to those clearly related to noise. 
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4.3. Results  

4.3.1 Regional Distribution of GM Variance 

We first mapped the variance in regional gray matter volumes to identify regions characterized 

by higher inter subject variability, and, as such, more prone to be the substrates of trophic 

remodeling. The results of this univariate analysis revealed the presence of region specific 

differences in mean gray matter volumetric variability throughout the brain that could be 

empirically grouped into three variability profiles (Figure 32). The diencephalons, cerebellum 

and midbrain regions exhibited the highest gray matter variance. Regions with intermediate 

gray matter volume variability included the hippocampal formation, retrosplenial cortex, the 

basal ganglia and the olfactory bulbs. The cortical mantle showed overall low gray matter 

volume variance. Within the cerebral cortex, somatosensory and motor areas exhibited the 

lowest variance, while associative and limbic regions such as the prelimbic, infralimbic and 

cingulate cortices, showed relatively higher variability. Importantly, variance mapping 

highlighted exquisite symmetrical correspondence in virtually all the volumes probed, 

suggesting the presence of inter-hemispheric homotopic concordance in the inter-subject 

variability of regional gray matter volume. We also report voxelwise average gray matter volume 

map for all the subjects imaged (Figure 33). 

As expected, all mouse gray matter regions (e.g. cortex) exhibit maximal voxelwise gray matter 

volume density. We also computed voxelwise covariance strength, i.e. the average correlation 

coefficient when the gray matter volume of every voxel is correlated with the gray matter volume 

of every other voxel. In this map, virtually all rostral brain regions plus the whole cortex display 

positive covariance strength, while negative covariance strength is apparent in subcortical gray 

matter regions, cerebellum and brain stem, as well as the amygdala, suggesting a 



88 
 

competitive/inhibiting effect on the growth of GM between rostral and caudal macroscale brain 

districts.  

 

Figure 33. Inter-subjects gray matter volume and voxelwise covariance strength. A) Maps of 

across subjects mean gray matter volume. All gray matter areas, including cerebral cortex and major 

subcortical nuclei showed consistently high gray matter volume. B) Maps of voxelwise covariance 

strength of gray matter volumes. Anterior areas of the brain and the cerebral cortex displayed a 

consistent pattern of positive covariance strength, whereas negative covariance strength was found in 

the posterior regions of the brain, including cerebellum, brain stem and amygdala. C) 3D renderings. 

Coronal, horizontal and sagittal slices are displayed with relative 3D renderings to show the exact 

location of the cuts. Amy: amygdala; Cb: cerebellum; CPu: caudate putamen; ctx: cortex; Hypo: 

hypothalamus; HPC: hippocampus; OB: olfactory bulbs; Thal: thalamus. 

4.3.2 Hierarchical Clustering and Source Based Morphometry  

We next carried out an unbiased hierarchical clustering of inter-subject unilateral regional gray 

matter volumes to assess whether co-varying unilateral anatomical volumes would exhibit 

homotopic interhemispheric variance and would identify neuro-anatomically plausible systems. 

A color map of the correlation matrix obtained with a set of all the 198 VOIs covering the whole 
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brain gray matter volume is shown in Figure 34 (for the detailed list of the VOIs to appendix A), 

highlighting two important features.  

 

Figure 34 Whole brain agglomerative hierarchal clustering of regional gray matter volume. 

Heatmap of the correlation between inter-subject gray matter volumes in all the 198 VOIs extracted from 

the two labelled neuroanatomical atlases. Regions have been arranged based on the results of 

agglomerative hierarchal cluster analysis. Six major clusters of structures were identified: A) a posterior 

cortical cluster, B) a hippocampal cluster, C) an anterior cortical cluster, D) a subcortical cluster, E) 

colliculi plus olfactory regions; and F) a brain stem and cerebellar cluster. The vast majority of homotopic 

areas clustered within the first steps of the agglomeration procedure. The ordered list of regions 

composing each cluster is reported in Appendix A. 

First, the vast majority of all left and right homotopic gray matter volumes displayed similar 

patterns of correlations and were found to be clustered together after the first steps of the 

agglomeration procedure. This finding demonstrates the presence of covarying gray matter 
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volumes in homotopic mouse brain regions, a finding recapitulating the structural organization 

of the human brain cortex (Mechelli, Friston et al. 2005). Additional agglomeration steps 

revealed six major clusters of anatomical structures reflecting different combinations of known 

mouse brain neuroanatomical systems. Specifically, the clusters identified were: A) a posterior 

cortical cluster, including auditory, visual and retrosplenial cortices; B) a hippocampal cluster, 

including hippocampal formation, rhinal and temporal association cortices, C) an anterior 

cortical cluster including both limbic (cingulate, orbitofrontal, insular cortex and prelimbic cortex) 

and somatomotor cortices; D) a subcortical cluster, including the striatum, amygdala, thalamus 

and hypothalamus, as well as the infralimbic cortex; E) colliculi and olfactory regions; and F) 

brain stem and cerebellar areas. All the clusters identified were characterized by the presence 

of positive correlations between their constituting regions. Interestingly, brain stem and 

cerebellar regions appeared to be anti-correlated to most of the neocortical and subcortical 

regions, suggesting a competing interaction in regional volumetric variability between these 

areas, which is consistent with voxelwise correlation strength mapping in Figure 33. A similar 

anti-correlation was also apparent between hippocampal and posterior neocortical cortex.  

4.3.3 Seed Based Mapping: Sc-MRI Networks 

To corroborate our results and overcome the issues related to the coarse spatial sampling 

achievable with volumetric cluster analysis, we carried out whole-brain voxelwise correlation 

analyses using mean gray matter volume from unilateral anatomical VOIs as seeds. Consistent 

with human studies (Mechelli, Friston et al. 2005, Zielinski, Gennatas et al. 2010), our results 

revealed strong positive associations between each of the seeds and their contralateral 

homotopic regions for all primary cortical areas probed (i.e. primary motor, somatosensory and 

auditory cortices Figure 35). Additionally, both right and left auditory networks were found to 
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encompass also the visual cortex bilaterally, and somatosensory and motor networks included 

foci of correlation in the cingulate cortex.  

 

Figure 35. Networks of anatomical covariance: primary cortices. Correlation maps for unilateral 

primary motor, somatosensory and auditory gray matter volume seeds. All the seeds exhibited the 

involvement of homotopic regions in the contralateral hemisphere. Additionally, both right and left 

auditory networks were found to encompass also the visual cortex bilaterally, and somatosensory and 

motor networks included foci of correlation in the cingulate cortex. Threshold of statistical significance 

was set at p<0.05, FWE corrected for multiple comparisons. Au ctx: auditory cortex; Cg ctx: cingulate 

ctx; M ctx: motor ctx; Rh ctx: rhinal cortex; S ctx: somatosensory cortex; V ctx: visual cortex. 

The use of unilateral seeds in associative cortical regions (i.e. cingulate, prefrontal, insular and 

retrosplenial cortices, Figure 36) highlighted analogous bilateral homotopic covariance 

patterns, together with the involvement of neighboring somatosensory regions. Consistent with 

the results of cluster analysis, the cingulate network also included large portions of the motor 

and somatosensory cortices corroborating the existence of a strong mutual trophic influence 

between these regions. We also found ipsilateral correlation between the insula and 

neighboring somatosensory and piriform cortices, and between the retrosplenium and the visual 
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cortex. Interestingly, covariance mapping using medial prefrontal seeds (left and right prelimbic 

cortex, Figure 36)  revealed  local network encompassing the orbitofrontal cortex bilaterally 

together with foci in the insular cortex, reminiscent of a pattern of correlation observed in human 

scMRI mapping (Zielinski, Anderson et al. 2012).   

 

Figure 36. ScMRI networks: associative cortices. Correlation maps for associative cortex gray matter 

volume seeds.  We found positive symmetric associations between cingulate, prefrontal, insular and 

retrosplenial areas, and their homotopic contralateral regions. Threshold of statistical significance was 

set at p<0.05, FEW corrected for multiple comparisons. Cg ctx: cingulate ctx; Ins: Insula; mPFC: medial 

prefrontal cortex; M ctx: motor ctx; OF ctx: orbitofrontal cortex; Pir: Piriform cortex; RS: retrosplenial 

cortex; S ctx: somatosensory cortex; V ctx: visual cortex. 

Importantly, analogous network configurations were also identified using SBM (Figure 37). 

Specifically, six components recapitulated anatomical features of the cortical networks 

identified with seed-based mapping. These included a medial prefrontal, auditory-visual, 

insular, retrosplenial, motor-cingulate and somatosensory component (Figure 37). In keeping 

with seed-based correlation mapping, all the networks identified exhibited symmetric homotopic 
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distribution, although the degree of symmetry produced by SBM was lower than observed with 

seed mapping. 

 

Figure 37. Source based morphometry of the cerebral cortex. Six bilateral homotopic independent 

components were identified with SBM, including a medial prefrontal, an auditory-visual, an insular, a 

retrosplenial, a motor-cingulate and a somatosensory source. The anatomical distribution of these 

components exhibits overlap with correlative networks found using seed-based analysis. 

Seed-based correlation mapping of subcortical structures such as the amygdala, the caudate 

putamen, the thalamus and hypothalamus also showed positive, highly bilateral inter-

hemispheric correlations encompassing homotopic brain regions. Interestingly, the 

diencephalic structures probed (thalamus, and hypothalamus) revealed reciprocal extensive 

antero-posterior network distribution to involve additional subcortical systems (i.e. the striatum), 
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in keeping with the results of our cluster analysis. The amygdala network also revealed 

significant ipsilateral involvement of rhinal cortex Figure 38.  

 

Figure 38. ScMRI networks: subcortical regions. Correlation maps for subcortical gray matter volume 

seeds. Subcortical structures showed highly symmetric patterns of inter-hemispheric correlations, with 

evidence of distributed bilateral correlations in the thalamus and hypothalamus. Threshold of statistical 

significance was set at p<0.05, FEW corrected for multiple comparisons. Amy: amygdala; CPu: striatum; 

Hypo: hypothalamus; Ins: insula; Rh ctx: rhinal cortex; S1: primary somatosensory cortex; Thal: 

thalamus. 

Seed-based probing of ventral and dorsal hippocampus did not shown any significant inter-

hemispheric correlation with other brain areas. Interestingly, a large involvement of 

hippocampal areas was observed when septal nuclei were used as seeds (Figure 39), to 

delineate a highly symmetric antero-distributed septo-hippocampal network reminiscent of in 

vivo functional networks previously identified in rodents (Gozzi, Crestan et al. 2010, Teles-Grilo 

Ruivo and Mellor 2013). The network however did not survive the family-wise correction 

threshold employed in this study. These results demonstrate the presence of bilateral 



95 
 

homotopic grey matter covariance networks in the mouse brain recapitulating anatomical 

covariance features recently observed in human brain studies. 

 

Figure 39. Septo-hippocampal network. Seed-correlation map obtained using septal gray matter 

volume. The approach highlighted a bilateral antero-distributed septo-hippocampal network. Threshold 

of statistical significance was set at p<0.05 (uncorrected). CPu=caudate putamen; HPC=hippocampus; 

mPFC=medial prefrontal cortex; Sept=septal nucleus. 

To obtain an initial estimate of power necessary to reliably map covariance networks in the 

mouse, we performed a simple seed-based analysis of a representative cortical and subcortical 

network (auditory and hypothalamus, respectively) employing increasing numbers (i.e. 10, 20, 

30, 40, 53) of randomly selected subjects from our subjects cohort. The results of this analysis 

() revealed emergence of robust covariance networks with a sample size of approximately 30-

40 subjects. We note that such sample size is in line with those typically employed in human 

studies (Montembeault, Joubert et al. 2012, Zielinski, Anderson et al. 2012, Khundrakpam, Reid 

et al. 2013). We also empirically assessed the effect of smoothing on the distribution of 

covariance network (Figure 41). To this purpose, we generated scMRI maps for our two 

representative seed volumes (auditory cortex and hypothalamus) at varying smoothing sizes. 

For both seeds, significant homotopic brain covariance was evident also in unsmoothed data 

thus arguing against a major confounding contribution of this procedure to our findings. As 

expected, increased smoothing was associated with a larger extension of contralateral regions, 
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although the overall anatomical distribution of the affected areas appears to be overall 

conserved.  

 

Figure 40. Impact of sample size on scMRI. Seed-based analysis of a representative cortical and 

subcortical network (auditory and hypothalamus, respectively) employing increasing sample sizes. 

Emergence of statistically significant bilateral covariance networks is apparent with a minimum sample 

size of 30 subjects. 

To investigate whether gray matter scMRI is affected by neuroanatomical proximity, we 

correlated Euclidian distance (in mm) between each pair of VOI and their covariance strength 

(Pearson’s correlation). This resulted in a correlation plot containing 19503 observations (198 



97 
 

* 197 / 2), illustrated in Figure 42. A significant correlation between anatomical distance and 

covariance strength was found (r=0.21; p<0.0001), although the gentle regression slope 

indicated a relatively small contribution of this phenomenon to the covariance strength 

observed. 

 

Figure 41. Impact of smoothing on scMRI. To investigate the impact of smoothing, we use our 

representative cortical and subcortical seeds (auditory and hypothalamus) to study the behavior of 

scMRI at different size of smoothing, by varying sigma from 0 (no smoothing) to 4 voxels.  
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In keeping with this, the scatterplot shows high density of VOI pairs exhibiting high covariance 

despite being substantially far apart (e.g. > 5 mm).  

 

Figure 42. Correlation plot between physical distance and covariance strength. To investigate the 

effect of physical distance of scMRI, we correlate the distance between each pair of regions with the 

covariance between those regions. We found a moderately low correlation coefficient, indicating that 

mutual trophic influence occurs at different brain scales and is only marginally associated with 

anatomical proximity (A). Similar results were found when the correlation between physical distance and 

covariance strength was investigated only in cortical regions (B). The profile of extra-cortical pairs of 

anatomical regions exhibited instead a shift from positive to negative correlations as the anatomical 

distance between regions increases (C). 95% CI are reported in grey. 

Some of these long distance covariance relationships are also depicted in our seed based 

mapping (e.g. insular, visual, amygdala, or thalamo-striatal covariance, Figure 36 and Figure 
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38). Collectively, this observation suggests that mutual trophic influence occurs at different 

brain scales and is only marginally associated with (or driven by) anatomical proximity. Further 

cross comparisons with a mouse axonal density may help probe a putative connectional origin 

for this relationship. We also generated distinct plots for cortical and subcortical areas (Figure 

42). The cortical plot recapitulates features observed with the whole set of regions. The profile 

of extracortical VOI pairs exhibited instead a shift from positive to negative correlations as the 

anatomical distance between regions increases.  

 

Figure 43. Correlation plot between region size and covariance strength. To investigate a role of 

volumetric VOI heterogeneity in determining correlation strength, we correlated the size of each of the 

198 VOIs with the average covariance of that VOI with all the other brain regions. Pearson’s correlation 

coefficient of this correlation was not significant (r=0.04; p=0.58), 95% CI are reported in grey. 

This finding is consistent with voxelwise covariance mapping at the voxel level (Figure 33, 

discussed below) showing anti-correlation between subcortical brainstem regions and cortical 

areas, thus revealing a competing interaction in regional volumetric variability affecting mostly 
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long-range subcortical regions (e.g. brainstem and striatum). We also probed the correlation 

between region size (volume in mm3) and covariance strength (mean covariance between each 

pair of volumes). As reported in Figure 43, no significant correlation between these two metrics 

was found (Pearson’s r = 0.04; p=0.58).  

4.4. Discussion  

Our work documents the presence of covarying regional gray matter volumes in a cohort of 

inbred laboratory mice, defining macroscale correlational networks characterized by high 

neuroanatomical specificity, which could be clustered into antero-cortical, cortico-hippocampal 

and subcortical limbic components. Consistent with previous findings in humans (Mechelli, 

Friston et al. 2005, Chen, He et al. 2008, Zielinski, Gennatas et al. 2010), the covariance 

patterns identified showed strong symmetric correlations among gray matter volumes of 

homologous brain regions. Robust scMRI correlations were observed both in cortical and sub-

cortical structures, with the latter including the mutual involvement of diencephalic and striatal 

areas to define an extended antero-posterior network, as well as a septo-hippocampal network. 

Complementary computational and mapping approaches (e.g. hierarchical clustering, seed-

based mapping and SBM) produced consistent results, thus supporting the robustness of our 

findings. Moreover, the use of brain size corrected volumes permits to rule out a purely 

allometric origin for the mapped networks in favor of a trophic connectional origin (Szulc, Lerch 

et al. 2015).  

Despite the increasing use of scMRI mapping in human studies, the application of this approach 

to animal models has been so far very limited, with the exception of a few notable examples in 

the field of  nonhuman primate research  (Alexander, Chen et al. 2008, Spocter, Hopkins et al. 

2010, Shamy, Habeck et al. 2011). An exploratory covariance analysis of mouse brain regional 

volumes has been previously reported (Badea, Johnson et al. 2009), leading to the identification 
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of a large putative limbic network, but failing to highlight fine-grained homotopic cortical and 

subcortical scMRI networks analogous to those observed in humans. Our results demonstrate 

the existence of neuro-anatomically specific cortical and subcortical networks of covariance 

also in the laboratory mouse, thus extending the use of scMRI approaches to lower mammal 

species. In this respect our work may serve as a reference for future studies aimed at exploiting 

the increasing availability of mouse models and genetic tools to address open questions about 

the neurobiological, genetic and connectional determinants of these correlative networks, and 

generate hypothesis about their derangement in pathological states. Importantly, several of the 

identified networks have direct human homologues, thus enabling tentative cross species 

comparisons. For example, segregated somatosensory, visual, motor and auditory scMRI 

networks have been reliably identified in humans using seed-based approaches (Mechelli, 

Friston et al. 2005, Zielinski, Gennatas et al. 2010). ScMRI between midline cingulate and 

lateral cortical areas reminiscent of our findings has also been described (Zielinski, Gennatas 

et al. 2010), together with homotopic involvement of amygdala and peri-hippocampal cortical 

areas (Bohbot, Lerch et al. 2007). Importantly, the presence of symmetric short and long 

distance patterns of scMRI connecting interhemispheric regions recapitulate previous 

functional network mapping using resting-state functional MRI in humans (Salvador, Suckling 

et al. 2005) and mice (Sforazzini, Schwarz et al. 2014), thus highlighting common 

neuroanatomical substrates driving the emergence of these phenomena.  

A cross-species comparison of cortical covariance patterns involving higher order cognitive 

areas is complicated by the lack of direct cytoarchitectural correlates of human cortical areas 

in the mouse as a result of the large evolutionary distance between human and rodents. The 

correlation between anterior cingulate, medial prefrontal and insular foci is nevertheless of 

interest as it recapitulates neuroanatomical features reminiscent of a human scMRI network 
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termed “salience network” (Zielinski, Anderson et al. 2012). This network was originally 

identified with resting-state fMRI and is involved in attribution of salience to behavioral stimuli 

(Seeley, Menon et al. 2007). Interestingly, empirical evidence of an analogous insular-cingulate 

“salience-like” functional connectivity network has been recently provided in the mouse using 

resting-state fMRI (Sforazzini, Bertero et al. 2014, Sforazzini, Schwarz et al. 2014), although 

an involvement of this functional network in mouse salience attribution remains to be 

demonstrated. While at present only speculative, the putative structural-functional 

correspondence observed in the mouse is noteworthy as it may parallel analogous human 

findings, supporting the translational significance of the approach also for associative areas 

involved in high level cognitive integration. Such a parallel was however not identified for the 

default mode network (DMN), a large functional connectivity network that in humans exhibits 

partial neuroanatomical overlap with scMRI patterns (Spreng and Turner 2013). Despite the 

recent identification of a plausible mouse brain DMN-homologue (Sforazzini, Schwarz et al. 

2014, Liska, Galbusera et al. 2015) reflecting homologous antero-posterior brain axonal 

connectivity patterns (Oh, Harris et al. 2014), no midline gray matter covariance relatable to the 

DMN was observed in the present study, a finding at odds with some human scMRI reports 

(Zielinski, Gennatas et al. 2010, Spreng and Turner 2013). The lack of scMRI in antero-posterior 

midline regions exhibiting robust white matter connectivity such as the DMN supports the 

emerging view that the trophic processes driving the emergence of scMRI reflect macroscale 

integrative network activity that is only partially constrained by underlying axonal connectivity. 

Consistent with this, human white matter connectivity has been shown to describe less than 

40% of scMRI (Gong, He et al. 2012). Direct comparisons with high-resolution mouse brain 

axonal tracing may help disentangle the elusive relationship between white matter and 

covariance gray matter connectivity. 
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Relative differences in the genetic variability of human population imaged and the inbred mouse 

cohort employed in the present study also need to be taken when attempting to extrapolate our 

results to clinical scMRI research. Human studies employing genetically heterogeneous 

subjects and homozygotic twins have demonstrated that both genes and the environment play 

a determinant contribution in shaping scMRI networks. For example,  a relevant contribution of 

the environment in explaining cross-subjects cortical thickness variability of the occipital and 

temporal lobe has been demonstrated (Schmitt, Lenroot et al. 2009), although association 

between cortical and subcortical (Eyler, Prom‐Wormley et al. 2011) homotopic was mainly 

attributable to genetic mechanisms. Similarly, genetic polymorphisms have been shown to 

affect the development and topology of specific scMRI networks (Pezawas, Meyer-Lindenberg 

et al. 2005, Alexander-Bloch, Giedd et al. 2013). The identification of scMRI networks also in 

genetically homogeneous inbred mice bred under standardized environmental conditions 

achievable in laboratory settings is a non-trivial finding that corroborates a significant amplifying 

influence of early life (e.g. maternal care, number of littermates), and minor environmental and 

experience-related factors in the emergence of these networks. This finding also suggests that 

heterogenic experience-related factors can induce gray matter neuroanatomical remodeling of 

neuronal processes not only at a the local (Lerch, Yiu et al. 2011) but also at the macroscale.  

The use of outbred mouse strains or inbred crosses characterized by different genetic variability 

may be useful in assessing the relative contribution of genetic and environmental factors in 

controlling the emergence of distributed networks and their neuroanatomical extension. In this 

respect, it is interesting to note that during human development, scMRI networks are initially 

characterized by strict homotopic extension (e.g. similar to what we observed in the mouse), 

and assume broader cross-modal distribution in late adolescence and young adulthood, a 

trajectory that presumably reflects an interaction between neurodevelopmental and 



104 
 

environmental contributions. Future mouse studies may assess whether similar distributed 

network correlations could similarly emerge upon robust environmental enrichment in inbred 

and outbred strains. The controlled genetic variability related to the use of inbred mice has also 

practical implications for the design of future mouse scMRI research. The correlational nature 

of scMRI mapping and low variance observed in cortical regions imply that large sample size 

(e.g. at least 30-40, Figure 40) may be needed to adequately power studies aimed at detecting 

inter-group differences in scMRI networks, with values theoretically exceeding group size 

typically used in behavioral or molecular neuroscience research. Whether this is an intrinsic 

feature of the inbred mouse strain employed in this study, or a fundamental characteristic of 

the mammal brain remains to be determined, although the wide use of similarly powered 

samples in human covariance studies (Montembeault, Joubert et al. 2012, Zielinski, Anderson 

et al. 2012, Khundrakpam, Reid et al. 2013) favors the second hypothesis. 

In conclusion, here we describe robust inter-hemispheric scMRI networks in the laboratory 

mouse, characterized by high neuroanatomical specificity and involving cortical and subcortical 

regions. Our work may guide future investigations on the emergence of these correlative 

networks, and pave the way to the investigation of the underpinnings of scMRI alterations of 

pathological relevance.  
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5. Conclusion 

Structural MRI methods based on volumetric quantification have been extensively applied over 

the last decades to study the human brain in healthy and pathological states. ScMRI represents 

a step forward compared to standard volumetric techniques since it permits to elucidate the 

trophic dynamics between brain regions and has the potential to unravel the trophic 

organization of the brain at the network level. However, the specific neurobiological 

determinants of scMRI network coupling remain debated.  

To probe the presence of scMRI networks in the mouse brain, I used seed-based analysis 

based on permutation as implemented in FSL randomize (Winkler, Ridgway et al. 2014). 

Permutation testing is a non-parametric statistical framework that can be used regardless the 

distribution profile of the data (Holmes, Blair et al. 1996). Seed based mapping generates 

multiple gray matter correlation coefficients (equal to the number of voxels in the brain) that 

need to be controlled for type-I errors (Nichols and Holmes 2002). To this aim, I used a strict 

family-wise error rate correction (FWER, p<0.05) and I calculated the permutation distribution 

of the maximal correlation coefficient over the entire mouse brain considering  significant only 

the correlation coefficients that were in the top 5% of the distribution of the maximal correlation 

(Nichols and Holmes 2002). Importantly, this rigorous correction strategy has been successfully 

used to map scMRI networks in a number of previous human studies (Mechelli, Friston et al. 

2005, Coppen, van der Grond et al. 2016, Bassett, Bullmore et al. e2008).  

Because human studies are typically based on large cohort of individuals, I applied covariance 

network mapping methods to a similarly big cohort of mice (n=53). However, the typical sample 

size of a neuroscientific experiment involving different experimental arms is usually much 

smaller than this (e.g. n=8-12). This was the case for two of the studies I performed as part of 
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my PhD research (Cutuli, Pagani et al. 2016, Lassi, Priano et al. 2016) in which smaller 

experimental groups were used (n=9-12 per group). In the above two studies, the FWER 

approach appeared to be too conservative, leading to the rejection of inter-group differences 

that were otherwise bilateral, region-specific and remarkably consistent with the experimental 

hypotheses underlying these two studies. To circumvent this problem, I used ordinary least 

squares (OLS) followed by cluster-based correction, a more liberal, yet rigorous, multiple 

comparison correction approach widely employed in structural imaging studies (Good, 

Johnsrude et al. 2003, Modinos, Costafreda et al. 2013, Jednorog, Marchewka et al. 2015, 

Khan, Wang et al. 2015). In order to meet normality assumption, I introduced spatial smoothing 

to brain volumes prior to statistics, as previously described (Salmond, Ashburner et al. 2002). 

As expected, by using this procedure we obtained undistinguishable results when using 

permutation statistics or OLS mapping (Figure 44).  

 

Figure 44. Exemplificative comparison between OLS and permutation statistical testing. OLS and 

permutation-based statistics yield virtually undistinguishable results in term of significant foci of 

increased GM volumes. Red-yellow coloring show increased hippocampal and retrosplenial GM volume 

in mice treated with omega-3 compared to control mice treated with olive oil. 

OLS maps were subsequently thresholded using a cluster based correction for multiple 

comparisons (Worsley, Evans et al. 1992). This method  defines clusters as sets of contiguous 
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voxels whose intensity exceeds a statistically significant threshold (p<0.01), and  tests the null 

hypothesis by using random fields to examine whether the spatial extent of these clusters is 

unusually large than by chance alone (Hayasaka and Nichols 2003). This strategy revealed to 

be sensitive  enough to reveal hippocampal increase in GM volume in the group of mice treated 

with omega-3, an effect consistent with previous mouse studies (Gómez-Pinilla 2008, Cutuli, 

De Bartolo et al. 2014) and human literature (Pottala, Yaffe et al. 2014) as well as with 

behavioral improvement in hippocampal based cognitive functioning exhibited by nPUFA 

treated mice (Figure 31). Importantly, a key confirmation of the validity of this approach is its 

excellent correspondence with the results of inter-group volumetric anatomical labelling in the 

same datasets. For example, all the studies I performed using VBM revealed excellent 

neuroanatomical agreement between regions exhibiting statistically significant volumetric 

labelling and corresponding foci of significant GMV in VBM maps. This observation provides 

crucial empirical support to the cluster-based thresholding strategy employed (Cutuli, Pagani 

et al. 2016, Lassi, Priano et al. 2016), that can be also used to correct permutation based 

statistics (Salimi-Khorshidi, Smith et al. 2011), as shown in VBM morphoanatomical 

measurements in BTBR mice (Pagani, Damiano et al. 2016). 

The VBM pipeline heavily relies upon image registration, a step employed in the creation of the 

study based template, normalization of images and calculation of Jacobian determinants. As 

shown in Figure 19, I took great care in making sure that this crucial step is performed 

accurately by running a high number of pilot studies to find the better parameters for the 

antsRegistration tool via measurements of Dice coefficients. The results of this optimization 

show an excellent agreement between automated and manual registrations in all brain regions 

tested (Figure 19) and are in line with those of other lab (Badea, Gewalt et al. 2012). Regarding 

cortical thickness, the pipeline based on DiReCT is capable to produce results in excellent 



108 
 

correspondence (Figure 17; r=0.99; p<0.001) with manual thickness measurements in 

secondary motor (M2), secondary somatosensory (S2) and auditory cortex (Au). Importantly, 

the sensitivity of all these readouts was also previously validated in previous studies (Das, 

Avants et al. 2009, Avants, Tustison et al. 2011, Tustison, Cook et al. 2014), from which we 

replicated the computational parameters  

Also, the quality of segmentation was assessed empirically by comparing individual and merged 

tissue classes with the anatomical distribution of known high-density white matter structures 

such as the corpus callosum, anterior and posterior commissures, as seen in the study-based 

template. These structures are easily identifiable when compared with their segmented 

counterparts (Figure 45).  

 

Figure 45. Segmented probability maps trace anatomical images. Segmented GM probability maps 

(colored in white in the right image) showed a great overlapping with the anatomy of morphological 

images. Cerebral and cerebellar cortex, hippocampus, striatum and other major gray matter regions are 

clearly labelled as GM, whereas corpus callosum and the other major fiber bundles are labelled as non-

GM and then correctly excluded from following analysis.    

Overall the segmentation procedure appears to efficiently and clearly separate high density 

gray and white matter regions. However, the lack of a “ground truth” spatial tissue distribution, 
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and the presence of tissues with variable proportion of white and gray matter have so far 

prevented an unbiased validation of the employed segmentation strategies, with the accuracy 

of this step being in most case still entirely operator dependent. The use of tensor based 

morphometry (a straightforward extension of our procedure) can help increase confidence of 

inter-group differences observed in regions at the interface of white/gray matter. Future 

extension of this initial workflow could employ quantitative approaches to estimate goodness of 

cluster separation (Chou, Su et al. 2004, Wu and Yang 2005), although operator dependent 

assessments of the tissue class separations are ultimately warranted to ensure biologically 

meaningful results.  

To conclude, my research has focused on the development and application of MRI-based 

methods to map structural covariance in the laboratory mouse, hence enabling the possibility 

of causally probing the contribution of genetic, cellular and environmental challenges in 

morphing the establishment of these networks. This research led to the first description of 

neuroanatomically meaningful covariance patterns that recapitulate key topological features of 

the human brain, thus defining scMRI as a novel translational tool to bridge clinical and 

preclinical research. My results open the way to the investigation of brain structural architecture 

in the laboratory mouse. For example, the application of scMRI networks in genetically modified 

mouse lines recapitulating human pathological mutations in experimentally controlled studies 

can produce valuable insights about causal links between specific genetic mutations and 

clinically relevant scMRI endophenotypes. The application of this approach to mouse lines 

harboring autism-related mutation is currently in progress. 

Collectively, my work supports the use of scMRI in the mouse to generate hypotheses about 

derangement of structural covariance in pathological states of clinical relevance and provides 
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a novel mechanistic and translational perspective on the elusive pathological mechanisms of 

neuro-psychiatric disorders such as autism and schizophrenia. 
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APPENDIX A 

Complete list of all the 198 VOIs used to parcellate the mouse brains and to create clusters 

(Figure 34) with similar pairwise correlation of gray matter volume  

Cluster membership Brain region Hemisphere 

A area 29c right 

A area 29c left 

A medial parietal association cortex right 

A area 30 right 

A area 30 left 

A secondary visual cortex, mediolateral area right 

A secondary visual cortex, mediomedial area right 

A primary visual cortex, monocular area right 

A area 29b right 

A area 29a right 

A area 29b left 

A area 29a left 

A primary visual cortex, binocular area right 

A secondary visual cortex, lateral part right 

A temporal association area right 

A secondary visual cortex, lateral part left 

A primary visual cortex, binocular area left 

A dorsal subiculum right 

A dorsal subiculum left 

A primary visual cortex right 

A primary visual cortex left 

A secondary visual cortex, mediomedial area left 

A lateral parietal association cortex left 

A primary somatosensory, trunk region left 

A medial parietal association cortex left 

A parietal cortex, posterior area, rostral part left 

A lateral parietal association cortex right 

A primary somatosensory, trunk region right 

A parietal cortex, posterior area, rostral part right 

A secondary auditory cortex, dorsal area right 

A primary auditory cortex right 

A secondary auditory cortex, ventral area right 

A primary auditory cortex left 

A secondary auditory cortex, dorsal area left 

A secondary auditory cortex, ventral area left 

A secondary visual cortex, mediolateral area left 

A primary visual cortex, monocular area left 
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A dorsolateral entorhinal cortex left 

A dorsal intermediate entorhinal cortex left 

B area 24a right 

B area 24a left 

B ectorhinal cortex left 

B peririhinal cortex left 

B temporal association area left 

B subiculum transition area left 

B hippocampus right 

B subiculum transition area right 

B hippocampus left 

B ectorhinal cortex right 

B peririhinal cortex right 

B parasubiculum left 

B parasubiculum right 

B presubiculum right 

B postsubiculum left 

B postsubiculum right 

B caudomedial entorhinal cortex right 

B dentate gyrus left 

B stratum granulosum of hippocampus left 

B dentate gyrus right 

B stratum granulosum of hippocampus right 

B medial entorhinal cortex left 

B ventral intermediate entorhinal cortex left 

B medial entorhinal cortex right 

B ventral intermediate entorhinal cortex right 

B stratum lucidum of hippocampus right 

B stratum lucidum of hippocampus left 

B presubiculum left 

B caudomedial entorhinal cortex left 

B cortex-amygdala transition zones right 

B cortex-amygdala transition zones left 

B lateral septal nucleus left 

B lateral septal nucleus right 

B dorsolateral entorhinal cortex right 

B dorsal intermediate entorhinal cortex right 

C primary somatosensory cortex right 

C frontal cortex area 3 right 

C secondary motor cortex right 

C area 24b right 

C secondary motor cortex left 

C area 24b left 

C primary motor cortex right 

C primary motor cortex left 
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C secondary somatosensory cortex left 

C primary somatosensory, upper limb region left 

C primary somatosensory, jaw region left 

C primary somatosensory cortex left 

C frontal cortex area 3 left 

C primary somatosensory, shoulder region left 

C primary somatosensory, hindlimb region left 

C area 24a' left 

C area 24a' right 

C primary somatosensory, hindlimb region right 

C primary somatosensory, forelimb region right 

C primary somatosensory, shoulder region right 

C primary somatosensory, dysgranular zone right 

C primary somatosensory, barrel field right 

C area 24b' left 

C area 24b' right 

C primary somatosensory, dysgranular zone left 

C primary somatosensory, forelimb region left 

C primary somatosensory, barrel field left 

C primary somatosensory, jaw region right 

C primary somatosensory, upper limb region right 

C dorsolateral orbital cortex left 

C lateral orbital cortex left 

C lateral orbital cortex right 

C dorsolateral orbital cortex right 

C frontal association cortex left 

C frontal association cortex right 

C area 32 left 

C area 32 right 

C medial orbital cortex right 

C medial orbital cortex left 

C ventro orbital cortex left 

C ventro orbital cortex right 

C claustrum, dorsal part right 

C claustrum, ventral part right 

C insula right 

C secondary somatosensory cortex right 

D caudoputamen right 

D claustrum left 

D piriform cortex left 

D dorsal nucleus of the endopiriform left 

D claustrum, ventral part left 

D claustrum, dorsal part left 

D insula left 

D area 25 right 
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D area 25 left 

D dorsal tenia tecta right 

D dorsal tenia tecta left 

D ventral nucleus of the endopiriform claustrum left 

D amygdala right 

D ventral nucleus of the endopiriform claustrum right 

D intermediate nucleus of the endopiriform claustrum left 

D accumbens nucleus, shell right 

D nucleus accumbens, core right 

D bed nucleus of the stria terminalis left 

D bed nucleus of the stria terminalis right 

D medial septal nucleus left 

D medial septal nucleus right 

D basal forebrain right 

D thalamus right 

D thalamus left 

D globus pallidus right 

D piriform cortex right 

D dorsal nucleus of the endopiriform right 

D amygdala left 

D caudoputamen left 

D claustrum right 

D intermediate nucleus of the endopiriform claustrum right 

D accumbens nucleus, shell left 

D nucleus accumbens, core left 

D globus pallidus left 

D basal forebrain left 

D hypothalamus right 

D hypothalamus left 

D midbrain left 

D midbrain right 

D mammillary bodies right 

D mammillary bodies left 

D olfactory tubercole left 

D interpedunclar nucleus left 

D interpedunclar nucleus right 

D olfactory tubercole right 

D ventral tenia tecta right 

D subependymale zone rhinocele left 

D subependymale zone rhinocele right 

D ventral tenia tecta left 

E olfactory bulbs right 

E olfactory bulbs left 

E periaqueductal gray left 

E periaqueductal gray right 
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E superior colliculus right 

E superior colliculus left 

E inferior colliculus right 

E inferior colliculus left 

E amygdalopiriform transition area right 

E posteromedial cortical amygdaloid nucleus right 

E posterolateral cortical amygdaloid nucleus right 

E rostral amigdalopiriform area right 

E amygdalopiriform transition area left 

E posteromedial cortical amygdaloid nucleus left 

E posterolateral cortical amygdaloid nucleus left 

E rostral amigdalopiriform area left 

F cerebellar cortex right 

F cerebellar cortex left 

F pontine nucleus left 

F pontine nucleus right 

F superior olivary complex left 

F superior olivary complex right 

F pons left 

F pons right 

F cuneate nucleus right 

F cuneate nucleus left 

F inferior olivary complex right 

F inferior olivary complex left 

F medulla left 

F medulla right 

 

 

 

 

 

 

 

 

 



133 
 

 


