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Abstract 

 

Genetic engineering has been widely used to reprogram cells for a variety of 

purposes, suggesting a wide range of possible applications in industrial and academic 

research. Although the techniques available are very well established, the mechanisms of 

cellular life are not completely understood. Therefore, despite offering a versatile tool, 

engineered cells are prone to possible unexpected behaviors. 

Investigations of more controllable systems are partially focused on the creation of 

cellular mimics assembled from discrete components with defined properties. The 

controlled assembly of molecules allows the creation of entities able to form 

compartments in water solutions and to carry out enzymatic reactions or gene 

expression.1–6 These artificial cells are able to establish communication pathways with 

natural cells1,4 and may be further developed to fight pathogens or cancer cells, for 

example. Despite these promising results, technological applications based on cellular 

mimics necessitate further technical improvements. 

A considerable defect of artificial cells is the lack of some mechanisms for self-

sustainment that are instead present in engineered living cells. Besides few strategies 

aimed at energy restoration,7,8 artificial cells are not yet able to efficiently use the available 

resources in their environment. Considering these technical limitations, this thesis 

proposes to improve communication pathways between artificial and natural cells by 

exploiting multiple kinds of cellular mimics. Artificial cells can vary in composition and if 

engineered to coordinate activity, could be capable of overcoming individual weaknesses. 

To investigate the possibility of creating communities of artificial cells that 

collaborate with each other, the work described here was focused on establishing 

molecular communication pathways between two kinds of artificial cells. The designed 

communication was based on the exchange of chemical messages between two cellular 

mimics resulting either in genetic regulation or enzymatic reactions. On one side, lipid 

vesicles carrying gene expression through in vitro transcription and translation reactions 

and on the other side a novel structure composed of modified proteins, named 

proteinosome, to carry out enzymatic reactions. Each part of the communication pathway 

was separately investigated. Some efforts were put into the characterization of genetic 

switches so as to be able to better tune gene expression. All the other components were 

then singularly tested before combining together. 

One way that artificial cells, either alone or in a community, can function as a 

useful technology is if the artificial cells are able to sense and respond to environmental 

changes. The sensing functionality can be conferred by natural or synthetic transcriptional 

regulators. It is possible to modify biological macromolecules to interact with chemical 
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messages released by natural cells. The second part of the thesis summarizes two 

distinct works aimed at developing two kinds of biosensors with potential applications 

within artificial cells. 

Several technical problems arose while testing the communication pathway, and it 

was necessary to change the initial strategy to include engineered cells. Nonetheless, the 

work presented here offers a method for the establishment of molecular communication 

pathways within communities of artificial cells that could serve as the basis for future 

implementation in more efficient communication systems.  
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Chapter 1 

 

Building life-like entities 
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Our current understanding of the chemistry and physics of life is far from complete, 

thus complicating efforts in formulating an explicit set of rules that describe life. 

Nonetheless, what is known is sufficient to engineer new phenotypes of existing, living 

cells. That is, biology is understood well enough to allow for some type of intervention with 

limited predictability, because collateral effects may arise from any direct modification, but 

much room for improvement remains. 

Cells engineered to sense and respond to the environment have some useful 

application. Any organism can actively sense external stimuli at a cellular level, e.g. 

chemical messages released from other cells or changes in pH or temperature. Cells can 

consequently respond to these variations by releasing other signals that can be 

intercepted by other cells. The regulation of these signaling pathways can be 

enzymatically driven and regulated at a genetic level. By knowing the molecular details of 

these processes, it is possible to rationally design and exploit these communication 

pathways. Some attempts in this direction produced engineered bacteria that are able to 

fight cancer cells or pathogens.9–14  

Despite these promising applications, our incomplete understanding of biology 

results in an inability to predict the activity of engineered pathways. The newly engineered 

device could lead to unexpected and possibly detrimental effects. One reason is that the 

engineered pathways typically exploit biological parts that are normally used for other 

purposes inside of the cell. As a consequence, there may be crosstalk or a competition of 

resources, leading to reduced efficacy. 

One approach to avoiding any possible cross-interference with the host genetic 

pathways is to modify natural cells with orthogonal elements. Novel nucleic acids 

polymers might be exploited for genetic inheritance15 and DNA plasmids containing new 

base pairs can be successfully replicated in bacteria.16 Unnatural amino acids can be 

included in polypeptides by means of orthogonal ribosomes17,18 and modifications of 

tRNAs based either on a suppressed stop codon to carry a novel amino acid19 or on the 

recognition of a quadruplet codon.20 

Problems can also arise from interactions with the environment. A cell engineered 

to fight a disease may be stopped by the action of the immune system, for example. One 

recent attempt to circumvent such problems exploited the implantation in mice of 

engineered cells in a semipermeable compartment that protects the engineered cells from 

the action of immune cells.21  

The promising examples described above are not yet sufficient to offer an efficient 

system free of any possible unexpected effects. The orthogonal elements available for 

gene expression are not completely independent from the host mechanisms and the mice 
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implants only allow the use of cells for a period of time limited to their life cycle. These 

aspects strongly limit the control of designed interactions with other cells. 

To reduce the number of unmanageable outcomes, alternative devices may be 

constructed by the assembly of simpler components with defined properties. Cellular 

mimics can be assembled from individually purified molecules to perform interactions with 

natural cells similarly to what was described for engineered cells. The use of a simplified 

system, whose properties are well characterized, may result in better control. In other 

words, reducing the complexity of the system should also reduce the number of collateral 

effects. The elements composing the artificial cells are chosen to have no interference 

with natural cells. Furthermore, the artificial cells are designed to carry specific functions 

and are not able for self-replication nor have any homeostatic mechanism to react to 

environmental changes. For these reasons the artificial cells ensure a higher degree of 

control and should not produce any unwanted interactions with natural cells.  

An artificial cell is conceived to contain all the elements required for molecular 

communication with natural cells confined to a compartment that allows also for some 

exchange with the external environment. All of the components may be assembled by 

taking inspiration from what can be found in nature but do not require to be an exact 

reproduction. Communication pathways can be regulated at the genetic level through the 

use of cell-free transcription and translation systems and compartments can be based 

either on lipid bilayers as natural cells or on other elements able to create a selectively 

permeable membrane. 

 

1.1 In vitro transcription and translation systems 

 

Genetic regulation can be established in artificial compartments through reaction 

mixtures for in vitro transcription and translation (TX/TL). Cell-free protein synthesis was 

first described in the 1950s as a tool for the characterization of the mechanisms involved 

in gene expression22,23 before modern technologies for the introduction of recombinant 

DNA in E. coli were available.24–26 To date, several optimized protocols were developed 

based either on eukaryotic or on prokaryotic cells,27,28 and systems based on E. coli are 

among the most widely used in synthetic biology.29  

There are mainly two different reaction mixtures based on E. coli machinery, one 

based on a combination of each single component needed for gene expression and the 

other on a crude cell extract. The first was initially developed by Ueda and colleagues30 as 

a mixture composed of enzymes, transcription and translation factors recombinantly 

overproduced and purified. The system was named “Protein synthesis Using 

Recombinant Elements” (PURE) and further optimized independently by other research 
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groups and biotech companies. George Church developed stable E. coli strains to 

facilitate the purification process by grouping more than a single component in the same 

strain.31 An E. coli extract capable of protein synthesis was shown to be functional much 

prior to the development of the PURE system22 and the original protocol underwent 

several optimization processes.24 The protocol for the preparation of an E. coli extract is 

usually referred to as S30, for the centrifugation conditions (30,000 g for 30 min) initially 

used to separate the clarified cytosolic content from the membrane debris after cell lysis.22  

The two systems offer different advantages and disadvantages. A system 

composed of individually purified elements is free from endogenous nucleases, metabolic 

enzymes and energy-consuming factors.29 Nonetheless, the presence of extra factors 

confers added value to the S30 system. All the enzymes involved in glycolysis can help 

the restoration of energy resources and allow for longer-lasting gene expression.8 

Enzymes involved in fatty acid synthesis resulted useful in a pathway described in the 

following chapters (see § 3.2.1). Even nucleases and proteases turned out to increase the 

final protein yield, presumably because of a higher turnover of resources.32 

Being a fully defined system composed of reconstituted minimal components, it 

has been argued that the PURE system can be more easily modeled.33,34 Despite the 

higher information on the reaction components of the PURE system compared to the S30, 

it is possible to define some basic rules for the design of genetic elements both for the 

PURE system35,36 and for the S30 extract.37,38 Furthermore, even if a better control degree 

can be obtained for the PURE system because of the higher probability to get a complete 

model of the reaction, the S30 extract leaves room for specific modifications by the use of 

different E. coli strains that can result in different factor’s mixtures.24 The systems used in 

this work were the PURE system from New England BioLabs and a home made S30 

extract prepared according to the protocols of Noireaux and colleagues.39 

 

1.2 Compartments 

 

Natural cells have evolved within compartments mainly composed of lipids, 

proteins and carbohydrates. A simpler compartment can be obtained in water by the mere 

use of amphipathic lipids, consisting of hydrophilic (“head”) and hydrophobic (“tail”) parts 

(A). The hydrophobic force generally results in the hydrophobic chains aggregating 

together away from water molecules and the hydrophilic moieties mediating contacts with 

water.40 This kind of interactions can give rise to the formation of two different 

supramolecular assemblies: micelles or vesicles  (Figure 1 - 1). Micelles are spherical 

structures composed of a polar surface and a hydrophobic internal core where 

hydrophobic tails interact with each other. The assembly of vesicles instead occurs when 
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lipids form a double-layered membrane. In this structure, lipid tails point towards the 

center of the double layer and polar heads interact with water molecule present both on 

the external and on the internal side (lumen) of vesicles. This membrane is able to 

separate a water compartment from the external environment. Lipid vesicles can be 

prepared by several methods and with several lipid compositions.41 Different kinds of 

lipids influence the formation of the bilayer and what determines the formation of micelles 

or vesicles is related to factors such as the surface of the polar head group and the length 

of the hydrophobic tail.42 Among the methods described, there are two which are mainly 

exploited with in vitro TX/TL systems. 

 

 

Figure 1 - 1. Schematic representation of an amphipathic lipid and the possible 

supramolecular assembly in water solutions. A) An amphipathic lipid is mainly composed of a 

polar group (named “head”) and a lipid moiety (named “tail”). When dispersed in water, lipid tails 

tend to interact with each other to exclude water molecules, resulting in different kinds of 

supramolecular assembly. B) A micelle is formed when lipid tails point towards the center of a 

spherical structure. C) A liposome is a spherical vesicle formed when lipids assemble in a bilayer 

sheet where the tails point towards the center of the sheet. A typical biological membrane mainly 

contains phospholipids, composed of a phosphate group (head) joined to two fatty acid chains 

(tails). 

 

The Freeze-Dried Empty Liposomes (FDEL)43 method (Figure 1 - 2) involves the 

formation of a thin lipid film after the evaporation of the organic solvent where lipids are 

dispersed, typically chloroform. The film is resuspended in water to allow for the formation 

of vesicles containing multiple lipid bilayers and homogenized by mechanical stirring or 

extrusion. Vesicles are then lyophilized and later resuspended with the TX/TL 

reaction.1,44,45 
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Figure 1 - 2. Freeze-Dried Empty Liposomes (FDEL). A) A thin film of lipids consisting of 

multiple bilayers is created by solvent evaporation. Typically, lipids are dispersed in organic 

solvents like chloroform and then evaporated to allow the formation of a homogeneous film. B) The 

resuspension of the film with water induces the swelling of lipid bilayers, from which C) 

multilamellar vesicles detach, to D) generate a heterogeneous dispersion of lipid vesicles. 

 

The other method was first described by Pautot et al. and involves the formation of 

one lipid leaflet at a time (Figure 1 - 3).46 A solution of mineral oil containing phospholipids 

is deposited on top of a water solution. Phospholipids partition to the interface of the two 

phases with polar head groups facing the water phase and the hydrophobic tails 

submerged in the oil phase. Separately, a water-in-oil (w/o) emulsion is created by 

mechanical agitation of a mixture of water and mineral oil that is stabilized by lipids. The 

w/o emulsion is later placed on top of the biphasic solution. The water droplets are then 

forced from the oil to the water phase by mild centrifugation. The passage through the 

interface allows the formation of a second lipid leaflet surrounding the monolayer that 

stabilize the w/o emulsion droplet, thus generating a lipid bilayer. The process is 

compatible with the encapsulation of transcription-translation machinery.7,47–50 
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The contents of each vesicle may vary regardless of the vesicle generation 

protocol used. Therefore, gene expression through TX/TL will likely vary among the lipid 

vesicles. For the method developed by Pautot et al., a heterogeneous distribution of 

components was confirmed and that the DNA template concentration inside each vesicle 

was indicated as one of the most critical factors influencing gene expression.51 Therefore, 

variability between compartments can be partially overcome by increasing the DNA 

concentration to ensure that the minimal amount of genetic elements required for function 

are present in each droplet. 

 

 

Figure 1 - 3. A method for the creation of liposomes based on emulsion droplets. 

Water-in-oil emulsion droplets are stabilized by a phospholipid monolayer and forced to cross a 

phospholipid interphase between oil and water. Another phospholipid leaflet is formed around the 

droplet during this passage. Lipid vesicles carrying enzymatic reactions and in vitro TX/TL systems 

can be formed with this method by the encapsulation of the desired reaction mixture in lipid 

emulsion droplets. 

 

In addition to lipid membranes, it is possible to create other kinds of compartments 

in aqueous solutions where enzymatic reactions or in vitro gene expression can occur. 

Compartmentalization can be driven by diverse forces that can be divided into two main 

groups. One type of compartments consists of semipermeable membranes obtained by 

means of diverse interactions such as ion bonds or Pickering emulsions. The second type 

of compartments is obtained by the separation of two liquid phases so that droplets of a 

phase are dispersed in the other. These droplets typically contain a content in water much 

lower than the external phase and offer a membrane-free compartment where several 

kinds of small and big molecules can be absorbed. The number of possible systems 

available constitutes an interesting scenario of potential artificial cells with different 

physical and chemical properties. 
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Pickering emulsions can be generated through a process in which emulsion 

droplets are stabilized by the localization of particles to the interface of two immiscible 

phases.52 Particles showing an equilibrium between hydrophobic and hydrophilic 

properties can behave as surfactants and isolate water droplets in an organic phase. 

These includes colloidal nanoparticles made of a mixture of hydrophobic and hydrophilic 

molecules to create colloidosomes3,53 and amphipathic protein-polymer conjugates can be 

made to create structures called proteinosomes.5,6 The basic procedure for the creation of 

these compartments involves an emulsification of aqueous solutions in an organic phase 

together with colloidal particles or amphipathic protein-polymer conjugates. The surfactant 

behavior of these particles creates a porous membrane surrounding the water droplet that 

is later stabilized by intermolecular covalent bonding. The cross-linked membrane can be 

safely transferred to water solutions, where it could potentially be in contact with natural 

cells. 

Porous membranes can also be formed by the aggregation of molecules through 

ionic interactions occurring at the interface of two aqueous solutions. One example is 

given by alginate microcapsules, resulting from the precipitation of anionic polysaccharide 

alginate in presence of specific counterions. Complexes with sodium alginate are soluble, 

while other cations such as calcium or the polysaccharide chitosan induce precipitation. 

The addition of sodium alginate solution to a solution containing one of these cations 

triggers salt precipitation at the interface, resulting in the separation of two aqueous phase 

through an ionic membrane. The dimension of the compartments can be controlled by 

controlling the dimensions of sodium alginate droplets added to the cation solution. 

Enzymes or TX/TL machineries can be mixed together with sodium alginate to obtain 

cellular mimics capable of catalysis or gene expression.4,54 Similarly to phospholipid 

bilayers, despite the different composition and chemical properties, this type of membrane 

allow for the passage of small molecules while retaining macromolecules,4 and some 

methods are available to adjust the permeability to a certain extent.55 

A good example of membrane-free compartments is given by the process of 

coacervation, which involves the separation of two liquid phases as a result of the 

attraction of oppositely charged macro-ions. The interaction is strong enough to reduce 

the binding with water molecules but do not result in an arrangement as stable and 

ordered as salt crystals. Therefore, the attractive forces give rise to phase separation 

rather than salt precipitation. Coacervate droplets were initially proposed as a model of 

protocells crucial for the origins of life,56 and some applications as cellular mimics were 

recently reported.57,58 The absence of a membrane and the charge of these compartments 

allows for the uptake of small and big molecules from external solution.58,59 Furthermore, 
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the molecularly crowded environment of coacervate droplets has been reported to 

enhance enzymatic activity60 and gene expression.57 

It is also possible to have cellular mimics composed of multiple compartments, that 

allows for the specific localization of protein expression or enzymatic reactions. Water 

solutions differing in density can be mixed together in a multiphasic system, and water-in-

oil emulsion droplets or lipid vesicles can be made to include these multiple 

compartments.61,62 In aqueous two-phase systems, for example, it has been shown how a 

protein synthesized in these systems can preferentially localize to one of the two 

phases.63 Multiple compartmentalizations can also be achieved in liposomes obtained by 

Pautot’s method where different emulsion droplets are merged together. Every 

compartment can carry separate gene expression reactions.48 Separate compartments 

can be put in contact to communicate with each other and allow the free diffusion of small 

molecules, resulting in a cascade of enzymatic reactions where the major players involved 

are confined to different spaces.64 The possibility to physically separate each single 

component of an enzymatic reaction could allow for the optimization of each single step 

with a reduced waste in resources. Therefore, multiple compartments offer a good tool for 

the improvement of artificial cells. 

 

1.3 Molecular communication 

 

Although gene expression and enzymatic reactions have been widely shown to 

occur in confined compartments, there are only a few examples of artificial cells actively 

interacting with their environment. A chitosan-alginate capsule can synthesize and release 

by passive diffusion quorum sensing molecules and deliver a signal to bacteria.4 Small 

molecules can induce a response in liposome-based artificial cells through genetic 

regulatory elements, such as riboswitches1,2 or transcriptional repressors65,66. 

Despite the limited number of mechanisms described, some attempts to control 

communication between artificial and natural cells have been accomplished. In a work 

carried out in our group,1 it was shown how it is possible to translate an inert chemical 

message for E. coli into a meaningful signal able to induce a response. The 

communication pathway involved the expression of a pore-forming protein inside of lipid 

vesicles, under the control of the theophylline riboswitch. In the presence of theophylline, 

the riboswitch bound to the molecule undergoes a conformational change unveiling a 

hidden ribosome binding site (RBS) thus allowing for the expression of α-hemolysin. The 

pores formed by this protein released IPTG outside of liposomes and activated the 

expression of a reporter gene in E. coli. Similar to artificial cells based on lipid vesicles, a 

communication pathway was demonstrated between bacteria and cellular mimics 
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obtained by a Pickering emulsion of a phospholipid monolayer surrounding water-in-oil 

emulsion droplets. These phospholipid emulsion droplets were tested for their ability to set 

communication with bacteria exploiting genetic regulatory elements derived from quorum 

sensing machinery.67 Although the system is not so versatile because it requires bacteria 

to be included in emulsion droplets, it demonstrates the feasibility of establishing 

communication between artificial cells and bacteria in both directions, either by sensing or 

by sending a chemical message.  

 

1.4 The need for artificial cells communities 

 

The potential interactions between natural and artificial cells are limited by several 

constraints. Artificial cells displaying more complex behavior require more energy 

demanding circuitry beyond what is easily possible with current technology. Natural cells 

have evolved pathways for energy resource management and regeneration, while artificial 

systems are still far from complete self-sufficiency. Nonetheless, some progress has been 

made. 

Attempts at restoring energy resources for TX/TL reactions in cellular mimics 

resulted in increased protein yield and prolonged activity of the system. The selectivity of 

the membranes is chosen to retain all the elements required for protein synthesis inside of 

the artificial cell so that small molecules cannot be directly supplemented from the 

external solution to replenish the reaction. To increase the availability of resources some 

elements can be added to the TX/TL reaction, such as maltose that was reported for 

glucose regeneration and ATP production through the Krebs cycle.8 Amino acids and 

nucleotides can also be regenerated by the degradation of nascent RNA and protein. It 

was shown how an increased turnover of these resources by the addition of specific 

RNases and proteases increases the final yield of the protein of interest.32 It is also 

possible to allow the passage of small molecules, like amino acids and nucleotides, that 

are not permeable to certain type of lipid membranes such as 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) through α-hemolysin pores resulting in prolonged 

protein expression.7 

If artificial cells were able to self-assemble, all the elements required to perform a 

specific function could be easily generated thus providing a much more efficient system. A 

complete duplication process in a cellular mimic has not been described yet but some 

examples of cellular division processes were conducted in liposomes. The process of 

growth and division was first shown to occur through physical processes consequent to 

the addition of micelles68 and change in osmotic pressure62 or redox status.69 It is clear 

that extreme conditions like these can be hardly combined with a gene expression 
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system, but some attempts on the reconstitution of the natural machinery responsible for 

E. coli cell divisions have been made as well. A combination of the purified proteins 

involved in the mechanism are able to form rings at the center of liposomes,70 eventually 

leading to division.71 It is also possible to reconstitute basic elements of the eukaryotic 

cytoskeleton that are involved in cellular division such as actin filaments.72,73 Although 

there are no reports of division, it is possible to modulate the shape of the membrane 

through the combination with myosin.74 Further, it has been shown that by combining PCR 

and ionic interactions between DNA and lipid membrane, it is possible also to force the 

segregation of vesicles with an equal distribution of DNA molecules. Artificial cells may 

then duplicate together with genetic information.75 

Despite the absence of a completely self-sustainable cellular mimic, the scenario 

of artificial cell is broadening over the years offering an increasing number of artificial cells 

suitable for different kind of applications. Every system has a diverse set of advantages 

and disadvantages and their combination may complement reciprocal defects. We can 

then envision a mixed population of artificial cells assigned with different tasks to be 

fulfilled as the result of a collaboration. The success of the desired function will be 

entrusted to the community rather than to the individual cellular mimic. 

The creation of artificial cell communities is strictly related to the construction of 

molecular communication pathways. In collaboration with Prof. Stephen Mann at the 

University of Bristol, we are currently in the process of creating interactions in a mixed 

population of cells consisting of liposomes carrying in vitro gene expression systems, 

proteinosomes with enzymatic activity and E. coli. In the meantime, his group managed to 

show how it is possible to have interactions between different kinds of artificial cells in a 

predator-prey system where a protease-loaded coacervate seeks and destroys a 

proteinosome.58 The project carried in this collaboration is instead focused on cooperative 

interactions between artificial cells, possibly expanding the range of communication 

pathways between artificial and natural cells by means of the exchange of chemical 

messages. 

 

The PhD project described in this dissertation is organized in two main sections 

further divided into chapters. The first part reports the work aimed at establishing a 

communication pathway between two different populations of artificial cells: liposomes 

able for gene synthesis and proteinosomes with catalytic activity. The designed network 

foresaw the delivery of a chemical message from liposomes under the control of a genetic 

switch. Proteinosomes would have triggered gene expression by enzymatic synthesis of 

the inducer molecule and performed enzymatic activity using the chemical message 

coming from liposomes as a substrate. A consistent part of the project was dedicated to 
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the research of a genetic circuit able for the tightest control on the chemical message 

delivery from liposomes. Several transcriptional regulators were tested in in vitro TX/TL 

reactions and the best was integrated within artificial cells. Consequently, all of the steps 

of the molecular communication pathway were separately analyzed. Both the delivery of a 

chemical message from liposomes and the enzymatic production of the molecule 

responsible for gene induction were tested separately. The number of problems arose 

while setting the artificial cells network led to reconsider the whole design so to include 

some engineered bacteria. 

The second part of the thesis summarizes the trials carried in engineering two 

novel biosensors that could possibly be integrated within artificial cells. A DNA-based 

sensor was designed to carry two aptamer sequences, one for the binding of an analyte 

and another one for the binding of a fluorescent molecule. The fluorescence quantum 

yield of the fluorophore would be consistently increased when bound to the aptamer. The 

folding of this aptamer would depend on the presence of the analyte: the binding of the 

analyte to the respective aptamer would induce a conformational change on the DNA 

sensor allowing the binding of the fluorophore. In order to develop a DNA aptamer able for 

binding a fluorophore, three in vitro evolution strategies were performed but none of them 

succeeded, therefore it was not possible to develop the designed biosensor.  

The second biosensor was based on the rational design of a transcriptional 

regulator able to control gene expression according to the presence of an analyte. The 

protein was inspired to a natural transcriptional repressor whose activity is regulated by 

the presence of a small molecule. The engineering process was based on the change of 

the binding affinity to a molecule similar to the natural ligand. The protein would have 

been consequently integrated into a genetic circuit and allow the detection of the analyte, 

i. e. the novel ligand, through the regulation of the expression of a fluorescent reporter 

protein. Attempts at changing the affinity of the regulator to a novel ligand were performed 

after in silico analysis of the interactions between the protein and the natural ligand. 

Mutants were designed and tested in vitro for gene regulation under the control of both the 

natural and the novel ligand. Finally, some information on the interactions between protein 

and ligand were acquired but no efficient regulator has been yet developed. 
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Aims of the thesis 

 

The work carried in this PhD project is divided into 4 experimental sections 

described in the following chapters. 

 

Chapter 2, “Genetic engineering for use in artificial cell”, describes a part of the 

project aimed at finding the best regulatory system for use in artificial cells composed of 

liposomes carrying in vitro gene expression systems. Four genetic circuits were 

assembled to carry a transcriptional regulator and a reporter gene. The efficacy of each 

regulator was tested by means of in vitro TX/TL reactions; 

 

Chapter 3, “Towards artificial cells consortia”, is centered on a step-by-step 

analysis of a molecular communication pathway designed between two kinds of artificial 

cells: liposomes carrying in vitro transcription and translation reaction and proteinosomes 

carrying enzymatic reactions. Liposomes were tested for the ability to perform gene 

expression and for the delivery of a chemical message to proteinosomes through 

fluorescent reporters. One of the enzymes carried by proteinosomes was tested for the 

ability to produce a chemical message capable of triggering gene expression in 

liposomes; 

 

Chapter 4, “Selection for a malachite green DNA aptamer for use in a sensor 

molecule”, reports some attempts at developing a biosensor based on DNA. Engineering 

this biosensor foresaw the in vitro evolution of a DNA aptamer able to bind and increase 

the fluorescence yield of the fluorophore malachite green. Three strategies aimed at 

evolving the aptamer were designed and tested; 

 

Chapter 5, “Engineering TrpR to sense the neurotransmitter serotonin”, 

summarizes some trials focused on the development of another biosensor based on the 

transcriptional repressor TrpR. Some mutants were rationally designed to switch the 

affinity of the protein from the original ligand tryptophan to serotonin, that has a very 

similar chemical structure. Similarly to what was performed for the transcriptional 

regulators in chapter 2, these mutants were cloned in a genetic circuit and tested through 

in vitro TX/TL reactions. 
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Part A 

 

Communication pathways for artificial cells 
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Chapter 2 

 

Genetic engineering for use in artificial cell 
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One basic requirement for an artificial cell with potential application is tunability. A 

desired function must be activated only when needed, so these systems must include a 

switch mechanism capable of changing from an “on” to an “off” state. An artificial cell 

based on lipid vesicles encapsulating E. coli transcription and translation machinery can 

be engineered by following the same methods applied to natural cells, by intervening at a 

genetic level. 

Gene expression can be regulated through several mechanisms, many of which 

occur through interactions between small molecules and macromolecules, such as 

proteins and nucleic acids. The effect of these molecules can be both positive or negative 

on gene expression. Previous work carried out in our group demonstrated the possibility 

to control gene expression in artificial cells by means of a riboswitch.1,2 These sequences 

at the 5’-untranslated region (UTR) of mRNAs can mask or unveil the ribosome binding 

site according to the presence or absence of a ligand specific for the aptameric domain of 

the riboswitch. Although effective, this regulation turned out to be not strict enough and 

showed much background expression in the off state, in the absence of the inducer 

molecule.  

One of the major disadvantages of the system was thought to be due to the fact 

that the regulation occurs at a translational level. The gene of interest is actively 

transcribed under the control of a highly processive polymerase (T7 RNA Polymerase)76 

and even a small percentage of mRNA may result in a high background expression. 

Therefore, regulation at the level of transcription seemed a better alternative to obtain a 

stricter off state. One very simple example of this kind of genetic regulation is given by 

transcriptional repressors. The major feature shared by these protein factors is to bind 

specific DNA sequences, called operators, that are close or enclosed in promoter regions 

and prevent the binding of RNA polymerases by steric hindrance. The action of these 

proteins is regulated by the presence of a cofactor, a small molecule able to induce an 

allosteric change that can forbid or allow DNA binding (Figure 2 -  1). In order to find a 

good genetic regulation for use in artificial cells, three repressors from E. coli were taken 

into consideration: 1) LacI, involved in the transport and metabolism of lactose through the 

regulation of the Lac operon;77 2) TetR, regulating the expression of a transmembrane 

pump aimed at expelling the antibiotic tetracycline;78 3) TrpR, regulating the synthesis of 

the amino acid tryptophan.79  

 

All of the repressors can exist in a form bound to their ligand or in a free form. The 

first form is known as holorepressor while the second is the aporepressor. The effects 

induced by the switch from apo- to holorepressor is different for the four repressors taken 

under examination. LacI and TetR are subjected to a negative regulation, while TrpR 
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undergoes a positive regulation. In the absence of the cofactors, LacI and TetR repress 

gene expression while the binding to the ligand forbids the binding to the operators 

(Figure 2 -  1 A). TrpR has instead an opposite mechanism, being active only as a 

holorepressor (Figure 2 - 1 B). The natural ligand for LacI is allolactose, a catabolite 

created by the enzyme β-galactosidase in presence of lactose.80 The catabolite induces 

the expression of all the genes required for its metabolism. TetR is instead involved in the 

resistance to the antibiotic tetracycline. When the antibiotic is present, E. coli cells react 

with the production of a pump to expel the drug.78 TrpR regulates a whole operon involved 

in the synthesis of tryptophan shutting down the expression of the enzymes required in 

presence of high levels of the amino acid. Interestingly, this operon is subjected to a 

secondary regulation that involves the coding sequence trpL whose peculiarity is to induce 

different folding of the mRNA sequence according to the levels of tryptophan. The mRNA 

includes two tryptophan codons responsible for this change: in presence of high levels of 

tryptophan the mRNA forms a transcriptional terminator downstream of the peptide and 

none of the following genes is transcribed, while low levels of tryptophan causes a stall in 

ribosome that induces an alternative folding in the downstream RNA preventing the 

formation of a terminator and allowing the transcription of the downstream genes.81–83 

 

 

Figure 2 -  1. Transcriptional regulatory pathways tested. A) Transcriptional repressor 

with negative regulation (TetR, EsaR, LacI). The repressor binds to the operator sequences close 

to the promoter thus blocking RNA polymerase binding through steric hindrance. The binding to the 

ligand induces a conformational change that clears the promoter sequence to start gene 

transcription. B) Transcriptional repressors with positive regulation are active for repression only in 

presence of the ligand (TrpR). C) Transcriptional activators promote the binding of RNA 

polymerase rather than blocking it. The activity depends on the presence of small cofactors that 

induce the necessary allosteric change to lead RNA polymerase binding (LuxR). 

 

Not all of the natural cofactors can be exploited for in vitro analysis, but alternative 

ligands are commercially available. Allolactose can be substituted by the cheaper and 

more efficient isopropyl β-D-1-thiogalactopyranoside (IPTG) which is not hydrolyzable by 

A) B) C) 
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β-galactosidase and has been regularly used for the induction of recombinant protein 

expression.84 Tetracycline can be substituted by the non-toxic analog anhydrotetracycline 

(aTc), which was shown to have a 30-fold increased binding affinity.85 For TrpR, several 

analogs are described in the literature either with a positive or a negative action on the 

repressor.86 Among these, indole-3-propionic acid (IPA) was chosen because of the ability 

to induce gene expression in vivo.87 

The transcriptional regulators were individually tested in TX/TL reactions for their 

ability to control the expression of a reporter gene. The repressor and the reporter genes 

were cloned separately under the control of a T7 promoter, and the reporter gene 

contained the specific operator sequence for the repressor right downstream of the 

promoter. Both translation and transcription levels were simultaneously monitored by 

means of a fluorescent protein and an aptamer joint at the 3’-UTR of the mRNA able to 

bind and increase the fluorescence quantum yield of a fluorophore. In order to individuate 

the regulator with the best difference between on and off state, the experiments were 

conducted in presence or absence of the repressor and in presence or absence of the 

specific inducer molecule. 
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2.1 Materials and methods 

 

2.1.1 Reagents and general supplies 

 

PURExpress® In vitro Protein Synthesis Kit, DpnI, RNase inhibitor was purchased 

from New England Biolabs; Wizard® SV Gel and PCR Clean-Up System Wizard® Plus 

SV Minipreps DNA Purification System were purchased from Promega; indole 3-propionic 

acid (IPA), isopropyl β-D-1-thiogalactopyranoside (IPTG), anhydrotetracycline (aTc), 

diethyl pyrocarbonate (DEPC) were purchased from Sigma-Aldrich; 

phenol:chloroform:isoamyl alcohol (25:24:1) solution was purchased from Thermo Fisher 

Scientific; (Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one 

(DFHBI) was purchased from Lucerna technologies; One Shot® TOP10 Chemically 

Competent E. coli cells were purchased from Invitrogen; nickel- nitrilotriacetic acid 

agarose resin (Ni-NTA) and 0.1 ml tubes were purchased from Qiagen; E.Z.N.A.® 

MicroElute RNA Clean Up Kit was purchased from Omega Biotek. 

 All the material used for the preparation of the home made S30 extract was 

purchased according to Noireaux’s indications39 except for the following: Yeast extract 

and Tryptone to prepare 2xYT medium, polyethylene glycol (PEG) 8000 Da, all of the 20 

amino acids, Tris base were purchased from Sigma-Aldrich; SnakeSkin™ Dialysis Tubing 

was purchased from Thermo Fisher Scientific; 10X TBE buffer was purchased from 

Euroclone; E. coli BL21 Rosetta 2 (DE3) from Novagen was used in place of E. coli BL21 

Rosetta 2 and was received from Prof. Friedrich C. Simmel 

 

2.1.2 Instruments 

 

FastPrep®-24 from MP biomedicals was used for the bead-beating step in S30 

extract; Rotor-Gene Q from Qiagen was used for the measurements of protein and RNA 

levels in S30 and PURE system reactions; Infinite M200 plate reader from Tecan was 

used to measure luminescence. 

 

2.1.3 Water treatment with DEPC for nuclease inhibition: 

 

1 L milliQ water (18 Ω) was mixed with 1 ml of DEPC under stirring overnight, then 

unbound DEPC was degraded by autoclave at 121 °C for 20’. 
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2.1.4 Plasmids and cloning 

 

All of the plasmids were assembled with the Gibson method88 and DNA primers 

were purchased at Eurofins MWG. Linear fragments of double-stranded DNA were 

created by PCR using Phusion polymerase. A 50 µl mix contained 1X HF buffer, 0.2 mM 

each dNTPs, 0.5 µM of each primer, 0.02 U/µl Phusion, ~ 0.2 ng/µl plasmid DNA 

template. The reaction ran on a thermal cycler with the following protocol: 98°C for 2 min 

for initial denaturation, then 29 cycles of 98 °C for 5 s, annealing temperature for 10 s and 

72 °C for 15 s/kb and a final extension step at 72 °C for 10 min. The annealing 

temperature was calculated for each primer by the online tool IDT oligo analyzer. 

PCR fragments were treated with 0.4 U/µl of DpnI for at least 1 h at 37 °C, then 

mixed together with a premixed Gibson assembly stored at -80 °C. The final volume of 

reaction was 10 µl and the mixture contained: 100 mM Tris pH 7.4, 10 mM MgCl2, 0.2 mM 

each dNTP, 10 mM DTT, 6.25 mM PEG 8000, 1 mM NAD. The DNA was added 

according to the following table: 

 

Table 2 - 1. Volumes for Gibson assembly. 

PCR amplicon size Volume (µl) 

< 1kb 0.5 

1-4 kb 0.5-1 

4-8 kb 2 

8-12 kb 3.5 

 

PCR products were always loaded on a 1X TBE 1% agarose gel for analysis. 

When the PCR product contained some extra bands, the correct band was extracted from 

the agarose gel with Promega Wizard gel and PCR clean-up kit and added to the mix to 

fill the final volume. Mixes were then incubated at 50 °C and then added to E. coli TOP10 

competent cells for transformation. Details of DNA sequences and assembly are 

described in the following tables.  

 

 

Table 2 - 2. Primers used for PCR amplification. 

Primer ID Sequence (5’-3’) 

DC010 
GCGGATCCGAATTCAATTAGTTTGAACTTATAAGGAGAATAATCT 

ATGGCTTCCTCCGAAGACG 

DC046 AAGTGGCGAGCCCGATCTTCCCCAT 

DC057 AATTCGAGCTCCGTCGACAAG 

DC058 CATGCTAGCCATATGTATATCTCC 
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DC079 CGTACTAGTTAACTAGTACGCCCTATAGTGAGTCGTATTAATTTCGC 

DC083 GGAGATATACATATGGCTAGCATGATGGCCCAACAATCACCCTATTCA 

DC084 CTTGTCGACGGAGCTCGAATT TCAATCGCTTTTCAGCAACACCTCTT 

DC094 GGAGATATACATATGGCTAGCATGATGTCCAGATTAGATAAAAGTAAAGTG 

DC096 CTTGTCGACGGAGCTCGAATTTCAGGACCCACTTTCACATTTAAGTTG 

DC098 CTTGTCGACGGAGCTCGAATTCTGCCCGCTTTCCAGTC 

DC099 CTTGTCGACGGAGCTCGAATTTCACTGCCCGCTTTCCAGTC 

DC100 ATGTATATCTCCTTCTTAAAGTTAAACA 

DC101 GCGCAACGCAATTAATGTAAGTTAG 

DC103 TCTCTATCACTGATAGGGACCCTATAGTGAGTCGTATTAATTTC 

DC104 GGATATAGTTCCTCCTTTCAGCAAA 

DC111 ATGGCTTCCTCCGAAGAC 

DC133 CCCTATAGTGAGTCGTATTA 

DC145 TGTTTAACTTTAAGAAGGAGATATACATATGAAACCAGTAACGTTATACG 

DC146 
TAATACGACTCACTATAGGGCCCCTCTAGAAATAATTTTGTTTAACTTTAAGA

AGGAG 

DC147 CTAACTTACATTAATTGCGTTGCGCAAGTGGCGAGCCCGATCTTCCCCAT 

DC157 GAGTCGTATTAACCGGCTGCAGATCTCGATCCTCTACGCCG 

DC159 CAGTCGA AAGACTGGGCCTTTCGTTTTAT GTGATGTCGGCGATATAGGC 

DC160 
CCAGTCTTTCGACTGAGCCTTTCGTTTTAT 

GGATATAGTTCCTCCTTTCAGCAAA 

DC161 ATGGGGAAGATCGGGCTCGCCACTT 

DC162 AAGTGGCGAGCCCGATCTTCCCCATTAATACGACTCACTATAGGGGAATT 

DC163 AGTTCAAACTAATTGAATTCGGATCCGCTCACTGCCCGCTTTCCAGTC 

DC199 ATTAATTGCGTTGCGCAGCAGCCCAGTAGTAGGTTG 

DC200 AAGTGGCGAGCCCGATCTTCCCCATTAATACGACTCACTATAGGG 

DC257 CTAACTTACATTAATTGCGTTGCGC 

DC258 CTAACTTACATTAATTGCGTTGCGC 

DC275 ATATCCGGATTGGCGAAT 

DC276 TTAAGCACCGGTGGAGTG 

DC277 AGCTCAGTCCTAGGTACAGTGCTAGCTACTAGAGTCACACAGGAAA 

DC278 TACCTAGGACTGAGCTAGCCGTCAATGAGCGCAACGCAA 

DC299 AGTACTTTCCTGTGTTACTCTAGTA 

DC300 TGCCTGGCTCTAGTATTATTACCTTGCTGCTGACGC 

DC302 TAACACAGGAAAGTACTATGTTCTCTTTCTTCCTTGAAAACC 

DC306 ATTCGCCAATCCGGATAT 

DC307 CCACCGGTGCTTAAGGGAGAATGCGGCC 
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FC267 
CCGGTTAATACGACTCACTATAGCCTGTACTATAGTGCAGGTGGAAGATTGT

GAGCGGATAACAATTCC 

JF001A fw TAACTCGAGCACCACCACCACCAC 

RL007 CCCCTCTAGAAATAATTTTGTTTA 

T9002g FW TAATAATACTAGAGCCAGGCATC 

 

Table 2 - 3. Relevant sequences used in this section. The table reports the insert of 

relevant plasmids whose information is not available elsewhere. 

ID Sequence (5’-3’) 

pT7_lacO_mRFP1_ 

spinach 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCT

CTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTT

CCTCCGAAGACGTTATCAAAGAGTTCATGCGTTTCAAAGTTCGTATG

GAAGGTTCCGTTAACGGTCACGAGTTCGAAATCGAAGGTGAAGGTG

AAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTAC

CAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAG

TTCCAGTACGGTTCCAAAGCTTACGTTAAACACCCGGCTGACATCCC

GGACTACCTGAAACTGTCCTTCCCGGAAGGTTTCAAATGGGAACGTG

TTATGAACTTCGAAGACGGTGGTGTTGTTACCGTTACCCAGGACTCC

TCCCTGCAAGACGGTGAGTTCATCTACAAAGTTAAACTGCGTGGTAC

CAACTTCCCGTCCGACGGTCCGGTTATGCAGAAAAAAACCATGGGTT

GGGAAGCTTCCACCGAACGTATGTACCCGGAAGACGGTGCTCTGAA

AGGTGAAATCAAAATGCGTCTGAAACTGAAAGACGGTGGTCACTACG

ACGCTGAAGTTAAAACCACCTACATGGCTAAAAAACCGGTTCAGCTG

CCGGGTGCTTACAAAACCGACATCAAACTGGACATCACCTCCCACAA

CGAAGACTACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGT

CACTCCACCGGTGCTTAAGCCCGGATAGCTCAGTCGGTAGAGCAGC

GGCCGGACGCAACTGAATGAAATGGTGAAGGACGGGTCCAGGTGT

GGCTGCTTCGGCAGTGCAGCTTGTTGAGTAGAGTGTGAGCTCCGTA

ACTAGTCGCGTCCGGCCGCGGGTCCAGGGTTCAAGTCCCTGTTCGG

GCGCCA 

His::MBP::EsaR ATGAAAATCCATCACCATCACCATCACGAAGAAGGTAAACTGGTAAT

CTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTA

AGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCG

GATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATG

GCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCT

CAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGG

ACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAG

CTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAAC

AAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGG

CGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTT
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CAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGA

CGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCT

GGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACT

CCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATC

AACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATT

ATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACC

GTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAAC

AAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGA

AGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCG

CTGAAGTCTTACGAGGAAGAGTTGGTGAAAGATCCGCGGATTGCCG

CCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCC

GCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAAC

GCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCG

CAGACTAATTCGATCGAGAACCTGTACTTCCAGGGTGGTGGTGGTG

GTTTCTCTTTCTTCCTTGAAAACCAAACAATAACGGATACGCTTCAGA

CTTACATACAGAGAAAGTTATCTCCGCTGGGTAGTCCGGATTACGCT

TACACTGTTGTGAGCAAAAAAAATCCTTCAAATGTTCTGATTATTTCC

AGTTATCCTGACGAATGGATTAGGTTATACCGCGCTAACAACTTTCA

GCTGACCGATCCCGTTATTCTCACGGCCTTTAAACGCACCTCGCCGT

TTGCCTGGGATGAGAATATTACGCTGATGTCCGGCCTGCGGTTCAC

CAAAATTTTCTCTTTATCCAAGCAATACAACATCGTTAACGGCTTTAC

CTATGTCCTGCATGACCACATGAACAACCTTGCTCTGTTGTCCGTGA

TCATTAAAGGCAACGATCAGACTGCGCTGGAGCAACGCCTTGCTGC

CGAACAGGGCACGATGCAGATGCTGCTGATTGATTTTAACGAGCAG

ATGTACCGACTGGCAGGCACCGAAGGCGAGCGAGCCCCGGCGTTA

AATCAGAGCGCGGACAAAACGATATTTTCCTCGCGTGAAAATGAGGT

GTTGTACTGGGCGAGTATGGGCAAAACCTATGCTGAGATTGCCGCT

ATTACGGGCATTTCTGTGAGTACCGTGAAGTTTCACATCAAGAATGT

GGTCGTGAAACTGGGCGTCAGTAACGCCCGACAGGCTATCAGACTG

GGTGTAGAACTGGATCTTATCAGACCGGCAGCGTCAGCAGCAAGGT

AA 
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Table 2 - 4. Plasmids used in this section and relative cloning strategies. 

Plasmid ID Backbone Insert Source Cloning strategy 

Primers Template 

pET21b   Novagen   

BBa_K731500 pSB1C3 pLacIq_LacI_ 

pTac_lacO 

Registry of 

standard 

biological 

parts 

  

BBa_C0040 pSB1C3 TetR Registry of 

standard 

biological 

parts 

  

BBa_T9002 pSB1A3 pTet_LuxR_ 

pLux_sfGFP 

Registry of 

standard 

biological 

parts 

  

DC024A pET21b 

(LacI 

removed 

from the 

backbone) 

pT7_LacI::His   DC057/DC101 pET21B 

DC147/DC133 pET21B 

DC145/DC098 BBa_ 

K731500 

DC146/DC100 - 

DC013A pET21b pT7_lacO_TrpR  DC083/DC084 

 

E. coli 

genome 

DC057/DC058 pET21b 

DC019A pET21b pT7_lacO_TetR  DC094/DC096 BBa_C0040 

DC057/DC058 pET21b 

DC049A DC024A pT7_LacI  DC099/JF001

A fw 

DC024A 

DC021A pET21b pT7_tetO_ 

mRFP1_spinach 

 DC103/RL007 FC013A 

DC032A pET21b pT7_trpO_ 

mRFP1_spinach 

 DC079/RL007 FC013A 

FC013A pET21b pT7_lacO_ 

mRFP1_spinach 

Mansy Lab   

DC076A pET21b pT7_trpO_ 

mRFP1_spinach

_pT7_TrpR 

 

 

 DC199/DC161 DC013A 

DC159/DC101 DC013A 

DC160/DC200 DC032A 
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FC043A pET21b pT7_lacO_His::

MBP::EsaR 

 

Mansy Lab   

DC053A DC024A pT7_esaO_  

mRFP1_spinach 

 DC147/DC157 FC013A 

FC267/DC101 FC013A 

DC035A DC024A pT7_lacO_ 

mRFP1_spinach

_ pT7_lacI 

 DC161/DC159 DC049A 

DC160/DC162 FC013A 

DC052A DC024A pT7_lacO_lacI_ 

mRFP1 

 DC010/DC101 FC013A 

DC100/DC147 FC013A 

DC145/DC163 DC049A 

 

2.1.5 DNA purification with phenol:chloroform mix 

 

When DNA quality was not high enough (A260/A280 ≥ 1.8 and A260/230 ≥ 2), an 

extra step of purification was required. 50 µl of DNA were diluted in 500 µl of DEPC-

treated water and mixed together with 1 volume (vol) of phenol:chloroform:isoamyl alcohol 

(25:24:1). The tube was vortexed and spun at max speed for 10 min to separate the 

aqueous from the organic phase. The upper aqueous phase was transferred to a new 

tube containing 1 vol of chloroform and spun at max speed for 5 min. The upper part was 

then mixed together with 2.5 vol of ethanol and 1/10 vol of 3 M sodium acetate pH 5.5 and 

incubated at -20 °C for at least 1 h. Then DNA was precipitated by centrifugation at max 

speed for 30 min at 4 °C. The supernatant was discarded and 200 µl of 70% ethanol were 

added to the pellet without resuspending. The pellet was spun again at max speed for 10 

min at 4 °C. The pellet was dried at 65 °C on a thermoblock and resuspended in 20 µl of 

DEPC-treated water. 

 

2.1.6 In vitro gene expression with PURE system 

 

DNA templates were prepared by PCR amplification using Phusion polymerase 

and primers DC046 and DC104. The reaction was assembled as described above and the 

thermal protocol included changes in the annealing temperature (touchdown PCR): 72 °C 

for 15 cycles, 68 °C for 10 cycles and 65 °C for the last 10 cycles. The extension time was 

set at 15 sec. 

The reactions were prepared with some modifications from the manufacturer’s 

instructions. The final volume was increased by 8%, DNA was added to 12.5 nM and the 

reaction mixture was supplemented with 0.75 U/µl RNase inhibitor and 60 µM DFHBI. 

When needed, inducer molecules were added to the following concentrations: 10 µM 
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3OC6, 0.5 mM IPTG, 1 mM aTc, 0.5 mM IPA. Fluorescence kinetics of both transcription 

and translation were monitored with real-time PCR cycler Rotor-Gene Q. Transcription 

levels were monitored through spinach aptamer bound to DFHBI on channel Green 

(excitation: 470 ± 10 nm; emission: 510 ± 5 nm), while translation levels were monitored 

by the expression of the fluorescent protein mRFP1 on channel Orange (excitation: 585 ± 

5 nm; emission: 610 ± 5 nm). Fluorescence levels were recorded every 5 min at 37 °C for 

~13 h. 

 

2.1.7 In vitro gene expression with home-made S30 E. coli extract 

 

A reaction mix for in vitro transcription and translation based on a crude E. coli 

extract was prepared according to the protocol of Noireaux and colleagues39 with the 

modifications indicated in § 2.1.1. The final volume of the reaction was 10 µl with 20 nM of 

plasmid DNA (RL082A). When needed 3OC6 HSL was supplemented to 10 µM. Gene 

expression was verified by luminescence. 

 

2.1.8 Fluorescence standard curve and data normalization 

 

In order to convert fluorescence raw data into molar units, a standard curve was 

made both for mRFP1 and for spinach aptamer together with DFHBI. mRFP1 protein was 

expressed in E. coli BL21 (DE3) pLysS cells transformed with plasmid FC011A and 

purified with Ni-NTA column according to manufacturer’s instructions. The protein 

concentration was measured by nanodrop spectrophotometer and converted according to 

its extinction coefficient (ε584 nm = 44 000 M−1 cm−1).89 Spinach RNA aptamer fused at 3’-

UTR of mRFP1 mRNA was transcribed in vitro using a home-made T7 RNA polymerase 

and plasmid DC032A in the following reaction mix prepared according to the indications 

from Seelig:90 35 mM MgCl2, 2 mM spermidine, 200 mM HEPES adjusted to pH 7.5 with 

KOH, 1 mg/ml BSA, 4 mM DTT, 5 mM each NTP, 1 mU/µl yeast inorganic 

pyrophosphatase, 0.4 U/µl RNase inhibitor, 3 U/µl T7 RNA polymerase, 0.2 µM DNA 

template. The reaction was incubated at 37 °C for 4 h, then DNase I was added to a final 

concentration of 20 mU/µl together with its buffer provided by the supplier and incubated 

at 37°C for 1 h. The RNA was purified with E.Z.N.A.® MicroElute RNA Clean Up Kit and 

quantified at the nanodrop spectrophotometer by measuring the absorbance at 260 nm. 

The concentration was converted in molarity with a dedicated online tool 

(biotools.nubic.northwestern.edu/OligoCalc.html). Different concentrations of mRFP1 (0.2, 

0.5, 1 and 2 µM) were prepared in HEPES buffer (50 mM HEPES, 10 mM MgCl2, 100 mM 
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KCl, pH 7.6) and different concentrations of spinach mRNA (0.06, 0.15, 0.3 and 0.6 µM) 

were prepared with HEPES buffer together with 60 µM DFHBI. 

 

2.1.9 Luciferase assay 

 

To 10 µl of S30 reaction incubated for 4 h at 30 °C, 10 µl of a 2X luciferase mix 

from Promega, containing luciferin and ATP was added. Luminescence was measured on 

a 384-wells plate with a Tecan Infinite M-200 with an integration time of 1 s. 

 

2.1.10 Chemically competent E. coli cells 

 

E. coli TOP10 stored in glycerol stocks were grown overnight in 5 ml of LB, then 

reinoculated in 50 ml of LB to a starting dilution of 1:100. Cells were grown up to OD600 = 

0.5, then chilled on ice for 10 min and harvested by centrifugation at 5000 g for 10 min at 

4 °C. The pellet was resuspended in 15 ml of transformation buffer (10 mM Tris-HCl, pH 

7.0, 50 mM CaCl2), chilled on ice for 15 min and spun down again at 5000 g for 10 min at 

4°C. The pellet was resuspended in 4 ml of transformation buffer and 20% glycerol. Cells 

were flash frozen in liquid nitrogen and stored at -80°C. 

 

2.1.11 Transformation of E. coli cells 

 

One aliquot of chemically competent E. coli was thawed on ice and incubated for 

30 min with the DNA to be transformed. Heat shock was for 1 min at 42 °C, placed on ice 

for 2 min, then 800 µl of LB were added to the cells. The culture was incubated at 37 °C 

with shaking at 220 rpm for 1 h.  

 

2.1.12 Purification of the repressor EsaR 

 

The coding sequence of EsaR was fused both to a maltose binding protein (MBP) 

and a His tag and cloned in plasmid pET21b to create plasmid FC043A, according to the 

indications of Schu et al.91 E. coli BL21 (DE3) pLysS cells were transformed with FC043A 

and bacteria were grown at 37 °C shaking at 220 rpm until they reached OD600 = 0.5. 

Protein expression was induced by the addition of 1 mM IPTG and cells were kept 

growing at 37 °C shaking at 220 rpm for 4 h. Protein was then purified with Ni-NTA 

column according to manufacturer’s instructions. 
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2.2 Results 

 

2.2.1 Design of genetic circuits and tests of the transcriptional repressors in PURE 

system 

 

For all of the repressors to be tested, two plasmids were designed. One plasmid 

contained the repressor coding sequence under the constitutive promoter T7, and another 

plasmid containing a reporter gene under the control of a T7 promoter fused to the 

specific operator close to the transcription start site: in position +3 from transcription start 

site for LacI and +4 for TetR and TrpR. A similar design was previously shown to be 

functional for LacI and TetR repression activity in in vitro transcription and translation 

reactions,92,93 while for TrpR there was no such data available. The reporter gene coded 

for the fluorescent protein mRFP194 to monitor translation levels and the spinach 

aptamer95 that was placed at the 3’-UTR of the mRNA to monitor transcription levels. This 

aptamer was developed to bind a ligand designed to resemble the GFP chromophore: (Z)-

4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (DFHBI). This 

molecule free in solution has a very low fluorescence quantum yield that is strongly 

increased by the binding of the aptamer. Such a construct was previously demonstrated to 

be a good tool for the real-time monitoring of both transcription and translation levels in 

the PURE system.36  

All of the genetic elements were amplified by polymerase chain reaction (PCR) in 

order to obtain linear fragments of double stranded DNA spanning from the promoter to 

the transcriptional terminators. The DNA fragments encoding the repressors were all 

tested at different concentrations in the PURE system in the presence and absence of the 

respective inducer molecule (Figure 2 -  2). TrpR showed a good transcriptional 

repression with no addition of the ligand tryptophan, possibly because what was contained 

in the reaction mix was enough to induce the activity of the repressor (Figure 2 -  2 A). 

The analog IPA though was not capable of derepression at the concentrations reported in 

vivo.87 Reporter genes under the control of LacI and TetR (Figure 2 -  2 C, D) both 

showed a lower level of gene expression when compared with the reporter gene exploited 

in TrpR circuit, but while LacI could be derepressed, TetR could not in contrast to 

previously reported data.93 Lac circuit showed the best level of switch between on and off 

states and was chosen for further characterization. 
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Figure 2 -  2. Test on transcriptional repressors LacI, TetR and TrpR. A) Repressors 

and reporter genes were encoded in two separate PCR fragments under the control of a T7 

promoter. The constitutive expression of the repressor gene keeps the reporter gene in an off state, 

that is activated by the specific inducer molecule. B) - D) RNA (green bars) and protein (red bars) 

concentrations reached after 6 hours of incubations at 37 °C. The fluorescence values measured 

for spinach aptamer bound to DFHBI and mRFP1 were converted into molar concentration as 

described in § 2.1.8. The charts compare the expression levels of the reporter genes in the 

presence (“+”) or absence (“-“) of the DNA fragments encoding for the repressor and in presence or 

absence of inducer molecules, that were added to final concentrations indicated in § 2.1.6. All of 

the values reported are technical triplicates of each sample and the error bars indicates the 

standard deviation. Among the three repressors tested, LacI showed the best gene induction, 

although the difference between induced (repressor +, inducer +) and repressed (repressor +, 

inducer -) state was clear in transcription but not in translation. This result was thought to be 

caused by the ratio between repressor and reporter DNA, that slightly favors repressor gene 

expression (the exact ratio is 1:1.15).  
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2.2.2 Deep characterization of LacI circuit in PURE system and some attempts at 

improvement 

 

In order to improve the difference between on and off states, the molar ratio 

between the two plasmids was gradually changed to favor the repressor rather than the 

reporter gene. As it can be observed in Figure 2 -  3, a 1:1 molar ratio was enough for 

proper gene derepression, and increasing amounts of repressor’s DNA reduced the final 

yield of protein after induction. It is possible that most of the elements required for gene 

expression are directed towards the synthesis of the repressor more than the reporter 

gene. 

As the 1:1 molar ratio showed a good difference between on and off states, the 

two genes were joined together in the same plasmid. Such a construct, rather than two 

separate linear fragments, would allow for an equal encapsulation efficiency of the two 

genes when used in artificial cells. Two plasmid designs were compared: one containing 

the two coding sequences under the control of two separate T7 promoters, while the other  

 

Figure 2 -  3. Effect of different molar ratios between the DNA fragment encoding the 

LacI repressor and the DNA fragment encoding the reporter gene under the control of lac 

operator. To validate whether the induction of gene expression could be improved by decreasing 

the amount of repressor, three different molar ratios of the DNA fragments carrying the lacI gene 

and the reporter gene were tested in the same genetic circuit described in Figure 2 – 2 A. The 

exact molar ratio of 1:1 between reporter and repressor DNA is enough to show a good difference 

between on and off state, both in RNA (green bars) and protein (red bars) levels. Increasing the 

molar ratio still provided activation but an excessive amount of repressor’s DNA resulted 

detrimental to the reaction, possibly because of a sequestration of all the elements required for 

gene expression that are directed towards the synthesis of the repressor gene more than the 

reporter gene. Fluorescence data were analyzed as in Figure 2 – 2. 
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Figure 2 -  4. In single plasmid constructs gene induction occurred when reporter 

and repressor genes are under the control of two separate promoters. A) DC035A carried two 

genes, the repressor lacI and the reporter gene mRFP1-spinach encoded by two different 

promoters. Both genes were under the control of T7 RNA polymerase but the reporter gene 

contained also the operator sequence for LacI (lacO). DC052A instead carried both reporter and 

repressor gene under the control of the same T7 promoter and lacO; B) gene induction was 

observed both in transcription (green bars) and in translation levels (red bars) in the plasmid 

containing two separate promoters but not in the bicistronic construct where only transcription rates 

increased after the induction. These results correlate with the observed influences of gene position 

on its expression.
36

 Fluorescence data were analyzed as in Figure 2 – 2. 
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was a bicistronic construct containing both repressor and reporter genes under the control 

of the same T7 promoter fused to a lac operator (Figure 2 -  4). While the bicistronic 

construct did not report any induction at the translational level, the plasmid designed with 

two promoters showed a good switch between on and off states. The behavior of the 

bicistronic levels can be explained with a recent characterization of gene expression in the 

PURE system.36 From this recent work aimed at characterizing the efficacy of gene 

expression within an operon, it appeared clear how the position within the operon affects 

the final gene expression: coding sequences further from the transcription start site 

resulted in less efficient translation than coding sequences closer to the transcription start 

site. In the bicistronic design, the RNA levels monitored by spinach aptamer and DFHBI 

refer to the mRNA coding for both LacI repressor, in the first position within the operon, 

and mRFP1, in the second position. The increased signal observed for transcription levels 

in the presence of the inducer molecule did not correlate with translation levels of mRFP1 

because of the effect observed in the PURE system related to gene position within an 

operon.  

A final attempt was made to correct the problems associated with the leaky gene 

expression in the off state of the LacI genetic circuit with the PURE system. A second 

operator was thought to reduce the interaction of the promoter with the RNA polymerase 

and a mutant of LacI was reported to show higher differences between on and off state. 

Neither a second operator upstream of the T7 promoter nor the described mutation in the 

repressor96 sequence served the intended purpose (Figure 2 -  5). 

 

2.2.3 Genetic circuits based on T7 promoter showed a high background activation 

 

Among the genetic circuits tested, the system based on LacI demonstrated to be 

tunable although the off state was never satisfactory. An explanation for this can be found 

again in the limitation of the PURE system highlighted from the abovementioned work 

from Chizzolini et al. A set of mutants of T7 promoters was tested for different abilities of 

gene expression, both at the transcriptional and at the translational level. From the data, it 

was clear how the regulation of a strong RNA polymerase such as T7 could not offer good 

tunability. In fact, the different strength of the T7 promoters tested, while showing a 

gradient in RNA levels, did not control well the protein levels, i.e. protein expression was 

either high or low without the possibility of achieving intermediate levels.36 It is likely that 

the levels of LacI expressed were not enough to keep a proper off state in the absence of 

the respective inducer molecule. To verify this hypothesis, a repressor similar to the 

previously described was purified and tested for the effect on the expression of a reporter 
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gene similarly designed. The repressor EsaR involved in the quorum sensing mechanism 

of the plant pathogen Pantoea stewartii was taken into consideration because a detailed 

protocol for the purification with current technologies was available.91 The activity of the  

 

Figure 2 -  5. Trials for LacI circuit improvements. A) Similarly to the systems described 

earlier, a DNA fragment carried the gene coding for LacI or one improved version described in the 

literature under the constitutive expression of the T7 promoter, and the other fragment carried the 

reporter DNA under the control of T7 promoter and 1 or 2 lac operator sequences. The repressor 

constitutively expressed binds to the operator sequences preventing the reporter gene to be 

expressed. When the inducer molecule IPTG is present in solution, gene expression is activated. 

B) The addition of a second operator sequence close to the promoter showed a decrease in gene 

expression activation for LacI. C) A previously described mutant of the repressor LacI reported for 

improved activation in vivo was not showing the same behavior in vitro. Fluorescence data were 

analyzed as in Figure 2 – 2. 
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Figure 2 -  6. The purified EsaR repressor decrease transcription rates but not 

translation rates in the PURE system. Several concentrations of purified repressor were 

subjected to a PCR fragment carrying a reporter gene under the control of the promoter T7 fused to 

the operator sequence of EsaR. Increasing levels of repressor decreased RNA levels but not 

protein levels, confirming that T7 RNA polymerase cannot provide a fine regulation of gene 

expression in vitro. Fluorescence data were analyzed as in Figure 2 – 2. 

 

repressor is analogous to TetR and LacI, therefore a reporter gene was designed under 

the control of T7 promoter fused to EsaR operator sequence and several concentrations 

of the purified repressor were tested for gene repression, in presence or absence of the 

inducer molecule N-(-3-oxohexanoyl)-L-homoserine lactone (3OC6 HSL). The purified 

repressor showed a good activity at the transcriptional level and the effect correlated with 
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increasing ratios between repressor protein and reporter DNA. Nonetheless, the levels of 

protein expression did not correlate accordingly, therefore confirming the strong limitations 

in modulating gene expression with the T7 promoter. Decreasing the strength of the 

promoter either by mutations or by the action of a transcriptional repressor is not sufficient 

for a fine regulation of gene expression (Figure 2 -  6). 

 

2.2.4 A genetic circuit based on E. coli promoters and the regulator LuxR was a 

valid alternative to T7-based genetic circuits 

 

To overcome the limitations of the T7 promoter, alternative circuits were 

considered for the regulation of gene expression. The commercially available PURE 

system lacks E. coli RNA polymerase so all of the constructs exploited were forced to use 

T7 promoters. S30 extracts, instead, not only provide E. coli RNA polymerases but also 

allows for the possibility to exploit different regulatory circuits. Being more similar to the 

cytoplasm of E. coli, the reaction can more reliably exploit many systems that are 

functional in vivo as it contains almost all of the factors involved. 

 

Figure 2 -  7. Gene regulation in LuxR/3OC6 HSL system tested with the reporter 

gene coding for the Firefly luciferase. A) The reporter gene Firefly Luciferase was put under the 

control of the promoter PLuxR containing a LuxR box for the binding of the transcriptional activator 

LuxR in the plasmid RL082A. In this genetic circuit, the activator is constitutively expressed in an 

inactive form under the control of the promoter Ptet and is not able to bind the LuxR box until the 

inducer molecule 3OC6 HSL is present in solution. When bound to the cofactor, LuxR drives the 

binding of E. coli RNA polymerase and successive gene transcription. B) An S30 reaction was run 

with plasmid RL082A in the presence (“+”) or absence (“-“) of the inducer molecule 3OC6 HSL. 

Luciferase activity was measured after 4 h of incubation at 30 °C by the addition of the enzyme’s 

substrate luciferin. Luminescence measurements (integration time: 1 s) showed no background 

activation in absence of 3OC6 HSL. The error bars represent the standard deviation between two 

technical replicates. 
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A valid alternative was then found in a genetic circuit based on the quorum sensing 

signaling pathway of Vibrio fischeri, that exploits the transcription factor LuxR. A genetic 

circuit was designed from a modification of the plasmid BBa_T9002 available from the 

registry of standard biological parts. This plasmid carries the LuxR coding sequence under 

the constitutive promoter pTet and a reporter gene under the control of the inducible 

promoter PLuxR. In the presence of the same inducer molecule interacting with EsaR 

(3OC6 HSL), the transcription factor binds to a sequence enclosed in PLuxR (LuxR box) 

and recruits RNA polymerase to start transcription (Figure 2 -  1 A). Conversely to the 

repressors described above, this protein behaves as a transcriptional activator, functional 

in the presence of the inducer molecule. The final regulation is the same described for 

EsaR, but the molecular mechanism is different: both genes regulated by EsaR and genes 

regulated by LuxR are expressed in presence of the inducer molecule 3OC6 but while 

EsaR is a transcriptional repressor that blocks the expression of the gene of interest in 

absence of 3OC6, LuxR is instead a transcriptional activator unable to start the 

transcription in absence of the inducer molecule.  

This system was previously shown to be active both in vivo and in vitro,67 and 

since no further characterization was required, a reporter gene alternative to 

mRFP1/spinach was chosen to control gene expression also within lipid vesicles. As 

discussed in the introduction, lipid vesicles are not extremely efficient in the encapsulation 

of an active TX/TL reaction. Therefore, the reporter gene should allow a great 

discrimination between the “on” and the “off” state of the circuit. Firefly luciferase seemed 

the best option, because of the high luminescent signal catalyzed by the enzyme 

compared to background activity (Figure 2 -  7). Given the good regulation observed and 

the fact that the inducer molecule could easily permeate the lipid membrane,97 this genetic 

circuit was chosen for the building of artificial cells described in the following chapter.  
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Chapter 3 

 

Towards artificial cells consortia 
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The first chapter discusses some of the technical limitations related to the 

interactions between artificial and natural cells showing how the need for the creation of 

communities of artificial cells is mainly linked to the necessity of an efficient use of 

available resources. This chapter summarizes the central aim of the thesis, that is to 

evaluate the feasibility of the creation of communities of artificial cells linked together in a 

communication network. To this end, the possibility to set communication pathways 

between different kinds of artificial cells was tested. To the end of complementing 

reciprocal defects, not only lipid vesicles were taken into consideration but also other 

kinds of artificial cells. A collaboration with Prof. Stephen Mann at the University of Bristol 

was aimed at evaluating the possibility of creating communication pathways between lipid 

vesicles carrying TX/TL reactions and proteinosomes with catalytic activity. These 

structures based on protein-polymer conjugates offer a semi-permeable membrane, 

whose pore size can vary according to the modified protein used and to all those 

conditions affecting protein folding, such as temperature, pH and ionic strength. Enzymes 

can perform catalytic reactions both on the membrane and in the lumen of these 

compartments.6  

 

Figure 3 - 1. Schematic representation of the communication pathway between 

proteinosomes and liposomes. Glucose oxidase proteinosomes (on the right) contain two 

enzymes: horseradish peroxidase and LuxI (purple and red circles). LuxI catalyzes the synthesis of 

the inducer molecule 3OC6 HSL (purple triangles) that activates the expression of a pore-forming 

protein in a lipid vesicle (on the left). The pores will localize at the membrane of liposomes allowing 

the release of glucose (green hexagons) that will be subjected to an enzymatic reaction catalyzed 

by glucose oxidase and horseradish peroxidase (the conversion of the non-fluorescent molecule 

Amplex Red, grey shape, into the fluorescent molecule Resorufin, pink shape, described in details 

in Figure 3 - 2). The two artificial cell will communicate through the conditional exchange of two 

molecules, 3OC6 HSL and glucose. 
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Figure 3 - 2. Enzymatic reactions catalyzed by the proteinosome. The hydrogen 

peroxide produced by glucose oxidase (GOx) serves as a substrate for horseradish peroxidase 

(HRP) to convert amplex red into resorufin. Conversely to amplex red, resorufin is fluorescent, 

therefore the kinetics of the reactions can be monitored by measuring the fluorescence signal of 

resorufin (excitation: 563 nm; emission: 587 nm). 

 

Two molecules were mainly involved in this communication pathway: the quorum 

sensing molecule 3OC6 HSL described in the previous chapter for the ability to induce the 

expression of genes under the control of LuxR promoters and glucose that can serve as a 

substrate for the enzyme glucose oxidase, modified to create proteinosomes as described 

by Huang et al.6 (Figure 3 - 1). Gene induction led by 3OC6 HSL would allow the 

formation of pores inside of liposomes thus releasing encapsulated glucose. 

Proteinosomes made of glucose oxidase and encapsulating horseradish peroxidase 

(HRP) would catalyze a reaction that converts Amplex (or Ampliflu) Red into the 

fluorescent molecule resorufin (Figure 3 - 2). The communication pathway could then be 

easily monitored through fluorescence. Further, the enzyme responsible for 3OC6 HSL 

synthesis could be trapped inside of glucose oxidase proteinosomes and used to trigger 

gene expression, thus creating a two ways communication pathway where proteinosomes 

send a signal to liposomes (3OC6 HSL) which will reply with another message (glucose). 
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In order to create proteinosomes, glucose oxidase was modified in Stephen 

Mann’s laboratory to carry the hydrophobic polymer poly(N-isopropylacrylamide) 

(PNIPAAm). The resulting amphipathic macromolecules form Pickering emulsions around 

water-in-oil droplets. These structures are stabilized by covalent crosslinking for a stable 

transfer into water phase where they can be in contact with liposomes. 
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3.1 Materials and methods 

 

3.1.1 Reagents and general supplies 

 

Glucose oxidase from Aspergillus niger, Horseradish peroxidase, cholesterol, repel 

silane, EDTA, sepharose 4b were purchased from SIGMA; 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) was purchased from Avanti Polar Lipids; Amylose 

column was purchased from New England Biolabs; E. coli JM109 competent cells were 

purchased from Invitrogen; a protease inhibitor cocktail was purchased from Serva; 

ultrafiltration membrane filters made of regenerated cellulose with a 10 kDa cut-off were 

purchased from Millipore. 

 

3.1.2 Instruments 

 

T10 basic ULTRA-TURRAX disperser from IKA was used for the homogenization 

of lipid vesicles prepared with the FDEL method; Osmometer typM from Löser was used 

for osmolarity measurements; Amicon Stirred Ultrafiltration Cells from Millipore was used 

to concentrate protein solutions. 

 

3.1.3 Plasmids and cloning 

 

All the plasmids were assembled with the Gibson method88 as described in the 

previous chapter. DNA primers and λ-holin sequence were synthesized at Eurofins MWG 

 

Table 3 -  1. Primers used for PCR amplification. 

Primer ID Sequence (5’-3’) 

DC238 TAGAGTCACACAGGAAAGTACTAG ATGGATTCTGATATCAATATCAAA 

DC239 GATGCCTGGCTCTAGTATTATTA TCAGTTGGTCATTTCTTCTT 

DC263 AACAACAACCTCGGGATCGAGGGAAGGATTTCAGAATTCATGACTATAATGAT

AAAAAAATCGGATT 

DC265 CCCGAGGTTGTTGTTATTGTTATTGTTGTTGTTGTTCGAGCTCGAATTAGTCTG

CGCG 

DC271 ACTCTAGAGGATCCTCATTAATTTAAGACTGCTTTTTTAAACTG 

DC272 TGAGGATCCTCTAGAGTCGACCTGCAGGC 

T9002g fw TAATAATACTAGAGCCAGGCATC 

T9002g rev CTAGTACTTTCCTGTGTGACTCTA 
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Table 3 -  2. Relevant sequences used in this section. The table reports synthetic genes 

or inserts of relevant plasmids whose information are not available on online catalogs. 

Sequence ID Sequence (5’-3’) 

αHL ATGGATTCTGATATCAATATCAAAACCGGCACCACCGATATCGGCTCCAAT

ACCACCGTTAAAACCGGTGATCTGGTGACCTATGATAAAGAAAACGGTAT

GCATAAAAAAGTGTTTTACTCGTTTATTGACGATAAAAACCATAACAAAAAA

CTGCTGGTCATCCGCACCAAAGGCACCATTGCGGGTCAATACCGTGTGTA

CTCCGAAGAAGGTGCGAACAAAAGCGGTCTGGCTTGGCCGTCTGCCTTT

AAAGTGCAGCTGCAACTGCCGGATAATGAAGTGGCGCAGATTTCAGATTA

TTATCCGCGTAATAGCATCGATACCAAAGAATATATGAGTACCCTGACCTA

TGGTTTTAATGGCAATGTTACCGGTGATGATACGGGTAAAATTGGCGGTC

TGATTGGCGCCAATGTGTCCATTGGTCATACGCTGAAATACGTGCAACCG

GATTTCAAAACCATTCTGGAAAGTCCGACCGATAAAAAAGTGGGTTGGAA

AGTTATCTTCAACAACATGGTGAATCAGAACTGGGGTCCGTACGATCGCG

ATTCCTGGAATCCGGTTTATGGCAATCAGCTGTTTATGAAAACCCGCAAC

GGTAGTATGAAAGCGGCGGATAATTTTCTGGACCCGAACAAAGCCTCAAG

CCTGCTGTCCAGCGGTTTTAGCCCGGATTTTGCCACGGTTATTACCATGG

ATCGCAAAGCCAGCAAACAGCAGACCAACATTGATGTGATCTACGAACGT

GTGCGTGATGATTATCAACTGCATTGGACCTCAACCAATTGGAAAGGCAC

CAATACCAAAGATAAATGGACGGATCGCAGTTCAGAACGCTACAAAATTG

ATTGGGAAAAAGAAGAAATGACCAACTGA 

FFL ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCTCT

AGAGGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATAC

GCCCTGGTTCCTGGAACAATTGCTTTTACAGATGCACATATCGAGGTGAA

CATCACGTACGCGGAATACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTA

TGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAA

AACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTT

GCAGTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAG

TATGAACATTTCGCAGCCTACCGTAGTGTTTGTTTCCAAAAAGGGGTTGCA

AAAAATTTTGAACGTGCAAAAAAAATTACCAATAATCCAGAAAATTATTATC

ATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGT

CACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTACCAGAGTC

CTTTGATCGTGACAAAACAATTGCACTGATAATGAATTCCTCTGGATCTAC

TGGGTTACCTAAGGGTGTGGCCCTTCCGCATAGAACTGCCTGCGTCAGAT

TCTCGCATGCCAGAGATCCTATTTTTGGCAATCAAATCATTCCGGATACTG

CGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGAATGTTTACTACACT

CGGATATTTGATATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGA

AGAGCTGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTTGCT

AGTACCAACCCTATTTTCATTCTTCGCCAAAAGCACTCTGATTGACAAATA

CGATTTATCTAATTTACACGAAATTGCTTCTGGGGGCGCACCTCTTTCGAA

AGAAGTCGGGGAAGCGGTTGCAAAACGCTTCCATCTTCCAGGGATACGA
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CAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACACCCGA

GGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCCATTTTTTGAAG

CGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAGAG

AGGCGAATTATGTGTCAGAGGACCTATGATTATGTCCGGTTATGTAAACAA

TCCGGAAGCGACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTG

GAGACATAGCTTACTGGGACGAAGACGAACACTTCTTCATAGTTGACCGC

TTGAAGTCTTTAATTAAATACAAAGGATATCAGGTGGCCCCCGCTGAATTG

GAATCGATATTGTTACAACACCCCAACATCTTCGACGCGGGCGTGGCAGG

TCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGG

AGCACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAG

TCAAGTAACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGAC

GAAGTACCGAAAGGTCTTACCGGAAAACTCGACGCAAGAAAAATCAGAGA

GATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAAATTGTAA 

 

Table 3 -  3. Plasmids used in this section 

Plasmid ID Backbone Insert Source Cloning strategy 

Primers Template 

pET21b   Novagen   

pET21b_αHL 

C-ter 

pET21b T7_lacO_αHL::His Mansy Lab   

pMAL-c4x  pTac_lacO_MBP New 

England 

Biolabs 

  

RL078A pSB1A3 pTet_LuxR_pLux_LuxI Mansy Lab   

DC128A pMAL-c4x pTac_lacO_MBP::LuxI  DC263/ 

DC271 

RL078A 

DC265/ 

DC272 

pMAL-c4x 

DC119A pSB1A3 pTet_LuxR_pLux_αHL 

(α-hemolysin) 

 T9002g 

fw/T9002

g rev 

RL078A 

DC238/ 

DC239 

pET21b_ 

αHL C-ter 

RL082A pSB1A3 pTet_LuxR_pLux_FFL 

(firefly luciferase) 

Mansy Lab   
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3.1.4 LuxI purification 

 

The enzyme LuxI was purified following the indications by Schaefer et al.98 with 

some modifications. The gene was cloned in pMAL-c4x and E. coli JM109 were 

transformed with the plasmid for expression and purification. A protease inhibitor cocktail 

was added according to manufacturer’s instructions and glycerol was removed from the 

column wash buffer to allow the liquid to pass through the column faster. The protein was 

dialyzed against a buffer containing 20 mM sodium phosphate pH 7.4, 0.1 mM EDTA, 100 

mM NaCl, 1 µM DTT. The solution was concentrated with an Amicon stirred cell with 

cellulose filter with a pore size of 10 kDa, then supplemented with 2% DMSO to allow the 

use in S30 reaction as suggested by Sun et al.37 and stored at -80 °C in 100 µl aliquots.  

 

3.1.5 Preparation of vesicles with the FDEL method 

 

POPC and cholesterol were dissolved in chloroform to 10 mg/ml and the needed 

amount was transferred into a glass round bottom flask to allow chloroform evaporation 

through rotary evaporation. The lipid mixtures were resuspended in DEPC-treated water 

to a final concentration of 24.5 mM with a molar ratio between POPC and cholesterol of 

1:2. Liposome mixtures were successively homogenized for 1 min at power 4 with T10 

basic ULTRA-TURRAX disperser. The solution was split into 100 µl aliquots in 2 ml tubes, 

flash-frozen in liquid nitrogen and dehydrated overnight at rotavapor. Aliquots were stored 

at -20°C and each of them was thawed on ice prior to use. 

 

3.1.6 Permeability test for glucose 

 

POPC:cholesterol 1:2 (24.5 mM) vesicles were prepared with the FDEL method 

and resuspended with 10 mM calcein dissolved in HEPES buffer (50mM HEPES, 10mM 

MgCl2, 100mM KCl, pH 7.6) in the round bottom flask after evaporation with a rotary 

evaporator. Vesicles were then extruded to 100 nm and fractionated with sepharose 4b 

column. To 50 µl of vesicles, 1 vol of 1 M glucose was added and kinetics were followed 

at the fluorimeter with the following parameters: excitation 495 nm, emission 515 nm, 37 

°C, acquisition every 5 min for 13 h. Triton X-100 was later added to a final concentration 

of 0.3% (vol/vol) to verify the integrity of vesicles over time: the increase in fluorescence 

observed correlated to the break of vesicles, indicating that before the addition of the 

detergent, vesicles were intact and the data collected are reliable. 
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3.1.7 In vitro gene expression with home-made S30 E. coli extract 

 

In vitro transcription/translation reactions based on S30 crude extract were 

prepared as described in the previous chapter with the following modifications: DNA was 

added to a final concentration of 25 nM, 100 mM glucose was added when needed and 10 

µM 3OC6 HSL was added both from the outside or together in a non-encapsulated S30 

reaction. The reactions were incubated at 30 °C for 4 h. 

 

3.1.8 Pore formation tests with calcein 

 

POPC:cholesterol 1:2 (24.5 mM) vesicles were prepared with the FDEL method 

and resuspended in 50 µl of 80 mM calcein dissolved in HEPES buffer and vortexed for 1 

min. Vesicles were transferred to a 2 ml tube filled with HEPES buffer and spun at 6000 g 

for 5 min, the buffer was replaced and this step was repeated 3 additional times until the 

buffer appeared clear and the pellet of vesicles was finally resuspended in 500 µl of 

HEPES buffer. Pore formation was tested on a 384-wells plate by incubating 18 µl of 

vesicles with 2 µl of S30 reaction or controls as indicated in the results section. The S30 

reaction was assembled as in § 3.1.7 and incubated at 30°C for 4 h prior to use in 

combination with calcein-loaded vesicles. Fluorescence levels were measured at Tecan 

Infinite M-200 with the following parameters: excitation 485 ± 9 nm, emission 515 ± 20 

nm, gain 50, room temperature. 

 

3.1.9 Pore formation tests with Amplex red 

 

Vesicles were prepared with 100 mM glucose with the same procedure described 

in the previous paragraph. A 25X enzymatic mixture was prepared to contain 250 µM 

amplex red, 5 U/ml HRP and 50 U/ml GOx. Pore formation was tested in a 384-wells plate 

by incubating 21.5 µl of vesicles with 2.5 µl of 6 mg/ml α-hemolysin or HEPES buffer and 

1 µl of the 25X enzymatic mixture. Fluorescence levels were measured at Tecan Infinite 

M-200 with the following parameters: excitation 560 ± 9 nm, emission 595 ± 20 nm, gain 

50, room temperature. Raw fluorescent data were converted by means of a standard 

curve created with 1X enzymatic mixture and different concentrations of glucose (0, 1E-

08, 1E-07, 1E-06, 1E-05 M) 
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3.1.10 Gene expression inside lipid vesicles prepared with FDEL method 

 

Three aliquots of vesicles prepared with FDEL method were resuspended with a 

total of 150 µl of S30 reaction supplemented with 20 µM GFPmut3B, previously expressed 

and purified via Ni-NTA column as described for EsaR repressor. Vesicles were extruded 

11 times with three membranes cut-offs (0.2, 1 and 3 µm) and then loaded on a 

sepharose 4b column equilibrated with HEPES buffer, used also for the elution and 

fractionation of vesicles. GFPmut3B fluorescence of the fractions was measured at Tecan 

Infinite M-200 with the following parameters: excitation 480 nm, emission 511 nm, gain 50, 

room temperature. The first fluorescent fractions, that contained vesicles, were separated 

from the others. Vesicles were then incubated at 30°C and 50 µl aliquots were collected 

every hour to measure glucose release with amplex red enzymatic assay as described 

earlier. 

 

3.1.11 Gene expression inside lipid vesicles prepared with Pautot’s method 

 

A modification of the protocol developed by Hadorn47,99,100 was used for the 

formation of vesicles. All the glassware and plasticware were incubated with repel silane 

for 10 min at room temperature to avoid nonspecific interactions with vesicles. For the 

same reason, 96-well plates with U-shaped bottom were additionally treated with salmon 

sperm DNA and dry milk for 10 min. A solution of POPC and a solution of cholesterol both 

dispersed in chloroform were added to a round bottom glass flask. Chloroform was 

evaporated under a stream of nitrogen and lipid mixtures were resuspended in mineral oil 

to a final concentration of 200 µM, then sonicated in a warm bath at 50 °C and incubated 

overnight at room temperature in the dark.  

In a 96-well plate, 100 µl of a solution made with 0.88 M alanine pH 8 (“hosting 

solution”) was pipetted at the bottom of the well, and 50 µl of a lipid mixture was added on 

top and phospholipids were allowed to sediment at the interphase for 2 h at room 

temperature. An S30 reaction was assembled with the addition of 180 mM sucrose and 

combined with lipid mixture to 2% (vol/vol) to create a water-in-oil emulsion by mechanical 

agitation. The emulsion was poured on top of the well and the vesicles were formed by 

spinning the plate at 1500 g for 3 min at 4 °C. The oil phase was removed by aspiration 

and the vesicles were washed once with the hosting solution and spun with the same 

conditions. 10 µl of vesicles were resuspended and loaded on a microscope glass slide, 

sealed with nail polish and incubated at 37 °C for 3 h before observation by fluorescence 

microscopy. 
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3.2 Results 

 

 

Figure 3 - 3. Enzymatic reactions catalyzed by LuxI. The quorum signaling molecules 

acyl-homoserine lactones are produced by specific synthases that form a covalent bond between a 

lactone ring derived from S-adenosylmethionine and an acyl chain transferred from acyl carrier 

protein (ACP). LuxI from V. fischeri catalyzes the synthesis of N-(3-Oxohexanoyl)-L-homoserine 

lactone. 

 

In order to assess the feasibility of the designed communication pathway, the two 

directions were analyzed separately. The first analysis focused on proteinosomes sending 

a message to liposomes, in a mechanism where proteinosomes trigger gene expression 

S- adenosylmethionine 

3-Oxohexanoyl-ACP 

N-(3-Oxohexanoyl)-L-homoserine lactone 

 S-methyl-5'-thioadenosine 

ACP 
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in liposomes through the production of 3OC6 HSL. The second mechanism foresees the 

delivery of glucose from liposomes to proteinosomes to induce catalytic activity. 

  

3.2.1 LuxI purification and test for activity 

 

The enzyme responsible for the synthesis of the quorum sensing molecule, LuxI, 

was purified and assayed in vitro with an S30 reaction for the induction of gene 

expression. The enzyme is classified as an acyl-homoserine lactone synthase and its 

substrates are S-adenosylmethionine (SAM) and an acyl carrier protein (ACP) loaded with 

a six carbon hydrocarbon (3-oxohexanoyl-ACP) (Figure 3 - 3).98,101 Acyl carrier proteins 

are involved in the fatty acid synthetic pathway and the loading of the proper acyl group 

requires the precursor acetyl-CoA.102 In order to test the activity of the purified enzyme, an 

S30 reaction was supplemented with acetyl-CoA and S-adenosylmethionine. The reporter 

gene circuit exploited was the previously described modification of BBa_T9002 shown to 

express firefly luciferase in the presence of the inducer molecule 3OC6 HSL. 

 

Figure 3 - 4. Luciferase expression in the S30 reaction under the control of LuxR 

promoter induced by a purified enzyme MBP-LuxI. The induction of the Firefly luciferase gene 

was tested in an S30 reaction assembled with plasmid RL082A and the elements indicated in the 

chart (values are reported in mM). After 4 hours of incubation at 30°C, the reaction was 

supplemented with the substrate of luciferase and the luminescent signal was measured with an 

integration time of 1 s. The error bars represent the standard deviation between technical 

duplicates. The enzyme is the only factor required for the production of the inducer molecule 3OC6 

HSL and shows good gene induction, comparable to what was observed when pure 3OC6 HSL is 

added to the solution. The addition of the precursor molecules acetyl-CoA and S-

adenosylmethionine (SAM) is not necessary for the induction of gene expression, despite previous 

reports.  
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Consistently to the observations of Schaefer et al.,98 the enzyme was very active 

even if the fused maltose binding protein (MBP) that was used for purification was not 

cleaved off. The fact that the enzyme retained the catalytic activity despite the presence of 

the fusion tag may result helpful for the stability of the system as the dimensions of the 

protein will forbid the passage across the porous membrane of proteinosomes. 

Conversely to what was reported for the LuxI homolog in Pseudomonas aeruginosa,103 the 

enzyme was active in E. coli extract also in absence of the precursors of the acyl-

homoserine lactone. The E. coli extract seemed to retain enough enzymatic activity to 

both synthesize S-adenosylmethionine and to load an acyl carrier protein with a six 

carbons acyl group (Figure 3 - 4). 

         

3.2.2 Glucose permeability 

 

           

Figure 3 - 5. Permeability test of POPC:cholesterol vesicles to glucose. The addition 

of glucose induces the shrinkage of vesicles and a consequent drop in fluorescence of 

encapsulated calcein. The chart reports the data on the fluorescence values of calcein (excitation: 

485 ± 9 nm; emission: 515 ± 20 nm) and the error bars represent the standard deviation between 

technical duplicates. No fluorescence restoration due to glucose permeation and balance of 

osmotic pressure was observed after 13 h. The detergent Triton X-100 was finally added to verify 

the integrity of vesicles over time. 
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Together with other sugars, glucose is well-known to have a very low permeability 

to lipid membranes containing POPC, to the point that it can be used to evaluate the 

change in membrane permeability induced by pores formed by synthetic polymers104,105 or 

 

 

Figure 3 - 6. Calcein release by means of αHL gene induction. Vesicles loaded with 80 

mM calcein were incubated together with S30 reactions or Triton X-100, purified α-hemolysin 

(αHL), HEPES buffer (50 mM HEPES, 10 mM MgCl2, 100 mM KCl, pH 7.6), 5% glycerol. S30 

reactions contained plasmid DNA carrying LuxR gene constitutively expressed and α-hemolysin (α 

HL) or β-galactosidase (βGal) genes under the control of LuxR promoter. Prior to incubation with 

vesicles, S30 reactions were incubated at 30°C for 4 h. The chart reports the data on the 

fluorescence of calcein (excitation: 485 ± 9 nm; emission: 515 ± 20 nm) and the error bars 

represent the standard deviation between technical duplicates. Only when α-hemolysin was 

expressed, calcein was released outside of the vesicles and an increase of fluorescence was 

observed because of a dilution effect. 

 

small peptides.106,107 Nonetheless a quick control on the permeability across liposomes 

was performed prior to proceeding with the experiments aimed at establishing 

communication pathways between liposomes and proteinosomes. To assess the retention 

of glucose inside of the lipid vesicles, a shrink-swell assay was performed with liposomes 
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loaded with 10 mM calcein.108 The assay is based on the ability of calcein to self-quench 

at increasing concentrations so that the shrinkage caused by a hypertonic solution 

decreased fluorescence levels. A permeable molecule would re-equilibrate the osmotic 

pressure resulting in an increase of fluorescence. As reported in Figure 3 - 5, 

POPC:cholesterol vesicles did not allow the passage of glucose, because no fluorescence 

increase was observed after 13 h of incubation. 

 

3.2.3 Pore formation tests on liposomes 

 

In the conceived pathway, the LuxR/3OC6 HSL circuit would be responsible for the 

activation of expression of a pore-forming protein that should induce the release of 

glucose from the vesicle lumen. Releasing a small molecule such as glucose would not 

require a large pore, so alpha-hemolysin (αHL) from Staphylococcus aureus, with a pore 

size of ca. 1.5 nm,109 can serve this purpose, as it has been previously shown for the 

release of a molecule of similar dimensions such as IPTG.1  

 

Figure 3 - 7. Glucose release by passive diffusion through the αHL pore. Vesicles 

loaded with 100 mM glucose were purified through sepharose column and mixed with α-hemolysin. 

The passage of glucose outside of lipid vesicles through α-hemolysin pores was verified with the 

enzymatic reaction described in Figure 3 - 2 (raw fluorescence data are converted to the 

concentration of glucose detected by means of the standard curve described in § 3.1.9). The error 

bars referred to the standard deviation of technical duplicates. The results reported here show how 

the pores created by the protein allows the free diffusion of glucose and the consecutive enzymatic 

activity.  

 

In order to test the ability of S30 reactions to synthesize a functional pore-forming 

protein, the coding sequence of α-hemolysin was cloned in the genetic circuit based on 

LuxR/3OC6 HSL system. The test was performed by incubating the proteins produced in 

S30 reactions with calcein-loaded liposomes for 5 min. Liposomes loaded with 80 mM 

0

2

4

6

8

10

12

14

G
lu

co
se

 [
µ

M
] 



58 
 

calcein are largely self-quenched, but if the membrane is destabilized by the action of a 

detergent or pore-forming proteins, calcein would be diluted in the external solution thus 

leading to increased fluorescence.110 As reported in Figure 3 - 6, the S30 reaction was 

able to produce a functional pore-forming protein and cause calcein release only in the on 

state. To further verify the passage of glucose through α-hemolysin pores, 

POPC:cholesterol vesicles loaded with 100 mM glucose were incubated with purified α-

hemolysin and the levels of glucose were verified with the enzymatic reactions catalyzed 

by glucose oxidase and horseradish peroxidase in the presence of amplex red, with the 

same reaction performed by proteinosome (Figure 3 - 7).  

 

3.2.4 Glucose release from liposomes 

 

The major issue faced with the project was related to the removal of 

unencapsulated material. The FDEL method to create lipid vesicles does not allow for a 

complete encapsulation of the desired solution. The encapsulation of the TX/TL reaction 

relies on the resuspension of a previously dried lipid film, therefore part of the reaction mix 

may not be included within liposomes. Although gene expression can be silenced 

externally by the addition of DNase and RNase, glucose cannot be removed similarly. It 

was previously demonstrated how it is possible to remove unencapsulated PURE system 

by dialysis,1 but we also observed a dramatic decrease in gene expression for the S30 

reaction during the time required for dialysis. Therefore, a faster alternative was 

investigated. Size-exclusion chromatography was chosen as a first trial: because of their 

large size, vesicles are eluted earlier than the non-encapsulated reaction mixture, 

including glucose, that is instead retained in the column for a longer time. To help the 

collection of the proper fraction and exclude all of the unencapsulated solution, GFP was 

added to the S30 reaction to be used as a fluorescent marker, and vesicles were extruded 

before loading on a sepharose column. The extrusion step ensures a homogeneous size 

distribution to allow a good separation of vesicles on sepharose column. The induction of 

gene expression of α-hemolysin did not show any specific glucose release, monitored 

through the reaction catalyzed by glucose oxidase and horseradish peroxidase (Figure 3 - 

8). It is possible that the procedure was affecting the efficacy of the S30 reaction so that 

the number of active vesicles was not enough to induce a proper level of glucose release 

and overcome the fluorescence background signal. 

An alternative to the FDEL method, also the method developed by Pautot was 

taken into consideration. Vesicles formed in this way are theoretically free of the non-

encapsulated solution and do not require any purification step. Nonetheless, some of the  
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Figure 3 - 8. Induction of glucose release through αHL pores with lipid vesicles 

prepared with FDEL method. An S30 reaction assembled with glucose and the plasmid carrying 

the genetic circuit LuxR/αHL was encapsulated in POPC:cholesterol vesicles prepared with FDEL 

method. A control encapsulating glucose in HEPES buffer was added. Vesicles were extruded to 

0.2 (A), 1 (B) and 3 µm (C). Half of the vesicles were incubated with 10 µM of the inducer molecule 

3OC6 and glucose release through αHL pores was measured through the enzymatic reaction 

described in Figure 3 - 2 over time. In none of the three cases, a specific glucose release was 

detected. 
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vesicles may pop during the formation process and some oil has to be removed from the 

top of the solution. To allow vesicle formation by centrifugation, the density between 

internal and external solution had to be increased while keeping an osmotic equilibrium. 

To address this purpose, sucrose was supplemented to the S30 reaction and 0.88 M 

alanine pH 8.0 was used externally. Alanine was chosen as a good alternative to glucose 

that was previously described to serve this purpose.47,100 Being the molecule responsible 

for signaling, glucose could not be used as the external solution for vesicles formation. 

Alanine is mostly zwitterionic at pH conditions used in the S30 reaction so less likely to 

interfere with the polar heads of phospholipids, and being smaller than glucose it 

increases more the difference in density between inner and outer solution. 

 

Figure 3 - 9. Gene expression in POPC vesicles prepared with Pautot’s method. Ypet 

fluorescent protein was expressed under the control of a T7 promoter in an S30 reaction (A and B) 

but no fluorescence was observed in absence of template DNA (C and D). A) and C) histogram 

charts of the fluorescence observed respectively in B) and D).  

 

To assess the efficacy of the S30 reaction in vesicles prepared with this method, 

the production of a Ypet fluorescent protein was tested inside of liposomes encapsulating 

a reaction mixture assembled with a plasmid DNA encoding the protein under T7 

promoter and the purified T7 RNA polymerase. As observed under the microscope, Ypet 

could be expressed very well in this system (Figure 3 - 9 B). Nonetheless, measuring the 

release of glucose from such a system was not possible due to the background detected 

C) D) 
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(Figure 3 - 10). It can be presumed that liposomes are not stable enough and may pop, 

thus releasing their content. 

 

Figure 3 - 10. Induction of glucose release through αHL pores with lipid vesicles 

prepared with Pautot’s method. An S30 reaction containing glucose and the plasmid carrying the 

genetic circuit LuxR/αHL was used to create a w/o emulsion in a mixture of POPC dispersed in 

mineral oil and create vesicles. A control without DNA was included. The inducer molecule was 

added from the outside and glucose release was measured after 3 h of incubation at 30 °C by 

means of resorufin fluorescence (excitation: 560 ± 9 nm; emission: 595 ± 20 nm) produced in the 

enzymatic reaction described in Figure 3 - 2. The error bars refer to standard deviation between 

technical duplicates. Again, no particular difference in fluorescence was observed for all the 

samples tested. 

 

3.2.5 A consortium involving bacteria 

 

Considering all the problems related to the stability of liposomes, a new 

communication pathway was taken into consideration (Figure 3 - 11). In this new design, 

liposomes containing S30 reaction should not undergo any purification step that may 

destabilize either the reaction or the membrane. The release of the communication 

molecule would be entrusted to bacteria rather than artificial cells and two different kinds 

of liposomes would be exploited. One liposome would contain the S30 reaction 

responsible for the production of a trigger molecule that activates the release of the 

chemical message contained in another population of liposomes. The trigger molecule 
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would activate the production of a pore-forming protein in bacteria by means of a genetic 

switch similar to LuxR/3OC6 HSL, and the protein would bind the membrane of glucose-

loaded liposomes causing the release of the cargo by passive diffusion. Keeping the 

chemical message separated from the S30 reaction means that no purification step would 

be required for S30-loaded vesicles with higher chances of retaining the activity of the S30 

solution. 

 

 

Figure 3 - 11. Schematic representation of a community of artificial and natural cells. 

To avoid all the problems related to the purification of vesicles from glucose, an alternative 

communication pathway was designed to keep the chemical message separated from the S30 

reaction. One population of lipid vesicles would encapsulate the S30 reaction and another 

population would carry glucose. The expression of a pore-forming protein (blue circle) would be 

induced in bacteria by lipid vesicles synthesizing a freely diffusible molecule active for gene 

induction (yellow triangle). The protein would disrupt bacterial membranes, then diffuse outside and 

attack all the lipid vesicles inducing glucose release. As described earlier, proteinosomes would be 

responsible for the beginning of the communication pathway by producing a trigger molecule 

(purple triangle) to induce gene expression in lipid vesicles.  

 

The protein responsible for the explosion of vesicles was chosen to disrupt any 

kind of lipid membranes so that once produced they will be also released because of their 

action on the stability of the bacterial membrane. E. coli BL21 Rosetta 2 (DE3) cells were 

tested for the production of known pore-forming proteins such as holin from bacteriophage 

λ and ColE7, that should create bigger pores than α-hemolysin. First of all, it was tested 
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whether the membrane of bacteria was destabilized by the production of the protein. The 

turbidity of bacterial culture was monitored over time and ColE7 demonstrated to be more 

active in exploding bacteria than λ-holin as shown by a drop in optical density values in  

 

 

Figure 3 - 12. Pore-forming proteins expressed in bacteria. E. coli BL21 Rosetta 2 

(DE3) cells were transformed with plasmids carrying the genes of the pore-forming proteins λ-holin 

and ColE7 under the control of an inducible promoter controlled by LacI. The ability to form pores in 

bacterial membranes was measured as the decrease in bacteria concentration by optical density 

changes after the induction with IPTG. The chart reports the absorbance values measured at 600 

nm every 60 minutes. The error bars represent the standard deviation between biological 

duplicates. ColE7 (B) showed a higher effect than λ-holin (A). C) After 7 hours of induction, bacteria 

were incubated with vesicles loaded with 80 mM calcein to verify pore-formation on membranes. 

Fluorescence values of calcein were measured as indicated in Figure 3 - 6 and the error bars refer 

to the standard deviation between biological duplicates. Despite the proteins were able to reduce 

the number of bacteria, it was not possible to observe any release of calcein from liposomes when 

incubated with the cultures of bacteria producing the proteins. It is likely that all the polypeptides 

synthesized were sequestered by the membrane of the producer bacteria. 
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Figure 3 – 12 A and B. The cultures were successively incubated with calcein-loaded 

vesicles to verify the formation of pores as it was described in § 3.2.3 for αHL produced in 

S30 extract. Fluorescence of calcein inside vesicles was quenched because of the high 

concentration of the fluorophore and it was expected to increase in case of a 

destabilization of the membrane and the consecutive release. After the disruption of 

bacterial membranes, the pore-forming protein was thought to be present in the liquid 

medium so that a simple addition of the medium to calcein-loaded vesicles could result in 

calcein release due to a destabilization of lipid membranes. Conversely to the 

expectations, no effect on lipid membranes was observed when bacteria were incubated 

with vesicles after the protein was produced. It is likely that after the production, the pore-

forming proteins attached to bacterial membranes so that no interaction with lipid vesicles 

was possible (Figure 3 - 12 C). 

 

A new construct is now under investigation inspired by the work of Saeidi et al.9 In 

this new design not only ColE7 would be under the control of a genetic switch but also the 

protein perfringolysin-O (PFO). This protein undergoes a conformational change that 

leads to the formation of pores in lipid membranes only in presence of cholesterol.111 The 

human pathogen Clostridium perfringens exploits this property to infect human cells 

containing cholesterol while preserving its membrane that instead lacks cholesterol. E. coli 

membranes do not contain cholesterol and a water-soluble version of the protein can be 

efficiently produced by the removal of an N-terminal signal peptide.112 In this new design, 

E. coli cells would explode by the action of ColE7 and release PFO that would cause the 

break of cholesterol-containing lipid vesicles.  
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Part B 

 

Development of biosensors for possible integration with artificial 

cell 
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Chapter 4  

 

Selection for a malachite green DNA aptamer for use in a sensor 

molecule 
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The concept of artificial cells described in the previous chapter relies heavily on 

biosensing. Simple biosensors, that are not based on complex structures such as artificial 

cells, can be developed by engineering biological molecules. These elements could be 

used alone or possibly integrated with artificial cells. Several biological elements can be 

engineered to detect molecular signals and among the described sensors,113,114 aptamers 

offer a versatile and easy to engineer module.  

Nucleic acids sequences can be engineered in vitro through methods of directed 

evolution, with a technique described in the 1990s named SELEX (Systematic evolution of 

ligands by exponential enrichment). Although it was L. Gold to coin the term, both G. 

Joyce and J. Szostak together with A. Ellington set up similar protocols independently.115–

118 This procedure is based on a pool of randomized single-stranded nucleic acids, 

referred to as “library”, that is added to the molecule for which an aptamer has to be 

created. Through iterative steps of binding, elution and amplification, the desired 

oligonucleotide is evolved in a test tube. The combination of aptamers in modular 

sequences can be a useful tool for the creation of biosensors. The fusion of an aptamer 

with ribozymes, for example, can induce a nucleolytic cleavage in presence of the 

ligand.119 Two aptamers can be combined together to create a sequence that can undergo 

a conformational change induced by the simultaneous presence of the two ligands. The 

change can be easily detected through aptamers that are able to increase the quantum 

yield of barely fluorescent fluorophores.95,120–123 A biosensor for a small biologically 

relevant molecule can be based on a single-stranded nucleic acid sequence containing an 

aptamer developed for the binding of the small molecule (the analyte) fused together with 

an aptamer capable of binding a fluorophore. In a previously described work,124  two 

aptamer sequences, one able to bind a fluorophore and one able to bind an analyte, were 

joined together with an intermediate sequence that induced a conditional conformational 

change in presence of the analyte so that the nucleic acid switched from a conformation 

unable to bind a fluorophore to a conformation able to do so. The final result was a sensor 

that shows fluorescence increase only in presence of the molecule to be detected. 

Because of the small dimensions of this type of sensors, it is possible to consider 

applications such as live imaging in narrow spaces where other molecules could not fit. 

Neurotransmitters, for example, are molecules hard to visualize because of the small gap 

where they localize extracellularly. Among the known neurotransmitter, an RNA aptamer 

for the binding of dopamine was developed through in vitro evolution125 and it was shown 

to retain its affinity also in the DNA version.126 DNA is more resistant to hydrolysis than 

RNA and therefore it is much more recommended for the use as a biosensor. The project 

aimed at building a single-stranded DNA molecule from the combination of a dopamine 

aptamer and a fluorescent aptamer, to create a dopamine biosensor for live imaging of the 
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neurotransmitter. To our knowledge, there was only one example of DNA aptamer able to 

increase the quantum yield of a poorly fluorescent molecule.121 The ligand of this aptamer 

was a modified version of the Hoechst dye and it was not commercially available thus 

posing a limit to the possible range of users: the project was aimed at developing a 

universal tool exploited by the largest number of scientist and to this end it requires all the 

components to be easily accessible. 

A more versatile DNA fluorescent aptamer had then to be engineered and 

malachite green (MG) seemed a good candidate ligand for a couple of practical reasons: it 

can be purchased at a very low price and there is an RNA aptamer shown to increase its 

fluorescence quantum yield of ~2000 fold.120,127 The aptamer was selected by affinity to 

the ligand and discovered later to increase its fluorescence quantum yield, so a DNA 

aptamer could potentially do the same. Conversely to what was described for the 

dopamine aptamer, the DNA version of the MG aptamer was not able to increase the 

fluorescence of malachite green, therefore a SELEX procedure was set to find a binder 

among three different pools of DNA molecules. 
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4.1 Materials and methods 

 

4.1.1 DNA sequences 

 

DNA libraries for strategies 1 and 3 were purchased from IDT technologies; DNA 

library for strategies 2, DNA oligonucleotides for PCR were purchased from Eurofins 

Genomics. All the DNA libraries contained a core variable region flanked by two constant 

portions for PCR amplification after every round of selection. Details of the library design 

are discussed in the results. 

 

Table 4 - 1. Single-stranded DNA sequences. DNA sequences were all sent lyophilized 

and primers were purified by standard desalting while all the libraries were purified by HPLC. 

ID Sequence (5’-3’) Modification Purpose 

DC026 GCGGATAACAATTCCCCTCT 5’ biotin PCR amplification of the 

first library 

DC027 GCGGATAACAATTCCCCTCT  qPCR of the first library 

DC028 GCTGTCCACCAGTCATGCTA  PCR amplification and 

qPCR of the first library 

DC047 GTAAAACGACGGCCAG  Sequencing 

DC031 GCGGATAACAATTCCCCTCTNN

NNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNTAGC

ATGACTGGTGGACAGC 

 DNA library 1 

MGApt(T) GGATCGCGACTGGCGAGAGCC

AGGTAACGAATCGATCC 

 DNA version of the RNA 

aptamer 

MGApt(U) GGAUCGCGACUGGCGAGAGCC

AGGUAACGAAUCGAUCC 

 DNA version of the RNA 

aptamer with deoxyuridine 

DC070 GGAACACTATCCGACTGGCACC  PCR amplification and 

qPCR of libraries 2 and 3 

DC071 CGGGATCCTAATGACCAAGG  qPCR of libraries 2 and 3 

DC072 GGAACACTATCCGACTGGCACC 

GGATCGNNACTGGCGAGAGCC

AGNTAANNNATCGATCCA 

CCTTGGTCATTAGGATCCCG 

 DNA library 2 with 6 

randomized nucleotides 

DC073 CGGGATCCTAATGACCAAGG 5’ biotin PCR amplification of 

libraries 2 and 3 
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Degenerated 

MG aptamer 

GGAACACTATCCGACTGGCACC 

GGATCGCGACTGGCGAGAGCC

AGGTAACGAATCGATCC 

CCTTGGTCATTAGGATCCCG 

 DNA library 3. The 

underlined part was 

synthesized in order to 

have 85 % of the indicated 

nucleotide and 15% 

random nucleotides 

AJM.RBS.ON   Control DNA used for 

fluorescence test 

FC001A   Plasmid DNA encoding MG 

RNA aptamer under the 

control of T7 promoter 

 

4.1.2 RNA sequences 

 

The MG RNA aptamer was synthesized from plasmid FC001A (5’-

GGAUCGCGACUGGCGAGAGCCAGGUAACGAAUCGAUCC-3’) as described in § 4.1.8 

and purified as in § 4.1.9. Total mRNA was extracted from E. coli DH5α with GeneJET 

RNA purification kit according to manufacturer’s instructions. 

 

4.1.3 Reagents and general supplies 

 

Ultrafree-MC microcentrifuge filters with pore size of 0.45 µm, Malachite green 

(MG), adipic acid dihydrazide agarose, N,N-dimethylformamide (DMF), N,N,N′,N′-

Tetramethylethylenediamine (TEMED), sodium bicarbonate (NaHCO3), liquid 

chromatography columns, LB and LB agar media, magnesium chloride (MgCl2), 

spermidine, 1,4-dithiothreitol (DTT), HEPES, 99% ethanol, sucrose, sodium dodecyl 

sulfate (SDS), bromophenol blue, xylene cyanol, 0.5 M EDTA pH 8.0, ammonium 

persulfate (APS) were purchased from Sigma-Aldrich; 50 U/µl T7 RNA polymerase, 100 

mM ATP, 100 mM GTP, 100 mM CTP, 100 mM UTP, yeast inorganic pyrophosphatase 

were purchased from New England Biolabs; Malachite green isothiocyanate (MGI), 

dynabeads C1 streptavidin beads, were purchased from Life technologies; TOPO-TA 

cloning kit was purchased from Invitrogen; 2X SSO advanced mix for qPCR and Micro 

Bio-Spin Chromatography Columns were purchased from Biorad; Phusion polymerase 

and mRNA extraction kit (GeneJET RNA purification kit) were purchased from Thermo 

Fisher Scientific; Wizard® Plus SV Minipreps DNA Purification System was purchased 

from Promega; ALUGRAM® aluminium sheets SIL G/UV254 (cat.# 818133) was 

purchased from Macherey Nagel. 
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4.1.4 Buffers and solutions 

 

Buffers for selection included: 10X MG selection buffer 1 (50 mM MgCl2, 50 mM 

KCl, 1450 mM NaCl, 200 mM Tris-HCl pH 7.4), 1X MG elution buffer (1X MG selection 

buffer, 1 mM MG), 10X MG selection buffer 2 (50 mM MgCl2, 50 mM KCl, 1033.3 mM 

NaCl, 200 mM Tris-HCl pH 7.4) used from 2nd cycle onwards to compensate the NaCl 

concentration after the dynabeads purification. Buffers for dynabeads purification 

included: 2X DB B&W (10 mM Tris-HCl pH7.5, 1 mM EDTA pH 8.0, 2 M NaCl, 0.01% w/v 

Tween-20), 1X DB elution buffer (100 mM NaOH), 1X DB neutralization buffer (100 mM 

HCl, 5 mM Tris-HCl pH 7.5). 

 

4.1.5 Affinity resin for malachite green 

 

The column was created according to the protocol described by Grate and 

Wilson.120 Briefly, 3 mg of malachite green isothiocyanate were solubilized in 300 ml of 

DMF and incubated with 10 ml of adipic acid dihydrazide agarose previously equilibrated 

with 0.1 M NaHCO3 (pH 8.3). The reaction proceeded overnight at room temperature in 

the dark. Then the column was stored at +4 °C wrapped in aluminum foil. Prior to each 

use, the resin was washed on a column by gravity adding 2 vol of DMF, 5 vol of DEPC-

treated water, 2 vol of 1X MG selection buffer 1. It was finally resuspended with 1 vol of 

1X MG selection buffer and kept for storage at +4 °C. 

 

4.1.6 Selection cycles 

 

The basic protocol was established on a cyclic repetition of the following steps: 1) 

a negative selection to exclude nonspecific binders by incubation with adipic acid 

dihydrazide; 2) positive selection by incubation with MG column, wash and elution; 3) 

quantification of bound molecules through qPCR; 4) PCR amplification to get a number of 

molecules similar to the start; 5) purification of ssDNA through dynabeads C1 streptavidin 

magnetic beads 6) quantification through qPCR. 

1) The starting number of molecules for each cycle was ~1014. The DNA was 

heated at 95 °C for 10 min, chilled on ice for 5 min and incubated with adipic acid 

dihydrazide agarose for 30 min. The solution was pipetted on Microbiospin columns and 

DNA was spun down by gentle centrifugation at 1000 g for 30 s.  In step 2) 1 volume of 

previously washed MG column was added to eluted DNA and incubated in darkness at 

room temperature for 1 h; unbound DNA was removed by centrifugation on Micro Bio-Spin 

columns at 1000 g for 30 s; the column was washed with 15 vol of MG selection buffer 



72 
 

with the same centrifugation speed and time; bound DNA was then eluted with 5 vol of 

MG elution buffer and concentrated by ethanol precipitation in 20 µl of DEPC-treated 

water as described in § 2.1.5.  

qPCR was performed with Biorad mix SSO advanced in steps 3 and 6). A 10 µl 

reaction contained 1X SSO advanced mix, 2.5 µM of each primer and 1 µl of DNA 

solution. DNA amplification was monitored in 0.1 ml tubes with real-time PCR cycler 

Rotor-Gene Q in channel green with the following thermal protocol: 95°C for 30 s for initial 

denaturation and then 40 cycles of 95 °C for 5 s and 63 °C for 5 s. The absolute number 

of molecules was estimated through a standard curve prepared with several dilutions of 

the library DC031 in a range between 1 and 1000 pmol. The fraction of bound molecules 

was calculated on the ratio between the number of molecules bound to MG column and 

those collected after dynabeads purification. 

PCR amplification was performed with Phusion polymerase in step 4). A 1000 µl 

mix contained 1X HF buffer, 0.2 mM each dNTPs, 0.5 µM of each primer, 0.02 U/µl 

Phusion, ~ 107 molecules/µl DNA. The reaction ran on a thermal cycler with the following 

protocol: 98°C for 2 s for initial denaturation, then 20 cycles of 98 °C for 5 s, 63 °C for 5 s 

and 72 °C for 5 s and a final extension step at 72 °C for 10 min. 

ssDNAs were separated with dynabeads C1 in step 5). 120 µl of dynabeads were 

pipetted into a 1.5 ml tube placed on a magnetic rack. The buffer was removed and beads 

were washed 3 times with DB B&W buffer; the PCR product was resuspended with 

dynabeads and incubated on rotation at room temperature for 15 min. The tube was 

placed back on the magnetic rack and the supernatant was discarded. Beads were 

washed 3 times with B&W buffer and the non-biotinylated strands were detached with 250 

μl of 1X DB elution buffer by shaking the beads with NaOH for 5 min. Beads were placed 

back on the magnet rack and the supernatant was transferred to a new tube. The solution 

was neutralized with 250 μl of 1X DB neutralization buffer and 1X selection buffer was 

added to a final volume of 600 µl. 

 

4.1.7 Cloning in TOPO-TA and sequencing 

 

The cloning was performed as described by the supplier. To a PCR reaction run 

with Phusion polymerase, 1 µl of home-made Taq polymerase was added and incubated 

at 72 °C for 10 min to allow the incorporation of few adenosines in 3’ position. Then 4 µl of 

the PCR were mixed with 1 µl of TOPO vector and 1 µl of a salt solution provided by the 

supplier. The mixture was then incubated at room temperature for 5 min and added to E. 

coli TOP10 for transformation. 20 sequences from cycles 1, 2, 5, 9 and 17 were sent for 

sequencing with primer DC047. 
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4.1.8 In vitro transcription with T7 RNA polymerase 

 

In vitro transcription was performed with T7 RNA polymerase following the 

indications from Seelig.90 A reaction mixture was set to a final volume of 100 µl with the 

following components: 35 mM MgCl2, 2 mM spermidine, 200 mM HEPES adjusted to pH 

7.5 with KOH, 1 mg/ml BSA, 4 mM DTT, 5 mM each NTP, 1 mU/µl yeast inorganic 

pyrophosphatase, 0.4 U/µl RNase inhibitor, 3 U/µl T7 RNA polymerase, 0.2 µM DNA 

template. The reaction was incubated at 37 °C for 4 h, then DNase I was added to a final 

concentration of 20 mU/µl together with its buffer provided by the supplier and incubated 

at 37°C for 1 h. 5 mM EDTA was finally added. 

 

4.1.9 RNA purification through polyacrylamide gel 

 

A solution with 8 M urea, 8% acrylamide:bisacrylamide (37.5:1) was mixed. APS 

and TEMED were both added to a final concentration of 0.1% and the solution was 

poured on a gel apparatus and waited for polymerization. While the gel polymerized, RNA 

was precipitated by the addition of 800 µl of 99% ethanol. RNA was centrifuged at 

maximum speed at 4°C for 30 min. The supernatant was removed and the pellet dried at 

94 °C. RNA was resuspended in 50 µl of a solution containing 14% sucrose, 0.07% SDS, 

0.035% bromophenol blue, 0.035% xylene cyanol FF, 63 mM Tris, 63 mM boric acid, 7 

mM EDTA pH 8. The solution was loaded on the polyacrylamide gel submerged in 1X 

TBE buffer and a constant voltage of 140 V was applied for 4 h. 

The RNA was later cut from the gel through UV shadowing and extracted by the 

crush-and-soak method.90 Briefly, the cut gel band was ground with a pipette tip in a 1.5 

ml tube, then 500 μL of TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA) and 120 U of 

RNase inhibitor were added and the sample was incubated tumbling at 37°C overnight. 

The supernatant was isolated by centrifugation at maximum speed for 5 min, then 250 µl 

of TE buffer were added to extract more sample by tumbling at 37 °C for 2 h. The 

supernatant was again collected by centrifugation and any residual of polyacrylamide gel 

were removed through 0.45 µm microcentrifuge filters. 

 

4.1.10 Fluorescence tests on DNA and RNA aptamers 

 

To assess the increase in fluorescence of malachite green aptamer in presence of 

nucleic acids, a 10 µl mix was assembled in a 0.1 ml tube containing the following: 1X MG 

selection buffer, 10 µM MG RNA aptamer, 50 µm malachite green. To this mix, DNA 
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sequences arose from the selection and control single-stranded DNAs were added to 

different concentrations: 1, 10 and 100 µM. Fluorescence was monitored with the real-

time PCR cycler Rotor-Gene Q on red channel (excitation: 625 ± 5 nm; emission: 660 ± 

10 nm) with gain 10 at 37 °C. The fluorescence values were normalized by calculating the 

ratio between fluorescence values measured for the molecule mixed together with nucleic 

acids sequences over the values measured for the free molecule. 
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4.2 Results 

 

The design of the selection procedure was based on few considerations. First of 

all, the complexity of the library had to be statistically big enough to ensure the presence 

of the desired molecule. Among the in vitro selection protocols, numbers vary between 

1013 and 1015.128 The malachite green RNA aptamer is 38 nt in length, so a library of 38 

random nucleotides is more than enough to obtain a number of molecules at least equal 

to what is reported in the majority of protocols (438 ≈ 1023). The amount of sequences 

synthesized corresponded to 1016 molecules, that are guaranteed to be all different one to 

another by the complexity of the library. 1/10 of this library was used for the selection, in 

order to ensure multiple trials. The core random region was also flanked by two constant 

sequences for quantification and amplification (Figure 4 - 1). The separation of molecules 

able to bind the analyte from molecules unable to bind the analyte was carried out with a 

home made resin obtained by the conjugation of agarose beads with malachite green 

isothiocyanate.120 The need for a physical support for the molecule of interest could lead 

to the amplification of non-specific binders, more likely to interact with the support rather 

than with malachite green. To exclude these molecules, the DNA pool was always 

incubated with agarose beads free from malachite green prior to the malachite green 

resin. These procedures were respectively called negative and positive selection. 

 

 

Figure 4 - 1. Design of the DNA library. A central core random region of 38 nucleotides is 

flanked by two constant regions, to allow primer’s matches for PCR amplification and quantification. 

 

The amplification of DNA after each round of selection posed some issues. While 

RNA was synthesized by the polymerases as a single strand, DNA aptamers were 

required to be separated from the complementary sequences after the amplification steps. 

For such a purpose, a 5’-biotinylated primer was included in the PCR reactions and the 

products were caught through streptavidin beads. The biotinylated primer matched the 

aptamer and was in 5’ position of the complementary sequence, while the primer 

matching the complementary sequence was not modified. An increase in pH was enough 

to break hydrogen bonds and separate the two strands, allowing the collection of the lone 

strand selected for MG binding. This strand was released in solution while leaving the 

complementary strand bound to streptavidin beads. 

From all these considerations the following cyclic protocol was designed: 1) 

negative selection to exclude non-specific binders by incubation with adipic acid 

GCGGAT
AsA 

NNNNNNNNNNNNNNNNNNNNNNN ACAGC 
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dihydrazide agarose beads; 2) positive selection by incubation with MG column, wash and 

elution; 3) quantification of bound molecules through qPCR; 4) PCR amplification to get a 

number of molecules similar to the start; 5) purification of single-stranded DNA (ssDNA) 

through dynabeads C1 streptavidin magnetic beads 6) quantification through qPCR 

(Figure 4 - 2). To monitor the proceeding of the selection, some of the DNA sequences 

picked from several cycles were cloned and sent for sequencing. 

 

 

 

Figure 4 - 2. Diagram flow of the selection cycle. The selection protocol is based on the 

repetition of 6 steps. The non-specific binders are first removed by incubating the sequences to 

agarose resin free from malachite green (1), then they are incubated with malachite green resin (2) 

and the number of bound molecules is quantified by qPCR (3). The bound molecules are amplified 

by PCR using a 5’-biotinylated primer to obtain a linear double-stranded DNA fragment where only 

the sequences complementary to the selected sequences are biotinylated (4). The amplified 

aptamers are separated from the complementary sequences by means of magnetic streptavidin 

beads (5) and successively quantified by qPCR (6). By mistake, the library was synthesized with a 

biotinylation in 5’ position and it could not be used for the selection because the first purification 

step with streptavidin beads would ensure the collection of the complementary strand, rather than 

the potential aptamers selected. Therefore the complementary strand of the library was 

synthesized with a non-modified primer and separated by streptavidin magnetic beads (5) prior to 

beginning the selection process.  

 

 

 

 

positive selection (MG resin) 

monitoring selection 
progress through qPCR 

quantification 
through qPCR 

PCR amplifications with biotinylated 
primer matching the aptamer sequence 

Dynabeads C1 streptavidin 
ssDNA purification 

negative selection 
(agarose beads) 

ssDNA biotinylated library  

reverse unbiotinylated 
strand synthesis 

sequencing 

1 

5 

4 

3 

2 

6 



77 
 

4.2.1 Preliminary steps to verify the validity of the protocol 

 

Prior to beginning the SELEX protocol, two preliminary experiments had to be 

performed to ensure the validity and the necessity of the procedure. In order to 

demonstrate that the in vitro evolution of a DNA aptamer was a necessary step for the 

development of a DNA-based biosensor, the possibility that a DNA version of the RNA 

aptamer was able to bind malachite green had to be excluded. For this purpose, a DNA 

oligonucleotide containing the sequence of the malachite green RNA aptamer was 

synthesized. The second experiment was aimed at evaluating the binding ability of the 

home-made malachite green column.  

 

Figure 4 - 3. Test on the ability of DNA versions of MG RNA aptamer to increase 

malachite green fluorescence. Two single-stranded DNA oligonucleotides carrying the sequence 

of malachite green RNA aptamer were compared for the ability to increase the fluorescence of 

malachite green. In order to have a version more similar to the RNA aptamer, one of the two 

oligonucleotides contained uridine in place of thymidine. The fluorescence values were measured 

with real-time PCR cycler Rotor-Gene Q on channel Red (excitation: 625 ± 5 nm; emission: 660 ± 

10 nm). The chart reports the increase in fluorescence of malachite green in presence of the 

sequences tested, expressed as the ratio between fluorescence values of the molecule together 

with nucleic acids sequences over the free molecule. The error bars represent the standard 

deviations between technical triplicates of the same sample. None of the two sequences showed 

fluorescence levels similar to the RNA aptamer. 

 

In order to compare the ability of the two versions of the aptamer for malachite 

green binding, both DNA and RNA sequences were mixed with the ligand and tested for 

the ability to increase the fluorescence of malachite green. DNA was synthesized in two 

versions, one with regular nitrogenous bases, while the other containing deoxyuridine in 

place of deoxythymidine, to make the DNA more similar to RNA. Figure 4 - 3 reports the 
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increase in fluorescence of the fluorophore in presence of the RNA aptamer and in 

presence of the two DNA versions of the aptamer. Both DNA sequences were poor in 

promoting a fluorescence increase, indicating that no binding on the fluorophore occurred 

or, at least, no binding capable to significantly increase the fluorescence quantum yield. 

Similarly, the malachite green column was tested for its RNA aptamer retention ability. As 

observed in Figure 4 - 4, although lower, the increase in fluorescence was still higher with 

MG RNA aptamer than what was observed for random RNA, obtained from a total mRNA 

extraction of E. coli cells. 

 

 

Figure 4 - 4. Verification of the ability of the RNA aptamer to bind MG column by 

fluorescence increase of the fluorophore. In order to verify the integrity of the malachite green 

resin, the MG RNA aptamer was tested for the ability to increase the fluorescence of the 

fluorophore. Fluorescence data were analyzed as reported in Figure 4 – 3. In the presence of the 

RNA aptamer, the fluorescence signal of malachite green column increased, although to a lower 

extent than what was observed in the presence of pure molecules MG or MGI (malachite green 

isothiocyanate, a modified version of the fluorophore used for the creation of the resin). This 

behavior may be explained either as the result of a reduced stability of malachite green after the 

synthesis of the resin or as a lower than expected number of molecules bound to the agarose 

beads. As the column seems to carry functional MG molecules it was not considered worth getting 

deeper to know the exact number of active molecules. 
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4.2.2 Selection from a randomized DNA library 

 

 

Figure 4 - 5. Selection progress. The chart reports the number of DNA molecules 

obtained after each round of selection calculated by qPCR. The values are reported as the fraction 

of DNA strands obtained after the selection, over the number of strands obtained after the 

separation with streptavidin magnetic beads. The error bars represent the standard deviation of 

technical triplicates. The huge error bars observed for some cycles may be related to technical 

errors occurred during the setting of the qPCR reaction. Despite the number was expected to 

increase and maintain a Plateau level, it was observed an unconventional behavior in which the 

number of bound molecules increased and dropped down more than once: excluding the value 

associated to cycle V that may be resulted from a mistake, the number of bound molecules 

increased up to cycle VIII and dropped in cycle IX, it increased again up to cycle XI and dropped 

again the next cycle; a small increase of bound molecules seemed to be linked to cycle XVI, 

although it could have been related to technical mistakes. 

 

Having verified the functionality of the column, the selection could start. By 

mistake, the library was designed to carry a 5’ biotinylation, but the protocol for the 

isolation of single-stranded DNA fragments with streptavidin beads allows the collection of 

the non-biotinylated strand, as described earlier. Therefore the use of a biotinylated library 

would forbid the collection of the sequences bound to malachite green. For this reason, 

the complementary strand was first synthesized with Phusion polymerase. Then the non-

biotinylated strands were collected by streptavidin beads separation and subjected to the 

selection procedure. The progress of the selection was monitored through qPCR (Figure 4 

- 5). If the selection worked properly, the number of bound molecules should have 

increased after every round until finally leveling off. Instead, an odd behavior was 
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observed. The number of bound molecules increased, then dropped down and then 

increased again. As the results from qPCR seemed inconsistent, some of the collected 

DNA molecules were sent for sequencing from cycles 1, 2, 5, 9 and 17. The final results 

are summarized in Figure 4 - 5. From a representative number of samples sequenced for 

each cycle, it is clear that some of the sequences accumulated over the selection 

procedure. 

 

Figure 4 - 6. Fluorescence test on selected sequences. The most frequent sequences 

as resulting from Table 4 – 2 were tested for their ability to increase the fluorescence of malachite 

green. Fluorescence values were analyzed as in Figure 4 – 3. Sequences XVII_1 and XVII_3 show 

a slight increase in fluorescence correlating to DNA concentration. Nonetheless, the signals are not 

significantly different from what was observed for control DNA. It is likely that the DNA sequences 

had some non-specific interactions with malachite green that resulted in slight increase in 

fluorescence. 

 

The most represented sequences were tested for fluorescence in the presence of 

the ligand malachite green. Because of a possible active involvement in the binding of 

malachite green, these sequences contained intentionally also the constant regions used 

for the amplification. As shown in Figure 4 - 6, a relevant increase in fluorescence was 

observed for none of the tested sequences. The poor fluorescent signal was not higher 

than what could be observed for control DNA sequences, that are some single-stranded 

DNA sequences with no homology neither for RNA aptamer nor for the constant regions 

of the DNA library used for the selection. These results suggest that the sequences 
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obtained by the selection process were not able to stabilize malachite green and increase 

its fluorescence quantum yield. 

 

Table 4 - 2. Sequencing results. The table shows the sequencing results obtained from 

the selection and the relative frequency for each of the analyzed cycle. The table reports only the 

variable regions, excluding the two constant extreme sequences. Almost all of the sequences are 

composed of 38 nucleotides, except for few. Sequences with different length from what was 

expected might have aroused because of some mistakes occurred during the PCR amplification 

steps: it is likely that some secondary structure may have negatively affected the amplification of 

some DNA sequences. Counts are highlighted in red when no repetition was observed and in 

green when present more than once. The color code helps the visualization of the accumulation of 

repeated sequences while the selection proceeds. The most abundant sequences were named 

with an ID code and tested in presence of malachite green. 

  Cycle 

ID Sequence (5’-3’) I II V IX XVII 

 CCAAAACTAGCCCGTAATTAATTAATCCAGTGCGATTAAA 1 0 0 0 0 

 CTAAATAGTTTAATTCCCTACGAGCCCGGCAAAAAGAGCT 1 0 0 0 0 

 TATTAAAGTATCAAAAAGCCAAAACCTTCACATACCTTCT 1 0 0 0 0 

 CGGCCTGAGCGAAACTACACCGGACACAGTCAACTAGAAA 1 0 0 0 0 

 CCGAATCTAGAACACAAGGATAAGCGCGTAGCCTTTACGC 1 0 0 0 0 

 CATAGCACTTGTCATTGTTGAATAAAGCCGCGTTTGCAGA 1 0 0 0 0 

 ATTCCTGTTTCCCTGTCCAACACGATGTAATCAACCATTC 1 0 0 0 0 

 GTCTCAGCGGGCACCCTGTAATAATAACACGCGCGACTTA 1 0 0 0 0 

 CCGTGAAACAGTGAGATAGTAGTAACGTGTTGCAAACAAA 1 0 0 0 0 

 ACCGAATCTGTAAGCGAGTTACTCTCATACTTGTACGAAA 1 0 0 0 0 

 ATATACAGATAGTTGCGTCTGTCGCGCCCGCGGAACTAAT 1 0 0 0 0 

 TACTTTCCATGCGTCCAATTAAAACTAAAACGGCCGGACC 1 0 0 0 0 

 AAACAGTTTTCGTGACGATGGAAGCTCAAGAAGGACAACT 1 0 0 0 0 

 TGGACAATGTCTAATTCGAATGGGTTGAAATTTAGAAGTG 1 0 0 0 0 

 TAAGCGGAACGCCTGCACAATATCAGCGCGATCAACTAGT 1 0 0 0 0 

 CTCACCGAATTCCCGCGTTATACCGGATATCATCCCGTAT 1 0 0 0 0 

 TGACCACAGCAGGCAAAACCTGTGCTGTAGTGGGTCGACT 1 0 0 0 0 

 AGGGGAATAAGCTATCTAGAACAGTGTAGACACTCGTCAG 1 0 0 0 0 

 CACGGGGCCAACGGCAAACTCTGTCTAAGACAGTTCTGAC 1 0 0 0 0 

 ACACTACGACCTGGGAGAACCACCTCTGCATAGAGATAAA 1 0 0 0 0 

 AATTATATCTAATTCTAGCCGTAATTGGCAGTTCCTGATC 0 1 0 0 0 

 TACTAAGATCGATGCCTGAGGGACCCCCTAGAAAGCATTG 0 1 0 0 0 

 TTCATAAGGAGTATCCTCCCATGAGCACATGCACGTAAGG 0 1 0 0 0 

 GGCAGCGAAGCTACATACCTTCCCAGCACCATCGACTAAA 0 1 0 0 0 

 TGCTAGATAAGACCATCTGATAGAAAAAATGATAGATGAC 0 1 0 0 0 

 TCCGTGACCTCGGTCTCTCCCTTAACGCACTACTCCCTTG 0 1 0 0 0 

 TAACATATTTAGTCAGGACAGCGTCGAGAGGGCAGGATCA 0 1 0 0 0 
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 CACTTAACAATAATCTGACACAAATCACCTATATATGTGC 0 1 0 0 0 

 AGAAGAACAAACACGTGCTGCAAATTTCGCACCTATGTGGA 0 1 0 0 0 

 AAAACCCAATATAAGTACGATAAGCGCCATGTTCAAGACC 0 1 0 0 0 

 ACATATGCTGGAACATAACGTGGGTTTCAGCTGTCGAAAG 0 1 0 0 0 

 TAAGTATCAAGAGAATGCTAACTAGGATGGTCGCCCGACA 0 1 0 0 0 

 CCCCACTCCCGACCGCCCTCGAAGTCTGTTTCTCAGAAGC 0 1 0 0 0 

 GAGAGGGATATGAGCCGATCGCCGATAAACGTGTAGCTTT 0 1 0 0 0 

 AGCGCAAAATAGTTAGACCGTCCGGCTCTCATGTATGAAA 0 1 0 0 0 

 GTCCAATAAGATCGACTGCGAACAGCCGGCGTGGCGTCTT 0 1 0 0 0 

 CCTCTAGCAGATCGAACATGCCATAGTATCTCTTTAGGTC 0 1 0 0 0 

 TTATTCAACCTTTACTTGCGATCAAATAGTCTTCTTCATT 0 1 0 0 0 

 CCCCCCCGACCTTTAATGTCACGACCCCAGTAAGTCGACC 0 1 0 0 0 

 CGCACAGTACGTGGGTTAACATGGAAACACACGGCATGTC 0 0 2 0 0 

 AGGCGAAACTGGCTCATGCACCTATGAGCGTGGACGAGCG 0 0 6 4 0 

 CTGTGACTGGGCGGTTCCTCCGCCGTGGGCCGGCT 0 0 1 0 0 

 CGTACAGGAAAATGTCGGTGCGCGCGTTCAGTATATCAGG 0 0 1 0 0 

 GGATCGTGACAAACGAACAATTGTACGAGGCATGCCCTGC 0 0 1 0 0 

 ATGGCGGTACGTCTCGTACAAGCACTGGGCGACATGTAAG 0 0 1 0 0 

 ATGAGCGAACCAACGCCTGGTGTTGACTGAACGCGTAGTC 0 0 1 0 0 

 GCTCATAGCATCTGTGAAAGGTCATAGGACGCTGGACTGT 0 0 1 0 0 

 GCTCATTTCACGTGCAATGACTGATCGGGTTGCGATGTGG 0 0 1 0 0 

 CCTCTTCAAGGACTTGTCAGCCGTCAACACACCATCGCAC 0 0 2 0 0 

 CGTGACTGGGATCCGGTACGGTCCGTGGGCAACATAGCAG 0 0 2 0 0 

MGAptIX_5 AGGTTTTCCAAGGTACGAAGTAGCTTCCTCGTGT 0 0 0 7 12 

 CACGCGGTTCAAATTCCTCAACGTCTAGTTGACCGATCCT 0 0 0 2 2 

 CAGAGGAGTAACTTTGGGTGTATAGCACAAAAATTCAGCC 0 0 0 5 2 

 GACAAAGTGCGAAACCGCTGGAAGCGAATTCTCTTCGTAT 0 0 0 2 3 

 GTACGACTGAAACCTGTTGTCATAAGGTTTGTGGCTGCCT 0 0 0 1 1 

 GACCAAGAGCATGGCAACGTTCAGTTGCCGACTGGATCGG 0 0 0 7 0 

 ATCGACAGGTGTACGTTCAGTACGGAGAGCCGGTATAACC 0 0 0 6 0 

 TTGGAAAACATTCCGCACTTAATCTAAGTGCCCTCACAAT 0 0 0 1 0 

 GCCTAACTGGTCGGAAAACTCGTCTAGAGTTTCAGCACGA 0 0 0 2 1 

 CGGAGGCAAAGACTGAATTAACGAGACTTAATTGTGAGAC 0 0 0 1 0 

 ATGCTTTAGGTGGTGCCGCAACGGAGGTACTAGGCACGAC 0 0 0 1 0 

 GAAGCGGAGCACTTCGAAGCATCCGAAGGGACGAGTGGAT 0 0 0 5 0 

 GCGCCCTCATAACCACGACCGTGAATTCCGCCCACCCAGT 0 0 0 1 0 

MGAptXVII_1 TCACTTCTTCGTACAGTTGAAAGATTGCTGTCGGAGGAA 0 0 0 0 11 

 CATTTGCACGTACAGGAATTTGTGCTATGACGACAGTAG 0 0 0 0 5 

MGAptXVII_3 ACCGGAAACTCATCCACGCATTTGCTTTTGCGCCTCGTGT 0 0 0 0 4 

MGAptXVII_4 GTGTGAAATTCCGCCGTTCAGGCCCTCGTTCTCCGCAAT 0 0 0 0 6 

. 
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Figure 4 - 7. Test of the competition with RNA aptamer. Despite the accumulation 

observed in sequencing results during the selection process, none of the sequences tested showed 

the ability to increase malachite green fluorescence. This behavior may be explained by the fact 

that these DNA strands set interactions with malachite green different from what the RNA aptamer 

can do. To verify whether the potential aptamers are able to bind the fluorophore, the most frequent 

DNA sequences as resulting from Table 4 – 2 were incubated together with the RNA aptamer and 

tested for their ability to interfere with the binding of RNA by monitoring the fluorescence signal. 

Fluorescence data were analyzed as in Figure 4 – 3. No clear competition was observed and it was 

not possible to correlate the fluorescence values with a specific DNA sequence obtained from the 

selection process.  

 

To finally check the effective ability in binding, the selected sequences were 

evaluated for their ability in disturbing the binding of the RNA aptamer. Mixed together 

with malachite green and the RNA aptamer, a good binder should decrease the level of 

fluorescence due to the interaction between MG and the RNA sequence. Again, several 

concentrations of each aptamer were not able to induce a specific decrease in the 

fluorescence signal, resulting in a similar signal from what was observed with control 

DNAs (Figure 4 - 7). 
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4.2.3 Degenerated libraries 

 

A strategy based on a completely random library did not give the expected results, 

therefore two new libraries were designed with a different approach. Both of them were 

not completely randomized but were derived from the RNA aptamer sequence. Besides 

the constant extreme sequences required for quantification and amplification, one library 

(library 2) contained a core region with the malachite green RNA aptamer sequence and 6 

randomized nucleotides in the positions more involved in binding the ligand, while the 

other (library 3) contained a degenerated sequence of the RNA aptamer. Library 2 was 

designed according to information found from the crystal structure analysis of the RNA 

aptamer bound to malachite green,129 and library 3 was designed to have each position 

randomly mutated at a frequency of 15%. Both the strategies were intended to keep the 

sequence as close as possible to the RNA aptamer and increase the chances to find 

slight differences able to result in a novel DNA aptamer. 

After few cycles of selection, some samples were sent for sequencing to monitor 

the progress of the selection but no sequence was repeated more than once for library 2  

 

Table 4 - 3. Sequencing results from library 2. The bold characters in the library 

highlight the variable nucleotides. The differences in the sequences obtained from the selection 

procedure are indicated by colored characters.  

ID Sequence (5’-3’) Counts 

Library GGATCGNNACTGGCGAGAGCCAGNTAANNNATCGATCC  

1 GGATCGTTACTGGCGAGAGCCAGATAATTGATCGATCC 1 

2 GGATCGGGACTGGCGAGAGCCAGTTAAGCTATCGATCC 1 

3 GGATCGCTACTGGCGAGAGCCAGATAAGGTATCGATCC 1 

4 GGATCGCGACTGGCGAGAGCCAGCTAACTCATCGATCC 1 

5 GGATCGATACTGGCGAGAGCCAGCTAAGGAATCGATCC 1 

6 GGATCGTAACTGGCGAGAGCCAGATAAGTTATCGATCC 1 

7 GGATCGGGACTGGCGAGAGCCAGGTAACGGATCGATCC 1 

8 GGATCGAGACTGGCGAGAGCCAGTTAATTTATCGATCC 1 

9 GGATCGTAACTGGCGAGAGCCAGGTAAGTGATCGATCC 1 

10 GGATCGGCACTGGCGAGAGCCAGGTAAGAGATCGATCC 1 

11 GGATCGGTACTGGCGAGAGCCAGTTAAGTTATCGATCC 1 

12 GGATCGTAACTGGCGAGAGCCAGGTAAGTCATCGATCC 1 

13 GGATCGCAACTGGCGAGAGCCAGCTAATGGATCGATCC 1 

14 GGATCGTTACTGGCGAGAGCCAGCTAATAGATCGATCC 1 

15 GGATCGCTACTGGCGAGAGCCAGGTAACAGATCGATCC 1 

16 GGATCGAGACTGGCGAGAGCCAGTTAACATATCGATCC 1 

 



85 
 

Table 4 - 4. Sequencing results from library 3. 

ID Sequence (5’-3’) Counts 

1 GGATAACGACTGGCTAGATTCAGGTAACGAGTCGTTTC 1 

2 CGATGGCGACTTATGAGAGCTAGGGAAAGAATCGAGCC 2 

3 GGACCGCGACTGGCGACAGCCAGGTAACTAATGGATCG 1 

4 GGATCGCGACTGGCGGGAGGTAGCTAACGAATCGATCC 1 

5 GGATCACGACTGGCCAGATTCAGGGAGCGAATTGATGG 1 

6 GGCTAGCGAAGGGCTAGACCCAGGTCACGATTCAACCT 2 

7 GAATCACGCGTGGCGAGAGCCAGGTCGCGAGTCGGTAC 1 

8 TGATTGCAAATGACGCGAGACAGGTGTCGACTCGATCT 1 

10 GGAAGGCGACTGCCTAAAGTCAGCTAACTAATCGGTGC 1 

11 GCATCGCGAGTGGCGATAGCCCGGTAACGGATAGTTTC 1 

12 GCGTCGTTACTGACGAAAGCTAGGTAACGAAGCGATCC 1 

14 GGTTCACCACTGGCGAGAGCCAGGTGACGATTCGATCC 1 

15 GGACCGCGATTTTCGAGTGCCAGGTAACAGCCTGATCC 1 

 

 

Figure 4 - 8. Sequence accumulation on selection carried with the first strategy. The 

relative frequency of each sequence listed in Table 4 - 2 was plotted in this color-coded chart. 

Grey-scale sequences showed a frequency below 5%, while each colored bar represents a 

sequence with a statistically more relevant frequency. An accumulation of repeated sequences is 

observed from cycle V onwards and some of the sequences were found in more than one of the 

cycle analyzed. 
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(Table 4 – 3) and just a couple were repeated twice for library 3 (Table 4 – 4). 

Among the library tested and the relative selection strategy, the strategy based on 

a completely random library showed an accumulation of some sequences from a random 

pool of single-stranded DNA oligonucleotides (Figure 4 - 8) although none of the most 

frequent sequences showed a clear binding effect, nor a fluorescence increase. The 

results collected suggest that a different strategy of selection would be more appropriate 

for such an aptamer. The procedure exposed here relied on the fact that the sole ability 

for binding would be a sufficient prerequisite for the increase of the fluorescence quantum 

yield, as it occurred for the RNA aptamer selection.120 It is likely that the selection 

procedure was not sufficiently stringent, thus resulting in the accumulation of weak 

malachite green binders that were not able nor to increase the fluorescence of the 

fluorophore nor to compete with the binding of the RNA aptamer. 
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Chapter 5 

 

Engineering TrpR to sense the neurotransmitter serotonin 
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Figure 5 - 1. Comparison of the two ligands. Chemical structures of A) tryptophan and 

B) serotonin. C) Interactions within the binding pocket of tryptophan and D) putative interactions of 

serotonin. Arg84 interacts with -COOH group of tryptophan, while Val58 is very likely to be close to 

the -OH group joint to carbon ζ3 of serotonin. 

 

All of the genetic circuits described in chapter 2 were intended at establishing a 

solid genetic circuit to possibly activate a communication pathway. As discussed in the 

introducing chapter, the induction of a genetic switch in response to a chemical signal 

from a natural cell adds extra value to the system. An artificial cell based on E. coli TX/TL 

system can be used to sense the presence of prokaryotic chemical messages because it 

is possible to reproduce the exact molecular mechanisms occurring in vivo: all of the 

elements exploited in live cells are most likely present also in the E. coli TX/TL reaction. 

Conversely, the same kind of artificial cell may not be appropriate to reproduce the 

mechanisms occurring in eukaryotes. A good solution to this problem could rely on the 

possibility to engineer some of the macromolecules of the TX/TL machinery to actively 

interact with molecules released by eukaryotic cells.  

The work described in this chapter began with the observation that the 

neurotransmitter serotonin has a very similar structure to the amino acid tryptophan 

(Figure 5 - 1 A, B). As discussed in chapter 2, tryptophan is involved in a very well 

described regulatory mechanism, demonstrated to be functional also in vitro, therefore it 

A) 

D) C) 

B) 

Arg84 

Val58 
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can be exploited to construct a genetic circuit regulated by the neurotransmitter. The 

structure of the repressor TrpR was extensively studied and many details of the 

interactions with the ligand are available.130,131 What follows in this chapter is a summary 

of some strategies to engineer TrpR on an attempt to change the affinity from tryptophan 

to serotonin.  
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5.1 Materials and methods 

 

5.1.1 Reagents and general supplies 

 

Serotonin hydrochloride was purchased from Sigma 

 

5.1.2 Plasmids and cloning 

 

All of the plasmids were assembled with the Gibson method88 as described in 

chapter 2. DNA primers and the synthetic gene TrpR_S30 were purchased at Eurofins 

MWG. 

 

Table 5 - 1. Relevant sequences used in this section. TrpR_S30 was synthesized by 

Eurofins Genomics MWG; pRNA sequence, containing malachite green aptamer, was sent by Prof. 

Friedrich C. Simmel from the Technical University of Munich; promoter pDC135A arose as a 

spontaneous mutation while cloning DNA plasmids listed below. 

ID Sequence (5’-3’) 

TrpR_S30 CTAACTTACATTAATTGCGTTGCGCTCATTGACAGCTAGCTCAGTC

CTAGGGATTGTGCTAGCTACTAGAGTCACACAGGAAAGTACTATGG

CTAGCATGATGGCCCAACAATCACCCTATTCAGCAGCGATGGCAG

AACAGCGTCACCAGGAGTGGTTACGTTTTGTCGACCTGCTTAAGAA

TGCCTACCAAAACGATCTCCATTTACCGTTGTTAAACCTGATGCTG

ACGCCAGATGAGCGCGAAGCGTTGGGGACTCGCGTGCGTATTGTC

GAAGAGCTGTTGCGCGGCGAAATGAGCCAGCGTGAGTTAAAAAAT

GAACTCGGCGCAGGCATCGCGACGATTACGCGTGGATCTAACAGC

CTGAAAGCCGCGCCCGTCGAGCTGCGCCAGTGGCTGGAAGAGGT

GTTGCTGAAAAGCGATTGATAATACTAGAGCCAGGCATCAAATAAA

ACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGT

TTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG

GTGGGCCTTTCTGCGTTTATATACTAGAGGCTGTTGACAATTAATC

ATCGAACTAGTTAACTAGTACGCAAGTTCACGTACTAGAGAAAGAG

GAGAAATACTAGATGGCTTCCTCCGAAGAC 

 

pTac_mRFP1_pRNA GTTGACAATTAATCATCGGCTCGTATAATGTGTGGCCCCTCTAGAA

ATAATTTTGTTTAAAAGAGGAGAAATACTAGATGGCTTCCTCCGAAG

ACGTTATCAAAGAGTTCATGCGTTTCAAAGTTCGTATGGAAGGTTC

CGTTAACGGTCACGAGTTCGAAATCGAAGGTGAAGGTGAAGGTCG

TCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGT

GGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAGTTCCAG

TACGGTTCCAAAGCTTACGTTAAACACCCGGCTGACATCCCGGACT
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ACCTGAAACTGTCCTTCCCGGAAGGTTTCAAATGGGAACGTGTTAT

GAACTTCGAAGACGGTGGTGTTGTTACCGTTACCCAGGACTCCTC

CCTGCAAGACGGTGAGTTCATCTACAAAGTTAAACTGCGTGGTACC

AACTTCCCGTCCGACGGTCCGGTTATGCAGAAAAAAACCATGGGTT

GGGAAGCTTCCACCGAACGTATGTACCCGGAAGACGGTGCTCTGA

AAGGTGAAATCAAAATGCGTCTGAAACTGAAAGACGGTGGTCACTA

CGACGCTGAAGTTAAAACCACCTACATGGCTAAAAAACCGGTTCAG

CTGCCGGGTGCTTACAAAACCGACATCAAACTGGACATCACCTCC

CACAACGAAGACTACACCATCGTTGAACAGTACGAACGTGCTGAA

GGTCGTCACTCCACCGGTGCTTAAGGGAGAATGCGGCCGCCGAC

CAGAATCATGCAAGTGCGTAAGATAGTCGCGGGTCGGCGGCCGCA

TAAAAATTGTCATGTGTATGTTGGGCGCAGGACTCGGCTCGTGTAG

CTCATTAGCTCCGAGCCGAGTCCTCGAATACGAGCTGGGCACAGA

AGATATGGCTTCGTGCCCAGGAAGTGTTCGCACTTCTCTCGTATTC

GATTGCGCCCACATACTTTGTTGAGGATCCCGACTGGCGAGAGCC

AGGTAACGAATGGATCCTCAATCATGGCAA 

pDC135A+5’UTR TTGACAGCTTGCTCAGTCCTAGGGATTGTGCTAGCTACTAGAGTAA

CACAGGAAAGTACT 

 

Table 5 - 2. Plasmids used in this section and relative cloning strategies. 

Plasmid ID Backbone Insert Source 

Cloning strategy 

Primers Template 

DC124A DC024A 

pJ23117_TrpR_pTet

_mRFP1_ 

spinach 

 

DC101/ 

DC111 
DC032A 

DC257/ 

DC258 
TrpR_S30 

DC135A DC024A 

pDC135A_TrpR_ 

pTet_mRFP1_ 

spinach 

 
DC277/ 

DC278 
DC124A 

GB008A DC024A 
pTac_mRFP1_ 

pRNA 
Mansy Lab   

LG013A DC024A 
pDC135A_TrpR_ 

pTet_mRFP1_pRNA 
 

DC275/ 

DC276 
DC135A 

DC307/ 

DC306 
GB008A 

LG011A DC024A 
pDC135A_EsaR_ 

pTet_mRFP1_pRNA 
 

DC300/ 

DC302 
FC033A 

DC299/ 

T9002g FW 
LG013A 
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Table 5 - 3. TrpR mutants and plasmids encoding the sequences. Two type of 

constructs were created to be used in S30 or in PURE system reactions. The difference is 

indicated in brackets and refers to the promoter used for the expression of the mutants and the in 

vitro TX/TL reaction. 

Mutations Mutant ID Mutant ID 

(DC135A, S30) 

Mutant ID  

(T7, PURE) 

V58N, R84L TrpR*001  DC091A 

V58N, I82A, R84L TrpR*002  DC093A 

V58N, R84L, S86A TrpR*003  DC077A 

V58N, I82A, R84L, S86A TrpR*004  DC094A 

T44A, V58N, R84L TrpR*005  DC096A 

T44A, V58N, I82A, R84L TrpR*006  DC098A 

T44A, V58N, R84L, S86A TrpR*007  DC099A 

T44A, V58N, I82A, R84L, S86A TrpR*008  DC100A 

R84L TrpR*009  DC084A 

V58N TrpR*010  DC082A 

T44A TrpR*011  DC081A 

I82A, R84L TrpR*012  DC086A 

R84L, S86A TrpR*013  DC087A 

I82A, R84L, S86A TrpR*014  DC088A 

I82A TrpR*015  DC083A 

S86A TrpR*016  DC085A 

T44A, V58N TrpR*017  DC089A 

V58N, I82A TrpR*018  DC090A 

V58N, S86A TrpR*019  DC092A 

T44A, V58N, I82A TrpR*020  DC095A 

T44A, V58N, S86A TrpR*021  DC097A 

V58D TrpR*022  DC101A 

V58Q TrpR*023  DC102A 

V58E TrpR*024  DC103A 

R84I TrpR*025  DC104A 

R84V TrpR*026  DC105A 

R84F TrpR*027  DC106A 

R84M TrpR*028  DC107A 

L41A TrpR*029  DC108A 

M42A TrpR*030  DC109A 

L43A TrpR*031  DC110A 

P45A TrpR*032  DC111A 

R54A TrpR*033  DC112A 
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I57A TrpR*034  DC113A 

T81A TrpR*035  DC114A 

T83A TrpR*036  DC115A 

N87A TrpR*037  DC116A 

S88A TrpR*038  DC117A 

V58S, R84W TrpR*043 LG001A  

V58N, R84V TrpR*044 LG002A  

V58T, R84I TrpR*045 LG003A  

V58T, R84V TrpR*046 LG004A  

V58Q, R84I TrpR*047 LG005A  

V58Q, R84F TrpR*048 LG006A  

w.t.  LG013A DC076A 

EsaR  LG011A DC125A 

 

 

5.1.3 In silico analysis of TrpR 

 

The files 1TRR.pdb and 2QEH.pdb were downloaded at www.rcsb.org and used 

for structure analysis with the software UCSF Chimera, downloaded at 

www.cgl.ucsf.edu/chimera. The file 1TRR contains the atomic coordinates of the E. coli 

holorepressor TrpR bound to the operator sequence on DNA while 2QEH contains the 

atomic coordinates of D7r4, a salivary biogenic amine-binding protein from the malaria 

mosquito Anopheles gambiae bound to serotonin. 1TRR was used as the basis for the 

analysis of the binding pocket and the characterization of the mutants and 2QEH was 

used for the atomic coordinates of serotonin. The closest residues to the ligand were 

identified by restricting the visualized amino acids in a radius within 5 Å from the ligand.  

The analysis of the mutants was carried out by Dr. Luca Belmonte, a postdoctoral 

fellow in our research group. The wild type protein structure was first desolvated and 

deprived of the ligand, then mutants were generated with the plugin VMD that introduces 

point mutations in a user-defined position and to find the best rotamer for the lateral chain. 

Then water molecules were added again together with sodium and chloride ions to 

neutralize the charge of the protein, energy minimization was performed and a short 

molecular dynamics was run. All these steps were done with Yasara and these “relaxed” 

structures were subjected to docking with the software Vina to evaluate the interaction 

between the two ligands, tryptophan and serotonin, with the binding pocket area. 
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5.1.4 In vitro gene expression and fluorescence measurements 

 

PURE system reactions were assembled in a final volume of 3 µl with the 

components indicated in § 2.1.6 mixed together at the same proportion. After 4 h 

incubation at 37 °C, the mixtures were diluted to 9 µl with HEPES buffer (50 mM HEPES, 

10 mM MgCl2, 100 mM KCl, pH 7.6). S30 reactions were assembled as described in § 

2.1.7, in a final volume of 10.5 µl. Each of the mutants was tested in absence or in 

presence of serotonin that was added to a final concentration of 10 mM and the same 

condition was tested in duplicate in PURE system reactions and in triplicates in S30. 

Transcription levels were monitored by different fluorophores with the real-time PCR 

cycler Rotor-Gene Q. Translation levels were monitored by the expression of the 

fluorescent protein mRFP1 on channel Orange (excitation: 585 ± 5 nm; emission: 610 ± 5 

nm). Transcription levels were monitored through spinach aptamer bound to DFHBI on 

channel Green (excitation: 470 ± 10 nm; emission: 510 ± 5 nm) in PURE system and 

through malachite green aptamer bound to malachite green on Red Channel (excitation: 

625 ± 5 nm; emission: 660 ± 10 nm) in S30 reactions. For PURE system reactions, only 

the end point was measured, while for S30 reactions the whole kinetic was followed for 

~20 h with a measurement every 20 s for the first 20 min and then every 5 min. Raw 

fluorescence data were converted in molar concentrations as described in § 2.1.8. In 

addition to the standard curves created for mRFP1 and spinach aptamer with DFHBI, a 

standard curve for the malachite green signal was created using malachite green aptamer 

synthesized as described in § 4.1.2 added to different concentrations (0, 0.61225, 1.2245, 

2.449 µM) to a solution containing 10 µM malachite green and HEPES buffer. 

 

5.1.5 In vivo gene expression and fluorescence measurements 

 

E. coli TOP10 cells were transformed as indicated in chapter 2 with plasmids 

carrying TrpR mutations. One colony for each was picked and grown overnight in 5 ml of 

LB medium supplemented with 100 µg/ml ampicillin. Then bacteria were reinoculated with 

a starting dilution of 1:1000 until they reached an absorbance at 600 nm = 0.1-0.2. 100 µl 

of culture were transferred to 4 wells of a 96 plate, to 2 of them serotonin was added to 4 

mM and the plate was incubated at 37 °C for 24 hours. Fluorescence levels were 

measured on a Tecan Plate reader with the following parameters: excitation 577 nm, 

emission 607 nm, gain 75. 
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5.2 Results 

 

TrpR is produced as an inactive aporepressor that dimerizes in a conformation 

able only for weak and aspecific interactions with DNA. Tryptophan forces a 

conformational change in the repressor by the simultaneous interactions with two 

monomers. Two symmetric binding pockets form specular interactions between two 

molecules of tryptophan and two monomers of TrpR (Figure 5 - 2).130–133 One of the first 

characterization of the binding sites was conducted by affinity tests on tryptophan 

analogs.130 From those data it was deduced that the indole group of tryptophan is trapped 

in a hydrophobic pocket composed of glycine 85 and two arginine residues, 54 and 84 

(Figure 5 - 3 A). The interaction is further stabilized by hydrogen bonds both on carboxylic 

and aminic groups of the molecule. Arg84 plays a double role by interacting with the 

carboxylic group together with Thr44, while Ser88 and backbone chains of Leu41 and 43 

stabilize the aminic group. Many of these interactions can be easily checked on the crystal 

structure of the holorepressor deposited on pdb under the name 1TRR.131 Some of them 

are not visualized, like the hydrogen bonds set by Ser88 and Thr44, but many amino 

acids are enclosed in a 5 Å radius from the ligand even if no active role in binding was 

described for them. 

 

Figure 5 - 2. 3D structure of the holorepressor TrpR. Two monomers (indicated by red 

and green colors) interact with each other through the ligand. Two symmetric binding pockets are 

formed by the cooperation of the two monomers, some amino acids involved in the binding belong 

to one chain, while some to the other chain. 
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Figure 5 - 3. Details on interactions of tryptophan within the binding pocket. A) The 

indole group is stabilized by hydrophobic interactions with Arg54, Arg84 and Gly85. The carboxylic 

group sets hydrogen bonds with Arg84. B) The distance between carbon from Val58 and carbon 

from tryptophan is highlighted in the figure and makes position 58 a good candidate for a 

stabilization with the -OH group joint to carbon ζ3 of serotonin. Amine group of tryptophan interacts 

with backbone chain of Leu41 and 43. 

 

A putative binding pocket was then defined with the following residues: Leu41, 

Met42, Leu43, Thr44, Pro45 from one monomer and Arg54, Ile57, Val 58, Thr81, Ile82, 

Thr83, Arg84, Gly85, Ser86, Asn87, Ser88 from the other (Figure 5 - 4). The hypothetical 

binding pocket had to be defined better to include only the residues that are strictly 

necessary for ligand binding. To this end, a set of mutants was designed to carry 

A) 

B) 
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individual substitutions of the residues of the putative binding pocket and was tested for a 

loss in repressor activity. Mutants were tested in a genetic circuit in the PURE system, 

similarly to what was described for the repressors in chapter 2 (Figure 5 - 5 A). A plasmid 

carried the sequence of TrpR mutants under the control of a constitutive T7 promoter and 

the sequence of the reporter gene mRFP1-spinach under the control of a T7 promoter 

fused to TrpR operator sequence. Gene expression was monitored both at transcription 

and translation levels in order to visualize any possible loss in repressor activity. In 

presence of an active repressor, the reporter gene cannot be expressed, while inactive 

repressors are associated with a good expression of the reporter gene. Together with the 

mutants the wild type repressor and an unrelated transcriptional repressor were added to 

the experiment as controls. The control repressor EsaR used for this experiment belong to 

the plant pathogen Pantoea stewartii134 and should not interact with TrpR operator 

sequence. Most of the amino acids were substituted with alanine but a couple of residues 

were substituted with some other that may facilitate the interaction with serotonin. A 

deeper analysis of the interactions between the ligand and the amino acids of the 

repressor was carried in order to define some mutations that could help the switch for 

ligand affinity, from tryptophan to serotonin. 

 

Figure 5 - 4. Residues within a 5 Å radius from the ligand. A putative binding pocket for 

tryptophan was defined by analyzing the residues enclosed in 5 Å radius from the ligand: Leu41, 

Met42, Leu43, Thr44, Pro45 from one monomer (A) and Arg54, Ile57, Val 58, Thr81, Ile82, Thr83, 

Arg84, Gly85, Ser86, Asn87, Ser88 from the other monomer (B). 
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The differences between the tryptophan and serotonin consist of a carboxyl group 

of tryptophan and a hydroxyl group joined to carbon ζ3 of the indole group of serotonin 

(Figure 5 - 1). As discussed above, Arg84 interacts with the carboxylic group of 

tryptophan, therefore hydrophobic residues such as leucine, isoleucine and valine were 

taken into consideration as well as tryptophan, more likely to forbid interactions with the 

carboxylic group by steric hindrance. On the other side of the molecule, the closest amino 

acid to the carbon ζ3 is Val58, therefore this residue is a possible interactor to the 

hydroxyl group of serotonin. The neurotransmitter has a very high pKa,
135 so the hydroxyl 

group is protonated at neutral pH, making position 58 suitable for amino acids with 

hydrogen bonds acceptor atoms in their side chain.  

The data collected on single mutants tested in genetic circuits in PURE system 

reactions (Figure 5 - 5) showed that the amino acids actively involved in the binding can 

be restricted to Arg54, Ile57, Thr81, Ile82, Arg84, and to a less extent also Val58 and 

Thr83 that reported some effects when mutated. All of these mutants lost their ability to 

repress the reporter gene. The fact that mutations on Leu41 and 43 do not induce a great 

effect on ligand binding indicates that these single mutations are not affecting the overall 

folding of the repressor so that the interactions described to occur with the backbone 

chain are not affected. The addition of serotonin showed some reduction in gene 

expression only for some of the mutants, while other did not show any effect (Figure 5 - 

6). Some mutants – such as the one carrying T44A, V58N and I82A or the one carrying 

T44A, V58N, S86A – showed a good difference of gene expression in presence or 

absence of serotonin. Nonetheless, it is not possible to find a clear pattern among these 

data that can help understanding which mutants favor the binding of serotonin. As it can 

be clearly observed from translation data, in fact, the levels of repression observed for the 

mutants in presence of serotonin are never close to what is shown by the wild type 

repressor in presence of the natural ligand, tryptophan. As discussed in chapter 2, one of 

the main reason why this is occurring involves the strength of the promoter. T7 RNA 

polymerase revealed to be a highly processive enzyme, although TrpR is very strong in its 

action. It may not be so easy to obtain a mutant as strong in gene repression as the 

original one, so the screening method had to be changed with S30 extract for the same 

considerations reported in chapter 2, for the genetic circuits based on T7 promoters. The 

substitution with a genetic circuit based on E. coli promoters resulted in a higher degree of 

control in gene expression. 
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Figure 5 - 5. Single mutations on TrpR tested in the PURE system. A) Two genes were 

encoded in the same plasmid under the control of two separate T7 promoters. One gene coded for 

the TrpR mutants tested, while the other coded for the reporter gene mRFP1 with spinach aptamer 

fused at 3’-UTR of the mRNA as described in chapter 2. The repressor and the mutants are 

constitutively expressed, while the promoter upstream of the reporter gene is fused to the operator 

sequence for TrpR repressor. B) Transcription (green bars) and translation (red bars) levels of the 

reporter gene regulated by TrpR single amino acid mutants are reported, both in the presence 

(dark bars) or in the absence (light bars) of serotonin. Tryptophan concentration inside the PURE 

system is enough to induce repression as observed for the wild type repressor. Raw fluorescence 

values of both spinach aptamer bound to DFHBI and mRFP1 were converted in molarity using the 

standard curves described in § 2.1.8. The chart reports technical duplicates for each mutant. 
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Figure 5 - 6 Some mutants screened in the PURE system for the ability to bind 

serotonin showed no specific interactions with serotonin. Some TrpR mutants were designed 

to carry mutations on amino acids close to tryptophan, according to the analysis carried on the 

crystal structure of TrpR described in Figure 5 - 4. The mutants were cloned in the construct 

depicted in Figure 5 - 5 A and tested in the PURE system in the presence (dark bars) or absence 

(light bars) of serotonin. Both transcription (green bars) and translation levels (red bars) were 

monitored and raw fluorescence data were analyzed as in Figure 5 – 5. Some slight reduction in 

gene expression was observed for few genes, but the levels are not close to what was observed for 

the wild type.  

 

As discussed earlier, E. coli promoters can be more easily tuned in vivo or in vitro 

in a crude cell extract. A new genetic circuit was designed taking inspiration from plasmid 

BBa_K560000 available from the registry of standard biological parts. This part encodes 

for a hybrid protein derived by the fusion of TrpR DNA binding domain and the photoactive 

domain of a plant protein to create an optogenetic repressor.136 The promoter sequence 

and 5’ UTR of both the reporter gene and repressor were kept as described in the registry 

of standard biological parts. The E. coli promoter controlling the expression of the 

repressor belongs to a series of mutants described by Prof. J. Anderson in the registry of 

standard biological parts. Considering that the sequence used in this construct (J23117) is 

reported to have poor gene expression, a stronger promoter sequence was tested in 

parallel (J23106). The strength of the promoter was chosen to correctly balance the 

resources for the synthesis of the two genes, the repressor and the reporter. A too strong 
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promoter would sequester all the resources for the expression of the repressor gene, thus 

leading to a low expression of the reporter gene also in presence of a weak repressor. 

During the mutagenesis of the promoter, a random mutation appeared both in the 

promoter and in the RBS. As these sequences are not described by Anderson, the 

mutation was assigned with a new name as the plasmid containing it, DC135A. The wild 

type (w. t.) repressor showed a good activity so the mutants were successively cloned 

under the same promoter and tested for gene repression.  

 

Table 5 - 4. Docking results of the 6 mutants most capable of switching ligand 

affinity from tryptophan to serotonin. The table reports the minimum energy values for the 

binding of 6 mutants coming from the combinatorial analysis of mutants in positions 58 and 84. 

Among the 56 mutants screened, these 6 reported a lower or equal energy for the binding of 

serotonin when compared to tryptophan. 

 

ID Mutant Energy serotonin 

(kcal/mol) 

Energy tryptophan 

(kcal/mol) 

TrpR*043 V58S, R84W -6.0 -5.7 

TrpR*044 V58N, R84V -6.2 -5.9 

TrpR*045 V58T, R84I -6.4 -6.4 

TrpR*046 V58T, R84V -6.2 -6.2 

TrpR*047 V58Q, R84I -6.9 -5.5 

TrpR*048 V58Q, R84F -5.9 -5.7 

 

 

In S30 reaction, spinach aptamer could not be used to monitor transcription levels 

because of some background fluorescence deriving from the reaction mix. So the 3’ UTR 

of the reporter gene was replaced to contain a malachite green aptamer, shown by 

Noireaux as a good alternative for monitoring transcription levels in S30 reactions.137 The 

behavior observed in RNA kinetics indicated a high degradation rate within 2 h, that is 

expected for the reasons discussed in chapter 1 regarding the presence of nucleases 

inside of the cell extract. Conversely to the data reported for the PURE system, 

transcription levels do not refer to the end-point reactions but indicate the maximum 

amount of RNA obtained before the degradation began. 
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Figure 5 - 7. Test of the 6 TrpR mutants predicted to change affinity from tryptophan 

to serotonin in the S30 extract. 56 possible combinations of TrpR mutants carrying mutations 

only in position 58 and 84 were tested in silico for a change in affinity from tryptophan to serotonin. 

The 6 mutants with the best affinity for serotonin were cloned in the genetic construct schematized 

in A) and tested for the ability to repress gene expression. A) A constitutive E. coli promoter drives 

the expression of TrpR mutants and the activity of the repressor is measured with a reporter gene 

under the control of the promoter PtrpL. As the detection of the signal from spinach aptamer and 

DFHBI was not possible in S30 reaction, spinach aptamer at 3’-UTR of the reporter gene was 

replaced by the malachite green aptamer. B) The plasmids carrying the 6 mutants were tested in 

S30 reaction and transcription (green bars) and translation (red bars) levels of the reporter gene 

were measured both in the presence (dark bars) and in the absence (light bars) of serotonin. 

Fluorescence values were analyzed as in Figure 5 – 5. These data confirmed that some of the 

mutants lost affinity for tryptophan, as the transcription and translation values were considerably 

higher than the control wild type repressor. Nonetheless, the addition of serotonin did not affect 

gene expression. 
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In this step, the attention was then focused on the two residues described earlier 

for a possible major role in ligand binding: Arg84 and Val58. A combination of the 

following amino acids was tested in silico for the ability of binding both the molecules, 

serotonin or tryptophan. For position 58 asparagine, glutamic acid, glutamine, aspartic 

acid, histidine, serine, threonine, tyrosine while for position 84 alanine, valine, isoleucine, 

leucine, phenylalanine, tryptophan and methionine. The analysis was based on the 

docking of the mutated proteins together with the two ligands, serotonin and tryptophan.  

The solutions with the lowest energy values were taken into consideration and 

analyzed for the location of the ligand with respect to the binding pocket of TrpR. Among 

the 56 possible combinations, 6 showed promising behaviors: 1) Val58Ser, Arg84Trp; 2) 

Val58Asn, Arg84Val; 3) Val58Thr, Arg84Ile; 4) Val58Thr, Arg84Val; 5) Val58Gln, Arg84Ile; 

6) Val58Gln, Arg84Phe. All of them reported a lower or equal energy when bound to 

serotonin rather than tryptophan (Table 5 - 4). These six mutants were tested for gene 

repression in presence or absence of serotonin in S30. All of the six mutants lost their 

affinity for the original ligand, but none of the mutants showed any specific decrease in 

gene expression in presence of serotonin (Figure 5 - 7).  

 

Taken together all these data suggest that two positions cannot be enough to find 

a proper mutant able to switch the affinity for a new ligand. It was found that eight 

positions are strictly necessary for the binding of tryptophan but testing all the possible 

combinations in silico (208 = 2.56E10) would require too much time. A good solution to 

this problem could be given by a directed evolution of the protein, carried in vivo or in 

vitro. A strategy could be designed to have all the possible combinations of mutants mixed 

together and subjected to a selection procedure where only the desired mutant(s) would 

survive. 
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Chapter 6 

 

Conclusions 
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The work presented in this thesis highlights the major advantages and limitations 

faced by some kinds of artificial cells when used for communication with natural cells. One 

of the big interest in biotechnology is the engineering of natural cells for the interaction 

with other cells with the aim of developing treatments against pathogens or tumors. 

Despite the promising results obtained, these strategies rely on the use of living 

organisms that can always be subjected to possible side effects not completely 

controllable. Alternatively, cellular mimics have the potential to reduce the number of non-

specific interactions because of a reduced complexity. A system assembled from simple 

components of defined properties guarantees a higher degree of control but lacks some 

fundamental mechanisms that can affect the efficiency. While decreasing the power of 

control, the multiplicity of the elements composing natural cells allows for self-sustainment 

and energy regeneration resulting in higher efficiency compared to artificial cells. As a 

consequence, engineered cells can host multiple functions, while cellular mimics are 

strongly limited. 

Rather than improving energy regeneration mechanisms, this thesis proposed an 

alternative strategy to overcome efficiency-related problems through the combination of 

different kinds of artificial cells. To date, several types of compartments can host 

enzymatic reactions or perform gene expression and the diverse setups offer different 

ranges of advantages and disadvantages. If combined together these artificial cells could 

potentially compensate reciprocal defects and result more efficient in communication with 

natural cells. A mixed population of artificial cells may find an application when, for 

example, a target message delivered from a natural cell cannot permeate the membrane 

of a lipid vesicle and activate gene expression as a response to that. Rather than 

changing the permeability of the compartment that could possibly have negative effects on 

the encapsulated TX/TL reaction, it is possible to include a third player in the 

communication pathway to convert the chemical message into a molecule permeable to 

lipid membranes. Porous membranes, such as proteinosomes or colloidosomes, could 

host a cascade of enzymatic reactions to allow this conversion and bridging the gap 

between the target natural cell and the cellular mimic responsible for message delivery. 

As a proof of concept, this thesis investigated the possibility to create 

communication pathways between two different kinds of cellular mimics: lipid vesicles 

carrying in vitro gene expression and proteinosomes able for catalysis. The designed 

communication pathway involved two chemical messages by means of which the two 

cellular mimics integrated both a sensing and a sending mechanism. Proteinosomes 

would be able to catalyze the synthesis of the quorum sensing molecule 3OC6 HSL from 

V. fischeri. The molecule would subsequently permeate the lipid vesicles and activate the 

expression of a pore-forming protein to release the encapsulated glucose that would serve 



106 
 

as a substrate for the catalytic activity of proteinosomes. The coupling with the dye 

amplex red would allow the monitoring of the communication pathway, through the 

enzymatic reaction catalyzed by glucose oxidase and horseradish peroxidase carried by 

proteinosomes.  

The communication pathway was investigated for each step and the related 

problems were handled separately. The design of the whole pathway required an initial 

step dedicated to the improvement of the genetic switch responsible for the delivery of a 

chemical message. The combination of prokaryotic transcriptional repressor together with 

the constitutive promoter of the bacteriophage T7 resulted in a poor regulation because of 

a background gene expression in the repressed state. Consistent with a previous 

characterization of T7 RNA polymerase activity in the in vitro TX/TL reaction mixture 

PURE system,36 this behavior was explained by the high processivity of the polymerase, 

that is it is difficult to eliminate completely transcription and only a small amount of 

transcript is needed to produce much protein. These factors allowed for a good decrease 

in transcription rates but not to the extent of completely decreasing protein expression. A 

better genetic regulation was found in V. fischeri67 and was further investigated both for 

the regulation of a reporter gene and the activation of the pore-forming protein α-

hemolysin from S. aureus. Gene regulation revealed to be tight enough to be used for the 

communication pathway. 

Unfortunately, when this genetic circuit was integrated into lipid vesicles to regulate 

the release of glucose, it was difficult to monitor a specific signal related to the presence 

of the inducer molecule. The most plausible explanation for this behavior can relate to a 

reduced stability of lipid vesicles carrying TX/TL reactions and to the efficacy of 

encapsulation of a complete and active gene expression system. It has been recently 

reported how the stability of lipid-based compartments is affected by the presence of a 

high concentration of proteins, typical of in vitro TX/TL systems.138 The heterogeneous 

mixture composing the S30 reaction may not be ideal for vesicles integrity that could not 

survive the purification procedures aimed at avoiding background catalytic activity in 

proteinosomes. More efforts should be put to find the proper conditions for the stable 

formation of liposomes able for gene synthesis. Some alternative lipid compositions are 

reported to overcome stability problems and, in particular, PEGylated lipids are described 

to shield the bilayer between lipid emulsion droplets from interactions with proteins.138  

For time-related reasons, a deep characterization of the proper lipid compositions 

was not possible, therefore the communication pathway was changed in order to include 

engineered bacteria. The function carried by bacteria is based on genetic elements 

previously established,9 making this third player very likely to fill the gap in the 

communication pathway between liposomes and proteinosomes. The decision to include 
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engineered cells in the communication pathway was forced by limitations due to the early 

stage of this research field. The number of established cellular mimics able to sense 

and/or respond to external stimuli is still limited, therefore it is necessary to integrate some 

missing functions with engineered cells. Nonetheless, a communication pathway involving 

both artificial and natural cells has the potential to show how it is possible to create 

synthetic communication pathways that can be used to establish efficient interactions with 

a target natural cell.  

 

6.1 Future perspective 

 

As discussed earlier, the improvement brought by artificial cells communities in 

communication with natural cells may have possible therapeutic applications in the fight 

against dangerous cells. The catalytic activity of glucose oxidase is used by several 

species of fungi to produce hydrogen peroxide and kill bacteria. The cooperation between 

artificial cells to activate the specific release of glucose could be used to kill bacteria. 

Cellular mimics could be further engineered to respond to chemical messages released by 

pathogens. Bacteria like Pseudomonas aeruginosa exploit quorum sensing pathways 

similar to those described for V. fischeri,101 so it is possible to assemble an artificial cells 

community to activate a death pathway only in presence of the pathogen. One of the 

major problems given by P. aeruginosa infections is related to the biofilm formation, a 

process that protects the pathogen from the immune system and antibiotics. The early 

detection of quorum sensing molecules may prevent the formation of the biofilm by the 

activation of a killer communication pathway. 

Although the number of possible applications is very likely to rapidly increase, the 

purpose of this PhD project was to describe a method rather than looking for possible 

applications. The creation of artificial cells consortia offers a modular approach where 

different cellular mimics cooperate for efficient communication pathways with target 

natural cells. Coherently to what is proposed here for artificial cells, it has been shown 

how engineered cells can be integrated into logic networks to increase the control of the 

response to an external stimulus.139,140 Artificial cells networks could similarly combine 

multiple input signals and give a tight and efficient control of the output message. Artificial 

cells with different properties have the potential to expand the possible communication 

networks beyond what is possible through genetic engineering. The use of synthetic 

amphipathic polymers is helping the creation of novel cellular mimics able to respond to 

regulatory mechanisms different from gene expression or enzymatic activity.141 The 

assembly of polymersomes with specific chemical properties can be used to create 
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compartments able to undergo specific cargo release induced by hydrolysis,142 change in 

pH,143,144 redox reactions,145–148 small molecules,149 light150–153 and temperature.154–156  

The integration of multiple communication pathways requires the absence of 

crosstalk to ensure a tight control on the response to stimuli coming from target cells. 

Orthogonality can be achieved by genetic modifications as reported for engineered cells 

modified to reduce the interference between natural occurring quorum sensing 

mechanisms.157 As discussed earlier, the design of artificial cells networks is not 

constrained to genetic engineering and orthogonal communication pathways can be set 

by the use of different components. A recent example of orthogonal communication 

pathways between artificial cells was described between liposomes encapsulating two 

different kinds of in vitro gene expression systems: one based on E. coli extract and the 

other based on HeLa cells extract.158 In this communication pathway the crosstalk was 

avoided by the use of different TX/TL machineries.  

In order to perform a desired function, a consortium of artificial cell needs the cells 

to be always colocalized. The technologies under investigation for this purpose are based 

on microfluidics devices that allow a high degree of control on several features such as 

size distribution of the compartments of cellular mimics.159–163 For these reasons, 

microfluidics offers a good platform for the assembly of multiple cellular mimics in more 

complex structures. The integration of a 3D printer with a microfluidic device allowed the 

connection of lipid droplets in a structure that was described as a synthetic tissue.138 This 

tissue consisted of lipid droplets carrying gene expression systems connected with each 

other by lipid bilayers. The inducible activation of α-hemolysin pores connects the lumen 

of the droplets and allow for molecular communication between compartments. It is also 

possible to colocalize different cellular mimics within bigger compartments, thus creating a 

structure analogous to eukaryotic cells.164,165 The examples described are applied to lipid 

droplets but the versatility of these technologies allows the use with different kinds of 

artificial cells. 

As the number of cellular mimics is gradually increasing over the years, it is 

possible that a collection of standardized parts will be soon available. Similar to the 

genetic elements collected in the registry of standard biological parts, a dataset of artificial 

cells with defined properties and functions could be available in the future. The integration 

of multiple functions could be easily designed by means of this “catalog” to create 

communities of artificial cells interacting with each other to address a problem that 

ultimately requires the exchange of chemical messages with natural cells. Once the data 

set will be big enough it could also be possible to design algorithms for the automation of 

the design of new pathways. A web-based platform was recently developed for the 

rational design of metabolic pathways through the interrogation of enzyme databases. An 
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enzymatic cascade can be designed for the engineering of bacteria to synthesize a 

desired product.166 Similarly, we can envision a platform developed with the purpose of 

scanning a library of defined artificial cells and designing the best communication pathway 

for an efficient interaction with natural cells.   
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