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Abstract 

 

 

One of the core human abilities is that of interpreting symbols. Prompted with a perceptual 

stimulus devoid of any intrinsic meaning, such as a written word, our brain can access a complex 

multidimensional representation, called semantic representation, which corresponds to its meaning. 

Notwithstanding decades of neuropsychological and neuroimaging work on the cognitive and neural 

substrate of semantic representations, many questions are left unanswered. The research in this 

dissertation attempts to unravel one of them: are the neural substrates of different components of 

concrete word meaning dissociated? 

In the first part, I review the different theoretical positions and empirical findings on the 

cognitive and neural correlates of semantic representations. I highlight how recent methodological 

advances, namely the introduction of multivariate methods for the analysis of distributed patterns of 

brain activity, broaden the set of hypotheses that can be empirically tested. In particular, they allow the 

exploration of the representational geometries of different brain areas, which is instrumental to the 

understanding of where and when the various dimensions of the semantic space are activated in the 

brain. Crucially, I propose an operational distinction between motor-perceptual dimensions (i.e., those 

attributes of the objects referred to by the words that are perceived through the senses) and conceptual 

ones (i.e., the information that is built via a complex integration of multiple perceptual features). 

In the second part, I present the results of the studies I conducted in order to investigate the 

automaticity of retrieval, topographical organization, and temporal dynamics of motor-perceptual and 

conceptual dimensions of word meaning. First, I show how the representational spaces retrieved with 

different behavioral and corpora-based methods (i.e., Semantic Distance Judgment, Semantic Feature 

Listing, WordNet) appear to be highly correlated and overall consistent within and across subjects. 

Second, I present the results of four priming experiments suggesting that perceptual dimensions of 

word meaning (such as implied real world size and sound) are recovered in an automatic but task-

dependent way during reading. Third, thanks to a functional magnetic resonance imaging experiment, 

I show a representational shift along the ventral visual path: from perceptual features, preferentially 

encoded in primary visual areas, to conceptual ones, preferentially encoded in mid and anterior 

temporal areas. This result indicates that complementary dimensions of the semantic space are 

encoded in a distributed yet partially dissociated way across the cortex. Fourth, by means of a study 

conducted with magnetoencephalography, I present evidence of an early (around 200 ms after stimulus 

onset) simultaneous access to both motor-perceptual and conceptual dimensions of the semantic space 

thanks to different aspects of the signal: inter-trial phase coherence appears to be key for the encoding 

of perceptual while spectral power changes appear to support encoding of conceptual dimensions.  

These observations suggest that the neural substrates of different components of symbol 

meaning can be dissociated in terms of localization and of the feature of the signal encoding them, 

while sharing a similar temporal evolution. 

 

 

 

 

Keywords : Symbols, Semantic memory, Representational geometry, Neuropsychology, 

Neuroimaging, functional Magnetic Resonance Imaging (fMRI), magnetoencephalography (MEG) 
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INTRODUCTION: 

ORGANIZATION AND CONTRIBUTIONS OF THE THESIS 

 

The brain: a device through which we think we can think. 

 

This introductory chapter frames the problem tackled during my PhD. I then briefly 

introduce the different chapters and the scientific publications stemmed from the experimental 

works conducted. Subsequently, as required by my dual PhD program, a summary in French 

and Italian is provided. Last, but surely not least, some due ackowledgements.  

 

1.  The symbols that made us what we are 

 

“We should start back, - Gared urged as the woods began to grow dark around them”. 

What I studied in this thesis is what is happening right now in your brain. I typed keys on a 

keyboard generating black lines on a white background. I have used those strokes (i.e., 

letters), to assemble symbols (i.e., words). Your brain, provided with information from your 

eyes, is translating them into meaningful mental representations. You can hear Gared talking 

and you know he is not alone. You can tell that it is dusk and you can see they are in a wood. 

You understand the meaning of those words and you use it to make sense of the situation. 

You can also push it further and begin to imagine what is not written: where were they 

headed? where will they get back to? how many are they? Above all, you might have 

recognized the piece of writing I typed: it is the incipit of “A Song of Ice and Fire”, by George 

R.R. Martin. 

You have been able to do so because you are equipped with a complex neuro-

cognitive structure, the semantic system, that stores and processes various form of conceptual 

knowledge, including symbols meaning. The relevance of symbols understanding and 

manipulation in our lives cannot be overstated. We are constantly prompted by physical 

inputs (e.g., road signs, logos, spoken and written words), which we interpret as referring to 

more than what meets the eye. Throughout our life, we use symbols to evoke, communicate 

and reflect upon things that are not currently present to our senses. The term itself, symbol, 

derives from the ancient Greek sumbolon, fusion of the stem ballein (i.e., “to throw”) and the 
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preposition sun (i.e., “with”), thus meaning literally “that which is thrown or cast together”. 

Thanks to symbols, we are elevated from the reality of perception (dominated by the physical 

features of the stimuli) and gain access to the realm of semantic representations, where 

different features are cast together to assemble unitary concepts. Indeed, a simple concept 

such as “cat” includes information on both perceptual attributes, i.e., those features one 

experiences through the senses (e.g., cats are usually small, they have a soft fur, they meow), 

and conceptual features, i.e., those that emerge through combination of perceptual ones and/or 

one learns declaratively (e.g., cats belong to the felidae family).  

Symbols, even if different in nature, can all be defined as pointers to concepts, sharing 

three key aspects: arbitrariness, culture-dependency, and unbounded combinatorial power. 

Contrary to signs, which have a natural affinity with their reference either iconiccally (e.g., a 

portrait – it relies on form similarity) or indexically (e.g., pointing – it depends on spatio-

temporal contiguity), symbols are completely arbitrary. Their physical properties bearing no 

relation with the semantic content they provide access to. Moreover, their meaning is defined 

only within a given linguistic and cultural milieu (e.g., presented with /burro/ a Spanish 

speaker would think of a donkey, an Italian one of butter). Finally, they can be merged 

limitlessly, creating new symbols-concepts pairings (for instance consider the –relatively- 

recently introduced concept of smartphone), and interact endlessly: their reciprocal 

relationship can be analyzed in light of different context and goals, changing the 

corresponding representational geometry (e.g., according to the context, cups, mugs, and 

glasses can be used interchangeably or not). Given the relevance of symbols in our daily life, 

it is not surprising that some of the most outstanding questions tackled by cognitive 

neuroscience revolve around the neural correlates of symbols acquisition, storage, and 

processing. 

Symbols are mentally represented at different levels of complexity. The first and most 

simple level sees symbols being processed as physical objects in the corresponding primary 

and secondary sensory cortices (i.e. visual cortex for written words, auditory cortex for spoke 

words). This stage corresponds to generic sensory (or motor) neural representations evoked by 

the presentation of any stimulus to a sensory organ. The moment one sees a flower, light is 

transduced by the eyes, information carried by the axons along the optical nerve, projected to 

the primary visual cortex, and subsequently a coherent representation of the visual features 

(e.g., shape and color) is reconstructed. Similar processes apply to the olfactory sensory 

representation (i.e., the smell of the flower entering the nostrils).  



11 
 

However, symbols also evoke higher order multifaceted representations, which we call 

cognitive semantic representations. They are rich internal states that reflect our knowledge of 

their meaning, including both motor-perceptual and conceptual dimensions. The semantic 

representation of flower is the summation of all the features of the concept, both motor-

perceptual (e.g., a flower is usually something I can hold with my hand and has a pleasant 

smell) and conceptual (e.g., a flower is the reproductive structure of angiosperms) ones. We 

use the term neural semantic representations to refer to the neural activity automatically 

evoked by symbol meaning, which appears to be implemented in distributed neural networks 

spanning a large portion of the cortex 

The main goal of the thesis is to investigate cognitive and neural aspect of the 

semantic space, exploiting cutting edge techniques for brain imaging data analysis which 

allow to test the mapping of given representational geometries onto neural pattern of 

activations.    

 

 

2. Outline of the thesis 

 

This manuscript consists of six chapters: the first two introduce the theory and the 

methods behind the experimental work undertaken, while the following three describe such 

endeavor. The last chapter summarizes the results, discussing the theoretical implications and 

the future perspectives. 

 

Chapter 1 aims at explicitly define the field of inquiry (what am I going to talk about) 

and the operationalization of the variables at play (how am I going to do so). First of all, I 

define semantic representations in terms of their content, providing evidence of their 

relevance as a psychological and neurological reality. Second, I revise the hypotheses on the 

localization of their neural correlates in light of the experimental findings in the literature: are 

they distributed over a broad portion of the cortex or localized in pivotal areas? is the 

organization driven by evolutionary principles or anatomical constrains? Third, I describe the 

current results relative to the timing of activation within the semantic system at both short and 

long time scales (e.g., task requirements vs personal experiences). Finally, I highlight the 

relationship between the content of the representation, the format adopted (i.e. the operations 



12 
 

that can be performed), and the underlying implementation (i.e. the neural code). Notably, this 

chapter includes my theoretical contribution: an operational definition of word meaning that 

can foster both theoretical speculations and empirical research. The meaning of words is 

conceptualized as a multidimensional representation that includes both motor-perceptual (e.g., 

average size, prototypical color) and conceptual (e.g., taxonomic class) dimensions. This 

chapter, thus, not only offers a review of the literature on semantic representations, but also 

introduces the theoretical framework I adopted for the following experimental investigations. 

 

Chapter 2 offers an overview of the methods used during my experimental work, 

illustrating how cognitive and neural representations can be investigated with behavioral tasks 

(Semantic Distance Judgment, Semantic Feature Listing, and Semantic Priming) as well as 

neuroimaging techniques (functional magnetic resonance imaging and 

magnetoencephalography). In particular, I focus on multivariate methods for the analyses of 

neuroimaging data. This chapter can be easily skipped (or read in diagonal) by those that are 

already familiar with the above mentioned techniques. However, its conclusion, and in 

particular the discussion on the application of multivariate methods to the investigation of 

neural substrate of cognitive representations, are crucial to the understanding of my 

perspective while navigating through the rest of the manuscript. 

 

In Chapter 3, I describe the outcomes of our behavioral experiments. First, Semantic 

Distance Judgment and Semantic Features Listing experiments were conducted on two set of 

data. The goal was two-fold: the comparison of the semantic space the two methods give 

access to, and the validation of the stimuli to be used in the following neuroimaging 

experiments. The results indicate that, given a set of words, different measures converge in 

describing the same semantic space. Second, I conducted 4 priming experiments aiming at 

elucidating the automaticity of retrieval of different perceptual dimensions. The results 

suggest a delicate interaction between the task subjects are performing and whether the two 

words refer to objects that share (or not) the same visual (i.e., implied real world size) and 

auditory (i.e., prototypical sound) features. 

  

Chapter 4 describes the functional magnetic resonance (fMRI) experiment I conducted 

and its results. We tested the hypothesis that perceptual and conceptual dimensions of word 

meaning are coded in different brain regions: perceptual dimension in unimodal perceptual 

areas, conceptual dimension in heteromodal association areas. We tested the presence of a 
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mapping between a perceptual dimension (implied real object size) and two conceptual 

dimensions (taxonomic categories at different levels of specificity), and the patterns of brain 

activity recorded in six areas along the ventral occipito–temporal cortical path. Combining 

multivariate pattern classification and representational similarity analysis, we found that the 

visual-perceptual dimension appears to be primarily encoded in early visual regions, while the 

conceptual dimension in more anterior temporal regions. This anteroposterior gradient of 

information content, from perceptual to conceptual, indicates that different areas along the 

ventral stream encode complementary dimensions of the semantic space. 

 

In Chapter 5, I present the magnetoencephalography (MEG) experiment I conducted 

and its results. We investigated whether perceptual and conceptual dimensions of word 

meaning could be dissociated not only in their topography, but also in terms of their temporal 

dynamics. We compared one conceptual dimension (semantic category) and two perceptual 

dimensions (one concerning a visual feature - the implied real world size, and one concerning 

an auditory feature – prototypical sound). Results indicate an automatic, rapid (~200ms) and 

essentially simultaneous recovery of information along both perceptual and conceptual 

dimensions of word meaning, a results that speaks against popular theories in the field. 

However, the three different dimensions appear to dissociate in terms of the brain dynamics 

involved (changes in phase coherence vs spectral power) and the corresponding underlying 

sources. 

 

In Chapter 6, I discuss the general implications of our findings and the future work 

that will be needed to deepen our understanding of the cognitive and neural substrate of 

semantic representations. 

 

Finally, the Appendix includes all the supporting materials, including the analyses I 

used either as “sanity checks” of data quality or as complementary evidence to the main 

findings of the different studies.  
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(*) denotes joint first authorship as the authors contributed equally to this work 
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4. Résumé en français 

 

L’une des capacités humaines fondamentales est la capacité d'interpréter des 

symboles. En présence d’un  stimulus dépourvu de signification intrinsèque, comme un mot 

écrit, notre cerveau peut accéder à une représentation complexe et multidimensionnelle, 

appelée représentation sémantique. Malgré plusieurs décennies de travaux en 

neuropsychologique et neuroimagerie sur le substrat cognitif et neuronal des représentations 

sémantiques, de nombreuses questions restent sans réponse. Les présents travaux de thèse 

tentent de démêler l'un de ces mystères: les substrats neuronaux des différentes composantes 

du mot sont-ils dissociables? 

 

Ce travail comporte deux composantes principales : l’une théorique et l’autre 

empirique. Dans la première partie, nous passons en revue les différentes positions théoriques 

concernant les corrélats cognitifs et neuraux des représentations sémantiques. Nous 

soulignons la façon dont les avancées méthodologiques récentes, notamment l'introduction de 

méthodes multivariées pour l'analyse de l'activité cérébrale, élargissent l'ensemble des 

hypothèses qui peuvent être testées empiriquement. Elles permettent notamment d'explorer les 

géométries représentationnelles des différentes zones du cerveau, ce qui est essentiel pour 

comprendre où et quand les différentes dimensions de l'espace sémantique sont activées dans 

le cerveau. De plus, nous proposons une distinction opérationnelle entre les dimensions moto-

perceptives (c'est-à-dire les attributs des objets auxquels les mots se réfèrent perçus par les 

sens) et conceptuelles (c'est-à-dire l'information construite par l’intégration des multiples 

caractéristiques perceptives). 

Dans la deuxième partie, nous présentons les résultats des études menées afin d'étudier 

l'automaticité de la récupération, l'organisation topographique et la dynamique temporelle des 

dimensions moto-perceptives et conceptuelles de la signification des mots. Tout d'abord, nous 

montrons  comment les espaces représentationnels récupérés avec différentes méthodes 

comportementales et computationnelles (c'est-à-dire Semantic Distance Judgment, Semantic 

Feature Listing, WordNet) semblent être fortement corrélés et globalement cohérents entre les 

sujets. Ensuite, nous présentons les résultats de quatre expériences d'amorçage sémantique 

suggérant que les dimensions perceptives  (telles que la taille et le son associées) sont 

récupérées d'une manière automatique mais dépendante de la tâche effectuée par les sujets au 

cours de la lecture. Puis, grâce à une expérience d'imagerie par résonance magnétique 
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fonctionnelle, nous montrons un gradient occipital-temporal le long de la voie visuelle 

ventrale: les caractéristiques perceptives sont préférentiellement encodées dans des zones 

visuelles primaires, tandis que les caractéristiques conceptuelles, dans les zones temporales 

médiane et antérieure. Ce résultat indique que des dimensions complémentaires de l'espace 

sémantique sont encodées d'une manière partiellement dissociée à travers le cortex cérébral. 

Enfin, au moyen d'une étude réalisée avec la magnétoencéphalographie, nous présentons des 

preuves d'un accès simultané et précoce (environ 200 ms après le stimulus) aux dimensions 

moto-perceptives et conceptuelles de l'espace sémantique grâce aux différents aspects du 

signal. La cohérence de phase semble être la clé pour le codage des aspects perceptifs, tandis 

que les changements de puissance spectrale semblent soutenir le codage des dimensions 

conceptuelles. Ces observations suggèrent que les substrats neuronaux de différentes 

composantes de la signification des symboles peuvent être dissociés en termes de localisation 

et également en termes de caractéristique du signal qui les encode, tout en partageant une 

évolution temporelle similaire. 

 

Le manuscrit est constitué de six chapitres: les deux premiers introduisent la théorie et 

les méthodes du travail, tandis que les trois suivants décrivent  les aspects expérimentaux. Le 

dernier chapitre résume les résultats, en discutant des implications théoriques et des 

perspectives futures. Enfin, l'annexe comprend tous les documents d'appui, y compris les 

analyses utilisées soit pour vérifier la qualité des données, soit comme preuves 

complémentaires aux conclusions principales des différentes études. Nous détaillons ci-

dessous le contenu des cinq chapitres principaux. 

Le Chapitre 1 vise à définir explicitement le champ d'investigation (quel est le sujet 

abordé) et l'opérationnalisation des variables en jeu (comment nous allons l’aborder). Tout 

d'abord, nous définissons les représentations sémantiques en termes de contenu, en 

fournissant des preuves de leur pertinence comme une réalité psychologique et neurologique. 

Deuxièmement, nous révisons les hypothèses sur la localisation de leurs corrélats neuronaux à 

la lumière des résultats expérimentaux dans la littérature: sont-ils répartis sur une large 

portion du cortex ou localisés dans des zones-clés? L'organisation est-elle dirigée par des 

principes évolutifs ou des contraintes anatomiques? Troisièmement, nous décrivons les 

résultats relatifs à la dynamique temporelle du système sémantique à la fois à court terme (par 

exemple, les exigences de la tâche) et à long terme (par exemple, les expériences 

personnelles). Enfin, nous mettons en évidence la relation entre le contenu de la 

représentation, son format (c'est-à-dire les opérations pouvant y être exécutées) et 
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l'implémentation sous-jacente (c'est-à-dire le code neuronal qui le supporte). Ce chapitre 

inclut notamment notre contribution théorique : une définition opérationnelle du sens du mot 

qui peut favoriser à la fois les spéculations théoriques et la recherche empirique. La 

signification des mots est conceptualisée comme une représentation multidimensionnelle qui 

comprend des dimensions moto-perceptives (par exemple, la taille moyenne, le couleur 

prototypique) et conceptuelle (par exemple, la classe taxonomique). Ce chapitre propose odnc 

non seulement une revue de la littérature sur les représentations sémantiques, mais introduit 

également le cadre théorique adopté pour les recherches expérimentales suivantes. 

Le Chapitre 2 offre un aperçu des méthodes utilisées lors de notre travail 

expérimental, illustrant comment les représentations cognitives et neuronales peuvent être 

étudiées avec des tâches comportementales (Semantic Distance Judgment, Semantic Feature 

Listing, Semantic Priming) ainsi que des techniques de neuroimagerie (imagerie par 

résonance magnétique fonctionnelle et magnétoencéphalographie). En particulier, l'accent est 

mis sur les méthodes multivariées pour l'analyse des données de neuroimagerie qui utilisent 

des algorithmes de machine learning (une approche souvent appelée decoding) ou la 

corrélation entre activations neuronal (appelée representational similarity analysis, RSA). 

Dans le Chapitre 3, nous décrivons les résultats des expériences comportementales. 

Premièrement, des expériences de Semantic Distance Judgment et Semantic Feature Listing 

ont été menées sur deux séries de données. L'objectif était double: la comparaison de l'espace 

sémantique auquel les deux méthodes donnent accès et la validation des stimuli à utiliser dans 

les expériences de neuroimagerie suivantes. Les résultats indiquent que différentes mesures 

convergent en décrivant le même espace sémantique. Deuxièmement, nous avons mené 4 

expériences d'amorçage sémantique visant à élucider l'automaticité de la récupération de 

différentes dimensions perceptives. Les résultats suggèrent une interaction délicate entre la 

tâche réalisée par les sujets et l'effet d'amorçage en raison de la similitude des mots en termes 

de caractéristiques perceptives (par exemple, si deux mots se réfèrent à des objets qui 

partagent à peu près la même caractéristique visuelle ou auditive). 

Le Chapitre 4 décrit l'expérience de résonance magnétique fonctionnelle (IRMf) et 

ses résultats. Nous avons testé l'hypothèse selon laquelle les dimensions perceptives et 

conceptuelles de la signification des mots sont codées dans différentes régions du cerveau: la 

dimension perceptuelle dans les zones unimodales perceptuelles, la dimension conceptuelle 

dans les zones d'association hétéromodales. Nous avons testé la présence d'une 

correspondance entre une dimension perceptuelle (la taille implicite de l'objet réel) et deux 

dimensions conceptuelles (catégories taxonomiques à différents niveaux de spécificité) et les 
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patterns d'activité cérébrale enregistrés dans six zones le long de la voie ventrale occipito-

temporale. En combinant les méthodes de decoding et RSA, nous avons constaté que la 

dimension perceptive (visuelle) semble être principalement codée dans la région visuelle 

primaire, tandis que la dimension conceptuelle est codée dans les régions temporales plus 

antérieures. Ce gradient antéro-postérieur du contenu informationnel, du conceptuel au 

perceptif, indique que différentes zones le long de la voie ventrale encodent des dimensions 

complémentaires de l'espace sémantique. 

Dans le Chapitre 5, nous présentons l'expérience de magnétoencéphalographie 

(MEG) que effectuée et ses résultats. Nous nous sommes demandé si les dimensions 

perceptives et conceptuelles pouvaient être dissociées non seulement dans leur topographie, 

mais aussi dans leur dynamique temporelle. Nous avons comparé une dimension conceptuelle 

(catégorie sémantique) et deux dimensions perceptives (l’une concernant une caractéristique 

visuelle - la taille moyen - et l’autre concernant une caractéristique auditive – le son 

prototypique). Les résultats indiquent une récupération automatique, rapide (~200 ms) et 

essentiellement simultanée de l'information sur les trois. Cependant, les trois effets semblent 

se dissocier en ce qui concerne la dynamique cérébrale impliquée (changements dans la 

cohérence de la phase dans un cas, variations dans le spectre de puissance dans l'autre) et les 

sources cérébrales responsables. 

 

Tout en contribuant à notre compréhension, encore partielle, de la manière dont le sens 

des mots est codé dans le cerveau et récupéré au cours du processus de lecture, les travaux 

présentés dans cette thèse ont des implications méthodologiques et théoriques importantes. En 

particulier, ils soulignent l'importance d'une intégration fructueuse entre les théories 

cognitives et les méthodes statistiques avancées afin d’éclairer les mystères entourant les 

représentations sémantiques. 
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5. Riassunto in italiano 

 

Una delle capacità fondamentali degli esseri umani é quella di interpretare simboli. 

Posti davanti ad uno stimolo privo di significato intrinseco, ad esempio una parola scritta, il 

nostro cervello può accedere ad un’arbitraria, complessa e multidimensionale 

rappresentazione chiamata rappresentazione semantica. Nonostante decenni di indagine 

neuropsicologica e di studi di neuroimmagine sui correlati cognitivi e neurali delle 

rappresentazioni semantiche, molte domande sono, ad oggi, senza risposta. I lavori di ricerca 

presentati in questa dissertazione ambiscono a svelare uno di questi misteri: é possibile 

dissociare i substrati neurali delle diverse componenti del significato di una parola? 

 

Il lavoro da me svolto si articola lungo due assi principali: uno teorico ed uno 

empirico. Nella prima parte, vengono riassunte le principali posizioni teoriche attualmente in 

auge relativamente ai correlati cognitivi e neurali delle rappresentazioni semantiche. Vengono 

inoltre evidenziati i recenti progressi metodologici, ovvero l'introduzione di metodi 

multivariati per l'analisi dei dati di neuroimmagine. Queste tecniche ampliano l'insieme di 

ipotesi che possono essere testate empiricamente, in particolare permettendo l'esplorazione (e 

la comparazione) delle geometrie rappresentazionali di diverse aree cerebrali. Tale passaggio 

é fondamentale ai fini di comprendere dove e quando le diverse dimensioni dello spazio 

semantico vengono attivate a livello cerebrale. Infine, propongo una distinzione euristica tra 

due tipologie diverse di dimensioni semantiche: da un lato quelle motorio-percettuali (vale a 

dire, gli attributi degli oggetti cui le parole si riferiscono che vengono percepiti attraverso i 

sensi), e dall’altro quelle concettuali (ad esempio, le informazioni frutto dell’integrazione di 

molteplici caratteristiche percettuali). 

Nella seconda parte, vengono presentati i risultati degli studi che ho condotto al fine di 

indagare l'automaticità di recupero, l'organizzazione topografica, e le dinamiche temporali di 

diverse dimensioni motorio-percettuali e concettuali. Per prima cosa, mostro come gli spazi 

semantici ottenuti con diversi metodi comportamentali e computazionali (vale a dire, 

Semantic Distance Judgment, Semantic Feature Listing, WordNet) siano altamente 

riproducibili attraverso i soggetti e correlino tra loro. In secondo luogo, presento i risultati di 

quattro esperimenti di priming semantico che illustrano come le dimensioni percettuali 

(ovvero la dimensione fisica ed il suono emesso dall’oggetto cui la parola si riferisce) 

vengano recuperati in modo automatico durante la lettura, con importanti differenze a seconda 
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del compito svolto dai soggetti. Inoltre, grazie ai risultati di un esperimento di risonanza 

magnetica funzionale, illustro un gradiente occipito-temporale lungo la via visiva ventrale: le 

caratteristiche percettuali appaiono preferenzialmente codificate in aree visive primarie, 

quelle concettuali in aree associative temporali. Questo risultato indica che dimensioni 

complementari dello spazio semantico sono codificate in modo distribuito e parzialmente 

dissociato attraverso la corteccia cerebrale. Infine, mediante uno studio di 

magnetoencefalografia, dimostro come le diverse dimensioni dello spazio semantico possono 

essere recuperate in modo pressoché immediato (nei primi 200 ms dopo l’apparizione dello 

stimolo) e simultaneo, grazie però a diversi aspetti del segnale cerebrale. La coerenza di fase 

appare infatti fondamentale per la codifica delle dimensioni percettive, mentre le variazioni 

spettrali sembrano supportare la codifica delle dimensioni concettuali. Nel complesso, queste 

osservazioni suggeriscono che i substrati neurali delle diverse componenti del significato dei 

simboli, pur condividendo una simile evoluzione temporale, possono essere dissociate a 

livello della localizzazione cerebrale, e della caratteristica del segnale necessaria per 

codificarli. 

 

Il presente manoscritto si compone di sei capitoli: i primi due introducono la teoria ed 

i metodi sfruttati per il lavoro sperimentale svolto, mentre i seguenti tre descrivono tale sforzo 

empirico. L'ultimo capitolo riassume i risultati, discutendone le implicazioni teoriche e 

proponendo possibili sviluppi. Infine, l'appendice include tutti i materiali di supporto, tra cui 

le analisi che usate come controllo della qualità dei dati o come supporto ai risultati principali 

illustrati nei capitoli precedenti. Segue dettaglio dei cinque capitoli principali. 

Il Capitolo 1 mira a definire esplicitamente il campo di indagine (quale argomento 

verrà affrontato) ed ad operazionalizzare le variabili in gioco (come verrà affrontato). Per 

prima cosa, definisco le rappresentazioni semantiche descrivendone i contenuti e fornendo 

prova della loro rilevanza come realtà psicologica e neurologica. In secondo luogo, riassumo 

le ipotesi sulla localizzazione dei loro correlati neurali alla luce dei risultati sperimentali 

publicati in letteratura. Le rappresentazioni semantiche sono distribuite su una vasta porzione 

della corteccia o localizzate in determinate aree chiave? La loro organizzazione è dettata da 

principi evolutivi o vincoli anatomici? In terzo luogo, descrivo i risultati relativi alla dinamica 

temporale con cui il sistema semantico viene attivato, considerando due scale temporali: a 

breve (es. obiettivo del compito svolto) ed a lungo termine (es. esperienze personali 

pregresse). Infine, evidenzio il rapporto tra il contenuto della rappresentazione, il formato 

adottato (ovvero le operazioni che possono essere eseguite), e l'implementazione sottostante 
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(ovvero il codice neurale). In particolare, questo capitolo comprende il mio contributo teorico: 

una definizione dello spazio semantico che, operazionalizzando due variabili fondamentali, 

può favorire sia le speculazioni teoriche, sia la ricerca empirica. Il significato delle parole 

viene concepito come una rappresentazione multidimensionale che comprende sia dimensioni 

motorio-percettuali (ad esempio, la dimensione media od il colore prototipo), che dimensioni 

concettuali (quali ad esempio la classe tassonomica). Questo capitolo, quindi, non solo offre 

una rassegna della letteratura sulle rappresentazioni semantiche, ma introduce anche il quadro 

teorico adottato per le seguenti indagini sperimentali. 

Il Capitolo 2 offre una panoramica dei metodi utilizzati durante il lavoro sperimentale, 

illustrando come le rappresentazioni cognitive e neurali possano essere studiate con compiti 

comportamentali (Semantic Distance Judgment, Semantic Feature Listing, Semantic 

Priming), nonché tecniche di neuroimmagine quali la risonanza magnetica funzionale e la 

magnetoencefalografia. In particolare, il focus é sui metodi multivariati per l'analisi dei dati di 

neuroimmagine che sfruttano algoritmi di machine learning (un approccio sovente chiamato 

decoding) o la correlazione tra pattern neuronali (chiamato representational similarity 

analysis, RSA). 

Nel Capitolo 3, presento i risultati degli esperimenti comportamentali. Per prima cosa, 

ho condotto esperiementi di Semantic Distance Judgment e Semantic Feature Listing con il 

duplice intento di confrontare lo spazio semantico cui i due diversi metodi danno accesso, ed 

al contempo validare gli stimoli da utilizzare nei seguenti esperimenti di neuroimmagine. I 

risultati indicano che le diverse tecniche convergono nel descrivere il medesimo spazio 

semantico. In secondo luogo, ho condotto 4 esperimenti di priming semantico con l’obiettivo 

di chiarire il grado di automaticità con cui diverse dimensioni percettuali vengono recuperate 

durante la lettura. I risultati suggeriscono una delicata interazione tra il compito svolto dai 

soggetti e l’effetto di priming dovuto alla similarità tra parole in termini percettivi (ovvero se 

due parole si riferiscono a oggetti che condividono o meno la stessa caratteristica visiva od 

uditiva). 

Il Capitolo 4 ospita la descrizione dell'esperimento di risonanza magnetica funzionale 

condotto ed i suoi risultati. L'ipotesi testata era che le dimensioni percettuali e concettuali del 

significato di una parola siano codificate in differenti regioni del cervello: le dimensioni 

percettive in aree unimodali sensori-motorie, mentre le dimensioni concettuali in aree 

associative eteromodali. Ho cosi investigato la presenza di una mappatura tra una dimensione 

percettiva (la dimensione media nel mondo reale) e due dimensioni concettuali (due categorie 

tassonomiche ad un diverso livello di specificità), ed i pattern di attività cerebrale registrati in 
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sei aree lungo la via ventrale occipito-temporale. Grazie alla combinazione di tecniche di 

decoding ed RSA, ho evidenziato come la dimensione visivo-percettiva sembri essere 

codificata principalmente nelle regioni visive primarie (occipitali), mentre le dimensioni 

concettuali in regioni temporali più anteriori. Questo gradiente antero-posteriore, dal 

concettuale al percettuale, indica che diverse aree cerebrali codificano per dimensioni 

complementari dello spazio semantico. 

Infine, nel Capitolo 5, presento l'esperimento realizzato mediante 

magnetoencefalografia ed i risultati cui ha condotto. L’ipotesi al banco di prova é che diverse 

dimensioni percettuali e concettuali possano essere dissociate non solo sulla base della loro 

topografia, ma anche in termini di dinamica temporale. Ho cosi confrontato una dimensione 

concettuale (la categoria semantica) e due dimensioni percettuali (una relativa ad un aspetto 

visivo, la dimensione media nel mondo reale, ed una relativa ad un aspetto uditivo, il suono 

prototipico). I risultati indicano un’automatico, rapido (~200 ms) ed essenzialmente 

simultaneo recupero delle informazioni lungo tutte e tre le dimensioni. Tuttavia, i tre diversi 

effetti sembrano dissociarsi in termini di quale dinamica cerebrale sia coinvolta (cambiamenti 

nella coerenza di fase in un caso, variazioni nello spettro di potenza nell’altro), e di quali 

sorgenti cerebrali ne siano responsabili. 

 

Contribuendo alla nostra, ancora parziale, comprensione di come il significato delle 

parole sia codificato a livello cerebrale e recuperato durante il processo di lettura, i lavori 

presentati in questa tesi hanno importanti implicazioni metodologiche e teoretiche. In 

particolare, sottolineano l’importanza di una proficua integrazione tra teorie cognitive e 

metodiche statistiche avanzate, al fine di risolvere i misteri che circondano le rappresentazioni 

semantiche. 
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Highlights: 

 Semantic knowledge is a complex cognitive and neurological reality, central to human nature. 

 Concepts are represented across the neo-cortex in a distributed, yet specialized manner. 

 Processing of semantic information is fast and automatic, yet not uniform. 

 The question of the format of semantic representations is currently an ill-posed problem. 

CHAPTER 1:  

A MULTIDIMENSIONAL REVIEW OF THE LITERATURE 

 

Could a machine think?  The answer is, obviously, yes.  

We are precisely such machines. 

[Searle, 1980] 

 

 

In this chapter, I explore the current state of the literature concerning the neuro-

cognitive representations of semantic representations. First, I illustrate the role and properties 

of representations via examples stemming from sensory-motor systems. Then, I focus on the 

defining properties of semantic representations: their what (i.e., content and geometry), where 

(i.e., topographical organization), when (i.e., temporal dynamic) and how (i.e., format and 

implementation). The key findings from behavioral and neuroimaging experiments, as well as 

some of the key open questions, are presented. A subset of this chapter is currently under 

revision as a review paper:  

Borghesani, V., & Piazza, M. (under review). The neuro-cognitive representations of 

symbols:  the case of concrete words. Neuropsychologia 

 

 

1.   Neuro-Cognitive Introduction to 

Representations 

As this thesis concerns cognitive and neural representations of 

semantic knowledge, I will begin by defining the concept of 

representation and, in particular, the properties of neural 

representations. This will be followed by the exploration of what we 

mean by knowledge and by semantics. 
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1.1   Cognitive Representations 

A cognitive representation is a mental state, a mental 

information-bearing structure, that corresponds to an aspect of the 

external reality (e.g., a stimulus) or an internal state (e.g., being 

hungry). We can consider it the product of a function that maps the 

complexity of the external or internal world onto mental activity. 

Mental representations, banned from scientific psychology by 

behaviorists, who believed experimental efforts should be restricted 

towards what could be directly observed, were revived by cognitive 

psychologists and computer scientists. For them, representations are 

systems of symbols isomorphic to what is represented, such that 

conclusions drawn by processing symbols are valid inferences about 

the represented structure (Gallistel, 2001). Several aspects of 

representational systems have been problematized in the last three 

decades, with different perspective being taken (e.g., (Cummins, 

1989). Introducing a topic developed later in the chapter, I here only 

briefly mention the crucial debate on the format of cognitive 

representations: is mental content stored in a symbolic, descriptive 

format or a depictive, pictorial one (see Fig. 1)? Intuitively, some 

concepts are better represented pictorially (e.g., “red”), some verbally 

(e.g., “goalkeeper”), others pose problems for both formats (e.g., 

“justice”).   

Considering representations as the codes that store 

information, we must distinguish cognitive representations from the 

cognitive processes that operate on them (i.e. that make use of that 

information). Cognitive neuroscience aims at describing the neural 

correlates of cognition in terms of both processes and representations 

(see Fig. 2). Indeed, authors working on mental representations, even 

if coming from different perspectives, agree on the necessity to 

analyze both sides of any representational system. The processes 

operating on a given representation appear to be an essential part of its 

definition (Marr, 1982), and thus any claim on that representation 

cannot be evaluated unless the processes operating on it are specified 

 

Figure 1 Tentative 
representation of the concept of 
representations. The same 
concept, for instance “tiger”, can 
be stored via different 
representational systems: a 
pictorial depiction (upper), a 
verbal description (middle), or an 
abstract code (lower). 
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as well (Anderson, 1978). Ultimately, it could be argued that 

representations and processes are indistinguishable, not only 

philosophically (i.e., would it make sense?), but also methodologically 

(i.e., can we really study one and not the other?).  

In the neuropsychological literature, before the advent of 

neuroimaging, the problem of distinguishing between representations 

and processes was framed as the dissociation between a deficit “of 

access” (i.e., of the processes that give access to the representation) 

and a deficit “of storage” (i.e., of the representation itself) (see for 

instance Rapp and Caramazza, 1993). Concerning the object of the 

present thesis, semantics, this dissociation was supported by the 

description of two syndromes whose deficits selectively affect the 

level of processing (semantic aphasia) or of representations (semantic 

dementia) (for example see Corbett et al., 2009). More generally, 

comprehensive theories of semantic cognition attempt to explain both 

systems: that of semantic representations and that of semantic control 

(Lambon Ralph et al., 2016). In this thesis, I will focus only on the 

cognitive and neural correlates of semantic representations. 

 

1.2   Neural Representations 

We commonly use the term neural representations to refer to 

the neural underpinnings of cognitive representations. They are the 

brain states product of a function that maps the external or internal 

world onto brain activity. Simplifying for the sake of clarity, these 

representations can be described answering the following, interrelated, 

questions: 

a) What is the content of the representation and how is such 

content organized? Conceptualizing different entities as 

points in a multidimensional space, we can describe a 

representational geometry, i.e. the relationships (distances) 

between them. 

b) Where is the representation stored in the brain? Answering 

this question requires the description of its topographical 

 

Figure 2 Representations vs 
processes. While listening to a 
piece of music, a process is in 
action: you are encoding (some 
of) the features of the melody. 
They are later available for 
retrieval, i.e. the process of 
accessing them in order to, for 
instance, repeat the tune to 
someone else. The first process 
created (or modified, if pre-
existing) a representation of the 
melody, the second is reading it 
out to fulfill the task at hand. 
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organization, in terms of cortical and/or subcortical areas 

involved. 

c) When does the content of the representation become 

available? Can we describe the temporal dynamics 

affecting the representation? 

d) How is that content stored (i.e., what is the 

representational format), and how is it implemented (i.e., 

what is the underlying neural code)? 

In some areas of cognition, neural representations have been described 

with great detail. As a prototypical example, let us consider the first 

cortical  representation of the visual world as it is transduced by our 

eyes. The signal hitting our retina (what) is processed in primary 

visual areas - V1, calcarine cortex, occipital pole – (where), very fast – 

in the order of a few milliseconds, independently from the content 

(when), in a retinotopic fashion (Sereno et al., 1995) (macro-scale 

how), thanks to the firing of edges-detector neurons (Hubel and 

Wiesel, 1959) (micro-scale how) (see Fig. 3). Another prototypical 

example is the representation of motor and sensory information about 

our body parts in a somatotopic fashion (macro-scale how). 

Information about body movements (what) is encoded in primary 

motor area, M1 (where), with a constant rapid update (when). 

Likewise, the information about the state of our body (what) is rapidly 

(when) encoded in primary sensory area, S1 (where) (Penfield and 

Boldrey, 1938) (see Fig. 4). Neural representations of discrete sensory 

systems have been extensively studied and reviewed, not only in the 

case of sensory and motor representations cited above but also, for 

instance, of sounds (Rauschecker, 1998) and odors (Laurent, 1996).  

However, as human beings, we do not only create an internal 

representation of the images hitting our retina, the sound waves 

reaching our ears, or the smells coming through our nostrils. We 

mentally represent very complex instances of both the external and the 

internal world. We can create a representation of everything that we 

experience in the world around us (e.g., objects, social roles, natural 

kinds), but also of things that we have never (and perhaps will never) 

 

Figure 3 Retinotopy in primary visual 
areas. In V1, the information on the 
outside world is retinally mapped onto 
the cortex. [adapted from Dougherty 
et al. (2003) Journal of Vision ] 

 

 

 

 

Figure 4 Somatotopy in primary 
sensory areas. In S1, each cortical area 
corresponds to a specific body part 
(motor homunculus) in a medial-to-
lateral topographical mapping from 
the lower to upper body. Most 
sensitive areas (e.g., fingers) are  
overrepresented. [adapted from 
OpenStax College - Anatomy & 
Physiology http://cnx.org/content/col1
1496/1.6/ ] 

 

http://cnx.org/content/col11496/1.6/
http://cnx.org/content/col11496/1.6/
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directly encounter, for instance things lacking a correspondence in the 

external world (e.g., unicorns, vampires, cylones). These different 

internal representations have been studied with varying degrees of 

depth. For instance, recently I have explored the concept of quantities 

(e.g., small magnitude, medium magnitude, big magnitude) across 

different dimensions (i.e., applied to numerosity – varying number of 

dots- and extension – lines of varying length) (Borghesani et al., 

2016). To this end, we capitalized on some promising advances in 

neuroimaging data analyses that have the unprecedented potential of 

shedding light on the neural substrate of cognitive representations (see 

Chap. 2.4). 

In this thesis, I am interested in one specific kind of 

representation, the semantic one, which has several exceptional 

properties. The first one is that it can be accessed by inputs coming 

from any sensory modality. Reading the letters /t i g e r/, hearing the 

sound /ˈtiːər/, seeing the picture of the stripped animal, are all means 

by which the concept of tiger would be triggered (see Fig. 5). 

 

 

 

 

 

 

 

Figure 5 Semantic Representations. The concept of tiger can be accessed when 
prompted with stimuli of different nature, e.g., the picture of a tiger, the word /tiger/, 
and the sound /ˈtiːər/. It has been hypothesized that the different features that build 
up the multidimensional concept tiger are encoded in different brain regions located in 
proximity to primary motor-sensory regions. These different components of meaning 
are integrated by one (or more) hub(s) located in associative cortex. 

 

However, our understanding of this kind of representation is 

fuzzy. Its content is often vaguely defined: what do we mean exactly 

when we talk about semantic representations? What is the geometry of 

the semantic representational space? What are the neural 

underpinnings of semantic representations? Are they distributed in the 
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cortex, or are they stored in one comprehensive warehouse of 

concepts? Finally, what are the representational format, and the 

underlying neural code of semantic representations? In the following 

paragraphs, I will approach all these questions, one by one 

 

2.   The Content of Semantic Representations? 

 

What do we mean by semantic knowledge? Different 

perspectives can be taken to answer this question, as the term semantic 

occupies a prominent role in many different (soft and hard) sciences. 

As I believe that they all contribute (or should contribute) to the 

current discourse on semantic representations, I will briefly introduce 

the main inputs from the relevant scientific fields. 

 

2.1   Etymology and Philosophy 

Being passionate about words often leads to a certain affection 

for etymology: that combination of letters, which means so much to 

you, how far did it travel? How did it get here? In ancient Greek, the 

verb to know, οἶδᾰ [/ó͜i.da/], was derived from the past perfect of the 

verb to see, εἴδομαι [/e᷄ː.do.ma͜i/] (indicative present: ὁράω 

[/ho.rá.ɔː/ ]). Similarly, the root of the English term know can be 

traced to the Old English cnawan (sharing roots with the Latin 

gnoscere and the Greek *gno) and means "perceive a thing to be 

identical with another", "perceive or understand as a fact or truth" (as 

opposed to believe): again, perception is in the spotlight. Thus, 

etymologically speaking, at least for Indo-European languages, to 

know is to have seen: our knowledge is the outcome of our (visual) 

experiences. The term semantic, on the other hand, stems from the 

ancient Greek σημαίνω [/sɛː.ma͜í.nɔː/ ] which means to symbolize, to 

mean. A σῆμα [/sɛ ͜ ɛma/] is a mark, a token, a pointer. Therefore, 

semantic knowledge is the collection of all the tokens - and all the 

things the tokens refer to – that we have learned, that we have 
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experienced. The orthographic form ROME, and its phonological 

form /ˈroʊm/, are tokens referring to the capital city of Italy. A picture 

of the Colosseum would likely evoke the same general concept, 

perhaps highlighting the fact that Rome was the capital of the Roman 

Empire. If your personal knowledge of Rome also includes its 

traditional cuisine, those same images and words will additionally 

remind you, for instance, of a great lamb dish.   

Can knowledge be reduced to our bodily experiences? The 

history of philosophy of science is studded with authors spreading 

over the continuum between empiricism, idealism and rationalism. 

According to the proponents of the first view (e.g., Thomas Hobbes, 

John Locke, David Hume), at birth our mind is a tabula rasa, ready to 

be filled with knowledge acquired through sensory-motor experiences: 

“No man's knowledge here can go beyond his experience.” in John 

Locke’s words. Idealist authors (e.g., Plato, Kant) believe that we are 

born with innate ideas, core conceptual knowledge that does not 

require any learning processes. Finally, rationalists (e.g., Descartes, 

Spinoza, Leibniz) refute the identification of knowledge with 

perception, and state that the former can be derived from reason 

independently of any sensory data. Until recently, most of traditional 

Western philosophy has embraced Descartes’ mind-body dualism: a 

clear-cut divide between mental and physical properties. Naturalists 

and pragmatists have paved the way for the so-called embodied 

cognition flow that has radically changed the way mind and body are 

thought to interact (Johnson, 2006): the mind is not a separate entity, 

but an emerging property of the interaction between the body and the 

environment. 

Philosophically, there are thus two topics of discord: the 

relationship between mind and body, and the origin and nature of 

knowledge.  The branch of philosophy concerned with the theory of 

knowledge, epistemology, sees a fourth position: that of skepticism. 

These authors (Socrates in primis) argue that a questioning attitude 

and the suspension of any judgment should be preferred, while 
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critically evaluating all the evidence. This is the perspective I will take 

throughout this thesis. 

 

2.2   Linguistics and logic 

In linguistics, semantics is defined as the study of the meaning 

of all linguistic expressions (i.e., morphemes, words, phrases and 

sentences) (Bréal, 1904). The link between words (symbols) and 

meaning (concepts) is far more complex than what can be 

superficially appreciated, complicated by phenomena such as 

polysemy (i.e., a sign has multiple meanings, related by contiguity 

within a given semantic field) and homonymy (i.e., a sign has multiple 

meanings, totally unconnected or unrelated) (see Fig. 6). Semantics 

should not be confused with pragmatics, the study of "speaker 

meaning", in other words the meaning of language in its context of 

use. This distinction parallels the one made in cognitive and clinical 

psychology between semantic representations (the information stored) 

and processes operating on them (which will determine changes 

according to the context/behavioral goals). While aware that 

pragmatic and contextual factors affect semantic representations, in 

this manuscript I focus on static representations of the meaning of 

single words  

The origin of modern semantics is usually traced back to the 

point of intersection between the logico-philosophical tradition and 

structural and generative approaches. Belonging to the first line of 

research, Frege (1982) distinguished between the reference (in 

German, Bedeutung) and the sense (in German, Sinn) of a concept. 

The first denotes a word extension (i.e., what it corresponds to in the 

world), the second its intension (i.e., what we know about its meaning, 

the way in which it refers to its referent). For instance, the sentences 

“Bruce Wayne is Batman” and “Bruce Wayne is Bruce Wayne” have 

the same referent/extension (i.e. the American billionaire owner of 

Wayne Enterprises), but rather different sense/intension (i.e. only the 

first one denotes knowledge of his secret identity). The second line of 

 

Figure 6 The link between words 
and meaning. A given concept can 
be expressed via a term (i.e., a 
word) and refers to a referent (i.e., 
an object in the real world). 
However, this linear relation is 
complicated by the observation that 
the same term might refer to 
different concepts (e.g., bow is “a 
flexible strip of wood, bent by a 
string stretched between its ends, 
for shooting arrows” but also a 
“piece of looped, knotted, or shaped 
gathering of ribbon, cloth, paper, 
etc., used as a decoration”). 
Moreover, the same referent might 
be accessed via different terms 
(e.g., a bow can be called knot).  
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research is best represented by Chomsky who stressed the 

dissociations (and interactions) between semantics and other aspect of 

language, such as syntax and grammar. As exemplified by its 

notorious sentence, “colorless green ideas sleep furiously”, 

grammatically correct propositions can be completely meaningless. 

Mirroring what pointed out in philosophy of knowledge, 

according to Buccino and colleagues (2016), we can talk about two 

streams in the current philosophy of language: externalist (i.e., the 

meaning of words resort to external entities - physical or social) and 

internalist (i.e., embodied experiences). As an example of the first 

perspective, consider Putnam’s (1975) claim that the meaning of a 

word is given not only by the set of items it refers to (the extension), 

but also by the socially defined notion of its typical features (the 

stereotype). This kind of reasoning, along with notions such as the one 

adopted by Frege, implies that meaning does not follow from what 

speakers perceive or experience (their psychological state is 

irrelevant), but rather from some kinds of (physical or social) external 

entities like senses (Frege) or stereotypes (Putnam). The opposite 

perspective, the internalist positions, started with the observation by 

Russell (1910) that we can understand only those expressions we are 

“acquainted with”. Sure, one can be taught of hobbits - short and 

fattish, with curly hair and a round jovial face -, however this 

description will be understood only by those that are familiar (i.e., had 

been exposed to) with the terms "short", "fattish", "curly", "hair", etc... 

We will see that this tension between internal and external sources of 

meaning expands to cognitive (neuro)science. 

 

2.3   Computer Science and Artificial Intelligence 

Insofar as to know, to have knowledge, is seen as tightly linked 

with being an intelligent agent, computer scientists have debated about 

the characteristics of semantic memory (perhaps unknowingly). As we 

will see later on (3.1), one of the first, pivotal, cognitive models of the 

organization of semantic knowledge stems from a hypothesis 
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generated by a computer scientist, Quillian (1967). However, the 

contributions I will review here focus on a deeper question: what is 

knowledge in the first place? 

An important divide in the field of artificial intelligence (AI) 

should be mentioned. On one hand, the weak AI hypothesis states that 

a machine running a program will always be, even at its best, only 

capable of simulating real human behavior and consciousness. On the 

other hand, the strong AI hypothesis states that a machine running the 

proper (yet to be coded) program, would be a mind, thus positing no 

difference between a software emulating the actions of the brain, and 

the actions of a human being, including understanding and 

consciousness. The American philosopher John Searle (1980) 

responded to strong artificial intelligence advocates with what is now 

known as the Chinese room argument. The idea in vogue at the time 

was that intelligence in computers could be assessed with the so-called 

Turing test. Human beings are asked to have chat conversations with 

unknown interlocutors; if a machine, acting as interlocutor, can fool 

humans in thinking they are chatting with a conspecific, that machine 

can be considered intelligent. However, noticed Searle, pure symbols 

manipulation, in absence of any meaningful comprehension, cannot be 

considered knowledge, cannot be enough to call a system 

“intelligent”. Provided with the right tools (e.g. a Chinese vocabulary 

and a textbook of Chinese grammar) one can manipulate Chinese 

symbols correctly, up to the point of fooling native speakers. 

However, it would just be a simulation of knowledge; there would not 

be any real understanding. 

Ten years later, the Hungarian cognitive scientist Harnad 

formalized the core problem of semantic knowledge: symbols need to 

be grounded (1990). Grasping the meaning of something is the result 

of the capacity of picking out a referent in the outer world and of 

being conscious of such a process. Symbols need to be grounded, and 

this is not simply a computational property, it is a dynamic 

implementation-dependent property (i.e., it will depend on the 

sensory-motor states the system can experience) (Harnad, 2003). His 
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conclusion is thus that a complete separation between a central 

symbolic system and peripheral input/output systems is not sufficient 

to give rise to human-like intelligence (and knowledge). Some kind of 

interaction between hardware (i.e., the input and output systems) and 

software (i.e., the symbolic system) appears to be necessary. How this 

could be implemented is still an open question, and, as we will see 

later, parallels the open question on how such an interaction is carried 

out by our brains. While slightly changing its meaning over time, one 

term has been used to refer to the complex systems of inputs, outputs 

and symbolic operations characterizing biological life forms: wetware. 

 

2.4   Psychology and Neuropsychology 

The term semantic memory was coined for the first time by 

Quillian in his doctoral thesis (1966). In his seminal work, Tulving 

(1972) then formalized the distinction, within the declarative (i.e., 

consciously accessible) long-term memory system, between: 

a) Episodic memory is tied to precise spatio-temporal coordinates, to 

unique personal events one remembers. For instance, I recall 

yesterday (when) I wrote one paragraph (what) while on the train 

back home (where). Episodic memory is thought to be dependent 

on medial-temporal lobe structures (MTL), while prefrontal cortex 

(PFC) seems to support strategic retrieval (Agosta et al., 2016). 

b) Semantic memory is a mental thesaurus, containing all the general 

concepts one knows. As example, I know the most ancient 

recognized predecessor of the rail system was the rutway near 

Corith (the Diolkos). As described in the rest of chapter, semantic 

memory relies on a distributed network of cortical areas. 

Semantic memory is thus defined as the general knowledge of facts 

(e.g., 25
th

 August 1991, first public announcement of the existence of 

a Linux kernel), people (e.g., Tolkien, the author of “The Lord of the 

Rings”) and objects (e.g., an astrolabe is an ancient inclinometer). 

Items are described both in terms of features (i.e., how things are – 

from the example before: typically made of brass) and functions (i.e., 
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what things are for – from the example before: used for navigation and 

locating astronomical objects). Semantic memory is tightly linked 

with language, as it includes word meaning, and it is shared within a 

given cultural milieu (e.g., in Bologna, nobody understands what 

“spaghetti alla bolognese” means, it simply does not exist). 

The early investigations on semantic memory were of 

neuropsychological nature. Cognitive neuropsychology seeks to 

understand the relationship between cognitive functions (as described 

by cognitive models) and brain areas and functions (as studied via the 

observation of patients with acquired brain damage). As I will develop 

later, single case studies of patients with memory deficits revealed 

important dissociations, which led to key inference on the structure of 

the semantic system (Caramazza, 1986). A single dissociation (i.e., a 

patient showing a deficit of semantic memory, not of episodic 

memory) can only demonstrate that the two constructs are somehow 

different, they cannot be reduced to one another. However, it does not 

provide any indication on what distinguishes them. For instance, if 

one of the two poses a higher demand on attention (or language, or 

any other cognitive function) this could explain away the difference. 

Nevertheless, if a double dissociation is observed (i.e., two patients, 

one showing a deficit of semantic memory and preserved episodic 

memory, another with the reverse pattern) then it is possible to 

conclude that the two constructs are functionally different (i.e., the 

differences cannot be reduced to, say, higher/lower attentional 

demands). Moreover, if the two patients are also showing different 

patterns of brain anomalies that can be linked to the cognitive deficits, 

then it is possible to conclude that semantic and episodic memory 

differ not only functionally, but also in their  neural substrate. 

Thanks to neuropsychological investigations, since the mid-

seventies it is acknowledged that episodic and semantic memories 

constitute two dissociable cognitive and neurological realities. In 

1975, Warrington described three patients showing a “selective 

impairment of semantic memory”. Episodic memory was preserved. 

Ten years later, Mesulam (1982) described six more patients showing 
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this peculiar deficit of memory not imputable to Alzheimer’s Disease 

and coined the term progressive fluent aphasia (Mesulam, 1987). 

From these first reports stemmed two interconnected and prolific lines 

of research: on one hand, the study of categorical dissociation within 

semantic memory (Warrington and Shallice, 1984), on the other hand, 

the definition of a syndrome called semantic dementia (SD) as one of 

the forms of progressive fluent aphasia (Snowden et al., 1989; Hodges 

et al., 1992; Neary et al., 1998).  We will later see how the bulk of 

evidence stemming from this neuropsychological-oriented research 

has contributed to the investigation of the neural substrate of semantic 

memory. For one of the first examples of the mirror dissociation (i.e., 

spared semantic memory and impaired episodic one), see (Vargha-

Khadem et al., 1997) 

 

2.5   Dimensions and Geometries 

Semantic representations lie in a complex multidimensional 

space described by the intersection of numerous features. We have 

recently proposed a novel way to conceptualize the mental 

representation of the meaning of concrete words, which we think 

could be a useful heuristic to foster theoretical speculations as well as 

empirical research (Borghesani and Piazza, under review). 

Considering the way they are learned/acquired, we can distinguish (at 

least) two kinds of features:  

 Motor-perceptual ones. The umbrella term motor-perceptual 

features includes all features of the objects referred to by the 

words that can be (and typically are) perceived through the 

senses. These features, under normal circumstances, are 

apprehended through direct physical interaction with the items. 

It comprises modality-specific features, for instance aspects 

solely apprehended through vision such as color (e.g., a tomato 

is typically red), purely gustatory such as taste (e.g., a tomato 

is a particular combination of acid and sugar flavor), purely 

auditory such as sound (e.g., a tomato is not associated with 
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any specific sound). Moreover, it encompasses features that 

can be equally resolved via multiple sensory systems, such as 

the average size or shape (e.g., the average size and shape, 

which can be sensed both through vision and through touch). 

Finally, some classes of concrete nouns (for example tools) are 

also defined through action descriptors, hence the reference to 

a combination of motor-perceptual features. As these kinds of 

features are constrained by the physical laws of the world we 

live in, and they quite often correlate among each other (e.g., 

small objects tend to produce high pitch sounds; green food 

tends to be acidic, thin small objects can be grasped with 

precision grip). According to our proposal, however, they can 

and should be considered separately when attempting to 

describe the neural substrate of word meaning. 

 Conceptual ones. These higher-order descriptors constitute 

another key dimension of the semantic space, and are either (1) 

derived from the integration of multiple motor-perceptual 

features, and thus refer to multimodal aspects of item (e.g., I 

know  a tomato is a fruit, which is a largely cultural label I 

learned to attach to things that are edible and have seeds) or (2) 

learned explicitly in a declarative fashion, as they bear no 

direct link with any motor-perceptual feature (e.g., I know 

tomatoes were not cultivated in Europe before the discovery of 

the Americas). Whether this latter case, in which a given 

feature cannot be entirely resolved by the integration of motor-

perceptual ones, should be classified separately (and which 

term should be used to refer to it) is currently an open 

question. Future work should also attempt to investigate how 

the integration of unimodal motor-perceptual features (e.g. 

yellow + acidic + small + round = lemon) is implemented, and 

how it differs from the integration of symbols referring to two 

or more integrated features (e.g. lemon + Italian + liqueur = 

limoncello). 



41 
 

One clarification with respect to the concept of modality is needed. 

When talking about semantic knowledge, it is important to distinguish 

between: 

 input modality of the stimulus (e.g., the picture of a 

tomato, the smell of lavender), determined by the 

sensory organ that transduces the information, and  

 content modality which is the modality specific 

component of the representation (e.g., the color of a 

tomato is red)  

As we have previously seen with the example of Rome, the content of 

semantic knowledge can be accessed via stimuli of any modality: 

visual (e.g., a picture, a written name), auditory (e.g., a spoken name, 

a sound), olfactory (e.g., a smell), etc… Particularly interesting is the 

case of words, arbitrary symbols whose physical properties (i.e. 

strokes on paper or vibrations of the air) greatly differ from the 

semantic content we have access to. As a matter of fact, the written 

(orthographic) and spoken (phonological) surface form of words carry 

meaning only thanks to cultural conventions. Given the heterogeneity 

of ways by which semantic knowledge can be accessed, when 

assessing semantic memory one needs to exploit a rich set of tests. A 

neuropsychologist’s aim may be to reveal a core semantic deficit (i.e., 

deficit of the semantic representations) as opposed to, for instance, an 

impairment preventing the access to the information or the production 

of the response (i.e., processes acting upon the representations). Thus, 

neuropsychologists use tests relying on both visual and auditory inputs 

(verbal and non-verbal), some of which ask for complex answers 

(requiring good motor skills or good verbal skills) while others probe 

a simple yes/no answer or a binary choice (see Fig.7).  

 

To sum up, semantics is the branch of linguistics studying the 

meaning of the different linguistic expressions and semantic 

knowledge (or semantic memory) is the memory system dedicated to 

store information on meaning of words and, more generally, our 

knowledge of the world. Philosophy, experimental psychology, 

 

 

Figure 7 Testing semantic 
knowledge. Subjects’ semantic 
memory for artificial as well as 
natural kinds can be tested by 
asking: (a) to select the image which 
presents the correct prototypical 
color; (b) to choose which elements 
are linked by a semantic association 
(e.g., based on functional links); (c) 
to select the plausible item, one of 
the two being the unrealistic merge 
of two different common objects, 
e.g., a knife and a kettle); (d) to 
draw a delayed copy of simple 
animals (notice the absence of any 
key feature that would allow 
identification of the animals); (e) to 
choose the correct missing piece; (f) 
to select the right image. 
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cognitive science and computer science have greatly contributed to the 

debate on the origin (i.e., how much is innate/learned?), structure (i.e., 

which concepts cluster together?), and implementation (i.e., how to 

achieve the needed interaction between symbols and input/output 

systems?) of semantic knowledge. With these questions in mind, we 

are now ready to explore its neural substrate: neural semantic 

representations. 

 

 

3.   Organization and Localization of Semantic 

Representations 

 

I have stressed the tight link between language and semantic 

memory. Decades before any formal definition of semantic memory, 

conceptual knowledge was already included in the first models 

attempting to describe the language system. It all started with the 

pivotal descriptions of patients with selective deficits of production 

(Broca, 1861; Broca, 1865) and understanding (Wernicke, 1874/1977) 

of language. Following these accounts, traditional models of language 

(Lichtheim, 1885), have posed that a center for speech production (so 

called Broca’s area) and a center for speech comprehension (so called 

Wernicke’s area) are connected to a concepts center/ideation center, 

where meaning is stored (see Fig. 8 and 9). No attempt was made to 

precisely localize this center. 

During the XX and XXI centuries, alongside the progress of 

studies on language comprehension and production, much work has 

been conducted in the attempt to localize the concepts center(s), the 

neural substrate of semantic knowledge. Neuropsychological studies 

of patients manifesting semantic deficits have been pivotal in shedding 

light on the possible cognitive and neural dissociations. They helped 

develop most of the cognitive theories later tested with neuroimaging 

methods. I here review the milestones of both the neuropsychological 

and the neuroimaging perspective, after a brief excursus on cognitive 

 

Figure 8 Lichtheim’s diagram. 
The center of auditory images (A) 
and the center of motor images 
(M) are connected both by a 
direct pathway and by an 
indirect one, going through the 
center of concepts (B). 

 

  

 

Figure 9 Charcot’s bell diagram. 
The auditory center for words 
(CAM) and the visual center for 
words (CVM) are connected 
respectively with the common 
auditory center (CAC) and the 
common visual center (CVC), 
both of which lead to the 
ideation center (ID).  
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and computational models of semantic memory. These models, while 

not necessarily detailing the possible neural implementations, have 

paved the way for many of the following approaches. 

 

3.1   Cognitive and Computational Models 

At the end of the sixties, Quillian proposed a model of how 

denotative, factual information can be stored in a computer (and in the 

human mind) through a semantic network (Quillian, 1967). In this 

model, concepts are stored as series of nodes and associative links 

between those nodes. Links usually go both ways between concepts, 

but with different criterialities (i.e. they can be more or less essential): 

for example, it is highly criterial for the concept of ukulele that it is a 

musical instrument, and not very criterial for the concept of musical 

instrument that one kind is ukulele. The computational model’s 

predictions were later tested behaviorally in collaboration with Collins 

(Collins and Quillian, 1969). Retrieving properties from a node and 

moving up in the hierarchy of links requires time, thus comparing the 

processing time of different words/sentences permits the 

understanding of how they are organized (one relative to the other) in 

the semantic network (see Fig. 10). 

 

Figure 10 Representation of the semantic network proposed by Quillian. Left: original computational model characterized by type node (“food”), token 
nodes (e.g., “form”,”drink”) and semantic links – of which 5 types where defined: e.g. conjunctive, disjunctive, subordinate (Quillian, 1967). Right: 
Example of the the hierarchical structures of nodes and connections: distances (in terms of number of nodes and links to be travelled) determined the 
speed at which properties are retrieved. For instance, assessing whether it is true or not that a Canary can sing, takes less time than assessing whether it 
can fly (one needs to retrieve first the knowledge of the fact that it is a bird, than of the fact that birds can fly). From (Collins and Quillian, 1969) 
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Collins further developed the model, defining the Spreading of 

Activation Theory (Collins and Loftus, 1975). The name comes from 

the assumption that, when a word is processed at the semantic level, 

the corresponding activation spreads out along all connected paths in 

the network. Such activation progressively decreases, in a way that is 

proportional to the accessibility or strength of the links. The longer a 

word is processed, the longer activation is released, while activation 

decreases over time or if another activity interferes. Between two 

given words, it is thus possible to compute a semantic distance value 

(i.e., the distance along the shortest path), as well as a semantic 

similarity value (i.e., an aggregate measure of all possible the paths) 

(see Fig. 11). 

 

 The early seventies saw the development of antagonist 

featural models, such as the one proposed by Smith and colleagues 

(1974). In these kinds of models, a concept is not an unanalyzable 

unit: it is represented as a set of semantic features. Critical is the 

distinction between essential aspects of word meaning, called defining 

features (e.g., for birds: being a biped, having wings) and other 

accidental, characteristic features (e.g., for birds: flying, perching in 

trees). This observation led the authors to the definition of typicality: 

an instance of a category will be highly typical if it possesses most of 

the characteristic features (while, by definition, all instances manifest 

defining features). For instance, a canary is a more typical exemplar 

of the category birds than a penguin. They also suggested that 

differences in typicality ratings can be used as a measure of semantic 

distance, which in turn can be displayed in a low dimensional space 

thanks to techniques such as multidimensional scaling. One can then 

attempt to interpret the different dimensions as reflecting underlying 

characteristic features of the category (see Fig. 12). Analyses of 

behaviorally collected semantic data allowed researchers to notice 

how different domains (i.e., living vs non-living things) present 

substantial variance on factors such as feature correlations and 

distinguishing features (McRae and Cree, 2002). 

 

Figure 11 Example of a Spreading of 
Activation Theory graph. Given two 
concepts, we can compare their 
semantic distance (e.g., the path from 
roses to cherries is shorter than the one 
from violets and cherries) and their 
semantic similarity (e.g., between roses 
and cherries the way through red is the 
only possible path, they are not very 
similar; on the contrary, ambulance and 
vehicle are very similar as they are 
connected by many paths of different 
length). [figure adapted from (Collins 
and Loftus, 1975)] 
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The attempts to implement semantic networks with computer 

programs led to the development of connectionist models. The key 

feature of this family of approaches is that they aim at modeling not 

only how  semantic concepts are stored, but also how they are learned, 

acquired. Generally speaking, knowledge is represented in terms of a 

set of units interconnected via weighted connections. Learning (i.e., 

adjusting the weights) can be accomplished either in a supervised or in 

an unsupervised fashion. Different architectures have been proposed, 

mostly involving a series of input, output and hidden units (i.e. the 

ones intervening between the different layers). The term feed-forward 

networks is associated with models where activation flows from input 

units to hidden units to output units. An illustrative example is the 

model proposed by Rumelhart and Todd (1993) and later developed 

by Rogers and McClelland (2004). This kind of model permits the 

observation of how concepts are re-arranged according to the semantic 

context (see Fig. 13). Models whose architecture involves feedback, 

bidirectional or recurrent connectivity as well are called dynamic 

models. In general, these kinds of models have two important 

consequences: they support the idea of a distributed semantic system 

(as already proposed by featural models); and they highlight the 

importance of simulations and correlation with behavioral evidence in 

Figure 12 Featural model by Smith and colleagues. Left: each concept is described in terms of defining (i.e., necessary and sufficient) and 
characteristic (i.e., additional, optional) features. Right: multidimensional scaling of the category “mammals”. Notice how some animals tend to 
cluster together (e.g., sheep, cow and goat), while others appear very distant (e.g., lion and pig). The dimension lying on the X axis can be 
interpreted as size (i.e., from big to small animals), while the one on the Y axis as predacy (i.e., from dangerous to harmless animals). [figures 
adapted from (Smith et al., 1974)] 
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order to address complex phenomena such as semantic priming 

(Masson, 1995). Usually, the representational geometries that these 

models describe are organized around interpretable elements, 

encoding specific properties of the items the concepts refer to (e.g., 

the color, the shape, the size), hence the alternative name: attribute-

based models. 

 

The assumption that concepts are not represented in unitary 

nodes (as suggested by Quillian), but instead in a distributed fashion, 

is at the core of another family of models, that of distributional ones, 

also referred to as co-occurrence, or corpus-based models. Different 

alternative structures have been proposed, but they all share the 

hypothesis that semantics is learned via statistical extrapolation of 

relations among symbols during direct encounters in the linguistic 

environment. Modeling in these cases involves studying large text 

corpora, varying the kind of learning mechanisms to be used: from 

Hebbian learning to probabilistic inference. Examples include Latent 

Semantic Analyses (LAS, Landauer and Dumais, 1997) and 

Hyperspace Analogue to Language (HAL, Lund and Burgess, 1996). 

The first one, LSA, is based on the assumption that words that are 

close in meaning will co-occur in similar texts. As a first step, a 

document-term matrix is computed, describing how many times each 

concept appears in each text. Then, a low-rank approximation of such 

a matrix is computed, which can be used to assess similarities and 

relations between words, and to compare documents. The second 

approach, HAL, considers that words (e.g., "horse" and "donkey") are 

semantically related if they frequently appear in the same context (i.e., 

with the same words, e.g., "barn"), even if they never actually co-

occur (e.g., "jugs" and "butter", mediated by the food context). The 

HAL matrix representing how all the words in its lexicon are 

associated is computed, for instance, over a 10-word reading frame 

moving through a corpus of text: whenever two words are 

simultaneously in the frame, the association between them is increased 

(inversely with their distance in the frame). In these company-based 

 

Figure 13 Multidimensional scaling of the 
similarities represented by the model by 
Rogers and McClelland. The middle panel 
illustrates the similarities among items at 
the level of the Representation. The upper 
and lower panels illustrate the similarities 
at the level of Hidden Units when different 
relational context are activated: is and can 
respectively. Note, for instance, how 
different trees are well spread out in the is 
context (they are all different instances), 
while the can context collapses 
differences among the plants (all they can 
do is to grow). [figure adapted from 
(Rogers and McClelland, 2004)] 
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models, the representations (i.e., vector-spaces) express conceptual 

structure, but are otherwise devoid of content, and thus of difficult 

psychological interpretation. 

 

This, perhaps simplistic, dichotomy between cognitive 

(attribute-based, theory-driven) and computational (company-based, 

data-driven) models here presented, illustrate the divide still present in 

the current literature. On one hand, the representations characterizing 

attribute-based models are built of interpretable elements, encoding 

specific properties such as color, shape, size, etc… We will see that 

such an approach culminates with recent studies pursuing the 

identification of the neural substrate of those features (Binder et al., 

2016). On the other hand, there are those aiming at resolving semantic 

content in fully distributed models where the interpretation of the 

different emerging dimensions is rarely helpful in clarifying their 

content, while being good in predicting behavioral performance (for a 

review on the success, shortcoming and future direction of this 

approach see Pereira et al., 2016).  

 

3.2   Clinical Evidence 

In the previous section, I have mentioned one of the core 

concepts in neuropsychology, that of dissociations (in particular 

double dissociations) and the inferential power they carry. Two other 

important points should be mentioned before reviewing the clinical 

evidence on the neural substrate of semantic knowledge. As the 

inferences in neuropsychology are drawn by observing a link between 

a given cognitive impairment and a given brain damage, they can only 

be as accurate as the neuropsychological assessment conducted and 

the brain imaging results obtained. Concerning the neuropsychological 

evaluation, before ascribing the performance in one given test to a 

semantic deficit, one needs to conduct a differential diagnosis with 

respect to modality specific access deficits including (but not limited 

to): 
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 visual agnosia (i.e., an impairment in recognition of visually 

presented items not due to visual defects; recognition is spared 

if items are presented in another modality, for instance if 

allowed to touch them or hear the sound they produce) (Farah, 

2004); 

 tactile agnosia (i.e., an impairment in recognition of items 

when they can only be explored by touch) (Reed, 1996); 

 auditory agnosia (i.e., defective recognition of sounds that can 

be observed in different pure forms: only for speech (i.e., 

word-deafness), only for music (i.e., amusia) or only for non-

verbal sounds) (Goldstein, 1974); 

It is harder to frame semantic deficits with respect to disorders that 

affect production and/or comprehension of language, so called 

aphasias. Different aphasic syndromes have been described and only 

some of those include semantic deficits among their prominent 

symptoms. Before ascribing a given behavioral performance to a 

semantic deficit, it is important to verify that the difficulties are not 

limited to verbal material. Regarding the brain damage analyses, one 

has to pay attention to the different etiology: 

 focal vascular damage, usually follows ischemic strokes 

(decreased or absent circulation of blood due to a thrombus or 

embolus) and more rarely intracerebral hemorrhage (rupture or 

leak of a blood vessel). These events are more frequent close to 

big brain vessels such as the Middle Cerebral Artery (for a map of 

the distribution of MCA infarcts (Phan et al., 2005). The onset of 

the symptoms is abrupt and recovery of the affected cognitive 

function will depend, among other factors, on the extension of the 

resulting brain damage (once all possible medical procedures have 

been applied).  

 progressive degenerations, due to viruses (Whitley and Gnann, 

2002) or proteopathies (Walker and LeVine, 2000), tend to 

develop from specific locations (made vulnerable by particular 

anatomical and genetic factors) and then spread to neighboring 
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Figure 14 Pattern of atrophy in the three variant of PPA. The SD 
variant shows atrophy spreading posteriorly from the anterior 
temporal pole (in green). The nfvPPA atrophy appears to be confined 
to the lower and posterior part of the frontal lobe (in red). The lPPA is 
associated with atrophy in superior and posterior portions of the 
temporal lobe and inferior anterior portions of the parietal lobe (in 
blue).  

 

regions. As the degeneration progresses gradually, possible 

compensatory mechanisms can come into play at the neural level, 

as well as at the behavioral one. Timing of the assessment is 

crucial: early signs can be missed while patients in advanced 

stages can be too compromised to be tested.  

 

To expand further the interplay of neuropsychology and neuroimaging 

is beyond the scope of the present work, however for a review of the 

current challenges faced by clinical and cognitive neuropsychology, 

please see recent review by Price and colleagues (2016).  

 

I have already mentioned that a specific 

neurodegenerative disorder, semantic dementia (SD), 

has provided researchers with crucial evidence on 

the neural substrate of semantic memory. SD is a 

member of a family of degenerative disorders called 

Fronto-Temporal Lobar Degeneration (FTLD, 

Agosta et al., 2015) that has three clinical 

manifestations affecting motility (includes: motor 

neuron disease, corticobasal degeneration, and 

progressive supra-nuclear palsy), behavior (called 

behavioral variant of frontotemporal dementia, 

bvFTD) or language (called primary progressive 

aphasia, PPA). This latter case includes three variants dissociated not 

only at the clinical level, but also at the anatomical one (Gorno‐

Tempini et al., 2004; Gorno-Tempini et al., 2011; Vandenberghe, 

2016) (see Fig. 14): a nonfluent variant (nfvPPA), characterized by 

apraxia of speech (i.e., motor speech disorder) and deficits in 

processing complex syntax;  a logopenic variant (lPPA), showing slow 

speech and impaired syntactic comprehension and naming; and a 

semantic one (SD). SD is considered a presenile disorder - i.e., the 

patients are relatively young at the onset, typically between the ages of 

50 and 70 years. About two-third of the cases are associated with 

ubiquitin pathology (Grossman, 2010). 
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Clinical manifestations include fluent speech (it might be very 

difficult for caregivers to realize they are witnessing a language 

disorder) in presence of semantic memory deficits. The key initial 

feature is a reduction of expressive and receptive vocabulary, often 

manifested by anomia embedded in sentences with normal 

phonological, grammatical and syntactical features (see Fig. 15). The 

semantic nature of the deficit is highlighted by the fact that conceptual 

knowledge appears compromised even in tasks that do not require 

verbal communication, for instance simple object use (Hodges et al., 

2000), and item identification based on smell (Luzzi et al., 2007), 

sound (Bozeat et al., 2000) or taste (Piwnica-Worms et al., 2010).  The 

deficits not only involve all modalities, but also all concepts, with the 

exception of basic numerical ones (Cappelletti et al., 2001). Three 

aspects of stimuli and task influence SD patients’ performance: 

familiarity with a given item (the more, the better), typicality of such 

an item within a domain (e.g., for 

the category of wind instruments, 

flute would be more resistant to 

damage than ocarine), and 

specificity (performance decreases 

when a high level of specificity is 

required, e.g., distinguishing 

between comté and beaufort – 

both french cheese) (Lambon 

Ralph et al., 2016). 

 

 

 

 

 

 

 

 
Figure 15 Examples of verbal testing of SD patients. The results of a naming task (i.e., patients are presented with printed pictures and 
asked to name the item in it) exemplify the progressive loss of conceptual knowledge (a). Similarly, when asked to define a given concept, 
patients can produce grammatically correct sentences, but are unable to provide a proper description (b).   
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In vivo anatomical imaging has revealed fronto-temporal atrophy 

starting from the anterior temporal lobe and then progressively 

spreading posteriorly towards the parietal lobe (Galton et al., 2001; 

Rosen et al., 2002; Davies et al., 2006; Brambati et al., 2009), 

confirmed by post-mortem pathological findings (Davies et al., 2005) 

(see Fig. 16). Converging findings come from the analyses of white 

matter abnormalities (Agosta et al., 2009; Galantucci et al., 2011). SD 

patients show alteration, as compared to a control group, in all metrics 

(i.e., mean fractional anisotropy, axial, radial and mean diffusivities). 

In particular, they present a dysfunction of the ventral language 

system (i.e., a severe involvement of the uncinate fasciculus and of the 

inferior longitudinal fasciculus, especially the anterior portion 

bilaterally and the left middle section), with relative sparing of the 

dorsal network (i.e. the parietofrontal components of the superior 

longitudinal fasciculus are relatively spared). All tracts encompassing 

the temporal lobe are vastly damaged, including the left arcuate. 

Along the inferior longitudinal fasciculus, DTI changes decrease in 

severity from anterior to posterior regions. Finally, the atrophy 

observed with MRI is also supported  by the evidence of anterior 

temporal hypometabolism as observed with positron emission 

tomography (PET) (Diehl et al., 2004; Nestor et al., 2006; Desgranges 

et al., 2007). Overall, this evidence suggests a major role of the 

anterior temporal lobe in the processing and storage of semantic 

knowledge. 

Another set of patients has greatly contributed to the study of 

semantic memory: those suffering from herpes simplex virus 

encephalitis (or HSVE), a viral infection of the central nervous system 

with a predilection for temporal lobe involvement (Whitley and 

Gnann, 2002) (see Fig. 17). It is commonly associated with severe 

amnesia, naming difficulties and disexecutive symptoms (Kapur, 

1994), however, it is important to point out that the diagnosis is based 

on positive virology irrespective of the cognitive profile. HSVE 

patients often show category-specific semantic deficits: performance 

appears to be disrupted for living things, spared for non-living items 

 

Figure 16 Semantic Dementia. The 
atrophy of the temporal pole 
involves both hemispheres, but is 
prevalent on the left side.  

 

 

 

 

 

 

Figure 17 Herpes Symplex 
Enchephalities. Bilateral atrophy of 
the temporal poles is clearly visible.  
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or artefacts (Warrington and Shallice, 1984; Pietrini et al., 1988; 

Sartori et al., 1993; Laiacona et al., 2003). Thus, although pathology 

in both SD and HSVE is centered on the anterior temporal lobes, 

differences in cognitive profile and anatomical changes have been 

highlighted (see Fig. 18). This has led authors to suggest that the 

antero-medial temporal cortex (extensively damaged in HSVE 

patients) may be important for processing such as living things, 

whereas the inferolateral temporal cortex (where SD abnormalities 

predominate) may play a more general role within the semantic 

system (Noppeney et al., 2007). Others authors, combining 

neuropsychological data and computational simulations, have 

emphasized how the different neuropsychological profiles of SD and 

HSVE patients can be explained not solely by the location of damage, 

but also by the kind of impairment (Lambon Ralph et al., 2007).  A 

generalized semantic impairment is found when the computational 

model is damaged by removing randomly selected connections 

entering, leaving or intrinsic to a central hub where all information 

converges (role assigned to the ATL, thus simulating SD patients’ 

lesions). Conversely, when damage is achieved by changing the value 

of the weights of those connections (impairment thought to simulate 

HSVE’s lesions), a category specific impairment emerges. It should be 

noted that HSVE is an acute disease: following treatment partial 

recovery and some degree of relearning are possible, leaving the 

subjects with a functioning yet less “semantically acute” semantic 

system (Lambon Ralph et al., 2016).  

 

Following the theoretical swing towards an embodied account 

of semantic knowledge (which I will develop later on in the chapter), 

growing attention has been given to neurological disorders affecting 

somato-sensory and motor systems: do they impact semantic as well? 

First, interesting semantic symptoms have been investigated in 

patients presenting one of the motor variants of FTLD. Motor neuron 

disease (MND) is an umbrella term for a group of neurological 

disorders that destroy upper and/or lower motor neurons  

 

Figure 18 White and gray matter 
changes in SD and HSVE patients. 
Pathology is centered on the anterior 
temporal lobe in both cases, but the 
disease spreads in very different ways. 
Moreover, SD and HSVE are due to very 
different pathological processes, thus 
even an identical volume loss may not be 
functionally equivalent [from (Noppeney 
et al., 2007)]. 
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(amyotrophic lateral sclerosis, primary lateral sclerosis, progressive 

muscular atrophy, progressive bulbar palsy and pseudobulbar palsy) 

(Leigh and Ray-Chaudhuri, 1994). MND is usually associated with 

neuronal loss in the anterior horn of the spine and bulbar nuclei plus a 

widespread cortical atrophy, mainly frontotemporal (see Fig. 19). 

Selective deficits for verb processing have been associated with 

pathological changes in Brodmann areas 44 and 45 in MND patients 

(Bak et al., 2001; Bak and Hodges, 2004; Grossman, 2008; Bak and 

Chandran, 2012). Other motor variants of FTLD that have caught 

researchers’ attention are progressive supra-nuclear palsy (or PSP) and 

corticobasal degeneration (or CBD). PSP is a neurodegenerative 

disorder whose diagnosis is purely clinical and based on the 

observation of symptoms such as supranuclear gaze dysfunction, 

extrapyramidal symptoms and cognitive dysfunction (Steele et al., 

1964). As for CBD, degeneration involves both the cerebral cortex 

and the basal ganglia (Lee et al., 2011). Contrasting healthy subjects 

with SD, PSP and CBD patients, it was possible to observe that only 

the two groups of patients with motor variants of FTLD (i.e., PSP and 

CBD) were significantly more impaired in naming actions compared 

to objects (Cotelli et al., 2006). Moreover, verb deficits in lexico-

semantic tasks have been reported in PSP patients (Daniele et al., 

1994; Bak et al., 2006; Daniele et al., 2013) and CBD ones (Spatt et 

al., 2002; Silveri and Ciccarelli, 2007).  

Second, patients with Parkinson’s Disease (or PD), have been 

studied. PD’s main pathological characteristic is cell death in basal 

ganglia – in particular in the substantia nigra (Davie, 2008). PD 

patients have been shown to be significantly more impaired in action 

than in object naming (as compared to healthy controls) (Pignatti et 

al., 2006; Cotelli et al., 2007; Rodriguez-Ferreiro et al., 2009). 

Moreover, priming for actions verbs appears to be affected by 

dopaminergic treatment: it is recovered (reaching a level comparable 

to those for concrete nouns and similar to that of healthy participants) 

only following Levodopa intake (Boulenger et al., 2008b).  

Figure 19 Motor Neuron 
Disease. It is possible to observe 
mild atrophy of the left temporal 
pole. 
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Finally, patients with lesions in the right hemisphere have been 

compared with healthy controls, observing a dissociation between 

right frontal lobe lesions (affecting motor performance) and right 

temporo-occipital lesions (sparing motor performance). The first 

group showed worse performance when processing action verbs, 

whereas the second when processing visually-related nouns 

(Neininger and Pulvermüller, 2003). Furthermore, patients with 

ideomotor apraxia (i.e., deficits in producing actions or using tools 

following stroke affecting left primary motor cortex or the left  

inferior frontal and/or parietal lobe), can manifest impairments in 

retrieving conceptual knowledge related with actions/tools, and even 

at the single subject level many dissociations are observed  (Buxbaum 

and Saffran, 2002; Negri et al., 2007; Pazzaglia et al., 2008a; 

Pazzaglia et al., 2008b; Papeo et al., 2010). Overall, these findings 

suggest that processing lexico-semantic information about action 

words might depend on the integrity of the cortical (and subcortical) 

motor system. 

 

I have briefly mentioned that the second line of research 

stemming from neuropsychology is that investigating category 

specific semantic deficits. We have already seen that the majority of 

the evidence in favor of the existence of category specific impairments 

comes from HSVE patients (Warrington and Shallice, 1984). Another 

source of data are patients presenting focal lesions along the ventral 

visual path, due to ischemic or hemorrhagic strokes (Warrington and 

McCarthy, 1983; Warrington and McCarthy, 1987). Interesting 

dissociations in the behavioral performance of patients with semantic 

deficits have been observed since the dawn of the studies on semantic 

knowledge: 

 patients with a selective impairment for stimuli referring to 

living items (e.g., animals) and spared performance for stimuli 

referring to non-living items (e.g., artefacts) (Warrington and 

Shallice, 1984; Pietrini et al., 1988; Sartori et al., 1993; 
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Caramazza and Shelton, 1998; Laiacona et al., 2003; Blundo et 

al., 2006); 

 the opposite pattern, a spared performance for stimuli referring 

to living items and a deficit for non-living ones (Sacchett and 

Humphreys, 1992; Laiacona and Capitani, 2001); 

 patients showing worse performance for stimuli referring to 

living inanimate things (e.g., vegetables) compared to living 

animate things (i.e., animals) (Hart et al., 1985; Hillis and 

Caramazza, 1991; Farah and Wallace, 1992; Crutch and 

Warrington, 2003; Samson and Pillon, 2003); 

 the reverse situation, that is, worse performance for stimuli 

related with living animate things compared to living 

inanimate things (Hart and Gordon, 1992; Caramazza and 

Shelton, 1998); 

 a selective deficit for stimuli referring to fruits and vegetables 

(as opposed to both other living items and non-living 

ones)(Hart et al., 1985; Samson and Pillon, 2003); 

 a selective deficit for conspecifics (Ellis et al., 1989; Miceli et 

al., 2000). 

These findings have triggered many different hypotheses on 

the structure and neural substrate of semantic memory, challenging the 

concept of a unitary semantic system and opening the investigation on 

possible internal sub-systems (Riddoch et al., 1988; Shallice, 1988; 

Caramazza et al., 1990; Hillis et al., 1995). These early theories can be 

assigned to one of two opposite perspectives (Capitani et al., 2003). 

One line of inquiry, the neural-structure principle, developed from the 

assumption that the representational constraints, determining which 

concepts cluster together, are internal to the brain itself. On one hand, 

it has been suggested that distinct semantic subsystems are specialized 

according to the type of information they process, giving rise to 

modality specific clusters of concepts (Warrington and Shallice, 

1984). On the other hand, it has been advocated that there could be 

domain specific systems deputed to the processing of the information 
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linked with a given evolutionary relevant domain (e.g., animals) 

(Caramazza and Shelton, 1998). The opposite line of research, the 

correlated-structure principle, postulates that the representational 

constraints come from the statistical co-occurrence of object 

properties in the world and are not driven by neuro-anatomical 

constraints (Caramazza et al., 1990; Tyler and Moss, 1997; Garrard et 

al., 2001). 

One key theory in the family of the neural-structure principle 

was proposed by Warrington and colleagues: the sensory functional 

theory (Warrington and Shallice, 1984; Warrington and McCarthy, 

1987). The semantic system is broken down into modality-specific 

subsystems devoted to the analyses of visual/perceptual information 

(fundamental to process concepts related to living things) or 

functional/associative information (essential for concepts related to 

non-living things). A computational implementation of such a system 

has been developed in the early nineties (Farah and McClelland, 

1991). This theory would not predict the existence of a dissociation 

within the category of living things, i.e., among items that share the 

same amount of contribution from the visual sub-system. However, as 

I reviewed above, dissociations of this kind have been observed: for 

instance, differences emerge inside the category of living things 

between animate (such as animals) and inanimate (such as vegetables) 

items (Hart et al., 1985; Hillis and Caramazza, 1991; Farah and 

Wallace, 1992; Hart and Gordon, 1992; Caramazza and Shelton, 1998; 

Crutch and Warrington, 2003; Samson and Pillon, 2003). Moreover, 

this theory would expect difficulties in the visual/perceptual domain to 

always correspond to deficits with living items, while, for instance, 

patients with deficits for colors, but not for vegetables have been 

reported (Miceli et al., 2001).   

We have seen that, while keeping the perspective of a neural-

structural principle as the origin of the organization of the semantic 

system, another interpretation is possible: the domain specific theory 

(Caramazza and Shelton, 1998; Caramazza and Mahon, 2003). This 

theory predicts, in line with the above-mentioned patients’ 
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observations, that there is no association between a deficit for a given 

type or modality of knowledge (e.g., visual/perceptual) and a 

conceptual deficit for a specific category of objects (e.g., living 

things). Instead, the semantic system is thought to be subdivided in 

functionally dissociable neural circuits dedicated to evolutionary 

relevant domains: conspecifics, animals, fruit/vegetables, and tools. 

As for the correlated-structure principle family of theories, I 

here synthesize the Conceptual-structure account (Tyler and Moss, 

2001), which focuses on two observations. First, as compared to non-

living items, living ones share more features, especially perceptual 

ones (e.g., having limbs, having eyes, having a mouth), that are 

strongly correlated as they frequently co-occur (i.e., typically, if  

something has eyes and limbs, it also has a mouth). Second, in living 

items, shared features are correlated with specific biological functions 

(e.g., it has wings = it can fly), while individual variations in form are 

usually not functionally significant (e.g., different kinds of wings). On 

the contrary, in non-living items the functional information is 

conveyed precisely by distinctive perceptual features (e.g., it has a 

blade = it is used to cut). The hypothesis made is that the more 

intercorrelated shared features concepts have, the more resistant to 

damage they are (Moss et al., 1998; Moss and Tyler, 2000; Tyler et 

al., 2000). An interaction between domain and distinctiveness is thus 

predicted. For living things, distinctive properties (e.g. the shape of 

the beak) should be more vulnerable than shared ones (e.g., having a 

beak), as they weakly correlated with other properties of the concepts. 

In the case of artifacts, shared properties (e.g., being made of plastic) 

are fewer and less inter-correlated (thus more vulnerable), while 

distinctive properties (e.g., having a handle) are protected by strong 

form–function correlations. However, the opposite prediction can be 

made: i.e., sharing many features weakens concepts  (Gonnerman et 

al., 1997; Devlin et al., 1998). In fact, as we have seen, patients have 

been described with disproportionate deficits for non-living things 

(such as artefacts) with relatively intact performance for living things 

(such as animals), as well as the opposite pattern (Warrington and 
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Shallice, 1984; Pietrini et al., 1988; Sacchett and Humphreys, 1992; 

Sartori et al., 1993; Caramazza and Shelton,1998; Laiacona and 

Capitani, 2001; Laiacona et al., 2003; Blundo et al., 2006). However, 

each case should be examined separately as the theory predicts 

variation across categories within the same domains as a function of 

the inner structure of the category (e.g., vehicles have more highly 

correlated properties than tools, thus being closer to living items). It 

should be noticed that even this line of research converged on the 

ATL as a crucial site for semantic processing: in particular, the 

perirhinal cortex appears to be the area supporting fine-grained 

semantic processes across different tasks (Wright et al., 2015). 

 

All the clinical evidence here reviewed leads to three general 

conclusions: 

 generalized, multimodal and pervasive semantic deficits are 

observed in presence of lesions affecting the anterior temporal 

lobe; 

 semantic dissociations can be elicited by appropriate testing 

when damage is confined to specific components of the 

semantic network; 

 (motor)perceptual and conceptual variables differentially 

correlate with semantic categories and domains. 

Any comprehensive theory that wishes to describe the cognitive 

structure and the neural substrate of semantic knowledge needs to be 

able to explain the full set of clinical findings. We will now see how 

neuroimaging data can be used to test the predictions made by the 

different theories proposed.   

 

3.3   Neuroimaging Evidence 

With the advent of neuroimaging techniques, the relation 

between cognitive functions and brain areas has been widely studied 

with positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI). We have seen that in neuropsychology the 



59 
 

first step is to define which performance (in which test) constitutes 

evidence for a semantic deficit. Similarly, when approaching the 

neuroimaging literature, three key features of this line of research 

should be kept in mind (see also Chap. 2): 

 the observation that a given cognitive state (e.g., processing of a 

given stimulus) correlates with brain activity in a certain area does 

not imply a causal link between that area and the cognitive process 

being tested; 

 the choice of which technique to use will depend on the tradeoff 

between the cognitive question investigated and the constraint 

imposed by the different methods (i.e., temporal and spatial 

resolution); 

 different tasks (and stimuli) will allow for different conclusions 

according to the depth of semantic processing they require and 

possible confounding factors. 

Applying the traditional subtraction method (Donders, 

1968/1969), classical PET and fMRI paradigms to study semantic 

knowledge included comparison of the processing of different stimuli 

(e.g., pictures, words, sentences) during different tasks (e.g., silent 

naming/reading, categorization tasks). This method has proven 

successful in identifying cortical areas responding preferentially to 

different categories of visual stimuli such as: words in the left 

fusiform gyrus (Dehaene and Cohen, 2011) and numbers in the right 

fusiform gyrus (Abboud et al., 2015); objects (Lerner, 2001), bodies 

(Downing et al., 2007); faces in both the fusiform (Kanwisher et al., 

1997) and the occipital face area (Gauthier et al., 2000); places, 

buildings, and large objects in the so called parahippocampal place 

area (Epstein and Kanwisher, 1998; Epstein et al., 1999).  

Following the clinical evidence reviewed above concerning a 

possible organization of the semantic systems by categories, many 

neuroimaging investigations have revolved around the quest for 

specificity for semantic categories in the ventral visual path. The 

presentation of both  pictures and words  (Perani et al., 1995; Martin et 

al., 1996; Chao et al., 1999; Ishai et al., 1999) seems to elicit a double 
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dissociation: animal stimuli appear to recruit a lateral portion of the 

ventral visual path, while stimuli of tools appear to be processed in its 

medial portion. This finding has been extensively reviewed and 

mostly interpreted as evidence of separated semantic systems 

processing specific categories (Martin and Chao, 2001). However, 

while for pictorial presentations of objects the ventral partition of sub-

areas preferring different categories of stimuli appears a solid finding, 

not all studies have been able to replicate the categorical findings 

when presenting words, and some authors have argued in favor of a 

unitary semantic system, undifferentiated by categories at the neural 

level (Devlin et al., 2002). The picture is further complicated by 

findings suggesting that  the key factor determining whether stimuli 

are going to be processed laterally – as animate/living items – or 

medially –as inanimate/non-living items-  is not their semantic 

category per se, but rather the interpretation done by the subjects as 

biological entities or not (Castelli et al., 2000; Martin and Weisberg, 

2003).  

As previously discussed, the alternative explanation is that of a 

feature-based organization of the semantic system. Early PET studies 

investigated attributes such as color and motion (Martin et al., 1995; 

Chao and Martin, 1999), and fMRI ones have tried to shed light on the 

interplay between the neural substrate of categorical and modality 

specific information (Thompson-Schill et al., 1999). Authors 

following this perspective have also shown how feature statistics can 

explain the clusters observed in the fusiform gyri, where objects with 

many shared features are associated with activity in the lateral portion 

of the gyri, whereas objects with fewer shared features activate 

predominantly the medial portion (Tyler et al., 2013). This kind of 

evidence has shifted  the attention from the domain-specific latero-

medial gradient to the postero-anterior one describing the shift from a 

coarse (i.e., categories) to a fine (i.e., individual concepts) processing 

of semantic information (Clarke et al., 2013). 

Overall, since the first PET result (Petersen et al., 1988) on the 

neural substrate of semantic processing (comparing passive word 
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listening and reading with words repetition and words generation), 

numerous areas have been associated with an active role during 

semantic tasks: 

1. Inferior frontal cortex (iFC), the so called Broca’s area and its 

surroundings (BA 44,45, and 47), including the anterior 

inferior frontal gyrus (Demb et al., 1995; Wagner et al., 1997; 

Devlin, 2003; Goldberg et al., 2007) 

2. Superior temporal cortex (sTC) 

3. Inferior parietal cortex (iPC) and angular gyrus (Bonner et al., 

2013; Price et al., 2015; Bonnici et al., 2016)  

4. Inferior and middle temporal cortex (m/iTC) (Fairhall and 

Caramazza, 2013) 

5. Anterior temporal cortex (aTC) or anterior temporal lobe 

(ATL) (Mion et al., 2010; Tsapkini et al., 2011) 

A cautionary observation when reviewing neuroimaging literature. 

I have mentioned that different tasks will allow for different 

conclusions: what is the appropriate control task for a semantic 

experiment? At minima, it should entail the same cognitive effort 

without requiring access to semantic knowledge. Even when the 

choice of the task(s) is clear, problems arise with the stimuli selection. 

Let’s say one decides to opt for a semantic categorization task (i.e., “is 

it an animal or a tool?”), which are the most appropriate stimuli: 

pictures or written names of the items? To decide that a cheetah is an 

animal, when presented with its picture, it’s relatively easy: one quick 

look and all key features will be obvious (e.g., it has 4 legs, a tail, fur). 

One does not even need to know the actual name of the animal, 

categorization is possible simply based on the visual features. On the 

other hand, after reading the word “cheetah” I can correctly classify it 

only if I access the related concept. Two consequences follow: (1) the 

activity observed in parieto-frontal areas could be related with a 

differential load of attention, working memory and executive function 

between the semantic and the control task used (Van Doren et al., 

2010; Whitney et al., 2011); (2) the activity in ventral occipito-

temporal areas (known to be involved in high level visual processing) 
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could be driven by the nature of the stimuli used in most studies,  i.e. 

pictures.  

Overall, the most robust and consistent findings from multiple 

imaging techniques seem to converge with clinical evidence on a 

crucial role of the anterior temporal cortex. First, early PET studies 

(Gorno-Tempini and Price, 2001) suggested that the analyses of 

semantic attributes (for both famous faces and buildings) took place in 

the ATL. Second, fMRI data corroborated the idea that amodal 

semantic processing involved this portion of the temporal lobe (Tyler 

et al., 2004; Rogers et al., 2006; Spitsyna et al., 2006; Visser et al., 

2010b; Peelen and Caramazza, 2012). Third, psychophysiological 

studies on semantic priming (Geukes et al., 2013; Lau et al., 2013) 

have complemented the traditional imaging results. Fourth, 

transcranial magnetic stimulation (TMS) can be used as a way to 

(temporarily) mimic the (chronic) effects of SD (Pobric et al., 2007; 

Binney et al., 2010; Pobric et al., 2010a; Pobric et al., 2010b). Healthy 

subjects whose normal ATL activity is shortly disturbed by magnetic 

impulses manifest cross-modal semantic deficits similar to those 

detected in SD patients. Hence, TMS provides invaluable causal 

evidence of the key role played by ATL in semantic memory. 

Connectivity data from both comparative anatomical studies 

(Moran et al., 1987) and investigations in humans (Binney et al., 

2012; Jung et al., 2016) have highlighted the powerful set of 

connections between ATL and unimodal regions. These connections 

seem to be at the origin of the distinct subregions of ATL that can be 

detected via functional (Pascual et al., 2015) as well as structural 

connectivity (Papinutto et al., 2016). The differential connectivity of 

ATL has been recently confirmed during both rest and an explicit 

semantic task (Jackson et al., 2016). The idea that ATL is best 

understood in terms of a heterogeneous portion of cortex is supported 

also by recent cytoarchitectonic differentiations (Ding et al., 2009). 

These observations have led to the hypothesis of a graded 

specialization within the ATL as a consequence of its differential 

connectivity with modality specific cortical regions (Rice et al., 2015).  
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Recently, it has been shown that different portions of ATL code 

respectively for input modality (e.g., written vs spoken words, aSTG) 

and input meaning (e.g., “loud” vs “shiny”, vATL ) (Murphy et al., 

2016). 

The results of decades of PET and fMRI studies tapping 

semantic processing have been extensively reviewed (Binder and 

Desai, 2011) and subjected to meta-analyses (Binder et al., 2009; 

Visser et al., 2010a). The first striking conclusion is that a wide 

portion of neocortex is involved: semantic processing appears to be an 

emerging property of a wide network. The second, corollary, 

observation is the involvement of modality-specific areas (devoted to 

processing sensory, motor, and emotion inputs) as well as multimodal 

associative areas (where multiple motor-perceptual processing streams 

converge). Much of the scientific effort should thus focus on 

characterizing the properties of this broad network of areas (see Fig. 

20). 

 

It has been suggested that the integration of the semantic 

information distributed over the cortex takes place in dedicated 

multimodal hubs, so called convergence zones (Damasio et al., 1996; 

Tranel et al., 1997; Damasio et al., 2004) distributed within 

convergence regions (e.g. temporal pole, anterior IT, frontal 

operculum). These areas are thought to be innately dedicated to 

Figure 20 Topography of the semantic system. Since the first studies conducted with PET (an example on the left), numerous cortical areas have 
been associated with semantic processing of pictures, words and sentences. A comprehensive review of all the activation foci leads to the 
observation that a vast portion of the cerebral cortex is involved, mostly including inferior parietal, temporal and frontal areas (center). A recent 
study, deploying some of the most advance statistical techniques available, confirms the observation that the activity of a vast portion of the 
neocortex is involved in semantic processing (right). 
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performing conjunctive operations (i.e., available prior to any 

individual experience), but then being shaped by learning. Anatomical 

constraints are imposed on the location of convergence regions (e.g., 

due to white matter tracts connecting different areas), however, at the 

micro scale, the precise site of convergences zones is expected to 

change, even within the same individual, according to the type of 

stimuli and task demands. 

 A similar model, termed hub-and-spokes, posits that the 

integration needed in order to give rise to coherent, generalizable 

concepts takes place in a transmodal semantic hub that interacts with 

modality-specific sources of information (Rogers et al., 2004; Rogers 

et al., 2006; Lambon Ralph et al., 2007; Patterson et al., 2007; 

Lambon Ralph et al., 2010; Lambon Ralph, 2014). Different semantic 

features need to be combined in a nonlinear, modality invariant 

manner allowing: 

(1) appreciation of both superficial (e.g., tomatoes and tennis balls are 

both round) and deep (e.g., tomatoes and bananas are both fruit) 

similarities,  

(2) consistency through time and contexts (e.g., a tomato is such when 

entire as well as after having being cut), and  

(3) adaptation and generalization whenever new information becomes 

available.  

In light of all the functional and anatomical literature reviewed above, 

the region believe to correspond to such a semantic transmodal hub is 

the ATL. 

 

To sum up, the classical neuroimaging findings here reviewed: 

 leave open the debate on whether the organization of semantic 

knowledge in the brain is based on categorical (i.e., domain-

specific clusters) or on featural constraints (i.e., clusters emerge 

due to correlations of sensory-motor and functional features); 

 opens new questions on how information is integrated suggesting 

the need for semantic hub(s). 
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3.4   Grounded Cognition  

In the last twenty years, the classical approach to the study of 

the neural substrate of semantic knowledge has been affected by the 

paradigm shift that swept across cognitive science:  grounded 

cognition. As we have seen in the introduction of this chapter, the 

debate on the interaction and interdependency of body and mind, 

sensory-motor experiences and conceptual processing, is a very old 

one. In cognitive neuroscience, it has taken different declinations. The 

strong embodied perspective (i.e., perception, action and cognition are 

fused seamlessly) is at the extreme of a rich continuum of hypotheses 

on the relation between perception, action and language. Right before 

the turning of the century, Barsalou introduced the concept of 

perceptual symbol systems: there is no need for an additional amodal 

system, perceptual symbols are established in the same areas as the 

perceptual state they refer to (Barsalou, 2010). Other, more moderate, 

approaches have focused more specifically on the link between 

language and motor systems and how cognition can be grounded in 

perception-action systems (i.e., representations are shaped by the 

senses and the body). 

The revolutionary discovery that paved the way for this line of 

research was that of so called mirror neurons: sensorimotor neurons in 

the ventral premotor cortex and inferior parietal lobe of monkeys’ 

brain fire when the animal is acting as well as when it is simply seeing 

some act (Di Pellegrino et al., 1992; Rizzolatti et al., 1996a) or 

hearing the sound of the action (Kohler et al., 2002). Even if some 

authors have reported a similar mirror system in humans with PET 

(Grafton et al., 1996; Rizzolatti et al., 1996b; Decety et al., 1997), 

fMRI (Iacoboni, 1999; Buccino et al., 2001), M/EEG (Cochin et al., 

1998; Hari et al., 1998), and TMS (Fadiga et al., 1995), other have 

failed to do so (Lingnau et al., 2009).  

There are two main theoretical standpoints: Pulvermüller’s 

distributed neuronal assemblies (Pulvermüller, 1999; Pulvermüller, 

2013) and Gallese’s neural parameters simulation (Gallese and Lakoff, 
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2005; Glenberg and Gallese, 2012). The first approach is based on the 

Hebbian learning rule “fire together, wire together”. It is postulated 

that during language learning, word forms are mostly encountered 

when the objects they refer to are physically present or the action they 

refer to is being performed, thus the language perisylvian assembly of 

neurons connects with the sensory and motor ones by virtue of 

simultaneous firing. Once this higher order assembly is established, 

processing of linguistic inputs will activate sensory-motor cortices as 

well, grounding the meaning of symbols through their sensory-motor 

properties. The second, more radical, approach, affirms that language 

is an emerging multimodal faculty that exploits pre-existing properties 

of the sensory-motor system and can be completely resolved in their 

computations. The sensorimotor system is thought to provide all 

elements needed to implement the hierarchical structure that builds 

concepts, eliminating the need for an additional language module. 

Evidence in support of these theories comes from different 

neuroimaging methods (see Fig. 21) and some clinical observations 

(as reviewed above). Many of the studies used fMRI, thus offering a 

precise localization of the effects, but an insufficient temporal 

resolution (see Chap. 2.2). Timing information (coming from M/EEG 

studies) and causal inference (possible only with lesion studies, but 

see Chap. 2.3) are critical to distinguish between a necessary and 

automatic activation of specific action-related networks, and an 

epiphenomenal consequence of a late, postlexical strategy to imagine 

or plan an action. In particular, this line of research has shown 

correspondence between brain areas activated by the conceptual 

processing, the observation, and the execution of actions and 

movements. The first studies involved reading words related to body 

parts (i.e., leg/mouth/arm words) (Hauk et al., 2004),  listening to 

action-related sentences (i.e., “I bite an apple”)  (Tettamanti et al., 

2005) and reading verb–object phrases related with body part actions 

(i.e., “pressing the car brake”) (Aziz-Zadeh et al., 2006). The key 

finding is that motor and premotor areas appear to be involved in the 

conceptual processing in a body-part congruent way: leg, mouth and 
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arm words seem to have a precise and overlapping somatotopic 

organization, overlapping with that of action observation and 

execution. Follow-up studies have attempted to further dissociate the 

category of verbs by looking at how they can be described by the 

presence (or absence) of 5 distinct semantic components: action, 

motion, contact, change of state and tool use. They investigated the 

specific neural substrate of different classes of verbs, i.e. running 

verbs (e.g., jog), speaking verbs (e.g., whisper), hitting verbs (e.g., 

poke), cutting verbs (e.g., slice), and change of state verbs (e.g., 

shatter). It appears that the weight of the semantic components 

determined which brain areas would be involved (Kemmerer et al., 

2008): M1 and M2, in a somatotopic fashion, for verbs of action; 

posterolateral temporal cortex for verbs of motion; intraparietal sulcus 

and inferior parietal lobule for verbs of contact; ventral temporal 

cortex for verbs of change of state; a temporal, parietal, and frontal 

network of regions for verbs implicating tool use. M/EEG studies 

have contributed to the debate by showing how fast the activation in 

the motor system is (see also paragraph 4). An initial report of a 

difference, around 240 ms after stimulus onset, between verbs related 

with leg (e.g., “kick”) and mouth (e.g., “speak”) actions (Pulvermüller 

et al., 2000), was corroborated by later studies. First, it appears that 

while subjects are reading words related to different body parts (e.g.,  

leg/mouth/arm), a somatotopically coherent activation of the motor 

system can be observed as early as 220 ms after stimulus onset (Hauk 

and Pulvermuller, 2004). Secondly, if subjects are presented with 

auditory words, specific cortical topographies are observed even 

earlier: in frontocentral areas face-related stimuli elicited stronger 

activation than leg-related ones at 172–176 ms, while in superior 

central areas the opposite pattern was observed at 200 ms 

(Pulvermüller et al., 2005a). 

The neural overlap between conceptual and  modality specific 

processing is not observed exclusively in relation with the motor 

system: reading  odor-related terms appears to activate primary 

olfactory cortex (González et al., 2006), while sound-related ones 
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activate the auditory cortex (Kiefer et al., 2008), and taste-related ones 

the gustatory  cortex (Barros-Loscertales et al., 2011). Moreover, not 

only literal, but also idiomatic sentences have been shown to elicit a 

somatotopic involvement of the motor system (Boulenger et al., 

2008a). Finally, abstract words have often been cited as the litmus test 

of embodied theories: how can words devoid of any concrete referent 

in the outside world be grounded in sensory-motor systems? They are 

often considered grounded in emotional (Kousta et al., 2011; Moseley 

et al., 2011; Vigliocco et al., 2013), introspective, or social 

information, perhaps via simulations of their metaphorical extension 

(Gallese and Lakoff, 2005; Gibbs, 2006; Jamrozik et al., 2016). In a 

given context, they acquire a specific sensory-motor instantiation 

either cataphorically (i.e., the abstract disembodied symbol is 

introduced and later explained) or anaphorically (i.e., a previous 

sensory-motor explanation is linked with an abstract symbol) (Zwaan, 

2016). 

While neuroimaging experiments can only show a correlation 

between the activity of a given area and some characteristic of the task 

or stimuli at hand (see also Chap. 2), lesions, whether real or virtual 

ones, can establish a causal link. For instance, Keifer’s team has 

described a patient with a focal lesion in left posterior superior and 

middle temporal gyrus, who appears to be impaired in processing 

sound-related everyday objects (e.g., “bell”), while performance for 

non-sound-related everyday objects (e.g., “armchair”) is spared. 

Interestingly, his performance with animals (irrespective of whether 

they are typically associated with a sounds (e.g., “cock”) or not (e.g., 

“camel”), and musical instruments (e.g., “violin”) was intact (Trumpp 

et al., 2013). Moreover, TMS experiments have revealed how 

stimulating hand and leg areas influences the processing of arm-

related and leg-related words speeding up responses only for limb-

specific words (Pulvermüller et al., 2005b). TMS can also be used to 

study motor evoked potentials (MEPs): MEPs recorded from hand 

muscles appear to be modulated by listening to hand-action-related 
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sentences, while MEPs from foot muscles by listening to foot-action-

related sentences (Buccino et al., 2005). 

Finally, Pulvermuller and colleagues have implemented a 

computational model that is able to simulate the clustering of object-

related words vs action-related words due to the statistic of their 

learning (Garagnani and Pulvermuller, 2016). Subsequently, the same 

group of authors incorporated cortico-cortical connections (as they are 

documented by neuroanatomical studies) in the model and to provided 

information on the time-course of the understanding of concrete word 

meaning understanding (Tomasello et al., 2016). 

To sum up, partial support for the embodied theory of 

semantics comes from computational, neuroimaging and clinical data 

as it appears that sensory-motor areas are involved in conceptual 

processing. Potentially, embodied semantics solves the grounding 

issue: concept meaning is tightly linked with the sensory-motor 

Figure 21 Review of some of the major results of the embodied perspective. Data from fMRI, M/EEG, and TMS converge in indicating 
that the same areas activated by motor tasks are recruited during semantic processing, in a somatotopic fashion. Throughout the figure 
red indicates movements of fingers/arm and semantic processing of words/verbs referring to those body parts, while blue is used for 
areas related with foot/leg, and green for tongue/face.  
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experiences that define our interaction with their referents. However, 

the extent to which this activation is necessary for concepts learning 

and storage is yet to be proven (see criticism in the following 

paragraph). Moreover, the omnicomprehensive deficit of SD patients 

is hardly accommodated in a completely distributed and embodied 

theory of semantics. 

 

3.5   Latest Developments 

The last few years saw the development of three 

(interconnected) axes:  (1) the shifting of the attention towards how 

knowledge is acquired and what the elements necessary for a fruitful 

encoding of semantic information are; (2) the introduction of 

multivariate techniques for the analyses of neuroimaging data which 

allow new hypotheses to be put to test (see Chap. 2.4); (3) the 

spreading of computationally inspired models studying how semantic 

knowledge is distributed in the brain. 

 

To study knowledge acquisition and manipulation is a key 

stepping-stone, which allows shedding light onto the weights assigned 

to different brain areas during the different stages of semantic 

processing. For instance, critics of the embodied theories have 

questioned the necessity of sensory-motor experience for the 

development of semantic knowledge. It has been shown that blind 

subjects, who never acquired any visual experience with animals or 

tools, present the same medial-to-lateral bias in the ventral visual path: 

nonliving stimuli elicit more activity in the medial fusiform gyrus, 

while living ones in lateral occipital cortex (Mahon et al., 2009). The 

observation of innate domain-specific constraints clashes not only 

with the embodied view, but also with any distributional theory of 

semantics based on frequency of co-occurrence of features and 

attributes. More specifically problematic for the embodied perspective 

is the observation of preserved conceptual processing in cases of 

motoric impairments. Deficits with motor-related semantics are not 
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observed in patients suffering from upper limb dysplasia 

(Vannuscorps and Caramazza, 2016), and corticobasal degeneration – 

even when followed longitudinally for three years (Vannuscorps et al., 

2016). Conversely, simple training of pseudo words appears to be 

sufficient for the emergence of the domain specific dissociations 

between animals and tools in different semantic clusters, including the 

ATL (Malone et al., 2016). Finally, the anterior temporal lobe has 

been shown to play a crucial role in the acquisition of new conceptual 

knowledge through the integration of sensory features (Hoffman et al., 

2014), while learning about new concepts (i.e., new animals) appears 

to tap into specific brain regions according to the feature learned (i.e., 

habitat in parahippocampal area and precuneus; eating habits in 

inferior frontal and post-central regions) (Bauer and Just, 2015). This 

set of results highlights the need (and feasibility) of studies aiming at 

discovering the neural organization of semantic knowledge in a 

dynamic way, paying attention to those elements that will turn out to 

be essential for the standard organization to be achieved.    

 

Multivariate analyses permit to investigate whether the 

information represented in a given brain area is sufficient to 

discriminate a specific feature of the stimuli, for instance their 

semantic category. Critically, it allows the investigation of distributed 

patterns of information, as opposed to the massively univariate 

approach of classical methods (see Chap. 2.4). The first seminal paper 

that applied machine learning techniques to the study of concept 

organization in the brain used pictures as stimuli. It focused on the 

ventral visual path, known for being tessellated by a mosaic of areas 

selectively engaged for different kinds of stimuli (e.g., faces, letters, 

objects, etc...). Thanks to the new resolution provided by the method 

used, it was possible to show that the representations of faces and 

objects are distributed and overlapping (Haxby et al., 2001). 

Subsequently, similar approaches have been used to deepen our 

understanding of the neural correlates associated with the visual 

perception of different semantic categories (Carlson et al., 2003; Cox 
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and Savoy, 2003; Hanson et al., 2004; O'toole et al., 2005; Polyn et 

al., 2005; Hanson and Halchenko, 2008; Shinkareva et al., 2008; 

Connolly et al., 2012; Mur et al., 2012; Peelen and Caramazza, 2012; 

Carlson et al., 2014; Clarke and Tyler, 2014; Correia et al., 2014; 

Coutanche and Thompson-Schill, 2014; Connolly et al., 2016). One 

groundbreaking study used a computational model to predict the 

neural activation associated with written words presented with their 

relative picture (Mitchell et al., 2008). Another presented pictures and 

the relative written or spoken name (Akama et al., 2012). In all the 

above-mentioned studies, it is impossible to dissociate the 

contribution of low level properties of the physical input (i.e., the 

pictures used) from the pure semantic activation driven by the 

different concepts. Only recently have authors exploited multivariate 

methods to investigate neural processing of purely symbolic stimuli 

such as words. Some have compared the performance of classification 

methods when using pictorial stimuli as opposed to symbolic ones 

(Shinkareva et al., 2011; Devereux et al., 2013; Fairhall and 

Caramazza, 2013; Simanova et al., 2014), while very few have 

directly focused on words as stimuli  (Just et al., 2010; Buchweitz et 

al., 2012; Bruffaerts et al., 2013; Correia et al., 2014; Liuzzi et al., 

2015).  

Some of the most interesting results of this line of research 

include: 

 looking at global patterns (i.e., whole brain activity), it is possible 

to dissociate intra-categorical differences in the non-living domain 

(i.e., tools vs dwellings) irrespective of whether pictures or words 

are used as stimuli – even though the effect with words is less 

strong (Shinkareva et al., 2011). Moreover, factor analysis 

revealed how physical (i.e., word length) and semantic (i.e., can it 

be used for shelter? can it be manipulated? Is it food-related?) 

factors have differential loadings across the cortex (Just et al., 

2010). 

 local patterns, which can be investigated with a technique called 

searchlight (i.e., multiple ROIs covering the whole brain), have 
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highlighted the role of occipito-temporal cortex in semantic 

classification. Semantic category (i.e., animals vs tools) can be 

distinguished within and across 4 different modalities [visual 

verbal (i.e., written words), visual non-verbal (i.e., pictures), 

auditory verbal (i.e., spoken words), and auditory non-verbal (i.e., 

sounds)], with written words being the hardest task (Simanova et 

al., 2014). 

 along the ventral visual path, it is possible to observe a posterior–

to–anterior gradient of abstraction: stimuli are first represented 

according to their physical features (e.g., pixel similarity), then 

according to their perceptual features (e.g., visual similarity), 

finally  according to conceptual information (e.g., location of use)  

(Peelen and Caramazza, 2012; Devereux et al., 2013; Carlson et 

al., 2014; Clarke and Tyler, 2014) 

 semantic similarity between words correlates with the patterns of 

activity in left perirhinal cortex (Broadman areas 35 and 36) 

(Bruffaerts et al., 2013), even if this might be true only for written 

words, as the effect was not observed for spoken ones (Liuzzi et 

al., 2015). Moreover, the anterior portion of the superior temporal 

sulcus (STS) appears to be involved in the processing of language 

invariant semantic meaning (Correia et al., 2014). Finally, the 

anterior temporal lobe is confirmed as crucial region where visual 

properties converge and are integrated (Coutanche and Thompson-

Schill, 2014). 

 

Exploiting the latest methodological advances, both in terms of 

spatial resolution and statistical analyses, some authors are attempting 

to recover the neural substrate of the distributed organization of 

concepts postulated by featural, connectionists, and distributional 

models reviewed above. These distributed neuroimaging studies differ 

not only in the technical choices concerning data collection and 

analyses, but also with respect to the underlying hypothesis on the 

nature of the distributed representations (see Fig. 22). As we have 

seen, one can postulate that the different dimensions along which 
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concepts are organized are interpretable and can be addressed 

explicitly (Fernandino et al., 2015b; Fernandino et al., 2015a). The 

results of this distributed yet functionally localized perspective 

indicate that different portions of the semantic network encode distinct 

categories/features during semantic processing. On the other hand, one 

can hypothesize that knowledge is represented by a continuous 

semantic space mapped across a large extent of cortex (Huth et al., 

2012; Huth et al., 2016). The results of this data-driven approach 

indicated that most areas within the semantic system represent clusters 

of related concepts, yet which features determine the emergence of 

each observed domain is not clear.  

 

3.6   Open Questions and Future Directions 

Given the current state of the art, it appears that some key 

questions have been answered and some are left open for future 

investigations.  

Is semantic knowledge distributed across the cerebral cortex? 

Yes, it seems irrefutable that many areas contribute to semantic 

processing, but there seems to be a (yet to be properly described) 

functional specialization.  

What is(are) the principle(s) organizing the neural 

representation of semantic knowledge? Whether the underlying 

Figure 22 Topographical organization of different semantic dimensions. A review of the literature suggests that modality-specific activation peaks are distributed 
across the cortex in close proximity with the primary sensory-motor areas processing that kind of information (left). A recent investigation confirmed the results by  
investigating the distribution of 5 sensory-motor attributes (i.e., color, shape, visual motion, sound, and manipulation). It revealed that these aspects of conceptual 
knowledge are encoded in higher level unimodal and multimodal areas, the same areas involved in processing the corresponding types of information during 
perception and action (central). More data-driven studies have been able to show that the vast majority of the cortex responds to the semantic information 
presented visually or acoustically in naturalistic circumstances; however, in this case the dimensions are not directly interpretable even when dimensionality 
reduction techniques such as PCA are applied (right). 
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organizing principle is by domains, by features or by a combination of 

the two is an open question.  

Is there a need for a convergence hub?  Convergence hubs are 

not the only way the brain possess to integrate information, long range 

connections could potentially explain the observed activations as well 

as the detected deficits (Pulvermüller, 2013). However, it seems that 

much of the clinical evidence would not be accounted for by a theory 

excluding the existence of semantic hubs. 

How many convergence hubs are there? What is their specific 

contribution to semantic processing? It is possible to presume that 

different hubs have different roles (e.g., integrating information from 

different sources). This is one of the most interesting open questions 

that neuroimaging studies can help elucidate. 

Why are hubs located in those specific areas? Which kind of 

computations do they allow? It is unlikely that the hubs are located in 

random spots across the cortex. If (see previous point) they subserve 

different kinds of integrations, they likely are located where (1) they 

can easily access the information they are supposed to integrate; (2) 

they can perform the appropriate computations. A combination of 

computational and cognitive neuroscience is thought to answer this 

kind of question. 

Which of the involved areas are actually necessary (and not 

just accessory) components of the semantic network? To date, the only 

viable way to gather data able to support causal inference is to expand 

the effort on clinical studies and virtual lesions ones (e.g., with TMS, 

see also Chap 2).  
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4.   Temporal Dynamics of Semantic 

Representations 

 

To study the timing of mental processes and representations, 

behavioral chronometric measures can be used. Traditionally, reaction 

times in different experimental conditions are considered a proxy of 

the duration and sequencing of cognitive operations. Regarding 

semantic processing, for instance, priming experiments have 

suggested the existence of processing in two phases: first,  linguistic 

co-occurrences determine the content of the representation, then 

around 200 ms grounded perceptual simulation intervenes (Ostarek 

and Vigliocco, 2016). Later, while reviewing the behavioral methods 

available, I will explore in more detail the semantic priming paradigm 

(Chap 2.1.3). Moreover, I will present the results of our own priming 

experiment investigating how automatically different components of 

semantics are activated (Chap 3.4). 

 

So far, in my overview of the neural substrate of semantic 

knowledge, I have focused on the topographical organization of such a 

system. However, the content of a representation in a given region 

might be changing dramatically over a short period, with different 

dimensions/features being activated at different time points: for 

instance, one could hypothesize that visual areas are involved in 

processing perceptual characteristics of the stimuli (e.g., word lengths) 

at T1 while at T2 they are replaying visual conceptual properties (e.g., 

the words refer to something red). For instance, Broca’s area appears 

to code, in rapid succession,  for lexical, grammatical and 

phonological features (Sahin et al., 2009) Moreover, different areas 

might be involved in this dynamic representation at different points in 

time: for instance, one could argue that during a given task, 

information coming from visual areas (T1) is read out by higher order 

cognitive areas in the temporal lobe (T2), which later  provide inputs 

for complex computations happening in the frontal lobe (T3). 
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4.1   Temporal Representation 

The neuroimaging techniques of choice when interested in 

fine-grained temporal dynamics are electroencephalography –EEG- 

and magnetoencephalography –MEG– (see Chap. 2.3). Overall, during 

reading, brain activation unfolds from occipital areas towards the 

anterior temporal pole (Marinkovic et al., 2003; Pammer, 2009). 

Similarly, listening elicits first activity in primary auditory areas and 

subsequently in supramodal temporal areas including the anterior 

temporal pole (Marinkovic et al., 2003; Salmelin, 2007). In both 

cases, the physical features of the stimuli are resolved within the first 

few milliseconds in modality specific areas (i.e., primary visual areas 

for written words, primary auditory areas for spoken words) and then 

converge in anterior temporal and inferior frontal cortices around 

400ms (Marinkovic et al., 2003). 

During the first 200 ms, analyses of the visual-orthographic 

feature, starting in primary visual cortex, spreads in a feed-forward 

wave along the inferior occipital gyrus and fusiform gyrus 

(Tarkiainen, 1999; Pammer et al., 2004). Likewise, the acoustic–

phonetic analysis of spoken words takes places within the first 100 ms 

(N100) in non-primary auditory cortex (Kuriki and Murase, 1989; 

Parviainen et al., 2005). The language-specific phonetic and 

phonological analysis takes place in inferior frontal cortex and 

angular/supramarginal gyrus within the first 100-350 ms, when the 

mismatch negativity denotes access to phonological categories 

(Näätäneiv et al., 1997). Finally, between 200 and 500 ms, activity in 

superior and inferior temporal cortex, along with the inferior frontal 

one, denotes lexical-semantic processing (Kutas and Hillyard, 1980; 

Helenius et al., 2002). 

Fine-grained features of semantic processing have been 

explored by studies investigating event-related potentials (or fields – 

ERP/ERF) following semantically charged stimuli such as sentences 

and single words. It is traditionally accepted that post-lexical semantic 

processes (i.e., those processes taking place after the meaning of the 
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word has been retrieved) are reflected by late components of ERP and 

ERF (Holcomb and Neville, 1990). Nevertheless, lexical effects (i.e., 

lexicality, word frequency, and word regularity) can be detected as 

early as 200 ms after stimuli onset (Sereno et al., 1998).   

One of the most studied ERPs linked with semantic processing 

is the N400: a negative (N) deflection of the signal that starts around 

300 ms and peaks around 400 ms (Kutas and Hillyard, 1980). It has 

been associated with the presentation (either auditory or visually) of 

words generating semantic violations such as socks in the following 

context:  “I like my coffee with cream and socks” (Lau et al., 2008). 

Numerous factors have been shown to influence the shape of the 

N400, including: 

 the degree of anomaly (e.g., in the example above, socks instead of 

sugar) 

 the predictability  (e.g., in the example above, honey instead of 

sugar, they are both semantically valid but one is very unlikely) 

 the number of semantic features shared (e.g., in the example 

above, salt instead of sugar would produce a smaller N400 than 

socks) 

The typical N400 effect is generally widespread across the scalp with 

a central-parietal tendency. Intracranial recordings suggest that the 

underlying sources of the N400 are located in the anterior-medial 

temporal lobe (McCarthy et al., 1995; Nobre and Mccarthy, 1995). 

Different interpretations of the N400 have been put forward. Some 

authors, following the so called integration view, posit that it reflects 

the incorporation of the words with its context (Brown and Hagoort, 

1993). Other authors support a lexical view, thus suggesting that the 

N400 represents the activation in long term memory of the features 

associated with the critical word (Kutas and Federmeier, 2000). A 

seminal review concluded that there is strong evidence supporting the 

N400 as reflecting facilitated access, without discarding the role of 

integration mechanisms in building the predictions that facilitate 

access (Lau et al., 2008). However, as we will see next, there are 

recent indications that some aspects of word meaning might arise 
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much earlier than the N400 wave. These findings question the timing 

of semantic access and open the possibility that semantic content 

might be recovered not in a unitary fashion, but rather differentially 

according to the dimensions considered (in our lexicon: motor-

perceptual vs conceptual ones) and the concurrent context (e.g., the 

task at end). The N400 is followed by a later negativity (N700) which 

seems to be most prominent when mental imagery is in place (West 

and Holcomb, 2000). This observation led to the investigation of 

possible differences in the profiles of the N400 and N700 generated by 

abstract and concrete words: once all other factors are controlled for, 

concrete words are associated with larger negativity waves  (Barber et 

al., 2013). 

 

Advocates of the embodied theory of semantics have tried to 

identify the first point in time when sensory-motor areas are recruited 

during conceptual processing. With a visual presentation of the 

stimuli, somatotopically coherent differences between verbs related to 

different body parts have been observed at 240 ms (Pulvermüller et 

al., 2000) and 220 ms (Hauk and Pulvermuller, 2004) after stimulus 

onset. When words are presented orally, specific cortical topographies 

appear earlier: 172–176 ms, 200 ms (Pulvermüller et al., 2005a). 

Moreover, authors have been able to show that both verbs and nouns 

can elicit characteristic somatotopic activations in motor cortex as 

early as ∼80 ms after the acoustic disambiguation (i.e., the point when 

the words can be identified from the available acoustic information) 

(Shtyrov et al., 2014). However, this study is of difficult interpretation 

as they presented the same 6 words throughout the experiment (each 

seen 180 times), and the somatotopic distinctions across them 

correlated with the difference in their initial phonemes. It is thus 

possible that the early somatotopy observed as the product of the 

specific experimental conditions reflects the ultra-rapid semantic 

activity due to the particular experimental set. A double dissociation 

of word-categories has been reported at 150 ms: it appears that at that 

point action-related words most strongly activate fronto-central motor 
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areas while visual object-words activate the occipito-temporal cortex 

(Moseley et al., 2013). Furthermore, it appears that the motor cortex 

exhibits a higher mismatch negativity-like response and a higher 

predictive response (so called readiness potential) when single words 

are presented in body-part-incongruent sound contexts (e.g., “kiss” in 

the sound context of footstep) than in body-part-congruent contexts 

(e.g., “kiss” in whistle context) (Grisoni et al., 2016). Finally, the 

computational model mentioned above (3.4) has been able to replicate 

not only where, but also when semantic activation should take place 

(Tomasello et al., 2016):  the central semantic hubs of the network 

activate slightly before modality-preferential areas carrying semantic 

information. 

 

The multivariate techniques we have seen applied to fMRI data 

in the previous section have been rapidly extended to the analyses of 

M/EEG data as well. One of the first multivariate investigations of 

MEG data revealed that position of the stimuli could be decoded 

~70ms after stimulus onset, classification based on low level visual 

features (i.e., objects vs textures) was possible at 110 ms, and finally 

semantic categories (i.e., faces vs cars) could be correctly classified at 

135 ms (Carlson et al., 2011). Another group of authors has shown 

that the semantic category of pictures denoting animals or tools could 

be successfully decoded with both EEG and MEG signals using a 

preselected time-frequency bin (optimized thanks to the Common 

Spatial Patterns technique, CSP), ranging from 95 to 360 ms after 

stimulus onset, and from 4 to 18 Hz) (Murphy and Poesio, 2010). 

Subsequently, the same authors have deepened their exploration of 

EEG single trials decoding both at the individual subject level and at 

the group level  (Murphy et al., 2011). Even in this case the optimal 

window was chosen thanks to CSP (100-370ms; 3-17Hz) whose 

spatial components indicate that a wide range of occipital, parietal and 

frontal areas played a role. Further attempts have focused on the 

possibility of dissociating different physical, perceptual and 

conceptual semantic features elicited by the conjoint presentation of 
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pictures of concrete items and their relative name (Sudre et al., 2012). 

Differences in the time course and locations of decodable semantic 

information were found: physical and perceptual features can be 

recovered earlier than conceptual ones, the former can be related with 

activity in posterior cortical areas, while the latter involves anterior-

lateral ones. A separate group selected as stimuli images of 4 different 

categories (i.e., faces, scenes, bodies and tools), and applied 

multivariate analyses to the reconstructed sources of MEG signal (van 

de Nieuwenhuijzen et al., 2013). They were able to detect differences 

in visual category perception 85 ms after stimulus onset and to 

observe the evolution of the spatiotemporal dynamics: first, inferior 

occipital, inferior temporal and superior occipital gyrus sources are 

involved; then, additional sources in the anterior inferior temporal 

gyrus and superior parietal gyrus intervene. Both univariate (Clarke et 

al., 2011; Clarke et al., 2013) and multivariate (Clarke et al., 2015) 

findings suggest a coarse-to-fine model of category information 

processing: perceptual analyses in visual cortex is followed by early 

semantic effects (i.e., categorical distinction) within the first 120 ms; 

only after 200 ms conceptual differentiation and object identification 

take place in ventral temporal cortex.  

Finally, only a handful of studies to date have attempted to 

recover semantic information from the electrophysiological signal 

evoked by symbolic stimuli. The first study demonstrated the 

possibility of achieving good single MEG trial classification of words, 

but without distinguishing between the contributions of their physical 

(e.g., the visual properties) and semantic (i.e., the meaning) properties 

(Guimaraes et al., 2007). Then, researchers focused on the possibility 

of recovering semantic category information from EEG and MEG data 

(Chan et al., 2011a) as well as intracranial macro- and micro- 

electrodes (Chan et al., 2011b). The decoding performance suggests 

that the representations of semantic categories is highly spatially 

distributed, involving in particular the anterior temporal, and inferior 

frontal cortices (Chan et al., 2011a). Furthermore, category-selective 

responses can occur at short latency (130 ms) and are detected in 
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measures sensitive to unit firing and synaptic activity (e.g., local field 

potentials and high gamma power) (Chan et al., 2011b). Moreover, the 

integration of lexical-semantic knowledge at different cortical scales 

(e.g., two visual attributes vs one visual and one auditory attribute) is 

reflected in frequency-specific oscillatory neuronal activity in 

unisensory and multisensory association networks (van Ackeren et al., 

2014). Recently, it has been shown that even the category of internally 

generated words can be recovered from MEG single trials (Simanova 

et al., 2015), and that across-language generalization, denoting the 

activation of high-level semantic representations, appears to be 

possible around 550-600 ms (Correia et al., 2015). 

 

Overall, the traditional semantic effects linked with the N400 

(which, in our framework, appear to be mostly of conceptual nature) 

paired with the (few) early motor-perceptual activations observed, 

suggest that high-order conceptual integration follows re-activation of 

motor-perceptual features. However, so far no study has directly 

compared the representations of motor-perceptual and conceptual 

dimensions within the same subject, with the same stimuli and task. 

This kind of comparison, which controls for difference at the 

identification stage, is needed if one wishes to draw inferences on the 

relative temporal dynamics of different components of semantic 

representations. 

 

4.2   Spectral Representation 

The nature of M/EEG signals offers another precious tool: 

time-frequency analysis, which studies signals in both the time and 

frequency domains simultaneously (see Chap. 2.3). Frequency bands 

that have been associated with (different) key roles during language 

processing include: 

 delta band (0.5 – 3.5 Hz) synchronization (i.e., power increase) is 

associated with inhibition of sensory afferences potentially 

interfering with the accomplishment of the task or attention 
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allocation during cognitive operations, including semantic tasks 

(Brunetti et al., 2013; Harmony, 2013; Kielar et al., 2015; 

Guntekin and Basar, 2016). 

 theta (2-8 Hz) synchronization has been linked to lexical memory 

retrieval (Bastiaansen et al., 2005; Bastiaansen et al., 2008; Shahin 

et al., 2009; Maguire et al., 2010; Bakker et al., 2015; Kielar et al., 

2015). Theta has also been associated with the integration of 

unimodal semantic features (van Ackeren et al., 2014) and the 

detection of semantic violations (Davidson and Indefrey, 2007). 

 alpha (10–14 Hz)   desynchronization (i.e., power decrease)  has 

been associated with retrieval of lexical and semantic information 

(Shahin et al., 2009; Kielar et al., 2015), as well as the detection of 

grammatical violations (Davidson and Indefrey, 2007). 

 lower beta band (17-20 Hz) desynchronization  has been shown to 

be linearly related with the N400 ERP component (Wang et al., 

2012) and has been generally linked with lexical-semantic 

processing  (Davidson and Indefrey, 2007; Shahin et al., 2009; 

Bakker et al., 2015; Kielar et al., 2015) 

 upper beta (25–30 Hz) synchronization has been observed during 

semantic tasks (Shahin et al., 2009).   

 gamma (>30 Hz) has been associated with a series of 

combinatorial processes such as semantic unification (Braeutigam 

et al., 2001; Hagoort et al., 2004; Hald et al., 2006) and the 

combination of multimodal semantic information (van Ackeren et 

al., 2014). Gamma synchronization has also been shown to be 

sensible to repetition suppression effects (Matsumoto and Iidaka, 

2008) and associated with semantic tasks (Shahin et al., 2009). 

Generally speaking, it appears that: 

a) desynchronization of alpha and lower beta is linked with attention 

processes and allocation of resources during cognitive task, 

including linguistic ones; 

b) synchronization of slow frequencies, theta and delta, is associated 

with memory retrieval, including semantic memory; 
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c) synchronization of high frequencies, gamma and upper beta, is 

linked with unification processes, including linguistic ones. 

With this respect, some authors have recently proposed a frequency-

based segregation of syntactic and semantic unification processes 

(Bastiaansen and Hagoort, 2015): gamma band power appears to be 

linked with semantic unification (i.e., larger for semantically coherent 

than for semantically anomalous sentences), while lower beta band 

may signal syntactic unification (larger for syntactically correct 

sentences than for incorrect ones). Overall, it has been suggested that 

object representations may lie in the synchronized activity of cell 

assemblies representing different stimulus features (Tallon-Baudry 

and Bertrand, 1999). These cell assemblies (and thus the features they 

encode) appear to be distributed across different brain regions, and 

further studies are needed in order to successfully disentangle their 

contribution. 

 

4.3   Long Range: Context and Experiences 

Far from being resolved, the question “when?” can take an 

even larger range declination.  

First of all, the depth and thoroughness of semantic processing 

will depend on the task at hand. It is possible to think that different 

circumstances will lead to a different load on embodied 

representations or, in the words of Zwaan (2014), to “different levels 

of environmental embeddedness”. It is likely that different motor-

perceptual and conceptual features are evoked only when needed, in 

an automatic yet task-conditioned fashion: for instance, reading “p a s 

h m i n a” during a Farsi class or on tag stripped from a sweater will 

activate different representations (i.e., the translation “woolen goods” 

in the first case, the soft feeling of wool in the second one).  

 Second, words are learned over a lifetime and many different 

experiences accompany the learning process. Therefore, it is plausible 

to expect individual differences to be molded on the different 

interactions one has with the items the words refer to: for example, the 
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concept of wool will be radically different for a sheep shepherd and 

for a shop assistant. For a thorough review on the contextual effects on 

conceptual processing at different timescales (from subject specific 

experience to current task goals), see (Yee and Thompson-Schill, 

2016).  

It appears that concepts are more dynamic than most existing 

theories can account for, thus we are in great need to develop explicit 

and testable predictions on when/why in certain situations different 

aspects of word meaning (more motor-perceptual or higher level 

conceptual or declarative) are expected to be activated. In light of the 

dissociation I introduced at the beginning of the chapter, between 

semantic representations and semantic processing, an extreme position 

would claim that stable, default, semantic representations do not exist, 

and that concepts are constructed online given one’s previous 

experiences, the task to be solved and the goals to be satisfied.  

 

To sum up, semantic information is readily available, already 

in the first 200-300 ms after stimulus onset. On one hand, differences 

in latency seem to be due to the level of processing more than to 

category/features. On the other hand, oscillations and frequency 

changes appear to play a role in feature integration. Overall, the role 

of timing appears crucial for the field: as recently stressed by Hauk, 

precise timing information will be key to the debate on the neural 

substrate of semantic information enabling us to differentiate the role 

of different distributed networks while distinguishing top-down from 

bottom-up processes, feed-forward from feedback ones (Hauk, 2016).  

 

 

5.   Format and Implementation of Semantic 

Representations 

 

After having cleared the current views on when and where 

what we know is stored and retrieved in our brain, one challenge is 
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left for us. What is the nature of semantic representations? The matter 

of the discussion here is the format of the representation as well as its 

underlying neural code. To understand the concept of format, let’s 

compare a bitmap and a vector graphic. They might have the same 

content (what), but they diverge in their formats (respectively a 

collection of pixels or of Bézier curves). Similarly, in the case of 

semantic representations, there are two competing views. On one hand 

there are those claiming that conceptual knowledge is stored in an 

abstract, amodal, propositional format (Mahon and Caramazza, 2008).  

On the other hand, there are those  conjecturing that a modality 

specific analogical format is necessary and sufficient to represent 

semantic information (Barsalou, 2010). These are only the extremes of 

a continuum, which see in moderate positions those that suspend their 

judgment (a real ἐποχή, epokhē): as we will see, the question turns out 

to be an extremely ill-posed problem (Martin, 2015). 

 

5.1   Relation between Geometry, Format and 

Neural Code  

I have previously stated that the content of semantic 

representations are concepts, and, in a reductionist view, the meaning 

of words. The term representational geometry can be used to describe 

the organization of such content: it refers to the relationships (i.e., 

distances) between items (e.g., words) conceptualized as points in a 

multidimensional space. For instance, the bi-dimensional space 

described by the visual features of color and shape sees elongated 

orange-ish items (e.g., carrot), closer to elongated yellow-ish items 

(e.g., banana), and further apart from round yellow-ish items (e.g., 

lemon). The geometry – and thus the distances – would be different in 

a space dominated by conceptual taxonomic dimensions (e.g., lemon 

and banana would cluster together – being fruit – and would be far 

apart from carrot – a vegetable). Thanks to this higher-order layer, 

representations stemming from different sources can be compared 

(Kriegeskorte and Kievit, 2013): cognitive geometries derived from 
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behavioral data, predicted similarities as estimated by computational 

models, and neural representational spaces as resulting from 

neuroimaging observations.  

A different problem is that of the representational format. As 

illustrated by the example of bitmap and vector images, given 

identical content, what tells apart one format from the other is which 

kinds of operations we can perform over the content. For instance, 

only vector drawings can be scaled without loss in quality. The quest 

for the appropriate descriptors of the format of neural representations 

(not only semantic ones) is still open.  

Finally, the term neural code refers directly to the meaningful 

scheme of the activity of single neurons or of a populations of neurons 

(e.g., in the simplest models it is the firing rates, in more complex 

ones the precise temporal patterns of spikes) that allows encoding of 

(some feature of) the stimuli (Pouget et al., 2000). Crucially, the same 

area, through different neural codes, could encode multiple geometries 

of the same content (e.g., perceptual and conceptual similarities across 

the same items), or same geometry for different content (e.g., relative 

distances across different magnitudes). 

To sum up, the format of a given representation and its neural 

implementation (i.e., the underlying neuronal code) should not be 

confused with its content/geometry (i.e., the aspect(s) of the semantic 

space that is encoded) or its localization (i.e., the brain region where 

the neural activity is observed) (Mahon and Hickok, 2016). The 

following debate stems from the more or less explicit assumptions 

made by different authors on the relation between content, geometry 

and format. Is the format determined by the content and/or by the 

location? Is there an isomorphism between what is represented and 

how it is represented?  

 

5.2   Debate 

In the early eighties, Paivio (1986) introduced the dual coding 

theory postulating the existence of multiple coding formats (i.e., a 
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verbal and a visual code) relying on different types of representational 

units (i.e. respectively logogens and imagens). The debate surrounding 

mental representations has been particularly heated in the field of 

mental imagery. The question at stake is whether images recreated via 

imagery are depictive (Kosslyn et al., 2001) or propositional 

(Pylyshyn, 2003) in nature. Recent methodological advances (see 

Chap. 2.4) have paved the way to new paradigms that might bring us 

closer to directly testing the hypothesis at stake. For instance, in 

primary visual areas algorithms trained on depictive sensory 

representation data have been shown to work once applied to data 

collected during imagery, demonstrating that the representation of 

perceived and imagined stimuli shares at least some of the same low 

level encoding characteristics (Naselaris et al., 2015; Pearson and 

Kosslyn, 2015). 

Concerning semantic representations, I have mentioned that 

the continuum of possible theories sees two extremes. Some authors 

implicitly assume an isomorphism between brain localization (where), 

representational content (what) and format (how), and thus draw 

inferences on the content and the format of a representation from the 

localization of the brain region it activates. For instance, the 

observation of activation of the motor cortex during verb processing is 

taken to indicate that the content and the format of the representations 

are motoric (Barsalou, 1999). This would entail a geometrical 

configuration of different verbs that follows their relative distance 

along motoric dimensions (e.g., complexity of the movement), and the 

dependency on a neural code that also subserves the encoding of 

actual motor information during movement execution. Other author 

assume that the format of the representations can be entirely 

dissociated from both content (geometry) and localization (Mahon and 

Caramazza, 2008). For example, the code used to store motor and 

visual semantic representations can be identical, (e.g., purely abstract), 

even if implemented in different brain regions (e.g., motor cortex, 

visual cortex, or ATL).  
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Notwithstanding this fundamental difference across 

perspectives, it is not clear how the two views could be tested 

empirically, other than possibly through in vivo cellular recordings 

aiming at understanding the neural code associated with different 

representations. For instance comparing the pattern of neuronal 

spiking rates during (a) the reading of action verbs, and (b) the actual 

action execution, across the different areas potentially involved: the 

motor cortex, the visual cortex, and the ATL. However, down to its 

core, the problem is that all the conclusions we draw from our 

observations will be interpreted in light of our assumptions on the 

underlying coding scheme. To date, there is no ground truth 

corroborating those assumptions, not even for simple models such as 

visual representations in V1 (i.e., information could be carried by the 

pattern of activity across a large number of cells, the timing of the first 

wave of spikes, the timing or phase of continuous activity, synchrony 

across a population, etc… (de-Wit et al., 2016)). 

 

5.3   Skeptical Epoché 

In the interim, the conclusion one can reach is that suggested 

by Alex Martin (Martin, 2015): the question should be put aside as 

long as the field lacks appropriate cognitive descriptors to fit the 

neural substrate and agreed-upon procedures to determine the best 

proxy of the format of a representation. As of now, all the currently 

available neuroimaging methods lack adequate spatio-temporal 

resolution to tap directly on the format question. One possible 

compromise is to focus on the investigation of representational 

geometries through multivariate pattern analysis (or adaptation) across 

different brain areas (see Chap. 2.4). Indeed, representational 

geometries derived from imaging techniques can be seen as a proxy of 

the locally distributed population code, an intermediate level of 

description which supports the investigation of differential 

representational properties across the cortex (Kriegeskorte and Kievit, 

2013). In the future, different theories on the organization of semantic 
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memory should make precise predictions on the kind of dissociations 

that one should expect when contrasting the representational geometry 

of critical cortical areas, at different time points. 

 

 

6.   Conclusions 

 

After this broad overview, two key aspects should be clear. 

First, semantic knowledge lies at the very core of human nature. It is 

often used as a proxy of human-like intelligence with great 

implications for computer science, heating a debate that calls for 

philosophical reflections, as well as behavioral and imaging 

experiments. With varying degrees, it is in action in all our everyday 

activities: reading (understanding what we read!), using a mobile 

phone, cooking a traditional family dish.  Its breakdown is thus highly 

disabling, causing great suffering to the patients and their families. 

Second, semantic knowledge is a complex cognitive and 

neurological reality. Its neuropsychological aspects, having been the 

focus of extensive investigation, are well defined. On the contrary, its 

neural substrates require further exploration. Semantic knowledge 

appears to be distributed across the cortex in a specialized manner, 

involving modal, multimodal and heteromodal cortices. It is quickly 

recovered, differentially depending on the current context and 

previous experiences.  Finally, the question on the neural code (or the 

neural format) of representations is currently considered an ill posed 

problem not limited to studies on semantics, but affecting all 

neuroimaging investigations of neural representation. 

Recently, authors from virtually all the different perspectives 

here reviewed have somewhat agreed to disagree: it appears obvious 

that semantic representations need to be grounded (somehow), at the 

same time it is accepted that purely symbolic operations are indeed 

central to human cognition. In the words of an exponent of the 

embodied perspective (Zwaan, 2014): “We need mental 
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representations. At least some of them need to be grounded in 

perception and action. Not all processing requires representations 

that are directly grounded in perception and action […]  Which 

system dominates the comprehension process depends on the level of 

embeddedness.”  As highlighted by one of the proponent of a hybrid 

theory (Martin, 2015), our daily life requires a: “[…] dynamic 

interaction between higher-order conceptual, perceptual, and lower-

order sensory regions in the service of specific task and bodily 

demands.”  As summarized by (Mahon, 2015), an advocate for the 

necessity of abstract representations: “We know that the conceptual 

system can “turn” the sensorimotor system and the sensorimotor 

system can “turn” the conceptual system. But we also know that 

conceptual processing can proceed unencumbered by the 

representation of the world and the body. […]It all depends on one’s 

theory of activation dynamics—or information exchange— among 

representationally distinct processes.” The burning question, thus, is 

how do these different kinds of representations interact.  

 

In the present thesis, representations of different kinds (i.e., 

perceptual and conceptual ones) are compared in terms of behavioral 

relevance (Chap 3), topographical organization (Chap 4) and temporal 

dynamics (Chap 5). I capitalized from recent methodological 

improvements (Chapt 2), that have the potential of widening the set of 

hypotheses that can be tested with neuroimaging techniques (Davis 

and Poldrack, 2013). I did so aware of the fact that any 

methodological progress should be accompanied by developments in 

the theoretical frameworks used to interpret the new findings 

(Coveney et al., 2016). For instance, results coming from the ever-

improving neuroimaging techniques cannot be dissociated from the 

challenging clinical data. The work presented in this thesis appears 

thus timely and relevant for the clinical, theoretical and 

methodological dimensions of the quest for the neural correlates of 

semantic representations.   
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Highlights:  

 Behavioral evidence provides insights, and potentially causal links, about the mind-brain relation. 

 The topographical organization of the neural substrates of cognitive phenomena can be study with fMRI. 

 The temporal and spectral features of those neural substrates can be studied with M/EEG. 

 Multivariate analyses of neuroimaging data broaden the set of testable cognitive hypotheses.  

 Pattern decoding/encoding demonstrates mutual information between brain responses and stimulus properties. 

 Patterns geometries can be compared across areas, modalities and theoretical models. 

CHAPTER 2:  

INVESTIGATING COGNITIVE AND NEURAL 

REPRESENTATIONS 

 

All models are wrong, some are useful. 

All models are right, most are useless. 

[George Box vs Thad Tarpey] 
 

In this chapter I present the methods used in the literature, and in particular in this 

thesis, to investigate the cognitive and neural substrate of semantic representations. Three 

different behavioral methods (distance measure, feature listing, and semantic priming), and 

two neuroimaging techniques (functional magnetic resonance imaging - fMRI, and 

magnetoencephalography - MEG) are introduced. Key methodological and statistical aspects 

are identified, in order to simplify their exposition in the following chapters. In the last part, 

attention is drawn to multivariate analyses of neuroimaging data as they constitue a great 

advance in the field and a major component of this thesis.  

 

1.   Behavior to Look into Cognition  

 

Let’s imagine your television is not working properly. The 

very first thing you can do (and often, the only thing you can do) is to 

define how so. Is it a problem of sound emission? Are the colors on 

the screen not correct? Or is the signal simply missing from time to 

time? By simply looking at what is going on, what is not working (i.e., 

deficit) and what is working fine (i.e., spared properties), one can (1) 
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understand the problem at hand; (2) generate hypotheses on possible 

causes. In other words, when faced with a complex system, by looking 

at the output of an impaired process, one can try to understand what 

the potential underlying software/hardware problems are and how its 

computations are performed under normal circumstances. Behavioral 

responses of human beings, what they do and say (or don’t do and 

don’t say), can reveal important details on the cognitive functions 

involved (i.e., software), and on the underlying neural implementation 

(i.e., hardware). This is true not only in the case of deficits following 

brain trauma, but also when considering performance under normal 

circumstances. 

The goal of this thesis was to shed light on the cognitive and 

neural underpinnings of semantic representations. As a first step, I 

aimed at understanding cognitive representations, which meant 

investigating their content and how they are internally organized. The 

inner structure of a representation (i.e., its geometry, see Chap. 1), can 

be conceptualized as the relation across its constituents. In the case of 

semantic representations, one is interested in describing the relations 

across concepts. Thus I set out to probe the internal structure of 

semantic representations by studying subjects’ judgments of semantic 

distance. 

 

1.1   Semantic Distance Judgment 

Perhaps the most intuitive way to access subjects’ 

representations of the semantic distance between different concepts is 

to directly ask them to rate it in a Semantic Distance Judgment, SDJ). 

Presented with pairs of words, subjects are asked to define how 

semantically far (i.e., different) or close (i.e., similar) they think the 

two words to be (see Fig. 23 upper part). The judgment can be 

provided via a rating scale, which can take several values, typically 

from 1 to 7 or 9. Given that the interest lies in relative judgment across 

pairs of words, individual ratings are then normalized (e.g., between 0 

and 1) to correct for possible inter-individual differences in the 
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ranking scaled adopted. For instance, one subject might never consider 

any pair of words to fall at a distance “9”, thus using de facto a scale 

from 1 to 8. The normalized data of each subject are then re-arranged 

in an n x n matrix describing the pairwise semantic distance between 

the n words tested. Single subject matrices can then be averaged 

producing a final semantic distance matrix depicting the average 

distance at which each pair of words fell in the cognitive semantic 

space of that population. In the final stage, dimensionality reduction 

techniques such as multidimensional scaling (MDS) and hierarchical 

clustering can be used to obtain a graphical representation of such 

space (Shepard, 1980). This geometric model of mental 

representations has a long history (Coombs, 1954; Torgerson, 1965) 

and wide applications, notwithstanding known issues of asymmetry 

and contextual effects. First, the order in which the pairs are presented 

can potentially alter the answer received: for instance, “tiger” appears 

more associated with ‘‘leopard’’ than ‘‘leopard’’ is to “tiger”, thus 

potentially different judgments would be collected when presenting 

the pair “tiger - leopard” or the pair “leopard - tiger” (Tversky, 1977). 

Second, the distance across items depends upon the list of items 

presented to the subjects: by adding to the list a very distant element 

(e.g., “elephant”) the distance between “tiger” and “leopard” can be 

shrunk, while adding a closer one (e.g., “jaguar”) would amplify it 

(Goldstone et al., 1997). Using this method the number of pairwise 

comparisons may quickly become extremely high, thus whenever they 

become pragmatically prohibitive to test, alternative procedures, 

always based on judgment of perceived distance, can be used. For 

instance, so-called inverse-MDS  requires subjects to directly arrange 

subsets of items, freely grouping them according to the perceived 

semantic distance (Kriegeskorte and Mur, 2012). The process is 

repeated multiple times until the full semantic space has been mapped.  
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1.2   Semantic Feature Listing 

We have seen that distance measures focus the attention of the 

subjects directly on the semantic distance across concepts, without 

explicitly investigating the different features of the items on the basis 

of which subjects perform the similarity judgements. Another 

approach that could more directly tap into the question of the features 

governing the semantic space is the so-called Semantic Feature Listing 

(SFL): subjects are asked to list the features that define a given 

concept without being asked to compare it to another one. In this 

paradigm, single words are presented and subjects are asked to list a 

number of features that would describe, define, those words (see Fig. 

23 lower part). They are usually encouraged to think about any 

distinctive feature of the item, in terms of not only its perceptual 

properties (e.g., feelings when touching it, seeing it, hearing it), but 

also more elaborate ones (e.g. where it is usually found, how and for 

what it is usually used). If n words are presented to the subjects, a n x 

n similarity matrix can be created by counting how many features are 

shared by any pair of words. The similarity matrix can be easily 

Figure 23 Schematic 
representation of the work 
flow of Distance Judgment and 
Feature Listing tasks. 
Subjects are asked to judge the 
distance perceived among pairs 
of items (upper), or to list 
perceptual and functional 
features of each single item 
(lower). Either method can be 
used to estimate how close 
items are in a multidimensional 
representation of the cognitive 
semantic space (right). In this 
example, items are described 
by the subjects in terms of their 
color, shape, semantic category 
(i.e., fruits or vegetables), and 
flavor.  
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reversed, as to describe differences, i.e. distances. Then, similarly to 

what can be done with the matrix derived from the semantic distance 

task, it can be normalized, averaged across subjects and analyzed by 

means of MDS or hierarchical clustering. SFL has been extensively 

used (Garrard et al., 2001; Cree and McRae, 2003; McRae et al., 

2005) and shown to have fair correspondence with the complementary 

Feature Rating (Tranel et al., 1997; Gainotti et al., 2009), where 

subjects are presented with different features (e.g., it is colored, it has 

a rounded shape, etc…) and are asked to rate how much that feature 

applies to each item. A direct comparison of the two approaches has 

revealed that ratings, not relying exclusively on participants’ verbal 

ability to describe the items, might provide more information on 

features such as motion, likely capturing better the overall sensory-

motor knowledge available for each concept  (Hoffman and Lambon 

Ralph, 2013). 

 

1.3   Priming Paradigm  

Another paradigm adopted in numerous language studies to 

probe semantic representations is that of priming. A positive priming 

effect is observed when the presentation of a prior stimulus (prime) 

facilitates the processing of a second one (target) (see Fig. 24). Such 

facilitation (usually very short lived, but see Becker et al., 1997) can 

be measured in terms of lower error rate (i.e. more accurate 

processing) and/or lower reaction time (i.e. higher speed of 

processing). Priming experiments vary in terms of: 

1. The relation between prime and target. For instance, since early 

investigation, authors have distinguished between semantically 

associated (e.g., cat – dog, the association is based on statistical 

co-occurrences) and semantically related (e.g., nurse – wife, there 

is a semantic relation) words (Fischler, 1977) .  

2. The nature of the task to be performed on the target. Classical 

studies have asked subjects to perform a semantic categorization 

 

Figure 24 Priming Paradigm. 
The performance in the main task 
(e.g., deciding whether the target 
stimulus is a word or non-word) is 
analyzed with respect to the relation 
between the target and a previous 
stimulus, called prime. An 
improvement in time and/or 
accuracy of the response is called 
priming effect. In the example given, 
one can expect “orange” to be a 
better prime for “lemon” than 
“carrot”, in virtue of being two citrus 
fruit.   
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or lexical decision on the target or, more rarely, on both prime and 

target (Meyer and Schvaneveldt, 1971). 

3. The nature of the stimuli. Prime and target could be pictures, 

spoken words, or written words. The nature of prime and target  

could also differ, giving rise to what has been called multimodal 

priming (Swinney et al., 1979). 

4. The visibility of the prime. Prime words can be visible and thus 

consciously perceived by the subjects, or subliminal, thus not 

overtly reported by the subjects (Marcel, 1983). This effect can be 

reached, for example, by forward or backward masking of the 

prime. 

Priming (often in its subliminal variant) has been widely used to test 

the automaticity of access of different aspects of word processing such 

as orthography (Kouider et al., 2007), phonology (Wilson et al., 

2011), and morphosyntax (e.g,, gender congruency between article 

and name  (Ansorge et al., 2013)). Semantic aspects, for instance the 

existence of direct (e.g. milk-cow) and indirect (milk-bull) 

associations (De Groot, 1983), have been investigated as well. As 

reviewed in the Chap 1, priming effects have been considered indices 

of the internal structure of the semantic system (as example consider 

Masson, 1995), and are often used in concert with neuroimaging 

techniques (e.g., Holcomb and Neville, 1990; Geukes et al., 2013; 

Grisoni et al., 2016). In this regard, a plausible neural underpinning of 

priming is the neurophysiological phenomenon known as repetition 

suppression (Henson and Rugg, 2003): when two identical (or very 

similar) stimuli are presented in rapid succession, there is a reduction 

in neural activity (see also paragraph 4 of this chapter). 

In a behavioral semantic priming paradigm, as in any typical 

priming paradigm, data analysis generally follows these steps: 

1. Data are often cleaned from outliers eliminating trials whose RTs 

fall 2 or 3 standard deviations away from the subject specific 

average. The rationale of this choice is that if RT is too short or 

too long, it likely denotes processes other that the one the study 

focuses on: if on average subjects’ reaction is around 200 ms, a 
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response before 50 ms is likely a false positive (e.g. the subject 

pressed before reading the target word), similarly a response after 

800 ms would likely be contaminated by unrelated distracting 

factors. 

2. For each subject and each condition of interest, one computes the 

number of errors and the mean (or median) RTs on correct trials. 

3. The difference between the condition of interest in terms of 

number of errors and RT is statistically assessed with the 

appropriate test (e.g., for normally distributed data, paired t-test if 

only 2 conditions of interest, repeated measure ANOVA if more 

than 2 conditions of interest). A priming effect can thus be 

observed in a significantly reduced RT (or in a significantly 

reduced number of errors) in the congruent condition (e.g. in a 

semantic priming experiment, prime and target belong to the same 

semantic category: cat – dog), as compared with the incongruent 

condition (e.g. prime and target belong to the different semantic 

categories: cup – dog). 

Two different analyses are possible: one that considers the subjects as 

the random factor (also known as by-subject-analyses); one that 

considers the items as the random factor (by-item-analyses) 

(Hutchison et al., 2008). Moreover, it is possible to investigate the 

temporal development of the effect by running a time-bin analysis of 

the RTs. In this latter case, trials are sorted in multiple temporal bins 

according to the subjects’ specific distribution of RTs (Balota et al., 

2008). Finally, while selecting the stimuli and designing the 

experiment, attempts should be made to avoid a simple stimulus-

response mapping and provide evidence of a true semantic priming 

(Damian, 2001).  

 Positive priming (i.e., a facilitation of processing in congruent 

prime-target pairs compared to incongruent ones) is not the only 

possible outcome, the complementary result has also been observed. A 

negative priming effect is observed when the presentation of a prior 

stimulus (prime) impairs the processing of a subsequent one (target). 

Such an effect can be measured in terms of a higher error rate (i.e. less 
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accurate processing) and/or longer reaction time (i.e. slower speed of 

processing). Negative priming effects can be used to demonstrate how 

deep and automatic the processing of unattended stimuli is across 

tasks differentially tapping semantic processing (Tipper and Driver, 

1988; Damian, 2000). For a review on possible explanations see 

(Mayr and Buchner, 2007).  

The effect of negative priming can be related to tasks studying 

interference effects. In this case, the execution of two concurrent tasks 

can result in an interference effect with detrimental effects on how 

stimuli are processed (again, in terms of errors and/or RTs). 

Interpreting the interference effect in terms of competition for the 

same underlying cognitive (and neural) resources (or representations), 

it is possible to use this paradigm to investigate the functional role of 

sensory-motor systems in conceptual processing. For instance, it has 

been shown that engaging in motor activity impacts tool naming (Witt 

et al., 2010), that previous manual experience affects the degree of 

motor interference during a conceptual task (Yee et al., 2013), and 

that, during lexico-semantic processing, it is possible to elicit verb-

effector compatibility effects (it is easier to respond to a verb –e.g.,  

“kick” - with the congruent effector – i.e., feet – than with an 

incongruent one – e.g., hand) (Andres et al., 2015). However, when 

comparing a congruent and an incongruent condition (as in the 

examples above), the valuation of the interference effects is difficult 

as a proper baseline condition is lacking: the observed performance is 

congruent both with a facilitation for the congruent case, and with an 

interference for the incongruent one. 

 

To sum up, the behavioral methods here reviewed can help 

investigate semantic representations in many complementary ways. 

With Semantic Distance Judgment and Semantic Feature Listing one 

can study the organization of subjects’ cognitive semantic space. 

However, given the differences between the two methods, it is 

legitimate to wonder what their relation is: does the same 
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representational space emerge when implicit  (SFL) and explicit (SDJ) 

measures are used? 

Moreover, priming paradigms (both in terms of facilitation and 

interference) can be used to assess how automatic the retrieval of 

specific components of language is, in general, and semantics, in 

particular. Finally, having observed which dimensions describe the 

cognitive semantic space, one can wonder if they are coded 

differentially in the brain, a hypothesis that will require neuroimaging 

testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.   functional Magnetic Resonance Imaging 

(fMRI )  

 

Remember the broken television I introduced at the beginning 

of the chapter? If you were to bring it to an expert technician, 

alongside your precious information on what’s going on (i.e., your 

diagnosis) and your ideas on what it means (i.e., your functional 

hypothesis), he/she would be able to test (some of) them. Looking 

inside the apparatus, it would be possible to better understand the 

Figure 25 Multidimensional 
space of brain activity 
measurement modalities.  
 
Many different tools are 
available nowadays to 
investigate the neural 
underpinning of cognitive 
processes and representations. 
All available techniques sample 
from a subset of the complex 
spatio-temporal dynamic of 
brain activity, facing a tradeoff 
between temporal resolution, 
spatial resolution, level of 
inference, and invasiveness.  
Each of them has advantages 
and drawbacks, making it 
suitable to the study of specific 
cognitive questions, while being 
unsuitable for others.  
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relation between the software installed by your cable company (i.e., 

cognitive functions) and the hardware that operates underneath it (i.e., 

neural substrate). Different methods have been developed to 

investigate the brain (see Fig. 25), all offering different advantages 

and disadvantages. Ideally one would like to have (1) whole brain 

spatial coverage, as likely most cognitive processes recruit more than 

one cortical area; (2) high temporal resolution, as the dynamics of 

mental processes are indisputably  rapid; (3) high spatial resolution, as 

it has been shown that functional information in many brain areas is 

coded at a very fine grained neurobiological level; (4) minimal 

invasiveness, as to respect the human beings volunteering for the 

experiment, guarantying maximal comfort and protection from any 

possible (even indirect) harm; (5)  maximal causal inference, as most 

of the techniques will only show a correlation between a given 

cognitive process and activity in one brain area, not allowing any kind 

of causal inference. Thus, cognitive neuroscientist working with 

neuroimaging techniques are always faced with a trade off in a four 

dimensional space: time x space (in terms of both resolution and 

coverage) x causality x invasiveness (see Fig. 25).  

In the case of the malfunctioning television, if you’d like to 

know exactly which small component (e.g., portion of a cable, tiny 

chip) is broken, your focus would be on the spatial resolution. In 

neuroimaging, this corresponds to choosing functional magnetic 

resonance imaging (fMRI). Compared to other neuroimaging 

techniques, fMRI has a good-to-great spatial resolution and a rather 

poor temporal resolution. The spatial resolution is affected by the 

strength of the magnetic field (i.e., whether the magnet is 7, 3 or 1.5 

Tesla) as well as the sequence used to acquire brain volumes (e.g., 

whether it is possible to acquire multiple slices at the same time, so 

called multiband sequences). The temporal resolution is limited by the 

nature of the signal measured (i.e. it depends on blood flow, see 

below) and by the choice of parameters for the acquisition sequence 

(e.g., repetition time or TR).  

 

 
 

Figure 26 Brief history of fMRI. 
More than 100 years and about 6416 km 
separate the discovery of the link 
between cognitive functions and blood 
circulation by the Italian physiologist 
Mosso, and the first fMRI experiment 
conducted at the  American Telephone & 
Telegraph (AT&T) Laboratories in New 
Jersey. 
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2.1   Acquisition 

fMRI does not measure brain activity. It measures, indirectly, 

the blood flow in the brain, under the assumption that highly active 

neurons have higher metabolic demands than less active ones (so 

called metabolic imaging). The invention of modern fMRI traces back 

to the early nineteen-nineties when researchers discovered that 

hemoglobin can be used as natural contrast agent for magnetic 

resonance imaging (see Fig. 26), provided its effects are accentuated 

by multiple excitation pulses in high fields (Ogawa et al., 1990). The 

contrast of interest
1
, called Blood Oxygenation Level-Dependent 

(BOLD), is that between de-oxygenated (paramagnetic) and 

oxygenated (diamagnetic) hemoglobin. Sampling several million of 

neurons per voxel, the BOLD effect has been shown to correlate with 

neural activity, and especially with population-level electrical activity 

(Logothetis et al., 2001). For an in-depth review on the methodology, 

highlighting the boundaries of possible interpretations of fMRI results, 

the reader is referred to (Logothetis, 2008). 

A typical session of an fMRI experiment starts with the 

acquisition of anatomical images, followed by one or more runs of 

functional acquisitions. Data are recorded while subjects are lying 

down with their head inside the scanner. Thanks to a mirror system 

mounted on the head coil, subjects can see stimuli that are projected 

on the screen. Similarly, they can be prompted with audio stimuli 

thanks to MRI-compatible headphones. The overall quality of the 

images is determined by the interplay of keys parameters that the 

researcher can tune in accordance with the goal of the investigation 

(for examples of raw images see Fig. 27), determining the temporal 

and spatial resolution of the images acquired. Among them: 

 Repetition time (TR), the time between two successive 

applications of the radiofrequency pulse (i.e., interval between 

                                                           
1 BOLD fMRI is not the only viable option for cognitive imaging. Another functional MRI method is arterial spin labeling (ASL), relying on 
arterial water as tracer to measure cerebral blood flow. It offers lower signal to noise ratio, but higher spatial and temporal resolution 
[Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clinical Neurophysiology 113:621-634, Borogovac A, 
Asllani I (2012) Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. 
International journal of biomedical imaging 2012:818456.]. Through this manuscript we use the name fMRI to denote functional MRI based 
on the BOLD signal. 

 

Figure 27 fMRI data acquisition. 
Once all sequence parameters are 
established, it is possible to acquire raw 
anatomical images (upper, black and 
white scale) and raw functional images 
(lower, green-blue scale). This example 
from our data illustrates how the tradeoff 
between space and time resolution can 
lead the researcher to opt for functional 
images that cover the brain only partially: 
about 3 cm of the parietal lobe are 
sacrificed in order to guarantee good 
coverage of the temporal lobe, with high 
resolution (1.5 cm isotropic voxels) and 
fast TR (2.3s). 
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successive data read out from the same location), measured in 

milliseconds; 

 Echo time (TE), the brief time between the radiofrequency 

pulse and the acquisition of data  (i.e., interval between the 

pulse and the peak of the echo), measured in milliseconds; 

 Field of view (FoV), the physical size of the image (i.e., square 

image area that contains the object of interest), measured in 

cubic millimeters; 

 Slice parameters: the number of slices to be acquired, the 

direction of the acquisition (e.g., sequential or interleaved), 

and whether multiple slices are obtained at the same time (i.e., 

so called multiband sequences). 

 

2.2   Pre-Processing 

Raw images need to undergo a series of preprocessing steps 

before they can be statistically analyzed. While many options are 

possible, I here focus on pipelines similar to the one I adopted, which 

include steps such as (see Fig. 28):   

1. Slice timing. Different brain volumes are not acquired at 

the same time. Thus signal detection can be enhanced by 

adjusting (via time interpolation) the images to the true 

time of acquisition.   

2. Realignment. Functional images are all aligned to a 

reference image (e.g., the first scan of the first run), thanks 

to rigid body transformations (i.e., 3 translations and 3 

rotations). This step adjusts for head movement between 

slices. 

3. Co-registration. Images of different modalities (i.e., 

anatomical and functional images) need to be aligned in the 

same space (within subjects).  

4. Segmentation. Anatomical images can be separated 

according to the tissue types: white matter, gray matter and 

cerebrospinal fluid.  

 

Figure 28 fMRI data preprocessing. 
Raw images undergo a series of 
preprocessing steps, some of which are 
optional and need to be tailored to the 
scientific question investigated. Here we 
illustrate the effect of co-registration and 
normalization on the same anatomical 
and functional images as in Fig. 27. Data 
are taken from our experiments. 
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5. Normalization. Whenever group level analyses are 

foreseen and/or one wishes to analyze the data with respect 

to regions or coordinates of interest derived from the 

literature, the brain space of single subjects needs to be 

normalized in a common reference space. The images are 

warped (stretched and squeezed) as to match a 

standardized anatomical template (e.g., Talairach atlas or 

MNI template). 

6. Smoothing. Signal-to-noise ratio and functional overlap 

across subjects can be improved by spatial smoothing of 

the images, at the expenses of spatial resolution. It is 

implemented via a convolution with a 3D Gaussian kernel 

of specified width. 

 

2.3   Standard Univariate Analyses 

After pre-processing, fMRI time-series data are statistically 

analyzed in order to detect reliable activations. Since 1995, the 

General Linear Model (GLM), an adaptation of multiple regression 

analysis, has been the most widely adopted practice (Friston et al., 

1995; Worsley and Friston, 1995). It allows the decomposition of the 

overlapping BOLD signals based on the experimental conditions (so 

called design matrix). The underlying assumption is that the observed 

BOLD signal (𝑦) results from the multiplication of the design matrix 

(𝑋) times unknown parameters (𝛽), plus an error term (): 𝑦 = 𝑋𝛽 +

𝜀. Each voxel is considered as an independent observation and X can 

contain regressors quantifying (i.e., continuous predictors) and/or 

classifying (i.e., binary predictors) the experimental conditions.  

Given the known properties of the hemodynamic response,  

the BOLD signal is expected to peak approximately 5 seconds after 

stimulation, and being followed by an undershoot that lasts as long as 

30 seconds. The representation of an ideal, noiseless response to an 

infinitesimally brief stimulus is called Hemodynamic Response 

Function (HRF). The signal of each voxel can be treated as a linear 

 

 

Figure 29 Example of canonical HRF shapes. 
Different software currently used for fMRI data 
analyses rely on slightly different HRF shapes.  
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superposition of multiple HRFs once assumptions on their shape are 

made, namely describing the time to peak, the dispersion (i.e., width 

of the curve), and the final undershoot. The canonical HRF is 

characterized by two gamma functions, one modelling the peak and 

one modelling the undershoot (see Fig. 29). To allow for variations 

from the canonical form, partial derivatives of the canonical HRF with 

respect to its peak delay (i.e., temporal derivative) and dispersion (i.e., 

dispersion derivative) can be added as further basis functions. These 

alterations can help capture differences in the latency and in the 

duration of the peak response. Hence, regressors of the GLM are 

convolved with the chosen HRF (with or without derivatives). The 

widespread use of the canonical HRF is challenged by studies 

showing how responses modeled after a data-driven estimation can 

outperform the classical approach while relaxing some of the 

assumptions (for instance forcing it to be equal across experimental 

condition, yet letting it differ across voxels (Pedregosa et al., 2015)). 

However, in most cases the statistical advantage is yet not sufficient to 

justify the extra computational cost. 

Among the different regressors that enter into the GLM design 

matrix, it is usually possible to distinguish between regressors of 

interest (those that will be the focus of the following analyses, which 

are convolved with the HRF) and of no-interest (which are not 

convolved with the HRF). Among the latter, we find for instance so 

called movements regressors, estimated during the co-registration pre-

processing, accounting for slight movements of the subject in the 

scanner. If data have been acquired in multiple sessions or runs, 

regressors accounting for these different time points of data 

acquisition can be added. It is important to model all known variables, 

even if not experimentally interesting, as this minimizes the variance 

of the residual error () and adjusts the means of the effects-of-

interest. 

The outputs of the GLM are beta maps (one 𝛽 for each column 

of 𝑋) that describe, for each voxel individually, the strength of the 

effect of that particular experimental condition. Following the 

 

Figure 30 fMRI data analyses. 
Example of a beta map (upper), a 
contrast map at the single subject level 
(middle) and at the group level (lower). 
Data are taken from our experiments. 
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standard pipeline of analyses, beta maps are then contrasted according 

to the experimental design: for example, the map corresponding to left 

hand movement can be compared with the one corresponding to right 

hand movement. Such statistical testing is performed at the voxel level 

(hence the name mass-univariate test), usually by means of t or F tests. 

Under the null hypothesis (e.g., no difference across the two 

conditions), the values in the resulting map are distributed according 

to the respective probability density function, Student t or the F 

distribution. This t-map (or F-map) is the usually plotted threshold as 

to reveal which voxels (or cluster of voxels) exhibit significance 

differences. The contrasts generated for the individual subjects can be 

analyzed at the group level either with a Fixed Effects Analysis (FFX, 

the time series of different subjects are concatenated), or with a 

Random Effects Analysis (RFX, comparing the group effect to the 

between-subject variability) (see Fig. 30). As multiple statistical tests 

are performed simultaneously (one for each voxel), the possibility of 

false positive is inflated and the results need to be corrected for 

multiple comparisons, with methods such as the familywise error rate 

(FWER) or the false discovery rate (FDR) (Bennett et al., 2009).  

To enhance statistical power and allow more specific 

inferences, the  analyses are often restricted to given areas of interest 

(ROIs), in which the BOLD signal (averaged or voxelwise), is 

compared between different conditions (see Fig. 31).  Particular care 

should be paid to avoid so called “double dipping”, i.e., a circular 

analysis where statistical inference is drawn from the same dataset that 

was used to select the region of interest to begin with (Kriegeskorte et 

al., 2009; Vul et al., 2009; Kriegeskorte et al., 2010). For instance, if 

wishing to test the hypothesis that a given region X responds to 

condition A more than B, selection of voxels as belonging to X should 

not be based on the A-B contrast. Ideally, ROIs tailored to the 

cognitive function investigated should be identified either on the basis 

of anatomical constraints or with an independent localizer (see for 

instance Fedorenko et al., 2010), depending on the precise hypotheses 

at stake. 

 

Figure 31 fMRI univariate analyses. 
Schematic illustration of the classical 
univariate analyses comparing, in a given 
ROI, the average BOLD signal for 
condition A (e.g., yellow items) vs 
condition B (e.g., orange items). Synthetic 
data. 
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2.4   Discussion 

The classic, univariate, approach to fMRI data analyses here 

described led to major discoveries in cognitive neuroscience. For 

instance, in vision, highly selective regions (i.e., exhibiting a 

preferential response for a given category of images) have been 

discovered for objects (Malach et al., 1995), places (Epstein and 

Kanwisher, 1998), faces (Kanwisher et al., 1997), and words 

(Dehaene and Cohen, 2011). Moreover, it has been instrumental in 

studying networks involved in high level cognitive functions such as 

attention (Fan et al., 2005) or emotions (Ochsner et al., 2002).  

The analysis steps here reviewed can be implemented with 

different software, of which the most widely used are SPM 

(http://www.fil.ion.ucl.ac.uk/spm/), FSL (http://fsl.fmrib.ox.ac.uk/), 

AFNI (https://afni.nimh.nih.gov/afni/), and BrainVoyager 

(http://www.brainvoyager.com/). Notwithstanding an overall 

standardization of the practices, substantial wiggle room is left to the 

researcher in terms of parameter tuning, calling for careful reporting 

of all methodological choices at all stages as these greatly impact the 

final results (Carp, 2012b, a; Pauli et al., 2016). 

Current improvements are following two directions: 

concerning data acquisition, improving spatial and temporal 

resolution; regarding statistical analyses, making inference at the sub- 

or multi- voxel level. For instance, parallel imaging can push the 

spatial resolution without sacrificing the temporal one (e.g., (Feinberg 

et al., 2010; Moeller et al., 2010). Further attempts to improve the 

time resolution of fMRI include so called slice-based fMRI (Janssen et 

al., 2016). Overall, it seems that the time and space resolutions will be 

pushed significantly in the upcoming years. Recently, authors have 

reported fMRI responses to stimuli oscillating at up to 0.75 Hz  

(Lewis et al., 2016), while in terms of spatial resolutions, innovative 

findings are stemming from investigation with ultra-high field MRI (7 

tesla) (Harvey et al., 2015). 

http://www.fil.ion.ucl.ac.uk/spm/
http://fsl.fmrib.ox.ac.uk/
https://afni.nimh.nih.gov/afni/
http://www.brainvoyager.com/
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Finally, we have seen that the standard univariate approach 

allows inferences only at the voxel level. As we will see in the last 

section of this chapter, since the nineties, researchers have tried to go 

beyond the voxel resolution and one of the most promising ways of 

analyzing brain data is thanks to multivariate techniques. 

 

 

3.   MagnetoEncephaloGraphy (MEG)  

 

Going back to our television metaphor, let’s say we are 

interested in understanding not only which parts are broken, but also 

how this breaks the normal flow of information within the appliance. 

We are thus willing to sacrifice the spatial resolution in order to get 

the best temporal resolution possible. In neuroimaging, this 

corresponds to choosing techniques such as ElectroEncephaloGraphy 

(EEG) and MagnetoEncephaloGraphy  (MEG). While fMRI can be 

seen as a specific form of image processing, these time-resolved 

methods belong to the domain of signal processing. 

Neurons are current generators: when an assembly of neurons 

fires, it generates microscopic electric currents. If neurons in the 

assembly are oriented in parallel and each of them forms an electric 

dipole, their post-synaptic potentials sum up to a current dipole, which 

in turn generates electric and magnetic fields strong enough to be 

measurable on the surface of the head (the scalp). The technique 

developed to measure the scalp’s electric field, EEG, was one of the 

first used to measure brain activity (Berger, 1929) for both clinical and 

research oriented goals. The magnetic field can also be measured 

thanks to a younger technique, MEG (see Fig. 32). Thus, contrary to 

fMRI, both MEG and EEG directly measure brain activity, 

specifically post-synaptic potentials (which are slower but stronger 

than action potentials), believed to be mostly generated by pyramidal 

neurons (which are parallel to each other, and oriented perpendicular 

to the surface)(Hansen et al., 2010). Theoretically, the topographies 

 

Figure 32 Brief history of M/EEG. 
We here report only a few of the many 
methodological and theoretical 
developments of both physics and 
physiology that have brought about 
M/EEG.   
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recorded with the two methods are orthogonal, it suffices to think of 

how the direction of the electric current determines the direction of the 

corresponding magnetic field (i.e., right-hand rule). In reality the 

complementarity is more indirect, as the two techniques are 

potentially sensitive to different magnetic sources. Moreover, there are 

some key differences that might lead one to prefer one method over 

the other. EEG suffers more from spatial smearing effects due to the 

poor conductivity of the skull: electrical currents are distorted by the 

bones more than the corresponding magnetic fields. Additionally, 

usually MEG systems offer more data points than EEG caps (e.g., 306 

sensors instead of 64 electrodes), even if EEG caps with up to 256 

electrodes are now available. The combination of these two weak 

points of EEG is a problem especially when attempting to locate the 

source of the electrical activity inside the brain: source reconstruction 

is generally less accurate with EEG compared to MEG. On the other 

hand, MEG cannot see radial components (i.e., as they do not give rise 

to an external magnetic field), which are instead detectable with EEG. 

Moreover, it has a weak sensitivity for signals originating in deep 

sources. For my experiment, not foreseeing the need to explore deep 

sources, I chose MEG (see Chap. 5); therefore, I will now focus only 

on this technique. 

 

3.1   Acquisition 

The MEG signal is recorded while subjects are sitting or lying 

down in an isolated room. The main goal of the isolation is that of 

magnetically shielding the MEG gantry (i.e. the structure hosting the 

recording equipment) from external sources of magnetic noise, which 

would washout the brain signals’ weak magnetic field (~10
–12

 T, as a 

reference, earth’s magnetic field is 10
-4

 T). Isolation is also 

instrumental to attenuate the sounds from the outside (which could 

potentially interfere with the experimental task) and to ensure that the 

luminosity is kept constant and controlled.  



134 
 

Currently produced MEG systems can have a different number 

and kind of sensors or SQUIDs (i.e., superconducting quantum 

interference devices, very sensitive instruments able to detect 

extremely subtle magnetic fields). For instance, Elekta systems have 

102 magnetometers and 204 axial gradiometers. Magnetometers are 

the simplest pickup coil, measuring the component of the magnetic 

vector which is normal to its plane called Bz (the unit of measure is 

Tesla). Gradiometers measure the difference of Bz in the axial 

direction z (i.e., axial gradiometers), or in the tangential direction y 

(i.e., planar gradiometers), thus their unit of measure is Tesla over 

meter. Gradiometers suppress distant noise (i.e., background signal), 

thus providing a better measure of the local magnetic field (focal 

sensitivity) at the expense of a reduced sensitivity to distant sources 

(i.e., capturing signal from only quite superficial cortical sources). 

While acquiring data, the following parameters need to be 

defined: the sampling frequency (e.g., 1 kHz, it needs to ensure 

adequate acquisition of the signals of interest); the online filters (e.g., 

band-pass between 0.03 Hz and 330 Hz, low-pass filter at one half or 

less of the sampling frequency to avoid aliasing and a high-pass filter 

to minimize effects of large low-frequency signals); whether to 

apply an active compensation of the external noise (i.e., ambient 

magnetic distortions are measured by a magnetometer placed 

outside of the magnetically shielded room and ad hoc 

compensation signals are sent to three coil pairs mounted on the 

outer surface of room); whether to continuously record the head 

position of the subjects (i.e., head position can be tracked 

by continuously exciting references coils place on the skull of the 

subject at  frequencies higher than the typical brain signal). 

 

3.2   Pre-Processing  

As for fMRI, MEG data need to undergo a series of 

preprocessing steps before statistical analyses can be correctly 

carried out (see Fig. 33). Again, several different pipelines can be 

 

Figure 33 Example of MEG data at different stages 
of preprocessing. The same 20 seconds of data 
(from the experiment presented in Chap. 5) are 
shown: as they are acquired with Maxshield active 
noise compensation on (upper panel); after the 
application of Maxfilter (middle panel); after low-
pass filtering at 40 Hz.  
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followed; I here focus on the steps I took. First, visual inspection of 

the data can be used to select “bad channels”: some sensors can be 

damaged (always showing recurrent artifacts), other can be 

temporarily malfunctioning (for instance due to a local temperature 

change). Second, if active compensation of external noise (e.g., as 

implemented in the magnetic shielding system MaxShield of the 

Neuromag by Elekta) was on during the acquisition, one needs to 

remove such magnetic interference (running the NeuroMag MaxFilter 

program). There are three classical steps performed by MaxFilter: 

1. Signal space separation (SSS) to suppress external magnetic 

interference. It consist in the application of spatial filtering 

based on the different sources of signals: from inside the 

subjects’ head (of interest) and outside the subjects’ head 

(noise). It is possible to take into account temporal information 

as well (so called tSSS).  

2. Interpolation of noisy MEG sensors. Despite maintenance and 

tuning, some coils can exhibit a permanently noisy behavior 

(for instance because of magnetic flux trapped during the 

previous MEG cool down). Moreover, during each single 

session (or even each single experimental run), some channels 

can manifest recurrent jumps or other artifacts. Bad/noisy 

channels can be visually identified and manually declared 

and/or automatically detected. 

3. Realignment of MEG data into a subject-specific head 

position. Subjects might slightly move their head beneath the 

gantry causing a misalignment of the different sensors across 

the experimental runs. 

Next, some typical artifacts can be detected (with more or less 

automated procedures) and removed. These include eye blinks and 

hearth beats, which show a very stereotyped time profile and 

topography (see Fig. 34). Data can then be filtered. The goal of this 

step is, first and foremost, to remove line noise and its harmonics (in 

the EU, this artifact is seen at 50 Hz, in the US at 60 Hz). Depending 

on the kind of analyses planned, additional filtering can be performed: 
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for analysis aiming at detecting event-related fields (see ERF below), 

data are usually low pass filtered at 30/40 Hz (to remove line noise 

and high-frequency artifacts), while for time-frequency analysis (see 

TFA below) one usually wishes to keep higher frequencies as well (as 

they may contain relevant effects). Optionally, data can also be down-

sampled, mostly to ease the computational costs. In most cases, data 

are epoched according to the experimental conditions, for instance 

breaking the continuous signal from ~200 ms before to ~600 ms after 

stimuli onset.  

 

Baseline correction can be applied to isolate the changes in signal due 

to the stimulation from those associated with random low-frequency 

Figure 34 Artifacts identification and removal.  Blinks (on the left) and heart beat (on the right) can be identified and subsequently removed. Note the different (and 
characteristic) time profile and topography: blinks are slower and  present a typical frontal distribution; heart beats are faster and more lateralized. In both cases, it 
appears clear that the electrical source of the magnetic field recorded is not cortical. Data from one of the participants of the experiment in Chap. 5. 
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noise from sensors and slow field fluctuations. To this end, it is 

necessary to select a range of time where it is reasonable to assume 

that no-stimulus related activity was being produced, typically the 

100-200 ms pre-stimulus interval. Then, one commonly computes, for 

each recording channel, the mean signal over this interval, and 

subtracts it from the signal at all following time points. Some authors 

opt for statistical analyses on non-baseline corrected data, which they 

have high pass filtered at 1 or 2 Hz, aiming at discarding irrelevant 

low fluctuations without relying on the definition of a baseline period 

(which should not contain event-related fields, while being close in 

time to the events) (Gross et al., 2013). 

 

3.3   Standard Univariate Analyses 

The multidimensional nature of the signal acquired through 

MEG enables rich and diverse analyses. The first observation is that 

electrophysiological signals contain information on both “evoked” and 

“induced” neural activity. The so called evoked responses are aligned 

in phase (i.e., phase-locked) while the so-called induced responses are 

not (i.e., they are modulations of ongoing oscillatory processes that are 

not phase-locked). When epochs of different conditions are averaged 

and compared to one another, the event-related fields (see below ERF) 

one obtains represent only of phase-locked neural activity, as the 

averaging procedure cancels out any modulation that across trials is 

out of phase. Non-phase-locked activity can be appreciated as event-

related changes in the power of neuronal oscillations (see paragraph 

on time-frequency analysis, TFA). The spectral representation of the 

signal offers the possibility to study evoked (thus time-locked and 

phase-locked) changes too (see paragraph on inter-trial phase 

coherence, ITC). Finally, the underlying sources of the observed 

effects can be tentatively reconstructed to improve spatial localization 

of the cognitive processes/representations of interest (see paragraph on 

source reconstruction).   
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ERF. In a standard ERF analysis, the epochs obtained at the 

end of the pre-processing, are averaged, subject by subject, condition 

by condition, and then analyzed to look for spatio-temporal clusters 

(i.e., multiple nodes extending in time and space) in which they 

statistically differ (see Fig. 35). As for fMRI (and even more so given 

the multidimensional nature of the signal), the statistical analysis of 

MEG data faces a serious problem of multiple comparisons: the effect 

of interest (i.e., a difference between experimental conditions, e.g., 

yellow vs orange stimuli) is evaluated for an extremely large number 

of channel/time-pairs. One widespread solution is to calculate a 

cluster-based test statistic (i.e., the effect of interest is quantified on 

the basis of temporal, spatial and spectral adjacency) and then 

compute its significance probability with non-parametric procedures 

(i.e., random partitions of the data are used to determine the 

distribution of the results under the null hypothesis) (Maris and 

Oostenveld, 2007). ERFs are simple and fast to compute, they offer a 

high temporal precision and accuracy, and they can be easily 

interpreted (at least when providing positive results). However, as we 

have seen time-locked but not phase-locked activity is lost due to the 

averaging procedure. Moreover, there are well known nonlinear neural 

activity patterns that elude investigation by means of ERF, such as 

synchronization and cross-frequency coupling (Cohen, 2014).  

 

TFA. MEG signals can be transformed from the time domain 

to the frequency domain thanks to, for instance, the Fourier 

transforms. This step, a so called spectral analysis, allows a better 

investigation of oscillatory signal components. Following this 

transformation, measures of power changes (TFA, this paragraph) as 

well as measures focusing on phase properties (ITC, next paragraph) 

can be computed and compared across conditions. 

 Time-frequency analysis (or TFA) aims at quantifying 

frequency specific neural activity that is not necessarily phase-locked 

to an event (see Fig. 36). Since the first EEG studies, different power 

bands have been identified and differentially linked to neural functions 

 

Figure 35 MEG univariate analyses: ERF. 
Schematic illustration of the classic 
univariate analyses comparing, in a 
spatio-temporal cluster of sensors, the 
average signal for conditions A vs 
condition B. Synthetic data. 

 

Figure 36 MEG univariate analyses: TFA. 
Example of the TFA reconstruction of the 
MEG signal from left occipital sensors 
after the presentation of a written word. 
Data derived from the experiment 
presented in Chap. 5. 
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and cognitive processes: theta band, approximately from 2 to 8 Hz; 

alpha band, approximately from 8  to 13 Hz; beta band, approximately 

from 13 to 30 Hz; low gamma band, approximately from 30 to 70 Hz; 

high gamma band, approximately from 70 to 120 Hz. When a change 

in a given frequency band is observed, for instance following the 

presentation of a stimulus, it can be characterized as a decreases 

relative to the pre-stimulus baseline (event-related desynchronization, 

ERD) or increase (event-related synchronization, ERS) (Pfurtscheller 

and Da Silva, 1999). According to the frequency band affected, these 

power changes, reflecting coupling or uncoupling of populations of 

neurons, may indicate either activation or deactivation of a given brain 

region: in the gamma band ERD reflects a reduction in processing, 

while in the alpha band it reflects increased processing (Pfurtscheller 

and Da Silva, 1999). To date, oscillations are the most promising 

window on neural processes, linking results from different 

neuroscientific approaches and allowing exploration of an added 

dimension, frequency. However, with respect to ERF analyses, the 

wiggle room (i.e., the different choices that the experimenter has to 

take while tuning parameters) increases, and the temporal precision is 

somehow undermined by the process of time-frequency 

decomposition (Cohen, 2014). As for ERF, cluster-based permutation 

tests are used to assess whether there is a significant difference 

between experimental conditions (i.e., whether the data come from 

different, non-exchangeable, distributions). 

 

ITC We have seen that TFA concerns the power of the 

spectral features irrespective of their phase (time-locked but not 

phase-locked). However, the spectral representations of different 

experimental conditions (e.g., yellow vs orange items) might also 

significantly differ over sensors, time and frequencies in a time-locked 

and phase-locked manner. ITC (inter-trial phase coherence or phase 

locking factor (Tallon-Baudry et al., 1996)) analysis identifies clusters 

(in time, space and frequency) where there are differences in phase 

consistency over trials. The results denote evoked effects similar to 
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those captured by the ERF, but with additional information derived 

from the decomposition into its constituent phase-locked frequency 

bands (e.g., Shah et al., 2004). Again, statistical analyses are 

conducted using minimal distributional assumptions thanks to 

parametric testing. 

 

Source Reconstruction. Given a dipole in a conductive 

medium (i.e., some neurons firing in a given brain location), the 

electrical current spreads through this medium (i.e., the brain, the 

skull, the scalp) and it is possible to deterministically know the 

distribution of the induced magnetic field (linear forward model). The 

opposite process, i.e., to identify the location of a dipole given its 

superficial electric potential (EEG) or magnetic field (MEG) is a 

difficult mathematical problem (i.e., linear problem with more 

unknowns than observations). Different methods have been developed 

to solve the so-called inverse problem and provide a good estimate of 

the source of M/EEG signals. First, an accurate head model is needed, 

accounting for the properties of the different tissues (i.e., skin, skull, 

brain) in order to explain the conductivity patterns. Simple sphere 

models provide fast analytical solutions, while more realistic models 

such as the boundary element method (BEM) are harder to solve but 

offer finer reconstructions. Then, attempts can be made to solve the 

inverse problem, while taking into account priors such as the pre-

computed anatomical constraints. Generally speaking, two 

perspectives can be taken: (1) make specific modelling assumptions 

on the number of focal sources and their approximate location, as 

done in so called dipole models (or discrete source approaches); (2) do 

not restrict the effects to a set of focal sources but rather distribute a 

large number of dipoles throughout the brain volume (ideal when 

dipoles number and locations cannot be predicted), as done in 

distributed source models. These models aim at estimating the dipole 

originating from the observed signal, an underdetermined problem as 

there are more unknown (dipoles) than data points (MEG channels). 

The different widespread distributed source models (e.g., Minimum-
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norm, LORETA) vary in the way they choose to minimize the sum of 

the dipoles across all voxels (i.e., minimal estimate that can explain 

the measurements).  

 

3.4   Discussion 

The analyses of M/EEG data here reviewed can be considered 

“classic”, as they exploit univariate statistical methods. They have led 

to major discoveries in cognitive neuroscience, allowing the 

description of key ERP/Fs (as an example consider the N400 (Lau et 

al., 2008)) and of the role of oscillations in specific frequency bands 

(e.g.,  induced gamma activity as construction of object representation 

(Tallon-Baudry and Bertrand, 1999)). For a review on the contribution 

of neurophysiological techniques to the study of language see 

(Salmelin, 2007). Moreover, synchronization has been proposed as a 

mechanism for establishing communication between brain areas and 

has been linked with cortical interactions underlying, for instance, 

multimodal associative learning (Miltner et al., 1999; Palva and Palva, 

2012). Finally, one approach not detailed here but contributing to the 

popularity of time-resolved neuroimaging methods is that of 

frequency tagging. The aim is to achieving an easier dissociation of 

the signal of interest from the endogenous activity, i.e., higher signal 

to noise ratio than classic ERP. To do so, it exploits the fact that if 

stimuli are presented at a constant rate, the associated neural 

population will oscillate with the same period (Buiatti et al., 2009; 

Kosem et al., 2014).  

Generally speaking, current improvements include better 

source estimates (Bekhti et al., 2016), automatization of artifacts 

detection and repair (Jas et al., 2016), and the development of cheaper 

and more economical MEG systems (for instance thanks to low-

maintenance sensors (Knappe et al., 2014). 

The analysis steps here reviewed can be implemented with 

different software, the most widely used are SPM 

(http://www.fil.ion.ucl.ac.uk/spm/), Brainstorm 

http://www.fil.ion.ucl.ac.uk/spm/
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(http://neuroimage.usc.edu/brainstorm), FieldTrip 

(http://www.fieldtriptoolbox.org/), MNE (http://martinos.org/mne), 

and NUTMEG (https://www.nitrc.org/projects/nutmeg/). As for fMRI 

- and perhaps even more so given the relative recent spread of the 

method - standardization of pipelines and thorough reporting of all 

steps (from data acquisition to data analyses) are warranted (Gross et 

al., 2013; Keil et al., 2014). 

Finally, notwithstanding the inherently multidimensional 

nature of the signal, traditional M/EEG investigations have relied on 

standard statistical inferences (with the noteworthy exception of brain-

computer interface studies, e.g., Blankertz et al., 2007). We will now 

see how multivariate techniques of data analyses are revolutionizing 

not only fMRI, but also MEG investigations of the neural correlates of 

cognitive representations (Stokes et al., 2015).  

 

 

4.   Multivariate Analyses of Neuroimaging Data  

 

In the previous sections of this chapter, we have seen how 

univariate analyses can be used to detect, during the execution of a 

particular task, which brain regions are engaged (fMRI) and when 

(MEG). The reasons why this approach is widely exploited are two-

fold. First, it answers core questions in cognitive neuroscience (e.g., is 

area A engaged more during condition X than during condition Y? is 

activity linked with condition X observed earlier than activity linked 

with condition Y?). Second, it is easily implemented thanks to the 

standardized pipelines offered by many softwares. With respect to 

fMRI studies, the main drawback of univariate analysis is that it fails 

to reveal two kinds of representational codes (see below): those that 

are distributed across multiple voxels and those that are encoded at 

below-voxel resolution. The same issue affects M/EEG data, where 

similar observations apply not only to the spatial resolution (i.e., in 

this case the minimal units are the sensors, not the voxels), but also to 

http://neuroimage.usc.edu/brainstorm
http://www.fieldtriptoolbox.org/
http://martinos.org/mne
https://www.nitrc.org/projects/nutmeg/
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the time and frequency dimension (i.e., statistical analyses rely on 

differences between conditions of interest at a given time point, in a 

given frequency range). Different methods have been proposed in the 

last 20 years to overcome the shortcomings of univariate analyses. 

 

4. 1   Resolutions of Representational Codes 

In the previous chapter (see Chap. 1. 5.1), we have explored 

the relationship between representational content (which information 

is encoded in a given brain area), representational geometry (the 

representational space in which the information is organized), and 

representational format (the corresponding neural code). Our 

understanding of possible neural codes, i.e., meaningful schemes of 

the activity of single neurons or of a population of neurons, is still 

limited. However, we do know that univariate analysis gives access 

only to the information that is expressed in terms of changes of the 

BOLD signal at the level of single voxels, missing information that is 

distributed across multiple voxels and/or that is encoded at below-

voxel resolution. First, let’s say that within a given region there are 

voxels consistently responding with high activation to dangerous 

animals (and no activation to harmless ones). If these voxels are 

intermingled with others consistently showing the opposite behavior, 

the univariate average activity would show no differences when a tiger 

and a rabbit are presented. Yet in principle the consistency of the 

underlying pattern could be detected. Second, let’s imagine that within 

a given voxels there are neurons tuned to (i.e., preferentially 

responding to) different levels of height (short, medium and tall). The 

univariate activity recorded after the presentation of a cat, a wolf and a 

zebra would be the same, as the overall activity would show no 

preference.  

 

This last case, representational code below-voxel resolution, 

was the first to be tackled thanks to an approach called adaptation or 

repetition suppression. It consists in measuring the difference in 
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activation within a voxel as a function of the relation between 

subsequent stimuli. The underlying principle is that the repeated 

presentation of the same stimulus produces a decrease in the response. 

By varying the features of the stimuli that are repeated, across trials, it 

is possible to investigate which feature repetition produces a reduction 

in the amount of activation, thus determining the (set of) features of 

the stimulus that are encoded in any given voxel. This method allows 

for the investigation of representations coded across neurons 

encompassed within a single voxel. In other words, it permits the 

detection of differences across experimental conditions even when 

these can be appreciated only at sub-voxel resolution. Thinking of the 

previous example with height-coding neurons, even if at the 

population level no univariate difference can be appreciated when 

stimuli are presented in isolation, an adaptation effect could be 

detected: the presentation of two stimuli of the same height (e.g., a 

wolf and a dog) would yield a smaller response than the presentation 

of two stimuli of different height (a cat and a zebra). Thus, adaptation 

allows to (indirectly) study the “tuning curve” of neurons with fMRI 

(Piazza et al., 2004): what are the stimulus features the neurons within 

a given voxel care for?  Different models have been proposed to 

explain the mechanisms behind fMRI-adaptation: less overall neuronal 

firing (fatigue model), activity of fewer neurons (sharpening model), 

or shorter processing time (facilitation model) – for a review see 

(Grill-Spector et al., 2006). fMRI-adaptation paradigms have been 

pivotal in describing cortical areas selectively tuned to low level 

perceptual representations (Vuilleumier et al., 2002), as well as high 

level conceptual ones - including semantic associations (Wheatley et 

al., 2005). Adaptation paradigms have also been applied to M/EEG, 

looking at the effects of repetitions on ERP/Fs (Schweinberger et al., 

2004) and power in different frequency bands (Gruber and Muller, 

2005). The adaptation paradigm can be generalized into so called 

carry-over designs: an unbroken sequence of stimuli is analyzed in 

terms of how the response to a given stimulus is modulated by the 

previously presented ones (Aguirre, 2007). This setting permits the 
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simultaneous detection of potential differences between the mean 

neural responses to different stimuli (e.g., univariate effect of yellow 

vs red items), as well as the carry-over effect, in other words whether 

the responses to a stimulus is affected by its relation to the preceding 

ones (e.g., comparing red items when preceded by yellow ones vs 

orange ones). 

 

Recall the hypothetical area which contains voxels consistently 

responding to dangerous (e.g., tiger) or harmless (e.g., rabbit) animals: 

it is possible that information is carried by the pattern of activity 

across voxels and not by the overall average level of activation. In the 

attempt to investigate representations distributed across multiple 

voxels, researchers have developed so called multivariate methods. 

These new approaches have been highly influential in the field of 

cognitive neuroscience first with their application to fMRI data and 

more recently with their exploitation in M/EEG paradigms as well 

(Grootswagers et al., 2016). Not surprisingly, the nomenclature of this 

collection of techniques (hereafter MVPA) changed from “multi-voxel 

pattern analyses” (Norman et al., 2006) to the more general “multi-

variate pattern analyses” (Haxby et al., 2014). While fMRI and 

M/EEG data differ in many important ways, with respect to 

multivariate analyses the central idea is the same: to take into account 

the activity in multiple units at the same time. Spatially, the smallest 

unit of fMRI data are voxels (of varying size according to the 

resolution of the scanner and the sequence used), while with MEG 

data they can either be sensors (if working in sensor space) or, again, 

voxels (if working in the reconstructed source space). Additionally, in 

the case of MEG, temporal (i.e., which point(s) in time?) and spectral 

(which frequency band(s)?) dimensions of the unit need to be defined 

as well. Once the characteristics of the basic unit have been 

established, MVPA methods can be applied to fMRI or MEG data set 

with little variations.  

The core idea behind this multivariate approach may be traced 

back to computational neuroscience’s concept of population coding: 
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content is represented by the distributed activation of different 

representational units (Pouget et al., 2000). In principle, it should thus 

be possible to investigate the link between cognitive representations 

and the corresponding multi-units patterns of activity. Two approaches 

have been particularly successful in the neuroimaging literature:  

pattern decoding and the analyses of pattern geometries (so called 

representational similarity analyses - RSA). Moreover, voxel-wise 

modeling (so called encoding), an approach that can be seen as 

complementary with respect to decoding (Naselaris et al., 2011),  is 

often included among MVPA methods, even if (as we will see later in 

the chapter) virtually all its steps (excluding possible validation 

practices) do not take into consideration the activity of multiple units 

(i.e., it is a univariate modeling of brain activity). In-depth reviews 

have been published on the different algorithms that can be used 

(Pereira et al., 2009), the many possible cognitive applications 

(Norman et al., 2006; Tong and Pratte, 2012), the underlying 

hypothesis on neural coding (Serences and Saproo, 2012; Kriegeskorte 

and Kievit, 2013; Haxby et al., 2014), and some of the challenges and 

pitfalls (Davis and Poldrack, 2013; Haynes, 2015). I will here 

introduce the main features of the three approaches: pattern 

classification, pattern correlation and voxel-wise modeling. 

 

4. 2   Pattern Decoding 

This approach relies heavily on supervised machine learning 

models to test the hypotheses at stake. It emphasizes diagnostic 

information that can help discriminate one kind of stimulus/condition 

from another. 

 

Core concepts and key steps 

 The core concept is the search for a function 𝑓(), which takes 

as input X and returns y, where: 

 X, i.e. the brain imaging data (being MEG recordings or fMRI 

scans). X has shape 𝑛 ∗  𝑚 where 𝑛 is the number of samples 
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available (i.e., observations, e.g., beta maps, single trials or 

average thereof), and 𝑚 is the number of features (i.e., individual 

measurable properties, e.g., voxels, sensors); 

 y is a vector of length 𝑛 that assigns to each sample the label 

corresponding to its experimental condition. 

Often, we want to test whether two different conditions (e.g., orange 

stimuli vs yellow stimuli) elicit reliably different patterns of activation 

(see Fig. 37). Thus we would like to assess whether the information in 

the distributed pattern of activation is sufficient to classify a given 

brain scan as belonging to category A (e.g., yellow) or B (e.g., 

orange).  

Two commonly used algorithms to estimate a linear decision 

boundary between the two categories are linear discriminant analysis 

(LDA, (Fisher, 1936)) and linear support vector machines (SVMs, 

(Boser et al., 1992; Cortes and Vapnik, 1995)). LDA projects data 

onto a lower-dimensional space that maximizes class separation, in 

other words identifies projection weights that maximize the between-

class to within-class variance. SVMs focus on the points that are most 

difficult to discriminate (i.e., support vectors) and attempts to draw a 

hyperplane that maximizes the margin, i.e., the distance between the 

hyperplane and the nearest data point from either class. Different 

models are classified according to the loss function they minimize 

(i.e., the function representing the price paid for inaccurate 

predictions). In certain cases, response distributions cannot be 

partitioned sufficiently well using single linear decision boundaries 

and thus nonlinear approaches (e.g., non-linear classifiers and 

multilayer neural networks) can be used (see Fig. 38).  

Models can be extended to accommodate multiple classes, for 

instance if one wishes to classify stimuli as belonging to 3 classes 

(e.g., orange vs yellow vs red stimuli). Any binary classification 

method (e.g. SVMs) can be extended to multiclass classification via 

decomposition into binary classification problems thanks to a schema 

known as “one-vs-rest” (i.e., one classifier is built for each class and 

fit against all the others) and “one-vs-all” (i.e., one classifier is built 

 

 

 

Figure 37 Exemplification of the 
difference between univariate and 
multivariate analyses. The upper panel 
shows two voxels whose univariate 
activation profiles distinguish between 
condition A (yellow items) and B (orange 
items). Specifically, voxel 1 shows high 
BOLD signal for category A and low 
activity for category B; voxel 2 presents 
the opposite pattern.  The middle panel 
introduces a more complex situation in 
which only the multivariate pattern (i.e., 
taking into account both voxels at the 
same time) permits discrimination across 
the two categories. The lower panel 
shows which hyperplane can split the 
data according to the color label. Note 
how the classification is not perfect – the 
error is circled in red (corresponds to the 
carrot in the explicit representation 
above.)  
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for each pair of classes, e.g. red vs yellow, red vs orange, orange vs 

yellow). Sometimes, the different stimuli or experimental conditions 

we would like to compare do not simply belong to different classes, 

but to classes that are ordered, ranked. For instance, if stimuli are 

words or melodies, they can be ranked according to, respectively, how 

many letters and how many tones constitute each of them. Wishing to 

associate different brain recordings to one of the different classes, we 

can exploit multivariate regression approaches. Notwithstanding the 

algebraic nature of the problems (i.e., classification or regression), the 

key steps and the core issues of these methods borrowed from 

machine learning are the same. I will now highlight them.  

 

Feature Selection 

The first decision that has to be made is which data will be fed to the 

classifier. Usually, when analyzing neuroimaging data, high-

dimensional spaces (i.e., having many features), correspond to few 

available data points (i.e., scarse samples), which is problematic when 

wishing to assess statistical significance (the so called “curse of 

dimensionality”). As an example, in a typical fMRI setting the 

features (which determine the dimensionality of the problem) are the 

different voxels selected, and even a small ROI will likely include 

~500 voxels. The data points available are the beta maps one wishes to 

learn from (and test on), which will usually be less than 300 (even if 

each beta map corresponds to a few/one trial). Features thus need to be 

selected and, according to the imaging technique of choice, this will 

involve the spatial dimension (i.e., voxels in fMRI, sensors in MEG) 

as well as the temporal and spectral dimensions (i.e., in MEG 

frequencies and time points should be selected as well). Different 

neuro-cognitive questions should drive the choices, tailoring feature 

selection to the goal of the paradigm. One possibility is the 

implementation of ROI analysis, thus selecting in 

space/time/frequency of clusters of data of interest. In order to avoid 

circularity, such selection should be based on independent 

observations (e.g., thanks to a functional localizer or anatomically 

 

 

Figure 38 Example of the difference 
between a linear and a non-linear 
classifier. The shape classification 
problem can be solved via a linear model 
(upper panel) or a non-linear one (lower 
panel). In this latter case, perfect accuracy 
is reached, but this likely constitutes a 
case of overfitting:  having over-learned 
from the train set, the model will perform 
badly when unseen data are introduced. 
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defined boundaries). Another option for dimensionality reduction is 

that of retaining the best features based on a univariate statistical test 

(e.g., F-test), as long as it is computed on a different contrast with 

respect to the one that will be investigated with decoding (e.g., one 

wishing to discriminate between orange and yellow items, could retain 

all voxels responding to the presentation of any visual stimulus vs 

baseline). Finally, an alternative approach which is now rapidly 

spreading is the application of a searchlight procedure: a sphere of 

arbitrary radius is centered in each and every voxel, essentially 

defining multiple ROIs moving in space (and/or time/frequency). The 

result of the classification is assigned to the voxel at the center of the 

sphere [for review of the results obtained with a searchlight in fMRI 

over the last 10 years see (Woolgar et al., 2016)]. 

 

Cross-validation 

A standard way to estimate the predictive power of a decoding model 

is via cross-validation (or  CV). For each round of CV, data are split in 

two sets and the model is trained (i.e., fit) on one, before being tested 

(i.e., attempted to predict) on the other. After multiple rounds of CV, 

the validation scores (i.e., the performance of the model) are averaged, 

leading to an estimation of the ability of the decoder to generalize to 

unseen data. Different CV schemes can be selected and nested-CV can 

be used to tune specific parameters of the models such as the 

regularization parameter C in SVMs (for a thorough review of CV 

approaches in neuroimaging see Varoquaux et al., 2016). A 

fundamental aspect of CV is that complete independence between 

train and test dataset has to be assured: there should be no leakage of 

information from the train to the test set, a particularly delicate topic 

in neuroimaging (consider for instance the temporal-autocorrelation in 

fMRI). In neuroimaging, a frequently selected CV scheme is Leave-

One-Out, where for each fold data coming from one run are left aside 

as test set. Far from being flawless (Rao et al., 2008; Varoquaux et al., 

2016 ), CV is an essential component of decoding analyses pipelines. 
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Overfitting  

A potential risk in decoding is to over-learn characteristics of the train 

test (i.e., the model describes the noise instead of the real trend), 

resulting in a poor performance once tried on the test set (i.e. 

overreacts to minor fluctuations). The more complex the model (i.e., 

the more parameters are estimated), the more likely it will overfit the 

train set, thus resulting in worse generalization accuracy (see Fig. 38). 

In order to minimize overfitting, the first and best strategy is to test the 

model on unseen data (as done in cross-validation). Other actions 

consist in contrasting the “curse of dimensionality” through feature 

selection (see previous section) and explicitly penalizing excessively 

complex models (i.e. adding a complexity penalty to the loss function, 

e.g. the C parameter in SVMs). 

 

 

Statistical significance of the results 

The performance of a classifier is assessed by comparing it 

against what could have been achieved by pure chance. In a binary 

classification test (i.e., class A vs class B), assuming accuracy as the 

score function, theoretical chance level lies at 50%, provided the two 

classes are equally likely. Similarly, in a 4 class classification test it 

lies at 25%, while in a regression test it is close to 0 (with r
2
 as score 

function). In principle, the performance of the classifier could then be 

compared (for instance with a t-test) against this theoretical chance 

level. However, given the numerous assumptions underlying 

parametric tests (e.g., normality of the distribution, homogeneity of 

variance, and independence of the samples), non-parametric tests 

should be preferred whenever possible. For instance, with permutation 

testing, the distribution of scores that would be obtained under the null 

hypothesis can be estimated from the data by randomly permuting the 

labels. Then the original, true score can be compared against the 

dataset specific, estimated null distribution, determining the 

probability that it was obtained by chance, and thus potentially 

allowing rejection of the null hypothesis. Permutation tests have 
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proven to be more valid than binomial or t- tests (Nichols and Holmes, 

2002; Schreiber and Krekelberg, 2013; Stelzer et al., 2013). Especially 

when in presence of unbalanced classes (i.e., more samples are 

available for a given class, for instance orange stimuli are more 

frequent than yellow ones), receiver-operating curve (ROC) analysis 

might be preferred as a test statistic, having the advantage of being 

less computationally expensive than permutations while protecting 

from biased results due to unbalanced labels in the test set. In this 

case, results are summarized as area under the curve (AUC), where a 

value of 50% implies that true positive predictions (e.g. orange stimuli 

predicted as orange) and false positive predictions (e.g. yellow stimuli 

predicted as orange) are equally probable.  

 

Interpretations and implications 

What can we conclude on brain functions if we can decode a 

property of a stimulus (e.g., whether it represents a fruit or a 

vegetable) from a given brain area, at a given time point? Certainly, 

successful decoding implies that, pooling together all the selected 

units (being voxels, sensors, time points, etc…), there is enough 

information in the resulting pattern of brain activity to be able to 

classify the stimuli according to the labels we provided.  However, as 

in the standard univariate activation detection setting, this does not 

necessarily imply that the information (present at that time point in 

that area) is either necessary or sufficient to support the cognitive task 

performed by the subject (or the cognitive representation involved). 

Moreover, as always, negative results of decoding are hard to 

interpret: not being able to decode information from a certain brain 

area, at a certain time point, could be due to lack of sensitivity, for 

instance because of low signal-to-noise ratio. Finally, decoders are by 

construction powerful tools exploiting any bias that can enable the 

required discrimination: they are thus extremely sensitive to any factor 

that co-varies with the stimulus features that we are trying to decode 

(and experimental conditions at large) (see Fig. 39). As will be 

discussed later, other multivariate approaches do not suffer from this 

 

 

 

Figure 39 Example of confusions 
between covarying factors. The same 
neural representation (upper panel) can 
be used to decode other information 
about the stimuli such as their conceptual 
categorization as vegetables or fruits 
(middle panel), or their shape, round or 
elongated (lower panel). Categorization 
errors are circled in red. Note how the 
hyperplane changes to accomplish the 
different classification tasks. 
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ambiguity, as they rely on explicit models of the representation 

(Naselaris and Kay, 2015).  

 

History and examples  

As I have mentioned in the first chapter, pattern classification 

has been used since the early 2000s to decode information from brain 

activity on, for instance, visual stimuli orientation (Haynes and Rees, 

2005; Kamitani and Tong, 2005), category (Haxby et al., 2001; Cox 

and Savoy, 2003) and exemplars (Eger et al., 2008). Moreover, it has 

been applied to higher order cognitive processes and functions such as 

numerical cognition (Eger et al., 2009; Eger et al., 2015), short term 

memory and enumeration (Knops et al., 2014), mental arithmetic 

(Knops et al., 2009), and word meaning across languages (Buchweitz 

et al., 2012). Similarly, in the MEG setting, first results concerned low 

level sensory-motor processes (Waldert et al., 2008; Carlson et al., 

2011; Ramkumar et al., 2013), then, more recently, higher level 

representations of motion (Tucciarelli et al., 2015). Recent key 

findings include the detection of responses to novelty even in non-

communicative patients (King et al., 2013) and the maintenance of 

seen and unseen information (King et al., 2016). Finally, it appears 

that decoding can push the spatial resolution of MEG: information 

available at the level of cortical columns (e.g., edges orientation) can 

be extracted with multivariate analyses of M/EEG signals (Cichy et 

al., 2015). 

 

Criticism and future directions 

As hinted at before, when attempting to investigate neural 

representations with classification techniques, one of the main issues 

is that of correlated variables. It is implicitly assumed that the decoded 

features are independent (e.g., being a fruit or a vegetable, being 

yellow or orange). However, this is clearly false, as often features are 

related. For instance, consider the case of size and grip type:  very 

small items are also the ones you can handle with a precision grip, 

while larger ones are handled with a power grip. While using 
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decoding one might discriminate between “small” and “large” tools, it 

is possible that in fact the decoder is using information from a brain 

region that is not coding for size, but rather gripping type. 

Furthermore, this relationship takes the form of nested structures: for 

instance, while classifying wild animals, domesticated animals, house 

tools and gardening tools, two layers are nested one in the other: only 

animals can be wild or domesticated, only tools belong to the house or 

the garden. For a recent example of how this issue can be tackled via 

hierarchical logistic regression (i.e., a combination of multiple logistic 

regression models) see (Huth et al., 2016a).  

When linear classifiers are used, the weight associated with 

each unit directly reflects its contribution to the classification result, 

thus it is possible to plot weight maps illustrating which units have 

been considered relevant by the classifier. However it should be 

noticed that only the performance of the classifier (as a whole) is 

statistically tested against chance level, no inference on the 

contribution of single units can be drawn. One possible way out is to 

re-evaluate the classifier, for instance after the exclusion of certain 

units to detect a possible decrease in performance (Pereira et al., 2009; 

Haynes, 2015). Recent efforts to increase neurophysiological 

interpretability of the recovered weights include attempts to recover  

more stable weights (Hoyos-Idrobo et al., 2015), and conversion of the 

backward model extraction filters (linear decoding weights) into 

activation patterns of the corresponding forward model (Haufe et al., 

2014). 

Finally, for time resolved techniques (M/EEG), brain 

dynamics can be explored with the temporal generalization method 

which offers the possibility to distinguish serial from parallel 

processes, continuous flow from discrete stages (King and Dehaene, 

2014). Generalization across time is tested by training a classifier at 

each time point (e.g., t1) and testing it on all other time points (e.g., 

t1,t2,t3, etc…). Successful performance suggests the presence of 

representational codes which are stable in time. Similarly, 

generalization across conditions can be attempted: the classifier 
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trained to discriminate between two conditions (e.g., seeing orange vs 

yellow items) is tested on data from two other conditions (e.g., 

imagining orange vs yellow items). However, generalization is a weak 

logical control as SVMs, purely discriminant models, do not fit the 

variance in the data (i.e., there is no estimate of the amount of 

variance explained). In other words, the classification can be driven by 

purely incidental factors which might differ from one condition/time 

point to the other. 

Finally, the main issue regards the under-specification of the 

underlying representational space: often the cognitive question one is 

exploring requires a finer description than the coarse binary 

discrimination provided by categorical classification. To better 

describe the representational space, two possible solutions can be used 

as a proxy for more explicit models (such as RSA and encoding, see 

next paragraphs):  

 single pair-wise item classification can be performed, where 

accuracy scores can be used as a measure of the distance between 

items in the representational space (i.e., the harder it is to 

discriminate between two items, the closer they are) (Weber et al., 

2009; Cichy et al., 2014); 

 confusion matrices from one-versus-rest multiclass classifications 

can be analyzed, again under the assumption that the harder the 

classification problem (i.e., the lower the accuracy score) the 

closer in representational space the classes are (n.b., one-versus-all 

method where one classifier is built for each pair of classes would 

lead to the same result as above). 

 

4. 3   Pattern Geometry 

Significant decoding accuracy of particular classes in a given 

brain region only provides evidence that there is enough information 

to detect a difference among them. It does not entail that the neural 

representational space recovered from that region corresponds to a 

relevant cognitive one. The goal of Representational Similarity 
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Analyses (or RSA) is that of investigating the representational content 

of an area providing a principled way to test how well specific 

computational/behavioral models fit with the distributed activity 

pattern observed. RSA tests whether the similarity between the brain 

responses to different stimuli (e.g., similarities between beta maps) 

matches the similarity between the stimuli themselves as estimated 

with behavioral measures (e.g., subjects’ perceptual judgements) 

and/or thanks to specific cognitive/computational models.  

 

Core concepts and key steps 

The first step is the computation of similarities (or 

dissimilarities) among distributed brain activations. In principle, any 

distance measure can be used (e.g., Pearson product moment 

correlation, Spearman rank-order correlation) as the goal is purely the 

description of the representational geometry of the area investigated. 

Neural similarity matrices can be derived from virtually any source of 

brain activity data: brain maps from fMRI, brain signals in M/EEG, 

intracranial recordings, etc…Once the neural features have been 

selected (e.g., set of beta maps in a given areas), their pairwise 

similarities are estimated (for instance, they are correlated across 

experimental conditions) resulting in a similarity matrix (see Fig. 40). 

The process can be repeated multiple times, i.e. across different 

spatio-temporal ROIs and/or in a searchlight fashion (Su et al., 2012). 

Then, these neural representational spaces (expressed in terms 

of neural similarities or dissimilarities, 1-similarity) can be compared 

with the cognitive, psychological or perceptual space(s) that can be 

derived from behavioral data or modeled based on known, salient, 

characteristics of the stimuli. For instance, predicted similarity 

matrices can be built considering semantic features of the stimuli: 

perceptual attributes such as color and shape, as well as conceptual 

attributes such as the taxonomic category (see Fig 41). 
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The proximity/similarity between the two representational 

spaces -the neural and the predicted ones - can be assessed and 

compared across brain areas and across models. Note how different 

neural matrices, derived from very diverse techniques (imaging, 

behavioral measures and computational models) can be directly 

compared and integrated (Cichy et al., 2014), even across species 

(Kriegeskorte et al., 2008b), thus bridging the gap between different 

neuroscientific tools (Kriegeskorte et al., 2008a; Mur et al., 2013). 

Figure 40 Schematic representation of how to build neural similarity matrices from fMRI/MEG. In the case of fMRI, neural similarity 
matrices are computed estimating the proximity (e.g., via correlation) among voxels, and one can obtain a similarity matrix for each region of 
interest (ROI). Thanks to a searchlight, one sphere can be centered on each voxel and one small ROI can be draw around each of them, 
leading to a whole brain map where each voxels contains the neural similarity matrix of the corresponding spherical ROI. With MEG data, we 
have at least two options. First, time-resolved matrices can be obtained computing similarities across all sensors at each time point, e.g., 
building one matrix for each time point by computing the correlation of the different experimental conditions across sensors. Second, space-
resolved matrices can be obtained computing similarities across all time points for each sensor, i.e., building one matrix for each sensor by 
computing the correlation of the different experimental conditions across time points. As for fMRI, different ROIs can be selected and a  
searchlight can be used to explore a wider portion of the data. Contrary to fMRI though, the selection does not concern only the spatial 
information (which sensors?), but also the time (which time points?), and the spectral domain (which frequencies?). 
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Statistical significance of the results  

Early studies relied on parametric testing, for instance the 

correlation scores obtained were z-scored and then tested against zero 

using one-sample t tests with participants as a random factor.  

However, as observed in the case of pattern classification, parametric 

testing of the null hypothesis (i.e., the correlation between the 

predicted and the neural matrices is zero) relies on rigid assumptions 

likely not met by brain imaging data. 

Appropriate statistical inference can be performed, for 

instance, by means of randomization testing. Randomly permuting the 

stimulus labels (i.e., reordering rows and columns of the similarity 

matrices) for a sufficient number of times one can simulate the null 

distribution. With 1.000 permutations, if none of the permuted results 

 

Figure 41 Schematic representation of how to build predicted similarity matrices. The chosen stimuli can be compared along different 
dimensions. Pairwise comparison for color will lead to a similarity matrix that expresses how similar the items are concerning that particular 
visual feature (upper row). Similarly, one can compare stimulus shapes (middle row) or their conceptual categorization (lower row). The 
three comparisons will lead to three different predicted matrices. To simplify the exposition, we are presenting fictional dichotomous 
situations (e.g., stimuli can be either orange OR yellow), but RSA is typically used in continuous circumstances (e.g., asking subjects to rate 
the “yellowness” of all the stimuli, thus building a graded representation of the color space, faithful to subject’s perception.  
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exceeds the true score, the smallest possible p-value is 0.001 (1/1000). 

In other words, If the correlation for correctly labeled matrices falls 

within the top  % of the simulated null distribution, the null 

hypothesis can be rejected with a p-value of . 

Ideally, one would also benefit from the estimation of how 

fully the model tested (i.e., the predicted matrix) explains the data, 

aiming at determining the amount of non-noise variance left 

unexplained. To this end, authors have suggested the computation of 

the noise ceiling whose upper bound expresses the highest accuracy 

any model can achieve, while the lower bound represents the minimal 

expected correlation of a good model (Nili et al., 2014; Khaligh-

Razavi et al., 2016). The upper bound can be approximated by the 

correlation between the average neural matrix across all subjects and 

the subject specific matrices (thus it is overfitted to the single subject 

ones). The lower bound can be estimated thanks to a leave-one-

subject-out approach, computing each single-subject matrix 

correlation with the average of the other subjects.  

 

Interpretations and implications 

Pattern decoding offers an insight into which information in a 

given brain area (at a given time point) is amenable to (linear) readout. 

RSA additionally sheds light into the representational geometry 

which, in principle, can vary across regions (and time points) even if 

the decoding accuracies are the same (Kriegeskorte and Kievit, 2013). 

For instance, it has been proven that while decoding the color of a set 

of stimuli from neural activity, the highest accuracy scores are reached 

in V1. However, in this region the representational space is 

dramatically different from the perceptual space: the similarity in 

neuronal patterns did not match the similarity in the perceptual space. 

Contrarily, in V4 perceptually similar colors evoked the most similar 

responses, if yielding a lower decoding score (Brouwer and Heeger, 

2009). 
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History and examples  

RSA has been formalized by (Kriegeskorte et al., 2008a) and it 

stems from antecedents such as correlation-based classification and 

the analyses of the geometries of representational spaces. Since 

(Haxby et al., 2001), the comparison of correlations has been used as a 

way to classify brain data as belonging to one category or the other. 

(Edelman et al., 1998) showed that the perceptual judgement of 

similarities among visually presented objects can be compared with 

the similarities of what they called “the voxel-space representation”, 

i.e., the neural similarity matrix.   

RSA has now been widely adopted in both fMRI and MEG 

settings to study cognitive representations spanning different domains 

(for a review see Kriegeskorte and Kievit, 2013). In fMRI, some 

noteworthy findings include subjects’ specific idiosyncrasies in the 

perception of similarities among objects (Charest et al., 2014), 

memory consolidation (i.e., fear learning) expressed as changes in 

neural patterns (Visser et al., 2013), the representation of sound 

categories above and beyond low-level feature models (Giordano et 

al., 2013), and the detection of fine-grained emotional distinctions not 

reducible to affective primitives such as valence and arousal (Skerry 

and Saxe, 2015). Efforts with MEG data include the investigation of 

the temporal dynamic similarities during processing of  visual stimuli 

(Wardle et al., 2016), syntactic ambiguities (Tyler et al., 2013), and 

communicative gestures (Redcay and Carlson, 2015). 

As mentioned above, RSA offers the unique opportunity of 

being able to correlate neural representational distances to behavioral 

measures such as subjects’ reaction times (e.g., Carlson et al., 2014), 

as well as to computational measures such as those retrieved from 

appropriately trained deep neural networks (e.g., Cichy et al., 2016b). 

Finally, fMRI and MEG data can be directly compared (Cichy et al., 

2014) and used conjonitly after being combined in one metric (Cichy 

et al., 2016a). 
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Criticisms and future directions 

The main issue with RSA is that the development and 

assessment of correct methodological choices is still undergoing. One 

open question concerns which class of dissimilarity measure should be 

preferred. Comparing classification accuracy, Euclidean/Mahalanobis 

distance, and Pearson correlation distance, (Walther et al., 2016) 

showed that (1) continuous dissimilarity measures (e.g., Euclidean 

distance) are substantially more reliable than classification accuracy, 

(2) performance can be improved by assuring that noise is isotropic or 

making it so by spatial pre-whitening, (3) crossvalidated Mahalanobis 

distance has the advantage of offering a meaningful zero point and 

interpretable ratios between distances. A second, related, dispute is 

which statistical testing should be adopted with respect to the chosen 

distance metric in order to avoid inflation of false positives. For 

instance, it has been shown that with correlations, the rate of false 

positives greatly increases when data are not independent and 

identically distributed (i.e., noise is heteroscedastic) even when 

permutation testing is performed (Thirion et al., 2015).  

Compared to pattern classification, pattern correlation 

techniques offer the possibility of explicitly studying the 

representational space. However, they do not offer the possibility of 

investigating single voxel “tuning curves” (given the intrinsic 

multivariate nature), nor the chance of predicting how new stimuli and 

conditions would be represented (not being a generative model). One 

possible solution is to adopt a hybrid approach exploiting some of the 

key features of voxel-wise modeling (see next paragraphs) (Khaligh-

Razavi et al., 2016; Kriegeskorte and Diedrichsen, 2016) 

 

 

 

 

 

 

 



161 
 

4.4   Pattern Encoding 

We have seen that decoding (i.e., pattern classification or 

regression), aims at predicting the stimuli given the recorded brain 

activity, 𝑓: 𝑋 → 𝑦. The reverse direction of inference can be attempt: 

is it possible to predict brain activation given an accurate-enough 

description of the stimuli,  𝑔: 𝑦 → 𝑋 (see Fig. 42)? On one hand, 

decoding, i.e. the backward model, allows the mapping between 

stimuli (features) and brain activation (patterns), focusing on 

discriminative information, without further specification (latent 

features space, black box). On the other hand, encoding, i.e., the 

forward model, specify the principles (or intervening variables) that 

mediate the mapping, thus making it possible to predict the activation 

pattern for new stimuli (hence the name generative/predictive model). 

 

Core concepts and key steps 

Encoding models have been mostly applied to fMRI data (i.e. 

voxel-wise modeling), and in the following description of the method 

I will refer to that setting, considering voxels as the smallest units of 

brain recorded activity on which the analyses are carried on. However, 

applications to MEG data are possible, as we will see later. 

First, stimuli need to be described (i.e., labeled) with the 

appropriate features according to the question at stake. For instance, 

words can be labeled according to semantic features, whether 

behaviorally collected or extracted from corpora. Second, in a portion 

of the dataset, a regularized linear regression (e.g., ridge regression) is 

used to estimate for each voxel the relative effect (weights) of each 

feature. Third, such weights are used to predict the responses to the 

held out data. Finally, one can compute the correlation between the 

predicted and the actual responses for each voxel.  
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Statistical significance of the results 

To evaluate the performance of the encoding model (i.e., 

whether a voxel was predicted significantly above chance level) 

permutation based or bootstrap procedures can be used. Under the null 

hypothesis, predicted and actual responses should not be correlated.  

Frequently, a decoding step (multivariate) follows the 

prediction step (univariate). Voxels whose responses are predicted 

accurately by the model can be fed to a classifier testing for 

discriminative information.  

 

Interpretations and implications 

It should be noticed that both the model fitting and the 

following prediction are done at the voxel level, which leads to two 

Figure 42 Difference between decoding and encoding. Both approaches start by splitting the data in a train and a test set. In the case of 
decoding (upper panel), what is learned during the train phase is the relation between the brain activation patterns (data) and the 
experimental conditions (labels). In the case of encoding (lower panel), what is learned is the relation between the provided descriptors of 
the stimuli (features) and the brain activation patterns (data). Note the key difference during the crucial test phase: in the decoding setting 
what is observed is the brain activation data and what is predicted is the experimental label, while in the encoding setting what is observed is 
the feature set and what is predicted are the brain activations. 
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consequences. On one hand, it allows the study of the “tuning curve” 

of single voxels. On the other hand, it constrains neuroscientific 

interpretations to voxel resolution. In a second step, the predicted 

responses can be fed to a classifier if one wishes to investigate the 

information contained in the multivoxel pattern of activity of a certain 

area. 

The main advantage of encoding models is their generative 

nature. They allow prediction on brain responses to new stimuli (e.g., 

unseen images or words) as long as they can be described by the 

features the model has learned (e.g., semantic properties). This 

generalization power enables the study of complex stimulus sets (even 

under naturalistic circumstances), alleviating the cost of multiple 

iterations over highly selected and controlled stimuli (required when 

aiming at mapping broad stimulus spaces). 

 

History and main results  

The possibility of moving beyond stimulus classification and 

perform stimulus reconstruction was demonstrated by pivotal 

experiments with retinotopy (Thirion et al., 2006) and simple visual 

stimuli, such as geometric or alphabetic shapes (Miyawaki et al., 

2008), handwritten digits (Van Gerven et al., 2010) or characters 

(Schoenmakers et al., 2013). Subsequently, prediction of the semantic 

content of word-picture pairs (Mitchell et al., 2008), as well as natural 

image identification (Kay et al., 2008) and reconstruction (Naselaris et 

al., 2009) were successfully performed. Finally, dynamic visual 

stimuli (i.e., short movies) were tackled in terms of their motion 

energy properties (Nishimoto et al., 2011) as well as semantic features 

(Huth et al., 2012). The latest development was the investigation of 

whole brain cortical responses to natural speech (Huth et al., 2016b).  

Encoding models have been used to study, for instance, the 

categorical organization of visual areas in naturalistic circumstances, 

illustrating that the animate vs inanimate contrast might be more 

spatially smooth than previously thought (Naselaris et al., 2012). 

Moreover, they have shown that co-occurrence statistics in the real 
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world can explain the representation of complex visual scenes in 

visual cortex (Stansbury et al., 2013). The most compelling results is 

perhaps the observation of how attention can cause a tuning shift that 

alters the representation of the stimuli according to which category is 

being attended to (Cukur et al., 2013).  

Finally, the voxel-wise encoding approach here presented can 

be adapted to an MEG setting as illustrated by (Clarke et al., 2015). 

Being interested in the differential contribution of low level and 

semantic features to the temporal dynamics of object processing, they 

followed the two classical steps: (1) fitting of the different models 

with non-regularized multiple linear regression, (2) prediction of the 

signal for unseen stimuli and attempt to classify them. They were able 

to show that performance after 200 ms significantly increases when 

semantic features are taken into account. 

 

Criticisms and future directions 

Two interrelated aspects of voxel-wise encoding models 

should be highlighted. First, by definition, the model operates (i.e., 

aims at fitting and predicting) at the voxel level. This means that 

stimuli/conditions should be modeled according to features whose 

combination has, presumably, an impact at the single voxel level. 

Such a constraint works well for perceptual representations, where 

low level features are known, or can be fairly easily estimated/derived 

from computational models. A similar modeling is way harder in case 

of higher order representations lacking such a detailed level of 

description.  

Hence, the second issue concerns the interpretability of 

encoding results aiming at describing the cortical organization of 

complex naturalistic stimuli (for instance spoken or written words) on 

the basis of data-driven features. For an example of an attempt to 

recover distributed activation patterns associated with interpretable 

sensory-motor features see  (Fernandino et al., 2015). 

 



165 
 

4.5   Discussion 

Over the last twenty years, cognitive neuroscience has 

witnessed a progressive shift of interest from univariate activation-

based approaches to multivariate information-based ones. Classically, 

engagement of a given brain area, at a given time, is taken as a sign of 

its involvement in a particular cognitive process or representation. 

However, current debates among cognitive theories require more in-

depth descriptions of what it means for one area (or network thereof) 

to be recruited during a particular task. MVPA can shed light onto the 

information carried by distributed patterns of activity in terms of both 

what can be decoded from them, and which representational geometry 

they describe. At the beginning of the chapter I mentioned the tradeoff 

between temporal and spatial resolution any researcher in cognitive 

neuroscience needs to face. The triangle is closed by a third key issue: 

that of conceptual resolution
2
, greatly improved by multivariate 

analyses. MVPA broadens the set of hypotheses that can be 

empirically tested, for instance, allowing the investigation of whether 

a certain cognitive disorder is due to impaired access or to degraded 

representations (e.g., Boets et al., 2013). 

 

However, some open questions and pressing issues concern all 

multivariate analyses techniques here reviewed, and will now be 

discussed. First, when testing multiple ROIs, results should be 

corrected for multiple comparisons. This matter becomes particularly 

relevant when a searchlight is used, as the number of ROIs equals the 

numbers of voxels within the chosen brain mask (fMRI), and/or the 

number of time points and frequency bands selected (MEG). 

Problematic for a searchlight is also the choice of the sphere’s radius, 

which will determine spatial, temporal, and/or frequency resolution 

according to the kind of data analyzed. Theoretically speaking, one 

should make a principled decision based on the prior on the sparsity of 

the representation. How broad is it reasonable to think the pattern will 

                                                           
2 term adopted by Op de Beeck @ PRNI2016 
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be? While for some representations accurate predictions are possible 

(e.g., low level visual information in V1), for others there is little 

evidence guiding the guess of the corresponding sparsity. Moreover, 

when facing a comparison between different factors (e.g., testing for 

different semantic features), it is plausible that they will be 

represented at a different granularity scale. Virtually, researchers 

could compare the effects of many different spheres’ radii, but overall 

a searchlight would be best considered an exploratory tool, which 

needs to be backed up by confirmatory tests (Etzel et al., 2013). 

Second, while univariate group tests control for potential 

confounds (e.g., faulty randomization across subjects) as the sign of 

the effect would be randomly distributed across subjects, such 

confounds could drive the performance of MVPA group-level tests as 

these are usually based on single-subject summary statistics, which 

discards the sign/direction of the effects (Todd et al., 2013). For a 

discussion on how to deal with these potential confounds such as 

reaction time differences, see also (Woolgar et al., 2014). Overall, the 

heightened sensitivity of the methods calls for a careful design of the 

experimental setting and cautious interpretation of the results. 

Multivariate methods are highly opportunistic (i.e., will exploit any 

available bias in the data), thus extra attention should be paid to 

stimuli selection and randomization, tasks balance in terms of 

cognitive load, and any other potential source of cognitive confound.  

Third, even if it is generally acknowledged that multivariate 

methods offer higher sensitivity than univariate ones, 

neurophysiological evidence suggests to lighten the conclusions on 

MVPA power to detect fine-scale informational content of brain 

regions (Kriegeskorte and Bandettini, 2007). As a matter of fact, it has 

been shown that effects recorded at the single cell level might be 

missed by MVPA: unsurprisingly, stimulus aspects that are poorly 

spatially clustered are intrinsically hard to decode from the BOLD 

response (Dubois et al., 2015). While the advantages of the multi-units 

analyses are clear, claims on sub-unit resolution of MVPA should be 

scaled down. 
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Fourth, comparisons of the results of univariate and 

multivariate analyses have been conducted. Authors suggested that 

univariate regional averages might denote the engagement of basic, 

core processing due to the task, while MVPA likely detects 

representational content, sub-processes differentiating across stimuli 

(Jimura and Poldrack, 2012). However, an interpretation of the 

dimensionality of the representation cannot be supported by MVPA 

analysis alone: a unidimensional representational space would still be 

appreciated only by MVPA if highly variable across subjects and 

highly consistent within subjects (Davis et al., 2014). The take-home 

message is that univariate and multivariate analyses provide 

complementary answers as they tackle complementary issues: the 

choice should depend on the cognitive hypothesis one wishes to test. 

Moreover, if aiming at understanding the relative contributions of 

multi-voxel and univariate sources of information, careful exploration 

of the plausible alternative explanations should be conducted 

(Coutanche, 2013). 

 

Generally speaking, univariate and multivariate analyses share 

one core assumption: overall consistency of the functional 

specialization of cortical areas across subjects. This universality 

assumption (key to classic cognitive neuroscience as well (Caramazza 

and Coltheart, 2006)) is at the core of both forward (Henson, 2006) 

and reverse (Poldrack, 2006) inference. In an information-based 

setting, as feature correspondence across brains is virtually 

impossible, usually new multivariate models are fitted and tested for 

each subject’s brain. Aiming at building a general model of the 

representational space, relying on a common set of response-tuning 

functions, a new method (called hyperalignment), has been 

introduced. It aligns patterns of neural responses across subjects into a 

common, high-dimensional space in a given ROI (Haxby et al., 2011) 

or whole brain thanks to a searchlight procedure (Guntupalli et al., 

2016). Instead of working on a common cortical topography, one is 

thus dealing with a common representational space.  
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It should be stressed that none of the methods here presented 

permits causal inferences: they can, at best, suggest a representational 

function (for a Bayesian account of the causal power of multivariate 

analyses, according to the direction of the inference and the general 

setting, see Weichwald et al., 2015). Only lesion studies (whether real 

ones in patients or virtual ones temporarily simulated with 

neuromodulation techniques
3
) can demonstrate whether a given brain 

region is causally involved in a cognitive process/representation (and 

when so). Moreover, even if attention is shifted from univariate data 

points to multivariate patterns, basic shortcomings of fMRI and MEG 

apply to MVPA setting as well. It would be impossible to appreciate 

any representation coded in ways that do not relate to BOLD 

responses or to detectable magnetic effects. As an example consider 

temporally demanding coding schemes such as burstiness coding or 

synchronous firing, and representations coded as within (e.g. 

differential weights in membrane potentials) or across (e.g., functional 

connectivity) neuron changes (for instance compare synaptic and 

connectivity accounts of working memory (Mongillo et al., 2008; 

Stokes, 2015)). The mirror observation holds as well, given the 

observation that stable representations are possible despite activity 

variations: not every change in neuronal activity corresponds to a 

change in the stimulus representation (Druckmann and Chklovskii, 

2012). 

 

I have briefly mentioned that from a neuro-cognitive point of 

view, the ideal method would combine the main advantages of 

encoding and RSA. On one hand, a generative model would allow 

generalization to new stimuli and study of tuning curves. On the other 

hand, the higher order summary statistics provided by RSA enables 

                                                           
3 Non-invasive brain stimulation techniques include: transcranial magnetic stimulation (TMS), 

transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and 

transcranial random noise stimulation (tRNS). 
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the comparison of geometries across different models. Current 

developments of RSA such as probabilistic RSA (Kriegeskorte and 

Diedrichsen, 2016) and mixed RSA  (Khaligh-Razavi et al., 2016) are 

going precisely in this direction. The need for explicit models of the 

representational spaces, such as those provided by RSA and encoding, 

has been recently highlighted by (Naselaris and Kay, 2015) while 

reviewing the three kinds of ambiguities faced by MVPA research. 

First, geometrical ambiguity is due to the fact that the activity patterns 

(multivariate vectors) can be discriminated thanks to a difference in 

length (overall activation, detected by univariate analyses too) or 

orientation (actual geometry of the representation, captured only by 

MVPA). As previously stressed, this observation calls for in-depth 

comparison of univariate and multivariate results before theoretical 

conclusions are drawn. Second, spatial ambiguity is linked with the 

dangerous interpretation of model weights and to the shortcoming of 

searchlight analyses detailed earlier. This opacity will be minimal in 

those settings where opposite theories, making clear topographical 

predictions, are directly compared, especially if ROIs can be defined 

via functional localizers. Third, representational ambiguity originates 

from the difficulty to establish which features of the stimuli are 

driving the performance of the multi-variate model. Highly controlled 

experiments can help ensure alternative features do not correlate with 

the one under investigation; however performance of multivariate 

methods relying on latent feature representations (i.e., decoding) could 

still be heavily biased. A possible solution is to test and compare 

explicit models of the representations via encoding or RSA. While 

first critical observations focused on the importance for multivariate 

models to be biologically plausible (for instance   advocating for the 

use of linear models (DiCarlo and Cox, 2007)), current theoretical 

remarks highlight the need for psychologically plausible models: to 

evaluate multivariate results and fruitfully exploit them to understand 

the mind-brain link, one needs to observe a link with behavioral 

performance (Williams et al., 2007; Ritchie and Carlson, 2016) and 

study how multiple channels (not just BOLD-fMRI) interact.  
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Finally, two topics deserve to be highlighted: the concept of 

information and the metaphor of the brain as its own decoder. From an 

information theory point of view, we as researchers are not on the 

receiving end of the flux of information within the brain, other brain 

areas are (de-Wit et al., 2016). It should not be taken for granted that 

the pattern of activity that enables successful classification (i.e., we 

are the receivers) is actually used by the rest of the brain to perform a 

task or represent a stimulus (i.e., the cortex is the receiver).  

Moreover, the frequent assimilation of the brain to a decoder, 

leads to stimulating questions (many of which already spelled out in 

(King and Dehaene, 2014): as the brain has all the information 

available at the same time, should we give up localization attempts? If 

not, how spread out should the population of interest be? Does the 

brain suffer from overfitting issues, and if so, does it use 

regularization or penalization schemes? Does the brain suffer from a 

“curse of dimensionality”, and if so, how are feature selected / how 

many data points are needed? Does the information need to be 

explicitly read out, such that linearity becomes a biological constraint? 

Nonlinear methods are spreading, for instance one rapidly rising 

approach is the integration of neuroscience and representation-

learning methods such as deep learning (i.e.,  fed with raw data, the 

machine automatically discover the representations needed for 

classification, thanks to multiple non-linear modules that transform 

the initial input into progressively more abstract levels (LeCun et al., 

2015)). This perspective might be useful in deepening our 

understanding of information processing in the brain (Kriegeskorte, 

2015; Marblestone et al., 2016), especially in the case of sensory 

cortices (Eickenberg et al., 2016; Yamins and DiCarlo, 2016). 

 

To conclude, we have seen that there are different types of 

pattern-information techniques (supported by different mathematical 

frameworks), but their neuroscientific implications are overlapping. 

The direction of the model (i.e., from the brain response to the 
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stimulus set or vice-versa) is irrelevant: what the success of these 

methods is indicating is a statistical dependency (i.e. the presence of 

mutual information) between stimuli and brain response pattern. The 

differences across methods and studies, to be kept in mind while 

evaluating their conclusions and the implications, are: 

1. the degree of generalization (i.e., are there implications for novel 

stimuli or a different types of mental states?); 

2. the stimulus-space complexity (i.e., does the method scale to 

higher dimensional feature spaces?);  

3. how explicit is the description of the relation linking brain activity 

and stimulus features.  

 

5.   Conclusions 

 

 The behavioral and neuroimaging methods here presented are 

a non-exhaustive excursus of the methodologies available to 

contemporary cognitive neuroscientists, all of which have specific 

advantages and disadvantages. Notwithstanding the constant technical 

and mathematical progress that is pushing them forward, it is likely 

that no method will ever be intrinsically either better or sufficient on 

its own to explore the neural substrate of semantic knowledge (or any 

other high order cognitive function).  The election of one method over 

the others should always be based on the theoretical questions one 

wishes to answer, tailoring any operational and statistical choice on 

the variables at stake. Overall, behavioral and neuropsychological data 

will keep providing fundamental insights on the mind-brain relation, 

suggesting new theories. Neuroanatomical data will contribute with 

additional, critical biological constraints. Finally, computational 

models along with all imaging techniques will serve to tests the 

hypothesis derived from the formal theories. 

 

Concerning neuroimaging research, recently general 

methodological concerns have been highlighted and some 
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solutions/good practiced suggested: low statistical power, 

uncontrolled analytic flexibility, multiple comparison issues, potential 

software errors, insufficient study reporting and lack of independent 

replications (Poldrack et al., 2016). It is worth noticing that these 

matters apply to all kinds of neuroscientific research and ultimately to 

science in general. Similarly, the reproducibility crisis in 

psychological sciences emphasized last year (Open Science, 2015) 

concerns many (all?) fields, not only experimental psychology. 

Overall, authors are manifesting the need to change the reward system 

and the scientific culture at large (Wiener et al., 2016), encouraging 

practices of data and code sharing, open review and open access 

publishing. As a minimal example of how this would greatly benefit 

the field, consider that sharing data and code would not only ease 

reproducibility, but also improve overall quality, as software is not 

flawless and debugging would be greatly strengthened by independent 

iterations over the code (Eklund, 2016). 

 

Progress will come from the interplay of data-driven studies 

with naturalistic stimuli and theory-driven studies with controlled 

stimuli. The first ones, by spanning vast representational spaces, will 

provide us with observations crucial to develop new theories; the 

second ones, will afford the opportunity to test explicit hypotheses on 

the geometries of those spaces. It is important to notice that purely 

mapping approaches, aiming at describing connections and activations 

devoid of the inferential power that come from comparing different 

predictions, would be useless in the study of the mind-brain relation. 

As recently illustrated (Jonas and Kording, 2016), even knowing all 

the details of the hardware (neural level), the software (cognitive 

level) would represent a mystery if neuroscientific methods are 

applied blindly and the correct questions (testing appropriate theories) 

are not asked. Throughout this chapter, I have dealt with the question 

of how we can investigate neural and cognitive representations. 

Attempting to answer such a query one faces a deeper related issue: 

what does it mean to understand a system such as the brain? More or 
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less explicitly, I adopted the interpretation of understanding a system 

as “being able to fix it”. A completely different perspective is that of 

understanding as “being able to reproduce”. Do you recall our broken 

television? As a cognitive neuropsychologist, I mentioned my interest 

in knowing what, where and when it was broken, aiming at fixing it. A 

computer scientist interested in artificial intelligence would perhaps 

aim at replicating the properties of the systems (more than knowing 

how to improve them in case of flaws). Consequentially, he/she would 

be happy with any model succeeding in imitating the performance of 

the original system, irrespective of whether it provides an explicit 

answer to the key questions we explored in the Chap. 1: what, where, 

when and how. 

 

Given the complexity of the hypotheses tested by this thesis, 

work has been conducted along the three different axes here detailed: 

 behavioral testing in order to deepen our understanding of the 

perceptual and conceptual dimensions organizing the cognitive 

semantic space, and to test the automaticity of their access (Chap. 

3);  

 an fMRI experiment to shed light onto the neural topographical 

organization of the different semantic dimensions investigated 

(Chap. 4);  

 an MEG experiment to explore the temporal dynamics of their 

activation (Chap. 5).  
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Highlights:  

 Word meanings lie in a multidimensional semantic space describing how close concepts are to each other. 

 Semantic distance judgments are stable in time and consistent across subjects. 

 Different behavioral measures lead to the description of similar multidimensional semantic spaces. 

 Linguistic databases metrics provide converging accounts of the relation (distance) between concepts. 

 Perceptual semantic priming appears to be possible, yet greatly interacts with tasks’ characteristics.  

CHAPTER 3:  

BEHAVIORAL EVIDENCES OF  

MULTIVARIATE SEMANTIC REPRESENTATIONS 

 

All animals are equal, but some animals are more equal than others. 

[George Orwell, 1945] 

 

In this chapter I illustrate the outcome of the behavioral experiments I ran. First, I 

present the results of the Semantic Distance Judgment (SDJ) and the Semantic Features 

Listing (SFL) experiments. Notably, they were instrumental to the definition of the cognitive 

semantic space of our volunteers (i.e., French and Italian native speakers), validating the 

selection of the stimuli for our following neuroimaging experiments. Second, I report the 

results of a series of priming experiments aiming at elucidating the degree of automaticity of 

the retrieval of different semantic dimensions. 

 

 

The behavioral experiments here detailed had a two-fold 

objective. First, we aimed at exploring Semantic Distance Judgment 

and Semantic Features Listing as tools to investigate the geometry of 

the cognitive semantic space. Would these two different ways of 

assessing relations between concepts lead to the reconstruction of the 

same representational space? The second aim was to validate the 

stimuli for our following neuroimaging experiments. For pragmatic 

reasons (not theoretical ones), the first imaging experiment (see Chap. 

4), was going to be conducted with Italian mother tongue participants, 

while our second one (see Chap. 5) with French participants. Hence, 

we selected, validated, and deeply analyzed stimuli in both languages. 
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Moreover, we tailored the pre-selection of the stimuli to the main 

goals of the two different imaging experiments envisaged: compare 

nested semantic classification in the first case, control for perceptual 

semantic dimensions in the second one. Unless otherwise specified, all 

analyses were run with Matlab 

(https://www.mathworks.com/products/matlab). 

 

 

1.   Study 1  

 

The first neuroimaging study, intended as a follow up of a 

preceding EEG study run in Italy (Buiatti et al., 2012), was going to 

be an fMRI study with Italian mother tongue speakers. The main goal 

was to shed light onto the neural correlates of semantic distance (i.e., 

how close/far words are in the semantic space) across and within 

categories. 

 

1.1   Stimuli Selection 

We selected 24 Italian words belonging to two different 

semantic categories: animal (12 words) and tool (12 words). 

Moreover, inside each category, we carefully chose words which 

introspectively fell in different sub-clusters: some stimuli referred to 

domesticated animals (e.g., cow), while some to wild ones (e.g. 

giraffe); some to weapons (e.g., spear), and some to tools (e.g., 

hammer). Stimuli also differ on many perceptual semantic 

dimensions, for instance words referred to rather big (e.g., whale and 

sword) or rather small (e.g., shrimp and nail) items. However, as this 

study initially focused on higher order taxonomical classification, we 

did not explicitly control for these perceptual dimensions. All stimuli 

are listed in Table 1. 

 

https://www.mathworks.com/products/matlab
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Table 1 Stimuli used for feature listing and distance rating in Study 1. Stimuli were pre-selected by the 

authors as to span two semantic categories, each of which could be subdivided in four semantic clusters. 
 

 

1.2   Stimuli Psycholinguistic Validation  

First, we ensured that differences across semantic categories 

and clusters were not correlated with differences in  psycholinguistic 

variables known to influence word processing, such as number of 

letters, number of syllables, gender, accent, and frequency of use 

(retrieved from Corpus e Lessico di Frequenza dell'Italiano Scritto – 

COLFIS, http://linguistica.sns.it/CoLFIS/Home.htm).  

All these psycholinguistic variables did not significantly differ 

across the two semantic categories (two–sample t–test of frequency: t 

= –0.35, p =0.73; number of letters: t =–1.99, p = 0.06; number of 

syllables: t =–0.34, p =0.74; chi–square of gender χ = 0.34, p =0.56; 

accent χ = 3.0, p = 0.08) or across the four semantic clusters (Kruskal–

 

http://linguistica.sns.it/CoLFIS/Home.htm
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Wallis test for small sample size of frequency: h = 10.44, p = 0.17; 

number of letters: h = 8.38, p = 0.30; number of syllables: h = 9.34, p 

= 0.23; chi–square test of gender: χ = 6.0, p =0.54; accent: χ = 2.44, p 

= 0.93). The analyses were run with the statistical functions provided 

by Python’s library SciPy 

(https://docs.scipy.org/doc/scipy/reference/stats.html). 

 

1.3   Stimuli Psychological Validation 

In order to recover the internal representation of our  stimuli in 

the general population, and to confirm that the general clustering of 

words was universally shared, we proceeded with two experiments 

exploiting different methods to investigate cognitive semantic 

representations: Semantic Distance Judgment and Semantic Feature 

Listing. 

Semantic Distance Judgment 

As seen in the Chapt. 2.1.1, one possible way of investigating 

subjects’ semantic space is that of explicitly asking them to rate the 

distance (dissimilarity) between word pairs. We recruited fifty 

subjects, naïve to the goal of the experiment, and we tested them with 

an internet-based questionnaire. Stimuli were arranged in 132 pairs, 

and consisted all possible combinations of the within-category words. 

We then asked subjects to rate how similar the concepts referred to by 

the words were on a Likert scale from 1 (not similar at all, very far in 

meaning) to 7 (very similar, very close in meaning). We decided to 

present only within category combinations in order to prevent the 

large difference across categories from overshadowing the smaller, but 

relevant, differences within them (Goldstone et al., 1997). For the 

same reason, we presented tool word pairs and animal word pairs in 

separate blocks. The order of presentation of the different pairs inside 

each category was randomized for each subject, whereas the order of 

presentation of the two categories was pseudo–randomized across 

https://docs.scipy.org/doc/scipy/reference/stats.html
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subjects: half of the subjects rated animals before tools and the other 

half did the opposite.  

All subjects’ scores were normalized (i.e., scaled between 0 

and 1), in order to correct for possible inter–individual differences in 

the ranking scale adopted. Normalized data were then re–arranged to 

create two 12x12 matrices describing the pairwise semantic distance 

between words for animals and tools separately. Next, for both 

categories we computed the two mean distance matrices averaging 

across all subjects. We then applied multidimensional scaling analysis 

(MDS, 2 dimensions, criterion: metric stress) to obtain a graphical 

representation of the cognitive semantic space of our subjects. The 

analyses leading to the choice of stress and number of dimensions are 

included as supplementary materials (Appendix, 1.1). 

This visual representation show 4 sub-categorical clusters in 

each of the two categories (see Fig. 43).  In the animals set the clusters 

were domesticated land animals (cow, sheep, and goat), wild land 

animals (zebra, camel and giraffe), sea mammals (whale, dolphin and 

seal), and not–mammal sea animals (squid, shrimp and octopus). In 

the tools set the clusters were weapons (spear, saber and sword), 

office/schools tools (pencil, pastel, pencil sharpener), work appliances 

(hammer, nail, and pincer), and hair instruments (comb, brush, and 

hairpin). K-Means clustering (with k = 4) confirms the assignment of 

the single words to the four clusters. Figures illustrating the centroids 

positions can be found in the supplementary materials (Appendix, 

1.1). 

 

Figure 43 Semantic Distance Judgment results of Study 1. Multidimensional scaling visualization of the results of our first SDJ experiment with 
Italian words. Subjects’ judgments lead to the validation of 4 semantic clusters in each of the two categories (left  =animals, right = tools). 
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Semantic Distance Judgment Retest 

We wished to assess whether the SDJ measure would be 

reliable and consistent enough to show the same results at a following 

re-test. In order to asses this, we asked 20 out of the 50 subjects who 

participated in the previous experiment to complete the similarity 

judgment task a second time after about 6 months. Again, they 

completed an online questionnaire. They received the same instruction 

as the first time with the added remark that it was not a memory task 

and they should not have tried to remember the answer given 6 

months before.  

On the data collected, the same pipeline of analyses described 

above was applied. A simple visualization of the results shows a 

striking similarity with the previous measurement (see Fig. 44), as 

confirmed by the following statistical analyses. The correlation 

between subjects’ similarity matrices was used as a measure of inter–

subject variability, while the correlation within subjects was used to 

estimate the intra–subject consistency. All pairwise across subjects 

correlations were statistically significant: the average correlation 

coefficient was 0.73±0.07 for animals and 0.56±0.08 for tools at the 

first evaluation, and 0.68±0.09 for animals and 0.52±0.05 for tools at 

the second evaluation. Subjects were also consistent across sessions: 

all showed a significant and positive correlation between their two 

judgments for both sets, with an average of 0.78±0.14 for animals and 

0.60±0.15 for tools.  

 

Figure 44 Re-test of the SDJ. Multidimensional scaling visualization of the results of our second SDJ experiment with Italian words. Comparing these 
results with the first experiment, it appears that the representational space of both categories appears to be organized in the same clusters of 
semantically related words. This indicates consistency across time of the cognitive semantic representations (left  =animals, right = tools). 



193 
 

Semantic Feature Listing 

The proximity (similarity) in semantic space can also be 

computed as the  number of shared features (see Chap. 2.1.2). In this 

case, subjects are not asked to explicitly rate the semantic distance 

across pairs of words, but rather to list the features they spontaneously 

associate with each of single words. The number of features that are 

common across words is taken as indirect measure of semantic 

proximity.  

Eighty subjects, naïve to the goal of the experiment and that 

had not taken part to any previous related experiment, were recruited. 

Again, testing was performed via an internet-based questionnaire. 

Subjects were asked to list between 5 and 10 characteristics or 

properties of each of the 24 target stimuli. They were explicit 

instructed to think about both the perceptual properties (in terms of 

view, touch, hearing, etc…), the functional properties (e.g. where it is 

usually found, how and for what is usually used), as well as any other 

property that could be considered important to describe the concepts 

the word referred to. 

A similarity matrix between the words was created computing 

the number of shared features across all pairs of words belonging to 

the same category. The subsequent steps (i.e. normalization, 

conversion in distance matrices and MDS application) were the same 

as for the SDJ task. Results strongly confirmed the presence of 4 

clusters of semantically related words in each category (see Fig. 45). 

 

Figure 45 Semantic Features Listing results of Study 1. Multidimensional scaling visualization of the results of our SFL experiment with Italian words. The 
comparison of shared features lead to the same 4 semantic clusters in each of the two categories (left  =animals, right = tools). 
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2.   Study 2 

 

The second neuroimaging study was going to be run with 

French participants and aimed at elucidating the temporal features of 

the neural correlates of semantic dimensions as detected with MEG. 

The main goal was to investigate how perceptual and conceptual 

dimensions of the stimuli space interact to determine the neural 

representational geometries. 

 

2.1   Stimuli Selection 

We constructed a stimulus set where the taxonomical (i.e. 

conceptual) and perceptual dimensions orthogonally varied. We 

selected 32 French words that refer to two broad semantic categories 

(i.e., living and non-living items), each of which could be potentially 

subdivided in semantic sub-clusters (e.g., wild animals vs 

domesticated animals). Moreover, we selected words varying along 

two perceptual semantic features: their real world size (i.e., words 

could refer to rather small or rather big items) and their real world 

auditory properties (i.e., words could refer to items that are strongly 

associated with a prototypical sound or not). For instance, the word 

giraffe corresponds to a big animal not associated with any particular 

prototypical sound (at least for western college students), while the 

word cricket corresponds to a small animal strongly associated with a 

prototypical sound. All stimuli are listed in Table 2. 
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Table 2 Stimuli used for feature listing and distance rating in Study 2. Stimuli were pre-selected by the authors as to span 
two semantic categories and four semantic clusters. Moreover two perceptual semantic dimensions were manipulated: 
implied real world size and prototypical sound. 

 

2.2   Stimuli Psycholinguistic Validation 

As for Study 1, we ensured differences across semantic 

categories and dimensions were not correlating with differences in the 

low-level psycholinguistic variables. Words belonging to the different 

semantic categories, semantic clusters, and perceptual clusters (e.g., 

big vs small) were well matched for number of letters, number of 

syllables, number of phonemes, gender, frequency of use in books and 

in movies (retrieved from Lexique, http://lexique.org). 

These psycholinguistic variables did not differ across the two 

semantic categories (Mann-Whitney rank test for number of letters: u 

= 109.5, p = 0.25; number of syllables: u = 105, p = 0.17; number of 

 

http://lexique.org/
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phonemes: u = 98.5, p = 0.13; frequency of use in books: u = 120, p = 

0.39; frequency of use in movies: u = 126, p = 0.48; chi–square test of 

gender: χ = 0.14, p = 0.70) nor across semantic clusters (Kruskal–

Wallis test for small sample size of number of letters: h = 3.93, p = 

0.27; number of syllables: h = 6.67, p = 0.08; number of phonemes: h 

= 6.39, p = 0.09; frequency of use in books: h = 3.87, p = 0.28; 

frequency of use in movies: h = 2.08, p = 0.56; chi–square test of 

gender: χ = 0.43, p = 0.93). Similarly, they did not differ across the 

visual-perceptual semantic property (Mann-Whitney rank test for 

number of letters: u = 103, p = 0.17; number of syllables: u = 121, p = 

0.39; number of phonemes: u = 91, p = 0.08; frequency of use in 

books: u = 111.5, p = 0.27; frequency of use in movies: u = 103, p = 

0.18; chi–square test of gender: χ = 0.14, p = 0.71), nor across the 

audio-perceptual semantic property (Mann-Whitney rank test for 

number of letters: u = 89.5, p = 0.07; number of syllables: u = 103.5, p 

= 0.15; number of phonemes: u = 91, p = 0.08; frequency of use in 

books: u = 104.5, p = 0.19; frequency of use in movies: u = 126, p = 

0.48; chi–square test of gender: χ = 1.29, p =0.26). These analyses 

were run with the statistical functions provided by Python’s library 

SciPy (https://docs.scipy.org/doc/scipy/reference/stats.html).  

 

2.3   Stimuli Psychological Validation 

As for Study 1, we proceeded with the validation of our stimuli 

set thanks to both Semantic Distance Judgment and Semantic Feature 

Listing. 

 

Semantic Distance Judgment 

We recruited sixty-five subjects, naïve to the goal of the 

experiment. We collected the data with an internet-based 

questionnaire, then the same pipeline of analyses described above was 

performed. We applied multidimensional scaling analysis (MDS, 2 

dimensions, criterion: stress) to obtain a graphical representation of 

the cognitive semantic space of our subjects. Supplementary materials 

https://docs.scipy.org/doc/scipy/reference/stats.html
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in Appendix, 1.1 include in-depth description of the choice of stress 

and number of dimensions, as well as the K-means algorithm 

centroids. 

Unsurprisingly, in contrast with Study 1 (which was design to 

highlight sub-clusters of words within the same semantic category) the 

organization of the semantic space is in this case less fragmented. 

Indeed, the focus of this study was to contrast high order categorical 

(animals vs. tools) with perceptual features (large vs. small, and 

prototypical sound vs. silent), therefore the pre-selection of the stimuli 

focused more on highlighting those dimensions than to the definition 

of nested classifications. Both visual inspection and k-means attempts 

to assign items to 2, 3 or 4 clusters lead to unstable solutions. One, 

introspectively sound, possible partition is between two sub-

categorical clusters in each of the two categories (see Fig. 46). In the 

animals set, domesticated animals (bull, sheep, cow, chamois, rabbit, 

rooster, ant, and cricket) can be opposed to exotic animals (elephant, 

giraffe, gorilla, lama, marmoset, parrot, chameleon, and scorpion). In 

the non-living set, house appliances (fork, wardrobe, sofa, pillow, 

washing machine, vacuum cleaner, blender, and alarm clock), can be 

contrasted with objects linked with means of transportation (canoe, 

boots, roller, bike, motorcycle, helicopter, car stereo, and rotating 

beacon).  

 

Figure 46 Semantic Distance Judgment results in Study 2. Multidimensional scaling visualization of the results of our SDJ experiment with French words. 
Subjects’ judgments lead to the emergence of a rather distributed organization of the semantic space (left  =animals, right = tools). One of the possible 
clustering solution (i.e., domesticated animals, wild animals, house appliances, means of transportation) is highlighted with red and blue colors. 
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Semantic Feature Listing 

Sixty-six French native speakers, naïve to the goal of the 

experiment, were recruited. Following the same protocol, via an 

internet-based questionnaire, they were asked to list between 5 and 10 

characteristics or properties of each of the 24 target stimuli, in terms 

of both perceptual properties and functional properties. Again, a 

similarity matrix was created computing the number of shared 

features. The subsequent steps (i.e. normalization, conversion in 

distance matrices and MDS application) were the same as for the SDJ 

task. As observed with the Italian stimuli, the semantic space 

described by the SFL experiment closely resembles the one derived 

from the previously described SDJ experiment (see Fig. 47).   

 

3.   One Space, Many Metrics? 

 

Thus far we have used the distance matrices recovered from 

the two behavioral experiments only to display the corresponding 

semantic geometry in a two-dimensional space. Nevertheless, there 

are other ways in which the richness of these datasets can be 

exploited. 

 

Figure 47 Semantic Features Listing results in study 2. Multidimensional scaling visualization of the results of our SFL experiment with French words. As 
for SDJ, the result depicts a rather distributed semantic space (left  =animals, right = tools). One of the possible clustering solution (i.e., domesticated 
animals, wild animals, house appliances, means of transportation) is highlighted with red and blue colors. 
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First, distance matrices enable the comparison of the 

representational spaces described by the two metrics (i.e. Semantic 

Distance Judgment and Semantic Feature Listing).Visual inspection of 

the MDS plot reported above can be used to perform a first, 

qualitative, comparison. For instance, in Study 1 both techniques lead 

to the emergence of the same four clusters of related words in the two 

semantic categories. However, partitions of the semantic space are not 

always univocally defined (see for instance the results of Study 2) and 

visual exploration of the MDS plot might mislead judgments, under- 

or over- estimating differences. Aiming at understanding whether the 

two different methods lead to the description of the same 

representational space, one needs a more precise quantification of 

their similarities.  

Second, behavioral distance matrices can be compared with 

those stemming from other sources. In the past decades, 

many neuroimaging studies have resort to linguistic 

corpora and databases to describe the semantic space they 

investigated (for a prominent example, see Huth et al., 

2012). Hence, it would be useful to compare the 

representational space(s) obtained via behavioral testing 

with the ones derived from these linguistic databases.  

 

3.1   Distance Judgment vs Features 

Listing 

We sought to quantify the difference between SDJ 

and SFL by comparing the correlation between their 

representational spaces. As the matrices are symmetrical 

around a meaningless diagonal (i.e., representing the null 

distance of one concept with itself), only value of the upper 

triangular part of the matrices were used to compute the 

correlations. Finally, the similarity matrices scores (bound 

from 0 to 1) were z-transformed before computing the 

correlations.  

 

Figure 48 Similarity Matrices for Study 1. Matrices describing 
the representational spaces as reconstructed from the two 
behavioral tasks concerning 24 Italian words (12 animals and 
12 tools names). [SDJ = semantic distance judgment. SFL = 
semantic feature listing]. 
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All pairwise correlations between the 

representational spaces are highly significant, for both 

semantic categories (i.e., animals and tools), and for both 

studies. Table 3 reports the r scores and the p values for the 

four comparisons. One way of visualizing the results is by 

plotting the similarity matrices produced by the different 

methods. Similarity matrices for the first study are reported in 

Fig. 48, while for second one in Fig. 49. For visualization 

purposes, the meaningless diagonal is arbitrarily set to the 

median value. 

 

 Thus, it appears that both methods can used 

interchangeably when aiming at describing the representational 

geometry of the cognitive semantic spaces. Semantic clusters 

emerge spontaneously from subjects’ judgments not only when 

they are to judge explicitly semantic similarity across word 

pairs (SDJ) but also when they have to evaluate words 

individually (SFL). Clearly, the richness of the feature based 

metric lies in the possibility to go beyond distances 

estimations. The reported features can be used to detect 

distinctions across cluster of words, for instance in data from 

Study 1, we observed that reference to the implied real world 

size was present for all categories, while reference to color 

were disproportionately more frequent for animals than for 

tools. For an example of how exhaustive this kind of analyses 

can be see (Hoffman and Lambon Ralph, 2013).  

 

 

3.2   Comparison with a Linguistic 

Database 

Among the different linguistic databases available, WordNet, 

an English machine-readable lexical database developed at Princeton 

University, is perhaps the most widely used. It is organized by 

 

Table 3 Correlation between SDJ and SFL representational 
spaces. R score and p value of the 4 pairwise comparisons. 
All correlations are highly significant, with the two 
concerning the set of stimuli of Study 1 being slightly 
higher. [SDJ = semantic distance judgment. SFL = semantic 
feature listing] 

 

Figure 49 Similarity Matrices for Study 2. Matrices 
describing the representational spaces as reconstructed 
from the two behavioral tasks concerning 32 French words 
(16 animals and 16 tools names). [SDJ = semantic distance 
judgment. SFL = semantic feature listing] 
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meanings: it groups words into sets of 

synonyms called synsets, which are 

connected one another by means of 

semantic relations. It includes different 

lexical categories (e.g., nouns, verbs, 

adjectives and adverbs). Verbs and nouns 

are organized into hierarchies defined by 

hypernym or IS-A relationships. 

We looked for the English 

translation of the words used in our 

experiment in WordNet as included in 

Natural Language Toolkit (Bird et al., 

2009), which can be found at 

http://www.nltk.org/. 

Different distance measures can be 

automatically derived from WordNet. We 

examined three of them: 

 Wu-Palmer Similarity (WPS), it 

estimates of how close two words are 

based on the depth of their tree in the 

taxonomy and most specific ancestor 

node  [2*depth(lcs) / (depth(s1) + 

depth(s2)) where s1 and s2 are the two 

words nodes and lcs the Least 

Common Subsumer, i.e., most specific 

ancestor node]; 

 Path Similarity (PS), it denotes how 

close two words are based on the 

shortest path that connects them in the 

IS-A taxonomy; 

 Leacock-Chodorow Similarity (LCS), it 

combines the previous estimation of the 

 

Figure 50 WordNet similarities matrices for Study 1. Matrices describing the 
representational spaces as reconstructed from the three distance metrics available in 
WordNet for the 24 Italian words (12 animals and 12 tools names). [WPS = Wu-Palmer 
similarity, PS = path similarity, LCS = Leacock-Chodorow similarity] 

 

 

 Figure 51 WordNet similarities matrices for Study 2. Matrices describing the 
representational spaces as reconstructed from the three distance metrics available 
in WordNet for the 32 French words (16 animals and 16 tools names). [WPS = Wu-
Palmer similarity, PS = path similarity, LCS = Leacock-Chodorow similarity] 

http://www.nltk.org/
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shortest path with the maximum depth of the taxonomy in 

which the words are found [-log(p/2d) where p is the shortest 

path length and d the taxonomy depth]. 

For both set of stimuli, we computed the similarity matrices 

according to the three distance metrics. Results for the 24 stimuli 

used with the Italian subjects (Study 1) are reported in Fig. 50, 

while the matrices for the 32 stimuli used with French subjects 

(Study 2) in Fig. 51. 

 

The correlations between the three distance measures 

derived from WordNet and the two distance measures obtained 

from subjects’ judgments are reported in Table 4. Similarity 

scores (bound from 0 to 1) were z-transformed before computing 

the correlations. Overall, it appears that all measures are 

significantly correlated. The only exception is the Semantic 

Feature Listing matrix for the words from Study 2, which does not 

appear to be correlated with the corresponding Leacock-

Chodorow Similarity. In the cases where there was a significant 

correlation, however, the correlation coefficients were not very 

high, suggesting perhaps that the semantic space derived from 

WordNet is not entirely overlapping with the subject 

psychological space, thus not fully reflecting it. Unfortunately, 

this conclusion is somehow weakened by the fact that while 

subjects in our experiments evaluated the words in French or 

Italian (their mother tongue), the corpus-based data we analyzed 

come from English corpora. It is thus possible that the translation 

to English contributed to the less refined structure recovered from 

WordNet. However, even if corpora-based tools similar to 

WordNet for Italian and French have been proposed, none of 

them is as developed and as widely used as WordNet. Moreover, 

by exploiting the same database and thus the same build-in 

distance metrics, results can be directly compared across set of 

stimuli. It should also be appreciated that WordNet classification 

 

   

   

 

 

 

Table 4 Correlations between WordNet and 
behavioral measures. [SDJ = Semantic Distance 
Judgement , SFL = Semantic Feature Listing, WPS = 
Wu-Palmer similarity, PS = path similarity, LCS = 
Leacock-Chodorow similarity] 
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is based on senses (i.e., concepts meaning) and not lexical entries (i.e., 

words), thus allowing disambiguation of polysemic entries. 

These analyses were run with the statistical functions provided by 

Python’s library SciPy 

(https://docs.scipy.org/doc/scipy/reference/stats.html).  

 

3.3   Conclusions 

Overall, it appears that the correlations of the three WordNet-

based similarities with the subject-based ones is smaller (and in one 

case non-significant), as compared to the different subject-based 

judgements (SDJ and SFL).  

Two caveats undermining the fairness of the comparison 

should be acknowledged. First of all, shades of meaning might have 

been lost in the translation from Italian/French to English, thus future 

comparison should be based on metrics derived from Italian and 

French databases. Second, we did not include a comparison with 

measures from computational linguistic corpora, where distances are 

computed based on statistical co-occurrences of the words in text. As 

mentioned in Chap. 1, it has been suggested that these measure can 

recover semantic spaces that closely approximate behaviorally 

retrieved ones (for an in-depth analyses of currently available tools see 

(Pereira et al., 2016)). 

 

4.   A Space to Prime 

  

Thanks to the experiments here reported, we have been able to 

appreciate the multidimensional nature of the cognitive semantic 

space of our volunteers. While in the past, in the psychological and 

psycholinguistic literature there has been an important emphasis on 

taxonomy as the most important dimension organizing the semantic 

space (as also reflected in the WordNet), we have suggested, in line 

https://docs.scipy.org/doc/scipy/reference/stats.html
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with the most recent research that the organization of the semantic 

space also reflect perceptual components of word meaning (see Chap. 

1). A crucial question is whether these perceptual component of word 

meaning are automatically retrieved when subjects are processing 

single words. One way to assess the degree of automaticity of such 

representations is to test possible priming effects (see Chap. 2.1.3).  

 

4.1   Semantic Priming  

Priming studies have contributed to all major discussions 

revolving around the organization of semantic representations. 

Crucially, they have been instrumental in questioning the classical 

model of concepts as interconnected nodes, in favor of a distributed 

semantic network perspective (see for instance (Masson, 1995)). 

Central to our interests, priming has also been exploited to investigate 

the organization of such semantic network. Is the semantic space more 

likely organized around semantic features links or associative ones? 

Different classes of models can be contrasted on the kind of pairs of 

words that are expected to generate priming effects. Company-based 

models provided a measure of associative relatedness (e.g., (Postman 

and Keppel, 1970)), a normative description of how words are used 

(e.g., the word dog is frequently associated with the word leash). 

Instead, attribute-based models (e.g., the featural model proposed by 

(Smith et al., 1974)) attempt to provide a measure reflecting primarily 

word meaning, i.e. semantic relatedness (e.g., the word dog is 

semantically close to the word wolf). Interestingly, association can be 

asymmetrical: e.g., leash is strongly associated with dog (for instance, 

it would likely be the first associated word that one spontaneously 

retrieve), while this doesn’t hold in the other direction – from dog to 

leash. On the contrary, semantic relations purely based on features 

sharing cannot be but symmetrical, once agreement on which features 

matter is reached (e.g., the number of features share by dog and wolf is 

constant). Thus, since early investigations, authors have tried to 

distinguish between frequently associated and semantically related 



205 
 

words, with mixed findings. Some researchers found evidence of pure 

semantic priming effects, i.e., with pairs of words semantically similar 

but not associated (Fischler, 1977). Others were able to detect 

automatic priming for pairs of words that were only semantically 

associated (i.e., pure associative priming), and not for word pairs that 

were semantically related yet not associated (Shelton and Martin, 

1992). After 30 years of research, a meta-analysis concluded in favor 

of the evidence of a pure semantic priming effect, claiming evidence 

of purely associative priming is non substantial (Lucas, 2000). 

However, a subsequent meta-analysis highlighted that both association 

strength and feature overlap appear to contribute to automatic priming, 

thus stressing the need for further investigations in order to understand 

their interplay (Hutchison, 2003). Therefore, if aiming at isolating the 

contribution of shared features to the priming effect, one should 

attempt to control for purely associative links between the stimuli. 

Traditionally, studies have focused on conceptual relations 

between prime and target, for instance contrasting conditions where 

prime and target either belong or do not belong to the same semantic 

category (e.g. bread-cake vs. bell-cake (Meyer and Schvaneveldt, 

1971; Fischler, 1977)). Subsequently, some authors have attempted to 

explore the effects of semantic features overlap following two 

premises. First, concepts are conceptualized as point in a 

multidimensional space, where each dimension corresponds to 

biologically and psychologically relevant semantic features. This leads 

to the observation that two concepts will be closer in representational 

space the more features they share. Second, the full representation of a 

concept, including all its relevant features, is automatically activated 

whenever the corresponding word is read. If this is the case, words 

sharing motor-perceptual and conceptual features should prime one 

another. This kind of priming effects have been reported for words 

referring to items that have similar visual shape (e.g. apple-ball 

(Schreuder et al., 1984)),  associated movement (e.g., piano-typewriter 

(Myung et al., 2006)), or color (e.g., emerald-cucumber (Yee et al., 

2012)). Nonetheless, doubts persist on the automaticity of the retrieval 
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of motor-perceputal features, as such priming effects have been shown 

only in specific circumstances  (e.g., when subjects’ attention has been 

directed to the targeted feature just beforehand (Pecher et al., 1998; 

Yee et al., 2012), see below for more detailed discussions). Thus, 

collection of more evidence is needed before any definitive decision 

can be reached. This is especially relevant in light of the current 

debate on the nature of neural semantic representations (see Chap. 1): 

is the retrieval of motor-perceptual feature an automatic and necessary 

component of word meaning understanding? 

 

4.2   Perceptual Priming  

The first studies reporting priming effects for words sharing 

perceptual features (i.e., shape similarity) were those by (Schreuder et 

al., 1984; d'Arcais et al., 1985). They compared unrelated pair of 

words, words having a conceptual relation (e.g., banana-cherry), 

words having a perceptual relation (e.g., ball-cherry), or both (e.g., 

apple-cherry). During a lexical decision task, strong priming for 

conceptual congruency was observed, while only a weak one emerged 

for perceptual congruency. The situation was reversed in the setting of 

a reading task, where a strong effect of conceptual priming, but no 

effect of perceptual priming was found. Observing how reaction times 

(RTs) of the lexical decision task were considerably longer than those 

for the reading task, the authors suggested that perceptual dimensions 

are accessed faster and in a transitory way, while conceptual ones are 

accessed only at later stages (Schreuder et al., 1984). To test this 

timing hypothesis, a follow up study compared a speeded lexical 

decision task (thus speeding up stimuli processing), and a reading task 

with degraded target (thus slowing down stimuli processing). In the 

first case, priming for both conceptual and perceptual dimensions was 

found, with the conceptual one being smaller than formerly reported. 

In the second case, conceptual priming was observed, while perceptual 

one only approached significance. The manipulations were thus 

successful in overturning previous findings, indicating that weather 
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perceptual or conceptual priming is found does not depend on the task 

itself, but rather on the latency at which stimuli are processed. At short 

latencies, perceptual effects are more prominent than conceptual ones; 

at long latencies, the pattern is reversed (i.e., conceptual effects are 

more prominent than perceptual ones).  

From this hypothesis, it follows that manipulations of the 

interval between prime and target should affect the perceptual 

priming: it should occur only if prime and target are presented close 

enough in time. A recent study explored this aspect, while 

investigating whether words would prime the identification of a target 

picture as a function of two factors (Ostarek and Vigliocco, 2016). 

First, they manipulated the relation between the prime word and the 

target image depicted in the picture (e.g., the word “star” followed by 

the picture of the moon). Second, they presented the target image in a 

position that was congruent (or not) with the location implied by the 

prime word (e.g., “rainbow” implies a position with is high, thus 

might prime attention to the upper part of the screen, while “carpet” 

the lower one). The effect of the conceptual dimension (i.e., event 

congruency) and the one of the perceptual dimensions (i.e., spatial 

congruency) where compared at different stimulus onset asynchrony 

(SOA): 100 ms, 250 ms,, 800 ms. While the conceptual priming effect 

was evident in all three conditions, perceptual priming effect emerged 

only with SOA of 250 ms. This finding suggests a specific window for 

perceptual effects to be observed: after 100 ms but before 800 ms 

(Ostarek and Vigliocco, 2016). Overall, timing appears to be a crucial 

factor when investigating perceptual priming effects. 

Notwithstanding their relevance in raising the issue of a 

dissociation between perceptual and conceptual aspects of semantic 

priming, (Schreuder et al., 1984; d'Arcais et al., 1985) studies have 

been heavily criticized with respect to shortcomings in the 

experimental setting adopted. The first group of remarks concerns 

stimuli presentation: (1) prime and target were presented 

simultaneously on the screen, which could have promoted active 

comparison; (2) in case of an incorrect response, the word pair was 
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repeated later on, which, as repetition affects RT and error rates may 

differ for different conditions, might have influenced priming effects. 

The second set of remarks involves material selection: stimuli acting 

as prime of perceptually compatible, conceptually compatible, and 

unrelated pairs were different, and some words were used both as 

prime and as target, with some primes being repeated with different 

targets. This lead to conditions that differ not only in the type of 

relation between prime and target, but also in the identity of the 

primes and in their frequency of occurrence. (Pecher et al., 1998) 

overcome these limitations while comparing perceptually and/or 

conceptually related words pairs in six different experiments 

(requiring subjects to make a lexical decision or to read aloud). 

Crucially, the priming experiment could be preceded by a task 

directing subjects’ attention towards perceptual features (i.e., asking 

them to judge shape of the items the words refer to) or not. Moreover, 

the presence of associatively related prime-targets pairs was 

controlled. They found perceptual priming only when (1) subjects’ 

focus had been directed toward visual properties of the items and (2) 

the whole stimulus set was devoid of associatively related pairs. 

Retrieval of perceptual dimensions appears thus less automatic and 

more strategic than previously thought: it occurs only when those 

features are made salient and only if no stronger direct link between 

the words can be perceived. Contextual effects have been highlighted 

even with a stroop-like paradigm, and in cases where color is the 

perceptual feature that words share (or don’t share). In the first case, 

(Rubinsten and Henik, 2002) compared the effect of semantic size 

congruity (e.g., lion and bull are both big animals) and physical size 

congruity (e.g.,  words could be written with smaller or bigger fonts: 

lion vs ant). They found a physical size congruity effect for both 

semantic (i.e., is this animal bigger than the other?) and physical (i.e., 

is this word written with a bigger font?) judgments, while the 

semantic size congruity effect was observed only during the 

conceptual ones. In the second case, (Yee et al., 2012) described 

effects of priming for pair of words sharing the same color during 
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categorization task. Nevertheless, the effect was observed only for 

those subjects that performed a stroop-task before the categorization 

one. Finally, one study found subliminal priming effect during a size 

judgment task on words denoting concrete objects, however only 

when prime words were also members of the response set (i.e., they 

also act as targets). This suggest that the effect could arise thanks to an 

acquired mapping between targets and response keys, which is applied 

to subliminal stimuli too (Damian, 2001). Nonetheless, few examples 

of automatic retrieval of perceptual dimensions even during 

orthogonal tasks have been reported. (Setti et al., 2009), for example, 

have been able to detect priming for words sharing one perceptual 

feature (i.e., the implied real world size) even in absence of an explicit 

focus onto the perceptual properties of the stimuli. Even in this case, 

though, the effect appeared stronger when subjects were actively 

instructed to use mental imagery. 

 

Given this panorama, we set out to test the effects of 

perceptual features sharing and task focus with a series of priming 

experiments. We investigated two perceptual features, one visual (i.e., 

the average size) and one auditory (i.e., the sound emitted), thus 

selecting words referring to items orthogonally spanning from very 

small to very big, from very loud to very silent. We selected implied 

real world size as visual perceptual dimension as studies from object 

recognition demonstrate that real-world size is an automatic property 

of object representation (Konkle and Oliva, 2012), and that processing 

of both physical and conceptual magnitude in object perception is 

automatic (Gliksman et al., 2016). We opt for audio as additional 

perceptual dimension as neuroimaging studies suggest that audio 

properties of symbolic stimuli are retrieved rapidly even when not 

explicitly required by the task (Kiefer et al., 2008). We hypothesized 

that words referring to items of similar real world size (e.g., sofa and 

wardrobe) would prime each other, while no priming would be 

detected for words of different relative size (e.g., sofa and alarm 

clock). Similar prediction was made for words referring to items 
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emitting a prototypical sound (e.g., alarm clock and hoover) or not 

(e.g., pillow and sofa). Moreover, we controlled the explicit focus of 

the subjects over the different features by contrasting four tasks, 

tapping either into the perceptual (e.g., s it big? does it make a 

prototypical sound?), or into the conceptual (e.g., is it an animal? is it 

a color?) features of the items.  

 

4.2   Stimuli  

The selection and validation of the stimuli followed three 

steps. First, we pre-selected the stimuli according to semantic criteria: 

we included words referring to non-living items and belonging either 

to a domestic environment (i.e., typically found and used within the 

house) or to an outdoor environment (i.e., typically found and used 

outside the house). Moreover, the objects referred to by the words 

varied orthogonally along two perceptual dimensions: size, they could 

be rather big or rather small (i.e., could or could not fit in a regular 

size drawer), and sound, they could either emit a prototypical sound or 

not. The preselection led to 32 words of which: 16 referred to indoor 

items and 16 to outdoor items. Orthogonally, 16 words referred to 

objects associated with a prototypical sound and 16 did not. Moreover, 

always orthogonally, 16 words referred to rather big objects (i.e., 

bigger than an average-sized sheep) and 16 to rather small ones (see 

Table 5). 

Second, we verified that psycholinguistic variables such as 

length, and frequency of use did not significantly differ between 

compatible (e.g., sharing a given dimension) and incompatible (e.g., 

being different along that dimension) prime-target pairs. We 

implemented six t–tests and no statistically significant difference was 

found for: 

 length of words across the visual dimension (T(1,254)= -0.623, 

p=0.5343), the auditory dimension (T(1,254)= -1.8784, 
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p=0.06147), and the conceptual dimension (T(1,254)= -0.2073,  

p=0.83594); 

 frequency of use across the visual dimension (T(1,254)= -1.1660, 

p=0.24472), the auditory dimension (T(1,254)= -1.7996, 

p=0.24472), and the conceptual dimension (T(1,254)= -0.5224,  

p=0.60184); 

Third, we validate the hypothesized perceptual and conceptual 

semantic dimensions via an internet-based questionnaire. The same 

questionnaire was used to control other psycholinguistic factors that 

could potentially affect our results: associative links between our 

stimuli and differences in familiarity. Thirty subjects underwent 4 

short tasks in order to assess: 

a) Visuo-perceptual semantic dimension. For each given word, 

subjects had to answer to the following question: “Is the object 

this word refers to smaller than this drawer? Could it fit in the 

drawer?”. For instance, the object the word “blender” refers to 

can fit in a drawer, while the word “dishwasher” cannot. Only 

yes or no answers were allowed. 

b) Audio-perceptual semantic dimension. As above, but this time 

the question was: “Is the object this word refers to associated 

with any prototypical sound?”. As example of object 

associated to a characteristic sound, consider “whistle”, as 

silent object, consider “compass”. 

c) Conceptual semantic dimension. This question concerned the 

natural location in which the item is encountered: “Is the 

object this word refers to typically used, found in the house?”. 

For instance, “binoculars” are usually used outdoor, while a 

“vacuum cleaner” indoor.  

d) Association. Subjects wrote the first word that came to their 

mind in association with the word presented. For instance, 

many subjects wrote “remote control” in response to 

“television”. 

e) Familiarity. Subjects were asked to indicate on a Likert scale 

how familiar they were with the item referred to by the word: 1 
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meant not familiar at all, 7 very familiar. For instance, the 

word “bed” received on average a score of 7, “motorcycle” a 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, there was a very high agreement across subjects on 

the perceptual and conceptual dimension of our stimuli (tasks a-c). All 

items were classified as expected by the significant majority of the 

subjects along all dimensions (as verified with a binomial test), except 

for the word “skates”, which was considered associated to a 

prototypical sound by 50% of the subjects. These results led us to the 

introduction of a screening test for all participants recruited for the 

priming experiments. In case of disagreement between our suggested 

 
Table 5 Stimuli used for the four priming experiments. Three dimensions were orthogonally manipulated: a conceptual 
semantic dimension (i.e.,location of typical use), a visuo-perceptual semantic dimension (i.e., implied real world size), and 
an audio-perceptual semantic dimension (i.e., whether the item is associated with a prototypical sound or not). 
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classification and that proposed by the subject (e.g., a subject 

considering television silent instead of associated with sound), coding 

of the conditions was adapted to the subject specific classification 

(e.g., the pair television – pillow, would be re-coded as sharing the 

auditory property). 

No associations between our stimuli emerged from the association 

task (d). As additional control over possible associative link between 

our stimuli, we used the Italian web-based corpus Web Infomap 

(http://clic.cimec.unitn.it/infomap-query/info.html) to check that none 

of our stimuli would appear within the first 20 semantic neighbors of 

all the other stimuli. 

The only statistically significant difference was in the 

familiarity score between pairs compatible (e.g., “street lamp” – 

“bench”) vs incompatible (e.g., “bench” – “sofa”) along the 

conceptual dimension (T(1,254)=-13.0679, p=3.4093e-30). This 

would have been a problem as potential conceptual priming effect 

(i.e., when prime and target share the typical location of use) would 

have been confounded by the familiarity effect (i.e., whether prime 

and target are equally familiar).  Therefore, we decided to never pair 

stimuli across different conceptual domains: thus, for all pairs, prime 

and target stimuli were either both indoor (so both highly familiar) of 

both outdoor (thus both less familiar) terms. 

 

4.3   Method 

We tested speed of single word processing during four 

different tasks with a between subjects design. Number of subjects, 

randomization and timing presentation of the stimuli were the same 

across tasks. 

 

Experimental tasks. The first two tasks required an explicit 

access to the perceptual features investigated (hereafter, Explicit 

Tasks): 

http://clic.cimec.unitn.it/infomap-query/info.html
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a) In the sound-related task (hereafter Audio task), subjects were 

asked to judge whether the target stimulus is associated with a 

prototypical sound (i.e. attention explicitly directed to the 

auditory property) 

b) In the size-related task (hereafter-Video task), subjects were 

asked to judge whether the target stimulus could fit in a small 

basket (i.e. attention explicitly directed to the visual property: 

the implied real world size). 

 

With the other two tasks, we diverted subjects’ attention away from 

the visual and auditory properties, in order to investigate if we could 

find traces of an implicit access to the non-attended dimensions 

(hereafter, Implicit Tasks): 

c) In the Animals task, subjects were asked to determine if the 

target stimulus belong to the category of animals or not. We 

therefore added to 32 animal names, making sure that only half 

of them were associated with a prototypical sound and, 

orthogonally, only half of them were bigger than the reference 

used for the Video task. 

d) In the Colors task, subjects were asked to determine if the 

target stimulus belong to the category of names of colors. We 

therefore added 32 names of color (e.g., turquoise, vermilion, 

ocher). 
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Stimuli randomization and presentation. We split the 32 words 

in two sets of 16 stimuli, taking care that they both included two 

exemplars of each combination of our three factors (i.e., location, 

visual and auditory properties). Words of set A were used to prime 

words of set B and the reverese. Each of the 32 words appeared 8 

times as prime and 8 times as target. Stimuli were paired only within 

the same conceptual category (i.e., indoor or outdoor items). In total, 

256 pairs were presented, half of which concerned indoor stimuli, half 

outdoor ones. Between prime and target, four possible relations were 

possible: (1) not sharing the value of any perceptual dimension; (2) 

sharing only the value of the visual dimension (i.e., same size); (3) 

sharing only the value of the auditory dimension (i.e., both associated 

(or not) to a prototypical sound); (4) sharing the value of both 

perceptual dimensions (i.e., same size and same auditory association). 

Each target appeared twice in each of the four conditions, thus we 

collected 64 (2*64) observations in total for each condition (within 

each participant). The total sets of trials were divided 4 blocks, 

pseudo-randomizing the trials as to assure that trials belonging to the 

different conditions were presented with the same proportion. In the 

case of the Animals task and Colors task, additional trials were added: 

 Figure 52 : Experimental setting. Example of a sequence of stimuli during the priming experiments. Irrespective of the task to be performed on 
the target stimulus, each trial followed the same structure and timing here reported. Subjects were instructed to pay attention to the target 
stimuli and, according to the different experimental conditions, to answer to one of the four questions depicted on the right. 
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each of the 32 words appeared once per block as prime for a randomly 

chosen name of animal (or color) , thus reaching a total of 96 trials per 

block. 

For the four tasks, the structure of a trial was as follow (see 

Fig. 52). After 2000 ms during which only the fixation cross was 

presented, the prime was flashed for 300 ms, followed by a 200 ms 

blank screen (inter-stimuli-interval). Then, the target was presented 

for 800 ms, and subjects’ response was recorded (up to 1000 ms post 

target onset). The fixation cross was left on screen until the begin of 

the following trial 2 s after the target offset. Stimulus Onset 

Asynchrony (SOA) between prima and target was thus of 500 ms, 

while 3300 ms elapsed between one prime and the following one. 

Subjects provided their answer thanks to a Qwerty 

keyboard whose Z and M keys had been replaced by two “YES” 

and “NO” labels. The assignment of the labels was randomized 

across subjects, thus half of the subjects answered positively with 

their right hand, half with their left hand. Stimuli were presented 

with Matlab Psychophysics toolbox (http://psychtoolbox.org). 

 

Subjects. Ninety-six students of the University of Trento 

participated in the experiments in exchange for a monetary reward 

(5 euros) or university credits. Randomly, 24 students were 

assigned to each of the four experimental conditions.  

 

4.4   Results 

Subjects by subjects, data were cleaned from RTs at more 

than 3 std from the subject specific mean. The different conditions 

were then compared with respect to the average number of errors 

(accuracy of processing) and the average RT in correct trials 

(speed of processing). As there were very few errors (see Table 6 

and 7), we concentrated our analyses on response times. 

 

 

Figure 53 Explicit Tasks. Results of the two 
tasks directly tapping the perceptual 
dimensions. A task specific interference effect 
can be appreciated: subjects are significantly 
slower when prime and target share the 
same value of the perceptual feature. 
[C=congruent, I=incongruent] 

 

http://psychtoolbox.org/
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First we analyzed the two explicit tasks together via a mixed 

ANOVA with three variables, two within subjects (audio and video 

congruency) and one across subjects (task), resulting in a 2 (video 

congruency) x 2 (audio congruency) x 2 (task) design. A significant 

interaction congruency audio * task was detected [F(1,46)= 9,712, 

p=0,003], indicating that the Audio congruency level differentially 

modulated the two tasks (see Fig. 53). We therefore analyzed the two 

tasks separately through a 2 (audio congruency) X 2 (video 

congruency) repeated measures design. 

 

Audio task. Subjects were slightly slower in trials where prime 

and target shared the same audio-perceptual feature compared with 

when they did not, [F(1,23)=4,239, p= 0,051], However, there was no 

main effect of Video congruency and crucially no interaction.  

 

Video Task. There was a significant main effect of video 

congruency [F(1,23)=20,671; p=0,000], indicating that subjects were 

significantly slower in trials where prime and target shared the same 

video-perceptual feature. However, there was no main effect video, 

and crucially no interaction. 

          

Table 6 Results Explicit Tasks. Audio (right) and Video (left). Mean RTs (and std), and mean number of errors (and std) across the 24 
subjects. 
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As for the two Explicit Tasks, we first analyzed the two Implicit task 

together via a mixed ANOVA 2 (video congruency) x 2 (audio 

congruency) x 2 (task). A significant interaction congruency audio * 

task was detected [F(1,46)=13,719, p=0,001] (see Fig. 54). We 

therefore split the two tasks and analyzed them separately with a 

within subjects ANOVA 2 (video congruency) x 2 (audio 

congruency). 

 

Animal Task. There was a significant main effect of audio 

congruency [F(1,23)=8,879, p=0,007]. Subjects were significantly 

faster (i.e., classical priming pattern) in trials where prime and target 

shared the same audio-perceptual feature (i.e., both associated with a 

prototypical sound or both silent). However, there was no main 

effect video and no interaction. 

 

Color Task. There was a significant main effect of audio 

congruency [F(1,23)=6,690, p=0,017], in that subjects were 

significantly slower in trials where prime and target shared the same 

audio-perceptual feature (i.e., both associated with a prototypical 

sound or both silent). There was no main effect video and no 

interaction. 

 

 

Figure 54 Explicit Tasks. When attention of 
the subjects if focused on conceptual 
semantic categories (i.e., animals vs tools), 
a significant priming for pairs sharing the 
same value of the auditory feature is 
observed. When attention is brought onto 
perceptual semantic categories (e.g., colors 
or not), a significant interference effect is 
found for pairs sharing the same value of 
the auditory feature. [C=congruent, 
I=incongruent] 

           

Table 7 Results Implicit Tasks. Animals (right) and Color (left). Mean RTs (and std), and mean number of errors (and std) across the 24 
subjects. 
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As for the two Explicit Tasks, we directly compared the 

Implicit Tasks via a mixed ANOVA 2 (video congruency) x 2 (audio 

congruency) x 2 (task). A significant interaction congruency audio * 

task was detected [F(1,46)=13,719, p=0,001]. 

 

Additional analyses. We analyzed the performance of the 

subjects in the two Implicit Tasks separately for indoor and outdoor 

stimuli, in order to investigate if the conceptual dimension interacted 

with the perceptual ones. A within subjects ANOVA 2 (video 

congruency) x 2 (audio congruency) was performed for each task 

(Animals vs Colors) and each sub-set of stimuli (Indoor and outdoor). 

In the Animals task, no significant difference emerged comparing 

priming in Indoor vs. Outdoor items: in both cases, a tendency 

towards a facilitation effect was observed (see Fig. 55). On the 

contrary, in the case of the Colors task, a significant main effect of 

audio congruency (in an interference direction) was detected 

[F(1,23)=4,820, p=0,038] for Indoor stimuli, while tendency for 

Outdoor stimuli was not significant (see Fig. 56). Crucially, again, no 

interaction was detected. 

 

In summary, we found that in tasks directly tapping perceptual 

properties (Explicit tasks) subjects are slower when prime and target 

share the same value of a given feature. Conversely, when the task is 

orthogonal to the auditory properties, sharing this perceptual feature 

enhances subjects’ performance (Animal task). Finally, if the task 

does not explicitly tap into the chosen visual property (size), but on a 

potentially correlated one (color), then sharing the same visual 

features result in a decrease in performance (Color task). However, the 

effects observed are very small (few milliseconds) and not qualified 

by significant interaction, thus strong conclusions should be hold until 

further testing is performed. 

 

 

 

Figure 55 Impact of the conceptual 
dimension: Animal Task. After data 
are divided by conceptual category, 
no significant effects are found. For 
both indoor and outdoor stimuli, 
pairs sharing the value of the 
auditory feature show a trending 
priming effect. [C=congruent, 
I=incongruent] 

 

 

Figure 56 Impact of the conceptual 
dimension: Color Task. After data 
are divided by conceptual category, 
a significant interference effect is 
found for indoor stimuli sharing the 
same value of the auditory feature. 
The same effect is only trending for 
outdoor stimuli.  [C=congruent, 
I=incongruent] 
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4.5   Discussion 

The two Explicit Tasks suggested a dimension specific 

interference effect in that responses were slower when prime and 

target were congruent along the dimensions tapped by the task. 

However, the absence of a significant interaction between the 

interference effect and the two dimensions does not strongly support 

its specificity. Nevertheless, the results reported are interesting and 

suggest a spontaneous and automatic recovery of the perceptual 

dimension relevant for the task.  The results are the opposite direction 

compared to what was predicted (interference vs. priming). This could 

reflect some form of strategic inhibition: upon elaboration of the 

prime, subjects might automatically prepare a response. However, 

since a response to the prime is not required by the task, it would need 

to be inhibited. The following response to the target would then be 

slowed down if coherent with the one on the prime. Thus, these 

findings are in line with evidences that, when relevant for the task at 

hand or when re-activated by the immediately preceding task, 

perceptual dimensions of word meaning are automatically recovered 

during reading (Pecher et al., 1998; Yee et al., 2012).  

The first Implicit Task, requiring the detection of animals’ 

names, showed an actual priming effect for the auditory (but not for 

the visual) dimension. Again, however, this effect was not qualified by 

an interaction, hence missing evidence of its specificity. Thus, even if 

not relevant for the task at hand, the perceptual dimension was 

reactivated. Even if this phenomenon is observed more rarely, there 

are previous examples of a neutral task eliciting the recovery of 

perceptual dimensions of word meaning (Schreuder et al., 1984; 

d'Arcais et al., 1985; Rubinsten and Henik, 2002; Setti et al., 2009). 

The absence of an effect for the visual dimension could be explained 

by an accentuated bipolar description of the auditory feature (i.e., 

stimuli either make a sound or not) as compared with the gradual 

differences along the visual dimension (i.e., stimuli’s size vary 

greatly).  
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The second Implicit Task, requiring the detection of colors’ 

names, showed an interference effect along the audio dimension. Post-

hoc analyses revealed that such effect appears to be mainly driven by 

indoor stimuli. As previous findings suggest the interference effect to 

be related with the inhibition of a response to the prime stimulus, we 

examined the possibility that pairs sharing the same auditory property 

also shared color-related features. As a matter of fact, especially in the 

case of indoor stimuli, the auditory dimension correlates with the 

prototypical color: noisy items tend to be white or gray (i.e., made of 

plastic or metal, such as dishwasher, washing machine) while silent 

items tend to be brown (i.e., made of wood, such as table). One very 

speculative explanation would be  that the perceptual feature indirectly 

tapped by the task (i.e., color) was automatically retrieved for both 

prime and target, causing the need to inhibit the response and hence 

slowing down subjects’ performance.   

Previous priming experiments have suggested that perceptual 

priming can be elicited (Schreuder et al., 1984; d'Arcais et al., 1985; 

Setti et al., 2009), even if it appears that specific conditions need to be 

met. First of all, subjects focus has to be directed towards the 

perceptual features of interest (Pecher et al., 1998; Yee et al., 2012). 

Second, timing of stimuli presentation and responses collection should 

be carefully chosen as it appears that perceptual dimensions are 

retrieved only transitorily in an early window of word processing 

(Schreuder et al., 1984; d'Arcais et al., 1985; Ostarek and Vigliocco, 

2016). Priming is not the only paradigm used to look for automatic 

retrieval of perceptual information. For instance, a distance effect on 

comparison tasks (a paradigm extensively  used in the literature on 

numerical cognition),  has been  not found for size (Hoedemaker and 

Gordon, 2014), yet was observed for shape (Zeng et al., 2016).  

Overall, these evidences suggest a complex interplay between 

the task (in terms of both timing and attentional focus) and the 

perceptual/conceptual dimensions investigated. Future investigation 

should first attempt to replicate our current results, whose effects are 

extremely small, and obtained with a relatively small sample size (24 
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subjects per each experimental group). Then, aiming at dissociating 

possible alternative explanations, one should focus on the possibility 

to better control the set of stimuli and the demands of the task. For 

instance, new experiments could be devised with stimuli that further 

increase the differences along visual (i.e., size and color) and auditory 

(i.e., make a sound or not) dimensions.   

Statistical analyses were performed with IBM SPSS 

(http://www.ibm.com/analytics/us/en/technology/spss/). 

 

5.   Conclusions 

The cognitive semantic space of French and Italian native 

speakers seems to be organized around multiple perceptual and 

conceptual dimensions. The setting chosen, MDS on the distance 

metrics derived from SDJ and SFL, does not permit to fully interpret 

the dimension characterizing such space. However, two things should 

be highlighted. First, the representational spaces retrieved with SDJ 

and SFL appear to be highly correlated and overall consistent within 

and across subjects. Second, both methods significantly correlate with 

corpora-based measures, while providing a more fine-grained 

illustration of the cognitive semantic spaces of native speakers.    

The series of priming experiments we conducted suggests that 

perceptual dimensions of word meaning (such as implied real world 

color and sound) are recovered during reading in an automatic way. 

Perceptual features are recovered for words that are not the target of 

the task at hand (i.e., the prime stimuli), and even when the task does 

not explicitly requires it (e.g., the Implicit Animal task). Further 

investigations are needed in order to establish (1) which perceptual 

features are consistently retrieved, and (2) which factors determine 

whether their retrieval will interact in a positive (priming) or negative 

(interference) way with the task. 

It is perhaps necessary to conclude with a critical remark. The 

evidence coming from perceptual semantic priming experiments is 

http://www.ibm.com/analytics/us/en/technology/spss/
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sometimes used to support a sensory-motor view of the cognitive (and 

neural) semantic system. However,  priming effects can be interpreted 

as fast spreading of activation in a purely symbolic system capable of 

sensorimotor representations (Mahon and Caramazza, 2008): they do 

not necessarily entail the activation of sensory-motor 

representations/areas/formats. Recently, those who have the scope of 

supporting a sensory-motor view of the cognitive (and neural) 

semantic system have shifted towards interference paradigms which 

can have stronger implications for the causal role played by sensory-

motor representations in semantics (Yee et al., 2013). The reasoning 

of these studies is as follow: if two simultaneous representations/tasks 

engage the same neural substrate, then performance should suffer (in 

terms of RTs and/or errors). Thus, if accessing meaning of words 

requires retrieval of perceptual features, concomitant tasks should 

interfere with subjects’ performance proportionally to the involvement 

of related sensory-motor features. For instance, understanding words 

with a strong auditory component should be affected by concomitant 

auditory tasks, while performance with words with strong visual 

components by a visual task. 
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Highlights:  

 Perceptual semantic dimensions (e.g. implied size) are coded in early sensory areas. 

 Conceptual semantic dimensions are coded in higher level anterior temporal regions. 

 Different brain areas encode complementary dimensions of the semantic space. 

CHAPTER 4:  

TOPOGRAPHICAL FEATURES OF SEMANTIC DIMENSIONS 

 

It will be possible […] 

 to project the image of any object one conceives in thought on a screen and make it visible.   

If this could be done it would revolutionize all human relations.   

I am convinced that it can and will be accomplished. 

[Tesla, 1919] 

 

In this chapter I review the work I conducted to investigate the topographycal 

organization of the neural representations of different semantic dimensions. Portions of the 

results here presented have been published in  

Borghesani, V., Pedregosa, F., Eger, E., Buiatti, M., & Piazza, M. (2014). A 

perceptual-to-conceptual gradient of word coding along the ventral path. International 

Workshop on Pattern Recognition in Neuroimaging https://hal.inria.fr/hal-

00986606/document  

and  

Borghesani, V., Pedregosa, F., Buiatti, M., A. Alexis, Eger, E., & Piazza, M. (2016). 

Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic 

coding. NeuroImage http://dx.doi.org/10.1016/j.neuroimage.2016.08.068. 

 

 

1.   Introduction  

We have seen how word meaning is a key component of 

conceptual knowledge, i.e. the ability to acquire, store, update and 

retrieve semantic representations of the world we live in (see Chap.1). 

Many cognitive tasks that we face daily rely on semantic memory and 

https://hal.inria.fr/hal-00986606/document
https://hal.inria.fr/hal-00986606/document
http://dx.doi.org/10.1016/j.neuroimage.2016.08.068
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especially on our ability to manipulate and combine the abstract 

symbolic forms it can assume: words. It is perhaps the most uniquely 

human aspect of this peculiar kind of memory, and for decades 

cognitive neuroscientist have attempt to shed light onto its neural 

substrate. Recently, thanks to the development of multivariate 

methods (see Chap. 2.4), new cognitive hypotheses on its 

topographical organization can be tested. 

 

1. 1   The Topography of Word Reading in the 

Brain 

Word reading, i.e. the process of extracting meanings from 

symbols, requires the sophisticated interplay of different brain regions. 

As highlighted by neuroimaging studies, thanks to the fine temporal 

resolution of magnetoencephalography (MEG), brain activation 

unfolds from occipital areas towards the anterior temporal pole 

(Marinkovic et al., 2003). The classical view of the brain as a feed-

forward information processor hypothesizes that this continuous 

stream of activation along the ventral stream may be dissected into 

multiple stages where information is represented with increasing 

levels of complexity and abstractness. From this perspective, the first 

steps permit the perceptual analysis of the stimuli words as purely 

visual shape, a process which culminates at the level of the visual 

word form area (VWFA) in a case, position, and size invariant 

representation of letter strings (Dehaene and Cohen, 2011). More 

anterior regions of the temporal lobe support more abstract word 

representations: semantic concepts. Lesions studies seem to confirm 

this view, with patients showing cortical blindness (Aldrich et al., 

1987), pure alexia (Dejerine, 1892; Epelbaum et al., 2008), or 

semantic deficits (Gorno‐Tempini et al., 2004) accordingly to the 

location of their lesions along the posterior-to-anterior axe in the 

occipito-temporal cortex. When it comes to understanding how the 

meaning of words instantiated in the brain many open questions are 
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left unanswered. Where and how strings of letters (i.e., percepts) 

become meaningful semantic entities (i.e., concepts)?  

 

1. 2   Cognitive and Neural Semantic Geometries 

Making sense of symbols involves retrieving from long term 

memory the corresponding semantic representations. One way to think 

about such representations is to consider them as points in a 

multidimensional space, where each dimension represents a specific 

property of the concept denoted by the word. In the case of words 

referring to concrete entities, the semantic space includes dimensions 

such as prototypical size, shape or sound, but also taxonomic class and 

functional information. Following what we introduced in Chap 1.2.5, 

we distinguish between perceptual dimensions (i.e., those along which 

physical properties of the objects are stored) and conceptual 

dimensions (i.e., those long which more complex, higher order 

features of the objects are stored). Storing both perceptual and 

conceptual features of object concepts is key for making sense of the 

word surrounding us: it is their combination that allows us to 

generalize across conceptually similar but perceptually different 

objects (e.g., a cat and a tiger), and differentiating between 

perceptually similar but conceptually different ones (e.g., a lemon and 

a tennis ball) (Rogers et al., 2004).  

To understand how these dimensions mold representational 

geometry, consider the words “mouse”, “clownfish”, “giraffe”.  

Thanks to the multidimensional nature of the semantic space, we 

immediately know that the first two refer to animals that are closer in 

size (being rather small), compared to the third one. At the same time 

we can appreciate that the last two have a similar color (orange-ish) 

and that the first and the last one are close in taxonomy (both are 

terrestrial mammals, compared to the second one, a fish). A 

representational geometry that highlights visual attributes would 

weight distances on those dimensions more than any other: mouse and 

giraffe would be very distant as they do not share implied real world 
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size nor color. On the contrary, a representational geometry 

emphasizing conceptual dimensions would be mostly described by 

distances along taxonomic dimensions: mouse and giraffe would be 

very close as they are both terrestrial mammals. This toy example is 

clearly an over-simplification as many more dimensions are 

concurrently involved in the definition of a concept, but it stress how 

the representational space can be governed by complex geometries. 

In Chapt. 3, we illustrated that both perceptual and conceptual 

semantic dimensions are relevant for the organization of the cognitive 

semantic space, highlighting possible dissociations. In the work here 

presented, we sought to investigate whether perceptual and conceptual 

semantic dimensions are neurally dissociable, i.e. preferentially 

encoded in different brain areas.  We aim at doing so by mapping 

different representational geometries (e.g., dominated by perceptual or 

conceptual dimensions) onto brain activity in different cortical 

regions.  

 

1.3   Neural Correlates of Semantic 

Representations 

Even though the quest for the neural underpinning of 

semantics has a longstanding traditions (as we have seen in Chap 1), 

neither neuropsychology nor functional neuroimaging research have 

provided conclusive evidence on how different perceptual and 

conceptual semantic dimensions defining single concepts are encoded 

in the brain. Clinical data so far suggest that semantic knowledge is 

neurally coded in a distributed fashion, as it can be degraded by 

lesions to sensory–motor brain regions (Pulvermüller and Fadiga, 

2010), and profoundly disrupted by lesions to higher–level associative 

regions (especially the anterior temporal lobe) (Gorno‐Tempini et al., 

2004; Hodges and Patterson, 2007; Lambon Ralph, 2014). Similarly, 

functional neuroimaging data indicate that during processing of 

object-related words there is an increased activation not only in high–

level associative cortices (sometimes referred to as “semantic hubs” 
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(Patterson et al., 2007)) such as the inferior frontal cortex (Devlin et 

al., 2003), the anterior temporal cortex (Mion et al., 2010), or the 

inferior parietal cortex (Bonner et al., 2013), but also in primary and 

secondary sensory–motor cortices, in a way that appears proportional 

to the relevance of perceptuo-motor attributes (Pulvermuller, 2013).  

Researchers capitalizing from both machine learning 

techniques and Representational Similarity Analysis (RSA) 

frameworks have shown that it is possible to discriminate between 

words belonging to different semantic categories (e.g., animals vs 

tools) as well as sub-categorical clusters (e.g., mammals vs insects) 

using distributed patterns of brain activation (Shinkareva et al., 2011; 

Bruffaerts et al., 2013; Devereux et al., 2013; Fairhall and Caramazza, 

2013; Simanova et al., 2014). However, they did not determine if such 

discriminations were driven by conceptual or/and by correlated 

perceptual information, as we mentioned in Chap. 2.4, explicit (and 

complete) models are needed if one wishes to draw conclusion of the 

geometry of a given representations  (Naselaris and Kay, 2015). 

Finally, encoding approaches (modelling and predicting voxel-

wise activation for different stimuli according to their defining set of 

features) has been successfully applied to predict brain activation 

during the elaboration of images and movies (Naselaris et al., 2009; 

Nishimoto et al., 2011), and only very recently to words (Fernandino 

et al., 2015a) and sentences (Anderson et al., 2016; Huth et al., 2016). 

Previous groundbreaking work used a computational model (trained 

on words data from text corpus) to predict the neural activation 

associated with written words, but always presented words together 

with their relative picture, thus being unable to dissociate the 

contribution of low level properties of the physical input from the pure 

semantic activation driven by the symbolic stimulus (Mitchell et al., 

2008). More recent studies that used words and sentences as stimuli, 

do not distinguish between perceptual and conceptual features, being 

unsuitable to provide a clear picture of the brain topography involved 

in encoding each of the different features involved.  
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Overall, the brain regions which are thought to be crucially 

involved, and thus will be here explored, are the ventral visual path 

and the anterior temporal lobe. The ventral visual path, and in 

particular the left fusiform gyrus (Dehaene and Cohen, 2011), is not 

only involved in low level processing of  the physical attributes of 

words, but it is also a good candidate for the encoding of visuo-

perceptual semantic dimensions. First of all, the ventral occipito-

temporal path (VOT) has been connected with the encoding of 

specific visual features, e.g. color (Beauchamp et al., 1999), and more 

generally it has been suggested it hosts the kind of computations that 

enable visuo-perceptual categorization (Grill-Spector and Weiner, 

2014). Second, studies in the domain of object recognition have 

reported representational geometries tuned to perceptual semantic 

dimensions in VTO (Peelen and Caramazza, 2012; Devereux et al., 

2013; Clarke and Tyler, 2014).  

As we have seen in depth in Chap. 1, numerous converging 

evidences point to a key role of the ATL in high level semantic 

processing: from clinical data to neurophysiology, from univariate to 

multivariate analyses. Above all, the ATL appears to be conveniently 

connected, both structurally and functionally, to a distributed network 

of cortical regions (Binney et al., 2012; Pascual et al., 2015). Recently, 

it has been shown that ATL can be parcellated based on its structural 

connectivity with other key cortical areas (Papinutto et al., 2016), 

supporting the hypothesis of a graded specialization within the ATL as 

a consequence of its differential connectivity with modality specific 

cortical regions (Rice et al., 2015). It appears thus as ideal location for 

a semantic, supramodal hub.  

 

1. 4   Present Study Hypotheses 

We were interested in studying the representations evoked by 

purely symbolic stimuli, i.e. written words, spanning different 

semantic dimensions. We test the hypothesis that perceptual and 

conceptual dimensions of the word meaning, for which behavioral 
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studies suggest that they are automatically activated during word 

reading (Rubinsten and Henik, 2002; Zwaan et al., 2002; Setti et al., 

2009), are coded partially independently in the brain. If that was the 

case, then we should observe brain regions of which the response 

profiles reflect dimension–specific metrics, resulting in a double 

dissociation: some areas should present activation patterns more 

consistent with the perceptual dimensions of the stimulus space and 

less with the more conceptual ones (e.g., size, but not taxonomic 

class), while other areas should present the complementary activation 

patterns (e.g., more related to taxonomic class and less to size). 

We presented adult subjects with written words varying 

parametrically along three different dimensions (see Fig. 57): one low 

level, purely physical (the number of letters), one perceptual-semantic 

(the average real–word size of the objects referred to by the words), 

and one conceptual-semantic (at two levels of granularity, consisting 

in 2 semantic categories, each subdivided in 4 sub-categorical 

clusters). Our aim was to investigate to what extent the 

representational geometry of different regions along the ventral visual 

stream matched the dimension-specific cognitive representational 

geometry of the stimuli. We predicted that the visual–perceptual 

semantic dimension of the semantic space would be primarily encoded 

in early visual regions of the ventral stream (Pulvermuller, 2013), 

while the conceptual dimensions would be primarily encoded further 

anteriorly in the temporal lobe (Peelen and Caramazza, 2012).  
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2.   Materials and Methods  

 

2.1   Subjects 

Sixteen healthy adult volunteers (five males, mean age 30.87 ± 

5.34) participated in the fMRI study. All participants were right–

handed as measured with the Edinburgh handiness questionnaire, had 

normal or corrected–to–normal vision, and were Italian native 

speakers. All experimental procedures were approved by the local 

ethical committee and each participant provided signed informed 

consent to take part in the study. Participants received a monetary 

compensation for their participation. A seventeenth volunteer was 

Figure 57 Word meaning describes a multidimensional semantic space. (a)  The words used as stimuli in behavioral (a 
similarity judgment task and a feature generation task) and fMRI experiments. Multidimensional scaling technique was 
used to visualize the semantic distances perceived between the 12 words denoting animals (left) and the 12 words 
denoting tools (right). Four clusters of semantically close words are detectable in each of the two semantic categories: 
domesticated land animals, wild land animals, mammal sea animals, not–mammal sea animals, weapons, office/schools 
tools, work appliances, and hair instruments. Here shown: the MDS retrieved from the similarity judgment task.  (b) 
Predicted similarity matrices modeling the similarities across stimuli along the four dimensions investigated. The words’ 
length matrix depicts all pairwise differences in terms of number of letters between the stimuli. The implied real–world 
size matrix is built computing the distances in ranking position between all pairs of stimuli. The semantic category matrix 
indicates which pairs of stimuli belong to the same category (e.g. both animals) and which do not. The semantic cluster 
matrix designates which pairs of stimuli belong to the same semantic cluster (e.g. cluster of domesticated land animals: 
cow, sheep and goat) and which do not. 
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excluded from the analyses for not complying with the task (see 

Testing procedures).  

 

2.2   Stimuli 

In order to validate the target stimuli for the fMRI experiment 

(i.e. 24 words, 12 names of animals and 12 names of tools) we ran two 

behavioral experiments that involved 130 Italian native speakers, 

tested through internet–based questionnaires. These experiments are 

described in details in Chap. 3.1 and are here only briefly summarized. 

In the first experiment, fifty subjects rated how similar the 

concepts indicated by the words were (Semantic Distance Judgment, 

n=50). In the second experiment, a group of  new subjects listed 

between 5 and 10 characteristics or properties of each of the 24 target 

stimuli (Semantic Feature Listing, n=80). Data from both experiments 

were used as indicators of semantic proximity: two related concepts 

are closer in semantic space (semantic distance judgment) and share 

more features (features generation task). Separately for both 

experiments, mean distance matrices across subjects were computed 

and multidimensional scaling used to obtain a graphical representation 

of the cognitive semantic space of native Italian speakers. Results 

from the two experiments converge well in pointing to 4 sub-

categorical clusters in each of the two categories. In the animals set 

the clusters were: domesticated land animals (cow, sheep, and goat), 

wild land animals (zebra, camel and giraffe), sea mammals (whale, 

dolphin and seal), and not–mammal sea animals (squid, shrimp and 

octopus). In the tools set the clusters were weapons (spear, saber and 

sword), office/schools tools (pencil, pastel, pencil sharpener), work 

appliances (hammer, nail, and pincer), and hair instruments (comb, 

brush, and hairpin). 

Words belonging to the different semantic categories and 

clusters were well matched across several psycholinguistic variables 

such as number of letters, number of syllables, gender, accent and 

frequency of use (see Chap. 3.1).  
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2.3   Testing Procedures 

In order to obtain a measure of the subject specific cognitive 

semantic space and verify the validity of the pre-defined clusters for 

the subjects participating in our fMRI experiment, we asked our 

participants to complete the same similarity judgment questionnaire as 

described above. The experimental session of the main experiment 

was divided into two parts: first, subjects underwent the fMRI 

experiment (being totally naïve with respect to the type of stimuli that 

were going to be presented), then they completed the similarity 

questionnaire. The analyses of the questionnaires followed the same 

steps as we used to validate the stimuli. To assess the consistency of 

each subject’s judgement with the semantic space that had emerged 

from our prior behavioral experiments, we computed the correlation 

between the subject specific normalized distance matrix for animals 

and tools and the average ones obtained from the fifty subjects that 

had participated in the first behavioral study. Because one subject 

failed to comply with the instruction of the task (pressing the response 

keys according to a numerical progression (1, then 2, then 3, etc...) 

regardless of the pair of words presented), we excluded his data (both 

behavioral and fMRI) from further analysis. All sixteen remaining 

subjects showed highly positive and significant correlations with the 

behavioral group average: 0.84 ± 0.08 and 0.84 ± 0.10 for the animals 

and tools respectively. Because there was very little inter-subject 

variability in the ratings we decided that it was to worth applying a 

subject specific similarity space in the subsequent fMRI analyses. 

During the fMRI experiment, subjects were instructed to 

silently read the target stimuli (i.e. 12 names of tools and 12 names of 

animals) and to perform semantic decisions only on extremely rare 

odd stimuli (Fig. 58). The odd stimuli appeared on average on 16% of 

the trials and consisted either in a picture or in a triplet of words 

referring to one of the targets, thus promoting both a depictive and a 

declarative comparison.  Subjects pressed a button with the left or the 
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right hand to indicate whether the odd stimulus was related or not to 

the previously seen target word (1–back task). The hand–answer 

mapping was counterbalanced within subjects: half of the subjects 

answered yes with the left hand in the first half of the fMRI runs and 

then yes with the right hand in the last half; the other half of the 

subjects followed the reverse order. The triplets of words defining the 

target stimuli did not contain any verbs, in order not to stress the 

functional differences between animals and tools. Such a 1–back 

oddball task was orthogonal to the dimensions investigated (i.e., it did 

not consist in judging the items relative to their size, category, or 

cluster), and this  allowed us to disentangle task–dependent processes 

from the spontaneous mental representations of the words (Cukur et 

al., 2013). Target stimuli were flashed in the center of the screen three 

times in a row (each time in a different font among Lucida Fax, 

Helvetica and Courier, to avoid adaptation): each presentation lasted 

0.5 s and the interval between them was 0.2 s for a total of 1.9s for 

each target stimulus. The goal for this multiple flashed presentation 

was to ensure that subjects well read the word but at the same time did 

not have time to make eye movements. The inter target interval was 

randomly chosen between three values (1.7s, 1.8s and 1.9s, mean = 

1.8 s).  The odd events were presented differently according to their 

nature: images were shown for 2.0 s while definitions appeared as a 

series of three words, presented in a sequence, each for 0.5 s with an 

interval of 0.2 s between them. The interval after each odd event was 

randomly chosen between three values (1.7s, 2s and 2.3s, mean = 2s). 

The average accuracy in the oddball task was very high = 92.64% 

(missed = 2.06%, errors = 5.2 %). Within a given fMRI session, 

participants underwent 6 runs of 9 min and 40 sec each. Each run 

contained 4 repetitions of each of the 24 targets, 16 odd stimuli, and 

24 rest periods (only fixation cross present on screen for 1.5s). Stimuli 

were completely randomized for each subject and each run, the only 

constraint being that odd stimuli would appear every 6-to-10 target 

stimuli. This ensures that, notwithstanding the (minimal) memory 

component of the task, we can exclude that the results reflect any 
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systematicity due to the stimulus sequence. They were presented 

with Matlab Psychophysics toolbox (http://psychtoolbox.org/).  

 

Figure 58 : Experimental setting. Example of a sequence of stimuli: during the fMRI experiment, subjects were 
instructed to silently read the target stimuli and to press a button at the presentation of rare odd stimuli. The 
odd stimuli consist either in a picture or in a triplet of words referring to one of the targets. 

 

2.4   MRI and fRMI Protocols 

Data were collected at Neurospin (CEA–Inserm/Saclay, 

France) with a 3 Tesla Siemens Magnetom TrioTim scanner using a 

32–channel head coil. Each subject underwent one session that started 

with one anatomical acquisition followed by six functional runs. 

Anatomical images were acquired using a T1–weighted MP–RAGE 

sagittal scan (voxels size 1x1x1.1mm, 160 slices, 7 minutes). 

Functional images were acquired using an echo–planar imaging (EPI) 

scan over the whole brain (repetition time = 2.3s; echo time = 23ms; 

field of view = 192mm; voxel size = 1.5x1.5x1.5mm; 235 repetitions; 

82 slices, multi–band acceleration factor 2, GRAPPA 3)(Feinberg et 

al., 2010; Moeller et al., 2010). The acquisition used a phase encoding 

direction from posterior to anterior (PA) and an inclination of –20° 

with respect to the subject’s specific AC/PC line.  

 

http://psychtoolbox.org/
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2.5   Data Pre-Processing and First Level Model 

Pre–processing of the raw functional images was conducted 

with Statistical Parameter Mapping toolbox (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). It included realignment of 

each scan to the first of each given run, co–registration of anatomical 

and functional images, segmentation, and normalization to MNI space. 

No smoothing was applied. For each subject individually, functional 

images were then analyzed within the framework of a general linear 

model (GLM). For each of the 6 runs, 35 regressors were included: 24 

regressors of interest (corresponding to the onset of the 12 names of 

animals and 12 names of tools), 4 regressors of no–interest 

(corresponding to the onset of the odd events – definitions and images 

– subdivided into those receiving a left hand vs right hand response 

from the subject), 6 head–motion regressors (i.e. the six–parameter 

affine transformation estimated during motion correction in the pre–

processing) and 1 constant. Fixation baseline was modeled implicitly 

and regressors were convolved with the standard hemodynamic 

response function without derivatives. Low–frequency drift terms 

were removed by a high–pass filter with a cutoff of 128s. Thus, one 

beta map was estimated for each target event (i.e. words stimuli) for 

each run. Both subsequent multivariate analyses – decoding and RSA 

– had as input data the 24 x 6 beta maps corresponding to the target 

stimuli normalized across conditions separately run by run (i.e. within 

each run the values for each given voxel were normalized across 

conditions to have zero mean and unit variance). 

 

2.6   Regions of Interest 

Given our hypothesis and the absence of principled functional 

localizers, to avoid circularity regions of interests (ROIs) were defined 

only based on anatomical criteria thanks to SPM toolbox PickAtlas 

(Fig. 59). Proceeding from the occipital lobe to the anterior temporal 

lobe (ATL), we selected six Brodmann areas along the ventral visual 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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pathway: BA 17 – primary visual area, BA 18 – secondary visual 

areas, BA 19 – lateral and superior occipital gyri, BA 37 – occipito–

temporal cortex (includes the posterior fusiform gyrus and the 

posterior inferior temporal gyrus), BA20 – inferior temporal gyrus, 

and BA 38 – temporal pole. We included homologue areas from both 

hemisphere and the average number of voxels of each ROI were: 

BA17 (13940 voxels), BA18 (69617 voxels), BA19 (65248 voxels), 

BA37 (65248 voxels), BA20 (28026 voxels), BA38 (27254 voxels). 

Given the known signal drop out problems in ATL and following 

previous similar studies (Peelen and Caramazza, 2012), for each 

subject we calculated the signal–to–fluctuation–noise–ratio (SFNR) 

map by dividing the mean of the time series (of the first run) by the 

standard deviation of its residuals once detrended with a second order 

polynomial (Friedman et al., 2006). This analysis was carried out with 

the python library nipype (http://nipy.org/nipype). We then computed the 

average SFNR in each of our ROIs and verified that in all regions this 

value was above the value of 20 which is usually considered to be the 

limit for meaningful signal detection (Binder et al., 2011). The 

average SFNR across the 16 subjects for BA17 was 49.76 ± 5.63, 

BA18 = 49.34 ± 4.89, BA19 = 52.76 ± 4.7, BA37 = 42.78 ± 3.65, 

BA20 = 32.87 ± 2.69, and BA38 = 30.99 ± 2.43. 

 

2.7   Univariate Analyses 

For the univariate analyses only, beta maps were smoothed 

(kernel [4,4,4]). First, two random effects analyses were run searching 

for regions in which activity was linearly modulated by length of 

words and implied real world size. Second, random effects analysis 

was applied to the contrast animals vs tools. Unsurprisingly, the only 

significant result was a linear effect of length of words in 5 occipital 

clusters (extent threshold = 100 voxel, p<0.001 FEW corrected) 

comprising primary and secondary visual cortices. This is in line with 

the literature on categorical effects in the ventral stream that shows 

 

Figure 59 Regions of interest. ROIs were 
defined based on anatomical criteria. 
Proceeding from the occipital lobe to the 
temporal pole: Brodmann area 17 
(primary visual area), Brodmann area 18 
(secondary visual areas), Brodmann area 
19 (lateral and superior occipital gyri), 
Brodmann area 37 (occipito–temporal 
cortex), Brodmann area 20 (inferior 
temporal gyrus), and Brodmann area 38 
(temporal pole). 

http://nipy.org/nipype
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less consistent results when words stimuli are used (as compared with 

pictures) [for a recent review on the topic: (Bi et al., 2016)]. 

 

2.8   Multivariate Pattern Analyses 

None of the semantic variables of interest resulted in a 

dissociation at the univariate analysis level, thus we used multivariate 

pattern analysis (MVPA) which investigates differences in the 

distributed patterns of activity over a given cortical region (Davis and 

Poldrack, 2013). In this framework, the decoding approach aims at 

predicting one or more classes of stimuli (i.e. “classification 

problem”) or a continuous target (i.e. “regression problem”) based on 

the pattern of brain activation elicited by the stimuli. The models are 

fitted on part of the data (i.e. train set) and tested on left–out data (i.e. 

test set). Previous studies of semantic representations used this method 

to decode the semantic category of words from brain activations 

patterns, and generalize this categorical discrimination across different 

input formats (from pictures to words and vice versa) (Shinkareva et 

al., 2011; Simanova et al., 2014). These studies, however, are limited 

because: (1) they evaluate the decoding model on the full brain 

volume, which fails to provide evidence in favor or against the 

differential contribution of different regions in coding sensory and/or 

conceptual information (Shinkareva et al., 2011), or (2) they contrast 

two broad semantic categories (i.e. animals vs tools), without 

investigating which dimensions of the meaning of the words (i.e. 

conceptual vs perceptual) drove the observed discriminations 

(Simanova et al., 2014). A second approach, representational 

similarity analysis (RSA) (Kriegeskorte et al., 2008), compares the 

similarity between different stimuli and the one observed between the 

multivoxel activation patterns elicited by them (i.e. neural similarity). 

To our knowledge, this approach was deployed only a few times to 

investigate the processing of symbolic stimuli (words), and no one 

investigated at the same time the organization of concepts inside and 

across semantic categories (Bruffaerts et al., 2013; Devereux et al., 
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2013). Contrary to previous studies, we estimated the similarity of our 

stimuli considering multiple dimensions at the same time: a low-level 

physical dimension (number of letters), and three semantic dimensions 

(a perceptual–semantic: the size of the objects referred to by the 

words, and two conceptual–semantic dimensions: the category and 

sub–categorical cluster). An advantage of RSA is that it permits the 

investigation of the neural coding of several different dimensions even 

when those are partially correlated in the stimuli. For example, in the 

case of our stimuli there was a correlation between semantic category 

and implied–real world size, in that the implied real world size of the 

animals was on average larger than that of tools. Using partial 

correlation as the association metric within RSA (hereafter “partial 

correlation RSA"), we are robust to the effect of one dimension (e.g. 

size) while testing for the correlation between the other dimension 

(e.g. category) and the neural similarity in a given region (Clarke and 

Tyler, 2014). 

 

Decoding models. We used two different decoding models to 

solve our four different prediction problems. First, to predict the 

number of letters composing each word, we applied a regression 

model in all ROIs. The chosen model was a Ridge regression (linear 

least squares with l2–norm regularization). The regularization 

parameter was selected by a nested cross–validation loop. Given the 

ordinal nature of our problem (i.e. what matters is the rank position, 

not the absolute value) the metric used to assess the prediction quality 

was the Kendall rank correlation coefficient (or Kendall tau). The 

same regression model was used to predict the averaged implied real 

world size of the objects referred to by the words: all animals and 

tools where ranked, regardless of their semantic classification, from 

the smallest (i.e., pencil sharpener) to the biggest (i.e. whale). The 

ranking scale was devised by the authors considering the average size 

of the items. When possible, we used information from encyclopedias; 

when that information was not available, each author gave an 

approximate estimate and ranked the items independently; it was then 
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verified that the ranks converged [the rank of the items can be found 

in the supplementary table 1]. Given that in our set of stimuli the 

object sizes increased logarithmically, the rank, which we used as our 

size metric, is equivalent to the logarithm of the sizes (correlation 

between the ranks and the log of the sizes r2 = 0.98). 

To solve the binary classification problem related with the 

semantic category (i.e. decode whether a given beta map corresponded 

to an animal or a tool word) we used a support vector machine (SVM) 

model with linear kernel. The loss function chosen was squared hinge 

loss with l2–norm regularization and, again, the regularization 

parameter was selected by a nested cross–validated loop. Finally, the 

same model was applied to solve the multiclass problem using a one–

vs–rest scheme.   

For all decoding models, we report the cross–validation scores 

computed by averaging the scores of 5 folds with a leave–one–run–out 

scheme: within each subject data from five out of six runs were used 

to fit the model and data from the held out run were used to test it. The 

group–level results were then computed averaging the scores obtained 

by each subject, and their significance was tested against the 

empirically estimated random distribution. To obtain such a 

distribution, the procedure used to obtain the group results was 

repeated 10.000 times randomly permuting the labels.  

 The same regression and classification models were fed 

with the stimuli themselves (i.e., the matrices of 0 and 1 representing 

the physical appearance of the words used during the experiment, 

averaging across the three fonts used) to rule out that any of our 

results could be explained by some low–level characteristic of the 

stimuli. The goal here is to show that in the stimuli themselves there is 

already enough information to decode the low level physical 

dimensions (i.e., number of letters), but not higher level semantic 

dimensions (nor the perceptual one – size, nor the conceptual one – 

category and cluster), thus showing that what is retrieved from the 

patterns of brain activity is not due to any low level property of the 

stimuli used.  
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All the analyses described in this section were conducted with 

the machine learning library in Python Scikit–Learn (http://scikit-

learn.org).   

 

RSA. The first step of representational similarity analysis was 

the modeling of predicted similarity matrices corresponding to the 

different dimensions investigated. Concerning word length the matrix 

was built computing the pairwise absolute difference in number of 

letters between every word pair (the simplest measure of visual 

similarity). For instance, the entry corresponding to sheep (n° of 

letters = 5) vs cow (n° of letters = 3) would contain a |5–3| = |2|. The 

same strategy was applied to the implied real size ranking scale: the 

entry corresponding to whale (position in ranking = 24) vs pencil 

sharpener (position in ranking = 1) would contain a |24–1| = |23|. 

These first two matrices show distances (i.e. dissimilarity) thus in 

order to be compared with the neural similarity matrices, their values 

need to be inverted (similarity = 1 – dissimilarity). As to the 

conceptual dimensions of our stimuli, two matrices were built: one 

depicting the two semantic categories and one describing the eight 

clusters that had emerged from the behavioral study. The first one had 

1 for all entries of the same category (i.e. all identical combinations: 

two animals or two tools) and 0 everywhere else (i.e. all different 

combinations: an animal and a tool). The semantic cluster matrix was 

built likewise, thus having 1 for all combinations of items from the 

same cluster and 0 everywhere else. The four matrices being 

symmetrical (Fig. 57b), they were vectorized discarding the diagonal 

and keeping only the upper half, then standardized to have mean 0 and 

standard deviation 1. It should be noted that there is a significant 

correlation between the similarity matrix of size and the ones of 

semantic category (r = 0.39, p<0.001) and semantic cluster (r = 0.27, 

p<0.001), due to the fact that animal–words tend to refer to big items 

and tool–words tend to refer to small items. There is, clearly, a 

correlation between the predicted similarity matrix representing the 

two semantic categories and the one describing the 8 semantic clusters 

http://scikit-learn.org/
http://scikit-learn.org/


244 
 

(r = 0.32, p<0.001). Importantly, there is no significant correlation 

between the predicted similarity matrix for length and the ones for size 

(r = 0.04, p = 0.49), category (r = 0.06, p = 0.32), or cluster (r = -

0.002, p=0.97). 

In order to retrieve the neural similarity matrices, for each 

subject and in each ROI, we built a vector with all the voxels’ values 

for a given stimulus (i.e. from a given beta map). The six stimulus-

specific vectors were averaged and all pairwise correlations between 

vectors were computed (by means of Pearson’s correlation). The 

24x24 neural similarity matrix obtained was then vectorized as done 

for the predicted similarity matrices. We obtain thus four vectors 

(denoted as XL, XS, XC and Xk) from the predicted similarity matrices 

and one (denoted as Y) from the neural similarity matrix. In order to 

directly test our hypothesis, we need to be able to estimate the 

contribution of each single predicted similarity matrix (e.g., Xk) to the 

neural one (Y) while controlling for the effect of the other ones (e.g., 

XL, XS, XC). Expressing the neural similarity vector as a linear 

combination of the predicted similarity vectors plus a noise term, we 

are interested in testing the null hypothesis that the partial regression 

coefficient of a given predicted similarity matrix is not significantly 

different from zero. That is, given the model Y = β1XL + β2XS + 

β3XC + β4XK + ε where ε is a vector of residuals, we would like to 

test the null hypothesis H0:  βi≠0 (where i can take the values {1, 2, 3, 

4}). The test statistic we used for this hypothesis is the partial 

correlation between all pairs of Y and X (e.g., Y and Xk), controlling 

for the remaining variables Z (e.g., XL, XS, XC). The partial correlation 

of two vectors Y and X while controlling for Z is given as the 

correlation between the residuals RX and RY resulting from the linear 

regression of X with Z and of Y with Z, respectively. Since the 

distribution of this statistic is unknown, we choose to obtain the 

significance level using a permutation test (Anderson and Robinson, 

2001). Thus, for each subject and each ROI, we computed the partial 

correlation between the neural similarity matrices and each predicted 

similarity matrix (controlling for all the others). The observed result of 
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size is thus corrected for the potential residual correlation between the 

neural signal and length, category and cluster, the one of category is 

corrected for length, size and cluster, and so on. Then, scores from all 

the subjects were averaged and the significance of the group–level 

results was tested against the empirically estimated random 

distribution similarly to what has been done for the decoding models. 

Two features of partial correlation RSA should be noted. . First, 

because it is based on Pearson correlations, partial RSA assumes 

linear relations between the variables, therefore the inferences might 

not be valid if a strong non-linearity underlies the relationship 

between the physical/cognitive variables and the patterns of brain 

activation. This issue will need to be tackled in the future to further 

refine this type of RSA analysis. Second, from a neurobiological point 

of view, the use of partial RSA can elucidate whether multiple (and 

partially correlated) features of the stimuli can be independently 

encoded in the same (set of) brain regions. We think that this question 

is legitimate, especially in light of the fact that pure functional 

selectivity (i.e., a brain region in which neurons are solely involved in 

coding one specific stimulus feature) is clearly not a feature of our 

brain. It is however necessary to remember that the observation of an 

interaction between brain region and feature would not imply that a 

given feature (e.g., size) is solely represented in a given brain region 

(e.g., visual areas). It would only indicate that there is more residual 

signal related to a given feature in one area compared to the other. 

Such results could reflect the fact that more neurons code for one 

feature in one area than in another one. Alternatively, it may suggest 

that the different features are encoded with a different degree of 

precision across areas. The current methods do not allow 

differentiating across these scenarios: detailed electrophysiological 

studies might be useful to address the question. 

All the analyses described in this section were conducted with 

in–house python scripts.  
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2.9   Additional Analyses 

We performed five supplementary analyses. First, in order to 

demonstrate that our semantic effects (especially those that we could 

recover from activity in early visual regions) could not be explained 

by information present in the physical appearance of the stimuli 

themselves, we applied all the aforementioned decoding and partial 

correlation RSA analyses to the images of the stimuli (i.e. the 

snapshots of the screens with the words we presented to the subjects 

during the fMRI experiment). 

Second, to better qualify the effect of size as separated, thus 

independent from the effect of length, even though there was no 

significant correlation between the predicted similarity matrix for 

length and size (r = 0.04, p = 0.49), nor between length and size across 

the stimuli themselves (r=0.38, p.=0.06), we re-run the partial RSA 

analyses on a subset of words by removing the two more extreme 

words length-wise (the shortest and the longest, one animal (“FOCA”) 

and one tool (“TEMPERINO”)). This further reduced the already non-

significant correlation across Length and Size in our stimuli (down to 

R=0.27 (p.=0.21)), and the respective distance matrices (down to R=-

0.03 (p.=0.5)). 

Third, to better qualify the presence of different gradients 

along the ventral stream, we tested for an interaction between the 3 

different semantic dimensions (size, category, cluster) and our ROIs 

by feeding subjects’ partial correlation scores (once Fisher r-to-z 

transformed) into an ANOVA (6 ROIs x 3 dimensions), and then  

performed trend analyses with SPSS 

(http://www.ibm.com/analytics/us/en/technology/spss/), testing for a linear, a 

quadratic, a cubic, a 4-th and a 5-th order term for each of the 3 

dimensions. 

Forth, to verify the impact of the partial correlation RSA (vs. 

standard RSA), we also computed, for all predicted matrices and 

ROIs, standard Pearson correlation (standard RSA), assessing their 

significance with permutation tests. 

http://www.ibm.com/analytics/us/en/technology/spss/
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Fifth, to investigate whether the effects were lateralized, we 

run an additional partial correlation analysis on the same ROIs but 

separately for the right and left hemisphere.  

 

Finally, we attempt to study whole brain activity (via a 

searchlight with partial correlation RSA) and to determine whether a 

more fine grained representations of the semantic distance could be 

appreciated (using the continuous scale obtained from the behavioral 

experiments instead of the binary classification has belonging to a 

given semantic cluster or not). These exploratory analyses, whose 

results overall confirm our general findings, are reported in the 

Appendix 1.2.. 

 

3.   Results 

 

In each ROI we applied different MVPA models tailored to 

our variables and cognitive questions. Firstly, we used decoding to 

predict: the number of letters composing each word and the relative 

implied real–size (using the rank from the smallest to the biggest item, 

approximatively equivalent to the logarithm of the real size), through a 

regression model; and the conceptual–semantic dimensions at two 

different scales, that of the semantic category and that of a finer–

grained semantic cluster, through a binary classification and a multi–

class classification model. We then further qualified the results 

through partial correlation RSA, and compared the pattern of fMRI 

activations to words with those predicted by the similarity of the 

stimulus conditions along the aforementioned dimensions. Extremely 

low p-value are rounded to p < 10-5 and all p-values inferior to 0. 

0083 survive Bonferroni correction for multiple ROIs comparisons (p 

= 0.05/6 areas = 0.0083). 
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3.1   Physical Dimension: number of letters 

The number of letters composing each word could be 

successfully predicted by a regression model in the early visual 

regions BA17 (mean score = 0.45, p<10
–5

), BA18 (mean score = 

0.31, p<10
–5

) and BA19 (mean score = 0.21, p<10
–5

). Likewise, 

the neural similarity computed from the pattern of activation of 

these areas significantly correlated with the predicted similarity 

matrix modelling the difference in number of letters between each 

word pair: BA17 (mean score = 0.35, p<10
–5

), BA18 (mean score 

= 0.13, p<10
–5

) and BA19 (mean score = 0.06, p<10
–5

). More 

anterior temporal regions ceased to reflect such physical 

dimension of the visual stimulus, in line with the expected 

increasing invariance to physical dimensions along the ventral 

stream. These results are therefore a sound sanity check for our 

models (Fig. 60). 

 

3.2   Perceptual–Semantic Dimension: implied 

real word size 

We then investigated the brain code for the real–world 

size of the objects referred to by the words, to which we refer to 

as a perceptual–semantic dimension (see Fig. 61a). A regression 

model with the rank of the sizes (equivalent to the log of the 

sizes) permitted above chance prediction of the relative size in 

BA17 (mean score = 0.07, p=0.0006), BA18 (mean score = 0.05, 

p=0.0086), BA19 (mean score = 0.09, p<10–5), and BA37 (mean 

score = 0.04, p=0.0086). Because in our stimuli implied real–

word size and semantic category were correlated (on average, tools 

were smaller than animals) using decoding we were unable to 

determine if the source of the information used by the decoder to solve 

the implied real–world size regression problem was indeed related to 

the implied–real world size, to the semantic category, or both. The 

partial correlation RSA, on the contrary, could provide such 

information. Once we accounted for the conceptual effects (semantic 

 
Figure 60 Low level stimuli representation. Results 
concerning the physical dimension of our stimuli 
(length of the words). Lowermost: the regression 
model applied (scoring metric: Kendall tau) was able 
to predict the number of letter composing each word 
in primary and secondary visual areas. Middle: the 
partial correlation between neural similarity matrix 
and length of words matrix is significant in primary 
and secondary visual areas (while controlling for the 
other three dimensions investigated). Uppermost: in 
a template brain, the six ROIs are colored according 
to the normalized partial correlation scores, 
highlighting how the effect of the purely physical 
dimension is confined in occipital visual areas.  We 
are showing the average scores across subjects 
(n°=16) and error bars indicate the s.e.m.. Statistical 
significance (* p < 0.05, ** p < 0.001, *** p < 10-5) is 
computed with a permutation test and very low p-
value are rounded to p < 10-5. Exact p-values are 
reported in the text and ** / *** survive Bonferroni 
correction (p = 0.05/6 areas = 0.0083). 
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category and cluster), the similarity in the implied real–world size 

significantly correlated with the neural similarity observed in primary 

visual areas (BA17, mean score = 0.06, p<10–5) and then 

progressively decreased in more anterior areas (BA18, mean score = 

0.02, p= 0.0537, and BA19 mean score = 0.03,p= 0.0484) (see Fig. 

61a). 

 

3.3   Conceptual–Semantic Dimensions: semantic 

category and cluster 

Next, we tested more conceptual aspects of our stimuli (see 

Fig. 61b–c): the semantic category (i.e. animals vs tools) and the sub–

category semantic clusters (e.g. domesticated animals vs. wild 

animals). A binary classification model was able to predict above 

chance the words’ semantic category in four occipito–temporal ROIs: 

BA17 (mean score = 0.54, p=0.0008), BA18 (mean score = 0.53, 

p=0.0055), BA19 (mean score = 0.57, p<10
–5

), BA37 (mean score = 

0.56, p<10
–5

). Again, because of the correlation between semantic 

category and size, these results were further qualified by partial 

correlation RSA, which showed that category membership was 

increasingly correlated with brain activation as we moved along the 

ventral path from posterior to anterior regions (BA18 mean score = 

0.02, p=0.0558, BA 19 mean score = 0.03, p=0.0099), independently 

from the residual code for size, reaching the peak in BA37 (mean 

score = 0.05, p=0.0004). Finally, using a multiclass classification 

model we could decode the subtle semantic clustering of our words in 

five ROIs: BA17 (mean score = 0.14, p=0.0126), BA18 (mean score = 

0.13, p=0.0148), BA19 (mean score = 0.16, p<10
–5

), BA37 (mean 

score = 0.14, p=0.0295), BA20 (mean score = 0.15, p=0.0001). These 

results were further qualified by partial correlation RSA, which 

showed that semantic cluster membership, once accounted for the 

other dimensions, was represented in the most anterior areas of the 

temporal lobe (BA19 mean score = 0.04, p= 0.006, BA37 mean score 

= 0.03, p= 0.0081), peaking in BA20 (mean score = 0.06, p<0.05). 
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Figure 61 Topography of perceptual and conceptual representations in the ventral path. (a) Lowermost: the regression model (scoring metric: Kendall tau) was 
able to predict above chance the implied real-world size in four occipito-temporal areas. Middle: the partial correlation between neural similarity matrix and real–
world size matrix, while controlling for the other dimensions, is significant in primary visual areas (BA17). Uppermost: the six ROIs are colored according to the 
normalized partial correlation scores, highlighting how the effect of the perceptual dimension is confined in occipital visual areas. (b) Lowermost: the binary 
classification model was able to predict above chance the semantic category in four occipito-temporal areas (from BA17 to BA37). Middle: the partial correlation 
between neural similarity matrix and semantic category matrix is significant in the occipito–temporal cortex (BA19 and BA37). Uppermost: information about 
semantic category appears to be coded in occipito-temporal areas, anteriorly respect to the implied real-world size and posteriorly respect to the semantic cluster. 
(c) Lowermost: the multi-classification model was able to predict above chance the semantic cluster in five occipito-temporal areas (from BA17 to BA20). Middle: the 
partial correlation between neural similarity matrix and semantic cluster matrix is significant in anterior areas, from BA19 to BA38, peaking in BA20. Uppermost: the 
effect of semantic cluster gets progressively higher the more anterior the areas considered. We are showing the average scores across subjects (n°=16) and error 
bars indicate the s.e.m.. Statistical significance (* p < 0.05, ** p < 0.001, *** p < 10-5) is computed with a permutation test and very low p-value are rounded to p < 
10-5. Exact p-values are reported in the text and ** / *** survive Bonferroni correction (p = 0.05/6 areas = 0.0083). 
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3.4   Controls on Low Level Physical Dimensions 

In order to demonstrate that our semantic effects (especially 

those that we could recover from activity in early visual regions) could 

not be explained by information present in the physical appearance of 

the stimuli themselves, we applied all the aforementioned decoding 

and partial correlation RSA analyses to the images of the stimuli (i.e. 

the snapshots of the screens with the words we presented to the 

subjects during the fMRI experiment). Unsurprisingly, the only 

dimension that this analysis could recover from such input was the 

number of letters composing each word: decoding score = 0.74, 

p<0.001; RSA score = 0.23, p<0.001 (for implied real world size: 

decoding score = 0.12, p=0.28; RSA score = -0.01, p=0.62, for 

semantic category: decoding score = 0.11, p=0.30; RSA score = 0.05, 

p=0.18, for cluster category: decoding score = 0.08, p=0.33; RSA 

score = -0.05, p=0.82). 

We also explored if the variations in word length could explain 

the effect of size in early visual areas. Although the predicted 

similarity matrices for length and size were not correlated with each 

other, because the effect of word length was very strong compared to 

that of size, as a further control aiming at reducing the variability in 

length across our stimuli we re-run the partial correlation analyses of 

size eliminating two stimuli, corresponding to the longest (4 letters) 

and the shortest (9 letters) words. This partial correlation RSA testing 

for the effect of size (corrected for length, category and cluster) was 

smaller compared with the one run on the full set of stimuli, but it 

remained significant (p. < 0.05) in BA17. As for the original analysis, 

this effect disappeared in more anterior regions. 
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3.5   Interaction between Semantic Dimensions 

and ROIs 

Our findings illustrate two clear postero–anterior gradients in 

the neural response profile of the ventral visual path: posterior 

occipital regions appear as coding for the visuo-perceptual semantic 

property of the items (the implied average real word size), irrespective 

to their semantic category, while as we moved anteriorly in the ventral 

stream, mid-anterior temporal regions discriminate first between 

semantic categories and further anteriorly between sub-categorical 

cluster in a way that is insensitive to their visuo-perceptual property of 

size. Such an interaction between semantic dimensions and our ROIs 

was explicitly tested with an ANOVA (6 ROIs x 3 dimensions). The 

results was highly significant: F(10,150)= 4.48, p<0.001, 

corroborating the differential contribution of perceptual and 

conceptual semantic dimensions to the pattern of brain activity in 

occipital and temporal areas (see Fig. 62). Across the six ROIs, the 

three effects develop according to different trends: implied real world 

size shows a significant (decreasing) linear trend (F(1,15) = 23.92, 

p<0.0001); semantic category a significant quadratic trend (F(1,15) = 

15.97, p=0.001); semantic cluster a marginal (increasing) linear trend 

(F(1,15) = 3.59, p=0.07), not significant likely due to the loss of signal 

/ increased noise in BA38).  

 

 
 
 

 

 

 

 

 

 
Figure 62 Interaction between the 3 semantic dimensions and the 6 ventral ROIs. For 
each semantic dimension, the average partial correlation score across subjects  (n°=16) 
is plotted as a function of the different Brodmann areas investigated. Implied real world 
size (in blue) follows a decreasing trend as one moves from posterior (BA17) to anterior 
(BA38) areas. Semantic category (in green) and semantic cluster (in red) show the 
opposite trend.  
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3.6   Standard Pearson Correlation RSA 

Second, we verified the impact of the use of partial correlation 

in RSA, and thus run the “standard” Pearson correlation RSA. This 

revealed a pattern very close to decoding: due to the relation between 

implied real world size and semantic category/cluster the three effects 

are intermingled and result in a less clean gradient from physical 

(length of words: BA17 mean score = 0.34, p<10–5, BA18 mean score 

= 0.12, p<10–5, BA19 mean score = 0.06, p=0.0202) and perceptual 

(implied real world size: BA17 mean score = 0.62, p=0.0133), to 

conceptual (semantic category: BA37 mean score = 0.05, p=0.0446; 

semantic cluster: BA20 mean score = 0.05, p=0.0407) (see Fig. 63). 

 

 

 

 

Figure 63 Pearson correlation 
results. Results for RSA with 
standard Pearson correlation (not 
partialling out other variables) for 
the four dimensions investigated: 
length of words, implied-real 
world size, semantic category and 
semantic cluster. We here show 
the average scores across subjects 
(n°=16) and error bars indicate the 
s.e.m.. Statistical significance (* p 
< 0.05, ** p < 0.001, *** p < 10-5) 
is computed with a permutation 
test and very low p-value are 
rounded to p < 10-5; ** / *** 
survive Bonferroni correction (p = 
0.05/6 areas = 0.0083). 

 

 

 

 

 

 

 

 



254 
 

3.7   Lateralization of the Effects 

Finally, when our ROIs were split in left vs right, the profile of 

the 4 effects followed the same trend bilaterally: moving from 

posterior to anterior along the ventral path physical (i.e., length of 

words) and perceptual (e.g., implied real world size) effects decrease, 

while conceptual ones (i.e., semantic category and cluster) increase 

(see Fig. 64). On the left hemisphere, length of words: BA17 mean 

score = 0.33, p<10
–5

, BA18 mean score = 0.14, p<10
–5

, BA19 mean 

score = 0.05, p=0.0001; implied real world size: BA17 mean score = 

0.04, p=0.0018, BA19 mean score = 0.03, p=0.0102; semantic 

category: BA18 mean score = 0.03, p = 0.0112, BA19 mean score = 

0.03, p = 0.012, BA37 mean score = 0.06, p<10–5; semantic cluster: 

BA19 mean score = 0.03, p =0.0048, BA37 mean score = 0.04, p 

=0.0029, BA20 mean score = 0.05, p =0.001. On the right hemisphere, 

length of words: BA17 mean score = 0.25, p<10
–5

, BA18 mean score 

= 0.09, p<10
–5

, BA19 mean score = 0.06, p<10
–5

; implied real world 

size: BA17 mean score = 0.06, p<10–5, BA18 mean score = 0.02, 

p=0.0499; semantic category: BA19 mean score = 0.03, p = 0.0234; 

semantic cluster: BA19 mean score = 0.03, p = 0.0134, BA20 mean 

score = 0.05, p = 0.0001, BA38 mean score = 0.04, p =0.0036. It 

should be noticed that having now 12 ROIs, the Bonferroni correction 

threshold is now 0.004 (p = 0.05/12 areas = 0.004). 
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4.   Discussion 

 

This study investigated the semantic representation of word 

meaning along the ventral visual path during silent reading and tested 

the hypothesis that perceptual semantic features of the objects referred 

to by the words are encoded in brain regions that are partially 

segregated from those encoding conceptual semantic features. Our 

task, orthogonal to the dimensions of the semantic space we 

investigated, ensured that subjects processed the words at an 

individual level (as opposed to the category or cluster level), and that 

the representations recovered in the brain activation emerged 

spontaneously. Furthermore, since we used words instead of pictures 

as stimuli, our results are free from any possible low-level confound 

due to visual shape similarity (Rice et al., 2014). We used a 

combination of multivariate decoding and partial correlation RSA. In 

Figure 64 Lateralization of the effects. Results for the four dimensions investigated (length of words, implied-real world size, semantic 
category and semantic cluster) in the six ROIs of the left and right hemisphere respectevely. We here show the average scores across 
subjects (n°=16) and error bars indicate the s.e.m.. Statistical significance (* p < 0.05, ** p < 0.001, *** p < 10-5) is computed with a 
permutation test and very low p-value are rounded to p < 10-5; ** / *** survive Bonferroni correction (p = 0.05/6 areas = 0.0083). 
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fact, while decoding only tests for the possibility to discriminate 

classes (without directly assessing in which aspects those classes 

differ), partial correlation RSA directly tests for the contribution of a 

given representational geometry onto brain activity. 

 

Implied real–world size information in primary visual 

areas  

One surprising result of this study is that, during reading, early 

visual areas appear to contain information relative to at least one 

perceptual–semantic dimension of word meaning: the implied real–

world size of the items they refer to (Fig. 61). This information, 

however, is progressively lost towards anterior temporal regions, 

which become more progressively involved in encoding more abstract 

information such as semantic category and sub-categorical cluster. Not 

surprisingly, if one had to look only at non-partial correlation RSA or 

decoding, one would have observed much more distributed effects, 

with size reaching significance also in more anterior areas and 

category also in more posterior ones. Having run partial RSA, 

however, we now know that this would have been a spurious effect 

due to the correlation between size and semantic category and cluster. 

Partial correlation RSA gives us a cleaner picture of the contribution 

of this perceptual dimension once accounting for the conceptual ones. 

In this respect, it is to be noted that the surprising effect of size in 

early visual areas was also present when we corrected for the effect of 

word length, which, even though not significantly correlated with size 

(neither at the level of the raw values nor at the level of the similarity 

matrices) was not entirely un-related to it. Further, we could retrieve 

size-related information in BA17 even after we removed from the 

analyses the two words that were most greatly variable in length. 

These results suggest that early visual areas play a role in semantics, 

and not only in low–level vision. They are coherent with recent 

studies indicating that activity in primary visual cortex contains 

perceptual information even in the absence of sensory stimulation 

(e.g., the prototypical color of objects presented as a gray-scale image) 
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(Bannert and Bartels, 2013) or in presence of ambiguous stimuli 

(Vandenbroucke et al., 2014). Moreover, calcarine cortex has been 

shown to allow distinction of words semantically related with visual 

properties (e.g., “shinny”) vs auditory properties (e.g., “loud”) 

(Murphy et al., 2016). Our results also relate to the literature on 

mental imagery, which indicates commonalities between the neural 

substrates of perception and of imagery (Farah, 1992; Kosslyn, 2001; 

Smith and Goodale, 2014). In our experiment we neither explicitly 

prompted the use of mental imagery nor did we inhibit it, thus we are 

neutral with respect to the issue of whether the observed effects were 

related to imagery or not. One way to approach the question in the 

future would be to directly compare the neural representational 

geometries in early visual cortices during reading (i.e. reading names 

of objects of different sizes; the condition we have in the present 

study), with that elicited during  perception (i.e. seeing items of 

different sizes), and mental imagery (i.e. imaging items of different 

sizes). The recent success of a voxel-wise encoding model suggests 

that the same low-level visual features are encoded during visual 

perception and mental imagery (Naselaris et al., 2015); however, 

further research is needed to test:  (1) whether they differ in 

representational granularity, as is the case for audition and auditory 

imagery (Linke and Cusack, 2015); and crucially (2) whether similar 

results are obtained when subjects are presented with symbolic 

stimuli, i.e. words, instead of pictures. Despite this open issue, 

however, our results indicate that activation in primary visual areas 

contains information related to the real–word size of items even when 

the items are not physically present but simply evoked by symbols. 

Interestingly, the results of the preliminary behavioral feature 

generation task we conducted indicate that subjects spontaneously and 

consistently report size as a key defining property of both animal and 

tool words (averaging across items and subjects, size-related features 

were reported 188 times for animals and 212 times for tools), while 

color, for example, was reported frequently as a feature defining 

animals but much less for tools (554 times for animals, 117 times for 
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tools). Finally, while the scope of the research was not to investigate 

the internal scale at which object sizes are represented in the brain, 

because we computed our dissimilarity matrix on the basis of the rank 

of the sizes, and because the progression in sizes of our stimuli was 

roughly logarithmic, our results are compatible with the idea that size 

is encoded in early visual cortex according to a logarithmic scale 

(Konkle and Oliva, 2011) . 

It should be noticed that implied real world size is relatively 

easily and objectively quantifiable, while other properties, such as 

color, cannot easily be established for many stimuli. However, in 

future studies we shall try to parametrize and thus model other visual 

as well as non-visual sensory properties implied by nouns (e.g., shape, 

sound) in order to investigate the degree of segregation across sensory 

regions of these properties. Concerning the anatomy of the real-word 

size effect, previous literature has shown the implication of lateral-

occipital, inferotemporal, and parahippocampal cortices (Konkle and 

Oliva, 2012; He et al., 2013). The discrepancy between those studies 

and the current one can be traced down to the numerous 

methodological differences. Most studies used pictures as stimuli 

(Konkle and Oliva, 2012 studies 1 and 2), while we used words. 

Furthermore, when they did not use pictures, but words, as we do, 

they engaged subjects in tasks involving active size comparison (He et 

al., 2013) or  imagery of objects in their prototypical or atypical size 

(Konkle and Oliva, 2012 studies 3), thus drawing subject’s attention 

on the size dimension. Instead, in our experiment, subjects were asked 

to actively think of the whole concept referred to by the words, with 

no specific focus on the size dimension. Moreover, previous studies 

compared objects that did not only differ for average size but also 

belong to largely different semantic categories (animals vs tools vs 

non-manipulable objects, He et al., 2013), while we present results for 

the implied real world size effect controlling for categorical 

differences. Finally, all the aforementioned studies identified the 

effect of size using univariate analyses, while in our experiment there 

was no effect, neither in V1 nor in other regions at the univariate level. 
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Multivariate analyses of those data could reveal if additional 

information could retrieved from brain activity, and especially from 

primary visual areas, when the distributed pattern of activity is 

considered.  

 

Conceptual taxonomic information is mainly encoded in 

mid and anterior temporal areas  

A good number of neuropsychological and neuroimaging 

findings now converge in indicating a crucial role for ATL in the 

conceptual semantic processing.  Herpes simplex encephalitis with 

widespread lateral and medial temporal lobe damage is associated 

with semantic category–specific deficits (Lambon Ralph et al., 2007). 

Moreover, semantic dementia, a neurodegenerative disorder whose 

gray and white matter atrophy starts in ATL, shows progressive 

decline in semantic representations spanning all stimulus presentation 

modalities (visual, auditory, verbal and pictorial) suggesting a key role 

of ATL in amodal semantic processing. Neuroimaging studies 

focusing on regions in anterior temporal cortex which are activated 

during semantic tasks also show that semantic proximity of words 

belonging to the same semantic category correlates with the patterns 

of activity in left perirhinal cortex (Bruffaerts et al., 2013). Virtual 

lesions through TMS and cortical stimulation also indicate that 

interfering with ATL generates trouble in a variety of semantic tasks 

(Pobric et al., 2010; Shimotake et al., 2014). These findings are 

compatible with the idea that the anterior temporal cortex acts as a hub 

region where single perceptual semantic features are integrated to give 

rise to semantic representations. In the current experiment we show 

that activity in the mid and anterior temporal cortex (but not in more 

posterior occipito/temporal regions) reflects categorical and sub-

categorical conceptual clustering of the words, and is thus in line with 

the aforementioned literature. However, because in the current study 

we investigated at the same time conceptual and perceptual semantic 

dimensions of the words we presented, we could directly demonstrate 

that the ATL codes for the conceptual dimensions of the semantic 
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space (category and sub-categorical cluster) in a way that is 

independent from the single perceptual feature of size. If we had used 

decoding results only, we would have mistakenly concluded that 

categorical semantic information is available already in posterior 

occipital areas. Instead, by partial correlation RSA we can start teasing 

apart the multiple components of complex representational spaces that 

characterize word meaning. The finding that even once accounting for 

the difference across animals and tools in their average size there is 

enough information in the ATL to discriminate their category and sub-

categorical cluster, even if admittedly at a coarse anatomical scale, 

enriches our understanding of the representational geometry of the 

anterior part of the temporal lobe. In fact, they complement previous 

evidence of object category effects in posterior middle/inferior 

temporal gyrus and ventral temporal cortex (similar to our semantic 

categories) (Fairhall and Caramazza, 2013), and of semantic similarity 

effect in left perirhinal cortex (similar to our semantic cluster) 

(Bruffaerts et al., 2013). 

 

Representational shift along the ventral stream 

The third major finding of our study is the observation of two 

progressive gradients of semantic coding as we move along the ventral 

stream (Fig. 61 and 62): from perceptual to conceptual and from 

categorical to sub-categorical. 

While visuo–perceptual semantic information appears to be 

preferentially encoded within occipital visual areas, anterior temporal 

areas become progressively invariant to such perceptual features, and 

at the same time progressively more sensitive to the conceptual 

taxonomic dimensions of the semantic space: the semantic category 

and the sub-categorical cluster of the words. While a similar 

posterior–to–anterior gradient of abstraction –from physical to 

perceptual to conceptual information coding– has been previously 

reported in the domain of object recognition (Peelen and Caramazza, 

2012; Devereux et al., 2013; Carlson et al., 2014; Clarke and Tyler, 

2014), to our knowledge no study has previously investigated at the 
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same time physical, perceptual and conceptual dimensions of word 

meaning. The presence of a semantic gradient along the occipito–

temporal axis was first suggested by clinical data: patients with 

vascular damage in the territory of the posterior cerebral artery present 

fine–grained categorical deficits (e.g. disproportionate failures for 

biological categories) only if their lesion extend to the anterior 

temporal region, beyond Talairach’s y–coordinate –32 (Capitani et al., 

2009). We also observed an increasingly fine-grained clusterization of 

words as we moved along the anterior temporal lobe: while mid-level 

temporal regions represent the gross semantic category of the words 

(animals vs. tools), more anterior regions (BA20 and BA38) become 

progressively sensitive to the sub-categorical clustering, allowing to 

distinguish words related, for example, to domesticated land animals, 

wild land animals, sea mammals, and sea non-mammals. A 

speculative idea is that the nature of the representation in the temporal 

lobe could be progressively more fine–grained (i.e. reflecting 

categorical membership in the posterior portion and single item 

identity in more anterior one). This hypothesis would also fit well with 

the report of “concept cells”, coding for individual items though with 

a very high degree of invariance (even across symbolic and pictorial 

presentations) in the medial areas of the human anterior temporal 

cortex (Quiroga, 2012). This representational shift should be 

interpreted in light of the coarse anatomical scales we used and better 

qualified by furthers studies tapping the specific representational 

granularity (or hierarchy) of the different perceptual and conceptual 

dimensions involved in word meaning in more precisely defined brain 

regions.  

 

A multidimensional semantic neural space: theoretical 

implications 

Our ROIs encompass several functionally defined areas 

responding preferentially to different categories of visual stimuli, such 

as objects (Lerner, 2001), bodies (Downing et al., 2007), faces (Peelen 

and Downing, 2005) and words (Dehaene and Cohen, 2011). Beside 
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this macroscopic parcellation based on categorical preference, other 

more abstract dimensions, such as animacy (Sha et al., 2014) and real 

world size (Konkle and Oliva, 2012) have been suggested as 

additional organizing principles of object processing in the ventral 

visual path. Recently, it has been proposed that cytoarchitectonic 

differences underlie the functional segregation observed in the ventral 

temporal cortex following two computational principles: a lateral-

medial axis of specialization (i.e., same computations on different 

contents), and a posterior-anterior axis of transformation (i.e., 

different computations on the same content)(Weiner et al., 2016). In 

our study we could retrieve size and category information from the 

activity of occipito–temporal areas, but only at the multivariate level, 

indicating that the activation of this information during passive word 

reading is more subtle and distributed compared to that directly 

evoked by looking at the pictures of the stimuli. Moreover, the 

discrepancy between findings implicating down-stream regions in the 

processing of size-related information (Konkle and Oliva, 2012) with 

our observation of an effect already in early, up-stream, regions could 

tentatively be explained in terms of differences in task requirements 

between the two studies (Martin, 2015). Generally speaking, the 

different perceptual and conceptual dimensions characterizing objects 

(Huth et al., 2012) and words (Just et al., 2010; Huth et al., 2016) 

semantics appear to be coded in a highly  distributed fashion, 

encompassing visual and nonvisual cortices (Fernandino et al., 2015b; 

Anderson et al., 2016). All this evidence contributes to the description 

of a distributed and multidimensional semantic neural space, partially 

answering the question of how word meaning is encoded in the brain. 

A current debate, of interest for some, relates to the question of 

whether the format of the representation of the different stimulus 

features in the various brain regions is abstract or embodied 

(Glenberg, 2015; Mahon, 2015). Our study, by investigating the 

representational geometry of word meaning in different brain regions 

of the ventral stream elucidates where and how, in the brain, semantic 

information is encoded. However, it remains neutral as to its format. 
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In this respect, we agree with A. Martin (Martin, 2015) that given the 

absence of a consensus on how to establish the format of a 

representation, currently no experimental setting seems to be able to 

actually tackle this problem. Nevertheless, we think that the double 

dissociation between coded properties and brain regions that we 

observed is a convincing argument in favor of a distributed theory of 

semantic processing that accepts the key role of the anterior temporal 

lobe in conceptual knowledge and that at the same time recognizes an 

important part played by sensory-motor areas in encoding perceptual 

components of meaning. 

 

In conclusion, our results indicate that different aspects of 

word meaning are encoded in a distributed way across different brain 

areas. Perceptual semantic aspects, such as the implied real word size 

appear to be encoded, independently from higher order semantic 

features, primarily in early sensory areas, which represent the aspects 

of semantic information that are isomorphic with the input they 

typically process. Conceptual aspects, such as the categorical cluster 

and sub-clusters, appear encoded primarily in anterior temporal areas, 

which code taxonomic information in a way that is independent from 

single perceptual features. Hence, both sensory and association areas 

appear to play an important role by coding for specific and 

complementary perceptual and conceptual dimensions of the semantic 

space.  
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Highlights:  

 Perceptual dimensions appear to determine early effects (~200ms), mostly in the inter-trial phase coherence. 

 Conceptual dimensions appear to determine early effects (~200ms), mostly in the spectral power changes. 

 Different dimensions appear to be dissociated in terms of sources and dynamics, more than timing. 

CHAPTER 5:  

TEMPORAL FEATURES OF SEMANTIC DIMENSIONS 

 

Time is what keeps everything from happening at once. 

[Ray Cummings, 1921] 

 

In this chapter I review the work I conducted to investigate the temporal dynamics of 

the neural representations of different semantic dimensions. Analyses of this dataset are still 

in progress and a journal paper is in preparation. 

 

 

1.   Introduction  

 

In the previous chapters, we have seen how the many open 

questions concerning the neural substrate of semantic knowledge 

(Chap.1) can be investigated by means of different behavioral and 

imaging techniques (Chap.2). I here present the results of a MEG 

experiment aiming at corroborating our behavioral and fMRI results 

(Chap.3 and 4), while adding one crucial piece of information: the 

timing of semantic knowledge processing. 

 

1. 1   The Temporal Dynamics of Word Reading  

As already pointed out, the fine temporal resolution of 

electroencephalography (EEG) and magnetoencephalography (MEG) 

have revealed how, during single word reading, brain activation 

unfolds from occipital areas towards the anterior temporal pole 
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(Marinkovic et al., 2003; Pammer, 2009). First of all, primary visual 

cortices host processing of the physical properties of the stimuli 

presented, and during the first 200 ms, analyses of the visual-

orthographic features spreads in a feed-forward wave along the 

inferior occipital gyrus and fusiform gyrus (Tarkiainen, 1999; Pammer 

et al., 2004). Second, manipulations of lexicality (words vs non-

words) and frequency (high vs low frequency words)  influence brain 

activity in left superior temporal cortex within 200 and 600 ms 

(Wydell et al., 2003), even if earlier effects have been reported (e.g., 

150 ms (Sereno et al., 1998)). Finally, between 300 and 500 ms, 

activity mainly originating in left fronto-temporal temporal areas, 

denotes semantic processing  (Kutas and Hillyard, 1980). While in the 

time domain the  N400 (a negative evoked related potential peaking at 

400 ms), has been long considered the electrophysiological component 

most revealing of the timing of semantic memory (Kutas and 

Federmeier, 2000), in the frequency domain the desynchronization of 

the upper alpha band has been associated with semantic memory 

retrieval (Klimesch, 1999).  

As we have seen in Chap 1, many theories on the neural 

substrate of semantic representations clash on the hypothesized 

driving principle: evolutionary relevant domains (Caramazza and 

Shelton, 1998) or co-occurrences of features (Tyler and Moss, 2001). 

While great attention has been paid to the investigation on the 

topographical organization of semantic categories with PET and 

fMRI, less numerous studies have targeted the timing of their 

differentiation. The few electrophysiological studies existing tapping 

this particular question have reported word category effects (e.g., 

animals vs vegetables, living vs non-living) earlier than the semantic 

N400 wave, around 250-270 ms (Dehaene, 1995; Hinojosa et al., 

2001; Martin-Loeches et al., 2001), while on picture the semantic 

categories can be dissociated even earlier, around 180-200 ms (Ji et 

al., 1998; Antal et al., 2000). A handful of studies have used 

multivariate approaches, and have revealed that it is possible to 

possible to decode semantic information from M/EEG signal acquired 
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while subjects are presented with pictures (Carlson et al., 2011), 

spoken (Correia et al., 2015) and written words (Chan et al., 2011a), 

with this latter case being the hardest (Simanova, 2010). According to 

these studies access to the information which is sufficient to 

discriminate semantic category varies between 250–400 ms 

(Simanova, 2010) and 550–600ms (Correia et al., 2015). Finally, 

(Simanova et al., 2015) has shown that it is possible to decode 

semantic category from MEG data recorded while subjects are 

instructed to spontaneously generate words corresponding to animals 

or tools, even without the presentation of  any external stimuli. 

Overall, these findings suggest a broad time window, between 200 and 

600 ms, during which semantic effects can be appreciated. However, 

as previously stressed (Chap 1 and Chap 4), with these studies we 

cannot test to what extent the observed category-related effects reflect 

the activation of co-occuring motor-perceptual dimensions of word 

meaning. In fact, these studies typically manipulate and compare the 

categorical aspect of words, but not other implied correlated 

dimensions of the stimuli, such as the shape, color, sound, size, 

affordance, smell, etc… Moreover, the time window of category 

effects appears quite broad and variable across studies, possibly as a 

function of both stimuli and tasks differences. Hence, the process 

appears inadequately described: it is not clear which kinds of 

representations are activated at different points in time. 

As we will see next, another parallel stream of studies have 

instead focusses on perceptuo-motor components of word meaning, 

and have also shown that   early motor-perceptual effects can be 

detected. As in the case of the semantic category, also perceptuo-

motor effects seem to emerge much earlier than the timings of the 

“classical” N400 (e.g., 150 ms in (Kiefer et al., 2008)). These 

observations, paired with the broad time window reported for 

categorical effects, open the possibility that semantic content might be 

recovered not in a unitary fashion, but rather differentially according 

to the different motor-perceptual or conceptual dimensions 

considered. Moreover, early detection of differences along  motor-
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perceptual dimensions has been taken as disproving theories claiming 

that the sensory-motor activations observed in the neuroimaging 

literature are post-conceptual, epiphenomenal effects of mental 

imagery  (Mahon and Caramazza, 2008). However, with the data 

currently available such position cannot be firmly disproved as we 

lack a direct manipulation of both motor-perceptual and conceptual 

dimensions within the same experimental paradigm and in the same 

subjects. The present study approached this question, and investigated 

how the spatio-temporal dynamics of brain activity during reading 

reflects access to the perceptual and to the conceptual aspect of word 

meaning. 

 

1. 2   The Temporal Dynamics of Accessing 

Semantic Features 

A first investigation on the processing of different semantic 

features in time comes from a seminal paper on the factors influencing 

the N400. (Federmeier and Kutas, 1999) have shown that the degree 

of coherence between the unexpected (semantically incongruous) 

word ending a sentence, and the context of the sentence itself 

determines the amplitude of the effect (i.e., the more the word is 

plausible, thus sharing many semantic features with the preceding 

words in the sentence, the less prominent the N400). More directly, 

one study attempted at contrasting words with strong visual 

connotations (i.e., referring to colors and shape, such as “red” and 

“square”) and strong auditory connotations (i.e., referring to sounds, 

such as “whistle” and “echo”) (Bastiaansen et al., 2008). By means of 

a region of interest (ROI) analyses, they observed that in temporal 

areas the N400 was larger for vision-related words than for audio-

related words. Moreover, they found a double dissociation in the 

frequency spectrum of the left hemisphere: the theta power increase 

was larger over the temporal ROI for audio-related words and larger 

over the occipital ROI for vision-related words.  



274 
 

Following the embodied theory of semantic, which postulates 

a key (therefore early) role for sensory-motor areas in semantics, some 

authors have attempted to identify the first point in time when these 

areas are recruited during word processing. Overall, somatotopic 

coherent semantic differences have been reported at 240 ms 

(Pulvermüller et al., 2000) and 220 ms (Hauk and Pulvermuller, 2004) 

after the onset of visual stimuli, and at 172-200 ms (Pulvermüller et 

al., 2005) after the onset of auditory stimuli during action verb 

processing. 

Capitalizing on multivariate analyses, authors have dissociated 

the influence of different semantic features on the patterns of brain 

activity generated by the observation of pictures presented together 

with the corresponding written names (Sudre et al., 2012). Subjects 

were asked to answer to specific semantic questions tapping the 

different perceptual and functional features of the items. Trivially 

enough, the authors were able to decode low level physical features of 

the stimuli (e.g., words length) earlier than perceptual-semantic 

features (e.g., can you pick it up?) and conceptual-semantic features 

(e.g., is it alive?). Interestingly, ROIs frequently associated with 

semantic processing (e.g., superior temporal and inferior parietal 

cortex) did not show the highest decoding performance; rather, the 

best decoding score were observed in the left lingual gyrus and left 

latero-occipital complex. With a similar approach, the same group has 

shown single word meaning decoding through sum of semantic 

features starting as early as at 100 ms and spreading up to 700 ms, 

with the best performance being over occipital sensors (Fyshe et al., 

2012). More recently, in the domain of object recognition, (Clarke et 

al., 2015) have deployed an encoding model to show that after 200 ms 

semantic features significantly increase predictive performance of 

individual objects’ identity over and above visual features. 

Finally, it has been suggested that the neural correlate of the 

integration of unimodal features (e.g., “red” + “big” = “bus”, both 

vision-related) is a sustained increase in high-frequency power 

(gamma band, 80 –120 Hz). On the contrary, the integration of 
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multimodal features (e.g., “red” + “loud” = “bus”, one vision-related, 

one audio-related) appears to be associated with enhanced low-

frequency power (theta band, 2– 8 Hz) (van Ackeren et al., 2014). 

 

1. 3   Present Study Hypothesis 

In this study we are interested in testing the hypotheses that 

different perceptual and conceptual dimensions of word meaning are 

supported by the activity of partially distinct brain networks, possibly 

involving a precise temporal hierarchy. In this respect, we can contrast 

radically different predictions according to different existing theories. 

If semantics representations emerge via the reactivation of motor-

perceptual features thanks to the converging activity of modality-

specific areas (Pulvermüller, 2013), then (a) perceptual effects should 

be appreciated much earlier than conceptual ones, and (b) their 

topographies and source reconstruction should indicate an early 

contribution of early sensory-motor cortices. Alternatively, if semantic 

information is coded in an trans-modal hub by an abstract code, and 

post-conceptual mental imagery is responsible for the motor-

perceptual effects (Mahon and Caramazza, 2008), we should 

appreciate an early source of conceptual information, localized in 

multimodal convergence regions comprising the antero-temporal, 

infero-parietal, and inferior frontal cortices, followed, later in time, by 

multiple sensory-specific sources of (epiphenomenal) sensory-specific 

information. A third option, in line with recent so-called “hybrid 

models” put forward to reconcile clinical and fMRI data (e.g., Meyer 

and Damasio, 2009; Lambon Ralph et al., 2017), is that of an 

integrated and possibly concurrent involvement of both “semantic 

hubs” (i.e., convergence zones where both conceptual and perceptual 

information come together) and modality specific “spokes” (where 

only perceptual information is represented). However, precise 

predictions of the temporal dynamics underlying the interplay between 

hub and spokes components of such system have not yet been put 

forward. 
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In order to test these hypotheses, in the current work we 

selected words varying orthogonally along three dimensions: one 

visuo-perceptual (i.e., the implied real world size), one audio-

perceptual (i.e., whether it is associated with a prototypical sound or 

not), and one conceptual (i.e., the semantic category). Two central 

questions guided our investigation:  

1. Is there a difference in space, time and/or frequency, between the 

different levels of the three dimensions?  

2. Can we establish the temporal hierarchy with which perceptual 

and conceptual information are activated? 

Concerning the timing of our effects, both motor-perceptual  

(Pulvermüller et al., 2000; Hauk and Pulvermuller, 2004; 

Pulvermüller et al., 2005) as well as conceptual effects (Dehaene, 

1995; Hinojosa et al., 2001; Martin-Loeches et al., 2001) have been 

reported in early time windows (rarely, but equally so). This suggests 

that both motor-perceptual and conceptual features might be activated 

rapidly during word reading, with the great variability possibly due to 

the material selected and the task assigned to the subjects. As no 

previous study has directly compared within the same experimental 

paradigm motor-perceptual and conceptual dimensions, no strong 

prediction on their relative timing can be put forward. 

Concerning the aspect of the signal that might reveal the 

temporal encoding of semantic representations, based on the literature 

cited above we predicted that both event-related field potentials 

(ERFs) (Pulvermüller et al., 2000; Kutas and Federmeier, 2000, Hauk 

and Pulvermuller, 2004; Kiefer et al., 2008) and brain oscillatory 

patterns, in particular in the theta (Bastiaansen et al., 2005, van 

Ackeren et al., 2014) and alpha range (Klimesch, 1999) are potentially 

relevant.  

Finally, concerning the localization of our effects, following 

our own previous results, we predicted that the perceptual semantic 

dimension of the semantic space would be primarily encoded in early 

sensory regions (primary and secondary visual areas for size, primary 

and secondary auditory areas for sound), while the conceptual 
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dimensions would be primarily encoded in multimodal associative 

areas, such as the anterior temporal lobe (Borghesani et al., 2016).   

To our knowledge, this is the first attempt to directly compare 

the spatial, temporal and spectral representations of multiple motor-

perceptual and conceptual dimensions within the same subjects, 

during the same task.  

 

2.   Materials and Methods  

 

2.1   Subjects 

Fifteen healthy adult volunteers (seven males, mean age 24.57 

± 2.69) participated in the MEG study. Data from two additional 

subjects were discarded due to magnetic artifacts (the MRI scan 

suggested the presence of dental implants). All participants were right-

handed as measured with the Edinburgh handiness questionnaire, had 

normal or corrected-to-normal vision, and were Italian native 

speakers. All experimental procedures were approved by the local 

ethical committee and each participant provided signed informed 

consent to take part in the study. Participants received a monetary 

compensation for their participation.  

 

2.2   Stimuli 

As done for the fMRI experiment, target stimuli (i.e. 32 words, 

16 names of living items and 16 names of non-living items) 

underwent both psychological and psycholinguistic validation. First, 

we ran two preliminary behavioral experiments that involved 130 

French native speakers, tested through internet–based questionnaires. 

These experiments (detailed in Chap. 3.2) suggest an overall 

distributed semantic space including domesticated (bull, sheep, cow, 

chamois, rabbit, rooster, ant, and cricket) and exotic animals 

(elephant, giraffe, gorilla, lama, marmoset, parrot, chameleon, and 
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scorpion), house appliances (fork, wardrobe, sofa, pillow, washing 

machine, vacuum cleaner, blender, and alarm clock), and objects 

linked with means of transportation (canoe, boots, roller, bike, 

motorcycle, helicopter, car stereo, and rotating beacon).  

The preselection of the words led to an orthogonal 

classification of the items as belonging to one or the other hand of the 

continuum of the two perceptual dimensions (i.e., implied real world 

size and prototypical sound) (see Fig. 65). To assess the consistency 

between our predicted classification and that subjectively reported by 

the participants of the MEG experiment, we implemented two 

behavioral questionnaires to be administrated after the recordings.  In 

the Visual Task, subjects were asked to rate, on a scale from 1 to 9, 

the size of the object/animal each word referred to, as compared with a 

shoe box (i.e. “could this item fit in a shoe box?”). In the Auditory 

Task, subjects were asked to rate, always on a scale from 1 to 9, 

whether the object/animal was associated with a prototypical sound or 

not. The order of tasks, and of the categories within each task (i.e. 

living vs non-living), were randomized across subjects. The results 

clearly support our initial classification. As far as the Visual task is 

concerned, across subjects the average score for items categorized as 

big was 7.84 ( 0.80), while the one for items categorized as small 

was 3.28 ( 1.27).  None of the items categorized as big had a score 

lower than 6, and none of the items categorized as big higher than 5. 

Similarly, across subjects the average score for items categorized as 

having a prototypical sound was 7.67 ( 0.77, none of them having an 

average score lower than 6), while one for items categorized as silent 

was 2.43 ( 1.2, none of them having an average score higher than 5).  

Finally, we verified that words belonging to the different 

perceptual and conceptual categories were well matched across 

several psycholinguistic variables such as number of letters, number 

of syllables, gender, accent and frequency of use (see Chap. 3.2). 
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Figure 65 Matrices modeling the similarities across stimuli along the dimensions investigated. The words’ length matrix depicts all 
pairwise differences in terms of number of letters between the stimuli. The implied real–world size matrix indicates whether a given pair of 
stimuli share the same size (e.g. both big) or not. Similarly, the implied real–world sound matrix illustrates which stimuli share the auditory 
property of being associated with a prototypical sound. Finally, the semantic category matrix indicates which pairs of stimuli belong to the 
same category (e.g. both non-living) and which do not. 

 

2.3   Testing Procedures 

Subjects were seated in a comfortable armchair in front of the 

screen (monitor with 60 Hz refresh rate). Subjects were instructed to 

silently read the target stimuli (i.e. the 32 words referring to living or 

non-living items) and to make semantic decisions on rare odd stimuli. 

These odd stimuli appeared on 6% of the trials and consist in a pair of 

words semantically related to one of the targets (e.g., “ruminant, 

wool” for sheep). The subjects pressed the left or the right hand to 

indicate whether the odd stimulus was related or not to the previously 

seen target word (i.e., 1-back task). The hand-answer mapping was 

counterbalanced within subjects: half of the subjects answered yes 

with the left hand in the first half of the imaging runs and then yes 

with the right hand in the last half; the other half of the subjects follow 

the reverse order. Importantly, the pairs of words used as odd stimuli 

did not contain any verb, nor any reference to the dimensions 

investigated (i.e. implied size or sound). Target stimuli were presented 

at the center of the screen, printed in Courier New, for 300 ms (18 

frames). They were followed by an inter-stimuli-interval that varied 

randomly between 2167 ms (130 frames) and 3340 ms (200 frames). 

The odd stimuli were presented for 1670 ms (100 frames) and 

followed by 1670 ms (100 frames) of blank (see Fig. 66). Within a 
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given MEG session, the participant underwent 8 runs of ~7 min each. 

Breaks between runs were tailored on subjects’ needs. Each run 

contained 5 repetitions of each of the 32 target stimuli and 10 odd 

stimuli, for a total of 170 stimuli per run. Pseudo-randomization 

ensured that, over the entire experiment, for half of the odd stimuli 

(i.e., 40 times) a positive answer was expected. Prior to testing the 

first subject, a photodetector was used to compute the delay between 

the time at which the triggers were sent to the MEG acquisition 

computer and the time at which the stimuli actually appeared on the 

screen. Such delay (50 ms) was corrected during preprocessing. 

Stimuli were presented with Psychopy. 

 

2.4   MEG Protocol 

Data were collected at Neurospin (CEA-Inserm/Saclay, 

France) in a dimly illuminated, sound-attenuating, magnetically 

shielded room. The whole-head Elekta MEG system (Neuromag 

Elekta LTD, Helsinki) used has 102 magnetometers and 204 

orthogonal planar gradiometers. Participants were seated in the upright 

position, and head positioning was ensured to be in close contact to 

 

 

 

 

Figure 66 Experimental setting. Example 

of a sequence of stimuli: during the MEG 
experiment, subjects were instructed to 
silently read the target stimuli and to press 
a button at the presentation of rare odd 
stimuli. The odd stimuli consist of a two-
words definition that could refer to the last 
seen target word. 
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the dewar. Subjects were instructed to avoid any head, body, or 

unnecessary limb movements. At the start of each block, their head 

position was measured thanks to four head position coils (HPI) placed 

over the frontal and mastoid areas and compared on-line with the 

position at the beginning of the recording. To minimize head 

displacements across the whole recordings, if the head position moved 

more than 10 mm from the original position in any direction, the 

subject was assisted to reposition the head closer to the original 

position. To help the coregistration with the anatomical MRI, prior to 

the recording, three fiducial points (nasion, left and right pre-auricular 

areas) and about 100 more supplementary points distributed over the 

scalp of the subjects were digitalized (3D digitizer, Polhemus Isotrak 

system). MEG recordings were sampled at 1 kHz, hardware band-pass 

filtered between 0.03 Hz and 330 Hz, and active compensation of 

external noise (Maxshield, Neuromag Elekta LTD, Helsinki) was 

applied. Heartbeats, horizontal and vertical eye movements were 

recorded simultaneously with the MEG signals thanks to three 

additional pairs of electrodes for the electrocardiogram (ECG) and the 

electro-oculograms (EOG) respectively. Right before or immediately 

after each experiment, empty room recordings of about 2 min were 

acquired while no subject was sitting under the dewar. These 

recordings were subsequently used to compute the noise covariance 

matrix (i.e, the estimation of the noise in the signal needed to estimate 

a reliable forward model).  

 

2.5   MRI Protocol and Source Reconstruction 

Data were collected at Neurospin (CEA-Inserm/Saclay, 

France) with a 3 Tesla Siemens Magnetom TrioTim scanner using a 

32-channel head coil. Anatomical images were acquired using a T1-

weighted MP-RAGE sagittal scan (voxels size 1x1x1.1mm, 160 

slices, 7 minutes).  Volumetric segmentation of participants' 

anatomical MRI and cortical surface reconstruction was performed 

with the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/ ). 

http://surfer.nmr.mgh.harvard.edu/
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Current source density was estimated with BrainStorm software 

(http://neuroimage.usc.edu/brainstorm). After cortical and scalp 

reconstruction, anatomy and MEG signals were coregistered using 

head position indicators digitized earlier. The forward problem was 

computed using an overlapping spheres model. Noise covariance was 

estimated from MEG empty-room recordings. Individual sources were 

computed with the weighted minimum-norm method (depth weighting 

factor of 0.5, loosing factor of 0.2 for dipole orientation). They were 

then projected on a standard anatomic template to perform averages 

across subjects.  

 

2.6   MEG Data Pre-Processing 

After visual inspection to detect bad channels, the first steps of 

preprocessing included signal space separation (SSS) to suppress 

external magnetic interference, interpolation of noisy MEG sensors 

and correction for head movements between data blocks with 

Maxfilter software application (Elekta Neuromag). Head movement 

correction was performed with respect to a subject-specific head 

position, computed as the mean head position across blocks (custom-

made software, courtesy of Antoine Ducorps and Denis Schwartz, 

CENIR, Paris, France), and used afterwards for MEG/MRI co-

registration. Data were then visually inspected again to detect bad 

segments, i.e., segments of recording including clear motor artifacts, 

or channels jumps/anomalies. Such bad segments were flagged and 

thus skipped in all the following stages. These raw but cleaned data 

followed two slightly different preprocessing according to the goal of 

the analyses: Event-Related Field (ERF) or time-frequency analyses 

(spectral power and inter-trial phase coherence).  

 

ERF After filtering the data with a low-pass filter at 40 Hz, 

heartbeat and blinks components were automatically detected (via 

principle components analysis, PCA), visually checked and removed 

(by removing the corresponding signal-space projections, SSP). The 

http://neuroimage.usc.edu/brainstorm


283 
 

stimulus-trigger delay (50 ms) was corrected. Data were then epoched 

starting 200 ms before and ending 900 ms after the onset of the 

stimuli. These epochs were downsampled to 250 Hz and baseline 

corrected using the 200 ms preceding stimuli onset. These 

preprocessing steps were conducted with Brainstorm. 

 

Time-frequency analyses. After filtering the data with a low-

pass filter at 160 Hz, the same artifacts removal and correction for the 

stimulus trigger time delay implemented in the ERF analysis were 

applied. Data were then epoched starting 800 ms before and ending 

1200 ms after the onset of the stimuli. Epochs were downsampled to 

500 Hz and no baseline correction was applied. These preprocessing 

steps were conducted with Brainstorm. 

Spectral power was estimated by computing the time-

frequency decomposition with the multi-taper approach implemented 

in Fieldtrip (http://www.fieldtriptoolbox.org), with parameters adapted 

to two distinct frequency ranges. For the low-frequency range (4 – 35 

Hz in 1 Hz steps), data segments were extracted from sliding time 

windows with a length of 500 ms between 4 and 10 Hz (frequency 

resolution = 2 Hz), and with a length equal to 5 oscillation cycles per 

frequency between 10 (frequency resolution = 2 Hz) and 35 Hz 

(frequency resolution = 7 Hz), shifted in steps of 40 ms. These 

parameters were chosen to optimize the frequency resolution for 

higher frequencies, while keeping a limited time window for lower 

frequencies in order to test stimulus-related effects. Data segments 

were tapered with a single Hanning window and Fourier-transformed. 

Spectral power was computed as the square amplitude of the resulting 

time-frequency decomposition. The associated time–frequency images 

had no discontinuities thanks to the continuous frequency resolution 

function. For the high-frequency range (34 –100 Hz in 2 Hz steps), 

data segments were extracted from sliding time windows of 200 ms 

length, shifted in steps of 40 ms. A multitaper approach was applied to 

each window to optimize spectral concentration over the frequency of 

interest (Mitra and Pesaran, 1999). Frequency smoothing was set to 20 

http://www.fieldtriptoolbox.org/
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% of each frequency value. With these settings, the number of tapers 

used ranged from 2 at 34 Hz (frequency resolution = 7 Hz) to 7 at 100 

Hz (frequency resolution = 20 Hz). Spectral power was first estimated 

per taper and then averaged across tapers. 

Inter-trial phase coherence (ITC) was determined for each 

subject and condition by computing the phase-locking factor (Tallon-

Baudry et al., 1996) with the following steps: 

- The complex time-frequency decomposition at time t and 

frequency f of each single trial (as computed above) is normalized 

by its absolute value to obtain amplitude-independent unitary 

vectors in the complex plane; 

- These normalized vectors are averaged across single trials to 

obtain a complex value related to the phase distribution of each 

time–frequency region around t and f. The ITC is computed as the 

modulus of this value.  

ITC ranges from 0 (purely non-phase-locked activity) to 1 (strictly 

phase-locked activity). These analyses steps were conducted with 

Fieldtrip. 

 

2.7   Univariate Analyses 

To fully exploit the temporal richness of MEG data, we took a 

“data mining” approach as proposed in (Makeig et al., 2004) by 

evaluating event-related changes in terms of both (1) distribution of 

the phase of these oscillations across trials by computing the inter-trial 

phase coherence (ITC), and (2) amplitude of brain oscillations by 

computing the power of time-frequency representations. ERFs are 

intrinsically included in these two measures as they are (at least 

partially) produced by event-related phase-locking (i.e., event-related 

narrowing of the phase distribution) and may be associated with an 

increase of oscillatory power. However, ITC has the added advantage 

of decomposing the ERF into its constituent phase-locked frequency 

bands (Makeig et al., 2004), facilitating the identification of 
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experimental effects in specific frequency bands that could be 

otherwise scrambled by overlapping fluctuations in lower frequency 

bands. ERFs, while likely being less sensitive, are widely used, thus, 

for completeness, we report also the ERFs for the three contrast of 

interest, as they can help the comparison with the previous literature.  

 

Statistical analyses. All statistical analyses aiming at 

identifying significant differences between experimental conditions 

were conducted with the non-parametric cluster-based statistical 

analysis (Maris and Oostenveld, 2007), as implemented in the 

Fieldtrip toolbox (Oostenveld et al., 2011). This method allows 

statistical testing on wide time and frequency intervals with no need of 

a priori selection of spatial ROIs because it effectively controls the 

type I error rate in a situation involving multiple comparisons by 

clustering neighboring channel-time-frequency pairs that exhibit 

statistically significant effects (test used at each channel-time-

frequency point: dependent-samples t statistics) and using a 

permutation test to evaluate the statistical significance at the cluster 

level (Montecarlo method, 1000 permutations for each test). Results 

on statistically significant clusters are reported by specifying the 

polarity of the cluster (positive or negative), its p value, its temporal 

and spectral extent and the time and frequency of its maximum effect 

(hereafter indicated as cluster’s peak), defined as the time/frequency at 

which the cluster statistics is maximal. The time course of the cluster 

statistics is obtained by averaging at each time point the channel-time-

frequency point t statistics over all the channels and frequencies 

belonging to the cluster at that time point. Analogously, the frequency 

range of the cluster statistics is obtained by averaging at each 

frequency bin the channel-time-frequency point t statistics over all the 

channels and time points belonging to the cluster at that frequency bin. 

All the statistical tests were performed, with few differences 

according to the dependent measure investigated, separately for 

magnetometers and combined gradiometers (i.e.,  vector sum is used, 
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the value for each gradiometer pair is equal to the square root of the 

sum of the squares of the values computed for each gradiometer). 

ERF For all contrasts of interest, epochs from the same 

condition were averaged for each subject and statistical comparisons 

performed with the cluster-based statistical analysis described above, 

corrected for multiple comparisons over time and sensor space. To 

disentangle early and late effects, two time windows were 

investigated: an early one (from 0 to 300 ms after stimuli onset), and a 

late one (from 300 to 600 ms after stimuli onset.  

Spectral Power and Inter-Trial  Phase Coherence. For all 

contrasts of interest, cluster-based statistical analyses corrected for 

multiple comparisons over time, frequency and sensor space were 

applied on the whole time window (from 0 to 600 ms), for three 

frequency ranges: theta and alfa  (4 – 13 Hz), beta (13 - 35 Hz) and 

gamma (35 – 100 Hz) (the latter for spectral power only). 

 

Source visualization. In order to visualize the anatomical 

sources of the observed significant effects, spectral power and ITC 

were estimated at the source level in the time-frequency window of 

the significant effects observed at the sensor level, with Brainstorm’s 

implementation of Morlet wavelets (same computation as 

implemented at the sensor level, same frequency resolution). For each 

subject and condition, the reconstructed sources of both spectral 

power and inter-trial phase coherence values were smoothed (10 mm 

kernel) and projected to the default anatomy. Additionally, before 

smoothing power values were z-scored with respect to [-500 -250] ms 

baseline (no baseline correction is necessary for ITC since it is already 

a normalized measure). For each condition of interest, a paired t-test 

was run and we here report the corresponding significant clusters 

(p<0.05 uncorrected) on a template cortex smoothed at 50%. 

Importantly, the t-test at the source level is only used to properly 

describe the source distribution of the statistically significant effect 

established at the sensor level, and not for a second statistical test at 
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the source level, therefore no correction for multiple comparison is 

required (Gross et al., 2013). 

 

2.8   Multivariate Analyses 

To test whether distributed patterns of information could 

distinguish between our conditions of interest, we applied multivariate 

analyses. Two different analyses were conducted: one on the filtered 

and time resolved data used for ERF analysis, the other on the time-

frequency decomposed data used for power and phase analysis. The 

first option offers the best time resolution (temporal smoothing is 

unavoidable when transforming the data from the time-domain to the 

frequency domain), while the second one offers the possibility to 

study effects that concern only (or mostly) one specific frequency 

band. 

 

Time generalization. Three classifiers were trained to 

discriminate living vs non-living, big vs small, sound-related vs not-

sound-related trials respectively. The data fed to the decoders were 

matrices composed of n trials and f features (only gradiometers were 

used), with each feature corresponding to the amplitude of the MEG 

signal. A linear support vector machine (SVM) with fixed penalization 

parameter (C = 1) and 5-fold cross-validation was used. All estimators 

were systematically fitted across trials at each time point (e.g., t) and 

tested not only on the same time point (t), but also on all others (e.g., 

t1, t2, t3, t4, etc…). The resulting matrices have on the y axis the time at 

which the estimator was fitted, and the x axis the time at which the 

estimator was evaluated. To summarize estimators’ performances and 

test for their significance, area under the curve (AUC) was computed 

for each subject and then averaged across subjects. Significance was 

then tested across-subject using a Wilcoxon signed-rank test. Time 

generalization was conducted with custom scripts relying on MNE-

python (http://martinos.org/mne) and publically released code by 

Jean-Remi King (https://github.com/kingjr/jr-tools). 

http://martinos.org/mne
https://github.com/kingjr/jr-tools


288 
 

 

Time-frequency-space searchlight. Iteratively, the features fed to the 

decoder were selected with a sphere of 10 sensors, and a radius of 1 

time bin (each time bin is 40 ms) and 1 Hz. In a cross-validated 

fashion (5 folds), Linear Discriminant Analysis (LDA) classifiers were 

trained to discriminate the patterns across sensors for our conditions of 

interest (i.e., living vs non-living, big vs small, sound-related vs not-

sound-related). To identify time bins, frequency ranges and sensors 

yielding above chance classification, a threshold-free cluster-

estimation procedure was used, with multiple comparison correction 

based on a sign-permutation test. Statistical maps were then 

thresholded at  Z >1.64 (i.e., p  0.05, one-tailed) to reveal significant 

decoding performance. This analysis was implemented in 

CoSMoMVPA (http://cosmomvpa.org/).  

 

Additional controls. Multivariate analyses were also used to 

assess that perceptual and conceptual features could not be explained 

by information present in the physical appearance of the stimuli 

themselves. We attempted to decode the condition the words belonged 

to (i.e., big vs small, sound vs no sound, living vs non-living) from the 

images of the stimuli (i.e. the snapshots of the screens with the words 

we presented to the subjects during the experiment). Unsurprisingly, 

the only dimension that this analysis could recover from such input 

was the number of letters composing each word: decoding score 

(Ridge regression) = 0.56, p=0.004 (for implied real world size: 

classification score = 0.38, p=0.78, for implied real world auditory 

property: classification score = 0.4, p=0.75, for semantic category: 

classification score = 0.58, p=0.21). These analyses were implemented 

in ScikitLearn (http://scikit-learn.org/). 

 

 

 

 

http://cosmomvpa.org/
http://scikit-learn.org/
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3.   Results 

 

3.1   Spatio-Temporal Dynamics of Word 

Processing: basic effects 

Averaging across all words and conditions, time-locked 

evoked general activity indicates three main waves in response to the 

visual stimulation. The first one, at ~100 ms, in posterior sensors, 

representing the early processing of the visual stimulus, shortly 

followed by a second one, more left lateralized, at ~170 ms, typically 

associated to visual recognition, confined to the occipito-posterior 

temporal cortex. Finally, a third wave can be appreciated ~450 ms, 

extending more anteriorly, towards the ATL and the frontal lobe. Note 

that the Global Field Power (GFP) as well as the corresponding 

topographies are similar, yet complementary, across sensors type 

(compare in Fig. 67 magnetometers, gradiometers type 1 and type 2).  

 

 

 

 

 

 

Figure 67 Global evoked 
activity elicitated by our 
stimuli. Time course of the 
evoked response across all 
stimuli for the three different 
sensors type (left), together 
with the corresponding 
topography (right – upper), and 
source reconstruction (right - 
lower). Purple = 
magnetometers, blue = 
gradiometers type 1, green = 
gradiometers type 2. 
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First of all, as sanity check over the quality of our data, we 

verified whether we could retrieve one basic physical dimension of 

our stimuli (i.e. word length) both at the univariate and at the 

multivariate level. The cluster-based permutation statistic of the 

evoked related response (i.e., univariate level) indicated a significant 

positive cluster (corrected p < 0.01), between 144 and 196 ms (peak at 

176 ms). The multivariate decoding approach (Ridge regression) 

supports this findings by showing how this low level physical 

dimension of the stimuli is recovered from the distributed pattern of 

activity starting slightly before 100 ms and peaking twice: ~150 ms 

after the onset and the offset of the stimuli. Details and figures are 

reported in the Appendix 1.3.  

 

We then moved to the investigation of the semantic variables 

of interest: implied real world size, sound, and category. We did so by 

investigating them in the time-frequency domain: changes in inter-trial 

phase coherence and spectral power. 

  

3.2   Inter-Trial Phase Coherence   

Averaging across all words and conditions, an overall 

effect of increased inter-trial coherence was observed between 

200 and 400 ms, with a bilateral occipito-temporal topography, 

slightly more left lateralized (see Fig. 68).   

Within this time-frequency range, a significant effect of 

implied real world size was found between 120 and 360 ms 

(peak at 240 ms), and between 6 and 7 Hz (peak at 6 Hz), in a 

left occipital cluster (positive polarity, corrected p = 0.03): 

words referring to small items elicit higher ITC than big ones. 

Fig. 69-upper part illustrates the time-frequency representation 

of the effect as well as the corresponding sensors topography 

and source reconstruction. It appears that visual information is 

confined to the occipital lobe, strongly left-lateralized. 

 

Figure 68 Overall effect of phase coherence. Time-
frequency representation of the inter-trial phase 
coherence across all stimuli. The insert on the left 
highlights the topography at the sensor level, whose 
underlying source reconstruction is depicted on the right. 
Here reported are the results of combined gradiometers, 
the results for each sensors separately can be found in 

the Appendix 1.3. 
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In the same early time window, between 40 and 320 ms 

(peaking at 200 ms), but in a different frequency band (between 8 and 

12 Hz (peak at 10 Hz)), a highly significant cluster for implied real 

world sound was detected (corrected p = 0.008): words referring to 

items associated with a prototypical sound elicit higher ITC as 

compared to those not automatically associated with a specific sounds. 

The auditory dimension was also recovered in a later time window, 

between 320 and 520 ms (peak at 400 ms), and between 4 and 6 Hz 

(peak at 5 Hz) (corrected p = 0.04), where words referring to items not 

typically associated with sounds elicit higher ITC. As depicted in 

Fig.69-lower part, source reconstruction suggests that these effects are 

linked with the activity of occipito-temporal areas, mainly in the left 

hemisphere, remarkably extending to the superior temporal gyrus of 

both hemispheres. 

 

 

Figure 69  Inter-trial phase coherence effects of the perceptual dimensions.  Time-frequency representation (a) and sensors topography  (b) of the average 
difference in inter-trial coherence between the two levels of the visual dimension (i.e., words referring to big vs small items). In the time-frequency plot, 
non-significant values are masked and in the topography sensors showing a significant difference (Monte-Carlo permutation test) are highlighted. (c)  
Corresponding source reconstruction (paired ttest, p<0.05). (d-f)  Same as in (a-d) but for the two significant clusters of the auditory dimension (i.e., words 
referring to items with prototypical sounds or not).  
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All these effects were observed on the combined gradiometers, 

while only trending (but congruently so) effects could be appreciated 

in the magnetometers. No effect of semantic category could be 

appreciated in this aspect of the signal. 

 

3.3   Spectral Power 

The power spectrum obtained averaging across all words 

and conditions illustrate expected results (e.g. Bastiaansen et al., 

2005): a left lateralized occipital increase in theta, followed by a 

bilateral very strong decrease of alpha and beta band, which 

extends bilaterally along the ventral stream, reaching the anterior 

temporal areas (see Fig. 70).  

When looking at the main contrasts of interest, a strong 

and long lasting effect was that of the conceptual dimension (i.e., 

semantic category), which was detected in a left occipital-

temporal cluster of gradiometers (corrected p = 0.01) and lasted 

between 80 and 600 ms (peak at 600 ms), and between 4 and 13 

Hz (peak at 9 Hz), where words referring to animals elicit higher 

theta increase than those referring to tools. When analyses are 

repeated for two separated time window (0-300 ms and 300-600 

ms), two sub clusters can be appreciated within the broad cluster 

identified:  an early one (peaking at 200 ms and 8 Hz, corrected 

p = 0.02) and a later one (peaking at 600 ms and 10 Hz, 

corrected p = 0.01). The time-frequency representations of the 

two clusters and the corresponding sensors topography can be 

seen in Fig. 71-upper part. The same effect was also appreciated 

on the magnetometers (positive polarity, corrected p = 0.03, peak 

at 560 ms, between 8 and 13 Hz). Source reconstruction suggest 

that the early effect originated primarily from a temporo-parietal 

network of brain regions in the left hemisphere, including the angular 

gyrus, while the second effect can be traced back to the activity of 

bilateral anterior and ventral temporal areas, slightly left lateralized. 

 

Figure 70 Overall effects of power changes. Time-
frequency representation of the changes in power 
observed across all stimuli. The inserts highlight the 
topography at the sensor level of the two main effects: 
bilateral occipital decrease of alpha and beta band, left 
lateralized occipital increase in theta (source 
reconstruction is depicted below). Here reported are the 
results of combined gradiometers, the results for each 

sensor separately can be found in the Appendix 1.3. 
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The two perceptual dimensions showed weaker yet significant 

effects. An implied real world size effect was detected in a left 

occipital cluster of magnetometers (corrected p = 0.04) between 160 

and 480 ms (peak at 400 ms), and between 44 and 86 Hz (peak at 

74Hz): words referring to small items are associated with an increase 

in gamma band.  This effect was not observed in the gradiometers. 

Fig. 71-middle part illustrates the time-frequency representation of the 

effect as well as the corresponding sensors topography and source 

reconstruction, suggesting the recruitment of left superior-temporal 

and inferior frontal/parietal regions (~pars opercularis). An implied 

real world sound effect was also detected, in a bilateral occipital 

cluster of gradiometers (corrected p = 0.01) between 200 and 600 ms 

(peak at 600 ms), and between 5 and 13 Hz (peak at 10Hz). This last 

effect was similarly appreciated on the magnetometers (corrected 

p=0.008, peak at 560 ms and 11 Hz). These effects indicate that words 

referring to items associated with prototypical sounds are associated 

with a higher decrease in alpha band (i.e., possibly reflecting a higher 

release from inhibition). As depicted in Fig. 71-lower part, both 

sensors topography and source reconstruction suggest an involvement 

of left posterior occipital cortex, bilateral superior-temporal and 

inferior frontal/parietal regions, yet the auditory dimensions shows an 

additional cluster in the right superior temporal lobe, which is absent 

for the visual dimension. 
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3.4   ERFs 

To be able to compare more directly our effects with previous 

literature, we also explored which of our effects of interest could be 

recovered from the evoked related fields (ERFs).  Two significant 

clusters were detected on magnetometers combined: a significant 

effect of implied real world size (a positive cluster over left temporal 

sensors, between 204 and  232 ms, peak at 212 ms, p = 0.04); a 

significant effect of implied real world sound (a positive cluster over 

 

Figure 71  Spectral power effects of the perceptual dimensions.  Time-frequency representation (a) and sensors topography (b) of the average 
difference in spectral power between the two levels of the conceptual dimension (i.e., words referring to animals vs tools). In the time-frequency 
plot, non-significant  values are masked and in the topography sensors showing a significant difference (Monte-Carlo permutation test) are 
highlighted. (c) Corresponding source reconstruction (paired ttest, p<0.05). (d-f) As in (a-c) but for the visual perceptual dimension (implied real 
world size). (g-i) As in (a-c) but for the auditory perceptual dimension (implied real world sound).  
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left occipito-temporal sensors, between 384 and 460 ms, peak at 440  

ms, p = 0.009). A cluster of magnetometers approached significance 

for semantic category (a negative cluster over right fronto-central 

cluster between 384 and 432 ms, peak at 416 m, p = 0.05). All 

significant ERF results are reported in the appendix (1.3)  together 

with additional quality checks aiming at excluding possible 

correlations between our conditions of interest and eye movements. 

 

3.5   MVPA Results 

 

Time generalization. When run on time-resolved data (the 

same epochs used for the ERFs analyses), the time generalization 

decoding was very weak (none of the effects survived correction for 

multiple comparison in time). Overall, the auditory dimension appears 

to have a stronger and more sustained effect as compared to the visual 

and conceptual one. All detailed results are reported in the Appendix 

1.3. 

 

Time-frequency-space searchlight. For all three 

categorization problems (sound vs no sound, big vs small, living vs 

non-living), large portion of occipito-temporal sensors appears to be 

involved, predominantly in the left hemisphere (see Fig. 72, left and 

middle). In an attempt to better characterize the results without 

recurring to ROIs, we examined the time-frequency representation of 

all posterior sensors (see Fig. 72, right). It can be easily appreciated 

that information is encoded in theta (and to a less extend alfa) band in 

all three cases. Moreover, considering the intrinsic smoothing due to 

the time-frequency decomposition, no strong inference on the relative 

timing can be drawn as the effects appear to substantially overlap 

between 200 and 600 ms. 
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An alternative way of comparing the results of the three 

searchlights, aiming at detecting topographical or time-frequency 

dissociation, is to compute (1) the average number of bins in 

frequency and time in which each sensors score reached significance, 

thus illustrating the topography of significant effects, and (2) the 

average number of sensors reaching significant score at each time-

frequency bin, thus illustrating the time-frequency spectrum of 

significant effects (see Fig. 73). This visualization helps detecting that 

the major dissociation between the three dimensions is in terms of the 

topographical distribution of the corresponding effects: auditory 

information appears to be more spread and bilateral, visual 

information more left lateralized and confined to occipital sensors, and 

         

Figure 72  Space-time-frequency searchlight. For the three effects, we report (left) the global topographical representation of the cross-validated classification 
scores obtained for each time point and frequency bin, (middle) the same scores masked by significance, and (right) the average time-frequency 
representation in posterior sensors.  
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categorical information more spread than the visual one, suggesting 

the recruitment of more temporo-parietal regions. In terms of the time-

frequency distribution, multivariate analyses confirm that retrieval of 

the three dimensions occurs at low frequencies (mostly in the theta 

range), rapidly and almost simultaneously. While all effect seem to 

start around the same timing (ãround 200 ms), their peak seem to 

differ in time: the conceptual dimension (semantic category) appears 

to peak (in terms of maximum number of sensors involved) slightly 

after the perceptual ones: ~250 ms for both visual and auditory 

dimensions, ~450 ms for conceptual dimension. 

Finally, Fig. 74 shows the topography of the three effects in 

terms of averaged decoding score across the theta range (4-12 Hz) at 

six representative time points, confirming the observation that the 

auditory di dimension is the most topographically spread one, while 

the conceptual dimensions is the one peaking later.  

 
        

 

 

 

 

Figure 73  Space-time-frequency searchlight: 
topographical and time-frequency distribution of 
the significant effects. For the three classification 
task, we report (left) the average number of bins 
time-frequency bins in which each sensors score 
reached significance, and (right) the average 
number of sensors reaching significance at each 
time-frequency bin. 
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4.   Discussion 

 

This study investigated the temporal dynamics of different 

dimensions of word meaning during silent reading. It tested the 

hypothesis of a temporal hierarchy in the recovery of perceptual and 

conceptual semantic features of the objects referred to by the words. 

Our task, orthogonal to all the dimensions of the semantic space we 

investigated, ensured that the representations recovered in the brain 

activation emerged spontaneously. To fully capitalize on intrinsically 

multivariate nature of the MEG signal, we explored not only time-

locked changes in the time domain (ERFs), but also phase and power 

changes in the time-frequency domain. 

Overall, the global field power showed the general time course 

of brain activity classically associated with word reading (e.g. 

Tarkiainen, 1999; Pylkkänen and Marantz, 2003): activity spreads 

from posterior occipital areas towards anterior fronto-temporal ones 

(see Fig. 67). Similarly, the global time-frequency profile was also in 

line with previous findings (e.g., Klimesch et al., 1997; Bastiaansen et 

        

 

Figure 74  Space-time-frequency searchlight: spatio-temporal evolution. We illustrate the topography of the three effects (auditory dimension, visual 
dimension and conceptual dimension) in terms of averaged decoding score across the theta range (4-12 Hz) at six representative time points. 
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al., 2005):  a general increase in power in the theta band (4–7 Hz) 

followed by a decrease in the alpha (8–12 Hz) (see Fig. 70). In relation 

to our specific conditions, while only small effects could be 

appreciated in the ERFs (see Appendix 1.3), signal power and phase 

analysis confirmed that all three dimensions of word meaning – i.e., 

semantic category, as well as implied real world size and sound- are 

automatically retrieved extremely early in time, and demonstrated that 

they are coded in partially dissociable sources of the signal.  

 

Early recovery of both perceptual and conceptual 

dimensions. Both univariate comparison and multivariate decoding 

analyses converge in demonstrating how the three dimensions of word 

meaning we investigated, two perceptual (i.e., implied real world size 

and sound) and one conceptual (i.e. semantic category), can be 

statistically differentiated from the brain activity in an very early time 

window (~200 ms). This means that all dimensions of the semantic 

space are activated in an automatic and possibly parallel fashion 

extremely early during reading.  

Concerning the access to the conceptual dimension, while the 

majority of the previous studies investigating semantic processes 

pointed to a differentiation across semantic categories in late time 

window, at the level of the N400 wave (Lau et al., 2008), we are not 

the first reporting very early semantic category effect: Dehaene, using 

EEG, reported a univariate effect of category-selective responses 

dissociating animal names from proper names, numerals, and verbs 

within 250 ms after written word onset (Dehaene, 1995), while Chan 

et al. reported  an early (200 ms) multivariate decodability of semantic 

category (i.e., living vs non-living) of both written  and spoken words 

(Chan et al., 2011a). Direct electrophysiological recordings through 

microelectrodes in the inferotemporal and perirhinal cortex are able to 

differentiate semantic categories of words as early as 130 ms (Chan et 

al., 2011b). One potential reason underlying the lack of early semantic 

effects in some of the previous studies is that they relied on ERP/ERF, 

a measure offering lower sensitivity as compared to ITC estimation. 
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Another, connected, possible explanation is that most of the evoked 

signal is necessarily dominated by the processing of low-level 

physical properties of the stimuli, thus possibly washing out the 

semantic differences unless care is taken to avoid confounds during 

the design of the experiment. In other words, the selection of highly 

controlled stimuli appears crucial: as example, consider how in 

(Dehaene, 1995) length was controlled across the five different 

semantic categories investigated. 

 Regarding the two perceptual dimensions, our results are 

generally in line with data stemming from the investigation of verbs 

processing and its motor-related “embodied” aspect, reporting 

somatotopically organized semantic differences across verbs between 

150 and 240 ms (Pulvermüller et al., 2000; Hauk and Pulvermuller, 

2004; Kiefer et al., 2008). However, to our knowledge, no previous 

study directly investigated the neurodynamics of the recovery of the 

perceptuo-semantic features of nouns (see below for a discussion of 

convergent findings by Sudre and collaborators (2012) of an early 

effect of implied size using a multivariate approach). Thus, the current 

study is the first illustrating the finding. 

 

Perceptual and conceptual dimensions are associated with 

different signal dynamics and cortical sources. One unexpected 

finding of our work is the dissociation, at early time points, between 

perceptual and conceptual dimensions in terms of the property of 

signal that appears to encode them. On one hand, perceptual effects 

are appreciated in phase-locking changes: around 200 ms after 

stimulus onset, phase coherence is modulated by the visual dimension 

in occipital areas (higher for words referring to small rather than big 

items), and by the auditory dimension in occipito-temporal areas 

(higher for words referring to items associated with a prototypical 

sound). On the other hand, the conceptual effect is revealed by power 

changes:  in the same time window (~200 ms) words referring to 

animals elicit higher theta increase than those referring to tools. One 

tentative interpretation of this dissociation is that perceptual effects 
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may involve a partial reinstatement of brain activity elicited by the 

perception of the real world aspect of interest (sound or size) (Kiefer 

et al., 2008), a response which appears to be strongly phase-locked. 

By contrast, the conceptual effect could correspond to a higher-level 

processing stage, likely encoded in non-phase-locked activity in 

higher level multimodal regions. 

The different dimensions seem also to be partially dissociated 

in terms of their underlying sources. On one hand, the visual and 

auditory properties detected in the phase coherence changes are linked 

predominantly with occipital and posterior-temporal regions, thus 

mostly involving modality-specific areas. On the other hand, the 

semantic category effect observed in power changes is linked with 

posterior parietal, mid-inferior temporal and anterior temporal regions, 

traditionally associated with multimodal processes and language 

related functions. This partial dissociation supports hybrid theories on 

the neural substrate of semantic representations that assign 

complementary roles to multimodal convergence areas (semantic 

hub(s)) and modality specific cortices (spokes) (Lambon Ralph et al., 

2017). 

 

Source and frequencies dissociation between visual and 

auditory dimensions. Dissociation across the two different perceptual 

features in time is not supported by the data: both effects peak 

between 200 and 250ms. However, they occur at different frequency 

ranges: visual property at theta, 6-7 Hz, auditory property at alpha, 10-

11 Hz. Moreover, both sensors topography and source reconstruction 

suggest different underlying sources: while both effects involve 

predominantly the left occipito-temporal cortex, visual information 

appears to be confined to occipital lobe, while auditory information 

spreads more temporally and, crucially, appears to involve the 

superior temporal gyrus of both hemispheres. Our results corroborate, 

without resorting to ROI analyses,  (Bastiaansen et al., 2008) findings 

of a dissociation within the theta range between temporal and occipital 

sensors, involved respectively in processing auditory-related vs 
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vision-related words. It has been suggested that oscillations at low-

frequencies (2-8 Hz) might be the neural correlate of semantic feature 

integration across modalities (van Ackeren et al., 2014), underlying 

merging of motor-perceptual features into unitary concepts. 

 

Later effects of perceptual and conceptual dimensions. The 

three effects re-appear in a later time window (400-600). Semantic 

category and auditory property modulate the power of the oscillations 

at the 10 Hz. The two aspects (category ad implied sound) do not 

appear as dissociated in neither time nor frequency (8-12 Hz, ~500 

ms); however, they seem to differ in topography. The conceptual 

dimension, i.e. the semantic category, involves ventro-temporal and 

anterior temporal regions of the left hemisphere. In contrast, the 

perceptual dimension, i.e. the implied real world sound, is linked with 

activity in the left posterior occipital cortex, bilateral superior-

temporal and inferior frontal/parietal regions. Similarly, the auditory 

effect observed in this later time window at the level of phase 

coherence involves bilateral mid/superior temporal areas. 

In the same time window, but at higher frequencies (~70 Hz) 

an effect of the visual perceptual dimension (implied real world size) 

is detected. However, contrary to the previous effects, this is an 

extremely weak one, observed only in the magnetometers (not in the 

combined gradiometers). 

 

Multivariate pattern analyses corroborate univariate 

results. The multivariate spatio-temporal-spectral searchlight 

analyses, integrating pattern of brain activity extending in time, space 

and frequency, confirm the general picture observed with univariate 

statistics: both perceptual and conceptual dimensions are recovered 

early in time (since ~200ms) and at low frequencies (theta, to a less 

extent alfa) over occipital sensors. Moreover, the auditory effect 

appears as more broad, and the conceptual appears slightly later in 

time and is appreciated in slightly more anterior sensors. These results 

are in line with previous findings indicating the possibility recovery 
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the meaning of words in a large window between 150 and 600 ms 

thanks to information in distributed patterns at delta, theta and, to a 

less extend, alpha frequencies (Fyshe et al., 2012). The only previous 

finding that attempted to dissociate the contribution of different 

semantic features does not report the timing information for the 

auditory properties tested (“does it make a sound?”, appears to be 

decodable but not clear when), while it describes an effect of size 

information (“is it bigger than a car?”) around 200 ms and related 

manipulation information (“can you hold it?”) even earlier, at 150 ms 

(Sudre et al., 2012). The same group has recently showed that the 

meaning of both adjectives and nouns can be predicted on the basis of 

MEG signal around 100 ms after their onset, with the best 

performance being reached in occipital areas (Fyshe et al., 2016). 

These results are coherent with our observation of an early window for 

word meaning decoding and for a key contribution of posterior areas, 

even though in their case semantic differences are associated with 

grammatical-syntactic ones, while our results are purer in that we only 

use one grammatical class of words (nouns). 

 

In conclusion, our results indicate that different aspects of 

noun meaning are retrieved automatically, rapidly and simultaneously, 

yet thanks to different underlying sources and signals. Visual and 

auditory perceptual semantic aspects (i.e., the implied real word size 

and sound) are best appreciated in terms of phase coherence changes 

over occipital and temporal regions respectively. Conversely, 

conceptual aspects (i.e., the semantic category) are best retrieved in 

power changes over superior temporal cortices at early time points, 

and anterior-temporal and ventro-temporal cortices at later time 

points. Hence, specific perceptual and conceptual dimensions of the 

semantic space appear to be accessed concurrently yet differentially 

already within the first 300 ms of reading. Hence, specific perceptual 

and conceptual dimensions of the semantic space appear to be 

accessed concurrently yet differentially already within the first 300 ms 

of reading. The early contribution of sensory-motor cortices to the 
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retrieval of motor-perceptual dimensions was predicted by embodied 

views on semantics, however, such theories would not be able to 

explain the almost simultaneous retrieval of the conceptual dimension 

in associative areas. On the other hand, both the timing and the 

reconstructed sources of the effects cannot be accomodated by an 

abstract theory on semantics, which would consider post-conceptual 

mental imagery responsible for the motor-perceptual effects. Thus, 

these results speaks against a purely embodied model or purely 

amodal perspective on the neural substrate of semantic dimensions, 

calling for hybrid model where symbolic input are followed by a rapid 

activation on both a trans-modal hub (dedicated to the processing of 

conceptual dimensions) and associated modality-specific spokes 

(dedicated to the processing of motor-perceptual dimensions). 
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Highlights:  

 The cognitive semantic space is organized around multiple perceptual and conceptual dimensions  

 They are distributed yet partially dissociated way across the cortex. 

 They recovered automatically, rapidly, and simultaneously during reading. 

CHAPTER 6:  

CONCLUSIONS AND PERSPECTIVES 

 

Se Dio esistesse, sarebbe una biblioteca. 

[If God existed, He would be a library. Umberto Eco] 

  

In this chapter I summarize the contributions of the theoretical and experimental work 

conducted during this thesis. I stress which questions are left answered and suggest how 

future investigations could tackled them.  

 

 

1.   Main Empirical Results 

 

Different terms have been used to refer to our ability to store, 

retrieve, manipulate and share knowledge about objects and concepts: 

semantic memory, when the accent is on the mnestic component and 

on the dissociation with respect to information on events (episodic 

memory); semantic knowledge, when the stress is on the conceptual 

nature of the information that is processed, as opposed to the 

perceptual processing that takes place in modality specific areas after 

external stimulations; simply semantics, when a linguistic perspective 

is sought and the tight link with language is highlighted. 

 

Cognitive and neural correlates of semantic representations 

have long been investigated with multiple neuroimaging techniques as 

well as thanks to neuropsychological evidences (Lambon Ralph et al., 

2017). Having reviewed the main open questions and major 
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theoretical positions (Chap. 1), the thesis here presented sheds some 

light onto the neuro-cognitive correlates of semantic representations 

by means of behavioral, fMRI and MEG experiments. In this work, I 

narrowed my exploration (1) by focusing on semantic representations 

as static entities, without dwelling on the processes acting on them, (2) 

by choosing symbol meaning retrieval (i.e. word reading) as proxy for 

all other components of semantic knowledge. 

 

1.1   Motor-Perceptual vs Conceptual Dimensions 

Through the behavioral experiments conducted (Chap. 3), I 

observed that the cognitive semantic space is organized around 

multiple motor-perceptual and conceptual dimensions, not easily 

isolated. Moreover, I showed that the representational spaces retrieved 

with different behavioral and corpora-based methods (i.e., Semantic 

Distance Judgment, Semantic Feature Listing, WordNet) appear to be 

highly correlated and overall consistent within and across subjects. 

In this thesis I propose a heuristic distinction between motor-

perceptual features (i.e., those attributes of the objects and actions 

referred to by the words that are perceived through the senses) and 

conceptual features (i.e., the information emerging via the integration 

of multiple, non-correlated motor-perceptual features (e.g., tomato is 

edible and it has seeds, thus it is a fruit). This general distinction is 

both theoretically and methodologically advantageous. First, it bridges 

the cognitive and neural side of the problem, by forcing researchers to 

pay attention to both the psychologically relevant dissociations, and 

the computational and anatomical constraints that could explain them. 

Second, while planning empirical testing of the different hypothesis 

on the neuro-cognitive substrate, it helps the operationalization of the 

variables at play.  
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1.2   Topographical Dissociations 

Following the proposed distinction between motor-perceptual 

and conceptual dimensions, and capitalizing from recent advance in 

data analyses (Chap. 2), first I investigated the neural substrate of 

perceptual and conceptual dimensions with an fMRI experiment 

(Chap. 4). I focused on one visuo-perceptual dimension (i.e., implied 

real world size) and two conceptual ones (i.e., semantic category and 

cluster). I have been able to show a representational shift along the 

ventral visual path: from perceptual features, preferentially encoded in 

primary visual areas, to conceptual ones, preferentially encoded in in 

mid and anterior temporal areas (Borghesani et al., 2016).  

A follow-up MEG experiment supports the observed 

topographical partial dissociation (Chap. 5): both sensors topography 

and source reconstruction suggest that different cortical areas are 

responsible for the perceptual and conceptual effects detected. The 

two perceptual dimensions investigated (i.e., implied real world size 

and sound) appear to be encoded in modality specific areas, while the 

conceptual one (i.e., semantic category) in multimodal, associative 

areas.  

Together, these results indicate that complementary 

dimensions of the semantic space are encoded in a distributed yet 

partially dissociated way across the cortex. 

 

1.3   Temporal Dynamics  

I investigated the temporal dynamics of semantic 

representations thanks to four priming experiments as well as with an 

MEG study. Two important conclusions stemmed from the evidence 

collected with the priming experiments (Chap. 3). First, perceptual 

dimensions of word meaning (implied real world size and, especially, 

implied sound) are recovered during reading in an automatic way. 

Indeed, it appears as they are retrieved even for words that are not the 

target of the task at hand (i.e., the prime stimuli), and even when the 
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task does not explicitly requires it (as it focuses on other aspects of the 

stimulus semantics). Second, such recovery of perceptual features 

greatly interacts with the task performed by the readers. 

In addition, our MEG results suggest that perceptual and 

conceptual dimensions, while sharing a similar temporal evolution, 

can be dissociated both in terms of the features of the brain signal 

encoding them and their sources (Chap. 3). Inter-trial phase coherence 

appears to be key for the encoding of perceptual features (i.e. the 

implied real world size and sound). Conversely, spectral power 

changes appear to support encoding of conceptual dimensions such as 

semantic category. Crucially, differences along both perceptual and 

conceptual dimensions are detected, almost simultaneously, extremely 

early in time: around 200 ms after stimulus onset. 

Together, these results suggest that motor-perceptual and 

conceptual dimensions of the semantic space are recovered 

automatically, rapidly, and simultaneously during reading. 

 

 

 

2.   Implications for the Neuro-Cognitive 

Representation of Word Meaning 

 

While writing this dissertation, as well as while performing the 

associated research, I have been guided by four core questions on the 

neuro-cognitive correlates of semantic representations: what is 

represented, where and when in the brain, and how so. As often the 

case in science, simple questions can lead to complicated answers, 

however, the empirical results obtained over the course of the present 

thesis can be used to provide partial solutions.  
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2.1   What is the Content of Semantic 

Representations? 

Our results support a distributed, feature-based perspective on 

the content of semantic representations. In particular, I proposed and 

adopted an operational definition of motor-perceptual and conceptual 

features, which has proven to be instrumental to the observation of 

dissociations on both the topographical (see fMRI results) and the 

temporal-spectral (see MEG findings) dimensions of the problem. 

While acknowledging the fact that such distinction largely 

oversimplifies the conceptualization of the semantic space, I believe it 

can act as useful framework in guiding future research from different 

perspectives: 

 Learning in natural circumstances. By definition motor-perceptual 

and conceptual features are acquired in very different ways, thus it 

would be interesting to see what happens when motor-perceptual 

experiences are lacking (e.g., blind subjects learning the concept 

of color). 

 Learning in controlled training situations. When teaching about 

new items, their features can be taught in a declarative or 

experiential way. How does this impact the speed (and the 

outcome) of the learning process? How differentially so for motor-

perceptual and conceptual features? 

 Clinical observations. Deficits and degradations of semantic 

memory have been extensively studied in neurological patients. Is 

it possible to observe dissociations among motor-perceptual and 

conceptual features? Do they enlighten us on the brain topography 

of different dimensions of word meaning?  

 Dynamics of featural integration. How are different features 

integrated? Are there differences between integration mechanisms 

acting at the level of motor-perceptual features and conceptual 

ones? Is integration a mechanism that occurs only during learning 

or is it re-instated every time during semantic processing? 
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2.2   Where are Semantic Representations 

Encoded in the Brain? 

Our results support two overreaching conclusions on the 

localization of semantic representations and its driving principles. 

 

Need for a hybrid model. According to our theoretical proposal 

and empirical findings, the cognitive divide across motor-perceptual 

and conceptual features seem to map onto the neural level. Motor-

perceptual features are represented primarily in the early sensor-motor 

areas that encode those same features during perception and action. In 

contrast, conceptual features are encoded in the mid-anterior temporal 

lobe (and possibly other semantic hubs). Complementary dimensions 

of the semantic space appear thus to rely on different cortical areas, 

calling for hybrid models postulating the interplay of both modality 

specific and supramodal areas.  

 

Representational geometry as empirical asset. While the 

multidimensional semantic space of word meaning appears to be 

spread throughout the neocortex, such distribution does not seem to be 

random. However, we just begun to scratch the surface of the precise 

anatomical and functional constrains that determine it.  One way to 

pursue this path is by punctually disentangling the contribution of 

different motor-perceputal and conceptual dimensions to the 

representational geometry that can be read out of a given area. Precise 

analyses of how the representational geometries changes across the 

cortex, describing spaces dominated by one or more motor-perceptual 

or conceptual features, will help understanding where different 

dimensions are (preferentially) encoded and where they overlap.  
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2.3   What are the Temporal Dynamics of 

Semantic Representations? 

With the priming and the MEG experiments conducted, I 

gathered insight on two levels of the temporal dynamics of word 

meaning representations.  

 

The timing of semantic dimensions retrieval. Overall, our 

results indicate that both motor-perceptual and conceptual dimensions 

of the semantic space can be recovered automatically and rapidly 

during word reading. This suggests that retrieval of these dimensions 

is not simply epiphenomenal (i.e., due to mental imagery) as it is 

observed even during orthogonal tasks and it occurs at extremely short 

latencies.  

 

Contextual effects: the role of the task. We observed how the 

requests of the task and the underlying dimensions of the semantic 

space interact determining either a facilitation or an inhibition of 

behavioral performance. This indicates that even simple processed 

such as single word reading are greatly influenced by the goal of the 

subjects, hence supporting a more dynamic view on semantic 

representations that does not assume a constant and univocal retrieval 

processes.  

 

 

2.4   How are Semantic Representations 

Implemented in the Brain? 

As for many other kinds of representations, we are far from 

understanding the neural code underlying semantic knowledge 

encoding and retrieval. Moreover, the techniques described and 

deployed in this thesis cannot provide a conclusive answer as they 

open a too indirect window on neural operations.  

However, I exemplified how both fMRI and MEG data, 

especially thanks to the multivariate analyses recently developed, can 
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be used to investigate representational geometries changes across both 

space and time. The geometry of a representation can be used as an 

indirect descriptor of the kind of operations that can be performed on 

it, thus acting as a proxy for the format of the representation. As 

illustrated in my fMRI work, double dissociations can be appreciated: 

one area might appear to code (over and above categorical 

differences) for perceptual ones (e.g., V1 coding for implied size once 

the other effects are accounted for), while another area might show the 

reverse pattern (e.g., ATL coding for semantic cluster).  

In terms of reaching an understanding of the underlying neural 

code, the closest finding comes from single cell recordings, thus this 

thesis does not speak to this question. Supporting a distributed feature-

based neural code, it has been shown that neurons firing at the 

presentation of a specific concept  (e.g., Yoda), show comparable 

response to semantically related concepts (e.g., Darth Vader), thus 

suggesting that concepts (and the events they are linked to) are not 

coded by the activity of single units but rather via partially 

overlapping assemblies firing for objects and concepts sharing certain 

features (Quiroga, 2016).  

 

3.   General Discussion 

 

While each single study potential criticisms have been covered 

in the discussion of the corresponding chapter, I would like to 

highlight here the general limitations and open questions left 

unanswered from my studies. In brief, I explored semantic features in 

terms of neural topographical dissociations and promptness of 

recovery, yet (1) interpretable features are not the only viable 

organization of the semantic space, (2) even if dissociated, the 

different dimensions of such space interacts in a dynamic way, (3) 

early automatic effects do not imply that retrieval of those dimensions 

is necessary to te understanding symbols.   
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3.1   Interpretable Features, Evolutionary 

Domains or Latent Dimensions?   

In the neuroimaging literature, the correlate of numerous 

semantic features have been investigated, notably color (e.g., 

Simmons et al., 2007), shape (e.g., Wheatley et al., 2005), motor 

attributes (e.g., Hoenig et al., 2008), auditory properties (e.g., Kiefer et 

al., 2008), as well as taste (e.g., Goldberg et al., 2006) and smell (e.g., 

González et al., 2006). However, it is still a matter of debate whether 

correlation within and across these different features are sufficient to 

explain domain-specific categorical effects. Such effects have been 

observed in neuropsychological patients as well as detected with 

imaging techniques. Domains that have been extensively studied and 

shown to potentially dissociate include living entities such as animals, 

fruits and vegetables (e.g., Gainotti, 2010), as well as non-living 

items, such as tools (e.g., Campanella et al., 2010). Likely, the neural 

organization observed in healthy adults is the outcome of a complex 

interplay between:  

 biologically determined computational constrains, i.e., which 

material is best processed in each brain area (e.g., when details 

need to be decipher, high spatial accuracy is sought, thus areas 

receiving input from foveal region of the visual field are best), 

 evolutionary relevant categories, i.e., classes of stimuli that call for 

specific behavioral responses such as conspecific (e.g., one can 

interact with them), dangerous animals (e.g., one should run 

away), and comestible plants (e.g., one can eat them); 

 and statistical associations learned during life-long experiences 

with the external world, e.g., most of the tools that operate 

mechanically produce noise. 

More studies are needed to dissociate purely categorical effects (if 

they exist) from the results of feature associations. The ideal setting is 

the combination of experiments with carefully selected stimuli - as to 

control for possible confounds-, and with naturalistic stimuli (e.g., 

texts encountered in daily life), as to cover the broad spectrum of 
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semantic features that organize complex semantic spaces. Training 

experiments will also be crucial in determining how different 

features/domains are assimilated during learning (e.g. Bauer and Just, 

2015; Malone et al., 2016): are there differences between being taught 

that one item belongs to a certain domain in an explicit, declarative 

way (e.g., “a X is an mammals”), and learning it by (direct) 

observation of its properties?  

A second open debate concerns whether semantic features are 

better understood in terms of interpretable attributes (Rogers and 

McClelland, 2004), or if the semantic space can be described by 

vector spaces devoid of meaning  (Lund and Burgess, 1996). The 

long-standing tradition aiming at detecting explicit and directly 

accessible attributes culminates with the attempt by (Binder et al., 

2016) to define biologically sound features, starting from those 

aspects of the physical and mental world we know to be encoded in 

specialized brain regions: e.g., texture, temperature, smell, harm, fear  

(total of 65 experiential attributes). The complementary perspective 

considers concepts as the outcome of the latent distribution of 

attributes in the real world, and has led to the development of several 

methods to extract the underlying vector spaces. These distributional 

semantic models differ in terms of the free parameters that need to be 

tuned and in their ability to generalize to new settings (Rogers and 

Wolmetz, 2016). Even if they appear to be able to account for many 

behavioral data (Pereira et al., 2016), we are far from an omni-

comprehensive model capable, on its own, to cover all manifestations 

of semantic knowledge, including clinical data. Further comparisons 

are need: are models based on biologically inspired features 

(Anderson et al., 2016) better than those based on co-occurrence 

statistics (Huth et al., 2016) in predicting behavioral, clinical, and 

imaging data? 

I believe that in the long term the problem will be better cast as 

a matter of localizing devices supporting specific kinds of 

computation, rather than semantic features per se. This will require 

investigation of functional and anatomical connectivity constrains that 
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determine which features are best processed and integrated where. 

Ultimately, the brain optimizes computational costs recycling 

hardwired brain maps to new tasks and materials (Dehaene and 

Cohen, 2007). In other words, the anatomy compels the global 

organization, while experience molds the content: concepts are not 

innate, but brains are constrained. The aim of future work should thus 

be the exploration of possible interesting dissociations between 

different features (or, better, computational demands), in order to 

understand the evolution and organization of semantic representations.  

 

3.4   Dissociated, yet Interacting  

In parallel with the debates on which are the features 

organizing the semantic space (and whether they are interpretable or 

not), the quest is open as for their neural substrates. The exploration 

follows three interconnected paths. 

Which are the “spokes”? In other words, which are the 

peripheral centers where modality-specific dimensions are processed? 

Are all the primary and secondary sensory-motor cortices involved? 

Particularly interesting is the case of those motor-perceptual attributes 

which can be experienced via multiple senses (e.g., implied real world 

shape, a feature that can be perceived when seeing and object but also 

when touching it). Are these kinds of features coded in both primary 

visual and sensory areas? What are the differences, if any, between the 

two representations? 

Which are the “hubs”? Convergence zones, likely located in 

multimodal cortices, are needed in order to integrate information 

about different motor-perceptual features. Moreover, they presumably 

support encoding of conceptual attributes learned in a purely 

declarative fashion (e.g., tomatoes came from the Americas). Clinical 

and neuroimaging data highlighted the role of the ATL, but is it the 

only semantic hub? Another likely candidate for cross-modal 

convergence of multisensory information is the angular gyrus (AG). 

As ATL, AG appears to be internally specialized (Seghier, 2013) and 
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future research should target how the two areas differ (in anatomical 

and functional terms) and interact (both online – i.e., when engaged in 

semantic tasks-  and offline). 

How is division of labor implemented? The definition of hub 

and spokes implies a hierarchy across regions which is yet to be 

confirmed and appropriately described. One hypothesis is that the 

central hub, according to the requests of the cognitive operation being 

performed, actively integrates sensory-motor information coming 

from the spokes, thus requiring their activation only if and when 

necessary. An alternative view considers the retrieval of sensory-

motor information in specific areas sufficient to give access to the 

semantic representation, with the intervention of the amodal hub being 

necessary only under certain conditions. Predictions made by the 

different perspectives can (and should be) empirically tested. 

 

3.5   Early, yet Superfluous?  

The evidence coming from perceptual semantic priming 

experiments can be used to support a sensory-motor view of the 

cognitive (and neural) semantic system. However,  priming effects can 

be interpreted as fast spreading of activation in a purely symbolic 

system capable of sensorimotor representations (Mahon and 

Caramazza, 2008): they do not necessarily entails the activation of 

sensory-motor representations/areas/formats. Similarly, the 

observation of early effects with time-resolved imaging techniques 

does not necessarily imply that those activations are central to the 

recovery of word meaning. 

Recently, the interest has shifted towards interference 

paradigms which can have stronger implications for the causal role 

played by sensory-motor representations in semantics. The reasoning 

is as follow: if two tasks engage the same neural substrate, then 

performance should suffer (in terms of RTs and/or errors). Thus, if 

accessing meaning of words requires retrieval of perceptual features, 



320 
 

concomitant tasks should interfere with subjects’ performance 

proportionally to the involvement of related sensory-motor features. 

For instance, understanding words with a strong auditory component 

should be affected by concomitant auditory tasks, while performance 

with words with strong visual components by a visual task. Ultimately 

however, only clinical data and evidence from virtual lesion studies 

(e.g., conducted with TMS) will be able to provide causal inference. 

 

3.6   Effect of Context and Experience 

Questions on the temporal dynamics of semantic 

representations have two ranges of implications: short and long term. 

In this work, I mainly focused on the short time frame investigating 

how rapidly and automatically different perceptual and conceptual 

dimensions are recovered during single word reading. The longer time 

frame of semantic processing has been partially considered by the 

priming experiments, where different tasks where compared. Further 

investigations are needed in order to establish (1) which perceptual 

features are consistently retrieved, and (2) which factors determine 

whether their retrieval will interact in a positive (priming) or negative 

(interference) way with the task. Moreover, there are much broader 

implications that deserve further examination.  Words are never 

processed in a vacuum: they are usually heard/read in sentences, 

always in a communicative context (even if only with oneself), by 

individuals with given experiences and certain goals. Progressively 

more attention is being paid to naturalistic stimuli, individual 

differences and contextual variables (e.g., Hsu et al., 2011; Wehbe et 

al., 2014; Huth et al., 2016). Finally, cross-disciplinary research 

comparing different languages and culture can help defining how 

much of the content of semantic representation is culture-dependent 

and how different languages determine the mapping between semantic 

and conceptual spaces (for instance, given the same set of household 

containers, English speakers would produce 7 different names –and 
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corresponding classifications-, while Spanish speakers 15 (Malt and 

Majid, 2013)). 

 

 

  

4.   General Perspectives 

 

Aiming at answering some of the above mentioned open 

questions and criticisms, the works presented in this manuscript can 

be directly extended along three, strongly interconnected, axes (not 

exhaustive of all the potential follow-ups called for by our finding). 

 

4.1   Clinical Relevance of Features Dissociation  

The topographical dissociation between perceptual (posterior) 

and conceptual (anterior) semantic dimensions I reported needs to be 

replicated and corroborated by evidences coming from the clinical 

population. Do the deficits of SD patients follow a similar (inverse) 

progression as the disease spread from anterior to posterior? An 

additional hypothesis is that this anterior-to-posterior gradient can be 

detected not only in the spokes (primary and secondary modality-

specific areas), but also within the semantic hub (the ATL) where 

specific areas are responsible for coding of combined motor-

perceptual features building up the higher level conceptual ones. 

These hypotheses could be tested with behavioral experiments aiming 

at triggering dissociation among motor-perceptual and conceptual 

features, comparing semantic dementia patients at different stages of 

progression of the neurodegeneration (where one would expect 

conceptual deficits to be more prominent than motor-perceptual ones), 

patients with posterior lesions (where the opposite pattern should be 

observed) and healthy controls. 
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4.2   Role of Hub(s) and Spokes 

If both the integrative hub (ATL) and the spokes (modality-

specific areas) are necessary every time concepts are retrieved, 

semantic deficit can arise because of (1) degraded representation at the 

level of the hub (central representational deficiency), (2) ineffective 

connections between the hub and the spokes (impaired access), (3) 

degraded representation at the level of the spokes (peripheral 

representational deficiency). While multivariate analyses of fMRI data 

can shed light onto the state of the representations in both the hub and 

the spokes, functional and structural connectivity data are needed in 

order to understand if/how communication flows within the system. 

Hence, patients manifesting key dissociations between different 

motor-perceptual and conceptual dimensions should be compared with 

protocols including functional neuroimaging as well as connectivity 

measures.    

 

4.3   Dynamic Emergence of Semantic 

Representations 

The ultimate goal of a theory of the dynamics of semantic 

representation should be the description of how the semantic (neural) 

code emerges (i.e., evolution during infancy), changes (by virtue of 

learning and training), and degenerates (e.g., in patients with semantic 

dementia). Synchronization, proposed as a mechanism for establishing 

communication between brain areas (Palva and Palva, 2012), likely 

plays a key role in binding the distributed codes of properties defining 

a given concept, to form a coherent semantic representation. Time-

resolved techniques can be used to investigate how information is 

integrated thanks to the interplay between the hub(s) and the spokes. 

Interestingly, this could be tested not only during semantic processing 

of consolidated materials (e.g., during reading of words or sentences), 

but also before, during and after learning of new concepts.  
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Hopefully, researchers in the field will strike a balance 

between the questions we can answer (given the ever-improving 

methodological techniques available) and the questions we should ask 

(given the burning cognitive conundrums to be solved). We are in 

need of a fruitful integration of cognitive theories, clinical data, and 

cutting edge methodological practices, mutually pushing each other 

forward towards the resolution of the mysteries of semantic 

representations. 
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APPENDIX: 

VERBA VOLANT, SCRIPTA MANENT 

 

Doctoral theses are changing, no one can deny it (Gould, 2016). Yet I do not believe 

we know exactly what we would like them to become. I confess,  I wrote this manuscript to 

(1) test myself with the challenges represented by such an achivement, and (2) leave 

something behind, or better, have something to carry with me in my future career. Here are 

some additional informations/details of the analyses that could not fit the main chapters, yet 

are worth mentioning. I close by setting in stone (so to speak) some dos and donts, which I 

hope will be useful, at the very least, to my future self. 

 

1.   Supplementary Materials 

 

1.1   Behavioral Experiments 

One of the main aims of the analyses we perfomed in Chap. 3 was to obtain a low 

dimensional represenation of the semantic space we could (1) visualize and (2) compare 

across different sources of distance measures (SDJ, SFL, WordNet). Multidimensional scaling 

(MDS) is a set of methods that, given a matrix of pairwise distances or dissimilarities, permits 

the visualization of how near or far items are. In this dimensionality reduction technique, 

users need to set the goodness-of-fit criterion to be minimized (so called stress), and the 

number of dimensions they desire. Once data are arranged as a dissimilarity matrix, and one 

has an intuition on the number of clusters to be expected in a low dimensional representation 

(e.g., k clusters), a data-partitioning algorithm such as k-means can be used to assigns 

different observations to exactly one of the k clusters.  

As our goal was to obtain the best representation in the lowest dimension possible, for 

each set of data we computed the vector of minimized stress for four different criterions: 

normalized by the sum of squares of the inter-point distances, normalized with the sum of 4th 

powers of the inter-point distances, normalized with the sum of squares of the dissimilarities, 

and normalized with the sum of 4th powers of the dissimilarities. We repeated the process 

iteratively chosing with all possible number of dimensions from 1 to n-1 (where n is equal to 

the number of items in each data set). It was then possible to plot value of the minimized 
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stress as a function of the number of dimension for each criterio. Applying the heuristic 

known as the “elbow rule”, we identified the best criterion-dimension, thus attempting to 

strike a balance between maximum compression of the data and maximum accuracy. It is 

important to stress that these methods only offer qualitative ways to analyze distances data by 

visualizing one of their possible low dimensional representations. The interpretation of the 

results is thus instrecly ambiguous. For instance, k-means algorithm will always converge and 

provide a partion of the data into the desired k clusters,  but the results can be very unstable 

as, while being deterministic, they rely on a random initialization (i.e., would not replicate 

unless the random seed generator is fixed). Similar observations can be made for the 

orientation of the dimensions in the MDS. 

We here present, as example, the results for the SDJ of both set of stimuli (Study 1 and 

Study 2). We report the stress profile of the chosen criterion over the n-1 possible dimensions 

to appreciate the presence of an elbow, not always uniquely identifible but always lighing 

between 2 and 3 dimensions. Moreover, we report the corresponding Shepard plot, the 

scatterplot of the distances between points in the MDS plot against the observed 

dissimilarities (i.e., the closer to a perfect diagonal the better). Finally we show the position of 

the centroides as identified by the K-means algorithm with respectively 4 (Study 1, Fig. 75) 

and 2 (Study 2, Fig. 76) dimensions. 

 

 

 

 

 

Figure 75 Preliminary analyses on the set of 
stimuli for Study 1. In an effort to visualize the 
semantic spaces retrieved by the two behavioral 
experiments conducted, we performed a series 
of stress analyses and K-means clustering. For 
both the animal (upper) and tool (lower) set of 
stimuli, we report the stress profile of the chosen 
criterion over the n-1 possible dimensions (left), 
the corresponding Shepard plot (central), and the 
position of the K-means centroides (right). 
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1.2   fMRI Experiment 

 

Searchlight. We run an exploratory searchlight with partial correlation RSA. For each 

subject and each predicted effect, we obtained a map depicting for each voxel the partial 

correlation score obtained by in a surroding sphere of 8 mm. The resulting maps were entered 

into a one-sample t-test with subjects as random factor in SPM. Fig. 77-a shows the temporal 

clusters surviving FWER correction (p<0.005) Length, Size and Cluster. Those shown for 

Category are uncorrected as none survived otherwise (in interpreting these results please bear 

in mind that there are partial correlations RSA, thus the effect of category was partialled out 

from the one of cluster). This picture is fairly coherent with the results we obtain from the 

ROIs analyses in pointing towards a postero-antero gradient from perceptual to conceptual 

dimensions of word meaning. Fig. 77-b shows corresponding whole brain results. 

 

Fine grained description of the semantic space. In an attempt to test whether a 

richer, fine-grained semantic space (as the one described by our behavioral data) would fit 

better brain responses, we run two additional versions of the partial correlation RSA. Aiming 

at observing dissociations at different level of granularity (i.e., if some regions represent 

general superordinate category while others make finer grained distinctions across sub-

categorical clusters), we kept the two different hierarchical levels of the semantic space 

 

 

 

 

Figure 76 Preliminary analyses on the set 
of stimuli for Study 2. As in Fig. 1, but for 
the 32 French words used in Study 2. 
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separated in both analyses. First, we tested whether the use of a continuous distance inside 

each cluster, as a replacement with our binary cluster matrix (see Fig 78-b) would improve the 

results. Such predicted cluster matrix is extremely correlated with the binary cluster measure 

(R = 0.85) and the results we obtain are virtually identical to our original results (reported for 

comparison in Fig. 78-a). Next, we attempted to model the category matrix as a continuous 

one as well (see Fig 78-c). Now, the two matrices are even more correlated with each other (r 

= 0.85 across the continuous matrices vs. r = 0.32 across the binary matrices). Moreover, it 

should be noticed that as we did not ask subjects to rate across-category pairs, the proximity 

of the within category items is here under-estimated compared to the across category ones. It 

is thus not surprising that  the results show how most of the variance in the data is accounted 

for by the categorical one (even though a trend for the partial effect of cluster in the two most 

ATL regions can still be appreciated). 

  

 

 

Figure 77 Results of the searchlight analysis run with partial correlation RSA. The map of partial correlation scores (spheres of 8 mm), where entered into a one-
sample t-test with subjects as random factor in SPM. We here show the clusters surviving FWER correction (p<0.005), except for semantic cluster where 
uncorrected clusters are illustrated as no voxel survived correction.  
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1.3   MEG Experiment 

 

Overall inter-trial phase coherence. Figure 79 describes the overall pattern of inter-

trial phase-locking (or phase coherence) for the three sensors type separately. It appears clear 

that for all sensors type the main effect is a theta increase in inter-trial phase coherence 

around 200 ms after the stimuli onset. The effect is confined over occipital sensors, with a 

more marked left lateralization in the gradiometers.  

 
Figure 79 Time-frequency representation of the inter-trial phase coherence (ITC) across all stimuli. The insert highlights the topography at the sensor 
level of the main effect: increase in ITC in theta frequency range over occipital sensors, slightly left lateralized. 

 

Figure 78 Results with more fine grained 
predicted matrices. Results of the partial 
correlation between the neural similarity 
matrix and the one model (a) binary for 
both semantic category and cluster, (b) 
binary for semantic category and 
continuous for semantic cluster, (c) 
continuous for both. We are showing the 
average scores across subjects (n°=16) 
and error bars indicate the standard 
error of the mean (SEM) across 
subjects.Statistical significance (* p < 
0.05, ** p < 0.001, *** p < 10-5) is 
computed with a permutation test and 
very low p-value are rounded to p < 10-5. 
Exact p-values are reported in the text 
and ** / *** survive Bonferroni 
correction (p = 0.05/6 areas = 0.0083).  
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Overall power changes. Figure 80 illustrates the overall pattern of power changes for 

the three sensors type separately. Again, the two main effects are comparable across sensors 

type: theta increase around 200 ms, and beta/alfa decrease around 400 ms. As for ITC effect, 

the left lateralization is clearer on the gradiometers.  

 

Additional quality check. As we were observing relatively early semantic effects, we 

took care to control for possible confunds due to eye movements. If not properly taken into 

account during the preprocessing stage,  differences across conditions in terms of eye arificats 

could potentially contaminate our results. We thus computed for each participant and each 

condition, the average vertical and orizontal electrooculogram and tested, time point by time 

point, whethe r any on the three effect of interest (i.e., words referring to noisy items or not, 

big items vs small ones, living vs non-living). No significant differences were observed 

(Figure 81).  

 

 
Figure 80 Time-frequency representation of the changes in power observed across all stimuli. The inserts highlight the topography at the sensor level 
of the two main effects: bilateral occipital decrease of alpha and beta bands, left lateralized occipital increase in theta. 

Figure 81 Additional controls for eye movements differences across semantic contrasts. We report for vertical, upper, and horizontal, lower, EOG the average and the 
standard deviation across subjects condition by condition. (left) Blue = words that refer to items associated with a prototypical sound, red = = words that refer to items not 
associated with a sound (middle) Blue = words that refer to big items, red = words that refer to small items (right) Blue = words that refer to animals, red = words that refer 
to tools. 
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Low level physical dimension of the stimuli. We assessed the possibility of 

retrieving the physical dimension of our stimuli (i.e., the number of letters composing each 

word) both at the univariate and the multivariate level. The pipeline of analyses used for the 

main contrasts of interest was slighlty modified to accommodate the continuous variable. For 

the cluster-based univariate analyses, we implemented the same ERF procedure as the one 

described for the main effects (Montecarlo method, 1000 permutations, see Chap. 5.2.7), but 

substituing the T-statistic with a regression statistic as implemented in Fieldtrip. Results 

indicate a significant cluster (corrected p < 0.01), between 144 and 196 ms (peak at 176 ms) 

(see Fig. 82).  

 

 

For the multivariate analyses, a Ridge regression (default parameters as implemented 

in Scikit-learn) was used to decode the number of letter composing each word from the 

distributed pattern of brain activity in the time domain. This sanity check was used to test the 

effect on the decoding performance of some of the techniques of feature selection mentioned 

in Chap. 2. Fig. 83 reports the results of this exploratory analysis.  

 

Event-related fields (ERF) Using univariate sensor-level statistics (see Chap. 5.2.7), 

we examined whether any significant difference along our dimensions of interest could be 

detected in the time-locked evoked activity (see Fig. 84). A significant effect of implied real 

world size (i.e., whether words referred to big or small items) was found in a left temporal 

cluster between 204 and  232 ms (peak at 212 ms, p = 0.04).  Moreover, a significant effect of 

implied real world sound (i.e., whether words referred to items producing a prototypical 

sound or not) was detected between 384 and 460 ms (peak at 440  ms, p = 0.009) in a left 

 

 

 

Figure 82 Event-related effect of word length. For 
visualization purposes only, the time course of the 32 
words is here illustrated clustered in 4 groups of 
different length: 3-to-5 letters (8 words), 6 letters (7 
words), 7-8 letters (10 words), 9-11 letters (7 words) 
Cluster-based significant effect (P < 0.05, corrected) is 
highlighted by vertical dashed lines. We are showing 
the average scores across subjects (n°=15). Stimulus 
onset is marked by a vertical dotted line. 
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occipito-temporal cluster. These effects were observed on the combined gradiometers, while 

only trending effects could be appreciated in the magnetometers. 

 

Finally, the conceptual effect (i.e., difference between words denoting living vs non-living 

items) approached significance in a right fronto-central cluster between 384 and 432 ms (peak 

at 416 m, p = 0.05). Having appreciated earlier and stronger perceptual effects in terms of 

inter-trial phase coherence (ITC), we concluded that ERF might not be the most appropriate 

measure to detect small effects confined to a certain frequency band. When epochs are band-

pass filtered to include only the frequency bands of interest (i.e., were significant clusters 

were detected in the ITC analyses), the effects of both visual and auditory dimensions are 

recovered (see Fig. 85). 

Figure 83 Decoding of the physical feature of the stimuli. 

Ridge regression was trained to classify words according to 

the number of letters composing them. We are showing 

the average cross-validated scores across subjects (n°=15) 

and shaded area indicates standard error of the mean 

(SEM) across subjects. Different features preprocessing 

pipeline and cross-validation scheme have been 

compared. (a) the classifier is trained and test on single 

trial epochs at each time point following a 5-fold stratified 

shuffle split cross-validation scheme. (b) the classifier is 

trained and test on single trial epochs concatenating 20ms 

second (red) and additionally averaging 5 trials (blue), 

same cross-validation as above (c) same as (b-blue) but 

leave-one-run-out cross-validation was implemented 

(purple) and feature selection (best 100 features) added 

(light blue). Horizontal black continuous lines indicates 

stimulus onset, black dotted lines stimulus offset. Vertical 

colored dotted lines indicate performance reached using 

all available information, i.e. all data points, trials and 

sensors.  

  

 

Figure 84  Event-related effects of perceptual and conceptual dimensions. (left) Visual dimensions effect (words referring to big items in blues, small items in red). 
(center) Auditory dimensions effect (audio-related in blue, not audio-related in red). (right) Semantinc dimensions effect (living in blue, non-living  in red). We are 
showing the average scores across subjects (n°=15) and the shaded area indicates standard error of the mean (SEM) across subjects. Cluster-based significant effects (P 
< 0.05, corrected) are highlighted by vertical dashed lines (time-course) and * (topography). Stimulus onset is marked by a vertical dotted line.  
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As described in the main chapter, we attempt to retrieve semantic information 

corresponding to the three dimension in the multivariate pattern of evoked activity. Fig. 86 

illustrates the results of the time generalization technique adopted.   

 

Figure 86  Decoding of the three semantic dimensions.  The time course and the time generalization of the cross-validated decoding scores for the three effects: 
whether the words referred to items associated with a prototypical sound or not (upper, in red), whether the items are big or small (middle, in blue), and whether 
they are living of non-living entities (lower, green). Dots on the lines indicate significant decoding (Wilcoxon signed-rank test across subjects, uncorrected). For 
display purposes, data were smoothed using a moving average with a window of five samples. We are showing the average scores (and matrices) across subjects 
(n°=15). The shaded area indicates standard error of the mean (SEM) across subjects. 

 

Figure 85 Perceptual dimensions effect as retrieved with ITC 

and ad evoke-related response on bandpass filtered data. We 

here show the comparison of the topographies of the significant 

clusters recovered with ICT and ERF on bandpass filtered data 

analyses. For the auditory dimension, a significant ITC effect 

(corrected p = 0.008) was observed peaking in the alfa band (10 

Hz) at 200 ms (higher ITC for words referring to items associated 

with prototypical sound). In the ERF-bandpassed data, the same 

cluster shows a significant effect (corrected p = 0.01) peaking at 

234 ms. For the auditory dimension, a significant ITC effect 

(corrected p = 0.039) was observed peaking in the theta band (6 

Hz) at 240 ms (lower ITC for words referring to big items). In the 

ERF-bandpassed data, the same cluster shows a trending effect 

(corrected p = 0.07) peaking at 290 ms. 

 

 

Cluster-based significant effect (P < 0.05, corrected) is 
highlighted by vertical dashed lines. We are showing the 
average scores across subjects (n°=15). Stimulus onset is 
marked by a vertical dotted line. 
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2.   Software 

 

When I started my doctoral studies, I had no previous experience with the analyses of 

neuroimaging data nor any knowledge of programming. Throught this manuscript I have 

highlighted the software I used, firmly believing  software is a central part of modern 

scientific discovery too often underestimated (Pradal et al., 2013).  

 

Psychotoolbox -  (http://psychtoolbox.org/) is a free set of Matlab/Octave that can be 

used to design and control experiments (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). 

With version PTB-3 it moved to an open source development model. Great tutorial, demos 

and support (via a lively forum) are available. I used it to program the experiments presented 

in  Chap. 3 and 4. 

 

Psychopy - (http://www.psychopy.org/) is an open-source package for running 

experiments in Python. It offers the choice between two interfaces (Builder vs Coder) to allow 

design of rich experiments irrespective of the coding proficiency (Peirce, 2007, 2009). I used 

it to program the experiment presented in  Chap. 5. 

 

SPM - (http://www.fil.ion.ucl.ac.uk/spm/) is a software for analyses of fMRI, PET, 

and M/EEG data that runs in MATLAB. It is freely distributed and widely spread, being one 

of the most frequently adopted tools in neuroimaging (Penny et al., 2011). I used SPM for the 

preprocessing and univariate analyes of my fMRI data (see Chap. 4).  

 

Scikit-learn - (http://scikit-learn.org/) open source, easily accessible, machine learning 

library in Python (Pedregosa et al., 2011). It is constantly growing thatnks to an international 

community effort. I used Scikit-learn for most of my decoding analyses (see Chap. 4 and 5), 

in fact, the best definition I can provide of machine learning is still “what you need to import 

scikit-learn for”.  

 

Nilearn - (https://nilearn.github.io/) is a open source library for machine learning on 

neuroimaging data in Python. It provides ready to ues advanced statistical techniques (heavily 

relies on Scikit-learn) (Abraham et al., 2014). I used Nilearn to plot many of the brain images 

http://psychtoolbox.org/
http://www.psychopy.org/
http://www.fil.ion.ucl.ac.uk/spm/
http://scikit-learn.org/
https://nilearn.github.io/
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presented in this thesis, but it can do much more: e.g., predictive modelling, functional 

connectivity, brain parcellations. 

 

Brainstorm - (http://neuroimage.usc.edu/brainstorm/) is a collaborative, open-source 

application dedicated to the analysis of brain recordings: MEG, EEG, fNIRS, ECoG, depth 

electrodes and animal electrophysiology (Tadel et al., 2011).  I used Brainstorm for the 

preprocessing and source analyses of the MEG data (Chap. 5).  

         

   Fieldtrip - http://www.fieldtriptoolbox.org/ is a MATLAB software toolbox for 

MEG and EEG analysis (Oostenveld et al., 2011). I used Fiedltrip for the univariate statistical 

analyses of the MEG data in  Chap. 5, and relied on its plotting function for the time-

frequency searchligh described in the same chapter.  

 

  MNE-python - http://martinos.org/mne MNE is a software package for processing 

electroencephalography (EEG) and magnetoencephalography (MEG) data (Gramfort et al., 

2013; Gramfort et al., 2014). It is the freely distributed output of a community-driven effort. I 

used MNE-python for the multivariate statistical analyses of the MEG data (Chap. 5), with the 

exeption of the time-frequency searchligh. 

 

  CoSMoMVPA - http://cosmomvpa.org/ is a open source library for MVPA 

implementations in Matlab/Octave. Handles fMRI volumetric, fMRI surface-based, and 

MEEG data through a uniform data structure across a variety of data formats (Oosterhof et al., 

2016). I used CoSMoMVPA for time-frequency searchligh described in Chap. 5. 

 

 

 

  

http://neuroimage.usc.edu/brainstorm/
http://www.fieldtriptoolbox.org/
http://martinos.org/mne
http://cosmomvpa.org/
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3.   Dos and Donts 

 

You need more data. Cutting edge methods developed for genetics, vision, etc…will 

always require a bigger sample, i.e. more data point than the one traditionally acquired for an 

fMRI/MEG experiment. Much more. Around 20% of the dataset will be need just to validate 

whatever your model tries to learn/predict/estimate, while a good percentage of what is left 

will be needed to tune parameters (or other sorceries).  

 

You need better data. First of all, data needs to be meaningful: you won't find many 

potatoes in a cornfield. Second, data needs to be clean. In the case of fMRI data, the issues 

concern overlapping HRFs and subjects’ movements inside the scanner. As for MEG, 

problematic factors are, again, subjects’ head movements but any other source of magnetic 

artifacts such as blinks. Hence, general tips include: in fMRI, aim for longer ISI (ideally >3s), 

otherwise the HRF overlap, with no need to appeal to non-linearties, will killing your chance 

of detecting a meaningful signal; for both techniques, test well trained subjects, who will keep 

their head perfectly still and will blink only between trials. 

 

Start from 0. By repeting this mantra, I try to remind myself fo two important lessons I 

learned during this four years of reasearch: 

 At any point in your srudy (design, implementation, data analyses), invest time in the very 

first steps (e.g., checking data quality before data analyses), few things are as frustrating 

as wasting time second guessing yourself. 

 Always try the simplest model/analysis first. There’s plenty of time to complicate things, 

but only once chance to keep it simple and clean. 

 

Try your pipeline on pure noise. As we do not usually do reasearch in a double blind 

fashion (i.e., we have the hypothesis, we design the experiment, we analyze the data, we 

interpret the results), any small choice is influenced by our goals. You find what you look for, 

and you look for what you want to find. A better-than-nothing procedure to test for 

misleading pipelines is to check which results would be obtained repeating exactly the same 

analyses (from preprocessing to statistics) on completely random data, pure noise. I am aware 

that the definition of noise/random itself poses some challenges, but “it has to start 

somewhere” (Guerrilla Radio, Rage Against the Machine).  
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