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Abstract
Pervasive in nature and extensively used for a wide range of features, smartphone

provides functionality such as social networking, online shopping, mobile gaming, pri-
vate/group communication, etc. While using these services, a user has to provide private
information such as account credentials, credit card details, etc., which are then stored on
the device. This information, if lost, can result in a user’s privacy leakage and monetary
loss. Therefore, significance of securing a smartphone from adversarial access becomes
paramount. Despite being security and privacy critical, smartphones are still protected
by traditional authentication mechanisms such as PINs and passwords, whose limitations
and drawbacks are well known and well documented in the security community. The
recent introduction of physical biometrics like facial, fingerprint and iris recognition, in
smartphone authentication has mitigated the problems with user input, however, they still
suffer from other usability and security issues. Hence, new, accurate, and user-friendly
authentication mechanisms are required. In this direction, behavior-based authentication
solutions have recently attracted a significant amount of interest in both commercial and
academic contexts.

Most of the smartphone users prefer convenience over security and consider authen-
tication mechanism more annoying as compared to other technological problems, such
as lack of coverage, power consumption, etc. In this dissertation, we discuss limitations
of existing authentication methods in terms of security and usability, and propose their
replacements with behavioral biometric based authentication mechanisms. The underly-
ing principle of our approach is to design solutions that authenticate users with either
minimal or no cooperation from the users. We design, prototype and test the proposed
authentication mechanisms based on our identified human behavior, such as how a person
holds the phone, lifts the phone, types free-text PIN on the phone, signs her name on
the touchscreen, etc. Moreover, we provide a comparative evaluation, based on accuracy,
performance and usability, of our proposed mechanisms with the available state-of-the-art
solutions. All of our solutions exploit the existing hardware (avoiding additional hardware
requirement), and hence can be implemented on most of the smartphones available in the
market today.
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Definitions

• One-shot and Continuous User Authentication: One-shot authentication schemes
are designed to authenticate the user at the start of the session. In contrast, contin-
uous authentication schemes are designed to continuously verify the user’s identity
throughout the entire session.

• Implicit or Unobtrusive authentication: The authentication schemes which
don’t require user’s attention or cooperation for authentication purposes.

• Intra-class Variations and Inter-class Similarities: Intra-class variations refers
to the observed differences in different samples acquired from the same user. In
contrast, Inter-class similarities refer to the similarities found in the samples of
different users.
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Chapter 1

Introduction

New generation devices, namely, smartphones and tablets, are the most widely used per-
sonal devices in everyday life. Currently, 400, 000 Apple and 1.3 million Android devices
are activated [6][7], while around 300, 000 babies are born, each day. The usage patterns of
smartphones are also very different than usage patterns of laptops and PCs. Smartphone
users check their smartphone, on average, 150 times a day (once in every 6.5 minutes in
24 hours) [7]. Some of the reasons behind smartphone’s popularity include their powerful
processors, better batteries, improved hardware with powerful built-in sensors and faster
connectivity chips. Apart from their hardware progression, developer-friendly operating
systems have been continuously evolving and getting better since their first introduction
by Apple in 2007 [8] and by Google in 2008 [9].

Widespread use of smartphones for broad range of activities poses serious security and
privacy threats. In order to better obtain a clear picture of the threats to the user’s data,
a US-based security firm, Symantec, carried out a social experiment in five major cities
in North America. They left 50 smartphones in public places without any protection
[10]. Results revealed that 96% of who found the smartphones actually accessed them,
and 86% of them accessed the personal information, 83% read business information, 60%

opened social networking and personal emails, 50% started remote administration and
43% accessed online banking accounts [10].

Every smartphone available in the market today, continuously collects user’s location
coordinates keeps sending/receiving messages offers users capabilities for accessing mo-
bile banking and social networking through the most popular apps such as Facebook,
Whatsapp, Instagram, Viber, Twitter, etc. All of the mentioned apps store user’s privacy
sensitive data, which often becomes easily accessible once access to the phone is gained.
Hence, any unauthorized access to these devices could have serious consequences and may
become a nightmare for the victim [11].
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1.1 Motivation and Problem Statement

The purpose of any authentication mechanism is to prevent any unauthorized access to
the devices. The most widely used authentication schemes for smartphones are based on
“something the user knows" (e.g., PIN/password), “something the user possesses" (e.g.,
some token), “something the user is" (e.g., face, fingerprint, etc.), and “something the
user does" (voice, walks, etc.).

Authentication solutions based on what the user knows (PIN, password) are not consid-
ered to be highly secure anymore, and their associated security issues are well documented
in the recent literature [12]. They are neither highly secure (since they are susceptible
to guessing, shoulder surfing, and smudge attacks), nor highly usable (because they are
frequently forgotten [13]. Further, keys, cards, and badges can be lost, or duplicated.
Additionally, multi-factor ( e.g., card + PIN, PIN + badges) also pose a usability issue:
why would a smartphone user carry an extra device for the sole purpose of authentica-
tion?. As a result, a recent study reports that 70% of the smartphone users do not use
any PIN/password [14], and they consider them more annoying than other technologically
related problems, such as lack of coverage, small screen size or low voice quality [15].

To overcome the issues of PIN/password based authentication solutions, the focus of
research has been diverted to biometric-based solutions. Apparently, this approach is
well accepted in both academia and industry. For example, recent updates in smartphone
authentication include face-unlock on Android platforms [16], voice recognition on Google
smart-lock [17], and fingerprint unlock on iOS [18]. Recently, Google has announced
to replace the passwords with their trust score based Trust API1. The Trust API will
continuously monitor and keep calculating the trust in the user based on her available
biometric data - keystrokes, location, etc. The idea is to increase the user’s data security
and privacy in a better, automatic, trustworthy and unobtrusive way.

Biometric authentication introduced by Bertillon in 1870s [19] is the process of ver-
ifying the identity of a person based on her biometric modalities or traits. Biometric
modalities are broadly categorized as physical, behavioral, chemical and cognitive. Phys-
ical characteristics are based on the body parts, e.g., face, fingerprint, palm, iris, etc. Be-
havioral characteristics are based on behaviors, e.g., keystroke, gait, voice, etc., whereas
the chemical characteristics are based on the events happening in the body, e.g., odor
or temperature. Cognitive characteristics are based on the brain responses to specific
stimuli, e.g., odor, sound, etc. Biometric authentication has multiple advantages over
traditional authentication methods. Generally, they are considered more secure because
they are hard to copy, and more reliable because they are hard to share or distribute and
require the user presence at the time of authentication.

1http://www.networkworld.com/article/3074664/security/google-s-trust-api-bye-bye-passwords-hello-
biometrics.html
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The systems based on physical biometrics, such as face, iris and fingerprint have shown
to be less preferred because of several reasons. Firstly, they require comparatively more
user’s cooperation since such biometric traits cannot be collected unobtrusively. Recent
studies suggest that the user prefers convenience over the security, and that usability plays
a major driver of user’s adoption decisions [20]. More specifically, 47% of fingerprint and
36% of face recognition former users mentioned usability as the main factor to stop the
usage of these technologies [21]. Secondly, the data acquisition time is significantly higher,
i.e., iris(15− 20sec)2, face(6− 10 sec). Face recognition struggles to perform in different
lighting conditions, with the use of sunglasses, or other objects partially covering the
face. Similarly, the quality of a voice sample is affected by different physical activities
(e.g., when walking, climbing a mountain, running to catch the train red, etc.), also due
to physical conditions (e.g., sickness). Thirdly, such systems can be spoofed3,4 [22, 23]
and the incorporation of anti-spoofing technology [24] may increase the cost of the device.

It is well known that to perform a certain task every human employs different ways,
methods, and knowledge. Behavioral biometrics work on the principle of “how the user
does something", i.e., gait, keystroke, etc. Researchers have been working with different
user behaviors such as their walking patterns (gait), the way of providing input (keystroke
dynamics) [25, 26, 27] and the measurement of the arm movement [28, 29]. Behavioral
biometrics offer many advantages over physiological traits. One of the main advantages
is that the behavioral patterns can be collected transparently or sometimes even without
user’s knowledge. More importantly, data collection does not require any special dedicated
hardware. However, most of the behaviors are not unique enough to provide accurate user
identification but have shown promising results in user verification [30]. Since, behavioral
biometrics are dependent on the user actions and habits, it makes them more attractive
towards implicit user authentication.

1.2 Research Challenges

Behavioral-biometric-based authentication solutions have shown to be very promising.
The main reasons behind their popularity include (i) the unobtrusive data collection,
(ii) no need of additional hardware, (iii) some robustness against different environmental
conditions, (iv) apparently very secure (because spoofing very private human behavior
requires a lot of practice and time), and most importantly, (v) they may offer the revoking
of the compromised behavioral attribute, unlike physical biometrics. However, since such
solutions are quite new and less explored as compared to the physical biometrics, there

2http://www.ibtimes.co.uk/unlocking-phone-your-eyes-fujitsu-iris-recognition-tech-coming\
-smartphones-2015-1490297

3https://www.theguardian.com/technology/2013/sep/22/apple-iphone-fingerprint-scanner-hacked
4http://www.iphonehacks.com/2016/02/iphone-touch-id-hacked-with-play-doh.html
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exist a wide range of open challenges. The one addressed in this dissertation are discussed
below:

1.2.1 Identification of Suitable Biometric Trait(s)

The selection of biometric modality(ies) mainly depends on the environment5 and nature
of the context in which the biometric system is implemented. The environment includes
the feasibility and/or user acceptance of the characteristic in the target biometric system.
Thus, the success of any biometric system largely depends on the selection of the right
modality for the right application, i.e., user authentication on mobile devices.

The objective of this thesis is to investigate new behavioral biometric modalities that
can be accurate in discriminating the users, robust against the possible attacks, and
that can be collected transparently - without requiring extensive user cooperation for
authentication. The motivation behind the search for new user behavior(s) is (i) to avoid
any unnecessarily required user attention for the sole purpose of user authentication, which
is very important for the usability of the mechanism, and (ii) to avoid any unnecessarily
required hardware.

1.2.2 Uniqueness of Behavioral Patterns

Uniqueness/distinctiveness is considered as the key property of any biometric-based au-
thentication system [2]: a measured trait/characteristic should be different enough from
person to person. Higher uniqueness or distinctiveness results in higher accuracy. Physi-
cal traits are considered more distinctive both for verification and identification, whereas
behavioral characteristics are considered sufficiently distinctive for verification purposes
[30] only.

Thus, our focus in this thesis is to identify, prototype, and validate the unique human
behaviors for user authentication on mobile devices. In the following chapters, we present
how much our identified behaviors are sufficiently different for different users.

1.2.3 Limitation of Resources

Mobile devices come up with inherent computational and processing limitations, i.e.,
usually they are not rich in resources like desktops/laptops. Hence, the proposed mecha-
nism(s) should have low processing complexity. Thus, any proposed authentication solu-
tion should be light-weight, rather than resource hungry, in order to attain wider usabil-
ity and acceptability. They should be computationally inexpensive both in training and
decision-making processes. Authentication solutions pose, both, one-time (in training)
and run-time (testing) overheads on the normal operation of mobile devices.

5http://blog.m2sys.com/multimodal-biometrics-2/secret-on-choosing-a-suitable-biometric-modality/
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Additionally, due to limited resources, applying blindly the features and machine learn-
ing algorithms may not be feasible/suitable for user authentication. A careful analysis of
both features and algorithms is needed before their deployment on the real phone. The
identification, extraction, and selection of an appropriate and productive set of features
for behavioral biometrics (especially for smartphone user authentication) is still an open
challenge. Similarly, selection of appropriate algorithms also needs careful evaluation,
for example, applying advanced machine learning algorithms like Deep Neural Network
(DNN) may raise performance related issues.

1.2.4 Data Collection

Behavioral biometrics, especially for smartphone user authentication, is a comparatively
less-explored area. Most extensively tested/explored biometric modalities for user au-
thentication are the keystroke or touch dynamics. Thus, we could only have keystroke
or touch datasets available for evaluation. As we propose novel biometric authentication
mechanisms, we are compelled to prepare our own datasets for the idea evaluation and
prototyping.

1.2.5 Applicability to Different User Situations

Smartphone owners may use their devices in different positions or situations such as
sitting, standing, walking, lying on the sofa and bed, walking upstairs and downstairs,
jogging, driving, and cycling, etc. Therefore, while providing input sample, they need to
hold the smartphone in such a way that the maximum screen becomes visible to them.
Ideally, any proposed mobile biometric authentication mechanism should be situation
and positions and activity independent (e.g., fingerprint recognition). Unfortunately, the
majority of the proposed behavioral-based authentication solutions are limited to some
specific activities and positions [27, 5, 31], hence, designing authentication solutions for
all or most of the situations is still a challenging issue.

1.3 Our Approach

Our behavioral-biometric-based approach for smartphone user authentication starts with
the collection of sensory data for the specific user movement and profiling the user based
on the relevant information extracted from the collected sensory data. Our approach
authenticates the legitimate user based on the similarity between the query sample and
the stored samples.

Smartphones are full of different sensors (data sources), which can be used to record
user behavioral patterns. Modern mobile operating systems provide developers with in-
terfaces to collect sensor data and process it in their applications. Most importantly,
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starting/stopping of such sensors does not require any user permission, as such, the user
might not know about the data collection. We have registered various user movements
with built-in 3-dimensional sensors available in most of the commercial smartphones in
the market today. Registering and triggering smartphone sensors is easy and unobtrusive,
i.e., prototype applications do not require any user permission(s).

Smartphone’s 3-dimensional sensors generate continuous streams of data. These streams
can be profiled as time series and later use for authentication purposes using time series
analysis, however, considering the computational constraints, e.g., limited resources and
computational time, this approach might not be practical and realistic. Alternately, a
feature extraction scheme can be employed to extract the most useful/relevant features
out from those recorded time series. We have applied feature extraction schemes in all of
our proposed solutions.

Depending on the application context, a biometric system operates in two modes:
identification and verification. In identification mode, the system recognizes an individual
by comparing the captured biometric data with the templates of all the users in the
database. Whereas, in verification mode, the user’s identity is validated by comparing
the captured biometric data with their own biometric template(s) in the database. In this
thesis, we have focused on solving verification problem.

A biometric authentication/verification procedure is referred as a classification mecha-
nism (see Figure 2.2). In particular, the matcher module is termed as the classifier. First,
a specific classifier is trained on a dataset D, consisting of samples over (x, y); where x is
variable with a set of attributes x = {x1 . . . xn} and y is the ground truth label. During
operation, the trained classifier maps the input query to a certain class. In the case of bi-
nary classification, the training data contains the attributes and true labels of two classes
and classifier, whereas, in 1-class verification, the training data comprises patterns of one
user (owner) only. We have used binary-class classification for off-the-device analysis and
1− class classification for on-board authentication on the smartphones.

1.4 Our Contributions

In this thesis, we present the design and implementation and technical details of new
solutions for user authentication on smartphones. What makes our solutions unique and
different than the existing ones is their minimal (or no) user effort requirement - our solu-
tions authenticate their users with either minimal or without explicit user cooperation. In
addition, all of our solutions exploit the existing hardware (avoiding additional hardware
requirement), and hence can be implemented on most of the smartphone available in the
market today.

The research contributions of this thesis are listed below:

6
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• We introduce the “Hold" behavior (the way the user holds her phone in her hand),
and show that the use of this biometric modality improves significantly the authen-
tication accuracy and security.

• We propose light-weight, user-friendly, and power-friendly behavioral-biometric based
solutions for smartphone user authentication.

• We report, in detail, the power consumption, processing overhead, usability, and se-
curity analysis of one of our proposed and implemented proof-of-concept mechanism
and are in process of testing other prototype solutions.

1.5 Roadmap

Despite their lack of security and usability, knowledge-based authentication schemes (e.g.,
PIN and signature and others) are still used for one-shot authentication in smartphones
as well as for accessing social networking sites, banking applications, etc. In order to make
them more secure and usable, we added an extra transparent layer to these mechanisms.
We transformed them to bi-modal systems, i.e., how a user moves the phone in her
hands while entering the 4-digit PIN or signing with her fingertip on the touchscreen.
The proposed bi-modal mechanisms based on “Hold" behavior and the way the user
enters her secret or writes her name on the touchscreen are presented in Chapter 3 and
Chapter 4, respectively. Then we present our fully unobtrusive unimodal authentication
schemes, based on just “Hold ” behavior, for both one-shot (Chapter 5) and continuous
authentication (Chapter 6) on smartphones. Lastly, we present a fully unobtrusive tri-
modal authentication scheme designed mainly to confirm the identity of the call picker.
Normally, to pick up and answer a phone call, 3 actions are performed. Firstly, swiping
the accept button, then bringing the device to the ear and start speaking. Our method,
ITSME (Chapter 7) exploit these actions and verify the identify of the call picker.

1.6 Structure of the Thesis

Chapter 2 focuses on introducing the background knowledge necessary to understand the
biometric-based smartphone user authentication solutions.
Chapter 3 presents a bi-modal system, i.e., how a user holds her phone in her hand and
types a 4-digit free-text PIN/password. The use of phone-hold modality and the choice of
4-digit free-text differentiates Touchstroke from the classical key or touch stroke dynamics.
Touchstroke transparently collects phone-movements in the background and provides the
flexibility of entering any 4-digit free-text making it widely acceptable among the smart-
phone users.

7
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Chapter 4 is a variant of Touchstroke and exploits the user signing style (how the user
writes her name on the touchscreen), in addition to the user’s hold behavior. Hold &
Sign does not take into account the signature image, rather the finger movements on
the touchscreen and the in-hand phone movements. Hold & Sign provides two benefits:
firstly, it enhances usability by providing its user the flexibility of writing user’s own name.
Secondly, it increases security - it becomes extremely difficult to mimic finger and hand
movements at the same time.
Chapter 5 introduces a completely unobtrusive uni-modal system based on user’s natural
hand movements. The mechanism starts profiling user’s hand micro-movements after an
unlock event is notified. Our solution is completely implicit and is applicable both for a
smartphone with and without any enabled authentication mechanism. An attacker has
to pass this authentication mechanism too besides the other authentication requirement,
e.g., passcodes, etc.
Chapter 6 presents ACTIVEAUTH - a fully unobtrusive motion-based one-shot-cum-
continuous user authentication scheme for smartphones, which in addition to authenti-
cating the user at login stage (Chapter 5), continuously tracks the user interactions and
authenticate the user before a package is installed/uninstalled. Besides providing a one-
shot login (as in Chapter 5), our approach determines who should be allowed to install a
new application package or uninstall an already installed package. ACTIVEAUTH can
be implemented as a standalone scheme or can be augmented with any of the existing
scheme to strengthen its robustness against the possible attacks.
Chapter 7 presents a tri-modal authentication solution based on sliding, lift behavior and
voice modality. Sliding means the way the user drags the start button to slide-unlock the
smartphone and lift behavior refers to the movement the user makes to bring the phone
towards her ear. We implemented and tested this solution on a real Android phone and
evaluated it in multiple user situations.
Chapter 8 concludes the thesis and presents the possible future work emerging from this
work.

8



Chapter 2

Background

In this chapter, we present the background knowledge necessary to understand the smart-
phone user authentication problem.

2.1 Introduction

Human biological data, due to its permanence and uniqueness, can be used as a means of
identification, authentication and access control. The use of biological data for the purpose
of identity management is termed as biometric recognition or simply biometrics. Physical
(based on the physical characteristics) and behavioral (based on behaviors) biometrics
are the most popular types. Physical characteristics include fingerprints, hand geometry,
iris or retina scans, etc., and behavioral characteristics include keystrokes, gait, signature,
voice, etc., (see Figure 2.1). Other biometrics use chemical features (based on events that
happen in a persons body, measured by e.g., odor or temperature) and cognitive features
(based on brain responses to specific stimuli, e.g. sound).

Biometrics has got all the potential to completely replace knowledge-based solutions,
because their alphanumeric counterparts can be stolen, forgotten, and shared. Biometric
authentication has been studied for a long time. Large-scale commercial deployments
already exist, such as the fingerprint sensors on laptops and smartphones. However,
these deployments are based on physical biometrics, which essentially require explicit
user action, hence annoying the users [32] and provide a “one-shot" authentication.

Most of the research about transparent, implicit and continuous authentication has
been done in smartphone’s security and access control is based on behavioral biometrics.
Behavioral biometrics offer many advantages over physiological traits. One of the main
advantages is that the behavioral patterns can be collected transparently or sometimes
even without user’s knowledge. More importantly, data collection does not require any
special dedicated hardware. However most of the behaviors are not unique enough to
provide accurate user identification but have shown promising results in user verification

9
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[30]. Various behavior-based authentication solutions have been tested and evaluated
[33, 29, 31] but are yet to be deployed at large scale. One reason is that the performance
of many of these schemes is not yet at the same level as physical biometrics. Another
reason is that, not much attention has been paid to the performance of biometrics under
differing or difficult circumstances. For example, gait authentication is typically evaluated
by having subjects walk along flat surfaces of corridors in buildings.

Recent literature categorizes human behaviors into 5 different kinds on the basis of
data collection method [30], as follows:

• Authorship based Biometrics:

– User verification/identification on the basis of the way a user writes or makes
drawings on a piece of paper.

• Human Computer Interaction:

– Different users employ different strategies, different styles, and differently ap-
ply their abilities and knowledge in everyday interaction with computers and
new generation devices. These traits yield sufficient features for successful user
verification/identification.

∗ HCI-through Input Devices :The kind of HCI where human interaction is
made through input devices, such as keyboard, mouse etc.

∗ HCI-based Behavioral Biometric: HCI-based behavioral biometrics which
measures advanced human behaviors such as strategy, knowledge or skills
exhibited by the user during interaction, through different softwares.

• In-Direct HCI-based Biometric:

– Measurements obtained by monitoring user’s HCI behaviors indirectly via low
level actions of computer software. Identification through audit logs [34] and
registry access [35], etc.

• Motor skills (kinetics):

– it is an ability of a human to utilize the muscles [35]. As these movements rely
upon the proper functioning of brain, joints, skeleton and nervous system, they
indirectly reflect the quality of functioning of such systems, making verification
possible.

• Purely Behavioral Biometrics:

– it measures human behaviors not directly concentrating on measurements of
body parts or intrinsic, inimitable and lasting muscle actions, such as the way
an individual walks or types [30].
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Figure 2.1: Types of physical and behavioral biometric modalities [2].

2.2 Biometric Recognition System

Any biometric recognition system (see Figure 2.2) is bound to automatically identify a
person by examining some already enrolled physical and/or behavioral characteristics with
its corresponding query characteristics submitted by that person. An ideal biometrics is
supposed to have “zero" false acceptance and false rejection rates, and should satisfy some
properties (see Section 2.4), such as universality, uniqueness, permanence, acceptability,
and should be robust against possible attacks.

Figure 2.2 depicts the block diagram of a biometric system with four components,
defined below:

• Data Source: This block deals with the biometric data capture from an individual.
It includes both the hardware and software. It may also incorporate an additional
“Quality Checker" component, to ensure the data quality.

• Feature Extractor: This block deals with the extraction of discriminatory fea-
tures from the captured biometric sample in order to profile the most relevant user
information in the database.

• Database: This block deals with the storage and management of the biometric
template generated from the user’s data.

• Matcher/Comparator This block matches the claimed or query pattern with the
earlier stored pattern(s), and decides in terms of acceptance/rejection. For verifica-
tion, it performs the one-to-one match, and for identification it matches the input

11
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Figure 2.2: A Generalized Biometric Recognition System.

query pattern with all the stored patterns of all the classes (1:N), after which the
user is identified based on the highest achieved score.

2.3 Biometric Verification Vs. Identification

Authentication or verification refers to the identity confirmation. When a users claims an
identity (e.g., by inserting card into the ATM machine, or inserting card to access secure
facilities, and then typing a password or PIN), the system performs certain computations
to confirm the claim of the user. This comparison of claim with already stored template
is referred to as 1:1 match.
Identification differs from verification, where the unknown query template comes from a
known user and the job of the system is to correlate it with a known user’s template to
which it corresponds. This process is termed as 1:N matching. Identification can further
be classified into two kinds: open-set and closed-set. The identification is closed set if the
template of the users being verified already exists in the classifiers database; otherwise,
it is termed as open-set identification.
In this thesis, we have focused on solving authentication problem.

2.4 Choice of Biometric Traits

The choice of biometric modality(ies) depends upon various issues besides their recognition
performance. The literature [2] considers seven factors for determining the suitability of
these traits as discussed below:

• Universality: Every user needs to have that biometric modality. This factor helps
in determining (Failure to Enroll Rate (FTER) of biometric recognition system.

12
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• Uniqueness: The given modality should be sufficiently different across individuals
in a set of population.

• Consistency: The given modality should be consistent over a certain time period.

• Measurability: The possibility to acquire and digitize the biometric modality with
best devices without causing any inconvenience to the user.

• Performance: Besides recognition accuracy, the throughput of the biometric sys-
tem should also cope with the constraints imposed by the application.

• Acceptability: It reflects the ease and comfort with which users provide their traits
to the system.

• Circumvention: It refers the ease with which the modality of other participants is
copied, imitated or modified to gain illegitimate access of the system.

2.5 Multi-Modal Biometrics

Recent years have witnessed a significant increase in accuracy and reliability in biometric
authentication. However, mostly evaluated and tested advance biometric systems also
have some limitations; some of these limitations are related with type of data, and some are
related with methodology. More specifically, performance of the biometrics systems suffers
a lot due to the presence of noise in input data, inter-class variations, non-universality,
and other possible factors that may affect the performance, security and usability of those
systems [36].

A multimodal biometric system is a newer way to address some of the problems associ-
ated with unimodal biometric systems. It incorporates the consolidation of data presented
by multiple information sources. Multimodal systems can significantly improve recogni-
tion performance along with increase in population coverage (thus reducing FTER), pre-
vents spoof attacks, and increase the degree of freedom. Although these systems require
more storage, take higher processing time, and involve more computational cost as com-
pared to unimodal biometric systems, the above mentioned advantages are compelling for
their deployment in large scale authentication systems [37].

2.6 Smartphone Sensors

Mobile sensors are broadly categorized in three types, i.e., motion sensor, position sensors
and environmental sensors [3]. Motion sensors (accelerometers, gyroscope, gravity sensor,
etc.) measure the acceleration and rotational forces along three axes. Position sensors
(orientation and magnetometer sensors) measure the physical position of the smartphone.

13
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Environmental sensors, e,g., barometers, thermometers, etc., measure various environmen-
tal parameters. Motion and position sensors have shown to be accurate in discriminating
the users and have widely been used for smartphone user authentication [27, 31, 5]. En-
vironmental sensors may not be useful for “one-shot" authentication however, they could
better be used for continuous authentication. We have used only position and motion
sensors in our proposed solutions.

In Android mobile operating system, data can be collected in both fixed and cus-
tomized intervals after registering the sensor with registerlistener() termed as Sensor
Delay Modes [3].

Android supports four fixed intervals, namely, SENSOR_DELAY_FASTEST with-
out any delay in throwing samples, SENSOR_DELAY_GAME with a fixed delay of
20,000 µ seconds, SENSOR_DELAY_UI with a fixed delay of 60,000 µ seconds, and
SENSOR_DELAY_NORMAL with a fixed delay of 200,000 µ seconds.

We have tried all delays for the data collection, however, SENSOR_DELAY_GAME
provided better accuracy so we use SENSOR_DELAY_GAME for acquiring sensor val-
ues from all the sensors. Additionally, SENSOR_DELAY_FASTEST is highly likely
to include noise in the data. Similarly in SENSOR_DELAY_NORMAL and SEN-
SOR_DELAY_UI, it is quite possible that some of the sensors might not sense the user
interaction correctly (e.g., in some of our experiments orientation sensor in both delays
could not sense the user interactions).

We explain below the working principle of our chosen sensors:

2.6.1 Accelerometer Sensor

This sensor measures the acceleration applied to the device, including the force of gravity,
measured on three axis’ X, Y and Z. Android’s sensor API uses a standard three-axis
coordinate system. This system is defined relative to the device’s screen when it is held
upright as shown in Figure 2.3a. The acceleration that is applied to a device Ad is
calculated using the forces (including gravity g) that are applied to the sensor Fs itself
using the following equation:

Ad = −g
∑ Fs

mass
(2.1)

In order to remove the contribution of the force of gravity for the raw accelerometer
data, we applied High Pass Filter (HPF) and obtained HPF accelerometer readings. The
motivation was to obtain the exact acceleration applied by the user on the device. Con-
versely, we applied the Low Pass Filter (LPF) to raw accelerometer data to obtain the
apparent transient forces acting on the device, caused by the user activity. These two
sensory readings (HPF and LPF) can be obtained by applying a filter constant (α, we
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Figure 2.3: (a) Coordinate system relative to the device [3]. (b) Coordinate system used in orientation
sensor.

(a) (b)

used 0.5). This filter constant is calculated from the estimation of the latency (the filter
adds to obtain the sensor events) and the actual sensor event delivery rate1. Thus, we
have used 3 variants of the accelerometer, i.e., Raw, HPF and LPF, in our analysis.

2.6.2 Gravity Sensor

This sensor measures the applied force of gravity (m/s2) on the smartphone in three
dimensions. In simple words, it provides magnitude and direction of the force of gravity
applied on the phone. The coordinate system and the unit of measurement of gravity
sensor are the same as of the accelerometer sensor.

2.6.3 Gyroscope Sensor

This sensor measures the smartphone rate of rotation (rad/s) in three dimensions.
The sensor’s coordinate system is the same as the one used for the acceleration sensor.

The counter-clock-wise rotation is positive, i.e., an observer if looking from some positive
location on the three axes at a device positioned on the origin world, is considered positive.

1http://developer.android.com/guide/topics/sensors/sensors_motion.html
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2.6.4 Magnetometer Sensor

The magnetometer sensor measures the strength and/or direction of the magnetic field
(µT ) in three dimensions. It differs from the compass as it does not provide point north.
The magnetometer measures the Earth’s magnetic field if the device is placed in an
environment absolutely free of magnetic interference.

2.6.5 Orientation Sensor

This sensor computes the values of the different angles representing the orientation of
the smartphone in three axis. It records the azimuth, pitch and roll in three dimensions.
Specifically it shows the mode (portrait or landscape) of the phone. Note that the ori-
entation uses a different coordinate system than the accelerometer and the gyroscope, as
depicted in the Figure 2.3b.

• X is defined as the vector product Y ·Z (it’s tangential to the ground at the device’s
current location and roughly points West).

• Y is tangential to the ground at the device’s current location and points towards the
magnetic North Pole.

• Z points towards the center of the Earth and is perpendicular to the ground.

There is a strong relationship between the wrist motion and the readings of orientation
sensor when a user holds and operates her phone. Human wrist provides 3 dimensions of
freedom. In medical terms, these 3-dimensions are referred as wrist flexion and extension,
the supination and the pronation, and the wrist radial and ulnar deviation [38, 39].

Wrist extension is the upward movement of the wrist causing palm facing outward and
flexion is the opposite of it, i.e., it is the downward and inward movement of the wrist
causing palm facing inward. This movement causes variation in pitch direction (y-axis)
on orientation sensor. Supination is the way the arm rotates when the palm faces forward.
Pronation is the way of rotating forearm when the palm faces backward. This movement
causes a variation in the roll direction (z-axis) of the orientation sensor. Lastly, radial and
ulnar deviation are the side-to-side movement of the hand at the wrist, toward or away
from the thumb. The movement in this dimension corresponds to the azimuth direction
(x-axis) of the orientation sensor.

2.6.6 Touchscreen

The touchscreen provides the user interface for the operation of the device. Devices can
be categorized as single and multi-touch devices. Finger and/or a pen acts as a tool to
interact with the touch screen. In Android, the library MotionEvent provides a class for
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tracking the motion of different pointers such as fingers, stylus, mouse, trackball, etc.
This event, triggered as a result of a touch, is reported by an object of this class. This
object may contain a specific action code like the location of the touch on XY coordinates
of the touch screen, information about pressure, size and orientation of the touched area.
Action code represents the state of the touch action, e.g., Action_Down stands for the start
of a touch action while Action_Up represents the end of a touch action. The Android
VelocityTracker class is used to track the motion of the pointer on the touch screen. The
class methods, getXVelocity() and getYVelocity(), are used to acquire the velocities
of the pointer on the touch screen in X and Y axis respectively.

2.7 Classification

Generally, the problem of user authentication is solved in two ways: with binary classifi-
cation (training with two classes) and anomaly detection (training with only one target
class). Classifiers are very powerful in discriminating the true user from a given training
set, whereas anomaly detectors actually check for deviation from the legitimate user’s
behavior and authenticate/reject on the basis of this deviation.

Binary class classification might be suitable/acceptable for off-the-device analysis (for
an initial assessment and understanding), however, 1-class verification is considered as
more practical and realistic approach for the implementation of such systems for smart-
phones [31, 40, 5]. The primary reason of dealing with authentication (on smartphones)
as 1-class verification is, since the binary classifier requires biometric data from both the
owner and non-owner, hence sharing such biometric information among the smartphone
users may lead to privacy concerns.

2.8 Success Metrics

In this section, we explain our success metric. The results of our evaluations are presented
using multiple terms explained below:

• True Acceptance Rate (TAR): is the fraction of positive samples correctly clas-
sified as positives.

• False Acceptance Rate(FAR): is the fraction of the negative samples incorrectly
classified as positives.

• False Rejection Rate (FRR): is the fraction of the positive samples incorrectly
classified as negatives.

• True Rejection Rate (TRR): is the fraction of the negative samples correctly
classified as negatives.
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• Equal Error Rate (EER): is the value where FAR and FRR become equal.

• Weighted Error Rate (WER): is the combined error rate of both FAR and FRR
with a weight α assigned to each.

• Half Total Error Rate (HTER): As proposed by Poh et al. in [41], the final
evaluation looks at the performance of the system after deciding on the weight α
and the optimal threshold ∆∗

α. This is measured by the so called Half Total Error
Rate (HTER), which is calculated as follows:

FAR(∆) =
FA(∆)

nI
(2.2)

FRR(∆) =
FR(∆)

nG
(2.3)

Given a specific threshold ∆, the FAR is defined as the number of false acceptances
(FA) divided by the number of imposters nI and the FRR is defined as the number
of false rejections (FR) divided by the number of genuine users nG.

To evaluate the interaction of these error rates the Weighted Error Rate (WER) is
used. The WER shows the combined error rate of both FAR and FRR with a weight
α assigned to each. If the false accepts are considered worse than false rejects (focus
on security), a weight > 0.5 should be used. If false rejects are worse than false
accepts (focus on usability), than a weight < 0.5 is more appropriate. A special
error rate is the EER where both errors have the same weight (i.e. α = 0.5). The
WER is defined [41] as follows:

WER(α,∆) = αFAR(∆) + (1− α)FRR(∆) (2.4)

Given a specific weight α, the goal is to find the optimal threshold ∆∗
α for which the

WER is as low as possible. This function can be defined as:

∆∗
α = argmin

∆
|αFAR(∆) + (1− α)FRR(∆)| (2.5)

HTER(∆∗
α) =

FAR(∆∗
α) + FRR(∆∗

α)

2
(2.6)

The lower the HTER, the better the system performs given the chosen weight α.
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• Accuracy: It is the ratio of correct assessments to all the assessments.

Accuracy =
TPR + TRR

TPR + FPR + FNR + TNR
(2.7)

• Failure to Acquire Rate (FTAR): The proportion of failed recognition attempts
(due to system limitations). A reason for this failure could be the inability of the
sensor to capture, insufficient sample size, number of features, etc.

• Receiver Operating Characteristic (ROC) Curves: ROC is plotted against
the TAR and FAR. ROC curve starts from the (0,0) coordinates and pass through
the (1,0) coordinates and finishes at the (1,1) coordinates. The curve closer to the
(1,0) coordinates reflects a better performance.

• Detection Error Tradeoff (DET) Curves: DET is used to show the correlation
between the two common error types, i.e., FAR on the x-axis and FRR on the y-
axis. This curve starts from (0,1) coordinates, passes through (0,0) coordinates and
finishes at (1,0) coordinates. The curve closer to (0,0) coordinates indicate a better
performance.

2.9 Chapter Summary

In this chapter, we have presented the necessary background to understand the prob-
lem and the proposed solutions. We start with the general introduction of biometrics,
the existing different types of them, and the reasons for choosing behavioral biomet-
rics to solve the problem. We explain the classical biometric recognition system. We
elaborate on the important factors behind the choice of a biometric modality. We have
discussed in details how we register user movements and finger movements (touch-based
features) using 3-dimensional built-in sensors and the smartphone touchscreen. Our ap-
proach leverages the most commonly available built-in smartphone unprivileged sensors
(sensors are started/stopped without requiring any user permission(s)). We relied on
SENSOR_DELAY_GAME in most of the proposals, because it proved itself as the most reliable
and useful sample rate. We also describe the classification model and success metrics used
to evaluate our proposed solutions.
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Chapter 3

Touchstroke:Touch-typing Based
Smartphone User Authentication

In this chapter, we propose a new bi-modal biometric authentication solution, Touch-
stroke, which leverages on user’s hand movements while holding the device and the tim-
ings of touch-typing (the act of typing input on the touchscreen of a smartphone) when
the user enters text-independent 4-digit PIN/password. Touchstroke exploits the most
commonly available hardware, i.e., sensors, without the need of any additional hardware,
making itself usable in any off-the-shelf commercially available smartphone.

Initial experiments with state-of-the-art classifiers prove Touchstroke handy in each
user situation. Preliminary results are encouraging, showing higher accuracy, thus, making
Touchstroke a plausible alternative to traditional authentication mechanisms.

The part of this chapter is published in [27]: Attaullah Buriro, Bruno Crispo, Filippo
Del Frari, and Konrad Wrona. Touchstroke: smartphone user authentication based on
touch-typing biometrics, in proceedings of the International Conference on Image Analysis
and Processing pp. 27–34, Springer, 2015.

3.1 Introduction

This chapter presents a new behavior-based authentication scheme called Touchstroke,
which leverages two human behaviors: how the phone is held and how a 4-digit text-
independent PIN/password is entered. Our experiments confirmed that every user has a
unique phone movement behavior and a different way of touch-typing a PIN/password
on the smartphone. Touchstroke computes the phone holding behavior with built-in
3−dimensional smartphone sensors: orientation, gravity, magnetometer, gyroscope and 3

variants of the accelerometer. Sensors are started at the time of the first touch-type and
stopped after the fourth and final touch-type. Users are allowed to input any combination
of 4-digit numbers and/or alphabets, hence they are expected to be quite comfortable
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while using this authentication mechanism.
We extracted 4 statistical features from each data stream from all the physical sensors

(total 16 from each sensor) and 14 features related with n-graph, namely dwell time and
flight time (see Figure 3.1), from each typing pattern. In a study [4], authors show that
these features are the most widely used features in keystroke dynamics. In order to check
the usability of our proposed method, we collected 30 observations from 12 users in 6

significantly different activities.
The purpose of this chapter was to check the efficacy of each individual built-in 3-

dimensional sensor towards the user authentication and the analysis was performed off
the smartphone so we dealt this as a binary-class classification problem.

We tested our dataset using two state-of-the art binary classifiers, BayesNET and Ran-
dom Forest (RF). The reason behind this selection is that they have shorter computation
time and resistance against over-fitting.

3.1.1 Contributions

The main contribution concerning this section are listed below:

• The proposal of Touchstroke- a novel behavioral biometric user authentication mech-
anism, based on how the user holds her smartphone and enters her 4-digit secret
free text on the smartphone touchscreen.

• Experimental validation, proving every built-in sensor worthy to be used for smart-
phone user authentication. More specifically, the data generated from each source,
while the user enters her secret free-text, illustrates the importance of each sensor.

• The collection and sharing of data from multiple sensors in multiple user situations
from 12 users. Our collected dataset contains 30 patterns in each of the 6 activities
(30 x 6 x 12 = 2, 160 patterns from each sensor).

3.2 Related Work

Keystroke-based user authentication is the mostly evaluated and tested behavioral biomet-
ric method for user authentication on PCs and smartphones using hardware and software
keyboards. Since, we have implemented text-independent touch-typing dynamics using
Android soft-keyboard, we consider soft-keyboard-based work as our related work.

3.2.1 Software Keyboard-based User Authentication

Keystroke-based recognition systems employ measurement of the user’s typing behavior
on digital input devices such as smartphones and tablets. A digital signature is prepared
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on the basis of a user’s interactions with these devices. Specifically, a user is asked to
provide an alpha-numeric PIN/password to the system for creating a template for training
and later for testing. The studies [4, 42] suggest that this fingerprinting is fairly unique
from person to person thus can be used as a base for user identification.

A study conducted by Huang et al. [43] explored soft keyboard-based user authentica-
tion on mobile phones. The users were asked to enter their names and passwords 6 times
for training. Based on the keystroke latency and key-hold-time features, they achieved an
Equal Error Rate (EER) of 7.5%.

Saevancee and Bhattarakosol [44] reported an EER of 1% using the K-Nearest Neigh-
bour (KNN) algorithm and reported similar results using neural networks [45]. However,
they conducted their experiments only using a notebook touchpad. A recent study con-
ducted by Saira et al. [46], on smartphones, revealed that the keystroke pressure might
not be unique and hence ended up with an EER of 8.4% when used in conjunction with
classical keystroke features (timings).

3.2.2 Sensor-assisted Keystroke-based User Authentication

Recent literature reports the feasibility of using sensor data in combination with keystrokes
for user authentication.

Several projects have been conducted to study the use of accelerometers and gyro-
scopes. For example, Giuffrida et al. [42] introduced UNAGI, a fixed-text and sensor-
enhanced authentication mechanism for Android phones. They evaluated their method
with 20 subjects and achieved an EER of 4.97% for passwords, and 0.08% for only sensor
data. Miluzzo et al. [47] used sensor data to infer the icon activated by the user of iOS
devices and reported 90% accuracy.

Similarly, Aviv et al. [48] presented a method that relies on accelerometer data and
keystroke timings to infer 4-digit PINs for unlocking smartphones. Specifically, they
demonstrated the use of accelerometer data for learning user tapping and gesture-based
inputs as these methods are required to unlock smartphones using PIN/password and
graphical password patterns. Additionally, they collected data in two situations, sitting
and walking.

Touchstroke is different from the previous solutions in terms of features (for sensors),
classification strategies, number of sensors, sensor-data-acquisition and constraints on the
input.
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Figure 3.1: Touchstroke features used in this paper [4].

3.3 Approach

In this section, we illustrate the main approach adopted by our solution.

3.3.1 Intuition Assessment

It has now become a fact that each each user has a different way of holding and moving
the phone when entering his PIN/password [27] [31]. An adversary can spoof and copy
what is being written but it is very difficult to copy the exact timings of touch-types.

Our intuition is correct if and only if the patterns of the same user are very similar (high
intra-class similarity) and patterns of different users are different enough (high inter-class
variations).

We argue (see Figure 3.2) that the patterns of the same user are very similar to
each other and patterns of two users are different enough. We show the patterns of raw
accelerometer and touchstroke sensor data for a single situation: when the user is sitting.

Figure 3.2: Comparison of 5 patterns of Raw accelerometer (a and b) and touchstroke data (c and d),
in sitting position for two users.
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3.3.2 Our Solution

Our approach is based on the profiling of the user’s hand micro-movements while the
user enters her 4-digit secret free-text, i.e., PIN/passwords. We deal this as a bi-modal
system, i.e., first modality is based on the differences in the keystroke timings (we call
touch modality) and second is based on the hold behavior, i.e., the way user holds her
phone in her hand(s).

3.3.3 Considered Sensors and Classifiers

Our solution makes use of five 3-dimensional sensors: the accelerometer (Raw, LPF and
HPF); the gravity; the magnetic field or magnetometer; the gyroscope; and the orienta-
tion.

All the above sensors generate continuous streams in X, Y and Z directions. We have
added a fourth dimension to all of these sensors and name it magnitude. Magnitude has
been tested in the context of smartphone user authentication [27][49][31] and has proved to
be very effective in classification accuracy. The magnitude is mathematically represented
as:

SM =
√

(a2
x + a2

y + a2
z) (3.1)

where SM is the resultant dimension and ax, ay and az are the accelerations along the
X, Y and Z directions.

Classifier selection depends on type and size of the dataset. We selected two classifiers
by considering their short computation time and their resistance against over-fitting.
Normally, BayesNET classifier works well on small datasets and a RF classifier is equally
good for small and large datasets. We have used these classifiers (with default parameters)
in portable GUI-based WEKA Experimenter Workbench.

3.4 Experimental Evaluations

In order to validate our initial intuition we ran a series of experiments, described in the
sections below:

3.4.1 Data Collection

We implemented Touchstroke as an Android application that triggers all physical sensors
from the first touch-type and stops them after the last touch-type. At this moment the
app is designed for only four touch-types with the possibility to be extended. We recruited
12 volunteers for our experiment; most of them are either Master’s or PhD students but
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not security experts. In order to check the effectiveness of our proposed mechanism, we
collected data in six different user positions, i.e. sitting, standing, walking, lying on sofa,
walking upstairs and walking downstairs. We used a Google Nexus 5 running KitKat 4.4.2
for data collection. We collected 30 patterns from each user in each activity. In total, we
collected 180 samples (in all 6 activities) from each user, making a total of 2160 samples
per sensor from 12 users.

Touchstroke collects sensor data in SENSOR_DELAY_GAME mode.

3.4.2 Feature Extraction

We have four data streams from every 3-dimensional sensor. We chose statistical features
because it is computationally cheaper to compute them. We extracted 4 statistical fea-
tures, namely mean, standard deviation, skewness and kurtosis from each data stream.
In this way, data from every sensor is transformed into a 4 by 4 feature matrix. Thus,
we have 16 features from all four dimensions of each sensor. Similarly, we extracted 14

features (see Figure 3.1), based on touch-typing timing, from the text-independent 4-digit
PIN/password entered by the user.

3.4.3 Data Fusion

Data fusion can be done at the sensor level, feature level, match score level, rank level and
decision level. Data fusion at an early stage may be more productive. However, sensor
level fusion is not the best choice because of the presence of noise during data acquisition.
Since feature representation shows much more relevant information corresponding to the
class, the fusion at feature level is expected to provide better results. Thus, we fused data
at feature level, in order to provide maximum relevant information to our recognition
system. We fused the feature vector of each sensor with the touch-type feature vector,
making a feature vector of 30 features. The reason for fusing only two sensors is to prevent
over-fitting. Larger feature vectors may end up with over-fitting of the classifier.

3.4.4 Analysis

We used the WEKA Experimenter Workbench for the classification of these patterns.
Data files were converted to Attribute Relation File Format (ARFF) files and later these
ARFF files and two classifiers were added to the WEKA Experimenter Workbench. We
collected 30 observations for each activity from each user. We performed stratified cross-
validation for training and testing of both classifiers, because of equal patterns represen-
tation from each class assuming that it will arrange the data such that in each fold, each
class comprises around half the instances. Another reason is to test the classifiers with
maximum possible user patterns.
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3.5 Results

We achieved acceptable authentication rates for all the activities from individual sensors
especially variants of accelerometers. As it can be very difficult to type while walking,
going downstairs and going upstairs, we can expect a little increase in error rates in those
two situations. However, Touchstroke performed well even in these positions, yielding
acceptable authentication results (see Tables 3.1 and 3.2). We report our results in terms
of TAR and FAR values only to avoid the redundancy, i.e., as FRR = 1− TAR, FAR =

1− TRR.

Table 3.1: BayesNET classifier results for fused data for all user positions (averaged over all 12 users).

Sitting Standing Sofa Walking Upstairs Downstairs
Sensors TAR FAR TAR FAR TAR FAR TAR FAR TAR FAR TAR FAR

Raw + Touch 0.97 0.03 0.98 0.03 0.98 0.02 0.99 0.02 0.97 0.03 0.98 0.03

LPF + Touch 0.97 0.03 0.98 0.03 0.98 0.04 0.99 0.02 0.97 0.03 0.97 0.03

HPF + Touch 0.94 0.06 0.97 0.04 0.96 0.04 0.97 0.03 0.96 0.05 0.96 0.05

Grav + Touch 0.97 0.04 0.98 0.03 0.98 0.02 0.98 0.03 0.97 0.04 0.97 0.04

Gyro+Touch 0.95 0.05 0.97 0.03 0.96 0.05 0.98 0.02 0.96 0.05 0.97 0.04

Mag + Touch 0.97 0.03 0.97 0.02 0.99 0.02 0.96 0.05 0.95 0.06 0.96 0.04

Orient + Touch 0.96 0.04 0.98 0.03 0.97 0.03 0.98 0.03 0.96 0.04 0.97 0.04

Table 3.2: RF classifier results for fused data for all user positions (averaged over all 12 users).

Sitting Standing Sofa Walking Upstairs Downstairs
Sensors TAR FAR TAR FAR TAR FAR TAR FAR TAR FAR TAR FAR

Raw + Touch 0.97 0.03 0.98 0.02 0.99 0.01 0.98 0.02 0.98 0.02 0.98 0.02

LPF + Touch 0.97 0.03 0.98 0.02 0.96 0.04 0.99 0.01 0.98 0.02 0.98 0.02

HPF + Touch 0.95 0.05 0.96 0.04 0.96 0.04 0.98 0.02 0.96 0.04 0.96 0.04

Grav + Touch 0.97 0.03 0.98 0.02 0.99 0.01 0.98 0.02 0.97 0.03 0.97 0.03

Gyro+Touch 0.96 0.04 0.97 0.03 0.96 0.04 0.98 0.02 0.96 0.04 0.97 0.03

Mag + Touch 0.98 0.02 0.99 0.01 0.99 0.01 0.96 0.04 0.95 0.05 0.96 0.04

Orient + Touch 0.97 0.03 0.97 0.03 0.97 0.03 0.97 0.03 0.96 0.04 0.96 0.04

The purpose of fusion of each sensor with touchstroke data is twofold. Firstly, to im-
prove authentication accuracy; ROC curves for both the classifiers show an improvement
in accuracy for fused data (see Figures 3.3b and 3.3d). Secondly, to make the system more
secure; it is comparatively difficult to mimic two behaviors at the same time. Both clas-
sifiers worked well in all the activities and their corresponding ROC’s are very accurate,
we present ROC curves for sitting activity only.
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Another important observation is related to the way users hold the phone. Some users
use one hand and others use both hands for holding and entering the text-independent
text. Touchstroke works for both types of user. Our experiments are preliminary since
we run the tests with a limited number of users who are not representative of the general
population, thus we cannot exclude some bias due to the particular composition of our
test set.

3.6 Chapter Summary

Figure 3.3: ROC curve for BayesNET (a) for Individual and
(b) for fused sensors and RF (c) Individual and (d) fused sen-
sors.

(a) (b)

(c) (d)

We propose a bi-modal biometric
system, Touchstroke, for smart-
phone user authentication based
on phone movement patterns and
free-text 4-digit touch-type pat-
terns.

The initial experiments indi-
cate that our solution is highly
accurate in each situation. Each
sensor can potentially be used
with touch-type features for user
authentication. Our solution
can be implemented in any off-
the-shelf smartphone without the
need for additional hardware,
hence can be used as a stand-
alone method or can be comple-
mented by traditional passwords
for additional security.

As the future work, we will
test whether or not the fusion
of multiple sensors and/or with
touchstrokes has an impact on ac-
curacy. Further, in order to check
the impact of the length of the
touch-type, we will investigate whether or not typing a long-digit password/PIN gives
different results from those obtained for 4-digit entries. We will prototype Touchstroke
with 1 − class verification with selected features and will evaluate it in terms of perfor-
mance, security, and usability, etc.
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Chapter 4

Hold & Sign: A Novel Behavioral
Biometrics for Smartphone User
Authentication

In this chapter, we present a new bi-modal behavioral biometric solution, i.e., Hold &
Sign, for user authentication. Hold & Sign takes into account the user’s hand micro-
movements and the user’s finger movement while the user signs/writes on the touchscreen.
More specifically, it profiles a user based on how she holds the phone and based on the
characteristics of the points being pressed on the touchscreen, and not the produced sig-
nature image. We have implemented and evaluated our scheme on commercially available
smartphones. Preliminary results with 1-class Multilayer Perceptron (MLP) prove Hold
& Sign as an accurate, robust, power-friendly and usable, authentication solution.

Part of this chapter is published in [5]: Attaullah Buriro, Bruno Crispo, Filippo Del
Frari, and Konrad Wrona. Hold & Sign: A Novel Behavioral Biometrics for Smartphone
User Authentication, in proceedings of the Mobile Security Technologies (MoST) work-
shop held in conjunction with IEEE Security and Privacy (IEEE S&P 2016), 2016.

4.1 Introduction

A handwritten signature establishes a user’s identity based on how she writes her name.
This behavioral modality is very popular because it is socially and legally accepted as
a means of personal identification in everyday life, however its implementations require
dedicated pads [50]. Modern touchscreens make it feasible to implement handwritten
signatures in smartphones and tablets.

This chapter presents a smartphone user authentication system based on how a user
holds her phone while signing on its touchscreen. The system profiles pressed screen
points (so-called touch-points) and the micro-movements of the phone during the signing
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process in order to verify the user’s identity.
Although typing a PIN is easier than writing something on the touchscreen, a PIN

can be forgotten, whereas most users remember their own name. Moreover, launching
shoulder surfing and smudge attacks to steal PINs and passwords is relatively easy. In
our method, even if an attacker knows what is being written, access is still denied because
he cannot mimic the phone movements of the legitimate user.

We registered the phone micro-movements using multiple physical sensors available on
most smartphones. These sensors are triggered when a user starts writing (first touch-
point), and stops when the user finishes writing (last touch-point). We do not take into
account the signature image because it can be copied and mimicked [51]. We tested our
mechanism over a dataset collected from 30 users, by applying the anomaly detection
(1 − class) approach. Results show that using MLP as verifier, we achieve ≈ 95% TAR
and 3.1% FAR.

4.1.1 Contributions

The main contributions of this section are:

• The proposal and implementation of Hold & Sign, a new behavioral biometric user
authentication mechanism, based on how the user holds her smartphone in her hand
and signs her name on the smartphone touchscreen. It combines two behavioral
modalities. Furthermore, it implements dynamic handwritten signature verification
using multiple sensors that do not require the use of a dedicated device to capture
the signature.

• Experimental validation considering how different situations, in which a user can
use the device, can affect the robustness and accuracy of the biometrics.

• Performance and power consumption analysis during acquisition, training and test-
ing phases. A preliminary usability analysis was carried out to assess how end-users
reacted to our solution.

4.2 Related Work

Researchers have proposed several biometric-based solutions for smartphone user authen-
tication. In this section, we survey the most relevant approaches.

4.2.1 Sensor-Based Authentication

Physical 3-dimensional sensors – such as accelerometers, gyroscopes, and orientation sen-
sors – are built into most smartphones. These sensors have been used to identify users
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based on their walking patterns [52], arm movements [28], arm movement and voiceprints
[29], gesture models [53], and free-text typing patterns [27].

Li et al. [54] investigated the role of three sensors, namely the accelerometer, ori-
entation sensor, and compass, in addition to the touch gestures in continuous user au-
thentication. They proposed a transparent mechanism, which profiles finger movements
and interprets the sensed data as different gestures. It then trains the Support Vector
Machine (SVM) classifier with those gestures and performs authentication tasks. The
authors achieved 95.78% gesture recognition accuracy on a database of 75 users.

Zhu et al. [53] proposed a mobile framework, Sensec, which makes use of sensory data
from the accelerometer, orientation sensor, gyroscope, and magnetometer and constructs
a user gesture model of the phone usage. Based on this gesture model, Sensec continu-
ously computes the sureness score, and authorizes the real users to enable/disable certain
features to protect their privacy. Users were asked to follow a script, i.e. a sequence of
actions; the sensory data was collected during the entire user interaction. Sensec iden-
tified a valid user with 75% accuracy and it detected an adversary with an accuracy of
71.3% (with 13.1% FAR) based on 20 recruited users.

Our earlier approach Touchstroke [27] authenticate users using a sensor-enhanced
touch stroke mechanism based on two human behaviors: how a user holds her phone
and how she types her 4-digit free-text PIN. Using a BayesNET classifier and a RF clas-
sifier, we achieved 1% EER.

A recent study [31] makes use of Hand Movement, Orientation, and Grasp (HMOG) to
continuously authenticate smartphone users. HMOG transparently collects data from the
accelerometer, gyroscope, and magnetometer when a user grasps, holds and taps on the
smartphone screen. On a dataset of 100 test subjects (53 male and 47 female), HMOG
achieved the lowest EER of 6.92% in walking state with an SVM verifier.

All the solutions given above use some of the 3-dimensional sensors available in most of
the smartphones and confirm the potential of these sensors for user authentication. Our
solution uses 3-dimensional built-in sensors in combination with handwritten signatures
to achieve a high accuracy for authentication.

4.2.2 Touch-Based Authentication

User authentication based on touch-interaction is a comparatively less explored area.
Touch-interactions can be used both for one-shot login and continuous user authentication
[55]. Touch-based features may include time, position, the size of touch, pressure and
touch velocity, etc. De Luca et al. [56] profile touch data generated during different slide
operations for unlocking the smartphone screen. Using the DTW algorithm, they achieve
77% authentication accuracy.

Angulo et al. [57] suggest an improvement to the phone lock patterns. Their system
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authenticates users based on the lock patterns combined with the touch data associated
with those lock patterns. They try multiple classifiers and they achieve an EER of 10.39%

using a RF classifier.
Sae-Bae et al. [58] use specific five-finger touch gestures. They achieve an accuracy of

90% on the Apple iPad. However, the method is not feasible for the small touchscreens
of typical smartphones. Shahzad et al. [59] consider customized slide-based gestures
to authenticate a smartphone’s users. Their study yielded an EER of 0.5% with the
combination of just three slide movements. Sun et al. [60] require users to draw an
arbitrary pattern with their fingers in a specific region of the screen for unlocking their
smartphones. Users were authenticated on the basis of geometric features extracted from
their drawn curves along with their behavioral and physiological modalities. The solution
presented in [61] by Sae-Bae and Memon is conceptually similar to our work. This uni-
modal online signature verification scheme extracts the histogram features from the user
signature and performs user authentication. The lowest EER achieved was 5.34% across
different sessions.

Our solution relies on the screen touch-points being pressed and the velocity of finger
movement during the signing – neither signature image nor its geometry is used. It does
not require the user to draw specific patterns for authentication, but simply use any
pattern, which is convenient or well-known to her - e.g. to sign her name. This increases
usability of our solution as the user is not required to perform an initial learning of an
unknown pattern in order to memorize it and for his signing features to become stable
and reliable.

4.2.3 Signature-Based Authentication

Some work has been done regarding signature-based biometric authentication on smart-
phones [62, 63, 64]. Koreman and Morris [65] propose a continuous authentication method
based on multiple modalities, namely the face, voice, and signature on the touchscreen.
Their study yielded an EER of 2.3%, 17%, 4.3% and 0.6% for voice, face, signature and
fused modalities respectively.

Vahab et al. [66] implement online signature verification using an MLP classifier on a
subset of Principal Component Analysis (PCA) features. The validation was performed
using 4000 signature samples from the SIGMA database [67] and yielded an FAR of 7.4%

and an FRR of 6.4%.
In recent work of Xu et al. [68], users were asked to write different alphabetic charac-

ters on the screen; 42 handwritten features were extracted using a handwriting forensics
approach (which focuses on the geometry of writing [69]). Those features were then clas-
sified using SVM. The proposed solution achieved an EER of 5.62%. Additionally, the
touch slide (touch-points stimulated when writing an alphabet) yielded an EER of 0.75%.
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Images of handwriting signatures have been used by SignEasy as an authentication
method in iOS8[70], allowing users to transparently add their electronic signatures on
important documents. Similarly, a signature recognition system [71] performs user identi-
fication based on user signatures captured via a smartphone touchscreen or via a dedicated
signature capturing device. It verifies signatures by computing the similarity score be-
tween the query signature and the stored signature template. Additionally, this system
provides client-server solutions based on signature images. None of them uses phone
movements and/or touch features for user authentication.

Our solution is different because it is bi-modal thus intuitively more secure than the
uni-modal ones; it takes into account phone movements and finger movements during the
signing process. Spoofing only one of the two modalities would not suffice to grant access
to the phone.

4.3 Approach

In this section, we illustrate the main approach adopted by our solution.

4.3.1 Intuition Assessment

Our initial intuition is that each person holds and moves her phone in a unique way,
thus generating a unique movement pattern. Due to the uniqueness of such behavior,
it becomes very challenging for others to generate exactly the same movement pattern.
Even in case of a successful mimicry, the movement pattern will still be different due to
the differences in the structure of human body (e.g., the height and exact orientation of
the phone, etc.). We showed earlier (Chapter 3 Figure 3.2) that phone movements are
sufficiently discriminatory across users.

Similarly every user has a unique way of writing. An adversary can spoof and copy
what is being written or how is being written, but it is very difficult to copy the exact
touch locations, velocity of slide, force of touch and other touch related features.

4.3.2 Our Solution

Our solution (see Figure 4.2) exploits the phone movements in hand and finger movements
on the touchscreen as shown in Figure 4.1. In particular, we consider all the touch-points
pushed for the entire signature and the velocity of the finger movement. All the physical
sensors are triggered and kept running during the whole signing process (from first to
last touch-point) on the touchscreen. Obtained sensor readings are then preprocessed
to extract useful features. As we propose a bi-modal system, we need to combine the
extracted features from both built-in sensors and the touchscreen to profile user behavior.
Our model involves feature selection, which entails selecting the subset of productive
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Figure 4.1: Different phone positions during signing process.

features to be used for user authentication. A user profile template is formed based
on the selected feature subset and is then stored in the main database. These behavioral
vectors are later matched with the vector of the test sample in order to authenticate/reject
the claimant.

4.3.3 Considered Sensors and Classifiers

Our solution relies on three built-in 3-dimensional sensors: the accelerometer, the gravity
sensor and the magnetometer, and the touchscreen.

All the above sensors generate continuous streams in X, Y and Z directions.We have
added a fourth dimension to all of these sensors and name it magnitude as in the Chapter
3 (Section 3.3.3).

We chose four different 1-class verifiers, i.e. BayesNET, K-Nearest Neighbor (KNN),
Multilayer Perceptron (MLP) and RF, because they were found to be very effective in pre-
vious studies. BayesNET and RF verifiers were used with their default settings. However,
the parameters of both MLP and KNN were optimized, because with default parameters
they performed quite poorly. We used K = 3 in KNN and similarly used 3 hidden lay-
ers in MLP. We used all of our verifiers wrapped into WEKA’s metaclass classifier; the
OneClassClassifier.1

1http://weka.sourceforge.net/doc.packages/oneClassClassifier/weka/classifiers/meta/OneClassClassifier.html
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Figure 4.2: Our proposed authentication system.

4.4 Experimental Analysis

4.4.1 Data collection

We recruited 30 volunteers (22 male and 8 female); the majority of them are either Mas-
ter’s or PhD. students but not security experts. In order to have diversity, we recruited
users from several nationalities. The purpose of the experiment and the description of our
proposed solution was clearly explained to each user individually. The process of data col-
lection and how data are stored were carefully explained. Each volunteer provided explicit
consent to participate in the experiment. We collected data in three different activities,
sitting, standing and walking with Google Nexus 5 using SENSOR_DELAY_GAME.

4.4.2 Features

We gathered 4 data streams from every 3-dimensional sensor except touchscreen, and we
extracted 4 statistical features, namely mean, standard deviation, skewness, and kurtosis,
from every data stream. Data from every sensor was transformed into a 4 by 4 features
matrix. In total, we obtained 16 features from all four dimensions of each sensor. Similarly,
we extracted 13 features from touchscreen data. The extracted features from touchscreen
data are shown in Table 4.1.

4.4.3 Feature Fusion

The extracted feature set from the data from multiple sources can be combined to form a
new feature set. We used fusion at the feature level (like in Chapter 3 Section 3.4.3), in
order to provide the maximum amount of relevant information to our recognition system.
The fusion of 16 features from each sensor makes a new feature vector which here is
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Table 4.1: List of selected features from touchscreen data.

No. Touch Features
1 - 7 StartX EndX StartY EndY AvgXVelocity AvgYVelocity MaxXVelocity
2 -13 MaxYVelocity STDX STDY DiffX DiffY EUDistance -

referred to as the pattern of the user’s hold behavior. The length of this feature vector
is 80 features (16 for each of the five used sensors). Similarly, the feature vector of sign
behavior is small (13 features, extracted from the captured touch-points through the
touchscreen) and we call it a sign pattern. The length of the fused feature vector for both
modalities becomes 93 features.

4.4.4 Feature Subset Selection

Figure 4.3: RFE Feature Selection from sitting, standing and
walking states.
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# of optimal features for fused data (Sitting state) : 10
# of optimal features for fused data (Standing state): 11
# of optimal features for fused data (Walking state) : 11

Feature subset selection is the
process of choosing the best pos-
sible subset, i.e. the set that gives
the maximum accuracy, from the
original feature set. Note that
even if we achieve the same
accuracy with reduced features,
smaller feature vectors decrease
computation time and allow the
classifier to decide faster.

We evaluated our feature set
(93 features for fused behaviors)
with Recursive Feature Elimina-
tion (RFE) feature subset selec-
tion methods. We relied on scikit-
learn2, a Python-based tool for
data mining and analysis, for
RFE feature subset selection.

The RFE classifier trains itself on the initial set of features and assigns weights to each
of them. The features with smallest weights are later pruned from the current feature set.
The procedure is repeated until the intended number of features is eventually reached3.
We applied RFE with 10-fold stratified cross-validation using an SVM classifier on the
data of all activities for two classes. The plot (see Figure 4.3) shows the optimal number
(11) of features selected from fused data in standing and walking state and 10 for sitting

2http://scikit-learn.org/stable/
3http://scikit-learn.org/stable/modules/feature_selection.html
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Table 4.2: List of selected features from fused (bi-modal) data.

Sitting Standing Walking Combined
MgX_Mean HPFMag_Kurt EndY HPFY_Mean
RAWY_STD RAWY_STD RAWY_STD HPFZ_Mean

DiffX DiffX DiffX GrZ_Skew
StartY StartX RAWZ_Mean StartX

MgY_Mean EU_Distance STDY EndX
StartX RAWMag_STD HPFZ_Mean StartY
EndY StartY StartY EndY

MgMag_Mean DiffY HPFX_Skew MaxYVelocity
GrY_Mean HPFX_Mean HPFX_Mean AvgXVelocity

STDX MgMag_Mean DiffY STDY
- EndX HPFY_Mean DiffX

state.

4.4.5 Analysis

We analyzed data in two settings, i.e. (i) a verifying legitimate user scenario, and (ii) an
attack scenario.

In the verifying legitimate user scenario, we train the system with the data from the
owner class and then test the system with the patterns belonging to that class. The
outcome can be either accept or reject. We used a 10-fold stratified cross-validation
method for testing. In cross-validation, the dataset is randomized and then split into k
(here k = 10) folds of equal size. In each iteration, one fold is used for testing, and the
other k − 1 folds are used for training the classifier. The test results are averaged over
all folds, which give the cross-validation estimate of the accuracy. This method is useful
in dealing with small datasets. Using cross-validation we tested each available sample in
our dataset. We report the results of these settings in terms of TAR and FRR.

In the attack scenario, we train the system with all the data samples from the owner
class and then test the system with the patterns belonging to all the remaining classes
(29 users). The outcome can be either false accept or true reject. We report the results
of these settings in terms of FAR and TRR.

4.5 Results
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Table 4.3: Results of different classifiers (averaged over all 30
users) in different activities.

Sitting Standing Walking
Classifiers TAR FAR TAR FAR TAR FAR

BN 0.758 0.001 0.740 0.003 0.710 0.000

MLP 0.797 0.001 0.790 0.004 0.790 0.000

IBk 0.761 0.001 0.750 0.002 0.720 0.000

RF 0.767 0.001 0.750 0.002 0.710 0.000

We report our results in three
ways: intra-activity, inter-activity
and activity fusion. By intra-
activity, we mean training and
testing each single activity (i.e.
training walking to test walking
only). Inter-activity means train-
ing with one single activity and
using that training for testing all
activities. We tested the training
for each activity. In activity fu-
sion, we used the combined data of all 3 activities for both training and testing (i.e.
training with fused data from walking, sitting and standing) to test all activities. The
reason for this is that we want to check whether training in a single activity is sufficient
to recognize all the testing samples across activities. Otherwise, we would need to train
the recognition system with patterns of multiple activities. As the MLP verifier has con-
sistently out-performed all other verifiers in all three activities (see Table 4.3), we will
take into account only this verifier in further analysis.

The results of all settings are presented below:

4.5.1 Intra-Activity

The results of all three activities, prior to feature selection (averaged over 30 users), are
given in Table 4.3. We achieved≥ 79% TAR with full features in all the activities using the
MLP verifier. We then applied a feature subset selection method (RFE) on our dataset.
Figure 4.4 shows that we improved our authentication results (from ≥ 79% to 85.56%

in sitting, 86.75% in standing and 86% in walking) with our chosen RFE feature subsets
(see Table 4.2). We obtained 85.5% to 86.7% TAR with the MLP verifier in the three
user activities. In related work, [31] reported 93.08% TAR but at the expense of 6.92%

FAR using the 1-class SVM verifier and [29] reported 10.28% FAR and 3.93% FRR with
1-class RF verifier.

4.5.2 Inter-Activity

In order to validate the applicability of our mechanism in multiple user positions, we
tested its performance across multiple activities. For example, if we train the system
with the training patterns of just the sitting activity and test it with the patterns of both
standing and walking activities and vice versa, we can observe whether or not training
with a single activity is sufficient.
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Figure 4.4: Comparison of TAR for Full and RFE based feature subsets in Intra-activity.
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Figure 4.5 shows unsatisfactory results (65.82% at best), and thus we conclude that
we need to train our system in multiple situations to increase its accuracy.

4.5.3 Activity Fusion

Training the system in just one activity and using it in multiple activities does not lead to
good results. As a solution, we combined the patterns of multiple activities and applied
the RFE feature selection method on the combined data. As done earlier, we picked 11
highly ranked features (see the last column of Table 4.2) and proceeded to further analysis.
We applied the same methodology (as per section 4.4.5) to test our combined dataset from
all three activities. The results are summarized in Table 4.4. The system achieved ≈ 95%

TAR at the expense of just 3.1% FAR. We observed that activity fusion could be useful in
terms of usability (as it requires one-time training in multiple activities) and accuracy (we
obtained ≈ 95% TAR) so we checked its efficacy with the final implementation of Hold
& Sign. We trained the system with a different set of training patterns from different
activities and used the same set of features (see the last column of Table 4.2) and compared
the results.

Table 4.4: Results of MLP (averaged over all 30 users) for combined data of all three activities.

Combined data from all activities
Classifiers TAR FRR FAR TRR

MLP 94.8 5.2 3.1 96.9
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Figure 4.5: Comparison of TAR for Full and RFE based feature subsets in Inter-activity.
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4.6 Hold & Sign Implementation

We developed the final prototype of Hold & Sign taking into consideration all our find-
ings. Hold & Sign uses the MLP classifier based on the feature set extracted using the
RFE method. The analysis was performed using this application on a Google Nexus 5

smartphone running Android 4.4.4. Screenshots for training and testing are shown in
Figure 4.6. Hold & Sign requires a minimal configuration, i.e. a user may choose either
both modalities or any one of them (as shown in Figure 4.6b) and needs to train the
classifier accordingly. The user can also decide the number of training instances, i.e. how
many times to write his own name on the touchscreen to train the classifier (Figure 4.6c).
In all choices, the user is helped by the display of suggested recommended values. The
user is later required to write his own name for authentication (see Figure 4.6d).

4.6.1 Performance

We tested the performance of Hold & Sign. We measured three different timings: sample
acquisition time, training time and testing time. We computed these times for 3 different
settings: with 15, 30 and 45 patterns. We tested each setting on the Google Nexus 5 with
35 tries for each time. Results are averaged over all 35 runs.

4.6.1.1 Sample Acquisition Time

This is the time used by the user to provide a sample for authentication. It is important
to know it because users may feel annoyed by the required acquisition time that possibly
results in complete removal of the Hold & Sign application. We compared the sample
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Figure 4.6: Screenshots of Hold & Sign in training (a to d) and testing phase (d & e).

(a) (b) (c) (d) (e)

acquisition time for multiple mechanisms in Table 4.5. What makes our acquisition fast
is the free-text feature, e.g. the user can write any word (e.g., her own name).

4.6.1.2 Training/Testing Time

Training time is the time required to train the classifier. It is usually computed just once,
at the installation, when the training samples are provided to the system. In contrast,
testing time is the time required by the system to accept/reject the authentication at-
tempt. Our mechanism took 3.497s, 6.193s and 9.310s for classifier training with 15, 30

and 45 patterns, respectively. Similarly, the testing times with 15, 30 and 45 patterns
were 0.200s, 0.213s, and 0.253s, respectively. Comparison with the performance of other
recent proposals is shown in Table 4.6.

4.6.2 Power Consumption

Generally, it is quite difficult to determine with high accuracy the power consumption of a
single mobile application. Using dedicated hardware allows high accuracy [31]. However,
there are software-based approaches that though less accurate, are being extensively used
[72]. Since we wanted an initial indication, we used the software-based approach.

In order to check the overhead resulting from use of the application (in different steps),
we terminated all the running applications and all Google services, switched off WiFi,
Bluetooth, and cellular radios. The screen was kept running for the entire duration of
the experiment with brightness at the lowest level and automatic brightness adjustment
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Table 4.5: Sample acquisition time for different methods adapted from [1].

Method Sample Acquisition Time (s)
Our method 3.5

PIN 3.7
Password 7.46
Voice 5.15
Face 5.55

Gesture 8.10
Face + Voice 7.63

Gesture + Voice 9.91

disabled. A similar approach is applied in[72]. We used Trepn4 and performed the exper-
iments as follows:

In the first step, we computed reference power consumption by running Hold & Sign
with all the steps (sensor data collection, feature extraction, etc.) disabled. In the second
stage, we enabled the sensor data collection part only to compute the overhead resulting
from sensory data collection. In the third stage, we enabled the feature extraction part
to compute the power consumption resulting from this process. In the final step, we
analyzed the app with all its functionalities. We profiled the power consumption for all
these settings of Hold & Sign for the entire duration of the experiment (shortest duration
1 minute and 50s and longest 2 minutes and 40s) with 35 attempts each. The reference
power consumption is 460mW . We observed a 7.17% overhead (493mW ) for sensor data
collection, 27.8% in both data collection and feature extraction stages (588mW ) and
≈ 1000mW in all stages of the final setting. The feature computation incurred just a
19.2% overhead corresponding to data collection.

We observed that the average power consumption of our mechanism is very low, which
makes it a power-friendly app. This claim can be supported by looking at some common
smartphone tasks and their average power consumption [73][74]:

• A one-minute phone call: 1054mW

• Sending a text message: 302mW

• Sending or receiving an email over WiFi: 432mW

• Sending or receiving an email over a mobile network: 610mW

4https://play.google.com/store/apps/details?id=com.quicinc.trepn&hl=en.
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Table 4.6: Comparison of our results with state of the art.

Ref. Devices Classifier No. of Users Training Time Testing Time
Our method Nexus 5 MLP 30 3.5 - 9.3s 0.215 - 0.250 s
Lee et al. [75] Nexus 5 SVM 8 6.07s 20s
Li et al. [54] Motorolla Droid Sliding Patterns 75 n.a 0.648s

Nickel et al.[76] Motorolla Milestoon KNN 36 90s 30s

4.7 Usability Analysis

We report the usability of our mechanism in two ways: based on how many patterns are
enough for training the classifier to achieve significant authentication accuracy, and by
applying the standard System Usability Scale (SUS) for collecting users’ views about our
proposed mechanism.

4.7.1 Tradeoffs between Training and Accuracy

As shown in Table 4.5, the average duration of a signature drawn by a user on the
touchscreen was 3.5s with the lowest value being 2s. In our test, we observed that the
willingness of users to participate in our testing is strongly related to the amount of time
spent for training. We expect a similar dependency also in normal usage. Hence it is
important to evaluate the ratio of training time to accuracy. We observed that with just
15 patterns (in which case a user may take less than a minute to train the system), the
user could be identified with around 70% TAR. Accuracy can be increased at the cost of
training time. It took less than 4 minutes for the slowest of our testers to train the system
with 45 patterns (15 in each activity) and authentication results were ≈ 90%. The TAR
percents are averaged over 35 user attempts. The results are shown in Figure 4.7.

4.7.2 Evaluation

We distributed Hold & Sign along with an 11-question questionnaire adapted from the
System Usability Scale5 (SUS) to our chosen volunteers (30 users). The SUS assessment
tool is widely used for gathering subjective impressions about the usability of a system.
It has already been used in the context of smartphone authentication [1]. The response
to each question can be given on a five-point scale ranging from ‘Strongly Disagree’ to
‘Strongly Agree’. The SUS score is a value between 0 and 100 where a higher value
indicates a more usable mechanism. A raw SUS score can be transformed to a percentile
[77] or to a grading scale[78], allowing an easier interpretation of results. The average SUS

5http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.
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Figure 4.7: User authentication on the prototype application. This figure verifies the average results
obtained from the fusion of activities as described in Section 4.5.3.The values above the bars indicate
time spent to provide samples
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score is 68. Like the previous study [1], we added a question to this questionnaire: What
did you like or dislike about the mechanism? This question was optional and subjective;
users were suppose to write some lines supporting the reason(s) for liking or disliking our
mechanism. We wanted to collect early feedback to allow us to improve our solution in
future.

We asked the users to use our app for some days (preferably a week) and share their
experience with us. We received responses from 18 out of 30 volunteers (60%).

4.7.3 Responses

We received useful feedback on our mechanism. We achieved an average SUS score of
68.33%. Our score is better than the well-established voice recognition score (66%) and
its fusion with the face (46%) and gestures (50%) as reported in the literature [1]. Most
of the responses were positive about the use of signing as an authentication credential.
Most of the participants were also positive and comfortable using a finger and using the
smartphone touchscreen (i.e., no complaints about the size of the display). We also got
some negative responses, mostly related to the initial setup; it was “too cumbersome" for
some, i.e. “a user has to sign multiple times in order to train the system whereas setting up
a PIN is easier". We also received some negative responses regarding the system requiring
the use of both hands.

Our mechanism is clearly in the initial stages and requires more tuning for increasing
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its user acceptability. We are planning to incorporate these initial suggestions into future
versions of Hold & Sign and also to run more extensive the usability studies.

4.8 Limitations

Our current solution suffers from two important limitations. Firstly, also pointed out by
a volunteer, users must use both hands. One hand holds the phone and other hand’s
fingertip is used for the signature. The user, therefore, may experience some difficulty in
using our solution, especially when on the move. Secondly, the system cannot predict the
user’s ongoing activity in order to extract the best pre-selected features and use them for
verifying user identity.

4.9 Chapter Summary

We proposed a new bi-modal behavioral biometric authentication solution, Hold & Sign,
using as behaviors how a user holds her phone and how she writes on the touchscreen.
We achieved 79% TAR at “zero” FAR from 1-class MLP with full features in walking
activity. The reason for this achievement could be the fact that during walking, sensors
gather more data thus is possible to build accurate patterns. After applying feature subset
selection, TAR improved to 86.7% at the expense of just 0.1% FAR. Lastly, processing
the data from combined activities yielded 94.8% TAR at 3.1% FAR.

Hold & Sign requires on average just 3.5s to enter the behavioral pattern. Its ability to
authenticate/reject a user within 0.215− 0.250s makes it very fast. The closest reported
testing time in the literature is 0.648s [54].

Hold & Sign offers two advantages over traditional mechanisms. Firstly, a user can
write his own name in an unconstrained way with a finger on the smartphone’s touch-
screen, which makes memorability and repetition easier.

There is no need to remember a password/pattern and no need to keep them secret,
thus eliminating the problem of sharing and stolen passwords. Also, it is easy to integrate
and implement in most modern smartphones without the need for additional hardware.
Hold & Sign can be used as a stand-alone method or can be used in conjunction with
other well-established mechanisms for additional security.

Since signature-based authentication is already deployed for user identification and it
is also very common to use finger movements for navigating documents, e.g. web pages,
photo albums, messages, etc., we expect our solution to receive wider user acceptance.
The results of the preliminary usability analysis, with a SUS score above the average
(68.33%), indicate a positive starting point.

As a future work, we plan to investigate the permanency of this biometric modal-
ity, extend our work in terms of continuous authentication and explore its usability with
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a larger and more heterogeneous sample of testers. We are also going to address the
problem of seamless and fast detection of a user’s current activity since this would allow
authenticating users based on the best feature subset selected from that particular activity.
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Chapter 5

Please Hold On: Unobtrusive User
Authentication using Smartphone’s
built-in Sensors

In this chapter, we propose a novel method of fully unobtrusive user authentication. Our
approach is based on profiling the user’s hand micro-movements after an unlock event
occurs. Generally, it requires a slide-to-unlock or PIN, password or pattern to unlock the
smartphone. In any case, whenever the user performs any of these actions, Android oper-
ating system sends a special broadcast event - the USER_PRESENT. Our proposed method
exploits the user’s hand movements for a limited time after the event occurs and ensures
authenticity for every session. Extensive experimentation with multiple machine learning
classifiers proves the efficacy of our mechanism. We report an authentication accuracy of
96% with an EER of just 4%. Our proposed method can be used as a standalone solution
or can be complemented with any of the existing authentication mechanism to improve
the authentication accuracy and robustness.

The part of this chapter was accepted for publication in [79]: Attaullah Buriro, Bruno
Crispo, and Yury Zhauniarovich, Please Hold On: Unobtrusive User Authentication using
Smartphone’s Built-in Sensors, in proceedings of the IEEE International Conference on
Identity, Security and Behavior Analysis 2017 (ISBA-2017), New Delhi, India, February
22-24, 2017.

5.1 Introduction

This chapter presents a novel approach for unobtrusive user authentication based on pro-
filing of hand micro-movements after the unlock event. Our system is activated after a
user unlocks a phone and collects interaction patterns using built-in unprivileged sensors
within a short period of time. Afterwards, using machine learning approach it assesses
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if the smartphone has been activated by the owner or an impostor. Our system does
not require to present any token or to perform some remembered actions. Thus, it is
completely transparent and is applicable both for smartphones with and without authen-
tication mechanisms enabled. It uses only unprivileged sensors so it does not require any
permission, interaction or cooperation.

Our experimental evaluation confirms the practicality of our approach. Indeed, in
the authentication task we managed to achieve an accuracy of 96% at an EER of 4%.
Our system can be used as a standalone authentication mechanism and in multi-modal
approaches as the ones proposed in [80]. Since the data collection and user authentication
is performed in the background, we claim that our method is fully unobtrusive, thus, has
a wide user acceptability.

5.1.1 Contributions

The main contribution concerning this chapter are listed below:

• The proposal of a novel approach for fully transparent user authentication on mobile
devices using built-in unprivileged sensors.

• The validation of the approach on a dataset collected from 53 users. The dataset con-
sists of readings collected from multiple sensors, user actions data and smartphone
model information.

• Assessment and evaluation of different time periods needed to collect training sam-
ples and the amount of data required to be supplied to the authentication system.

5.2 Related Work

In this section, we survey the sensory-data-based authentication schemes for smartphone
user authentication proposed over the years.

Shi et al. [81] presented a multi-sensor approach to passively identify a genuine user.
Their system uses an accelerometer, touch screen, voice and location data for user au-
thentication. They reported ∼ 97% TAR, using the Naive Bayes classifier, on a dataset of
7 users (three females and four males). Li et al., [54] explored the utility of three different
sensors: the accelerometer, the orientation sensor, and compass, in addition to the touch
gestures for continuous user authentication. Their method profiles finger movements us-
ing classical touch-based features and interprets the sensed data as different gestures. An
SVM classifier is then trained with gestures to perform authentication tasks. Accuracy of
95.78% is reported on a database of 75 users.

Zhu et al. [53] propose a mobile framework model Sensec based on an accelerometer,
the orientation, a gyroscope, and a magnetometer to construct a user gesture profile.
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The model then continuously computes the sureness score to authenticate the user. By
concatenating X, Y, Z values from the aforementioned sensors, a valid user is identified
with 75% accuracy and an adversary with an accuracy of 71.3% (with 13.1% FAR) from a
set of 20 users. However, the study requires a user to follow a fixed protocol and collects
data for the entire user interaction session. The method proposed here is different since it
does not require any specific protocol to be followed. Furthermore, data is collected only
once in the entire session (without requiring any explicit user interaction).

Conti et al. [28] exploit accelerometer and orientation sensor readings collected during
call placing/answering, to profile the genuine user. Their study reports an FAR of 4.44% at
an FRR of 9.33% on a dataset of 10 users using DTW as the classifier. Later, we extended
this work ([29] see Chapter 7) to a tri-modal system which involves arm movement, finger
swiping and voice recognition. We reported a 10.28% FAR at a 3.93% FRR on a dataset
of 26 users. An important related work, i.e., HMOG by Sitova et al. [31] leverages Hand
Movement, Orientation, and Grasp to continuously authenticate smartphone users. It
transparently collects data from the accelerometer, gyroscope, and magnetometer when a
user grasps, holds and taps on the smartphone screen. On a dataset of 100 test subjects
(53 males and 47 females), HMOG achieves the lowest EER of 6.92% in walking state with
SVM classifier. Our presented method does not require any typing, keystrokes or grasp.
Instead, the data is collected transparently after an unlock event occurs (as a result of
either slide-to-unlock, entering PIN or password, etc.).

Google project - ABACUS, built a large dataset containing 27.62 TB of smartphone
signals on Nexus 5 smartphones from 1500 users over a period of six months [82]. The data
was obtained from multiple sensors, namely, camera, touchscreen, keyboard, accelerome-
ter, magnetometer, gyroscope, light sensor, GPS, Bluetooth, Wi-Fi and application usage.
The data was recorded for the entire user interaction session - from one smartphone un-
lock to the next time it is locked. Using optimized shift-invariant Dense Convolutional
Mechanism (DCWRNN) an EER of 8.82% (per session) and 15.84% (per device) was
reported. Here an EER of 8.82% means that 91.18% of the times, the correct user was
holding and moving the phone, not necessarily interacting with it. In our case, we identify
the user after her interaction with the device. Upal et. al., [83], collected smartphone
signals from 48 volunteers on a Nexus 5 smartphone, over a period of two months. They
collected data from the camera, touchscreen, gyroscope, accelerometer, magnetometer,
light sensor, GPS, Bluetooth, WiFi, proximity sensor, temperature sensor and pressure
sensor. Apart from face detection and recognition results, they reported swipe-based au-
thentication results. Among multiple classifiers, the Random Forest classifier achieved
the lowest EER of 22.1%. However, both datasets have not yet been made available to
the research community, hence it is difficult to have a direct comparison to these solutions.

Most sensor-based authentication solutions listed above utilize the sensor(s) available
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in smartphones. They collect sensory data associated with either finger movements, user
tappings or associated with the particular motion (e.g., call placing). Furthermore, most
solutions are based on the data collected in laboratory settings. On the other hand, our
method is different in the following ways:

• It is fully unobtrusive. It does not require any permission, participation, or coop-
eration from a user. Each authentication step is performed, transparently, in the
background.

• Data was collected in a totally uncontrolled manner.

• Our method utilizes all the 3-dimensional sensors available on the smartphones.

• Our scheme initiates all the sensors after receiving the user presence notification
from the OS associated with the USER_PRESENT broadcast receiver. Therefore,
it can complement the existing one-shot login methods and becomes more useful,
especially, for those users (e.g., slide-unlock users) who do not want to invoke any
explicit authentication mechanisms on their smartphones.

5.3 Approach

5.3.1 Intuition Assessment

It has been reported in previous studies [27, 5, 31, 28, 82] that each user holds, interacts
and moves her phone in a unique way (see graphs presented in Chapter 3 (Section 3.3.3)).
This uniqueness of movement pattern increases the authentication accuracy on the one
side and makes it challenging for the impostors to exactly generate the same movement
patterns on the other.

5.3.2 Our Solution

Our proposed method is based on the idea of utilizing the user’s hand micro-movements
after she unlocks her phone using an authentication method, e.g., PIN, slide-to-unlock,
etc. In either case, when the user unlocks her smartphone, the Android OS generates a
specific broadcast event USER_PRESENT. The mentioned event is generated only once
per session (when the user unlocks her smartphone). Similar events1 are generated also in
other mobile operating systems, e.g., iOS. Thus, the proposed method can be implemented
also for other popular mobile operating systems.

Our idea is based on profiling the user’s hand micro-movements for a short period of
time (at most 10 sec). The rationale behind choosing this time duration is the following:

1e.g., PhoneApplicationFrame.Unobscured event in Windows Phone OS, or
com.apple.springboard.lockstate event in Apple iOS.
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(i) it was empirically determined that this time is sufficient enough for pattern discrimi-
nation, and (ii) this duration is too short for an adversary to debug the device [84]. The
collected data is pre-processed and relevant features are extracted. A final template is
constructed by concatenating all the extracted features, and then it is fed to the classifier
for training or for testing (see Figure 5.1). If during this period a user is classified as a
genuine user, the system will not interrupt the owner’s interactions with the smartphone.
On the other hand, if the user is classified as an impostor, the system will alert the owner
of the phone (e.g., sending an email), and may stealthily isolate the impostor from access-
ing sensitive functionality [85, 81], or ask for explicit authentication [86, 87]. We restrict
ourselves to collecting information from unprivileged sensors. This allows our system to
be implemented as a separate authentication service or to be integrated within an implicit
authentication framework as the one proposed in [88]. Figure 5.1 illustrates our proposed
approach for user authentication on mobile devices. The sensory data is first pre-processed
and the features are extracted. The extracted features are then concatenated together,
to make a feature vector, and this feature vector is fed into the feature selection module
to find the most productive feature subset for onward user profiling. The selected feature
subset is stored in the database for matching afterwards with the query sample to accept
or reject the user.

5.3.3 Considered Sensors and Classifiers

Our solution is based on collected data from multiple sensors: the accelerometer, i.e.,
Raw, LPF and HPF, gravity, gyroscope, magnetometer and orientation. Thus, we used in
total seven sensors (5 physical and 2 logical). We calculated magnitude dimension from
the 3 dimensions of each 3-dimensional sensor.

We used four classification algorithms from the WEKA workbench for user authenti-
cation: BN, KNN, MLP and RF.
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Table 5.1: Dataset Description.

User ID Manufacturer Model Start Version End Version Kernel Updated Samples Period All Sensors
1 Samsung Galaxy Nexus 4.3 4.3 54 144 12.20 52
2 QMobile V5 4.2.1 4.2.1 54 229 198.78 52
3 Samsung GT-I9300 4.3 4.3 54 146 9.88 52
4 Samsung GT-I9506 4.4.2 4.4.2 52 807 17.19 52
5 Samsung GT-S7580 4.2.2 4.2.2 54 3 0.04 54
6 LGE Nexus 5 4.4.4 4.4.4 54 265 10.25 52
7 Samsung Nexus S 4.1.2 4.1.2 54 2 0.05 52
8 Sony D6603 4.4.4 4.4.4 54 937 15.29 52
9 LGE Nexus 5 4.4.4 4.4.4 54 7 0.12 52

10 Samsung GT-S7275R 4.2.2 4.2.2 54 124 9.37 54
11 Samsung GT-I9506 4.4.2 4.4.2 54 397 11.13 52
12 Samsung GT-S7580 4.2.2 4.2.2 52 1043 27.20 54
13 QMobile A600 4.1.2 4.1.2 54 121 4.69 54
14 Samsung GT-I9506 4.4.2 4.4.2 54 2 0.01 52
15 LGE Nexus 4 4.4.4 4.4.4 54 741 17.76 52
16 LGE Nexus 4 4.4.4 4.4.4 54 343 19.43 52
17 Samsung GT-I8150 2.3.6 2.3.6 54 70 12.04 54
18 Samsung GT-S7562 4.0.4 4.0.4 54 410 14.76 54
19 Samsung Nexus S 4.1.2 4.1.2 54 43 13.95 52
20 Samsung GT-I9505 4.4.2 4.4.2 54 1128 15.37 52
21 LGE Nexus 4 4.4 4.4 54 5 0.04 52
22 Samsung SM-G900F 4.4.2 4.4.2 54 205 10.16 52
23 Samsung GT-S7562 4.0.4 4.0.4 54 7 0.11 54
24 LGE Nexus 5 4.4.4 4.4.4 54 377 12.15 52
25 Sony D6503 4.4.2 4.4.4 52 554 10.84 52
26 Samsung SM-G900F 4.4.2 4.4.2 54 5606 46.84 52
27 HTC One_M8 4.4.4 4.4.4 54 1206 45.43 52
28 LGE Nexus 5 4.4.4 4.4.4 54 6 0.28 52
29 Samsung SGH-I777 4.1.2 4.1.2 54 102 16.24 52
30 LGE Nexus 5 4.4.4 5 52 2072 32.87 52
31 Samsung GT-I9300 4.3 4.3 54 0 0.00 54
32 Samsung GT-I9505 4.4.2 4.4.2 54 2 0.02 52
33 LGE LG-D855 4.4.2 4.4.2 54 37 2.12 52
34 Samsung GT-I9300 4.3 4.3 54 2 0.10 52
35 LGE LG-D855 4.4.2 4.4.2 54 196 8.66 52
36 Samsung SM-G900F 4.4.2 4.4.2 54 415 10.47 52
37 Sony D6503 4.4.2 4.4.2 54 66 1.28 52
38 Sony ST23i 4.0.4 4.0.4 54 541 13.89 54
39 Samsung Galaxy Nexus 4.3 4.3 54 20 0.49 52
40 LGE Nexus 5 4.4.4 5 52 905 27.14 52
41 LGE Nexus 5 4.4.4 5.1 52 5602 398.12 52
42 Sony D6503 4.4.2 4.4.2 54 258 3.90 52
43 Sony C6903 4.4.4 4.4.4 54 650 11.28 52
44 LGE Nexus 5 4.4.4 4.4.4 54 14 0.12 52
45 Sony C6603 4.4.4 4.4.4 54 238 11.16 52
46 LGE Nexus 5 4.4.4 4.4.4 54 121 3.95 52
47 Samsung GT-I9505 4.4.2 4.4.2 54 500 9.96 52
48 Samsung GT-I9100P 4.1.2 4.1.2 54 4012 143.40 52
49 LGE Nexus 4 4.4 4.4 54 362 9.29 52
50 LGE Nexus 4 4.4.4 4.4.4 54 65 1.02 52
51 Samsung GT-I9506 4.4.2 4.4.2 54 12 0.21 52
52 Samsung GT-S5830i 2.3.6 2.3.6 54 516 18.07 54
53 Sony D6503 4.4.4 5.0.2 52 11091 195.29 52
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Figure 5.1: Flowchart of the proposed method.

5.4 Experimental Analysis

5.4.1 Data Collection

We developed an Android application, namely, DataCollector which collects the data for
the analysis. The application is designed to operate in the background (as a separate
service), to emulate the behavior of an authentication application.

In order to collect the data for our analysis (supervised learning task), it was necessary
to collect user’s data during their daily routine of using their smartphone. We set up
a webpage which explained the purpose, methodology, and other related details of the
experiment and a download link where they could get the DataCollector. Moreover,
the DataCollector app itself displayed to users all the above-mentioned details of the
experiment. Users could install the application after agreeing a consent form.

DataCollector collects data from multiple sensors, namely, the accelerometer, gravity,
gyroscope, magnetometer, and orientation as in Chapters 3 and 4). For each sensory read-
ing, we collect 3-dimensional values denoting the user’s motion in a particular dimension,
and additionally calculate their magnitude (norm).

Our app gathers information from the sensors with the SENSOR_DELAY_NORMAL delay.
According to the Android documentation[3], for every sensor, data samples are gener-
ated at most every 200, 000 microseconds. Information about system events is recorded
as soon as they occur. Every measurement is followed by a timestamp using the sys-
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Figure 5.2: Screen shots of our DataCollector app: Figure 5.2a shows the application installer and the
Figure 5.2b shows the connectivity manager.

(a) (b)

tem call System.currentTimeMillis(). Thereafter, collected data are packed into the
JavaScript Object Notation (JSON) message and stored as text entries into a file (one
file for every sensor). Every two hours our application compresses the collected data to
save storage space and sends the encrypted (to ensure data confidentiality) archives to
our web server. After each successful transmission, the compressed files on the device are
deleted, otherwise, the app keeps retrying.

To ensure participant’s privacy, we did not collect any information that can be used to
identify a user (e.g., IMEI, IMSI, or phone number). To identify different app instances,
DataCollector generates a random unique identifier during the installation. This identifier
is later used to label different users on the server. Moreover, our application does not
gather any sensitive information, e.g., location, user contacts, etc. To facilitate the user
participation, DataCollector was developed with the objective to limit the amount of
interactions required to configure the app. User involvement is required only during
the installation, initial configuration, and for the uninstallation of the app (see Figure
5.2). Initial configuration only required users to select if data must be transmitted only
through WiFi or also using mobile broadband. A total of more than 90GB of raw data
were collected.
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5.4.2 Feature Extraction

We use statistical features calculated over the sensor measurements gathered within a
specified time interval after the USER_PRESENT event. We experimented with time interval
of 2, 4, 6, 8, 10 seconds. From each sensor data, we extracted 7 statistical values, namely,
Mean, Mean absolute deviation (Mad), Median (Med), unbiased Standard Error of the
Mean (Sem), Standard Deviation (std), unbiased Skewness (Skew) and kurtosis (Kurt).
Thus, for every sensory observation there are 28 extracted features, as listed in Table 5.2).

Table 5.2: List of extracted features from all four
dimensions of each sensor.

No. Features of physical sensors
1 Mean
2 Mean Absolute Deviation (Mad)
3 Median
4 Unbiased Standard Error of Mean (Sem)
5 Standard Deviation (Std)
6 Unbiased skewness (skew)
7 Kurtosis (Kurt)

Normally, the extracted features need
to be scaled (or normalized depending on
the context) before being processed by ma-
chine learning algorithms. However, in our
case, we skipped this transformation for
two reasons. Firstly, the Android system
does not provide an Application Program-
ming Interface (API) to find out the min-
imum and maximum boundaries of sensor
measurements. Hence, the scaling opera-
tion will require the authentication appli-
cation to analyze a large amount of his-
torical data in order to detect the feature
values boundaries. This demands additional storage space that is limited in mobile en-
vironments. Moreover, it is possible that after the training phase, some outliers may
appear in our measurements. Scaled using the learned boundaries, these values will still
hugely outperform them, thus, influencing a lot the final decision. Secondly, scaling oper-
ations require additional computational resources, which are limited in the case of mobile
devices, so our system uses raw feature values.

5.4.3 Feature Subset Selection

To select the best subset, that is the subset which yields maximum accuracy, out of all
196 available features, we relied on InfoGainAttributeEval2 - a WEKA implementation
for Information Gain (IG) based feature selection. This feature selection scheme evaluates
the worth of a feature by computing the information gain of that feature with respect
to the class. We straight away excluded all the non-contributing features, i.e., having
zero value (see Figure 5.3). In addition, to avoid any chances of overfitting, we picked 50

top-gain features (marked above the red line), making them equivalent to the number of
samples, for further analysis.

2http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html.
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Figure 5.3: Feature Selection for different time periods, i.e., 2000ms (5.3a), 4000ms (5.3b), and 6000ms

(5.3c).
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Table 5.3: Results of different classifiers for different lengths of data acquisition (averaged over all 31
users).

2000ms 4000ms 6000ms 8000ms 10000ms
Classifiers TAR EER TAR EER TAR EER TAR EER TAR EER

BN 0.89 0.11 0.89 0.11 0.89 0.11 0.88 0.12 0.89 0.12
MLP 0.93 0.07 0.93 0.07 0.94 0.06 0.94 0.06 0.94 0.06
1NN 0.88 0.12 0.88 0.12 0.89 0.11 0.89 0.11 0.90 0.10
RF 0.95 0.05 0.95 0.05 0.95 0.05 0.95 0.05 0.95 0.05

5.4.4 Validation

Our experimental validation involves the collection of labeled raw data from multiple 3-
dimensional smartphone sensors and then transforming them into the patterns. A pattern
here is the horizontal concatenation of all the features of all the sensors (196 before feature
subset selection), as discussed in section 5.4.2. The resulting 50 patterns for each of the 31

users are 196 feature long. Note that we take into account only users with ≥ 50 patterns.
Since we have limited number of user patterns (50 only), our analysis is based on 10-

fold cross-validation for all experiments with 10 runs. The setting looks justified because
in this way, each available sample is tested and their average is reported.

5.5 Results

The results of all of our chosen classifiers before the feature selection are shown in the
Table 5.3. We can see that RF and MLP classifier performed best with default parameters
(100 trees for RF and 1 hidden layer for MLP) yielding up to 95% and 94%, TAR,
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Figure 5.4: Results in terms of TAR and EER (on selected features set) for MLP 5.5a and RF 5.5b
classifiers.
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respectively. Thus, we take these two classifiers for further analysis. The Figure 5.4
shows the outcome of both MLP and RF classifiers on the subset of selected features.
MLP classifier performed best on 10s data yielding 95%, however, RF classifier proved
itself consistent on all the available lengths of the dataset.

We further evaluated the different feature lengths in order to (i) cross check our earlier
obtained results, and (ii) observe if the same accuracy can be obtained with even less
features (see Figure 5.5). The best EER of 5% is obtained for 8s and 10s durations with
MLP classifier, however, RF classifier is found consistent with all the durations yielding
4% EER except the 8s time interval. It is also worth-mentioning that for 6s time duration,
we obtained 4% EER with just 40 features. Of course, smaller time intervals have to be
preferred to long ones, if the accuracy is the same because they are faster and reduce
battery consumption. So the best option to choose is the interval of 6s with just 40

features.
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Figure 5.5: Results in terms of EER for different feature lengths (from selected features) for MLP 5.5a
and RF 5.5b classifiers.
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5.6 Discussion

Our participants reported a higher power consumption of about 5− 12% measured using
the Android’s internal power reporter, due to use of the DataCollector app. However, the
end system will consume less power because it will collect the sensory readings for smaller
time periods, i.e., 6 sec, while DataCollector gathers sensor readings all the time when
the screen is on, which is on average equal to 70.3sec [89]. Moreover, we expect in the
near future that all mobile platforms will be equipped with low-power continuous sensing
modules [90], that will further reduce power consumption. The final implementation and
its complete evaluation is a subject of future work.

We assume that during the experiment a smartphone was used solely by the owner.
However, in general case this is not true, e.g., sometimes a smartphone may be used by
a family member, a friend, etc. We did not apply any outlier detection approach to filter
out and delete such outliers. Such filtering should in principle lead to better results.

Our model does not consider the impact of situations while authenticating. As some
papers show [29] (see Chapter 3), situations (i.e., walking, standing, running, etc.) may
affect the behavioral pattern. If the phone is unlocked while walking the resulting pattern
would be different if the same user unlocks the phone while lying on a bed. On a positive
side, we tested the system in an uncontrolled fashion so the users were not constrained to a
specific situation and data were gathered in a realistic fashion mixing different situations.
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Neverthesless it might be interesting to check the impact of each situation on the aggregate
results. As a future work, we will extend the DataCollector app to recognize situations
(e.g., by using JigSaw engine [91], etc.) and select the most appropriate set of features
for that situation.

We plan also to extend the experimental validation with a higher number of testers.

5.7 Chapter Summary

This chapter presented a novel approach for unobtrusive user authentication on smart-
phone. Our proposed method is based on profiling hand(s) micro-movements, after an
unlock event occurs, using smartphone built-in unprivileged sensors. The design allow
to implement our method as a separate authentication service, which may be used by
different applications (i.e., mobile banking, m-health app, etc.).

We have shown that by profiling the user based on simple time-domain features, ex-
tracted from sensory data, we can authenticate the smartphone users with high precision.
To validate our approach, we launched an uncontrolled experiment with 31 qualified users
(53, in total). We collected real-world readings from all the built-in 3-dimensional sen-
sors (5 physical and 2 LPF and HPF readings) and share this dataset with the research
community. Using the obtained data, we inferred critical parameters for our system, e.g.,
the data collection time interval. We also used the dataset to assess our system. The
experiments showed that our proposed approach achieves the TAR of 96% at an EER of
4% in the authentication task.
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Chapter 6

ACTIVEAUTH:A Motion-Based
One-Shot-cum-Continuous User
Authentication Scheme for
Smartphones

In this chapter, we present ACTIVEAUTH - a fully unobtrusive motion-based one-shot-
cum-continuous user authentication scheme for smartphones, which in addition to au-
thenticating the user at login stage (as discussed in Chapter 5), continuously tracks the
user interactions and authenticates the user before the user installs an application package
or uninstalls an already installed application package. More specifically, ACTIVEAUTH
starts all the 3-dimensional sensors, records the movements for a short period of time (5s),
extracts the features and applies a 1− class algorithm to verify the identity of the user.
ACTIVEAUTH, due to its unobtrusive nature, can be used as a standalone solution or
can be complemented with any of the existing authentication mechanism to improve the
authentication accuracy and robustness.

6.1 Introduction

In this chapter, we present a motion-based fully unobtrusive and hassle-free one-shot-cum-
continuous user authentication scheme, namely, ACTIVEAUTH, which provides one-shot
login as well as can continuously verify the presence of the legitimate user during the
entire session, without requiring any user permission, interaction, participation, and co-
operation. The proposed approach is based on the idea that every user has unique ways
of holding and moving her smartphone [29][5][27][31] (see Figure 6.1) thus generating
unique movement patterns. These generated movement patterns can be exploited for
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Figure 6.1: Different phone positions for user interaction [5].

user authentication. ACTIVEAUTH utilizes 3 unprivileged broadcast receivers, namely,
USER_PRESENT, PACKAGE_REMOVED and PACKAGE_ADDED to record the
phone-movements and profile the users accordingly. The USER_PRESENT broadcast
is fired each time the user enters her credentials to unlock their smartphone. Similarly,
PACKAGE_ADDED and PACKAGE_REMOVED notifications are issued each time a
new package is installed or an already installed package, is uninstalled. At this stage, we
relied on these broadcast receivers because they do not require any user permission and
hence the data is collected transparently, while the others broadcast receivers, require user
permissions and the user may feel uncomfortable granting the required permissions. We
collected sensory data right after the notification of these events, i.e., USER_PRESENT,
PACKAGE_ADDED or PACKAGE_REMOVED, for 5s. We chose a duration of 5s

for two reasons, i.e., firstly, since the duration could be acceptable to the users (because
each authentication method available requires comparatively higher time [5]), secondly,
we consider this duration too short for hacking.

ACTIVEAUTH profiles the smartphone user based on the time-domain features (ex-
tracted directly from the sensory readings) and builds the authentication model using
1− class learning algorithms for each broadcast notification. Based on the collected us-
able dataset of 80, 50 and 49 qualified users (in total, 123 users) for USER_PRESENT,
PACKAGE_REMOVED and PACKAGE_ADDED, respectively, ACTIVEAUTH can
authenticate the user with 84.06% TAR at an FAR of 19.57% at login stage (with
USER_PRESENT notification), and for continuous operation, i.e., PACKAGE_REMOVED
and PACKAGE_ADDED broadcast events, it can authenticate the user with a TAR 98%
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and 93.88% at an FAR of 14%, and 9.1%, respectively.

6.1.1 Contributions

The main contribution concerning this section are listed below:

• The proposal of ACTIVEAUTH - a fully unobtrusive one-shot-cum-continuous user
authentication scheme, which can be enabled as an standalone or can be comple-
mented with any of the existing smartphone user authentication approaches for their
security and/or usability enhancement.

• The collection and sharing of the collected dataset from 123 users with the research
community in order to open new research dimensions.

• Experimental validation on the dataset collected from 123 users.

6.2 Related Work

One-shot authentication schemes have been more studied, tested and evaluated as com-
pared to the continuous schemes. One-shot authentication schemes are designed to au-
thenticate the user at the start of the session - leaving behind the possibility of session
hijacking and masquerading. In contrast, continuous authentication schemes are designed
to continuously verify the user’s identity throughout the session. Most of the proposed
authentication solution are based on either face [92] [93], touch [94] or swipe [95] or signa-
ture [96], gait [97][98], fusion of multiple modalities [99] [100] [101] [102], and on the device
movements [5][31]. However, a little work has exploited only motion sensors for contin-
uous user authentication on smartphones [75][53][81]. Interested readers are referred to
this survey [30] for understanding behavioral biometrics, in general, and to [103] for more
insights on continuous authentication on smartphones.

In the following sections, we will survey the most relevant sensor-based one-shot and
continuous authentication schemes proposed over the years.

6.2.1 Sensors-based One-shot Authentication Schemes

Some of the studies [27] [31] [104] add a transparent layer (using data collected from the
smartphone sensors) to the PIN authentication scheme. Our approach [27] (see Chapter
3) extends a classical PIN authentication to a bi-modal system adding the user’s hand
movement (for the total duration of PIN entry) as a separate modality. we reported
an EER of 1%, on a dataset of 12 users, using BayesNET and Random Forest (RF) as
classifiers. Authors of this study [104], collected passcode-generated sensory data from
motion sensors for the entire duration of passcode entry and profiled the typist. Using
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1− class verifiers on the collected data of 48 users, they report a TAR of 93.15% and an
FAR of 5.01%. Similarly, our other former study [5] (see Chapter 4) proposes a bi-modal
system based on the smartphone’s micro-movement when the user writes something on
the touchscreen. In this way, we train our classifier (Multilayer Perceptron) on touch
and motion events, generated while the user writes something on the touchscreen. We
reported a TAR of 94.8% and an FAR of 3.1%.

6.2.2 Sensor-based Continuous Authentication Schemes

Lee et al. [75] presented a continuous and transparent motion-based authentication solu-
tion for user authentication on smartphones. Their approach leverages three smartphone
sensors, namely, the accelerometer, the magnetometer and the orientation, however, they
drop the orientation sensor, later, because they observed it as less accurate and hence
less productive for their multi-sensor system. Their mechanism implicitly profiles the
user based on her movements and by using SVM as a binary class classifier, and later
authenticate the user. Their mechanism requires 10s to train the model for a smartphone
user and needs 20s to detect the attacker. They report an overall accuracy of 90%. The
downside of this study is their limited number of users, i.e., just 8.

In a recent study, Shen et. al. [107], proposed a sensor-based continuous authen-
tication framework and analyzed its performance on sensor-assisted touch-tapping data
collected from 50 users. Authors utilize three physical sensors, i.e., gravity, accelerometer
and gyroscope to profile user’s movements. They applied 1 − class SVM and KNN as
verifiers, and achieve an EER of 11.05%.

Our proposed approach, namely ACTIVEAUTH - a completely unobtrusive, friction-
less, light-weight, and user-friendly one-shot-cum-continuous authentication scheme, does
not require any user permission, participation or cooperation. ACTIVEAUTH is context-
based - it collects and identifies user whenever needed, i.e., when a user installs a package
or uninstall any installed package from the system. The authentication cycle starts with
the user unlocking their phone (one-shot) and keeps tracking the installation and removal
of packages till the session expires. ACTIVEAUTH performs one-shot authentication
when the user unlocks the smartphone by either applying any existing authentication
mechanism or slide-to-unlock her smartphone. In any case, USER_PRESENT broadcast
is issued. ACTIVEAUTH then turns on all the 3-dimensional sensors for a short period of
time (i.e., 5s), extracts time-domain features from the recorded sensory reading for that
time period, and authenticates the user based on the similarity of the sample with the
training samples. Access to the smartphone is granted once the user is authenticated. In
this way, ACTIVEAUTH ensures the presence of the genuine user at one-shot login. Then
ACTIVEAUTH keeps tracking the user interactions and the process of authentication is
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repeated if the users installs (as a result of PACKAGE_ADDED notification) any new
package or uninstalls (as a results of PACKAGE_REMOVED) any installed package. It is
worth mentioning that none of these broadcast receivers require any Android permission.
We could have used multiple broadcast receivers for continuous authentication, however,
at the cost of user permission and more computations. Our idea is to ensure the user
authenticity unobtrusively - without the need for user participation even for the grant
of permission. Another notable difference is the nature of ACTIVEAUTH - Most of
the proposed schemes are either one-shot or continuous, however, ACTIVEAUTH covers
both functionalities simultaneously. Another difference between our approach and the
state-of-the-art is the classification, i.e., we deal this as 1−class user verification problem
(owner Vs attackers) whereas most of the above-mentioned approaches cater this as the
binary-class classification problem, which seems unrealistic because training the classifier
with patterns of two users may lead to privacy and security concerns[31][5].

Since the concept behind ACTIVEAUTH is novel, and we may not directly compare
our work with the previous studies, however, we present an overview of some of the most
relevant motion-based state-of-the-art one-shot and continuous authentication approaches
and highlight the key aspects of each considered work in the Table 6.1. We compare them
in terms of: (i) the nature of the scheme, i.e., one-shot or continuous, (ii) the input
method (was it only motion-based or was complimented with another input method), (iii)
considered sensors, (iv) classifiers, (v) no. of users. (vi) classification approach, and (vii)
obtained results.

6.3 Motion-based One-shot-cum-Continuous Authentication Scheme

We present a motion-based one-shot-cum-continuous smartphone user authentication scheme,
ACTIVEAUTH, which starts verifying the user’s identity right after receiving an Android
OS notification of USER_PRESENT broadcast receiver. In this manner, the proposed
approach ensures one-shot authentication. It is notable that this broadcast receiver is fired
each time the user either enters her credentials, e.g., passcodes, or performs slide-to-unlock
gesture for login. The proposed approach is equally useful for the smartphones with or
without any implemented authentication mechanism. An attacker has to pass this au-
thentication mechanism too, besides another authentication requirement, e.g., passcodes.
This adds a transparent authentication layer to the existing authentication approach.

Besides providing a one-shot login, our proposed approach later monitors the user ac-
tivities, i.e., addition or removal of a package. We profile user’s hand-movements when she
starts the package installation and uninstallation. In either case, it transparently profiles
the user using motion data collected from all the physical sensors and authenticates the
genuine user. In case it detects the genuine user, it grants the access to the system and
consequently lets the user to install/uninstall, otherwise, it asks for the explicit authenti-
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cation, e.g., passcodes, etc. We could have used multiple broadcast receivers (associated
with different user activities, e.g., sending SMS, making a call, etc.), however, due to
their requirement for user permission, we avoided them. The same can be developed for
security-conscious users.

This section explains various building blocks of ACTIVEAUTH - the proposed one-
shot cum continuous authentication scheme as depicted in the Figure 6.2.

6.3.1 Broadcast Receivers

In Android, the broadcast receiver allows the developer to register for the system and
application events, i.e., Operating System (OS) will keep looking for the registered event(s)
and notify time to time whenever the subject event(s) occur. For example, the reception
of SMS, change of battery status, availability of Wi-Fi, screen ON/OFF, etc. All these
events are system generated events.

Similarly, the developed application can also initiate such broadcasts. All chosen
broadcast events require the presence of the user and their input to perform the desired
task. In the following, we explain the preliminary selected broadcast receivers enabled in
ACTIVEAUTH :

• USER_PRESENT : Every smartphone user interaction session starts after the screen
in turned ON. Screen can be turned ON either (i) by pressing the power button, or
(ii) by the phone ringing. Turning the screen ON by power button brings the unlock
screen up front, and requires the user to enter either her registered credentials or per-
form the slide-to-unlock action to start the session. In either case USER_PRESENT
notification is fired. This broadcast ensures the user presence and their interaction
with the device. We consider this as the best time to profile the user based on her
movements after USER_PRESENT event is fired. The proposed method collects
the sensory data for a short duration, i.e., 5s for fingerprinting the user’s movement
and authenticate them using 1-class verifier, and in this way adds a transparent layer
to the implemented authentication mechanism.

• PACKAGE_ADDED : This broadcast notifies the successful installation of an ap-
plication package on the device. We are of the opinion that an attacker can install
some application to quickly retrieve all the user’s sensitive private information, e.g.,
login credentials for banking, and social sites, etc. for misuse. At this point, our
proposed method ensures whether or not the user is legitimate. Within a very short
period after this notification, it verifies the user identity and permits the user to
open this newly installed application, otherwise, the application is blocked (cannot
be opened) and an explicit login is required to open it.
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Figure 6.2: Block diagram of our proposed approach.

• PACKAGE_REMOVED : This broadcast notifies the completion of uninstallation
of an application package. We consider the application uninstallation as a threat. It
is possible that the smartphone has an anti-virus or anti-theft1 application package
already installed, which attacker may want to uninstall. To secure that application
package, ACTIVEAUTH first creates the backup of that application and then allows
the uninstallation. Having the app temporarily uninstalled, the proposed approach
authenticates the user, i.e., it can be removed permanently in case the user is found
legitimate. In case of an impostor, it rolls back the uninstallation in background
while asking for explicit user login in the foreground.

The reasons behind the selection of the above-mentioned broadcast receivers are: (i)
they actually require the user presence and interaction, and, (ii) they do not require the
user permission (hence avoiding their cooperation).

6.3.2 Data Collection

We prototyped an Android application PIN&WIN to collect data for our analysis. Our
application can be installed on any Android device running 4.4.x OS or higher (see Figure
6.3). The application was developed mainly for the analysis of sensor-assisted touchstrokes
[27] (see Chapter 3) for smartphone user authentication. We embedded these broadcast
receivers into our PIN&WIN application with the objective to transparently collect user’s

1http://getandroidstuff.a/cerberus-best-android-anti-theft-app/
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Figure 6.3: The screenshots of PIN&WIN.

(a) Intro & consent agree-
ment

(b) Demographic Question-
aire

data. In order to obtain a realistic view, e.g., how often they install and/or uninstall the
application package(s), how do they install and/or uninstall a package, etc., we kept
this functionality hidden from the volunteers. We setup a web-page2 with the complete
explanation of PIN&WIN, i.e., the user consent, the procedure to install/uninstall the
application and the incentive. Participants were requested to install the application,
answer to the demographic questions (see appendix B), enter 8 − digit PIN/password
in different activities and keep the application running for at least 3 days. PIN&WIN
requires user’s interaction in 3 sessions in 3 days. PIN&WIN requires 30-minutes of
user interaction on the first day (after installation), and 15 minutes of interaction on the
following two days. In this manner, each user had to test the application for 1 hour (in 3

days) and we expected some addition and/or removal of packages in this duration along
with the user presence. In this way, the application transparently collects the data related
with each of the broadcast receivers. Data was collected in a totally uncontrolled manner.

Our demographics questionnaire comprised of 4 questions (as shown in appendix B)
and the corresponding demographics is tabulated in the Table 6.2. Volunteers were free
to answer those or choose if they did want to disclose.

A small incentive, i.e., a lunch voucher, was offered as the compensation at the end
of the experiment. We advertised our experiment on the public places of our university,

2http://titan.disi.unitn.it/experiment/index.html
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Table 6.2: User demographics (M = Male, F = Female, U = Undisclosed, R = Right, L = Left, B =
Both).

No. of Subjects 93M 24F 6U - -

Hand Preferences 112R 6L 1B 2U -

Age Groups 5(≤ 20) 65(20− 40) 5(41− 60) 0(≥ 61) 5U

e.g., notice boards, elevators, main doors, etc.
In total, 123 users downloaded the application and installed it on their smartphones.

However, we could utilize data only from 80, 50, and 49 qualified users for the cho-
sen broadcast receivers, i.e., USER_PRESENT, PACKAGE_REMOVED, and PACK-
AGE_ADDED, respectively. Data from other users were discarded for various reasons:
(i) some of the users did not complete the study, (ii) some of the smartphones did not
have all the required sensors, (iii) some of the users did not install or uninstall any pack-
age during the experiment, and (iv) some of the user had task killer and app killers
installed on their smartphones (for saving battery drain), etc. So we included the users
who have ≥ 40 samples for USER_PRESENT and ≥ 10 for PACKAGE_REMOVED
and PACKAGE_ADDED broadcast events, each.

6.3.3 Motion-based Sensory Features

6.3.3.1 Feature Extraction

Our proposed approach utilizes all the available smartphone built-in sensors, i.e., the
accelerometer, the gravity, the gyroscope, the magnetometer and the orientation sensor,
to profile the user movements. Data collection is started for 5s whenever any of the
mentioned events is fired. Since, all the sensors are 3-dimensional, the recorded sequences
are stored as a tuple, i.e. as X, Y and Z dimensions.

These stored data sequences can be compared directly using the time series analysis
approach, e.g., DTW [28], etc. Alternately, the most common scheme is the extraction
of features from these sequences. We extracted the descriptive features, namely, mean,
standard deviation, skewness, and kurtosis from each of the sequence for each sensor. In
addition, we computed the fourth dimension for all of these and call it as magnitude as
in our study[27] (see Chapter 3).

To summarize, we extracted 16 features per sensor (16x7 = 112, in total), for each
movement behavior/observation. The selected features are tabulated in the Table 6.3.
We concatenated all the extracted features from all the sensors to form a final feature
vector.
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Table 6.3: List of selected features from 3-dimensional sensors data. The X in the format X_Mean
denotes name of the sensor, e.g., Accelerometer, LPF, HPF, and so on.

Feature position X Y Z S_M

1 − 4 X_Mean X_Mean X_Mean X_Mean

5 − 8 X_Std X_Std X_Std X_Std

9 − 12 X_Skew X_Skew X_Skew X_Skew

13 − 16 X_Kurt X_Kurt X_Kurt X_Kurt

Table 6.4: List of CSE selected features for all the broadcast receivers.

Sr. No. Features (USER_PRESENT) Features (PACKAGE_REMOVED) Features (PACKAGE_ADDED)

1 Accel_Mean_S_M Accel_Mean_S_M Accel_Mean_S_M

2 Accel_Z_Mean Accel_Y_Mean LPF_Mean_S_M

3 LPF_Mean_S_M LPF_Mean_S_M Magnet_Mean_S_M

4 Magnet_Mean_S_M Magnet_Mean_S_M Magnet_Z_Mean

5 Magnet_Y_Mean Magnet_Y_Mean Magnet_Y_STD

6 Magnet_Z_Mean Magnet_Z_Mean Gyro_Mean_S_M

7 Magnet_STD_S_M Magnet_STD_S_M Gravity_Mean_S_M

8 Gravity_Kurt_S_M Gravity_Kurt_S_M Orientation_Kurt_S_M

9 Gravity_Mean_S_M Gravity_Z_Mean Orientation_Y_Mean

10 Gravity_STD_S_M Gravity_STD_S_M Orientation_Z_Skew

11 Orientation_Kurt_S_M Orientation_Kurt_S_M Orientation_X_STD

12 Orientation_Skew_S_M - Orientation_Z_STD

13 Orientation_Z_Skew - -

6.3.3.2 Feature Selection

Our motivation to incorporate the feature selection strategy is to reduce the algorithm
training time and computational cost because the proposed approach targets the smart-
phones - as they have limited resources compared to laptops/desktops. We tried 2 WEKA-
implemented feature selection schemes, namely, CfsSubsetEval(CSE)3 and
InfoGainAttributeEval(IGAE)4.

CSE feature selection scheme ranks different features based on their predictive power
along-with the degree of redundancy between them [108]. We applied CSE scheme with
BestFit bidirectional search method to find the best subset. BestFit searching algorithm
searches the whole attribute space and find the best (the most meritorious) feature subset
by applying greedy hillclimbing approach. The scheme evaluated, in total, 1792 , 2128,
2352 subsets and found a best subset of 13, 11 and 12 features for USER_PRESENT,
PACKAGE_REMOVED and PACKAGE_ADDED, broadcast receivers (see the Table

3
http://www.dbs.ifi.lmu.de/ zimek/diplomathesis/implementations/EHNDs/doc/weka/attributeSelection/CfsSubsetEval.html

4
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html
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Figure 6.4: Feature Selection from USER_PRESENT, PACKAGE_REMOVED PACKAGE_ADDED
broadcast event data using IGAE.
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6.4).
IGAE - a mutual-information based feature selection scheme, ranks the features based

on their contained information gain with respect to the class. The outcome of this scheme
provides the feature ranking based on their feature weights (higher the better and zero is
non-productive). We filtered out all the non-productive features and formed a feature sub-
set with the non-zero feature-weight features- features above the read line are used for fur-
ther analysis for the 3 broadcast events, i.e., USER_PRESENT, PACKAGE_REMOVED
and PACKAGE_ADDED (see Figure 6.4). More specifically, our selected feature subset
becomes 39, 51 and 53 features long for USER_PRESENT, PACKAGE_REMOVED and
PACKAGE_ADDED events, respectively.

We used all of our data as training set for performing feature selection. The reason
behind this setting is the fact that we used classifier-independent feature selection schemes
(which do not involve any classifier) avoiding any possible overfitting.

6.3.4 User Authentication Model

Smartphone user authentication has essentially been a binary class classification problem
(owner Vs impostor). However, due to the availability of only owner data, the 1-class
approach is considered as more appropriate (as model training with owner and impostor
may lead to the privacy concerns). Therefore, the realistic approach is the training of
the authentication model only on the legitimate user’s data and apply a novelty detection
approach (1-class classification) to detect the impostors. As such, we deal the smartphone
user authentication as a 1-class classification problem [31][5][29].

Our authentication model, for each query attempt, detects whether it is a normal one
(from the owner) or an anomalous one (from the impostor) by comparing it with each of
the probe samples in the database. The decision is made on the basis of the difference
between the query and probe samples, i.e., less different samples are accepted as coming
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from the legitimate users.

6.3.4.1 Model Training/Testing

The process of model building starts by profiling one of our users as the owner, and the
remaining users as impostors (as in the Chapter 4). We train and test each of our consid-
ered verifiers in two scenarios, i.e., owner verification scenario, and impostors detection
scenario. In owner verification scenario, the system is trained on the training data of
the “owner" class and then tested with the testing data of the same class (owner). This
setting provides the binary outcome, i.e., accept or reject. Due to the limited number
of observations per user, we consider cross-validation (with K = 10) as the appropriate
approach for model training and testing. A cross-validation method randomizes the data
and splits it into 10 equal folds. In each iteration, one of the fold is used for testing,
and the remaining folds are used for training the classifier. This approach looks justified
because in this way each observation gets tested. At the end, all the results are averaged
over all the folds and the cross-validation accuracy is reported. We report all accepted
results under TAR and all rejected results under FRR.

Similarly, in the impostor detection scenario, the model is trained on the observations
of owner data and tested with the data of the remaining users (impostors). This setting
also results in two outcomes, i.e., FAR and TRR - all accepted attempts are marked under
FAR and all rejected attempts are marked under TRR. This testing is repeated for all
the users and average results are reported.

6.3.5 Verifier Selection

The choice of the verifier is always dependent on the nature of the problem. Since the work
targets smartphones, we focused on the recently proposed verifiers [5][27], i.e., 1 − class
Multilayer Perceptron(MLP), 1−class Fast Random Forest (FRF), and 1−class Gaussian
Data Description (“Gauss_DD5”) verifier.

MLP is part of the Artificial Neural Network (ANN) family and FRF belongs to the
decision tree family. RF6 verifier grows multiple classification trees and each input feature
vector is fed to these trees and asked to predict the label for input feature vector on the
basis of majority voting. More classification trees may increase the accuracy, however, at
the cost of more memory. Another motivation to include this verifier is its ability to deal
with a large number of features.

Gauss_DD models the target class as a Gaussian Distribution and instead of density
estimation, it applies the Mahalanobis distance [109] (as per the equation 6.1) to classify

5http://homepage.tudelft.nl/n9d04/functions/gauss_dd.html
6https://www.stat.berkeley.edu/ breiman/RandomForests/cc_home.htm
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the incoming sample (as per the equation 6.2).

f(x) = (x− µ)TΣ−1(x− µ) (6.1)

f(x) =

{
target if f(x) ≤ θ

outlier if f(x) > θ
(6.2)

where µ, Σ and θ are the mean, covariance matrix and the threshold for decision
making, respectively.

6.3.6 Verifier’s Parameter Optimization

This section outlines the steps taken in order to identify the best parameters for all the
verifiers. As CSE features have performed well, we will limit the verifier optimization on
that feature subset only. We use the same protocol (i.e., owner Vs all would-be attackers)
for evaluating different parameters for all the verifiers.

For designing an MLP neural network, the question How many hidden layers? is
very important and the solution depend mainly on the characteristics of the dataset, e.g.,
is the data linearly separable? For linearly separable dataset, the default settings, i.e.,
one hidden layer, could provide the optimum results. However, because of the presence
of non-linear data, we tried a number of hidden layers between 1 : 10 to find the best
parameter.

The study carried out by Oshiro et al. [110] showed the importance of the number of
trees in a forest, i.e., they reported that a large number of trees in a forest does not always
provide significant performance improvement, while it does increase the computation cost,
i.e., memory, processing, etc. We tested 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 number
of trees.

The implementation of Gauss_DD verifier in DD_Tools [109] does not have any spe-
cific optimization parameter rather a regularization parameter, which is used to add some
regularization to the estimated covariance matrix to increase the accuracy. The default
regularization parameter is set to 0.001. We tried different parameters, i.e., 0.0000625,
0.000125, 0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, for fine tuning. Our
obtained results for this verifier are illustrated in the Figure (6.10, 6.11, and 6.12). X-axes
values are replaced with their logarithmic equivalent for better readability.
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Table 6.5: Authentication results (in %) averaged over all 80, 50 and 49 users for USER_PRESENT,
PACKAGE_REMOVED and PACKAGE_ADDED broadcast events, respectively.

USER_PRESENT PACKAGE_REMOVED PACKAGE_ADDED
Classifiers TAR FAR Accuracy TAR FAR Accuracy TAR FAR Accuracy

MLP 80.37 34.84 72.76 42.20 9.69 66.25 41.83 6.23 67.80
FRF 79.75 34.62 72.56 41.80 9.60 66.10 41.63 6.00 67.82

GAUSS_DD 66.56 42.29 65.50 70.00 31.67 69.17 69.39 32.31 68.50

6.4 Results

We report our obtained results for each of the chosen broadcast receivers, i.e., USER_PRESENT,
PACKAGE_REMOVED, and PACKAGE_ADDED. We report accuracy along-with the
TAR and FAR values in order to avoid the redundancy, i.e., as FRR = 1 − TAR,
FAR = 1− TRR.

Figure 6.5: Results of GAUSS_DD verifier (with default reg-
ularization parameter) with IGAE features. Results are aver-
aged over 80, 50 & 49 users, respectively.
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We illustrate the obtained re-
sults for three broadcast receivers
in the Table 6.5 (before applying
any feature selection/parameter
optimization technique). The
Figures (6.7 - 6.9) show the com-
parison of performance of MLP
and FRF verifiers, and (6.5 & 6.6)
for Gauss_DD verifier over the
chosen IGAE and CSE features.

In the tables (see 6.6 & 6.7),
we show the obtained results for
MLP and FRF verifier for dif-
ferent optimization parameters.
Similarly, we show the results of
a Gauss_DD verifier on different
regularization parameters in the
Figures 6.10, 6.11, and 6.12. We have focused more on the best performing verifier,
i.e., Gauss_DD, for showing up the results. For example, for MLP and FRF verifiers,
we show only the achieved TAR (see figures 6.7, 6.8, and 6.9) whereas for Gauss_DD
verifier, we show the results in terms of TAR, FRR, FAR, TRR and accuracy in order to
show a clear picture.

We observed a gradual increase in the verifier’s performance from the full features
to feature selection and parameter optimization. With the full feature set, MLP per-
formed comparatively better yielding 80.37% for USER_PRESENT followed by FRF
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Figure 6.6: Results of GAUSS_DD verifier (with default regularization parameter) with CSE features.
Results are averaged over 80, 50 & 49 users, respectively.
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with a TAR of 79.75%. However, both the classifiers were not found useful for PACK-
AGE_REMOVED and PACKAGE_ADDED receivers because of less number of avail-
able samples (just 10 for each). Gauss_DD verifier remained consistent for full feature
sets of USER_PRESENT, PACKAGE_REMOVED, and PACKAGE_ADDED, respec-
tively, which shows its robustness against the less number of training samples. Addi-
tionally, it outperformed both MLP and FRF verifiers on the selected IGAE and CSE
features as well (see Figures 6.7, 6.8, 6.9, 6.5 and 6.6). The most accurate verifier, i.e.,
Gauss_DD with default parameters, using CSE (the most productive feature subset),
yielded a TAR of 79.69%, 96%, and 89.9%, at an FAR of 23.19%, 14.12%, and 13.01% for
USER_PRESENT, PACKAGE_REMOVED, and PACKAGE_ADDED broadcast re-
ceivers, respectively. While this TAR further improves to 84.06%, 98%, and 93.88% with
a decrease in FAR (from 23.19% to 19.57%) for USER_PRESENT, (14.12% to 14.00%)
for PACKAGE_REMOVED, and (13.01% to 9.1%) for PACKAGE_ADDED with the
best chosen regularization parameter.
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Figure 6.7: Comparison of the obtained TAR for Full, IGAE, and CSE based feature subsets for MLP
and FRF verifiers for USER_PRESENT dataset.
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Figure 6.8: Comparison of the obtained TAR for Full, IGAE, and CSE based feature subsets for
PACKAGE_REMOVED dataset.
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Figure 6.9: Comparison of the obtained TAR for Full, IGAE, and CSE based feature subsets for
PACKAGE_ADDED dataset.
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Figure 6.10: Parameter Optimization: GAUSS_DD performed well with 0.0000625 regularization pa-
rameter for USER_PRESENT broadcast receiver (TAR = 84.06%, FAR = 19.57% and accuracy =
82.24%). Obtained results are averaged over 80 users.
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Figure 6.11: Parameter Optimization: GAUSS_DD performed well with 0.004 regularization param-
eter for PACKAGE_REMOVED broadcast receiver (TAR = 98%, FAR = 14% and accuracy = 92%).
Obtained results are averaged over 50 users.
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Figure 6.12: Parameter Optimization: GAUSS_DD performed well with 0.0000625 regularization pa-
rameter for PACKAGE_ADDED broadcast receiver (TAR = 93.88%, FAR = 9.1% and accuracy =
92.36%). Obtained results are averaged over 49 users.
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Table 6.6: Authentication results of MLP verifier (in %) for different number of hidden layers averaged
over all 80, 50 and 49 users for USER_PRESENT, PACKAGE_REMOVED and PACKAGE_ADDED
broadcast events, respectively.

USER_PRESENT PACKAGE_REMOVED PACKAGE_ADDED
#layers TAR FAR TAR FAR TAR FAR

1 84.97 25.51 55.40 5.71 56.12 3.81
2 86.25 25.51 58.40 5.70 61.22 3.86
3 85.78 26.23 59.80 5.62 61.42 4.11
4 86.03 26.04 59.80 5.77 61.22 4.47
5 86.84 25.93 59.60 5.77 62.44 4.40
6 86.72 25.80 60.00 5.74 62.65 4.59
7 86.69 25.67 60.80 5.96 62.04 4.59
8 86.63 25.70 60.40 5.96 62.86 4.72
9 86.84 25.92 60.40 6.03 64.08 4.71
10 84.97 25.21 61.40 5.71 63.27 4.74

Table 6.7: Authentication results of an FRF verifier (in %) for different number of trees averaged
over all 80, 50 and 49 users for USER_PRESENT, PACKAGE_REMOVED and PACKAGE_ADDED
broadcast events, respectively.

USER_PRESENT PACKAGE_REMOVED PACKAGE_ADDED
#trees TAR FAR TAR FAR TAR FAR

2 29.19 23.27 25.00 13.70 21.84 13.42
4 62.40 32.88 36.00 15.27 32.29 10.88
8 71.69 24.94 29.40 10.56 28.77 10.65
16 80.97 24.03 37.00 6.83 36.12 9.70
32 82.72 24.97 45.40 4.37 44.08 5.18
64 83.81 24.51 51.80 3.66 48.98 5.07
128 84.19 24.31 52.60 3.65 50.00 3.04
256 84.47 24.31 53.00 5.39 50.61 3.07
512 84.63 24.26 52.40 5.37 51.42 3.07
1024 84.78 24.26 52.60 5.48 51.84 3.03

6.5 Discussion

We present a completely unobtrusive phone’s micro-movement based one-shot-cum-continuous
smartphone user authentication scheme - ACTIVEAUTH which grants access to only a
genuine user, on one hand, and ensures an authenticated session, on the other. AC-
TIVEAUTH starts monitoring the user right from the time of unlocking and keeps track-
ing the package installation and/or uninstallation throughout the session.
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As a first step, we analyzed the phone’s micro-movement data generated right after
the triggering of the three broadcast receivers, namely, USER_PRESENT,PACKAGE
_REMOVED, and PACKAGE_ADDED. We exploit only these broadcast events because
they don’t require any user permission, interaction, or cooperation. For the intended
(cooperative) users ACTIVEAUTH can be equipped with multiple broadcast receivers
and almost every user action (e.g., sending SMS, opening a banking app, etc.) can be
authenticated.

In total 123 user downloaded the application, however, for various reasons, we could
utilize 80, 50, and 49 users data associated withUSER_PRESENT, PACKAGE_REMOVED,
and PACKAGE_ADDED broadcast receivers, respectively. We take into account 40 sam-
ples per user for USER_PRESENT event, and 10 samples per users for the other two
broadcast events. For us, number of users are more important than number of observation
per sample, so we set a threshold of just 10 samples per user to accomodate more users
(for PACKAGE_REMOVED and PACKAGE_ADDED), similar to TDAS dataset[111]
- their collected keystroke based dataset contains just 10 samples from each of 150 users.

All the chosen verifiers showed better accuracy based on CSE features as compared
IGAE features and on full feature set (Table 6.5). The reason is because most of the
features are found redundant and non-productive (as shown in the Figure 6.4). It is worth
noticing that with few CSE-based features, i.e., 13, 11 and 12 for USER_PRESENT,
PACKAGE_REMOVED and PACKAGE_ADDED (Table 6.4), respectively, we observed
significant increase in the obtained accuracy. Additionally, the computational cost of these
shorter feature vectors will be very less as compared to those with full features.

This accuracy is further improved by applying parameter optimization. We evaluate
the performance of ACTIVEAUTH over the range of hidden layers (1 : 10), number of
trees (2:1024) and regularization parameters (0.0000625:0.032). We show that the perfor-
mance can further be improved by applying the verifier’s parameter optimization. With
different regularization parameters, Gauss_DD is the most accurate verifier and classified
with an accuracy of 82.24% for USER_PRESENT, 92% for PACKAGE_REMOVED,
and 93.88% for PACKAGE_ADDED data.

Among all the chosen verifiers, Gauss_DD outperformed the other two verifiers with
a final TAR of 84.06% (at 19.57% FAR), 98% (at 14% FAR), and 93.88% (at 9.1% FAR)
for USER_PRESENT, PACKAGE_REMOVED, and PACKAGE_ADDED, broadcast
events, respectively. We consider 80, 50, 49 users sufficient enough to prove the initial
intuition.

As a future work, we will prototype a proof-of-concept app and evaluate it in terms
of its performance and usability. The app will continue collecting the corresponding data
from the above-mentioned broadcast receivers in daily usage and after reaching a best
number (like 50 - 100 observations), it will notify the user about the availability of this
behavioral modality for authentication.
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6.6 Chapter Summary

In this chapter, we presented a fully unobtrusive one-shot-cum-continuous smartphone
user authentication scheme. The proposed scheme monitors the entire user session right
from the start (at login) and keeps tracking the user interactions, i.e., the addition/removal
of an application package. Our scheme collects data from multiple built-in smartphone
sensors after the OS notifies the user presence through USER_PRESENT, package instal-
lation through PACKAGE_ADDED and package uninstallation through PACKAGE_REMOVAL
broadcasts. The scheme uses state-of-the-art verifiers to authenticate the user, and
grants access to the genuine user. This property of passive authentication validates AC-
TIVEAUTH as an user-friendly authentication scheme. Similarly by exploiting multiple
built-in sensors (avoiding additional hardware) ACTIVEAUTH can be enabled on any of
off-the-shelf smartphone available in the market today.

Preliminary results ofACTIVEAUTH validate the effectiveness of the proposed scheme.
Though our obtained verification results are based on a relatively smaller dataset, still
showing the feasibility of the scheme for a non-intrusive and user-friendly one-shot-cum-
continuous smartphone authentication system.
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Chapter 7

ITSME: A Multi-Modal System for
Transparent User Authentication on
Smartphones

In this chapter, We propose a new tri-modal behavioral biometric that uses features col-
lected while the user slide-unlocks the smartphone to answer a call. In particular, we
use the slide swipe, the arm movement in bringing the phone close to the ear, and voice
recognition to implement our behavioral biometric. We implemented the method on a
real phone and we present a controlled user study among 26 participants in multiple sce-
narioâĂŹs to evaluate our prototype. We show that for each tested modality the Bayesian
network classifier outperforms other classifiers (Random Forest algorithm and Sequential
Minimal Optimization). The multi-modal system using slide and pickup features im-
proved the unimodal result by a factor two, with a FAR of 11.01% and a FRR of 4.12%.
The final HTER was 7.57%.

This chapter is based on our published work in [29]: Attaullah Buriro, Bruno Crispo,
Filippo Del Frari, Jeffrey Klardie, and Konrad Wrona. ITSME: Multi-modal and unobtru-
sive behavioral user authentication for smartphones, in Proceedings of the International
Conference on Passwords, pp. 45-61, Springer, 2015.

7.1 Introduction

Unimodal systems use information from a single source, as such they had to deal with a
range of problems like noisy data, spoof attacks and unacceptable high error-rates. Some
of these issues can be addressed by combining multiple sources of information [112]. Due
to the presence of multiple (mostly) independent features, the performance is expected to
increase [113].

Using biometrics authentication for smartphone users faces two important challenges.
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First, users may use the phone in different situations and contexts (i.e. while walking, sit
on a chair, standing up, in the dark, etc.). Thus, any realistic solution should accommo-
date the possibility that data acquisition may fail or that a particular feature might be
temporarily unavailable. Second, the solution must require as small effort as possible to
users. Studies suggest that usability issues are a major driver of users’ adoption decisions
[20].

To partially address these challenges this chapter presents a novel multi-modal biomet-
ric system for smartphone users authentication. The system uses slide-unlock features,
pickup movements and voice features while placing or answering a call. Being multi-modal
the solution aims at robustness, such that the users can still be authenticated even if some
of the modalities fail.

To address the problem of usability, our authentication scheme requires zero effort
to the users. The users are not required to perform any action for the sole purpose of
authentication. In fact, entering a password or PIN is more noticeable. Last but not least,
our system can be implemented on most of the smartphones available on the market today.

7.1.1 Contributions

The main contributions of this paper are:

• The proposal of a novel and fully unobtrusive tri-modal behavioral biometric user
authentication solution, based on: slide - how a user slide-unlocks, pickup - how a
user brings her phone to her ear for call making/answering, and voice recognition.

• Experimental validation of ITSME in different situations.

• The collection and sharing of data from multiple sensors in multiple user situations
from 26 users.

7.2 Related Work

This section reports related work that specifically take mobile devices into consideration.
A wider survey of biometric authentication in general can be found in [2, 114] and [30].

7.2.1 Unimodal Systems

In [115], Frank et al. consider touch operations for continuous authentication where a
single type of operations are used (strokes or slides). An EER of 13% has been reported for
one single stroke, and 2% to 3% for 11 subsequent strokes. In [56], a user is authenticated
not only on the password pattern provided, but also the way she performs that input. A
lab study and a long-term study provide evidence that it is possible to distinguish users
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and to improve the security of password patterns on even simple screen unlocks. The
accuracy rate of the simple unlock is 57% at best (two-finger vertical unlock), while the
accuracy of the password patterns is around 77%. In [57], Angulo et al. explored the
same approach for improving password-patterns with biometrics. Using a Random Forest
classifier an EER of approximately 10.4% is achieved.

Sae-Bae et al. [58] presented a multi-touch gesture-based authentication technique. In
such approach, a classifier, which uses pattern recognition techniques, classifies movements
characteristics of the center of the palm and fingertips. An average EER of 10% with
single gestures was achieved, with improvements up to 5% EER when combining multiple
gestures in a sequence.

In [97] Derawi et al. authenticate users based on gait recognition using accelerometers
available in any modern mobile device. Using a low end phone (the Google G1 phone
containing the AK8976A embedded accelerometer sensor) an EER of 20% is reached.

Tao et al. [116] implement a fast face detection and registration method based on
a Viola-Jones detector [117]. A face-authentication method based on subspace metrics
is developed. Experiments using a standard mobile camera showed that the method is
effective with an EER of 1.2%.

7.2.2 Multimodal Systems

In [118], Saevanee et al. used SMS texting activities and messages in a multimodal au-
thentication system. Keystroke dynamics and linguistic profiling was used to discriminate
users with error rates of 20%, 20% and 22%, respectively. A fusion of these three led to
an overall EER of 8%.

Aronowitz et al. [119] introduced a new biometric modality called “chirography"
which is based on user’s writing on multi-touch screens using their fingers. By fusing this
with face and voice features, an EER of 0.1% is reached in an office environment, and
0.5% in noisy environments.

In [120] Ferrer et al. introduced a multimodal biometric identification system that is
based on the combination of geometrical, palm and fingerprint features of the user’s hand.

In [121] a multimodal authentication approach is presented by Kim et al., using teeth
and voice data acquired using mobile devices. The individual matching scores obtained
from these biometric traits are combined using a weighted-summation operation. An EER
of 2.13% was reported.

In [122], McCool et al. introduced a fully automatic bi-modal face and speaker system.
A Nokia N900 was used during tests and EER results of 13.3% and 11.9% for female and
male trials respectively have been reported for the fused score. This is a 25% performance
improvement for the female trials, and 35% improvement for male trials.
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7.3 Approach

In this section, we explain the technology and building blocks we used to build our solution.

7.3.1 Intuition Assessment

In [28] Conti et al. introduce a new biometric measure to authenticate smartphone users;
the movement a user performs when answering (or placing) a phone call. Authors show
that this movement is unique enough for authentication. Interested readers are referred
to this study [28] for intuition assessment.

7.3.2 Our Solution

Several experiments with a prototype based on this study [28] in a controlled environ-
ment have shown that the method is effective and that the performance is comparable
to that of other transparent authentication methods, based on face or voice modalities.
These experiments also highlighted an issue with the data acquisition process, due to
the variability in determining the end of the arm movement. To address this issue with-
out compromising the unobtrusive nature of the initial idea we extended the solution as
follows:

When placing or answering a phone call, three common steps have to be taken: 1)
the user must unlock her phone, 2) bring it to her ear, and 3) speak to the microphone.
Our multi-modal authentication solution uses features from all three steps to determine
whether or not the current user is genuine, or if she is an impostor.

The complete system consists of four parts: slide movement recognition, pickup move-
ment recognition, voice recognition and fusion. The data features are described in this
section, while the next section describes the actual classification framework including
fusion.

7.3.3 Considered Sensors

We considered three built-in smartphone sensors, namely, accelerometer, orientation and
gyroscope for movement and MIC for voice recording, respectively.

Voice recognition has been a well tested and evaluated modality. Therefore we did
not create a new method for this modality, but decided to use an existing open source
implementation that worked with our mobile environment. Creating the voice models
consists of several steps:

1. An audio sample is recorded for 2500ms at a sample rate of 8 kHz using 16 bits
per sample with one channel. The resulting pulse-code modulation (PCM) data is
stored in a temporary WAV file on the device.
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2. Using the recorded voice sample, we calculate the Mel-Frequency Cepstral Coeffi-
cients (MFCCs) [123] and store them in a feature vector. MFCCs have been very
popular in the realm of speech recognition due to its ability to represent the speech
amplitude spectrum in a compact form [124]. Creating MFCCs is done by 1) con-
verting the waveform into frames, 2) take the discrete Fourier transform, 3) take the
Log of the amplitude spectrum, 4) Mel-scaling and smoothing, and 5) applying the
discrete cosine transform.

3. Apply KMeans clustering to partition the dataset into k clusters where each obser-
vation belongs to the cluster with the nearest mean.

4. The MFCC features are then used as data instances that we use to create models
for our classifiers.

7.3.4 Considered Classifiers

We performed verification with three different verifiers, i.e., 1-class BayesNET (BN) clas-
sifier, 1-class RF and 1-class Sequential Minimal Optimization (SMO)- a WEKA version
of support vector machine (SVM). We chose these classifiers because they were shown to
be very efficient in previous behavioral-based work [27, 31]

We imported WEKA library in our project and implemented our prototypes on the
smartphone.

7.4 Experimental Analysis

7.4.1 Setup

We conducted a controlled user study to test the effectiveness of our mechanism. We
recruited 26 participants of which 16 were male, and 3 operated their phone using their left
hand. All of them were familiar with the slide-to-unlock pattern. Ages of our volunteers
were ranging from 14 to 55. 2 participants were 14− 19, 12 were 20− 29, 7 were 30− 39,
1 was 40− 49 and 4 were 50 or older.

We created an Android application that targets SDK version 4.4 (Kitkat) and mini-
mally requires version 4.0.3 (Ice Cream Sandwich). We implemented both the training
phase and the classification phase using WEKA 3.7 on an android smartphone. The
training module allows the user to anonymously record slide movements, pickup move-
ments and voice samples, which are sent to a central server. The classification module
was implemented as a proof of concept and to analyze the performance on mobile phones.

A central server running on the Amazon cloud platform collected the training features
in a database. A local running Java application (using Java 1.7) using the same classi-
fication module as implemented in Android was then used to test the robustness of the
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Figure 7.1: Android slide lock: (a) the default state, (b) the state when a user drags the knob towards
the circular boundary.

(a) (b)

system. We used a Google Nexus 4 device by LG running Android 5.1 during the study.
This device has a 4.7 inch screen, a Qualcomm APQ8064 Snapdragon 1.5 GHz Quad-core
processor, 2 GB RAM, an accelerometer, a gyroscope and a proximity meter.

In each session, we first explained the purpose of the study to the participants and
asked them if we could use their data anonymously, and noted their age and gender. After
that we moved to the actual trials. Each user was required to collect at least 20 slide
samples, 20 pickup samples and 10 voice samples. Samples that were distorted in any
way could be removed by the user.

For the slide and pickup movements, we instructed the participants to first do five
movements while sitting or standing still and after that five while walking around. Then
the user was asked to open a news app and read the fifteenth headline, which required the
user to count while scrolling to the headlines. This usually confused users, and many had
to recount from the top because they tried to wrap their head around the purpose of this
task, and lost count. The goal of this distraction task was to minimize the learning effect
that can occur when doing the same movement many times in quick succession. After the
user read the article, she was again requested to record five movements while sitting, and
five movements while walking.

7.4.2 Data Collection

We use the default Android slide lock as depicted in Figure 7.1. The center knob can
be dragged towards any direction. When the user drags the knob and then release it, at
least as far as the circular boundary (slightly visible in the right image in Figure 7.1), the
phone will be unlocked. If the knob is released before reaching the boundary, the phone
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stays locked.
During the training phase a pickup event starts when the user clicks the start button,
and ends automatically when the phone is at the user’s ear (detected by the proximity
detector). When used in combination with the other two modalities (e.g., during authen-
tication), the sample starts when the slide unlock ends, and also finishes when the phone
reaches the user’s ear.
The Android system continuously delivers SensorEvents1 to an event listener. As we use
three sensor (accelerometer, gyroscope, orientation sensor), a delivered event can be pro-
duced by one of the sensors. Every time we receive a new event for any of the sensors, we
extract the x, y and z values, and store them.
For the voice sample recordings, we requested the user to simply speak into the micro-
phone as if they were answering a phone call, but to make sure to use a relatively lengthy
sentence to fill the 2.5 seconds of recording. Most users used a sentence similar to Hello,
this is John Doe. Who am I speaking to?. An audio sample is recorded for 2500ms at a
sample rate of 8 kHz using 16 bits per sample with one channel. The resulting pulse-code
modulation (PCM) data is stored in a temporary WAV file on the device.

7.4.3 Feature Extraction

7.4.3.1 Slide

A slide sample starts when the user touches the knob for the first time, and ends when
the knob is released (e.g., the user stops the touch event). One slide is a path encoded
as a sequence of vectors (tn, xn, yn, pn, sn). Only complete samples (samples that would
unlock the phone in the original non-biometric implementation) are considered, others
are simply discarded.

Table 7.1: Slide features.

Feature Unit

Time offset ms

X-position px

Y-position px

Pressure Normalized value between 0 and 1

Size Normalized value between 0 and 1

During the slide event the fea-
tures in Table 7.1 are recorded
at a average sampling rate of 150
Hz. From the given MotionEvent
we extract multiple features. The
time offset (tn) indicates the offset
since the start of the touch event
in milliseconds.

The x- and y-position (xn, yn)
are measured in pixels and indi-
cate the exact position of the knob
(controlled by the users touch) on the screen. Over time these coordinates create a path

1http://developer.android.com/reference/android/hardware/SensorEvent.html
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from the initial position of the knob towards the boundary of the circle, indicating exactly
how the user moved the knob.

The touch pressure (pn) of the touch event indicates the approximate pressure applied
to the surface of the screen. The value is normalized to a range from 0 (no pressure at
all) to 1 (normal pressure), but values higher than 1 may be generated depending on the
calibration of the input device.

The size (sn) is a scaled value of the approximate size of the area of the screen being
touched. The actual value in pixels corresponding to the touch is normalized with the
device specific range of values and scaled to a value between 0 and 1.

7.4.3.2 Pickup

During the pickup event the features in Table 7.2 are extracted at an average sampling rate
of 190 Hz. The time offset (tn) indicates the offset since the start of the pickup event in
milliseconds. One pickup movement is encoded as a sequence of vectors (accxn, acc

y
n, acc

z
n,

gyroxn, gyro
y
n, gyro

z
n, rot

x
n, rot

y
n, rot

z
n, tn).

Table 7.2: Pickup features.

Features Units

1− 3 X-acceleration Y-acceleration Z-acceleration m/s2

4− 6 X-gyroscope Y-gyroscope Z-gyroscope rad/s

7− 9 X-orientation Y-Orientation Z-Orientation rad

10 Time offset ms

7.4.3.3 Voice

Using the recorded voice sample, we calculate the Mel-frequency Cepstral Coefficients
(MFCCs) [123] and store them in a feature vector. MFCCs have been very popular in the
realm of speech recognition due to its ability to represent the speech amplitude spectrum
in a compact form [124]. The MFCC features are then used as data instances that we use
to create models for our classifiers.

7.4.4 Data Fusion

In our multi-modal mechanism, we use multiple biometric traits (slide movement, pickup
movement and voice) which need to be fused to output one single decision: accept or
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reject. We fused these modalities at match-score level. However, because each modality
performed differently, we give each modality a weight, based on it’s unimodal performance.

Consider three modalities x, y and z, having an error rate (er) of 0.1, 0.2 and 0.3
respectively. Obviously, modality x is much better than y and z, and should therefore
have a higher weight. For each classifier c we can calculate a success index. The success
index indicates how much the classifier contributes to the sum 1− er(c) for each classifier
c.

index(c) = 1− er(c)
n∑
i=1

er(i)
(7.1)

The eventual weight can then be calculated using:

weight(c) =
index(c)
n∑
i=1

index(i)
(7.2)

Filling in the values for three modalities x, y and z, they would get weights of 0.42,
0.33 and 0.25, respectively. Better modalities get higher weights.

7.4.5 Analysis

During the training phase, we only have training data available for a single instance class;
the genuine user (the target class). At prediction time new instances with unknown class
labels will have to be classified as either the target class or unknown. To handle this
type of learning problem, typically called 1-class classification, we wrap each classifier in
a 1-class classifier2.

7.4.5.1 Decision Making

To measure the performance of the classifiers, we use the cross-validation method. The
dataset is randomized and then split into k folds of equal size. In each iteration, one fold
is used for testing, and the other k − 1 folds are used for training the classifier. We use
k = n, meaning we apply leave-one-out cross-validation. The test results are averaged
over all folds, which give the cross-validation estimate of the accuracy. This method is
useful because we are dealing with small datasets and the idea is to test each sample.
Using cross-validation we utilize the greatest amount of training data from the dataset.

2http://weka.sourceforge.net/packageMetaData/oneClassClassifier/
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When evaluating the performance of a biometric system, multiple criteria should be
considered [41]. Biometric authentication systems make decisions based on the following
decision function:

f(x) =

{
accept, if c(I,x) ≥ ∆

reject, otherwise
(7.3)

where c(I, f) is the output of the underlying classifier c that indicates how certain
it is that the claimed identity I is correct based on the given dataset (features) x. The
threshold ∆ defines when an identity claim is accepted or rejected. Access to the system
is granted if the score is greater than or equal to the threshold, and rejected otherwise.

7.5 Parameters and Attributes Selection

Before we show any results, we first need to identify the exact data and models under
test. During the research we did extensive experiments to find the optimal setup. This
section will describe the results of these intermediary tests which will lead us to the best
performing combination of parameters and attributes. The actual performance of the best
classifier will be discussed and evaluated in the next section.

These tests have been carried out on a random subset (length: 10) of the participants
in the user test. For each configuration considered, we calculated the equal EER based
on all samples of the genuine user, and 10 random samples per other (non-genuine) user.

7.5.1 Parameters

This section will outline the steps taken to find the best set of parameters per classifier
per modality. For each modality, we use all features as described in Section 7.4.3, and do
a grid search to find the best performing set of parameters. We also record the average
model generation time so we can filter out configurations that would take too long on
mobile phones.

Below we will discuss the parameters per classifier, while the results are presented at
the end of this subsection.

7.5.1.1 BayesNet Classifier

For the BayesNET classifier, we tested each combination of parameter values shown in
Table 7.3. Preliminary tests have shown that the use of a Random order or AD trees had
almost no effect on the outcome of the classifier. Therefore we set them to false and did
not consider them in the grid search.
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Table 7.3: Parameters considered in BN grid search.

Parameter Considered values

Score type {Bayes,BDeu,MDL,Entropy,AIC}
Max parents {0, 1, 3, 5}
Alpha (α) {0, 0.25, 0.50, 0.75}
Naive bayes {yes, no}
Markov blanket {yes, no}
Random order {no}
AD trees {no}

Appendices A.1, A.2 and A.3 show the top 20 parameter configurations for each modal-
ity. Note that for the pickup modality, because of time limitations, we only tested a
maximum of 3 and 5 parents.

7.5.1.2 SMO Classifier

Table 7.4: Parameters considered in the SMO grid
search.

Parameter Considered values

C {2−4, 2−2, 20, 22, 24}
Gamma (γ) {2−8, 2−4, 20, 21, 22}
Epsilon (ε) {1E − 12}
Num folds {−1}

The effectiveness of SMO mainly depends
on the kernel, the kernel’s parameters, and
the parameter C. Often a Gaussian kernel
is used [125], which only takes one param-
eter gamma (γ). We will use the same ap-
proach and do a grid search with exponen-
tially growing sequences of C and γ to find
the best combination of these parameters.

Table 7.4 shows the parameter values
we considered in our search. Appendices
A.4, show the top 20 parameter configuration for slide modality only.

We tested each possible combination listed in the Table 7.4. Note that we did not finish
the SMO test for the pickup and voice modalities. The first test result took approximately
144 seconds of computation time per model. Considering each parameter configuration
test computes 236 models, and we tested 25 combinations, it would take almost 10 days
to finish. Such long computation times are unacceptable on mobile phones.

7.5.1.3 RF Classifier

The search for the optimal parameter set in the RF classifier is rather simple, as only the
number of trees used is of major influence on the outcome. However, picking the right
number of trees is not necessarily a trivial task. Research by Oshiro et al. [110] has shown
that a larger number of trees in a forest does not always have a significant performance
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gain, while it does increase the computational cost.
Experiments by Oshiro et al. [110] concluded that a range of 64 to 128 trees could

provide a good balance between performance, processing time and memory usage. As
such, we used these numbers as a starting point and tested 2, 4, 8, 16, 32, 64, 128, 256,
512 and 1024 number of trees.

Appendices A.5, A.6 and A.7 show the parameter configurations for each different
number of trees, for each modality.

Table 7.5: Best classifier per modality.

Slide Pickup Voice
Classifier Comp. Time EER Comp. Time EER Comp. Time EER
BayesNET 64 0.1242 762 0.2045 205 0.2681

RF 4453 0.1434 13988 0.2083 4402 0.2452
SMO 8433 0.1864 ∼144000 - 548 0.2709

Table 7.5 gives an overview of the best performing classifiers for each modality. The
parameter tests show that the BayesNET classifier yield the best results overall. Only
with the voice modality the RF classifier yields slightly better results. However, the
BayesNET is much faster.

Further tests in this chapter will be done only with the best performing classifiers.
From this point on when talk about the classifier, we mean the BayesNET classifier, with
it’s parameters configured as shown in Table 7.6, based on the modality at discussion.

Table 7.6: Parameter configuration per modality

Modality Naive Bayes Markov blanket Max parents Score type Alpha
Slide T T 5 Entropy 0.25
Pickup T F 3 Bayes 0
Voice F F 5 Entropy 0

7.5.2 Attribute Selection

Besides the parameters used to configure the classifiers, another aspect of high influence
is the data attributes that are being used. To find out the best setup, again we perform
a grid search.

Appendix A.8 shows the top 15 attribute configurations for the slide modality. The
classifier performs best when all attributes are being used: (x, y, pressure, size, offset)
(see first row of the Appendix A.8). Appendix A.9 shows the best performing pickup
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attribute settings. This time, we see the best results when a subset of the attributes are
being used: (accX, accY, accZ, gyroX, gyroY, gyroZ, rotY, rotZ, offset). So, note that
rotX has been excluded from further analysis.

We will use the BayesNET classifier configured per modality as described in the pre-
vious section. From here on, when we discuss the classifier, it will be the BayesNET
classifier using all attributes.

7.6 Results

The results we present here are based on the user data we collected during the controlled
users tests, fed into the classifiers with their parameters configured as described in the
Section 7.5.1. For each user this gives us a certainty number (higher means more similar
to the reference model) for both genuine and impostor samples.

It is important to note that when testing a classifier for user u, we use all samples
from all other users to do our impostor tests. By doing so, we have much more impostor
samples than genuine samples, leaving the FRR much more sensitive to deviations than
the FAR.

Given the data from the user we can find the optimal threshold ∆∗
α. The optimal

threshold is the threshold for which the WER rate is at its minimum (see Equation 2.5).

7.6.1 Unimodal Systems

7.6.1.1 Slide

We tried different values α to find the optimum threshold of given α = 0.4, we found that
the optimal threshold ∆∗

α = 49. Re-running the tests with this threshold gives us a FAR
of 22.28% and a FRR of 4.84%.

The HTER (defined in Equation 2.6) can now easily be computed:

HTER(49) =
22.28% + 4.84%

2
= 13.56% (7.4)

7.6.1.2 Pickup

The optimal threshold ∆∗
α = 42. Running the tests with this threshold gives us a FAR of

26.69% and a FRR of 6.19%.

HTER(42) =
26.69% + 6.19%

2
= 16.44% (7.5)
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7.6.1.3 Voice

The optimal threshold ∆∗
α = 85. Running the tests with this threshold gives us a FAR of

63.92% and a FRR of 12.69%.

HTER(85) =
63.92% + 12.69%

2
= 38.30% (7.6)

It is evident that slide and pickup modalities are better than voice modality. Still,
we are using it here to show how the use of multi-modal biometric authentication can
improve a unimodal authentication system.

7.6.2 Multi-modal Systems

7.6.2.1 Slide+Pickup Modalities

As described in Section 7.4.4 we use a match-score level fusion method, using weights
for each classifier output. We calculate the weight using Equation 7.2. In the previous
subsection, we have seen that the slide and pickup classifiers have a HTER of 13.56% and
16.44% respectively. Filling in the equation this gives us a weight of 0.55 for slide and
0.45 for pickup.

The optimal threshold ∆∗
α = 55. Re-running the tests with this threshold gives us a

FAR of 11.01% and a FRR of 4.12%. Calculating the HTER gives us:

HTER(55) =
11.01% + 4.12%

2
= 7.57% (7.7)

Comparing the slide and pickup modalities individually with this multimodal system,
we can see that the latter performs almost twice as good.

7.6.2.2 Slide+Pickup+Voice Modalities

We have seen that the slide, pickup and voice classifiers have HTERs of 13.56%, 16.44%

and 38.30% respectively. Using Equation 7.2 this results in weights 0.40 (slide), 0.38

(pickup) and 0.22 (voice).
The optimal threshold ∆∗

α = 62. Running the tests with this threshold gives us a FAR
of 10.72% and a FRR of 3.93%. Calculating the HTER gives us:

HTER(62) =
10.28% + 3.93%

2
= 7.33% (7.8)

A quick comparison shows that adding voice modality to the multimodal system using
slide and pickup features does not improve the results significantly but still better (HTER
7.33% Vs HTER 7.57%).
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7.7 Discussion

The results show that the slide modality is better than the pickup modality. The main
cause for this observation is that the pickup modality is much more sensitive to the kind
of activity the user performs while unlocking her phone. Because the rotation, gyroscope
and acceleration of the device are the main features of the modality, the user’s activity
while unlocking has major influence on the classifier outcome: walking, running, standing
in a crowded bus; they all have different impact on the motion sensors of the device.

The slide modality on the other hand does not use motion sensors but rather uses
touchscreen. Touchscreen determines finger position, pressure and size on a screen which
are much less influenced by external factors, making the modality more robust in a range
of different scenario’s.

When combining the slide and pickup modalities, we can see that the FAR improves
significantly.

The voice modality is obviously not good enough (based on our experiments) and may
not be deployed in real world because of higher error rates - FAR of 63.92% and FRR
of 12.69%. The reason(s) for worst voice results may be due to the low quality of the
open source library and by the fact we applied only basic clustering mechanisms. Still,
the fusion of all three modalities yielded better results.

System like ours are suitable for risk-based authentication scenarios (e.g., mobile bank-
ing applications), where security may need to be traded for availability dynamically and
adaptively.

This research can be extended in multiple directions. To validate the results presented
here a larger user study should be conducted. The impact of situations, context and
environment may have on this type of biometrics need to be investigated further.

7.8 Chapter Summary

In this section, we proposed a new multi-modal biometric system for smartphone user
authentication that focuses on usability. The system uses features collected during a
slide-unlock movement on a smartphone. We use finger position, pressure, size and time
offset to generate a model and classify future slide movements. We shown how the fusion
of unimodal systems to multi-modal ones, using slide, pickup and voice modalities, can
significantly improve the authentication performance.

We have applied three different classifiers, i.e., BN, RF and SVM. BN classifier out-
performed the other classifiers in terms of error rates and computation time.

From the three unimodal modalities we tested (slide, pickup and voice); the slide
modality performed best with a FAR of 22.28% and a FRR of 4.84%, resulting in a
HTER of 13.56%. The pickup modality performed slightly worse, with an FAR and FRR
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of 26.69% and 6.19% respectively, and an HTER of 16.44%. However, with their fusion,
we were able to achieve much improved performance (by a factor of two). A FAR of
11.01% and a FRR of 4.12% were reached, resulting in a HTER of 7.57%.

The voice based model performed much worse as the open source library we used
was simply not good enough. However, we have shown the potential improvement of a
multi-modal system using slide, pickup and voice modalities.
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Chapter 8

Conclusion and Future Work

In this dissertation, we have addressed the problem of user authentication on smartphones
by proposing, efficient, robust, user-friendly and hardware-friendly, behavioral biometric
based solutions as a replacement to existing cumbersome and annoying authentication
mechanisms. In particular, we have identified a novel human behavior - the “Hold" be-
havior, by which users can be profiled and verified, transparently without any hassle.
It becomes extremely difficult to mimic the “Hold" behavior because of the natural dif-
ferences in the human body structure. We have reported its efficacy in both unimodal
(Chapters 5 & 6) and bi-modal (Chapters 3 & 4) systems. For example, in the Chapter
5, we have proposed a fully “Unobtrusive User Authentication" mechanism, based on the
profiling of user’s hand micro-movements after the occurrence of an unlock event. Based
on the collected user’s hand micro-movements with the help of state-of-the-art machine
learning classifier, our scheme assesses whether or not the smartphone is activated by
the legitimate user. Similarly, In Chapter 6, we proposed ACTIVEAUTH - an extended
version of our earlier proposed approach (Chapter 5). This approach is equally useful
both for one-shot and continuous authentication scheme. ACTIVEAUTH is based on
the profiling of user’s hand micro-movements after the occurrence of USER_PRESENT,
PACKAGE_REMOVED and PACKAGE_ADDED broadcast receivers. Both methods
do not involve any PIN, password or token or any other remembered action and require
zero user effort, thus, they are completely transparent and applicable on the smartphones
with and without any authentication mechanism enabled. This property of passive au-
thentication validates the two mechanism (5 & 6) as the user-friendly authentication
schemes.

We have shown that the accuracy of multi-modal system increases to a significant
extent by adding this modality to the existing touch-based approaches. For example,
in Chapter 3, we have proposed a user authentication schemes based on two human
behaviors, i.e., (i) how a user types a 4-digit free-text PIN, password on the touchscreen,
and (ii) the phone movements while doing so. Similar to the Chapter5, we profiled the
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user hand’s movement with the available built-in sensors, however the profiling time was
short - time required to enter 4-digit most preferred PIN, password. The participants were
allowed to use any combination of 4-digit number and alphabets. The addition of phone-
hold modality and the choice of any combination of text differentiates “Touchstroke"
from the classical keystroke dynamics. The users of “Touchstroke" were found to be
quite comfortable while using this authentication mechanism because it transparently
collects the data of hold-behavior and provides the flexibility of entering any 4-digit text.
Similarly, Chapter 4 presents a variant of “Touchstroke" and is based on two human
behaviors- how a user holds her phone in one hand (phone-movement) and how she writes
her name on the touchscreen. We profiled the phone micro-movements using smartphone
sensors (like “Touchstroke" 3) and register touch behavior using the pressed touch-points
collected from the touchscreen. Our proposed “Hold & Sign" method does not take
into account the image (because the image can be copied and mimicked [51]). We do
acknowledge that typing a PIN is easier than writing something on the touchscreen,
however, the PINs can be forgotten, whereas the user always remembers their name. It
becomes extremely difficult to launch shoulder surfing and smudge attacks as compared to
steal the PINs and password. In “Hold & Sign", even if an attacker can see what is being
written on the touchscreen, the access can still be denied because a would-be adversary
cannot mimic the phone-movements of the legitimate user.

We have proposed multiple schemes for smartphone user authentication, and now in
the process of finalizing the other implementations along-with their security and usability
evaluation (for Android devices). We have reported in this thesis an evaluation of one of
our proposed mechanisms (Hold & Sign) in terms of security, robustness and usability.
Obtained results indicate a positive sign of user acceptability.

What makes our solutions unique and better is their minimal or no user effort re-
quirement - our solutions authenticate their users with either minimal or without their
explicit user cooperation. In addition, all of our solutions exploit the existing hardware
(avoiding additional hardware requirement), and hence can be implemented on most of
the smartphone available in the market today.

8.1 Future Research Dimensions

Despite great progress in mobile biometrics including the work presented in this thesis,
there exist several challenging issues to be addressed yet. The research work presented in
this dissertation can be extended in the following dimensions:

100



CHAPTER 8. CONCLUSION AND FUTURE WORK 8.1. FUTURE DIMENSIONS

8.1.1 Prototyping Proof-of-Concept Applications

We are in the process of finalizing and testing of our prototypes proof-of-concept applica-
tions based on our findings reported in this thesis (see Chapter 5,6, 3, and 7). Although,
we introduced a activity-fusion strategy in Hold & Sign method (see Chapter 4), however,
it was limited to just 3 activities. As the smartphone is supposed to be used in all the
user positions, the final prototypes should be accurate enough in activity recognition to
compare the query pattern with the pre-stored patterns related with that specific user
activity. So, the final prototypes will take into account mechanism(s) to recognize the
daily-based user situations (e.g., using JigSaw [91]) while authenticating.

8.1.1.1 Performance Analysis

We will evaluate our final proof-of-concept applications in terms of multiple perfor-
mance related measures, i.e., (i) accuracy, (ii) sample acquisition time, (iii) authenti-
cation/decision time, (iv) incurred CPU and memory overheads, (v) power consumption,
and (vi) deployment issues on smartphones. We will also try to solve the usability vs
accuracy trade-off, i.e., how many patterns the user would like to register for training and
based on this number which classifier works better. We will also evaluate the impact of
choosing optimum number of samples over other performance related parameters.

8.1.1.2 Usability Analysis

We will test the usability of our prototype applications (both in in-lab and out-of-lab set-
tings) using state-of-the-art usability analysis tools, e.g., Software Usability Scale (SUS)1

etc. Our usability analysis will also comprise of some structured/semi-structured inter-
views to better evaluate the usability of our prototype applications/methods.

8.1.1.3 Adversarial and Security Analysis

Generally, the papers related to mobile biometrics report only the performance accuracy
of the proposed authentication system, while ignoring the analysis against attacks. Hence,
an study of their robustness against various attacks remain unexplored. More specifically,
in such approaches, an impostor does not intentionally aims to fool the system without
targeting any registered genuine user.

We will evaluate the robustness of all of our prototypes against the different attacks
in different adversarial situations and report their accuracy against random, targeted and
engineered attacks.

1https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.
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8.1.2 Permanency Analysis

The performance of any biometric-based authentication solution continuously varies due to
observed within-person variations for various reasons related to environment and context.
For example, the impact of being drunk on the accuracy of the system. Additionally, the
accuracy is also affected due to aging and physical and/or mental health.

Research needs to be done to evaluate the impact of aging and the user’s physical
and/or mental conditions on our proposed schemes. Additionally, research on possible
approach(es), to eliminate the effects of variations in health and age, need to be done in
order to minimize the continuous deterioration in the performance of the the authentica-
tion solutions.

8.1.3 Analysis for Continuous Authentication

Continuous user authentication on smartphones, in general, and seemless or frictionless
authentication, in particular, are clearly at initial stages and the proposed solutions are
mainly based on users geographical location, device type, network, etc.

The proposed schemes can further be extended in terms of continuous user authenti-
cation.

8.2 Closing Remarks

In this dissertation, we have provided solutions for hassle-free and unobtrusive smart-
phone user authentication using behavioral biometrics. Instead of solving the problem
with the existing approaches (using the existing datasets), we investigated and integrated
novel behaviors (hence requiring fresh data) for the evaluation. Therefore, it is worth-
mentioning that our obtained results are based on our collected datasets. In addition, all
of our proposed solutions exploit built-in smartphone sensors hence avoiding the cost of
any additional dedicated hardware.
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Table A.1: Parameter Selection for BayesNET classifier on slide modality.

Naive
bayes

Markov
blanket

Max
parents

Score
type Alpha ms/model EER

T T 5 Entropy 0.25 64 0.1242

T F 5 Entropy 0.25 90 0.1242

F T 5 Entropy 0.25 114 0.1242

T T 3 Entropy 0.75 60 0.1263

T F 3 Entropy 0.75 92 0.1263

T T 5 Entropy 0.50 64 0.1278

T F 5 Entropy 0.50 83 0.1278

F T 5 Entropy 0.50 106 0.1278

F T 3 Entropy 0.75 93 0.1286

F F 5 Entropy 0.25 83 0.1310

T T 3 Entropy 0.25 56 0.1311

T F 3 Entropy 0.25 83 0.1311

T T 3 Entropy 0.50 58 0.1334

T F 3 Entropy 0.50 80 0.1334

F T 3 Entropy 0.25 85 0.1336

F F 3 Entropy 0.25 52 0.1339

F F 3 Entropy 0.50 72 0.1346

F F 3 Entropy 0.75 59 0.1351

F T 3 Entropy 0.50 82 0.1355

F T 3 Bayes 0.25 119 0.1386
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Table A.2: Parameter Selection for BayesNET classifier on pickup modality.

Naive
bayes

Markov
blanket

Max
parents

Score
type Alpha ms/model EER

T T 3 Bayes 0 762 0.2045

T F 3 Bayes 0 898 0.2045

F T 5 Bayes 0.5 6832 0.2102

F F 3 Bayes 0.25 1283 0.2123

F T 3 Bayes 0.25 1275 0.2137

T T 5 Bayes 0.75 5642 0.2143

T F 5 Bayes 0.75 5648 0.2143

T T 3 BDeu 0 777 0.2155

T F 3 BDeu 0 897 0.2155

T F 5 Bayes 0.5 5645 0.2167

T T 5 Bayes 0.5 5660 0.2167

F F 5 Bayes 0.75 6880 0.2179

F T 5 Bayes 0.75 6848 0.219

T T 3 Bayes 0.25 885 0.2197

T F 3 Bayes 0.25 905 0.2197

T T 3 Bayes 0.5 883 0.22

T F 3 Bayes 0.5 898 0.22

F T 3 BDeu 0 1244 0.2211

T F 3 Entropy 0 1795 0.2215

T T 3 Entropy 0 2354 0.2215
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Table A.3: Parameter Selection for BayesNET classifier on voice modality.

Naive
bayes

Markov
blanket

Max
parents

Score
type Alpha ms/model EER

F F 5 Entropy 0 205 0.2681

F T 5 Entropy 0 306 0.2681

F F 5 AIC 0.5 143 0.3001

F F 0 AIC 0 162 0.3001

F F 0 Bayes 0.5 163 0.3001

T F 1 MDL 0.5 164 0.3001

F F 1 Entropy 0.75 164 0.3001

F F 0 BDeu 0.75 166 0.3001

F T 0 BDeu 0.25 169 0.3001

T F 0 Entropy 0.5 170 0.3001

T F 1 Entropy 0.25 171 0.3001

F T 0 BDeu 0.5 172 0.3001

F F 0 Bayes 0.75 172 0.3001

T F 0 MDL 0.25 173 0.3001

T F 1 MDL 0.75 173 0.3001

T F 0 Entropy 0.75 173 0.3001

F F 0 Bayes 0.25 173 0.3001

T T 1 AIC 0.25 175 0.3001

F F 0 BDeu 0.5 175 0.3001

T F 0 MDL 0.75 177 0.3001
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Table A.4: Parameter Selection for SMO classifier on slide modality.

C Gamma (γ) Epsilon (ε) Num folds ms EER

16 0.0625 1E-012 -1 8433 0.1864

0.25 0.0625 1E-012 -1 5865 0.1887

0.25 1 1E-012 -1 6018 0.1893

0.25 2 1E-012 -1 4717 0.1894

0.0625 2 1E-012 -1 4532 0.1899

4 1 1E-012 -1 3503 0.1903

1 2 1E-012 -1 3516 0.1903

1 1 1E-012 -1 4741 0.1908

0.0625 4 1E-012 -1 3598 0.1917

1 0.0625 1E-012 -1 4397 0.1946

0.25 4 1E-012 -1 3809 0.1952

16 1 1E-012 -1 3054 0.1979

4 2 1E-012 -1 3067 0.1984

0.0625 1 1E-012 -1 6501 0.1984

4 0.0625 1E-012 -1 7848 0.1984

16 4 1E-012 -1 2686 0.1993

16 2 1E-012 -1 2795 0.1993

16 0.00390625 1E-012 -1 4883 0.1996

4 4 1E-012 -1 2979 0.2002

1 4 1E-012 -1 3386 0.2002
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Table A.5: Parameter Selection for Random Forest classifier on slide modality.

Num trees ms/model EER

1024 4453 0.1434

512 2255 0.1531

256 1167 0.1596

128 1012 0.177

64 655 0.1778

32 562 0.1884

16 443 0.238

8 380 0.2486

4 335 1

2 259 1

Table A.6: Parameter Selection for Random Forest classifier on pickup modality.

Num trees ms/model EER

256 13988 0.2083

512 31898 0.2083

128 13248 0.2331

64 5571 0.2601

32 6208 0.263

16 3055 0.2757

8 2689 0.2769

4 1671 0.2894

2 1286 1
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Table A.7: Parameter Selection for Random Forest classifier on voice modality.

Num trees ms/model EER

512 4402 0.2452

256 2065 0.2485

1024 12251 0.2584

128 1209 0.2788

64 742 0.3554

32 563 0.5349

16 424 0.5736

8 352 0.5641

4 319 0.5516

2 251 0.5158
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Table A.8: Feature Selection for the slide modality.

X Y Pressure Size Offset EER

T T T T T 0.1178

T T T T F 0.1230

T T T F T 0.1363

T T F T T 0.1537

T T T F F 0.1542

F T T T T 0.1611

T T F T F 0.1629

F T T T F 0.1739

T F T T T 0.1809

T F T T F 0.1875

T T F F T 0.1944

T F T F T 0.2029

F T T F T 0.2062

T T F F F 0.2080

F T T F F 0.2171

F T F T T 0.2199

T F T F F 0.2287

F T F T F 0.2327

F F T T T 0.2523

T F F T T 0.2712
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Table A.9: Feature Selection for the pickup/lift modality.

accX accY accZ gyroX gyroY gyroZ rotX rotY rotZ time offset EER

T T T T T T F T T T 0.1589

T T F F T T F T T T 0.1606

T T T T F T F T T T 0.1633

T T F F F T F T T T 0.1642

T F T T F T F T T T 0.1648

F T T F F T F T T T 0.1650

F T T F T T F T T T 0.1655

T F T T T T F T T T 0.1656

T T F T F T F T T T 0.1656

T T T F T T F T T T 0.1660

F T T T T T F T T T 0.1661

T T T F F T F T T T 0.1674

F T T T F T F T T T 0.1681

T F F F T T F T T T 0.1692

F F T F T T F T T T 0.1697

T T F T T T F T F T 0.1697

T T F T T T F T T T 0.1699

T T T F T T F T T F 0.1715

T T T T F T T T T T 0.1717

T F T F F T F T T T 0.1720
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Appendix B

Demographic Questionnaire used in the
Chapter 6

• Who you are?

– Male

– Female

– I don’t want to disclose

• How old you are?

– ≤ than 20 years.

– > 20 years and ≤ 40 years.

– > 40 years and ≤ 60 years.

– > than 60 years.

– I don’t want to disclose

• Tell us about your nationality.

–

– I don’t want to disclose

• Which hand(s) do you use for interacting with your smartphone?

– Right

– Left

– Both

– I don’t want to disclose
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