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Chapter 1 

General Introduction 

 

The classical view of the visual system distinguishes between two visual pathways 

(Ungerleider & Mishkin, 1982; Goodale & Milner, 1992). According to this view, after visual 

information reaches primary visual cortex (V1) it is processed along the dorsal visual stream 

that stretches into parietal cortex, as well as along the ventral visual stream that proceeds 

towards the temporal cortex. The two streams differ in the visual properties they process: the 

dorsal stream, also known as “where” or “how” pathway, processes spatial properties of 

objects to guide reaching and grasping actions, thus subserving “vision-for-action” (Milner & 

Goodale, 1995). In contrast, the ventral visual pathway, also known as “what” pathway, is 

traditionally thought to process visual object properties and participate in object recognition, 

underlying “vision-for-perception”. This pathway culminates in ventral temporal cortex 

(VTC), which contains visual object representations (Grill-Spector & Weiner, 2014). There is 

substantial evidence in the literature that these representations are not organized randomly 

but have an underlying structure. However, the principles and the dimensions that drive VTC 

organization remain unclear (Kourtzi & Connor, 2011). 

In the classical neurophysiology literature, object recognition is thought to be achieved by a 

hierarchy of visual areas in the ventral stream, with each successive area sensitive to more 

complex stimulus features: starting with V1 (which processes simple visual features such as 

orientation) and ending in VTC, which represents complex shape configurations (Hubel & 

Wiesel, 1968; Tanaka, 1996; Riesenhuber et al., 2000). In the past two decades, accumulating 

evidence from the functional magnetic resonance imaging (fMRI) literature suggested that 

object representations in VTC are, at least in some cases, organized based on object category. 

Several cortical areas were discovered that respond preferentially to stimuli from a particular 

category. The category-selective areas include the fusiform face area (FFA) that responds 

more strongly to visually presented faces compared to other object categories (Kanwisher et 

al., 1997), the parahippocampal place area (PPA) that exhibits selectivity for landmarks and 

scenes (Epstein & Kanwisher, 1998), the extrastriate body area (EBA) that responds 

preferentially to images of bodies and body parts (Downing et al., 2001; Peelen & Downing, 
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2005), and the visual word form area (VWFA) that is selective to written words (Cohen & 

Dehaene, 2004). However, only a handful of all possible object categories are associated with 

dedicated functional areas, as demonstrated by a study that tested brain responses to 20 

object categories but did not reveal any additional category-selective areas apart from FFA, 

PPA, and EBA (Downing et al., 2006). 

The functional regions described above were discovered using a classical univariate approach 

by contrasting BOLD responses to different object categories. The use of a new data analysis 

method called multivariate pattern analysis (MVPA) has provided a breakthrough in research 

of object representations in the brain (for a review on the topic, see Haxby, 2012). Instead of 

comparing the magnitude of BOLD response, MVPA allows one to measure and compare 

spatial activity patterns elicited by different categories. In a landmark study, Haxby et al. 

(2001) demonstrated that different object categories elicit distinct patterns of response in the 

VTC. Importantly, these patterns could be used to discriminate between the two categories 

even after the regions that responded maximally to these categories were excluded from 

analysis, challenging the idea of focal category-selective areas. In general, MVPA has proved to 

be more sensitive to the fine-grained representational structure of VTC compared to 

traditional univariate analyses (Haxby et al., 2001) and was used extensively in the past 15 

years to study the widespread patterns of activity associated with different object categories. 

A version of MVPA called representational similarity analysis (RSA; Kriegeskorte, Mur, & 

Bandettini, 2008) allows to measure brain response patterns to large number of individual 

objects (instead of averaging responses for stimuli within a category) in order to explore the 

large-scale organization of object responses. Kriegeskorte et al. (2008b) used this approach 

and found that VTC response patterns of a large number of objects clustered according to 

object category: specifically, responses to animate and inanimate stimuli formed two distinct 

clusters, with responses to faces and bodies forming sub-clusters within a larger animate 

cluster. These results suggest that object animacy is an important organizing principle for 

object representations in the ventral stream. In the next section I will focus more closely on 

the animate-inanimate distinction in the brain and show that this idea is supported by 

literature in the fields of neuropsychology, monkey neurophysiology, and human fMRI. 
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The animate-inanimate distinction in the brain 

Evidence from neuropsychology suggests that the distinction between animate and inanimate 

objects is an important conceptual distinction in the brain (Warrington, 1981; Caramazza & 

Shelton, 1998; Forde & Humphreys, 1999). Specifically, knowledge pertaining to each of these 

categories can be selectively impaired after brain damage, with some patients showing an 

impairment in naming animals but not the inanimate objects, and other patients having the 

opposite deficit (Warrington & Shallice, 1984; Caramazza & Shelton, 1998). However, the 

interpretation of these deficits has been a source of debate. According to the so-called 

sensory/functional theory (SFT), conceptual knowledge is organized based on modality (e.g., 

visual, auditory, etc.), and different modalities are differentially important for recognizing 

animate and inanimate objects. Assuming that sensory (e.g., visual) properties are more 

important for identifying animals than inanimate objects, the deficit in processing animals can 

be caused by the damage to a visual semantic subsystem and not “animate” semantic 

subsystem (Warrington & McCarthy, Warrington & Shallice, 1984). However, the SFT has 

been challenged by other studies that argue that animate-inanimate distinction is a truly 

semantic distinction in the brain, with distinct neural mechanisms underlying the perception 

of these domains (Caramazza & Shelton, 1998). 

Moreover, a large amount of neuroimaging evidence suggests that animate and inanimate 

objects also have different neural representations in the ventral visual stream. Generally, 

responses to these categories follow lateral-to-medial organization in the posterior ventral 

temporal cortex, with animate stimuli (e.g., faces, animals) eliciting higher activation in the 

lateral fusiform gyrus and inanimate stimuli (e.g., houses, tools) more strongly activating the 

medial fusiform gyrus (Chao, Haxby, & Martin, 1999; Downing et al., 2006; Bell et al., 2009; 

Wiggett, Pritchard, & Downing, 2009). The category-selective regions described in the 

previous section fit in this organization, with FFA and EBA (selective to faces and bodies, 

respectively) located in the lateral portion of the fusiform gyrus, and PPA (selective to houses 

and scenes) located in the medial fusiform gyrus.  

Evidence from monkey neurophysiology further supports the idea of an animate-inanimate 

distinction in the ventral stream. Kiani et al. (2007) measured responses to large number of 

images in the inferior temporal (IT) cortex of the monkey and showed that IT population 

responses cluster according to object category, with animate and inanimate objects forming 
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distinct clusters. A human fMRI study using the same stimuli found strikingly similar 

representational structure in human VTC, showing that large-scale patterns of activity in VTC 

cluster according to object animacy (Kriegeskorte et al., 2008b). 

Recently, it has been suggested that the distinction between VTC representations of animate 

and inanimate stimuli is not a clear-cut binary distinction, but instead animacy is a continuous 

dimension, with object’s “degree of animacy” defined as the distance from the prototype, i.e., 

human (Connolly et al., 2012; Sha et al., 2014). In one study, researchers compared responses 

to different animal species and observed a pattern similar to classical lateral-to-medial 

organization (e.g., Chao et al., 1999), with “more animate” stimuli (e.g., primates) eliciting 

greater activation in lateral portions of VTC and “less animate” stimuli (bugs) activating 

medial portions of VTC mores strongly, similar to inanimate objects (Connolly et al., 2012). 

However, this study had several limitations, including the absence of inanimate stimuli for 

control and the small number of animal species sampled. A more recent study addressed 

these limitations and reported similar results, suggesting that graded animacy is a major 

organizing principle in VTC (Sha et al., 2014). 

To summarize, a large amount of evidence suggests that the animate-inanimate distinction is 

an important organizing principle for object representations in VTC. However, the factors 

driving this organization remain yet unknown. Specifically, it is unclear whether the animate-

inanimate distinction in VTC is driven by object animacy per se or, alternatively, by other 

object properties that covary with category: for example, visual features such as object shape. 

Indeed, apart from belonging to different categories, animate and inanimate objects also differ 

in how they look: most animals share common features such as head and legs, faces have oval 

shape, bodies are elongated. On the other hand, inanimate objects such as buildings or tools 

tend to have more right angles (Nasr, Echavarria, & Tootell, 2014). In the next sections, I will 

review the evidence supporting shape- or category-based accounts of VTC organization and 

propose a way to disentangle these two factors in the representation of animate and 

inanimate objects. 
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Evidence for shape- and category-driven organization of the ventral temporal cortex 

There is an ongoing debate about the source of the apparent category selectivity in VTC. 

Objects belonging to the same category often share visual features (e.g., oval shape for faces, 

angles for landmarks, four limbs for some animals). According to the object form topology 

account, information about object shape is represented topologically in VTC, with different 

object categories evoking distributed and overlapping responses in VTC defined by their 

shape (Haxby et al., 2000; Ishai et al., 1999). Recent studies have suggested that category-

selective regions in VTC are responding to the characteristic shape features of their preferred 

categories, rather than category information per se (Watson et al., 2014; Rice et al., 2014; 

Andrews et al., 2015). For example, one study has shown that FFA responds preferentially to 

oval shapes with more dots in the upper part than in the lower part (Caldara et al., 2006). 

Another series of studies demonstrated that PPA preferentially responds to cardinal 

orientations (Nasr et al., 2012) and rectilinear angles (Nasr et al., 2014), visual features that 

are characteristic for buildings. Rice et al. (2014) used MVPA to measure VTC response 

patterns to several object categories and found that within- and between-category 

correlations of category-evoked neural patterns can be explained by the corresponding 

correlations between the visual properties of objects from different categories. Finally, a study 

using neuronal recordings in monkeys failed to find animate-inanimate distinction in large-

scale VTC response patterns and concluded that the observed patterns were better explained 

by object shape (Baldassi et al., 2013). 

Despite the emerging evidence in favor of shape-based organization of VTC, a recent review 

has pointed out that shape cannot fully account for the observed category-selective patterns 

of activity showing that visual features are neither sufficient nor necessary to explain category 

selectivity (Peelen & Downing, submitted). The evidence that visual features are not sufficient 

to evoke category-selective responses comes from studies using ambiguous stimuli such as 

Mooney faces (Mooney, 1957). The response in face-selective areas increases only after the 

subject recognizes the stimulus as a face (Andrews et al., 2004), despite the visual input being 

the same. In another study, tool-selective activity increased after the subjects learned to use 

novel objects as tools (Weisberg et al., 2007). 

Visual features are also not necessary to evoke category-specific responses. In congenitally 

blind subjects, the same regions preferentially respond to living and non-living stimuli as in 
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sighted subjects, despite these subjects not having any visual experience (Mahon et al., 2009). 

However, this does not necessarily mean that object representations in congenitally blind 

individuals lack shape information. The shape conveyed by vision-to-sound substitution is 

known to activate object-selective areas in blind participants (Amedi et al., 2007). A recent 

study demonstrated that even in congenitally blind participants, patterns of activity in 

occipito-temporal cortex reflect shape similarity of objects presented with the auditory cue 

(Peelen et al., 2014). This shows that shape information seems to be present in VTC of both 

sighted and blind individuals. 

 

Disentangling object shape and object category 

Until recently, the two accounts of VTC organization - based on shape or category - have never 

been directly tested against each other. In many studies, the visual similarity between stimuli 

from different categories was measured post-hoc (e.g., Kriegeskorte et al., 2008b), but there 

was no attempt to pre-select the stimuli in a way to control for shape. Category and shape 

information can be disentangled by using a factorial design, in which objects from different 

categories are controlled for shape (e.g., Bracci & Op de Beeck, 2016). Several recent studies 

used this approach to study responses to tools and visually matched non-tools with fMRI 

(Macdonald & Culham, 2015), and body parts and matching clothes with MEG (Kaiser, 

Azzalini, & Peelen, 2016). 

Here we introduce a stimulus set designed to disentangle information about object shape and 

object animacy. This stimulus set consists of images of animate and inanimate objects that are 

carefully matched for shape (see Chapter 2). We also describe a behavioral paradigm that 

allows for measuring visual dissimilarity of the stimuli based on participants’ performance in 

a simple visual search task. Three behavioral visual search experiments (described in Chapter 

2) were conducted to measure different aspects of visual dissimilarity of the stimuli. In 

Chapter 3, we tested the hypothesis that visual dissimilarity can fully explain the category-

related patterns of activity in human ventral temporal cortex. Using fMRI, we demonstrated 

that this was not the case: category information was still present in VTC activity patterns after 

controlling for visual dissimilarity of the stimuli. Finally, in Chapter 4 we describe two MEG 

experiments in which we tested whether it was possible to disentangle information about 

object category and object shape reflected in MEG sensor patterns. This allowed us to look at 
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the time courses of shape and category information separately. We found that information 

about object shape, outline, and texture was reflected robustly in the MEG signal. Surprisingly, 

after regressing out visual dissimilarity, we found no residual information about object 

category in MEG signals, suggesting that MEG is less sensitive to this information compared to 

fMRI. 
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Chapter 2 

Creating a shape-matched stimulus set and quantifying visual dissimilarity 

 

Abstract 

In order to disentangle object shape and object category and examine their separate 

contributions to brain representations, it is important to select an appropriate stimulus set as 

well as to properly quantify visual dissimilarity of the stimuli. Here, we introduce a stimulus 

set that includes images of objects from two categories: animate and inanimate objects. 

Importantly, for each animate stimulus there is an inanimate stimulus carefully matched for 

overall shape features (i.e., snake and rope). This stimulus set allows one to study category-

selective brain responses while controlling for object shape. However, to ensure that our 

stimuli were indeed closely matched for shape and to obtain the concrete measure of visual 

dissimilarity for further analyses, it is important to select an appropriate method to quantify 

visual dissimilarity of the stimuli. Here, we provide an overview of existing methods for 

quantifying visual dissimilarity, from computational models of vision to behavioral methods. 

Finally, we describe a behavioral visual search task that is well suited to quantify perceptual 

similarity of the stimuli. Using this task, we conducted three behavioral visual search 

experiments to measure three different aspects of visual dissimilarity of our stimulus set: 

overall visual dissimilarity of the intact stimuli, outline dissimilarity, and texture dissimilarity. 

 

 

 

 

 

 

 

 

 



Chapter 2 

 

 

14 

 

Introduction 

Multiple neuroimaging studies that investigated category-selective brain responses have also 

controlled for object shape in some manner. Often this is done post hoc by using a 

computational model of visual similarity to show that the category-related responses cannot 

be explained by visual features (e.g., Kriegeskorte et al., 2008). However, these models do not 

capture all of the visual features that could be influencing the category-related responses. 

Very few studies have tried to explicitly match stimuli from different categories for shape 

(Bracci & Op de Beeck, 2016; Kaiser, Azzalini, & Peelen, 2016). 

In the present study, our goal was to create a stimulus set that would allow us to study 

independent contributions of shape and category (specifically, animacy) to the brain 

responses measured with fMRI and MEG. To this end, we created a stimulus set that included 

images of animate and inanimate objects. Critically, for each animate object there was an 

inanimate object that was similar to it in shape (e.g., a bird and an airplane). 

 

The stimulus set 

The stimulus set is shown in Figure 2.1. It consists of 16 individual stimuli which are 

organized into four sets of four objects, with four objects within each set having a roughly 

similar shape. Two objects of each set were animate, and two objects were inanimate. In 

addition, there were four exemplars of each object (e.g., four images of a snake), resulting in 

16 stimuli per set and a total of 64 stimuli. The complete stimulus set is shown in 

Supplementary Figure 2.1. All images were gray scaled and matched for luminance and 

contrast using the SHINE toolbox (Willenbockel et al., 2010). 

Since stimulus selection and matching was based on subjective and possibly superficial shape 

similarity judgements, we needed a more objective measure to quantify the visual 

dissimilarity of the stimuli and confirm our initial selection. In the next section, we review 

existing methods of measuring visual dissimilarity and introduce a behavioral visual search 

task that we used for this purpose. 
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Fig. 2.1. Stimulus set. The stimulus set consists of sixteen unique stimuli, divided into four shape-

defined subsets. All objects within each set have similar shape. Two objects of each set are 

animate (upper row), and two objects are inanimate (bottom row). In addition, we used four 

versions of each stimulus (see Supplementary Figure 1 for the complete stimulus set). 

 

Quantifying visual dissimilarity 

Various methods of quantifying perceptual similarity can be roughly divided into two main 

classes: computational and behavioral. In computational methods, the visual similarity is 

measured using some external model, such as pixel-wise similarity or biologically inspired 

models of visual processing. In behavioral methods, the visual dissimilarity is inferred from 

various behavioral measures, such as dissimilarity ratings, or reaction times (RTs) in 

behavioral tasks such as categorization or visual search. In the following sections, we will 

briefly describe these two classes of methods and provide some examples. 

Computational methods 

One approach to quantify visual dissimilarity of the stimuli is to use computational models. 

Different algorithms can be used to measure physical characteristics of the stimuli. Moreover, 

such models are often inspired by different stages of processing in the visual system, 

modeling object representations at different levels with the ultimate goal of relating them to 

behavior. 

The most straightforward way to measure physical dissimilarity between two images is by 

measuring their pixel-wise dissimilarity (e.g., Cutzu & Edelman, 1998, Grill-Spector et al., 

1999). However, sometimes two images can differ a lot in terms of pixels, but appear similar 
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to a human observer. One way to obtain a more sensitive dissimilarity measure is to estimate 

the transformation relating one stimulus to another and define dissimilarity as the number of 

matching errors in the process of transformation (e.g., Belongie, Malik, & Puzicha, 2002). Still, 

these models are limited when it comes to complex, naturalistic stimuli. Moreover, physical 

features of the stimuli could be very different from the perceptual features used by humans to 

judge visual similarity, as shown by studies in which physical and perceptual similarity are 

orthogonalized (Op de Beeck, Torfs, & Wagemans, 2008). 

One way to model perceptual similarity of the stimuli is to create computational models that 

are based on our knowledge of the visual system, and then compare the performance of the 

model with that of humans. The main example is HMAX, a biologically-inspired model of 

object recognition, which is organized by a hierarchy of layers modelling different areas of the 

visual system, starting with V1 and culminating in inferior temporal cortex, IT (Reisenhuber & 

Poggio, 1999). This model has been shown to accurately model human behavioral 

performance in visual categorization task (Serre, Oliva, & Poggio, 2007). However, HMAX 

failed to fully explain the representational geometry in IT, in particular, the clustering of 

object representations based on category (Kriegeskorte et al., 2008). 

Finally, one of the most recent advancements in the field of modelling object shape perception 

came with the use of deep neural networks (DNNs). The most common examples of DNNs are 

convolutional neural networks (CNNs), which are composed of several convolutional layers as 

well as fully connected layers, with the image label as the final output. CNNs were shown to 

classify images with surprisingly high accuracy (Krizhevsky, Sutskever, & Hinton, 2012), even 

reaching performance level close to that of humans (Szegedy et al., 2014). They can also be 

used to quantify shape dissimilarity. In a recent study, the outputs of deep neural networks 

were shown to correlate with perceived shape as measured by human ratings (Kubilius, 

Bracci, & Op de Beeck, 2016), suggesting that DNNs might be using similar object shape 

features to judge visual similarity as those used by a human observer. This might be the most 

accurate computational model of human visual processing so far. 
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Behavioral methods  

Computational models are powerful tools, but they are still only the approximations of the 

human ability to judge perceptual dissimilarity of stimuli. Even if model performance matches 

that of human, the features used by the two could still be different. It is therefore important to 

have a more direct measure of perceived visual similarity that is derived from actual human 

behavioral data. 

One of the most common ways to measure perceived dissimilarity is to present participants 

with pairs of stimuli and ask them to rate how visually dissimilar the two stimuli are on a 

numerical scale (e.g., Cortese & Dyre, 1998). However, with large stimulus sets this will 

require a large number of trials, which might be difficult for participants and affect their 

ratings. Moreover, this method only allows for comparison of two stimuli at a time, potentially 

missing how all of the stimuli within a stimulus set relate to each other. 

An interesting alternative is a method known as inverse multidimensional scaling (inverse 

MDS; De Leeuw & Groenen, 1997). Multidimensional scaling (MDS) refers to the process of 

visualizing the distances between n-dimensional vectors, for example, on a 2D plane 

(Torgerson, 1958; Borg & Groenen, 2005). Inverse MDS is the opposite process: by taking the 

arrangement of points on a 2D plane, one can infer the distances, and, therefore, the 

dissimilarity between them. This can be done by displaying all stimuli on a screen and asking 

participants to arrange the stimuli according to their visual similarity, moving similar images 

more closely together (Kriegeskorte & Mur, 2012). The advantage of this method as compared 

to pairwise ratings is that it allows participants to arrange all of the stimuli in one setting, 

capturing the dissimilarity not just of two stimuli at a time, but of all of the stimuli in relation 

to each other, providing a continuous measure of dissimilarity. This method is also well suited 

for large stimulus sets. 

Another way to infer visual dissimilarity from behavioral measures is to engage participants 

in a task that requires processing of stimuli and then measure how behavior changes as a 

function of visual similarity between the stimuli. One such measurement is reaction time (RT) 

in behavioral tasks such as categorization or visual search. 

Mohan & Arun (2012) introduced a visual search task in which participants were asked to 

search for a target surrounded by an array of identical distractors. When the target is very 
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visually different from the distractors, it “pops out” and is very easy to spot, which is reflected 

in short RTs.  However, this task gets more difficult as the target and distractor become more 

visually similar, which leads to longer RTs. By computing pairwise RTs for each target-

distractor pair, we can obtain distance matrix that contains pairwise dissimilarity values for 

all of the stimuli.  

This method is similar to pairwise ratings in a way that it requires the number of trials that is 

equal to the number of all possible pairwise comparisons within a stimulus set. However, the 

trials are shorter because the participants are not required to actively think about the rating 

but instead are performing a largely automatic bottom-up task. This way, participants are 

likely to experience less fatigue, making this task appropriate for our stimulus set size. 

Another advantage of this method is that the category of the stimuli is irrelevant to the task. 

Participants are not given any cue about the identity of the target before the search array 

appears, and the visual features of the stimuli are enough to accurately detect the oddball 

without necessarily processing the identity of all the stimuli. Finally, participants have to 

respond quickly, so there is less time to allow category similarity to affect their judgement of 

visual similarity, as could be the case with behavioral ratings. Since we are interested in 

disentangling visual and category dissimilarity, this task is ideal to obtain a visual 

dissimilarity measure that is not influenced by category. 

Measuring overall visual dissimilarity with the visual search task 

We set out to measure the pairwise visual dissimilarity for our stimuli using a visual search 

task similar to the one described by Mohan and Arun (2012). A series of three behavioral 

visual search experiments was conducted, each focused on measuring a separate aspect of 

visual dissimilarity. In all three experiments, participants searched for an oddball target 

surrounded by identical distractor objects (Figure 2.2A). The response time (RT) in this task 

is a measure of visual similarity: the longer the response time for locating the oddball 

stimulus, the more visually similar are the target and the distractor object. Experiment 1 

measured overall visual similarity, Experiment 2 measured outline visual similarity, and 

Experiment 3 measured texture visual similarity. 
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Experiment 1 (Overall visual dissimilarity) 

To quantify overall pairwise visual similarity of the stimulus set, 18 participants were tested 

in a behavioral experiment (two men; mean age = 22.5 years, SD = 2.97 years). Stimuli were 

presented on a 17-in. CRT monitor, and presentation was controlled using Psychtoolbox 

(Brainard, 1997). Each search display contained 16 objects placed in a 4 × 4 grid, with one 

oddball target and 15 identical images of the distractor object. The location of the 16 objects 

in the grid was randomized. The size of the target and seven of the distractors was 100 × 100 

pixels, which corresponded to 2.9° visual angle. The remaining distractors differed in size, 

with four being 120% of the target size (3.4° visual angle) and four being 80% of the target 

size (2.3° visual angle). This was done to minimize the effects of stimulus alignment that could 

facilitate the oddball detection. Participants had to indicate whether the oddball target 

appeared on the left side or on the right side of the screen. Importantly, no information about 

the category of the oddball target was provided. The search display remained on the screen 

until the response, followed by 500-msec fixation, after which the next trial started. The 

experiment consisted of four blocks. In each block, only one of the four exemplars of each 

object was used (e.g., always the same snake within one block), resulting in 16 unique objects 

and 240 trials per block (for all possible target-distractor pairings of the 16 stimuli). Accuracy 

was high (97.2%) and was not further analyzed. 

RTs were averaged across corresponding target-distractor object pairs and across blocks. The 

data from the visual search experiment served to create a matrix of overall pairwise visual 

dissimilarity. For this purpose, we took the inverse of these RTs (1/RT) for each stimulus pair 

as a measure of dissimilarity. The resulting visual dissimilarity matrix consisted of one visual 

dissimilarity value for every pairwise combination of objects (Figure 2.2B). Multidimensional 

scaling analysis (using cmdscale function in MATLAB, The MathWorks, Natick, MA) revealed 

that stimuli from the same shape sets clustered together (Fig. 2.2D), whereas there was no 

apparent categorical organization. Furthermore, within each shape set, we did not find any 

evidence for categoricality, with the average visual dissimilarity within categories (e.g., 

snake–snail) being equal to the average visual dissimilarity across categories (e.g., rope–

snail), t(17) = 1.22, p = .239. These results confirm our intuitive shape sets and show that 

there were no obvious visual properties that covaried with category membership. 
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Fig. 2.2. Measuring overall visual dissimilarity. (A) In the visual search experiment, participants 

indicated whether an oddball target in a 4 × 4 search array was located to the right or to the left of 

the vertical display midline. No prior information about the target was given, so that participants 

had to rely on bottom-up visual differences to perform the task. (B) From the RTs in this 

experiment, we created a visual dissimilarity matrix, where each element represents the inverse 

RT for a pair of stimuli, averaged across the two respective target-distractor pairings. High 

dissimilarity values correspond to short RTs, reflecting that target and distractor were visually 

dissimilar. (C) Hierarchical clustering plot based on the visual dissimilarity matrix, showing that 

with the exception of one stimulus (snail) the stimuli from four original shape sets cluster 

together. (D) Multidimensional scaling representations of the visual dissimilarity matrix confirmed 

that stimuli from the same shape sets clustered together. 

Experiments 2 and 3 (Outline and texture dissimilarity) 

To measure pairwise similarity of the outline shape of the stimuli, 18 new participants (three 

men; mean age = 23.3 years, SD = 3.4 years) were tested in Experiment 2. The experiment was 

identical to Experiment 1 except that the stimulus set consisted of outline drawings of the 
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stimuli, created by automatically tracing the outline contours of binarized silhouette versions 

of the original stimuli (Figure 2.3A). Accuracy was high (98.1%) and was not further analyzed. 

To measure pairwise texture similarity of the stimulus set, 18 participants (eight men; mean 

age = 25.7 years, SD = 5.5 years) were tested in Experiment 3. Two of the participants had also 

participated in Experiment 2. The experiment was identical to Experiments 1 and 2 except 

that the stimulus set consisted of circular texture patches, created by masking the original 

images with a circular aperture that covered about 20% of the image (Figure 2.3B). The 

aperture was centered on the mean pixel coordinate of the image. Any blank spaces were 

filled in using the clone stamp tool in Photoshop. This circular masking abolishes outline 

shape information, while leaving inner features and texture properties of the stimuli largely 

intact. It should be noted that these patches still contained some local structure (e.g., the inner 

contour of the snake) and may thus capture some internal shape features in addition to 

texture properties. Accuracy was high (98.1%) and was not further analyzed. 

 

Figure 2.3. Outline and texture of the original stimuli. (A) To measure outline dissimilarity of our 

stimuli, we used the outline drawings created by automatically tracing the outline contours of 

binarized silhouette versions of the original stimuli. (B) We also created a stimulus set consisting of 

texture patches taken from the center of each of the original stimuli to quantify texture 

dissimilarity. In this stimulus set, the information about object shape is lost, while the inner 

stimulus features are largely preserved. 
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Data for Experiments 2 and 3 were analyzed as in Experiment 1, resulting in dissimilarity 

matrices representing outline and texture dissimilarity of the stimulus set (Figure 2.4A and B, 

center). Further analyses showed that overall visual dissimilarity could be nearly perfectly 

predicted by a linear combination of outline and texture dissimilarity, with the optimal 

weights being 0.75 and 0.25, respectively. Linear combinations of dissimilarity matrices were 

computed by using data from different single participants (e.g., 0.75 × outline of one 

participant + 0.25 × texture of another participant), each of which was then correlated with 

the average visual dissimilarity matrix (with one participant left out). The resulting average 

correlation (r = .77) approached the noise ceiling of visual dissimilarity (r = .82, computed by 

correlating each participant's visual dissimilarity matrix with the group-averaged visual 

dissimilarity matrix, leaving out this participant). Finally, the combined model was 

significantly more strongly correlated with visual dissimilarity than was either outline or 

texture alone (p < .001, for both comparisons). These analyses show that overall visual 

dissimilarity is influenced both by outline and texture properties, which together almost fully 

explain overall visual dissimilarity. 

Figure 2.4. Measuring outline and texture dissimilarity. Two additional visual search experiments 

were conducted to measure (A) outline dissimilarity, and (B) texture dissimilarity of the stimuli. As 
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in Experiment 1, participants searched for an oddball target in a 4 × 4 search array (left) and 

responded whether it was located to the right or to the left of the vertical display midline. From 

the RTs in these experiments, we created visual dissimilarity matrices (center), where each 

element represents the inverse RT for a pair of stimuli, averaged across the two respective target–

distractor pairings. Multidimensional scaling representations of the two visual dissimilarity 

matrices are shown in the right panels. The two experiments differed only in the stimuli used: (A) 

outline drawings of the original stimuli and (B) internal textures of these images. 

Discussion 

In this chapter, we introduced a stimulus set designed to disentangle information about object 

category (specifically, animacy) and object shape. This stimulus set consisted of images of 

animate and inanimate objects, with each animate object being closely matched for shape 

with an inanimate object. 

Moreover, we described a behavioral visual search task that can be used to quantify different 

aspects of visual dissimilarity of the stimuli. We conducted three visual search experiments to 

measure overall dissimilarity, outline dissimilarity, and texture dissimilarity. In the first 

experiment using the original stimuli we confirmed that the stimuli within each of the four 

shapes are indeed perceptually similar to each other (Figure 2.2). Interestingly, we showed 

that both texture and outline contribute to overall visual dissimilarity of the stimuli, and that 

the overall visual dissimilarity can be almost perfectly described as a linear combination of 

outline and texture dissimilarity. 

Apart from quantifying the visual properties of our stimulus set and confirming the intuitive 

stimulus selection, these experiments provided us with visual dissimilarity matrices that 

could be used to relate neuroimaging data with the perceptual similarity of the stimuli. In 

particular, we aimed to use these matrices as predictors in representational similarity 

analysis (RSA) to disentangle the independent contributions of visual and category 

dissimilarity to neural dissimilarity (fMRI Experiment, Chapter 3). We then used them to 

investigate the time course of visual and category information reflected in MEG sensor 

patterns (MEG Experiment, Chapter 4). 
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Chapter 3 

Disentangling object shape and object category in human ventral temporal 

cortex: An fMRI study. 

 

Abstract 

Objects belonging to different categories evoke reliably different fMRI activity patterns in 

human occipitotemporal cortex, with the most prominent distinction being that between 

animate and inanimate objects. An unresolved question is whether these categorical 

distinctions reflect category-associated visual properties of objects or whether they genuinely 

reflect object category. Here, we addressed this question by measuring fMRI responses to 

animate and inanimate objects that were closely matched for shape and low-level visual 

features. Univariate contrasts revealed animate- and inanimate-preferring regions in ventral 

and lateral temporal cortex even for individually matched object pairs (e.g., snake–rope). 

Using representational similarity analysis, we mapped out brain regions in which the pairwise 

dissimilarity of multivoxel activity patterns (neural dissimilarity) was predicted by the 

objects' pairwise visual dissimilarity and/or their categorical dissimilarity. Visual 

dissimilarity was measured as the time it took participants to find a unique target among 

identical distractors in three visual search experiments, where we separately quantified 

overall dissimilarity, outline dissimilarity, and texture dissimilarity. All three visual 

dissimilarity structures predicted neural dissimilarity in regions of visual cortex. 

Interestingly, these analyses revealed several clusters in which categorical dissimilarity 

predicted neural dissimilarity after regressing out visual dissimilarity. Together, these results 

suggest that the animate–inanimate organization of human visual cortex is not fully explained 

by differences in the characteristic shape or texture properties of animals and inanimate 

objects. Instead, representations of visual object properties and object category may coexist in 

more anterior parts of the visual system. 
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Introduction 

Large-scale patterns of fMRI activity spanning the ventral temporal cortex (VTC) distinguish 

animate from inanimate object categories (e.g., Kriegeskorte, Mur, Ruff, et al., 2008), with 

animate objects evoking higher BOLD responses in lateral VTC and inanimate objects evoking 

higher BOLD responses in medial VTC (e.g., Mahon et al., 2007; Downing, Chan, Peelen, Dodds, 

& Kanwisher, 2006; Chao, Haxby, & Martin, 1999). Within these broader regions, focal regions 

exhibit selective responses to more specific categories, including regions selective for 

buildings and scenes, faces, tools, body parts, and words (Peelen & Downing, 2005; Cohen & 

Dehaene, 2004; Downing, Jiang, Shuman, & Kanwisher, 2001; Chao et al., 1999; Epstein & 

Kanwisher, 1998; Kanwisher, McDermott, & Chun, 1997). Although the selectivity for object 

categories in VTC has been widely replicated, particularly the animate–inanimate distinction, 

the factors driving this selectivity are still under debate (Andrews, Watson, Rice, & Hartley, 

2015; Grill-Spector & Weiner, 2014; Mahon & Caramazza, 2011; Op de Beeck, Haushofer, & 

Kanwisher, 2008; Martin, 2007). 

One of the key questions is whether category-specific patterns of brain activity reflect genuine 

categorical distinctions (Caramazza & Shelton, 1998) or whether these can be alternatively 

explained by factors that covary with category membership, such as shape properties. 

Because of the close association between certain visual properties and category membership, 

it is to be expected that category-selective regions are optimized for processing these visual 

properties and/or that these regions are located in parts of the visual system that have visual 

and retinotopic biases that are optimal for processing the visual features that are 

characteristic of the category. However, although specific visual properties often characterize 

object categories, these two dimensions (visual, categorical) are not identical and can indeed 

be experimentally dissociated. For example, although most tools are elongated, this shape 

property can be dissociated from the conceptual properties associated with tools (e.g., that 

tools are manipulable and used as effectors; Bracci & Peelen, 2013). For a visually more 

homogenous category such as animals, this distinction is more challenging but may still be 

addressed by testing responses to visually less typical examples (e.g., snakes) and, conversely, 

testing responses to inanimate objects that share visual features with animals (e.g., 

mannequins, dolls, statues). These considerations raise the intriguing question of whether 
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category selectivity in VTC reflects selectivity for conceptual category or selectivity for visual 

properties that characterize a category. 

According to the object form topology account, category-selective fMRI responses in VTC 

reflect the activation of object form representations that are mapped onto VTC in a continuous 

fashion (Haxby, Ishai, Chao, Ungerleider, & Martin, 2000; Ishai, Ungerleider, Martin, Schouten, 

& Haxby, 1999). The selective response to animals in VTC may thus arise from selectivity for 

characteristic animal shape(s) rather than selectivity for animacy per se. A recent monkey 

study provided support for this hypothesis, showing that the organization of animate and 

inanimate object representations in monkey inferotemporal cortex primarily reflects visual 

similarity rather than semantic similarity (Baldassi et al., 2013; but see Kiani, Esteky, Mirpour, 

& Tanaka, 2007). Further support for the visual similarity account comes from fMRI studies 

showing that category-selective regions in VTC respond selectively to visual properties that 

are characteristic of the regions' preferred categories, even for otherwise meaningless stimuli 

(i.e., in the absence of category recognition). For example, the fusiform face area was shown to 

respond more strongly to oval shapes with a greater number of black elements in the top half 

than to oval shapes with a greater number of elements in the bottom half, although none of 

these stimuli were recognized as faces (Caldara et al., 2006). Similarly, the parahippocampal 

place area, located within the medial inanimate-preferring VTC, was shown to respond 

preferentially to objects made up of cardinal orientations and right angles, features typical of 

manmade objects, buildings, and scenes (Nasr, Echavarria, & Tootell, 2014). 

Recent evidence against a “visual properties” account of category selectivity in VTC comes 

from studies in congenitally blind individuals. These individuals, with no visual experience, 

show a categorical organization of VTC that is remarkably similar to that observed in sighted 

individuals (Ricciardi, Bonino, Pellegrini, & Pietrini, 2014). For example, aurally presented 

words describing large inanimate objects, versus animals, activate medial VTC in both blind 

and sighted groups (He et al., 2013; Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza, 

2009). Using a variety of presentation methods, most of the category-selective VTC regions 

found in sighted individuals have now also been reported in blind individuals, often at nearly 

identical anatomical locations in the two groups (Striem-Amit & Amedi, 2014; Peelen et al., 

2013; Reich, Szwed, Cohen, & Amedi, 2011; Wolbers, Klatzky, Loomis, Wutte, & Giudice, 2011; 

Buchel, Price, & Friston, 1998). These studies show that the processing of visual features is 
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not necessary for some category-selective responses to develop. However, they do not exclude 

the possibility that category selectivity in VTC nevertheless reflects shape properties of 

objects. This is because VTC has been shown to extract object shape from nonvisual input 

modalities (Amedi et al., 2007; Amedi, von Kriegstein, van Atteveldt, Beauchamp, & Naumer, 

2005), with VTC activity patterns reflecting the shape similarity of objects in both blind and 

sighted groups (Peelen, He, Han, Caramazza, & Bi, 2014). 

This study was designed to investigate the contribution of shape similarity in the 

representation of animate and inanimate object categories in VTC. Participants viewed 

pictures of a variety of animals that systematically differed in their shape, grouping into four 

shape clusters (Chapter 2, Figure 2.1). Importantly, inanimate control objects were selected to 

closely match the animals in terms of their shape, following the same four shape clusters. This 

design allowed us to test whether animate- and inanimate-preferring regions (localized with a 

standard functional localizer) maintain their selectivity for carefully matched animate–

inanimate pairs (e.g., snake vs. rope) and whether this is true for a variety of animals (e.g., 

birds, insects, reptiles) and inanimate objects (e.g., plane, rope, pine cone). In addition to 

analyses measuring activation differences, we used representational similarity analysis (RSA) 

to map out regions in which neural similarity reflected the objects' visual and/or categorical 

similarity (animate/inanimate). For this purpose, we quantified pairwise visual similarity 

using visual search tasks designed to measure different aspects of visual similarity (overall 

visual similarity, outline similarity, and texture similarity; see Chapter 2 and Figure 3.1). 

 

Materials and methods 

Participants 

Eighteen participants (seven men; mean age = 25 years, SD = 2.4 years) were scanned at the 

Center for Mind/Brain Sciences of the University of Trento. All participants gave informed 

consent. All procedures were carried out in accordance with the Declaration of Helsinki and 

were approved by the ethics committee of the University of Trento. One participant was 

excluded from all analyses because of excessive head movement. 
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Stimuli 

The stimuli of the main experiment were organized into four sets of four objects. The four 

objects within each set all had a roughly similar shape. Two objects of each set were animate, 

and two objects were inanimate (see Chapter 2, Fig 2.1). In addition, there were four 

exemplars of each object (e.g., four images of a snake), resulting in 16 stimuli per set and a 

total of 64 stimuli. All images were gray scaled, placed on gray background and matched for 

luminance and contrast using the SHINE toolbox (Willenbockel et al., 2010). Stimulus 

presentation was controlled using the Psychtoolbox (Brainard, 1997). Images were back-

projected on a translucent screen placed at the end of the scanner bore. Participants viewed 

the screen through a tilted mirror mounted on the head coil. Stimuli were presented foveally 

and subtended a visual angle of approximately 4.5°. 

Visual Search Experiments 

To provide a measure of pairwise visual similarity of the stimulus set, a series of three 

behavioral visual search experiments was conducted. The experiments are described in detail 

in Chapter 2. In all three experiments, participants searched for an oddball target surrounded 

by identical distractor objects (Figure 3.1A). The response time in this task is a measure of 

visual similarity (Mohan & Arun, 2012): The longer the response time for locating the oddball 

stimulus, the more visually similar are the target and the distractor object. Experiment 1 

measured overall visual similarity, Experiment 2 measured outline visual similarity, and 

Experiment 3 measured texture visual similarity. 

Main fMRI Experiment Procedure 

The main fMRI experiment consisted of eight runs. Each run consisted of 80 trials that were 

composed of 64 object trials and 16 fixation-only trials. In object trials, a single stimulus was 

presented for 300 ms, followed by a 3700-ms fixation period (Figure 3.2A). In each run, each 

of the 64 images appeared exactly once. In fixation-only trials, the fixation cross was shown 

for 4000 ms. Trial order was randomized, with the constraints that there were exactly eight 1-

back repetitions of the same category (e.g., two snakes in direct succession) within the object 

trials and that there were no two fixation trials appearing in direct succession. Each run 
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started and ended with a 16-s fixation period, leading to a total run duration of 5.9 min. 

Participants were instructed to press a button whenever they detected a 1-back repetition. 

 

Figure 3.1. Visual search experiments. In three visual search experiments, participants indicated 

whether an oddball target in a 4 × 4 search array (left) was located to the right or to the left of the 

vertical display midline. No prior information about the target was given, so that participants had 

to rely on bottom–up visual differences to perform the task. From the RTs in these experiments, 

we created visual dissimilarity matrices (center), where each element represents the inverse RT 

for a pair of stimuli, averaged across the two respective target–distractor pairings: High 

dissimilarity values thus correspond to short RTs, reflecting that target and distractor were visually 

dissimilar. Multidimensional scaling representations of the three visual dissimilarity matrices are 
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shown in the right panels. The three experiments differed only in the stimuli used: (A) the original 

images used in the fMRI experiment, (B) outline drawings of these images, and (C) internal 

textures of these images. 

Functional Localizer Experiment Procedure 

In addition to the main experiment, participants completed one run of a functional localizer 

experiment. During the localizer, participants viewed grayscale pictures of 36 animate and 36 

inanimate stimuli in a block design (Figure 3.2B). Animate stimuli included five different types 

of animals (mammals, birds, fish, reptiles, and insects). Inanimate stimuli included five types 

of inanimate objects (cars, chairs, musical instruments, tools, and weapons). These stimuli 

were not matched for their shape (thus, this design resembled the standard animate–

inanimate contrast used in previous studies). Each block lasted 16 s, containing 20 stimuli 

that were each presented for 400 ms, followed by 400-ms blank interval. There were eight 

blocks of each stimulus category and four fixation-only blocks per run. The order of the first 

10 blocks was randomized and then mirror reversed for the other 10 blocks. Participants 

were asked to detect 1-back image repetitions, which happened twice during every 

nonfixation block. 

 

Figure 3.2. fMRI paradigm. (A) In the main fMRI experiment, participants viewed images of 

animate objects and shape-matched inanimate objects (see Chapter 2, Figure 2.1 for further 
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stimulus examples). Trial order was randomized, and participants detected, by button press, 1-

back object-level repetitions (here, two ladybugs). (B) In the functional localizer experiment, 

participants viewed blocks of animate (top sequence) and inanimate (bottom sequence) stimuli. 

All stimuli were different from the ones used in the main experiment. Each block lasted 16 s, and 

participants detected, by button press, 1-back image-level repetitions (here, the fish image). 

fMRI Acquisition 

Imaging data were acquired using a MedSpec 4-T head scanner (Bruker Biospin GmbH, 

Rheinstetten, Germany), equipped with an eight-channel head coil. For functional imaging, 

T2*-weighted EPIs were collected (repetition time = 2.0 sec, echo time = 33 msec, 73° flip 

angle, 3 × 3 × 3 mm voxel size, 1-mm gap, 34 slices, 192-mm field of view, 64 × 64 matrix size). 

A high-resolution T1-weighted image (magnetization prepared rapid gradient echo; 1 × 1 × 1 

mm voxel size) was obtained as an anatomical reference. 

fMRI Preprocessing and Modeling 

The neuroimaging data were analyzed using MATLAB and SPM8. During the preprocessing, 

the functional volumes were realigned, coregistered to the structural image, resampled to a 2 

× 2 × 2 mm grid, and spatially normalized to the Montreal Neurological Institute 305 template 

included in SPM8. For the univariate analysis, the functional images were smoothed with a 6-

mm FWHM kernel, whereas for the multivariate analysis, the images were left unsmoothed. 

For the main experiment, the BOLD signal of each voxel in each participant was modeled using 

22 regressors in a general linear model, with 16 regressors for each of the objects (e.g., one 

regressor for all snakes) and six regressors for the movement parameters obtained from the 

realignment procedure. For the functional localizer data, the signal was modeled using two 

regressors (animate and inanimate objects) and six movement regressors. All models 

included an intrinsic temporal high-pass filter of 1/128 Hz to correct for slow scanner drifts. 

Univariate Analysis 

Univariate random effects whole-brain analyses were performed separately for the localizer 

and the main experiment, contrasting animate with inanimate objects. Statistical maps were 

thresholded using a voxel-level threshold of p < .001 (uncorrected) and a cluster-level 
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threshold of p < .05 (family-wise error [FWE] corrected). In addition, regions activated in the 

localizer were defined as ROIs. Within these ROIs, beta estimates for the conditions of the 

main experiment were extracted and averaged across the voxels of each ROI. These beta 

values were statistically compared using ANOVAs and t tests. 

RSA 

Representational similarity analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008) was used to 

relate the visual and categorical dissimilarity of the objects to neural dissimilarity. RSA was 

performed throughout the whole brain using searchlight analysis (Kriegeskorte, Goebel, & 

Bandettini, 2006), implemented in the CoSMoMVPA software package (Oosterhof, Connolly, & 

Haxby, 2016). Each spherical searchlight neighborhood consisted of 100 voxels, centered on 

every voxel in the brain. For each of these spheres, we correlated the activity (beta values) 

between each pair of conditions from the main experiment across the voxels of the sphere, 

leading to a 16 × 16 symmetrical correlation matrix with an undefined diagonal. This matrix 

was transformed into a neural dissimilarity matrix by subtracting the correlation values from 

1. 

In a first analysis, neural dissimilarity matrices were related to the visual dissimilarity matrix 

and the categorical dissimilarity matrix using multiple regression analysis (see Figure 4.5A). 

The visual dissimilarity matrix was derived from RTs in a visual search experiment (Chapter 

2, Experiment 1; Figure 3.1A), whereas the categorical dissimilarity matrix reflected whether 

two objects were from the same category (0) or from different categories (1). All dissimilarity 

matrices were z normalized. The multiple regression analysis yielded beta estimates for the 

two predictors of neural dissimilarity (visual and categorical dissimilarity), reflecting the 

independent contributions of these predictors in explaining neural dissimilarity. These two 

beta estimates were obtained for all spheres, resulting in two whole-brain maps for each 

participant. These maps were then tested against zero using random effects analyses (t tests), 

thresholded using a voxel-level threshold of p < .001 (uncorrected) and a cluster-level 

threshold of p < .05 (FWE corrected). In the second analysis, neural dissimilarity matrices 

were related to outline dissimilarity (Figure 3.1B), texture dissimilarity (Figure 3.1C), and 

categorical dissimilarity (Figure 3.6A). In all other respects, the analysis was the same as the 

first analysis described above. 
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Results 

Univariate Results 

Whole-brain Analysis 

The contrast between animate and inanimate objects in the functional localizer experiment 

revealed a characteristic medial-to-lateral organization in VTC (Figure 3.3A). In line with 

previous findings, animate stimuli more strongly activated regions around the lateral fusiform 

gyrus (left hemisphere [LH]: 1936 mm3, peak Montreal Neurological Institute coordinates: x = 

−40, y = −48, z = −22; right hemisphere [RH]: 3424 mm3, peak coordinates: x = 42, y = −52, z = 

−20), and inanimate stimuli preferentially activated more medial regions around 

parahippocampal gyrus (LH: 3760 mm3, peak coordinates: x = −28, y = −46, z = −12; RH: 3184 

mm3, peak coordinates: x = 34, y = −42, z = −12). In addition to these ventral regions, animate 

stimuli preferentially activated a more posterior and lateral region, around middle temporal 

gyrus (LH: 3528 mm3, peak coordinates: x = −48, y = −80, z = 0; RH: 7800 mm3, peak 

coordinates: x = 52, y = −74, z = −2). 

The same animate–inanimate comparison was performed for the main experiment, in which 

the animate and inanimate stimuli were closely matched for shape and low-level visual 

features (see Methods). This contrast revealed a significant animacy organization: Animate 

stimuli more strongly activated two clusters in the RH, again around fusiform gyrus (808 

mm3, peak coordinates: x = 42, y = −52, z = −20) and middle temporal gyrus (1120 mm3, peak 

coordinates: x = 50, y = −74, z = 0). Similar to the functional localizer results, inanimate-

preferring regions were found around bilateral parahippocampal gyrus (LH: 4736 mm3, peak 

coordinates: x = −26, y = −52, z = −16; RH: 3456 mm3, peak coordinates: x = 24, y = −40, z = 

−16). Figure 3.3, A, shows the animate- and inanimate-preferring clusters from the localizer 

and the main experiment as well as their overlap. 

These results indicate that the medial-to-lateral animacy organization is also found when 

controlling for shape differences of animate and inanimate objects. As can be seen in Figure 

3.3A, activity was stronger in the localizer than in the main experiment. This effect is hard to 

interpret, however, given the many differences between the localizer and the main 

experiment (e.g., block design vs. event-related design, stimulus duration, the specific animals 

and objects included, etc.). Indeed, the purpose of this analysis was not to compare the 
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strength of activity between localizer and main experiment directly but to show that the 

medial-to-lateral organization is remarkably similar in both experiments. Finally, although 

some of the left hemisphere clusters did not survive multiple comparisons correction in the 

main experiment, the functionally localized ROIs maintained their selectivity in the main 

experiment in both hemispheres, as reported in the next section. 

 

 

Figure 3.3. Univariate results. (A) Results of univariate whole-brain group analysis comparing 

animate and inanimate conditions in the functional localizer experiment (cyan) and main 

experiment (blue). Overlapping regions are displayed in purple. Top row shows lateral animate-

preferring clusters, middle row shows ventral animate-preferring clusters, and bottom row shows 

ventral inanimate-preferring clusters. Statistical maps were thresholded at p < .05 (FWE corrected) 

and overlaid on a structural brain template (MRIcron). (B) Results of ROI analyses. The bar graphs 

show the responses to the conditions in the main experiment within the animate- and inanimate-

preferring clusters defined based on the functional localizer experiment (corresponding to the 
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cyan regions in A), separately for each hemisphere. Green bars indicate average response to 

animate objects; gray bars indicate average response to inanimate objects. Error bars reflect SEM 

difference. *p < .01, **p < .001. 

 

ROI Analysis 

ROI analyses were used to test for selectivity for the conditions in the main experiment within 

each of the six clusters of the functional localizer (Figure 3.3, A; for coordinates and cluster 

sizes, see the whole-brain analysis section above). A three-way ANOVA with the factors 

Animacy (animate, inanimate), Region (animate lateral, animate ventral, inanimate ventral), 

and Hemisphere (right, left) revealed a critical Region × Animacy interaction (F(2, 32) = 42.2, 

p < .001). Because there were no interactions with hemisphere (F < 2.49, p > .10, for all tests), 

data were collapsed across hemispheres for all follow-up analyses. Separate Region × 

Animacy ANOVAs for every pair of regions revealed that the animacy preferences of the two 

animate-preferring regions were each significantly different from that of the inanimate-

preferring region (ventral animate region: F(1, 16) = 89.24, p < .001; lateral animate region: 

F(1, 16) = 45.65, p < .001). There was no significant difference in animacy preference between 

the two animate regions (F(1, 16) = 0.59, p = .45). As expected, both animate-preferring 

regions showed an increased response to the animate stimuli in the main experiment (t(16) > 

3.53, p < .003, for both tests), whereas the inanimate-preferring region showed a significant 

preference for the inanimate stimuli (t(16) = 5.25, p < .001). These results show that all 

regions defined in the functional localizer maintained their selectivity in the main experiment 

(see Figure 3.3, B for results in separate hemispheres). 

To explore whether the animate–inanimate organization in the main experiment was driven 

by some of the stimuli preferentially, we next compared the responses to each of the eight 

individual animate stimuli and their shape-matched inanimate counterparts. For simplicity 

and for optimal statistical power, the conditions were recoded into “preferred” (e.g., a snake 

for an animate-preferring region) and “nonpreferred” conditions (e.g., a snake for an 

inanimate-preferring region), and responses were then averaged across ROIs, so that each 

ROI contributed equally. A two-way ANOVA with the factors Preference (preferred, 

nonpreferred) and Object pair (the eight different pairs) revealed a significant interaction 

(F(7, 112) = 3.68, p = .001), indicating that different object pairs differentially contributed to 
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the observed animacy organization (Figure 3.4). A significant category preference was 

observed for six of the eight pairs (t(16) > 2.16, p < .047, for all tests), with one pair (ladybug–

computer mouse) showing a trend (t(16) = 2.10, p = .052) and one pair (snail–bun) not 

reaching significance (t(16) = 0.22, p = .83). 

 

Figure 3.4. Individual pair analysis. Category preference analyzed for each shape-matched pair 

separately. Responses were combined across all regions defined in the localizer experiment (cyan 

regions in Figure 3.3, A) by recoding responses according to the preference of the region (e.g., 

snake response in animate-preferring regions and rope response in inanimate-preferring region 

both contribute to the “preferred” condition, shown in red). Error bars reflect SEM difference. +p = 

.052, *p < .05, **p < .001. 
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RSA 

In addition to showing overall differences in focal regions, objects of different categories 

evoke distinct multivoxel activity patterns in visual cortex: Within VTC, activity patterns to 

objects from the same category are more similar than activity patterns to objects from 

different categories (Haxby et al., 2001). An open question is whether these effects reflect 

visual differences and/or categorical differences between objects. To address this question, 

we used RSA to relate neural dissimilarity (based on correlations between multivoxel activity 

patterns) to visual and categorical dissimilarity. In this analysis, for every spherical 

neighborhood (100 voxels) of the brain, the pairwise neural dissimilarity structure between 

the 16 objects was modeled as a linear combination of their pairwise categorical dissimilarity 

and overall visual dissimilarity (Figure 3.5A; see Methods). Overall visual dissimilarity was 

quantified using response times in a visual search task (Figure 3.1A), capturing all 

contributing factors to visual discriminability (potentially beyond the ones we explicitly 

matched in the univariate comparisons). This analysis yielded two beta maps reflecting the 

independent contributions of visual and categorical variables in accounting for neural 

dissimilarity. 

Random effects group analysis revealed widespread clusters of voxels in which neural 

dissimilarity was significantly related to overall visual dissimilarity, including primary visual 

cortex and large parts of extrastriate visual cortex, extending into VTC (51,864 mm3 in total; 

peak in the lingual gyrus, x = −18, y = −92, z = −8). These clusters partly overlapped with the 

animate- and inanimate-preferring regions of the functional localizer experiment (cyan 

regions in Figure 3A), with visual dissimilarity being significant in 64% of the ventral 

animate-preferring voxels, 24% of the lateral animate-preferring voxels, and 3% of the 

ventral inanimate-preferring voxels. Interestingly, categorical dissimilarity was 

independently reflected in two clusters: one in the right ventral visual cortex (3512 mm3; 

peak in the fusiform gyrus, x = 42, y = −60, z = −18) and one in the LH (4400 mm3 in total, 

including a lateral visual cortex part with a local peak in middle occipital gyrus, x = −42, y = 

−80, z = 6, and a ventral visual cortex part with a local peak in fusiform gyrus, x = −44, y = −52, 

z = −16). As can be seen in Figure 5B, these clusters partly overlapped with the anterior end of 

the overall visual dissimilarity clusters. These clusters also partly overlapped with the 

animate- and inanimate-preferring regions of the functional localizer experiment, with 
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categorical dissimilarity being significant in 33% of the ventral animate-preferring voxels, 

10% of the lateral animate-preferring voxels, and 2% of the ventral inanimate-preferring 

voxels. 

 

Figure 3.5. Multivariate searchlight analysis: overall visual dissimilarity and categorical 

dissimilarity. (A) Schematic of the linear modeling approach. For every spherical searchlight 

neighborhood, a 16 × 16 neural dissimilarity matrix was constructed using pairwise correlations of 

multivoxel activity patterns. These pairwise dissimilarity values (1 − r) were modeled by a linear 

combination of two predictors: One predictor was derived from the RTs in the visual search 

experiment that served as a proxy for overall visual dissimilarity of the stimuli (Figure 3.2A), and 

the other predictor reflected pairwise categorical (animate vs. inanimate) dissimilarity. This 

procedure tested the extent to which the neural dissimilarity structure in a given sphere reflected 

overall visual dissimilarity (while regressing out categorical dissimilarity) and/or categorical 

dissimilarity (while regressing out overall visual dissimilarity). (B) Results of whole-brain group 

analyses testing the value of each predictor versus zero. The analysis identified a large cluster of 

voxels where neural dissimilarity reflected overall visual dissimilarity (red and yellow voxels), 
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spanning early visual cortex and extrastriate regions up to VTC. In addition, clusters were 

identified where neural dissimilarity was independently predicted by the category of the stimuli 

(yellow and green voxels): These clusters partly overlapped with the overall visual dissimilarity 

clusters (yellow voxels) and showed local peaks in right and left fusiform gyrus and left middle 

occipital gyrus. Statistical maps were thresholded at p < .05 (FWE corrected) and shown as binary 

color maps overlaid on a structural brain template (MRIcron). 

It is possible that the measure of overall visual dissimilarity captured some visual features 

better than others. For example, the overall visual dissimilarity structure could be driven 

more by the outline shape than by texture properties of the stimuli. In this case, if animate and 

inanimate stimuli consistently differed in their texture, the category-selective regions 

revealed in the previous analysis could in principle reflect texture information rather than 

category information. To address this possibility, we quantified the pairwise dissimilarity 

structure for outline shape and texture independently from each other in two further visual 

search experiments (see Methods). Using these data, we repeated the RSA, this time modeling 

pairwise neural dissimilarity using the combination of three predictors: outline shape 

dissimilarity (Figure 2B), texture dissimilarity (Figure 2B), and categorical dissimilarity (see 

Figure 6A). This analysis resulted in three beta maps reflecting the independent contributions 

of outline shape, texture, and category membership to the neural dissimilarity structure. 

The results of random effects group analyses on these three maps are shown in Figure 6B. 

Four widespread clusters of voxels in which neural dissimilarity reflected outline dissimilarity 

were found in primary visual cortex extending to extrastriate visual cortex (22,584 mm3, 

occipital and temporal lobe; peak around the left lingual gyrus, x = −22, y = −92, z = −8), right 

superior parietal cortex (peak x = 16, y = −50, z = 60), right ventral visual cortex (1552 mm3; 

peak x = 44, y = −64, z = −12), and left temporal lobe around fusiform gyrus (1240 mm3; peak 

in BA 37, x = −28, y = −46, z = −18). Texture dissimilarity was related to neural dissimilarity in 

one cluster of voxels in left early visual cortex (2456 mm3; peak in the lingual gyrus, x = −20, y 

= −84, z = −14). Crucially, categorical dissimilarity was independently reflected in two 

clusters: one in right ventral visual cortex (2928 mm3; peak in the fusiform gyrus, x = 42, y = 

−60, z = −18) and one in left lateral visual cortex (3960 mm3; peak in the middle occipital 

gyrus, x = −42, y = −80, z = 6). Adding overall visual dissimilarity to this analysis as fourth 

predictor revealed nearly identical category clusters, as would be expected based on the 
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finding that a linear combination of outline and texture dissimilarity nearly perfectly captured 

overall visual dissimilarity (see Methods), thus making this variable redundant as additional 

predictor. 

 

Figure 3.6. Multivariate searchlight analysis: outline, texture, and categorical dissimilarity. (A) 

Schematic of the linear modeling approach similar to the one shown in Figure 3.5 (see the caption 

for details). In this analysis, neural dissimilarity was modeled using the combination of three 

predictors: outline dissimilarity, texture dissimilarity, and categorical dissimilarity. (B) Results of 

whole-brain group analyses testing the value of each predictor versus zero. Clusters of voxels in 

which neural dissimilarity was predicted by outline dissimilarity (red, yellow, and pink voxels) were 

found in primary visual cortex, extending into extrastriate visual cortex. Texture dissimilarity 

predicted neural dissimilarity in a cluster in left early visual cortex (blue and pink voxels), partly 

overlapping with an outline dissimilarity cluster (overlap indicated in pink). Finally, this analysis 

revealed clusters of voxels in which neural dissimilarity was predicted by categorical dissimilarity 

(green and yellow voxels), with local peaks in right fusiform gyrus and left middle occipital gyrus. 

These clusters partly overlapped with outline dissimilarity clusters (overlap indicated in yellow). 

There was no overlap between texture dissimilarity clusters and categorical dissimilarity clusters. 
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Statistical maps were thresholded at p < .05 (FWE corrected) and shown as binary color maps 

overlaid on a structural brain template (MRIcron). 

In summary, these results reveal distinct but overlapping representations for outline shape 

and texture in early visual cortex. Importantly, categorical representations in higher level 

visual cortex were still present even after regressing out both outline and texture 

dissimilarity. 

 

Discussion 

In this study, we asked whether the animate–inanimate organization of object responses in 

human VTC reflects characteristic visual properties of animate and inanimate objects (e.g., 

characteristic animal shapes or textures) or whether it (partly) reflects a true categorical 

organization. We approached this question by testing whether the animate–inanimate 

organization can still be observed when controlling for visual similarity of objects from 

animate and inanimate domains. A standard functional localizer experiment contrasting 

activity to a variety of animals with activity to a variety of inanimate objects replicated 

previous studies, showing animate- and inanimate-preferring regions in VTC and animate-

preferring regions in lateral occipitotemporal cortex. Importantly, all of these regions, in both 

hemispheres, remained selective for their preferred category in the main experiment in which 

animate and inanimate objects were carefully matched for shape as well as for low-level 

features such as luminance and contrast. Results were consistent across all but one of the 

eight animate–inanimate pairs. (We speculate that the lack of preference for the snail 

condition may relate to snail shells frequently being experienced as inanimate objects, 

because they are often viewed without an animal inside.) These pairs varied widely in terms 

of their shape (e.g., snake vs. bird), further supporting the claim that specific shape properties 

(e.g., presence of limbs) do not fully account for the animate–inanimate organization in VTC. 

Finally, the inanimate objects also varied widely on various conceptual dimensions that have 

been linked to inanimate-preferring regions, such as real-world size (Konkle & Oliva, 2012) 

and manipulability (Mahon et al., 2007). The consistency of results across the pairs suggests 

that the animate–inanimate organization revealed here is not fully explained by such 

alternative conceptual properties. 
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The objects that were contrasted in the univariate analyses were matched for visual similarity 

by the experimenters. This approach is subjective and assumes that visual similarity can be 

accurately judged through visual inspection. An important additional aspect of our study was 

therefore the use of behavioral visual search tasks to quantify different aspects of visual 

similarity in a naive group of participants. On each trial, participants simply indicated the 

location of the unique stimulus in an array of identical distractors; that is, there was no 

predefined target category. Visual differences are the only source of information to locate the 

target in this task, such that performance (RT) closely reflects the visual similarity of the 

target and distractor stimuli (Mohan & Arun, 2012). In the first experiment, we measured the 

visual similarity of the same images used in the fMRI experiment. These data potentially 

capture not only differences in outline shape but also any other visual property (e.g., texture, 

extent, spatial frequency) that helps to visually distinguish the target from the distractor, 

rendering it a measure of overall visual similarity. Moreover, in two additional experiments, 

we specifically measured outline similarity (using outline drawings) and texture similarity 

(using texture patches). 

RSA with overall visual similarity and category similarity as predictors revealed that activity 

patterns throughout visual cortex reflected visual similarity, confirming that visual similarity 

is a dominant organizing principle of both low- and high-level visual cortex (e.g., Andrews et 

al., 2015). The overall visual similarity matrix derived from the visual search task was 

additionally used to regress out variance in the neural similarity matrices, testing whether 

any remaining variance can be attributed to categorical similarity. This analysis revealed 

clusters in VTC in which this was the case. Similar results were obtained when modeling 

outline and texture similarity separately as predictors of the neural similarity structure. 

Although both texture and outline shape where represented independently in visual cortex, 

category information was still present in some regions. In both analyses, these category 

clusters were found in the vicinity of animate- and inanimate-preferring regions. 

Although our results provide evidence for an animate–inanimate organization of VTC that is 

not explained by outline shape or texture, we should consider the possibility that there may 

be remaining visual features that distinguished animals from objects. Clearly, in the absence 

of other cues, there must be visual properties that allow the observer to recognize the objects 

and to distinguish, for example, between a snake and a rope—we do not claim that there are 
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no visual differences between the two objects of each pair. However, it seems unlikely that 

there were visual features that consistently covaried with category membership across pairs. 

Furthermore, such consistent features would likely be reflected in the visual similarity 

measures (Mohan & Arun, 2012) and thus regressed out in the representational similarity 

analyses. Nevertheless, we acknowledge that we cannot fully exclude that there may be 

residual visual differences between animals and inanimate objects that do not affect visual 

similarity as measured in the visual search experiments. For example, it is possible that 

certain category-specific shape features are not visually salient (and may not even be visible 

in the image) but become represented once an object is recognized as an animal (e.g., head 

and eyes).  

Interestingly, clusters representing categorical similarity partly overlapped with clusters 

representing shape similarity at higher levels of the visual system (yellow clusters in Figures 

5.5B and 5.6B). This suggests that a shape-based organization coexists with a category-based 

organization, with neither of these two reducible to the other. This coexistence suggests close 

mutual interactions between shape and category representations. In one direction, shape 

properties strongly inform category membership in most real-world situations. For example, 

the set of midlevel visual features that characterize animals allows for efficiently detecting the 

presence of an animal in a natural scene (Ullman, Vidal-Naquet, & Sali, 2002; Thorpe, Fize, & 

Marlot, 1996). In the other direction, category membership provides information about likely 

visual properties of an object, such as the structure of its parts, and allows for making 

perceptual predictions, for example, related to characteristic motion patterns of animals. The 

close proximity and partial overlap of shape and category representations may thus be 

optimal for real-world behavior in which these levels of representation need to closely 

interact. 

Previous findings have shown that the degree to which a stimulus evokes an “animate” 

response in VTC depends on the degree to which it shares characteristics with the animate 

prototype—humans (Sha et al., 2014). This is consistent with earlier findings of strong 

selectivity for human faces and bodies at the approximate locations of the ventral and lateral 

animacy clusters in our study (Peelen & Downing, 2005; Downing et al., 2001; Kanwisher et 

al., 1997). These regions show a graded response profile, responding most strongly to human 

faces and bodies, followed by mammals, birds, reptiles, and insects (Downing et al., 2006). 
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These findings are consistent, however, both with a visual similarity interpretation (i.e., 

differences in visual typicality; Mohan & Arun, 2012) and a conceptual similarity 

interpretation (e.g., differences in agency; Sha et al., 2014). Therefore, future work is needed 

to independently manipulate the degree to which animals share visual and conceptual 

properties with humans to test whether graded animacy effects are primarily reflecting one 

or both of these properties. Interestingly, our current results show that a reliable animal 

preference exists even for animals that are visually and conceptually distinct from humans 

(e.g., snakes, insects). 

Together, the present results suggest that the animate–inanimate organization of VTC is not 

fully explained by local biases for visual features. Instead, we interpret this organization as 

reflecting the recognition of an object as belonging to a particular domain. In daily life, visual 

properties are an important cue for categorizing objects, but many other cues also contribute. 

These cues include information from other modalities (e.g., audition, touch) and, more 

generally, our expectations, knowledge, goals, and beliefs. Rather than following the visual 

features falling on the retina, category-selective activity in VTC appears to partly reflect the 

interpretation, based on all available cues, that the object we look at is animate or inanimate. 

On this account, category-specific activity that is independent of visual features would reflect 

a relatively late stage in the object recognition process. Future work could use multivariate 

analysis of magnetoencephalography data (e.g., Cichy, Pantazis, & Oliva, 2014; Carlson, Tovar, 

Alink, & Kriegeskorte, 2013) to reveal the temporal dynamics of object categorization using 

carefully designed stimuli that allow for disentangling visual and categorical similarity. One 

prediction consistent with our results would be that the initial response in VTC primarily 

reflects visual similarity, with later stages additionally reflecting category membership. In 

Chapter 4, we describe an MEG study we conducted to test this prediction. 

If not visual features, then what property might drive the animate–inanimate distinction? One 

proposal is that this distinction reflects agency: the potential of an object to perform self-

initiated, complex, goal-directed actions (Sha et al., 2014; Caramazza & Shelton, 1998; 

Premack, 1990). For example, studies have shown that activity in the right fusiform gyrus—at 

the approximate location of the ventral animate-preferring region—can be evoked by simple 

geometric shapes that, through their movements, are interpreted as social agents (Gobbini, 

Koralek, Bryan, Montgomery, & Haxby, 2007; Martin & Weisberg, 2003; Schultz et al., 2003; 
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Castelli, Happe, Frith, & Frith, 2000). Other work consistent with this account has shown that 

animal selectivity in VTC is strongest for animals, such as mammals, that are perceived as 

having relatively more agentic properties (Sha et al., 2014). 

In summary, the present results suggest that the animate–inanimate organization of VTC may 

not fully reflect visual properties that characterize animals and objects. Results from RSA 

indicate that visual and categorical representations coexist in more anterior parts of the visual 

system. Clearly, future work is needed to further exclude the possibility of confounding visual 

features, to define exactly what dimensions drive the animate–inanimate distinction, to reveal 

the time course of visual and categorical representations, and to test how these interact to 

allow for efficient object categorization in our daily life environments. 
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Chapter 4 

Disentangling object shape and object category with MEG 

 

Abstract 

Recent studies have shown that object category can be decoded from MEG sensor patterns, 

revealing the time course of object categorization with a millisecond resolution. However, 

objects belonging to the same category often share characteristic shape features (e.g., most 

mammals have four legs), so that category decoding in these studies could have partially 

reflected shape similarity rather than categorical similarity. In the present study, we aimed to 

disentangle the contributions of object shape and object category to the MEG signal by using 

animate and inanimate objects that were closely matched for shape and low-level visual 

features (e.g., snake-rope). In a series of behavioral visual search experiments, different 

aspects of visual similarity of these objects were quantified (overall similarity, outline 

similarity, texture similarity). In a previous fMRI study using these stimuli, we found that both 

shape and category are represented in ventral temporal cortex. Following the analysis 

approach used in the fMRI study, neural dissimilarity of MEG sensor patterns was modeled 

using regression analysis, where visual dissimilarity (taken from the search experiments) and 

categorical dissimilarity served as predictors of neural dissimilarity. The results show that 

visual object properties are reflected in MEG patterns starting from 80 ms after stimulus 

onset, with a peak at 110-130 ms. Surprisingly, when regressing out the contribution of visual 

properties, no residual category information was present in MEG response patterns. These 

results suggest that MEG sensor patterns evoked by visually presented objects predominantly 

reflect visual object properties. 
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Introduction 

Category-specific responses in the brain have been studied extensively using fMRI, resulting 

in the discovery of cortical areas that respond preferentially to stimuli belonging to a 

particular category, such as faces or scenes (see Kanwisher, 2010, for review). Moreover, 

studies using multivariate pattern analysis techniques revealed distributed representations of 

various object categories in the ventral visual stream (Haxby et al., 2001), with a prominent 

distinction between representations of animate and inanimate objects (Kriegeskorte et al., 

2008b). 

While fMRI allows one to examine the fine-grained structure of object representations with 

high spatial resolution, other neuroimaging techniques such as magneto- and 

electroencephalography (MEG/EEG) have the potential to reveal the temporal dynamics of 

category processing in the brain with a millisecond resolution. One example of category-

related effect in MEG/EEG data is M170/N170, an ERP component that is greater for faces 

compared with other object categories (Bentin et al., 1996; Xu et al., 2005). In recent years, 

multivariate decoding methods have been applied successfully to MEG data analysis, with 

several studies reporting reliable decoding of different object categories from MEG sensor 

patterns (e.g., Cichy et al., 2014). In particular, the distinction between animate and inanimate 

objects in the MEG signal reportedly emerges as early as 80 ms, peaking between 150 and 250 

ms (Carlson et al., 2013; Cichy et al., 2014). However, it remains unclear whether the above-

chance decoding of object category information reflects the semantic differences between 

categories or the lower-level visual differences between them. 

Several recent studies have addressed this issue by trying to disentangle object category and 

object shape information reflected in MEG/EEG sensor patterns. One study did this by 

comparing how well a model that includes both visual and semantic information predicts MEG 

data compared with the purely visual model, HMAX (Clarke et al., 2015). However, it was 

shown that the HMAX model is not a good predictor of MEG data, compared to the behavioral 

perceptual similarity model, making it possible that HMAX did not capture some of the 

relevant object shape features (Wardle et al., 2016). In another study, researchers compared 

the EEG response patterns elicited by intact and scrambled images (Coggan et al., 2016), but it 

is possible that some residual low-level features that were eliminated by scrambling were still 

driving the response to the intact objects. To our knowledge, only one study has specifically 
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matched stimuli from different categories for shape and low-level visual features, using 

images of body parts and shape-matched clothes (Kaiser, Azzalini, & Peelen, 2016), finding 

that object category can still be decoded even when the stimuli are matched for shape. 

In this study, we used similar approach while focusing on the distinction between animate 

and inanimate objects. Specifically, we used the set of animate and inanimate stimuli closely 

matched for overall shape features to disentangle object shape and object category 

information reflected in the MEG sensor patterns. This stimulus set was previously used in an 

fMRI study, revealing category-specific responses in the ventral temporal cortex even after 

controlling for visual similarity (See Chapter 2; Proklova, Kaiser, & Peelen, 2016). We 

conducted two MEG experiments and used the representational similarity analysis (RSA) 

approach to examine the independent contributions of object shape and object category to the 

MEG signal, in order to see if MEG sensor patterns distinguish between animate and 

inanimate stimuli based on their category or if they primarily reflect shape similarity. 

Moreover, we were interested in the relative time course of visual and category information: if 

the category information independent of shape similarity is present in MEG signal, it should 

emerge in the later stages of processing. 

 

Materials and methods 

Participants 

Twenty-nine participants in total with normal or corrected-to-normal vision took part in two 

experiments, including fourteen volunteers who participated in Experiment 1 (5 females, 

mean age = 25.6 years, SD = 4 years), and fifteen who participated in Experiment 2 (8 females, 

mean age = 25.2 years, SD = 3.1 years). All participants provided informed consent and 

received monetary compensation for their participation. The experimental protocols were 

approved by the Ethical Committee of the University of Trento, Italy. 

Stimuli 

The stimulus set in both experiments was identical to the one used in an earlier fMRI study 

(Proklova, Kaiser, & Peelen, 2016, see Chapters 2 and 3) and consisted of 16 objects (8 

animate and 8 inanimate) divided into 4 shape sets. Each shape set consisted of 2 animals and 

2 inanimate objects that were matched for overall shape features (e.g. snake-rope). In 
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addition, four versions of each stimulus were used, resulting in total of 64 stimuli. In 

Experiment 1, one additional visual stimulus (hammer, see Figure 4.1, A) was used to serve as 

an oddball target. All stimuli were matched for luminance and contrast using the SHINE 

toolbox (Willenbockel et al., 2010). 

Experiment 1: Procedure 

Participants viewed the visual stimuli while sitting in the dimly lit magnetically shielded 

room. The stimuli were projected on a translucent screen located 150 cm from the 

participant. The stimuli were presented centrally on the uniformly gray background and 

spanned approximately 8-degree visual angle in size. The stimulus presentation was 

controlled using the Psychophysics Toolbox (Brainard, 1997). Participants completed 12 

experimental blocks, with each of the 64 stimuli appearing exactly twice in each block, in 

random order. In addition, 32 target trials were randomly distributed throughout the block, 

resulting in 160 trials in total per block. The stimuli were presented for 500 ms, followed by a 

variable inter-stimulus interval ranging from 1.5 s to 2 s in discrete 20 ms steps. Participants 

were instructed to maintain fixation and to press the response button and blink each time 

they see a picture of a hammer. This oddball image appeared on average every 4 trials. 

Experiment 2: Procedure 

The procedure was largely identical to Experiment 1, differing only in participants’ task. 

Instead of an oddball detection, participants were asked to perform a one-back task, pressing 

the response button whenever an image of the same object appeared on two consecutive 

trials (e.g. two snakes). The one-back repetitions happened 12 times in each block. 

MEG acquisition and preprocessing 

Electrophysiological recordings were obtained using an Elekta Neuromag 306 MEG system 

(Elekta Neuromag systems, Helsinki, Finland) equipped with 204 gradiometers and 102 

magnetometers. Signals were sampled continuously at 1000 Hz rate and band-pass filtered 

online between 0.1 and 330 Hz. The data were then preprocessed offline using MATLAB and 

Fieldrip Toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). Data from all runs were 

concatenated and high-pass filtered at 1Hz. Trials were epoched from 100 ms before to 600 

ms after the stimulus onset. Trials containing eye-blinks and other movement-related artifacts 

were discarded from further analysis based on the visual inspection. The signal was baseline-
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corrected with respect to pre-stimulus window and downsampled to 100 Hz to reduce the 

processing time and increase the signal-to-noise ratio (see Carlson, Tovar, Alink, & 

Kriegeskorte, 2013). 

 

Figure 4.1. MEG paradigms. (A) In Experiment 1, individual stimuli were presented centrally for 

500 ms, followed by variable ISI of 1.5 – 2 s. Participants were asked to press the response button 

and blink whenever they saw an oddball image (a hammer). (B) In Experiment 2, the procedure 

was largely identical to Experiment 1, except that participants performed a one-back task, pressing 

the button when two images of the same object (e.g., two planes) appeared on two consecutive 

trials.  

Representational similarity analysis 

In order to investigate the independent contributions of object shape and object category to 

the MEG signal, we used representational similarity analysis (RSA, Kriegeskorte, Mur, & 

Bandettini, 2008). Following the analysis approach used in a previous fMRI study (see 

Chapter 2; Proklova, Kaiser, & Peelen, 2016), the neural dissimilarity (measured with MEG) at 

each time point was modeled as a linear combination of category and visual dissimilarity. The 

procedures used to obtain the neural dissimilarity matrices as well as category and shape 

predictor matrices are described below. 
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Neural dissimilarity 

 Following the approach used in previous MEG decoding studies, we chose pairwise decoding 

accuracy as a measure of neural dissimilarity (Cichy, Pantazis, & Oliva, 2014; Wardle, 

Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 2016).  For each time point, we 

trained the linear discriminant analysis (LDA, Duda et al., 2011) classifier to discriminate 

between all possible pairs of stimuli (Figure 4.2A). For the classification analysis, trials were 

randomly assigned to four independent chunks, with an equal number of trials for each 

condition per chunk. Classifiers were trained on data from three chunks and tested on the 

fourth chunk; this analysis was repeated four times, with each chunk serving as the test set 

once. To reduce trial-to-trial noise and increase the reliability of data supplied to the classifier, 

new, “synthetic” trials were created: for every condition and chunk we randomly picked 25% 

of the original trials and averaged the data across them. This procedure was repeated 500 

times (with the constraint that no trial was used more than one time more often than any 

other trial), producing 500 new trials for each condition and chunk that were then supplied to 

the classifier. The resulting decoding accuracy time course was smoothed with an averaging 

filter spanning 3 time points (30 ms). The classifier accuracy at each time point was assessed 

as the percentage of correctly classified trials (with chance performance being 50%) and was 

used as a measure of neural dissimilarity between the two conditions. This classification 

procedure was performed for all pairs of conditions, resulting in a 16 x 16 neural dissimilarity 

matrix for each time point (Figure 4.2B).  

In addition, to provide an alternative neural dissimilarity measure we used Euclidean distance 

as a measure of pairwise dissimilarity between the stimuli. For each time point, the neural 

dissimilarity for a pair of conditions was defined as the Euclidean distance between the 

corresponding channel activity pattern vectors, using cosmo_pdist function implemented in 

CoSMoMVPA toolbox (Oosterhof et al., 2016). This resulted in a 16 x 16 neural dissimilarity 

matrix for each time point. 
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Visual dissimilarity 

Three visual dissimilarity matrices quantifying overall visual dissimilarity, outline 

dissimilarity, and texture dissimilarity were obtained from separate behavioral visual search 

experiments (see Chapter 2). In each of the three experiments, participants had to detect an 

oddball target among the array of identical distractors. This was done for all possible target-

distractor pairs among the stimuli. For each pair of stimuli, the corresponding entry of this 

matrix is the inversed reaction time in a visual search task, using one of the stimuli as a target, 

and another as a distractor. 

Category dissimilarity 

A category dissimilarity matrix was constructed by assigning zeroes (minimum dissimilarity) 

to elements of the matrix that corresponded to the pair of objects belonging to the same 

category, and ones (maximum dissimilarity) for the pairs of objects from different categories. 

 

 

Figure 4.2. MEG decoding approach. (A) A schematic of the MEG decoding approach. At each time 

point, we extracted channel patterns and trained an LDA classifier to discriminate between each 

pair of conditions using a subset of trials (training set). After the decision boundary was calculated, 

we tested the classifier on the left-out trials (testing set) and calculated the decoding accuracy, 

with chance performance being 0.5. This pairwise decoding accuracy was used to create 16 x 16 

decoding accuracy matrices for every time point. (B) Decoding accuracy matrices for different time 

points in one representative subject. At 0 ms, the pairwise decoding accuracies are close to chance 
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(0.5), but at later time points it rises above chance for some object pairs. Because these matrices 

are symmetric, only the lower triangles of the matrices are shown. 

After constructing neural dissimilarity matrices for each time point, as well as category and 

visual dissimilarity predictor matrices, we performed two representational similarity 

analyses (RSA) to determine the contribution of category dissimilarity and different aspects of 

visual dissimilarity to the MEG signal. In the first analysis, the neural dissimilarity at each time 

point was modeled as a linear combination of category and overall visual dissimilarity (see 

Figure 4.3A). This analysis was performed separately for each participant, resulting in two 

regression weights for each time point per participant. In the second analysis, the neural 

dissimilarity at each time point was modeled as a linear combination of category, outline, and 

texture dissimilarity (see Figure 4.3B). This produced three beta weights per participant for 

each time point. The time courses of the resulting beta estimates for each predictor were then 

tested against zero. The significance was assessed using the threshold-free cluster 

enhancement procedure (TFCE; Smith & Nichols, 2009) with default parameters, using 

multiple-comparison correction based on a sign-permutation test (with null distributions 

created from 10,000 bootstrapping iterations) as implemented in CoSMoMVPA toolbox 

(Oosterhof, Connolly, & Haxby, 2016). The resulting z-score time courses were the 

thresholded at Z > 1.64 (i.e., p < 0.05, one-tailed) to reveal the time points for which the beta 

estimate of a given predictor was significantly above zero. 

Figure 4.3. Representational similarity analysis. (A) At each time point, the neural dissimilarity 
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matrix was constructed by calculating the pairwise decoding accuracy for all pairs of stimuli. This 

neural dissimilarity matrix was then modeled as a linear combination of overall visual dissimilarity 

and category dissimilarity. (B) In the second RSA, the neural dissimilarity at each time point was 

modeled using outline, texture and category dissimilarity as predictors. 

 

Representational similarity searchlight 

To identify time-periods and sensors in which the contribution of category or shape 

dissimilarity to the MEG pattern dissimilarity was significant, we performed a sensor-space 

searchlight analysis. Using the same approach as in the previous analyses, we ran two 

representational similarity searchlights. In the first analysis, for each combination of time and 

channel the neural dissimilarity was modeled as a combination of visual and category 

dissimilarity (Figure 4.9), and in the second one neural dissimilarity was modeled using 

category, outline, and texture dissimilarities as predictors (Figure 4.10). 

Prior to running the searchlights, the individual neural dissimilarity matrices were averaged 

for each 50 ms time window. This was done to improve signal-to-noise ratio and reduce the 

number of comparisons that would arise from comparing multiple time points and sensors.  

The individual subject neural RDMs were averaged for each 50 ms time window starting from 

0 ms and until 600 ms after stimulus onset, resulting in twelve 50 ms time bins (see Figure 

4.9).  

These neural dissimilarity matrices were then modeled at each time window as (1) a linear 

combination of category dissimilarity and overall visual dissimilarity, resulting in two beta 

estimate maps (see Figure 4.9), and (2) a linear combination of category dissimilarity, outline 

dissimilarity, and texture dissimilarity, producing three beta estimate maps (see Figure 4.10). 

The individual subject maps for each predictor were then averaged across participants and 

tested against zero. Statistical analysis was performed for each time window, using the TFCE 

procedure described above to reveal the sensors and time windows in which the contribution 

of a particular predictor to the neural dissimilarity was significantly above chance. The 

significance was assessed using TFCE procedure described above. 
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Results 

Decodability of individual stimuli 

To assess the quality of our data and evaluate whether stimulus identity could be decoded 

from the MEG sensor patterns, we averaged the off-diagonal elements of the MEG dissimilarity 

matrix for each time point. This was done separately for Experiments 1 and 2, as well as for 

each of the two types of sensors (magnetometers and gradiometers), producing four time 

courses of average pairwise stimulus decodability (Figure 4.4). Significance was assessed at 

each time bin, comparing decoding accuracy against chance (50%) and correcting for multiple 

comparisons using TFCE procedure. In both experiments and for both sensor types, decoding 

is at chance until about 50 ms, after which the decoding curve rises sharply, becoming 

significant at 60 ms and peaking at 120 ms. This pattern is consistent with the pattern 

observed in an earlier study (Cichy, Pantazis & Oliva, 2014). In Experiment 1, the main 

decoding accuracy peak at 120 ms is followed by a smaller peak at 180-190 ms (Figure 4.4A). 

In both experiments, the peak pairwise decoding is higher for gradiometers compared to 

magnetometers: in Experiment 1, peak decoding accuracy is 0.7 for magnetometers (Figure 

4.4A, left panel) and 0.75 for gradiometers (Figure 4.4A, right panel). In Experiment 2, the 

peak decoding accuracy is 0.77 for magnetometers (Figure 4.4B, left panel) and 0.81 for 

gradiometers (Figure 4.4B, right panel). For both sensor types, average pairwise decoding 

accuracy is higher in Experiment 2, in which participants were performing the one-back task, 

suggesting that this task elicited stronger responses for individual stimuli, which led to higher 

pairwise decodability.  Overall, these results replicate earlier MEG decoding studies and show 

that the individual stimuli can be decoded successfully from the MEG signals. 
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Figure 4.4. Time courses of average decodability of all stimulus pairs. (A) Average pairwise 

stimulus decodability in Experiment 1, shown separately for two sensor types. For both 

magnetometers and gradiometers, the average pairwise decoding accuracy reaches significance at 

60 ms and peaks at 120 ms. The peak decoding accuracy is 0.7 for magnetometers (left panel) and 

0.75 for gradiometers (right panel). (B) Individual stimulus decodability in Experiment 2. For both 

sensor types, average decoding accuracy peaks at 120 ms, with higher peak decoding accuracy for 

gradiometers (0.81, right panel) compared to magnetometers (0.77, left panel). Shaded areas 

reflect standard errors of the mean, and asterisks indicate time bins where decoding accuracy was 

significantly greater than chance (0.5). 
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Representational Similarity Analysis 

To examine the contribution of overall visual dissimilarity and category dissimilarity to the 

MEG signals, we performed the representational similarity analysis (RSA) modelling the 

neural dissimilarity at each time point as the linear combination of these two predictors 

(Figure 4.3A). This analysis produced one beta estimate time course for each predictor. The 

results of this analysis for Experiment 1 are shown in Figure 4.5A, separately for two types of 

sensors. For both magnetometers and gradiometers, the beta estimate for overall visual 

dissimilarity (shown in red) reaches significance at 80 ms, peaking at 120 ms, with a smaller 

peak at 190 ms. Surprisingly, the beta estimate of category dissimilarity (shown in blue) does 

not reach significance at any time point. These results suggest that in contrast to robust 

information about visual stimulus attributes, category information cannot be retrieved from 

MEG signals when controlling for shape properties. In the next analysis, the neural 

dissimilarity was modeled as a combination of category, outline, and texture dissimilarity 

(Figure 4.3B). This analysis produces three time courses that are shown in Figure 4.5B. The 

outline predictor contributes significantly to MEG signal starting at 80 ms, peaking at 130 ms, 

followed by a smaller peak at 190 ms.  The time course of texture predictor is significant 

starting from 90 ms, with a peak at 120 ms. 

The same analyses were performed for Experiment 2 (Figure 4.6). The first RSA revealed the 

overall visual dissimilarity peaking at 130 ms for both magnetometers and gradiometers 

(Figure 4.6A). Again, the category predictor did not reach significance at any time point, 

showing that even the use of one-back task did not reveal category representations that were 

independent of object shape. In the second RSA, the outline dissimilarity was significantly 

contributing to MEG signal with a peak at 140 ms for magnetometers (Figure 4.6B, right 

panel) and 150 ms for gradiometers (Figure 4.6B, left panel).  Texture (shown in yellow) 

peaked at 110 ms for both types of sensors.  
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Figure 4.5. Representational similarity analysis results for Experiment 1. (A) The time courses of 

regression weights reflecting the contributions of category dissimilarity (in blue) and overall visual 

dissimilarity (in red) to the neural dissimilarity. For both magnetometers and gradiometers, the 

beta estimate for overall visual dissimilarity reaches significance at 80 ms, peaking at 120 ms, with 

a smaller peak at 190 ms. However, regression weights for category dissimilarity do not reach 

significance at any time point. (B) The time courses of regression weights reflecting the 

contributions of category dissimilarity (in blue), outline dissimilarity (in green) and texture 

dissimilarity (in yellow). The outline predictor contributes significantly to MEG signal starting at 80 

ms, peaking at 130 ms, followed by the second peak at 190 ms.  The time course of texture 

predictor is significant starting from 90 ms, with a peak at 120 ms. Again, category predictor 

contribution is not significant. Shaded areas reflect standard errors, and asterisks indicate time 

bins where beta estimates were significantly greater than zero. 
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Figure 4.6. RSA results for Experiment 2. (A) The time courses of regression weights showing the 

contributions of category dissimilarity (in blue) and overall visual dissimilarity (in red) to the neural 

dissimilarity. Visual dissimilarity regression weights are significant starting at 80 ms, peaking at 130 

ms for both magnetometers and gradiometers, while category dissimilarity is not contributing 

significantly to neural dissimilarity. (B) The time courses of regression weights reflecting the 

contributions of category dissimilarity (in blue), outline dissimilarity (in green) and texture 

dissimilarity (in yellow). The outline dissimilarity contributes significantly to MEG signal starting at 

90 ms, with a peak at 140 ms for magnetometers (right panel) and at 150 ms for gradiometers (left 

panel).  Texture predictor regression weights peaked at 110 ms for both types of sensors. Again, 

no evidence for significant contribution of category predictor is present. Shaded areas reflect 

standard errors, and asterisks indicate time bins where beta estimates were significantly greater 

than zero. 
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Given that the predictor time courses were similar across the two experiments, we combined 

the data from two experiments (resulting in total of 29 subjects) to increase statistical power 

and ran the RSA again (Figure 4.7). The overall visual dissimilarity beta estimate peaked at 

120 ms for both types of sensors (Figure 4.7A). Interestingly for the first time we observed 

category dissimilarity predictor reaching significance at two late time points at 520-530 ms 

(Figure 4.7A, left panel). In the second RSA, the regression weights for outline and texture 

dissimilarity peaked at 130 ms and 120 ms, respectively, for both types of sensors (Figure 

4.7B). Again, the category predictor was significant for the same two time points at 520-530 

ms (Figure 4.7B, left panel). Notably, this late category effect was observed at time points 

when the stimulus was no longer on the screen (after 500 ms), suggesting that it might not be 

reflecting perceptual processing but, possibly, some other process such as working memory 

(e.g., holding the stimulus in memory to perform a one-back task). 

 

Figure 4.7. RSA results after combining the data from two experiments. (A) Contributions of 

category dissimilarity (in blue) and overall visual dissimilarity (in red) to MEG signal. The overall 
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visual dissimilarity beta estimate peaked at 120 ms for both types of sensors, and category beta 

estimate briefly reached significance at two late time points (520-530 ms, right panel). (B) 

Contributions of category dissimilarity (in blue), outline dissimilarity (in green) and texture 

dissimilarity (in yellow) to MEG signal. The regression weights for outline and texture dissimilarity 

peaked at 130 ms and 120 ms, respectively, for both types of sensors. Category regression weight 

reached significance at the same late time points (520-530 ms, right panel). Shaded areas reflect 

standard errors, and asterisks indicate time bins where beta estimates where significantly greater 

than zero. 

 

Euclidean distance as a measure of neural dissimilarity 

It is possible that the measure of neural dissimilarity used in the analyses described above 

(i.e., pairwise decoding accuracy) was not sensitive enough to reveal potential category 

effects. It is therefore useful to compare it to other commonly used dissimilarity measures, 

such as the Euclidean distance. We repeated the last analysis (with the data from two 

experiments combined) using the neural dissimilarity matrices constructed using this new 

measure: i.e., with pairwise neural dissimilarity between the stimuli defined as the Euclidean 

distance between the two corresponding activity patterns (se Matherials and Methods).  

The comparison between the RSA results using two different neural dissimilarity measures 

(decoding accuracy and Euclidean distance) are shown in Figure 4.8. Despite the two 

measures being different, the pattern of results using Euclidean neural dissimilarity 

predictors (Figure 4.8B) was very similar to the one obtained using decoding accuracy (Figure 

4.8A), confirming our previous results. 
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Figure 4.8. RSA results using two different neural dissimilarity measures. The analyses were done 

after combining the data from the two experiments (N=29) and using the data from gradiometers. 

(A) Pairwise decoding accuracy as a neural dissimilarity measure. These graphs are the same as in 

Figure 4.7, right panel. (B) Same analyses using Euclidean distance as a neural dissimilarity 

measure. The overall pattern of results is highly similar between the two measures. 

Representational Similarity Searchlight 

To approximately assess the spatial distribution of category- and shape-related signals in the 

brain, and to determine if the contribution of category dissimilarity was significant in any of 

the individual sensors, we performed a whole-brain sensor-space representational similarity 

searchlight. This analysis was done using the data from gradiometers only because only these 

sensors showed significance for category dissimilarity beta estimates in the previous analyses 

(see Figure 4.7, right panel). Given that the pattern of results in Experiments 1 and 2 was 
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highly similar and category significance was only observed after combining the data from 

both experiments, we pooled data from Experiments 1 and 2 together for the searchlight 

analysis to maximize power and to examine this late category effect more closely.  

For each channel we took the ten neighboring channels and computed the neural dissimilarity 

matrix for this neighborhood (see Methods).  We then used the RSA approach described 

earlier, modelling the neural dissimilarity for each channel as a combination of category and 

visual dissimilarity. This procedure was done for each time window, resulting in 12 

searchlight maps showing the contribution of visual and category dissimilarity to neural 

dissimilarity at different spatial locations. Strikingly, this analysis did not reveal any sensors 

or time windows in which the contribution of category dissimilarity to MEG dissimilarity (as 

measured by regression weights) was significantly above zero (Figure 4.9A). In contrast, the 

contribution of visual dissimilarity reached significance in 50-100 ms time window and 

stayed significant throughout all time windows, starting in a group of posterior sensors and 

progressing to more anterior sensors at 100-250 ms, peaking at 150-200 ms and gradually 

receding towards the posterior sensors again (Figure 4.9B). These results suggest that the 

MEG neural dissimilarity across multiple channel locations predominantly reflects visual, but 

not category dissimilarity.  

We then ran a second RSA searchlight, using category, outline and texture dissimilarity as 

predictors of neural dissimilarity. The results of this analysis are shown in Figure 4.10. As in 

the previous analysis, no sensors in any time window exhibited significant contribution of 

category dissimilarity to MEG signals (Figure 4.10A). On the other hand, the outline 

dissimilarity beta estimates reached significance at 50-100 ms after stimulus onset in a group 

of left posterior sensors, spreading to more anterior sensors at 100-150 ms and peaking at 

150-200 ms, staying significant in posterior channels throughout all time windows (Figure 

4.10B). Similarly, texture dissimilarity beta estimates reached significance in a cluster of 

central posterior sensors at 50-100 ms and stayed significant at multiple channel locations in 

all the next time windows, peaking at 150-200 ms (Figure 4.10C). This is further evidence that 

MEG sensor patterns are strongly reflecting visual features (in this case, outline and texture 

dissimilarity) and not category dissimilarity.  

To summarize, the two searchlight analyses revealed robust contributions of overall visual 

dissimilarity as well as outline and texture dissimilarity to the MEG sensor patterns. However, 
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we did not find evidence for significant contribution of category dissimilarity to neural 

dissimilarity at any time window or sensor, suggesting that MEG sensor patterns primarily 

reflect object shape information. 

 

 

Figure 4.9. RSA searchlight results: category and visual dissimilarity. Asterisks indicate sensor 

locations where beta estimates were significantly greater than zero. (A) Searchlight maps showing 

the regression weights reflecting the contribution of category dissimilarity to MEG patterns across 

channels (gradiometers) and twelve time windows. The beta estimates for category were not 

significantly above zero in any of the sensors for all time windows. (B) Searchlight maps showing 

the visual dissimilarity regression weights across gradiometers for twelve time windows. The beta 

estimates are significantly above zero for a group of posterior sensors starting from 50-100 ms 

time window and for all the time windows after that, with activity spreading to more anterior 

sensors from 100 to 200 ms, and then fading back to posterior sensors. The contribution of visual 

dissimilarity to MEG signal is peaking in the 150-200 ms time window. 
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Figure 4.10. RSA searchlight results: category, outline and texture dissimilarity. Asterisks indicate 

sensor locations where beta estimates were significantly greater than zero. (A) Beta estimate 

maps showing the contribution of category dissimilarity to MEG patterns across channels 

(gradiometers) and twelve 50-ms time windows.  The beta estimates for category did not reach 

significance in any of the sensors or time windows. (B) Beta estimate maps showing the 
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contribution of outline dissimilarity to MEG signal across gradiometers for twelve time windows. 

The beta estimates are significantly above zero for a group of posterior sensors starting from 50-

100 ms time window and for all the time windows after that, with activity spreading to more 

anterior sensors from 100 to 200 ms, and then fading back to posterior sensors. The contribution 

of visual dissimilarity to MEG signal is peaking in the 150-200 ms time window. (C) Beta estimates 

reflecting contribution of texture dissimilarity to neural dissimilarity. As for the outline maps, the 

texture regression we reach significance in a group of posterior sensors at 50-100 ms, spreading 

throughout more anterior sensors from 100 to 250 ms with a peak at 150-200 ms and gradually 

receding while staying significant in posterior sensors in all the later time windows.  

 

Discussion 

In this study we aimed at disentangling the contribution of shape and category information to 

the MEG signal.  In two MEG experiments, we presented participants with stimuli from two 

categories (animate and inanimate objects). Critically, the objects from two categories were 

closely matched for overall shape features, making it possible to disentangle category and 

shape information. Importantly, in a previous fMRI study these stimuli were shown to elicit 

category-specific responses in the ventral temporal cortex even after controlling for visual 

similarity (Chapter 2; Proklova, Kaiser, & Peelen, 2016). 

By constructing a decoding accuracy matrix for each time point and averaging all elements, 

we found that individual stimuli were decodable from the MEG signal with above chance 

accuracy starting at 60 ms, with the peak at 120 ms (Figure 4.4). This result corroborated 

earlier MEG studies (e.g., Cichy, Pantazis, & Oliva, 2014) and provided a quality check of the 

data, confirming that the identity of the stimuli we used could be successfully decoded from 

MEG signals.  

We then ran two representational similarity analyses to examine the independent 

contributions of category dissimilarity and different aspects of visual dissimilarity to the MEG 

signal. In the first analysis, neural dissimilarity at each time point was modeled as a linear 

combination of category and overall visual dissimilarity. In the second analysis, we used 

category, outline, and texture dissimilarity as predictors of MEG dissimilarity. All the shape-

related predictors contributed strongly to MEG dissimilarity, reaching significance at 80 ms 
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and peaking between 110-130 ms.  Strikingly, in both experiments the regression weights 

reflecting the contribution of category dissimilarity did not reach significance at any time 

point. Only after pooling the data from the two experiments, we observed a small category 

effect at 520-530 ms (see Figure 4.7, right panel). However, the category beta estimate at 

these time points was only slightly above chance and did not show significance in a follow-up 

whole-brain searchlight analysis (see Figure 4.9A), possibly due to increased number of 

comparisons. In case this significant finding was reflecting a true effect, the category 

information became decodable from MEG signals after 500 ms, much later than previously 

reported (Cichy, Pantazis, & Oliva, 2014; Grootswagers et al., 2016). Importantly, after 500 ms 

the stimulus was no longer on the screen, but participants still needed to hold it in memory to 

successfully perform the one-back task, so this signal could be reflecting memory effects and 

not the perceptual effect. However, we did not observe this effect while looking at the data 

from Experiment 2 only (Figure 4.6). 

Importantly, we used a behavioral measure of visual similarity that was designed to quantify 

perceptual similarity of the stimuli while not being influenced by the stimulus category. We 

measured the perceptual similarity of the intact stimuli as well as the dissimilarity of their 

outline and texture. We found that all of these shape predictors were strongly contributing to 

MEG responses, showing that MEG is very sensitive to multiple visual object properties.  

Several other studies have addressed the issue of separating category and shape information, 

finding evidence for category information reflected in the MEG or EEG signal after the initial 

shape-related information before 200 ms. However, these studies used different ways to 

control for visual dissimilarity. For example, a recent study compared EEG response patterns 

for images of intact and scrambled objects (Coggan, Baker, and Andrews, 2016). The results 

showed that both intact and scrambled images elicit similar category-specific patterns of 

response at the early stages of processing (before 200 ms), but the response to intact images 

was sustained for a longer time, taken as evidence that this later effect is reflecting semantic 

category information. However, the use of the scrambled images is not the optimal control for 

visual object features. It is possible that some residual visual features that were removed 

during scrambling were driving the response to the intact stimuli. In our study, we specifically 

measured the visual similarity of intact stimuli, and, after regressing out this visual 
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information, we did not find any evidence of category information in the MEG sensory 

patterns. 

Another recent study by Clarke et al. (2015) compared how well a visual model and a model 

that combines visual and semantic information predict the MEG data and found that the 

model that includes semantic information describes the MEG data better after 200 ms. It is 

possible that the model that includes semantic features and not just binary category 

information is a better predictor for the MEG data. Moreover, in this study participants were 

performing object naming task that could potentially elicit stronger category responses 

compared to oddball detection and one-back tasks. Changing the task and using a semantic 

dissimilarity predictor would be useful next steps for our experiment. 

An earlier study from our lab found that category information in the MEG signals can be 

disentangled from shape information by using pictures of hands and torsos and shape-

matched images of gloves and t-shirts (Kaiser, Azzalini, & Peelen, 2016). Since images of body 

parts were used in this study, the extrastriate body area (EBA) was likely involved in their 

perception. It is possible that the activity in EBA, which is located in the lateral occipital-

temporal cortex, is picked up better by MEG compared to more inferior-temporal areas. 

Indeed, the stimuli we used in a present study have been shown to elicit category-selective 

responses in ventral temporal cortex, around the fusiform gyrus, which might be more 

difficult to access with MEG. 

Our results, therefore, should not be taken to mean that it is impossible to decode object 

category information from the MEG response patterns. However, these results demonstrate 

that different aspects of object shape, including overall shape, outline, and texture, contribute 

greatly to the MEG response patterns. This is in line with previous studies that showed that 

perceived shape similarity is a strong predictor of neural dissimilarity measured with MEG 

(Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 2016). Our results illustrate 

the importance of properly controlling for object shape features while measuring object 

category information with MEG.  
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Chapter 5 

General Discussion 

 

The main goal of this thesis is to disentangle the effects of object shape and object category on 

the representations of animate and inanimate objects in the brain. To this end, we created a 

stimulus set in which shape and category information were dissociated, and conducted fMRI 

and MEG studies to examine independent contributions of shape and category to brain 

response patterns. In this chapter, we summarize our findings, describe them in context of 

existing literature and outline future directions.  

In Chapter 2, we introduced a novel stimulus set in which stimuli from two categories 

(animate and inanimate objects) were carefully matched for overall shape features (e.g. snake 

– rope), allowing to disentangle the contribution of shape and category to brain activity 

patterns. This approach has not been used before to address this issue, apart from a few very 

recent studies (Bracci & Op de Beeck, 2016; Kaiser, Azzalini, & Peelen, 2016). Earlier studies 

mainly controlled for visual similarity post hoc, by using a computational model to rule out 

the possibility of visual similarity explaining the observed category-specific responses (e.g., 

Kriegeskorte et al., 2008). Our approach allows to control for visual dissimilarity more 

rigorously by purposefully disentangling shape and category information during stimulus 

selection. 

We also described a behavioral paradigm aimed at measuring visual dissimilarity of the 

stimuli based on participants’ performance in a simple visual search task. We conducted three 

behavioral visual search experiments to measure different aspects of visual dissimilarity of 

the stimuli. This task was previously used to relate visual dissimilarity to categorization 

performance (Mohan & Arun, 2012). We chose this task because it allows to measure the 

perceptual dissimilarity of objects while minimizing the top-down effects. Importantly, using 

the RTs in these visual search experiments we constructed three visual dissimilarity matrices 

that were then used as predictors of neural dissimilarity in fMRI and MEG studies. 

In Chapter 3, we described an fMRI experiment designed to test the hypothesis that visual 

dissimilarity of the stimuli can fully explain the category-related patterns of activity in human 

ventral temporal cortex. Our results showed that this was not the case. First, we found that 
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lateral-to-medial organization of animate- and inanimate-preferring responses (e.g., Mahon et 

al., 2007) was preserved even when stimuli from these categories were matched for shape. 

Second, the representational similarity analysis revealed that category information was still 

present in VTC activity patterns after accounting for visual similarity of the stimuli. This is in 

line with earlier studies showing that object animacy is an important factor explaining VTC 

response patterns (e.g., Chao et al., 1999; Kriegeskorte et al., 2008), and against the 

interpretation that these patterns reflect visual properties of objects belonging to different 

categories (e.g., Rice et al., 2014). Importantly, in our study we used a challenging stimulus 

set, specifically avoiding stimuli such as human faces or bodies that strongly influenced 

representational structure of VTC in earlier studies (Kriegeskorte et al., 2008), and still 

observed distinct category-selective patterns of response in VTC. 

Our findings are also in line with the results of a recent study that used a very similar 

approach to match objects from different categories for shape (Bracci & Op de Beeck, 2016). 

In this study, the researchers found that both shape and category information was reflected in 

patterns of activity in VTC, as well as in lateral occipito-temporal cortex. Moreover, patterns of 

activity in VTC were reflecting the animate-inanimate distinction. We observed similar results 

in our fMRI study, using a slightly different analysis approach (the multiple regression RSA), 

and after controlling for additional visual features (outline and texture).  

There is still a possibility that in our stimulus selection and visual dissimilarity measure we 

overlooked some residual visual features that could explain category-selective responses in 

VTC. Indeed, no existing method allows to control for all of the visual features. The shape-

matching approach also has its limits, because the perfectly-matched stimuli would be 

indistinguishable. It would therefore be important to replicate our findings using different 

approaches to controlling for shape. For example, one can transform the stimuli in a way that 

loosely preserves mid-level features (such as texture) as well as coarse object form, but 

renders the stimuli unrecognizable (Freeman & Simoncelli, 2011; Long, Konkle, Cohen, & 

Alvarez, 2016) and then measure the responses to such images (“texforms”) in the ventral 

stream. If category-selective responses are still observed for these stimuli, it would suggest 

that the animate-inanimate distinction might be driven by mid-level features.  

Another interesting next step would be to test deep neural networks (DNNs) on our stimulus 

set and then compare the DNN dissimilarity to perceptual dissimilarity. This would test 
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whether DNNs and humans rely on similar object features (Kubilius, Bracci & Op de Beeck, 

2016). The DNN dissimilarity could then be used as a predictor of neural dissimilarity 

measured with fMRI and MEG. 

Chapter 4 of this thesis is devoted to two MEG experiments in which we tested whether it was 

possible to disentangle object shape and object category information reflected in MEG sensor 

patterns, with the eventual goal of comparing the time courses of these two predictors. We 

found that information about object shape, outline, and texture was reflected robustly in the 

MEG signal. However, after regressing out visual dissimilarity, we found no residual 

information about object category in MEG signals.  

The fact that different aspects of visual dissimilarity predicted MEG response patterns so well 

is consistent with an earlier study that showed that perceptual similarity is reflected robustly 

in the MEG signal (Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 2016). A 

novel contribution of our study is that we showed that texture and outline similarity (and not 

just the overall visual similarity) also predict MEG response patterns. Moreover, we were able 

to examine the independent time courses of these predictors. 

At first glance, it may seem like our fMRI and MEG findings are in conflict with each other: 

despite using the same stimuli, experimental design, and similar analysis approach, we 

observed category-specific response patterns that were independent of shape with fMRI, but 

not with MEG. However, it is important to note that the results of the two studies do not 

necessarily contradict each other, and can be reconciled in several ways. It could be that RSA 

approach used in fMRI study was not ideally suited for MEG data analysis; for example, 

because of the lower spatial resolution of MEG. Although we chose RSA to make fMRI and MEG 

experiments more comparable, other analysis techniques can be applied to MEG data in order 

to examine it more closely. Further analyses could include cross-decoding approach similar to 

the one used by Kaiser, Azzalini, & Peelen (2016), an MEG decoding study that observed 

shape-independent category responses for body parts. Finally, another possibility is that the 

category-preferring clusters found in the fMRI study were located in areas that were not well 

accessible to MEG, namely, in ventral temporal cortex. This could also explain differences with 

the study by Kaiser et al. (2016), in which stimuli of body parts were used, potentially 

activating more lateral portions of the temporal cortex (e.g., EBA) that could be more 

accessible with MEG.  
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Although shape information was robust in both fMRI and MEG experiments, the shape-

independent category information was only revealed in the fMRI experiment. One could argue 

that even in fMRI experiment shape was the dominant factor in VTC representations, with 

category-selective clusters less prominent compared to shape-selective clusters (Figure 3.5). 

However, it is important to note that in the fMRI experiment we did not aim to compare the 

relative contributions of shape and category to VTC activity patterns. Instead, the aim of the 

fMRI experiment was to test whether category-selective VTC responses could be explained 

fully by the shape features that are characteristic for animals and inanimate objects. The 

existence of shape-independent category clusters in VTC suggests that object category 

(animacy) is an important organizing principle for VTC representations, even if these clusters 

are smaller in size compared to shape clusters.  

However, it is still possible that these results could be influenced by the way we defined 

animacy and shape similarity of the stimuli. For example, it could be that in our stimulus set 

object animacy was defined too narrowly (i.e., a stimulus could be either animate or 

inanimate, with no gradations of animacy), while shape was defined more broadly using a 

continuous measure. Could this explain the robust shape responses in both experiments and 

the absence of category information in the MEG signal? It is possible, and could partially be 

addressed by using a category predictor that takes into account the “animacy continuum” 

(Connolly et al., 2012; Sha et al., 2014), with the “degree of animacy” defined as the similarity 

to the animate prototype (i.e., human). However, in the studies described in this thesis we 

were specifically interested in the binary definition of object animacy, because this is how 

animacy was defined in the body of literature on the animate-inanimate distinction in the 

ventral stream (e.g., Ishai et al., 1999; Kriegeskorte et al., 2008). In other words, our studies 

tested the “strong” version of the animacy hypothesis, i.e. whether animate-inanimate 

distinction in the brain responses (with animacy defined in a binary way) is reflecting a true 

categorical distinction or whether it simply reflects shape properties of these categories. This 

is also why we specifically avoided “highly animate” stimuli according to the animacy 

continuum, such as humans and four-legged mammals. Importantly, even using this strict 

definition of animacy, we were able to find shape-independent category-selective responses 

in the VTC in the fMRI experiment. 
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One could also argue that the visual similarity of the stimuli as defined in these experiments 

(via the visual search tasks) was dominated by low-level shape properties such as silhouette 

overlap, rather than more high-level shape properties such as perceived shape similarity as 

rated by human participants (Bracci & Op de Beeck, 2016). It would therefore be informative 

to collect behavioral ratings of the shape similarity of our stimuli and compare our visual 

dissimilarity measure with the one obtained from these ratings. However, we speculate that 

these two measures might produce similar results, given that in visual search task 

participants had to rely not only on overall silhouette similarity (which was high for the 

stimuli belonging to the same shape set), but also on the inner texture and other distinctive 

features of the stimuli. This is also reflected in the fact that overall visual dissimilarity could 

be closely approximated as the linear combination of outline and texture dissimilarity, and 

each of these features contributed separately to the fMRI and MEG signal.  

An interesting new analysis approach (similarity fusion; Cichy, Pantazis, & Oliva, 2016) can be 

used to relate the data from the fMRI and MEG experiments described in this thesis. By taking 

an fMRI dissimilarity matrix from a particular ROI (for example, category-selective areas or 

early visual cortex) and correlating it with an MEG dissimilarity matrix at every time point, 

one can obtain a time course of when the representational geometry of this ROI is reflected in 

MEG sensor patterns.  It would be particularly interesting to see if the representational 

structure of category-selective clusters from out fMRI study is reflected in MEG patterns at 

some time point. 

Given that we were able to find evidence for category selectivity with fMRI, we take our MEG 

results to mean that MEG is less sensitive to this information compared with fMRI. However, 

we do not claim that shape-independent category information cannot in principle be found in 

MEG signals (see Kaiser, Azzalini, & Peelen, 2016). The main finding of our MEG study is that 

MEG is very sensitive to various visual object properties, and it is therefore important to 

properly control for visual dissimilarity of stimuli in studies that report the decodability of 

object category from MEG sensor patterns (e.g., Cichy, Pantazis, & Oliva, 2014). 
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Conclusions 

To summarize, the studies described in this thesis aimed at disentangling the effects of object 

shape and object category on the representations of animate and inanimate objects in the 

brain. To do this, we created a stimulus set in which shape and category information were 

dissociated, and conducted fMRI and MEG studies to examine independent contributions of 

shape and category to brain response patterns. Using fMRI, we found that the animate-

inanimate distinction in the ventral temporal cortex (VTC) was observed even after 

controlling for visual similarity of the stimuli. These results suggest that the category-selective 

responses in VTC do not simply reflect the overall shape features characteristic of these 

categories. We then conducted an MEG study to examine the time course of shape and 

category information in the brain. We found that different aspects of visual dissimilarity are 

contributing robustly to MEG sensor patterns. Surprisingly, when regressing out the 

contribution of visual properties, no residual category information was present in MEG 

response patterns. We conclude that MEG sensor patterns evoked by visually presented 

objects predominantly reflect visual object properties. Together with the results of the fMRI 

study, these findings suggest that MEG is less sensitive to object category information that is 

independent of shape information. 
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Supplementary Information 

 

Supplementary Figure 1. The complete stimulus set. The complete stimulus set included four 

versions for each of the original 16 images (Figure 2.1). This resulted in 16 images for each of the 

four shape subsets and 64 images in total. 
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Supplementary Figure 2. The complete stimulus set: Outlines. The set of 64 object outlines was 

obtained by tracing the outline of the binarized silhouette versions of the original stimuli. 
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Supplementary Figure 3. The complete stimulus set: Textures. The set of 64 circular texture 

patches was created by masking the original images with a circular aperture in the center of 

the image. 
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Disentangling Representations of Object Shape and
Object Category in Human Visual Cortex:

The Animate–Inanimate Distinction

Daria Proklova*, Daniel Kaiser*, and Marius V. Peelen

Abstract

■ Objects belonging to different categories evoke reliably dif-
ferent fMRI activity patterns in human occipitotemporal cortex,
with the most prominent distinction being that between ani-
mate and inanimate objects. An unresolved question is whether
these categorical distinctions reflect category-associated visual
properties of objects or whether they genuinely reflect object
category. Here, we addressed this question by measuring fMRI
responses to animate and inanimate objects that were closely
matched for shape and low-level visual features. Univariate con-
trasts revealed animate- and inanimate-preferring regions in
ventral and lateral temporal cortex even for individually
matched object pairs (e.g., snake–rope). Using representational
similarity analysis, we mapped out brain regions in which the
pairwise dissimilarity of multivoxel activity patterns (neural dis-
similarity) was predicted by the objects’ pairwise visual dissim-

ilarity and/or their categorical dissimilarity. Visual dissimilarity
was measured as the time it took participants to find a unique
target among identical distractors in three visual search exper-
iments, where we separately quantified overall dissimilarity,
outline dissimilarity, and texture dissimilarity. All three visual
dissimilarity structures predicted neural dissimilarity in regions
of visual cortex. Interestingly, these analyses revealed several
clusters in which categorical dissimilarity predicted neural dis-
similarity after regressing out visual dissimilarity. Together,
these results suggest that the animate–inanimate organization
of human visual cortex is not fully explained by differences in
the characteristic shape or texture properties of animals and in-
animate objects. Instead, representations of visual object prop-
erties and object category may coexist in more anterior parts of
the visual system. ■

INTRODUCTION

Large-scale patterns of fMRI activity spanning the ventral
temporal cortex (VTC) distinguish animate from inani-
mate object categories (e.g., Kriegeskorte, Mur, Ruff,
et al., 2008), with animate objects evoking higher BOLD
responses in lateral VTC and inanimate objects evoking
higher BOLD responses in medial VTC (e.g., Mahon
et al., 2007; Downing, Chan, Peelen, Dodds, & Kanwisher,
2006; Chao, Haxby, & Martin, 1999). Within these broader
regions, focal regions exhibit selective responses to more
specific categories, including regions selective for build-
ings and scenes, faces, tools, body parts, and words
(Peelen & Downing, 2005; Cohen & Dehaene, 2004;
Downing, Jiang, Shuman, & Kanwisher, 2001; Chao et al.,
1999; Epstein & Kanwisher, 1998; Kanwisher, McDermott,
& Chun, 1997). Although the selectivity for object catego-
ries in VTC has been widely replicated, particularly the
animate–inanimate distinction, the factors driving this
selectivity are still under debate (Andrews, Watson, Rice,
& Hartley, 2015; Grill-Spector & Weiner, 2014; Mahon &
Caramazza, 2011; Op de Beeck, Haushofer, & Kanwisher,
2008; Martin, 2007).

One of the key questions is whether category-specific
patterns of brain activity reflect genuine categorical dis-
tinctions (Caramazza & Shelton, 1998) or whether these
can be alternatively explained by factors that covary with
category membership, such as shape properties. Because
of the close association between certain visual proper-
ties and category membership, it is to be expected that
category-selective regions are optimized for processing
these visual properties and/or that these regions are lo-
cated in parts of the visual system that have visual and
retinopic biases that are optimal for processing the visual
features that are characteristic of the category. However,
although specific visual properties often characterize ob-
ject categories, these two dimensions (visual, categorical)
are not identical and can indeed be experimentally dissoci-
ated. For example, although most tools are elongated, this
shape property can be dissociated from the conceptual
properties associated with tools (e.g., that tools are manip-
ulable and used as effectors; Bracci & Peelen, 2013). For a
visually more homogenous category such as animals, this
distinction is more challenging but may still be addressed
by testing responses to visually less typical examples (e.g.,
snakes) and, conversely, testing responses to inanimate ob-
jects that share visual features with animals (e.g., manne-
quins, dolls, statues). These considerations raise the
intriguing question of whether category selectivity in VTC
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reflects selectivity for conceptual category or selectivity for
visual properties that characterize a category.
According to the object form topology account, category-

selective fMRI responses in VTC reflect the activation of
object form representations that are mapped onto VTC in
a continuous fashion (Haxby, Ishai, Chao, Ungerleider, &
Martin, 2000; Ishai, Ungerleider, Martin, Schouten, &
Haxby, 1999). The selective response to animals in VTC
may thus arise from selectivity for characteristic animal
shape(s) rather than selectivity for animacy per se. A re-
cent monkey study provided support for this hypothesis,
showing that the organization of animate and inanimate
object representations in monkey inferotemporal cortex
primarily reflects visual similarity rather than semantic
similarity (Baldassi et al., 2013; but see Kiani, Esteky,
Mirpour, & Tanaka, 2007). Further support for the visual
similarity account comes from fMRI studies showing that
category-selective regions in VTC respond selectively to
visual properties that are characteristic of the regions’ pre-
ferred categories, even for otherwise meaningless stimuli
(i.e., in the absence of category recognition). For example,
the fusiform face area was shown to respondmore strongly
to oval shapes with a greater number of black elements in
the top half than to oval shapes with a greater number of
elements in the bottom half, although none of these stim-
uli were recognized as faces (Caldara et al., 2006). Similarly,
the parahippocampal place area, located within the medial
inanimate-preferring VTC, was shown to respond preferen-
tially to objects made up of cardinal orientations and right
angles, features typical of manmade objects, buildings, and
scenes (Nasr, Echavarria, & Tootell, 2014).
Recent evidence against a “visual properties” account

of category selectivity in VTC comes from studies in con-
genitally blind individuals. These individuals, with no vi-
sual experience, show a categorical organization of VTC
that is remarkably similar to that observed in sighted in-
dividuals (Ricciardi, Bonino, Pellegrini, & Pietrini, 2014).
For example, aurally presented words describing large in-
animate objects, versus animals, activate medial VTC in
both blind and sighted groups (He et al., 2013; Mahon,
Anzellotti, Schwarzbach, Zampini, & Caramazza, 2009).
Using a variety of presentation methods, most of the
category-selective VTC regions found in sighted individ-
uals have now also been reported in blind individuals, often
at nearly identical anatomical locations in the two groups
(Striem-Amit & Amedi, 2014; Peelen et al., 2013; Reich,
Szwed, Cohen, & Amedi, 2011; Wolbers, Klatzky, Loomis,
Wutte, & Giudice, 2011; Buchel, Price, & Friston, 1998).
These studies show that the processing of visual features
is not necessary for some category-selective responses to
develop. However, they do not exclude the possibility
that category selectivity in VTC nevertheless reflects
shape properties of objects. This is because VTC has
been shown to extract object shape from nonvisual input
modalities (Amedi et al., 2007; Amedi, von Kriegstein, van
Atteveldt, Beauchamp, & Naumer, 2005), with VTC activity
patterns reflecting the shape similarity of objects in both

blind and sighted groups (Peelen, He, Han, Caramazza, &
Bi, 2014).

This study was designed to investigate the contribution
of shape similarity in the representation of animate and in-
animate object categories in VTC. Participants viewed pic-
tures of a variety of animals that systematically differed in
their shape, grouping into four shape clusters (Figure 2A,
right). Importantly, inanimate control objects were selected
to closely match the animals in terms of their shape, follow-
ing the same four shape clusters. This design allowed us to
test whether animate- and inanimate-preferring regions
(localized with a standard functional localizer) maintain
their selectivity for carefully matched animate–inanimate
pairs (e.g., snake vs. rope) and whether this is true for a
variety of animals (e.g., birds, insects, reptiles) and inani-
mate objects (e.g., plane, rope, pine cone). In addition to
analyses measuring activation differences, we used repre-
sentational similarity analysis (RSA) to map out regions in
which neural similarity reflected the objects’ visual and/or
categorical similarity (animate/inanimate). For this pur-
pose, we quantified pairwise visual similarity using visual
search tasks designed to measure different aspects of visual
similarity (overall visual similarity, outline similarity, and tex-
ture similarity; Figure 2).

METHODS

Participants

Eighteen participants (seven men; mean age = 25 years,
SD = 2.4 years) were scanned at the Center for Mind/
Brain Sciences of the University of Trento. All participants
gave informed consent. All procedures were carried out
in accordance with the Declaration of Helsinki and were
approved by the ethics committee of the University of
Trento. One participant was excluded from all analyses
because of excessive head movement.

Stimuli

The stimuli of the main experiment were organized into
four sets of four objects. The four objects within each set
all had a roughly similar shape. Two objects of each set
were animate, and two objects were inanimate (see
Figures 2A and 4). In addition, there were four exemplars
of each object (e.g., four images of a snake), resulting in
16 stimuli per set and a total of 64 stimuli. All images
were gray scaled, placed on gray background and
matched for luminance and contrast using the SHINE
toolbox (Willenbockel et al., 2010). Stimulus presenta-
tion was controlled using the Psychtoolbox (Brainard,
1997). Images were back-projected on a translucent screen
placed at the end of the scanner bore. Participants viewed
the screen through a tilted mirror mounted on the head
coil. Stimuli were presented foveally and subtended a visual
angle of approximately 4.5°.
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Visual Search Experiments

To provide a measure of pairwise visual similarity of the
stimulus set, a series of three behavioral visual search ex-
periments was conducted. In these experiments, partici-
pants searched for an oddball target surrounded by
identical distractor objects (Figure 2). The response time
in this task is a measure of visual similarity (Mohan &
Arun, 2012): The longer the response time for locating
the oddball stimulus, the more visually similar are the tar-
get and the distractor object. Experiment 1 measured
overall visual similarity, Experiment 2 measured outline vi-
sual similarity, and Experiment 3 measured texture visual
similarity.

Experiment 1

To quantify overall pairwise visual similarity of the stimu-
lus set, 18 new participants were tested in a behavioral
experiment (two men; mean age = 22.5 years, SD =
2.97 years). Stimuli were presented on a 17-in. CRT mon-
itor, and presentation was controlled using Psychtoolbox
(Brainard, 1997). Each search display contained 16 ob-
jects placed in a 4 × 4 grid, with one oddball target
and 15 identical images of the distractor object. The loca-
tion of the 16 objects in the grid was randomized. The size
of the target and seven of the distractors was 100 ×
100 pixels, which corresponded to 2.9° visual angle. The
remaining distractors differed in size, with four being
120% of the target size (3.4° visual angle) and four being
80% of the target size (2.3° visual angle). Participants had
to indicate whether the oddball target appeared on the left
side or on the right side of the screen. No information
about the category of the oddball target was provided.
The search display remained on the screen until the re-
sponse, followed by 500-msec fixation, after which the next
trial started. The experiment consisted of four blocks. In
each block, only one of the four exemplars of each object
was used (e.g., always the same snake within one block),
resulting in 16 unique objects and 240 trials per block
(for all possible target–distractor pairings of the 16 stimuli).
Accuracy was high (97.2%) and was not further analyzed.

RTswere averaged across corresponding target–distractor
object pairs and across blocks. The data from the visual
search experiment served to create a matrix of overall
pairwise visual dissimilarity, to be used as a predictor in
the fMRI analysis. For this purpose, we took the inverse
of these RTs (1/RT) for each stimulus pair as a measure
of dissimilarity. The resulting visual dissimilarity matrix
consisted of one visual dissimilarity value for every pair-
wise combination of objects (Figure 2A, center). Multi-
dimensional scaling analysis (using cmdscale function in
MATLAB, The MathWorks, Natick, MA) revealed that stim-
uli from the same shape sets clustered together (Figure 2A,
right), whereas there was no apparent categorical organi-
zation. Furthermore, within each shape set, there was no
evidence for categoricality, with the average visual dissimi-

larity within categories (e.g., snake–snail) being equal to the
average visual dissimilarity across categories (e.g., rope–
snail), t(17) = 1.22, p = .239. These results confirm our
intuitive shape sets and show that there were no obvious
visual properties that covaried with category membership.

Experiments 2 and 3

To measure pairwise similarity of the outline shape of
the stimuli, 18 new participants (three men; mean age =
23.3 years, SD = 3.4 years) were tested in Experiment 2.
The experiment was identical to Experiment 1 except that
the stimulus set consisted of outline drawings of the stim-
uli, created by automatically tracing the outline contours of
binarized silhouette versions of the original stimuli (see
Figure 2B). Accuracy was high (98.1%) and was not further
analyzed.
To measure pairwise texture similarity of the stimulus

set, 18 participants (eight men; mean age = 25.7 years,
SD = 5.5 years) were tested in Experiment 3. Two of the
participants had also participated in Experiment 2. The
experiment was identical to Experiments 1 and 2 except
that the stimulus set consisted of circular texture patches,
created by masking the original images with a circular ap-
erture that covered about 20% of the image (see
Figure 2C). The aperture was centered on the mean pixel
coordinate of the image. Any blank spaces were filled in
using the clone stamp tool in Photoshop. This circular
masking abolishes outline shape information, while leav-
ing inner features and texture properties of the stimuli
largely intact. It should be noted that these patches still
contained some local structure (e.g., the inner contour of
the snake) and may thus capture some internal shape fea-
tures in addition to texture properties. Accuracy was high
(98.1%) and was not further analyzed.
Data for Experiments 2 and 3 were analyzed as in Ex-

periment 1, resulting in dissimilarity matrices represent-
ing outline and texture dissimilarity of the stimulus set
(Figure 2B and C, center). Further analyses showed that
overall visual dissimilarity could be nearly perfectly pre-
dicted by a linear combination of outline and texture dis-
similarity, with the optimal weights being 0.75 and 0.25,
respectively. Linear combinations of dissimilarity matri-
ces were computed by using data from different single
participants (e.g., 0.75 × outline of one participant +
0.25 × texture of another participant), each of which
was then correlated with the average visual dissimilarity
matrix (with one participant left out). The resulting aver-
age correlation (r = .77) approached the noise ceiling of
visual dissimilarity (r = .82, computed by correlating
each participant’s visual dissimilarity matrix with the
group-averaged visual dissimilarity matrix, leaving out
this participant). Finally, the combined model was signif-
icantly more strongly correlated with visual dissimilarity
than was either outline or texture alone ( p < .001, for
both comparisons). These analyses show that overall visual
dissimilarity is influenced both by outline and texture
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properties, which together almost fully explain overall vi-
sual dissimilarity.

Main fMRI Experiment Procedure

The main fMRI experiment consisted of eight runs. Each
run consisted of 80 trials that were composed of 64 ob-
ject trials and 16 fixation-only trials. In object trials, a sin-
gle stimulus was presented for 300 msec, followed by a
3700-msec fixation period (Figure 1A). In each run, each
of the 64 images appeared exactly once. In fixation-only
trials, the fixation cross was shown for 4000 msec. Trial
order was randomized, with the constraints that there
were exactly eight 1-back repetitions of the same cate-
gory (e.g., two snakes in direct succession) within the ob-
ject trials and that there were no two fixation trials
appearing in direct succession. Each run started and
ended with a 16-sec fixation period, leading to a total run
duration of 5.9 min. Participants were instructed to press
a button whenever they detected a 1-back repetition.

Functional Localizer Experiment Procedure

In addition to the main experiment, participants com-
pleted one run of a functional localizer experiment. Dur-
ing the localizer, participants viewed grayscale pictures of
36 animate and 36 inanimate stimuli in a block design
(Figure 1B). Animate stimuli included five different types
of animals (mammals, birds, fish, reptiles, and insects).
Inanimate stimuli included five types of inanimate objects
(cars, chairs, musical instruments, tools, and weapons).
These stimuli were not matched for their shape (thus, this
design resembled the standard animate–inanimate con-
trast used in previous studies). Each block lasted 16 sec,
containing 20 stimuli that were each presented for

400 msec, followed by 400-msec blank interval. There were
eight blocks of each stimulus category and four fixation-only
blocks per run. The order of the first 10 blocks was ran-
domized and then mirror reversed for the other 10 blocks.
Participants were asked to detect 1-back image repetitions,
which happened twice during every nonfixation block.

fMRI Acquisition

Imaging data were acquired using a MedSpec 4-T head
scanner (Bruker Biospin GmbH, Rheinstetten, Germany),
equipped with an eight-channel head coil. For functional
imaging, T2*-weighted EPIs were collected (repetition time =
2.0 sec, echo time = 33 msec, 73° flip angle, 3 × 3 × 3 mm
voxel size, 1-mm gap, 34 slices, 192-mm field of view, 64 ×
64matrix size). A high-resolution T1-weighted image (mag-
netization prepared rapid gradient echo; 1 × 1 × 1 mm
voxel size) was obtained as an anatomical reference.

fMRI Preprocessing and Modeling

The neuroimaging data were analyzed using MATLAB and
SPM8. During the preprocessing, the functional volumes
were realigned, coregistered to the structural image, re-
sampled to a 2 × 2 × 2 mm grid, and spatially normalized
to the Montreal Neurological Institute 305 template in-
cluded in SPM8. For the univariate analysis, the functional
imageswere smoothedwith a6-mmFWHMkernel,whereas
for the multivariate analysis, the images were left un-
smoothed. For the main experiment, the BOLD signal of
each voxel in each participant was modeled using 22 re-
gressors in a general linear model, with 16 regressors for
each of the objects (e.g., one regressor for all snakes)
and six regressors for the movement parameters obtained
from the realignment procedure. For the functional

Figure 1. fMRI paradigm. (A) In
the main fMRI experiment,
participants viewed images
of animate objects and
shape-matched inanimate
objects (see Figure 4 for further
stimulus examples). Trial
order was randomized, and
participants detected, by button
press, 1-back object-level
repetitions (here, two ladybugs).
(B) In the functional localizer
experiment, participants
viewed blocks of animate
(top sequence) and inanimate
(bottom sequence) stimuli. All
stimuli were different from the
ones used in themain experiment.
Each block lasted 16 sec, and
participants detected, by button
press, 1-back image-level
repetitions (here, the fish
image).

Proklova, Kaiser, and Peelen 683



localizer data, the signal was modeled using two regressors
(animate and inanimate objects) and six movement regres-
sors. All models included an intrinsic temporal high-pass
filter of 1/128 Hz to correct for slow scanner drifts.

Univariate Analysis

Univariate random effects whole-brain analyses were per-
formed separately for the localizer and the main experi-
ment, contrasting animate with inanimate objects.
Statistical maps were thresholded using a voxel-level
threshold of p < .001 (uncorrected) and a cluster-level

threshold of p < .05 (family-wise error [FWE] corrected).
In addition, regions activated in the localizer were de-
fined as ROIs. Within these ROIs, beta estimates for the
conditions of the main experiment were extracted and
averaged across the voxels of each ROI. These beta values
were statistically compared using ANOVAs and t tests.

RSA

RSA (Kriegeskorte, Mur, & Bandettini, 2008) was used to
relate the visual and categorical dissimilarity of the objects
to neural dissimilarity. RSA was performed throughout the

Figure 2. Visual search experiments. In three visual search experiments, participants indicated whether an oddball target in a 4 × 4 search array
(left) was located to the right or to the left of the vertical display midline. No prior information about the target was given, so that participants had to
rely on bottom–up visual differences to perform the task. From the RTs in these experiments, we created visual dissimilarity matrices (center),
where each element represents the inverse RT for a pair of stimuli, averaged across the two respective target–distractor pairings: High dissimilarity
values thus correspond to short RTs, reflecting that target and distractor were visually dissimilar. Multidimensional scaling representations of
the three visual dissimilarity matrices are shown in the right panels. The three experiments differed only in the stimuli used: (A) the
original images used in the fMRI experiment, (B) outline drawings of these images, and (C) internal textures of these images.
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whole brain using searchlight analysis (Kriegeskorte, Goebel,
& Bandettini, 2006), implemented in the CoSMoMVPA
software package (www.cosmomvpa.org). Each spherical
searchlight neighborhood consisted of 100 voxels, cen-
tered on every voxel in the brain. For each of these
spheres, we correlated the activity (beta values) between
each pair of conditions from the main experiment across
the voxels of the sphere, leading to a 16 × 16 symmetrical
correlation matrix with an undefined diagonal. This matrix
was transformed into a neural dissimilarity matrix by sub-
tracting the correlation values from 1.
In a first analysis, neural dissimilarity matrices were re-

lated to the visual dissimilarity matrix and the categorical
dissimilarity matrix using multiple regression analysis
(see Figure 5A). The visual dissimilarity matrix was de-
rived from RTs in a visual search experiment (Experiment 1;
Figure 2A), whereas the categorical dissimilarity matrix
reflected whether two objects were from the same cate-
gory (0) or from different categories (1). All dissimilarity
matrices were z normalized. The multiple regression
analysis yielded beta estimates for the two predictors of
neural dissimilarity (visual and categorical dissimilarity),
reflecting the independent contributions of these pre-
dictors in explaining neural dissimilarity. These two beta
estimates were obtained for all spheres, resulting in two
whole-brain maps for each participant. These maps
were then tested against zero using random effects anal-
yses (t tests), thresholded using a voxel-level threshold
of p < .001 (uncorrected) and a cluster-level threshold
of p < .05 (FWE corrected). In the second analysis, neu-
ral dissimilarity matrices were related to outline dissim-
ilarity (Figure 2B), texture dissimilarity (Figure 2C), and
categorical dissimilarity (Figure 6A). In all other respects,
the analysis was the same as the first analysis described
above.

RESULTS

Univariate Results

Whole-brain Analysis

The contrast between animate and inanimate objects in
the functional localizer experiment revealed a character-
istic medial-to-lateral organization in VTC (Figure 3A). In
line with previous findings, animate stimuli more strongly
activated regions around the lateral fusiform gyrus (left
hemisphere [LH]: 1936 mm3, peak Montreal Neurologi-
cal Institute coordinates: x = −40, y = −48, z = −22;
right hemisphere [RH]: 3424 mm3, peak coordinates:
x = 42, y = −52, z = −20), and inanimate stimuli pref-
erentially activated more medial regions around parahip-
pocampal gyrus (LH: 3760 mm3, peak coordinates: x =
−28, y = −46, z = −12; RH: 3184 mm3, peak coordi-
nates: x = 34, y = −42, z = −12). In addition to these
ventral regions, animate stimuli preferentially activated a
more posterior and lateral region, around middle tempo-
ral gyrus (LH: 3528 mm3, peak coordinates: x=−48, y=

−80, z = 0; RH: 7800 mm3, peak coordinates: x = 52,
y = −74, z = −2).

The same animate–inanimate comparison was per-
formed for the main experiment, in which the animate
and inanimate stimuli were closely matched for shape
and low-level visual features (see Methods). This contrast
revealed a significant animacy organization: Animate
stimuli more strongly activated two clusters in the RH,
again around fusiform gyrus (808 mm3, peak coordinates:
x = 42, y = −52, z = −20) and middle temporal gy-
rus (1120 mm3, peak coordinates: x = 50, y = −74, z =
0). Similar to the functional localizer results, inanimate-
preferring regions were found around bilateral parahippo-
campal gyrus (LH: 4736 mm3, peak coordinates: x = −26,
y = −52, z = −16; RH: 3456 mm3, peak coordinates: x =
24, y = −40, z = −16). Figure 3A shows the animate- and
inanimate-preferring clusters from the localizer and the
main experiment as well as their overlap.

These results indicate that the medial-to-lateral ani-
macy organization is also found when controlling for
shape differences of animate and inanimate objects. As
can be seen in Figure 3A, activity was stronger in the lo-
calizer than in the main experiment. This effect is hard to
interpret, however, given the many differences between
the localizer and the main experiment (e.g., block design
vs. event-related design, stimulus duration, the specific
animals and objects included, etc.). Indeed, the purpose
of this analysis was not to compare the strength of activity
between localizer and main experiment directly but to
show that the medial-to-lateral organization is remarkably
similar in both experiments. Finally, although some of
the LH clusters did not survive multiple comparisons cor-
rection in the main experiment, the functionally localized
ROIs maintained their selectivity in the main experiment
in both hemispheres, as reported in the next section.

ROI Analysis

ROI analyses were used to test for selectivity for the con-
ditions in the main experiment within each of the six
clusters of the functional localizer (Figure 3A; for coordi-
nates and cluster sizes, see the whole-brain analysis sec-
tion above). A three-way ANOVA with the factors Animacy
(animate, inanimate), Region (animate lateral, animate
ventral, inanimate ventral), and Hemisphere (right, left)
revealed a critical Region × Animacy interaction (F(2,
32) = 42.2, p < .001). Because there were no interactions
with hemisphere (F < 2.49, p > .10, for all tests), data
were collapsed across hemispheres for all follow-up analy-
ses. Separate Region × Animacy ANOVAs for every pair of
regions revealed that the animacy preferences of the two
animate-preferring regions were each significantly differ-
ent from that of the inanimate-preferring region (ventral
animate region: F(1, 16) = 89.24, p < .001; lateral ani-
mate region: F(1, 16) = 45.65, p < .001). There was no
significant difference in animacy preference between the
two animate regions (F(1, 16) = 0.59, p= .45). As expected,
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both animate-preferring regions showed an increased
response to the animate stimuli in the main experiment
(t(16) > 3.53, p < .003, for both tests), whereas the
inanimate-preferring region showed a significant prefer-
ence for the inanimate stimuli (t(16) = 5.25, p < .001).
These results show that all regions defined in the functional
localizer maintained their selectivity in the main experi-
ment (see Figure 3B for results in separate hemispheres).

To explore whether the animate–inanimate organiza-
tion in the main experiment was driven by some of the
stimuli preferentially, we next compared the responses to
each of the eight individual animate stimuli and their
shape-matched inanimate counterparts. For simplicity
and for optimal statistical power, the conditions were
recoded into “preferred” (e.g., a snake for an animate-
peferring region) and “nonpreferred” conditions (e.g.,
a snake for an inanimate-preferring region), and re-
sponses were then averaged across ROIs, so that each
ROI contributed equally. A two-way ANOVA with the fac-

tors Preference (preferred, nonpreferred) and Object
pair (the eight different pairs) revealed a significant in-
teraction (F(7, 112) = 3.68, p = .001), indicating that
different object pairs differentially contributed to the
observed animacy organization (Figure 4). A significant
category preference was observed for six of the eight
pairs (t(16) > 2.16, p < .047, for all tests), with one pair
(ladybug–computer mouse) showing a trend (t(16) =
2.10, p = .052) and one pair (snail–bun) not reaching
significance (t(16) = 0.22, p = .83).

RSA

In addition to showing overall differences in focal re-
gions, objects of different categories evoke distinct multi-
voxel activity patterns in visual cortex: Within VTC,
activity patterns to objects from the same category are
more similar than activity patterns to objects from differ-
ent categories (Haxby et al., 2001). An open question is

Figure 3. Univariate results. (A) Results of univariate whole-brain group analysis comparing animate and inanimate conditions in the functional
localizer experiment (cyan) and main experiment (blue). Overlapping regions are displayed in purple. Top row shows lateral animate-preferring
clusters, middle row shows ventral animate-preferring clusters, and bottom row shows ventral inanimate-preferring clusters. Statistical maps were
thresholded at p < .05 (FWE corrected) and overlaid on a structural brain template (MRIcron). (B) Results of ROI analyses. The bar graphs show the
responses to the conditions in the main experiment within the animate- and inanimate-preferring clusters defined based on the functional localizer
experiment (corresponding to the cyan regions in A), separately for each hemisphere. Green bars indicate average response to animate objects; gray
bars indicate average response to inanimate objects. Error bars reflect SEM difference. *p < .01, **p < .001.
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whether these effects reflect visual differences and/or cat-
egorical differences between objects. To address this
question, we used RSA to relate neural dissimilarity
(based on correlations between multivoxel activity pat-
terns) to visual and categorical dissimilarity. In this anal-
ysis, for every spherical neighborhood (100 voxels) of the
brain, the pairwise neural dissimilarity structure between
the 16 objects was modeled as a linear combination of
their pairwise categorical dissimilarity and overall visual
dissimilarity (Figure 5A; see Methods). Overall visual dis-
similarity was quantified using response times in a visual
search task (Figure 2A), capturing all contributing factors
to visual discriminability (potentially beyond the ones we
explicitly matched in the univariate comparisons). This
analysis yielded two beta maps reflecting the indepen-
dent contributions of visual and categorical variables in
accounting for neural dissimilarity.
Random effects group analysis revealed widespread

clusters of voxels in which neural dissimilarity was sig-
nificantly related to overall visual dissimilarity, including
primary visual cortex and large parts of extrastriate visual
cortex, extending into VTC (51,864 mm3 in total; peak in
the lingual gyrus, x =−18, y = −92, z= −8). These clus-
ters partly overlapped with the animate- and inanimate-
preferring regions of the functional localizer experiment
(cyan regions in Figure 3A), with visual dissimilarity being
significant in 64% of the ventral animate-preferring voxels,
24% of the lateral animate-preferring voxels, and 3% of the
ventral inanimate-preferring voxels. Interestingly, categor-
ical dissimilarity was independently reflected in two clus-
ters: one in the right ventral visual cortex (3512 mm3;
peak in the fusiform gyrus, x = 42, y = −60, z = −18)
and one in the LH (4400 mm3 in total, including a lateral
visual cortex part with a local peak in middle occipital gy-

rus, x = −42, y = −80, z = 6, and a ventral visual cortex
part with a local peak in fusiform gyrus, x = −44, y =
−52, z = −16). As can be seen in Figure 5B, these clus-
ters partly overlapped with the anterior end of the over-
all visual dissimilarity clusters. These clusters also partly
overlapped with the animate- and inanimate-preferring
regions of the functional localizer experiment, with cat-
egorical dissimilarity being significant in 33% of the
ventral animate-preferring voxels, 10% of the lateral animate-
preferring voxels, and 2% of the ventral inanimate-preferring
voxels.

It is possible that the measure of overall visual dissim-
ilarity captured some visual features better than others.
For example, the overall visual dissimilarity structure
could be driven more by the outline shape than by tex-
ture properties of the stimuli. In this case, if animate and
inanimate stimuli consistently differed in their texture,
the category-selective regions revealed in the previous
analysis could in principle reflect texture information
rather than category information. To address this possi-
bility, we quantified the pairwise dissimilarity structure
for outline shape and texture independently from each
other in two further visual search experiments (see
Methods). Using these data, we repeated the RSA, this
time modeling pairwise neural dissimilarity using the
combination of three predictors: outline shape dissimilar-
ity (Figure 2B), texture dissimilarity (Figure 2B), and cat-
egorical dissimilarity (see Figure 6A). This analysis
resulted in three beta maps reflecting the independent
contributions of outline shape, texture, and category
membership to the neural dissimilarity structure.

The results of random effects group analyses on these
three maps are shown in Figure 6B. Four widespread
clusters of voxels in which neural dissimilarity reflected

Figure 4. Individual pair
analysis. Category preference
analyzed for each shape-
matched pair separately.
Responses were combined
across all regions defined in the
localizer experiment (cyan
regions in Figure 3A) by
recoding responses according
to the preference of the region
(e.g., snake response in
animate-preferring regions and
rope response in inanimate-
preferring region both
contribute to the “preferred”
condition, shown in red).
Error bars reflect SEM difference.
+p= .052, *p< .05, **p< .001.
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outline dissimilarity were found in primary visual cortex
extending to extrastriate visual cortex (22,584 mm3,
occipital and temporal lobe; peak around the left lingual
gyrus, x=−22, y=−92, z=−8), right superior parietal
cortex (peak x = 16, y = −50, z = 60), right ventral vi-
sual cortex (1552 mm3; peak x = 44, y = −64, z = −12),
and left temporal lobe around fusiform gyrus (1240 mm3;
peak in BA 37, x = −28, y = −46, z = −18). Texture
dissimilarity was related to neural dissimilarity in one
cluster of voxels in left early visual cortex (2456 mm3;
peak in the lingual gyrus, x = −20, y = −84, z =
−14). Crucially, categorical dissimilarity was indepen-
dently reflected in two clusters: one in right ventral visual
cortex (2928 mm3; peak in the fusiform gyrus, x = 42,
y = −60, z = −18) and one in left lateral visual cortex
(3960 mm3; peak in the middle occipital gyrus, x =
−42, y = −80, z = 6). Adding overall visual dissimilarity

to this analysis as fourth predictor revealed nearly identi-
cal category clusters, as would be expected based on the
finding that a linear combination of outline and texture
dissimilarity nearly perfectly captured overall visual dis-
similarity (see Methods), thus making this variable redun-
dant as additional predictor.
In summary, these results reveal distinct but overlap-

ping representations for outline shape and texture in early
visual cortex. Importantly, categorical representations in
higher level visual cortex were still present even after re-
gressing out both outline and texture dissimilarity.

DISCUSSION

In this study, we asked whether the animate–inanimate
organization of object responses in human VTC reflects
characteristic visual properties of animate and inanimate

Figure 5. Multivariate searchlight analysis: overall visual dissimilarity and categorical dissimilarity. (A) Schematic of the linear modeling approach. For
every spherical searchlight neighborhood, a 16 × 16 neural dissimilarity matrix was constructed using pairwise correlations of multivoxel activity
patterns. These pairwise dissimilarity values (1− r) were modeled by a linear combination of two predictors: One predictor was derived from the RTs
in the visual search experiment that served as a proxy for overall visual dissimilarity of the stimuli (Figure 2A), and the other predictor reflected
pairwise categorical (animate vs. inanimate) dissimilarity. This procedure tested the extent to which the neural dissimilarity structure in a given
sphere reflected overall visual dissimilarity (while regressing out categorical dissimilarity) and/or categorical dissimilarity (while regressing out
overall visual dissimilarity). (B) Results of whole-brain group analyses testing the value of each predictor versus zero. The analysis identified a large
cluster of voxels where neural dissimilarity reflected overall visual dissimilarity (red and yellow voxels), spanning early visual cortex and extrastriate
regions up to VTC. In addition, clusters were identified where neural dissimilarity was independently predicted by the category of the stimuli
(yellow and green voxels): These clusters partly overlapped with the overall visual dissimilarity clusters (yellow voxels) and showed local peaks in right
and left fusiform gyrus and left middle occipital gyrus. Statistical maps were thresholded at p < .05 (FWE corrected) and shown as binary color maps
overlaid on a structural brain template (MRIcron).
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objects (e.g., characteristic animal shapes or textures) or
whether it (partly) reflects a true categorical organization.
We approached this question by testing whether the
animate–inanimate organization can still be observed
when controlling for visual similarity of objects from an-
imate and inanimate domains. A standard functional loca-
lizer experiment contrasting activity to a variety of animals
with activity to a variety of inanimate objects replicated pre-
vious studies, showing animate- and inanimate-preferring
regions in VTC and animate-preferring regions in lateral
occipitotemporal cortex. Importantly, all of these regions,
in both hemispheres, remained selective for their pre-
ferred category in the main experiment in which animate
and inanimate objects were carefully matched for shape as
well as for low-level features such as luminance and con-
trast. Results were consistent across all but one of the eight
animate–inanimate pairs. (We speculate that the lack
of preference for the snail condition may relate to snail
shells frequently being experienced as inanimate objects,
because they are often viewed without an animal inside.)

These pairs varied widely in terms of their shape (e.g.,
snake vs. bird), further supporting the claim that specific
shape properties (e.g., presence of limbs) do not fully
account for the animate–inanimate organization in VTC.
Finally, the inanimate objects also varied widely on var-
ious conceptual dimensions that have been linked to
inanimate-preferring regions, such as real-world size
(Konkle & Oliva, 2012) and manipulability (Mahon
et al., 2007). The consistency of results across the pairs
suggests that the animate–inanimate organization revealed
here is not fully explained by such alternative conceptual
properties.

The objects that were contrasted in the univariate anal-
yses were matched for visual similarity by the experi-
menters. This approach is subjective and assumes that
visual similarity can be accurately judged through visual
inspection. An important additional aspect of our study
was therefore the use of behavioral visual search tasks
to quantify different aspects of visual similarity in a naive
group of participants. On each trial, participants simply

Figure 6. Multivariate searchlight analysis: outline, texture, and categorical dissimilarity. (A) Schematic of the linear modeling approach similar to the
one shown in Figure 5 (see the caption for details). In this analysis, neural dissimilarity was modeled using the combination of three predictors:
outline dissimilarity, texture dissimilarity, and categorical dissimilarity. (B) Results of whole-brain group analyses testing the value of each
predictor versus zero. Clusters of voxels in which neural dissimilarity was predicted by outline dissimilarity (red, yellow, and pink voxels) were
found in primary visual cortex, extending into extrastriate visual cortex. Texture dissimilarity predicted neural dissimilarity in a cluster in left early visual
cortex (blue and pink voxels), partly overlapping with an outline dissimilarity cluster (overlap indicated in pink). Finally, this analysis revealed clusters
of voxels in which neural dissimilarity was predicted by categorical dissimilarity (green and yellow voxels), with local peaks in right fusiform gyrus
and left middle occipital gyrus. These clusters partly overlapped with outline dissimilarity clusters (overlap indicated in yellow). There was no overlap
between texture dissimilarity clusters and categorical dissimilarity clusters. Statistical maps were thresholded at p < .05 (FWE corrected) and
shown as binary color maps overlaid on a structural brain template (MRIcron).
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indicated the location of the unique stimulus in an array
of identical distractors; that is, there was no predefined
target category. Visual differences are the only source
of information to locate the target in this task, such that
performance (RT) closely reflects the visual similarity of
the target and distractor stimuli (Mohan & Arun, 2012).
In the first experiment, we measured the visual similarity
of the same images used in the fMRI experiment. These
data potentially capture not only differences in outline
shape but also any other visual property (e.g., texture,
extent, spatial frequency) that helps to visually distinguish
the target from the distractor, rendering it a measure of
overall visual similarity. Moreover, in two additional
experiments, we specifically measured outline similarity
(using outline drawings) and texture similarity (using
texture patches).

RSA with overall visual similarity and category similarity
as predictors revealed that activity patterns throughout
visual cortex reflected visual similarity, confirming that vi-
sual similarity is a dominant organizing principle of both
low- and high-level visual cortex (e.g., Andrews et al.,
2015). The overall visual similarity matrix derived from
the visual search task was additionally used to regress out
variance in the neural similarity matrices, testing whether
any remaining variance can be attributed to categorical
similarity. This analysis revealed clusters in VTC in which
this was the case. Similar results were obtained when
modeling outline and texture similarity separately as pre-
dictors of the neural similarity structure. Although both
texture and outline shape where represented indepen-
dently in visual cortex, category information was still
present in some regions. In both analyses, these cate-
gory clusters were found in the vicinity of animate- and
inanimate-preferring regions.

Although our results provide evidence for an animate–
inanimate organization of VTC that is not explained by
outline shape or texture, we should consider the possibil-
ity that there may be remaining visual features that distin-
guished animals from objects. Clearly, in the absence of
other cues, there must be visual properties that allow
the observer to recognize the objects and to distinguish,
for example, between a snake and a rope—we do not
claim that there are no visual differences between the
two objects of each pair. However, it seems unlikely that
there were visual features that consistently covaried with
category membership across pairs. Furthermore, such
consistent features would likely be reflected in the visual
similarity measures (Mohan & Arun, 2012) and thus re-
gressed out in the representational similarity analyses.
Nevertheless, we acknowledge that we cannot fully ex-
clude that there may be residual visual differences be-
tween animals and inanimate objects that do not affect
visual similarity as measured in the visual search experi-
ments. For example, it is possible that certain category-
specific shape features are not visually salient (and may
not even be visible in the image) but become represented
once an object is recognized as an animal (e.g., eyes).

Interestingly, clusters representing categorical similarity
partly overlapped with clusters representing shape simi-
larity at higher levels of the visual system (yellow clusters
in Figures 5B and 6B). This suggests that a shape-based
organization coexists with a category-based organiza-
tion, with neither of these two reducible to the other.
This coexistence suggests close mutual interactions be-
tween shape and category representations. In one
direction, shape properties strongly inform category
membership in most real-world situations. For example,
the set of midlevel visual features that characterize ani-
mals allows for efficiently detecting the presence of an
animal in a natural scene (Ullman, Vidal-Naquet, & Sali,
2002; Thorpe, Fize, & Marlot, 1996). In the other direc-
tion, category membership provides information about
likely visual properties of an object, such as the struc-
ture of its parts, and allows for making perceptual pre-
dictions, for example, related to characteristic motion
patterns of animals. The close proximity and partial
overlap of shape and category representations may thus
be optimal for real-world behavior in which these levels
of representation need to closely interact.
Previous findings have shown that the degree to which

a stimulus evokes an “animate” response in VTC depends
on the degree to which it shares characteristics with the
animate prototype—humans (Sha et al., 2014). This is con-
sistent with earlier findings of strong selectivity for human
faces and bodies at the approximate locations of the ven-
tral and lateral animacy clusters in our study (Peelen &
Downing, 2005; Downing et al., 2001; Kanwisher et al.,
1997). These regions show a graded response profile, re-
sponding most strongly to human faces and bodies,
followed by mammals, birds, reptiles, and insects (Downing
et al., 2006). These findings are consistent, however, both
with a visual similarity interpretation (i.e., differences in vi-
sual typicality; Mohan & Arun, 2012) and a conceptual sim-
ilarity interpretation (e.g., differences in agency; Sha et al.,
2014). Therefore, future work is needed to independently
manipulate the degree to which animals share visual and
conceptual properties with humans to test whether graded
animacy effects are primarily reflecting one or both of
these properties. Interestingly, our current results show
that a reliable animal preference exists even for animals
that are visually and conceptually distinct from humans
(e.g., snakes, insects).
Together, the present results suggest that the

animate–inanimate organization of VTC is not fully ex-
plained by local biases for visual features. Instead, we in-
terpret this organization as reflecting the recognition of
an object as belonging to a particular domain. In daily
life, visual properties are an important cue for categoriz-
ing objects, but many other cues also contribute. These
cues include information from other modalities (e.g.,
audition, touch) and, more generally, our expectations,
knowledge, goals, and beliefs. Rather than following the
visual features falling on the retina, category-selective
activity in VTC appears to partly reflect the interpretation,
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based on all available cues, that the object we look at is
animate or inanimate. On this account, category-specific
activity that is independent of visual features would reflect
a relatively late stage in the object recognition process.
Future work could use multivariate analysis of magneto-
encephalography data (e.g., Cichy, Pantazis, & Oliva,
2014; Carlson, Tovar, Alink, & Kriegeskorte, 2013) to reveal
the temporal dynamics of object categorization using
carefully designed stimuli that allow for disentangling
visual and categorical similarity. One prediction consistent
with our results would be that the initial response in VTC
primarily reflects visual similarity, with later stages addi-
tionally reflecting category membership.
If not visual features, then what property might drive

the animate–inanimate distinction? One proposal is that
this distinction reflects agency: the potential of an object
to perform self-initiated, complex, goal-directed actions
(Sha et al., 2014; Caramazza & Shelton, 1998; Premack,
1990). For example, studies have shown that activity in
the right fusiform gyrus—at the approximate location
of the ventral animate-preferring region—can be evoked
by simple geometric shapes that, through their move-
ments, are interpreted as social agents (Gobbini, Koralek,
Bryan, Montgomery, & Haxby, 2007; Martin & Weisberg,
2003; Schultz et al., 2003; Castelli, Happe, Frith, & Frith,
2000). Other work consistent with this account has
shown that animal selectivity in VTC is strongest for ani-
mals, such as mammals, that are perceived as having rel-
atively more agentic properties (Sha et al., 2014).
In summary, the present results suggest that the ani-

mate–inanimate organization of VTC may not fully reflect
visual properties that characterize animals and objects.
Results from RSA indicate that visual and categorical rep-
resentations coexist in more anterior parts of the visual
system. Clearly, future work is needed to further exclude
the possibility of confounding visual features, to define
exactly what dimensions drive the animate–inanimate
distinction, to reveal the time course of visual and cate-
gorical representations, and to test how these interact to
allow for efficient object categorization in our daily life
environments.
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