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Abstract
Diabetes is a family of metabolic disorders that affects millions of people world-
wide. This disease affects the glucose-insulin system and it is characterized by
a chronic excessive amount of glucose in the blood. It leads to severe harm,
including long-term damages, dysfunction and failure of various organs. It is
usually diagnosed in two types called type 1 and type 2.

Mathematical and dynamical models have been shown to provide a useful
framework for the development of mechanistic descriptions of many biological
phenomena. The results in this dissertation exemplify how this may lead to
valuable insights for biological phenomena related to diabetes.

This thesis is dedicated to mathematical models devoted to the study of diabetes
type 1 and insulin resistance that are subject of study in Chapters 3 and 4.

Chapter 3 describes two dynamical models that characterize the glucose-insulin
system in patients with diabetes type 1 that are on insulin pump therapy. We
have built our models on a dataset with ten patients that have undergone a
mixed meal test and a hyperinsulinemic euglycemic clamp (HEC) test. Their
blood glucose and insulin level were collected, as well as their standard clinical
parameters. For some of the patients, the mixed meal test was repeated with
a same or doubled size meal. The models were used to reproduce the data
and to infer unknown parameters. The parameter estimates for the HEC model
have driven the inference of the unknown parameters for the mixed meal test
model. The integration of the two experiments and their parameter estimates
have provided a reliable and reproducible description of the glucose-insulin
system in T1D patients on pump therapy.

Recently, many studies have elucidated the essential role of ceramides and
sphingolipids in the glucose homeostasis and insulin signaling. However, the
mechanistic interplay between various components of ceramide metabolism
remains to be quantified. Chapter 4 describes an extended model of ceramide
production through both the de novo synthesis and the salvage pathways. We
verify our model with a combination of published models and independent
experimental data. We performed in silico experiments of the behavior of
ceramide and related bioactive lipids in accordance with the observed transcrip-
tomic changes in obese murine macrophages at 5 and 16 weeks support the
observation of insulin resistance at the later phase. Our analysis suggests the
pivotal role of certain enzymes involved in the de novo synthesis and the salvage
pathways in influencing insulin resistance versus its regulation.

The content of the chapters is presented as the published version, or the final
typeset, of the correspondent articles.





Essentially, all models are wrong,
but some are useful.

— George E. P. Box
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Chapter 1

Introduction

This thesis summarizes my work in systems biology as a PhD student at The
Microsoft Research - University of Trento Centre for Computational and Systems
Biology (COSBI) and at the University of Trento, department of Mathematics.

Systems biology is an interdisciplinary field that aims at integrating biology
with computational and mathematical methods to gain a better understanding
of biological phenomena [5, 6]. Among these methods, mathematical and dy-
namical modeling have driven the discovery of mechanistic insights from the
static representations of phenomena, that is, data. As a result, mathematical and
dynamical models have now become standard tools to support new discoveries
in biology and in public health issues. For example, models assist governments
in determining the policies to contain the spreading of the diseases and in
decisions such as vaccine purchases [7]. Similarly, complex and accurate models
of the cardio-vascular systems guide surgeons during many procedures on pa-
tients [8]. Furthermore, dynamical models of signaling cascades help researchers
in identifying new potential drug targets and therapies for many diseases [9].
We used these modeling techniques to address biological questions related to
diabetes and insulin resistance. Within this framework, this thesis contains two
articles I contributed to, that focus on diabetes. These works are published in
the journal of Nature Scientific Reports and are included in Chapters 3 and 4.

A significant contribution to the development of these models, and models in
general, is given by optimization. Optimization is often used in modeling to
determine certain unknown values or factors in a way that allow the model to
optimally reproduce the experimental data. Moreover, the parameters of a model
that correctly describe the undergoing dynamics may be used as diagnostic
tools [10–13]. To this end, this thesis contains a methodological appendix
that includes a review of optimization algorithms that has been submitted to
the journal of Frontiers in Applied Mathematics and Statistics, special topic
Optimization. The content of this article is reported in Appendix A.



2 Introduction

1.1 Diabetes and insulin resistance
Diabetes mellitus, here referred as diabetes, is a family of metabolic disorders
that affects millions of people worldwide. This disease affects the glucose-insulin
system and it is characterized by chronic hyperglycemia, i.e., excessive amount
of glucose in the blood. It leads to severe harm, including long-term damages,
dysfunction and failure of various organs [14]. It is diagnosed usually in two
types called type 1 and type 2 that are subject of study in Chapters 3 and 4,
respectively. There are also other forms of diabetes, for example, gestational
diabetes that affects pregnant women. However, such and other rare forms of
diabetes are not part of this dissertation.

1.1.1 Diabetes type 1

Diabetes type 1 is also called juvenile diabetes since it is mostly diagnosed in
early ages. In diabetes type 1, patient pancreas is not able to properly secrete
insulin because its cells are impaired or destroyed. As a consequence, patients
depend on injected insulin to regulate their glucose level in the blood. This
disease may be controlled by evaluating the glucose concentration in the blood
and consequently by injecting an adequate amount of insulin into the blood
stream. However, this procedure is not only tedious, but it is also subject to a
number of flaws. From errors in measurement, due to the bad timing for the
injection or to measurement tools, to the amount of insulin actually injected. In
the long run, this may lead to serious consequences for patients, from problems
in managing their weight, to more serious problems such as kidney failure,
heart disease and blindness [14].

This emphasizes the need for developing closed loop models that are able to
reproduce the patient curves of insulin and glucose, at least in very controlled
scenarios. This may help in the development of robust control algorithms that
aim at delivering the right amount of insulin according to the registered amount
of glucose. The full development of such a tool, commonly referred as artificial
pancreas, could change the life of millions of people.

Recently a first step in this direction has been done. In September 2016, the
food and drugs administration (FDA) approved the human trial of a similar
device, produced by Medtronic, for 123 patients. This device mimics pancreas
functionality, monitoring the level of glucose and insulin and adjusting the
amount of insulin injected in patients’ blood stream to control the glucose
level. However, this device still needs the human intervention to regulate the
proper amount of insulin after a meal. This highlights even more the need for
algorithms and models that are able to control these devices in order to remove
the human intervention.

I contributed in the development of one of these models in collaboration with
MD Professor Riccardo Bonadonna and his research group at the University of
Verona, School of Medicine. Our model identified the glucose-insulin system,
providing a good fit of the experimental data and showing a good reproducibility
of the model parameters in repeated studies. Our contribution to the topic lead
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to a publication in the journal of Nature Scientific Reports in November 2016 [15].
Chapter 3 contains this article.

1.1.2 Diabetes type 2 and insulin resistance
Diabetes type 2 is the result of genetic predisposition and life style factors and it
is usually developed in adult age. The development of this type of diabetes goes
through different stages of impairment of the glucose-insulin system, and often
through insulin resistance. Insulin resistance is the impairment of the regular
crosstalk between insulin and the cells. The latter does not respond adequately
to normal levels of insulin [16], requiring always more insulin to stimulate the
glucose uptake. The more the cells are insulin resistant, the more severe are the
consequences for the organism. In the long run, this leads to an unsustainable
scenario, impairing the functionality of pancreatic cells and eventually leading
to diabetes and the similar serious consequences as diabetes type 1.

This specific topic is gaining increasing attention in the research community
and a lot of research effort is focused on how to revert insulin resistance. In
contrast to diabetes type 1, where there is an organ failure that impairs the
normal regulation of glucose and insulin, insulin resistance can be slowed down
or, in some cases, reversed. This result can be achieved following healthier
life-style habits or through the use of specific drugs that aim at restoring the
normal cellular uptake of glucose in response to insulin. The crosstalk between
insulin and the cells is a very complex mechanism, where many actors play
different roles in the promotion or inhibition of the consequent glucose uptake.

Part of my PhD research was dedicated to investigating the role in this crosstalk
of a specific family of lipids, called sphingolipids. Certain representatives of these
sphingolipids have a role in promoting or inhibiting the signaling cascade that
starts from the cell membrane, where insulin binds to the insulin receptors and
arrives at the glucose transportase protein that promotes the glucose uptake
from the blood to the cells [17].

Recently, there has been an increase on the investigations on these sphingolipids.
Sphingolipids were originally known for their structural role, in composing the
cellular membrane. However, thanks to new technologies, their important role in
many other cellular regulation mechanisms has become clearer. Sphingolipids
are involved in a variety of processes including cell survival, proliferation,
apoptosis and inflammatory stress [18]. Thus, they become potential drug
targets for several diseases.

To better understand the involvement of sphingolipids in the development of
insulin resistance, we have developed a dynamical model of the sphingolipid
metabolism. The integration of the dynamical model with lipidomic and gene
expression data has suggested mechanistic explanations for the development
of insulin resistance for a specific tissue in obese mice. This work has been
done in collaboration with Daniel Crowther and his research group at Sanofi
Deutschland, Frankfurt. Our results lead to a paper in the journal of Nature
Scientific Reports, which is in press at the time of writing. The article is included
in Chapter 4 of this thesis.





Chapter 2

The biological and modeling
background

2.1 Digestion and glucose homeostasis

The process of digestion mechanically and chemically reduces complex molecules
to simpler ones that can be assimilated. Among the different nutrients that
are absorbed along this process, here we focus on glucose. The absorbed
glucose is one of the fundamental contributors as an energy supplier and its
concentration in the blood is subject to a number of control mechanisms. These
mechanisms maintain its amount inside a specific physiological range [19]. This
homeostasis is a very complex system with a variety of hormones and mech-
anisms involved that regulate the glucose uptake and release. For example,
the insulin hormone reduces glucose concentration whereas other hormones,
such as glucagon, stimulate the liver glucose release when its concentration is
low. In addition, other hormones, such as incretins and leptin, are parts of this
regulation process [20, 21].

In this dissertation, we consider the glucose-insulin interactions (Fig. 2.1). Insulin
is a hormone produced by the pancreatic β-cells of the islet of Langerhans. It
promotes the cellular glucose uptake and consequently reduces the glucose
concentration in the blood. As a response to an increased glucose concentration
in the blood, insulin is immediately released during the so-called acute response.
In the successive minutes and hours, further releases are secreted with the aim
of normalizing the glucose level in the blood [20]. Insulin also reduces the liver
endogenous glucose production [22].

At a cellular level, insulin binds to the insulin receptor (IR) and triggers a
signaling cascade that promotes the glucose uptake mediated by the glucose
transport proteins (GLUT) [23]. Here we focus on the interaction of a spe-
cific family of lipids, called sphingolipids, that affect this signaling pathway. A
growing body of literature has elucidated the role of the sphingolipids in the
impairment of the insulin signaling cascade and in the development of insulin
resistance [17, 24]. In fact, certain representatives of this family, i.e., ceramide
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Figure 2.1: A schematic representation of the glucose-insulin regulation.

(Cer) and the ganglioside GM3, inhibit the glucose uptake, whereas others, such
as sphingosine-1-phosphate (S1P), promote it [17, 25]. Figure 2.2 shows some of
these interactions between the sphingolipids and the insulin signaling cascade.

Figure 2.2: A schematic and simplified representation of the insulin signaling cascade and the
interactions with the sphingolipids. In this representation, the continuous arrows indicate direct
regulations and dashed ones indicate indirect regulations.

These mechanisms may be subject to different impairments and failures, both at
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whole-body or cellular level [14]. Among these impairments, in this thesis, we
consider diabetes. Type 1 diabetes patients rely on insulin injections to control
their glucose level in the plasma because their pancreas is impaired and cannot
secrete enough insulin. Patients depend on insulin analogs and these analogs
are usually divided into two categories that is, fast and slow acting insulins.
The former refers to those analogs, such as Lispo, Aspart, and Glulisine, that are
meant to substitute the insulin bolus released after a meal. The latter refers to
those, such as Detemir, Degludec, and Glargine, that are meant to substitute the
basal level of insulin [26]. A mathematical model of the glucose-insulin system
for type 1 diabetes patients is reported in Chapter 3. In the following sections,
we provide an introduction to the long history of whole-body models for the
glucose-insulin system.

Type 2 diabetes often undergoes a phase of insulin resistance. In insulin resis-
tance, insulin is secreted but the glucose uptake is impaired. At a cellular level,
a variety of descriptions has been proposed to elucidate the role of different
molecules in the glucose-insulin homeostasis. Nevertheless, our model is the
first dynamical representation that investigates the interplay between the sph-
ingolipids and the development of insulin resistance in mice [27]. We refer to
Chapter 4 for a complete description of the model.

2.2 The glucose metabolism and tolerance tests
Along the years, medical doctors and researchers have developed several tests
to assess patient conditions with respect to their glucose metabolism. At the
same time, these tests aim at unveiling the mechanisms behind the glucose
homeostasis [14]. Some of these tests are focused on the glucose-insulin sys-
tem and they are particularly suitable to be described through mathematical
models [22]. We describe here some of the most important tests to determine
patient conditions and we provide a short description of some of the associated
mathematical models in Section 2.3.

The Intravenous Glucose Tolerance Test (IVGTT) [20] mostly analyzes the glucose
metabolism in a short period of time. The test consists of the injection of a
glucose bolus (0.33 g/kg) over a period of 30 or 60 seconds after an overnight
fasting. The resultant plasma glucose and insulin concentrations are measured.
The sampling schedule for a standard IVGTT usually requires three pretest
samples taken at the time -15, -5, and 0. In addition, it requires up to 25 blood
samples taken during the following 2 or 3 hours [28]. This test is particularly
important to determine the acute response of the insulin secretion. However,
since the test does not involve digestion, it is a very abstract representation of
the nutrition process [29].

To overcome this limitation, the Oral Glucose Tolerance and Mixed Meal Tests
(OGTT/MMT) were introduced [30]. The first involves the ingestion of a fixed
amount of glucose, whereas the latter involves the consumption of a standard-
ized meal. These tests trigger more complex processes, like the digestion and the
physiological secretion of other glucose-regulating hormones, such as gastroin-
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testinal incretins. As a consequence, they provide a more reliable abstraction.
In addition, these tests are easier to perform because they require fewer blood
samplings than the IVGTT [31].

In the OGTT, the patient drinks a 75 g dose of glucose after 8-12 hours fasting.
Blood samples are taken before the test and after every 30 or 60 minutes for
the following 2 or 3 hours [28]. The OGTT experiment permits to determine
an important clinical measure, that is, the two-hours-glucose. This value is
an auxiliary diagnostic tool [31], and it indicates the amount of glucose in
the bloodstream recorded two hours after the ingestion of the glucose dose.
Together with the recorded glucose level at fasting, it makes it possible to assess
the patient glucose tolerance. The patients are considered normal if their fasting
glucose concentration is below 6 mM and is below 7.8 mM after two hours from
the test. They have an impaired glucose tolerance if these values are between 6
and 7 mM at fasting and between 7.9 and 11 mM after 2 hours. The patients are
considered diabetics if their values are above these thresholds [32].

The IVGTT and OGTT were extended using radio-labeled glucose, often re-
ferred as tracers, to provide a more accurate description of the glucose in the
bloodstream. The use of tracers has allowed researchers to better understand
the glucose-insulin system [12,22,33]. However, the use of trackers increases the
complexity of the experimental procedure [15].

The Mixed Meal Test (MMT) is similar to the OGTT; instead of the glucose dose,
the patient eats a standardized meal [15]. Since it triggers all the mechanisms of
digestion and glucose regulation, it is the most physiological test. The MMT is
described in Chapter 3, where it is coupled with a mathematical description of
its dynamics in diabetes type 1 patients [15].

2.3 The glucose-insulin system models
In this section, we present mathematical models that describe the glucose-insulin
system. We discuss the minimal model for the intravenous glucose tolerance
test, considered as one of the most influential models for describing the glucose-
insulin system. In addition, we describe an extension of the minimal model
that describes the oral glucose tolerance test. We provide references to some
refinements and extensions of these models, as well. A complete description of
a model for the mixed-meal test is reported in Chapter 3.

2.3.1 IVGTT and the minimal model
The efforts to describe the intravenous glucose tolerance test (IVGTT) through
dynamical models have led to the development of several models for animals
and humans [11, 34–39]. We describe here one of the better known of these
models, that is, the minimal model [11].

This model rests on two fundamental assumptions. First, the system is com-
posed of two separate parts, i.e., compartments, describing the dynamics of the
glucose and the insulin as known inputs. Second, the insulin action takes place
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in a remote and non-observable compartment. This compartment is different
from plasma and it is nowadays known to be the interstitium [22]. This com-
partment was originally considered as a modeling assumption that described
some empirical evidence that was not confirmed [22]. The minimal model
is composed of three equations that describe, in terms of concentrations, the
dynamics of the plasma glucose G, the plasma insulin I, and the remote and
non-observable compartment X.

The glucose compartment The physiological assumption behind the model
and the compartments is that the glucose uptake does not depend directly on
the plasma insulin concentration I [11]. It depends on the insulin concentration
in a remote compartment, modeled through the auxiliary function X, whose
dynamics depends on I. The following equations describe the dynamics of the
glucose compartment.{

d
dt G(t) = −(p1 + X(t))G(t) + p1Gb , G(0) = Gb + ∆G
d
dt X(t) = −p2X(t) + p3(I(t)− Ib) , X(0) = 0

(2.1)

The glucose concentration exhibits a linear clearance and a degradation term
that is proportional to the insulin action. The latter models the insulin mediated
glucose uptake. In addition, the equation shows the self-promoting glucose
release that is proportional to the basal level. The remote compartment X
shows a linear clearance and a term that changes sign according to the insulin
concentration I. This term regulates X according to the insulin oscillation
compared to the basal level Ib [11]. ∆G is the instantaneous change in glucose
due to the glucose bolus injection. Gb and Ib are the glucose and insulin basal
levels. In this compartment, the insulin concentration I appears as the linear
interpolation of the experimental data. The glucose compartment dynamics
includes four unknown parameters, namely, p1, p2, p3, and ∆G.

The insulin compartment The dynamics of the insulin compartment is de-
scribed by the following equation:

d
dt

I(t) = −n(I(t)− Ib) + γt[G(t)− h]+, I(0) = Ib + ∆I (2.2)

The insulin dynamics exhibits a linear clearance rate n and an insulin secretion
proportional to both the glucose level and the time elapsed since the bolus
injection. The first phase insulin release is modeled by ∆I that accounts for the
acute insulin response that follows the bolus injection. The insulin secretion
is proportional to the glucose concentration that exceeds h. The parameter h,
also called target glycemia, models the threshold needed for stimulating the
second phase pancreatic insulin production [11, 40]. The glucose concentration
G appears in this compartment as the linear interpolation of the experimental
data. The insulin compartment dynamics includes four unknown parameters,
namely, n, γ, h, and ∆I .
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Parameter estimation To obtain parameter identifiability, certain values, such
as p1, are fixed according to population studies [11]. In addition, the estimation
procedure of the unknown parameters is divided into two phases, where either
the glucose or the insulin compartment parameters are estimated separately.
During such a procedure, the dynamic of the remaining compartment is obtained
by considering the experimental data. On the one hand, this assumption
permits to determine the model parameters with reduced uncertainty since the
estimation is carried out for fewer parameters. On the other hand, considering
the time series as a reference may affect the accuracy of the results by not
accounting for the biological noise of the underlying processes. Nevertheless, a
rigorous mathematical analysis of the minimal model has demonstrated that
it is impossible to correctly identify the parameters of the two compartments
simultaneously [40].

Insulin sensitivity index It is possible to derive an important clinical measure
from the kinetic parameters of the glucose compartment, that is, the Insulin
Sensitivity index SI [11]. This index reflects the quantitative influence of the basal
insulin concentration to increase the glucose effectiveness at steady state, i.e.:

SI =
∂

∂Ib

[
− ∂

∂G
dG
dt

]
steadystate

=
p3

p2
(2.3)

This index quantifies the efficacy at which the patient responses to a glucose
stimulus. Consequently, if a model correctly describes the glucose-insulin
system, SI is expected to reflect patients’ conditions. For example, the SI of the
minimal model for the IVGTT is a good estimator [10, 11]. Nevertheless, the
gold standard to assess such an index is the hyperinsulinemic euglycemic clamp
(HEC) [41], described in Chapter 3.

Beyond the IVGTT minimal model The simple and elegant minimal model
has inspired several representations of the glucose-insulin system [22]. However,
this model shows some drawbacks. For example, the complex behavior of
the glucose, after the bolus injection, may exceed the modeling power of a
single glucose compartment. To circumvent this limitation, some tests and
models have introduced the use of radio-labeled glucose tracers to distinguish
the endogenous production from the injected glucose [42]. Nevertheless, the
resulting test procedures are more complex than the standard IVGTT. Moreover,
the models require more compartments and parameters than the minimal
model [34].

Other important drawbacks are related to the parameter identification procedure.
In fact, to properly infer the model parameters from the experimental data, the
procedure requires to tune separately the two compartments and set certain
parameters according to fixed population values [11, 40]. This permits the
estimation of the remaining parameters, however, this may bias the procedure.
With the aim of solving this problem, in [40] the authors have introduced a
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model that correctly identifies the parameters simultaneously, using integro-
differential equations. However, this modeling technique increases the model
complexity, diverging from the idea of minimality.

Another important limitation of the IVGTT minimal model is that it does capture
the β-cell function, taking mostly into account the acute insulin response (i.e.,
first 10 minutes of the insulin data). For example in [43–45], the authors have
extended the minimal model by including in the insulin compartment the β-cell
and C-peptide dynamics. This permits a more accurate description of the insulin
dynamics, but on the other hand, it requires a more complex model that includes
more equations and parameters.

To summarize, the minimal model is able to correctly describe the glucose-
insulin system during an IVGTT experiment, using a parsimonious number
of compartments, equations, parameters, and assumptions. Nevertheless, the
model may be refined and extended to obtain more accurate descriptions. How-
ever, these extensions and refinements, usually, put aside the model minimality.

2.3.2 The Oral Minimal Model

Several research groups have extended and adapted the minimal model to
describe the more physiological Oral Glucose Tolerance and Mixed Meal Tests
(OGTT/MMT) [29, 31, 46, 47]. The ingestion of glucose is the main difference
between the IVGTT and the OGTT/MMT, and it varies the way in which
glucose appears in the blood. From the modeling perspective, in the IVGTT
minimal model, the glucose appearance is described as a constant function
during infusion. Although, the appearance follows more complex dynamics
after the ingestion. This appearance is usually modeled using a function called
rate of appearance (Ra). For example, in [29], the authors have tested different
functions to model this appearance. They have compared a piecewise linear
continuous function, the output of a dynamical model and a cubic spline
function. In terms of model accuracy and complexity, the authors indicated
the piecewise continuous function as the best candidate [29]. However, such a
function requires several parameters to describe the glucose appearance and
this increases the model complexity.

Modifying the glucose compartment of the IVGTT minimal model by including
the Ra function leads to the following equations.

{
d
dt G(t) = −(p1 + X(t))G(t) + p1Gb +

Ra(t)
VG

, G(0) = Gb
d
dt X(t) = −p2X(t) + p3(I(t)− Ib) , X(0) = 0

(2.4)

As in the IVGTT minimal model (Eq. 2.1), G is the plasma glucose concentration,
X is the remote insulin compartment, and I is the plasma insulin concentration.
Gb and Ib indicate the glucose and insulin basal concentration. The equations
for insulin compartment are the same as those in the IVGTT minimal model
(Eq. 2.2). VG is the apparent glucose distribution volume.
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The function Ra (rate of appearance of the glucose in the plasma) is assumed to
be a piecewise linear function with n sub-domains:

Ra(t) =

{
αi +

αi−αi−1
ti−ti−1

, ti−1 ≤ t ≤ ti, i = 1, . . . , n

0 otherwise.
(2.5)

In (Eq. 2.5), the ti, i = 1, ..., n is a partition of the time of the experiment, with
t0 = 0 and α0 = 0. The αi, i = 1, ..., n are the parameters that are estimated
from the glucose experimental data. Their identifiability is guaranteed by the
assumption that the AUC of Ra is equal to the fraction of the ingested dose that
is actually absorbed. This fraction is commonly assumed to be equal to the 86%
of the total amount [29, 48], and it accounts for the splanchnic extraction [49].

As for the IVGTT minimal model, to obtain the identifiability of the model
parameters, certain parameters are set to values obtained by population studies.
For example, in [29,46], VG and p1 are set such that p1VG = 0.024 dl kg−1 min−1.

Successive studies have refined and simplified the Ra function. In particular, it
has been proved that 8 time-points are sufficient to model the glucose appear-
ance, and consequently to estimate the eight parameters αi, i = 1, . . . , 8. Further
analysis has reduced these parameters to 4 by considering an exponential decay
after 120 minutes [29].

We may derive the insulin sensitivity index SI for the oral minimal model, by
considering the same calculation of the IVGTT (Eq. 2.3) [29]. Nevertheless, the
orally derived SI tends to overestimate this value even though it correlates well
with the IVGTT SI [2, 12, 50].

In analogy with the IVGTT minimal model, many extensions and refinements
of the oral minimal model have been proposed. For example, in [51], the
authors present a different Ra function that models, using partial differential
equations, the process of digestion. In [52], the authors have extended the
IVGTT description by dividing the digestive system into three compartments
and by considering delay equations [39]. In the context of a mixed meal test for
diabetes type 1 patients, in Chapter 3, we present a novel model that includes
an original solution for the Ra [15]. In [44, 47, 50], the authors have extended the
oral minimal model with the β-cell description, and in [12, 53], the radio-labeled
glucose has been considered.

As for the IVGTT, there is often a trade-off between each extension or refinement
and the minimality of the oral minimal model.



Chapter 3

A Novel Insulin/Glucose Model
after a Mixed-Meal Test in Patients
with Type 1 Diabetes on Insulin
Pump Therapy

Diabetes type 1 patients suffer a pathology that impairs their pancreas. As a
result of this impairment, the pancreas does not secrete insulin anymore. As
a consequence, the body cannot control the levels of glucose in the blood. To
support the development of devices that are able to substitute this pancreas
functionality, we need to refine robust control algorithms that aim at delivering
the right amount of insulin according to a registered amount of glucose. As a
first step in this direction, researchers are developing dynamical models that are
able to reproduce the patient’ curves of insulin and glucose levels, at least in
very controlled scenarios.

In this framework, this chapter describes a new dynamical model. This model
characterizes the glucose-insulin system in patients with diabetes type 1 that are
on insulin pump therapy. The pump in such a therapy provides a continuous
subcutaneous insulin infusion, mimicking the normal basal levels. Patients on
such devices, are the natural candidates for testing any fully automated insulin
delivery system. Nevertheless, the devices that are actually in use are not yet
able to adjust the insulin amount according to the measured level of glucose.

To this end, we have developed and refined two dynamical models for a mixed
meal test and a hyperinsulinemic euglycemic clamp test. We tested our models
with a dataset on ten patients that have undergone a mixed meal test. In this
test, they had a typical north Italian meal, “polenta” and Parmesan. Their
blood glucose and insulin level were collected, as well as their standard clinical
parameters. For some of the patients, the test was repeated with a same or
doubled size meal. In addition to this test, a hyperinsulinemic euglycemic clamp
(HEC) test was performed. This test is considered the gold standard to assess
insulin sensitivity of patients.
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Mixed meal tests provide an abstraction of our everyday life meals. These
abstractions are very important for the development of an automated insulin
delivery device. In fact, such devices are meant to be initially tuned by using
patient-specific parameters that are estimated using models or ad-hoc experi-
ments. They should then work without any other tuning process.

The models were used to reproduce the data and the unknown parameters
were inferred using a multi-start approach together with a least squares method.
This and other techniques for parameter estimation are described in detail
in Appendix A. The parameter estimates for the HEC model have driven the
inference of the unknown parameters for the mixed meal test model. The
integration of the two experiments and their parameter estimates have provided
a reliable and reproducible description of the glucose-insulin system in T1D
patients on pump therapy.

What follows is the content of the article, published in the journal of Scientific
Reports in November 2016. It describes the minimal model inspired new model
and the HEC model.

3.1 Introduction
The glucose-insulin (G/I) system is a physiological closed-loop, which is able to
maintain the plasma glucose levels within a narrow physiological range, as a re-
sult of a complex interaction among many components [19, 20]. Of them, only a
limited number (namely, plasma glucose, insulin and C-peptide levels) is directly
accessible for measurement in the bloodstream. Thus, either the closed-loop is
experimentally interrupted under strictly controlled conditions, i.e. by the glu-
cose clamp technique [41], or dedicated mathematical models [5, 6] are needed
to estimate the intimate components of the G/I system [22, 42–47, 51, 54–62].

Variable Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

Sex M F F M M M M M F M
Age (years) 63 44 53 43 24 37 47 32 31 25
BMI (Kg·m−2) 26.43 20.60 24.75 19.27 24.73 25.54 23.29 23.27 21.80 22.89
BSA (m2) 1.91 1.47 1.63 1.72 1.80 1.97 1.99 1.89 1.73 1.83
HbA1c DCCT (%) 8.0 8.3 7.1 7.2 7.8 8.7 8.6 7.3 7.8 7.2
HbA1c IFCC (mmol/mol) 63.9 67.2 54.1 55.2 61.7 71.6 70.5 56.3 61.7 55.2
Duration of diabetes (years) 9 18 12 34 8 24 40 19 22 13
Duration of CSII therapy (years) 4 11 7 1 3 9 4 2 3 1
Insulin Sensitivity (M clamp)

(µmol/min/m2 BSA)
165 64 127 83 82 115 71 82 186 965

Insulin analogue aspart lispro aspart glulisine aspart aspart glulisine aspart lispro lispro
MMT1 (292 Kcal) • • • • • • • • • •
MMT2 (292 Kcal) • • • - - - - - - -
MMT2 (600 Kcal) - - - • • • - - - -

Table 3.1: Clinical and metabolic features of the MMT-T1D Pilot Study population sample. Ab-
breviations: BMI, Body Mass Index; BSA, Body Surface Area; HbA1c DCCT, Diabetes Control
and Complication Trial-Aligned Hemoglobin A1c; HbA1c IFCC, International Federation of
Clinical Chemistry-Aligned Hemoglobin A1c; CSII, Continuous Subcutaneous Insulin Infusion;
MMT, Mixed Meal Test.

Over the past four decades a number of experimental protocols have been
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developed to assess the dynamics of the G/I system in vivo [41–43, 46, 47, 54,
63, 64], often analyzed by multi-compartmental modeling techniques [44, 45, 65].
In such models the G/I dynamics are described through a set of ordinary
differential equations (ODEs) according to well validated modeling strategies,
which often require complex experimental settings, including the use of a
variable number of glucose tracers to exactly track the glucose dynamics [2,12,42].
In order to mitigate the burden of both experimental and modeling complexity,
more parsimonious models have been proposed and successfully employed
[21, 29–31, 40, 47, 50, 54, 64]. These “minimal models” have been thus far applied
most frequently to the intravenous glucose tolerance tests (IVGTT) with the
primary aim of measuring insulin sensitivity [40, 54, 58]. Their extension to
more physiological settings, such as oral glucose tolerance tests (OGTT) [51, 64]
and mixed meal tests (MMT) [31, 66], although feasible and widely in use,
relies, when no glucose tracer(s) is (are) used, on an additional number of
assumptions, especially regarding the dynamics of oral glucose appearance into
the peripheral circulation [29], plus glucose effectiveness, volume of distribution
[2, 67] and splanchnic extraction [29, 68]. Although the insulin sensitivities
yielded by the oral models are well correlated to those obtained by the IVGTTs,
they may overestimate insulin sensitivity, as assessed by the IVGTT [2, 13, 29,
50]. Furthermore, insulin sensitivity provided by the OGTT model is lower
than insulin sensitivity measured by the insulin clamp [69] and higher than
insulin sensitivity estimated by the MTT model [70]. Current evidence, however,
indicates that, when measured with appropriate tools, i.e. tracer aided models
of glucose dynamics, insulin sensitivity is relatively constant, regardless of
the route of glucose/carbohydrate entry in the body [2, 69]. Thus, current
minimal modeling of glucose/carbohydrate meals with no tracer(s) aid, even
though calibrated to successfully handle the oral glucose rate of appearance
with a set of constrained parameters [29, 68], provides estimates of insulin
sensitivity which, albeit correlated to those obtained with reference methods,
display significant deviations from all other methods for somewhat unclear
reasons [2, 13, 29, 50, 69, 70].

Modeling the G/I system is particularly relevant nowadays in the therapeutic
area of type 1 diabetes (T1D), specifically in those patients treated with contin-
uous subcutaneous insulin infusions (CSII) coupled with continuous glucose
monitoring (CGM). A considerable research effort has resulted in G/I models
based on the results of complex tracer studies [53, 71] and growing experience
has been accrued to successfully close the loop with control algorithms of the
G/I system derived from them [46, 72]. Recent real-life clinical trials have re-
ported very promising results towards the development of a reliable, wearable
closed-loop insulin delivery system [73–75]. For the reasons described above,
published parsimonious models may be of limited help for these specific ap-
plications. We reasoned that some limitations of the most parsimonious G/I
models (e.g. inaccurate estimation of insulin sensitivity, multiple assumptions
in key parameters of the G/I system) could be overcome by combining the
assessment of insulin sensitivity yielded by a gold standard technique, i.e. the
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hyperinsulinemic euglycemic clamp (HEC), with minimal modeling previously
applied by us to unlabeled IVGTTs [76] with slight modifications inspired by
our experience with labeled IVGTT [45]. This paper presents a novel mathemat-
ical model (GLUKINSLOOP 2.0) aimed at characterizing the G/I time-courses
and quantitating the components of the G/I system during a standardized
meal test. The GLUKINSLOOP 2.0 model builds on previous experience in
our lab [45, 76] and provides a comprehensive description of the G/I system
by introducing an original solution to model glucose dynamics after meals,
which is usually accommodated with either a piecewise linear continuous func-
tion, partial differential equations, or delay compartments, or a combination of
them [29, 50, 51, 59]. Owing to the special relevance of this work in the field of
T1D, the GLUKINSLOOP 2.0 model has been used to describe the G/I system
during a mixed meal test (MMT) in patients with T1D on insulin pump therapy.
Among the ten patients considered, six were studied twice in separate days with
MMTs of variable size in order to explore both the performance and the repro-
ducibility of GLUKINSLOOP 2.0. Our results might be relevant to strategies
aimed at improving the architecture of upcoming closed-loop insulin delivery
systems.

Figure 3.1: Time courses of plasma insulin and glucose levels during the 292 Kcal and 600 Kcal
MMTs. Panels A-B: mean (±SEM) plasma insulin and glucose concentrations at each time
point during the 292 Kcal MMT (MMT1) in the 10 study participants. Panels C-D: MMT2,
n=3, MMT=292 Kcal. Panels E-F: MMT2, n=3, MMT=600 Kcal.



3.2 Results 17

3.2 Results
The main clinical and metabolic features of the study patients are shown in
Tab. 3.1. A quite large heterogeneity was evident in terms of age, body size,
glucose control, duration of diabetes and time since the initiation of CSII therapy.
When compared to historical healthy controls, the study patients had somewhat
lower insulin sensitivity [77]. Figure 3.1 shows the time courses of plasma
insulin and glucose concentrations during the 292 Kcal MMTs and during the
600 Kcal MMT, calculated as the average (±SEM) of the insulin and glucose
concentrations at each time point during the MMTs for each group of patients
undergoing the metabolic studies. As expected, plasma glucose/insulin time-
series were higher in the latter (panels E-F) than in the former (panels A-D) set
of MMTs. Figure 3.2 provides a simplified description of the GLUKINSLOOP 2.0
model herein applied to describe the G/I system and to identify its (unknown)
parameters. The figure highlights the inherent conciseness of this new modeling
solution, which is based on a parsimonious core set of ordinary differential
equations (ODEs), as further detailed in the Methods section. A more detailed
scheme and an accompanying thorough explanation of the GLUKINSLOOP 2.0
model equations are provided in the Section 3.6 (Fig. 3.5 and Section ).

Figure 3.2: The GLUKINSLOOP 2.0 model. In this schematic representation [1] of the model
continuous arrows indicate transformations and dashed ones indicate regulations. Arrows
pointing towards grey dots indicate degradation. A more detailed figure and an accompanying
thorough explanation of the model are provided in the Section 3.6 (Fig. 3.5).

Visual inspection of weighted residuals indicates a good fit of the model to the
experimental data (Fig. 3.3). The simulation outputs, expressed as model fits
to the insulin and glucose curves, are provided in Figures 3.6-3.15. In Figures
3.6-3.15the curves for each repeated study patient, during the 292 Kcal and 600
Kcal meals, are labeled as MMT1 and MMT2, respectively. Figure 3.4 shows
the mean behavior (mean±SEM) of the Oral Glucose Input function (OGI),
among the patients for the different meals. The shape and the peak of the
curve agree with existing literature [2]. Repeated MMTs showed a good degree
of reproducibility of the key physiological parameters (Tab. 3.2 and Tab. 3.7).
Importantly, reproducibility was fairly good even when comparing meals of
different sizes (Tab. 3.2 and Tab. 3.7, patients 4, 5 and 6). Mean transit time
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of insulin (Insulin MTT) in the s.c. deposit were 112±56 (min) for MMT1 and
131±66 (min) for MMT2, respectively (Tab. 3.2); its within-subject coefficient
of variation (±SD) was 28±18% (Tab. 3.2I). The apparent mean transit time of
the oral glucose load from ingestion to the appearance in the accessible glucose
pool (Glucose MTT) were 117±35 (min) for MMT1 and 109±35 (min) for MMT2,
respectively (Tab. 3.2); its within-subject coefficient of variation (±SD) was
11±6% (Tab. 3.2I).

Figure 3.3: Mean weighted residuals of the model fit to experimental insulin and glucose time
courses during MMT1 and MMT2. The weighted residuals are a quantitative point-by-point
assessment of the goodness-of-fit of the model to the experimental data: a theoretically perfect fit
should generate weighted residuals with mean 0 and SD of 1, reflecting the distribution of errors
during the experimental sampling. Panels A-B: mean ±SD of weighted residuals at each time
point during the 292 Kcal MMT (MMT1) in all 10 study participants. Panels C-D: MMT2,
n=3, MMT=292 Kcal. Panels E-F: MMT2, n=3, MMT=600 Kcal.
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Figure 3.4: The Oral Glucose Input function. Panels A-C show the output of the OGI function
layered by different MMTs. The OGI function, i.e. the predicted glucose rate of appearance
in the bloodstream at each time point after the MMT ingestion, is provided as mean±SEM of
the individual OGI values for the study patients undergoing the MMT1 and MMT2 and is
expressed as mg/Kg/min (see Fig. 3.16 for the same panels expressed as µmol/min) . Curve
shapes and peaks are consistent with analogous functions in literature [2]. Detailed description
of the function can be found in Section 3.6.

3.3 Discussion
In this study, we successfully tested the hypothesis that, with the aid of the
“external” assessment of insulin sensitivity by the HEC, the G/I system would be
amenable to be successfully reconstructed in T1D patients, in whom modeling
of the G/I system has become a key component of therapeutic innovative
strategies [73–75]. Differently from previous models, which need to fix a
number of parameters (glucose effectiveness, volume of distribution, fractional
splanchnic extraction of glucose) to estimate meal insulin sensitivity, we exploit
clamp-derived insulin sensitivity and parameters to reconstruct the G/I system
during a mixed meal.

The novelty of our approach lies primarily in parsimony. Published models
for OGTTs or meal tests were first based on more complex structures of the
glucose system (typically two compartments were needed to accommodate
glucose dynamics) and this, at variance with our proposal, entailed the need

Parameters MMT1 MMT2

SI , (ml/min)/(pmol/l) 0.78 ± 0.31 0.76 ± 0.38
SG , ml/min 20.8 ± 18.4 24.2 ± 14.7
Glucose MTT, min 117 ± 35 109 ± 35
Insulin MTT, min 112 ± 36 131 ± 66

Table 3.2: Model estimates (mean±SD) in all study participants of the key physiological
parameters included in the GLUKINSLOOP 2.0.
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Parameters Coefficient of Variation (%; mean ±SD)

SI 12 ± 17
SG 23 ± 26
Glucose MTT 11 ± 6
Insulin MTT 28 ± 18

Table 3.3: Day-to-Day within-subject coefficients of variation (%; mean ±SD) of the key
physiological parameters included in the GLUKINSLOOP 2.0.

for tracer technology to identify the parameters governing the glucose system
[2, 10, 22, 42, 44, 46]. In the last 15 years, single compartment models were
introduced, both without and with the aid of tracer technology [21, 29, 29, 31, 50,
51, 56, 64, 66]. Single compartment models with no tracer aid require a number
of assumptions to reconstruct a reliable estimate of the rate of appearance of
oral glucose, but they may provide somewhat variable estimates of insulin
sensitivity [2, 13, 29, 50, 69]. The single compartment model with oral tracer
glucose performs better than in the absence of a glucose tracer; however, its
estimate of endogenous glucose production is good when expressed as the ratio
of basal endogenous glucose production, but it may be inaccurate in absolute
terms [67]. Increasing the number of tracers to two or three yields the best
available estimates of endogenous glucose production, insulin sensitivity and
glucose disposal, but it considerably increases study complexity and costs [12].
Our approach transfers the single glucose compartment description of the
time honored minimal model from the IVGTT [54] to the MMT [46]. So far,
a parsimonious description of the OGTT [31, 64] was focused only on the use
of the OGTT as a test to assess insulin sensitivity [30, 31, 64], at the cost of
embodying a number of assumptions, of fixing numerical values for some
parameters and of eventually providing insulin sensitivity values, which may be
somewhat inaccurate. These limitations are overcome by the herein presented
GLUKINSLOOP 2.0 model of the G/I system. The performance of our model,
however, does not contradict the extensive previous experience with the single
compartment OGTT (and MMT) models with no glucose tracer(s) [29–31, 50, 64].
Early experience taught us that, when insulin sensitivity is unknown, it can
be estimated from the oral tests at the cost of several approximations and
assumptions in the parameters governing glucose dynamics [29–31, 64]. Our
present experience is logically coherent and complementary to the previous one,
in that, if insulin sensitivity is known with the low uncertainty provided by
the hyperinsulinemic euglycemic clamp (HEC), the key parameters of the G/I
system can be safely estimated and a parsimonious description of the system
can provide a good description of the glucose dynamics. As an added value,
this evidence is obtained in patients with T1D, in whom new, parsimonious
models of the G/I system may improve current efforts in building algorithms
capable to safely and precisely deliver insulin in the context of closed-loop
devices [72]. From this viewpoint, our model has the attractive feature of
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showing a good degree of reproducibility of its key physiological parameters
from day to day, and also with different meal sizes (Tab. 3.2). Of note, both
the performance and robustness of the G/I dynamics estimates yielded by the
GLUKINSLOOP 2.0 model were quite satisfactory despite the wide clinical
heterogeneity of the study patients in terms of age, sex, diabetes duration and
glycemic control. Some specific characteristics of our model are different from
the original minimal models and need to be discussed in some detail. First,
in contrast with some previous single-compartment models with no tracer(s),
we explicitly deal with glucose fluxes, and not concentrations [30]. The latter
ones may be more convenient to handle, at least for the sake of simplicity. For
instance, we are forced to know exactly the amount of glucose equivalents
ingested. On the other hand, working with extensive properties of the G/I
system (fluxes, volumes) is unavoidable, if one wants to obtain a complete
description of the system and of its capability to cope with meal challenges, as
well as to predict its behavior in response to meals of different size. Second,
we introduced a fixed flux of glucose utilization, which primarily reflects brain
glucose utilization, in agreement with the two-compartment minimal models
proposed for studies with glucose tracer [45,65], but not for single compartment
models, such as the present one. In our opinion, the assumption of fixed
glucose utilization (by the brain) is a perfectly tenable assumption and it is
one of the improvements brought about by two-compartment minimal models
for tracer glucose [65] over the minimal models for unlabeled glucose [11]. In
our experience, there is no reason why this improvement in the description
of the system should not be implemented also in the models for unlabeled
glucose. Third, the combined presence of a fixed glucose utilization and glucose
effectiveness (SG) forced the need for a glucose input in the basal, un-stimulated
state, which exactly matches the combined effect of brain glucose utilization
and SG and ensures the attainment of a steady state at baseline. Although it
would be tempting to label this glucose input as endogenous glucose production
- and its order of magnitude in our patients is indeed in the expected range - no
measure of endogenous glucose production is available in our work and this
glucose input should be considered as instrumental to the attainment of a steady
state in the post-absorptive state. Fourth, as in all minimal models in which no
glucose tracers are used, insulin sensitivity combines the net effect of insulin
on glucose utilization and on glucose production [30, 31, 50, 54]. Fifth, since no
explicit endogenous glucose production is included in our model, the glucose
input after meal ingestion should not be considered as a pure estimate of the
appearance of oral glucose, because we cannot rule out the possibility that a
minor fraction of it actually is due to an amount of residual endogenous glucose
production, which is not captured by the insulin sensitivity parameter. Some
limitations of our study should be recognized. First, only patients with T1D
are presented in this study; hence, the performance of our approach in normal
individuals or in other pathologic conditions currently remains unexplored.
However, the class of patients included in this study is expected to directly
benefit most from novel simplified glucose models. Secondly, the number of
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studies herein presented is somewhat limited; however, this paper primarily
aims at presenting the new GLUKINSLOOP 2.0 model, and it is not concerned
with the report of novel pathophysiological insights. To this regard, it should
be noted that the presentation of repeat studies (12 over a total of 16) with the
same modeling methodology is a somewhat rare occurrence in this field and,
as such, accounts for the stringent sensitivity analysis we applied to our data.
Third, a separate insulin clamp (HEC) needs be performed to measure insulin
sensitivity, thereby adding to the experimental burden one additional study
day. In summary, we have introduced a HEC-supported minimal model of
glucose dynamics after a mixed meal in patients with T1D. The GLUKINSLOOP
2.0 model apparently performs reasonably well and shows a good degree of
reproducibility without employing labeled tracers. Hence, given the relevance of
in vivo characterization of the G/I system dynamics, this model timely proposes
itself as a useful step towards better algorithms to control glucose dynamics
after meal ingestion in patients with T1D on sensor-augmented insulin pump
therapy.

3.4 Methods
Subjects Ten (4 men/2 women) adult patients with C-peptide negative type 1
diabetes (T1D) were recruited for the study among those regularly attending the
Diabetes Center of the Verona City Hospital. Their main clinical characteristics
are shown in Tab. 3.1. All patients were on isocaloric dietitian prescribed
diet and were free from any other disease except diabetes (only Patient 3 had
autoimmune hypothyroidism and was euthyroid on 150 µg/day levotiroxin
p.o. at the time of study enrollment). After a thorough explanation of the
procedures and purposes of the study, a written informed consent was obtained
from all patients to be included in the study. The study protocol (registered as
NCT01800734 in December 3rd, 2013) was approved by the local Institutional
Review Board (Comitato etico per la sperimentazione clinica delle Province di
Verona e Rovigo) and was carried out according to the International Conference
on Harmonisation Good Clinical Practice guidelines.

3.4.1 Phenotyping
Standard clinical parameters were assessed in all study patients. Metabolic tests
were carried out at the Division of Endocrinology, Diabetes and Metabolism
of the University of Verona Medical School (Verona, Italy), on three separate
days, each test starting at 08:00 a.m., after a 10-12-h overnight fast. All patients
were on CGM; the device had been in place and properly working (calibration
with capillary blood glucose as measured by glucometer at pre-established
hours of the day) for at least two days before metabolic studies. CGM data
were collected for a companion experiment. During the entire study duration
patients lay recumbent in bed. Two of the three studies were performed in
random order. Study 1 - On one day, all patients underwent a hyperinsulinemic
euglycemic insulin clamp (HEC). Study 2 - On a second occasion, all patients
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were studied with a standardized mixed meal test (MMT1) of 292 Kcal. Study
3 - The third study (MMT2) was in 3 patients the repetition of the 292 Kcal
MMT, whereas in other 3 patients it consisted of a 600 Kcal MMT, with the same
relative macronutrient composition of the 292 Kcal MTT.

3.4.2 Assessment of Insulin Sensitivity (Study 1)

A standard HEC was carried out to assess insulin sensitivity, which was com-
puted with standard formulae [41, 78], and expressed as the amount of glucose
metabolized during the last 60 min of the clamp. Subjects were instructed to use
their usual nocturnal fast insulin analogue basal rate, to be left unchanged for at
least five hours before the beginning of the test. Human insulin concentration
was raised with an intravenous prime (0.8 U/m2 BSA) and maintained constant
by a constant intravenous infusion (40 mU/min·m2 BSA). Plasma glucose was
allowed to fall until it reached the physiologic range (i.e. < 5.6 mmol/l), af-
ter which it was clamped at 5.0 mmol/l for at least 60 min by appropriately
changing an intravenous infusion of 20% dextrose.

3.4.3 Mixed-Meal Tests (Study 2 and 3)

The MMTs were performed to determine the time courses of plasma glucose
and insulin during a mixed meal and to assess the pathophysiology of glucose
control during a standardized physiological challenge. Subjects were instructed
to be on an Indian corn free and cane sugar free diet for at least one week before
each study and were instructed to use their usual nocturnal fast insulin analogue
basal rate, to be left unchanged for at least five hours before the beginning of
the test. A standardized mixed meal of maize polenta plus seasoned Italian
Parmesan cheese (292 Kcal, 38.9 g carbohydrates, 8.9 g fats and 14 g proteins)
was ingested by all study participants, and patients were monitored for 300
minutes thereafter. The time taken by the patients to ingest the meal was
recorded. Right before meal ingestion, a fast subcutaneous insulin analogue
bolus was administered through the pump, according to the individual insulin-
to-carbohydrate ratio and correction dose. On a separate day, a MMT of the same
size was repeated in three patients, while a MMT with the same composition,
but of double caloric size, was administered in the other three patients. In both
cases, the experimental procedures were identical to the first MMT. In all studies,
blood samples were drawn at time intervals, put in ice and quickly spun at 1500
g at +4◦C. Plasma/serum specimens were stored at -80◦C.

3.4.4 Measurements

Plasma glucose was measured in duplicate with an YSI 2300 Stat Plus Glucose
&Lactate Analyzer (YSI Inc., Yellow Springs, OH, USA), at bedside. Blood
samples were collected at timed intervals to measure plasma insulin. Inter-
stitial glucose monitoring was performed by the CGM device throughout the
entire duration of insulin clamp for a companion experiment. Serum insulin
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concentrations were measured by ELISA (Mercodia, Sweden) [78]. Glycosylated
hemoglobin was measured by standard in-house methods. GAD-65 antibodies
were measured by immunoradiometry (CentAK, Medipan, Germany), according
to manufacturer’s instructions (detection limit >1 KU/l).

3.4.5 Models
The MMT experiment, described in detail above, is modeled starting from the
Minimal Model [11,54] ideas and its further refinements [11,29,29,40,45,46,50,65].
Figure 3.2 and Fig. 3.5 present a schematic representation of the model, which
is tailored to consider T1D patients’ conditions and presents an original and
physiologically plausible function, called Oral Glucose Input (OGI), to model
the glucose appearance in the plasma. The MMT model is used to reproduce
the insulin-glucose time series obtained during two different MMT experiments,
as explained in Mixed-Meal Tests (Study 2 and 3). Parameters are estimated
by fitting experimental data using non-linear least squares and a multi-start
approach to ensure a global optimum. To reduce the uncertainty of parameter
estimates, a combination of clamp-derived, patient-specific and literature-based
prior information have been considered to drive the optimization process (see
sections 3.5 and 3.6). The robustness of the model has been also confirmed by the
good reproducibility of parameter estimates on the two MMT experiments for
all the physiological parameters (Tab. 3.2). To simplify the description, the MMT
model has been conceptually designed as being composed by two submodels
(the “insulin” and the “glucose” submodel), which interact as shown in Fig. 3.5.
Since we are dealing here with T1D patients, the insulin submodel has been
developed as a mono-compartmental model, where the beta-cell contribution
to insulin secretion [43, 47, 79, 80] is removed. It describes the dynamics of
the insulin deposit in tissues, due to the insulin injection, and the insulin
concentration in the volume where insulin sampling takes place. The glucose
submodel is realized through a mono-compartmental model as well, where
insulin action regulates glucose metabolism according to the minimal model
principles [46, 54]. The appearance of the ingested glucose in the system is
obtained through the Oral Glucose Input function (OGI, see Section 3.6). Such a
function is the output of two chains of compartments, representing fast and slow
glucose absorption during the digestion, which produces exponential-shaped
outputs combined into a one/two peak(s) shape with exponential decay, as
depicted in Fig. 3.4. This function integrates and extends previous observations
[29, 51, 52], by modeling the processes of digestion/absorption with just three
parameters. For a more detailed description of the model, we refer to the
Section 3.6. We refer to the section 3.5 for further details on the implementation
and parameter estimation procedures.

3.5 Technologies
We implemented the GLUKINSLOOP 2.0 model in MATLAB v. R2016a (The
MathWorks Inc., Natick, MA, USA) using ordinary differential equations (ODEs)
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simulated according to a Runge-Kutta algorithm. Model equations include
sixteen unknown parameters. We carried out parameter estimation by non-linear
least squares using the lsqnonlin function (MATLAB Optimization Toolbox v.
R2016a, trust-region-reflective algorithm [81, 82]) with a 1e-10 tolerance and a
multi-start approach to ensure a global optimum (MATLAB Global Optimization
Toolbox v. R2016a). To take into account the differences in concentration
of insulin and glucose without introducing a bias in the fitting procedure,
squared-relative-errors weighted on experimental standard deviations have been
considered for parameter estimation. In addition, for each parameter whose
prior information was available, a penalty term proportional to the distance
of the current parameter estimate from the prior has been added to drive the
optimization process.

3.6 Supplementary Material

Models and Equations

The GLUKINSLOOP 2.0 model herein presented has been developed as a set of
ordinary differential equations (ODEs), which describe the regulation of glucose
and insulin during a Mixed Meal Test (MMT) in T1D patients on insulin pump
therapy (CSII, continuous subcutaneous insulin infusion). The GLUKINSLOOP
2.0 model is designed to run as a whole during simulation and parameter
estimation. However, for the sake of simplicity and only for descriptive purposes,
the model was conceptually divided in two submodels: the “insulin” and the
“glucose” submodel. The relationships among the compartments comprised in
the GLUKINSLOOP 2.0 model and within its submodels are depicted in Fig. 3.5.
The unknown parameters of the “insulin” and “glucose” submodels included in
the ODEs (Tables 3.4-3.5) have been estimated in each subject (Tables 3.7-3.8) by
fitting simultaneously the experimental time series of both circulating insulin
and glucose (Figures 3.6-3.15). Paragraph 3.6 provides the formal description
of the model employed to fit the Hyperinsulinemic Euglycemic Clamp (HEC)
experiment. The parameters estimates of the HEC model (Tab. 3.6) are entered
in the GLUKINSLOOP 2.0 model (specifically, in the “glucose” submodel) to
drive the estimation of a number of unknown parameters according to the
following description.

Mixed Meal (Insulin Submodel) The GLUKINSLOOP 2.0 is built on the
assumption that insulin is provided through exogenous injection, since endoge-
nous insulin secretion is not detectable in T1D. The Insulin Submodel (Fig. 3.1,
purple box) aims at fitting the time course of circulating insulin concentration
during the MMT. The Insulin Submodel is comprised of two equations. The
first equation defines the INSdep (µl of a 100 U/ml insulin solution) function,
which represents the insulin deposit in tissues due to the exogenous CSII-driven
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insulin injection:

d INSdep(t)
dt

=

{
INSci + INSbolus − INSdep(t) · k01(t), 0 ≤ t ≤ Timebolus

INSci − INSdep(t) · k01(t), otherwise
(3.1)

In the equation above INSci represents the constant insulin infusion (µl · min−1

of a 100 U/ml solution), while INSbolus represents the insulin bolus injected
before the mixed meal. Insulin transit from tissues to the bloodstream is
modeled by the non-linear function k01(t) = 1/(SCAR · 3

√
3/4π · INSdep(t)),

which assumes that insulin diffusion is inversely proportional to the radius of a
sphere with volume equal to INSdep (SCAR is a parameter regulating insulin
exit from the subcutaneous depot).

The second equation of the Insulin Submodel defines the INS(t) (pmol/l)
function, which provides the insulin concentration dynamics in the compartment
where the sampling of circulating insulin takes place:

d INS(t)
dt

= CONV · [INSdep(t) · k01(t)− k03(t) · INS(t) (3.2)

where CONV is a conversion factor between INS and INSdep, and k03(t) =
INSCAT + INSCAT2 · [1− tanh(FEPER · INS(t))]. The parameter k03(t) repre-
sents the time-varying clearance of insulin from the sampling compartment, in
which the hyperbolic function describes the inverse relationship between insulin
concentration and insulin clearance [83] primarily due to nonlinearity and sat-
urability of insulin extraction by the liver [33, 84, 85]. The unknown parameters
of the Insulin Submodel are summarized in Tab. 3.4. For each parameter an
initial estimate is provided, along with the optimization boundaries assigned to
the system to compute the final parameter estimate.

Parameter Initial Value Lower Bound Upper Bound

Idep(0) (µl) 30 1 500
SCAR (min(µl/min)−1/3) 50 1 500
CONV (unitless) 20 1 1500
INSCAT (min−1) 0.05 0 10
INSCAT2 (min−1) 0.05 0 10
FEPER (pmol/l)−1 0.002 0.0001 0.05

Table 3.4: Unknown parameters of the Insulin Submodel.

Mixed Meal (Glucose Submodel) This submodel is related to glucose dynam-
ics and is highlighted in skyblue in Fig. 3.5. The glucose input into the plasma
compartment, due primarily to the ingestion of the mixed meal, is modeled by
means of the Oral Glucose Input (OGI, µmol/min) function, described further
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below in paragraph 3.6. Glucose dynamics, g (µmol), are described by the
following equations:

d g(t)
dt

=

{
(CGU + SG · GSS − k(0, G) · g(t), if (CGU + SG · GSS − (1− SGE) ·OGI(t)) ≥ 0
(1− SGE) ·OGI(t)− k(0, G) · g(t), otherwise

(3.3)

K(0, G) =

{
CGU/g(t)kG + q2(t), if G/t(< 10µmol/ml)
kG + kguria(t) + q2(t), otherwise

(3.4)

where SGE is the apparent fractional splanchnic glucose extraction, CGU is
the constant glucose uptake, given by 203 · BSA (body surface area); SG is
the glucose effectiveness, GSS (µmol/ml) is the glucose concentration at the
steady state (minimum value of the experimental data); G(t) is the glucose
concentration (g(t)/VG) at time t; q2(t) indicates the insulin action at time t
(see Eq. 5); and kguria(t) represents the time varying rate constant of glycosuria
(min−1) derived from measured urinary glucose. Formally:

kguria(t) = [RClearance/g(t)] · (G(t)− 10),

where RClearance = (Glycosuria)/
∫
[(G(t)− 10 + |G(t)− 10|)/2]dt

and the
∫

denotes the integral between the beginning and the end of the
experiment. RClearance represents the renal clearance of glucose ((GU ·VU)/GP,
with GU urinary glucose concentration; VU urine volume; GP plasma glucose
level), which comes into play above the renal threshold of glycosuria (about 10
mmol/l).
The insulin action q2(t)(min−1) on glucose metabolism is described by the
following equation:

d q2(t)
dt

=

{
[INS(t)− INSAT ] · p2 · (SI/VG)− p2 · q2(t), if [INS(t)− INSAT ] ≥ 0
−p2 · q2(t), otherwise

(3.5)

where INS(t) is the circulating insulin concentration at time t, computed by
simulating the Insulin Submodel; INSAT is the concentration threshold above
which insulin action takes place; p2 is the rate constant of insulin action fading;
VG (milliliters, ml) is the apparent glucose distribution volume; and SI is the
insulin sensitivity at the steady state (see paragraph 3.6). The unknown parame-
ters of the Glucose Submodel are summarized in Tab. 3.5. For each parameter
an initial estimate is provided, along with the optimization boundaries assigned
to the system to compute the final parameter estimate. Of note, the Glucose
Submodel includes four additional parameters (Tab. 3.6), estimated from the
HEC experiment as detailed further below in paragraph 3.6. The HEC-derived
parameter estimates drive the multistart fitting of the mixed meal model by
initializing one starting point to the values computed during the HEC fitting.
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Moreover, the final estimates of VG, SG and SI have been assumed to follow
a normal distribution of mean equal to the HEC estimate and standard devi-
ation (SD) of 20%, which accounts for the variability of patient metabolism
and uncertainties in experimental measures. This has been implemented by
including a penalty term ((MixedMealestimate − HECestimate)/HECSD)

2 in the
objective function for each parameter. Also the estimation of the parameters
INSAT and SGE followed the same approach, where the mean of the INSAT
distribution has been determined by the insulin basal and the mean of the SGE
distribution has been inferred from population data [52, 86].

Parameter Initial Value Lower Bound Upper Bound

q2(0) (min−1) 0.001 0 0.05
SGE (unitless) 0.14 with 20% of SD [52] 0 -
k f ast (min−1) 0.3 0.01 1
GTTf ast (min) 50 1 200
GTTslow (min) 80 10 300
INSAT (pmol/l) insulin basal with 20% of SD 0 -

Table 3.5: Unknown parameters of the Glucose Submodel. Parameter estimates from the HEC
submodel are included according to paragraph 3.6

Oral Glucose Input (OGI) function The OGI(t) function describes the dy-
namics of glucose input (µmol/min) into the plasma compartment after the
ingestion of the mixed meal and accounts for the delay of glucose appearance
in the bloodstream after meal ingestion and gut transit (see Fig. 3.16). The OGI
function architecture rests on a multi-compartmental model constituted by two
chains of 2 compartments (the minimum length required to build a delay chain):

OGI(t) = Comp2
f ast(t) · kdi f f f ast + Comp2

slow(t) · kdi f fslow (3.6)

where:
d Comp2

f ast(t)

dt
= kdi f f f ast · (Comp1

f ast(t)− Comp2
f ast(t))

d Comp1
f ast(t)

dt
= k f ast · Gload(t)− kdi f f f ast · Comp1

f ast(t)

d Comp2
slow(t)

dt
= kdi f fslow · (Comp1

slow(t)− Comp2
slow(t))

d Comp1
slow(t)

dt
= kslow · Gload(t)− kdi f fslow · Comp1

slow(t)

and:

d Gload(t)
dt

=

{
GlucoseLoad− Gload(t), if t ∈ [0, MealTimeLength]
−Gload(t), otherwise

(3.7)
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In the equations above, GlucoseLoad (µmol/min) represents the averaged glu-
cose (carbohydrates) mass that is ingested in a minute during the meal, while
k f ast and kslow (min−1) are two kinetic parameters, representing the fraction
of ingested glucose (carbohydrates) which follows the fast and slow route,
respectively. As such, the net sum k f ast + kslow = 1. The kinetic parameters
kdi f f f ast and kdi f fslow (min−1) represent the rate constants at which glucose
travels through each chain of compartments. The average time taken by glucose
to travel through each chain of compartments is calculated as Ingested Glucose
Transit Time (IGTT) of the fast and of the slow route, respectively (IGTTf ast and
IGTTslow). Parameters kdi f f f ast and kdi f fslow are computed as the number of
compartments of the chain divided by the corresponding IGTT (2/IGTTf ast and
2/IGTTslow). For each MMT, the Ingested Glucose Mean Transit Time (Glucose
MTT1 and Glucose MMT2) provided in Table II of the main text and in Tab. 3.7,
is computed by the weighted average of IGTTf ast and IGTTslow according to
their respective kinetic parameters, k f ast and kslow, as follows: Glucose MTT =
k f ast · IGTTf ast + kslow · IGTTslow.

Hyperinsulinemic Euglycemic Clamp (HEC Submodel) The MMT model
introduced above has been coupled with a separate model describing the kinetics
of glucose and insulin during the hyperinsulinemic euglycemic clamp (HEC)
procedure in patients with diabetes, who are hyperglycemic in the fasting state.
The HEC is the time-honoured gold standard to assess insulin sensitivity (SI)
[41]. As explained above in paragraph 3.6, the estimates of the four parameters
included in the model (VG, SG, p2 and SI) are employed in the GLUKINSLOOP
2.0 to drive the estimation of the corresponding parameters in the Glucose
Submodel. The kinetic of glucose and insulin during the HEC experiment
are described by means of a mono-compartmental model (also referred as
the “glucose metabolism” compartment), in which the dynamics of glucose (g)
interact with the corresponding insulin action (q2) over time (t). The glucose
dynamics are described by the following equation:

d g(t)
dt

=

{
(SG · (GSS − G(t))− q2(t) · g(t), if (CGU + SG · GSS − GIR) ≥ 0
GIR− CGU − SG · G(t)− q2(t) · g(t), otherwise

(3.8)

where CGU is the constant glucose uptake, given by 203 · BSA(body surface
area); SG is the glucose effectiveness; GSS is the glucose concentration at the
steady state (i.e. the minimum value of the experimental time series); GIR is the
intravenous glucose infusion rate; G(t) is the glucose concentration (g(t)/VG) at
time t; and q2(t) is the insulin action at time t. Insulin action q2(t) is described
by the following equation:

d q2(t)
dt

= [INS(t)− INSSS] · p2 · ((SI)/VG)− p2 · q2(t) (3.9)

where INS(t) is the linear interpolation of insulin’s experimental data at time t,
INSSS is the insulin concentration at baseline, p2 is the rate constant of insulin
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action fading, VG is the apparent glucose distribution volume and SI is insulin
sensitivity at steady state hyperinsulinemia. In order to enhance the reliability
of the estimation of SI , we refined its value starting from the initial estimate [2]:

SIIntial =
Insulin Dependent Glucose Clearance

∆INS
(3.10)

where:

Insulin Dependent Glucose Clearance = (M− CGU)/GHECSS

and
∆INS = INSHECSS − INSSS

The value of M (µmol · min−1) is the HEC-derived measure of whole-body
insulin action and is defined as the average glucose infusion rate over the last 60
minutes of the HEC. GHECSS is the average glucose concentration at steady state
of the HEC, INSHECSS is the average insulin concentration at steady state of the
HEC and INSSS is baseline insulin concentration. The unknown parameters of
the HEC Submodel are summarized in Tab. 3.6. For each parameter an initial
estimate is provided, along with the optimization boundaries assigned to the
system to compute the final parameter estimate.

Parameter Initial Value Lower Bound Upper Bound

VG (ml) 10000 4000 20000
SG (ml/min) 40 0 250
p2 (min−1) 0.1 0.0001 1
SI ((ml/min)/(pmol/ l)) SI Initial (Eq. 10) SI Initial -20% SI Initial +20%

Table 3.6: Unknown parameters of the HEC Submodel.
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SI SG Ingested Glucose MTT Subcutaneous Insulin MTT

Patient 1 MMT1 0.80 14.01 115 50
MMT2 0.80 31.11 107 108

Patient 2 MMT1 0.40 8.67 136 70
MMT2 0.42 17.66 152 77

Patient 3 MMT1 1.36 5.49E-13 144 178
MMT2 1.30 5.49E-13 87 130

Patient 4 MMT1 0.59 37.37 73 27
MMT2 0.29 46.28 62 53

Patient 5 MMT1 0.66 9.07 191 183
MMT2 0.67 9.29 147 221

Patient 6 MMT1 1.09 16.12 75 136
MMT2 1.08 16.49 99 196

Patient 7 MMT1 0.55 60.27 105 129
Patient 8 MMT1 0.61 27.70 92 170
Patient 9 MMT1 1.15 13.61 127 100
Patient 10 MMT1 0.60 4.54E-08 108 76

Table 3.7: Estimates of key physiological parameters of the GLUKINSLOOP 2.0 model during
MMTs in each study participant. SI : (ml/mol)/(pmol/l); SG: ml/min; MTT: min.
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BSA Body Surface Area
CGM Continuous Glucose Monitoring
CGU Constant Glucose Uptake
CompFast Fast route of ingested glucose from mouth to systemic circulation
CompSlow Slow route of ingested glucose from mouth to systemic circulation
CONV Scaling factor
CSII Continuous Subcutaneous Insulin Infusion
FEPER Parameter regulating nonlinear insulin clearance
g Glucose mass (µmol)
G Glucose concentration (µmol/l)
GHECSS Average glucose concentration at steady state of the HEC
GIR Intravenous Glucose Infusion Rate
GP Plasma glucose level
GSS Glucose concentration at the steady state
GTTf ast Mean Transit Time of glucose in CompFast
GTTslow Mean Transit Time of glucose in CompSlow
GU Urinary glucose concentration
HEC Hyperinsulinemic Euglycemic Clamp
Idep(t) Volume of Insulin Depot at time t
IGTT Ingested Glucose Transit Time
INS Plasma Insulin concentration
INSAT Insulin Action Threshold
INSbolus Insulin Bolus as infused by the insulin pump
INSCAT Insulin Clearance (linear component)
INSCAT2 Insulin Clearance (non-linear, saturable component)
INSci Constant Insulin Infusion by the insulin pump
INSdep Subcutaneous Insulin Depot
INSHECSS Average insulin concentration at steady state of the HEC
INSSS Insulin Concentration at baseline
IVGTT Intravenous Glucose Tolerance Test
kdi f f f ast Rate constant of glucose through CompFast
kdi f fslow Rate constant of glucose through CompSlow
k f ast Fraction of Ingested Glucose traveling through CompFast
kguria(t) Time varying rate constant of glycosuria
kslow Fraction of Ingested Glucose traveling through CompSlow
k(m,n) Kinetic parameters
M HEC-derived measure of whole-body insulin action
MMT Mixed Meal Test
MTT Mean Transit Time
ODE Ordinary Differential Equation
OGI Oral Glucose Input Function
OGTT Oral Glucose Tolerance Test
p2 Rate Constant of Insulin Action Fading
q2(t) Insulin Action at time t
RClearance Renal Clearance of Plasma Glucose
SCAR Parameter regulating insulin exit from the subcutaneous depot
SG Glucose Effectiveness
SD Standard deviation
SGE Splanchnic Glucose Extraction
SI Insulin Sensitivity at Steady State
T1D Type 1 Diabetes
VG Apparent Glucose Volume of Distribution
VU Urine volume

Table 3.9: Table S6 - Abbreviations and acronyms.
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Insulin (INS)

Slow Glucose Absorption

Insulin Deposit
(INSdep)

 CompSlow2

CompFast2

 

Insulin infusion 
(INSci) and (INS bolus)

Oral Glucose Input 
(OGI)

CompFast1  

Fast Glucose Absorption

Meal

CompSlow1
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Glucose (g)

 

Glucose submodel

Insulin action
(q2)

k03(t)
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CONV · k01(t)
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Insulin submodel
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Figure 3.5: The GLUKINSLOOP 2.0 model. The continuous arrows indicate mass transfers
whereas the dashed arrows connecting insulin to the insulin action compartment and then insulin
action to the irreversible loss of the glucose compartment symbolize the control exerted by insulin
on glucose metabolism. The arrows pointing toward gray dotted material are used to indicate
irreversible losses. INS, plasma insulin concentration; INSci, constant insulin infusion by the
insulin pump; INS bolus, insulin bolus infused by the insulin pump; INSdep, subcutaneous
insulin deposit; CONV, scaling factor; k, kinetic parameters; t, time; CompFast1-2, fast route
of ingested glucose from mouth to systemic circulation; CompSlow1-2, slow route of ingested
glucose from mouth to systemic circulation; q2, insulin action; p2, rate constant of insulin action
fading; SGE, Splanchnic Glucose Extraction; OGI, Oral Glucose Input function; g, glucose
mass; G, glucose concentration; CGU, Constant Glucose Uptake; kG = SG/VG.
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Figure 3.12: Simulation outputs of the GLUKINSLOOP 2.0 (patient 7). The figure shows the
time courses of plasma insulin and glucose concentrations during the MMT1 in the seventh
study participant. Experimental data are shown as blue dots, whereas the simulated time courses
are provided as a continuous blue line.
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Figure 3.13: Simulation outputs of the GLUKINSLOOP 2.0 (patient 8). The figure shows the
time courses of plasma insulin and glucose concentrations during the MMT1 in the seventh
study participant. Experimental data are shown as blue dots, whereas the simulated time courses
are provided as a continuous blue line.
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Figure 3.14: Simulation outputs of the GLUKINSLOOP 2.0 (patient 9). The figure shows the
time courses of plasma insulin and glucose concentrations during the MMT1 in the seventh
study participant. Experimental data are shown as blue dots, whereas the simulated time courses
are provided as a continuous blue line.
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Figure 3.15: Simulation outputs of the GLUKINSLOOP 2.0 (patient 10). The figure shows
the time courses of plasma insulin and glucose concentrations during the MMT1 in the seventh
study participant. Experimental data are shown as blue dots, whereas the simulated time courses
are provided as a continuous blue line.



3.6 Supplementary Material 45

0 50 100 150 200 250 300
0

2000

4000

um
ol

/m
in

292 kcal MMT1

0 50 100 150 200 250 300
0

2000

4000

um
ol

/m
in

292 kcal MMT2

Mean and SEM of OGI for the two MMTs

0 50 100 150 200 250 300

min

0

2000

4000

um
ol

/m
in

600 kcal MMT2

Figure 3.16: The Oral Glucose Input function (OGI). The OGI function describes the rate
of appearance of glucose that reaches the bloodstream after oral ingestion. The plots depict
mean±SEM of the OGI functions (expressed in µmol/min) during the different MMTs.
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Chapter 4

Mechanistic interplay between
ceramide and insulin resistance

According to the 2014 data provided by the World Health Organization, 39%
of the global adult population is overweight and 13% is obese. This is a
consequence of physical inactivity due to the increasingly sedentary nature of
many forms of work, as well as increased intake of fatty foods. Most of the
scientists agree that excess of weight and lack of physical activity cause insulin
resistance that increases the risk of developing type 2 diabetes.

Insulin resistance is the impairment of the normal crosstalk between insulin and
the cells, whereby cells do not respond adequately to normal levels of insulin.
As a result, they require always more insulin to stimulate the glucose uptake.
This process leads to severe consequences for the organism.

Recently, many studies have elucidated the essential role of ceramides and
sphingolipids in the glucose homeostasis and insulin signaling. However, the
mechanistic interplay between various components of ceramide metabolism
remains to be quantified. To this end, we have resorted to dynamical modeling to
gain insights into the sphingolipid metabolism and their role in the development
of the insulin resistance. In particular, we have focused on the C16 ceramides
family.

Our model extends and refines a previously published model by including
those reactions that connect sphingolipids de novo synthesis with the salvage
pathway. The latter recycles complex sphingolipids by transforming them in
ceramides and it accounts for a significant part of the total ceramide production.
We estimated unknown parameters of the model using mice macrophage cell
line data. For the parameter estimation, we have used a multi-start approach
with a least squares method, as described in Appendix A.

We have validated this extended model on an independent dataset for the same
tissue in mice. We have integrated the model with transcriptomic data from a
different experiment in obese/diabetic murine macrophages at 5 and 16 weeks.
Our in silico experiments of the behavior of ceramide and related bioactive
lipids, in accordance with the observed transcriptomic changes, support the
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observation of insulin resistance at the later phase. Our model has suggested the
key role of ceramide, glucosylceramide and S1P in the development of insulin
resistance.

In addition, sensitivity analysis on the model allowed us to quantify the effect of
the availability of each enzyme involved in the metabolism on each sphingolipid.
We have visualized such interactions using an interaction network. These
visualizations should guide wet lab scientist in identifying new potential drug
targets. In addition, the visualizations may help in identifying collateral effects
by highlighting the nontrivial interactions among all the metabolites.

Our analysis suggests the pivotal role played by the enzymes ceramide synthase,
serine palmitoyltransferase, and dihydroceramide desaturase. These enzymes
are involved in the de novo synthesis and the salvage pathways in influencing
insulin resistance versus its regulation. Moreover, in agreement with recent
studies in rodents and humans, these enzymes are fundamentally linked to
metabolic health.

This chapter contains the article published in the journal of Scientific Reports in
January 2017.

4.1 Introduction
Ceramides (Cer) are a family of lipid molecules that play an active role in glucose
homeostasis, insulin signaling and, ultimately, the diabetic phenotype [17, 87].
Two primary pathways through which ceramides are produced in the cell are the
condensation of palmitate and serine (called de novo synthesis) and re-acylation
of sphingosine (salvage pathway). In both cases, ceramide (dihydroceramide, in
the case of the de novo synthesis pathway) is produced by ceramide synthase
(CERS) through N-acylation of a sphingoid base. Mammalian CERS occurs in
6 isoforms (CERS1-6) with differing binding preference for specific fatty acid
chain lengths. CERS6, in particular, is specific to C14 and C16 acyl chain lengths,
and has been associated with obesity and insulin resistance [88].

The primary mechanism through which ceramide promotes insulin resistance
is by inhibiting the activity of Akt/PKB, which is an essential facilitator of
glucose transport into the cell. Ceramide blocks the activity of Akt/PKB by
two independent mechanisms, i.e., by stimulation of Akt dephosphorylation
via protein phosphatase 2A (PP2A) and blocking the translocation of Akt via
PKCζ [89]. Ceramide activates PP2A, which inhibits the action of Akt/PKB by
impairing Akt serine phosphorylation. The result of this inhibition is decreased
translocation of glucose transporter type 4 (GLUT4) to the plasma membrane
and hence decreased uptake of glucose.

In this study, we extended the dynamic model of the de novo synthesis of C16:0
ceramide (from here on we omit the C16:0 notation) in [3] (Tab. 4.1) with the sal-
vage pathway (Tab. 4.2). The deterministic extension of the model in [3] is used
to tune a stochastic version of the same model implemented in `: a stochastic
imperative, domain specific language [6, 90]. The quantitative parameters of
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our model are extracted from lipidomic data on RAW264.7 cells [91] (a mouse
leukemic macrophage cell line) and validated on primary macrophages [92]
(bone marrow derived macrophages, BMDM). The cells were treated with the
pro-inflammatory compound Kdo(2)-lipid A (KLA). RAW264.7 cells experiment
was assessed at 0, 0.5, 1, 2, 4, 8, 12, and 24 hrs, whereas BMDM experiment
at 0, 0.25, 0.5, 1, 2, 4, 8 and 20 hrs. Following [3], we assume that there are
diacylglycerol (DAG)- and phosphatidylcholine (PC)- mediated reactions that
transform dihydroceramide to dihydrosphingomyelin and vice versa. These
reactions are analogous to the reactions involving ceramide and sphingomyelin,
which connect ceramide de novo synthesis with the sphingomyelinase pathway.

We simulated our model both deterministically and stochastically to account
for low abundances of metabolites. The outcome of the simulations predicts
the trend of sphingolipid accumulation in CERS6 knockout mice [88] as well
as the insulin resistance aetiology in ob/ob mice [93]. Finally, we performed
a sensitivity analysis to identify the key enzymes and reactions that regulate
sphingolipid metabolism.

4.2 Results
Working with an extended model of the one presented by Gupta et al. [3]
to include the interplay between ceramide and sphingosine, the main result
is the ability of our model to explain mechanistically the interplay between
sphingolipid metabolism, specifically ceramide, and insulin resistance. We ex-
perimented on our model by focusing on two cases: (i) the availability of CERS6,
and (ii) the groups of enzymes that are identified as significantly differentially-
expressed in obese mice. The data on obese mice is from isolated adipose
tissue macrophages from 5 and 16 week ob/ob (i.e., genetically obese) and wild
type C57BL/6 mice, both fed standard chow diets (for detailed study methods,
see [93]). We then performed a sensitivity analysis of the model.

4.2.1 CerS6 availability

We investigated the response to variation in CERS6 fold change (FC), as this
enzyme plays a central role in the de novo production of (primarily C16:0)
ceramide, catalyzing dihydroceramide (dhCer) starting from sphinganine, and
in the salvage production, recycling ceramide from sphingosine. A substantial
reduction of CERS6, for example, as a result of the effects of drugs such as
fumosin B1, has the effect of blocking both de novo and salvage pathways, leaving
only the ceramide production that occurs by sphingomyelinase. Moreover, as
shown in [88], among all CERS enzymes, only CERS6 adipose tissue expression
is significantly correlated with BMI, hyperglycemia and glucose infusion rate in
human subjects.

Our model provides a mechanistic explanation of the results of [88]: the con-
tribution of CERS5 in ceramide synthesis in macrophages is three orders of
magnitude smaller than the one of CERS6. As a consequence, the extended
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model includes a reaction that merges the effect of CERS5 and CERS6. In our
analysis, in agreement with [3], we thus consider only the FC of CERS6, as it is
the main contributor for the dynamics in the sphingolipid pathway, and FC of
CERS5 remains negligible in comparison. Figure 4.1 shows results of the simu-
lation, in particular with figure 4.1 c) showing that decreasing CERS6 results in
an decrease in ceramide as well as an increase in sphingosine-1-phosphate.

4.2.2 Differentially expressed enzymes in ob/ob mice

While CERS6 plays a known role in the diabetic phenotype, dysregulation of
biological systems is often the result of altered behavior in many interacting
components. Therefore, we focused our analysis on multiple enzymes that were
found to be differentially expressed in macrophages of ob/ob and wild type mice.

Results from simulations suggest that sphingolipid metabolism in the obese
mouse is affected after 5 weeks (Fig. 4.2c). However, the sphingolipids related
to insulin action, ceramide, glucosylceramide (GluCer) and S1P are balanced:
GluCer and S1P, are either stable or decreasing, ceramide increases and the
mechanisms of insulin resistance due to Akt activity remain unaffected. These
observations are in agreement with [93]: after 5 weeks, ob/ob mice show
signs of early insulin resistance, compared with wild-type mice, however show
well-controlled glycemia. Moreover, the model indicates that the affected sph-
ingolipid metabolism maintains a balance between sphingolipids involved in
insulin signaling.

Simulations suggest that ob/ob mice metabolism is highly affected after 16 weeks
with a general up-regulation of sphingolipids, including the ones involved
in insulin signaling (Fig. 4.2d). This suggests potential impairment of insulin
signaling and the development of insulin resistance and glucose intolerance. The
model indicates an impairment of the ratio between the sphingolipids involved
in insulin signaling. In agreement with Prieur et al. [93], this can be the cause
of the obesity-induced insulin resistance [94, 95], which is stronger at 16 weeks
than at 5 weeks, leading to severe insulin resistance and glucose intolerance.

4.2.3 Sensitivity analysis

We performed parametric sensitivity analysis to test the model and to highlight
the key reactions and enzymes for the behavior of the system and estimate
the effect of each rate or enzyme on the concentration of each sphingolipid.
Figure 4.3 illustrates the results of sensitivity analysis as a network, with the
width of edges indicating the strength of effect of enzymes on metabolite
abundance. Our results demonstrate that while the concentrations of enzymes
like ceramide-activated protein phosphatase (CAPP), ceramide kinase (CERK),
sphingosine-1-phosphate lyase (SGPL1) and sphingosine-1-phosphate phos-
phatase (SGPP1) have strong effect on specific sphingolipids, other enzymes
like CERS, ceramide glucosyltransferase (UGCG), dihydroceramide desaturase
(DEGS), sphingomyelin synthase (SMS), ceramidase (ASAH), sphingomyeli-
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nase (SMA) and serine palmitoyltransferase (SPT) have a more diffuse effect
throughout the model.

4.3 Discussion
We used a combination of deterministic and stochastic simulations to provide
a dynamic account of the mechanistic processes of sphingolipid metabolism.
We extended and refined the model by Gupta et al. [3] to include the inter-
play between ceramide and sphingosine. We used our model to test different
conditions for CERS6 availability and various combinations of enzymes that
are differentially expressed in ob/ob mice after 5 and 16 weeks. We quantified
the effect of each single enzyme in the pathway, through sensitivity analysis,
identifying the main regulators of sphingolipid production.

The data used to identify the parameters of the model are taken from cell cul-
tures, where fast and slow metabolic interactions co-occur, and this is a source of
intrinsic noise; stochastic simulations are useful in capturing the fluctuations due
to these variations in reaction rates. Moreover, the measurements of metabolite
concentrations in this system vary in orders of magnitude. Stochastic simu-
lations are instrumental for capturing the noise that emerges in experimental
observations [96] (see Fig. 4.7). Figure 4.1b shows that the stochastic simulations
are closer to experimental observations than deterministic simulations on both
RAW 264.7 and BMDM cells. Deterministic simulations, on the other hand, are
better for sensitivity analysis and monitoring the average behavior.

We then extended the model to analyze the cross-talk between ceramide de novo
synthesis and the salvage pathway, where ceramide is produced by recycling
sphingosine [97] (Fig. 4.1a). Sphingosine is involved in Cer synthesis inside lyso-
somes and mitochondria, and sphingosine-1-phosphate (S1P) plays a central role
in insulin signaling and inflammatory response [24]. By including sphingosine
and S1P, the extended model is a comprehensive exposure of the processes that
link ceramide metabolism to the diabetic phenotype. Moreover, the extended
model takes the role played by ceramide-1-phosphate phosphatase (CAPP) into
account, which produces ceramide from ceramide-1-phosphate [98].

Our simulations showed that the decrease of CERS6 results in a decrease of
ceramide, as expected, as well as an increase in sphingosine-1-phosphate (Fig. 4.1
c). Sphingosine-1-phosphate (S1P) can be reversibly produced from ceramide
via sphingosine, and plays a well-studied role in insulin signalling. Recent
work by Mullen et al. [99] demonstrated that combined knockdown of CERS2,
CERS5 and CERS6 resulted in elevated levels of S1P in an adenocarcinoma cell
line. The interplay between the levels of ceramide and sphingosine-1-phosphate
(S1P) plays a role in the control of the Akt pathway, which in turn influences
insulin action as well as the fate of the cell [100–102]. This suggests that, for
macrophage sphingolipid metabolism, the balance of these two sphingolipids
may explain why even with high-fat diet, CERS6-knockout mice did not show
significant differences in insulin action and glucose tolerance in comparison with
wild type high-fat diet-fed mice [88]. Conversely, as CERS6 abundance increases,



52 Mechanistic interplay between ceramide and insulin resistance

the simulations suggest that the increase of both ceramide and glucosylceramide
(GluCer) affects the Akt/PKB insulin signaling pathway, which is correlated
with increased CERS6 expression.

In [3] the abundances of the four metabolites DAG, phosphatidylcholine, sphin-
ganine and palmitoyl-CoA are modeled with time-dependent variables obtained
as linear interpolations of the experimental data. This approach is based on
the physiological observation that KLA treatment primarily affects these four
components, and the treatment induced variation of concentrations is enough
to capture the effect of the treatment for most of the metabolites. Our extended
model refines the representation of de novo synthesis by replacing the time-
dependent functions for sphinganine with mechanistic components and, as a
consequence, provides a characterization of the underlying biochemical pro-
cesses. We aggregated the reactions between same metabolites that are mediated
by different enzymes, thereby assessing of the aggregated influence of each sph-
ingolipid over other sphingolipids without compromising accuracy. We initially
assumed that the enzyme levels remain constant during the experiments, as
in [3]. Furthermore, we successfully tested the consistency of the results in the
presence of significant perturbations on enzyme concentrations (Fig. 4.11). We
were able to significantly reduce the number of rates to fit without affecting
the precision of the model, and avoid compensation effects of parallel reactions.
The stochastic simulations are performed using `, a domain-specific modeling
language. The results of the deterministic and stochastic simulations compared
with experimental data for RAW 264.7 and BMDM cells are in Fig. 4.1.

The sensitivity analysis of the enzymes highlighted a strong role for SPT, which
showed positive effects on the abundance of a range of metabolites. The reaction
carried out by SPT - the condensation of serine and palmitoyl CoA to produce
dihydrosphingosine (dhSph) - has been shown to be a rate-limiting step in
de novo sphingolipid biosynthesis [103]. Humans possess three variants of
SPT (SPTLC1, SPTLC2, SPTLC3), and SNPs in all three have been found to be
significantly associated with type 2 diabetes and related phenotypes [104–110].
Likewise, treatment with myriocin (a specific inhibitor of SPT) substantially
reduces ceramide synthesis and ameliorates insulin resistance in diabetic rodents
[111, 112].

The sensitivity analysis also highlights the diffused effect of DEGS, the enzyme
that catalyzes the transformation of dhCer into ceramide, and connects the
dh and non-dh parts of the pathway. A significant reduction of this enzyme
removes the dhCer contribution from ceramide production, and an increase in
DEGS promotes ceramide production. Recent work has shown that signaling
targets of ceramide are not affected by similar levels of dhCer, which suggests
that the enzyme DEGS is essential in cell regulation [18] and plays a role on
glucose homeostasis as well: multiple SNPs in DEGS are significantly associated
with 2 hour glucose, mice lacking DEGS are resistant to dexamethasone-induced
insulin resistance and DEGS-knockdown mice myoblast are protected from
palmitate-induced ceramide-mediated insulin resistance [104, 110, 111, 113].
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Collectively, our results illustrate patterns in sphingolipid metabolism that
mechanistically link ceramides and related bioactive lipids to insulin resistance.
By perturbing CERS6 we observed changes in sphingolipid abundances that
are consistent with improvement in insulin signalling, however further work
would be required to assess how this may affect whole-body glucose home-
ostasis. Furthermore, in agreement with recent studies in rodents and humans,
sensitivity analysis of our model highlighted a strong functional role of SPT and
DEGS in regulating abundance of multiple sphingolipid metabolites that are
fundamentally linked to metabolic health.
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Figure 4.1: a The model extends the one in [3] with additional reactions identified in the
literature in green. Degradation and production reactions are omitted. Metabolites with time-
dependent variables are marked with the symbol ‘∗’. b Simulation results of the extended
models, both deterministic and stochastic, for the concentrations in RAW 264.7 cells and BMDM
measured in pmol/µg DNA. The model simulates all the sphingolipids involved in the ceramide
pathway. For the stochastic simulations a scaling factor 1000 is used. x-axis: time in hours. c
The log2 AUC-FC/AUC-Control ratio for the sphingolipids in the legend. The fold-change is
varied from 0.25 to 4.
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Figure 4.2: a and b) the up (red boundary) and down (green boundary) regulated enzymes in
obese mice, according to genes significantly differentially expressed, after 5 (Tab. 4.3) and 16
weeks (Tab. 4.4) of chow diet. c and d) the log2 AUC-FC/AUC-Control ratio for the sphingolipids
in the legend. The fold-change of the enzymes highlighted in a and b are varied from 1 to 4.

Figure 4.3: The network of interactions obtained from the sensitivity analysis for enzymes.
Edges are red if the increase of the rate causes an increase of the concentration of the sphingolipid
node; green if the concentration decreases. The thickness of the edges is proportional to the log2

of the AUC ratio. Orange rectangles and blue circles, respectively, are the sphingolipids and the
enzymes.
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4.4 Methods
We implemented two versions of the model for deterministic and stochastic
simulations. Because both of these implementations are based on mass action
kinetics, they can be considered as two equivalent implementations of the
same model. The stochastic simulations capture some fluctuations that are not
captured by the deterministic simulations. The deterministic simulations, on
the other hand, are more efficient and enable fitting procedures.

Deterministic implementation. We implemented the deterministic version
of the model using ordinary differential equations (ODE) in Matlab, and we
used the built-in ODE solver functions ode23 and ode45. Sometimes we used a
lower order Runge-Kutta method to speed up the simulation, and compared
the results with higher order methods to quantify the error. Time dependent
variables are included as in [3]; they are encoded as linear interpolation of the
related experimental concentrations.

Stochastic implementation. We implemented the time-continuous discrete
stochastic version of the model using the domain specific ` language designed
to model chemical reactions and biological systems [6, 90]. ` is equipped with
a built-in stochastic simulation engine, based on Gillespie algorithm [114].
The mass action kinetics allowed us to use the deterministic rates also for
the stochastic implementation by using conversion factors, see, e.g., [6]. The
number of molecules required for the stochastic simulation are thus obtained by
using the transformation from the concentration pmol/µg of DNA to number of
molecules, that is, by multiplying with the expression AvogadroNumber · 10−12 ·
10−6/ScalingFactor. We performed simulations with different stochastic seeds
and scaling factors that emphasize the stochastic noise, and we compared these
results with the experimental data. The yellow plots in Fig. 4.1b and Fig. 4.7 are
obtained with a scaling factor 1000. Time dependent variables were included in
the propensity calculation of the reactions, and their amounts are determined
as linear interpolation of the related experimental number of molecules. For

example, the propensity function at time t of dhSph + CoA+ CERS kf1−→ dhCer, is

#dhSph(t) · CoA(t) · kf1 (4.1)

where #dhSph(t) is the simulated number of molecules of dhSph at time t, kf1
is the stochastic rate constant, and CoA(t) is the time dependent function that
accounts for the number of CoA molecules at time t.

Enzyme concentrations. The concentrations of the enzymes in the model are
initially kept constant during the duration of the experiments as in [3], and their
amounts are calculated by parameter estimation. For example, the estimated

parameter kf12 of dhCer + DEGS
k f 12−→ dhCer is [DEGS] · kf12′, where kf12′ is the

actual kinetics value and [DEGS] is the enzyme concentration.
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Enzyme Availability. To validate the model results with respect to the varia-
tions in the availability of the enzymes, we have quantified the effect of reducing
each enzyme on each metabolite. To measure the accumulated effect of these
changes on the metabolites, we used the Area Under the Curve (AUC) of the
simulated time-series. We used the log2 of the AUC ratio for the case with
reduced enzyme availability and the AUC for the control case, that is, log2(AUC-
Reduced/AUC-Control). This allowed us to quantify and compare the variations
in AUC, depicted as heatmaps. We performed this by scaling the reaction rate
constants that are mediated by the selected enzyme from 0.1 to 1. These results
are depicted in Fig. 4.9.

To further assess the robustness of the model, we dynamically perturbed the
concentration of the enzymes. We first considered the perturbations at random
time points. Following this, we applied perturbations at fixed time points in
order to compare the two behaviors, and verify that they are in agreement.
For this, at each time point, we considered random normally distributed fold
changes (FC) for all the enzymes. These fold changes are included in the rate
constant as a factor of 2FC. For the perturbations, we tested a variety of time
points and standard deviations from 6 to 240 and from 0.1 to 1, respectively.
Fig. 4.10 and Fig. 4.11 depict the results for 10000 different simulations with a
standard deviation of 0.5. As expected, varying the standard deviations result
in proportional variations of the outputs. Fig. 4.9 shows that the output of the
model is consistent with the dynamics we have considered as control, also in the
presence of significant perturbations on enzyme concentrations (Fig. 4.10 and
Fig. 4.11). The dynamics of all the sphingolipids in our conclusions in the main
text show good agreement with the experimental data (Fig. 4.10 and Fig. 4.11).

Parameter Estimation. The extended model includes 29 reactions, with un-
known rates. We carried out a deterministic parameter estimation procedure,
based on non-linear least squares method. To take the differences in concentration
of the sphingolipids into account and to ensure that the fitting procedure is
not used in a biased manner by the abundance of any sphingolipid, we used a
weighted objective function, where for each sphingolipid and each time point we
considered the squared-relative-error. The objective function that we minimized
is

∑
t∈TimePoints

( 12

∑
i=1

(Xi(t)− Expi(t)
Expi(t)

)2
)

(4.2)

where Xi(t) and Expi(t) are the simulated and experimental values for the i-th,
non-time dependent, sphingolipid at the time point t, and TimePoints is the set
of the experimental measurements at time t ∈ {0.5, 1, 2, 4, 8, 12, 24} hours.

We minimized this expression using the lsqnonlin Matlab function (trust-region-
reflective algorithm) by using a multi-start approach: the algorithm starts from
a number of randomly generated starting points (our case 200) within the
feasible regions and from each point it executes the lsqnonlin function. This
procedure for parameter estimation provided excellent fitting results (Fig. 4.1b
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and Fig. 4.7).

Validation. Since the BMDM dataset does not include all the data, for the
time dependent variables (Acyl-CoA 16, DAG and PC) we have used data from
RAW 264.7 cells. The results of this simulation are depicted in Fig. 4.8. The
model, tested on the new data, correctly reproduces the behavior of most of the
metabolites, in particular these metabolites that are involved in our conclusions.
However, the dynamics of dhSph is not correctly captured by the model. Our
investigation on this highlights the role of the reaction that synthesizes dhSph
(reaction 22). Since the concentration of dhSph is much smaller in the BMDM
data than in RAW 264.7 cells, we varied its rate accordingly. As a consequence,
the model results are closer to experimental data.

Microarray analysis. A microarray dataset (accession number GSE36669) was
obtained from Gene Expression Omnibus, representing isolated adipose tissue
macrophages from 5 and 16 week ob/ob and wild type C57BL6 mice, both
fed standard chow diets (for detailed study methods, see [93]). Data were
normalized using the rma function from the oligo R library, then filtered to
remove probes in the lowest 10% expression and lowest 10% variance. Data were
then analyzed using the limma library, to identify probes that were significantly
differentially expressed between ob/ob and wild type mice at 5 and 16 weeks.
P values were corrected for multiple testing using the Benjamini & Hochberg
method [115].

Fold change experiments. In order to test how the model responds to the
variations in the concentration of the enzymes that emerge in conditions related
to obesity, we modeled the variation of the amount of certain enzymes in terms
of their fold change (FC) with respect to the experimental microarray data. To
cluster the enzymes we identified two sets of genes: those contained in our
model and differentially expressed at 5 weeks (Tab. 4.3) those contained in our
model and differentially expressed at 16 weeks (Tab. 4.4). In the FC experiments,
we included the variation in fold change in the model as the product of [DEGS] ·
FC · kf12′, thereby assuming that the variations in the fold change of gene
expression affect the concentrations of the related enzymes, and this affects
the propensity of the reactions that involve these enzymes. In particular, if the
enzyme is overexpressed FC is given as 2x, if it is underexpressed as 2−x, where
x is the amount of change we simulated. To measure the accumulated effect of
these changes, in accordance with the experimental data, we have considered the
log2 of the ratio of AUC for the case with varied fold change of the enzymes and
the AUC of the control case where FC=1, that is, log2(AUC-FC/AUC-Control).
This provides an estimate of the cumulative effect over the whole experiment
with respect to the varied fold change of the enzyme. Logarithm is used to
highlight the cases in which the fold change has a decreasing effect on the
accumulated effect of the metabolite.
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Compartmentalization. Sphingolipid metabolism is a complex system that
takes place in different parts of the cell, from the ER to the cell membrane
[100, 116]. Regarding the specific compartmentalization of the metabolites,
to the best of our knowledge, there is no data available that is suitable for
modeling. Other approaches have been tested in the literature, such as in [117],
where the authors proposed a model for sphingolipid metabolism that includes
compartments. However, their results are neither compared with experimental
data, nor quantitatively justified. Moreover, the model in [117], despite the lack
of experimental verification, includes more than 120 free parameters, which
introduces additional challenges in terms of interpretation of the results. In
contrast, our model includes only 29 parameters, which are instantiated by using
experimental data, and verified by independent data and sensitivity analysis.

We have, however, addressed the compartmentalization of certain components
within the realm of our model. We tested our model in order to quantify how
the effect of impairment on the transport mechanisms [100] would affect its
output. To this end, we analyzed the sphingolipids that may be more affected
by the transport impairment. In particular, we tested our results by varying the
initial concentrations of the metabolites that are known to be subject to transport
between compartments by a factor from 1 to 0.2. These results are depicted
in Fig. 4.12. These simulations indicate that our results are not vulnerable to
perturbations in the availability of sphingolipids due to alteration in transport.

Sensitivity Analysis. We performed a parametric sensitivity analysis, consid-
ering for each reaction the estimated rate and varying it under mass action law.
We considered 4 orders of magnitude fold change interval starting from 0.01 up
to 100 that covers possible metabolic perturbations of the system. The parameter
fold changes are included in the model in the same way as for the enzyme
fold changes. We ran simulations by varying these fold change values, and we
measured the impact of these changes to the system in terms of AUC ratio for
each sphingolipid. We performed the same kind of analysis for enzymes, with
varying FC from 0.01 up to 10.

This data is used to produce a network of interactions. We used orange rect-
angular nodes to represent the sphingolipids and blue circles to represent the
rates or the enzymes. The dimension of the nodes is proportional to the number
of incident edges. We used color edges to differentiate the effect of rates on
sphingolipids: an edge is red if the rate increase causes concentration of the
lipid increase; it is green if the concentration decreases. Undirected edges are
chosen for increasing readability, however they are directed from the rates or
the enzymes to the sphingolipids (Fig. 4.3 and Fig. 4.4).

We weighted the edges of the network proportionally to the base two logarithm
of the AUC ratio. Therefore an edge has the same width if the effect on a sphin-
golipid is doubling or halving its concentration. In particular, we determined the
value to use for this representation with respect to the results of the sensitivity
analysis. We identified a value in the range where the concentrations vary in
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a monotone way according to FC. In this case, we choose a fold change of 4.
To improve the readability of the network we represented only the interaction
such that | AUC ratio −1| > 0.01. We produced in the same way the interaction
network for the enzymes and chose the interactions such that | AUC ratio
−1| > 0.001 .

The networks are obtained from simulation data, and processed using the igraph
R library [118]. Finally the network figure was produced using Cytoscape, and
the organic layout algorithm was used to improve the readability.

4.5 Supplementary Material

Reaction N. Reaction Rate Identifier Deterministic Rate Stochastic Rate

1 dhSph + CoA16 + CERS6→ dhCer kf1 13 2.158751e-05 · sf
2 dhSph + CoA16→ dhCer kf2 5.940000e-02 9.863833e-08 · sf
3 dhCer→ kf3 1.060000e-03 1.060000e-03
4 dhSph + Sphk1→ dhSph1P kf4 3.740000e-04 3.740000e-04
5 dhSph + Sphk2→ dhSph1P kf5 1.570000e-02 1.570000e-02
6 dhSph1P→ kf6 5.200000e-01 5.200000e-01
7 dhCer + UGCG→ dhGlcCer kf7 2.020000e-02 2.020000e-02
8 dhGlcCer→ kf8 2.900000e-01 2.900000e-01
9 dhCer + Sms1 + PC←→ kf9 1.160000e-01 1.926270e-07 · sf

dhSM + Sms1 + DAG kb9 3.900000e-01 2.856360e-06 · sf
10 dhCer + Sms2 + PC←→ kf10 1.720100e+00 6.476254e-07 · sf

dhSM + Sms2 + DAG kb10 1.080000e-01 1.429758e-06 · sf
11 dhSM + SMPD1→ dhCer kf11 8.610000e-01 1.080000e-01
12 dhSM→ kf12 3.000000e-02 3.000000e-02
13 dhCer + CERK→ dhCerP kf13 1.180000e-04 1.180000e-04
14 dhCerP→ kf14 1.660000e-01 1.660000e-01
15 dhCer + DEGS1→ Cer kf15 9.250000e-03 9.250000e-03
16 dhCer→ Cer kf16 8.000000e-01 8.000000e-01
17 Cer + CERK→ CerP kf17 1.180000e-04 1.180000e-04
18 CerP→ kf18 1.130000e-01 1.130000e-01
19 Cer + Sms1 + PC←→ kf19 1.160000e-01 1.926270e-07 · sf

SM + Sms1 + DAG kb19 3.900000e-01 9.282630e-08 · sf
20 Cer + Sms2 + PC←→ kf20 5.590000e-02 6.476254e-07 · sf

SM + Sms2 + DAG kb20 1.670000e-03 2.236632e-06 · sf
21 SM + SMPD1→ Cer kf21 1.346900e+00 1.670000e-03
22 SM→ kf22 1.060000e-02 1.060000e-02
23 Cer→ kf23 0 0
24 Cer + UGCG→ GlcCer kf24 2.020000e-02 2.020000e-02
25 GlcCer→ kf25 3.170000e-03 3.170000e-03

Table 4.1: Reactions and stochastic rates obtained from the deterministic rates in [3]. sf refers
to the scaling factor.
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Reaction N. Reaction Rate Identifier Deterministic Rate Stochastic Rate

1 dhSph + CoA + CERS −→ dhCer kf1 1.2523e+01 2.0794e-05 · sf
2 dhCer −→ kf2 5.3996e-01 5.3996e-01
3 dhSph + PLPP −→ dhS1P kf3 3.5455e-03 3.5455e-03
4 dhS1P −→ kf4 1.5116e-01 1.5116e-01
5 dhCer + UGCG −→ dhGluCer kf5 6.8664e-02 6.8664e-02
6 dhGluCer −→ kf6 3.2676e-01 3.2676e-01
7 dhCer + SMS + PC←→ kf7 9.2076e-02 1.5290e-07 · sf

dhSM + SMS + DAG kf28 4.7810e-01 7.9390e-07 · sf
8 dhSM + SMA −→ dhCer kf8 2.0220e-08 2.0220e-08
9 dhSM −→ kf9 4.1706e-02 4.1706e-02
10 dhCer + CERK −→ dhCer1P kf10 7.6142e-04 7.6142e-04
11 dhCer1P + CAPP −→ dhCer kf11 4.0986e-01 4.0986e-01
12 dhCer + DEGS −→ Cer kf12 1.3904e-01 1.3904e-01
13 Cer + CERK −→ Cer1P kf13 2.9955e-04 2.9955e-04
14 Cer1P + CAPP −→ Cer kf14 1.7897e-01 1.7897e-01
15 Cer + SMS + PC←→ kf15 2.3484e-03 3.8996e-09 · sf

SM + SMS + DAG kf29 2.0752e-02 3.4460e-08 · sf
16 SM + SMA −→ Cer kf16 9.6067e-05 9.6067e-05
17 SM −→ kf17 6.4391e-05 6.4391e-05
18 Cer −→ kf18 1.0800e-02 1.0800e-02
19 Cer + UGCG −→ GluCer kf19 1.2546e-01 1.2546e-01
20 GluCer −→ kf20 9.8926e-02 9.8926e-02
21 dhCer + ASAH −→ dhSph kf21 1.3685e-02 1.3685e-02
22 null + SPT −→ dhSph kf22 4.6336e+00 (2.7904e+06)/ sf
23 Cer + ASAH −→ Sph kf23 2.6853e-02 2.6853e-02
24 Sph + CERS −→ Cer kf24 2.4217e-02 2.4217e-02
25 Sph + SK −→ S1P kf25 3.7867e-02 3.7867e-02
26 S1P + SGPP1 −→ Sph kf26 4.9200e+00 4.9200e+00
27 S1P + SGPL −→ kf27 3.7856e+00 3.7856e+00

Table 4.2: Reactions of our extended model.

logFC adj.P. symbol aggregated symbol AveExprWT AveExprob/ob

−0.452620099 0.008182273 Sgpp1 SGPP1 9.221666078 8.769045979
−0.224976984 0.091131914 Asah2 ASAH 7.750207047 7.525230062
−0.216372605 0.096486253 Asah1 ASAH 10.39519443 10.17882183
−0.180378296 0.09595853 Ugcg UGCG 8.181176815 8.000798519

0.497378687 0.003163028 Degs1 DEGS 8.628122177 9.125500863
0.454196511 0.016684256 Smpd3 SAM 6.563311134 7.017507645
0.346984067 0.011837382 Sgms1 SMS 8.109475589 8.456459656
0.970942051 0.008430373 Sgms2 SMS 5.871574472 6.842516523
0.510300826 0.003532425 Cers6 CERS 8.087639879 8.597940705

Table 4.3: Statistical analysis results for genes contained in our model. Differential expression
values refer to the difference between wildtype (WT) and ob/ob mice at 5 weeks.
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logFC adj.P. symbol aggregated symbol AveExprWT AveExprob/ob

0.251283323 0.009757826 Asah1 ASAH, ASAH1 11.32289211 11.57417544
−0.400699156 0.000899179 Asah2 ASAH, ASAH1 8.618283842 8.217584686
−0.19660911 0.078807427 Acer1 ASAH1 5.177626666 4.981017556
−0.625195789 7.90e-05 Acer2 ASAH1 7.548612508 6.923416719

1.038252808 1.09e-07 Acer3 ASAH 7.721198262 8.75945107
0.588336958 1.34e-05 Cerk CERK 8.527943995 9.116280954
0.60453069 7.26e-06 Degs1 DEGS 9.737870426 10.34240112

−1.883316456 1.12e-08 Ppap2b PLPP 11.79434036 9.911023905
0.336052217 0.020480217 Ppap2c PLPP 8.463706403 8.799758619
0.343115755 0.001608825 Sptlc1 SPT 9.044525454 9.38764121
−0.198809527 0.072928862 Smpd3 SMA 7.912221158 7.713411631

0.470062309 3.91e-05 Sgms1 SMS 8.633440478 9.103502786
0.182996148 0.05350511 Sphk2 PLPP 7.777322825 7.960318974
0.812523823 5.45e-07 Sgpl1 SGPL 10.93098122 11.74350504
0.947997388 1.04e-07 Cers6 CERS 8.718705273 9.666702661
0.206366580 0.025389854 Cers5 CERS 8.868672068 9.075038647

Table 4.4: Statistical analysis results for genes contained in our model. Differential expression
values refer to the difference between wildtype (WT) and ob/ob mice at 16 weeks. ASAH is the
name that summarize enzymes that mediate reaction 21, ASAH1 those which mediate reaction
23.
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Figure 4.4: The network of interactions obtained from the sensitivity analysis for rates. Edges are
colored in red if the increase of the rate follows an increase of the concentration of the sphingolipid
node, in green if the concentration decreases. The thickness of the edges is proportional to the
log2 of the AUC ratio. In orange rectangles and blue circles, respectively, the sphingolipids and
the enzymes are represented. The label of the nodes are the reaction numbers in Tab. 4.2.
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Figure 4.5: Deterministic simulation of the main metabolites with varying fold changes to
observe the effect of the perturbation compared with experimental observations of ob/ob mice at
5 weeks. Concentrations measured in pmol/µg DNA. x-axis: time in hours.
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Figure 4.6: Deterministic simulation of the main metabolites with varying fold changes to
observe the effect of the perturbation compared with experimental observations of ob/ob mice at
16 weeks. Concentrations measured in pmol/µg DNA. x-axis: time in hours.
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Figure 4.7: Comparison of the deterministic and stochastic simulation outcomes of the main
metabolites with the experimental observation, for RAW 264.7 cells. Note the fluctuation of the
stochastic simulations when the abundance of the metabolites is very low, e.g. dhCer1P, Cer1P,
dhS1P, S1P and dhSph. Concentrations measured in pmol/µg DNA. x-axis: time in hours.
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Figure 4.8: Comparison of the deterministic and stochastic simulation outcomes, for both RAW
264.7 cells and BMDM. The BMDM dataset does not include data for dhCer1P. Concentrations
measured in pmol/µg DNA. x-axis: time in hours.



68 Mechanistic interplay between ceramide and insulin resistance

En
zy

m
e 

av
ai

la
bi

lit
y 

Sphingolipids

log AU
C

 ratio

Figure 4.9: Heatmaps quantifying the effect of the reduced availability of each enzyme on each
metabolite. The effect is quantified in terms of log2 AUC ratio, as defined in the main text.
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Figure 4.10: The cumulative output of 10000 simulations under the effect of random pertur-
bations on the fold change of the enzymes, compared with the experimental data. Every hour
the enzyme fold changes are randomly varied. The colors are proportional to the number of
simulations. Here the greener is the color, the more are the simulations that coincide with that
trajectory. The random perturbations are obtained as the sampling of a normal distribution with
mean 0 and standard deviation 0.5. Concentrations measured in pmol/µg DNA. x-axis: time in
hours.
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Figure 4.11: The cumulative output of 10000 simulations under the effect of random pertur-
bations on the fold change of the enzymes, compared with the experimental data. At random
time points the enzyme concentrations are randomly varied. The colors are proportional to the
number of simulations. Here the greener is the color, the more are the simulations that coincide
with that trajectory. The random time points are obtained as the sampling of 15 points from an
uniform distribution between 0 and 24. The random perturbations are obtained as the sampling
of a normal distribution with mean 0 and standard deviation 0.5. Concentrations measured in
pmol/µg DNA. x-axis: time in hours.
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Figure 4.12: Heatmaps quantifying the effect of the reduced availability of the metabolites due
to, for example, impairment in transport between compartments. The reduced effect, displayed in
the tiles of each metabolite, is quantified in terms of AUC ratio as defined in the main text.
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and I wrote and edited the manuscript. Melissa J. Morine and Corrado Priami
performed literature mining and identified the reactions of interest. All the
authors analysed the results and reviewed the manuscript.



Chapter 5

Discussion

Mathematical and dynamical models have been shown to provide a useful frame-
work for the development of mechanistic descriptions of biological phenomena
related to diabetes. The results included in this dissertation also highlight how
these models may lead to useful biological insights. The models described here,
as models in general, rest on assumptions and abstractions. They, thus, may be
refined or extended according to the context they are used in. We discuss in this
chapter some of the possible developments and further extensions.

Diabetes type 1 The development of an automated insulin delivery device is
a long process that started in the late 70s with the first models for the glucose-
insulin system [11, 42], and the following developments [46]. In the following
decades, more complex and accurate diagnostics procedures, such as the use of
glucose tracers [12,53,71], have been introduced. As a consequence, the research
effort refocused towards more complex representations and models, departing
from the initial idea of a minimal model. These new procedures allowed the
models to correctly identify parts of the processes involved with increasing
precision. For example, the glucose trackers have helped in distinguishing the
endogenous from the exogenous glucose measured in the bloodstream [12].
Nevertheless, these procedures have led to more complex models. These models
are harder to tune and are not suitable for implementation on devices such as
"artificial pancreas" that are required to be as simple as possible. For example,
such a device is meant to work on data recorded from the patient in everyday
life, where it is impossible to use radio-labeled glucose.
The need for simpler models has shed new light to those minimal approaches,
such as the one we describe in Chapter 3. In this approach, we have focused
on describing with a minimal number of equations and parameters, complex
processes such as digestion and the insulin-glucose system [15]. Our model
does not include some improvements, such as tracers, to be as close as possible
to the scenario of application. To the same end, our model is a close-loop model,
where the insulin and glucose compartments are simulated synchronously, as we
expect in control algorithms. Moreover, our original solution to the appearance
of glucose in the blood does not only require fewer parameters than other models
in the literature [15,47], but it also requires only the approximate glucose content
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of the meal. This is an important feature because such information may be easily
quantified, whereas other information, for instance the glucose experimental
data, is unlikely available a-priori for an everyday meal.
Our model and its results have been validated with repeated tests over the
same patients. This has provided strong indications on the quality of the model.
Nevertheless, extending the analysis to more patients would provide more
solid evidence. By testing the model on an extended cohort, it may strengthen
our results and, however, it may also provide modeling challenges. Such
an extended cohort should include healthy patients, and, after the necessary
adjustments, the model should reflect the patient conditions, ideally providing
ways to discriminate them. In this respect, it would be important to develop
shared databases that contain data for multiple experiments. However, such
datasets are quite rare.
The data itself may provide a possible improvement of the model. Since any
device such as the artificial pancreas would rely on glucose and insulin mea-
surements taken from the tissues, it would be better to test the models with data
from these tissues [75]. However, we have used measurements from blood. The
use of tissue measurements would add complexity since the delayed appear-
ance of glucose requires more equations and parameters than with data from
blood [7]. Still, this may provide a more accurate description that is closer to
the one that would actually be used.
Developing and implementing such models introduce also other challenges. An
interesting challenge we have faced in the process of developing our model is the
integration of data and parameters from two different experiments namely, the
HEC and the MMT experiments. In particular, we have used the model for the
HEC experiment to tune some parameters that are in common between the two
models. The HEC experiment, which is considered the gold standard to assess
the insulin sensitivity of patients [41], is described with less uncertainty. In fact,
such a model is smaller and contains less parameters [45]. Its parameters are
used to drive the estimation of some of the parameters of the MMT model [15].
The integration of data and models for different experiments is an important part
of the development of models that autonomously regulate insulin and glucose.
In fact, devices such as "artificial pancreas" are meant to be initially tuned by
using patient specific parameters that are estimated using models or ad-hoc
experiments. They should then work without any other tuning process [72].
Another important issue in the development of such control algorithms is the
need for models that are commonly accepted by the research community. In
fact, the development of such algorithms has been kept mostly secret due to
intellectual property issues. However, our vision, as well as the vision of many
research groups, lies in sharing the results in order to establish a consensus.
In conclusion, the development of a fully automated insulin delivery device
may still be far. Nevertheless, with the joint effort of the research community, in
a not so long future, these devices may become as common as pacemakers are
now for cardiac diseases.
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Insulin resistance Modern age took not just great improvements in people’s
health and standard of living, but also serious changes in our everyday life.
As a consequence of sedentary life and unhealthy habits, always more people
suffer from weight problems or insulin impairment, such as obesity or insulin
resistance and diabetes type 2 [17, 119]. It is possible to mitigate the impact of
these diseases on our society promoting healthier lifestyles and habits, as well
as designing specific new drugs.
In the endeavor of providing a better understanding of insulin resistance, we
have developed the model described in Chapter 4. Our results have suggested
mechanistic explanations for the role of sphingolipids in the development of
insulin resistance for mice macrophage tissues. This may help in identifying
potential drug targets [27]. However, to gain a better comprehension of this
process, models need to be tested on several tissues by using data from different
animal models and cell lines. For example, an accurate description of the
sphingolipids metabolism in muscle and liver tissues may help in understanding
their role in the whole-body glucose-insulin homeostasis [89]. As for diabetes
type 1, this highlights the need for open access datasets that allow researchers
to analyze their results and the quality of their models in the presence of
heterogeneous data. Nevertheless, there are few available datasets also in this
case.
One possible extension of our model is to take into account other molecules
that are involved in the sphingolipids metabolism and in the insulin resistance
development [17]. Building a model that captures certain interactions between
the molecules of interest for these processes might help in quantifying their
effect, unveiling unknown mechanisms. This could drive the research toward
the design of effective drugs while minimizing the risk of side effects [6].
Another extension of the model may be to proceed in the direction we have
started in Chapter 4, i.e., analyze the model using stochastic simulations. As
detailed in Appendix A, this kind of simulations may precisely describe a
possible evolution of a dynamical system. In addition, when certain species
abundances are particularly small, it is the most appropriate way to simulate a
model [120, 121]. In our case, we may apply stochastic simulations to precisely
describe the interactions of the sphingolipids in a reduced section of the cell.
For example, we may concentrate our attention on the cell membrane where
sphingolipids interact with the insulin receptors and the insulin receptor sub-
strates (Fig. 2.2). A mechanistic description of this process may produce valuable
information that links this molecular regulation with the cellular sphingolipid
metabolism [17, 122].
As in similar cases, tuning the parameters of the sphingolipid model has pro-
vided several challenges. For example, there is the computational effort to
assure a solution that provides the best set of parameters that fit the experimen-
tal data. In addition, there is the effort to exclude that such estimates over-fit
the data [123]. To this end, the sphingolipid model has undergone further
analysis than the one described in Chapter 4. In fact, to assure the convergence
to a reliable set of parameters, the solution of the multi-start non-linear least
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squares approach was further analyzed by using a Markov Chain Monte Carlo
method (Appendix A). This method permits to estimate the correlations and
dependencies between the parameters [124] and it may have supported the
biological validation of the model. In fact, the parameter set was robust enough
to successfully describe the sphingolipid metabolism in a validation dataset
from a different experiment [27].
During the development of the model presented in Chapter 4, we were also
challenged by the need for integrating transcriptomic and lipidomic data. This
integration is a necessary step, as well as the integration of different types of
data in general, to fully develop the systems view that characterizes the systems
biology approach [5, 6]. To this end, some of our ongoing work, not included
in this dissertation, focuses on the integration of these data to gain a better
understanding of the interaction of these different biological levels, namely,
genes and lipids. We are using this integration to understand the processes
of the de-novo synthesis of various chain length ceramides. This may help in
quantifying the contribution of each different ceramide, as well as the interaction
between them [18].
Dynamical models are supporting the discovery of new drugs and they are key
components towards the development of personalized medicine. Personalized
medicine could be tailored to patients’ needs and characteristics, thereby reduc-
ing the risk of side or collateral effects. This should have a remarkable effect on
people’s lives, also changing the way we develop and discover drugs.

Optimization in systems biology Optimization is a key task in the develop-
ment of models, and it has been a crucial part of the development of the models
included in this dissertation. For example, the model for diabetes type 1 re-
quired to deal with a particular objective function that accounts for the previous
knowledge [15]. In addition, in the sphingolipid model, the combination of
different estimation techniques has enhanced the results’ reproducibility [27].
Despite their role in the development of dynamical models, optimization tools
are often seen as black-boxes [125]. Such an approach may lead to naive in-
terpretations of the results or to poor choices of the algorithms to solve the
problems.
With the aim of providing an accessible description that introduces (global)
optimization techniques in systems biology, we have provided a review article
that is reported in Appendix A. We have selected three algorithms that present
some of the main family of optimization approaches. The three algorithms be-
long to the deterministic [126], stochastic [127], and heuristic [128] optimization
techniques. Although this selection provides the general ideas behind these
optimization areas, there exists a variety of sub-families that populates the
optimization literature [124–128]. We have included a rich list of references to
many of them, however, it would be impossible to list them all.
For the models we discussed, we have considered a multi-start approach for the
non-linear least squares method. This choice follows different considerations
on the models. First, the two models are formulated in terms of differential
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equations and the sought parameters are continuous. Moreover, experimental
time points are known. As a consequence, the objective functions may be
expressed as a sum of squares and they are continuous. A natural candidate
for solving this kind of optimization problems is the least squares method [129].
Second, since the problem is non-linear and different local solutions may exist,
we have considered a multi-start approach and a non-linear method [130]. Third,
the selected method is one of the few that may certify the convergence, thanks
to its theoretically proved termination criteria [129]. Fourth, in both models
the simulation is fast. This permits the use of this computationally demanding
approach. Nevertheless, the combined use of this technique with a Markov
Chain Monte Carlo method may have contributed to the results in the validation
dataset of the sphingolipids’ model.
These considerations are valid for problems that are similar to the one we have
dealt with. However, each case should be carefully analyzed and the most
suitable method to solve the problem should be identified for each specific task.
For example, more complex models, whose simulation time is of the order of
many seconds or minutes, may favor the use of other approaches [125, 131].
The algorithms that are included in Appendix A are available in many dif-
ferent implementations for different languages and platforms. For example,
the multi-start non-linear least squares method is implemented in the Matlab
Global Optimization Toolbox. For the results of the previous Chapters, we have
considered this toolbox. Similarly, non-linear least squares algorithms have been
implemented in many packages for different languages and included in different
libraries. Among others, they are included in the Python scipy package [132], as
well as in the R nlstools library [133], or in the Ceres C++ library [134]. However,
the multi-start approach is not included in any of these libraries. The genetic
algorithms, described in Appendix A, are implemented in Matlab, Python, R
and many other languages, as well. In contrast, there is no Matlab built-in
function or package for the Markov Chain Monte Carlo, whereas it is available
for the other languages.
Even though some knowledge on optimization algorithms is often necessary
for the development of dynamical models, optimization is only one part of a
bigger process. One task it to correctly translate the problem and chose the
adequate algorithm. A different, and necessary, task is to provide biological
evidence that supports the results. The results cannot rely only on mathematical
termination criteria and optimality conditions; successive tests should be carried
out. For example, since the objective function may be formulated in different
ways, there is no guarantee that the best fitting set of parameters would reflect
the biologically expected properties. In our experience, it is not unusual that
the varying of the objective function reflects on the biological meaning of the
solutions. As a good practice, it is worth to compare the results of different
optimization strategies and different objective functions to support the findings.
In addition, the solution of the optimization problem should be a starting point
for the biological interpretation. This phase requires to interpret and validate
the results to assure their biological plausibility. For example, the results should
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be validated by independent datasets or the simulations should consistently
reproduce known perturbation of the system, such as diseases or impairments.
Sensitivity analysis is another test that models should undergo [135]. It is a
fundamental tool to mathematically assess the quality of a model, and it may
provide both biological insights and validations, as shown in Chapter 4.
Optimization is a fundamental tool to support the results and the goals we dis-
cussed in the previous paragraph. However, the real strength of this tool comes
when its techniques are combined with biological evidence and interpretation
of the models.



Appendix A

Optimization algorithms for
computational systems biology

Mathematical and dynamical models often need parameters, such as rate con-
stants or scaling factors, to describe the phenomena they are representing. It
is not unusual that some of those model parameters are unknown. In the ab-
sence of effective methods to determine parameter estimates, a model provided
with the wrong set of parameters may produce a distorted representation of
the observed phenomena. This may lead to the rejection of its mechanistic
description.
In computational systems biology, parameter estimation is needed not just
for model parameters, but also for data analysis. For example, it is used to
determine the optimal length of biomarkers, as well as to determine the optimal
number of clusters in which data should be divided.
This appendix presents three powerful methodologies for global optimization
that fit the requirements of most of the computational systems biology appli-
cations. To provide a clear description of the methods, we have focused on
presenting the general ideas behind them, without blurring the description with
many details.
We include the multi-start approach for least squares methods, mostly applied
for fitting experimental data. We illustrate Markov Chain Monte Carlo methods,
which are stochastic techniques here used for the same purpose when a model
involves stochastic equations or simulations. Finally, we present Genetic Algo-
rithms, heuristic nature-inspired methods that are applied in a broad range of
optimization applications, including model tuning and biomarker identification.
Moreover, the here-presented approaches coexist with a vast literature of other
methods, for which we have provided several references.
This appendix contains the review article that we submitted to the journal of
Frontiers in Applied Mathematics and Statistics, special topic Optimization.

A.1 Introduction
The human desire to improve and to solve problems has been addressed using
mathematical methods by the field of optimization. This field has become a
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crucial aspect of our daily life, with servers and computers solving hundreds of
optimization problems every second, determining the best solution for finance,
engineering or computer science problems. From the assets to include in a
portfolio, to the shape of a particular object, to the distribution of packages sent
among networks and uncountable other applications, optimization problems
are addressed and solved constantly.
Among the many branches of optimization, global optimization focuses on
the development of techniques and algorithms to discover the best solution,
according to specific criteria, when several local solutions are possible [127]. It
has been intensively improved during the last decades in an exchange of ideas
and applications from various fields, such as mathematics, computer science,
biology and statistics. These improvements have had a tangible effect in terms of
accuracy of the results and time of execution, allowing the use of this discipline
to solve bigger and more complex problems.
In the meanwhile, the convergence of biology and computer science lead to
the establishment of computational systems biology [5, 6]. Computational
systems biology challenges, among the others, the non-trivial tasks of gaining
knowledge from the vast amount of data produced by the omics technologies
and to build, starting from static data, dynamical representations that elucidate
the mechanistic insights of the phenomena. Since the occurrence of multiple
local solutions is likely to take place in computational systems biology [136,137],
in the following we provide a concise review of three methodologies for global
optimization that are successfully applied in such a field [126].
The herein proposed selection of algorithms embraces three of the main opti-
mization areas, which rely on deterministic, stochastic and heuristic methods,
respectively [127]. We have chosen simple specific implementations that, in our
opinion, help in communicating the ideas behind the algorithms and elucidate
the corresponding areas. We avoided technical details or strict mathematical
rigor to facilitate the reading also for scientists whose background is more
focused on biology than in computer science or mathematics. Nevertheless, we
provided technical details in the list of references, where a skilled reader can
find all the resources for an in depth coverage of the matter.

A.2 Global optimization in computational systems
biology

When challenged with computational systems biology problems, global opti-
mization has to face a variety of scenarios. We focus on model tuning and
biomarker identification. Models are here intended for in-silico simulations of
biological phenomena. They are usually systems of differential or stochastic
equations that quantitatively describe chemical reactions or other complex inter-
actions. A model returns a vector of current values for all the variables, which
can be reals (e.g., average chemical concentrations) or integers (e.g., number of
molecules or individuals). For example, we may consider the Lotka-Volterra
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model (Eq. (A.1)), also known as the prey-predator model [6].{
y′ = αy− ayz, y(0) = y0 > 0
z′ = −bz + βyz, z(0) = z0 > 0

(A.1)

This set of ordinary differential equations describes the population dynamics
of two species in which one of them, the predators z, consume the other one,
the prey y. The Lotka-Volterra model depends on four parameters: the growth
rate of the prey α, the death rate of predators b, the rate at which preys are
eaten by predators a and the rate at which the predator population grows as a
consequence of eating prey β.
It is not unusual that some of the model parameters are unknown, such as rate
constants or scaling factors. In the absence of effective methods to determine
parameter estimates, a model provided with the wrong set of parameters may
produce a distorted representation of the observed phenomena. This may lead
to the rejection of its mechanistic description. For example, Fig. A.1 shows two
possible outcomes of the deterministic simulation of the Lotka-Volterra model,
with different sets of parameter estimates.

(a) (b)

Figure A.1: Two possible outcomes of the deterministic simulation of the Lotka-Volterra
model with different sets of parameter estimates. Figure A.1a shows the dynamics with the
parameters α = 1, a = 0.05, b = 1, β = 0.05. Figure A.1b shows the dynamics with
α = 0.3, a = 0.05, b = 0.7, β = 0.025. Both the simulations start from the same initial state.

Another common application of optimization in computational systems biology
is biomarker identification, which is frequently related to the problem of classi-
fying samples measured using the omics technologies (genomics, proteomics,
lipidomics, metabolomics). These techniques produce a vast amount of data
and researchers are challenged to infer knowledge from it [6]. In classification,
certain characteristic sample properties, such as the expression level of some
genes or proteins, are selected to separate the samples. Such selected properties,
here generically called features, are then used to divide samples in categories.
For example, respondent and non-respondent to a particular drug or healthy
and unhealthy [138, 139]. Usually a sufficiently short list of features, called
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biomarker, is sought to discriminate the samples. If this list of features is not
optimally chosen, it may drive to poor classification accuracy.
Optimization problems can be formulated as follows:

min c(θ)
g(θ) ≤ 0
h(θ) = 0
lb ≤ θ ≤ ub
θj ∈ R or Z, j = 1, ..., p

(A.2)

θ is a vector of dimension p ≥ 1 and it contains the parameter estimates that
are sought. A solution of the optimization problem contains those parameter
estimates that minimize the function c. We generically refer at them as param-
eters. The cost function c, also called objective function, translates the problem
in mathematical equations and it undergoes the optimization process to esti-
mate the optimal parameters. The objective function may also depend on other
variables rather than θ, as initial values, forcing functions or other variables
that are not optimized. For the sake of simplicity, such values are not explicitly
included in Eq. (A.2). The objective function may depend linearly on θ, like
in the case of routing or scheduling problems [140], or non-linearly, such as in
many applications of computational systems biology [137].
Once these parameters are estimated, their values are fixed in the model. In
contrast, the independent variables, here called just variables, remain free to
vary after the optimization process. For example, in the Lotka-Volterra model
(Eq. (A.1)) α, a, β, b are parameters, whereas y and z are variables. In addition,
the problem may be subject to constraints, which can be bounds for the values
that each θj can assume (lb and ub in (A.2)) or functional relations among the
parameters (g and h). For instance, the parameters may represent biological
rates or physical quantities that cannot be negative or that are admissible only
inside a specific interval. In other cases, the value of certain parameters may
depend on other parameters, as in the case when their sum should be smaller
or equal to a certain threshold [15].
We refer to the space where the parameters θ can vary, according to constraints,
as the space of parameters. This set can include continuous or discrete parame-
ters, or both, according to the problem and the constraints on θ. If we need
to optimize certain rate constants of chemical reactions, parameter estimates
are continuous values, whereas the number of genes to take into account to
determine a biomarker is an integer (positive) value. During the identification
of biomarkers, we may also need to consider a significance threshold associated
to a specific statistical test. Therefore, some parameters of the problem may be
continuous (significance threshold) whereas, at the same time, others may be
integers (the length of the list).
In certain cases, optimization problems may be solved directly by studying
the objective function. For example, if the problem depends on a limited
number of parameters and variables, or the objective function is linear or convex
(Fig. A.2a) [140, 141]. However, as soon as the number of variable increases
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(a) A convex objective function (b) A non-convex objective function

Figure A.2: The plots for two possible objective functions depending on two parameters.
Figure A.2a shows a convex function, whose minimum is easy to identify. On the contrary,
Fig. A.2b shows the so-called egg holder function, which is non-convex and its minimum is
hard to determine [4].

or the function loses linearity or convexity (Fig. A.2b), the problem becomes
intractable. Thus, the need for methods that permit the systematic research for
optimal solutions arises.
In this article, we will focus on the case where the objective function is non-linear
and non-convex and multiple solutions are possible. We have referred to the
plural “methods" since there is no one-for-all method. As the No Free Lunch
Theorem (NFL) states: “for any algorithm, any elevated performance over one class
of problems is offset by performance over another class.” [142].
In the following, we discuss the multi-start non-linear least squares method
(ms-nlLSQ) based on a Gauss-Newton approach [129], mostly applied for fitting
experimental data. We illustrate the random walk Markov Chain Monte Carlo
method (rw-MCMC) [124], a stochastic technique used when a model involves
stochastic equations or simulations. Finally, we present the simple Genetic
Algorithm (sGA) [128]. It is a heuristic nature-inspired method belonging to
the class of Evolutionary Algorithms, which is applied in a broad range of
optimization applications, including model tuning and biomarker identification.

ms-nlLSQ rw-MCMC sGA

Convergence Proof to local∗ Proof to global∗ No proof
Support for continuous parameters

√ √ √

Support for continuous objective functions
√ √ √

Support for non-continuous objective functions -
√ √

Support for discrete parameters - -
√

Table A.1: Comparison of the described algorithms. Abbreviations: ms-nlLSQ multi-start
non-linear least squares, rw-MCMC random walk Markov Chain Monte Carlo, sGA simple
Genetic Algorithm. ∗ convergence is assured under specific hypotheses.

Table A.1 collects some important properties of the considered methods. Under
specific hypotheses [124, 129], ms-nlLSQ and rw-MCMC are proved to converge
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to local or global minimum, respectively. ms-nlLSQ is suitable only for problems
where both model parameters and the objective function are continuous. On
the other hand, rw-MCMC supports continuous and non-continuous objective
functions, as well as sGA that also supports discrete parameters. All the
considered optimization techniques require objective function evaluations at
each iteration step, from just one evaluation in the case of rw-MCMC, to several
as in the case of ms-nlLSQ and sGA.

A.3 Least Squares Methods
Model tuning is the estimation of model parameters to reproduce experimental
time series. This problem is often formulated in the form of least squares.
Among the others, in computational systems biology it has been considered for
models related to diabetes [15, 57, 143], biological pathways [3, 27, 144, 145], and
pharmacokinetics/pharmacodynamics [146, 147]. Least squares problems may
arise in statistical regression as well [123, 148–152].
We denote the output of the model at a certain time instant ti as
xmodel(ti, θ), i = 1, ..., n. It may be the result, for instance, of integrating differen-
tial equations. When the experimental data at the same time point xexperimental(ti)
is known, we can compute the residual function r, which can be defined as a
vector of components

ri(θ) = xmodel(ti, θ)− xexperimental(ti). (A.3)

We refer to a least squares problem [153] when the objective function is obtained
as the squared sum of these residuals for all the time points:

c(θ) =
n

∑
i=1

ri(θ)
2. (A.4)

In addition, c may include weights (wi) that multiply the ri

cW(θ) =
n

∑
i=1

wiri(θ)
2 (A.5)

and in this case we have a weighted least squares problem [154]. This is often the
case when experimental standard deviations are known and their reciprocal
can be used as weights. For example, biological measures are often collected
in triplicate. In such a case, experimental points can be computed by the
mean of these measurements and by a dispersion index, such as the standard
deviation. This helps in quantifying the confidence in the measures and the
objective function will weight more the residual of those experimental points that
have less uncertainty. The distance of a model output from the experimental
data may always be quantified as a least squares problem. However, least
squares methods mostly address problems involving continuous parameters
and objective function [129]. In the following, we embrace these assumptions.
The least squares methods exploit the properties of the particular objective
function to obtain ad-hoc implementations. For example, the structure of its
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derivatives permits to approximate the objective function without the compu-
tation of the second order derivatives [129]. Due to this and other attractive
features, many applied unconstrained problems are formulated in the least
squares terms. Besides their prominent role in unconstrained optimization,
some implementations allow solving constrained problems.
According to the way in which the objective function depends on the parameters,
least squares problems are divided in linear and non-linear. Linear least squares
problems admit unique solution and fast solving algorithms [129], whereas
non-linear least squares problems admit in general more solutions and the
methods return local solutions. In order to circumvent these limitations and
provide a global solution, the procedure is repeated starting from different set
of parameter estimates, hereafter called starting points. The best solution among
the results of the repeated procedure is then selected to ensure that the result
is global. This procedure is known as multi-start approach. However, as the
number of starting point increases, the overall procedure slows down. Thus, it
is crucial to determine an adequate number of initial points N, such that the
space of parameters is properly explored and the problem is still tractable. In
addition, multiple runs of the procedure may lead to the same set of parameter
estimates, weakening its efficiency.

Input: n experimental data points; the corresponding residual function r,
whose components are defined as in (A.3); an objective function c as in
(A.4); the number of starting points N; a threshold for the termination
criterion.

Output: the vector θ providing the global minimum.
1 Randomly select N vectors of dimension p in the space of parameters
{θ1, ..., θN} as starting points;

2 Compute the function J(θ) =
[

∂ri(θ)
∂θj

]
i=1,...,n;j=1,...,p

;

3 foreach θi, i = 1, ..., N do
4 repeat
5 Evaluate J̃ = J(θi);
6 Compute the search direction q such that J̃T J̃q = − J̃Tr(θi);
7 Compute ϑ = θi + q;

8 Compute ε =
∣∣∣∣∣∣θi−ϑ

θi

∣∣∣∣∣∣;
9 Update θi = ϑ;

10 until ε > threshold;
11 save in memory θi;
12 end
13 Determine the best solution θ̄ such that c(θ̄) = min

i=1,...,N
c(θi);

Algorithm 1: Multi-start non-linear least squares method based on the Gauss-
Newton approach.



86 Optimization algorithms for computational systems biology

Algorithm 1 provides a multi-start implementation for solving unconstrained
non-linear least squares problems by exploiting a simple Gauss-Newton ap-
proach [153]. The global search procedure begins defining N starting points
for the method. These starting points can be selected randomly in the space of
parameters (Alg.1, line 1), or using more elaborated procedures. For example,
the Latin hypercube technique samples near-randomly the space of parameters
trying to reduce the clustering of points that may happen in random selection.
We refer to [155–157] for a complete description of Latin hypercube and other
sampling techniques. Once the starting points are determined, for each of them
the least squares procedure is computed (Alg.1, lines 2-13). Remarkably, each
run of this approach is independent from the others, and the procedure naturally
supports parallel implementation. This may allow a consistent speed-up.
The here-described Gauss-Newton approach for unconstrained non-linear least
squares problems adopts a linearization of the objective function through a
first order approximation (Alg.1, lines 2 and 5). At each iteration it proceeds
identifying a new search direction by solving a linear least squares problem
for the linearized objective function (Alg.1, line 6). This step requires a model
simulation to compute the residuals r(θi) and an evaluation of J(θi). However,
in modeling the analytical expression of J is often unknown, and at each step
J(θi) needs to be approximated, requiring more model simulations [129]. Once
the new search direction is determined, the parameters are updated along that
direction (Alg.1, line 9) and these steps are repeated.
The optimization procedure runs until termination criteria are met. Among
the many termination criteria [158], here we considered a common criterion
that stops the procedure when the relative distance of the update is smaller
than a certain threshold (Alg.1, line 10). Notably, the gradient of the objective
function may provide termination criteria, which may be used to certify the local
convergence to a stationary point. However, less computationally demanding
procedures, as the one we considered, are usually preferred. When all the
runs are terminated, the results are compared and the best one is selected, for
instance considering the smallest value of c (Alg.1, line 13).
The Gauss-Newton method shows some drawbacks. In particular it does
not support constraints on θ and requires some hypotheses to ensure the
local convergence. As a consequence, more robust implementations have been
proposed, including some that could manage linear or bound constraints [129,
153,159]. Some improvements have been obtained by determining the step length
for the update using line search [129] or by adopting more accurate second order
approximations of the objective function, such as in the Levenberg-Marquardt
algorithm [130, 160]. As a further extension, the trust region approach calculates
the region of the space of parameters where the approximation is reliable
[161, 162]. Nevertheless, all these implementations are more computationally
demanding, for example requiring more objective function evaluations and
therefore more model simulations. In spite of these limitations, the Gauss-
Newton method is very efficient when its convergence hypotheses are met [129].
Consequently, there is a trade-off between the expensive computations required
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at each iteration and the small number of iterations guaranteed by the fast
convergence.

A.4 Markov Chain Monte Carlo Methods
Markov chain Monte Carlo methods (MCMC) are a family of general purpose
techniques that have been applied for a variety of statistical inferences [163].
Among their many applications, they have been used for parameter estimation in
the context of Bayesian inference [164] and for maximizing likelihood, especially
when stochastic processes and simulations are involved. Likelihood refers to a
probability density function that in modeling is used to evaluate the goodness of
how a model reproduces the data. Under the assumption that each experimental
measurement is independently effected by Gaussian noise, the likelihood and
the objective function in (A.5), are connected by the formula:

L(θ) = s1e−cW(θ)/2s2 , (A.6)

where s1 and s2 are normalization factors.
Stochastic algorithms simulate each event in an asynchronous and separate
way. This strategy allows an accurate investigation of the biological phenomena
[6, 165]. However, it can be slower than deterministic algorithms when several
events have been generated per unit of time. This is often the case in the
simulation of chemical reaction networks. In such cases, stochastic simulation of
fast reactions may require more time than the deterministic approach [121, 166].
On the other hand, when the model includes particularly low abundances of
certain species, e.g., few individuals, considering average behaviors may not
accurately describe the phenomena, and hence deterministic simulation cannot
be applied [6, 167]. Consequently, stochastic simulation has been often applied,
among the others, in the simulation of chemical reaction networks [120,168,169],
population dynamics [170, 171] and infectious diseases spreading [7, 172–174].
Despite in both cases the parameter estimates are the same as in Fig. A.1a,
Fig. A.3 shows how the outcome of stochastic simulations may vary substan-
tially. For example, the results in Fig. A.3a are comparable with the deterministic
simulation in Fig. A.1a, whereas Fig. A.3b shows a dramatically different sce-
nario, with the extinction of the prey and the consequent extinction of the
predators. Even though this kind of outcomes are both biologically plausible,
deterministic simulations cannot predict the latter.
MCMC methods implement Markov chains, i.e., stochastic processes that deter-
mine the next step using only the information provided by the current step, and
a modified Monte Carlo step to determine the acceptance or rejection of each
set of parameters [124]. The convergence of these methods is guaranteed, under
specific hypotheses that are often met in modeling problems, by the central
limit theorem and its extensions [175]. Therefore, MCMC methods converge
asymptotically to stationary distributions of the Markov chains. However, this
result does not provide the order of convergence or termination criteria, and in
general the convergence is slow since it is not guaranteed that the optimization
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(a) (b)

Figure A.3: Two possible outcomes of the stochastic simulation of the Lotka-Volterra model with
the same set of parameter estimates as in Fig. A.1a (α = 1, a = 0.05, b = 1, β = 0.05). The
behavior in Figure A.3a is comparable with the one in Fig. A.1a. The behavior in Figure A.3b
shows a dramatically different scenario, with the extinction of the prey and the consequent
extinction of the predators.

process escapes quickly from local solutions. Consequently, the methods are
stopped when the stationary distributions seem to be reached by using the
so-called diagnostics [176] or after a fixed number of iterations. Thanks to the
Markov chain properties, if the results are not satisfying the methods can be
restarted from the last set of parameters without loss of information. Another
consequence of the asymptotic convergence is that the first part of the results
should be discarded to avoid starting bias [177]. These first iterations are called
burn-in or warm-up.
We present an implementation of the random walk MCMC method (rw-MCMC)
in Algorithm 2. This implementation, as many others, relies on the results of
Metropolis et al. [178] and Hastings [179]. Therefore, it is also called the random
walk Metropolis-Hastings algorithm. This optimization strategy begins defining
a random set of parameters and evaluating its likelihood (Alg. 2, lines 2-3). From
this first set of parameters, the covariance matrix is computed (Alg. 2, line 4)
and it is used to generate the new candidates. The method can take advantage
of some a priori knowledge for determining the first set of parameters or the
covariance matrix. In fact, certain literature values or distributions for some of
the parameters may be known, and these can be used to guide the procedure.
Moreover, in some implementations, the covariance matrix may be updated
step-wise, gathering information along the procedure [180].
The algorithm continues generating a new set of parameters by perturbing the
previous one through random normally distributed coefficients (Alg. 2, line 7).
This is why the procedure is called random walk MCMC method. In other
cases, such as the independent Metropolis-Hastings algorithm, the new set of
parameters is proposed independently from the previous [181]. We refer to [124]
for a detailed description of these and other methods.
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Input: a likelihood function L that measures the goodness of the fit, for
example (A.6); a maximum number of runs N; the number of first
iterations to discard warm-up.

Output: the a posteriori distributions for the parameters stored as a matrix Dθ;
the vector of the associated likelihood values VL.

1 Initialize Dθ, VL = ∅;
2 Randomly determine a candidate set of parameters θ1;
3 Compute L1 = L(θ1);
4 Compute the covariance matrix C from the estimates θ1;
5 for i = 1, ..., N do
6 Generate a vector z of random numbers in N(0, C) of the same size of θ1;
7 Compute θ2 = θ1 + z;
8 Compute L2 = L(θ2);
9 Compute ratio = L2/L1;

10 Generate a random number rand ∼ U(0, 1);
11 if rand < ratio then
12 Update L1 = L2;
13 Update θ1 = θ2;
14 end
15 if i > warm-up then
16 append θ1 to Dθ;
17 append L1 to VL;
18 end
19 end

Algorithm 2: Random walk Markov chain Monte Carlo method for parameter
estimation.

When the new set of parameters is generated, its likelihood is computed (Alg. 2,
line 8) and compared with the previous. If the new likelihood is bigger then the
previous (L2/L1 > 1), the new set of parameters is always accepted, otherwise
with probability L2/L1 (Alg. 2, lines 10-13). In order to escape local minima, the
latter rule allows the method to randomly accept values that are not better in
terms of likelihood. In the long run, the method will return back to the previous
value if it was the global solution, otherwise it continues the exploration of the
space of parameters. This strategy is in contrast with least squares methods.
In those methods, the direction that decreases the objective function is always
chosen and, consequently, their results are in general local [131, 182]. Thus, the
need to apply a multi-start approach to search for the global solution.
Finally, if the warm-up time is over, the parameters and the likelihood function
are stored (Alg. 2, lines 15-18). This set of parameters is needed to build the
a posteriori distributions of parameter estimates, whereas the likelihood values
allow determining the best set in terms of likelihood, if needed. Once these
probabilities are estimated, it is possible to infer valuable information from them,
such as, the standard deviations and uncertainty measures of the estimates or
the correlations between them. Moreover, collecting the output of the model
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along with the parameters provides information about the uncertainty of model
results.
As mentioned, MCMC methods can be provided with a priori knowledge on the
parameters, such as bounds, experimental standard deviations or distributions
for the parameters. When these values are known, the methods can take ad-
vantage of them to determine the candidate sets of parameters. In many cases,
this information is processed using Bayesian inference [172]. For particularly
complex models, exploiting this information may significantly improve the
speed of convergence of the algorithm. For the same end, adaptive implementa-
tions have been proposed [180]. These implementations generally use statistics
from the results, for example the rate at which new candidates are accepted,
to properly update the way in which new candidates are proposed [183]. In
addition, ad hoc implementations for complex problems have been proposed. In
these implementations, multiple independent runs of the algorithm are gener-
ated, each of them working on an independent subset of the model or starting
from different initial points. The results of these runs are then combined at the
end [184, 185]. Despite the use of MCMC methods to infer discrete parameter
distributions has been for long time overlooked, some implementations have
recently extended their realm to address the problem of inferring discrete and
mixed-integer parameters [180, 186].
An optimization method based on Markov chains has drawbacks and advan-
tages. On the one hand, it allows memory-efficient implementations and this is
particularly convenient when very complex models are involved. In fact, the
algorithm requires only the information about the previous iteration (Alg. 2,
lines 7 and 9), whereas the overall results can be stored at specific sampling
rates. On the other hand, the method iterations cannot be computed in parallel,
since they depend on the previous. MCMC methods for parameter estimation
are usually efficient in the number of objective function evaluations, computing
just one evaluation per iteration. However, the lack of termination criteria
forces the use of several iterations to ensure the convergence. Nevertheless, they
balance this computational cost by returning the a posteriori distributions of the
parameter estimates, and therefore more information than other methods.

A.5 Genetic Algorithms
Genetic algorithms (GAs), firstly introduced by Holland in 1975 [187] and
then improved and varied during the following decades [188–190], are nature
inspired heuristic stochastic algorithms. As in nature our genes are encoded
in chromosomes as strings of nucleotides, these algorithms encode the space
of parameters as strings and they create populations of candidate solutions
that evolve according to the principle of survival of the fittest. In analogy with
biology, the objective function of GAs is called fitness function, and the principle
of survival of the fittest selects those candidates that are better in terms of
objective function. GAs mimic the processes of natural selection (Fig. A.4a),
the genetic exchange between two individuals (Fig. A.4b), known as crossover
or recombination, and the random mutation that take place during the process
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(Fig. A.4c). One of the key ideas underlying these stochastic algorithms is that
the evolution preserves, even under stochastic choices, those strings (or part of
them) that guide the process toward the best solution. This concept is formalized
in the building block hypothesis and it is detailed in [188].

(a) (b) (c)

Figure A.4: A schematic representation of a genetic algorithm. Figure A.4a shows the selection
of four parents in a population of twelve individuals, highlighted in red. Figure A.4b shows the
crossover for the selected individuals. The crossover points are randomly selected (red lines) for
the couple of selected individuals (left) and the recombination of their genetic material produces
the new offspring (right). Figure A.4c shows the effect of mutation on the offspring. The
mutation randomly changes part of their genetic material.

GAs have been employed in a variety of fields and for various applications.
For example, they have been applied in synthetic and systems biology to
determine biomarkers [138, 139], design gene regulatory networks [191], and to
estimate parameters [192]. GAs have empirically demonstrated their efficacy and
reliability. In addition, some first steps in formally proving their convergence
have been done [193, 194]. However, these algorithms lack formal proof for their
convergence for the most general case [189]. As a consequence, the convergence
of the algorithms is evaluated a posteriori, for instance introducing a maximum
number of allowed iterations or accounting the changes in the fitness of the
population. Nevertheless, in the proximity of the solution, the rate at which
the evolution takes place and the fitness increases may slow down, and the
maximum number of generations may be encountered before reaching the global
solution. In some cases, to get around this limitation and since GAs are very
effective in determining the region of the space of parameters where the global
solution is located, they have been coupled with other methods. In this way,
it is possible to precisely locate the global solution once a GA has selected the
proper region of the space of parameters or it has provided promising candidate
solutions [195].
We present a basic implementation of a GA, called simple GA algorithm (sGA),
as described in [188]. This algorithm effectively describes the three fundamental
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steps of selection, recombination and mutation. It is implemented in Algorithm 3.
The algorithm begins mapping the vectors of parameters into strings. In this
way, the parameters and the strings are in one-to-one correspondence and
the algorithm can work with the more convenient representation. A detailed
description of these transformations is provided in [188]. An initial population of
candidate solutions is then generated. As for the starting points of the multi-start
approach, these candidate solutions may be randomly chosen in the space of
parameters, or more elaborated sampling techniques may be applied [155–157].
Once the initial population has been produced, the algorithm enters its main
loop. Each iteration of the sGA, also referred as generation, produces a new
population of strings. Among the many possible termination criteria [196], here
we considered the maximum number of generations (Alg. 3, line 3).

Input: a fitness function c that measures the goodness of the fit, for example
(A.5); the population size N; the rate of mutation σ; the maximum
number of generations G.

Output: the best candidate solution p̄ after G generations.
1 Map the parameters into strings of length l;
2 Generate an initial population of strings P = {p1, ..., pN};
3 for G times do
4 P′ = ∅;

5 Compute fi = c(pi), i = 1, ..., N and f0 =
N

∑
i=1

fi;

6 for N times do
7 Generate a random number j ∼ U(0, 1);

8 Determine the smallest integer k such that
k

∑
i=1

fi > j f0;

9 Update P′ = pk ∪ P′;
10 end
11 P = ∅;
12 for N times do
13 Generate two integer random numbers m, n ∼ U(1, N);
14 Select pm, pn ∈ P′;
15 Generate an integer random number t ∼ U(1, l);
16 p̃ = {pm{1 : t}, pn{t + 1 : l}};
17 for i = 1, ..., l do
18 with probability σ randomly variate p̃{i};
19 end
20 Update P = p̃ ∪ P;
21 end
22 end
23 Determine the best solution p̄ such that c( p̄) = min

p∈P
c(p);

Algorithm 3: A simple Genetic Algorithm.
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At each iteration, the selection occurs as a weighted random choice among the
candidate solutions . Those individuals with higher fitness are more likely to be
selected (Alg. 3, lines 7-8). At this stage, these selected individuals are cloned in
a new pool of candidates, called intermediate population (Alg. 3, line 9). The size
of the intermediate population, here assumed for simplicity to be equal to the
population size N, may vary. The selection of the candidates may occur in many
ways [197]. The here-implemented roulette selection [188] divides an interval
proportionally to the fitness value of each candidate solution (Alg. 3, line 5),
and then individuals are randomly selected in this interval (Alg. 3, lines 7-9).
Other popular strategies for the selection of candidate solutions are the genitor
algorithm [198] and the tournament selection [199]. The first, generates each
newborn as in the roulette selection. However, it does not use an intermediate
population and the newborn replaces the worst string in terms of fitness in
the original population. On the other hand, the tournament selection randomly
picks two or more individuals and only the best in terms of fitness is cloned in
the intermediate population.
Once the intermediate population has been determined, its individuals are
mated and their genetic material is recombined to determine the next generation
of solution candidates. For instance, in the here-described single point crossover
(Fig. A.4b) , two parents are randomly selected (Alg. 3, lines 13-14) and at a
random position in the string, their genetic material is recombined (Alg. 3,
lines 15-16). As for the selection, the recombination of candidate solutions
may be computed in several ways. Some implementations consider more
than two parents at time or more points for the crossover, whereas others
produce more than one child from the selected parents [128]. In contrast, some
implementations determine part of the intermediate population by cloning the
best candidates in terms of fitness in the new population without recombination
at all [200].
After the recombination, the mutation takes place (Fig. A.4c). With a certain
probability σ, usually smaller than 0.01, each element of the string may be
randomly replaced (Alg. 3, line 18) [197] and this new string joins the new
population (Alg. 3, line 20). Once the termination conditions are met, the
algorithm determines the best solution in the latest population and returns the
corresponding vector of parameters (Alg. 3, line 23). As for MCMC methods,
if the results are not satisfying and the latest population has been saved, the
algorithm may be restarted from there in the seek of a better solution.
GAs are powerful approaches to explore high-dimensional spaces of parameters.
However, the choice of the population size is crucial: with small populations the
algorithms are fast, but they may prematurely converge to local solutions. Larger
populations permit the algorithms to better explore the spaces of parameters,
but more fitness function evaluations are required. The bigger is the population
size, the slower becomes the procedure. In the seek of a balance between the
population size and the exploration effectiveness, different implementations
of the GAs have been proposed to circumvent the slow down due to large
populations. Several of them parallelize the algorithm, or part of it, to speedup
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the procedure. For example, the master slave parallelization performs the steps of
fitness function evaluation, recombination and mutation in parallel, calculating
these operations in different cpu cores for different parts of the population [201].
On the other hand, the island model considers many small sub-populations that
evolve independently, i.e., islands, and only after a certain number of generations
some of their individuals can migrate in other islands [202]. Analogously,
the cellular genetic algorithm arranges the candidate strings in a grid of cells
and they can mate only with their neighbors [197]. The island and cellular
approaches refine many local solutions that are then compared through the
migration, which guides the procedure towards the global solution. Moreover,
they are suitable for parallel implementation as well, assigning each island or
cell to a different cpu core.
GAs are a specific family of algorithms belonging to the class of Evolution
Strategy (ES) [203]. This class of optimization techniques shares with the GAs
the fundamental steps of selection, recombination, and mutation. In addition,
ESs may include steps of self-adaptation, which tune parameters such as the
mutation rate [204, 205]. Analogously, ESs may implement more sophisticated
selection strategies that increase the selection pressure [203]. For example,
the so called plus strategy that may lead to better performance [206]. Certain
implementation of GAs take advantages of those improvements as well.
Despite the lack of termination criteria or proven convergence for the most
general case, genetic algorithms are considered valuable tools to explore the
space of parameters thanks to their flexibility [131]. The continuous exchange
of genetic material among individuals permits the algorithm to move in the
space of parameters evolving towards the best solution, even if there are many
local solutions. Moreover, mutation adds variability to the population. This
allows the exploration of new areas of the space of parameters that would
otherwise remain unexplored [188]. Finally, GAs can be applied to a broad
range of problems, from unconstrained to constrained optimization. They allow
solving problems involving both continuous and discrete variables, as well as
problems with continuous or non-continuous objective functions.

A.6 Conclusions
We presented three powerful methods for global optimization suitable for
computational systems biology applications. We highlighted pros and cons of
the examined approaches and we provided references for their improvements
that may better suit specific tasks.
We presented the multi-start approach for a non-linear least squares method
[129], that is suitable for parameter estimation when deterministic simulations
are involved, as well as for statistical regression. The least squares methods have
many attractive properties like the assured local convergence under specific
hypotheses or the valuable termination criteria that assess the convergence
of the method. The multi-start approach repeats the least squares procedure
from different starting points to explore the space of parameters in the seek
of the global solution. However, these methods cannot be applied in case of
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non-continuous objective functions or discrete parameters. We also illustrated
the random walk Markov chain Monte Carlo method [124] that may be applied
for many statistical inferences, including parameter estimation, and it is suitable
for the framework of Bayesian inference. Moreover, its asymptotic convergence
to the global solution is assured under mild hypotheses and it may be applied
in case of non-continuous objective functions, as well as when stochastic simula-
tions are involved. In spite of this, the asymptotic convergence does not provide
any termination criteria, and hence the convergence cannot be certified. Finally,
we have illustrated a simple Genetic Algorithm [189], a heuristic nature-inspired
method that can be applied to a broad range of problems. It is suitable for prob-
lems involving continuous and non-continuous objective functions, as well as
continuous and discrete parameters. On the other hand, there are no guarantees
on its convergence, so it requires cautious result evaluation.
We focused on the general ideas behind each method, without blurring the
description with many details. For this reason, we included simple implemen-
tations that, in our opinion, could better guide in understanding the algorithms
and the approaches. Therefore, our description does not present all the latest
improvements and extensions of the considered optimization techniques. These
include more accurate versions of least squares procedures [129] and genetic
algorithms [190] implementations of MCMC methods that support discrete vari-
ables [186] and hybrid methods that merge MCMC and genetic algorithms [207].
These and many other improvements have enlarged the domain of application
of these methods and have ameliorated their accuracy and convergence, leading,
on the other hand, to more complex procedures.
The presented approaches coexist with a vast literature of exact and heuristics
methods. Just to cite some among the countless, there exists the simplex [140]
and the gradient [129] methods, evolutionary strategies [203], the branch and
bound [208], the particle swarm [209] or the simulated annealing [210]. For
the sake of simplicity and shortness, we have not covered the entire spectrum
of existing deterministic and stochastic methods. We acknowledge that other
reviews have already pointed out the importance of global optimization in
computational systems biology [125, 131, 137, 211–213]. However, for most of
them, the authors efforts were focused on one particular methodology. On the
contrary, this review aims at providing a guide to solve common problems in
the field, without focusing on one specific approach.
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