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Introduction

More than 10% of the human deaths occurring worldwide are caused by infectious and
parasitic diseases (World Health Organization, 2016). There exists a large variety of
pathogens, responsible for such diseases, many of which are not directly transmitted
from host to host but need a vector to be spread, such as ticks or mosquitoes. Through
their bite, vectors might acquire the pathogen from infected hosts, and once infected
they can transmit it to a susceptible host. These infections might affect several ani-
mal species, and those that can naturally be transmitted from animals to humans are
called zoonosis. Direct zoonosis, such as influenza or rabies, are directly transmitted
from animals to humans, through air or bites and saliva, while for vector-borne zoonosis
transmission can take place through a vector that acts as a bridge for pathogen trans-
mission. About three quarters of human emerging infectious diseases are caused by
zoonotic pathogens, and many of them are spread by vectors such as mosquitoes (Taylor
et al., 2001). The possibilities for emergence and spread of new zoonoses in the next
future are likely to rise as world population, urbanization and human movement are
constantly increasing.
Mathematical models nowadays represent very powerful tools to make investigations
and predictions for biological dynamical systems, providing helpful insights that can be
extremely valuable for several aims. For instance, they can assess the efficacy of a vac-
cination strategy, they can help to design vector control treatments in a specific location
and more generally they allow exploring what-if scenarios. As such systems evolve un-
der stochastic forces, computational tools that include random influences are crucial to
understand infections dynamics, including the underlying vector (if any) population fea-
tures.
In this thesis, I will focus on a particular mosquito-borne zoonosis, West Nile virus
(WNV), a flavivirus of emerging public health relevance in Europe and North Amer-
ica, and its main European vector, Culex pipiens mosquitoes (Zeller & Schuffenecker,
2004). Discovered originally in Uganda in 1937 (Smithburn et al., 1940), WNV is now
spread on every continent except Antarctica (Reisen, 2013). WNV is mainly transmitted
through the bite of infected mosquitoes, that acquire the virus by feeding on infected
birds. In nature it is maintained by bird-mosquito cycle while humans, horses and other
mammals are considered as dead-end hosts for the virus (i.e. they do not develop a
sufficiently high viremia to reinfect a mosquito) (see Figure 1). Most human WNV in-
fections are asymptomatic and the majority of clinical cases are mild and present with
flu-like symptoms. No specific therapy is available at the moment and severe cases with
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signs of encephalitis, meningo-encephalitis or meningitis, are often observed among el-
derly people; for instance, about 220 cases were recorded in Italy between 2013 and 2016
(European Centre for Disease Prevention and Control, 2016). Several WNV epidemics
have been documented in European countries in recent years (European Centre for Dis-
ease Prevention and Control, 2014), and such outbreaks, as well as the quick spread of
the virus throughout North America since 1999, have led to increasing health concerns
(Campbell et al., 2002).

Figure 1: WNV cycle. Scheme of WNV routes of transmissions.

Mosquitoes belonging to the Cx. pipiens complex are thought to be the most efficient
vectors for spreading WNV among birds, and from birds to humans and other mammals
in North America (Bernard et al., 2001; Kilpatrick et al., 2005) as well as in Europe
(Zeller & Schuffenecker, 2004). Cx. pipiens is an indigenous species which can be found
in almost every European country (Farajollahi et al., 2011). Its life cycle, similar to any
other mosquito species, includes several stages, as illustrated in Figure 2. Female adults
lay new eggs on water surfaces and, after hatching, larvae develop in the water and then
enter a pupal stage, after which new adults will emerge. Only adult females need to
have a blood meal on a host in order to to lay eggs.
Beside WNV, Cx. pipiens is also involved in the transmission of other human and ani-
mal pathogens such as Usutu virus, whose first case outside Africa was recorded in Italy
in 2009, St. Louis encephalitis, which caused about a hundred human cases in North
America during the last decade, Rift Valley fever, Sindbis virus, avian malaria and filar-
ial worms.
As the transmission of mosquito-borne diseases is largely driven by the abundance of the
vector, to design appropriate control strategies it is crucial to understand the population
dynamics of existing vector populations and evaluate how it depends on biotic and envi-
ronmental factors. First, many laboratory studies (Loetti et al., 2011; Ciota et al., 2014;
Spielman & Wong, 1973) show that demographic parameters are strongly influenced by
environmental factors, such as temperature and daylight duration. Furthermore, pub-
lished laboratory studies (Carrieri et al., 2003; Costanzo et al., 2005) pointed out that
its abundance and dynamics might be strongly influenced by another mosquito species,
namely Aedes albopictus, as they compete for resources at the larval stage when they
share the same breeding site. Commonly known as "tiger mosquito", Ae. albopictus is
an invasive alien species native to Asia and introduced in several European countries
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at the end of the last century; since then, Ae. albopictus rapidly spread in urban and
suburban environments, occupying a habitat already exploited by Cx. pipiens. It is now
present in every Italian region and it is a great health concern as it is a vector for sev-
eral pathogens (e.g. Zika, dengue, Chikungunya). Finally, it has been shown that Cx.
pipiens mosquitoes do not bite avian hosts randomly but there are some highly preferred
species, and such feeding preferences can vary during the season also depending on host
availability (Kilpatrick et al., 2006a; Rizzoli et al., 2015). Clearly, biting habits might
strongly affect pathogens, in particular WNV, transmission.

Figure 2: Mosquito life cycle. Adults lay eggs on the water surface; the larval and pupal stages
are aquatic.

In this thesis I present some mathematical models that provide insights on several as-
pects of mosquito population dynamics. Specifically, I will investigate the effect of biotic
and abiotic factors on Cx. pipiens dynamics by using adult mosquito trapping data, gath-
ered over several years in Northern Italy, to feed theoretical models.
Interspecific competition might occur not only at the vector level but also between hosts;
Roberts & Heesterbeek (2013) addressed systemically for the first time the interaction
of ecological processes, such as consumer-resource relationships and competition, and
the consequences for the epidemiology of infectious diseases spreading in ecosystems
from a mathematical perspective. Following their study, I will investigate the effect of
host competition on the dynamcis of a vector-borne infection (such as WNV), taking into
account vector feeding preferences too. While only theoretical, this model may be a use-
ful representation of the dynamics of WNV that allows a better understanding of how
competition between different bird species and feeding preferences might affect the cir-
culation of the virus; thus, this model may be an extension of the important works by,
for instance, Simpson et al. (2012), Bowman et al. (2005) and Fan et al. (2010).
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In this thesis I will make a large use of two different kinds of model, namely statistical
and mechanistic. The former are based on a hypothesized relationship between the vari-
ables in an observed dataset, where the relationship seeks to best describe the data. On
the other hand, in mechanistic models the nature of the relationship is specified in terms
of the biological processes that are thought to have given rise to the observed data, thus
the parameters in such models all have biological definitions. Throughout the thesis I
will answer several ecological questions by using different statistical and computational
approaches, including for instance Generalized Linear Models (GLM) and Markov chain
Monte Carlo (MCMC) technique. Finally, I would like to remark that developing a useful
model does not require broad mathematical skills only but also a good knowledge of all
biological aspects involved in the observed data, and that interaction with biologists is
essential for that.
Below I am presenting a brief description of each chapter of my thesis.

Thesis outline

The main body of my thesis is a collection of four published scientific articles, so each
chapter has its own introduction, methods, results and discussion sections.

In Chapter 1 we analyze the population dynamics of Cx. pipiens in Piedmont region
(Northwestern Italy) using capture data gathered in about forty different locations dur-
ing years 2000-2011. Specifically, several statistical models are developed aiming to
determine early warning predictors of between year variations in mosquito population
dynamics. We found that climate data collected early in the year, in conjunction with
local land use, can be used to provide early warning of both the timing and magnitude of
mosquito outbreaks.

Chapter 2 presents a density-dependent stochastic model that describes temporal vari-
ations of Cx. pipiens population dynamics including the effect of temperature and day-
light duration on the abundance of both adults and immature stages of Cx. pipiens. The
model is tailored to fit the temporal pattern of spatially averaged captures presented in
Chapter 1; the results provide quantitative estimates on the effect of temperature and
density-dependence on Cx. pipiens abundance.

Chapter 3 presents one of the first modeling effort aiming to quantify the effect of larval
interspecific competition between Ae. albopictus and Cx. pipiens. Such interaction is in-
vestigated through a mechanistic model that integrate the Cx. pipiens model presented
in Chapter 2 and the Ae. albopictus model already present in literature (Poletti et al.,
2011; Guzzetta et al., 2016a,b), using capture data of both species collected in Trentino
and Veneto regions (Northeastern Italy) in 2014-2015.

Chapter 4 presents a theoretical model to investigate how ecological factors might affect
the dynamics of a vector-borne pathogen in a population composed by different hosts
which interact with each other. Specifically, we consider the case when different host
species compete with each other and the vector might have different feeding preference,
which can also be time dependent. As a prototypical example, we apply our model to
study the invasion and spread, during a typical season, of WNV in an ecosystem com-
posed of two competent avian host species and possibly of dead end host species.
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Finally, the last chapter summarizes the main results of the thesis and present a brief
discussion on possible future directions.





1 Early warning of West Nile virus mosquito
vector: climate and land use models
successfully explain phenology and
abundance of Culex pipiens mosquitoes in
Northwestern Italy

Roberto Rosáa, Giovanni Marinia,b, Luca Bolzonia,c, Markus Netelera, Markus Metza, Luca
Delucchia, Elizabeth Chadwickd, Luca Balboe, Andrea Moscae, Mario Giacobinif, Luigi
Bertolottif, Annapaola Rizzolia

a: Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Ed-
mund Mach, San Michele all’Adige (TN), Italy
b: Department of Mathematics, University of Trento, Trento, Italy
c: Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Parma, Italy
d: Cardiff University, School of Biosciences, The Sir Martin Evans Building, Museum Avenue, CF10 3AX
Cardiff, Wales
e: Istituto per le Piante da Legno e l’Ambiente - IPLA S.p.a., Torino, Italy
f: Dipartimento di Scienze Veterinarie, Universitá degli Studi di Torino, Torino, Italy

Parasites & Vectors 2014; 7: 269

1.1 Introduction

West Nile virus (WNV) is a flavivirus of emerging public health relevance in Europe
(European Centre for Disease Prevention and Control, 2013). In nature it is maintained
in enzootic cycles between avian reservoir hosts and mosquitoes. Humans are dead-end
hosts in which infection can induce symptoms from mild flu-like fever to severe neuro-
logical syndromes such as meningitis, encephalitis, and acute flaccid paralysis (Sambri
et al., 2013).
Prevention by vaccination has been possible for horses since 2003, but a human vac-
cine is not yet available (Iyer & Kousoulas, 2013). Discovered originally in Uganda in
1937 (Smithburn et al., 1940), WNV is now found on every continent except Antarctica
(Reisen, 2013). Several epidemics have been documented in European countries during
the last 4 years (European Centre for Disease Prevention and Control, 2013), and this
recent upsurge in outbreaks within endemic areas, as well as the spread of the virus
throughout the New World since 1999, have led to increasing health concerns (Campbell
et al., 2002). Effective prevention and control policies are dependent on both a clearer un-
derstanding of the risk factors associated with infection, and advance warning of likely
outbreaks.
Adequate mosquito density is critical for effective WNV transmission, and has a strong
correlation with the number of human cases (Colborn et al., 2013; Kilpatrick & Pape,



8 Chapter 1

2013). However, implementing mosquito control measures in response to reports of hu-
man cases typically is ineffectual because most humans have been infected by this time
and cases appear at the end of the mosquito season, when populations are already in
decline (European Centre for Disease Prevention and Control, 2013; Winters et al.,
2008). Early warnings of mosquito outbreaks would provide a much needed prediction
of spill-over risk (Yang et al., 2009; Cleckner et al., 2011; Deichmeister & Telang, 2011),
enabling more timely control measures to be implemented, especially within WNV cir-
culation areas.
Mosquitoes belonging to the Cx. pipiens complex are thought to be the most efficient vec-
tors for spreading WNV among birds, and from birds to humans and other mammals in
North America (Bernard et al., 2001; Kilpatrick et al., 2005) as well as in Europe (Zeller
& Schuffenecker, 2004). They are also involved in the transmission of other human and
animal pathogens such as Usutu virus (Gaibani et al., 2013), avian malaria and filarial
worms (Farajollahi et al., 2011).
Cx. pipiens mosquitoes lay their eggs in water, and larval stages are aquatic. Aquatic
habitats are therefore a prerequisite for mosquito populations, and rainfall is impor-
tant in creating and maintaining suitable larval habitats (Becker et al., 2010), thus
strongly affecting the abundance of adult mosquitoes (Degaetano, 2005). Temperature
also strongly influences distribution, flight behaviour and dispersal, and abundance of
mosquitoes (Becker et al., 2010). Specifically, temperature impacts on several aspects
of the Cx. pipiens life cycle including development rates (Loetti et al., 2011; Geery &
Holub, 1989), gonotrophic cycle length (Clements, 1992) and diapause duration (Spiel-
man, 2001) as well as the duration of the extrinsic incubation period of the virus (Kil-
patrick et al., 2008). Urban infrastructure often provides key habitats for Cx. pipiens,
reflecting its affinity for stagnant water and urban areas where artificial containers of
water are numerous (Deichmeister & Telang, 2011; Trawinski & Mackay, 2010). Veg-
etation density is also important, due both to a positive correlation with abundance of
preferred avian host species (Brown et al., 2008), and because trees and shrubs may offer
resting habitats and sugar sources to adults (Gardner et al., 2013). Mosquito population
density therefore reflects a complex interaction among climate, land use and vegetation
coverage.
In order to develop robust statistical models to predict mosquito population dynamics,
detailed data are needed describing the phenology and abundance of mosquito popula-
tions, and associated environmental data at a suitable spatial and temporal resolution
to act as predictor variables. Both the spatial and temporal range and resolution will
determine the accuracy and range over which resulting model predictions can be made.
In the Piedmont area of northern Italy, an extensive mosquito trapping programme has
been in place since 1997, run by the Municipality of Casale Monferrato until 2006, and
then by the Istituto per le Piante da Legno e l’Ambiente (IPLA). The area is at risk from
WNV, having suitable vector and reservoir host populations, and increasing numbers of
human cases of WNV in adjacent areas (Barzon et al., 2013; Monaco et al., 2010; Cal-
istri et al., 2010).
Detailed environmental data are available at suitable spatial and temporal resolution
across the area, thus providing an excellent system to test predictors of mosquito popu-
lation dynamics. Similarities of climate and land use (Rizzoli et al., 2009) allow model
predictions to be cautiously applied across northern Italy, where WNV has been circu-
lating since 2008 (Calistri et al., 2010).
Previously, part of this dataset (years 2000 to 2006) was used to test associations be-
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tween weekly mosquito abundance (various species) and a range of environmental data,
including land use and weekly averaged climate, during the time period 10-17 days prior
to measures of mosquito populations (Bisanzio et al., 2011). This approach tested for pre-
dictors that immediately preceded short term variation in weekly mosquito abundance.
Here we followed a different approach, aiming to determine early warning predictors of
between year variation in mosquito population dynamics. We focused on Cx. pipiens
and we extended the dataset for analysis until 2011. The objective was to identify the
best early warning predictors of annual variation in Cx. pipiens abundance and phe-
nology, with the ultimate goal to guide entomological surveillance and thereby facilitate
monitoring of WNV transmission risk.

1.2 Methods

The study area encompassed 987 km2 of the eastern Piedmont Region of north-western
Italy (centroid: 45.07◦N, 8.39◦E) (see Figure 1.1). There are highly suitable habitats for
avian hosts of WNV, and breeding sites for mosquitoes, in close conjunction to human
habitation. The landscape is primarily agricultural (mixed agriculture 72%, rice fields
14%), with areas of deciduous forest on the southern hills, and riverine habitat in the
north (for further details see (Bisanzio et al., 2011)). The climate is characterised by cold
winters and warm summers (0.4 and 24◦C respectively), and abundant precipitation
(about 600 mm/yr) primarily falling in spring and autumn (Bisanzio et al., 2011).

Figure 1.1: Map of the study area. Trap locations and land use are indicated. The map of Italy
(inset) shows the location of the study area in the north west of the country.
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1.2.1 Mosquito data

Mosquitoes were collected using CO2 baited traps, operated by Municipality of Casale
Monferrato and the Istituto per le Piante da Legno e l’Ambiente (IPLA) (Bisanzio et al.,
2011). Trapping sites were dispersed throughout the study area, with a minimum dis-
tance of 5 km between traps. Specific placement was based on coverage of all habitats
deemed suitable for mosquitoes, in all participating municipalities, while enabling esti-
mation of urban nuisance, and avoiding external disturbing factors (e.g. lighting, CO2
sources). Further details are provided in (Bisanzio et al., 2011). The current study in-
cludes data from 2001 to 2011, collected at 44 different sites (including 28-40 sites and an
average of 37 sites activated each year) (see Figure 1.1). Although most traps were run
throughout, variation in activation at some sites occurred depending on the participa-
tion of individual municipalities in the scheme. Alongside monitoring efforts, mosquito
control strategies have been implemented in the study area since 1998 (Bisanzio et al.,
2011). However, the target of all treatments was Ochlerotatus caspius, and analyses (not
presented here) showed that Cx. pipiens mosquitoes were not affected by interventions.
Traps were set one night every week, for a twenty-week period starting at the beginning
of May and ending in mid-September, thus encompassing the main period of mosquito
activity. Traps were collected the following day, and the catch counted, sexed and iden-
tified. Each year since 2009, mosquitoes captured during a 6-7 night period at several
sites (an average of 5 sites per year) have been pooled and tested for WNV. Until now
no positive results have been found. For each trap, in every year, we (i) summed the
total number of Cx. pipiens captured during the twenty-week survey period (TOTAL),
(ii) calculated the week by which 5% and 95% of the population were captured, these
being designated the start (ON) and end (OFF) of the mosquito season, respectively, and
(iii) calculated the number of weeks between the arrival of 5% and 95% of the trapped
population, this designated as season length (SEASL). As in (Jouda et al., 2004), our
definitions of ON and OFF are threshold values for population abundance, and do not
necessarily reflect the cessation or initiation of diapause. Peak abundance within years
was considered in preliminary analyses as a fourth measure of population dynamics, but
was illdefined and unpredictable, therefore results are not presented here.

1.2.2 Environmental predictors

Environmental predictors were selected based on published evidence of their importance
to mosquito populations (Degaetano, 2005; Gardner et al., 2013; Bisanzio et al., 2011;
Chuang et al., 2012). All environmental data were processed in GRASS GIS (Neteler
et al., 2012), and extracted from the spatial database at the point corresponding with
trap location. Cx. pipiens have a very limited dispersal (a few hundred metres (Becker,
1997)), which is within the pixel size for most spatial data (below), so data averaging
over a wider area was not considered appropriate.

Climate

Precipitation was measured as total precipitation (TOT_PREC) and number of days of
precipitation (DAY_PREC) from the gridded ECA&D (European Climate Assessment &
Dataset, Version 8) (ECA&D project, 2013; Haylock et al., 2008) at approximately 25 km
pixel resolution. Land surface temperature (LST) data were collated from the Moderate
Resolution Imaging Spectroradiometer (MODIS) products MOD11A1 and MYD11A1,
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recorded twice daily. The original MODIS LST products were reconstructed at 250 m
resolution, i.e. gap-filled to remove void pixels due to clouds (Neteler, 2010; Metz et al.,
2014). For analyses, LST data were used to derive two values: (i) weekly mean LST, and
(ii) a cumulative measure of temperature named here “growing degree weeks” (GDW)
(see (Ruiz et al., 2010)). This was derived by taking the positive difference in each week
between mean LST and a threshold of 9◦C (mosquitoes fail to develop below this thresh-
old, see (Loetti et al., 2011)). Weekly differences were summed cumulatively from the
first week of the year, so that the n-th GDW was obtained by summing the n consecutive
differences (negative differences were assigned a value of zero).

Vegetation and water indices

Normalized Difference Vegetation Index (NDVI) was obtained from the MODIS product
MOD13Q1, recorded every 16 days, and the Normalized Difference Water Index (NDWI)
derived from the MODIS product MOD09A1, recorded every 8 days, both at 500 m res-
olution. For both the NDVI and the NDWI data, gaps were filled and outliers removed
using a harmonic analysis of each time series (Roerink et al., 2000). These data were
used as proxies for vegetation coverage (NDVI) (Estallo et al., 2012) and for environmen-
tal water (NDWI), which includes surface water (McFeeters, 2013) as well as vegetation
water content (Estallo et al., 2012).

Land use

The distance from every sampling site to the nearest urban centre (DIST_URBAN) and
rice field (DIST_RICE) was calculated using the Corine Land Cover raster dataset (using
the CORINE classes 111 and 112 to map the urban settlements and 213 for the rice fields
(European Environment Agency, 2014) both at 100 m resolution).

1.2.3 Temporal windows

We built 22 temporal windows by grouping periods of 12 consecutive weeks, starting from
the first week of the year (weeks 1-12) and ending with weeks 22-33 (approximately the
end of May to mid-August). The 22 windows were divided into two groups: the first ten
windows (1-12, 2-13, etc., to 10-21) were designated the “early period” and latter twelve
windows (11-22, 12-23, etc., to 22-33) were designated the “late period”. The start of the
mosquito season, “ON”, occurred on average during week 25, so our definition of early
period predictors were those that were completed at least four weeks prior to this (i.e.
ending weeks 10-21).
For each 12-week window, mean values were calculated for land surface temperature and
vegetation indices (LST, NDVI and NDWI), whereas precipitation data were summed
(TOT_PREC and DAY_PREC). For GDW, the cumulative value achieved by the end of
the given window was used. Where these data are described in the text, the relevant
temporal window is denoted in subscript, e.g. LST1−12 for mean land surface tempera-
ture during weeks 1-12.
The aggregation of 12 weeks was selected in order to test the effect of variations at a sea-
sonal timescale and to avoid errors due to short term variation in mosquito collections.
Comparisons with aggregation windows of alternative duration (1, 2, 4 and 8 weeks)
proved this approach to be successful; twelve week windows produced more robust mod-
els and higher goodness-of-fit values, when compared to results obtained by aggregating
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data over shorter windows (see section 1.A.1).

1.2.4 Data analysis

We investigated the association between Cx. pipiens abundance (TOTAL) and seasonal-
ity (the start of the mosquito season, ON, and season length, SEASL, as defined above),
and a range of environmental predictors. All statistical analyses were performed using R
version 3.0.2 (R Development Core Team, 2008). Dependent variables were transformed
prior to analysis in order to normalize their distribution, following the Box-Cox method
(Box & Cox, 1964). Transformations applied were x1.3 for ON and x0.2 for TOTAL while
data for season length were normally distributed.

Preliminary analyses

Linear mixed effect models were used to ascertain, for each climatic variable, vegetation
index and water index in turn, (i) which of the early period windows proved to be the best
predictor of the start of the season (ON), and (ii) which of all the time windows (early and
late) proved to be the best predictor of mosquito abundance (TOTAL) and season length
(SEASL). In all models, trap identification number was included as a random variable.
Models were ranked using the Akaike Information Criterion (AIC) (Akaike, 1974), and
for each climatic variable and vegetation/water index, the time window producing the
lowest AIC was selected for inclusion in subsequent full models. For NDWI the first eight
time windows were not included in preliminary analyses due to the potential presence
of snow cover, which can dramatically alter the reliability of satellite acquisition of this
parameter (Xiao et al., 2002; Delbart et al., 2005). Terms that were not significant
for any of the early or late time periods were not included in the full model. Variance
Inflation Factor (VIF) (Pan & Jackson, 2008) was used to test for collinearity between
all explanatory variables. Where collinearity was significant (VIF values > 4, (Pan &
Jackson, 2008)), the variable producing the higher AIC was excluded. This led to the
exclusion of GDW and total precipitation from further analyses. Vegetation and water
indices were not correlated; however, NDVI was not significant in any of preliminary
models, thus it was excluded from further analyses.

Full models

Following exclusion of collinear and non-significant variables, we developed linear mixed
models including the remaining environmental variables, each measured over the opti-
mum time window as selected through preliminary analyses. All two-way interaction
terms were included in full models. In addition, we included distance to urban areas and
to rice fields, and again included trap identification number as a random variable. Mod-
els were fitted in turn to predict (i) the start of the mosquito season (using early period
predictors only), (ii) season length and (iii) mosquito abundance (modelled initially using
only early period predictors, and then again using both early and late period predictors,
in order to assess the additional variance explained by inclusion of the latter period).
Multi-model inference (Burnham & Anderson, 2002) was used to compare all possible
models using the R package ”MuMIn” (Barton, 2013). Models were ranked using AIC,
and differences in AIC (∆AIC) between consecutively ranked models were used to calcu-
late weights and relative evidence ratios for each variable. The best models were selected
using a threshold of ∆AIC ≤ 4 (Burnham & Anderson, 2002). All variables included in
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the best models were ranked according to their importance (weight), i.e. the cumula-
tive Akaike weight (wAIC) of the models that include that explanatory variable (Barton,
2013; Whittingham et al., 2006). This provides an idea of the frequency with which
the predictor was included in the most likely models, and not directly the importance of
its effect on the predicted variable. Average coefficient for each variable was calculated
following modelling average procedure (Burnham & Anderson, 2002).
In order to quantify the effect size of each predictor variable, predictions were made from
the best models for each significant predictor variable in turn. For predictive models, all
variables but one were fixed at their average values, and predictions made across the full
range of the selected variable. For example, to test the association between temperature
and the start of the mosquito season (ON), in a model where temperature, precipitation
and NDWI were significant predictors, precipitation and NDWI were entered into the
model as constants (fixed at their average measured value), while values for tempera-
ture were allowed to vary within their observed range. Models and plots were created
using transformed data (for ON and TOTAL); predictions described in the text use back-
transformed values to aid interpretability.

1.3 Results

1.3.1 Mosquito indices

The start of the mosquito season (ON) typically occurred during weeks 24-27 of the year
(see Figure 1.2a), and the main capture period (SEASL) lasted for 56-70 days (see Figure
1.2b). The number of individuals captured (TOTAL) varied between 44 and 4648 per
trap per year; more precisely, for one third of the traps the observed abundances varied
between 44 and 500, for another third between 500 and 1000 and the remainder between
1000 and 4648 individuals (see Figure 1.2c).

Figure 1.2: Timing and abundance of the mosquito season. Frequency distributions for
(a) the start of mosquito season (the date by which 5% of total captures were made), (b) season
length (the period in days between the collection of 5% and 95% of the captured population) and
(c) the total number of Cx. pipiens captured.
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1.3.2 Model results

Preliminary analyses

For prediction of the start of the season (ON), the optimum time windows selected for
inclusion in the model were weeks 8-19, 6-17, and 10-21 for temperature (LST), pre-
cipitation (DAY_PREC) and NDWI respectively (determined by comparison of AICs, see
Figure 1.6). For prediction of season length (SEASL) using only early period predictors,
the optimum windows for temperature and NDWI were the same as for prediction of ON
(8-19; 10-21) but the optimum window for precipitation was earlier, weeks 2-13. Late pe-
riod predictors were weeks 16-27 for temperature, 20-31 for precipitation and 11-22 for
NDWI (see Figure 1.6). For prediction of mosquito abundance (TOTAL) using only early
period predictors, the optimum windows for temperature and precipitation were weeks
10-21 and 1-12, respectively; NDWI was not significant for any time window. Additional
late period predictors were weeks 21-32, 15-26 and 22-33 for temperature, precipitation
and NDWI respectively (see Figure 1.6).

Full models

For the start of the season (ON) 32 full models were produced and a single best model was
selected, explaining 26% (R2 = 0.258, Akaike weight = 0.96) of the variance; remaining
models had ∆AIC> 4 and were disregarded (see section 1.A.3). Model outputs (see Table
1.1) are therefore based on a single model, rather than averages from multiple models
as elsewhere. Within the measured range of environmental data, temperature had the
greatest effect on the start of the season. Higher spring temperatures were associated
with an earlier start to the season, such that an increase of 5◦C in LST8−19 (from 11 to
16◦C) predicts the start of the season some 14 days earlier (a shift in the average ON
from day 187 to 173) (see Figure 1.3a). Increasing NDWI also predicts an earlier start to
the season, such that a shift in NDWI10−21 from -0.1 to +0.06 led to a start of the season
10 days earlier (see Figure 1.3b), while more days of precipitation delayed the start of
the season such that an increase in DAY_PREC6−17 from 14 to 37 days of precipitation
during the 12 week period led to a delay in the start of the season of 10 days (see Figure
1.3c). All terms selected in the best models (LST8−19, NDWI10−21 and DAY_PREC6−17)
were highly important with a predictor weight equal to or very close to 1 (see Table 1.1).
Neither distance to urban area or rice fields were significant predictors.
When considering only the early period, two models, out of 32 models produced, were se-
lected to predict season length, explaining between 13 and 14% (R2 = 0.135,R2 = 0.141)
of the variance, and differed in their inclusion/exclusion of temperature (Akaike weights
were 0.21 and 0.77). From model averaging, the early period variables associated with
earlier start of the season (ON, above) also predict increased season length, so higher
NDWI and temperature predict a longer season (although note that following averaging
procedures temperature is significant only at a 92% threshold, with p = 0.079), and more
days of precipitation predict a shorter season. Again, distance to urban areas and rice
fields were not significant predictors, for either of the two best models. For early period
predictors only, an increase in NDWI10−21 from -0.1 to +0.06 predicts an increase of 14
days in season length (from 56 to 70 days), while an increase in days of precipitation
from 7 to 30 days during the 12 week period (DAY_PREC2−13) predicts an eleven day
decrease in season length (from 71 to 60 days) (see Figure 1.4a). An increase of 5◦C in
LST8−19 (from 11 to 16◦C) predicts an extension of 7 days in season length (from 65 to
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72 days).

Figure 1.3: Association between the start of the mosquito season and environmental
variables. Panels a-c show model predictions; panels d-f show partial residuals. The first col-
umn (a,d) shows the association between the start of the season and temperature (LST8−19), the
second (b,e) shows the association with NDWI10−21 and the third (c,f) shows the association with
precipitation (DAY_PREC6−17). Note that all plots show transformed data on the y axis (i.e. x1.3);
back transformed values are presented in the text to assist interpretation.

Variable Weight Coeff. Std. error z-value Pr(> |z|)
Intercept 1014.19 96.54 10.51 <0.001
LST8−19 1 -17.3 5.6 -3.09 0.002
NDWI10−21 1 -369.07 155.43 -2.37 0.018
DAY_PREC6−17 0.99 2.76 0.88 3.12 0.002

Table 1.1: Predicting the start of the mosquito season (ON). The weight and significance of
terms remaining in the best selected model.

When incorporating late period variables in addition to early period, 128 full models
were produced and six of them were selected as best, with R2 between 0.147 and 0.160
and Akaike weights between 0.28 and 0.06. Improvement to the model fit from inclusion
of late period variables was therefore minimal, when compared to early period predictors
alone (see above). Comparison of the model terms suggests, however, that precipitation



16 Chapter 1

Figure 1.4: Association between season length and days of precipitation. Panels a-b show
model predictions; panels c-d show partial residuals. The first column (a,c) shows the association
with days of precipitation during the early period (DAY_PREC2−13) while the second column (b,d)
shows the association with precipitation in the late period (DAY_PREC20−31).

during the late period (DAY_PREC20−31) has the opposite effect of precipitation during
the early period (DAY_ PREC2−13) (see Figure 1.4b). More days of precipitation during
the late period predict a longer season, such that an increase from 12 to 39 days of precip-
itation (DAY_PREC20−31) predicts a seven day increase in season length, whereas in the
early period only model, more days of precipitation delay the season start and so shorten
season length (as described above). The association with late period precipitation is
stronger than that of early period precipitation, so that when both terms are included
in the same model, early period precipitation becomes non-significant with a predictor
weight of only 0.4, as compared to a high significance of p = 0.004 and a weight of 0.79
for late period precipitation (see Table 1.2). Late period temperatures (LST16−27) have
a marked impact on season length such that a shift of 6◦C (from 19 to 25◦C) predicts a
lengthening of the season by 22 days (see Figure 1.5a). As for precipitation, the addition
of late period temperature renders early period temperature non-significant, with pre-
dictor weight of only 0.53, as compared to late period temperature which is both highly
significant (p = 0.003) and has a high predictor weight (0.98) (Table 1.2). The most im-
portant model term in terms of predictor weight was, however, NDWI measured during
the early period (NDWI10−21), which is positively associated with season length, and re-
tains the same high predictor weight (1) in both groups of models (early only, early+late)
(Table 1.2). An increase in NDWI10−21 from -0.1 to +0.06 predicts an increase in season
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length of 14 or 17 days (the greater increase being predicted by the early+late models).

Model Variable Weight Coeff. Std. error z-value Pr(> |z|)
Early Intercept 59.57 15.42 3.86 < 0.001

NDWI10−21 1 85.23 31.52 2.7 0.007
DAY_PREC2−13 0.99 -0.5 0.14 3.65 < 0.001
LST8−19 0.78 1.5 0.85 1.76 0.079

Early+Late Intercept -19.11 28.45 0.67 0.501
NDWI10−21 1 104.26 31.36 3.32 0.001
LST16−27 0.98 3.78 1.26 2.98 0.003
DAY_PREC20−31 0.79 0.29 0.1 2.88 0.004
LST8−19 0.53 0.1 1.11 0.09 0.926
DAY_PREC2−13 0.4 -0.28 0.16 1.73 0.083

Table 1.2: Predicting season length (SEASL). The average weight and significance of vari-
ables remaining in the two best ’Early predictors only’ and six best ’Early + Late predictors’
models. Note that terms in italics are significant in some of the selected best models but not in
others, and that overall, weighted model averaging procedures suggest that they are not signifi-
cant.

Of the 16 full models produced, two were selected to predict mosquito abundance (TO-
TAL) from early period predictors, explaining between 46 and 49% of the variance (R2 =
0.464, R2 = 0.488) with Akaike weights of 0.12 and 0.79 respectively. Abundance was
best predicted by early period models including days of precipitation at the start of the
year (DAY_PREC1−12), and distance to rice fields. An increase in precipitation predicts
an increase in abundance (e.g. an increase from 7 to 30 days rain predicts an increase
from approximately 400 to 1000 mosquitoes per trap). Traps closer to rice fields cap-
tured more mosquitoes than those 13 km away (average 680 mosquitoes per trap year,
compared to 560). The very different prediction weights of the two terms selected in
the early period models (Table 1.3), however, indicate that while days of precipitation
play an important role, distance to rice fields has a very limited effect on early period
model predictions. Incorporation of additional late period predictors did not greatly im-
prove the model fit; again, two models were selected, out of 128 models produced, and
explained 52% of the variance (R2 = 0.523, R2 = 0.524) with Akaike weights of 0.35 and
0.49 respectively. Days of precipitation at the start of the year (DAY_PREC1−12) re-
mained a highly significant predictor, and predicted a similar effect (an increase from 7
to 30 days of rain predicts an increase in total abundance from 420 to 860 mosquitoes
per trap year). Distance to rice fields was not a significant predictor in early+late period
models, while average temperature during the late period (LST21−32) exerted a signifi-
cant negative effect on predictions, such that an increase in temperature from 21 to 30◦C
led to a marked decrease in abundance from approximately 1150 to only 150 mosquitoes
per trap year (Figure 1.5b). The days of precipitation measured during the early period
(DAY_PREC1−12) is the most important term predicting TOTAL in both groups of mod-
els (early only, early+late) while temperature has a strong impact on model prediction
for the early+late model only (Table 1.3). Late period NDWI (NDWI22−33) was selected
only in one of the best models and following model averaging was not significant.
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Model Variable Weight Coeff. Std. error z-value Pr(> |z|)
Early Intercept 1.27 8.4e-03 152.83 < 0.001

DAY_PREC1−12 1 2.8e-02 3.2e-03 8.75 < 0.001
DIST_RICE 0.13 -7.8e-05 1.6e-05 4.78 < 0.001

Early+Late Intercept 6.96 0.53 12.97 < 0.001
LST21−32 1 -0.15 0.021 7.24 < 0.001
DAY_PREC1−12 1 1.7e-02 3.1e-03 5.04 < 0.001
NDWI22−33 0.6 -0.886 1.150 0.77 0.441

Table 1.3: Predicting mosquito abundance (TOTAL). The average weight and significance
of variables remaining in the two best ’Early predictors only’ and two best ’Early + Late predic-
tors’ models. Note that terms in italics are significant in some of the selected best models but
not in others, and that overall, weighted model averaging procedures suggest that they are not
significant.

Figure 1.5: Association between season length, total abundance and late season tem-
peratures. Panels a-b show model predictions; panels c-d show partial residuals. The first col-
umn (a,c) shows the association between late season temperature (LST16−27) and season length;
the second column (b,d) shows the association between late season temperature (LST21−32) and
mosquito abundance. Note that plots in the second column show transformed data on the y axis.
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1.4 Discussion

The transmission of WNV is strongly linked to the abundance of the Culex mosquito
vector (Colborn et al., 2013; Kilpatrick & Pape, 2013), and many studies have focused
on describing and quantifying habitat associations and spatio-temporal distributions of
the vector species to guide implementation of effective control strategies (Winters et al.,
2008; Diuk-Wasser et al., 2006). In particular, early predictions of both the timing and
intensity of future mosquito abundance will help to enable decision makers to apply ef-
fective prevention and control plans (Yang et al., 2009).
The current study aimed to identify early warning predictors of Cx. pipiens abundance
and phenology, with the ultimate goal of improving entomological surveillance and fo-
cussing interventions to enable early detection of virus circulation in mosquitoes. To
achieve this, we modelled the association between annual measures of mosquito abun-
dance and phenology (start of the season and season length) and a set of environmental
predictors.
Environmental predictors were selected based on published evidence of their importance
to mosquito populations, and were averaged across twelve week periods in order to test
the effect of variation at a seasonal scale, rather than focusing on daily or weekly fluctu-
ations (e.g. (Bisanzio et al., 2011)).
Our results indicate that warm temperatures during the early period (prior to the main
mosquito season) lead to an earlier start, and extend the duration of the mosquito season
(SEASL), but are not associated with a significant increase in abundance. This is likely
to result from the acceleration of mosquito development rates driven by higher tempera-
tures (Loetti et al., 2011). Higher temperatures during the late period (encompassing the
main period of mosquito host seeking activity) are similarly associated with increased
season length, but also with a decrease in total abundance. This latter result is opposite
to the one found by Bisanzio et al. (2011) but is coherent with the observed captures:
for instance 2003 was the hottest summer during the current study, and also the year
with the least captures. This is also consistent with results obtained from laboratory
experiments where adult survival and longevity of Cx. pipiens were negatively affected
by high temperatures (Ciota et al., 2014). In addition, when high temperatures during
summer are associated with low precipitation, as was the case in 2003, the combined
effects of very hot and dry conditions are likely to cause rapid drying of aquatic breeding
sites, with a consequent negative impact on mosquito populations. Recent observations
in north-eastern Italy corroborate the negative impact of high summer temperatures,
revealing a significant decline in populations when temperatures approached the maxi-
mum tolerance for Cx. pipiens over a prolonged period (Mulatti et al., 2014).
Early period precipitation postponed and shortened the activity of host-seeking mosquitoes,
but at the same time was associated with greater abundance. Conversely, precipitation
during the late period was associated with an extension of the season. An association
between increased abundance and early period precipitation is probably associated with
the increase in formation and persistence of mosquito breeding sites while more days of
precipitation during the late period would prolong the existence of breeding pools, thus
sustaining mosquito populations later in the year (Degaetano, 2005).
Higher values for environmental water (NDWI) during the early period were associated
with an earlier start to the season and an increase in season length. These results high-
light the importance of suitable breeding habitat, including surface water as well as
vegetation water content (Brown et al., 2008; Estallo et al., 2012; McFeeters, 2013).
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Good levels of moisture, especially in the soil, are a fundamental requirement for the
formation and persistence of mosquito breeding sites (Estallo et al., 2012).
Although the two physical distances (to rice fields, and to urban areas) do not seem to
be very important for Cx. pipiens in the current study, the negative association between
abundance and distance from rice fields suggests that this land use provides important
habitat in north-western Italy. This result was confirmed by larval collection of Cx. pip-
iens in rice-fields. Distances to urban areas were never selected in any of our models,
suggesting that in this region of Italy urban settlements are not an important breeding
habitat for Cx. pipiens, although it is possible that habitat type causes a bias in trap at-
tractiveness. This is different to a number of other studies, carried out in North America
and Europe, where it has been shown that Cx. pipiens prefers urban settlements (Deich-
meister & Telang, 2011; Trawinski & Mackay, 2010; Becker, 1997). These preferences
in North America may reflect differences in the ecology of Cx. pipiens in the Old, versus
the New World, or may reflect differences in the biogeography of the two regions. Alter-
natively, such differences may reflect the presence of different forms of the species. Form
pipiens prefers a more rural habitat, while molestus is more urban (Osório et al., 2014).
The form present in the eastern Piedmont area has not been definitively identified, but
the relatively infrequent bites to humans (pers. obs) makes pipiens (which are predom-
inantly bird-feeding) the more likely. Although Bisanzio et al. (2011) present spatial
analyses (based on the same area as the current study) in which the highest abundances
of Cx. pipiens were close to urban areas, the term was not significant in their final model.
The equivocal nature of the results suggested by Bisanzio et al. (2011), and the lack of
support for urban preference in the current study, using a longer timeseries, supports a
view that urban areas are of limited importance to Cx. pipiens in north western Italy.

1.5 Conclusions

Although a wide range of environmental and non-environmental factors are involved in
West Nile Virus outbreaks (Reisen, 2013), the current study indicates that basic climatic
monitoring data collected early in the year, in conjunction with local land use, can be
used to provide early warning vector population dynamics, and therefore potential trans-
mission risk. Overall, our analysis suggests that the early period of the year (prior to
the start of the mosquito season) is very important to Cx. pipiens population dynamics:
improvements to model accuracy by inclusion of the late period (during the main period
of host seeking activity) were minimal. This result is particularly important in view of
the need for timely implementation of mosquito control actions. The models developed
are suitable for application in other areas where climate and land use are similar, while
the principles used in model design can be applied across any area where mosquito pop-
ulation data and environmental data can be obtained. This has implications not only
for West Nile Virus, but also for a wide range of other diseases that could be limited by
mosquito control.
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1.A Supporting information

1.A.1 Aggregation of environmental data over a range of time windows:
preliminary analyses

In order to select an appropriate period of time for aggregation of environmental data,
we ran preliminary analyses comparing single model predictions of mosquito indices
(ON, SEASL and TOTAL). Explanatory variables were the environmental predictors
(DAY_PREC, LST or NDWI), and data for each environmental predictor were summed
(DAY_PREC) or averaged (LST and NDWI) within each temporal window, using a range
of aggregation periods: 1, 2, 4, 8, 12 weeks.
Comparisons were therefore made between:

• 1 week aggregation, producing 33 temporal windows from week 1 until week 33;

• 2 week aggregation, producing 32 temporal windows from weeks 1-2 until weeks
32-33;

• 4 week aggregation, producing 30 temporal windows from weeks 1-4 until weeks
30-33;

• 8 week aggregation, producing 26 temporal windows from weeks 1-8 until weeks
26-33;

• 12 week aggregation, producing 22 temporal windows from weeks 1-12 until weeks
22-33.

To make comparisons between models we looked at:

• The percentage of models with significant coefficients (Table 1.4).

• Consistency - estimated by how many times the coefficients from models using two
consecutive temporal windows changed their sign (Table 1.5).

• Minimum and Mean values of model AIC (Tables 1.6 and 1.7).

The 12-week aggregation performed better than all other choices, across all of the given
parameters. The 12 week period gave on average the highest percentage of significant
coefficients (76%), the lowest number of changes of coefficient sign (6), and the lowest
values of MIN and MEAN AIC (3385.24 and 3420.02 respectively).
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Aggregation period (weeks)
1 2 4 8 12

ON DAY_PREC 0.95 0.75 0.78 0.93 1.00
LST 0.67 0.70 0.94 1.00 1.00
NDWI 0.38 0.42 0.40 0.83 1.00

SEASL DAY_PREC 0.70 0.63 0.77 0.77 0.86
LST 0.61 0.59 0.77 0.88 1.00
NDWI 0.20 0.29 0.18 0.28 0.29

TOTAL DAY_PREC 0.58 0.63 0.63 0.81 0.95
LST 0.70 0.75 0.73 0.65 0.64
NDWI 0.20 0.25 0.27 0.28 0.07

All models 0.55 0.56 0.61 0.71 0.76

Table 1.4: Significance of coefficients (%).

Aggregation period (weeks)
1 2 4 8 12

ON DAY_PREC 7 5 3 0 0
LST 3 3 0 0 0
NDWI 0 2 0 0 0

SEASL DAY_PREC 12 8 4 2 1
LST 9 7 2 0 0
NDWI 4 4 2 2 2

TOTAL DAY_PREC 16 6 4 0 0
LST 6 6 4 2 2
NDWI 6 2 1 1 1

All models 63 43 20 7 6

Table 1.5: Number of changes of coefficient sign.

Aggregation period (weeks)
1 2 4 8 12

ON DAY_PREC 4860.36 4729.09 4733.10 4726.25 4733.78
LST 4862.16 4744.36 4750.51 4748.47 4730.55
NDWI 4438.35 4781.76 4786.31 4796.04 4801.20

SEASL DAY_PREC 4865.77 4731.22 4734.31 4731.77 4724.15
LST 4866.80 4749.80 4751.50 4751.80 4719.20
NDWI 4438.79 4779.01 4783.42 4792.01 4780.82

TOTAL DAY_PREC 763.36 618.80 634.67 637.49 651.26
LST 764.49 656.40 624.28 610.83 623.34
NDWI 688.14 700.33 700.12 695.43 702.88

All models 3394.25 3387.86 3388.69 3387.79 3385.24

Table 1.6: Minimum values of model AIC.
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Aggregation period (weeks)
1 2 4 8 12

ON DAY_PREC 4912.25 4786.94 4778.19 4759.43 4759.40
LST 4909.12 4785.25 4781.99 4771.03 4767.06
NDWI 4777.65 4793.08 4797.79 4799.93 4801.62

SEASL DAY_PREC 4912.70 4788.84 4786.97 4780.72 4774.71
LST 4927.64 4807.04 4811.70 4812.60 4797.89
NDWI 4777.19 4793.76 4798.80 4801.72 4792.06

TOTAL DAY_PREC 809.38 699.33 703.82 694.19 697.41
LST 804.86 691.83 692.36 678.22 682.99
NDWI 805.29 712.60 716.84 698.18 707.00

All models 3515.12 3428.74 3429.83 3421.78 3420.02

Table 1.7: Average values of model AIC.
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1.A.2 Selection of the optimum 12 week time window using variation
in AIC (∆AIC)

The time window producing the lowest AIC was selected for inclusion in full models.

Figure 1.6: Variation in AIC (∆AIC) of preliminary models using 12 week aggregation period.
Comparisons are made between different temporal windows for DAY_PREC (left column), LST
(central column) and NDWI (right column) as predictors of the start of mosquito season ON
(upper row), season length SEASL (central row) and mosquito abundance TOTAL (lower row).
Temporal windows are labelled according to the starting week, i.e. 1 (weeks 1-12), 2 (weeks 2-13),
etc., to 21 (weeks 21-33). Filled dots indicate significant coefficients (p < 0.05).
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1.A.3 Model selection tables

Models AIC ∆AIC wAIC R2

ON ∼ LST8−19 + DAY_PREC6−17 + NDWI10−21 4687.93 0.00 0.962207 0.258
ON ∼ DIST_URBAN + LST8−19 + DAY_PREC6−17 + NDWI10−21 4695.29 7.36 0.024327 0.266
ON ∼ LST8−19 + NDWI10−21 4697.15 9.22 9.59E-03 0.240
ON ∼ DAY_PREC6−17 + NDWI10−21 4700.45 12.52 1.84E-03 0.241
ON ∼ DIST_RICE + LST8−19 + DAY_PREC6−17 + NDWI10−21 4701.11 13.17 1.33E-03 0.258
ON ∼ LST8−19 + DAY_PREC6−17 4703.46 15.52 4.10E-04 0.247
ON ∼ DIST_URBAN + DAY_PREC6−17 + NDWI10−21 4706.06 18.12 1.12E-04 0.252
ON ∼ DIST_URBAN + LST8−19 + NDWI10−21 4706.28 18.35 9.99E-05 0.245
ON ∼ DIST_RICE + LST8−19 + NDWI10−21 4708.90 20.97 2.69E-05 0.243
ON ∼ DIST_URBAN + LST8−19 + DAY_PREC6−17 4710.08 22.14 1.49E-05 0.257

Table 1.8: The ten “best” full models predicting start of the mosquito season (ON) - those with
lowest AIC values obtained from model selection. For each model we report AIC, the difference
in AIC with respect to the best model (∆AIC), the Akaike weight (wAIC) and R2.

Models AIC ∆AIC wAIC R2

SEASL ∼ LST8−19 + DAY_PREC2−13 + NDWI10−21 3380.28 0.00 0.767278 0.141
SEASL ∼ DAY_PREC2−13 + NDWI10−21 3382.85 2.57 0.212613 0.135
SEASL ∼ LST8−19 + NDWI10−21 3388.97 8.69 9.95E-03 0.114
SEASL ∼ DIST_URBAN + LST8−19 + DAY_PREC2−13 + NDWI10−21 3389.89 9.61 6.28E-03 0.153
SEASL ∼ DIST_URBAN + DAY_PREC2−13 + NDWI10−21 3391.68 11.39 2.57E-03 0.148
SEASL ∼ LST8−19 + DAY_PREC2−13 3394.00 13.72 8.05E-04 0.127
SEASL ∼ DIST_RICE + LST8−19 + DAY_PREC2−13 + NDWI10−21 3396.14 15.86 2.76E-04 0.143
SEASL ∼ DAY_PREC2−13 3398.28 17.99 9.49E-05 0.116
SEASL ∼ DIST_RICE + DAY_PREC2−13 + NDWI10−21 3399.48 19.20 5.2E-05 0.135
SEASL ∼ DIST_URBAN + LST8−19 + NDWI10−21 3400.02 19.73 3.98E-05 0.123

Table 1.9: The ten “best” full models predicting length of the mosquito season (SEASL) using
early period data only - those with lowest AIC values obtained from model selection. For each
model we report AIC, the difference in AIC with respect to the best model (∆AIC), the Akaike
weight (wAIC) and R2.
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Models AIC ∆AIC wAIC R2

SEASL ∼ NDWI10−21 + LST16−27 + DAY_PREC20.31 3374.32 0.00 0.283167 0.156
SEASL ∼ LST8.19 + NDWI10−21 + LST16−27 + DAY_PREC20.31 3374.41 0.09 0.27071 0.156
SEASL ∼ LST8.19 + DAY_PREC2−13 + NDWI10−21 + LST16−27 + DAY_PREC20.31 3376.08 1.76 0.117533 0.16
SEASL ∼ DAY_PREC2−13 + NDWI10−21 + LST16−27 + DAY_PREC20.31 3376.08 1.76 0.117364 0.16
SEASL ∼ LST8.19 + DAY_PREC2−13 + NDWI10−21 + LST16−27 3376.58 2.26 0.091288 0.15
SEASL ∼ DAY_PREC2−13 + NDWI10−21 + LST16−27 3377.55 3.23 0.056259 0.147
SEASL ∼ LST8.19 + NDWI10−21 + LST16−27 3378.36 4.04 0.03753 0.138
SEASL ∼ LST8.19 + DAY_PREC2−13 + NDWI10−21 3380.28 5.96 0.014372 0.141
SEASL ∼ DAY_PREC2−13 + NDWI10−21 3382.85 8.53 3.98E-03 0.135
SEASL ∼ NDWI10−21 + LST16−27 3383.76 9.44 2.52E-03 0.125

Table 1.10: of the ten“best” full models predicting season length (SEASL) using early and late
period data - those with lowest AIC values obtained from model selection. For each model we re-
port AIC, the difference in AIC with respect to the best model (∆AIC), the Akaike weight (wAIC)
and R2.

Models AIC ∆AIC wAIC R2

TOTAL ∼ DAY_PREC1−12 634.19 0.00 0.79395 0.464
TOTAL ∼ DIST_RICE + DAY_PREC1−12 637.92 3.73 0.12304 0.488
TOTAL ∼ LST10−21 + DAY_PREC1−12 638.90 4.71 0.075289 0.467
TOTAL ∼ DIST_RICE + LST10−21 + DAY_PREC1−12 644.04 9.85 5.76E-03 0.489
TOTAL ∼ DIST_URBAN + DAY_PREC1−12 647.14 12.95 1.22E-03 0.473
TOTAL ∼ DIST_URBAN + DIST_RICE + DAY_PREC1−12 648.49 14.30 6.22E-04 0.501
TOTAL ∼ DIST_URBAN + LST10−21 + DAY_PREC1−12 652.21 18.03 9.67E-05 0.476
TOTAL ∼ DIST_URBAN + DIST_RICE + LST10−21 + DAY_PREC1−12 655.10 20.92 2.28E-05 0.501
TOTAL ∼ 1 692.45 58.27 1.77E-13 0.365
TOTAL ∼ LST10−21 693.21 59.03 1.21E-13 0.375

Table 1.11: The ten “best” full models predicting mosquito abundance (TOTAL) using early period
data only - those with lowest AIC values obtained from model selection. For each model we report
AIC, the difference in AIC with respect to the best model (∆AIC), the Akaike weight (wAIC) and
R2.

Models AIC ∆AIC wAIC R2

TOTAL ∼ DAY_PREC1−12 + LST21−32 + NDWI22−33 592.74 0.00 0.494334 0.524
TOTAL ∼ DAY_PREC1−12 + LST21−32 593.42 0.68 0.351739 0.523
TOTAL ∼ DIST_RICE + DAY_PREC1−12 + LST21−32 + NDWI22−33 597.94 5.20 0.036789 0.543
TOTAL ∼ LST10−21 + DAY_PREC1−12 + LST21−32 + NDWI22−33 598.29 5.55 0.030896 0.526
TOTAL ∼ DAY_PREC1−12 + LST21−32 + DAY_PREC15−26 + NDWI22−33 598.88 6.14 0.022952 0.530
TOTAL ∼ LST10−21 + DAY_PREC1−12 + LST21−32 599.18 6.44 0.019778 0.525
TOTAL ∼ DAY_PREC1−12 + LST21−32 + DAY_PREC15−26 599.46 6.72 0.017162 0.529
TOTAL ∼ DIST_RICE + DAY_PREC1−12 + LST21−32 602.01 9.27 4.80E-03 0.539
TOTAL ∼ DIST_URBAN + DAY_PREC1−12 + LST21−32 + NDWI22−33 602.10 9.36 4.58E-03 0.537
TOTAL ∼ DIST_URBAN + DAY_PREC1−12 + LST21−32 602.48 9.73 3.80E-03 0.536

Table 1.12: The ten “best” full models predicting mosquito abundance (TOTAL) using early and
late period data - those with lowest AIC values obtained from model selection. For each model
we report AIC, the difference in AIC with respect to the best model (∆AIC), the Akaike weight
(wAIC) and R2.
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2.1 Introduction

Zoonotic pathogens are believed to cause about three quarters of human emerging infec-
tious diseases, many of which (22%) are spread by vectors such as mosquitoes (Taylor
et al., 2001). One of the most recent emerging mosquito-borne diseases in the West-
ern Hemisphere is West Nile Virus (WNV), a flavivirus first isolated in Uganda in 1937
(Smithburn et al., 1940). It is maintained in a bird-mosquito transmission cycle primar-
ily involving Culex species mosquitoes of which the Cx. pipiens complex is thought to
be one of the most important in Europe (Zeller & Schuffenecker, 2004). In recent years,
WNV has been circulating in many European countries, including Italy, causing hun-
dreds of human cases (European Centre for Disease Prevention and Control, 2014). Cx.
pipiens is also involved in the transmission of other human and animal pathogens such
as Usutu virus (Gaibani et al., 2013), whose first case outside Africa was recorded in
Italy in 2009 (Pecorari et al., 2009), St. Louis encephalitis (Reisen et al., 2008), which
caused about a hundred human cases in North America during the last decade (Ar-
boNET, 2014), Rift Valley fever (Turell et al., 2014), Sindbis virus (Lundstrom et al.,
2001), avian malaria and filarial worms (Farajollahi et al., 2011).
The transmission of mosquito-borne diseases is largely driven by the abundance of the
vector (Colborn et al., 2013; Kilpatrick & Pape, 2013). Thus, rigorous surveillance of
mosquito density and control programs based on its reduction represent key components
of disease containment and prevention. Therefore, in order to design appropriate control
strategies it is crucial to understand the population dynamics of existing vector popula-
tions and evaluate how it depends on environmental factors.
In the Piedmont region of Northwestern Italy, an extensive program of monitoring adult
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mosquitoes has been implemented, since 1997, by the Municipality of Casale Monfer-
rato and the Istituto per le Piante da Legno e l’Ambiente (IPLA). The area is at risk
for WNV, because of the presence of suitable vector and reservoir host populations, and
the increasing numbers of human cases of WNV in adjacent areas (Calistri et al., 2010;
Monaco et al., 2010). Previous studies ((Bisanzio et al., 2011) and Chapter 1) analyzed
spatio-temporal variations of mosquito species collected in the area, detecting a very
high heterogeneity in the temporal pattern of mosquito population dynamics both inter-
and intra-annually. In particular, looking at Cx. pipiens population dynamics from 2001
to 2011, we detected a huge variation in total yearly mosquito abundance among differ-
ent traps, ranging from 40 to more than 4000 individuals captured per year (see Chapter
1). Also the timing of mosquito seasonal dynamics varied significantly among traps and
years. Specifically, for around 90% of the observations the start of mosquito season var-
ied from the beginning of June to mid-July, while the length of mosquito season varied
from 45 to 90 days (see Section 1.3).
The main goal of our work is to describe and interpret in a robust theoretical frame-
work the high heterogeneity observed among different seasons for Cx. pipiens popula-
tion dynamics in Northwestern Italy, by explicitly taking into account some important
eco-climatic and biological factors.
In Chapter 1 we found that precipitation and temperatures during the early period of
the year (spring and early summer) might remarkably influence Cx. pipiens population
dynamics. In particular, warm temperatures early in the year were associated with an
earlier start of the mosquito season and increased season length, while early precipita-
tion delayed the start, and shortened the length of the mosquito season, but increased
total abundance. Indeed, temperature is well known to affect several aspects of Cx. pip-
iens life cycle including development and survival rates (Ciota et al., 2014; Loetti et al.,
2011).
Density-dependence in mosquito population growth is another important factor in regu-
lating Cx. pipiens population dynamics (Mulatti et al., 2014). In fact, it has been found
that inclusion of density-dependence, in combination with key environmental factors,
significantly improves model prediction of Cx. pipiens population expansion in Northern
Italy (Mulatti et al., 2014). By using a statistical model, the authors found that the most
significant environmental drivers of Cx. pipiens population dynamics were the daylight
duration and temperature conditions in the 15 day period prior to sampling while pre-
cipitation and humidity had only a minor influence on Cx. pipiens growth rates.
Diapause is a common mechanism adopted by mosquitoes to survive through winter.
While other mosquitoes, for instance Aedes albopictus, overwinter through diapausing
eggs (Denlinger & Armbruster, 2014), in the case of Cx. pipiens, only adult females un-
dergo diapause halting blood feeding and therefore host-seeking behavior (Denlinger &
Armbruster, 2014). More specifically, immature stages develop into diapausing adults
according to the photoperiod they are exposed to (Spielman & Wong, 1973).
We therefore develop a density-dependent stochastic model that describes temporal vari-
ations of Cx. pipiens population dynamics including the effect of temperature and day-
light duration on the abundance of both adults and immature stages of Cx. pipiens.
Mechanistic models include, with more or less details, the biological processes driving
mosquito population dynamics and provide a suitable framework to investigate the main
determinants of dynamical patterns beyond the observed conditions (Bolker, 2008). Sev-
eral mechanistic models have been proposed to explore mosquito population dynamics
especially for Anopheles species (e.g. (Arifin et al., 2014; Beck-Johnson et al., 2013; Ya-
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mana & Eltahir, 2013; Cailly et al., 2012)) and Ae. albopictus (e.g. (Erickson et al.,
2010; Poletti et al., 2011; Tran et al., 2013)) while, to the best of our knowledge, fewer
attempts have been carried out for modelling Cx. species population dynamics (Gong
et al., 2011; Loncaric & Hackenberger, 2013; Morin & Comrie, 2010; Pawelek et al.,
2014). Mathematical models represent a powerful tool to investigate the role played
by different climatic factors on vector population dynamics and to evaluate the effec-
tiveness of alternative mosquito control strategies, as suggested by recent works on Cx.
quinquefasciatus (Morin & Comrie, 2010), Anopheles species (Cailly et al., 2012) and Ae.
albopictus (Tran et al., 2013). We follow a stochastic approach as deterministic models
ignore the contribution of demographic stochasticity which is especially relevant when
the vector population is low, for instance at the beginning and at the end of mosquito
activity season. The proposed model explicitly accounts for the temporal variation of all
immature stages, i.e. eggs, four larval instars and the pupal stage; it is assumed that the
lengths of all mosquito life stages depend on temperature and that developmental rates
of larval stages are density-dependent; finally, a diapausing mechanism is included in
response to the photoperiod.
The effect of precipitation on survival and development of mosquito life stages is not
explicitly accounted for, as, to the best of our knowledge, no reliable data on Cx. pipiens
are present in literature for modeling and calibrating such mechanism. In the Results
Section, we discuss correlation of density dependence with precipitation, which could in-
directly enter the model in this way.
Finally, extensive model simulations have been carried out in order to better understand
the role played by different eco-climatic factors in shaping the seasonal specific vector
dynamics and to forecast, under various illustrative scenarios, likely changes in Cx. pip-
iens seasonal dynamics if temperature or density-dependent inputs would change.

2.2 Methods

2.2.1 Data

Cx. pipiens mosquitoes were collected on public land using CO2 dry ice baited traps
operated by Municipality of Casale Monferrato and the Istituto per le Piante da Legno
e l’Ambiente (IPLA), under the regional program for mosquito surveillance, authorized
by Regione Piemonte. The traps were dispersed over an area of 987 km2 in the Eastern
Piedmont Region in North West of Italy (see Figure 1.1 and (Bisanzio et al., 2011) for
more details). The study region is characterized by cold winters and warm summers (av-
erage temperature of 0.4◦C and 24◦C, respectively), abundant precipitation ( 600 mm/yr)
and by a mostly agricultural landscape (86%) with few urban settlements (3%). This
makes the area a highly suitable habitat for Cx. pipiens. Traps were set up one night
every week, for a twenty-week period starting at the beginning of May and ending in
mid-September, for 12 consecutive years (2000-2011). Traps were collected the following
day and all catches counted, sexed and identified. Since some locations were not de-
ployed every year (see Section 1.2 and (Bisanzio et al., 2011)), we consider in this study
only data coming from traps sampled for all the 12 consecutive years (i.e., 24 out of 44).
Trapping conditions including positioning, battery and trap type, and CO2 source (0.5
kg placed in traps each evening before a capture session) were identical among different
sites and years. Moreover, during the study period, no relevant activities were performed
to control Cx. pipiens and no substantial changes have been observed in the land use of
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the area and in the human population size.
The biotype present in the eastern Piedmont area has not been definitively identified.
However, given the relatively infrequent bites to humans in the considered area, in
Chapter 1 we suggested Cx. pipiens pipiens - which is predominantly bird-feeding -
as the more likely biotype. It is possible that human exposure to mosquito bites may
be lower in more agricultural areas. However, a recent study conducted in a region of
Northern Italy showed that Cx. pipiens prefer to take blood meals from avian hosts both
in rural and urban areas (Rizzoli et al., 2015). For a more detailed description of the
study area and the trapping conditions, see (Bisanzio et al., 2011) and Section 1.2.

2.2.2 Modelling mosquito dynamics

The model for the dynamics of the abundance of the vector in seven life stages of Cx.
pipiens, namely eggs (E), 4 larval instars (L1,L2,L3,L4), pupae (P) and non-diapausing
female adults (A), is based on the following system of equations:
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where τE,τL1 ,τL2 ,τL3 ,τL4 ,τP are the temperature dependent developmental rates driv-
ing the transitions of vectors across the different life stages considered; µE,µL1 ,µL2 ,µL3 ,
µL4 ,µP , µA are the temperature dependent death rates associated with the different
stages; nE is the number of eggs laid in one oviposition; dA is the length of the gonotrophic
cycle; K is the density-dependent scaling factor driving the carrying capacity for the lar-
val stages; p is the probability (depending on daylight duration) that a fully developed
pupa becomes a diapausing adult; β gauges the possible increase in adult mortality
rate due to wild conditions with respect to lab conditions; α is the capture rate; χC is
a function of the time defined equal to 1 when the trap is open and 0 otherwise; C rep-
resents the cumulative number of captured female adult mosquitoes. Since only female
adult mosquitoes are explicitly considered in the model, the term 1

2 in the equation for
the adults accounts for the sex ratio (Vinogradova, 2011). Note, moreover, that dia-
pausing females do not take blood meals before overwintering (Denlinger & Armbruster,
2014) and they cannot be captured with the considered traps. For this reason, only non-
diapausing female adults are considered in the model.
Daily mean temperature and precipitation records for the period and study area con-
sidered were obtained from ARPA Piedmont (Arpa Piemonte, 2014). Daylight durations
for the centroid of the study region during the considered period were obtained from the
US Naval Observatory (United States Naval Meteorology and Oceanography Command,
2013).
We actually adopted a discrete-time stochastic version of model M, with time-step ∆t = 1
day, in order to account for the stochastic nature of the processes. Precisely, the model
is a Markov chain whose states represent the number (an integer) of individuals in all
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developmental stages, and whose transition probabilities are built according to binomial
distributions whose means are obtained from the rate in system M. Details are speci-
fied in Section 2.A. The seasonal dynamics of the mosquito population is simulated for
12 years, from April 1 (corresponding to approximately one month before the first cap-
ture session) to October 1. Since, to the best of our knowledge, no data are available on
the overwintering of Cx. pipiens, we simulate each year y separately by initializing the
system with A0(y)> 0 non-diapausing adults.

2.2.3 Model calibration

Mortality and developmental rates across different vector life stages have been mod-
eled as a function of temperature following the approach already proposed in (Poletti
et al., 2011) on the basis of data collected in (Loetti et al., 2011; Eirayah & Abugroun,
1983). Specifically, we modeled the developmental period and the mortality rate as-
sociated with different vector stages at each temperature by fitting a suitable set of
functions of the temperature T - comprising exponential and parabolic functions - to
durations and rates measured at different specific temperatures through laboratory ex-
periments (Loetti et al., 2011; Eirayah & Abugroun, 1983). For the egg developmental
rate, we used the same function proposed in (Loncaric & Hackenberger, 2013). The same
technique was used to estimate the probability p for a developed pupa to become a dia-
pausing adult as a function of daylight duration using the data presented in (Spielman
& Wong, 1973). The uncertainty of parameters’ estimates was obtained by using a boot-
strap procedure similar to that used in (Poletti et al., 2011; Chowell et al., 2007). More
details on the technique employed are presented in Section 2.A.
To the best of our knowledge, data on adult mortality at different temperature are not
available for Cx. pipiens. Therefore, the mortality rate of adult female mosquitoes has
been taken as the function of temperature suggested in (Ciota et al., 2014), also allow-
ing for an increase in adult mortality rate in the wild relatively to lab conditions. The
average number of laid eggs nE per oviposition and the duration of the gonotrophic cycle
dA in our simulations were chosen uniformly in the intervals [150,240] and [2,8] days
respectively, according to results presented in (Becker et al., 2010; Faraj et al., 2006).
Free model parameters to be estimated are the capture rate α, the increase of adult death
rate in the wild β, the density-dependent factor K , and the number of initial adults A0.
More specifically, we assumed α and β to be equal among all years considered, while the
value of K and A0 could be year-specific.
Model predictions for the dynamics of mosquito population during a specific season de-
pend on the free parameters θ = (

α,β,K , A0
)

but are also influenced by the intrinsic
stochasticity of simulations and by the uncertainty on parameters defining the transi-
tion rates used in the model (e.g. the developmental and mortality rates for different
mosquito life-stages). By denoting the latter set as ω we define as λ{m,y} (θ,ω) the num-
ber of captures at month m and year y predicted by the model with parameters θ and ω.
In order to estimate the free parameters by taking into account both the stochasticity of
the process and the uncertainty on parameter estimates defined by ω, for each year y, we
define the expected number of captures at month m associated with θ, denoted hereafter
by λ̃{m,y}(θ), as the λ{m,y} (θ,ω) corresponding to the simulation producing the median cu-
mulative number of yearly captures among the simulations obtained by employing the
same parameter set θ and varying ω.
The posterior distributions of the free parameters θ were explored by Markov chain
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Monte Carlo (MCMC) sampling applied to the likelihood of observing the monthly num-
ber of trapped adults, averaged among the 24 considered sites. Assuming that for each
month the number of observed trapped adult mosquitoes follows a Poisson distribution
with mean obtained from the model, the likelihood of the observed data over the twelve
simulated years has been defined as

L =
2011∏

y=2000

5∏
m=1

e−λ̃{m,y}(θ) λ̃{m,y}(θ)n{m,y}

n{m,y}!

where y runs over the different considered years, m runs over months,n{m,y} is the ob-
served average number of trapped adults over the 24 sites at month m and year y
as reported in (Bisanzio et al., 2011) and in Chapter 1, and λ̃{m,y}(θ) is the predicted
number of captures at month m and year y simulated by the model with parameters
θ = (

α,β,K , A0
)
.

The posterior distribution of θ was obtained by using random-walk Metropolis-Hastings
sampling approach (Gilks et al., 1996) and normal jump distributions. A total of 100,000
iterations were performed and a burn-in period of 5,000 steps was chosen. Convergence
was checked by considering chains associated with different starting points in the pa-
rameter space and by visual inspection on the trace plots of chains.
Model predictions associated with the estimated posterior distributions of model param-
eters for the different seasons (from 2000 to 2011) were analyzed in terms of i) the weekly
number of Cx. pipiens captured during the twenty-week survey period; ii) the total
number of captured mosquitoes at the end of each year; iii) the highest weekly capture
during each year; iv) the week at which the highest capture was observed; v) the start
and the end of the mosquito season, defined as in Section 1.2 to be the weeks by which
respectively 5% and 95% of the cumulative captures in the simulated season occurred;
for clarity, from now on, we will denote these values by onset and offset; vi) the season
length, defined as the number of weeks between the onset and the offset of the season
(as in Section 1.2). The uncertainty surrounding model predictions is generated by both
the variability of the estimated posterior distribution of free model parameters and the
intrinsic stochasticity characterizing model simulation.
Finally, we applied the model to assess the influence of the temperature on the popu-
lation dynamics. To this aim, we simulated each year y with 10 different temperature
patterns T(y, t) ranging from T(y, t)−2.5◦ to T(y, t)+2.5◦, where T(y, t) is the observed
temporal pattern of temperature associated with year y. Following a similar approach,
we investigated the role played by the larval carrying capacity by simulating each year
y with different density-dependent factors K , ranging from 0.5 ·K(y) to 1.5 ·K(y), where
K(y) is the estimated density-dependent factor for year y.

2.3 Results and discussion

The proposed model can well reproduce the number of weekly captures of adult mosquitoes
reported between May and September for all the twelve years of observation (2000-2011).
In particular, more than 90% of the weekly trap records lie within the 2.5-97.5% quan-
tile of model predictions. The model shows the ability of reproducing both the strong
seasonality characterizing the adult population dynamics within different years and the
high heterogeneity observed among different seasons in terms of mosquito density (see
Figure 2.1).
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In agreement with collected data (see Figure 2.2c), our results show that the average cu-
mulative number of trapped adults can substantially change between seasons, ranging
from 510 (2.5-97.5% quantile predictions: 100-1887) in 2003 to 2425 (2.5-97.5% quantile
predictions: 1194-4677) in 2000.
The highest capture is predicted to occur, on average, between the 27th and 31st week
of the year (corresponding to the month of July) in good agreement with observed values
(see Figure 2.2b). On the opposite, the predictions on the maximum number of trapped
adults in a single capture session during the entire season are extremely variable among
different simulations and do not accurately reproduce observed values. This field mea-
sure is highly sensitive and reflects stochastic variations driven by site-specific factors
such as rain and wind condition of the day. Indeed, strong wind and rainfalls might
alter Cx. pipiens dispersal and host-seeking behavior, possibly reducing the probability
of being captured. In fact, data collected show that captures of two consecutive trapping
sessions can be remarkably different (with differences sometimes of an order of magni-
tude). In order to smooth the inherent variability in captures, we computed, for each
trap, the 3-point moving average of weekly captures. The distribution of the maxima of
moving averages, for each year, is shown in Figure 2.2d; it can be seen that the variabil-
ity in model predictions is consistent (though a bit lower) with the observed variability
among traps. In addition, years characterized by higher maximum number of trapped
adults within a single capture are associated with higher peaks in model predictions.

Figure 2.1: Model fit. Average number of weekly captured Cx. pipiens during the twenty-week
survey period observed in Piedmont region from 2000 to 2011 (blue points) and predicted by
model simulation based on the estimated posterior distribution of free parameters (median in
red, pink region defines 2.5-97.5% quantile predictions).

The 2.5-97.5% quantile of the predicted offsets are between the 34th and 37th week (mid-
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August - mid-September) in each year, like the observed captures (see Figure 2.2a). The
predicted onsets are on the average between the 21st and the 23rd week (end of May
- beginning of June), a few weeks earlier than what observed (median values between
24th-27th week, June).
In Chapter 1 we found that the starting time of the mosquito season (onset) was nega-
tively correlated with the average temperature of weeks 8-19 (i.e., higher temperatures
hasten the onset), and found that season length was positively correlated with mean tem-
perature of weeks 16-27. Our analysis confirms such results suggesting that the median
predicted onset, which defines the starting time of the season, is negatively correlated
(y = 27.81−0.52x, p-value< 0.01) with the average temperature recorded between mid-
February and the beginning of May, which ranges from 9.6◦C in 2004 to 13.4◦C in 2007.
This is in line with the observed faster development of immature stages associated with
higher temperatures.

Figure 2.2: Annual synthetic indexes. Boxplot (2.5%, 25%, 75% and 97.5% quantile and me-
dian) of predicted onset (lower orange bars in panel a) and offset (higher orange bars in panel a),
defined as the week of the year when the 5% and the 95% of the cumulative captures are reached
respectively; week of the year associated with peak (highest) capture (red bars in panel b); total
annual captures, i.e. the sum of the 20 weekly captures (green bars in panel c); peak capture,
i.e. maximum number of trapped adults in a single capture session (purple bars in panel d).
Blue boxplots represent the distributions of the observed site-specific values. Distributions of the
observed peak capture were obtained by computing the maximum of 3-point moving average of
weekly captures.

Furthermore, the median predicted season length is positively correlated (y = −2.00+
0.80x, p-value< 0.01) with the average temperature recorded between mid-April and the
end of June, which varies from 18.5◦C in 2004 to 21.5◦C in 2003.
The model accounts for the observed heterogeneous dynamics of the mosquito population
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among different seasons thanks to the explicit inclusion of two seasonal factors. The first
one is the dependence of developmental and mortality rates of different mosquito stages
on temperature. The second one is represented by the assumption of a year specific
density-dependent factor for larval stages, which may reflect possible differences in the
availability of breeding sites in different years.
The estimated posterior distribution of the initial number of adults (namely A0) spans
a wide range, between approximately 1 and 1,000 in each season (see Figure 2.3a), with
negligible differences among different years.

Figure 2.3: Estimated parameters. Boxplot (2.5%, 25%, 75% and 97.5% quantile and median)
of posterior distributions of parameters A0 (panel a) and K (panel b) estimated in different years.
Histograms of relative frequencies for posterior distributions of parameters α (panel c) and β

(panel d).

Conversely, estimated posterior distributions of the density-dependent factor are re-
markably different among years (see Figure 2.3b). In Chapter 1 we found that Cx.
pipiens population size in different years is positively correlated with the number of
days of precipitation in the first three months of the year. Following the same approach
presented in the previous chapter, we explored possible correlations between the esti-
mated density-dependent factors and the number of rainy days among different tempo-
ral windows. We considered 22 temporal widows built by grouping periods of 12 con-
secutive weeks, starting from the first week of the year (weeks 1-12) and ending with
weeks 22-33. For each window, number of days of precipitation was summed. We found
that the median value of the estimated density-dependent factor is positively correlated
(y=−380.54+32.14x, p-value< 0.01) with the number of rainy days in weeks 13-24 (end
of March - mid-June), which encompass partially the first half of the simulated period.
Therefore, although the model does not take precipitation explicitly into account, our
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analysis highlights its likely influence on mosquito population dynamics. This positive
correlation is biologically reasonable as more rain can create more breeding sites and
therefore increase the carrying capacity of larval stages, which is proportional to the
density-dependent factor.
The capture rate α is estimated to be on average 11.35% (10% median, see Figure 2.3c)
in good agreement with values published in (Simpson et al., 2009), where it was esti-
mated to be 10.8% through a field experiment carried out using bird-baited traps placed
outdoors in an open lawn area. However, it is worth noting that this experiment was car-
ried out in a setting different from our study area, using different traps. Furthermore,
the posterior distribution we obtained for α is very wide, and thus does not give strong
support to any specific estimate.
The estimated posterior distribution of β, the increase in adult mortality rate in the wild
relatively to lab conditions, is also very wide (95% CI 1.09,23.98, see Figure 2.3d) with
an estimated average of 4.61 (4.52 median). This result is in good agreement to what
has been observed in (Niebylski & Craig, 1994) for Ae. albopictus, for which adult sur-
vival is four times lower in the wild relatively to the survival observed under laboratory
conditions.
Undoubtedly, independent estimates on a subset of our free parameters would allow pro-
viding more robust estimates of these specific biological quantities. However, the MCMC
approach represents a suitable statistical technique to handle uncertainties about pa-
rameters, as it takes into account all possible parameters’ configurations compliant with
patterns observed in the data. Simulations were run also by assuming seasonal depen-
dent α and β. The two different modeling assumptions result in qualitatively similar
predictions about the abundance of the mosquito among different years (see Section
2.A). These results strongly suggest that the more parsimonious model with seasonal
independent α and β should be preferred as associated with a lower value of the De-
viance Information Criterion (DIC) (Spiegelhalter et al., 2002).
Temperature plays a crucial role in shaping the population dynamics of Cx. pipiens.
As already suggested by the statistical correlations presented above, higher tempera-
tures can both hasten the occurrence of high adult densities (see Fig 2.4b) and lengthen
the breeding season (see Figure 2.4a). On the other hand, either too high or too low
temperatures during the season might be responsible of a noticeable decrease in peak
mosquito abundance (see Figure 2.4c) as a consequence of the balance between two op-
posite phenomena; high temperatures increase mosquito mortality rates (especially in
adults) while low temperatures can strongly reduce the developmental rates of mosquito
immature stages. Our results suggest that a reduction of the temperature of 1.5◦C de-
creases both the highest mosquito density during the season and the cumulative number
of captured mosquitoes of about 20%, while in the extreme case of a decrease of 2.5◦C a
reduction of 40% of the total abundance and peak values is expected (see Figure 2.4d).
This confirms that the inability of immature stages to cope with low temperature is a
critical factor in shaping Cx. pipiens habitat suitability.
Hotter seasons might also reduce the maximal abundance of adult mosquitoes (about
-25% for the +2.5◦C scenario) but produce only negligible effects on the overall num-
ber of captured adults during the whole season. This apparent contradiction can be
explained by the observation that higher temperatures increase mosquito populations
during spring and decrease them during summer (see Figure 2.11).
On the other hand, changes in the larval carrying capacity produce proportional effects
on mosquito abundance during the whole breeding season. For instance, our analysis
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shows that a 30% reduction of the density-dependent factor K causes a decrease of about
the same percentage on both the highest capture and the cumulative number of cap-
tured adult mosquitoes (see Figures 2.5c and 2.5d). Lower values of the larval carrying
capacity prevent the development of a large number of larvae into pupae and, in turn,
into adults. Consequently, under favorable conditions, an increase of this parameter in-
creases the population size. However, the length of the breeding season and the time
of the highest capture are not significantly influenced by the magnitude of larval car-
rying capacity. Indeed, the occurrence of favorable conditions, such as the increase of
the developmental rates of aquatic stages into adults, is mainly driven by temperature.
These results suggest that the carrying capacity, which correlates with the abundance of
spring precipitations and is possibly linked to the availability of mosquito breeding sites,
affects the reproduction number, and thus the growth rate, of the population but it does
not influence the developmental and the mortality rates at the beginning and at the end
of the season, which are the main determinants of season length.

Figure 2.4: Effect of temperature variations on Cx. pipiens. Boxplots (2.5%, 25%, 75%
and 97.5% quantile and median) of predicted annual synthetic indexes associated with different
temperature inputs (x-axis, from -2.5◦C to +2.5◦C with respect to actual records). Panel (a) shows
the effect on the duration of the breeding season, defined as the difference between the week of
the year when the 95% and the 5% of the cumulative captures are reached; panels (b) and (c)
show respectively the effect on the timing and the value of the peak capture; panel (d) shows the
effect on the total annual captures.
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Figure 2.5: Effects of density-dependent factor variations on Cx. pipiens. Boxplots (2.5%,
25%, 75% and 97.5% quantile and median) of predicted annual synthetic indexes associated with
different values of K (x-axis, from -50% to +50% with respect to fitted values). Panel (a) shows
the effect on the duration of the breeding season; panels (b) and (c) show respectively the effect
on the timing and the value of the peak capture; panel (d) shows the effect on the total annual
captures.

2.4 Conclusions

In this paper, we investigated which are the main drivers of the observed high hetero-
geneity characterizing the Cx. pipiens population among different seasons in Northwest-
ern Italy.
We found that inter-seasonal variability is determined by two main drivers: i) differences
in larval carrying capacities, which in turn might depend on the cumulative number of
rainy days from end of March to mid-June, potentially correlated to the availability of
breeding sites, and ii) differences in average temperatures, which affect both develop-
mental and survival rates.
Overall, this work provides useful indications about the dynamics of Cx. pipiens during
a typical breeding season. Our results suggest that variations in the number of rainy
days and temperature, like those observed in the study period, may give rise to substan-
tially different seasonal mosquito abundances and provide interesting insights on how
possible climatic changes could affect the future density of this vector in Piedmont and
in similar areas.
The data also exhibit a large degree of spatial heterogeneity, as trap captures vary in
abundance and temporal patterns. Investigating these patterns would require detailed
information on habitat utilization and related mosquito movement, which are not avail-
able and are beyond the scope of the present work. Instead, data coming from different
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traps were aggregated in order to strengthen the investigation of seasonal heterogeneity,
by reducing the influence of climatic condition characterizing single specific days.
In this work, Cx. pipiens population dynamics has been modeled on the basis of the
empirical relations found in laboratory experiments between demographic and develop-
mental rates of the various life stages (eggs, larvae, pupae, female adults) on temper-
ature and, as far as diapause is concerned, photoperiod. Use of statistical methods on
population data have allowed us to use the model with field data, elucidating the role
of density-dependence. Availability of data on survival and fertility rates in the wild -
where for instance Cx. pipiens adults are expected to seek refuge from heat in summer
and from cold in winter - could allow for refinements of the model and for using it beyond
a single season.
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2.A Supporting Information

2.A.1 Materials and methods

Model calibration

In this chapter, we have introduced a model to investigate the vital dynamics of Cx. pip-
iens during a typical breeding season by considering temperature-dependent mortality
and developmental rates both for immature and mature/adult stages of mosquito and by
assuming that the diapause rate depends on daylight duration.
The lengths of the developmental periods associated to different mosquito life stages (i.e.
for any s ∈ S = {L1,L2,L3,L4,P}) at different temperatures were calibrated according
the following procedure. Given the length of developmental period Ls for temperatures
T ∈T = {7◦C,10◦C,15◦C,20◦C,25◦C ,30◦C,33◦C} as observed in (Loetti et al., 2011), we
assume that Ls(T)= fs(T;ω)+εT where fs(T;ω) is a parametric function of the tempera-
ture T (ω indicates the set of free model parameters defining f ) in a suitable set of func-
tions, comprising exponential, parabolic and logistic functions, and εT is a random sam-
ple of a 0 mean normal distribution with unknown variance σ2. For each considered life
stage, we calibrate the function fs(T;ω) by minimizing the square error ψ between pre-
dicted and observed length of the period which is defined as ψ=∑

T∈T (Ls(T)− fs(T;ω))2.
Uncertainty of estimated parameters (i.e., ω) was computed following a bootstrap proce-
dure similar to the one adopted in (Chowell et al., 2007; Poletti et al., 2011). In partic-
ular, we simulated 100 different {Ls(T)}T∈T by adding an error sampled from a normal
distributed N(0,σ2) to the best interpolation fs(T;ω̃) where the variance σ2 was taken as
the average of the estimated residuals associated to the best interpolation of the model
i.e., the average of the quadratic differences (Ls(T)− fs(T;ω̃))2. Finally, for each simu-
lated {Ls(T)}T∈T we repeated the optimization procedure described above. Obtained es-
timates of ls(T;ω) were used to compute the rate of development as τs(T;ω)= 1/ls(T;ω).
The same technique was applied to estimate the probability p for a fully developed pupa
to become a diapausing adult as function of the daylight duration using the data pre-
sented in (Spielman & Wong, 1973) and to estimate the mortality rates of all immature
stages as functions of temperature.
However, since mortality data for different mosquito life-stages were available as sur-
vival probabilities, an additional step was required to estimate the associated mortality
rates. The survival probability for different mosquito life-stages observed in (Loetti et al.,
2011; Eirayah & Abugroun, 1983) was obtained in lab conditions by following a cohort
of n individuals until all of them would either die or develop in the subsequent life stage.
In our analysis, we estimate the mortality rates associated to eggs, different larval in-
stars and pupae by maximizing the likelihood of observing the number of surviving indi-
viduals k obtained in the lab experiments at fixed temperatures, given the initial num-
ber of individuals n and a known developmental rate for each temperature and each
mosquito life-stage.
For instance, specializing model M to the case of a cohort of pupae kept at a fixed tem-
perature T and starting at time 0 with the initial value n(T), one sees that, following the
approach described in (Kemeny & Snell, 1976), the probability that a pupa will eventu-
ally develop into an adult (instead of dying) is p(T) = τP (T)

µP (T)+τP (T)
, so that the number of

pupae developing into adults will be a binomial of parameters n(T) and p(T).
A simple computation shows then that the maximum likelihood estimate of µP (T) is
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µP (T)= τP (T)(1−p)
p with p = k/n.

Estimates of developmental times and mortality rates at different temperatures and the
diapause rate associated with different daylight durations are presented in Figure 2.6.
Our analysis suggests that at higher temperatures, survival probabilities of all stages
decrease and developmental times shorten, while longer daylight durations reduce the
probability that a fully developed pupa becomes a diapausing adult. In the case of eggs
and pupae, lower temperatures (i.e., below 15◦C) can increase the death rate as well.

Figure 2.6: Mortality and developmental rates at different temperatures. Panels (a-l):
estimated mortality rates (day−1) and developmental times (in days) at different temperatures
for the eggs, the larval stages and the pupal stage (i.e.,E,L1,L2,L3,L4,P). Panel (m): adult
mortality rate (day−1) modeled as function of the temperature as published in (Ciota et al.,
2014). Panel (n): probability of a fully developed pupa to become a diapausing adult, modeled
as function of the daylight duration. Data from experiments are shown with blue dots, red lines
represent the best interpolation and pink region defines the 95% credible intervals obtained
through the bootstrap procedure described in the text.

According to our model formulation, predictions of mosquito dynamics during each breed-
ing season are driven by daylight duration (see Figure 2.7) and by observed seasonal tem-
peratures (see Figure 2.8). The average temperature recorded from April 1 to September
30 during all the study period ranges from 19.3◦C (2002) to 21.3◦C (2003).
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Figure 2.7: Daylight duration during a typical breeding season. Daylight duration defined
as the difference between the time of the sunset and the time of the sunrise (in hours) from
April 1 to September 30 obtained from the United States Naval Meteorology and Oceanography
Command (2013).

Figure 2.8: Temperature patterns among different breeding seasons. Air mean tempera-
tures recorded from April 1 to September 30 during the twelve years considered in the model.
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Transition probabilities

Different life-stages of mosquito population are updated from time t to time t+ 1 ac-
cording to the following procedure. Given a specific population class c we denote the
set of possible transition from the class c to other population classes as T where each
specific transition τ ∈T occurs at a specific rate rτ. In our simulations at each time step
t the number of individuals k leaving the class c is drawn from a binomial distribution
B(n,

∑
τ∈Îd’ rτ∆T), where n is the number of individuals in class c at time t. The num-

ber of individuals following the different transitions τ̃ ∈T will then be computed from a
multinomial with parameters k and rτ̃/

∑
τ∈T rτ.

For instance, in case of eggs, at each time t eggs can either develop into larval instar
at a rate τE or die at a rate µE. If E is the number of eggs at time t, first one will
obtain the total number of exits, k, by drawing a number from a binomial distribution
B(E,µE∆t+τE∆t); then the number of new larvae will be drawn from a binomial of pa-
rameters k and τE/(µE+τE) (correspondingly the number of dead eggs will be a binomial
of parameters k and µE/(µE +τE)).

2.A.2 Additional results

The proposed model is able to well reproduce the annual variations and the high het-
erogeneity observed in mosquito population dynamics among different breeding seasons
(see Figure 2.9).
Figure 2.10 shows the effects of the perturbation of the observed temperature on Cx.
pipiens dynamics. In particular, for the hotter scenarios the abundance of mosquito
population in spring is higher and begins to increase sooner while mosquito abundance
during the summer is much lower.
The effects due to the perturbation of the density-dependent factor are shown in Figure
2.11. Obtained results suggest that an increase [decrease] of this parameter causes an
upper [lower] shift of the entire curve.
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Figure 2.9: Model fit for monthly captures. Boxplots (2.5%, 25%, 75% and 97.5% quantile and
median) of fitted posterior distribution for Cx. pipiens monthly captures. Blue dots represent the
observed values.

Figure 2.10: Effect of temperature on Cx. pipiens. Predicted captures (median values) for
10 different scenarios obtained varying daily temperature T from T − 2.5◦C (light yellow) to
T +2.5◦C (dark red) with a step of 0.5◦C. Black lines represent the median of the fit using daily
temperature T, as shown in Figure 2.1.
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Figure 2.11: Effect of the carrying capacity on Cx. pipiens. Predicted captures (median
values) for 10 different scenarios obtained changing the density-dependent factor K from K ·0.5
(light yellow) to K ·1.5 (dark red) with a step of K ·0.1. Black lines represent the median of the
fit, using K , as shown in Figure 2.1.

Figure 2.12: Comparison of fit. Average number of weekly captured Cx. pipiens during the
twenty-week survey period observed in Piedmont region from 2000 to 2011 (blue points) and
median predictions by model simulation based on the estimated posterior distribution of free pa-
rameters by assuming α and β to be seasonal independent (red line) and by considering different
α and β for each considered year (black line).
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3.1 Introduction

A fundamental concept in ecology is that competition for limited resources can take place
between individuals of the same species, i.e. intraspecific competition, or between indi-
viduals of different species, i.e. interspecific competition. In interspecific competition,
individuals of different species compete for the same resource (e.g. food or living space)
therefore limiting resource availability for the other species. Such competition could
lead to the exclusion of the weaker species but also to coexistence equilibrium via differ-
ent mechanisms, such as differential resource use and spatial or temporal variations in
habitat conditions (Tilman, 1982; Leisnham et al., 2014).
Among mosquito species, interspecific competition plays a key role in structuring the
community at the larval stage in water-filled containers (Juliano, 2009). In Europe,
Aedes albopictus and Culex pipiens are two of the most widely spread mosquito species
(Farajollahi et al., 2011; Schaffner et al., 2013; Medlock et al., 2012). While Cx. pipiens
is indigenous, Ae. albopictus is native to Asia and was introduced in several European
countries at the end of the last century (Schaffner et al., 2013); since then, Ae. albopic-
tus rapidly spread in urban and suburban environments, occupying a habitat already
exploited by Cx. pipiens. These two species are vectors of many arboviruses. Ae. albopic-
tus can transmit dengue, chikungunya, Zika and West Nile viruses (Chouin-Carneiro
et al., 2016-03-03; Fortuna et al., 2015; Paupy et al., 2009; Vega-Rua et al., 2013,
2014; Wong et al., 2013), while Cx. pipiens is the most important vector of West Nile
virus in Europe (Zeller & Schuffenecker, 2004). Local vector abundance, which drives
the pathogen-transmission dynamics (Colborn et al., 2013; Kilpatrick & Pape, 2013),
might be influenced by interspecific competition. Furthermore, larval competition might
have indirect effects on epidemiological risks by altering mosquito-virus interactions in
adult females (Alto & Lounibos, 2013); in particular, different Aedes mosquitoes (includ-
ing Ae. albopictus, Ae. aegypti and Ae. triseriatus) bred in conditions of nutritional
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stress imposed by the interspecific competition were more susceptible to infection and
more able to transmit various pathogens such as dengue, Sindbis and LaCrosse viruses
(Alto et al., 2005, 2008; Bevins, 2007). In addition, adult survival, and consequently the
length of infectious period for infected females (i.e. their vectorial capacity), might be in-
fluenced by interspecific interactions occurred at the larval stage (Costanzo et al., 2011;
Reiskind & Lounibos, 2009). Therefore, competition between different mosquito species,
especially at the aquatic stages, may have important consequences on the epidemiology
of mosquito-borne infections and their potential control strategies (Juliano, 2009).
Previous laboratory studies show that Ae. albopictus is a strong competitor against other
species; Ae. albopictus larvae have been shown to negatively affect the growth and sur-
vival of larvae from other mosquito species bred in the same site, including Ae. aegypti
(Murrell & Juliano, 2008; O’Neal & Juliano, 2013), Ae. japonicus (Armistead et al.,
2008), Ae. triseriatus (Livdahl & Willey, 1991; Novak et al., 1993), Ae. koreicus (F. Bal-
dacchino, unpublished observations) and Culex pipiens (Carrieri et al., 2003; Costanzo
et al., 2005). Ae. albopictus larvae, on the other hand, were substantially unaffected by
the presence of Cx. pipiens larvae. This asymmetric interspecific competition has been
attributed to a higher efficiency of Ae. albopictus in converting food to biomass (Carri-
eri et al., 2003). The strength of competition effects has been shown to depend on food
resource types (Costanzo et al., 2011) and temperature, with a maximal effect on Cx.
pipiens larval mortality observed at temperatures above 25◦C (Carrieri et al., 2003).
In nature, Ae. albopictus and Cx. pipiens can exploit common water-filled containers
as larval habitats. Generally, Ae. albopictus prefers ovipositing in small natural and
artificial containers, while Cx. pipiens prefers larger water bodies (Carrieri et al., 2003;
Becker et al., 2010). However, these two species can share medium size containers. In
northern Italy, during entomological surveys in the summer of 1996 and 1997, Ae. al-
bopictus and Cx. pipiens were detected together in 67% of larval habitats, especially
drums, buckets, catch basins and tires (Carrieri et al., 2003). Thus, coexistence between
these two species could be shaped by both interspecific competition and niche differenti-
ation involving temporal and spatial factors (Leisnham et al., 2014; Juliano, 2009).
The temporal patterns of local populations of Ae. albopictus and Cx. pipiens in North-
ern Italy can be highly variable depending on climate and landscape ((Roiz et al., 2011)
and Chapter 1), but generally Cx. pipiens is active earlier than Ae. albopictus (Carrieri
et al., 2003; Verna, 2015). Cx. pipiens larvae appear in springtime and peak in July,
while Ae. albopictus larvae appear several weeks after Cx. pipiens and peak in Septem-
ber (Carrieri et al., 2003). Different temporal profiles may be driven by different life
history strategies and patterns of survival, oviposition and egg hatching under variable
environments (Carrieri et al., 2003; Costanzo et al., 2005). In the case of Cx. pipiens,
only adult females undergo diapause, and shortening photoperiods induce diapause in a
growing number of newly emerged adult females (Denlinger & Armbruster, 2014; Spiel-
man & Wong, 1973). Early in the mosquito breeding season, overwintering females of
Cx. pipiens begin to lay eggs on water surface. In contrast, Ae. albopictus overwinters as
diapausing eggs (Becker et al., 2010), which hatch several weeks after Cx. pipiens eggs;
then newly emerged Ae. albopictus females lay eggs above the water line, and hatching
is induced by submergence after precipitations. This asynchrony in hatching between
the two species allows Cx. pipiens larvae to develop in the absence of Ae. albopictus and
provides to Cx. pipiens a refuge from competition (Costanzo et al., 2005) early in the
season. Furthermore, high temperatures observed in summertime decrease Cx. pipiens
adult survival (Ciota et al., 2014; Ruybal et al., 2016), while Ae. albopictus is better
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adapted to warmer conditions (Delatte et al., 2009). Therefore, environmental condi-
tions can create a “temporal niche” effect, allowing a shift in breeding seasons of the two
species. Nonetheless, the “temporal niche” effect is not always sufficient to explain the
observed temporal profiles of competing mosquito species (Leisnham et al., 2014).
Disentangling the ecological mechanisms that drive mosquito population dynamics might
be difficult with a simple statistical analysis of the observed capture pattern. However,
mechanistic models incorporate a range of biological processes that drive mosquito popu-
lation dynamics. Therefore, they are more suitable to investigate the main determinants
of dynamical patterns, such as the effect of temporal niches and interspecific competi-
tion. Several mechanistic models have been used to describe the population dynamics
of single mosquito species, including Ae. albopictus (Erickson et al., 2010; Poletti et al.,
2011; Tran et al., 2013) and Cx. pipiens (Gong et al., 2011; Loncaric & Hackenberger,
2013). In this study, we describe and interpret, in a robust mathematical framework,
observed differences in temporal patterns of Ae. albopictus and Cx. pipiens, aiming to
disentangle the contribution of the temporal niche effect and interspecific competition
on their population dynamics.
To this aim, we develop a mathematical model that describes temporal variations of pop-
ulation dynamics of both species and allows for interspecific interactions at the larval
stages, as previously evaluated in laboratory conditions. To the best of our knowledge,
this is one of the first efforts to assess the impact of Ae. albopictus and Cx. pipiens
ecological interactions in natural conditions.

3.2 Methods

3.2.1 Study area and mosquito data

The study was carried out in the provinces of Belluno (46◦08’2”N, 12◦12’56”E) and Trento
(46◦04’00”N, 11◦07’00”E), Northern Italy. This mountainous area covers a large part of
the Dolomites and the Southern Alps. The climate is temperate-oceanic with four main
areas: sub- Mediterranean (close to Lake Garda with mild winters), subcontinental (the
main valleys with more severe winters), continental (the alpine valleys) and alpine (the
areas above the tree line) (Neteler et al., 2011).
We performed entomological surveillance of several mosquito species in the provinces of
Trento and Belluno during 2014 and 2015. Mosquitoes were collected using Biogents
Sentinel traps (BG trap; Biogents AG, Regensburg, Germany) baited with commercial
lures from the same producer and CO2 from dry ice. The BG trap has been demon-
strated to collect a great variety of species and is efficient for both Ae. albopictus and
Cx. pipiens when baited with CO2, especially in an urban environment (Luhken et al.,
2014). Trapping locations were chosen within three municipalities of Belluno province
(Belluno, Feltre, Santa Giustina) and three of Trento province (Borgo Valsugana, Riva
del Garda, Trento) (see Figure 3.1).
A total of 73 BG traps were located within urban and peri-urban areas at altitudes rang-
ing from 75m to about 640m above sea level. As recommended by the manufacturer,
traps were placed in shaded positions sheltered from wind and rainfall. In 2014, 39
traps were positioned while in 2015 the number of traps was reduced to 34; 28 trapping
sites where shared among the two years. BG traps ran for 24h, approximately every two
weeks, from the end of April to the beginning of November. Mosquito sex and species
were identified using taxonomic keys (Severini et al., 2009). The number of capture ses-
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sions differed from trap to trap because of logistic reasons, ranging from a minimum of
8 to a maximum of 15.

Figure 3.1: Map of the study area. Selected trap locations (purple diamonds: 2014; blue circles:
2015; orange squares: both years).

3.2.2 Delay analysis

We analysed temporal shifts between pairs of time series of captured female adults of Cx.
pipiens and Ae. albopictus, observed at the same site and year. To this aim, we estimate
the time lag T between the two time series at which the cross-correlation function ρ

reaches its maximum (see (Jacovitti & Scarano, 1993) for details):

T = argmax
τ

ρXY (τ)= argmax
τ

m∑
t=1

X (t)Y (t+τ).

More specifically, ρXY (τ) is the cross-correlation function, X and Y are the time series for
Cx. pipiens and Ae. albopictus respectively, m is the length of the time series expressed
in weeks. T measures the time lag (in weeks) between the two time series and it is
labelled throughout the chapter as the “interspecific delay” between Ae. albopictus and
Cx. pipiens temporal dynamics.

3.2.3 Environmental data

Original land surface temperature (LST) data were obtained from the MODIS version 5
LST products MOD11A1 and MYD11A1 (Wan, 2014). We used the average daily tem-
perature and a spatial resolution of 250 m (Metz et al., 2014).
There was a striking difference in recorded temperatures between the two considered
years (see Figures 3.2a and 3.2b); specifically, for the 28 sites sampled in both years, the
difference in the average daily temperature during summer months (July to September)
between 2014 and 2015 (Figure 3.2c) is close to 5◦C, with average observed temperatures
of 20.6◦C and 25.5◦C for the two years respectively. For comparison, the average tem-
perature for this period computed over years 2004-2013 is about 21.9◦C (Meteotrentino,
2016), so that the two years of study represent the extremes of a wide range of possible
temperature scenarios. Daylight lengths for the centroid of the study region during the
considered period were obtained from the US Naval Observatory (United States Naval
Meteorology and Oceanography Command, 2013).
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Figure 3.2: Daily temperature at study sites. (a) Daily average temperatures from the 39
trap locations in 2014 (black lines) and average across all sites (red line); (b) daily average tem-
peratures from the 34 trap locations in 2015 (black lines) and average across all sites (red line);
(c) daily average temperature difference between 2015 and 2014 from the 28 sites represented in
both years.

3.2.4 Population model

We developed a mathematical model of the abundance of the two vector species based
on the Ae. albopictus model proposed in (Poletti et al., 2011; Guzzetta et al., 2016a,b)
and on the Cx. pipiens model proposed in Chapter 2. The original models account for
the population dynamics of each species by considering temperature-dependent develop-
ment and mortality rates and intraspecific larval density dependent factors; the model
for Cx. pipiens also includes a photoperiod-dependent diapause rate for pupae. Here, we
include the effect of asymmetric interspecific competition, by adding a mortality term
for Cx. pipiens larvae proportional to the larval abundance of Ae. albopictus in the same
site. Given that the effect of interspecific competition weakens for temperatures below
20◦C (Carrieri et al., 2003), we set the competition coefficient to zero for average daily
temperatures less than 15◦C, and to a constant value, estimated via model calibration,
otherwise.
The model was calibrated using a Markov chain Monte Carlo (MCMC) approach ap-
plied to the Poisson likelihood of observing the empirical capture data, given the model-
predicted abundance. The model has five free model parameters: two daily capture rates
of adult mosquitoes (one for Ae. albopictus and one for Cx. pipiens); an intraspecific lar-
val density dependent factor for each species, representing the availability of suitable
breeding sites and food resources at a given site; and the interspecific larval competi-
tion coefficient, which increases the mortality of Cx. pipiens larvae proportionally to
the abundance of Ae. albopictus larvae. The posterior distribution of parameters was
obtained by a random-walk Metropolis-Hastings sampling (Gilks et al., 1996), using uni-
form prior distributions and normal jumps.
To evaluate the hypothesis of interspecific competition, we calibrated a simplified model
representing the assumption of independent populations, where the larval competition
coefficient was fixed to zero. We then compared the goodness of fit of the two models (with
and without competition) using the Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002, 2014). The model including competition was preferred to the model with
independent populations when its DIC value was lower by a minimum threshold, which
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was conservatively set to four (compared to a minimum recommended threshold of 2
(Spiegelhalter et al., 2002)).
All relevant details on model equations, calibration procedure, model selection and sen-
sitivity analysis of model results with respect to model selection criteria are reported in
Section 3.A.

3.3 Results

The total number of trapped female Ae. albopictus and Cx. pipiens in all sites and years
was 4566 and 8362 respectively. As can be noted in Figure 2.2, Cx. pipiens abundance
was similar between the two years (54% of total captured in 2014) while the majority
of Ae. albopictus were captured in 2015 (69% of total). This is likely because 2015 was
warmer and therefore more suitable for Ae. albopictus.

Figure 3.3: Mosquito temporal dynamics. Number of adult female mosquito captures for the
two species (Ae. albopictus in blue and Cx. pipiens in yellow), averaged over all sites, for 2014
and 2015 (dashed and continuous lines respectively).

Cx. pipiens shows different patterns between the two considered years. In fact, in 2015
Cx. pipiens abundance starts declining earlier in the season, in conjunction with the
increase of Ae. albopictus abundance, while in 2014 the two species show a more syn-
chronous pattern. On the other hand, temporal dynamics of Ae. albopictus does not show
substantial inter-annual differences.
Figure 3.4 presents the distribution of interspecific delays computed over all available
time series. We can note that temporal profiles of Ae. albopictus are delayed, with re-
spect to Cx. pipiens from the same site and year, by more than 4 weeks (29 days) on
average; a higher delay was recorded in 2015 (37 days) with respect to 2014 (22 days)
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(t-test p-value = 0.05). Figure 3.5 illustrates two examples of capture patterns associated
with an average delay of four weeks (Fig. 3.5a) and no delay (Fig. 3.5b).

Figure 3.4: Interspecific delay. The interspecific delay (in weeks, median, quartiles and 95%
quantiles) computed for Ae. albopictus and Cx. pipiens capture patterns. Distributions are shown
for all time series combined and aggregated by year.

Figure 3.5: Two examples of recorded temporal patterns with different interspecific
delay. T = 4 weeks (a), no delay, i.e. T=0 (b). Ae. albopictus (blue) and Cx. pipiens (yellow)
recorded captures from two datasets.

For 29 time series (around 40%) the model with competition assumption was better
(∆DIC>4) at explaining the observed capture dynamics; of these, the large majority (22)
were time series from 2015 (see Table 3.1). On the other hand, 44 time series (around
60%) were better described (∆DIC<4) by the model without the competition assumption;
of these, 32 were time series observed in 2014 (Table 3.1). An overall comparison of
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selected model fits for all time series can be seen in Figure 3.12.

All time series Competition (%) Independent populations (%)
All years 73 29 (40%) 44 (60%)
2014 39 7 (18%) 32 (82%)
2015 34 22 (65%) 12 (35%)

Table 3.1: Number of time series by year and selected model. Time series, classified ac-
cording to model selection based on the Deviance Information Criterion, are shown for grouped
and separated years. Percentages are computed by row.

In Figure 3.6, we show the distribution of interspecific delays aggregated by the selected
model (competition vs. independent populations) and by year. In sites with competition,
Ae. albopictus capture patterns had a systematic and large positive delay with respect
to Cx. pipiens (average 51 days considering the two years combined). Conversely, in
sites where the independent population model prevailed, the average interspecific de-
lay was lower (14 days considering the two years combined). There were no significant
differences between average delays from the same group and different years.

Figure 3.6: Interspecific delay by selected model. The interspecific delay (in weeks, median,
quartiles and 95% quantiles) computed for Ae. albopictus and Cx. pipiens capture patterns by
the selected model. Distributions are shown for all time series combined and aggregated by year.

We analysed the average numbers of mosquitoes captured per session and site, aggre-
gated by selected model and year (Figure 3.7). In 2014, when competition was rare,
abundances of Cx. pipiens and Ae. albopictus were not significantly different within
competition time series compared to those without; however, in 2015 competition was
much more common, and both Ae. albopictus and Cx. pipiens were significantly more
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abundant within competition sites (t-test t=-3.2873, df=23.758, p-value=0.003). This
result suggests that high mosquito densities might have increased the chance of com-
petition in 2015, possibly because of the increased likelihood of shared oviposition sites.
Interestingly, despite the higher mortality of Cx. pipiens larvae in competition sites, we
did not find an overall reduction in Cx. pipiens captures in 2015 respect to 2014 within
competition sites. This seemingly counterintuitive result can be better interpreted by
considering temporal dynamics (Figure 3.3): in the early part of the 2015 season, Cx.
pipiens were much more abundant than in the same period of 2014, because of improved
environmental conditions; however, with the rapid expansion of Ae. albopictus, the 2015
abundance of Cx. pipiens fell briskly, offsetting the advantage of the first part of the
season.

Figure 3.7: Average recorded captures by selected model. Average number of captured Cx.
pipiens and Ae. albopictus per site by selected model and year. Black lines represent the 95%
confidence intervals.

Considering only sites with competition, the model predicted a reduction for the aver-
age Cx. pipiens abundance by 49.2% (95% quantiles: 14-74%), compared to predictions
obtained with independent populations. The onset of competition effects (defined as the
first date at which relative differences between the Cx. pipiens populations predicted by
models with and without competition exceed 10%) ranged from the end of April to the
middle of July, with median centred on the first ten days of June.

3.4 Discussion

In this study, we analysed time series of Ae. albopictus and Cx. pipiens captures in north-
ern Italy. The observed dynamics of the two species show, in several cases, a marked
misalignment in temporal patterns, with a delay of Ae. albopictus abundance patterns
with respect to Cx. pipiens. We showed that these temporal shifts could be explained
by two alternative mechanisms: temporal niche effects and asymmetric interspecific lar-
val competition. Under the assumption that the two populations do not interfere with
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each other in a given area, a temporal niche effect may occur, depending on environmen-
tal variables (e.g. temperature, photoperiod), when the two species reach their peak of
abundance at different times of the year. On the other hand, in general, competition
causes more pronounced delays between the dynamics of the two species. That is due to
an increase of Cx. pipiens larval mortality in the presence of Ae. albopictus within the
same breeding site, inducing an anticipated decline of Cx. pipiens adult population.
An asymmetric competition between Ae. albopictus and Cx. pipiens has been observed
and replicated in several laboratory experiments (Carrieri et al., 2003; Costanzo et al.,
2005), but its importance in the natural environment has not been assessed before. Ac-
cording to our modelling results, asymmetric interspecific competition explained well
the seasonal patterns of Cx. pipiens in many sampling sites. Specifically, in 2015 the
model with competition assumption better described empirical observations in 65% of
the considered sites, compared to only 18% in 2014. Our results suggest that this differ-
ence was associated with higher temperatures in 2015 than in 2014, which caused both
a direct increase in the competition effect (Carrieri et al., 2003) and an increase of Ae.
albopictus densities due to a considerable reduction in the development time of imma-
ture stages (Delatte et al., 2009). High Ae. albopictus densities may increase the chance
of oviposition in shared containers (Costanzo et al., 2011). Furthermore, drier conditions
observed in summer 2015 (about 122mm total precipitations on average, compared to
355mm in 2014 (Meteotrentino, 2016)) likely reduced the number of small rain-filled
containers available for Ae. albopictus, pushing females to oviposit in medium contain-
ers with the presence of Cx. pipiens larvae. Thus, the larval habitats of Ae. albopictus
and Cx. pipiens might have overlapped more under such conditions, leading to a greater
frequency of interspecific competition (Carrieri et al., 2003). Abiotic factors in 2015 were
also more favourable for Cx. pipiens, but the adverse effects of competition strongly lim-
ited their increase with respect to 2014. In particular, we estimated a relative reduction
of Cx. pipiens abundance due to competition of about 50% on average (and up to 70%
in some sites), compared to equivalent environmental conditions where competition was
discounted.
Under natural conditions, competition occurs within breeding sites where the two species
happen to oviposit together, mainly in urban and peri-urban areas. Adults of Ae. albopic-
tus and Cx. pipiens captured in a given trap emerged from various breeding sites present
in the neighbourhood of the trap location. Among these breeding sites, some are colo-
nized by a single larval species, while others are colonized by both species, where they
then compete for resources. Therefore, our sampling procedure can only weigh the av-
erage effect of competition in the neighbourhood of the trapping site. Our criterion for
model selection was designed conservatively to identify sites where competition has a
strong overall effect on the temporal patterns of mosquito abundance (see section 3.A.3).
It is likely that competition occurs, to a lower degree, even in trapping sites that were
not classified as “competition” sites. To explore the robustness of results with respect to
the model selection criterion, we did a sensitivity analysis by using different score func-
tions for model selection and considering different threshold values. Results confirmed
our main conclusions and suggested that competition may shape Cx. pipiens dynamics
from 30% to 50% of all datasets (see section 3.A.4 for details).
For the sake of simplicity, in this study we assumed competition would affect only Cx.
pipiens larval survival. It has been shown that interspecific competition at this stage
might also increase Cx. pipiens larval developmental time (Costanzo et al., 2005) and
reduce the body size of newly emerged adults (Costanzo et al., 2011; Carrieri et al.,
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2003), with possible negative implications for female fecundity and longevity (Costanzo
et al., 2011). Moreover, the body size has been associated with female susceptibility to
virus infection (Alto & Lounibos, 2013; Bevins, 2007), and female longevity is a main
component of the vectorial capacity. Non-lethal effects are more likely to have an im-
pact at low densities of Ae. albopictus larvae (Costanzo et al., 2005; Carrieri et al.,
2003), i.e. in situations where the independent population hypothesis could not be re-
jected by the present analysis, or at poor food resource conditions (Costanzo et al., 2011).
Thus, the inclusion of non-lethal effects in the competition model might unveil an even
more widespread importance of competition effects on vector populations and arbovirus
transmission. However, abundance data provided by mosquito trapping only give infor-
mation on the cumulative effects of competition on the adult population; therefore, they
are insufficient to distinguish the relative contribution of different competition effects.
We chose to only model increased larval mortality, being the strongest competition out-
come (Costanzo et al., 2005; Carrieri et al., 2003) and the one most directly affecting
the adult population. Nonetheless, quantitative experiments collecting further data on
non-lethal competition effects might improve the development of models and foster our
understanding of ecological mechanisms. In addition, given the importance of climatic
factors in shaping mosquito population dynamics, important additional insights will be
needed, from further experiments, to quantify the effect of temperature on the strength
of lethal and non-lethal effects of interspecific competition (Carrieri et al., 2003).

3.5 Conclusions

We found that interspecific competition between Cx. pipiens and Ae. albopictus is com-
mon in temperate climates and it is enhanced by higher mosquito densities produced
by higher temperatures. Drier weather conditions may also induce a higher overlap
of breeding sites for different mosquito species, increasing the overall chances for com-
petition. We have shown that competition amplifies the temporal separation between
seasonal patterns of the two species, with Cx. pipiens arising early and declining more
quickly with the rise of Ae. albopictus. Finally, we have shown that competition induces
significant reductions in the total abundance of Cx. pipiens.
Understanding the interaction between climatic variables, competition and resulting
vector abundances can be important to improve our estimates of epidemiological risks
for arboviruses for which Cx. pipiens and Ae. albopictus are competent vectors, and
for the assessment of vector control strategies (Baldacchino et al., 2015; Bellini et al.,
2014). Furthermore, recent findings have shown that interspecific competition at the
larval stage may affect strongly the viral competence of adult mosquitoes (Alto & Louni-
bos, 2013) as well as their vectorial capacity by modifying their longevity (Costanzo et al.,
2011; Reiskind & Lounibos, 2009). If similar effects exist in the competition between Ae.
albopictus and Cx. pipiens, they would significantly impact the viral susceptibility and
transmission potential of local mosquito populations and should therefore be considered
in the estimation of outbreak risks (Guzzetta et al., 2016a,b).
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3.A Supporting Information

3.A.1 Model calibration

The model accounts for the seven Cx. pipiens and four Ae. Albopictus life stages, namely
eggs (Ec and Ea), the four Cx. pipiens larval instars (L1c ,L2c ,L3c ,L4c ) and one Ae. al-
bopictus larval stage (La), pupae (Pc and Pa), non-diapausing Cx. female adults (Ac) and
Ae. female adults (Aa). The ODE version of the model is based on the following system
of equations:

E′
c = nEc

dAc
Ac −

(
µEc +τEc

)
Ec

E′
a = nEa

dAa
Aa −

(
µEa +τEa

)
Ea

L′
1c

= τEc Ec −
(
τL1c

+µL1c

(
1+ Lc+αLa

Kc
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= τL1c
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(
1+ Lc+αLa

Kc

))
L4c

L′
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(
τLa +µLa

(
1+ La

Ka

))
La

P ′
c = τL4c

L4c −
(
τPc +µPc

)
Pc

P ′
a = τLa La −

(
τPa +µPa

)
Pa

A′
c = 1

2τPc (1− p)Pc −µAc Ac −χCβc Ac
A′

a = 1
2τPa Pa −µAa Aa −χCβa Aa

C′
c = χCβc Ac

C′
a = χCβa Aa

(3.1)

where

• τEc ,τEa ,τL1c
,τL2c

,τL3c
,τL4c

,τLa ,τPc ,τLa are the temperature dependent develop-
mental rates driving the transitions of the two vector species across the different
life stages considered;

• µEc ,µEa ,µL1c
,µL2c

,µL3c
,µL4c

,µLa ,µPc ,µLa ,µAa ,µAc are the temperature dependent
death rates associated with the different stages;

• nEc and nEa are the number of eggs laid in one oviposition for a female of Cx.
pipiens and Ae. albopictus respectively;

• dAc and dAa are the length of the gonotrophic cycles of the two species;

• Ka and Kc are density-dependent scaling factors driving the carrying capacity for
the larval stages;

• p is the probability (depending on daylight duration) that a fully developed Cx.
pipiens pupa becomes a diapausing adult;

• α represents the increase in mortality of Cx. pipiens larval stages due to competi-
tion with Ae. albopictus. Its value is 0 if the daily temperature is below 15◦C;

• βa and βc are the adult capture rates;

• χC is a function of time defined equal to 1 when the trap is open and 0 otherwise;

• Lc represents the total Cx. pipiens larval population, i.e. Lc = L1c +L2c +L3c +L4c ;
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• Ca and Cc represent the cumulative number of captured female adult mosquitoes
for Ae. albopictus and Cx. pipiens respectively.

Since only female adult mosquitoes are explicitly considered in the model, the term 1/2 in
the equation for the adults accounts for the sex ratio (Delatte et al., 2009; Vinogradova,
2011). Moreover, given that diapausing Cx. pipiens females do not take blood meals
before overwintering (Denlinger & Armbruster, 2014), they are unlikely to be captured
by using the considered traps. Consequently, only non-diapausing female adults are con-
sidered in the model.
We implemented model 3.1 as a discrete-time stochastic version, with time-step ∆t = 1
day, in order to account for the stochastic nature of the processes. Precisely, the model
is a Markov chain whose states represent the integer number of individuals in all de-
velopmental stages. Transition probabilities are built according to Poisson distributions
whose means are obtained from the rate in system 3.1. The seasonal dynamics of the
mosquito population of each site is simulated from April 1 (corresponding to approxi-
mately one month before the first reported capture session) to October 31. Since, to the
best of our knowledge, no data are available regarding the overwintering of Cx. pipiens
and Ae. albopictus, we initialize the system with 100 non-diapausing Cx. pipiens adults
and 10000 Ae. albopictus eggs. Preliminary model simulations showed no significant
change of the model’s behavior for different initial conditions.
Mortality and developmental rates across different vector life stages have been modeled
as a function of temperature as presented in (Poletti et al., 2011) and Chapter 2. The
probability p for a developed Cx. pipiens pupa to become a diapausing adult is a func-
tion of daylight duration as presented in Chapter 2. The average number of eggs laid
nEa and nEc per oviposition were fixed to 60 (Poletti et al., 2011) and 190 (Chapter 2)
respectively. The duration of the gonotrophic cycle dAa is a function of temperature as
in (Poletti et al., 2011), while dAc is fixed to 5.54 days (Faraj et al., 2006).
We assumed that, for each capture session, the number of captured female adult mosquitoes
follows a Poisson distribution with mean obtained from the model; therefore, for each
dataset, the likelihood of the observed data given a parameter set θ has been defined as

L =
h∏

i=1
e−Ã i(θ) Ã i(θ)A i

A i!
· e−C̃i(θ) C̃i(θ)Ci

Ci!

where i runs over the number of capture sessions h, A i (Ci) is the observed number of
captured Ae. albopictus (Cx. pipiens) adults at capture session i and Ã i(θ) (C̃i(θ)) is
the predicted number of captures of Ae. albopictus (Cx. pipiens) at capture session i
simulated by the model with parameters θ = (

α,β,Ka,Kc
)
.

3.A.2 Model output

Figure 3.8 shows an example of the temporal dynamics of larvae and adults for both
species predicted by the two models in a given site and year. During spring months
(April and May), the presence of Ae. albopictus larvae is limited by the relatively low
temperatures and both models predict the same expansion of Cx. pipiens larvae and
adults. Afterwards (beginning of June), increasing temperatures cause the rise of the
Ae. albopictus population; consequently, the model with competition predicts a sharp
fall of the larval (Fig. 3.8a) and adult (Fig. 3.8b) Cx. pipiens abundances. On the
other hand, with the independent populations model, the decline of Cx. pipiens adults
begins in late summer (August), when higher temperatures increase their mortality and
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progressively shortening photoperiods induce diapause in a growing number of newly
emerged adult females. Ae. albopictus adults are better suited to higher temperatures
and do not diapause, therefore their decline does not start until mid-September (Fig.
3.8b).

Figure 3.8: Example of predicted populations. Example of average larval (a) and adults (b)
populations predicted by the two considered models in a selected site. Lower panel shows the
recorded temperature.

3.A.3 Model fit

The model fits the observed data quite well. In fact, about 75% of the recorded weekly
captures lies in the 95% Credible Interval (CI) of model predictions with both assump-
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∆DIC>2 ∆AIC>2 ∆AIC>4 ∆AIC>7
All datasets Competition (%) Independent populations (%) Competition (%) Independent populations (%) Competition (%) Independent populations (%) Competition (%) Independent populations (%)

All years 73 34 (47%) 39 (53%) 29 (40%) 44 (60%) 23 (32%) 50 (68%) 18 (25%) 55 (75%)
2014 39 9 (23%) 30 (77%) 7 (18%) 32 (82%) 5 (13%) 34 (87%) 4 (10%) 35 (90%)
2015 34 25 (74%) 9 (26%) 22 (65%) 12 (35%) 18 (53%) 16 (47%) 14 (41%) 20 (59%)

Table 3.2: Number of datasets by year, selected model and DIC and AIC threshold.

tions. In sites where the competition model was selected, the 95% CI of captured females
predicted by the independent population model included the observed Cx. pipiens cap-
tures in 65% of data points overall, compared to 72% in the competition model. As
expected, both models fitted equally well Ae. albopictus data, with about 80% of obser-
vations lying within the 95% CI of model predictions.

3.A.4 DIC and AIC analysis

We compared the goodness of fit of the model with interspecific competition against that
of the model with independent populations (i.e. with α set equal to 0), using the Deviance
Information Criterion (DIC):

DIC = E(D)+ 1
2

var(D)

where D =−2lnL, E(D) is the average value of D and var(D) is its variance.
Models with smaller DIC should be preferred. In fact, if the likelihood L is high (closer
to 1) then lnL is closer to 0. Moreover, var(D) increases with model complexity: in this
way, the DIC penalizes models with a higher number of free parameters. We denote
with DICα the value obtained with the interspecific competition model and with DIC0
the value associated with the independent populations model. Generally, model selection
using the DIC criterion only requires a model to have a lower DIC than the alternative
(corresponding to ∆DIC= DIC0-DICα>0) (Spiegelhalter et al., 2002). Considering the
high stochastic noise in the capture data and the number of free parameters in our mod-
els, we conservatively restricted this criterion in such a way to minimize the risk of false
positives on the existence of competition (Spiegelhalter et al., 2002), by fixing a higher
threshold on the minimum ∆DIC, i.e. ∆DIC>4. However, since the value of the thresh-
old is arbitrary, we tested the robustness of our results by using a looser threshold, set
to ∆DIC>2 as well as a different score function for model selection, namely, the Akaike
Information Criterion, AIC (Burnham & Anderson, 2002). AIC is defined as

AIC= 2K −E(D)

Where K is the number of the model parameters. Analogously to the DIC criterion, we
selected models based on the value of on ∆AIC with respect to three standard threshold
values (namely, 2, 4 and 7) (Burnham & Anderson, 2002; Burnham et al., 2011).
By loosening the DIC threshold, we included 5 additional datasets in the competition
group (see Table 3.2). The AIC yielded results very similar to the DIC, although slightly
more conservative for corresponding values of the threshold. As reported in Table 3.2
and Figures 3.9 and 3.10, qualitative results presented in the main text do not change
significantly when applying a different threshold on DIC or when using the AIC with
either threshold.

3.A.5 Estimates of the competition-dependent additional mortality

The ratio z = α
Kc

defines the mortality rate of Cx. pipiens larvae due to each additional
Ae. albopictus larva in the breeding site. Figure 3.11 shows that estimates of z for sites
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Figure 3.9: Average number of captured Cx. pipiens (panels in the upper row) and Ae. albopictus
(panels in the lower row) per site by criterion of model selection (∆DIC>2, ∆AIC>2, ∆AIC>4 and
∆AIC>7, from left to right) by selected model and year.

more strongly associated with competition (∆DIC> 4) are on average significantly higher
(t-test p-value< 0.05) than those associated to independent populations (∆DIC< 0): in
other words, the competition model tended to be rejected when the estimated value of
the competition-dependent mortality was closer to zero. The distribution of z values
in sites with uncertain attribution (characterized by intermediate values of ∆DIC) was
in between the two cases: this result mirrors the fact that competition has a nuanced,
rather than an on/off effect on mosquito abundance.
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Figure 3.10: The interspecific delay (in weeks, median, quartiles and 95% credible intervals)
computed for Ae. albopictus and Cx. pipiens capture patterns by criterion of model selection.
Distributions are shown for all datasets combined and aggregated by year.

Figure 3.11: Boxplot (2.5%, 25%, 75% and 97.5% quantile and median) of estimated posterior
distribution of z by ∆DIC.
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4.1 Introduction

Ecological interactions within and between species, such as competition and consumer-
resource relations, can be influenced by infection dynamics of pathogens and parasites,
and vice versa. A recent attempt to more systematically address their mutual interac-
tions (Roberts & Heesterbeek, 2013) has focused on invasion of infection into ecological
communities. For this purpose, they computed the basic reproduction number R0, de-
fined as the average number of new cases of an infection caused by one typical infected
individual, in a population consisting of susceptibles only (Diekmann et al., 2010).
Following Roberts & Heesterbeek (2013), we investigate the case of a vector-borne infec-
tion spreading in a population where different species of hosts compete with each other,
for instance for food or habitat, and where the vector bites the hosts according to its
feeding preferences. Several papers investigating an infection spreading into competing
hosts have been published (Bowers & Turner, 1997; Han & Pugliese, 2009; Bokil &
Manore, 2013), but to the best of our knowledge none analyzing the case of a vector-
borne infection. In this type of infection, the pathogen is usually transmitted to and
from the host when the latter is bitten by the vector to obtain a blood meal required for
reproduction.
We focus on mosquito-borne infections and analyze a basic system where one vector
species takes blood meals from two competent host species that compete ecologically. We
show how to compute R0 allowing for different reservoir host competence (i.e. probabil-
ity of transmitting the pathogen to the vector). As a prototypical example, we consider
West Nile virus (WNV) in an ecosystem composed of two avian host species. However,
the formula for R0 is easily generalizable to ecosystems of arbitrary numbers of host
and non-host species that interact by competition and/or food web relations (Roberts &
Heesterbeek, 2013).
WNV is a flavivirus first isolated in Uganda in 1937 (Smithburn et al., 1940) and now
present on every continent (Reisen, 2013). It is maintained in a bird-mosquito trans-
mission cycle primarily involving mosquitoes belonging to Culex species, of which the
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pipiens sub-complex is thought to be one of the most important in Europe (Zeller &
Schuffenecker, 2004) and North America (Reisen, 2013). Humans and other mammals
(e.g. horses) are considered dead-end hosts, i.e. they can not transmit the virus.
Culex mosquitoes and WNV have a broad host range, and mosquito feeding preferences
can change during the season. In fact mosquitoes seem to preferentially bite certain
hosts more than others, even if they are less available (Kilpatrick et al., 2006a; Thie-
mann et al., 2011; Simpson et al., 2012; Taylor et al., 2012; Rizzoli et al., 2015); more-
over its preferences seem to change during the breeding season (Kilpatrick et al., 2006b;
Thiemann et al., 2011; Burkett-Cadena et al., 2012).
Many models have been proposed to study West Nile virus dynamics among different
bird species (Cruz-Pacheco et al., 2005, 2012; Maidana & Yang, 2011; Simpson et al.,
2012) but they do not explicitly investigate ecological interactions between the hosts or
the effects of changes in host preference over the season. Our aim is to investigate how
ecological interactions, such as competition, and shifting mosquito feeding preferences
can affect the invasion of a pathogen and therefore change the outcome relatively to a
baseline scenario which does not include such features.

4.2 The model

We analyze the simplest case with only two competing species, both competent hosts for
an infection transmitted by a vector with population size V . In addition, we assume
that hosts can not recover, but may die due to the infection. To this aim, we develop a
compartmental model similar to the one proposed by Lord et al. (1996) with hosts and
vectors classified according to whether they are susceptible S or infected I. Although
vector-borne infections are usually transmitted only by the vector, we consider also the
possibility of host-to-host transmission, as this has been shown to be possible for West
Nile virus among crows by Komar et al. (2003).
To model the competition among birds we assume, as in (Gamarra et al., 2005), that they
both follow a Lotka-Volterra dynamics. In addition, the mosquito population dynamics is
assumed to be density dependent; in particular, we assume that density can affect larval
development and survival, as observed by Agnew et al. (2010).
The equations of the model are

N ′
1 = r1

(
1− N1+c12N2

K1

)
N1 −α1I1

N ′
2 = r2

(
1− N2+c21N1

K2

)
N2 −α2I2

V ′ = (
nEσbmax

(
1−ρV V

)−µV
)
V

I ′1 =
[
pV1b1

IV
N1

+β11 p11
I1
N1

+β12 p21
I2
N2

]
S1 −

(
α1 +µ1 + r1

a11N1+a12c12N2
K1

)
I1

I ′2 =
[
pV2b2

IV
N2

+β22 p22
I2
N2

+β21 p12
I1
N1

]
S2 −

(
α2 +µ2 + r2

a22N2+a21c21N1
K2

)
I2

I ′V =
[
p1V b1

I1
N1

+ p2V b2
I2
N2

]
SV + (

qV nEσbmax
(
1−ρV V

)−µV
)
IV

(4.1)

where

• Ni = Si + I i is the number of individuals of species i with i ∈ {1,2};

• r i = ηi −µi > 0 is the growth rate of species i ∈ {1,2}, where ηi and µi are the birth
and death rate respectively. They are assumed not to be influenced by the vector.
Each species has a certain carrying capacity K i;
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• ci j represents the effect of competition of species j on species i with i, j ∈ {1,2}, i 6= j;

• ai j ∈ [0,1] is the proportion of competition from species j that affects the death rate
of species i with i, j ∈ {1,2};

• nE is the number of eggs laid by a gravid mosquito and σ is the probability that an
egg becomes an adult;

• bmax is the vector biting rate, which can be thought of as the inverse of the length
of the gonotrophic cycle, i.e. the interval spanned between the blood meal and
the oviposition. Bites are divided between the two host populations with b1,b2,
denoting the biting rates on species 1 and 2 respectively, and therefore bmax =
b1 +b2;

• ρV < 1 is the density dependent factor on vector fecundity. We can then define KV
as the vector carrying capacity, as follows:

KV := 1
ρV

(
1− µV

nEσbmax

)
.

• µV is the vector death rate;

• αi is the additional death rate for species i due to the infection;

• pi j is the probability that an infected individual of type i ∈ {1,2,V } infects a sus-
ceptible individual of type j ∈ {1,2,V }, given contact or bite;

• βi j is the direct transmission rate between host species i and j;

• qV is the probability of vertical transmission, i.e. the probability that an infected
mosquito passes the virus to its offspring.

If there is no infection, the Jacobian of system (4.1) at the Infection-free Equilibrium is
given by

J =
(
C D
0 H

)
where

C =


r1
K1

(K1 − c12N2 −2N1) − c12r1N1
K1

0
− c21r2N2

K2

r2
K2

(K2 − c21N1 −2N2) 0
0 0 nEσbmax

(
1−2ρV V

)−µV


represents the ecological community dynamics of the two host species and the vector.
The lower 3×3 matrix H in the Jacobian represents the epidemiological dynamics of the
two host species and the vector species:

H =


p11β11 −

(
α1 + µ̃1

) β12 p21N1
N2

pV1b1
p12β21N2

N1
β22 p22 −

(
α2 + µ̃2

)
pV2b2

p1V b1V
N1

p2V b2V
N2

qV nEσbmax
(
1−ρV V

)−µV


where µ̃i =µi + r i

aii Ni+ai j ci j N j
K i

with i ∈ {1,2}.
The matrix D in the upper right corner is
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D =
−α1 0 0

0 −α2 0
0 0 0

 .

The infection-free non trivial equilibrium is

N∗
1 = K1 − c12K2

1− c12c21
, N∗

2 = K2 − c21K1

1− c12c21
, V∗ = KV (4.2)

which exists (i.e. N∗
1 ≥ 0, N∗

2 ≥ 0,V∗ ≥ 0) and is stable provided

K i > ci jK j, µV < nEσbmax.

We observe that N∗
i /K i > N∗

j /K j (i.e. population size of species i is depressed by compe-

tition less than species j) when c ji
K i
K j

> ci j
K j
K i

. In particular when K i = K j (which can
also be assumed through an appropriate scaling) we can equate size of competition coef-
ficients with depression of population size.
As in (Roberts & Heesterbeek, 2013) we write H = T +Σ where T is the epidemiological
transmission matrix

T =


p11β11

β12 p21N∗
1

N∗
2

pV1b1
p12β21N∗

2
N∗

1
β22 p22 pV2b2

p1V b1V∗
N∗

1

p2V b2V∗
N∗

2
qV nEσbmax

(
1−ρV V∗)


and Σ is the epidemiological transition matrix

Σ=
−(α1 + µ̃1) 0 0

0 −(α2 + µ̃2) 0
0 0 −µV


and therefore the so called next-generation matrix with large domain (Diekmann et al.,
2010) is

K =−TΣ−1 =



p11β11

(α1 + µ̃1)
β12 p21N∗

1

N∗
2 (α2 + µ̃2)

pV1b1

µV
p12β21N∗

2

N∗
1 (α1 + µ̃1)

β22 p22

(α2 + µ̃2)
pV2b2

µV
p1V b1V∗

N∗
1 (α1 + µ̃1)

p2V b2V∗

N∗
2 (α2 + µ̃2)

qV


and R0 is the dominant eigenvalue of K .

4.2.1 Infections without horizontal transmission

This is probably the most common case, since, as explained above, most vector-borne
infections are transmitted only by the vector, so pi j = 0, i, j ∈ {1,2}. In this case the next-
generation matrix becomes

K =


0 0 pV1b1

µV

0 0 pV2b2
µV

p1V b1V∗
N∗

1 (α1+µ̃1)
p2V b2V∗

N∗
2 (α2+µ̃2) qV
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and the formula for R0 is

R0 = 1
2


√√√√4pV1 p1V b2

1

µV (α1 + µ̃1)
V∗

N∗
1
+ 4pV2 p2V b2

2

µV (α2 + µ̃2)
V∗

N∗
2
+ q2

V + qV

 (4.3)

with N∗
1 , N∗

2 ,V∗ as in (4.2).
We note that the biting rates b1,b2 play a crucial role for R0, which depends also on
the vector to host ratio which is in turn driven by the competition coefficients and the
carrying capacities.
In order to make (4.3) more perspicuous, we can simplify it by assuming that an infected
vector passes the pathogen to any susceptible host with same probability pV1 = pV2 =
pV H and that it can not transmit the virus to its offspring (so qV = 0). We can further
assume that mosquitoes bite hosts according to their density, so bi = bmax

Ni
N1+N2

with
i ∈ {1,2}. In this case (4.3) reduces to

R0 = bmax

N∗
1 +N∗

2

√
pV HV∗

µV

√
p1V N∗

1

α1 + µ̃1
+ p2V N∗

2

α2 + µ̃2
. (4.4)

From (4.4) we see that competition does not affect R0 linearly. In fact, for fixed c21,
increasing c12 will decrease N∗

1 while at the same time N∗
2 and µ̃1 will increase. Thus

one term inside the square root will increase with c12 while the other will decrease; as a
consequence, the overall effect on R0 is not straightforward.

4.2.2 Horizontal transmission

In this case we assume, as observed for WNV (Komar et al., 2003), that horizontal
transmission can happen only between individuals belonging to the same species, so
pi j = 0, i 6= j. In this case

K =


p11β11

(α1+µ̃1) 0 pV1b1
µV

0 p22β22
(α2+µ̃2)

pV2b2
µV

p1V b1V∗
N∗

1 (α1+µ̃1)
p2V b2V∗

N∗
2 (α2+µ̃2) qV

 .

R0 is then the largest root of a 3-rd order equation. We will consider some numerical
examples in the next section.
Finally, in order to investigate the combined effect of horizontal and vector transmission,
we consider, for the sake of simplicity, that there is only one host species, say species 1.
Then, with only horizontal transmission

Rh
0 = p11β11

(α1 + µ̃1)
,

while, with only vector transmission (and qV = 0),

RV
0 =

√√√√ pV1 p1V b2
1V∗

µV N∗
1 (α1 + µ̃1)

.

When both transmission routes operate, one obtains

R0 =
√√√√(

p11β11

4(α1 + µ̃1)

)2
+ pV1 p1V b2

1V∗

µV N∗
1 (α1 + µ̃1)

+ p11β11

α1 + µ̃1
= Rh

0

2
+

√(
Rh

0
)2

4
+ (

RV
0

)2 . (4.5)
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From (4.5) we see that R0 ≤ (>)1 ⇐⇒ Rh
0 + (

RV
0

)2 ≤ (>)1.

4.3 Numerical example

Here, we present a numerical example to explore the influence of vector and host ecol-
ogy, in our setting, on invasion of the infectious agent. In particular, we study the inva-
sion of WNV with two bird species. We selected their respective parameters among the
most competent species, that are American crow (Corvus brachyrhynchos, species 1) and
House finch (Haemorhous mexicanus, species 2), as found in (Komar et al., 2003). We
assume horizontal transmission only in species 1 (American crow), since Komar et al.
(2003) found its occurrence in this species only, and assume p22 = 0.
Finally, we also assume that the vector has a fixed daily biting rate bmax = b1 +b2. The
baseline parameters, with their description, are reported in Table 4.1.

Parameter Description Value Source
pV1, pV2 Transmission probability mosquito to bird 0.88 (Turell et al., 2001)
p1V Transmission probability species 1 to mosquito 0.5 (Komar et al., 2003)
p2V Transmission probability species 2 to mosquito 0.28 (Komar et al., 2003)
p11β11 Contact transmission rate in crows 0.33 (Hartemink et al., 2007)
µV Death rate in mosquitoes (/day) 0.08 (Hartemink et al., 2007)
qV Transovarial transmission rate 0.004 (Hartemink et al., 2007)
α1 Species 1 WNV-related mortality rate (/day) 0.2 (Komar et al., 2003)
α2 Species 2 WNV-related mortality rate (/day) 0.11 (Komar et al., 2003)
nE Number of mosquito eggs in one batch 200 (Hartemink et al., 2007)
σ Survival probability egg to female mosquito 0.1 (Hartemink et al., 2007)
µ1,µ2 Bird death rate 0.001 (Bowman et al., 2005)
r1, r2 Bird growth rate 0.5 (Bowman et al., 2005)

KV
(K1+K2) Mosquito to bird ratio 5 (Cruz-Pacheco et al., 2005)
K1,K2 Carrying capacities for birds 1000 Assumption
a11,a12,a21,a22 Proportion of competition affecting the death rate Varying

Table 4.1: parameters.

4.3.1 Effect of vector and host ecology on R0

We assume that the vector bites its hosts according to their density with a fixed daily
rate bmax = 0.2, and a11 = a22 = a12 = a21 = 0.5. In Figure 4.1 the effect of competition on
R0 is shown. In Figure 4.1a (left panel) we can see that for a fixed value of ci j, increasing
c ji will increase R0 and the highest values are reached when c12 is particularly large, so
when species 1 (which has a higher probability of transmitting the virus to the vector) is
much less abundant than the other. The lowest values are expected when the competi-
tion is not very high. We remark that R0 is always greater than 1 and, as expected from
formula (4.5), it is also greater than the one computed without vector transmission. In
fact in this latter case Rh

0 ∼ 0.73 (see Section 4.A), thus mosquitoes are crucial for the
pathogen invasion and transmission.
Figure 4.1b (right panel) shows how R0 is influenced by competition and its contribu-
tion to the death rate, represented by a12,a21. R0 is greater when host death rates
are less affected by competition (as this increases expected life of infected individu-
als) and, in all three cases, it increases linearly with c12 = c21. Since the three cases
(a12 = a21 = 0.1, 0.5, 0.9) do not differ substantially, from now on we consider only the
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case with a12 = a21 = a22 = a11 = 0.5. As observed in many field studies, Cx. pipiens may

Figure 4.1: Panel a) R0 according to the competition coefficients with a12 = a21 = 0.5. Panel b) R0
according to the competition coefficients (only for the case c21 = c12) and three different values
for a12 = a21. In both panels bmax = 0.2.

show different feeding preferences for different avian species (Kilpatrick et al., 2006a;
Simpson et al., 2012; Thiemann et al., 2011). We say that a species, say i, is preferred
if bi

bmax
> Ni

Ni+N j
, i.e. its fraction of bites is higher than its frequency. Hence we can model

the mosquito biting preference introducing, as in (Simpson et al., 2012), the feeding pref-
erence index δV ,δV ≥ 1. According to this the biting rates become

bi = bmax
δV Ni

δV Ni +N j
, b j = bmax

N j

δV Ni +N j
.

We study the cases bmax = 0.1,0.2,0.3; as the biting rate can be interpreted as the recip-
rocal of the duration of the gonotrophic cycle, we are assuming that it varies between 3
and 10 days, that seems to be a realistic estimate (Faraj et al., 2006; Jones et al., 2012).
Figure 4.2 shows how the value of R0 depends on the values of the different ecological
ingredients (competition coefficients c12, c21 and vector feeding preference δV ). Contin-
uous lines represent the case when species 1 is preferred, while dashed lines when the
vector prefers species 2. On the x-axis δV , the feeding preference index, ranges from 1
to 10. Different panels refer to different values of (c12, c21) that assume respectively the
values of (0.1, 0.5, 0.9).
In every case we observe that R0 > 1, so the infection-free equilibrium will always be
unstable.
The interplay of both competition and feeding preference is rather complex; however we
see that they both affect significantly R0. Higher values of R0 can be observed when the
vector prefers to feed on the less abundant host. For example, if species 1 is preferred and
c12 = 0.9, c21 = 0.1 (i.e. species 1 is less abundant than species 2), we can observe that R0
reaches its maximum values. Conversely, if the most abundant species is preferred, R0
does not seem to increase significantly if δV increases. Actually, it may slightly decrease:
for instance if c12 = 0.5, c21 = 0.1, bmax = 0.1 and species 2, the less infectious one, is



74 Chapter 4

preferred, then R0 is 1.49, 1.46, 1.49, 1.5 for δV = 1,2,3,4 respectively (see blue dashed
line in upper central panel). Eventually, we can also note that if no species is ecologically
advantaged (i.e. c12 = c21, panels on the diagonal), then the patterns are quite similar
but the values are higher when competition is strong (c12 = c21 = 0.9) and if species 1 is
preferred.
Figure 4.2 shows the case with both horizontal and vector transmission. The results for
the model considering only vector transmission are very similar and presented in Section
4.A.

Figure 4.2: R0 with bmax = 0.1 (blue), 0.2 (orange) and 0.3 (red) as function of the competition
coefficients c12, c21 ∈ {0.1,0.5,0.9}×{0.1,0.5,0.9} and the feeding preference index δV ranging from
1 to 10. Continuous (dashed) lines regard the case when species 1 (2) is preferred.
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4.3.2 Effect of competition and shifting mosquito feeding preference
on infection seasonal dynamics

To model a typical season, we add another host type M, representing a mammal species,
individuals of which are bitten at rate bM . They do not have any interaction with other
hosts and we assume they are a closed population. Moreover, we assume that they are
dead-end hosts, so they do not infect the vector, and that they can recover and become
immune for life.
Hence, we add to system (4.1) the three following equations

N ′
M = 0

I ′M = pV M bM IV
SM
NM

−αM IM

R′
M = RM +αM IM

The description of the new parameters and their values are reported in Table 4.2. As far
as we know, there are no empirical estimates for the probability of transmission to any
mammal species. Hence in our simulations we consider two values for pV M . In the first
case we assume pV M = pV1 = pV2 = 0.88 as in (Bowman et al., 2005), in the other case
we assume pV M value and order of magnitude less than pV1, pV2, i.e. pV M = 0.088.
An important ecological aspect that affects mosquito seasonal dynamics is the diapause
(Denlinger & Armbruster, 2014). It is a common mechanism adopted by mosquitoes to
survive winter; in the case of Cx. pipiens, only adult females undergo diapause, i.e. they
do not lay new eggs until the following spring. Daylight duration plays a key role in
its activation (Spielman & Wong, 1973; Denlinger & Armbruster, 2014). To take into
account this feature, we introduce a new variable γ, which is the function of the daylight
duration following the experiment in (Spielman & Wong, 1973) presented in Chapter 2.
It ranges from 0 to 1 and it is shown in Figure 4.3 (dotted line in panel d). The equation
for V in (4.1) is replaced by

V ′ = [
nEσγbmax

(
1−ρV V

)−µV
]
V .

The simulations start on June 1 in a given year with an infected bird belonging to species
1 and lasts 6 months. γ is modeled according to the daylight duration recorded at 46◦N
latitude, as presented in Figure 2.7.
Instead of simulating the deterministic system (4.1), we consider a Markov chain whose
transition probabilities corresponds to the rates of the differential equations in (4.1) (see
Section 4.A for more details). We decided to follow a stochastic approach to be able to
account for demographic stochasticity, relevant for instance at the invasion stage.

Parameter Description Value Source
NM Number of mammals 1000 Assumption
αM Recovery rate from WNV for dead end hosts (/day) 0.07 (Bowman et al., 2005)
pV M Transmission probability mosquito to mammal Varying

Table 4.2: Mammal parameters.

Baseline case

Here we present the outcome of the model when inter-species competition is absent, i.e.
c12 = c21 = 0, the vector does not have a preferred avian species (i.e. δV = 1) and its biting
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rate is bmax = 0.2. So for each host type i ∈ {1,2, M} the biting rate is

bi = bmax
Ni

N1 +N2 +NM
.

Figure 4.3 shows the prevalence, i.e. the number of infected divided by the total number
of individuals, for each host type i and the vector during the season. Avian species 1
experiences a higher infection than the other two host populations. Highest prevalence
in the vector is recorded very late in the season; this may be due to our assumption
that towards the end of the season almost no mosquitoes reproduce, as γ is very close to
zero, and therefore the influx of susceptible vectors is very low in that period. Maximal
prevalence in the host species is expected much earlier. For mammal, this occurs two
months after the beginning of the season (10th of August), when pV M = pV1 = pV2 (black
line in panel c), or around three months after the beginning (middle of September), when
pV M = pV1 ·10−1 (red line in panel c), similar to what happens in the avian populations.

Figure 4.3: Prevalence for the three host types (panels a-c) and the vector (panel d). Black (red)
line in panel c represent the outcome with pV M = 0.88 (0.088). The vertical lines show the day at
which the maximal prevalence is reached. Parameter γ is shown in panel d (dotted line).
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Including feeding preference shift only

For the sake of simplicity we assume, in this Subsection, that there is no competition, i.e.
c12 = c21 = 0, and that there is no preference between the two avian species, i.e. δV = 1,
but there is preference between birds and mammals. In particular this preference, which
shifts through the season, is modeled according to the functions presented in (Kilpatrick
et al., 2006b). More specifically, we assume that at time t the vector bites a host of type
i ∈ {bird, M} with probability f i(t) with fbird(t)+ fM(t)= 1. Therefore the biting rates are

bi(t)= f i(t)bmax i ∈ {bird, M}

with f i(t) as shown in Figure 4.4 (panels a-c) and

bi = bbird
Ni

Ni +N j
i, j ∈ {1,2}.

The inclusion of shifts in feeding preference significantly affects virus spread. As shown
in Figure 4.4, the highest prevalencesf or all populations occur earlier compared to the
scenario in which the biting rates are time independent (Figure 4.3). More precisely,
they are expected about two months (beginning of August) after the introduction of the
first infected bird. The two avian species exhibit a similar pattern, but we can note that,
compared to the baseline case, the prevalences have a much higher maximum (about
60%), and they decrease to zero more quickly.
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Figure 4.4: Prevalence for the three host types (panels a-c) and the vector (panel d). Black (red)
line in panel c represent the outcome with pV M = 0.88 (0.088). The shifting mosquito feeding
preferences are represented in panel a, b ( fbird(t)) and c ( fM(t)) with dashed lines. The vertical
lines show the times when the maximal prevalence is reached. The function γ (diapause rate) is
shown in panel d (dotted line).
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The complete model without feeding preference shift

In this case we allow c12 and c21 to be different from 0, while bmax = 0.2 as previously
and pV M = 0.88 as in (Bowman et al., 2005). We explore a range of c12, c21 combinations,
with (c12, c21) ∈ (0.05,1)× (0.05,1). Moreover, we study three cases of vector preference
for birds: no preference, preference for species 1 or for species 2, in which cases δV = 5.
The inclusion of competition produces rather different outcomes, depending on vector
preference, as shown in Figure 4.5, where the central column presents the no-preference
case while the first and third column show the cases of preference for species 1 and 2 re-
spectively. When there is no preference between the two bird species, all four populations
present smaller maximal prevalences if the species with higher infectiousness (1) is less
abundant, i.e. if it is severely affected by the competition with the other (c12 À c21). The
same observation can be made for the vector in the case it prefers the more infectious
bird species (1), and when this latter has a strong ecological disadvantage (c12 > 0.6).
For avian species, the maximal prevalence is higher for the preferred bird population.
Moreover, for the preferred avian species (say i), its highest maximal prevalence values
are reached when ci j À c ji, i.e. when it has a strong ecological disadvantage. This cor-
responds to what found for the value of R0 in Section 4.3.1.
If species 1 (with higher probability of infecting the vector) is preferred, then the maxi-
mal prevalence for both host and vector population is recorded much earlier in the season
compared to when the vector prefers species 2 or there is no preference between them
(see Figure 4.6, blue boxplots). Moreover, as shown in Figure 4.9, if this host type is
also extremely affected by competition with the other species, then the vector maximal
prevalence is expected less than two months after the beginning of the epidemics, so
much earlier with respect to cases with low competition coefficients values.
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Figure 4.5: Prevalence for the three host types and the vector for the model without feeding
preference shift, where species 1 (left) or species 2 (right) is preferred (δV = 5), or there is no
preference (δV = 1, center). Values range from 0 (dark blue) to 1 (bright red). Avian species 1 is
assumed to be more infectious than species 2 (p1V > p2V ).
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The complete model with feeding preference shift

In this Subsection, we study how the virus circulation is affected by competition with
the time-dependent biting rates as presented in Figure 4.4.
As shown in Figure 4.7, if the vector changes its feeding preference during the season,
then the expected maximal prevalence in vector, hosts and mammals increases in com-
parison with the case with constant preference. This is consistent with what observed
when we investigated the case with time-dependent biting rates but without competi-
tion.
If there is no preference between the two bird populations (central column), it can be
seen that the lowest maximal prevalences are expected when the competition is not par-
ticularly high, similarly to what we observed for R0 in Figure 4.1. On the other hand,
if there is a preference for species i, its maximal prevalence is much higher than that
of the other avian population. Furthermore, if the preferred host species is strongly af-
fected by competition (large ci j), both avian maximal prevalences are larger, consistent
with the computation of R0 in Section 4.3.1 and with the simulations presented when
we studied the same scenario with time-independent biting rates.
In this case, infection prevalence in mammals and vector is not significantly affected by
bird competition and its value is around 50% for every (c12, c21) combination.
As found previously in the case without preference between birds and no competition,
assuming a shifting mosquito feeding preference causes a large anticipation of the time
when maximal prevalence is reached. In fact, as shown in Figure 4.6, avian and vec-
tor infection prevalence peaks are expected to occur from to two to three months earlier
respectively. Moreover, the maximal prevalence is recorded earlier in the season when
mosquitoes prefer to feed on the more infectious avian species (see Figure 4.6, orange
boxplots), while there does not seem to be a significant difference between the cases
δV = 1 and δV = 5 when species 2 is preferred.
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Figure 4.6: Boxplot (2.5%, 25%, 75% and 97.5% quantile and median) of the maximal prevalence
recording time (number of days after the introduction of the first infected host) in the cases with
competition coefficients (c12, c21) ∈ (0.05,1)×(0.05,1), and where species 1 or species 2 is preferred
(δV = 5), and when there is no preference (δV = 1) with (without) the assumption of shifting vector
feeding preference in orange (in blue). Whiskers: 2.5% and 97.5% quantiles; box: 25% and 75%
quantiles; thick line: median.
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Figure 4.7: Prevalence for the three host types and the vector in the cases with competition and
time-dependent biting rates, where species 1 (left) or species 2 (right) is preferred (δV = 5), or
there is no preference (δV = 1, center). Values range from 0 (dark blue) to 1 (bright red).
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4.4 Conclusions

In this paper, we presented a mathematical framework to investigate a vector-borne in-
fection spreading in a multi-host community where individuals can interact with each
other epidemiologically as well as ecologically (in particular by competition), following
the study presented in (Roberts & Heesterbeek, 2013) and the model proposed in (Lord
et al., 1996).
We observed that competition may increase R0 by decreasing host population sizes (and
thus increasing vector/host ratios), but that at the same time it might decrease host life
expectancy and in this way decrease R0. A general pattern of the effect of competition on
R0 is therefore difficult to establish, as the influence on infection dynamics very much
depends on the ecological particularities of the system one studies. R0 is also strongly
influenced by the vectors’ biting rate, but also by vector feeding preferences, which may
cause a large increase of R0 if the less abundant host is the preferred one. On the other
hand, R0 might be smaller if the vector tends to feed on the less competent host.
In order to be able to obtain more precise conclusions, we focused on a particular case, the
spread of West Nile Virus within an avian population composed by two different species
that share the same habitat and compete for resources. We explored a wide range of
values for the ecological ingredients, such as ecological interactions and vector feeding
preference, using epidemiological parameter values that have been estimated for WNV.
We found that R0 can be strongly influenced by competition and feeding preferences (see
Figures 4.1 and 4.2).
We also used the model, parameterized for WNV, to simulate seasonal epidemics, and
thus studying the effect of competition and vector preference on transient dynamics.
This model included also dead-end hosts, typically mammals for WNV, and allowed for a
shifting preference of vectors, from birds in the first part of the season to mammals in the
second part, as shown to occur in natural systems by Kilpatrick et al. (2006b), Thiemann
et al. (2011) and Burkett-Cadena et al. (2012). One effect of the presence of dead-end
hosts is a dilution effect (Keesing et al., 2006), as they decrease the circulation of the
virus by wasting, from the pathogen transmission point of view, a proportion of the vec-
tor bites. This effect is no longer observed when assuming time-dependent vector feeding
preference; in fact, in this case mosquitoes bite only competent hosts at the beginning of
the season, enhancing the increase of infection prevalence; indeed, the virus would cir-
culate among mosquitoes with a higher incidence than in the case when mosquitoes are
assumed to feed also on mammals, which are assumed to be dead-end hosts. From the
simulations, it also appears that, with shifting vector preferences, infection prevalence
in dead-end hosts and vectors is not influenced by bird competition (compare Figures 4.5
and 4.7), which in this case affects infection spread only among avian populations.
Shifting feeding preference during a season has another important consequence: the
times of highest prevalence in a season are recorded around the same period for both
vectors and birds, i.e. about two months after the start of the epidemics. This result
agrees with actual observations. For instance, Bell et al. (2005), Lukacik et al. (2006)
and Reisen et al. (2010) recorded the highest WNV prevalence in mosquitoes in August
in different parts of North America, while Nemeth et al. (2007) and Kwan et al. (2010)
noted that the highest records of WNV avian cases are during summer (June-July). On
the other hand, if it is assumed that vector feeding preferences are fixed throughout the
season, one can see that the prevalence peaks later in the season and in vectors later
than in birds. We argue that the assumption of changing feeding preferences is impor-
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tant when studying the seasonal pattern of infections in vector-borne pathogen models.
The model considered here does not attempt to be realistic for any specific infection, even
though some assumptions and parameter values have been tailored for WNV. In reality,
Culex mosquitoes bite a large number of bird and mammal species, some of which will
be dead-end hosts, others will be of different competence for the transmission of WNV
(Komar et al., 2003).The model we studied considered only two avian species, both highly
competent. Possibly, the rather high prevalence of WNV in the simulations, as well as the
high values of R0, are an artifact arising from this simplified situation. Another ques-
tionable assumption is that birds are not allowed to recover, though antibody-positive
birds are not difficult to find in endemic areas (Jozan et al., 2003; Mckee et al., 2015).
Including a compartment of recovered birds would not change the values of R0 but would
certainly decrease infection prevalence.
Despite these limitations, we believe that this study of a simplified situation gave impor-
tant insights on the importance of ecological interactions and vector feeding preferences
in shaping infection dynamics in a multi-host-vector system.
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4.A Supporting Information

Details on model simulations

We simulated the model presented in the main text with a stochastic approach by con-
sidering a Markov chain whose transition probabilities are equal to the rates present in
the differential equations. More specifically, we chose a time step ∆t = 1 day and updated
each class of the system from time t to time t+1 according to binomial processes. For
instance, the number of new infected individuals of species 2 at day t+1 will be given by

B
(

pV2b2IV (t)
N2(t)

,S2(t)
)
.

For each studied case (so for instance for each competition coefficients combination) we
performed 100 stochastic simulations and considered their average.

R0 without vector transmission

If we assume the pathogen can be passed horizontally among individuals of only one
species, say 1, then, using the same notation of the main text, Rh

0 = β11 p11
α1+µ̃1

where

µ̃1 = µ1 + r1
a11N∗

1 +a12c12N∗
2

K1
, N∗

1 = K1−c12K2
1−c12c21

, N∗
2 = K2−c21K1

1−c12c21
. If, as in the main text, a12 =

a21 = a and K1 = K2 = K , then

µ̃1 =µ1 + r1
a11N∗

1 +a12c12N∗
2

K1
=µ1 + r1

aN1 +ac12N2

K

=µ1 + r1

K

(
a

K − c12K
1− c12c21

+ac12
K − c21K
1− c12c21

)
=µ1 + r1

a
1− c12c21

(1− c12 + c12(1− c21))=µ1 + r1a

Thus using the values proposed in the main text β11 p11 = 0.33, α1 = 0.2, r1 = a = 0.5,
µ1 = 0.001, we get Rh

0 ∼ 0.73.

R0 and seasonal dynamics without horizontal transmission

Here we assume there is no horizontal transmission between species 1 individuals (p11 =
0), bmax = 0.2, δV = 1 and pV M = pV1. As reported in Figure 4.8, in this case R0 is
substantially equal to the one computed with p11 6= 0.
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Figure 4.8: R0 in the case p11 = 0 with bmax = 0.1 (blue), 0.2 (orange) and 0.3 (red) as function
of the competition coefficients c12, c21 ∈ {0.1,0.5,0.9}× {0.1,0.5,0.9} and the feeding preference
index δV ranging from 1 to 10. Continuous (dashed) lines regard the case when species 1 (2) is
preferred.
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Infection peak times for the complete model without feeding preference
shift

Figure 4.9: Maximal prevalence recording time (number of days after the introduction of the first
infected host) for cases species 1 (left) and species 2 (right) preferred and no preference (center)
with competition.



Conclusions

In this thesis, that is a collection of scientific articles, we have seen that mathematical
models represent a very helpful tool to investigate vector-borne infections, in particular
from the vector dynamics perspective. The statistical and mechanistic models developed
throughout my work provided new important insights on the dynamics of Cx. pipiens
mosquitoes and its dependence on different external factors. We observed that mosquito
abundance depends strongly on several abiotic factors, especially temperature and rain-
falls. In this context, the model developed in Chapter 2 allowed us to explore several
what-if scenarios, providing interesting insights on how possible climatic changes could
affect the future density of this vector. Furthermore, we presented one of the first efforts
of modeling the effect of intraspecific competition between Cx. pipiens and Ae. albopic-
tus. We highlighted that what so far observed only in laboratory experiments might
occur also in natural conditions and that Cx. pipiens abundance might be strongly af-
fected by this invasive species.
The models presented in my thesis can be used not only to investigate Cx. pipiens pop-
ulation dynamics but can be adapted to answer other important epidemiological ques-
tions. In fact, the model presented in Chapter 2 can be used to study the spread of WNV
during a typical breeding season, or any other potential virus that sees Cx. pipiens as
competent vector, by adding for instance one or more classes of hosts (eg. birds, mam-
mals) and by dividing the vector population into susceptible and infected compartments.
Understanding the interaction between climatic variables and vector abundance can be
crucial to improve our estimates of epidemiological risks for arboviruses for which Cx.
pipiens is a competent vector, and also for the assessment of vector control strategies.
As we noted in Chapter 4, such possible epidemiological model could be greatly improved
by carefully evaluating Cx. pipiens feeding preference in the considered study area, al-
lowing for a more precise determination of the infection risk.
The extension developed in Chapter 3 can be also adapted for an epidemiological frame-
work. Still focusing on a Cx. pipiens-borne infection, one could investigate how com-
petition with Ae. albopictus might affect the transmission of the transmitted pathogen.
Interspecific competition negatively affects Cx. pipiens abundance and thus it might
limit the circulation of the infection. Besides, recent findings have shown that interspe-
cific competition at the larval stage may affect strongly the viral competence of adult
mosquitoes of several Aedes and Culex species. If similar effects exist in the competi-
tion between Ae. albopictus and Cx. pipiens, they would significantly impact the viral
susceptibility and transmissibility of local mosquito populations and should therefore be
considered in the estimation of outbreak risks.
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Although based on very simple assumptions, the results provided in Chapter 4 highlight
that ecological interactions between different hosts might strongly affect pathogen trans-
mission. This model, easily adaptable to other vector-borne infections, represents one of
the first attempts to study the interaction of ecological processes and the epidemiology of
vector-borne infections. This research topic should be definitely studied more deeply in
the future, also in the case of other vector-borne pathogens. For instance, Lyme disease,
transmitted by ticks to mammal hosts including humans, or African trypanosomiasis,
transmitted by the tsetse fly to humans and other animal species.
To conclude, we can affirm that interspecific interactions are crucial also in science: in
fact, my thesis is the result of cross-contamination processes between different research
fields (mathematics, statistics, biology, entomology, epidemiology, etc.). Using mathe-
matics we can help in answering different biological and epidemiological questions very
important for entomologists and public health authorities, providing very helpful in-
sights on Cx. pipiens and WNV dynamics. Moreover, we offered various ideas for possi-
ble future studies, which I hope other scientists (modelers, data analysts, etc.) will find
intriguing and stimulating.
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