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Abstract

The increasing number of repeated malware penetrations into official mobile app markets

poses a high security threat to the confidentiality and privacy of end users’ personal and

sensitive information. Protecting end user devices from falling victims to adversarial apps

presents a technical and research challenge for security researchers/engineers in academia

and industry. Despite the security practices and analysis checks deployed at app markets,

malware sneak through the defenses and infect user devices. The evolution of malware

has seen it become sophisticated and dynamically changing software usually disguised

as legitimate apps. Use of highly advanced evasive techniques, such as encrypted code,

obfuscation and dynamic code updates, etc., are common practices found in novel mal-

ware. With evasive usage of dynamic code updates, a malware pretending as benign app

bypasses analysis checks and reveals its malicious functionality only when installed on a

user’s device.

This dissertation provides a thorough study on the use and the usage manner of

dynamic code updates in Android apps. Moreover, we propose a hybrid analysis approach,

StaDART, that interleaves static and dynamic analysis to cover the inherent shortcomings

of static analysis techniques to analyze apps in the presence of dynamic code updates.

Our evaluation results on real world apps demonstrate the effectiveness of StaDART.

However, typically dynamic analysis, and hybrid analysis too for that matter, brings the

problem of stimulating the app’s behavior which is a non-trivial challenge for automated

analysis tools.

To this end, we propose a backward slicing based targeted inter component code

paths execution technique, TeICC. TeICC leverages a backward slicing mechanism to

extract code paths starting from a target point in the app. It makes use of a system

dependency graph to extract code paths that involve inter component communication.

The extracted code paths are then instrumented and executed inside the app context

to capture sensitive dynamic behavior, resolve dynamic code updates and obfuscation.

Our evaluation of TeICC shows that it can be effectively used for targeted execution of

inter component code paths in obfuscated Android apps. Also, still not ruling out the

possibility of adversaries reaching the user devices, we propose an on-phone API hooking

i



based app introspection mechanism, AppIntrospector, that can be used to analyze, detect

and prevent runtime exploitation of app vulnerabilities that involve dynamic code updates.

Keywords: Android Security, Malware Analysis, Dynamic Code Updates
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Chapter 1

Introduction

In recent years, technological advancements in every field of life have been observed,

adopted and have now become integral parts of our daily lives. The field of communication

has revolutionized the way man lives and the world has effectively become a global village.

The advent of the Internet in conjunction with modern day smart handheld devices, i.e.,

smartphones and tablets, etc., has brought the world to a user’s fingertips.

Mobile devices are more pervasive and ubiquitous than ever before. Traditional com-

puting has transformed, and rightly so, the number of active mobile devices surpassed

the world population in 2014 [54]. Smartphone vendors, framework providers, and mobile

application developers contribute to this mobile computing ecosystem. With computing

gone mobile, users are empowered to perform office work, undertake banking transactions,

remain active on their social networks, and much more, on the move. As smartphones

provide a wide range of services of varied nature, they access, store, process, send and

receive users’ personal information, which if compromised can harm the user financially,

socially and psychologically. The nature and the sensitivity of the information handled

by a smartphone requires protection from both inside and outside adversarial access.

1.1 Motivation and Problem Statement

Mobile devices are shipped with one of the many operating systems (OS) available; pro-

prietary or open source depending upon the vendor. Typically, vendors allow users to

extend the functionality of their devices by downloading applications (shortly apps) from

various app markets. Although, this feature is more or less common to a varying degree

in all the mobile platforms, in this text we would mainly focus on the Android platform.

Since its introduction in 2008, Android has emerged as the leading operating system

used for handheld devices. Dominating the smartphone market for the last few years, it

reached 86.2% of the smartphone market share in 2016 [97]. During a 30-day active user

1



2 1.1. MOTIVATION AND PROBLEM STATEMENT

monitoring in September 2015, Google confirmed that Android has 1.4 billion active users

globally [50]. Android is an open source operating system with open architecture where

apps are published at numerous third-party market along with its official app market,

i.e., Google Play store [25]. Google Play store surpassed 2.6 million apps in December

2016 [92].

These are some of the stats that provide an idea about the popularity of the Android

framework. The pervasiveness, popularity and capability of mobile devices to collect and

store users’ private and sensitive information makes them very attractive for malware

developers too. Hence, the number of mobile malware samples increases as the days

go by. Among others, here too, Android based devices are in the firing line and recent

reports suggest that 99% of all the mobile malware are targeted towards Android based

devices [60].

To counter mobile malware, app markets deploy different kind of vetting mechanisms,

e.g., Bouncer at the Google Play store. Generally, apps are analyzed before being made

available for the users at the app markets. Apps failing the analysis check are rejected

and Google claimed to have reduced the number of malware by 40% the year immediately

following the introduction of Bouncer [81].

Researchers in both academia and industry contribute to strengthen the analysis pro-

cess and detect malicious apps. Analysis techniques are broadly divided into static and

dynamic analysis, both having their own advantages and disadvantages. As analysis tech-

niques evolve, malware developers also come up with new ways of evading these analysis

tools and infecting user devices. With the passage of time, malicious apps have also

evolved and a variety of evasion techniques, such as anti-emulation, anti-debugging, code

obfuscation, evasive use of dynamic code updates, etc., are being widely used to thwart

analysis tools.

1.1.1 App Analysis in the Presence of Dynamic Code Updates

Mobile app developers use dynamic code updates to extend their apps’ functionality at

runtime. The use of techniques, such as dynamic code loading (DCL) and reflection,

is getting mainstream in mobile apps in the quest to develop feature-rich and adaptive

solutions to meet the needs of providing sophisticated user experiences. On the other

hand, the inherent nature of these techniques makes apps analysis a challenging task, and

therefore, they are often used by malware developers to evade analysis tools deployed at

the app markets.

To make the analysis even more challenging, these techniques are used in conjunction

with other analysis evasion techniques, such as code encryption, parameter encryption and

dynamic provisioning of the parameters used, to name a few. State-of-the-art research
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on static analysis finds it extremely daunting to properly analyze code in the presence

of dynamic code updates [95]. Indeed, the dynamic nature of DCL and reflection do not

allow static analysis tools to properly infer the behavior of an app and, as a result, make

them clueless when detecting malicious functionality.

Moreover, most of the static analysis tools are based on the assumption that the code

base of an app remains the same and does not change dynamically [41,57,74]. Obviously,

this assumption is far from reality and a simplification made to cover the limitations

of the current analysis tools. On the other hand, researchers have demonstrated that

dynamic code updates can be used to bypass the analysis check at app markets [51,90,103].

Nevertheless, a number of static analysis approaches are found in literature to analyze

apps in the presence of dynamic code updates [72, 80, 106] . However, static analysis can

always be hindered with app features of dynamic nature. At the same time, solutions

found in the literature for enhancing static analyzers of Java code to analyze dynamic

code updates rely on loadtime code instrumentation which is not available for Android,

and therefore, these solutions cannot be directly applied to Android apps [48]. Similarly,

solutions based on instrumentation of apps rely on repackaging the app, which breaks the

app signature and allows malicious apps to conceal their malicious functionality.

A research challenge in this regard is to study what makes dynamic code updates so

hard to analyze when only static analysis is used. Moreover, as it can be concluded from

the above discussion that the possibility of dynamic analysis coupled with static analysis

can make the job of an analyst simpler, a challenge would be to design a hybrid approach

that can be deployed to analyze mobile apps in the presence of dynamic code updates.

1.1.2 Ensuring Execution of Targeted Code Paths during Dynamic Analysis

To cover the shortcomings of static analysis and resolve analysis issues created by features

like dynamic code updates, dynamic analysis is often the go-to solution. On the one hand,

dynamic analysis provides solution to these problems. On the other hand, it requires test

cases which could execute a major/required portion of the code which leads to another

challenging problem. Execution of certain code paths in mobile apps depends upon a

combination of various user/system events. Generally, it is hard to predict inputs which

can stimulate the required behavior in these apps. This feature of mobile apps is widely

used by malware developers to conceal malicious functionality.

State-of-the-art research shows a number of triggering solutions, ranging from black-

box to grey-box, for Android apps with a varied degree of code coverage [83,85,94,96,113].

Code coverage is a well-known limitation of dynamic analysis approaches. However, for

the purpose of security analysis rather than testing, it is required to stimulate/reach only

specific points of interest in the code rather than stimulating all the code paths in an
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app. In literature, researchers have focused mainly on providing inputs to make an app

follow a specific path. Providing the exact inputs and environment becomes very hard as

different apps may require different execution environments. Moreover, not all inputs can

be predicted statically, because of obfuscation or other hiding techniques. In addition,

existing target triggering solutions, such as [93] and [43], are generally limited to code

execution inside a signal component of the app or do not handle the dynamic code updates

well.

The key research challenge in this direction is to design an automated and effective

solution for dynamic targeted execution of Android apps. Moreover, the triggering mecha-

nism should also cover inter component communication as it constructs an essential part

of Android apps behavior and analysis would be incomplete without it.

1.2 Research Contributions

The main research aim of this thesis is to move forward the state-of-the-art app analysis

research in the presence of dynamic code updates. Here we briefly discuss the main

research contributions of this work.

1.2.1 Reflection-Bench and Empirical Analysis on Real World Apps

In order to understand what causes the difficulty in analyzing apps in the presence of

dynamic code updates, it is important to perform a study on the manner in which dynamic

code updates are used in real world apps. Moreover, it is essential to have a set of

benchmark apps that could be used by the research community to test the capability of

their static analysis tools to handle dynamic code updates.

• We design and develop reflection-bench, a set of benchmark apps that use reflection

to conceal information leakage, and use it to test some of the state-of-the-art static

analysis tools. We plan to make reflection-bench public so that it can be used by

other researchers to test the effectiveness of their analysis tools in the presence of

reflection.

• We develop an automated static analysis tool which can perform analysis on Android

apps, detect information flow between given source and sink APIs, and produce

statistics about the presence of such information flow paths between source/sink

APIs in individual apps as well as the whole market.

• We collect and analyze a dataset of real world apps containing 16,528 benign and

3,645 malicious apps in order to investigate the sources of the parameters used in
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reflection/DCL APIs. To the best of our knowledge, this is first study focusing on

the sources of the parameters of reflection/DCL APIs. The analysis results would

help in understanding the behavior of apps that use dynamic code updates and

designing more effective analysis procedures and policies to detect malicious apps in

the market.

1.2.2 Handling Dynamic Code Updates using a Combination of Static and

Dynamic analysis

We propose a hybrid approach combining static and dynamic analysis to cover for the

inherent inability of static analysis to deal with dynamic code updates in Android apps.

• We propose, design and implement StaDART, a system that interleaves static and

dynamic analysis in order to reveal the hidden/updated behavior. By utilizing Art-

Droid, we avoid modifications to the Android framework and make it largely frame-

work independent. StaDART downloads and makes available for analysis the code

loaded dynamically, and is able to resolve the targets of reflective calls complement-

ing app’s method call graph with the obtained information. Therefore, StaDART

can be used in conjunction with other static analyzers to make their analysis more

precise.

• We integrate StaDART with DroidBot to make it fully automated and to ease the

evaluation. Moreover, we analyze a dataset of 2,000 real world apps (1,000 benign

and 1,000 malicious). Our analysis results show the effectiveness of StaDART in

revealing behavior which is otherwise hidden to static analysis tools.

• We plan to release our tool as open-source to drive the research on app analysis in

the presence of dynamic code updates.

1.2.3 Triggering Problem: Targeted Execution and Runtime Analysis

One of the main challenges associated with solutions based on dynamic analysis is the

triggering problem, i.e., apps require certain user/system events to follow specific paths. In

this direction, the key research goal is to advance the state-of-the-art research in triggering

mechanisms and design an intelligent and scalable solution for execution of targeted inter

component code paths in Android apps. The main contributions in this regard are enlisted

here.

• We extend the backward slicing mechanism to support inter component communi-

cation (ICC), i.e., extract slices across multiple components. Moreover, we enhance
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a backward slicing tool, SAAF, to perform data flow analysis with context-, path-

and object-sensitivity.

• Targeted execution of the extracted inter-component slices without modification to

the Android framework.

• We design and implement a hybrid analysis system based on static data-flow analysis

and dynamic execution on a real-world device for improved analysis of obfuscated

apps featuring dynamic code updates.

Keeping in mind the severity of the problem and the increasing use of anti-analysis

techniques in recent malware that infiltrated the official Google market, we go a step

ahead and aim to move part of the analysis from the analysis environment to real user

devices. Key contributions in this regard are:

• We introduce a paradigm shift by moving part of the analysis of Android apps from

an artificial analysis environment to end user devices. Careful design, implementa-

tion and deployment of this type of solutions could pave the path to solving problems

like de-obfuscation, triggering and avoiding vulnerability exploitation at runtime.

• We investigate and provide a theoretical overview of some of the well known hooking

tools in security research community and techniques found in the literature.

• We design and implement an app introspection mechanism that leverages API hook-

ing to analyze, detect and prevent malicious activities that involve dynamic code

updates. Our analysis solution relies on minimal collaboration from app develop-

ers and does not require any modification to the Android framework or rooting the

device.

1.3 Structure of the Thesis

This dissertation is organized as follows:

Chapter 2 provides a brief background of Android security. It describes the basics of

dynamic code update techniques and their usage motivations in Android apps. Fur-

thermore, it makes a case of the prevalence of dynamic code updates by presenting

the results of our analysis on the use of dynamic code updates in real world Android

apps, both benign and malicious.

Chapter 3 goes deeper into the problem by presenting an analysis on the manner in

which real world apps use dynamic code updates, i.e., how various dynamic code
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update APIs get their parameters. It also presents a set of benchmark apps and

use them to demonstrate the inability of static analysis tools to analyze apps in the

presence of dynamic code updates.

Chapter 4 provides the design, details of the implementation and evaluation results

of our proposed hybrid solution based on interleaving static and dynamic analysis

techniques to handle dynamic code updates in Android apps.

Chapter 5 presents the design, implementation and evaluation results of our proposed

backward slicing based mechanism for targeted execution of inter component commu-

nication in Android apps. It also discusses the enhancement made to the backward

slicing mechanism and the tool used for backward slicing.

Chapter 6 shifts the analysis from an artificial analysis environment to real user de-

vices. It presents a runtime analysis approach to avoid exploitation of benign, but

vulnerable, apps that involve dynamic code updates. It relies on an API hooking

based app introspection mechanism that analyzes dynamic code updates as they

appear.

Chapter 7 draws the main conclusions of this research work and discusses the possible

future directions.
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Chapter 2

Background

Android is globally accepted as the most widely used operating system for handheld de-

vices. It supports a wide range of devices, such as smartphones, watches, smart TVs,

etc. Android provides an open platform for the developers as well the device manufac-

turers. As a result, device manufactures ship customized variants of Android with their

devices. On the other hand, any third-party developer can develop applications to extend

the Android platform. These apps are usually published to app stores from where users

can download, purchase and install them. This openness of the platform makes it more

attractive for developers and as a result, the number of apps developed for Android based

devices are always on the rise. However, it also attracts adversaries to develop malicious

apps and infect user devices. Hence, the number of malware directed towards Android

based devices is also the highest among other peer platforms.

To counter the problem of malware penetration into the Android ecosystem, Android

incorporates a wide of range of security features. Android security team collaborates

with developers, device manufacturers and researchers to ensure that the best security

practices are followed and the Android platform/apps are free of bugs and vulnerabilities.

The goal of these security features and practices is to stop malware reach a user device

and, in case a malware infects a user device, minimize the damage, i.e., to protect a

user’s private data and resources. Android uses a layered security architecture to counter

malware that targets various levels of the Android stack. In order to protect sensitive

data and resources from malicious apps, Android relies on a Unix-like sandboxing model

and app permissions. Moreover, Android uses an app scanning process at the Google Play

store which blocks apps that can be harmful for user devices.

Despite the robust security architecture of the Android platform, malware developers

still find ways to bypass the scanning process and infect user devices. Hence, Android

ecosystem has malicious apps in abundance. There has been an ongoing competition

between the good and the bad since the day existed and the area of Android security

9
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is no different. Researchers/developers in both industry and academia propose the best

security practices and tools to avoid being victims of malicious apps. On the other hand,

malware developers use an array of techniques to evade analysis tools and infect user

devices.

2.1 Android Security

An open architecture resulted in Android being the leading OS in smarphone community.

Android is open source where the source code is provided as part of the Android Open

Source Project (AOSP) for developers, researchers and device manufacturers [39]. The

open architecture allows for a repetitive and rigorous research-attack-fix cycle, and as a

result a security hardened framework which is a basic step towards a vigorous Android

ecosystem. We briefly discuss some of the key security features that Android incorporates

to ensure app security.

2.1.1 App Sandboxing

The heart of Android platform is based on a Linux kernel. Over the years, Linux kernel

has been exposed to rigorous research and testing. As a result, it has become secure

and mostly free of bugs. Therefore, it is widely adopted in both academia as well as

industry. Based on the Linux kernel, Android inherits some key security features which

help in running each app in an individual sandbox. The main purpose of app sandboxing

is to prevent harmful apps from damaging other apps on the device as well the Android

framework.

Linux provides a user-based permission model to protect one user’s resources from the

other. Android leverages this user-based permission model to restrict apps to their own

sandboxes. Contrary to Linux, however, Android uses a separate user ID (UID) for each

app. So, each app run as a separate user in a separate process. This in turn creates a

kernel-level sandbox for each app where there are virtual walls between different apps and

the Android framework itself. Each process has its own privileges which determines the

data and resources that can be accessed by this process. Moreover, processes are assigned

group IDs to enforce permissions to access sensitive resources. Consequently, an app can

not access the data of another app or resource unless and until explicitly permitted.

Kernel level sandboxing ensures that apps at all levels, i.e., native apps, user apps and

system apps, abide by the restrictions imposed upon them by the Android framework. The

security model makes sure that, in a properly configured device and without compromising

the Linux kernel level security, a harmful app does not damage any of the other apps on

the device or the device itself.
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2.1.2 Android Permissions

An Android app is delivered to users as an APK file which is a .zip archive containing

multiple code, resources and configuration files. One of these files, AndroidManifest.xml,

determines the app’s capability. It provides information about the various components

of the app, i.e., activities, services, content providers, etc. Listing 2.1 shows an example

Manifest file.

Listing 2.1: Example Manifest File

1 <?xml version="1.0" encoding="utf -8"?>

2 <manifest xmlns:android="http: // schemas.android.com/apk/res/android"

3 package="com.test" >

4

5 <uses -permission android:name="android.permission.READ_PHONE_STATE" />

6 <uses -permission android:name="android.permission.SEND_SMS" />

7

8 <application

9 android:allowBackup="true"

10 android:icon="@drawable/ic_launcher"

11 android:name="com.test.MyApplication"

12 android:label="@string/app_name" >

13 <activity

14 android:name="com.test.MyActivity"

15 ...

16 </activity >

17 </application >

18

19 </manifest >

In the Android sandboxing model, an app is restricted to access limited resources

by default. Access to sensitive resources, which if compromised can adversely affect

the user or device, is generally provided through higher level framework APIs. These

resources are guarded with permissions and an app must declare the required permission

in its Manifest file if it has to access the resource. Android framework defines a list of

permissions corresponding to various sensitive resources, e.g., accessing camera, network,

telephony services, messaging services, etc.

In Listing 2.1, Line 5 and Line 6 represent the declared permissions by the app.

The permission android.permission.SEND SMS guards the SMS sending API. Any app

without this permission cannot send text messages. The list of permissions declared in

the Manifest file of an app are displayed to the user, along with a brief description of what

they are used for, at the time of installation. Before Android 6.0, named Marshmallow,
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Android used an all accept or reject model where a user had to accept all the permissions

in order to proceed with the installation. Starting from Android 6.0, users can selectively

allow and/or deny permissions and install the app. Furthermore, a user can later on

revoke allowed permissions or allow denied permissions. Current permission model makes

app installation more flexible.

Permissions provided by the Android framework are called System permissions. These

permissions are known to app developers and they guard standard framework features

or resources. In addition, developers can define their own permissions to guard some of

the functionality their apps provide to other apps on the device. As a result, only apps

having these user-defined permissions can avail the exported functionality. Based on the

nature of the resources they guard, permissions are divided into various protection levels.

• Normal: Normal permissions are required for apps that require access to data or

resources where a user’s privacy or operation of other apps are not exposed to high

risk. Normal permissions are granted by the system without notifying the user.

• Dangerous: In contrast, dangerous permissions guard data or resources where a

user’s privacy or operation of other apps is at stake. Dangerous permissions are dis-

played to users and only granted to an app after an explicit user approval. Example

of a dangerous permission is android.permission.SEND SMS.

• Signature: Signature level permissions are granted by the system only if the declar-

ing and requesting apps are signed with the same signature.

• SignatureOrSystem: SignatureOrSystem level permissions are granted by the

system to apps which are in the Android system image or in case where declaring

and requesting apps are signed with the same signature. Android documentation

discourages use of permissions with this protection level.

In most of the cases, a SecurityException is raised when an app tries to access data

or resources guarded with a permission that is not granted to the app. Permissions allow

apps to operate within the boundaries explicitly defined by the user. It enables a user to

have control over the app, i.e., revoke permissions or uninstall the app if the app shows

malicious behavior.

2.1.3 App Vetting

Android supports an open app market where anyone can develop apps and publish them

to app stores. There are a number of third-party app stores along with the standard

Google Play store. On the one hand, openness of the app market provides users plenty of
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options to extend the functionality of their Android based devices. On the other hand,

it makes it hard to distinguish between legitimate apps and malicious apps disguised as

benign apps. Hence, the job of security engineers and researchers to maintain a vigorous

Android ecosystem has become more difficult.

At the Google Play store, Android introduced an app scanning mechanism named

Bouncer in 2012. Bouncer is the vetting process Google Play store uses to detect and

block malicious apps. With the introduction of Bouncer, they claimed to have reduced

the number of malware by 40% the following year. Nevertheless, proper vetting process

at most of the Android app stores is close to non-existent. Therefore, these app stores

contribute to a major portion of the malware samples.

The vetting process usually checks apps for malicious contents, looks for suspicious

patterns and observes the behavior of the submitted app before publishing it to the

app store. Two broad categories used for app analysis are static and dynamic analysis,

which analyze the app without and with executing it, respectively. Using such analysis

techniques, Google Play store blocks most of the apps with obvious malicious behavior.

Therefore, incidents of malicious apps being reported at the Google Play store are a minor

portion of all the malware. Higher number of malicious apps found at the third-party app

stores are largely due to the lack of app vetting process at these app stores. To ensure

security and prevent malicious apps at third-party stores infect users’ devices, Android

introduced a new security feature in Android 7.0, i.e., Verify Apps. The verify apps

feature scans apps downloaded from sources other than Google Play before installation.

It also keeps on monitoring the app after installation and warns the user if the app shows

malicious behavior.

As security researchers and engineers strive to develop robust security mechanisms

to ensure a clean Android ecosystem, malware developers come up with more stealthy

ways to go through the security walls and infect user devices. Every new malware sample

reveals that malware developers are well equipped to capitalize on every little security bug

and loophole that might be there in the Android framework or apps. They make use of a

number of evasion techniques which makes it extremely hard for automated analysis tools

to understand the behavior of an app. Some of these techniques include code encryption,

various forms of obfuscation, reflection and dynamic code loading, anti-emulation and

anti-debugging, etc. Since the focus of this dissertation is app analysis in the presence of

reflection and dynamic code loading, we elaborate them more in the following section.
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2.2 Dynamic Class Loading and Reflection in Android

Dynamic code updates play a very important role in modern day feature-rich and dy-

namically changing mobile apps. Here, we provide some background of dynamic class

loading and reflection, their usage and implementation in Android. Android uses An-

droid Runtime (ART) to run apps and system services. ART uses ahead of time (AOT)

compilation using a dex2oat tool to convert DEX files into .oat binaries. However, ART

is backward compatible with its predecessor Dalvik and can execute apps compiled for

the Dalvik Virtual Machine (DVM). Moreover, the dynamic code update functionality,

i.e., DCL and reflection, is supported by ART as it was supported by the Dalvik runtime.

2.2.1 Overview of Dynamic Class Loading

DCL provides flexibility to a developer to load classes at runtime to extend the function-

ality of apps. Similar to Dalvik, ART allows a developer to load additional code obtained

from alternative locations at runtime [53]. It allows apps to load .zip, .jar and .apk

files containing a valid classes.dex file from outside the app code base, such as files

stored on the internal storage or downloaded from the network.

Android provides a set of class loaders, arranged in a hierarchical manner, which are

used to load classes to memory from internal storage. Every child class loader holds a ref-

erence to its parent class loader where the root of the tree is the BootStrap ClassLoader,

which has a null reference to its parent.

A common interface required by all the class loaders is implemented by an abstract

class named ClassLoader whereas other specific class loaders are then derived from Class-

Loader, such as DexClassLoader, PathClassLoader, etc. ClassLoader provides methods

such as loadClass(), findLoadedCalss() and defineClass(), which allows a devel-

oper to load a class, search for loaded classes and define a class from a byte sequence at

runtime, respectively. Android also provides a class DexFile whose methods can be used

to load classes directly. However, these methods require a reference to a class loader as

an argument.

In case of a class loading request, the current class loader first checks whether the class

has already been loaded or not. If it fails to find the class in the list of the loaded classes,

it requests its parent class loader to find out if the class has already been loaded. This

process continues until the request reaches the root of the tree which tries to find the class.

If the root of the tree is unable to find the requested class, a ClassNotFoundException

is thrown, which propagates back to the initial class loader. This necessarily means that

the class has neither been loaded by the current class loader nor by its parents up till

the root of the class loaders tree. The current class loader then tries to load the class by
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itself. If it fails to load the requested class, the ClassNotFoundException is released.

2.2.2 Overview of Reflection

Reflection is the ability of a program to treat its own code as data and manipulate it

during execution [47]. Using reflection, an app can reason about and modify its execution

state during runtime. The dynamically loaded code is usually accessed using reflection.

Android uses the same reflection APIs as used in Java. In the following, the functionality

provided by reflection APIs is outlined:

• Retrieving Class objects: All of the reflection operations start from java.lang.Class.

Objects of this class represent all the classes and interfaces in a running app.

Classes and interfaces that could be used to obtain reflective information about

other classes and objects are provided by the java.lang.reflect package. Classes

in the java.lang.reflect package are usually without any public constructor.

However, these classes can be instantiated by calling different methods on Class.

Based on the information, an object of Class can be retrieved in different ways. It

is clarified that an instance of Class is referred here as object while an instance

of the corresponding Class object is referred to as ’instance’. If an instance of a

Class object is available, its Class object can be retrieved by calling getClass()

method on the instance. If the type information of an object is available, the corre-

sponding Class object can be retrieved by appending .class to the class type (and

.TYPE for primitive types). A very common way to obtain Class objects, however,

is to call Class.forName(className) where the string className represents the

name of the Class object. Once a Class object is retrieved, other related classes

can also be retrieved using methods such as getSuperClass(), getClasses(),

getDeclaredClasses(), etc.

• Accessing Members: Once a Class object is retrieved, its members can also be

accessed using reflection APIs. These members can be fields, methods or construc-

tors. Field objects can be retrieved using getField(fieldName), where the string

fieldName represents the name of the field, and getDeclaredFields(), which re-

trieves all the declared fields. Similarly, there are APIs to obtain the type information

of fields, and obtain and change field values as well. Having a Class object, Con-

structor objects of this class can be retrieved using the getConstructor(Class[]

params), getConstructors(), or getDeclaredConstructors(). Similarly, Method

objects of a retrieved class can be obtained using methods such as getMethod(methodName,

params), getMethods(), and getDeclaredMethods(), which return objects of the
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specific Method represented by the string methodName, all the public methods of the

class, and all the declared methods in the class, respectively.

• Instance creation and Method Invocation: An instance of a specific class type

can be created if the corresponding object of Class or Constructor is available. A

default zero argument constructor of the class can be called using the newInstance()

method on the Class object whereas the constructor with parameters can be called

using the newInstance(params) method on the Constructor object. Both of these

methods return instances of the given Class object. Similarly, the methods obtained

from the Class objects can be invoked using the invoke(objectRef) method where

the string objectRef represents a reference to the object on which the method is

invoked.

2.2.3 Usage Motivation of Dynamic Class Loading

Dynamic class loading is usually used for the following purposes:

• Extensibility: As shared library does help developers in building modular software,

DCL permits to easily extend the app’s capabilities such that developers can pro-

grammatically get new code running by loading it via different sources (i.e., network,

persistent storage, etc. . . ) at runtime.

• App updates: Instead of distributing updated versions of the same app, function-

ality provided by the current app are extended using updates downloaded through

the network and loaded dynamically using class loaders.

• Common Frameworks: Some of the apps depend upon a common framework.

For example, an advertisement framework, which shows advertisements to the user.

Such a framework is most of the times installed as a separate app and the apps

which rely on it load its code dynamically when needed. If this would not have been

the case, the functionality provided by the framework must have been implemented

in every app dependent upon the framework. Similarly, in the case of updating

that common functionality provided by the framework, only the framework needs to

updated rather than updating all the dependent apps.

2.2.4 Usage Motivation of Reflection

Some of the reflection APIs are discussed in this section earlier. In the following, we

provide an overview of what reflection offers to a developer [106].
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• Hidden API method invocation: Developers of the Android operating system

may mark some methods as hidden. In this case, the declaration of these methods

does not appear in the SDK library and, thus, they are not available for app de-

velopers. At the same time, app developers, who want to use these undocumented

features of Android, may use reflection APIs to invoke them.

• Access to the private API methods and fields: During the compilation, the

compiler ensures that the rules for accessing fields and methods hold according to the

specified modifiers. Unfortunately, using the reflection API at runtime it is possible

to manipulate modifiers and, therefore, gain access to private variables and methods.

• Conversion from JSON and XML representation to Java objects: Reflec-

tion is heavily used in Android to automatically generate JSON and XML represen-

tation from Java objects and vice versa.

• Backward compatibility: It is advised to use reflection to make an app backward

compatible with the previous versions of the Android SDK. In this case, reflection

is exploited either to call the API methods, which have been marked as hidden in

the previous versions of the Android SDK, or to detect if the required SDK classes

and methods are present.

• Plugin and external library support: In order to extend the functionality of

an app, reflection APIs may be used to call plug-ins or external library methods

provided during runtime.

In general, we can conclude that dynamic code loading and reflection are both essential

parts of apps, specifically Android apps. To reinforce the fact further, we provide an

analysis of real world apps on the usage of reflection and DCL in the following section.

2.3 Analysis of Dynamic Code Update Features in Android Apps

To understand the significance of the use of reflection and DCL in Android apps, we

performed a study of 13,863 apps from Google Play store and 14,283 apps from several

third-party markets gathered in July 2013, along with 1260 malware samples from [116].

In this analysis, we consider reflection calls that influence the app method call graph

(MCG), i.e., method invocation (invoke) and object creation (newInstance) functions,

and do not study other reflection API capabilities like field modification.

The aggregated results of the analysis with our modified version1 of AndroGuard [2]

1We found out that AndroGuard does not discover all possible cases of reflection and DCL.
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Table 2.1: Usage of DCL and Reflection in Applications

Markets
Total DCL used by Refl. used by

Apps Apps % Apps %

Google Play 13863 2573 18.5% 12233 88.2%

Androidbest 1655 35 2.1% 1088 65.7%

Androiddrawer 2677 379 14.1% 2596 96.9%

Androidlife 1677 117 6.9% 1368 81.5%

Anruan 4230 162 3.8% 2868 67.8%

Appsapk 2664 112 4.2% 1907 71.5%

F-droid 1380 11 0.07% 792 52.8%

Malware 1260 251 19.9% 1025 81.3%

Total 29406 3640 12.3% 23877 81.1%

are shown in Table 2.1. It is evident that dynamic code update features are widely used

by application developers.

On Google Play we downloaded approximately 500 top free applications from each

category. Results of the analysis reveal that on average 18.5% of analyzed apps from

Google Play contain DCL and 88% use reflection. On average, apps with DCL contain 1

DCL call and apps with reflection incorporate around 22 reflective calls. The categories

“BUSINESS”, “SHOPPING” and “TRAVEL AND LOCAL” show minimal DCL rates

(at most 10% of apps use DCL). The most “dynamic” category is “GAME”; 38.3% of

applications in this category use DCL2.

We further downloaded apps from 6 third-party markets, namely, androidbest [5],

androiddrawer [6], androidlife [7], anruan [9], appsapk [10] and f-droid [21]. The first

5 markets distribute only provided APK files, while the latter (f-droid) along with the

final packages also provides links to the source code of the apps. The lowest fraction

of applications with DCL calls were observed on the f-droid market that contains only

open-source apps. In terms of individual usage, the average number of reflection calls is

around 19 per app package across all third-party markets (with f-droid exhibiting again

the lowest number of reflection calls at around 14).

Besides the analysis of benign applications, we studied malware samples provided

in [116]. The average usage of DCL across all malware samples is 19.9%, whereas 81%

of all samples use reflection. However, this dataset is old, and DCL usage rates in more

recent malicious applications are expected to be significantly higher [90] because this

2Mobile games can be very sophisticated and include realistic physics and a lot of graphics. Thus, developers

often develop the original app as an installer that dynamically fetches additional code during the first run.
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functionality is used to conceal malicious payloads [64] from static and dynamic analyzers

like Google Bouncer.

Listing 2.2: DCL and Reflection Usage in AnserverBot

1 [com.sec.android.providers.drm.Doctype]

2 public static Object b(File pFile , String pStr1 , String pStr2 , Object []

pArrOfObj) {

3 String s3;

4 if (pFile == null) {

5 String s1 = a.getFilesDir ().getAbsolutePath ();

6 //get the name of the file to be loaded

7 //9CkOrC32uI327WBD7n__ -> /anserverb.db

8 String s2 = Xmlns.d("9CkOrC32uI327WBD7n__");

9 s3 = s1.concat(s2);

10 }

11 for (File locFile = new File(s3); ;locFile = pFile) {

12 String s4 = locFile.getAbsolutePath ();

13 String s5 = a.getFilesDir ().getAbsolutePath ();

14 ClassLoader locClassLoader = a.getClassLoader ().getParent ();

15 //get the class specified by "pStr1" from anserverb.db

16 Class locCls = new DexClassLoader(s4 , s5 , null , locClassLoader).loadClass(

pStr1);

17 Class[] arrOfCls = new Class [5];

18 arrOfCls [0] = Context.class;

19 arrOfCls [1] = Intent.class;

20 arrOfCls [2] = BroadcastReceiver.class;

21 arrOfCls [3] = FileDescriptor.class;

22 arrOfCls [4] = String.class;

23 //get the method specified by "pStr2"

24 Method locMtd = locCls.getMethod(pStr2 , arrOfCls);

25 // create new instance of the class

26 Object locObj = locCls.newInstance ();

27 // invoke the method through reflection

28 return locMtd.invoke(locObj , pArrOfObj);

29 }

30 }

Example Malware: Listing 2.2 is a code snippet of the AnserverBot Trojan [115],

which illustrates how reflection and DCL are used to thwart static analyzers from detection

of malicious functionality. Line 16 shows an example of a dynamic class loading call in

Android using the DexClassLoader class. The name of the file from which the code is

loaded is computed at runtime in Line 8. Line 26 exhibits how to create an object of

the loaded class using a reflective call to the default constructor. Line 28 demonstrates

a method invocation through reflection; the name of the invoked method is passed as a
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parameter and, thus, may not be available for static analysis.

2.4 Chapter Summary

This chapter provided a brief background on how security engineers and researchers strive

to ensure a clean Android ecosystem. We discussed the basics of Android security archi-

tecture and some of the techniques used by malware developers to evade security checks.

An introduction to dynamic code updates and an analysis on its usage in real world apps

is provided at the latter part of the chapter. The results of our analysis reveal that

the dynamic code updates are used widely in both legitimate as well as malicious apps,

however, their usage in malicious apps is on the higher side.
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Bypassing Analysis tools Using

Dynamic Code Updates

Dynamic code update techniques, such as reflection and dynamic class loading, enable

apps to change their behavior at runtime. These techniques are heavily used in Android

apps for extensibility. However, malware developers misuse these techniques to conceal

malicious functionality, bypass static analysis tools and expose the malicious functionality

only when the app is installed and run on a user’s device. Although, the use of these tech-

niques alone may not be sufficient to bypass analysis tools, it is the use of reflection/DCL

APIs with obfuscated parameters that makes the state-of-the-art static analysis tools for

Android unable to infer the correct behavior of the app. This chapter demonstrates this

fact further by testing some of the state-of-the-art static analysis tools with Reflection-

Bench, our suite of benchmark test applications that use reflection in various ways to

perform malicious activities. Moreover, using a test malware app, InboxArchiver, that is

based on dynamic code loading to conceal malicious functionality, we demonstrate how

dynamic code loading can be used to evade online analysis systems.

To understand the current trends in real apps, it is important to perform a study on

the sources of the parameters used in reflection/DCL APIs. In this chapter, we describe

how malicious apps bypass analysis tools using reflection/DCL with parameters provided

by sources, such as network, files, encrypted strings, etc., which are hard to analyze

statically. We further develop a tool to analyze a dataset of 3,645 real world malware

samples and 16,528 benign apps in order to investigate the sources of the parameters

used in reflection/DCL APIs. The results of our analysis indicate the presence of such

programming practices in both legitimate and malicious apps. However, malicious apps

tend to obfuscate the parameters of reflection/DCL APIs more often. The use of Crypto

related APIs as sources of the parameters of reflection/DCL APIs is significantly higher in

21
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malicious apps, which endorses the fact that malicious apps try to thwart static analysis

tools.

3.1 Introduction

Malware developers use an array of techniques to evade analysis tools deployed by app

markets and execute malicious code on users’ devices. Code obfuscation, anti-debugging,

emulator detection, time bombs, reflection and DCL are some of the techniques found

in modern mobile malware. In this dissertation, we are particularly interested in the

latter two techniques. Reflection and DCL enable development of flexible apps which can

change their behavior at runtime after being installed on a user’s device. The same feature

serves well for malware developers as they develop seemingly benign apps at installation

time that can load additional malicious code at runtime using DCL and access it using

reflection APIs. Doing so, they evade static analysis tools that rely on the availability

of all the information before the analysis starts. Reflection/DCL APIs operate on string

parameters representing code files, classes, methods, etc. When these parameters are

not readily available in the code at analysis time (i. e., encrypted and only decrypted

at runtime, read from a file provided via network), state-of-the-art static analysis tools

find it impossible to infer the exact behavior of the app. Therefore, the sources of these

parameters become much more important from security point of view as they play a

vital role in malicious usage of reflection/DCL APIs. While previous works use various

techniques to analyze apps in the presence of dynamic code updates, this dimension of

reflection/DCL is most often overlooked [80] [106] [110].

In order to further describe the problem, this chapter demonstrates the lack of effec-

tiveness of the state-of-the-art tools when it comes to analysing apps that hide suspicious

behavior using reflection and dynamic code loading. We develop a set of benchmark

apps that use reflection in different ways to conceal information leakage. Our analy-

sis of reflection-bench using some of the state-of-the-art static analysis tools shows their

ineffectiveness to handle apps that use reflection. We plan to make reflection-bench pub-

lic to enable researchers to test their analysis tools with it. Furthermore, we develop

InboxArchiver, a seemingly benign app that uses dynamic code loading to hide its suspi-

cious functionality, and use it to test some of the most well known online analysis systems.

The analysis reports show that InboxArchiver easily bypasses these analysis systems.

Moreover, we analyze the sources of the parameters of reflection/DCL APIs in real

world apps that allow them to conceal malicious behavior and evade static analysis tools.

We develop a tool, based on SAAF [74], to track information flow to reflection and DCL

APIs. It uses backward program slicing to determine the sources of the parameters used in
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reflection/DCL APIs. The tool takes an Android APK file (or a directory containing APK

files), performs analysis on it and generates statistics about the usage of reflection/DCL

APIs and the corresponding sources of their parameters. The results of our analysis on

real world apps show that it is more common in malicious apps to take parameters of

reflection/DCL APIs from sources, such as Crypto related APIs, which help thwart static

analysis.

Contributions:

• We design and develop reflection-bench, a set of benchmark apps that use reflection

to conceal information leakage, and use it to test some of the state-of-the-art static

analysis tools. We plan to make reflection-bench public so that it can be used by

other researchers to test the effectiveness of their analysis tools in the presence of

reflection.

• We develop an automated static analysis tool which can perform analysis on Android

apps, detect information flow between given source and sink APIs, and produce

statistics about the presence of such information flow paths between source/sink

APIs in individual apps as well as the whole market.

• We collect and analyze a dataset of real world apps containing 16,528 benign and

3,645 malicious apps in order to investigate the sources of the parameters used in

reflection/DCL APIs. To the best of our knowledge, this is first study focusing on

the sources of the parameters of reflection/DCL APIs. The analysis results would

help in understanding the behavior of apps that use dynamic code updates and

designing more effective analysis procedures and policies to detect malicious apps in

the market.

3.2 Motivating Examples

Evidence of obfuscated parameters of reflection/DCL APIs used in real world malware

motivates this part of the work. To explain it further, we consider three concrete samples

of mobile malware: BrainTest, Fakenotify and AnserverBot [61,91,115]. In BrainTest, the

strings representing the code files to be downloaded, classes to be instantiated and meth-

ods to be invoked using reflection/DCL APIs are provided through a file downloaded from

the Internet at runtime; in Fakenotify, the strings representing the classes to be instanti-

ated and methods to be invoked are provided as encrypted strings and only decrypted at

runtime; and AnserverBot is a malware family where strings representing code files to be

loaded are provided as encrypted strings.
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BrainTest: Check Point Mobile Threat Prevention detected an Android malware in

August 2015, which is packaged inside a game app known as BrainTest and has 100,000-

500,000 downloads at Google Play Store. As reported, the malware infected up to 1

million users.

The malware uses a number of techniques to bypass Google Bouncer. It conceals its

malicious activity if the IP or domain in which the app is being executed is mapped to

Google Bouncer. It uses a combination of time bombs, dynamic code loading, reflection,

encrypted code files, and malicious code (root exploits) downloaded from the Internet, to

harden reverse engineering and evade analysis tools.

Once the app is installed on a user’s device, it decrypts an encrypted file start.ogg

from the app’s assets directory and loads it using DexClassLoader. The dynamically

loaded file starts communicating with a Command&Control (C&C) server. The server

responds with a .json file that contains a link to a .jar file which the app downloads

and dynamically loads using DexClassLoader. In addition, the .json file also contains

names of the classes and methods which are to be invoked by the app using reflection

APIs. The malware then drops root exploits and installs/uninstalls other APKs as the

C&C server directs.

Listing 3.1: FakenotifyA - SMS Trojan

1 SmsManager localSmsManager = SmsManager.getDefault ();

2 String str2 = paramString1;

3 String str3 = paramString2;

4 localSmsManager.sendTextMessage(str2 , null , str3 , null , null);

Fakenotify: It is noticed that Android malware evolves to harden analysis and reverse

engineering. Listing 3.1 shows an excerpt from an SMS trojan named FakenotifyA [61].

The Listing shows how FakenotifyA uses a standard SMS sending procedure to send

messages to premium numbers. Although, the message, paramString2, and the number,

paramString1, to which the message is sent are provided at runtime, the SMS sending

mechanism is pretty obvious and easy to detect for the analysis tools.

After some time, a new version of the same malware, FakenotifyB, surfaced. Fakeno-

tifyB is exactly similar to FakenotifyA when it comes to its malicious functionality,

however, FakenotifyB makes use of reflection to dynamically create an instance of the

SMSManager class, retrieves objects of its getDefault and sendTextMessage methods

and invokes them. In addition to using reflection, the parameters representing the names

of SMSManager class and its methods are provided in encrypted form and only decrypted

at runtime. The SMS sending routine is shown in Listing 3.2 and it is much harder for

analysis tools to infer its behavior unlike FakenotifyA [61].

AnserverBot: The presence of such evasive usage of reflection/DCL APIs is not an
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Listing 3.2: FakenotifyB - Version 2 of FakenotifyA

1 Class class1 = Class.forName(StringDecoder.decode("&nd}D%d.(!x!ejDn5.SmsM&n&g!}"

));

2 Object obj = class1.getMethod(StringDecoder.decode("g!(?!f&wx("), new Class [0]).

invoke(null , new Object [0]);

3 class1.getMethod(StringDecoder.decode("s!ndz !4(M!ss&g!"), new Class [] {java/lang

/String , java/lang/String , java/lang/String , android/app/PendingIntent ,

android/app/PendingIntent }).invoke(obj , new Object [] {s, null , s1, null ,

null});

isolated incident in the Android malware. There are many examples where whole malware

families rely on loading code dynamically and using encrypted strings in reflection/DCL

APIs to evade detection by analysis tools. Listing 3.3 shows a piece of code taken from a

sample of the AnserverBot family. It uses an encrypted string (9CkOrC32uI327WBD7n )

to hold the file name which is then decrypted (str2) at runtime and concatenated with

another string (str1) to get the file name (str3). The absolute path is then retrieved in

str4 and provided to DexClassLoader to load the file dynamically.

Listing 3.3: Excerpt from AnserverBot

1 //9CkOrC32uI327WBD7n__ -> /anserverb.db

2 String str2 = Xmlns.d("9CkOrC32uI327WBD7n__");

3 str3 = str1.concat(str2);

4 for (File localFile = new File(str3); ; localFile = paramFile){

5 String str4 = localFile.getAbsolutePath ();

6 String str5 = a.getFilesDir ().getAbsolutePath ();

7 ClassLoader localClassLoader = a.getClassLoader ().getParent ();

8 //get the class specified by "paramString1" from anserverb.db

9 Class localClass = new DexClassLoader(str4 , str5 , null , localClassLoader).

loadClass(paramString1);

The point worth noticing in these three examples is the use of parameters in reflec-

tion/DCL APIs that are not readily available for the analysis tools. Consequently, static

analysis tools find it impossible to construct the exact behavior of these apps. Therefore,

the focus of the analysis in this chapter is not only reflection/DCL APIs, but also the

manner in which the parameters are provided to these APIs.

3.3 Reflection-Bench and InboxArchiver

This section demonstrates how malware developers can evade static analysis tools and the

available online analysis systems using dynamic code updates. Both the cases, reflection
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and DCL, are discussed separately. In the first subsection, we discuss Reflection-Bench

(our benchmark of Android applications to test static analysis for reflection resolution),

whereas in the second subsection, we discuss our sample test malware, InboxArchiver,

which makes use of dynamic code loading to evade current available online analysis sys-

tems.

3.3.1 Reflection-Bench

Reflection is a very useful and heavily used dynamic code update technique in ever chang-

ing Android apps. However, it comes with an inherent ability to harden static analysis of

apps which makes it attractive for malware developers. Although, researchers have worked

on trying to resolve reflection in Android apps, there has not been a benchmark of apps

which could be used as a test suite for reflection in Android. We present Reflection-Bench,

a set of Android apps, which use reflection to conceal information leakage so that it cannot

be detected by static anlyzers. We use Reflection-Bench to test some of the very recent

state-of-the-art static analysis tools.

Overview: The purpose of developing Reflection-Bench is to provide a set of Android

based applications which could be used by analysis tools to test their capabilities in

resolving reflection. These apps use reflection in various forms to conceal information

leakage and make the flow of the program ambiguous. We have developed a set of 14

apps based on how reflection is used and how the reflection APIs get their arguments.

Before describing the apps in Reflection-Bench, we go through the different cases of

reflection that this benchmark covers. We divide the apps into different categories and

try to make detection harder as we move from one case to the other. The hardness of

reflection resolution depends upon the nature of the arguments used in the reflection

APIs. We can broadly categorize their nature into static strings and dynamic strings. By

static strings, we intend to refer to those string arguments which are provided as part of

the application package, e.g., strings defined inside the program, read from a file which is

part of the application, etc.

In Reflection-Bench, we do not consider the case of dynamic strings/arguments, e.g,

those received over the network, read from files on disk, received from other apps, etc. The

case of such dynamic strings makes it almost impossible for static analysis tools to resolve

reflection. We focus on those cases where all the information regarding the arguments of

the reflection APIs are provided as part of the application. However, with each case the

complexity is gradually increased.

In the first few cases, the arguments of reflection APIs are constant strings assigned

to program variables. In the latter cases, we consider reading the arguments from a

properties file (part of the APK file) and from a hashtable defined inside the program.
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Moreover, we also consider the cases where the string arguments are formed from the

concatenation of multiple strings or decrypted from encrypted strings using crypto APIs.

In addition, we consider two levels of complexity where in level one, reflection is used to

call only the methods defined inside the app and in level two, both the methods defined

inside the program as well as the senstive APIs, which are responsible for leaking sensitive

information, are called through reflection.

Reflection-Bench is designed so that it can be used to test tools which perform taint

analysis as well as those which only generate call graphs for other forms of static analysis.

Implementation: We have two major classes in most of the cases, i.e, BaseClass and

MainActivity. BaseClass has two methods, where Method1 gets the device ID using the

getDeviceID API and stores it in a local field Str. Method2 gets a string and sends it

out using the sendTextMessage() API.

MainActivity calls Method1() of BaseClass, gets its field Str and sends it to the

Method2 of BaseClass which leaks it out.

We tried to cover different combinations of reflection APIs which could make it hard

for static analyzers to detect the information leakage. In the following, we describe how

reflection APIs are used in each case.

• 1 MainActivity retrieves the the field Str of BaseClass using getField() reflection

API.

• 2 MainActivity retrieves an instance of BaseClass using the reflection API forName(),

creates its object using the newInstance() API and gets its field Str using the

getField() reflection API.

• 3 MainActivity retrieves an instance of BaseClass using the reflection API forName(),

gets its Constructor using the getConstructor API, creates its object using the

newInstance() API and gets its field Str using the getField() reflection API.

• 4 MainActivity retrieves an instance of BaseClass using the reflection API forName(),

creates its object using the newInstance() API and gets its field Str using the

getField() reflection API. It also retrieves the methods of BaseClass using the

getMethod() reflection API and calls them using the invoke() reflection API.

• 5 MainActivity retrieves an instance of BaseClass using the reflection API forName(),

gets its Constructor using the getConstructor API, creates its object using the

newInstance() API and gets its field Str using the getField() reflection API. It

also retrieves the methods of BaseClass using the getMethod() reflection API and

call them using the invoke() reflection API.
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In the above cases, the names of the class ”BaseClass”, its methods and its field

are provided as static strings in the MainActivity class. In the following, we try to

acquire/generate these names at runtime in addition to Case 4 .

• 6 Reads the names of BaseClass, its methods and its field from a file.

• 7 Reads the names of BaseClass, its methods and its field from a Hashtable.

• 8 Constructs the names of BaseClass, its methods and its field from multiple strings

in the program.

• 9 Decrypts the encrypted names of BaseClass, its methods and its field using

Crypto APIs.

In all of the above cases, reflection APIs are only used in MainActivity and the

sensitive APIs, i.e., getDeviceId() and sendTextMessage(), are called directly

in BaseClass. In the following cases, we introduce reflection in BaseClass too in

addition to Case 4 .

• 10 BaseClass retrieves an instance of the TelephonyManager class using the reflec-

tion API forName(), creates its object using the newInstance() API, gets the sen-

sitive APIs using the getMethod() reflection API and calls them using the invoke()

reflection API.

In the above case, we use static strings for the names of the class TelephonyManager

and the methods getDeviceId() and sendTextMessage(). In the following we

acquire/generate these names at runtime in addition to Case 10 .

• 11 Reads the names of TelephonyManager class, methods getDeviceId() and

sendTextMessage() from a file.

• 12 Reads the names of TelephonyManager class, methods getDeviceId() and

sendTextMessage() from a Hashtable.

• 13 Constructs the names of TelephonyManager class, methods getDeviceId() and

sendTextMessage() from multiple strings inside the app.

• 14 Decrypts the encrypted names of TelephonyManager class, methods getDeviceId()

and sendTextMessage() using Crypto APIs.

Tools analysis results: We report the results of analysis on recent state-of-the-art

tools, e.g., Flowdroid [41], Androguard [2], Amandroid [104], SAAF [74], SCandroid [66]

and IccTa [78].
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Table 3.1: Analysis with State-of-the-art tools

Apps
Taint Analysis Call Graphs
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DataFlow1 7 7 7 - NA NA

PlainStringsL1-1 7 7 7 - 7 7

PlainStringsL1-2 7 7 7 - 7 3

PlainStringsL1-3 7 7 7 - 7 3

PlainStringsL1-4 7 7 7 - 7 3

FileStringsL1-1 7 7 7 - 7 7

HashtableStringsL1-1 7 7 7 - 7 7

MultipleStringsL1-1 7 7 7 - 7 7

EncryptedStringsL1-1 7 7 7 - 7 7

PlainStringsL2-1 7 7 7 - 7 7

FileStringsL2-1 7 7 7 - 7 7

HashtableStringsL2-1 7 7 7 - 7 7

MultipleStringsL2-1 7 7 7 - 7 7

EncryptedStringsL2-1 7 7 7 - 7 7

A summary of the results is provided in Table 3.1. Those tools which perform taint

analysis, such as Amandroid, etc., are analyzed by performing taint analysis of the apps

in Reflection-Bench. However, for those tools which do not perform taint analysis, such

as Androguard, etc., we analyze them by generating call graphs of the apps using these

tools. In Table 3.1, a 3 in column X, indicates that the app is successfully analyzed by

tool X, whereas, a 7 in the same column indicates otherwise.

• Amandroid, Flowdroid, IccTa and SCandroid

To analyze Reflection-Bench with Amandroid, Flowdroid, IccTa and SCandroid, we

performed taint analysis of the apps using these tools. These tools analyze APK

files and report the presence of sources/sinks of information as well as the tainted

paths between these sources and sinks, if any.

As shown in Table 3.1, in the analysis of Reflection-Bench with Flowdroid, Flowdroid

did not report any information leakage in any of the apps as represented by 7 in the

Flowdroid column. Although, it did report the presence of sources and sinks in some

of the apps. Similar is the case with Amandroid and IccTa too. None of these tools
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could detect the information flows obfuscated using reflection in Reflection-Bench.

With IccTa, it is understandably so, because it relies on Flowdroid for information

flow analysis. For SCanDroid, we could not get any meaningful results as all the

experiments ended with an error. We also could not get any help to fix it as the tool

is not well supported.

• Androguard and SAAF

Since Androguard and SAAF are not taint analysis tools and only generate method

call graphs of apps, we analyze Reflection-Bench with these tools by generating the

MCGs of the apps. In each of the generated MCGs, we look for the app’s methods

and APIs called through reflection.

The first application of Reflection-Bench is only for those tools which perform taint

analysis. It only uses reflection to make the data-flow ambiguous. The rest of the

apps can be used to test both kinds of apps, those which only generate MCGs and

those which perform taint analysis too. As shown in Table 3.1, Androguard does

not correctly identify any method called through reflection in any of the 13 apps.

SAAF’s results are relatively better than Androguard’s results. As column ’SAAF’

shows, SAAF is able to correctly identify the targets of reflection calls in four of the

applications in Reflection-Bench. In these four apps, the arguments provided to the

reflection APIs are plain strings. SAAF does not resolve the targets in other cases

where the arguments are either read from a file or hashtable, encrypted strings and

formed from multiple strings inside the apps. It is important to remember here that

none of the applications get any arguments from outside the application.

These analysis results show that with a bit of tweaking using reflection, static analysis

tools find it extremely hard to properly analyze apps.

3.3.2 InboxArchiver: Test Malware using DCL

App developers use dynamic code loading for various legitimate purposes, mainly extend-

ing the functionality of the app. However, this feature can be used by malware developers

to bypass analysis tools deployed at the app markets. A malware developer can submit

a seemingly benign app with hidden malicious functionality, i.e., obfuscated functionality

to load additional code provided once the app is installed on a user’s device. We demon-

strate with our InboxArchiver app how a malware developer can bypass analysis tools

using DCL.

Overview: InboxArchiver is a simple app that reads the SMS inbox and sends some

statistics to a number provided by the user. These statistics include the number of SMS
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messages sent to and received from certain numbers. A user can configure InboxArchiver

to receive a daily, weekly or monthly SMS message containing these statistics.

Figure 3.1: InboxArchiver - Screenshot

The malicious part of the app, however, downloads some additional code from the

Internet which contains other numbers potentially owned by an adversary, loads this code

using the DCL APIs and leaks these SMS inbox statistics.

Implementation: The main features of InobxArchiver are the use of DCL and re-

flection having encrypted strings representing the code paths, class names and method

names. This helps InboxArchiver evade static analysis tools. In order to evade dynamic

analysis, it makes use of a simple delay technique where again the APIs are called using

reflection with encrypted parameters. Although there are other more sophisticated tech-

niques available, the use of a mere delay technique signifies the role of DCL/reflection in

evading analysis tools.

InboxArchiver consists of three main classes, i.e., a MainActivity class, a MessageSender

class and a Loader class. The MainActivity class presents an interface to the user as

shown in Figure 3.1. The MessageSender class, which is a Service and runs in the back-

ground, is responsible for retrieving the inbox statistics and sending it periodically to a

pre-configured number. After a certain delay, the MessageSender class instantiates an

object of the Loader class which handles the downloading of additional code from the In-

ternet and dynamically loading it using DCL APIs. It makes use of encrypted parameters

and encryption/decryption functionality provided by other auxiliary classes.
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Table 3.2: InboxArchiver Analysis using Online Analysis Systems

Analysis System Analyzed Obfuscation DCL Malware

VirusTotal [35] 3 7 7 7

UnDroid [13] 3 3 7 7

AndroTotal [8] 3 7 7 7

ds-andrototal [30] 3 7 7 7

MobiSec Lab [28] 3 7 7 7

CopperDroid [102] Queued - - -

SandDroid [32] 3 3 3 7

Analysis results: We uploaded InboxArchiver to a number of online Android app

analysis systems. Table 3.2 shows a summary of the results from the online analysis

systems. Column Analyzed shows whether the app is properly analyzed or not. The next

two columns, Obfuscation and DCL, show if the analysis systems detect obfuscation and

the use of dynamic code loading, respectively. The last column in the table represents

the final remarks about the app.

Among the online analysis tools shown in Table 3.2, we did not receive any results

from CopperDroid and the app is still in the queue for more than a year now. All other

tools were unable to detect that the submitted app is malicious. VirusTotal scanned the

app with 54 antivirus tools, including BitDefender [15], GData [24], AVG [14], Avast [12]

and Kaspersky [26], etc., and none of them labeled it suspicious. UnDroid and SandDroid

termed the app as obfuscated, while SandDroid could also detect dynamic code loading

in the app. However, it could not detect the loaded file and analyze it.

3.4 Analysis Tool: Design and Implementation

The architecture and workflow of the analysis tool is shown in Figure 3.2. It is composed

of two main modules represented by the dotted rectangles, i. e., a slice extraction module

and a slice analysis module.

Slice Extraction: Most android app analysis tools transform Android’s Dalvik byte-

code to Java bytecode or source code in order to use the already available tools for Java

program analysis. However, the translation from Dalvik bytecode to Java source code can-

not always be accurate, specifically in apps that use some obfuscation techniques [101].

We perform analysis on disassembled Dalvik bytecode, i. e., smali code, which does not

suffer from this limitation.

The slice extraction module takes an APK file or a directory, where APK files are
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Figure 3.2: Analysis Tool Design

located, and a list of target APIs as input. A target API along with its specific parameter

is the starting point of the analysis. The Backward Slicer searches for all the occurrences

of the target API in the app’s smali code after disassembling the APK file and backtracks

them. The backtracking process starts with the register that stores the value of the

parameter used in the target API and tracks backward in the code to find all other registers

that have a direct or indirect effect on the value of this register. Consequently, the analysis

tool captures the information flow to the target API. The set of code statements involved

in the information flow to a target API is called a Backward Slice. The Backward Slicer is

based on SAAF which can perform backward program slicing on smali code [74]. However,

original SAAF does not consider the information flow performed through Android Intents

and may miss some information flows. Intents are messaging objects used for inter-

component and inter-app communication. Typically, they are used to start activities,

services or invoke broadcast receivers. In order to extend this functionality, we modified

SAAF to track information flow performed through explicit Android Intents. The Slice

Extractor extracts all the code instructions that form a particular slice, marked by the

Backward Slicer, in the form of a .csv file. Listing 3.4 shows an example of a code slice

for the method forName of the class Ljava/lang/Class;. Once the slices are extracted,

the analysis process moves to the next module, i. e., slice analysis.

Slice Analysis: The next step in the analysis is to detect information flow from a

source API to the target API. This module takes the slice files generated in the previous

step and a list of source APIs as input. It consists of a set of Python scripts, which we call

Slice Analyzer, collectively. The Slice Analyzer traverses through each code instruction in
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Listing 3.4: Backward Code Slice. TargetLine: 63, TargetClass: Ljava/lang/Class;, Target-

Method: forName

1 34: invoke -virtual {p0}, Ldisi/test/app/MainActivity;->getResources () Landroid/

content/res/Resources;

2 36: move -result -object v12

3 38: const/high16 v13 , 0x7f05

4 40: invoke -virtual {v12 , v13}, Landroid/content/res/Resources;->openRawResource(

I)Ljava/io/InputStream;

5 42: move -result -object v10

6 46: new -instance v9 , Ljava/util/Properties;

7 48: invoke -direct {v9}, Ljava/util/Properties;-><init >()V

8 52: invoke -virtual {v9 , v10}, Ljava/util/Properties;->load(Ljava/io/InputStream

;)V

9 55: const -string v12 , "class"

10 57: invoke -virtual {v9 , v12}, Ljava/util/Properties;->getProperty(Ljava/lang/

String ;) Ljava/lang/String;

11 59: move -result -object v1

12 63: invoke -static {v1}, Ljava/lang/Class;->forName(Ljava/lang/String ;) Ljava/lang

/Class;

the slices corresponding to the target APIs and locates the presence of source APIs. The

purpose of such traversal is to infer a source/sink relationship between the source and

the target APIs. The Slice Analyzer not only reveals such source/sink relationships, but

also provides statistics regarding the number of apps containing the target/source APIs,

occurrences of the target/source APIs and their relationship in each individual app and

in all the analyzed apps in a market. A report containing these statistics is generated in

the form of a .json file.

3.5 Application Analysis

We analyze a dataset of apps for potential dangerous usage of reflection/DCL APIs.

Potential dangerous usage refers to the usage of reflection/DCL APIs in conjunction with

certain sources of their parameters that complicate the overall analysis and might be used

by malware developers to evade static analysis tools. There are two distinct entities in

this analysis, i. e., 1) reflection/DCL APIs, 2) source APIs. The purpose of the analysis

is to infer the presence of information flow from the source APIs to certain parameters

of reflection/DCL APIs. In this section, we describe the target reflection/DCL APIs, the

corresponding source APIs of their parameters and the apps dataset.



CHAPTER 3. BYPASSING ANALYSIS TOOLS USING DYNAMIC CODE UPDATES 35

3.5.1 API Selection

Reflection and DCL APIs: Table 3.3 contains a representative list of DCL and reflec-

tion APIs that are tracked for analysis and considered as the target APIs. The first two

columns represent the class and method names, whereas the last column represents the

specific parameters of interest in these API calls. The APIs are divided into three cate-

gories. The first category, Dynamic Code Loading, contains APIs that are used to load

code in the form of .jar/.apk/.dex files at runtime. APIs in the second category, Class

Retrieval, are used to load classes and create their objects. The last category, Method

Retrieval and Invocation, contains APIs that are used to retrieve method objects and

invoke them.

We have included only those APIs which can potentially help conceal malicious be-

havior and they require essential parameters when using either DCL or reflection. For

instance, loadDex method of the class Ldalvik/system/DexFile is tracked for its first

parameter, sourcePathName, which is of type String and represents the path to the

.jar/.apk/.dex file to be loaded. A malware developer can obfuscate the parameter

provided to the loadDex method and make it hard for analysis tools to determine the

location of the code which is loaded dynamically. Similar is the case with the construc-

tors of PathClassLoader and DexClassLoader. Obfuscation of the parameters of these

class constructors makes it hard for analysis tools to infer the location of the dynamically

loaded code. Here, libraryPath, represents the path to the directory containing native

libraries.

Moreover, static analysis can be led to unsound results through the use of obfuscated

parameters passed to the loadClass method of the Ljava/lang/ClassLoader class or

the forName method of the Ljava/lang/Class class. In both cases, static analysis tools

will be unable to know the exact class which is to be loaded at runtime. Using obfuscated

parameters in methods, such as getDeclaredMethod, getMethod and invoke, can leave

the analysis tool clueless about the methods being retrieved or called. So, even if the

location of the code and class to be loaded is known, the behavior of the app can not

be completely determined as static analysis can not correctly identify the method or the

order in which the methods are being called, which is pivotal to understanding an app’s

behavior.

Source APIs: Hard coded strings inside the code are easy to analyze for static anal-

ysis tools even if they are used as parameters to reflection/DCL APIs. However, when

these strings are not readily available inside the code, static analysis tools are completely

ineffective in inferring an app’s behavior. To evade static analysis tools, the string pa-

rameters to reflection/DCL APIs can be retrieved from various sources at runtime. Table

3.4 provides a list of APIs that are used to access such sources. The sources are chosen
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Table 3.3: The List of Tracked APIs and Their Parameters

Class Method ParamNo Params

Dynamic Code Loading

Ldalvik/system/PathClassLoader; <init> 1,2 dexPath, libraryPath

Ldalvik/system/DexClassLoader <init> 1,3 dexPath, libraryPath

Ldalvik/system/DexFile; loadDex 1 sourcePathName

Class Retrieval

Ljava/lang/ClassLoader; loadClass 1 className

Ljava/lang/Class; forName 1 className

Method Retrieval and Invocation

Ljava/lang/Class; getDeclaredMethod 1 methodName

Ljava/lang/Class; getMethod 1 methodName

Ljava/lang/reflect/Method; invoke 1 methodObject

based on their potential capability to evade static analysis tools specifically when they

provide parameters which are to be used in reflection/DCL calls. The first column in the

table represents the classes and the second column represents the corresponding meth-

ods which are considered as potential sources. Classes are grouped in categories, e. g.,

Crypto, Telephony, etc. X in the second column indicates that there are several methods

in the corresponding class which are considered to be potential sources, thus, we simply

did not enumerate all of them in the table. Similarly, X* represents that all the sub-

classes are also considered, e. g., subclasses of InputStream such as FileInputStream,

BufferedInputStream, etc.

Some of the categories, such as Telephony and Internet, are purely dynamic and cannot

be analyzed by static analysis tools. A malware developer can use these sources to com-

municate important parameters to the target APIs from a C&C server and thus a static

analysis tool has no way to determine the behavior of the app. Other categories, such as

InputStreams, Readers and Crypto, etc., include APIs that access resources which might

be available at the time of analysis. However, their use hardens analysis. For instance, an

app can retrieve the required parameters, using APIs from InputStreams/Readers cate-

gories, from a file which can be in any format while the analysis needs to know in advance

which format to expect.

As discussed in §3.3.1 earlier, to test the ability of existing tools to analyze such apps,

we developed a set of apps that leak sensitive information. These apps use reflection

APIs to call various sensitive APIs where the names of these APIs and their classes are
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provided as strings by some of the sources listed in Table 3.4, such as Hashtable, Crypto,

and InputStream. We analyzed these apps using Flowdroid [41], IccTa [78], SAAF [74],

Androguard [2], SCandroid [66] and Amandroid [104]. We observed that none of these

tools were able to successfully detect the concealed malicious functionality, which reflects

that the sources of the parameters used in reflection/DCL APIs play an important role

in complicating their analysis. It is worth mentioning here that some of the tools, such

as Flowdroid, SAAF, etc., can determine the targets of reflection calls to a certain extent

when the parameters used in reflection APIs are string constants provided in the code.

3.5.2 Dataset Description

Table 3.4: Sources of Parameters

Class Methods

Map, Hashtable

Ljava/util/Map; X*

Crypto

Ljavax/crypto/Cipher; doFinal

Ljavax/crypto/Cipher; update

Ljavax/crypto/CipherInputStream; read

Ljavax/crypto/Mac; doFinal

Ljavax/crypto/Mac; update

Ljavax/crypto/SealedObject; getObject

Telephony

Landroid/telephony/TelephonyManager; X

Landroid/telephony/SmsManager; X

Internet

Ljava/net/URLConnection; X

Ljava/net/HttpURLConnection; X

Ljava/net/ssl/HttpsURLConnection; X

Ljava/net/JarURLConnection; X

Input Streams

Ljava/io/InputStream; X*

Readers

Ljava/io/Reader; X*

Content Resolver

Landroid/content/ContentResolver; X

For the analysis process, we created a

dataset of real world apps containing both

benign and malicious samples.

Google Play Store: The dataset con-

sists of 13,223 apps downloaded from the

Android official Google Play Store [25].

Although, there are instances of mali-

cious apps been published to the official

app store, Google Play Store uses Google

Bouncer as a vetting mechanism for the

apps submitted to the store. Hence, one

can safely assume that the probability of

a malicious app at the Google Play Store

is considerably lower as compared to other

markets.

F-droid: We added 3,305 apps down-

loaded from an online third party market,

i. e., F-droid [21]. F-droid also provides the

source code of the apps. Third-party app

markets usually contain a higher number

of malicious apps as these markets, most

of the times, do not analyze the apps be-

fore publishing them. However, these samples are assumed to be benign in our work as

they are flagged benign by most of the antivirus tools on VirusTotal [35].

To complement the downloaded benign apps, the dataset also consists of 3,645 malware

samples, in the form of .apk files.

Genome Project: 1,260 malware samples, divided into 49 families, are taken from
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the Malware Genome Project [116].

AndroidSandbox: 1,875 of the malware samples in our dataset are downloaded

from AndroidSandbox [4]. AndroidSandbox is an online malware analysis service, unfor-

tunately, out of service temporarily.

Contagio Mobile Malware Dump: The rest of the malware samples are down-

loaded from Contagio Blog [17]. Contagio Blog is a repository for collecting malware

samples. These samples are also downloadable for research purposes.

3.6 Analysis Results and Discussion

Experiment Design: We performed the experiment separately for the various app

sources as discussed in the previous section. Doing so, we had more control over when to

stop/start the analysis in case there is some problem. Moreover, this design of the exper-

iment later on helped in two ways, i. e., 1) comparing results from different app sources,

and 2) aggregating the results into two categories (malicious and benign).

We used two machines for the experiment. The first one is a desktop, Dell Precision

T1700, with a Quad-Core Intel(R) Xeon(R) 3.10GHz CPU and 8GB memory. The second

machine is an HP laptop having an Intel Core i7-2630QM 2.00GHZ CPU and 4GB of

memory. Analyzing all these apps with our tool on the two machines running in parallel

took roughly a month.

The analysis provides an idea about the prevalence of reflection/DCL usage, in real

world apps, in a manner which can be used to conceal malicious behavior and bypass app

vetting process deployed at app markets.

The goal of the analysis is to answer the following research questions:

• Q1: What is the distribution of different categories of reflection/DCL APIs (as

mentioned in §3.5) in both legitimate and malicious apps?

• Q2: How often do reflection/DCL APIs receive their parameters from one or more

source APIs (as mentioned in §3.5)?

• Q3: What is the share of individual source APIs among all the mentioned source

APIs in providing parameters to the target APIs?

• Q4: What is the highlight of the analysis results which is distinguishable in benign

and malicious apps?

Q1. Presence of Reflection/DCL APIs: It is important to mention that we are

only concerned with the developer’s code and do not consider the occurrences of the target
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Figure 3.3: Prevalence of Target APIs in the analyzed apps and Source APIs providing the

parameter passed to Target APIs

APIs in the Android framework itself. Figure 3.3(a) shows a graphical representation of

the prevalence of the three categories of the target APIs, i. e., Code, Class, Method, in

the analyzed apps. It shows that class loading and method invocation using reflection

is widely used in both legitimate as well as malicious apps. At the same time, usage of

additional code loading in the form of .jar/.dex/.apk is comparatively lower. The Black

bars in the graph show that the use of code loading in the form of .jar/.dex/.apk is

negligible in legitimate apps, whereas malicious apps tend to use this feature which helps

them evade static analysis tools.

Q2. Parameters from Source APIs: A small fraction of the total occurrences

of the target APIs in the analyzed apps receive their parameters from the source APIs,

mentioned in §3.5, which could potentially hinder static analysis tools. This fraction is

less even in malicious apps as shown in Figure 3.3(b), except for the Genome malware

dataset. The obvious reasoning behind these low numbers (or almost equal numbers in

legitimate and malicious apps) can be the fact that most of the malware samples are

repackaged versions of benign apps and, therefore, would use reflection/DCL in the same

manner in general. This necessarily implies that apps usually provide class names and

method names to reflection/DCL APIs as string constants, which is a good news for

static analysis tools. However, in order to evade static analysis tools, it is not necessary

to obfuscate the parameters of all the reflection/DCL calls, rather obfuscating those calls

which perform malicious behavior is enough. Moreover, the trend in malicious apps is to

provide a significant amount of benign functionality to lure the user into installing the

app and, also, surreptitiously perform some malicious functionality.

Q3. Contribution of Individual Source APIs: Apart from the bar representing
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Figure 3.4: Contribution of source APIs in providing arguments to Target APIs. X-axis represent

the various categories of source APIs.

the percentage of Dynamic Code Loading APIs taking its parameters from the source APIs

for the Genome malware dataset in Figure 3.3(b), the rest of the bars for all the apps

datasets hardly reach 10% . This behavior is more or less identical at this coarse level in

both legitimate as well as malicious apps. However, Figure 3.4, which provides a finer view

of the contributions of individual sources, reveals more about the behavior of legitimate

and malicious samples. Figure 3.4 shows the graph for the top 5 contributing source

API categories in each dataset. It reveals that most of the apps in both datasets, benign

and malicious, retrieve class and method names from Map/Hashtable and, therefore, it

is the prime contributor in providing parameters to reflection/DCL calls. One reason for

the high usage of Map/Hashtable can be the usage of DexGuard (a commercial Android

app obfuscator) [19]. Its string encryption mechanism uses byte-arrays and Maps for

obfuscating strings.

The other major contributing sources are Input Streams and Readers, which are used

to retrieve class and method names from configuration files either provided along with

the .apk package or provided at runtime. Both of these categories can be used to conceal

behavior and, therefore, their usage in malicious apps is slightly on the higher side. The

use of Telephony, however, is mostly found in malicious apps only. Apparently, there

are not many benign reasons for receiving class and method names via an SMS message.

However, for malicious apps, this mechanism could be used as a communication channel

to a C&C server.

Q4. Crypto APIs: In the initial experiment, we found very few instances of the

standard Crypto APIs being used as the sources of parameters for reflection/DCL in our

analyzed dataset. However, as shown in §3.2, malicious apps do use encrypted strings,



CHAPTER 3. BYPASSING ANALYSIS TOOLS USING DYNAMIC CODE UPDATES 41

which are only decrypted at runtime, as parameters of reflection/DCL calls. Therefore,

we further manually analyzed the AnserverBot family of the Genome dataset by disas-

sembling the .apk files and looking into the Smali code. We found out that AnserverBot

stores the code file names as encrypted strings and decrypts them at runtime when pass-

ing them on to DexClassLoader. However, it does not use the standard Crypto APIs to

decrypt these strings, but rather uses its own logic for decryption. We could not look into

all the apps for such encryption/decryption techniques, which could be another interesting

study, but understandably, using non-standard encryption/decryption techniques might

be more attractive to malware developers.

These results show that a wide range of real world apps, specifically malicious apps,

use reflection/DCL in a manner that enables them to bypass state-of-the-art automated

analysis tools. The increasing number of apps and the rapid evolution of anti-analysis

techniques found in modern day malware demand for more effective and sophisticated

automated analysis tools.

3.7 Considerations on Analysis Tools for Android

The combination of code update techniques along with anti-debugging, emulator detection

techniques and the ability to reveal malicious behavior only when particular conditions

(i. e., temporal) are met enables malware developers to bypass analysis tools. We propose

some recommendations that could be useful in detecting malware even in the presence of

evasive techniques.

Modern analysis tools need to have an efficient and effective dynamic analysis part

due to some inherent limitations of static analysis. We recommend to push for targeted

dynamic analysis where target APIs, such as those of reflection/DCL, are identified and

the application is triggered with inputs which make it follow the target paths. A tar-

geted triggering solution coupled with other solutions, such as those combining static

and dynamic analysis, will help in revealing malicious behavior otherwise concealed by a

malicious app.

Considering the problem of stimulating apps’ behavior during an analysis/debug en-

vironment, loadtime analysis of the code other than that contained in the standard .dex

file of an app can help detecting malicious code loading. Android framework can have an

analysis module which performs some lightweight on-device analysis of the code loaded

from arbitrary locations before loading it. [62] provides a library for secure class loading,

but they only check for the integrity of the code. Adding other forms of security analysis

to their solution would be more helpful.

According to Google’s policy, all the apps must use the Google Play store for their
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updates. However, this policy is not always enforced, as the BrainTest example shows.

An effective enforcement of this policy would result in catering the problem of malicious

code updates to an extent. Therefore, any app which downloads code from any location

other than the Google Play store should be deemed malicious and not allowed to do so.

3.8 Limitations

A non trivial number of apps were analyzed in the work discussed in the chapter and

should provide a fair view of reflection/DCL usage. However, we understand that the same

experiment on a much larger scale, possibly performed by app markets such as Google

play store, would result in providing a much better picture of the situation regarding how

benign and malicious apps use reflection/DCL.

The malware datasets, in particular, the one from the Genome Project, is a bit old

now keeping in view the rapid increase in the number of mobile malware samples. The

trend towards more obfuscation and sophistication in malware implies that the evasive

behavior would be more prevalent in newer malware samples.

We do not analyze native code, therefore, the sources of parameters coming from native

code are not considered in the analysis presented in this chapter. Moreover, the analysis

tool does not capture information flow to reflection/DCL calls obfuscated through other

reflective calls.

3.9 Related Work

Literature shows that there have been efforts to analyze apps in the presence of reflection

and DCL in Java as well as in Android. Livshits et al.’s work uses points-to analysis and

cast analysis to statically resolve the targets of reflection [80]. Similarly, Christensen et

al. use Java string analyzer to statically track the arguments passed to reflection APIs

to resolve their targets [52]. A static analysis tool for Android apps, Flowdroid, performs

data flow analysis and resolves the targets of reflection only when the parameters are

string constants [41]. However, none of them provides an analysis on the sources of the

parameters passed to these APIs and their possible contribution in concealing malicious

behavior. Moreover, Flowdroid also present a workbench of Android apps, Droidbench,

which can be used to test static analysis tools. However, the part of Droidbench focusing

on reflection is very basic and contains fewer apps in comparison to Reflection-Bench.

Hirzel et al. extend pointer analysis to resolve reflection, DCL and native code using

online (dynamic) analysis [73]. They instrument the virtual machine service that han-

dles reflection and DCL with handlers, which dynamically updates a constraint database
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during the program execution. Similarly, Bodden et al. propose TamiFlex which com-

plements static analysis of Java apps by resolving DCL and reflection [48]. TamiFlex

executes a Java app, which is modified using java.lang.instrument API, and logs the

information about DCL and reflection. However, similar to dynamic analysis, both these

techniques suffer from the triggering problem.

Poeplau et al. [90] have tried to solve the problem of dynamic code loading, potentially

malicious, using a whitelisting approach. Their whitelists are based on hashes of codes

to be loaded. They propose that only those pieces of code could be loaded dynamically,

which have their hashes available in the mentioned whitelist. They also developed a sample

malicious app and practically evaded Google Bouncer using DCL. Similarly, Canfora et

al. present composition malware where they present a model for evading analysis tools.

However, their focus is more on downloading the code from different places and combining

them at runtime to create malicious app logic [51]. However, in our work we present a

more generic evasion process used by malicious apps focusing on the underlying reflection

and DCL APIs and the sources of their parameters.

3.10 Chapter Summary

Dynamic code update features, such as reflection and DCL, are widely used in Android

apps to make them extensible. These features, however, attract malware developers due to

their potential capability of evading analysis tools when their parameters are obfuscated

or provided only at runtime. In this chapter, we demonstrated this fact by analyzing a set

of benchmark apps, Reflection-Bench, that conceal information leakage using reflection

with some of the state-of-the-art static analysis tools. As expected, the results of our

analysis reveal the ineffectiveness of static analysis tools in such situations.

We also developed a tool that analyzes Android apps and finds source/sink relation-

ships between certain potentially dangerous source APIs and reflection/DCL APIs. More-

over, to emphasize the importance of the parameters used in reflection/DCL APIs, we

analyzed a dataset of real world apps. The results of our analysis show that malicious

apps do try to hide the parameters of reflection/DCL APIs, by encrypting them or receiv-

ing them at runtime from the outside world, in order to bypass static analysis tools. The

results of our analysis combined with the study of the static analysis tools available today

for Android apps highlight the need for further research and development of analysis tools

that efficiently combine static and dynamic analysis.
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Chapter 4

StaDART: Combining Static and

Dynamic Analysis

Abstract

Static analysis of Android applications is inherently susceptible to be evaded by applica-

tions using dynamic code update techniques, i.e., dynamic class loading and reflection.

These techniques, now heavily used in modern real-world malware, thwart even the lat-

est of static analysis tools. Chapter 3 demonstrated this fact by testing some of the

state-of-the-art static analysis tools with Reflection-Bench and using InboxArchiver to

evade online analysis systems. In this chapter, we present StaDART, an extented version

of our previously proposed solution Stadyna [110], which combines static and dynamic

analysis of Android applications to reveal the concealed behavior of malware. Unlike

Stadyna, StaDART utilizes ArtDroid to avoid modifications to the Android framework.

Furthermore, we integrate it with a triggering solution, DroidBot, to make it more scal-

able and evaluate it with more Android applications. We present our evaluation results

with a dataset of 2,000 real world applications; containing 1,000 legitimate applications

and 1,000 malware samples.

4.1 Introduction

Ensuring users’ privacy and security is a major concern and requires adequate measures

from all the involved parties, such as application developers, framework providers, appli-

cation stores, etc. Android applications go through a vetting process, at some of the app

markets at least, before being published. For this purpose, Google makes use of Google

Bouncer at the official Google Play store. The vetting process generally uses some form

of static/dynamic analysis to scrutinize apps for malicious content and Google Bouncer

45
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is no different [89].

However, growing number of malware samples found in the Android echosystem reveals

that malware developers bypass such vetting processes using various evasion techniques.

Previous research shows that the use of dynamic code update techniques along with

various forms of obfuscation makes it extremely hard for the state-of-the-art analysis

tools to understand the behavior of an app [37, 90]. Thus, the use of these techniques in

newly found malware is not surprising [91].

This is particularly daunting when static analysis is used in order to check the security

of mobile applications (i.e., to detect the presence of malicious behavior). Indeed, Rastogi

et al. [95] mention reflection among the techniques that make most of the current static

analysis tools unable to detect malicious code. Additionally, static analysis is hindered

by the code that evolves dynamically, because some parts of the code are impossible to

discover or to analyze at installation time as they appear only at runtime. As a matter

of fact, existing state-of-the-art static analyzers for mobile applications (e.g., [41, 57, 74])

assume that the code base does not change dynamically and the targets of reflection calls

can be discovered in advance. This is a clear simplification of what happens in the real

world, where many apps rely on code base updated at runtime.

At the same time, previous approaches that enhanced static analyzers of Java code in

the presence of dynamic code update techniques (e.g., [48]) cannot be directly applied to

Android due to the differences in the platforms (in Android, load-time instrumentation

of classes is not available). Moreover, offline instrumentation also cannot solve the prob-

lem because this approach breaks the application signature, while some apps check it at

runtime. If the signature does not correspond to some hardcoded value they may refuse

to work. In case of malicious apps this check may be used to conceal illicit behavior.

In this chapter, we present StaDART - an analysis system that combines static and

dynamic analysis to analyze apps in the presence of dynamic code updates. Instead of

relying on modifications to the Android framework, StaDART utilizes ArtDroid which

is an API hooking tool [56]. Furthermore, we integrate StaDART with DroidBot, a

triggering tool for Android apps, to make the analysis system fully automated. StaDART

is evaluated using a dataset of 2,000 real world apps and the results of our evaluation are

presented here.

Contributions:

• We propose, design and implement StaDART, a system that interleaves static and

dynamic analysis in order to reveal the hidden/updated behavior. By utilizing Art-

Droid, we avoid modifications to the Android framework and make it largely frame-

work independent. StaDART downloads and makes available for analysis the code

loaded dynamically, and is able to resolve the targets of reflective calls complement-
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Figure 4.1: System Overview

ing app’s method call graph with the obtained information. Therefore, StaDART

can be used in conjunction with other static analyzers to make their analysis more

precise.

• We integrate StaDART with DroidBot to make it fully automated and to ease the

evaluation. Moreover, we analyze a dataset of 2,000 real world apps (1,000 benign

and 1,000 malicious). Our analysis results show the effectiveness of StaDART in

revealing behavior which is otherwise hidden to static analysis tools.

• We plan to release our tool as open-source to drive the research on app analysis in

the presence of dynamic code updates.

4.2 An Overview of StaDART

The architecture of StaDART presented in Figure 4.1 comprises two logical components:

a server and a client.

The static analysis of an application is performed on the server. In this respect,

StaDART allows an analyst to easily plug in and use any static analyzer in its architecture.

The static analyzer on the server builds the initial method call graph (MCG) of the app,

integrates the results of the dynamic analysis coming from the client, and stores the results

of the scrutiny. The client part of StaDART is based on an API hooking technique,

ArtDroid, that intercepts dynamic code update APIs and captures dynamic behavior.

The client part can be hosted either on a real device or an emulator. The client runs the

application whenever the dynamic analysis is required.
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In action, our system interleaves the execution of the static and dynamic analysis

phases. However, to simplify the presentation, we describe them sequentially.

Preliminary analysis The server statically analyzes an app package and builds a MCG

of the application (see Step a in Figure 4.1; solid arcs denote edges resolved statically).

Dynamically loaded code cannot be analyzed during this phase and, thus, the correspond-

ing nodes and edges are not present in the MCG. Further, the names of methods called

through reflection may also not be inferred if they are represented as encrypted strings

or generated dynamically. Still, a static analyzer can effectively detect the points in the

MCG where the functionality of an application may be extended at runtime. Indeed, the

usage of reflection and DCL requires to use specific API calls provided by the Android

platform. The server detects these calls during the static analysis phase by searching

for methods where DCL and reflection API calls are performed. We call these methods

methods of interest (MOI).

Dynamic execution If any MOIs are detected in the application, StaDART installs the

app on the client (Step 2 ) and launches the dynamic analysis. The dynamic phase is

exercised to complement the MCG of the app and to access the code loaded dynamically.

The dynamic analysis is performed on a device (or an emulator) which uses ArtDroid for

API interception and adding StaDART client side functionality. The added functionality

logs all events when the app executes a call using reflection, or when additional code is

loaded dynamically. Along with these events, the client also supplies some additional

information, e.g., in case of a reflection call, the information about the called function, its

parameters and the stack trace (that contains the ordered list of method calls, starting

from the most recent ones) is added. In case of a DCL call, the path to the code file and

the stack trace are supplied. The information collected by the client is passed back to the

server side (Step 3 ).

Analysis consolidation The server performs an analysis of the obtained information.

In case a reflection call happens, the server complements the MCG of the app with a new

edge (in Figure 4.1, it is represented by a dashed arc). This edge connects the node of

the method that initiated the call through reflection (the node at the beginning) with the

one corresponding to the called function (the node at the end).

When DCL is triggered, the client captures the location of the code file. Using this

evidence, the server downloads the file (Step 4 ) containing the code, and performs the

static analysis on it. The MCG of the app is then updated with the obtained information

(see the part of the MCG in the dashed oval in Figure 4.1). Additionally, for each
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downloaded file the server analyzes whether it contains other MOIs. If it does, the list of

the MOIs for the application is updated. This allows StaDART to unroll nested MOIs.

The stack trace data for both the reflection and DCL cases is used to detect which MOI

initiated the call.

Marking suspicious behavior In Android, some API calls are guarded by permissions.

Since APIs protected by the permissions could potentially harm the system or compro-

mise a user’s data, the permissions must be requested in the AndroidManifest.xml file.

However, there is no actual check on the permissions required to execute the written code

and sometimes developers request more permissions than they actually use. In this case,

those apps are called overprivileged. Many researchers, e.g., Bartel et al. [45], identified

that malware, adware and spyware exploit additional permissions to get access to security

sensitive resources at runtime.

Based on these considerations, we classify the following app behavior patterns as

suspicious :

• An application dynamically loads code that contains API functions protected with

permissions. Indeed, malware may use this approach to evade detection by static

analyzers, as the security-sensitive code is loaded dynamically.

• An application uses reflection APIs to call an API method protected with a dan-

gerous permission1. This functionality can be used, for instance, to send malicious

SMS, which cannot be detected by static analysis tools because the name of the

SMS sending function is encrypted and decrypted only at runtime.

StaDART automatically detects such suspicious patterns and raises a warning if such

patterns occur during the analysis. Section 4.5 shows that indeed malware samples do

expose such suspicious patterns.

In addition, we further analyze the parameters passed to methods called using re-

flection APIs. Indeed, a suspicious pattern, i.e., a reflective call to an API guarded with

dangerous permission, in conjunction with suspicious parameters, e.g., a premium number

in case of the sendTextMessage() API, helps in identifying malicious behavior concealed

using reflection.

1Google classifies as “dangerous” permissions with higher-risk level that guard access to private user data or

device controls [3].
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4.3 Method Call Graph

Method call graphs (or function call graphs) identify the caller-callee relationships for

program methods. These structural representations of programs are widely used for dif-

ferent purposes. In the scope of Android, method call graphs are used, e.g., to detect

malware [67,70,76], to identify potential privacy leaks in applications [59,68,114], to find

vulnerabilities [101] and execution paths for automatic testing [113].

StaDART extends the initial MCG generated with a traditional static analyzer with

the information detected at runtime. Thus, if an application exposes dynamic behavior,

all mentioned approaches can benefit from the expanded MCG obtained with StaDART.

Example To visualize the capabilities of StaDART and the process of method call graph

expansion, we show the evolution using an example of a demo app. Figure 4.2(a) shows

the MCG of the app obtained with the AndroGuard static analyzer [2]. Figure 4.2(b)

shows the one gained with StaDART before dynamic execution phase, and Figure 4.2(c)

presents it with dynamic execution phase. The demo app dynamically loads some code

from an external .jar file at runtime and calls the loaded methods through reflection.

Figure 4.2(a) illustrates that AndroGuard identifies only the presence of ordinary

methods and DCL calls (Ellipse 1) but no further analysis is done about those. Yet,

Figure 4.2(b) shows that after preliminary analysis StaDART selects 3 paths, which are

surrounded by dashed ellipses. Ellipse 1 shows that a MOI (the dark grey node) invokes

a constructor (the dark green node) through reflection. Similarly, Ellipse 2 displays a

method invocation through reflection. Ellipse 3 depicts that a DCL call (the red node) is

performed in a MOI (the dark grey node).

During the dynamic analysis, StaDART adds the edges that are outlined by Ellipses 4-

7 (see Figure 4.2(c)). These ellipses show the cases when the MOIs are resolved and

corresponding nodes and edges are added to the MCG. Ellipse 4 shows that as a result

of a DCL call (the red node) a new code file has been loaded (the pink node). Ellipse 7

shows that a class constructor (the grey node) is called through reflection. Ellipse 5

shows a method invoked through reflection. This method contains an API call protected

by the Android permission indicated by the blue node in Ellipse 6. There are also nodes

and edges that appear as a result of the analysis of the code file (the pink node) loaded

dynamically. These nodes and edges are connected with the rest of the graph through the

reflection new instance call (see Ellipse 7).

Ellipses 2, 3, 8, 9 show other types of connections possible among nodes in a MCG

obtained with our tool. Ellipse 2 shows the connection between the class and its con-

structor, Ellipse 3 shows an ordinary relation between two methods, Ellipse 9 connects
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(a) (b)

(c)

Figure 4.2: MCG of demo app Obtained with a) AndroGuard b) StaDART after Preliminary

Analysis c) StaDART after Dynamic Analysis Phase

the static initialization block and the class, and Ellipse 8 shows that the method is called

from the static initialization block.

Each node type is assigned with a set of attributes, not shown in the figures. The

analysis of values of these attributes can facilitate dissection of Android applications

accompanied by the expanded method call graph. For instance, each method node is as-

signed with attributes, which correspond to a class name, a method name and a signature

of this method. A permission node is assigned with a permission level along with the

information about the API call that it protects.
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Figure 4.3: StaDART Workflow

4.4 Implementation

This section provides the implementation details of some key aspects of StaDART. The

workflow of our system operation is shown in Figure 4.3. App analysis starts at the

server side. All occurrences of reflection and DCL methods are identified in the code

of the application under analysis. In case neither of them is found, StaDART builds a

MCG of the app and exits. Otherwise, it starts the dynamic analysis on a device, which

utilizes ArtDroid to intercept dynamic code update APIs and constitutes the client part

of StaDART.

4.4.1 The server

The server side of StaDART is a Python program that interacts with a static analysis tool.

Currently, StaDART uses AndroGuard [2] as a static analyzer. AndroGuard represents

compiled Android code as a set of Python objects that can be manipulated and analyzed.

However, StaDART can work with any static analysis tool that is able to analyze apk

and dex files. To improve suspicious behavior detection we substituted the permission

map embedded in AndroGuard (built for Android 2.2 in [63]) with the one generated by

PScout [42] for Android 5.1.1, which is the latest API-permission mapping available in

the research community.

The pseudo-code of the main server function is presented in Algorithm 1. The server

starts the analysis of the provided app by extracting the classes.dex file (see Step 1, 2
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Algorithm 1 App Analysis Main Function Algorithm

1: function perform analysis(inputApkPath, resultsDirPath)
2: makeAnalysis(inputApkPath)
3: // Check if there are MOI
4: if !containsMethodsToAnalyze() then
5: performInfoSave(resultsDirPath)
6: return
7: end if
8: dev ← getDeviceForAnalysis()
9: package name← get package name(inputApkPath)

10: dev.install package(inputApkPath)
11: uid← dev.get package uid(package name)
12: messages← dev.getLogcatMessages(uid)
13: loop
14: msg ← dequeue(messages)
15: // analyzeStadartMsg contains a switch statement
16: // that selects a corresponding processing routine
17: // shown in Algorithms 2 and 3 based on the msg type
18: analyzeStadartMsg(msg)
19:
20: // Quit if a user finishes analysis
21: if finishAnalysis then
22: performInfoSave(resultsDirPath)
23: return
24: end if
25: end loop
26: end function

and 3 in Figure 4.3; Line 2 in Algorithm 1), and then dissects the extracted code. During

this step StaDART searches for all the occurrences of reflection and DCL calls in the code.

The list of searched patterns for these API calls is presented in Table 4.1.

If MOIs are found, StaDART selects a device (a real phone or an emulator) to perform

the dynamic analysis on (Line 8) and installs the app under analysis (Line 10) onto the

client (Step 5 in Fig. 4.3). After that the server obtains the UID of the installed package

(Line 11) and starts a loop (Lines 13-25) that analyzes, one by one, the messages (Line 12)

obtained using the logcat utility from the main log file of the Android system. Basically,

each obtained message is represented in the JSON format and contains values for the

following fields: UID (required), operation (required), stack (required), class (optional),

method (optional), proto (optional), source (optional), output (optional). The value of

the UID field is used to select the messages produced by the analyzed app. If the user

stops the analysis, StaDART saves the results and finishes its execution.

The function analyzeStadartMsg (Line 18) analyzes the selected StaDART messages

obtained from the client. It extracts the value of the operation field and based on this

value selects the appropriate routine to analyze the message.

The routines for the reflection messages analysis are similar, so we consider them on

the example when operation corresponds to reflection invoke. The algorithm for analysis

of the reflection invoke messages is shown in Algorithm 22. Lines 2 - 4 extracts the

2The algorithm for analysis of reflection newInstance messages is very similar so we do not show it.
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Table 4.1: The List of Searched Patterns

Class Method Prot.
Dynamic class loading

Ldalvik/system/PathClassLoader; < init > .
Ldalvik/system/DexClassLoader; < init > .

Ldalvik/system/DexFile; < init > .
Ldalvik/system/DexFile; loadDex .

Class instance creation through reflection
Ljava/lang/Class; newInstance .

Ljava/lang/reflect/Constructor; newInstance .
Method invocation through reflection

Ljava/lang/reflect/Method; invoke .

Algorithm 2 Analysis of the Reflection Invoke Message

1: function processReflInvokeMsg(message)
2: cls← message.get(JSON CLASS)
3: method← message.get(JSON METHOD)
4: prototype← message.get(JSON PROTO)
5: stack ← message.get(JSON STACK)
6: invDstFrCl← (class,method, prototype)
7: invPosInStack ← findF irstInvokePos(stack)
8: thrMtd← stack[invPosInStack]
9: invSrcFrStack ← stack[invPosInStack + 1]

10: for all invPathFrSrcs ∈ sources invoke do
11: invSrcFrSrcs← invPathFrSrcs[0]
12: if invSrcFrSrcs 6= invSrcFrStack then
13: continue
14: end if
15: addInvPathToMCG(invSrcFrSrcs, thrMtd, invDstFrCl)
16: if invPathFrSrcs ∈ uncovered invoke then
17: uncovered invoke.remove(invPathFrSrcs)
18: end if
19: return
20: end for
21: addV agueInvoke(thrMtd, invDstFrCl, stack)
22: end function

method name along with its class name and the prototype, which has been called through

reflection. Line 5 gets the stack from the message. Line 7 searches for the first reflection

invoke occurrence in the stack. The next stack entry corresponds to the method that

has performed the reflection call invSrcFrStack (Line 9). Then in the loop StaDART

compares this method with the list of MOIs extracted from the application executable

(Lines 10 - 20). If the method is found StaDART complements the MCG with the obtained

information (Line 15), and deletes it from the list of uncovered invoke MOIs (Line 17).

Otherwise, it adds this method to the list of vague methods (Line 21). This information

is later analyzed to see why the method calling reflection was not found in the application

executable during the static analysis phase.

The processing function for the DCL messages is slightly different (see Algorithm 3).

From the message received from the client the server extracts the source path of the
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Algorithm 3 Analysis of the DCL Message

1: function processDexLoadMsg(message)
2: source← message.get(JSON DEX SOURCE)
3: stack ← message.get(JSON STACK)
4: newFile← dev.get file(source)
5: newFilePath← processNewFile(newFile)
6: dlPathFrStack = getDLPathFrStack(stack)
7: if dlPathFrStack then
8: srcFrStack ← dlPathFrStack[0]
9: thrMtd← dlPathFrStack[1]

10: if dlPathFrStack ∈ uncovered dexload then
11: uncovered dexload.remove(dlPathFrStack)
12: end if
13: addDLPathToMCG(srcFrStack, thrMtd, newFilePath)
14: if !fileAnalyzed(newFilePath) then
15: makeAnalysis(newFilePath)
16: end if
17: return
18: end if
19: addV agueDL(newFilePath, stack)
20: end function

file containing the code loaded dynamically (Line 2). Using this information, StaDART

downloads the file locally (Line 4), and processes it (Line 5). This process includes

computation of the file hash and copying the file into the results folder with a new filename,

which includes the computed hash. The file hash allows us to check whether the file has

been already loaded and avoid analysis of already checked code. Otherwise, the code

analysis for MOIs is performed for the loaded code (Line 15). Function getDLPathFrStack

(Line 6) searches for a pair of a DCL call and a MOI in the stack corresponding to the

one extracted from the app executable. If this pair is found, then it is removed from the

list of uncovered DCL calls (Line 11). Otherwise, StaDART adds the information about

the dynamic class loading call into the list of vague calls (Line 19).

Notice that the presented algorithms are simplified versions of the ones actually im-

plemented in the server part. For instance, in a real application it is possible that the

same MOI acts like a proxy used to call different targets (e.g., the same method could be

used to load different code files). The real algorithms implemented in StaDART are able

to process these cases.

4.4.2 The client

The client side can run either on a real device or on an emulator. Using the emulator

is more convenient because one can run the client and server on the same machine. The

main drawback is that currently the Android emulator is quite slow. Moreover, mobile

applications may suppress some functionality if they detect they are running in an emu-

lated environment. With these limitations in mind, we implemented and tested our client

on a real device. However, the code is not device-dependent so it can be easily ported to
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an emulator or another device.

To capture the dynamic behavior offered by reflection and DCL, we intercept a number

of Android API methods that provide an interface to DCL and reflection capabilities. A

brief overview of these APIs is provided the earlier part of §4.4. Some of them have been

modified across different Android versions moving their implementation to the native side

(e.g., java.lang.Class.newInstance has only a native implementation in Android 6).

To achieve dynamic instrumentation of Java-level APIs we used the approach proposed

in ArtDroid [56] to intercept Java virtual methods. It intercepts all calls to monitored

Java virtual methods including calls via Java reflection, native code or dynamically loaded

code without any modification to both Android OS and the target app. In addition, we

integrated native function hooking capabilities in ArtDroid by means of inline hooking

technique. The client side employed by StaDART is completely Android version-agnostic

and it is able to interpose custom code on both Java methods and native functions.

Therefore, it can be used to analyze Android apps on any Android version intercepting

DCL and reflection calls irrespective of the actual code representation (i.e., Java or native).

To support all available Android versions, we included in StaDART the capability

of intercepting DCL and reflections calls according to the running Android version. In

the following we describe methods intercepted by StaDART on both Dalvik and ART

runtime. The code added by StaDART to perform requested analysis is not influenced

by the underlying Android version.

To obtain the information related to DCL we added a hook to the method openDexFile

of the DexFile class. This method is called when a new file with the code is opened. It

gets three parameters as an input, where sourceName is of our interest. Moreover, we

added a hook to the constructor of DexClassLoader class that is used to create a class

loader that loads classes from JAR and DEX files. It gets four parameters as an input,

where dexPath and optimizedDirectory are of our interest. The former specifies the

complete path of the DEX file that is being loaded while the latter is the directory where

the optimized version will be written to as a result of the compilation step. The added

code forms a JSON message that contains the path to the file, from which the code is

loaded (sourceName). Along with this information, the stack trace data and the UID of

the process are also added into the message, which is then printed out to the main log file

of Android.

To get the information about method invocation through reflection, a hook was placed

into the invoke method of the Method class. As of the release of Android version 6, this

method is defined as public native, thus the client will hook the appropriate function

by means of the proper hooking engine, according to the running Android version. Each

Method object has declaringClass, name and parameterTypes member fields, which
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represent class name, method name and prototype of the invoked method, respectively.

Moreover, invoke gets an array of Object type as input which represents the arguments

intended for the target method. This information along with the stack trace is put

into the StaDART message. Similarly, to log the information about new class creation

through reflection, we put our hooks into the newInstance method of the Class and

Constructor classes. As for the invoke, different hooks were added targeting newInstace

code representation for both DVM and ART runtime.

Each StaDART message contains the stack trace information. Stack trace is a sequence

of method calls performed in the current thread starting from the most recent ones. The

information from a stack trace is usually used to find the origin of an exception in a

program. In our case, the stack trace information is used to detect the MOI, which calls

the reflection or DCL methods. In essence, a stack trace is an array of stack trace elements.

Each stack trace element contains information about the class name, the method name

and the line number of the method call in the source code. Unfortunately, using only

this information it is not possible to uniquely identify the MOI, because we do not have

access to the source code of the application. Moreover, due to function overloading it

is possible to have several methods in a class with the same name. In the previous

version of StaDART (i.e., StaDyna), we had modified the StackTraceElement class so

that it can store the information about the method prototype, but this approach is not

feasible when it comes to dynamic instrumentation. To overcome this limitation and

detect MOIs from stack trace data even when they appear multiple times with same

name but different prototype, we employed a hybrid approach. First, we statically detect

potentially ambiguous methods declared in the target app and for each method found we

store its prototype information. Then, we dynamically instrument the app to insert a

shadow method that is basically an empty wrapper to distinguish the ambiguous method.

It is named as the concatenation of original method name plus its prototype stored by

the previous step. In this way, we are able to distinguish target MOIs by looking for them

into the stack trace data as it is normally returned by the Android OS. In fact, method

name and its prototype allow us to uniquely identify a method in a class.

A StaDART message has a header and a body. To distinguish StaDART messages

from other log messages we add a special marker to the header. The second part of

the message header is the part number. Currently, there is a limit on the length of the

Android log entries specified by the constant LOGGER ENTRY MAX PAYLOAD. To overcome

this problem, we added the functionality to the client that allows it to split a message

into several parts. The server takes care of assembling the original message.
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4.5 Evaluation

Experiment Setup and Test Suite: This section describes our application test suite

and reports on the results of our experiments. In order to evaluate StaDART, we tested

it on a dataset of real world applications, both benign and malicious. The server runs on

a machine with 3.2 GHz Intel Core i7 processor and 8 GB DDR3 memory. The client is

a Google Nexus 6 smartphone running stock Android OS version 7.1.1 connected to the

server using a standard USB cable. The evaluation test suite consists of a set of 1,000

benign and 1,000 malicious applications. The benign applications were downloaded on

December 2016 and selected based on their popularity. The malware samples were selected

from Drebin [40] dataset populated by 5,560 applications from 179 different malware

families collected in the period of August 2010 to October 2012.

Evaluation Goal: Inline with the aim of StaDART, i.e., uncovering dynamic behav-

ior, we set certain research questions that this evaluation should answer as our evaluation

goal.

• RQ1: How widespread is the use of these dynamic code update features in the

analyzed dataset and does StaDART reveal dynamic behavior in each of the analyzed

app?

• RQ2: How effective is StaDART in expanding the MCGs? How expansion of MCGs

due to dynamic behavior differ in the malicious and benign dataset?

• RQ3: Does StaDART reveal potentially dangerous behavior, i.e., reveal nodes

guarded with permissions? How do they differ in benign and malicious apps?

• RQ4: Is there a correlation between the captured dynamic behavior and the APIs

used for dynamic code updates, e.g., DCL or reflection?

• RQ5: Do the analyzed apps show suspicious behavior, i.e., use additional new

permissions which are not used in the initial MCG? How does this behavior differ

in malicious and benign apps?

Analysis Results: Figure 4.4 illustrates the prevalence of dynamic code update APIs

in the analyzed dataset and the effectiveness of StaDART in expanding the MCGs. It

shows the percentage of apps with invoke, newInstance and DCL among both benign

and malicious app dataset. The right most bar represents the percentage of apps where

StaDART expanded the MCG. In the dataset, close to 90% of the apps use invoke and/or

newInstance APIs. Similarly, 48% of the apps use DCL feature which is considerably

higher to previous analysis results [110] (first part of RQ1). Increase in the number of
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Figure 4.4: Prevalence of Reflection/DCL and StaDART effectiveness in expanding MCG

apps using DCL could largely be related to the increasing complexity of the Android apps.

StaDART was able to expand the MCG by at least one node in 80% of the analyzed apps

(second part of RQ1).

In order to answer the question whether StaDART expands the MCGs over the entire

dataset and by how much?, Figure 4.5 shows the effectiveness of StaDART for analyzed

dataset, both benign and malicious. It shows the average percentage increase in the num-

ber of nodes, edges, nodes with normal permission and nodes with dangerous permissions.

Clearly, the lower percentage increase is attributed to apps that use only reflection as dy-

namic code update feature. The MCG expansion in these apps, which do not use DCL,

is minimal and more or less similar in benign and malicious apps (RQ2).

To clarify the role of DCL in MCG expansion and dynamic behavior, we extracted

the results from apps that use DCL. Figure 4.6 shows the effectiveness of StaDART when

the apps use DCL. It shows the average percentage increase in the number of nodes,

edges, nodes with normal permissions and nodes with dangerous permissions. It clearly

shows a considerably higher increase in the number of nodes, edges and nodes guarded

with permissions (both normal and dangerous). In addition, it can be seen that the

malicious apps hugely increase their code base when they use DCL (RQ4). Similarly, the

number of nodes guarded with permissions for malicious apps doubled or in some cases

quadrupled (RQ3). This clearly indicate that malicious apps make use of sensitive APIs

in the loaded code. We also check the added nodes for Signature level permission and

SignatureOrSystem level permission. However, we did not observe a noticeable increase

in the number of nodes guarded with these permissions.

Although, the high increase in the number of nodes guarded with dangerous permis-

sions is indeed suspicious, we investigate the analysis results further for a more suspicious
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malware behavior. In practice, malicious payloads are packaged inside legitimate apps

and their manifest files are modified to cover for the extra permissions needed by the

payload. In this scenario, the final MCG of the app contains nodes guarded with new

permissions, i.e., those not found in the initial MCG. Figure 4.7 and Figure 4.8 show the

distribution of apps based on increase in the number of nodes guarded with permissions

in the form of pie-charts, in benign apps and malware, respectively. Here we discuss only

those apps which use DCL. The white part shows the percentage of apps with no increase

in the number of nodes guarded with permissions, whereas the grey part represents the

percentage of apps with increase in the number of nodes guarded with permissions. The

darker grey part shows the percentage of apps where new permissions are used in the

dynamically added part using StaDART.

98%
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New Perms

Figure 4.7: Benign Apps with increase in permission nodes

The pie-chart for the benign apps shows that a very small fraction of the apps observe

an increase in the number of nodes guarded with dangerous permissions. In contrast,

a considerably higher number of malicious apps reveal such behavior. Also, in none of

the benign apps in the dataset, the loaded coded contained nodes guarded with new

dangerous permission. However, all the malicious apps in the dataset that loaded code

dynamically contained nodes guarded with at least one new dangerous permission (RQ5).

Moreover, a further analysis of the loaded code in malicious apps reveals a pattern of

dangerous permissions, e.g., READ PHONE STATE and INTERNET, that could be associated

with malicious functionality, such as privacy leakage, etc.

Also, noteworthy here is the fact that the revealed behavior is only due to triggering of a

small fraction of the total MOIs. Albeit the most advance automated triggering tool in the

research community, DroidBot does not serve well for app exploration from a security point
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of view. Taking into account the low exploration that DroidBot achieved in most of the

apps and the suspicious results that we observed, the actual hidden suspicious/malicious

behavior could be alarming.

Our results show evidence that malware samples are more overprivileged (they contain

more permission types required for the code loaded dynamically), so it is valid to identify

the apps as suspicious if they are overprivileged. Yet, as benign apps can be overprivileged

too, more research is required to understand if an application is benign or malicious, and

StaDART can be handy in exploration of this topic.

4.6 Discussion

For any dynamic (or hybrid for that matter too) analysis tool, coverage is the main

limiting factor and StaDART is no different in that regard. For StaDART the coverage

of MOIs (the ratio between the number of executed MOIs at least once and total number

of discovered MOIs) is especially important. In order to achive higher MOI coverage,

we explored if the tools like monkey [34] can be handy. However, in our experiments

we found out that pseudo-random events generated by the tool do not produce tolerable

coverage values for MOIs. Therefore, we opted for a more advance automated triggering

tool, DroidBot, to trigger MOIs. However, as discussed in the previous section, even

DroidBot did not achieve reasonable coverage of MOIs.

A possible approach to achieve satisfying values is to use systems like SmartDroid [113].

SmartDroid allows an expert to specify sensitive API methods required to be triggered. In

case of StaDART the sensitive API methods correspond to reflection and DCL calls. Other

possible tools, which may be useful in developing fully automatic approach, are [46,94,108].
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Another possible direction to reduce the dependence on the triggering tool is to resolve

as many targets of reflection calls as possible statically, at least those which are represented

by constant strings [74]. The analysis performed in [63] has shown that it was possible

to resolve automatically the targets of reflection calls in 59% of applications that used

reflection. At the same time, the analysis was performed for the “closed world” scenario,

which is not realistic, given that dynamic class loading is a popular technique for modern

apps. Consequently, we can minimize the more expesive dynamic part of the analysis.

Usually, dynamic analysis allows an expert to explore only one execution path at a

time. However, dynamic traces may differ depending on the context of the execution,

e.g., some methods may contain calls invoked with parameters affecting the reflection call

target. Therefore, another direction for improving StaDART is to incorporate information

obtained during different runs of analysis.

StaDART has also other limitations. Its analysis is based on the UID of an application.

However, it is possible in Android that several apps have the same UID. In this case,

StaDART will also collect the information produced by other apps with the same UID.

At the same time, this information will not be used to complement MCG, but will be

added to the category of vague calls that need to be manually analyzed later.

4.7 Related Work

Being the most popular mobile OS, Android has won this position due to the openness of

its ecosystem and the ease with which developers can publish apps on Google Play and

third-party markets. Yet the openness comes at the price of large volumes of malware

apps polluting the ecosystem. One approach to tackle security and privacy of mobile apps

is to extend the security controls of the platform to detect misbehaving apps or to enforce

the desired security policy [55, 112]. Solutions following this approach, often require to

modify the system image.

Another approach, more relevant to StaDART, consists in the analysis of the mobile

application code. Many static and dynamic analysis techniques have been proposed for

Android. The ded system [59] re-targets Dalvik bytecode into Java class files that can

be analyzed by the variety of tools developed for Java. In the original paper [59] the

FortifySCA static analysis toolset was used for detecting vulnerabilities and dangerous

functionality, like leaking the device IMEI. DroidAlarm [114] performs static detection of

privilege-escalation vulnerabilities in apps by constructing paths in inter-procedural call

graphs from a sensitive permission to a public interface accessible to other apps. StaDART

complements these static analysis techniques by completing inter-procedural call graphs.

Hu et al. proposed to explore functional call graphs (FCG) and rely on graph similarity
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metrics to detect malware based on known malware graph patterns [76]. Gascon et al.

continue this research direction for Android with a technique to detect malware apps based

on comparing FCGs that are mined with AndroGuard [67]. StaDART can complement

these techniques by providing more precise graphs required for analysis.

TaintDroid was among the first dynamic analysis tools for Android apps [58]; it allows

to track propagation of information via the TaintDroid infrastructure-equipped smart-

phone software stack. Sources of sensitive information are typically the device sensors

or private user information, and sinks are network interfaces; thus the main scope of

TaintDroid is detection of privacy leaks. This approach is followed by DroidScope [108].

DroidScope allows to emulate app execution and trace the context at different levels of

the Android software stack: at the native code level, at the Dalvik bytecode level, at

the system API level, and at the combination of both native and Dalvik levels. While

executing an app in DroidScope a security analyst can track events at different levels and

instrument parameters of invoked methods to discover a malicious activity.

Dynamic analysis techniques are especially difficult to automate due to the need of

emulating a comprehensive interactions of applications with the system and a user (UI

interactions). Several approaches are proposed to automate the triggering of UI events,

from random event generation [75] to more advanced approaches like AppsPlayground [94]

and SmartDroid [113]. However, all of them still have many limitations on the type of

events they can handle and the coverage.

Poeplau et al. [90] have identified the problem of dynamic code loading in Android

apps. The authors selected possible vulnerable patterns of dynamic code loading and built

a tool that can analyze Android apps for the found patterns. Moreover, they propose to

use whitelists to prevent dynamic code loading that can potentially expose dangerous

behavior. Whitelisting prevents unauthorized code from running. To get authorization

the code must either signed [111] and its signature has to be included into a special list

distributed by trusted authorities. However, as mentioned in the article [90], extraction of

the dangerous behavior is a difficult problem by itself, especially when the protected API

is called through reflection. In contrast, StaDART aims not at preventing this loading

(because a lot of legitimate apps use it and extra complications will not be welcomed by

the developers) but at its analysis.

Reflection and Dynamic Class Loading in Java Gaps in the static analysis techniques

in the presence of dynamic class loading, reflection and native code were previously stud-

ied for Java. For example, similarly to our approach, in [73] a pointer analysis (based

on program call graphs) technique for the full Java language is extended by address-

ing dynamic class loading and reflection via an “online” analysis, when a call graph is
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built dynamically based on the program execution, and dynamic class loading, reflection

and native code are treated in real time by modifying the pointer analysis constraints

accordingly.

A run-time shape analysis for Java is investigated in [49]. Traditionally a shape analysis

operates based on the call graph of a program, and it allows to conclude how the heap

objects are linked to each other (e.g., if a variable can be accessed from several threads).

Yet in Java the call graph produced from a program can be incomplete; and [49] suggests

how to execute an incremental shape analysis when the call graph evolves dynamically.

Our proposal does not involve a shape analysis, yet the ideas behind our proposal and [49]

are similar.

Livshits, Whaley and Lam have studied the reflection analysis for Java [80]. They

propose refinement for the static algorithms to infer more precise information on approx-

imate targets of reflective calls, as well as to discover program points where user needs to

provide a specification in order to resolve reflective targets.

Relevant to StaDART is TamiFlex [48] that complements static analysis of Java pro-

grams in the presence of reflection and custom class loaders. Using the load-time Java

instrumentation API TamiFlex modifies the original program to perform logging of class

loading and reflection call events. This information is used to seed a tool that performs

static analysis of the program having the information obtained during the dynamic anal-

ysis phase. This work differs from StaDART in several aspects. First, TamiFlex uses

a special Java API that is not available in Android. Second, although in Android it is

possible to instrument an app before loading it on a device (offline instrumentation), some

Android apps check the application signature in its code that is changed during the patch-

ing. Thus, for these applications the TamiFlex approach will not work in Android. Third,

TamiFlex requires some debug information (the line number of the function call) to be

present. In Android during the obfuscation phase this kind of information may be deleted

from the final package. Therefore, the TamiFlex approach will not work, while StaDART

is able to process correctly this case due to dynamic API hooking using ArtDroid.

4.8 Chapter Summary

Today mobile applications make an extensive use of dynamic capabilities, namely reflec-

tion and dynamic class loading, available in the Android OS. Being adopted from Java,

these techniques in Android incur an additional threat because the loaded code receives

the same privileges as the loading one. Malicious apps can leverage these facilities to

conceal their malicious behavior from analyzers.

In this chapter we presented StaDART, a technique that interleaves static and dy-
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namic analysis in order to scrutinize Android applications in the presence of reflection

and dynamic class loading. Our approach makes it possible to expand the method call

graph of an application by capturing additional modules loaded at runtime and additional

paths of execution concealed by reflection calls. In order to produce the expanded call

graph, StaDART relies on code interposition based on a dynamic API hooking technique.

It does not require any modification to the Android framework or the application itself.

As observed from the evaluation results malware apps were more inclined to exhibit a

suspicious increase in dangerous permissions after dynamic loading of new code, proving

that StaDART is an effective hybrid approach able to detect and capture apps’ dynamic

capabilities used at runtime.

The results produced by StaDART can then be fed to the state-of-the-art analyzers in

order to improve their precision (for instance, a reachability analysis will be more precise

over the expanded MCG than over the original one). Thus, StaDART may help malware

analysts by increasing their ability to detect suspicious samples.



Chapter 5

TeICC: Targeted Execution of ICC

Effective analysis of applications is essential to understanding their behavior. Two analysis

approaches, i.e., static and dynamic, are widely used; although, both have well known

limitations. Static analysis suffers from obfuscation and dynamic code updates. Whereas,

it is extremely hard for dynamic analysis to guarantee the execution of all the code paths

in an app and thereby, suffers from the code coverage problem. However, from a security

point of view, executing all paths in an app might be less interesting than executing certain

potentially malicious paths in the app. In this chapter, we present a hybrid approach that

combines static and dynamic analysis in an iterative manner to cover their shortcomings.

We use targeted execution of interesting code paths to solve the issues of obfuscation

and dynamic code updates. Our targeted execution leverages a slicing-based analysis

for the generation of data-dependent slices for arbitrary methods of interest (MOI) and

on execution of the extracted slices for capturing their dynamic behavior. Motivated by

the fact that malicious apps use Inter Component Communications (ICC) to exchange

data [78], our main contribution is the automatic targeted triggering of MOI that use

ICC for passing data between components. We implement a proof of concept, TeICC,

and report the results of our evaluation.

5.1 Introduction

Mobile apps are analyzed for malicious contents before being published to app stores,

such as Google Play Store. The analysis usually involves two categories, i.e., static

(reasoning about an app without executing it) and dynamic (executing apps in a controlled

environment and understanding their behavior). Both of these analysis techniques have

their pros and cons. While the former provides an over-approximation of what a piece of

code actually performs, the latter misses certain execution paths due to limited duration of

the analysis and the triggering problem. Static analysis also suffers from code obfuscation

67
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problems and dynamic code updates. Dynamic analysis, on the other hand, provides a

solution to these problems, but requires test cases which could execute a major/required

portion of the code.

Execution of certain code paths in mobile apps depends upon a combination of var-

ious user/system events. Generally, it is hard to predict inputs which can stimulate the

required behavior in these apps. This feature of mobile apps is widely used by malware

developers to conceal malicious functionality.

Code coverage is a well-known limitation of dynamic analysis approaches. However,

for the purpose of security analysis rather than testing, it is required to stimulate/reach

only specific points of interest (POI) in the code rather than stimulating all the code

paths in an app. In literature, researchers have focused mainly on providing inputs to

make an app follow a specific path. Providing the exact inputs and environment becomes

very hard as different apps may require different execution environments. Moreover, not

all inputs can be predicted statically, because of obfuscation or other hiding techniques.

In this chapter, we propose a fully automated hybrid system which uses a slicing

based approach for target triggering of a given MOI. It performs static data-flow anal-

ysis [38, 65] based on program slicing technique [105] to extract target slices which hold

data-dependency with the parameters used by the given MOI. Moreover, our slicing ap-

proach permits slice extraction following the ICC flow across different app components.

Importance of ICC in malware for sharing sensitive data is shown by Bodden et al. in [78].

However, to the best of our knowledge, none of the existing approaches [43,93] for targeted

triggering support the extraction of interesting paths across different Android components.

In our proof of concept, TeICC, we leverage an enhanced version of SAAF to achieve

program slicing [74]. We modified SAAF adding more sensitivity and support for ICC

using a System Dependency Graph (SDG) (cfr. §5.3). Besides that, TeICC, employs

a modified version of Stadyna [110] which integrates ArtDroid [56] to support dynamic

execution of the extracted slices to resolve obfuscation and dynamic code updates. It runs

on a real device/emulator with no modification to the Android framework.

TeICC operates in an iterative manner where a SDG helps extraction of slices across

multiple components for targeted execution and targeted execution overcomes the limita-

tions of static analysis by resolving obfuscation and dynamic code updates. It results in

construction of an improved SDG and extraction of extended slices for better analysis of

apps.

Contributions:

• We extend the backward slicing mechanism to support ICC, i.e., extract slices across

multiple components. Moreover, we enhance SAAF to perform data flow analysis

with context-, path- and object-sensitivity.
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• Targeted execution of the extracted inter-component slices without modification to

the Android framework.

• We design and implement a hybrid analysis system based on static data-flow analysis

and dynamic execution on real-world device for improved analysis of obfuscated apps.

5.2 Motivating example

The rising use of techniques such as obfuscation and ICC for information leakage by

newly found malware motivates this work. Existing analysis approaches generally do not

support information-flow analysis across multiple app components in obfuscated apps.

As a result, malware use these features for evading these analysis tools. As reported by

different antivirus companies [1, 27, 29, 31, 33], obfuscated malware has started to show

up more frequently. This trend poses a strong challenge for the current static analysis

tools, which are unable to automatically analyze apps in the presence of obfuscation or

dynamic code loading. Furthermore, as demonstrated in [78], the ICC mechanism offered

by Android is used by both normal and malicious apps for passing data between different

Android components.

Listing 5.1: MessageReceiver

1 public class MessageReceiver extends BroadcastReceiver {

2 public void onReceive(Context context , Intent intent) {

3 SharedPreferences v3 = ...

4 Map v0 = this.retrieveMessages(intent);

5 Iterator v6 = v0.keySet ().iterator ();

6 while(v6.hasNext ()) {

7 Object v2 = v6.next();

8 Object v5 = v0.get(v2);

9 Intent v4 = new Intent(context , SendService.class);

10 v4.putExtra("number", (( String)v2));

11 v4.putExtra("text", (( String)v5));

12 context.startService(v4);

13 [...]

14 }

15 } }

Listing 5.2: SendService

1 public class SendService extends IntentService {

2 protected void onHandleIntent(Intent intent) {

3 if(v1.equals("REPORT_INCOMING_MESSAGE")) {

4 Sender.request(this.httpClient , "http ://37.1.204.175/? action=command

", RequestFactory

5 .makeIncomingMessage(v2 , intent.getStringExtra("number"),

intent.getStringExtra(

6 "text")).toString ());

7 return;

8 }
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9 }}

10 public class Sender {

11 public static JSONObject request(DefaultHttpClient hc, String serverURL ,

String data) throws Exception {

12 HttpPost v1 = new HttpPost(serverURL);

13 StringEntity v3 = new StringEntity(data , "UTF -8");

14 HttpResponse v2 = hc.execute ((( HttpUriRequest)v1));

15 }

16 }

To ease the understanding of our contributions, we are going to introduce a code

snippet of a real-malware sample reported by FireEye in [22]. Listing 5.1 shows the de-

obfuscated version of the code used to intercept and then report the incoming SMS. The

forwarding process is defined in a service component. The MessageReceiver (line 2) is

called for each incoming SMS and then an Android service is started by an Intent (line

12). The number and text data are stored within the Intent (lines 10, 11). Note that

the original obfuscated malware uses string encryption on the constant string along with

Java reflection for calling ICC methods. Then the started service, shown in Listing 5.2,

gets data from the incoming Intent (lines 5, 6) and leaks (line 14) SMS number and text

via a remote server connection (the server IP address string was obfuscated as well).

To the best of our understanding, static analyzers [69, 78, 87, 88], are not successful

in analyzing such cases because of both encryption and reflection techniques used by

this malware sample. Moreover, also hybrid approaches proposed in [93] and [43] cannot

properly analyze the sample because they lack support for ICC.

5.3 Our approach

(a) SDG - First Iteration (b) SDG - Second Iteration

Figure 5.1: SDG during the first and second iteration. Comp: Component

During a normal execution of an Android app, the control transfers between various

components based on certain user or system events. In order to trigger a specific piece of
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code inside an app, it is important to provide the exact user/system events in a specific

order to make it follow the target path. We take a slightly different approach based on

isolating target execution paths from within the app and executing them; thereby avoiding

to rely on user/system events. Target execution paths are isolated by means of a slice

extraction mechanism that leverages backward program slicing across various components

of the app.

5.3.1 Slice Extraction

Backward code slicing is a static analysis technique that identifies the data flow to a certain

variable v at point p in the program while tracking the code in backward direction. In the

process it identifies all the code instructions I which directly or indirectly affect the value

of v at point p. This set of instructions I is called a backward slice. An important property

of a backward slice is that it can execute independently of the rest of the program.

We leverage this property of the backward slice in our approach. Our backward slicing

mechanism starts from a target point and traverses the code in backward direction until

it reaches an entry point in the app. Instructions corresponding to each target point are

marked accordingly and extracted from the program to be refined and executed sepa-

rately. In simple apps, a backward slice may belong to a single app component. However,

the complexity of apps these days demands for more inter component communication.

Therefore, approaches based on extracting slices from only a single component might

miss critical information passed through ICC.

5.3.2 Inter-Component Communication

Our approach extends backward slicing across multiple app components. We build a

System Dependency Graph (SDG) before starting slice extraction. A SDG is a represen-

tation of the program highlighting the inter-connectivity and program flow among various

components. Figure 5.1 provides a simplified representation of a SDG. The nodes in the

SDG represent components which are connected to each other with directed edges where

the direction shows the flow of execution from one component to the other. A SDG also

provides information about the nature of the components, i.e., activity, service, broadcast

receiver, etc. This information is not shown in the figure where we simply refer to them

as CompX. The backward slicing assisted by the SDG then extracts slices which may

contain instructions from multiple components.

Listing 5.3: Extracted and Refined Slice

1 public class MessageReceiver_fake extends BroadcastReceiver {

2 public void onReceive(Context context , Intent intent) {

3 Map v0 = MessageReceiver_fake.retrieveMessages(intent);
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4 Iterator v6 = v0.keySet ().iterator ();

5 while(v6.hasNext ()) {

6 Object v2 = v6.next();

7 Object v5 = v0.get(v2);

8 Intent v4 = new Intent(context , SendService_fake.class);

9 v4.setAction("REPORT_INCOMING_MESSAGE");

10 v4.putExtra("number", (( String)v2));

11 v4.putExtra("text", (( String)v5));

12 context.startService(v4);

13 }

14 }

15 }

16 public class SendService_fake extends IntentService {

17 public void onCreate () {

18 [...]

19 this.httpClient = new DefaultHttpClient ();

20 }

21 protected void onHandleIntent(Intent intent) {

22 String v2 = SendService.settings.getString("APP_ID", " -1");

23 Sender.request(this.httpClient , "http ://37.1.204.175/? action=command",

RequestFactory

24 .makeIncomingMessage(v2 , intent.getStringExtra("number"), intent

.getStringExtra(

25 "text")).toString ());

26 }}

Our approach uses an iterative mechanism which works in a CreateSDG-ExtractSlice-

Execute cycle. Each phase in this cycle provides input for the next phase. SDGs help

in extracting slices across multiple components and extracted slices simplify execution of

target points in the app. Similarly, the execution phase helps in resolving obfuscation and

dynamic code updates which leads to improved creation of the SDG in the next iteration.

Figure 5.1(a) and 5.1(b) show a SDG in two iterations. In the first iteration, TeICC

finds the obvious non-obfuscated ICC links only. Therefore, the SDG contains Comp4

and Comp5 which are isolated components. The second iteration reveals that the app

has obfuscated ICC links from Comp2 to Comp5 and from Comp3 to Comp4 as shown

in Figure 5.1(b). This process carries on until the SDG reaches a stable point. At this

stage, all the obfuscated links are resolved and the slices are ready for the final execution

to capture and analyze suspicious behavior.

Most of the state-of-the-art analysis tools would fail to extract the complete slice in the

case of the sample described in §5.2. However, TeICC allows the extraction of such data-

dependent slices because it can follow the ICC flow across multiple components. Listing

5.3 shows the resulting slice extracted and refined by TeICC; it shows the corresponding

aggregated Java code to ease the understanding.
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5.3.3 Slice Execution

The extracted slices are put together in one or more resultant components where the irrele-

vant instructions are removed as shown in Listing 5.3. Similarly, the AndroidManifest.xml

file is also modified to include entries for these resultant components and remove irrelevant

ones. The enriched app is then assembled and signed. The flow of the app is hijacked

using a stub code so that it executes the resultant component after it is launched. The

app is then installed and run on a real device or emulator. The target slice is executed

once the resultant component is started. Similarly for each extracted slice, a resultant

component is added to the app. The app is observed during execution of the resultant

components to capture the target behavior of the app.

5.4 Design and Implementation

TeICC is a hybrid system composed of various static and dynamic analysis modules. Here

we describe the design, implementation and work-flow of TeICC.

5.4.1 Overview

Figure 5.2 illustrates a high level design of TeICC. TeICC consists of a Static Analyzer,

a Slice Analyzer and an App Executor module. The Static Analyzer further relies on

a disassembler to convert an app’s compiled Dalvik bytecode to Smali code [71]. The

Smali files are then taken as input by the SDG Generator to create the first iteration of a

SDG. The Slice Extractor assisted by the SDG performs backward program slicing on the

Smali files to extract target slices, for the list of MOIs provided as an XML file, across

multiple components. The Slice Analyzer module refines the slices by removing irrelevant

instructions and merging them in the resultant components as shown in Listing 5.3. The

Slice Assembler part of this module assembles the modified app Smali files and signs the

APK file.

The App Executor module takes the app under analysis as input and installs it on

a device for dynamic execution of the target slices. The purpose of the execution of

target slices is two-fold. One for de-obfuscation and resolving the targets of dynamic code

updates, such as reflection and dynamic class loading. The other purpose is to capture any

sensitive/malicious behavior. For handling dynamic code updates, we utilize a modified

version of Stadyna [110] that can resolve the targets of reflection and handle the code

loaded dynamically. In order to capture sensitive behavior of app, we leverage an API

hooking tool, ArtDroid [56], to hook sensitive APIs, such as dynamic code update APIs

or the sendTextMessage() API, etc.
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Figure 5.2: TeICC Design

5.4.2 Enhancement to Backward Slicer

Our backward slicing mechanism is based on an enhanced version of SAAF which performs

static analysis of Android apps on Smali code [74]. We added certain features to it to

overcome some of its limitations.

We extended SAAF to perform backward slicing across multiple components. This

extended backward slicing is guided by a SDG when the start of a component is encoun-

tered. The backward slicing process continues until it reaches an entry point of the app

according to the SDG. The entry point is a node in the SDG which has no predecessor.

Moreover, we added a slice extraction feature to SAAF, i.e., to mark all the instructions

in the backward slice and write them to another file for further analysis.

Apart from extending backward slicing to cover ICC, we added other features which

are important for the soundness of static analysis. The most important features we added

are path-, context- and object-sensitivity [79]. Context- and object-sensitivity is essential

to extracting slices across multiple components. We also utilize path-sensitivity where

the conditions leading to different paths are resolvable. In cases where these conditions

are not resolvable, we use an approach similar to the one used in [93].
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5.4.3 Capturing Dynamic Behavior

The idea behind a multiphase iterative model is to overcome the shortcomings of both

static and dynamic analysis. TeICC relies on a modified version of Stadyna to handle

reflection and dynamic code loading [110]. Originally, Stadyna is based on modifications

to Android framework (Android 4.2) to resolve the targets of reflection and integrate the

code loaded dynamically to the original code base for further analysis. We re-implemented

Stadyna removing the need of Android framework modification by using ArtDroid.

We used ArtDroid to hook framework APIs used for dynamic code updates as well as

those responsible for sensitive behavior. By intercepting calls to the dynamic code APIs,

App Executor provides a feedback to the Static Analyzer for improved creation of SDGs

and extended backward slices. In addition, sniffing on sensitive API calls enables TeICC

to put a check on suspicious app behavior.

5.5 Evaluation and Discussion

This section presents experimental results that characterize the effectiveness of TeICC to

analyze apps that conceal sensitive information flow using obfuscated ICC. We evaluate

TeICC on two benchmark test suites, DroidBench [20] and ICC-Bench [104], specifically

crafted for testing tools to detect information flow concealed using ICC. ICC-Bench in-

cludes 9 test case apps and DroidBench contains 23 apps included in the InterCompo-

nentCommunication test case. The goal of evaluation of TeICC is to test its capability to

extract slices across multiple components in obfuscated apps and execute them. Therefore,

we obfuscated these ICC-based test suites using DexGuard [19] to evaluate TeICC.

Table 5.1 shows evaluation results for both DroidBench and ICC-Bench test suites.

For brevity we group the apps in categories. The second column contains the number

of ICC links found by TeICC while the third and fourth column show if the apps have

been correctly analyzed by IccTA [78] and TeICC, respectively. The symbol 8 means

that the tool has failed to analyze the app and the symbol 4 means that the app has

been properly analyzed. Not surprisingly, TeICC outperforms IccTA on both tests since

IccTA cannot detect ICC methods called by Java reflection and encrypted strings used in

intents. As shown in Table 5.1, TeICC can automatically extract-then-execute 100% of

ICC flows in all apps; except for those which perform ICC involving a Content Provider

because currently TeICC does not provide support for Content Providers. Unfortunately,

we cannot evaluate Harvester [93] because it is not open source. However, we understand

that it will not be successful as well because it does not support slicing across different

Android components.

Our results indicate that TeICC permits to effectively extract-then-execute the target
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Apps ICC IccTa TeICC

DroidBench

startActivity[1-7] 2/9 8 4

startActivityForResult[1-4] 0/8 8 4

sendBroadCast1 0/1 8 4

sendStickyBroadCast1 0/1 8 4

startService[1-2] 0/2 8 4

bindService[1-4] 0/4 8 4

ContentProvider[1-4] 4/0 8 8

ICC-Bench

Explicit1 0/1 8 4

Implicit[1-6] 7/0 8 4

DynRegister[1-2] 2/0 8 4

Table 5.1: DroidBench/ICC-Bench apps. ICC: # of implicit/explicit transitions between com-
ponents.

slices obtained from the program slicing analysis. If, for instance, the target app contains

checks which could prevent the dynamic analysis (i.e., emulation detection, integrity

checks, etc.), they are not extracted in the slicing step (unless they hold a data dependence

with the MOI).

In contrast to Harvester [93], TeICC supports the ICC mechanism which enables it to

automatically extract-and-execute target slices that belong to different Android compo-

nents. Similarly, R-Droid [43] lacks support for both ICC and Java reflection mechanisms.

Compared to IccTa [78], TeICC, based on a hybrid approach, permits to enrich the origi-

nal app after its targeted execution to resolve obfuscated parts of the app. Over different

executions it permits to extract runtime values from reflection calls or dynamically loaded

code and integrate them in the analysis for the next iteration.

At the moment TeICC does not support the Content Provider component; we leave it

as future work. Moreover, it does not analyze native code. For instance, if an SMS message

is sent from native code, TeICC cannot use this hidden call to sentTextMessage() as MOI.

However, just like TeICC, both [93] and [43] also do not support native code analysis.

5.6 Related Work

In the last few years, researchers have proposed several static analysis frameworks specif-

ically for Android. Most of these frameworks [41, 68, 69, 78, 82] employ different type of
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sensitivity, e.g., field sensitivity, object sensitivity, etc.

FlowDroid [41] detects sensitive information leakage with very high recall and pre-

cision. It supports context-, flow-, field- and object-sensitivity. However, it does not

support the ICC mechanism. DroidSafe [69] and IccTa [78], like FlowDroid, are devel-

oped on top of SOOT framework [77] and they are able to analyze flows between different

Android components. IccTa, based on FlowDroid and IC3 [87], detects flows of sensitive

data with a greater context sensitivity. DroidSafe represents the current state-of-the-art

for Android static analysis. It precisely models the Android runtime and its components

leveraging Object-Sensitive Points-To analysis.

However, static analysis approaches have problems in analyzing obfuscated apps (i.e.,

having string encryption and using Java reflection) and to capture dynamically loaded

code. These issues greatly limit the results of static analysis.

Previous works have proposed a combination of static and dynamic analysis to over-

come these limitations. AppAudit [107] is a program analysis framework that can dynam-

ically analyze apps detecting data leakage using taint analysis. The most relevant works

for TeICC are Harvester [93] and R-Droid [43]. They try to improve static analysis by

detecting implicit intra-component data flows using program-slicing based analysis. How-

ever, neither of them supports ICC; so they are not able to automatically analyze flows

between different Android components, which leaves the analysis incomplete. Moreover,

R-Droid cannot properly analyze apps in the presence of Java reflection.

To the best of our knowledge, none of the existing program-slicing based hybrid ap-

proaches [43,93] permit the analysis of ICC flows.

5.7 Chapter Summary

In this chapter, we presented a targeted triggering approach, TeICC, to stimulate ICC in

Android apps. TeICC is based on a backward program slicing which in turn relies on a

SDG. The SDG based backward slice extraction technique used by TeICC enables it to

extract-then-execute target slices across multiple app components. Moreover, the iterative

hybrid approach allows TeICC to extract runtime values (i.e., reflection values, decrypted

strings, etc.) to enrich the original app. These runtime values help in performing improved

static analysis of obfuscated apps in the next iteration.

As a future work in this direction, we would like to provide support for content

providers. Moreover, we focus on different approaches to overcome current limitations.

For example, to address the extraction of slices involving native calls, we are analyzing

a novel approach using the ArtDroid [56] framework to intercept sensitive Java methods

called by native code.
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Chapter 6

Runtime Analysis of Dynamic Code
Updates

Obfuscation and complex nature of modern day feature-rich apps make stimulating an app

much harder in an analysis environment. Despite the robustness of the triggering mech-

anisms discussed in the previous chapter, and those found in the literature, it cannot be

safely stated about dynamic analysis to cover every code path in the app. Rather, the

outcome of dynamic analysis will always be an under-approximation of the complete be-

havior of the app. Malware developers exploit this intrinsic weakness of dynamic analysis

to evade the vetting process deployed at app markets.

In addition, apps - benign but having potential vulnerabilities - that pass analysis

check can become victims to on-phone exploitation by adversaries. In both these con-

texts, the analysis check at the app market becomes pretty much useless as the real

exploitation and malicious activity is only revealed once the app is installed and run on a

user’s device. Nevertheless, the malicious functionality has to be exposed at some stage.

Therefore, an on-phone analysis mechanism - which could analyze, detect and prevent

malicious behavior as it appears - could potentially solve the problems associated with

de-obfuscation, triggering and runtime exploitation of vulnerable apps. Involving the user

in the triggering process, in addition to the willingness of the malware to exhibit mali-

cious functionality once it is installed on a real user’s device, provides the best possible

environment to trap the malware.

In this chapter, we present an API hooking based app introspection mechanism to

analyze dynamic code updates as they appear in an app. The analysis mechanism is

implemented and provided as a library that can be easily included inside an app with-

out requiring the developer to modify anything in the app. We focus on detecting and

preventing on-phone exploitation of benign, but vulnerable, apps that involve dynamic

code updates. This solution is directed towards safeguarding apps and mobile users from

79
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on-phone exploitation of benign apps while relying on collaborative developers. In this

work, we only consider dynamic code updates, but the idea is more general and applicable

to other app activities as well.

6.1 Introduction

Moving away for static analysis of apps as it suffers from some inherent limitations such as

obfuscation and dynamic code updates; dynamic analysis comes to the rescue by provid-

ing solutions to these problems. However, it requires execution of the code paths that are

essential to understanding an app’s behavior. Interactive nature of mobile apps, environ-

ment specific triggers embedded in apps and the use of anti-debugging and anti-emulation

techniques used by malware developers are some of the features that limit the outcome

of dynamic analysis to an under-statement of the app’s complete behavior.

In the previous chapter, we discussed targeted execution of code paths that potentially

conceal malicious behavior. We presented a combination of static and dynamic analysis

techniques to ensure execution of the code paths that play a vital role to understanding the

app’s behavior. These techniques, along with others found in the literature [93, 94, 113],

shift triggering from a black-box mechanism to a rather grey-box or white-box mechanism

and advance the state-of-the-art in triggering to aid dynamic analysis of Android apps.

However, performing dynamic analysis of the already enormous number of apps, and

still rapidly increasing, is highly resource consuming, does not scale well and proves costly.

Consequently, it is hardly sustainable for newly established app markets. Moreover, there

are always chances of malware sneaking through the analysis check and infecting users’

devices. Moreover, malware can delay its malicious functionality as long as possible, but

it has to exhibit it at some stage once installed on a user’s device. Also, keeping in mind

the possibility of on-phone exploitation of benign but vulnerable apps by adversaries; it

is important to shift some part of the analysis to the end users’ devices which are getting

more powerful by the day. A runtime analysis, detection and prevention mechanism

could potentially solve the problem related to de-obfuscation, triggering and vulnerability

exploitation.

Traditional solutions in this direction can be seen in most of the antivirus products

which were designed keeping the resource constraint nature of mobile devices in mind.

Most of these antivirus products rely on signature based detection which can be easily

evaded by new variants of malware. Mobile devices, now more or less equivalent in

resources to a normal PC, allow for enhanced analysis solutions. Indeed, researchers have

shown the possibility of enhancement to on-phone analysis solutions [62]. However, they

either require changes to the Android framework, rooting the device or largely modifying
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developer’s code.

In this chapter, we present an API hooking based app introspection mechanism, Ap-

pIntrospector, that can be used to analyze, detect and prevent malicious activities that

involve dynamic code updates at runtime. We design and develop our runtime analysis

mechanism making use of some of the existing native level and Java level hooking tech-

niques. At the moment, we focus on analysis of dynamic code updates only, but the

concept is more generic and can be extended to monitor other type of runtime activities

too. The analysis mechanism is implemented in the form of a set of libraries which can

be easily included in apps without requiring the developers to modify their apps.

Contributions:

• We introduce a paradigm shift by moving part of the analysis of Android apps from

an artificial analysis environment to end users’ devices. Careful design, implementa-

tion and deployment of this type of solutions could pave the path to solving problems

like de-obfuscation, app stimulation and vulnerability exploitation at runtime.

• We investigate and provide a theoretical overview of some of the well known hooking

tools in security researcher’s community and techniques found in the literature.

• We design and implement an app introspection mechanism that leverages API hook-

ing to analyze, detect and prevent malicious activities that involve dynamic code

updates. Our analysis solution relies on minimal collaboration from the developers

and does not require any modification to the Android framework and rooting the

device.

6.2 Threat Model

This section describes the threat model, scope of this work and capabilities of an adversary.

As mentioned in the previous section, we only consider adversary exploiting vulnerabilities

in benign apps to remotely execute malicious code using dynamic code updates. This

adversarial activity is based on remote code injection vulnerability in the target app. We

consider two scenarios here.

• Adversary controls non-secure communication (app using HTTP instead of HTTPS)

performed by the app to download code packages over the network. We assume that

an adversary can launch a Man-In-The-Middle (MITM) attack to replace the legit-

imate code with malicious code, which is later on loaded by the app and executed.

• The target app loads code from a world writable location on the device, such as SD

card, and the adversary has write access to that location. An adversary can replace
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the code which is to be loaded by the app with malicious code using a pre-installed

app that the adversary controls.

6.3 AppIntrospector

AppIntrospector is a code package that contains a set of libraries which an app developer

can embed inside the app. AppIntrospector gets activated when the app is launched and

analyzes, detects and prevents malicious code execution everytime the app uses dynamic

code updates.

6.3.1 Design Constraints

The scenario and the problem description impose certain constraints on the design of

AppIntrospector. These constraints are enlisted here and the possible solutions towards

the design and implementation of AppIntrospector are discussed later in the text in the

light of these constraints.

• C1: There should be minimal changes to the original app, if any.

• C2: There should be no changes to the underlying framework/kernel and should

not require flashing of the device.

• C3: The underlying libraries used by the apps or other third party libraries should

not change.

• C4: The solution should work on a not-rooted device.

6.3.2 AppIntrospector Overview

Android provides a set of native and Java level libraries as part of the framework. These

libraries can be accessed by an app using APIs provided by the framework. Figure 6.1

draws a high level picture of the app-framework interaction to perform various activities.

Features implemented as Java level framework libraries are generally accessed by calling

the Java level framework APIs as shown in Figure 6.1(a). Similarly, native level libraries

are usually accessed through higher level Java APIs, which in turn call the native func-

tions. Not all, but some of these native libraries can be accessed from the app code using

either native code or Java Native Interface (JNI). In addition, some of the framework fea-

tures are implemented as native level services, and are not accessible directly to the app

code. The app code makes use of Binder to access such services. Generally, the Android

framework provides Java level stub methods which abstract Binder interaction from the

developer.
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(a) Java Level Libraries (b) Native Libraries (c) Framework Services

Figure 6.1: App - Framework Interaction

The key design feature of AppIntrospector is to be included in the app code as a library

and use dynamic hooking to intercept API calls, such as calls to dynamic code update

APIs. Figure 6.2 presents a high level view of where AppIntrospector fits in the program

flow.

Figure 6.2: AppIntrospector

As a library, AppIntrospector is initiated when the app launches. AppIntrospector

initiation can be trivially accomplished by a minor modification (Step 1 ) to the app’s

entry point. AppIntrospector then consists of two main modules, i.e., a hooking module

and an analysis module. The hooking module then dynamically inserts hooks in the target

framework APIs and redirects them to enhanced versions of these APIs (Step 2 ).

After the initial instrumentation phase, the hooking module goes into dormant mode

and let the app execute according to its flow. Whenever the app makes a call to a target

API, in our case any of the dynamic code update APIs, the hook placed in the target

API shifts the execution flow to its enhanced version (Step 3 ). The enhanced version
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of the API basically utilizes the analysis module of AppIntrospector to analyze the state

of the API call, e.g., in the case of dynamic code loading, the analysis module checks the

code to be loaded for malicious content before handing it over to the actual dynamic code

loading API to load it into the memory (Step 4 ). AppIntrospector supports both pre-

and post-call analysis. As a result, the API call returns to the analysis module before

finally returning to the original app code (Step 5 and 6 ). Doing so, AppIntrospector

analyzes the code as it is being loaded, thereby, effectively nullifying the triggering prob-

lem. AppIntrospector maintains a state of the app and raises an alarm whenever the app

performs any suspicious activity.

6.4 Hooking Module

At the core of AppIntrospector, there lies the hooking module that is designed and im-

plemented keeping in mind the constraints discussed earlier. The hooking module helps

in redirecting API calls at runtime and thereby enabling the analysis module to check

the code to be loaded on the fly. In this section, we provide an overview of some of the

existing available hooking tools and then we discuss which among them - after necessary

modifications and enhancements - serve our constraints better.

6.4.1 Review of Existing Hooking Tools

Instead of reinventing the wheel, we thoroughly analyzed the capabilities of the existing

available hooking tools in order to find a suitable match and then use that as a base for

our hooking module. Table 6.1 provides a summary of the tools discussed in this section.

Table 6.1: Summary of Tool Specifications. Size: Lines of code approximately.

Tool Platform Arch Android Dalvik/ART Size

ELF-Hook Unix/Win x86 - - 800

Arminject Android ARM32 - - 2-3K

Adbi Android ARM32 4.2, 5.1, 6 Both 2-3K

SamsungAdbi Android ARM64 - - 40K

ArtDroid Android ARM32 - ART 3K

ArtHook Android ARM(32/64) 7 ART 3K

CydiaSubstrate iOS/Android - Upto 4.3 Dalvik -

Probedroid Android x86 5 onwards ART 3K

Frida All x86,ARM(32/64),MIPS - Both* 250K

ELF-Hook [100]: ELF-Hook is a tool that can be used to divert function calls made
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in a particular library to a modified function. It is based on patching the import tables,

such as the relocation table, to divert the control flow. It reads the ELF file of the

library and finds out the symbol of the function of interest in the symbol table. Based

on the index of corresponding function in the symbol table, the function entry is found in

relocation table and its offset is stored for later redirection. The offset for the modified

function is calculated which replaces the offset of the original function.

This tool provides a simple technique to hook native functions. However, it cannot hook

functions that do not have an entry in the relocation table. Therefore, a major portion of

the functions cannot be hooked.

Arminject [84]: Armijenct is based on almost the same technique as ELF-Hook.

However, instead of reading the library .so file from the disk, it reads from the process

memory and modifies relocation table for redirection. Therefore, it does not require

recompilation of the app. To read the memory of a process and perform modification,

Arminject uses an injection module to inject a hooking library in the address space of the

process. They make use of ptrace for performing injection.

It covers one aspect of our hooking module constraints, i.e., the hooking is performed

at runtime. Although, it requires a rooted device to inject the library into the app address

space, this constraint can be removed in our scenario as we include AppIntrospector inside

the app at development time. However, Arminject suffers from the same problem as ELF-

Hook.

Adbi [86]: Adbi stands for Android Dynamic Binary Instrumentaion. As the name

suggests, it can be used to inject code in the memory of an Android app. Similar to

Arminject, it uses a hijack module to inject a hooking library in the address space of

the app. However, it uses another technique, in-line hooking, to perform redirection. It

modifies the entry point of a function and makes it jump to the address of a modified

function which returns the control after performing the required processing.

Similar to Arminject, Adbi also requires a rooted device for library injection in the app

address space. However, this constraint can be avoided in AppIntrospector’s scenario. It

is a light weight tool and can be used to hook native functions on ARM32 architecture.

ArtDroid [56]: ArtDroid uses Virtual Table (vtable) tampering to divert virtual

method calls used in the Android framework to patched-methods that can perform further

analysis on the parameters of the original method call. The patched-methods can be coded

in Java and provided in the form of a DEX file. A part of ArtDroid also makes use of

Adbi (discussed above). ArtDroid uses similar concepts to Arminject and Adbi for library

injection.

ArtDroid fits well within the idea of the hooking module of Introspector and can be used

to hook some the dynamic code update APIs. However, the technique used in ArtDroid is
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limited to hooking virtual methods only.

ArtHook [11]: ArtHook uses the the quick compile code of the framework libraries

to hook Java level APIs. It accesses the code using ART representation of the methods

and divert calls to these methods to patched-methods. Once the actual method is hooked

and calls are diverted to a patched-method, ArtHook makes use of Java reflection to call

the original methods.

ArtHook betters the Java level API hooking in comparison to ArtDroid. It also supports

both ARM32 and ARM64 architectures. However, since it uses the Java reflection API

invoke to call the original function, it can fall into a loop if used to hook the reflection

API.

Samsung-Adbi [98]: SamsungAdbi is a more advanced version of Adbi capable of

injecting code into the app’s memory, perform in-line hooking for redirection and does

not require recompilation of the app. It is developed and maintained by Samsung Poland

R&D center. It makes use of the disassembler framework Capstone for disassembling the

instructions in the apps memory [16].

Samsung-Adbi is a more sophisticated tool that can be used to hook native functions.

However, keeping in mind the analysis module of AppIntrospector too, we do not consider

it suitable for the hooking module which we want to be as lightweight as possible.

CydiaSubstrate [18]: It can be used to modify Android and iOS apps, but it is not

open source. The authors provide their libraries in the form an SDK add-on. They provide

various C, Objective-C and Java APIs for hooking native function and Java framework

methods. The SDK can be used by developers and analysts to develop patched-methods

that could be used for analysis purposes. CydiaSubstrate is provided in the form of an

app that can be installed on a rooted device to divert API calls to the patched-methods.

It is a useful tool as it can be used to hook both native functions and Java framework

methods. However, it requires a rooted device and it is not open source. Moreover, even

the latest version of CydiaSubstrate only supports Dalvik runtime and can not be used with

Android versions greater that 4.3. Therefore, we do not consider it in the hooking module

of AppIntrospector.

Frida [23]: Frida is a multi-platform hooking tool and supports most of the hardware

architectures, i.e., x86, ARM32 and ARM64, MIPS, etc. It is based on the idea of

redirecting function calls to a trampoline by injecting a call to the trampoline. The

trampoline can perform the desired processing (logging, modifying the parameters, etc.)

and then transfer the control to the original function. This technique is also a form of

inline hooking. Frida is a very sophisticated tool which basically uses a JavaScript runtime

as an interface between the list-of-functions-to-hook and the underlying hooking engine

written in C.



CHAPTER 6. RUNTIME ANALYSIS OF DYNAMIC CODE UPDATES 87

The fact that it already supports multiple platforms and architectures makes it very

attractive. However, its a huge project (more than 250K LOC). Therefore, it is not

trivial to modify its core engine and does not go well with the lightweightness constraint

of AppIntrospector’s hooking module.

ProbeDroid [99]: ProbeDroid is a dynamic Java code instrumentation tool for An-

droid. It is based on a technique similar to Frida that is to divert a function call to a

trampoline function which can perform analysis (log, modify, etc.) on the parameters and

return value of the function. It provides a platform for developers and analysts to craft

their own hooking tools. Based on a concept more or less similar to the tools discussed

earlier, it relies on a library injected into the app’s memory to hook Java method calls.

Tools like ProbeDroid can be modified a bit to make them inline with the idea of our

hooking module. ProbeDroid is a tool still under development and therefore lacks some

essential features, such as hooking native functions, etc. Moreover, it only targets Andorid

version 5 and above. At the time of the development of AppIntrospector (and even now),

ProbeDroid supported only x86 and ARM32 architectures.

6.4.2 Implementation

Keeping in mind the app-framework interaction discussed earlier in the text, the hooking

module is implemented to support both native functions hooking and Java API hooking.

AppIntrospector’s hooking module utilizes the concepts, and code with some modifications

and enhancements, used in three of the above mentioned hooking tools, namely Adbi,

ArtHook and ArtDroid. Figure 6.3 provides a block diagram of the hooking module.

Figure 6.3: AppIntrospector - Hooking module
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Native function hooking: As discussed in the previous subsection, Adbi uses inline

hooking technique to insert direct jumps in target native functions at runtime and divert

the flow of execution every time a target function is called. The hooking module of

AppIntrospector makes use of Adbi to hook functions in the framework native libraries,

such libc.so, libssl.so, etc. It is important for the hooking module to hook functions

in the native libraries because in some cases apps can directly invoke these functions

without calling the Java level framework APIs.

As the app launches and the hooking module of AppIntrospector initiates, Adbi looks

for the base address of the library that contains the target function, e.g., the base address

of libc.so for the connect() function. The base address is retrieved by traversing the

/proc/<pid>/maps file. Once the base address of the library is retrieved, the actual

address of the function in memory is computed using the ELF file of the target library.

The prologue of the function is saved and replaced with a direct jump to the patched-

method for redirection.

The original Adbi supports only ARM32 architecture. However, in the implementation

of the hooking module, we have extended it to support ARM64 as well.

Java API hooking: Not all of the features have a native level implementation or

expose native level functions to the app developers. These features are accessed using

the Java level framework APIs. Also, some of the framework services implemented on

the native level can only be accessed using Java level stub classes that rely on Binder.

Moreover, from Android 7.0 onwards, the framework imposes restrictions and declares

some native libraries as private that must not be accessed from the app code directly.

These libraries include well known native libraries used for secure communication and

encryption, i.e., libssl.so and libcrypto.so.

Therefore, it is important for the hooking module of AppIntrospector to hook Java

level framework APIs. In this work, since we are focusing only on dynamic code updates

that is accomplished mainly using Java APIs, we rely on Java level API hooking. AppIn-

trospector makes use of ArtHook to redirect Java level framework APIs. However, since

it uses Java reflection API invoke to call the original method once the patched-method

is called, it can fall into an indefinite loop if it is used to hook the invoke method itself.

To overcome this limitation, AppIntrospector uses the ArtDroid virtual table tampering

technique to hook the invoke method.

6.5 Analysis Module

The analysis module is the main part of AppIntrospector that deals with the redirected

API calls at runtime. In general, it can be modeled to monitor every app activity of
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dynamic nature. Malicious activities such as privacy leakage, SMS messages and calls

to premium numbers, etc., can be prevented through proper deployment of the analy-

sis module. Moreover, the concept of AppIntrospector is particularly useful in defying

adversaries to exploit app vulnerabilities.

In this particular work, we focus on securing apps in the presence of app vulnerabilities

that might lead to malicious code execution using dynamic code updates. An adversary

exploits these vulnerabilities for execution of malicious code in the context of the victim

app.

6.5.1 Dynamic Code Updates: API Selection

A first step in the implementation of the analysis module is to understand how an app

performs certain activities, which APIs are used and how can they be monitored. This

part of the text provides details about the APIs we selected to monitor dynamic code

updates.

Dynamic code loading: Apps can load additional code into their memory space

using framework provided APIs. The loaded code can be in the form .jar, .apk or .dex

file. Apps can also load native shared libraries. This part of the analysis tries to capture

the path to the code to be loaded and name of the file, etc. AppIntrospector can read

and analyze the code files before loading them once it intercepts the path and name of

the target file. To accomplish this task, the hooking module is presented with a list of

Java level framework APIs, and calls to these APIs are redirected towards the analysis

module.

Table 6.2: Code Loading APIs

Class Method Info

dalvik.system.BaseDexClassLoader <init> Dex Path

dalvik.system.DexClassLoader <init> Dex Path

dalvik.system.PathClassLoader <init> Dex Path

dalvik.system.DexFile <init> Dexfile Name

dalvik.system.DexFile loadClass Classname

dalvik.system.DexFile openDexFile Dexfile Name

java.lang.Runtime loadLibrary Native Library Path

Table 6.2 provides a list of the hooked dynamic code loading APIs. The arguments

retrieved by hooking these methods generally represent paths to the .zip, .jar or .apk

files containing a classes.dex file. This suites well with the idea of our previous work,

discussed in Chapter 4. The analysis module can take hold of the the code to be loaded
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and analyze it on the spot. Similarly, the java.lang.Runtime.loadLibrary() API is

called when a native library is loaded by an Android app from the Java level. Hooking

this API provides control over the path to the native library to be loaded. Although, our

current implementation of the AppIntrospector does not analyze native libraries, it can

still raise an alarm if the native code is loaded from a world writable location.

Instantiate Class and Invoke Methods: Apart from the dynamic code update

APIs that load code files, there are others that can be used to create instances of classes,

retrieve and invoke its methods by just providing the class names and method names.

Table 6.3 provides a list of such APIs that can help an app change its behavior at runtime.

Table 6.3: Instantiate Class and Invoke Methods

Class Method Info

java.lang.reflect.Constructor newInstance Class

java.lang.Class forName Classname

java.lang.ClassLoader loadClass Classname

java.lang.reflect.Method Invoke Method and Params

We selected these APIs to make the work inline with our previous solution on handling

dynamic code updates in an analysis environment (discussed in Chapter 4). Monitoring

these APIs gives an idea about the dynamic behavior of the app which is otherwise hard to

infer when statically analyzed. AppIntrospector can monitor the classes being instantiated

using APIs such as newInstance, loadClass and forName. However, keeping track of

the class objects is not sufficient for monitoring an app’s behavior.

The methods called by the app, the flow of their execution and the parameters passed

to the invoked methods are pivotal to app’s behavior. AppIntrospector hooks and an-

alyzes the reflection invoke API to detect possible malicious functionality obfuscated

through reflective method calls. AppIntrospector determines the method/framework API

being called using reflection and performs analysis on its sensitivity and its parameters.

Similarly, it is possible to keep track of the order of methods being called during an app’s

execution. This helps AppIntrospector to prevent malicious activities such as privacy

leakage.

6.5.2 Implementation

AppIntrospector’s analysis module is basically a collection of patched-methods and ana-

lyzers. Everytime a hooked API is called, the control moves to the corresponding patched-

method. Every patched-method uses one or more analyzer methods to perform the run-

time monitoring.
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Figure 6.4: AppIntrospector - Analysis module

Figure 6.4 illustrates the flow of execution starting from the initiation of an API call by

the app code. Call to the hooked methodX is intercepted by the corresponding patched-

methodX. The patched-methodX then interacts with one or more analyzer methods for

pre-call analysis as represented by Step 2 in the figure. After the pre-call analysis, the

control may or not transfer to the actual method depending upon the analysis results. De-

pending on the nature of the original method, the patched-methodX can call the analyzer

for post-call analysis as shown by Step 5 .

Listing 6.1 and 6.2 show example patched-methods for native functions and Java level

framework APIs, respectively. The native patch method is taken for the connect()

function of libc.so. Line 6 and 17 represent calls to precall and postcall analyzers,

respectively, whereas the original method is called in Line 13.

Listing 6.1: Native Patched Method Example

1 int patched -method -connect(int sockfd , struct sockaddr* addr , socklen_t len)

2 {

3 log("-----------patched -method for connect () called -----------");

4

5 //Call pre -call analyzer

6 analyzer -precall -connect(sockfd , addr , len);

7

8 //Call original method

9 int (* orig_connect)(int sockfd , struct sockaddr* addr , socklen_t len);

10 orig_connect = (void*)eph.orig;

11

12 hook_precall (&eph);

13 int res = orig_connect(sockfd , addr , len);

14 hook_postcall (&eph);

15

16 //Call post -call analyzer

17 analyzer -postcall -connect(res);

18
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19 // Return API call

20 return res;

21 }

Similarly, every call to the constructor of the class dalvik.system.DexClassLoader is

intercepted by the patched method patch-method-DexClassLoader-init(). It calls the

precall analyzer Analyzer.precall-analyzer-DexClassLoader-init() with the same

argument as received by the patched method that include path to code to be loaded

dynamically (Line 6 in Listing 6.2). The analyzer then takes care of the code file, i.e., an-

alyzes the path as well as the code itself. Based on the verdict of the analyzer, the patched

method calls the original method if nothing suspicious is found (Line 9 in Listing 6.2).

Listing 6.2: Java Patched Method Example

1 @Hook("dalvik.system.DexClassLoader -><init >")

2 public static void patch -method -DexClassLoader -init(DexClassLoader b, String

dexPath , String optimizedDirectory , String

librarySearchPath , ClassLoader parent){

3 Log.d(TAG , "-------patched -method -DexClassLoader Called ---------");

4

5 //Call pre -call analyzer

6 Analyzer.precall -analyzer -DexClassLoader -init(b, dexPath ,

optimizedDirectory , librarySearchPath , parent);

7

8 //Call original method

9 OriginalMethod.by(new $() {}).invoke(b, dexPath , optimizedDirectory ,

librarySearchPath , parent);

10 }

Depending upon the original method and the nature of its parameters, every ana-

lyzer perform different sort of analysis. For example, an analyzer corresponding to the

sendTextMessage() API checks the contents of the message for potential privacy leak-

age. Also, it checks if the message is sent to a premium number that might belong to an

adversary and cause monetary loss to the user.

The focus of this work, however, is analyzing dynamic code updates as they appear

in an app. In this regard, the analysis module of AppIntrospector contains analyzers

for code preliminary analysis, profiling app for possible information leakage and sensitive

APIs analysis when called using Java reflection.

Part of the preliminary code analysis focuses on the paths to the DEX file, optimized

directory and native library. A vulnerability in the app code loading functionality may

lead to malicious code loading. Therefore, it is important to infer and report if the app

loads code from world writable locations on phone. In addition, AppIntrospector follows

it up with analyzing the code to be loaded. The key part of the analysis includes looking

for sensitive information hard coded inside the code in plaintext. Moreover, it creates

a profile of the code package based on the classes and the APIs used. The profile helps
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AppIntrospector to mark the code package with a specific sensitivity level. In addition,

it also helps in detecting possible privacy leakage if the order of methods called includes

flow of information from source of sensitive information to corresponding leakage points.

AppIntrospector analyzes every method called using Java reflection that plays a major

role in obfuscation and widely used by malware developers to evade analysis tools. Every

method called using the invoke() API is exposed to multiple levels of analysis. In the

first level of analysis, the called API is checked for the level of permission that guards the

API. APIs guarded with dangerous permissions are subjected to further analysis specific

to each API. For example, as discussed earlier in the section, the sendTextMessage()

API is checked for its parameters to counter the SMS trojan malicious functionality. It is

also checked against the profile of the app for potential privacy leakage.

6.6 Evaluation and Discussion

Although the basic objective of this work is to analyze dynamic code updates to safeguard

mobile users from adversarial exploitation of possible app vulnerabilities, the concept of

AppIntrospector is more generic and can be applied to monitor most sensitive activi-

ties of dynamic nature. Therefore, the current implementation of AppIntrospector is

also tested for hooking functions from native libraries namely libc.so, libssl.so and

libcrypto.so. We also successfully tested our native level hooking extension to ARM64.

Most of the dynamic code updates APIs are hooked at Java level. We tested it on

multiple Android framework versions including Nougat, Marshmallow and Lollipop. The

hooking and analysis functionality are tested successfully with dummy apps corresponding

to each API. We deliberately injected dynamic code update vulnerabilities and malicious

contents in the loaded code and AppIntrospector successfully reported it. This was the

first basic level of evaluation of AppIntrospector. This ensures that the hooking and

target analysis functionality of AppIntrospector works according to the plan.

However, in order to thoroughly evaluate the applicability and usability of AppIntro-

spector, a full scale evaluation on AppIntrospector with real world apps is required. In

this regard, we plan to contact app developers who can include AppIntrospector in their

apps. Some of the key points the evaluation will then focus on are: 1) malicious con-

tents flagged by AppIntropspector, 2) performance of AppIntrospector in terms of CPU

and memory usage, 3) usability, and 4) the functioning of AppIntrospector without app

crashes. AppIntrospector is an ongoing work and we still await its full scale evaluation.
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6.7 Related Work

Most of the traditional as well as new antivirus solutions deploy one or other type of

on-phone malware detection mechanism. However, most of them rely on app package

scanning either at installation time or when a user initiates it. In most cases, they utilize

traditional signature based mechanisms that can be easily evaded by novel malware. Also,

they require a frequent malware signature database update to detect existing malware.

AppIntrospector follows a different runtime analysis based idea to circumvent exploitation

of vulnerabilities inside an app.

Very similar to the goal of this work, Falsina et. al. design an overlay library to secure

the DexClassLoader API [62]. However, our approach differs in a number of ways. We

use a hooking based mechanism, rather than providing a list of overlay APIs, that does

not require the developer to change any of the app’s code. Moreover, we use an analysis

based approach in contrast to their hash comparison based approach. Also, they only

consider code loading APIs whereas our approach focuses on reflection APIs as well and

can be used to target more generic problems.

Hooking or intercepting APIs/system calls has been used for various security enhance-

ments to the existing framework in the literature. Here we discuss a few of the very

relevant approahes. Traditional approaches rely on modifying the framework to inter-

cept API calls and add analysis code inside the implementation of the target methods.

Since the framework provides APIs for various functionalities, it is an intuitive solution

to instrument the framework APIs with the analysis code. The analysis code is executed

everytime the API is called. However, this solution requires device flashing and a rooted

device.

Boxify utilizes API hooking to run an app (untrusted-app) in an isolated process inside

the context of another app (monitor-app) [44]. An isolated process does not have any

privileges. Any privileges required are granted to the untrusted-app by the monitor-app

after certain security policy enforcement. Framework API calls by the untrusted-app

are intercepted by the monitor-app using reference tampering of Binder handles in the

memory of the untrusted-app. Similarly, system calls are intercepted using libc.so

hooking using a technique similar to the one used in AppIntrospector.

A different approach, however, is used in [109] where they hijack the app startup

process, change the environment variable of the app and redirect its framework API calls

to a modified (security enhanced) version of the framework. The modified framework file is

stored at a location readable for the app. The app startup process is hijacked by inserting

code in the app that invokes an environment reset procedure. The environment reset

procedure executes a modified version of the Zygote process using a native exec() that
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replaces the current Zygote process, replaces the location pointed to by the environment

variable and makes them point to the location of the modified framework files. The app is

then attached to the newly started process whose calls to the framework APIs are directed

towards the modified framework file. This process does not require the device to be rooted

and can work with inserting minimal code at the start of the app. However, the hooking

process may be different for different versions of Android depending upon how processes

are started and, therefore, it may not work with newer versions of Android. Also, unlike

AppIntrospector it requires a modified framework file.

Similarly, another approach for API hooking that is based on modifying the Zygote

process is the Xposed framework [36]. It can be used to hook method calls without modify-

ing the app or Android framework. Unlike the approach in AppIntrospector, i.e., injecting

code into an app’s virtual memory, the Xposed framework modifies the app process which

is started at the start of every process. Basically, it modifies Zygote, the center of ART

that is forked to start every new process, with a library that contains native methods to

hook certain methods called by the app process. Modifying Zygote, obviously, requires a

rooted devices and also affects all the apps installed on the device, which is clearly not

the goal of AppIntrospector and also goes against the defined constraints.

6.8 Chapter Summary

In this chapter, we presented an API hooking based runtime analysis approach to counter

adversarial exploitation of dynamic code updates related vulnerabilities from within the

context of the app. The idea behind this work is to engage the end user in stimulating

the app and exploit the willingness of an adversary to reveal malicious behavior once the

app is installed on a real user device. We presented an overview of the existing hooking

techniques before providing the design and implementation details of AppIntrospector.
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Chapter 7

Conclusions and Future Directions

In this dissertation, we established an argument about the widespread use of dynamic

code updates in mobile apps; for extending apps’ functionality in benign apps and for

evading analysis and detection tools in malicious apps. We argued about the dynamic

nature of these techniques preventing static analysis tools to infer the behavior of the app

under analysis and we demonstrated this fact using a set of benchmark apps, reflection-

bench. Moreover, we presented the case of encrypted, obfuscated and only dynamically

available parameters, used in the dynamic code update APIs, being the root cause that

hardens static analysis.

We proposed a hybrid approach interleaving static and dynamic analysis and demon-

strated its ability to capture runtime behavior which is otherwise hidden to static analysis

tools. The evaluation results on real world apps motivate towards more hybrid approaches.

However, introducing dynamic analysis to the process requires efficient and effective app

stimulating mechanisms. To this end, we proposed a backward slicing based mechanism

for targeted execution of inter component code paths in Android apps. Moreover, to

eradicate the problem associated with app stimulating, although in restricted domain, we

propose an API hooking based app introspection mechanism for runtime analysis that

shifts part of the analysis from an artificial analysis environment to real users’ devices.

Engaging real users into the app stimulating process added with the willingness of mali-

cious apps to reveal their functionality once installed on a real user device effectively close

the triggering issue and nullify most of the anti-analysis techniques used by adversaries.

In the rest of the chapter, we discuss conclusions drawn from each individual part of

the work and their corresponding future directions.
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7.1 App Analysis in the Presence of Dynamic Code Updates

In Chapter 3, we established an argument that its not just the dynamic code updates that

lead to static analysis producing incomplete results, but a major part is played by the

analysis time unavailability of the parameters used in these dynamic code update APIs,

i.e., encrypted and decrypted only at runtime, read from files and received through the

network, etc. Our analysis results portrayed that there are certain definite patterns used

by malicious apps and profiling such patterns can help in telling apart malicious from

benign apps.

To counter the problem, we proposed StaDART, a hybrid analysis approach with in-

terleaving static and dynamic analysis, in Chapter 4. StaDART aids static analysis of

Android apps by resolving dynamic code updates dynamically. We demonstrated the ef-

fectiveness of StaDART using a set of real world apps. The MCGs created using StaDART

reveal much more information than their counterparts created using static analysis tools.

Consequently, StaDART can be used to unfold malicious behavior of dynamic nature.

A possible future direction for this part of the work is to enrich the static analysis part

of StaDART. Currently, it only supports construction of MCGs and performing basic

analysis on it, such as profiling based on the protection level of the APIs used in the

revealed part of the MCG. Adding other static analysis techniques to this part, such as

data flow analysis, would help in revealing other kinds of malicious behavior, e.g., privacy

leakage, etc.

7.2 Targeted Code Paths Execution in Android Apps

Solving issues that arise from code obfuscation and dynamic code updates, we argued

about the effectiveness of a hybrid approach. However, with the introduction of dynamic

analysis, there comes another challenging problem, i.e., stimulating the app to reveal

concealed behavior which is a non-trivial problem for automated analysis tools. To this

end, we presented the case of targeted code paths execution in Android apps, in Chapter

5. From a security analyst point of view, it is often not necessary to execute and explore

all of the app’s functionality. Rather, targeted execution of selected suspicious code paths

can prove to be a more effective, efficient, scalable and economical solution.

We presented the design and implementation details of our backward slicing based

mechanism, TeICC, for targeted execution of inter component code paths in Android apps.

Moreover, we further demonstrated the effectiveness of TeICC using a set of representative

obfuscated test apps. The idea behind TeICC’s design is more general than just dealing

with dynamic code updates and can be used to stimulate code paths leading to any target

API in the app. Malware analysts can use it to trigger various suspicious APIs in the app
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under analysis and understand its behavior.

Where we tested TeICC’s functionality with a small set of representative test apps, a

large scale analysis on real world apps would be more fruitful to determine the effectiveness

and efficiency of TeICC. We plan to use it to analyze a larger dataset comprising real world

benign and malicious apps. Utilizing TeICC for the analysis of apps from the official

Android market to detect possible hidden malicious content is one future direction. The

other is to make use of TeICC to check apps for possible vulnerabilities after identifying

potential vulnerable points in apps and then stimulating the code paths leading to them.

7.3 Runtime Analysis of Dynamic Code Updates

There is an on going and never ending race between malware developers to conceal ma-

licious functionality when analyzed in an analysis environment and security researchers

to design novel approaches to uncover and detect malicious behavior. Despite some very

robust security analysis approaches in practices these days, we can never rule out the pos-

sibility of malware penetrating the market and infecting user devices. Keeping in mind

the security threats and the now increasing capabilities of mobile devices, it is high time

to go for on-phone analysis solutions. To this end, we introduced our proposed API hook-

ing based app introspection mechanism, AppIntrospector, that analyzes dynamic code

updates on the fly. In this work, we focused on detecting and preventing exploitation

of vulnerable benign apps where the vulnerability involves some dynamic code update

features. We presented the design and implementation details of our runtime analysis ap-

proach in Chapter 6 and successfully tested its functionality with specially crafted apps.

Since AppIntrospector runs on users’ devices, special care needs to be taken as not to

overburden the device and exhaust its resources. Therefore, a large scale evaluation of

AppIntrospector on real user devices would help in shaping it better. It is an on going

work and we plan to perform such an evaluation for its effectiveness, efficiency, resource

consumption and its working without disturbing the actual app functionality on end users’

devices. Moreover, the current implementation of the analysis module of AppIntrospector

focuses only on analyzing dynamic code updates. A future direction is this regard is to

extend to the idea to other type of activity analysis and prevent exploitation of other

forms of apps’ vulnerabilities.

7.4 Closing Remarks

Most of the work discussed in this dissertation has already been published (or accepted)

in international conferences or in submission to international journals. A list of the pub-

lications is provided in Appendix A. Part of the work presented in Chapter 2 and 4 is



published in [110]. Similarly, most of the work presented in Chapter 3 is published in [37].

Moreover, part of work discussed in Chapter 3 and 4 is in submission to an interna-

tional journal. Also, the work presented in the Chapter 5 is accepted in an international

conference (paper 1 in Appendix A.2) and going to be published in April this year.
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