PhD Dissertation

ICT International Doctoral School
Department of Information Engineering and Computer Science
UNIVERSITY OF TRENTO

Efficient Reasoning with
Constrained Goal Models

CHI MAI NGUYEN

Advisor:
Prof. Roberto Sebastiani
UNIVERSITY OF TRENTO

Co-Advisor:
Prof. John Mylopoulos
UNIVERSITY OF TRENTO

APRIL 2017

ABSTRACT

requirements, business objectives, and design qualities. Existing goal modelling
techniques, however, have shown limitations of expressiveness and/or tractability
in coping with complex real-world problems.
In this work, we exploit advances in automated reasoning technologies, notably
Satisfiability and Optimization Modulo Theories (SMT/OMT), and we propose and
formalize:

GOAL models have been widely used in Computer Science to represent software

(i) an extended modelling language for goals, namely the Constrained Goal Model
(CGM), which makes explicit the notion of goal refinements and of domain as-
sumptions, allows for expressing preferences between goals and refinements, and
allows for associating numerical attributes to goals and refinements for defining
constraints and optimization goals over multiple objective functions, refinements
and their numerical attributes;

(i) a novel set of automated reasoning functionalities over CGMs, allowing for au-
tomatically generating suitable realization of input CGMs, under user-specified
assumptions and constraints, that also maximize preferences and optimize given
objective functions.

We are also interested in supporting software evolution caused by changing require-
ments and/or changes in the operational environment of a software system. For example,
users of a system may want new functionalities or performance enhancements to cope
with growing user population (requirements evolution). Alternatively, vendors of a sys-
tem may want to minimize costs in implementing requirements changes (evolution
requirements).

We propose to use CGMs to represent the requirements of a system and capture
requirements changes in terms of incremental operations on a goal model. Evolution
requirements are then represented as optimization goals that minimize implementation
costs or customer value. We can then exploit reasoning techniques to derive optimal new
specifications for an evolving software system.

We have implemented these modelling and reasoning functionalities in a tool, named
CGM-Tool, using the OMT solver OptiMathSAT as automated reasoning backend. More-
over, we have conducted an experimental evaluation on large CGMs to support the claim
that our proposal scales well for goal models with thousands of elements. To access

our framework usability, we have employed a user-oriented evaluation using enquiry
evaluation method.

KEYWORDS. requirements engineering - goal modelling - SMT /OMT

i1

ACKNOWLEDGEMENTS

Undertaking this Ph.D. has been a truly precious experience for me and I owe
my thanks to many people, without whose support and guidance, it would not

have been possible.

* ok %k ok ok

my advisor Professor Roberto Sebastiani who has been a tremendous mentor for

me. I would like to thank him for his patience, motivation, and for the continuous
support and encouragement he gave me over the past five years and beyond. Without his
guidance and constant feedback, this Ph.D. would not have been achievable. I could not
have imagined having a better advisor and mentor for my Ph.D. study.

F IRST and foremost, I would like to express my special appreciation and thanks to

Many thanks also to my co-advisor Professor John Mylopoulous for his support, insightful
comments, patience, motivation, and immense knowledge. His courses “Requirements
Engineering and Conceptual Modelling” has provided me the essential background in
this work.

I would especially like to thank Professor Paolo Giorgini, who co-authored the article
which is an essential part of my dissertation. I appreciate his precious guidance in the
evaluation part of this project, his support in building the tool, and invaluable comments,
discussions since the very first days of my Ph.D., as well as his time spending as my
thesis committee member.

My sincere thanks also go to the rest of my thesis committee: Professor Tacchella
Armando, Professor Fabiano Dalpiaz for taking their time serving as my committee
members.

I would like to acknowledge in particular Elda Paja, Mattia Salnitri, and Fatma Basak.
Without their contribution, I would not be able to complete the evaluation of my proposed
framework. I am also in debt to many M.Sc. students who followed the course Security
Engineering 2015-2016 at the University of Trento, as well as to the Doctoral students in
the Department of Information Engineering and Computer Science at the University of
Trento participated in the user-oriented evaluation studies reported in this dissertation.

1il

I am also grateful to Dagmawi Neway for his technical support in developing CGM-Tool,
and Patrick Trentin for assistance with the usage of OptiMathSAT.

I would also like to thanks the staffs Anna Broll, Michela Angeli, Andrea Stenico,
and Francesca Belton for helping me with administrative works so that I could channel
my time into my research.

Many thanks to all of my friends who supported me in writing, and incented me to strive
towards my goal, as well as for the pleasure and nice time which make up my social life.

My deepest thanks go to my family. Words cannot express how grateful I am to my
parents for all the sacrifices that they have made on my behalf. Last but not least, I
would like to express appreciation to my beloved husband Thanh Binh Cao, who spent
sleepless nights with and was always my support.

This research was partially supported by the ERC advanced grant 267856, ‘Lucretius:
Foundations for Software Evolutions’, and by SRC GRC Research Project 2012-TJ-2266
WOLF.

iv

TABLE OF CONTENTS

Page

List of Tables ix
List of Figures xi
Abbreviations xiii
1 Introduction 1
1.1 Contributions e e 4

1.2 Structure of the Dissertation 5

1.3 Publications. e e 6

I State of The Art and Research Baselines 7
2 State of the Art 9
2.1 KAOS . . e 9
2.2 Qualitative Goal Models, 10
23 I"and Tropos. o i i i i e e e 12
24 Techneand Liaskos, 12
2.5 Feature Models and Search-Based Software Engineering 13

3 Research Baselines 15
3.1 GoalModels. e e 15
3.2 Satisfiability Modulo Theories and Optimization Modulo Theories 17
3.2.1 Satisfiability Modulo Theories 17

3.2.2 Optimization Modulo Theories 18

v

TABLE OF CONTENTS

II Contributions 21
4 Constrained Goal Models (CGMs) 23
4.1 The Backbone: Goals, Refinements, and Domain Assumptions 23

5

6

7

4.2 Boolean Constraints: Relation Edges, Boolean Formulas and User Asser-

BlONS. . . e e 25
421 RelationEdges e 25
4.2.2 BooleanFormulas. 26
4.2.3 UserAssertion 26
4.3 Arithmetical Constraints: Numerical Attributes and SMT(ZX % .</) Formulas 27
4.3.1 Numerical Attributes 27
43.2 SMT(ZXZ</)Formulas. 28
4.4 RealizationofaCGM 29
4.5 PreferencesinaCGM 30
4.5.1 Preferences via Penalties/Rewards 30
4.5.2 Preferences via Multiple Objectives 31
4.5.3 Preferences via Binary Preference Relations 32
4.6 UNSAT core e e e 34
Abstract Syntax and Semantics of CGM 45
5.1 AbstractSyntax e 45
5.2 Semantics e e e 51
Automated Reasoning with Constrained Goal Models 55
6.1 Encodingof CGMs e 56
6.2 Automated Reasoningon CGMs 57

Requirements Evolution and Evolution Requirements with Constrained

Goal Models 59
7.1 Motivation 59
7.2 Requirements Evolution 60
7.3 Evolution Requirements 61
7.3.1 Recomputing realizations 61
7.3.2 Maximizing familiarity 62
7.3.3 Minimizing changeeffort 63
7.3.4 Combining familiarity or change effort with other objectives 65
7.4 Automated Reasoning with Evolution Requirements 65

vi

TABLE OF CONTENTS

7.4.1 Evolution Requirements 65

7.4.2 Comparison wrt. previous approaches 67

IIT Implementation and Evaluation 75
8 Implementation 77
8.1 CGM-Tool e e 77
8.2 Anexample 79

9 Empirical Experiments 93
9.1 Empirical Experiment, 93
9.2 ExperimentSetup 94
9.3 Experiment Evaluation 95

10 User-Oriented Evaluation 121
10.1 Evaluation Objectives i i e 121
10.2 Experiment Design 123
10.3 Experiment Procedure 124
10.3.1 Study with Master Students 125

10.3.2 Study with Doctoral Students 126

10.4 EvaluationResult 127
10.4.1 Training phase 127

10.4.2 Applicationphase 129

10.5 Result Analysis. 131
10.6 Threatsto Validity 133

11 Conclusions 135
Bibliography 137

vii

LiST OF TABLES

TABLE Page
5.1 Summary of Goal Model Structure 46
9.1 First group of experiments, summary of experimental data. 96
9.2 Second group of experiments, summary of experimental data. 97
9.3 First group of experiments, k2 = 2: median time over solved instances. 98
9.4 First group of experiments, £ = 4: median time over solved instances. 99
9.5 First group of experiments, £ = 5: median time over solved instances. 100
9.6 First group of experiments, £ = 8: median time over solved instances. 101
9.7 Second group of experiments, £ =2, p = 6: median time over solved instances. 102

9.8
9.9

Second group of experiments, £ =2, p = 8: median time over solved instances. 103

Second group of experiments, £ =2, p = 12: median time over solved instances.104

10.1 CGM Modelling Language Questionnaire Result. 128

ix

LIST OF FIGURES

FIGURE Page
3.1 A Qualitative Goal Graph Example. 16
3.2 Another Qualitative Goal Graph Example. 16
4.1 Elementsofa CGM. e 36
4.2 Refinementsina CGM. 37
4.3 Relationsina CGM. e 38
4.4 An example of a CGM with Boolean formula. 39
4.5 An example of a CGM with numerical attributes and arithmetic constraints. 40
4.6 An example of a CGM with one of its realizations. 41
4.7 An example of a CGM with an optimal realization. 42
4.8 An example of a CGM with a lexicographic optimal realization.. 43
5.1 Traditional Goal Model and its CGM translation 48
7.1 A Constrained Goal Model., 69
7.2 Requirements EvolutioninaCGM. 70
7.3 Evolution Requirements in a CGM: optimizing realization. 71
7.4 Evolution Requirements in a CGM: maximizing familiarity. 72
7.5 Evolution Requirements in a CGM: minimizing effort. 73
8.1 CGM-Tool: Component View 78
8.2 CGM-Tool: How to create anew diagram 82
8.3 CGM-Tool: Graphical User Interface 83
8.4 CGM-Tool: Goal Graph Graphical Presentation Summary 84
8.5 CGM-Tool: Elements i 85
8.6 CGM-Tool: Numerical Attributes 85
8.7 CGM-Tool: Numerical Attributes Value 86
8.8 CGM-Tool: Objectives e e e e e e e e e e 86

X1

LIST OF FIGURES

8.9 CGM-Tool: Global Constraints 87
8.10 CGM-Tool: Optimization Setting 87
8.11 CGM-Tool: Well-formedness Analysis 88
8.12 CGM-Tool: Scenario i i it e e e e 88
8.13 CGM-Tool: Open Scenario v v i it 89
8.14 CGM-Tool: User’s Assertions oo i i i i it e e e 89
8.15 CGM-Tool: Generate Realization 90
8.16 CGM-Tool: Realization Presentation 90
8.17 CGM-Tool: Results Analysis 91
9.1 First group of experiments: overall median CPU times 106
9.2 Second group of experiments: overall median CPU times 107
9.3 First group of experiments, k=2, 108
9.4 First group of experiments, k=4 109
9.5 First group of experiments, k=5 110
9.6 First group of experiments, k=8, 111
9.7 Second Group of Experiment Result, k=2, p=6.................. 112
9.8 Second Group of Experiment Result, k=2, p=8 113
9.9 Second Group of Experiment Result, k=2, p=12 114
9.10 Experimental Median Runtime Comparison: Cost Optimization 115
9.11 Experimental Median Runtime Comparison: Time Optimization 116
9.12 Experimental Median Runtime Comparison: Weight Optimization 117
9.13 Experimental Median Runtime Comparison: Cost/Time/Weight Lex-Order
Optimization e 118
9.14 Experimental Median Runtime Comparison: Weight/Time/Cost Lex-Order
Optimization e 119
9.15 Percentage of unrealizable instances, both groups of experiments. 120
10.1 CGM Questionnaire Result. 128

X1l

CGM Constrained Goal Model.

DAG Directed Acyclic Graph.

ISO International Organization for Standardization.

LTL Linear Temporal Logic.

OMT Optimization Modulo Theories.

RCP Rich Client Platform.

RE Requirements Engineering.

SMT Satisfiability Modulo Theories.

SMT/OMT Satisfiability and Optimization Modulo Theories.

x1i1

ABREVIATIONS

CHAPTER

INTRODUCTION

This chapter presents the motivation of this dissertation as well as summarizes
the major contributions of this work. It also describes the structure of this

dissertation.

* %k %k ok ok

The concept of goal has long been used as a useful abstraction in many areas of com-
puter science, like for example, artificial intelligence planning, agent-based system, and
knowledge management. More recently, software engineering has also been using goals
to model requirements for a software system, business objectives for enterprises, and
design qualities [Ant96, AP98, DvLF93, VL01, GMNS04].

Goal-oriented Requirements Engineering (RE) approaches have gained popularity
for a number of significant benefits in conceptualizing and analyzing requirements
[VLO1]. Goal models provide a broader system engineering perspective compared to
traditional requirements engineering methods, a precise criterion for completeness of the
requirements analysis process, and rationale for requirements specification, as well as
automated support for early requirements analysis. Moreover, goal models are useful in
explaining requirements to stakeholders, and goal refinements offer an accessible level
of abstraction for validating choices among alternative designs.

Current goal modelling and reasoning techniques, however, have limitations with

respect to expressiveness and/or scalability. Among leading approaches for goal modelling,

1

CHAPTER 1. INTRODUCTION

KAOS offers a very expressive modelling language but the reasoning is undecidable and
unscalable. I*, on the other hand, is missing constructs such as preferences, priorities, and
optimization goals. Although more recent proposals, such as Techne [JBEM10, LMSM10]
offer expressive extensions to goal models, they still lack some features of our proposal,

notably optimization goals, and also lack scalable reasoning facilities.

As a result of these deficiencies, no goal modelling framework can express goals such
as “Select which new requirements to implement for the next release, such as to optimize
customer value while maintaining costs below some threshold” and be able to reason about
it and generate a specification/solution for it. As another example, consider a situation
where a goal model changes and a new specification/solution needs to be generated for
the new goal model. In this case, the new specification/solution may be required to fulfil
the evolution goal “Minimize implementation effort” or “Maximize user familiarity by
changing as little as possible the new functionality of the system relative to the old one”. In
both cases, we are dealing with requirements that are beyond the state-of-the-art for goal
modelling and reasoning. As we will discuss in chapter 4, our proposal can accommodate

such requirements both with respect to modelling and scalable reasoning.

We are interested in advancing the state-of-the-art in goal models and reasoning by
proposing a more expressive modelling language that encompasses many of the modelling
constructs proposed in the literature, and at the same time offers sound, complete, and
tractable reasoning facilities. We are aiming for a goal modelling in the spirit of the
qualitative goal model introduced in [SGMO04], rather than a social dependency modelling
language, such as i*. To accomplish this, we exploit advances in automated reasoning
technologies, notably Satisfiability Modulo Theories (SMT) [BSST09] and Optimization
Modulo Theories (OMT) [ST15a], to propose and formalize an extended notion of goal
model, namely Constrained Goal Models (CGMs).

CGMs treat (AND/OR) refinements as first class citizens, allowing associated con-
straints, such as Boolean formulas or SMT/OMT formulas. For instance, when modelling
a meeting scheduling system, we may want to express the fact that, to fulfil the nice-to-
have requirements of keeping the scheduling fast enough (e.g., strictly less than 5 hours)
we cannot afford both the time-consuming tasks of performing the schedule manually
(3 hours) and of calling the participants on-by-one by phone (2 hours). CGMs provide
user-friendly constructs by which we can encode constraints like this, either by adding
Boolean formulas on the propositions which label such requirements and tasks (e.g.,
FastSchedule, ScheduleManually, and CallParticipants), or by associating to those

propositions numerical variables (e.g., workTime) and by adding SMT formulas encoding

2

mixed Boolean-arithmetical constraints on those variables and propositions (See chap-
ter 4). To the best of our knowledge, this was not possible with previous goal modelling
techniques, including that in [SGMO04].

Moreover, we are living in an ever-changing world where the only constant is change.
Changes need to be accommodated by any system that lives and/or operates in that
world, biological and/or engineered. For software system, this is a well-known problem
referred to as software evolution. There has been much work and interest on this prob-
lem since Lehman’s seminal proposal for laws of software evolution [Leh80]. However,
the problem of effectively supporting software evolution still accounts for more than
50% of total cost in a software’s lifecycle. We are only interested in software evolution
caused by changing requirements and/or environmental conditions. We propose to model
requirements changes through changes to a CGM model, and evolution requirements as
optimization goals, such as “Minimize costs while implementing new functionalities”.

Taking advantage of CGMs’ formal semantics and the expressiveness and efficiency
of current SMT and OMT solvers, we also provide a set of automated reasoning function-

alities on CGMs. Especially, on a given CGM, our approach allows for:

(a) the automatic check of the CGM’s realizability (i.e. check if the goal model has any

solution);

(b) the interactive/automatic search for realizations (i.e., specification/solution) of the
CGM;

(c) the automatic search for “best” realization in term of penalties/rewards and/or of

user-defined preferences;
(d) the automatic search for the realization(s) which optimize given objective functions;

(e) the automatic extraction of the UNSAT core (i.e., the self-contradictory part) of a

unrealizable CGM (i.e., a goal model that does not have solution);

(f) the automatic search for realization(s) which optimize given evolution require-

ments.

Our approach is implemented as a tool (CGM-Tool), a standalone java application
based on the Eclipse Rich Client Platform (RCP) engine. The tool offers functionalities
to create CGM models as graphical diagrams and to explore alternatives scenarios

running automated reasoning techniques. CGM-Tool uses the OMT solver OptiMathSAT

3

CHAPTER 1. INTRODUCTION

[ST15a, ST15¢c, ST15b], which is built on top of the SMT solver MATHSATS5 [CGSS13],
as automated reasoning backend.! Our CGM-Tool can cope with goal models an order of
magnitude beyond what has been reported in the literature in most cases. In some cases
involving optimization goals, e.g., “minimize development costs for the next release of
software product S”, the CGM-Tool performs more modestly, but can still handle models

of size in the hundreds of elements as reported in chapter 9.

1.1 Contributions

The main contributions of this work include:

I. An integration within one modelling framework of constructs that have been pro-

posed in the literature in a piecemeal fashion, specifically,

(i) Allow for explicit labelling of goal refinements with Boolean propositions that

can be interactively/automatically reasoned upon;

(i1) Provide an explicit representation of domain assumptions to represent precon-

ditions to goals;
(iii) Allow for Boolean constraints over goals, domain assumptions and refinements;

(iv) Provide a representation of preferences over goals and their refinements, by
distinguishing between mandatory and nice-to-have requirements and by
assigning preference weights (i.e., penalties/rewards) to goals and domain
assumptions. Alternatively, preferences can be expressed explicitly by setting

binary preference relations between pairs of goals or pairs of refinements;

(v) Assign numerical attributes (e.g., resources like cost, worktime, and room)
to goals and/or refinements and define constraints and multiple objective

functions over goals, refinements and their numerical attributes.

(vi) Define optimization goals over numerical attributes, such as cost or customer

value;

II. Fully support automated reasoning over CGMs that is both sound and complete,
i.e., returns only solutions that are consistent with CGM semantics, and all such

solutions;

IThe OMT solver OptiMathSAT can be used also as an SMT solver if no objective function is set: in
such case it works as a wrapper of MATHSATS5.

1.2. STRUCTURE OF THE DISSERTATION

ITII. Establish that reasoning with CGM models is scalable with models including

thousands of elements.

IV. A proposal for modelling changing requirements in terms of changes to a CGM

model.

V. The identification of a new class of evolution requirements, expressed as optimiza-
tion goals in CGM.

VI. Fully support automated reasoning over changed goal models and evolution require-

ments.

VII. A full experiment for evaluating the usability of CGM and CGM-Tool using enquiry

evaluation method.

1.2 Structure of the Dissertation

Besides motivation and conclusion, the dissertation is organised into three main parts.

¢ chapter 1 presents the motivation of this project and summarizes the main contri-

bution of the dissertation.

The first part of the dissertation, which focuses on the introduction of the state of the

art and research baselines of the project, consists in the following chapters:

* chapter 2 gives overview of the state of the art and related work

¢ chapter 3 provides a succinct account of necessary background on goal modelling
and on SMT/OMT;

The second part of the dissertation presents the main contributions of the dissertation,

which are conveyed in the following chapters:

¢ chapter 4 introduces the notion of CGM through an example;
¢ chapter 5 introduces the syntax and semantics of CGMs;

* chapter 6 presents the set of automated reasoning functionalities for CGMs;

5

CHAPTER 1. INTRODUCTION

* chapter 7 introduces the notion of evolution requirements and requirements evolu-
tion through a working example, as well as formalizes the problem of automatically

handling CGM evolutions and evolution requirements for CGMs;

The third part shows how the framework proposed in the dissertation is implemented

and evaluated. This part consists of the following chapters:

* chapter 8 gives a quick overview of our tool based on the presented approach;

* chapter 9 provides an experimental evaluation of the performances of our tool on

large CGMs, showing that the approach scales well with respect to CGM size.

¢ chapter 10 presents the user-oriented evaluation on the CGM-Tool.

Finally, chapter 11 presents conclusions and future research challenges.

1.3 Publications

A significant part of the content of this dissertation has been published in

* Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.
Multi-objective reasoning with constrained goal models.

Requirements Engineering Journal, pages 1-37, 2016

¢ Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.

Requirements Evolution and Evolution Requirements with Constrained Goal Mod-

els.
In Proceedings of the 37nd International Conference on Conceptual Modeling, LNCS.
Springer, 2016

* Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.
Modeling and reasoning on requirements evolution with constrained goal models.

Software Engineering and Formal Method, 15th International Conference, SEFM
2017, Trento, Italy, September 4-8, 2017, 2017.

submitted

Part 1

State of The Art and Research

Baselines

CHAPTER

STATE OF THE ART

Past studies always have impacts on present works. This chapter gives a
quick overview of, and a brief comparison with, some of the state-of-the-art

goal-oriented modelling languages.

* %k ok ok ok

In this chapter, we will present a brief summary of the literature on goal-oriented
modelling languages. [Lap05], [JMFO08], and [BDHM13] provide better and deeper
debates on the requirements modelling languages and the goal-oriented approach, their

advantages and limitations.

2.1 KAOS

KAOS stands for Knowledge Acquisition in Automated Specification [DvLF93] or Keep All
Objectives Satisfied [LL04]. "The overall approach taken in KAOS has three components:
(1) a conceptual model for acquiring and structuring requirements models, with an
associated acquisition language, (ii) a set of strategies for elaborating requirements
models in this framework, and (ii) an automated assistant to provide guidance in the
acquisition process according to such strategies." [DvLF93]

KAOS offered a concrete methodology for solving the requirements problem. KAOS

includes a considerable number of concepts, (such as object, operation, agent, goal,

9

CHAPTER 2. STATE OF THE ART

obstacle, requisite, requirement, assumption, scenario), and a process for eliciting goals,
refining them, etc. (for example, specialization, refinement, conflict, operationalization,
concern, and so on) [DvLF93, vLLD98, vLL00, LL04]. KAOS also came with a rich logical
sublanguage including Linear Temporal Logic (LTL) for describing the elements of a
KAOS model formally. KAOS, in other words, is a requirement engineering methodology
which is defined on top of LTL. In KAOS framework, goals are refined into requirements.

A KAOS specification is a collection of the three core models:
* Goal Model: represented goals and their assigned agents.

¢ Object Model: a UML model that refer to objects and their properties, which can

be derived from formal specifications of goals.
* Operation Model: defines various services to be provided by a software agent.

In summary, KAOS supports a rich ontology for requirements that goes well beyond
goals, as well as an LTL-grounded formal language for constraints. This language is
coupled with a concrete methodology for capturing and analyzing requirements problems.
KAOS supports a number of analysis techniques including obstacle, inconsistency, and
probabilistic goal analysis. Overall, KAOS is a well-developed methodology with a solid
formal framework. KAOS, however, is undecidable, quite ‘static’, and cannot efficiently
cope with the possibility of requirements changing during the process. Moreover, unlike
our proposal, KAOS does not support nice-to-have requirements and preferences, nor

does it exploit SMT/OMT solver technologies for scalability.

2.2 Qualitative Goal Models

Qualitative goal model is introduced in [MCN92]. It is a modelling language that
supports qualitative (strong and weak) evidence both in favour and against propositional
goal. In [GMNSO04], the model is formalized by replacing each proposition g, standing
for a goal, by four propositions (¥'Sg, PSg;, PD4, FD,) representing full (and partial)
evidence for the satisfied (and denial) faction of g. A traditional implication such as
p Aq — ris then translated into a series of implications connecting these new symbols,
including FS,AFS, — FS,, PS,APS;— PS,,aswellas FD, — FD,, FD, — FD,, etc.
The conflict between a and b is captured by axioms of the form F'S, — F Dy, and it is
consistent to have both F'S, and F'S, evaluated to true at the same time. As a result,

even though the solution to the model is a classical propositional theory, there is no

10

2.2. QUALITATIVE GOAL MODELS

inconsistency that can cause the whole model to be inferred. In fact, a predicate g can be
assigned a subset of truth values {F'S,PS,FD,PD}.

[SGMO04] extended the approach further by including axioms for avoiding conflicts
of the form FS, AFD,. The approach recognized the need to formalize goal models so
as to automatically evaluate the satisfaction of goals. The goal models are defined as
AND/OR graphs, in which nodes are goals, and a number of relations is provided to
indicate if the interaction is positive or negative, as well as to specify the strength of
the interaction. These goal models, however, do not incorporate the notion of conflict as
inconsistency, they do not include concepts other than goals, cannot distinguish optional
from mandatory requirements and have no notion of a robust solution, i.e. solution
without "conflict", where a goal can not be (full or partial) denied and (full or partial)
satisfied at the same time.

In summary, this approach does support scalable reasoning using SAT-solving tech-
niques. Our proposal subsumes this work in many ways, including a more expressive
language and much more advanced SMT/OMT-solving technology.

There is one construct of [SGM04, GMNS04] that was left our of the CGM language:
+ and — contributions from goals to goals. There are several reasons for this decision. In
(un-constrained) goal models, formalizing (+,—) contributions requires a 4-value logic
(fully/partially satisfied/denied). In principle our CGM framework could be extended to

such a logic, with the following drawbacks:

(a) The size of the Boolean search space would extend from 2V to 4V. Given that
reasoning functionality in this dissertation are much more sophisticated and compu-
tationally more demanding than those in [SGM04, GMNSO04], this might drastically
reduce the efficiency of the approach.

(b) Unlike standard 2-value logic, which allows us to give a clear semantics of “realiza-
tion”, without any vagueness, it is not obvious to us what a “realization” could be in
4-value logic. (E.g, should realization admit partially satisfied/denied tasks/ require-
ments/assumptions? If yes, how should a user interpret a partially-satisfied/denied
requirement/task/assumption in a realization returned by the system? In which sense

a realization involving partial values can be considered “optimal” or “optimum™?)

There are other differences between the two proposals. In CGMs, we have made
AND/OR-decompositions explicit by making refinement a first class citizen that can be
named and talked about (as discussed in chapter 4). Moreover, unlike with [SGMO04,
GMNSO04], we have a backbone AND/OR Directed Acyclic Graph (DAG), where arbitrary

11

CHAPTER 2. STATE OF THE ART

constraints can be added. This DAG is such that a non-leaf goal is equivalent to the
disjunction (“or”) of its refinements, and each refinement is equivalent to the conjunction
(“and”) of its source goals. Relation edges, constraints and assertions further constrain

this structure.

2.3 I" and Tropos

I* is introduced in [Yu97]. I'* is a modelling language that focuses on the interdependen-
cies of actors within a socio-technical system. In i*, a goal is related to the organization
context. I* provides two models: the Actor Strategic Dependency Model (SD model)
and the actor Strategic Rationale Model (SR model). Typically, SD models are used to
analyze the changes in the structure due to the introduction of the system-to-be, whilst
SR models are used to explore the rationale behind the processes in the system and
organizations.

One of i* significant advantages is its ability to communicate with the stakeholders
thanks to its easy to learn non-formal character. I*, however, has no notion of conflict. I*
does not provide the concepts to capture preferences, mandatory / optional requirements
either. In short, I* is a lightweight modelling language, intended for early stages of
requirements analysis, and did not support formal reasoning until recent thesis work by
[Hor12].

Tropos [CKMO02] is a requirements-driven agent-oriented development methodology
that uses i* modelling framework as the base. In the development of agent-based system.,
the Tropos methodology can be used from the early requirements analysis through
architectural design and requirements and detailed design to the implementation. I*
modelling framework is used to model and reason about requirements and system
configuration choices. Formal Tropos [FLM™*04] is a formal specification language that
adds constraints, invariants, pre- and post-conditions to Tropos. Tropos and Formal
Tropos model can be validated by model-checking. The main deficiency of this work

relative to our proposal is that Formal Tropos is expressive but not scalable.

2.4 Techne and Liaskos

Techne [JBEM10] is a recent proposal for a family of goal-modelling languages that
supports nice-to-have goals and preferences, but it is strictly propositional and uses

hand-crafted algorithms, and therefore does not support optimization goals. [EMBJ10]

12

2.5. FEATURE MODELS AND SEARCH-BASED SOFTWARE ENGINEERING

constitutes a first attempt to reason with nice-to-have requirements (aka preferences).
The scalability experiments conducted used the SAT solver of Sebastiani et al. [SGMO04]
and added local search algorithms to deal with preferences. All experiments were con-
ducted on a model with about 500 elements and the search algorithms returned maximal
consistent solution but also near-solutions. [EBJ11] focuses on finding new solutions for
a goal model that has changed (new goals were added/removed), such that the change
minimizes development effort (EvoR1) or maximizes familiarity (EvoR2). Notice that
EvoR1, EvoR2 are evolution requirements. The paper uses a Truth-Maintenance System
(TMS) and builds algorithms on top for finding solutions to EvoR1, EvoR2 that “repair”
the previous solution and construct a new one. The search algorithms would need to
be redone if we used different evolution algorithms, unlike the CGM tool where you
can formally express EvoR1, EvoR2 or variants, and search is handled by the backend
OMT/SMT solver. [EBMdJ12, EBJM14] continue the study of reasoning with Techne
models and use SAT solvers and hand-crafted search algorithms to establish scalability
for models size O(1K). Nevertheless, the resulting tools from this work still can’t handle
quantitative optimization problems and other features of CGMs.

Liaskos [LMSM10, Lial2] has proposed extensions to qualitative goal models to
support nice-to-have goals and preferences, as well as decision-theoretic concepts such as
utility. This proposal is comparable to our proposal in this paper, but uses Al reasoners
for reasoning (Al planners and GOLOG) and, consequently, does not scale very well

relative to our proposal.

2.5 Feature Models and Search-Based Software
Engineering

Feature models [CBH11] share many similarities with goal models: they are hierarchi-
cally structured, with AND/OR refinements, constraints, and attributes. However, each
feature represents a bundle of functionality or quality and as such, feature models are
models of software configurations, not requirements. Moreover, reasoning techniques for

feature models are limited relative to their goal model cousins.

Search-Based Software Engineering. Scalable reasoning for optimization problems
has been studied by Harman et al in the context of formalizing and solving the next
release problem [ZHMO07]: given a set of preferences with associated cost and customer

value attributes, select a subset of preferences to be included in the next release that op-

13

CHAPTER 2. STATE OF THE ART

timizes given attributes. That work uses genetic algorithms and other search techniques
that may return close-to-optimal solutions and use heuristics (meaning that reasoning is

not complete).

14

CHAPTER

RESEARCH BASELINES

This chapter provides some preliminary background of this dissertation. As
prerequisite knowledge, we assume that the reader is familiar with the syntax
and semantics of standard Boolean logic and of linear arithmetic over the

rationals.

* % ok ok ¥k

Our research baseline consists of our previous work on qualitative goal models and of
Satisfiability and Optimization Modulo Theories (SMT and OMT respectively). The aim

of this chapter is to introduce the necessary background notions on these topics.

3.1 Goal Models

Qualitative goal models are introduced in [MCN92], where the concept of goal is used
to represent respectively a functional and non-functional requirement in terms of a
proposition. A goal can be refined by means of AND/OR refinement relationships and
qualitative evidence (strong and weak) for/against the fulfilment of a goal is provided by
contribution links labelled +, — etc. An example of the approach goal graph is showed
in Figure 3.1. In [GMNS04], goal models are formalized by replacing each proposition
g, standing for a goal, by four propositions (F'Sg, PSg;, PDg, FD,) representing full

(and partial) evidence for the satisfaction/denial of g. A traditional implication such as

15

CHAPTER 3. RESEARCH BASELINES

LAYER 4
time-space

Time [attributes (Researcher),
individual-bulk

Time[individual operations on
attributes (Researcher),

Plattributes (Researcher), 4]

4] Space[attributes (Researcher),

Time [oulk operations on

4] attributes (Researcher),

4]
individual attributes
Time [individual operations on
Researcher .Meeting, 4]

4](

Time{individual operations on
Researcher.Name,

N
> . InformalClaim["50% aurs, frequently accessed"]

AccessManyAtributesPerTs uplc

Researcher.Meeting, ReduceDuplicationOfEntityldentifiers

[attributes (Researcher), 4]

artributes of
Researcher

4]

LAYER 3) /
VerticalSplitting HorizontalSplitting
[Researcher, 3] [Resarcher, 3]
e . UniformTime[individual operations on i n
Time[individual operations on ingividyal o pr
Researcher.Meeting, 3]/\ Researcher.Meeting, 3] Meeting
LAYER 2

sub

Time[retrieve

Time [find offset, 2] from storage, 2]

FormalClaim [Ex, I sub 7~ FormalClaim

searcher.

Y,

icitReferenc n
rldoct ing,

211\
ReduceRunTimeReorganization

FarlyFiving[find offset. 2] [retrieve from storage, 2]
! 1

'~ | FrequeniSchemaChanges
[Researcher . Meeting,

2]]

LAYER 1

StaticOffsetDetermination DynamicOffsetDetermination
[Researcher.Meeting, 1] 1]

[Resarcher .Meeting,

Figure 3.1: A performance goal graph of qualitative goal model as

increase

customer +

showed in [MCN92].

loyalty
+ \

increase

return on improve
investment car
increase \ =s GM improve services
Toyota car
- f sales quality +
increase + increase
increase sales profit per
vw volume vehicle
sales ;‘
increase increase ower increase
axpand increase e
consumor foreign production high margin,
appsal @ sales price// \ garnings costs sales
reduce we lower + keep improv
operating | (environment)(purchase - labour costs| |economies g
costs impact cosu low productiop
lower gas <mpro)(> < lower sales reduce ra outsource
rebates oan '““’"" materials units of
price > mileage rate prlee costs roductiop

lower

ap. interest
rates

Japanese
rates rise

Japanese gas

price rises +

Yen rises

Figure 3.2: A partial and fictitious goal model of a US car manufacture (GM) as showed

in [GMNSO04].

16

3.2. SATISFIABILITY MODULO THEORIES AND OPTIMIZATION MODULO
THEORIES

(p A @) — r is then translated into a series of implications connecting these new symbols,
including (FS, AFS,)—FS,, (PS, APS;)— PS,,aswellas FD, — FD,, FD,— FD,,
etc. The conflict between goals a and b is captured by axioms of the form F'S, — FDy,
and it is consistent to have both F'S, and F' D, evaluated to true at the same time. As
a result, even though the semantics of a goal model is a classical propositional theory,
inconsistency does not result in everything being true. In fact, a predicate g can be
assigned a subset of truth values {F'S,PS,FD,PD}. An example of this approach goal
model is showed in Figure 3.2.

[SGMO04] extended the approach further by including axioms for avoiding conflicts
of the form FS, AFD,. The approach recognized the need to formalize goal models so
as to automatically evaluate the satisfiability of goals. These goal models, however, do
not incorporate the notion of conflict as inconsistency, they do not include concepts other
than goals, cannot distinguish “nice-to-have” from mandatory requirements and have no
notion of a robust solution, i.e. solution without "conflict", where a goal can not be (fully

or partially) denied and (respectively, fully or partially) satisfied at the same time.

3.2 Satisfiability Modulo Theories and Optimization
Modulo Theories

3.2.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a quantifier-free first-order formula ® with respect to some decidable theory I (see
[Seb07, BSST09]). In this paper, we focus on the theory of linear arithmetic over the
rationals, LR : SMT(ZL %<7) is the problem of checking the satisfiability of a formula
® consisting in atomic propositions Aj,Ag,... and linear-arithmetic constraints over
rational variables like “(2.1x1 — 3.4x9 + 3.2x3 < 4.2)”, combined by means of Boolean
operators 7, A,V,—,—. (Notice that a Boolean formula is also a SMT(Z % .</) formula,
but not vice versa.) An L%/ -interpretation u is a function which assigns truth values
to Boolean atoms and rational values to numerical variables; u satisfies ® in L%,
written “u = ®” —aka, u is a solution for ® in LR/ iff u makes the formula ® evaluate
to true; @ is X%/ -satisfiable iff it has at least one L% .o/ -interpretation y s.t. ul=®.
A SMT Solver for a theory 9, 9 -solver, is a procedure able to decide the J -
satisfiability (9 -consistency) of a conjunction/set p of J -literals. Modern 9 -solvers

support several features which are relevant to SMT(J").

17

CHAPTER 3. RESEARCH BASELINES

Below is an example of SMT problem in SMT-LIBv2 format.

SMT-LIBv2 Example

(declare-fun x () Int)
(declare-fun y1 () Int)
(declare-fun y2 () Int)
(declare-fun z () Int)

(assert (= x y1))

(assert (not (= yl1 z2)))

(assert (= x y2))

(assert (and (> y2 0) (< y2 5)))
(check-sat)

(get-value (x z)

Here, four integer variables x, y1, y2 and z were declared. Four SMT constraints
were formulated: (x = y1), 7(y1 =2), (x = ¥2), and (y2 > 0) A (y2 < 5). The last two rows of
code asks for the satisfiability of the problem and return the values of x and z variable

in case of SAT. In other words, our SMT problem is to find if the formula
xx=yDA(yl=2)Ax=y2)A((y2>0)A(y2<5)

satisfiable (x, y1, y1, z are integer) and in case of SAT, find the value of the variable x

and variable z. One possible result of the problem is (x = 2) and (z = 10).

3.2.2 Optimization Modulo Theories

An Optimization Modulo Theories over £ R (OMT(L R<f)) problem (D, (0bj1,...,0bj1))
is the problem of finding solution(s) to an SMT(ZX % .<f) formula ® which optimize the
rational-valued objective functions 0bj1,...,0bJp, either singularly or lexicographically
[NOO6, ST12, ST15a, ST15c]). A solution optimizes lexicographically {obji,...,0bj) if
it optimizes 0bj; and, if more than one such 0bji-optimum solutions exists, it also
optimizes 0bjo,..., and so on.

Very efficient SMT(Z Z.</) and OMT(ZL Z.f) solvers are available, which combine
the power of modern SAT solvers with dedicated linear-programming decision and
minimization procedures (see [Seb07, BSST09, CGSS13, NO06, ST12, ST15a, ST15c,
ST15b]). For instance, in the empirical evaluation reported in [ST15a] the OMT(Z %.</)

18

3.2. SATISFIABILITY MODULO THEORIES AND OPTIMIZATION MODULO
THEORIES

solver OptiMathSAT [ST15a, ST15b] was able to handle optimization problems with up
to thousands Boolean/rational variables in less than 10 minutes each.
Below is an example of OMT problem in SMT-LIBv2 format.

SMT-LIBv2 Example

(declare-fun x () Int)
(declare-fun y1 () Int)
(declare-fun y2 () Int)
(declare-fun z () Int)
(assert (= x y1))
(assert (not (= y1 2)))
(assert (= x y2))
(assert (and (> y2 0) (< y2 5)))
(minimize (+ x z))
(check-sat)

(get-value (x z))

The problem is similar to the example presented in subsection 3.2.1 excepted that
this problem asked for the minimization of the sum (x + z). The solution of the problem is
(x=1),(z=0)

19

Part 11

Contributions

21

CHAPTER

CONSTRAINED GOAL MODELS (CGMS)

One main contribution of this dissertation is the formalization of the Con-
strained Goal Models (CGMs). This chapter introduces the main ideas of
CGMs and the main functionalities of our CGM-Tool through a meeting

scheduling example.

* %k %k ok ok

In this chapter, we introduce the notions of constrained goal model (CGM), and of
realization of a CGM; we also present the automated-reasoning functionalities of our
CGM-Tool through a meeting scheduling example (Figure 4.5), without getting into the
formal details yet. The formal semantics and reasoning of CGM will be presented in

chapter 5 and chapter 6.

4.1 The Backbone: Goals, Refinements, and Domain

Assumptions

We model the requirements for a meeting scheduling system, including the functional
requirement ScheduleMeeting, as well as non-functional/quality requirements LowCost,
FastSchedule, MinimalEffort and GoodQualitySchedule. They are represented as

root goals.

23

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

Notationally, round-corner rectangles (e.g., ScheduleMeeting) are root goals, rep-
resenting stakeholder requirements; ovals (e.g. CollectTimetables) are intermediate
goals; hexagons (e.g. CharacteriseMeeting) are tasks, i.e. non-root leaf goals; rectangles
(e.g., ParticipantsUseSystemCalendar) are domain assumptions. We call elements both

goals and domain assumptions.
Figure 4.1 shows all the elements of the Schedule Meeting CGM.

Labeled bullets at the merging point of the edges connecting a group of source ele-
ments to a target element, as showed in Figure 4.2, are refinements
(e.g., (GoodParticipation,MinimalConflict) Bao, GoodQualitySchedule), while the
R ;s denote their labels.

Remark 1. Unlike previous goal modelling proposals, refinements are explicitly labeled,
so that stakeholders can refer to them in relations, constraints and preferences. (This fact
will be eventually discussed with more details.) The label of a refinement can be omitted

when there is no need to refer to it explicitly.

Intuitively, requirements represent desired states of affairs we want the system-
to-be to achieve (either mandatorily or preferably); they are progressively refined into
intermediate goals, until the process produces actionable goals (tasks) that need no
further decomposition and can be executed; domain assumptions are propositions about
the domain that need to hold for a goal refinement to work. Refinements are used to
represent alternatives of how to achieve a non-leaf element, i.e., a refinement of an
element represents one of the alternative of sub-elements that are necessary to achieve
it.

The principal aim of the CGM in Figure 4.2 is to achieve the requirement
ScheduleMeeting, which is mandatory. (A requirement is set to be mandatory by
means of user assertions, see below.) ScheduleMeeting has only one candidate re-
finement R, consisting in five sub-goals: CharacteriseMeeting, CollectTimetables,
FindASuitableRoom, ChooseSchedule, and ManageMeeting. Since R; is the only re-
finement of the requirement, all these sub-goals must be satisfied in order to satisfy
it. There may be more than one way to refine an element; e.g., CollectTimetables is
further refined either by Rjo into the single goal ByPerson or by R into the single
goal BySystem. Similarly, FindASuitableRoom and ChooseSchedule have three and two
possible refinements respectively. The subgoals are further refined until they reach the

level of domain assumptions and tasks.

24

4.2. BOOLEAN CONSTRAINTS: RELATION EDGES, BOOLEAN FORMULAS AND
USER ASSERTIONS.

The requirements that are not set to be mandatory are “nice-to-have” ones, like
LowCost,MinimalEffort, FastSchedule, and GoodQualitySchedule (in blue in all men-
tioned above figures). They are requirements that we would like to fulfil with our solution,

provided they do not conflict with other requirements.

4.2 Boolean Constraints: Relation Edges, Boolean

Formulas and User Assertions.

Importantly, in a CGM, elements and refinements are enriched by user-defined Boolean
constraints, which can be expressed either graphically as relation edges, or textually as

Boolean or SMT(ZL %<f) formulas, or as user assertions.

4.2.1 Relation Edges

As showed in Figure 4.3, we have four kinds of relation edges.

¢ Contribution edges “E; LE ;” between elements (in green in Figure 4.3), like
“ScheduleAutomatically X%, MinimalConflicts”, mean that if the source ele-
ment E; is satisfied, then also the target element £ ; must be satisfied (but not vice

versa).

* Conflict edges “E; — E;” between elements (in red), like “ConfirmOccurrence «—

CancelMeeting”, mean that E; and E; cannot be both satisfied.

* Refinement bindings “R;——R;” between two refinements (in purple), like
“Ro——R7”, are used to state that, if the target elements E; and E; of the two
refinements R; and R, respectively, are both satisfied, then E; is refined by R; if
and only if E; is refined by R ;. Intuitively, this means that the two refinements

are bound, as if they were two different instances of the same global choice.
For instance, in Figure 4.3, the refinements Ry and R7; are bound because such

binding reflects a global choice between a manual approach and an automated one.

* Preferred edges “E; > E;” between elements (in light brown), like
“UsePartnerInstitutions > UseLocalRoom”, mean that we would prefer a solution
with E; (and with or without E) over a solution which has E; but not E;.

25

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

4.2.2 Boolean Formulas

It is possible to enrich CGMs with Boolean formulas, representing arbitrary constraints
on elements and refinements, as showed in Figure 4.4. Such constraints can be either
global or local to elements or to refinements, that is, each goal G can be tagged with a
pair of prerequisite formulas {cpg,(/)&} —called positive and negative prerequisite formulas
respectively— so that ¢, [resp. ¢ ;] must be satisfied when G is satisfied [resp. denied].
(The same holds for each requirement R.)

For example, to require that, as a prerequisite for FastSchedule, ScheduleManually
and CallParticipants cannot be both satisfied, one can add a constraint to the positive

prerequisite formula of FastSchedule:

(4.1) ¢ rastSchedule LA (ScheduleManually A CallParticipants),

or, equivalently, add globally to the CGM the following Boolean formula:
(4.2) FastSchedule — ~(ScheduleManuallyACallParticipants).

Notice that there is no way we can express (4.1) or (4.2) with the relation edges above.

4.2.3 User Assertion

With CGM-Tool, one can interactively mark [or unmark] requirements as satisfied (true),
thus making them mandatory (if unmarked, they are nice-to-have ones). In our example
ScheduleMeeting is asserted as true to make it mandatory, which is equivalent to add

globally to the CGM the unary Boolean constraint:
(4.3) (ScheduleMeeting).

Similarly, one can interactively mark/unmark (effortful) tasks as denied (false). More
generally, one can mark as satisfied or denied every goal or domain assumption. We call
these marks user assertions, because they correspond to asserting that an element must
be true, i.e., it is part of the solutions we are interested in, or false, i.e., we are interested
in solutions that do not include it.

Notice that the process of marking/unmarking elements is conceived to be more

interactive than that of adding/dropping relation edges or constraints.

26

4.3. ARITHMETICAL CONSTRAINTS: NUMERICAL ATTRIBUTES AND SMT(ZL %)
FORMULAS

4.3 Arithmetical Constraints: Numerical Attributes

and SMT(X % .</) Formulas

In addition to Boolean constraints, it is also possible to use numerical variables to express
different numerical attributes of elements (such as cost, worktime, space, fuel, etc.) and
to add arithmetical constraints in the form of SMT(¥ % <f) formulas over such numerical

variables, as showed in Figure 4.5.

4.3.1 Numerical Attributes

For example, suppose we estimate that fulfilling UsePartnerInstitutions costs 80€,
whereas fulfilling UseHotelsAndConventionCenters costs 200€. With CGM-Tool one
can express these facts straightforwardly by adding a global numerical variable cost to
the model;

then, for every element E in the CGM, CGM-Tool automatically generates a numerical
variable costg representing the attribute cost of the element E, it adds the following

defaultglobal constraint and prerequisite formulas:

4.4) (cost = Z costg),

E
4.5) for every element E, <p+E © A (costg=0)
(4.6) (O © A (costg =0),

that set the default value O for each costg. (Notice that (4.4) is a default global con-
straint: the user is free to define his/her own objective functions.) Eventually, for the
elements E of interest, one can set a new value for costg in case E is satisfied: e.g.,

CoStysePartnerInstitutions := 80e and costyseHotelsAndConventionCenters := 200e. When so,

CGM-Tool automatically updates the values in the positive prerequisite formulas (4.5),

e.g..
def

+
(47) (P UsePartnerInstitutions —
def

+
(P UseHotelsAndConventionCenters

... N(cOStysePartnerInstitutions = S0)

... A(COStyseHotelsAndConventionCenters = 200),

whereas the corresponding constraint (4.6) is not changed. Similarly, one can set a new
value for costg in case E is denied by updating the values in the negative prerequisite
formulas (4.6).

Remark 2. Notationally, we use variables and formulas indexed by the element they

. +
belong to (like, e.g., cOStysepartnerInstitutions AN P gepartnerinstitutions’ Tather than

27

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

attribute variables and formulas of the elements in an object-oriented notation (like,
e.g., UsePartnerInstitutions.cost and UsePartnerInstitutions.¢™) because they

are more suitable to be used within the SMT(ZL R4) encodings .

4.3.2 SMT(ZXZ%</) Formulas

Suppose that, in order to achieve the nice-to-have requirement LowCost, we need to
have a total cost smaller than 100€. This can be expressed by adding to LowCost the

prerequisite formula:
(4.8) O oucost = --- A(cost < 100).

Hence, e.g., due to (4.4)-(4.8), LowCost and UseHotelsAndConventionCenters cannot be
both satisfied, matching the intuition that the latter is too expensive to comply to the
nice-to-have LowCost requirement.

Similarly to cost, one can introduce, e.g., another global numerical attribute workTime
to reason on working time, and estimate, e.g., that the total working time for
ScheduleManually, ScheduleAutomatically, EmailParticipants, CallParticipants,
CollectFromSystemCalendar are 3, 1, 1, 2, and 1 hour(s), respectively, and state that
the nice-to-have requirement FastSchedule must require a global time smaller than 5

hours. As a result of this process, the system will produce the following constraints.

4.9) (workTime = ZworkTimeE)
E
+ def .
(4.10) ¢ FastSchedule = ---A(workTime <5)
+ def . _
(4.11) ¢ ScheduleManually — =/ (WorlemeScheduleManually =3)
+ def . _
¢ ScheduleAutomatically — - /\ (WorkT1meScheduleAutomatica11y =1)
+ def . _
¢ EmailParticipants — A (WorkT1meEmailParticipants =1)
+ def .
¢ CallParticipants — =/ (workTimecal1Participants = 2)
+ def . _
¢ CollectFromSystemCalendar — *** A (WorkT1meCollectFromSystemCalendar =1),

plus the corresponding negative prerequisite formula, which force the corresponding
numerical attributes to be zero.

As with the previous case, e.g., the arithmetic constraints make the combination of
ScheduleManually and CallParticipants incompatible with the nice-to-have require-

ment FastSchedule.

28

4.4. REALIZATION OF A CGM

Notice that one can build combinations of numerical attributes. E.g., if labor cost is
35e/hour, then one can redefine cost as (cost =) gcostg +35-workTime), or introduce

a new global variable totalCost as (totalCost = cost + 35-workTime).

Remark 3. Although the nice-to-have requirements LowCost and FastSchedule look
isolated in Figure 4.5, they are implicitly linked to the rest of the CGM by means of
arithmetic constraints on the numerical variables cost and workTime respectively, which

implicitly imply Boolean constraints like:

(4.12) LowCost — —UseHotelsAndConventionCenters

(4.13) FastSchedule — ~(ScheduleManuallyACallParticipants)
ScheduleManually A

(4.14) FastSchedule — ~| EmailParticipants A
CollectFromSystemCalendar

Nevertheless, there is no need for stakeholders to consider these implicit constraints, since
they are automatically handled by the internal OMT(ZL %) reasoning capabilities of
CGM-Tool.

4.4 Realization of a CGM

We suppose now that ScheduleMeeting is marked satisfied by means of an user assertion
(i.e. it is mandatory) and that no other element is marked. Then the CGM in Figure 4.5
has more than 20 possible realizations. The sub-graph which is highlighted in yellow in
Figure 4.6 describes one of them.

Intuitively, a realization of a CGM under given user assertions represents one of
the alternative ways of refining the mandatory requirements (plus possibly some of the
nice-to-have ones) in compliance with the user assertions and user-defined constraints.
It is a sub-graph of the CGM including a set of satisfied elements and refinements: it
includes all mandatory requirements, and [resp. does not include] all elements satisfied
[resp. denied] in the user assertions; for each non-leaf element included, at least one
of its refinement is included; for each refinement included, all its target elements are
included; finally, a realization complies with all relation edges and with all Boolean and
SMT(Z %<7) constraints. (Notationally, in all of the Figures a realization is highlighted
in yellow, and the denied elements are visible but they are not highlighted.)

29

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

Apart from the mandatory requirement, the realization in Figure 4.6 allows to achieve
also the nice-to-have requirements LowCost, GoodQualitySchedule, and FastSchedule,
and MinimalEffort; in order to do this, it requires accomplishing the tasks:

CharacteriseMeeting,

CollectFromSystemCalendar,

UsePartnerInstitutions,

ScheduleAutomatically,

ConfirmOccurrence,

GoodParticipation,

MinimalConflicts,

CollectingEffort,

MatchingEffort,

and it requires the domain assumption

ParticipantsUseSystemCalendar.

4.5 Preferences in a CGM

In general, a CGM under given user assertions has many possible realizations. To distin-
guish among them, stakeholders may want to express preferences on the requirements
to achieve, on the tasks to accomplish, and on elements and refinements to choose. The

CGM-Tool provides various methods to express preferences:
¢ attribute penalties and rewards for tasks and requirements;
* introduce numerical objectives to optimize;
* introduce binary preference relations between elements and between refinements.

These methods, which are described in what follows, can also be combined.

4.5.1 Preferences via Penalties/Rewards

First, stakeholders can define two numerical attributes called Penalty and Reward, then
stakeholders can assign penalty values to tasks and reward values to (non-mandatory)
requirements (the numbers “Penalty =...” and “Reward =..." in Figure 4.5). This implies
that requirements [resp. tasks] with higher rewards [resp. smaller penalties] are prefer-

able. Next, stakeholders can define another numerical attribute Weight, that represents

30

4.5. PREFERENCES IN A CGM

the total difference between the penalties and rewards. (This can be defined as a global
constraint: (Weight = Penalty —Rewards).) When a model represents preferences, an
OMT solver will look for a realization that minimizes its global weight. For instance,
one minimum-weight realization of the example CGM, as shown in Figure 4.7, achieves
all the nice-to-have requirements except MinimalEffort, with a total weight of —65,
which is the minimum which can be achieved with this CGM. Such realization requires

accomplishing the tasks:
CharacteriseMeeting,
EmailParticipants,
UsePartnerInstitutions,
ScheduleManually,
ConfirmOccurrence,
GoodParticipation, and
MinimalConflicts,

and requires no domain assumption. (This was found automatically by our CGM-Tool

in 0.008 seconds on an Apple MacBook Air laptop.)

4.5.2 Preferences via Multiple Objectives

Stakeholders may define rational-valued objectives 0bj1,...,0bj} to optimize (i.e., maxi-
mize or minimize) as functions of Boolean and numerical variables —e.g., cost, workTime,
totalCost can be suitable objectives— and ask the tool to automatically generate
realization(s) which optimize one objective, or some combination of more objectives
(like totalCost), or which optimizes lexicographically an ordered list of objectives
(0bj1,0bj2,...). (We recall that a solution optimizes lexicographically an ordered list
of objectives (0bj1,0bj2,...) if it makes 0bj; optimum and, if more than one such solution
exists, it makes also 0bjo optimum, ..., etc.) Notice that lexicographic optimization allows
for defining objective functions in a very fine-grained way and for preventing ties: if
the stakeholder wants to prevent tie solutions on objective 0bj1, he/she can define one
further preference criterion 0bjg in case of tie on 0bj1, and so on.

Importantly, our CGM-Tool provides some pre-defined objectives of frequent usage.
Weight (see last paragraph) is one of them. Other examples of pre-defined objectives
stakeholders may want to minimize, either singularly or in combination with other

objectives, are:

31

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

* numUnsatRequirements: the number of nice-to-have requirements which are not

included in the realization;
¢ numSatTasks: the number of tasks which are included in the realization;

* numUnsatPrefs: the number of user-defined binary preference relations which are

not fulfilled by the realization (see later).

For example, the previously-mentioned optimum-weight realization of Figure 4.7 is
such that Weight = —65, workTime =4 and cost = 80. Our CGM has many different
minimum-weight realizations s.t. Weight = —65, with different values of cost and
workTime. Among them, it is possible to search, e.g., for the realizations with minimum
workTime, and among these for those with minimum cost, by setting lexicographic
minimization with order (Weight,workTime,cost). This results into one realization with
Weight = —65, workTime = 2 and cost = 0 achieving all the nice-to-have requirements,
as shown in Figure 4.8, which requires accomplishing the tasks:

CharacteriseMeeting,

CollectFromSystemCalendar,

GetRoomSuggestions,

CancellessImportantMeeting,

ScheduleAutomatically,

ConfirmOccurrence,

GoodParticipation,

MinimalConflicts,

CollectionEffort,

MatchingEffort,

and it requires two domain assumptions:

ParticipantsUseSystemCalendar, and

LocalRoomAvailable.

(This was found automatically by our CGM-Tool in 0.016 seconds on an Apple Mac-
Book Air laptop.)

4.5.3 Preferences via Binary Preference Relations

In general, stakeholders might not always be at ease in assigning numerical values to
state their preferences, or in dealing with SMT(ZXZ.<«/) terms, constraints and objec-

tives. Thus, as a more coarse-grained and user-friendly solution, it is also possible for

32

4.5. PREFERENCES IN A CGM

stakeholders to express their preferences in a more direct way by stating explicitly a
list of binary preference relations, denoted as “P1 = Py”, between pairs of elements of
the same kind (e.g. pair of requirements, of tasks, of domain assumptions) or pairs of
refinements. “P; > P2” means that one prefers to have P; satisfied than Py satisfied, that
is, that he/she would rather avoid having P; denied and Ps satisfied. In the latter case,
we say that a preference is unsatisfied. Notice that P; > P9 allows for having both P,
and Py satisfied or both denied.

Remark 4. These are binary preferences, so that they say nothing on the fact that
each P; is singularly desirable or not, which in case must be stated separately (e.g., by

penalties | rewards.)

Thus, the fact that a binary preference P1 = Py allows for having both P1 and Ps de-
nied should not be a surprise: if both {P1 = false,Ps = true} and {P1 = false,Ps = false}
violated P = Pg, then Py would play no role in the preference, so that it would reduce to
the unary preference “I'd rather have Py than not have it.” A dual argument holds for the
fact that P1 = Py allows for having both P1 and Py satisfied.

Also, this choice is a very general one, since it implements the case in which (P1,P2)
are both desirable /| rewarding (“I prefer winning the Turing Award than winning at the
lottery.”) like the preference between two requirements, as well as the opposite case in
which they are both undesirable | expensive (“I prefer being shot than being hanged.”) like
the preference between two tasks, plus obviously the trivial case in which P1 is desirable
and Ps is undesirable. If this choice is considered too general, then the stakeholder can
add mutual-exclusion constraints, or combine it lexicographically with penalty [rewards,

or directly use penalty / rewards instead.

With CGM-Tool, binary preference relations can be expressed either graphically, via a
“prefer” arc “Pq prefer P5”, or via and ad-hoc menu window. Once a list of binary preference
relations is set, the system can be asked to consider the number of unsatisfied preference
relations as a pre-defined objective (namely numUnsatPrefs), and it searches for a real-
ization which minimizes it. It is also possible to combine such objective lexicographically

with the other objectives.

One typical usage we envision for binary preferences is between pairs of refinements
of the same element —or equivalently, in case of single-source refinements, between their
relative source elements. This allows for expressing stakeholders’ preferences between

possible ways one intermediate element can be refined.

33

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

For example, suppose we want to minimize the total weight of our example goal model.
As previously mentioned, there is more than one realization with minimum weight —65.
Unlike the previous example, as a secondary choice we disregard workTime and cost;

rather, we express also the following binary preferences:

(4.15) ConfirmOccurrence > CancelMeeting,
UsePartnerInstitutions >UselLocalRoon,

UseAvailableRoom = CancelLessImportantMeeting.

(Notice that the goal preferences in (4.15) are pairwise equivalent to the following

refinement preferences:
(4.16) Rg>R19, R4>=Rg, and R17 = R1g

because the refinements in (4.16) are all single-source ones, whose sources are pairwise
the goals in (4.15).)

Then we set numUnsatPrefs as secondary objective to minimize after Weight, that
is, we set the lexicographic order (Weight,numUnsatPrefs). Then our tool returned the
same realization of Figure 4.7 instead of that in Figure 4.8. (This solution was found in

0.018 seconds on an Apple MacBook Air laptop.)

4.6 UNSAT core

It is possible that a CGM is over-constrained, therefore, it is unrealizable, in other words,
unsatisfiable. In such case, we can extract the UNSAT-core, i.e., the internal conflicts
that cause the CGM to be unrealizable. For example, considered the CGM showed in Fig-
ure 4.5, if the domain assumption ParticipantsUseSystemCalendar cannot be achieved,
we cannot EmailParticipants for some reason, and we want to have FastSchedule,
then clearly this model is over-constrained and unrealizable. The problem is because we

will need to add three more constraints to the global constraints:

def

® = ...7ParticipantsUseSystemCalendar A "EmailParticipants AFastSchedule.

Such constraints will cause conflicts in the model.
Since the domain assumption ParticipantsUseSystemCalendar is false, the refine-
ment R13 will also unachievable, and so does the goal BySystem. Thus, it is impossible

to achieve the goal CollectTimetables using the refinement R3. CollectTimetables

34

4.6. UNSAT CORE

can only be obtained by using the refinementRy as the result. This means ByPerson
must be true. As the refinement R3 is unachievable, this lead us to unable to use the
refinement R7 to refine the goal ChooseSchedule. This is because the two refinements
are bonding. Therefore, the goal ChooseSchedule can only be obtained by using Rs.
This means that the task ScheduleManually must be true. Since EmailParticipants is
false, ByPerson can only be refined by R12. This means that the task CallParticipants
must be true. However, the requirements FastSchedule cannot be satisfied when both
CallParticipants and ScheduleManually are true (as stated in Equation 4.13). Hence,
the UNSAT core of the CGM is:

(i) the mandatory requirement ScheduleMeeting,

(1) the constraint (FastSchedule),

(1) the constraint (ParticipantUseSystemCarlendar),

(1) the constraint 7(EmailParticipants),

(i) the constraint (FastSchedule — (CallParticipants A ScheduleManually)),
(1) the refinement bonding R3—R7,

(i) the refinement R; of ScheduleMeeting,

(1) the refinement Ry and R3 of CollectTimetables,

(1) the refinement R; and Rg of ChooseSchedule,

(i) the refinement R1; and R19 of ByPerson, and

(i) the refinement R3 of BySystem.

35

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

‘suorpdwnsse urewop aJae so[gur)oal Syse} aIe suogexoy :s[eos
91RIPOULIdJ UL 808 S[BAO ‘SjUaWaIINbal o0 s8[SuR)Ia.1 JOULI0D-PUNOL ‘DISYMIS[0 PUR SIS ‘AH) © Jo sjuswa[y T § oIn3Lq

Hoy3
Buyorey

wooy
a|qelieny
asn

swiooy
s|ce|ieny
s

Juepodwisse]

voy3
[ewiuiy

s|npayos
Ayenppoon

Tepuajen
wiasAgwoly
199]10D

- Jepusjen
Eoor:moo._ wershsesn

sjuedioiue
wooy wooy imitaitians
Xoog |e20pul

slejue)

wooy
[eooesn

ooy

Bunssin
8|genngpuly4

a|npayos Bunesy 1SOOMOT
1sed a|npayos

36

4.6. UNSAT CORE

"SjpusmIeUa.I
aae sodpe Jo dnoas e jo qurod SurSiowr oy} Je SI9[[N(Po[eqe] ‘©IdYMmas[e pur aJoH ‘NHD) © JO sjusweulyey :g'§ oansig

Hoy3
Buiyorey

wooy
s|gejleny
s

swooy
s|qelieAy
IS0

juepodwisse]

o|npayos
Ajrenppoon

voy3
[ewiuin

Jepusie)
wiasAgwoly

109|100
Jepuse)n
9|ge|ien
i
sjuedioiued
wooy wooy
yoog eS0T puly4
o0 €y

wo
|eo0

g

ooy
Q|gennspuly

Bunesn

re

3|Npayos Buneay 1S0OMOT
1se4 aINpeyos

37

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

‘(e1dand) A[uo sjuswoOULAI
u99M1e(q S93pe aJae SSUIPUI(JUSWOULSL PUR ‘(UMOI() L2fo.d, UM pa[aqe] ote sedpe aouaasjard {(paa) — Yjim po[eqe]
aJe SoSpe OIJU0d {(Usai3) ++ YIIM pa[a(e] aJe seSpe UOIINLIIUO0) ‘DI9MOS[o PuR aJo9 ‘AH) B Ul suone[ey 'y oangig

uonedoiyed

wooy swooy
o|qgejleAy o|qejleAy
asn

uepoduw|sse]

voy3
[ewnuiy

a|npayos
Ayrenppoon

Jepusie)
wiaisAgwoly

1991100
Jepus|ed
a|ge|len
S
sjuedioiued
wooy wooy
Joog [eoopul4
++ ++
Joyaud
b €y

9d Gy e €Y 4]

ooy
9|gelnspul

Bunssin
gzle10BIRY

I

a|npayos Bunesy 1SOOMOT
1sed a|npayos

38

4.6. UNSAT CORE

“JUSWIS[O POIRIIOSSE SI1 MO[9q US})LIM) B[NULIOJ UBS[00g UM JALHD ® Jo ojdwrexs Uy :§'§ 9an3i]

Hoy3
Buiyorey

wooy
s|qe|ieAy
asn

swooy
s|qelieAy
1817

a|npayos voy3
Auenppoon

[ewiuiin

Jepusie)
wiasAgwoly

109|100
Jepusje
d|ge|leny EmW>m_me
wooyeso sjuedioiped

J9j01d

Sis1u8)d

|eonewolny
8|npayog

wooy
|eoo1esn

ooy

Bunesn
Q|gernspul

Ld

(fiyomuw prapnpayag v spundingan ;))-

8|Npayos
1se4

(809U, YUOUIAUO YPU §]2J0 []3S (])~

Bunesiy
||npayos

39

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

SJIUSWIA 9AI}09dSaT 9Y) MO[9q USIILIM dJ€ Se[NuLIo] 9}1smbaraid aAnyisod I19Y) pue SJUSWS 9Y) ILM PIIRIIOSSE
S9INQLI})E [BOLISWINU JO SON[BA SIUTBIISUOD IIIOWILIB PUR SOIN]LIJIE [BOLIDWNU YIIM ALY © Jo o[dwrexs uy :G'§ oI

ov = Aleusd G| = Ajeued ot = Ajeusd 02 = Ajeusd

uonedoiyed

02 = Ayeusd 01 = Ayeusd Gz = Ajeusd
wooy swooy
a|qe|leny a|qe|leny
asn s

Gl = Ayeusd

Juepodwisse]

08 = GO = piemay
3INpPayds Yl = swiiom poy3
Alenppoon G = Ajjeusd [ewiuIn
Tepuajen
_ wiasAgwoly
G| = Aljeusd 06 = Ajeuad 109100
a|ge|ien {EPUSIED = dWi| YoM =awl| Lo\m,.
En_vw _.moM warshsesn v - A .M.uw “ P A ..Muw
d[ed07] sjuedioed Gl = Ajjeusd Gl = Ajeusd
+F +4
o gid
yg = awi] Ydom m_ 300¢ = 1899 308 = 1S02
_ = 8wl Ul = swilyiom 0S = Ayeusd =
§ = Aeuag 0g=Ayeued | = Ayeusd 06 = Ajeuad

T+

G Y €Y 4]

§ Sl = Ajeuad

Bunssin

ooy
9|gelnspul

(figonun pragmpayag v spundwigang)p,))— (s42pua UYL HPUY S]AI0 [0S [))—

(Ug > awi>iom) I Afigpuag figpoua g (3001 >1s09)
G/ = plemay dpavmayy = piomay] 00} = piemay

‘57 SHueuIae A19A9 10§

oa|npayos Bunssy down pyiom = 2w LyLom
a a|npayos MCT.CLN = J500 1S0OMO7

40

4.6. UNSAT CORE

"PEYSIYSTY J0U INq SISIA dJB SJUSWS[S PAIUSP Y}
‘moT[eA ut poyySIYSIY ST UOTJRZI[Bal YY) ‘DI MIS[d PUR SJO] "SUOIRZI[BAI ST JO SUO Y}IM JALD)) B Jo o[durexs uy :9°y oansi,g

ot = Ajeusd Gl = Ajeusd 0t = Aieusd 0z = Ajeusd

Hoy3
Buiyorey
0l = Ajeusd Gz = Ayeusd

Gl = Ajeusd

wooy

swooy

s|ge|leny 9|ge|leny 614
asN s
08 4/ Jeeid G9 = plemay
a|npayos Yl = swiyiom yoy3
Ajrenppoon G = Ajeusd [ewluln
Jepuajen
8y JARS| 9ld Siy — freus wiasAgwoly
G1 = Aieusd 05 = eusd 109]100
o|ge|leny IBPLSIED Ug = swiiom Yl =suwiyiom
wooy|eo0] weysAsesn G| = Ajeuad Gl = Ajjeusad
sjuedioiued
wooy wooy
yoog eS0T puly4
++ +4
Jaj01d
gid
yg = awii] yJom e 300¢ = 1809 308 = 1s00
_ =9oul Yl = swiyiom 0S = Ajeusad =
G = Ajeusd 0g=Ayeuad | = Ajjeusd 0g = Ajjeusd

4+

4 €Y ey

Gl = Ayeusd
Bunesn

ooy
Q|gennspuly

(figgonun pyappayag v spundiomnd 1)) '
(Ug > Buir [spoM) Hd

G/ = piemay

(s4ppuapUOYUBAUOPUY S|AI0 [S [))—

(3001 >1s09)
00} = piemay

a|npayos Bunesy 1S0OMOT
ise4 a|npayos

41

CHAPTER 4. CONSTRAINED GOAL MODELS (CGMS)

G9— SI (piemay — A1jeusd)

Jo anyea oy, ‘(piemay — A1jeusd) JO oN[eA WNWIUTW YIIM UOTJRZI[BAI S} JO dUO0 YIM D) © Jo ojdurexs uy :),'§ aan3ig

G| = Ajeued

of = Ayeusd

uonedioiyed

01 = Ayeusd
wooy
a|qe|leny

02 = Ayeusd

Juepodwisse]

asn
08 = Jeyaud
aInpayos
Ayenppoon
814 Lld
G| = Ajeusd
9|ge|leny
wooy[eoo]
wooy
oog
++ ++
vid
yg = awiyiom Yl = auwiyiom
G = Ajjeusd 0S=Alleuad 1 = Ayeusd

ooy

9|gennspuly

(fyponun prampanyog v spundim g)
(ug > s pom) Hd
G/ = premay

8|Npayosg
1sed

Bunesy

s|npayos

Gz = Ajeusd
swooy
a|qe|leny
s

Gl = Ayeusd

9ld Gy

Ul = auWi oM

02 = Ajeusd

ot = Ajeusd

GO = piemay
voy3
[ewiuiy

G = Ajjeusd
Jepusie)
wiasAgwoly
199]10D

06 = Ajeusd
Jepusje)
waisAgesn
ooy sjuedioiued
[eo0Tpul4
Joyaud
cid
300¢ = 1s00
0 = Ayeusd 308 = 1500
06§ = Ajeusd

Ul = awiiom
Gl = Ayeusd

Uz = swiiom
G| = fyeusd

++

4]

Gl = Ayeusd
Bunssin

Awx@«:@Q:QEEw;tebﬁe‘w\ﬁuwcmmwbvr

(3001 > 1s09)
00} = piemey

42

4.6. UNSAT CORE

S0 = 1500 pUB ‘Yg = dWI | YI0M ‘G9— = (pJemdy — A} eus) [1SOD ‘DI | 340M ‘(pJemay
— Kjeusd)] jo anyea A[[esrydeiS00IX9] POZIWIUIW }M UOIJRZI[BaI S JO 9U0 UM D) € Jo ojdwexe uy :8'§ oan3ig

ot = Ajeusd Gl = Ajeusd 0t = Aieusd 0z = Ajeusd

Hoy3
Buiyorey
0l = Ajeusd Gz = Ayeusd

Gl = Ajeusd

wooy
s|gejleny
s

swooy
s|qelieAy
IS0

6ld

08

G9 = piemay

S|npPayds

Yl =aswiyiom yoy3
Ajrenppoon G = Ajeusd [ewluln
Jepuajen
PARS) 9ld Sy ot wersASwoly
G1 = Ayeuad 05 = Aieued 1091100
9|ge|ien 1EPUSIED = QW YJOM = auwl B>.>.
wooe00 weisigosn oy -Mpued S fumue
H[eoo] swedoneg S| = Meuad §L = Aeusd
wooy wooy
yoog eS0T puly4
+F +4
Jaj01d
€y
yg = awi] YJom i 300¢ - 1890 308 = 1S00
_ =l Yl =suwiiyiom 0S = Ajeusad =
G = Ajeusd 0g=Ajeuad | = Ajjeusd 0g = Ajjeusd

SEY)

4+

d €Y ey

Gl = Ayeusd
Bunesn

wooy
Q|gennspuly

(figgonun pyappayag v spundiomnd 1)) '
(Ug > Buir [spoM) Hd

G/ = piemay

(s4ppuapUOYUBAUOPUY S|AI0 [S [))—

(3001 >1s09)
00} = p/emay

a|npayos Bunesy 1S0OMOT
ise4 a|npayos

43

CHAPTER

ABSTRACT SYNTAX AND SEMANTICS OF CGM

This chapter presents the abstract syntax and semantics of CGMs, defining
formally the building blocks of a CGM and of its realizations, which has

already been introduced informally in the previous chapter.

* % Kk k%

In this chapter we describe formally the abstract syntax and semantics of CGMs.

5.1 Abstract Syntax

We introduce first some general definitions. We call a goal graph 2 a directed acyclic
graph (DAGQG) alternating element nodes and refinement nodes (collapsed into bullets),
s.t.: (a) each element has from zero to many outgoing edges to distinct refinements and
from zero to many incoming edges from distinct refinements; (b) each refinement node
has exactly one outgoing edge to an element (target) and one or more incoming edges
from distinct elements (sources).

We call a root element node any element node that has no outgoing refinement edges,
a leaf element node any (non-root) element node that has no incoming refinement edges,
and an internal element node any other element node. (Hereafter we will usually drop the

word “node", simply saying “refinement” for “refinement node", “element" for “element

node", etc.)

45

CHAPTER 5. ABSTRACT SYNTAX AND SEMANTICS OF CGM

Table 5.1: Summary of Goal Model Structure

Constructor Textual Representation Graphical Representation Propositional Encoding

R

Goal refinement (E1,....E,) —E (N7_ Ej) = R)A
(R—E)
Closed world — Ry R; R E — (VR,cref@)Ri)

<:) T+
Contribution E, 2 E, @ (E1—Ey)
Conflict E,—E>5 i: @ _|(E1 /\Eg)
: : prefer @
Preferences E{>E,5 (E1Vv(nEg))

Notice that, by construction, only elements can be roots and leaves of a goal graph.

The sets of root, leaf and internal elements of a goal graph 2 are denoted as Roots(2),
Leaves(2), Internals(2) respectively. Given a refinement R with outgoing edge to the
element E and incoming edges from the element s E+,...,E,, we call E4,...,E, the
source elements of R and E the target element of R, which are denoted by Sources(R)
and Target(R) respectively. We say that R is a refinement of E and that R refines E
into E4,...,E,,, denoted “(E4,...,E},) B, E”. The set of refinements of an element E are
denoted with Refinements(E).

Elements are goals or domain assumptions, subject to the following rules:
* a domain assumption cannot be a root element;

¢ if the target of a refinement R is a domain assumption, then it sources are only

domain assumptions;
e if the target of a refinement R is a goal, then at least one of its sources is a goal.

We call root goals and leaf goals requirements and tasks respectively.
Notationally, we use the symbols R, R; for labeling refinements, E, E; for generic

elements (without specifying if goals or domain assumptions), G, G; for goals, A, A; for

46

5.1. ABSTRACT SYNTAX

domain assumptions. Graphically (see Figure 4.3) we collapse refinements nodes into
one bullet, so that we see a refinement as an aggregation of edges from a set of other
goals. (See Table 5.1.) Hence, in a goal graph we consider element nodes as the only
nodes, and refinements as (aggregations of) edges from a group of source elements to a

target element.

Definition 1 (Constrained Goal Model). A Constrained Goal Model (CGM) is a tuple

M (B, N D WY, st

° e%déf

d . . .
o :ef{Al, ...,Ap} are respectively sets of goal, refinement and domain-assumption

labels. We denote with & the set of element labels: & d:efég Ust;

GURUA is a set of atomic propositions, where G déf{Gl, ...GN}, R = {R1,...,Rk},

* N is a set of numerical variables in the rationals;

* 9 isa goal graph, s.t. all its goal nodes are univocally labeled by a goal label in 4,
all its refinements are univocally labelled by a refinement label in X, and all its

domain assumption are univocally labeled by a assumption label in <f;
* Visa SMT(X %) formula on 8 and N

A CGM is thus a “backbone” goal graph 2 —i.e., an and-or directed acyclic graph
(DAG) of elements, as nodes, and refinements, as (grouped) edges, which are labeled
by atomic propositions in 98— which is augmented with an SMT(ZX % .«/) formula ¥ on
the element and refinement labels in 28 and on the numerical variables in A4". The
SMT(¥£%</) formula V¥ is a conjunction of smaller formulas encoding relation edges,
global and local Boolean/SMT(Z % .</) constraints, user assertions, and the definition of
numerical objectives, all of which will be described later in this section.

Intuitively, a CGM describes a (possibly complex) combination of alternative ways
of realizing a set of requirements in terms of a set of tasks, under certain domain

assumptions and constraints. A couple of remarks are in order.

Remark 5. The fact that the goal graph 9 is an and-or graph can be deduced from the
propositional encoding of Goal refinement and Closed World in Table 5.1: by combining
the propositional encodings of goal refinement and Closed World in Table 5.1, we can

infer the formulas:

1We recall that in Boolean logic the formula A;(R; — E), which comes from the goal refinement
encoding in Table 5.1, is equivalent to E — (\/; R;). The latter, combined with the encoding of Closed
World E — (V; R;), gives the left formula in (5.1). The right formula in (5.1) is the other part of the goal
refinement encoding in Table 5.1.

47

CHAPTER 5. ABSTRACT SYNTAX AND SEMANTICS OF CGM

And—or decomposition And-or decomposition
with standard goal models with CGMs

2 .
g e P e
g e P @ w

‘ Ry &
G G) G

Figure 5.1: Top: and-decomposition and its translation into CGM for-
mat as a single multi-source refinement. Middle: or-decomposition and
its translation into CGM format as multiple single-source refinements.
Bottom: a simple piece of CGM (right) and its translation into standard and-or goal
model format (left): it is necessary to introduce two auxiliary goals G’ and G” to encode
the refinements R and Rs.

(5.1) E~\/R;, and R- \E;.
i J
Thus, each non-leaf element E is or-decomposed into the set of its incoming refinements

{R;}i, and each refinement R is and-decomposed into the set of its source elements {E ;} ;.

Remark 6. CGMs are more succinct in terms of number of goals than standard and-
or goal models. On the one hand, a standard n-ary and-decomposition of a goal can be
represented straightforwardly in a CGM by one refinement with n sources (Figure 5.1, Top),
and an or-decomposition by n one-source refinements (Figure 5.1, Middle), so that no extra
goals are added. On the other hand, in order to represent a piece of CGM with n non-unary

refinements by standard goal models, we need introducing n new auxiliary intermediate

48

5.1. ABSTRACT SYNTAX

goals to encode refinements, which CGMs encode natively (Figure 5.1, Bottom). We recall
from section 4.1 that refinements do not need to be explicitly labeled unless they need to be

mentioned in other parts of the model.

Stakeholders might not be at ease in defining a possibly-complex global SMT(L % <)
formula V¥ to encode constraints among elements and refinements, plus numerical
variables. To this extent, as mentioned in section 4.2 and section 4.3, apart from the
possibility of defining global formulas, CGMs provide constructs allowing the user to
encode graphically and locally desired constraints of frequent usage: relation edges,
prerequisite formulas {¢f,, ¢} and {¢}, ¢z} and user assertions. Each is automatically

converted into a simple SMT(Z % .«f) formula as follows, and then conjoined to V.

Element-contribution edges, E1 RAR E5, meaning that satisfying E; forces E9 to be
satisfied (but not vice versa). They are encoded into the formula (E{ — E3). (The
edge E; E 9 can be used to denote the merging of the two contribution edges

Eq :Eg and E iEl into one.)

Element-conflict edges, E1 —— E 5, meaning that E1 and E5 cannot be both satisfied.
They are encoded into the formula ~(E1 A E9).

Refinement-binding edges, R1— R9, meaning that, if both the target goals of R
and R (namely E;1 and E respectively) are satisfied, then R, refines E; if and
only if Ro refines E9. They are encoded into the formula (E1 AEg) — (R1 — R9).

User assertions, E; := T and E; := 1, are encoded into the formulas (E;), (7E;)

respectively.

Prerequisite formulas, {¢f,, g} [resp. {¢}, ¢z} are encoded into the formulas
G — (/)5) and (7G — ¢) [resp. (R — ‘/’IJ%) and (7R — ¢p)].

The following are instead encoded into SMT(Z Z.<f) “soft” 2 constraints:

prefer

Preference edges, E1 pife»rEz [resp. R1 — R3], and their equivalent binary pref-
erence relations E1 = E9 [resp. R1 = R2], are implemented into the soft constraint
PErE, = (E1V(~Eg)) [resp. Pr,=r, = (R1V (7R2))]. (See also Remark 4 in sec-
tion 4.5.) Notice that £, and E; [resp. R; and Rs] must be of the same kind,

2In constraint programming and other related disciplines (e.g. MaxSAT, MaxSMT, OMT) constraints
which must be satisfied are called “hard”, whereas constraints which are preferably satisfied but which
can be safely violated, although paying some penalty, are called “soft”.

49

CHAPTER 5. ABSTRACT SYNTAX AND SEMANTICS OF CGM

i.e. they must be both tasks, or both requirements, or both refinements, or both

intermediate goals, or both domain assumptions.

Unlike with other constraints, these soft constraints are not added directly to V.
Rather, the following SMT(Z % .</) constraint, which defines a numeric Pseudo-Boolean
cost function, is added to W:

(5.2) (numUnsatPrefs = Z ite(ngizEj,O, D+ Z ite((pRisz,O, 1)),

(E,E ;e (R;Rj)ez
where &£ is the list of binary preference relations, and “ite(¢.,0,1)" denotes an if-then-
else arithmetical term, which is evaluated to 0 if ¢. is evaluated to true, to 1 otherwise.
Hence, numUnsatPrefs counts the number of unsatisfied preferences, that is, the number
of binary preferences P; = P; s.t. P; is false and P; is true. 3

Notice that, unlike refinements, relation edges and preference edges are allowed to
create loops, possibly involving refinements. In fact, refinements are acyclic because they
represent the and-or decomposition DAG or the CGM requirements. Other arcs (and
formulas) represent relations and constraints among elements, and as such they are free

to form loops, even with refinements.

Finally we provide the user of a list of syntactic-sugaring constructs, which allow for
defining, both globally and locally, the most standard and intuitive constraints among
assumption, goal and refinement labels, with no need of defining the corresponding
complicate or less-intuitive propositional formulas. (In what follows, Pj,...,P, denote

atomic propositions in %8.)

Alt(P1,P2) denotes the fact P; and Py are alternative, e.g., that one and only one
of them is satisfied. This is encoded by the formula (P; — —1Ps).

Causes(P1,P2) denotes the fact that satisfying P causes Py to be satisfied. This is
encoded by the formula (P, — Ps).

Requires(P1,P3) denotes the fact that satisfying P; requires P to be satisfied. This
is encoded by the formula (P; — Py). 4

3In practice, the OMT solver OptiMathSAT [ST15b] provides more efficient ad-hoc encodings for soft
constraints like those in (5.2), which we have exploited in the implementation of CGM-Tool; we refer the
reader to [ST15b] for details.

4 Notice that the relation edge P; =, Py, and the Boolean constraints Causes(P1,P3), Requires(P1,Ps),
and (P; — P3) are equivalent from the perspective of Boolean semantics. Nevertheless, stakeholders may
use them in different contexts: e.g., “Causes(P1,P3)” is used when event P occurs before Py and the former
causes the latter, whereas “Requires(P1,P32)” is used when P; occurs after P2 and the former requires the
latter as a prerequisite.

50

5.2. SEMANTICS

AtMostOneOf ({Pq,...,P,}) denotes the fact that at most one of {Pq,...,P,} must be
satisfied. This is encoded by the formula (A1<;<j<,(7P; vV 7P;)).

AtLeastOneOf ({P1,...,P,}) denotes the fact that at least one of {P1,...,P,} must be
satisfied. This is encoded by the formula (V/1<;<, P;)-

OneOf ({P1,...,P,}) denotes the fact that exactly one of {P1,...,P,} must be satisfied.

This is encoded by the conjunction of the previous two formulas.

5.2 Semantics

The semantics of CGMs is formally defined in terms of the semantics of simple Boolean
expressions, as follows.

Definition 2 (Realization of a CGM). Let .4« =4 (B, N, D,¥) be a CGM. A realization of

M is a LR -interpretation uover BU N such that:

(@ pEWA_{E;) < R)N(R — E) for each refinement (El,...,En) iE’;

(b) uk= (E — (VRieRef(E)Ri)), for each non-leaf element E;
(c) ul="y.

We say that . is realizable if it has at least one realization, unrealizable otherwise.
Alternatively and equivalently, (a) and (b) can be substituted by the conditions:

(@) plE (AL E;) < R) for each refinement (Ey,...,E,) B, E;
(") plE (E < (Vg,eref@m)Ri)), for each non-leaf element E,

which reveal the and-or structure of 2. (Recall Remark 5 and Footnote 1.)

In a realization y for a CGM .4 o (B, N, D,V), each element E or refinement R can

be either satisfied or denied (i.e., their label can be assigned true or false respectively by
1), and each numerical value is assigned a rational value. u is represented graphically as
the sub-graph of 2 which includes all the satisfied elements and refinements and does
not include the denied elements and refinements. As an example, consider the realization
highlighted in yellow in Figure 4.8, where cost = 0 and costg = 0 for every element E.
From Definition 2, a realization u represents a sub-graph of the CGM, such that:

(a) A refinement R is part of u if and only if all its source elements E; are also included.
Moreover, if R is part of u, then also its target element E is part of it. (See, e.g.,

refinement R for ScheduleMeeting, with all its source goals.)

51

CHAPTER 5. ABSTRACT SYNTAX AND SEMANTICS OF CGM

(b) If a non-leaf goal is in a realization sub-graph, then at least one of its refinements is
included in the realization. (See, e.g., refinement R5 for FindASuitableRoom.)

(¢) A realization complies with all Boolean and SMT(X % <f) constraints of the CGM, in-
cluding relational edges, global and local formulas, user assertions, and the definitions

of the numerical attributes and objectives. In particular:

E, SR Ey: If Eq is in u, then E3 is in u. (See, e.g., the contribution edge
BySystem % CollectionEffort.)

E{ — Ey: E1 and E; cannot be both part of u. (See, e.g., the conflict edge
Byperson «— CollectionEffort.)

Ri—Rg: if both the target goals of Ry and Ry are part of the realization p,
then R; is in u if and only if R is there. (See, e.g., the binding R1g—R17.)

User assertions: If E; is marked satisfied [resp. denied], then E; is [resp. is not]
part of a realization p. (See, e.g., the requirement ScheduleMeeting, which is

mandatory, i.e., it is marked satisfied.)

¢g: if G is part of a realization y, then ¢/, must be satisfied in y. (E.g., LowCost
is part of u, so that cpg LA (cost < 100) is satisfied, in compliance with the

fact that u sets cost =0.)

¢q: if G is not part of a realization y, then ¢, must be satisfied in u. (E.g.,

so that (PUsePartnerInstitutions —which

includes (costysepartnerInstitutions = 0) by (4.6)— is satisfied, in compliance with

UsePartnerInstitutions is not part of p,

the fact that u sets costg =0 for every E.)

Global formulas and attribute definitions: The realization complies with all
global formulas and attribute definitions. (E.g., the global formula (cost =
Y g costg), which defines the attribute cost, is satisfied by u because cost =0

and costg =0 for every element E.)

In a realization, each element E or refinement R can be either satisfied or denied
(i.e., their label can be assigned to T or L respectively by u). If an element E is not a leaf]
then it can be satisfied only by satisfying the set of source elements E1,...,E, of one of
its refinements (E' 1,...,E n) B, E. If y satisfies a refinement R of an element E, i.e., it
satisfies all the source elements E1,...,E,, then it satisfies the element E, but not vice
versa (condition (a)). For a non-leaf element to be satisfied, at least one of its refinements
must be satisfied (condition (b)). We call this fact Closed World Assumption (CWA). The

satisfiability or deniability of each element or refinement can be further constrained

52

5.2. SEMANTICS

by all the constraints defined inside the formula ¥: every realization p must satisfy
such constraints (condition (c)). Notice that, by fulfilling condition (¢), a realization must
implicitly comply also with all the relation edges, with the user assertions and with
the local pre-requisite constraints {¢7,,¢5} and {¢},¢5}, because the corresponding
formulas are conjuncts of W. Thus ¥ contains also the global and local SMT(Z % .<f)
constraints over global and local numerical attributes (e.g. LowCost — (cost < 100),
UsePartnerInstitutions — (coStysepartnerinstitutions = 30), and the definitions of ob-

jectives (e.g., (cost =) geg COStE).

Remark 7. Importantly, in the definition of objectives only non-zero terms of the sums
need to be considered. (E.g., the sum in (cost =) gece costg) can be safely restricted to
the elements UsePartnerInstitutions and UseHotelsAndConventionCenters.) This
allows for reducing drastically the number of rational variables involved in the encoding.

In the implementation of CGM-Tool we have exploited this fact.

53

CHAPTER

AUTOMATED REASONING WITH CONSTRAINED GOAL

MODELS

This chapter describes the automated reasoning functionalities on CGMs,
which we support by encoding them into SMT and OMT. We first show how
to encode a CGM M into a SMT(LRA) formula Y 4, so that the search
for an optimum realization of 4 reduces to an OMT(L R<{) problem over
the formula Y 4, which is then fed to an OMT solver. Then we present the
reasoning functionalities over CGMs we have implemented on top of our OMT

solver.

* %k %k ok ok

This chapter presents the encoding of CGMs and automated reasoning functionalities on
CGM.

55

CHAPTER 6. AUTOMATED REASONING WITH CONSTRAINED GOAL MODELS

6.1 Encoding of CGMs

Definition 3 (SMT(£ %) Encoding of a CGM). Let .4 < (B, N, 9, ¥) be a CGM. The

SMT(ZL %) encoding of A is the formula ¥ _y4 =A\T)N W ANV, where:

n
(6.1) v ¥ A (AE;i=R)AR —E)),
(Er,Bn) BB, Rer !
(6.2) v, ¥ A E-C \/ Ry
EcRoots(D)ulnternals(D) R;eRefinements(E)

Roots(2) and Internals(2) being the root and internal elements of 9 respectively. We call
VY 4 the SMT(ZL Z</) Encoding of the CGM .

Notice that the formulas ¥4 and W¢ in (6.1) and (6.2) encode directly points (a) and
(b) in Definition 2, for every element and refinement in the CGM. In short, the W5 A W
component of ¥_, encodes the relation induced by the and-or goal graph 2 in .4 . The
component V¥ is the formula described in point (¢) in Definition 2, which encodes all
Boolean and SMT(ZX % <f) constraints of the CGM, including relational edges, global
and local formulas, user assertions, and the definitions of the numerical attributes and
objectives.

Therefore, the following facts are straightforward consequences of Definitions 2 and
3 and of the definition and OMT(ZX Z.«).

Proposition 1. Let 4 (B, N ,2,¥) be a CGM; let ¥y, its SMT(L %) encoding as

in Definition 3; let u a LR -interpretation over BU N . Then p is a realization of M if
andonly if u=V¥ 4.

In short, Proposition 1 says that u is a realization for the CGM ./ if and only if u
is a model in SMT(ZX Z«/) for the formula ¥_;. Therefore, a realization u for .4 can be
found by invoking a SMT(Z %.</) solver on the CGM encoding ¥ .

Proposition 2. Let .4 and ¥V 4 be as in Proposition 1, and let u be a realization of M.

Let {0obj1,...,0bj1} be numerical objectives occurring in ¥V 4. Then we have that:

(i) foreveryiin1,...,k, u minimizes [resp. maximizes] obj; if and only if 1 is a solution

of the OMT(¥£ %) minimization [resp. maximization] problem (¥ _s,{0bji));

(ii) p lexicographically minimizes [resp. maximizes] (0bj1,...,0bj) if and only if pis
a solution of the OMT(£L R<f) lexicographic minimization [resp. maximization]

problem (¥ _y,{0bj1,...,0b]1)).

56

6.2. AUTOMATED REASONING ON CGMS

In short, Proposition 2 says that u is a realization for the CGM .# which optimizes
lexicographically (0bj1,...,0bj;) if and only if u is a model in SMT(ZL Z </) for the formula
VY , which optimizes lexicographically (0bj1,...,0bj%). Therefore, one such realization
can be found by invoking a OMT(ZL Z.<f) solver on ¥ _4 and (0bj1,...,0bj;). Notice that
we are always looking for one realization at a time. Multiple realizations require multiple
calls to the OMT solver.

6.2 Automated Reasoning on CGMs

Propositions 1 and 2 suggest that realizations of a CGM .4 can be produced by ap-
plying SMT(ZL % <) solving to the encoding ¥ 4, and that optimal realizations can be
produced by applying OMT(XZ</) to ¥_4, and a list of defined objectives 0bj1,...,0bj.
(Notice that such list may include also the pre-defined objectives numUnsatRequirements,
numSatTasks and numUnsatPrefs of chapter 4 and (5.2) to be minimized.) This allowed
us to implement straightforwardly the following reasoning functionalities on CGMs by
interfacing with a SMT/OMT tool.

Search/enumerate realizations. Stakeholders can automatically check the realizabil-
ity of a CGM .4 —or to enumerate one or more of its possible realizations— under a
group of user assertions and of user-defined Boolean and SMT(Z % .</) constraints;
the tool performs this task by invoking the SMT solver on the formula ¥ _, of
Definition 3. The realization of the goal model presented in Figure 4.6 is found

using this functionality of the tool.

Search/enumerate minimum-penalty/maximum reward realizations. Stakeholders
can assert the desired requirements and set penalties of tasks; then the tool finds
automatically realizations achieving the former while minimizing the latter, by in-
voking the OMT solver on ¥, with the pre-defined Weight objective. The vice versa
is obtained by negating undesired tasks and setting the rewards of nice-to-have re-
quirements. Every intermediate situations can be also be obtained. The realization
of the goal model presented in Figure 4.7 is found using this functionality of the

tool.

Search/enumerate optimal realizations wrt. pre-defined/user-defined objectives.
Stakeholders can define their own objective functions 0bj1,...,0bj; over goals, re-
finements and their numerical attributes; then the tool finds automatically realiza-

tions optimizing them, either independently or lexicographically, by invoking the

57

CHAPTER 6. AUTOMATED REASONING WITH CONSTRAINED GOAL MODELS

OMT solver on ¥ _, and 0bj1,...,0b . User-defined objectives can also be combined
with the pre-defined ones, like Weight, numUnsatRequirements, numSatTasks and
numUnsatPrefs. The realization of the goal model presented in Figure 4.8 is found

using this functionality of the tool.

In particular, notice that numUnsatPrefsallows for addressing the fulfillment of the

maximum number of binary preferences as the optimization of a pre-defined objective.

Example 1. As a potentially frequent scenario, stakeholders may want to find a realiza-
tion which minimizes, in order of preference, the number of unsatisfied non-mandatory
requirements, the number of unsatisfied binary preferences, and the number of satisfied
tasks. This can be achieved by setting the following ordered list of pre-defined objectives to

minimize lexicographically:
(numUnsatRequirements,numUnsatPrefs,numSatTasks).

Notice that all the above actions can be performed interactively by marking an un-
marking (nice-to-have) requirements, tasks and domain assumptions, each time search-
ing for a suitable or optimal realization.

Importantly, when a CGM is found un-realizable under a group of user assertions and
of user-defined Boolean and SMT(Z Z.</) constraints, it highlights the subparts of the
CGM and the subset of assertions causing the problem. This is implemented by asking
the SMT/OMT solver to identify the unsatisfiable core of the input formula —i.e. the
subset of sub-formulas which caused the inconsistency, see e.g. [CGS11]— and mapping

them back into the corresponding information.

58

CHAPTER

REQUIREMENTS EVOLUTION AND EVOLUTION
REQUIREMENTS WITH CONSTRAINED GOAL MODELS

We are living in an ever-changing world. Changes need to be accommodated
by any system that lives and operates in the world. In this chapter, we propose
to study how to model and reason with requirements evolution as well as

model and reason with evolution requirements.

% %k %k ok ok

This chapter includes a proposal for modelling changing requirements in terms of changes
to a CGM model, the identification of a new class of evolution requirements, expressed as
optimization goals in CGM. In addition, we show how to support reasoning with changed

goal models and evolution requirements in order to derive optimal solutions.

7.1 Motivation

We have come to live in a world where the only constant is change. Changes need to be
accommodated by any system that lives and operates in that world, biological and/or
engineered. For software systems, this is a well-known problem referred to as software
evolution. There has been much work and interest on this problem since Lehman’s semi-
nal proposal for laws of software evolution [Leh80]. However, the problem of effectively

supporting software evolution through suitable concepts, tools and techniques is still

59

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS
WITH CONSTRAINED GOAL MODELS

largely open. And software evolution still accounts for more than 50% of total costs in a
software system’s lifecycle.

We are interested in supporting software evolution caused by changing requirements
and/or environmental conditions. Specifically, we are interested in models that capture
such changes, also in reasoning techniques that derive optimal new specifications for a
system whose requirements and/or environment have changed. Moreover, we are inter-
ested in discovering new classes of evolution requirements, in the spirit of [Soul2] who
proposed such a class for adaptive software systems. We propose to model requirements
changes through changes to a goal model, and evolution requirements as optimization

goals, such as "Minimize costs while implementing new functionality”.

7.2 Requirements Evolution

Constrained goal models may evolve in time: goals, requirements and assumptions can
be added, removed, or simply modified; Boolean and SMT constraints may be added,
removed, or modified as well; assumptions which were assumed true can be assumed
false, or vice versa.

Some modifications strengthen the CGMs, in the sense that they reduce the set of
candidate realizations. For instance, dropping one of the refinements of an element (if
at least one is left) reduces the alternatives in realizations; adding source elements
to a refinement makes it harder to satisfy; adding Boolean or SMT constraints, or
making some such constraint strictly stronger, restricts the set of candidate solutions;
changing the value of an assumption from true to false may drop some alternative
solutions. Vice versa, some modifications weaken the CGMs, augmenting the set of
candidate realizations: for instance, adding one of refinement to an element, dropping
source elements to a refinement, dropping Boolean or SMT constraints, or making some
such constraint strictly weaker, changing the value of an assumption from false to
true. In general, however, since in a CGM the goal and/or decomposition graph is a
DAG and not a tree, and the and/or decomposition is augmented with relational edges
and constraints, modifications may produce combinations of the above effects, possibly
propagating unexpected side effects which are sometimes hard to predict.

We consider the CGM of a Schedule Meeting described in Figure 7.1 (namely, .#1) as
our starting model, and we assume that for some reasons it has been modified into the
CGM .45 in Figure 7.2. 45 differs from .4 for the following modifications:

60

7.3. EVOLUTION REQUIREMENTS

(@) two new tasks, SetSystemCalendar and ParticipantsFillSystemCalendar, are

added to the sub-goal sources of the refinement R13;

(b) a new source task RegisterMeeting is added to R17, and the binding between R ¢
and R17 is removed; the refinement R1g of the goal BookRoom and its source task

CancelLessImportantMeeting are removed,;

(c) the alternative refinements R9 and R10 of ManageMeeting are also modified: two new
internal goals ByUser and ByAgent are added and become the single source of the
two refinements Rg and R0 respectively, and the two tasks ConfirmOccurrence and
CancelMeeting become respectively the sources of two new refinements Ro; and Rag,
which are the alternative refinements of the goal ByUser; the new goal ByAgent is

refined by the new refinement Ro3 with source task SendDecision.

7.3 Evolution Requirements

We consider the generic scenario in which a previous version of a CGM .47 with an
available realization y; is modified into a new CGM .#5. We call the restriction of uy to
M5, denoted with 1, the restriction of y; to the atomic propositions and rational values
which are common to .41 and .#5. (That is, u; is the part of u; which is still of interest
for 4;.) In Figure 7.2, we highlight the restriction y; of y; to the novel CGM 5.

As a consequence of modifying a CGM .4 into a new version .#», 1 typically is no
more a valid realization of .#.! E.g., we notice that y in Figure 7.2 does not represent
a valid realization of .#5: not all source tasks of Ri3 are satisfied, BookRoom has no
satisfied refinement, and the new goal ByUser and refinement R9; are not satisfied. It is
thus necessary to produce a new realization g for .#s.

In general, when one has a sequence /1, 45, ..., /;,... of CGMs and must produce
a corresponding sequence U1, l2, ..., 4;,... of realizations, it is necessary to decide some
criteria by which the realizations y; evolve in terms of the evolution of the CGMs .#;.

We call these criteria, evolution requirements. We describe some possible criteria.

7.3.1 Recomputing realizations

One possible evolution requirement is that of always having the “best” realization y; for

each ./, according to some objective (or lexicographic combination of objectives). Let ./,

I More precisely, rather than “u;”, here we should say “the restriction of u; to the elements and
variables which are still in .#5.” We will keep this distinction implicit in the rest of the paper.

61

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS
WITH CONSTRAINED GOAL MODELS

M3, and uy be as above. One possible choice for the user is to compute a new optimal
realization pg from scratch, using the same criteria used in computing p; from 4. In
general, however, it may be the case that the new realization ug is very different from
11, which may displease the stakeholders.

We consider now the realization u; of the CGM .41 highlighted in Figure 7.1 and
the modified model .#5 of Figure 7.2. If we run CGM-Tool over .#> with the same
optimization criteria as for u; —i.e., minimize lexicographically, in order, the difference
Penalty-Reward, workTime, and cost— we obtain a novel realization ,ulzex depicted in
Figure 7.3. The new realization ,ul;x satisfies all the requirements (both "nice to have" and
mandatory). It includes the following tasks: CharateriseMeeting, EmailParticipants,
GetRoomSuggestions, UseAvailableRoom, RegisterMeetingRoom, ScheduleManually,
ConfirmQOccurrence, GoodParticipation, and MinimalConflicts, and it requires one
domain assumption: LocalRoomAvailable. This realization was found automatically by
our CGM-Tool in 0.059 seconds on an Apple MacBook Air laptop.

Unfortunately, ,uéex turns out to be extremely different from ;. This is due to the fact
that the novel tasks SetSystemCalendar and ParticipantsFillSystemCalendar raise
significantly the penalty for R13 and thus for R2; hence, in terms of the Penalty-Reward
objective, it is now better to choose R1p and Rg instead of Ro and R7, even though this
forces ByPerson to be satisfied, which is incompatible with CollectionEffort, so that
MinimalEffort is no more achieved. Overall, for us we have Penalty —Reward = —65,
workTime = 4h and cost = Oe.

In many contexts, in particular if y; is well-established or is already implemented,
one may want to find a realization ug of the modified CGM .#5 which is as similar as
possible to the previous realization .#/1. The suitable notion of "similarity”, however, may
depend on stakeholder’s needs. In what follows, we discuss two notions of "similarity”
from [EBMdJ12], familiarity and change effort, adapting and extending them to CGMs.

7.3.2 Maximizing familiarity

In our approach, in its simplest form, the familiarity of ug wrt. p; is given by the number
of elements of interest which are common to .47 and .#5 and which either are in both
1 and ug or are out of both of them; this can be augmented also by the number of new
elements in .45 of interest (e.g., tasks) which are denied. In a more sophisticate form,
the contribution of each element of interest can be weighted by some numerical value
(e.g., Penalty, cost, WorkTime,...). This is formalized in section 7.4, and a functionality

for maximizing familiarity is implemented in CGM-Tool.

62

7.3. EVOLUTION REQUIREMENTS

For example, if we ask CGM-Tool to find a realization which maximizes our notion of
familiarity (see section 7.4), we obtain the novel realization ,u’;am depicted in Figure 7.4.
,ugam satisfies all the requirements (both "nice to have" and mandatory ones), and
includes the following tasks:

CharacteriseMeeitng,

SetSystemCalendar,

ParticipantsFillSystemCalendar,

CollectFromSystemCalendar,

GetRoomSuggestions,

UseAvailableRoom,

RegisterMeetingRoom,

ScheduleAutomatically,

ConfirmOccurrence,

GoodParticipation,

MinimalConflicts,

CollectionEffort, and

MatchingEffort;

,u';am also requires two domain assumptions:

ParticipantsUseSystemCalendar and

LocalRoomAvailable.

Notice that all the tasks which are satisfied in u; are satisfied also in ,u';am, and only
the intermediate goal ByUser, the refinement Ro; and the four tasks:

SetSystemCalendar,

ParticipantsFillSystemCalendar,

UseAvailableRoom, and

RegisterMeetingRoom are added to ,u';am, three of which are newly-added tasks.
Thus, on common elements, ,u’;am and pu; differ only on the task UseAvailableRoom,
which must be mandatorily be satisfied to complete the realization. Overall, wrt. ,ul;x, we
pay familiarity with some loss in the “quality” of the realization, since for ,u2am we have
Penalty — Reward = —50, workTime = 3.5k and cost = Oe. This realization was found

automatically by our CGM-Tool in 0.067 seconds on an Apple MacBook Air laptop.

7.3.3 Minimizing change effort

In our approach, in its simplest form, the change effort of us wrt. pu; is given by the

number of newly-satisfied tasks, i.e., the amount of the new tasks which are satisfied

63

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS
WITH CONSTRAINED GOAL MODELS

in pg plus that of common tasks which were not satisfied in u; but are satisfied in po.
In a more sophisticate form, the contribution of each task of interest can be weighted
by some numerical value (e.g., Penalty, cost, WorkTime,...). Intuitively, since satisfying
a task requires effort, this value considers the extra effort required to implement us.
(Notice that tasks which pass from satisfied to denied do not reduce the effort, because
we assume they have been implemented anyway.) This is formalized in section 7.4, and a
functionality for minimizing change effort is implemented in CGM-Tool.

For example, if we ask CGM-Tool to find a realization which minimizes the number
of newly-satisfied tasks, we obtain the realization ugf f depicted in Figure 7.5. The
realization satisfies all the requirements (both "nice to have" and mandatory), and
includes the following tasks:

CharacteriseMeeitng,

SetSystemCalendar,

ParticipantsFillSystemCalendar,

CollectFromSystemCalendar,

UsePartnerInstitutions,

ScheduleAutomatically,

ConfirmOccurrence,

GoodParticipation,

MinimalConflicts,

CollectionEffort, and

MatchingEffort;

,ugf ! also requires one domain assumption

ParticipantsUseSystemCalendar.

Notice that, in order to minimize the number of new tasks needed to be achieved,
in ,ugf f , FindASuitableRoomis refined by R3 instead of R5. In fact, in order to achieve R,

we would need to satisfy two extra tasks (UseAvailableRoom and RegisterMeetingRoom)

wrt. 11, whilst for satisfying R3 we only need to satisfy one task (UsePartnerInstitutions).

Besides, two newly added tasks SetSystemCalendar and ParticipantsFillSystemCalendar

T is to implement

are also included in ,ugf ! Thus the total effort of evolving from pu; to M;
three new tasks. Overall, for ,ugf ! we have Penalty—Reward = —50, workTime = 3.5k and
cost = 80e. This realization was found automatically by our CGM-Tool in 0.085 seconds

on an Apple MacBook Air laptop.

64

7.4. AUTOMATED REASONING WITH EVOLUTION REQUIREMENTS

7.3.4 Combining familiarity or change effort with other

objectives

In our approach, familiarity and change effort are numerical objectives like others, and as
such they can be combined lexicographically with other objectives, so that stakeholders

can decide which objectives to prioritize.

7.4 Automated Reasoning with Evolution

Requirements

7.4.1 Evolution Requirements

Here we formalize the notions described in section 7.3. Let .41 o (%P1, MN,91,¥1) be the

original model, u; be some realization of .4 and .4 def (By, N, Do, Vo) be a new version
of /1. We look for a novel realization ug for /5.

We assume that the system of the original model .#; is already built based on
the realization u;. Over the time, the model .#; evolves and becomes a new model
Mo def (Ba, No,D2,¥2). In the evolution requirement engineering problem, we want to
find a realization ug for .45 such that we can make the most use out of y;. The definition
for "most use" can be varied, it can be the familiarity between the two realization p; and
ue, or the effort needed to implement the system from pg provided that we already have
(1 implemented.

Stakeholders can select a subset of the elements, called elements of interest, on which
to focus, which can be requirements, tasks, domain assumptions, and intermediate goals.
(When not specified otherwise, we will assume by default that all elements are of interest.)
Let &* < &1 U &> be the subset of the elements of interest, and let & &f o Nn&1 and
&y L' £* & be the respective subsets of ./ and /5. We define & ommon LNE,; e Ey NES}
as the set of elements of interest occurring in both .4, and .45, and &,,,, def {E;e&5\&]}

as the set of new elements of interest in .4s.

Familiarity. In its simplest form, the cost of familiarity can be defined as follows:

€

(7.1) FamiliarityCost(ualu1) < {Ei€& imon | H2(E;) # u1(E)} |
(7.2) + | {E; €&, | po(E)=T} |,

where | S | denotes the number of elements of a set S. FamiliarityCost(ualu1) is the

sum of two components:

65

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS
WITH CONSTRAINED GOAL MODELS

(7.1) the number of common elements of interest (e.g., tasks) which were in y; and are

no more in g, plus the number of these which were not in y; and now are in ug,
(7.2) the number of new elements of interest which are in us.

In a more sophisticate form, each element of interest E; can be given some rational

weight value w; 2, so that the cost of familiarity can be defined as follows:

(7.3) WeightFamiliarityCost(uzalu) = Y w;-Int(ua(E;) # ui(E;)

E €& ommon

(7.4) + Z wi-Int(ue(E;)=T),
Ei€épew

where Int() converts true and false into the values 1 and 0 respectively.

Both forms are implemented in CGM-Tool. (Notice that (7.1) and (7.2), or even (7.3)
and (7.4), can also be set as distinct objectives in CGM-Tool.) Consequently, a realization
te maximizing familiarity is produced by invoking the OMT solver on the formula
YV 4, and the objective FamiliarityCost(ug|u1) or WeightFamiliarityCost(ug|u1) to

minimize.
Change effort. We restrict the elements of interest to tasks only. In its simplest form,

the change effort can be defined as follows:

def

(7.5) ChangeEffort(ualur) = | {Ti €8 mmon | H2(Ti)=T, and p1(T;)= 1} |
(7.6) + [{Ti€&hpy | p2(T)=T} .

ChangeEf fort(uz|uy) is the sum of two components:
(7.5) is the number of common tasks which were not in u; and which are now in ug,
(7.6) is the number of new tasks which are in uo.

As above, in a more sophisticate form, each task of interest T'; can be given some

rational weight value w;, so that the change effort can be defined as follows:

WeightChangeEffort(uglu)) = Y wi-Int(ug(T;) = T)-Int(ui(Ti) = 1)

¥
Ti E(g)common

+) wi-lnt(ua(T) =T).
Tiegr?ew

2Like Penalty, Cost and WorkTime in Figure 7.3.

66

7.4. AUTOMATED REASONING WITH EVOLUTION REQUIREMENTS

Both forms are implemented in CGM-Tool. Consequently, a novel realization 2 minimiz-
ing change effort is produced by invoking the OMT solver on the formula ¥ 4, and the
objective ChangeE f fort(uz|uy) or WeightChangeE f fort(us|u).

Notice an important difference between (7.1) and (7.5), even if the former is restricted
to tasks only: a task which is satisfied in y; and is no more in pg worsens the familiarity
of pug wrt. py (7.1), but it does not affect its change effort (7.5), because it does not require

implementing one more task.

7.4.2 Comparison wrt. previous approaches

Importantly, Ernst et al. [EBMJ12] proposed two similar notion of familiarity and change

effort for (un-)constrained goal graphs:
familiarity: maximize (the cardinality of) the set of tasks used in the previous solution;

change effort: (i) minimize (the cardinality of) the set of new tasks in the novel realization

—or, alternatively, (ii) minimize also the number of tasks.

We notice remarkable differences of our approach wrt. the one in [EBMdJ12].

First, our notion of familiarity presents the following novelties:

(i) it uses all kinds of elements, on stakeholders’ demand, rather than only tasks;
(ii) it is (optionally) enriched also with (7.2);

(iii) (7.1) is sensitive also to tasks which were in the previous realization and which are

not in the novel one, since we believe that also these elements affect familiarity.

Also, in our approach both familiarity and change effort allow for adding weights to
tasks/elements, and to combine familiarity and change-effort objectives lexicographically
with other user-defined objectives.

Second, unlike with [EBMdJ12], in which the optimization procedure is hardwired,
we rely on logical encodings of novel objectives into OMT(Z Z.<f) objectives, using OPTI-
MATHSAT as workhorse reasoning engine. Therefore, new objectives require implement-
ing no new reasoning procedure, only new OMT(Z Z2.<) encodings. For instance, we could
easily implement also the notion of familiarity of [EBMJ12] by asking OPTIMATHSAT
to minimize the objective: [{T; € &, mon | 12(Ti) =1, and p(T;) =T} |.

Third, our approach deals with CGMs, which are very expressive formalisms, are
enriched by Boolean and numerical constraints, and are supported by a tool (CGM-

Tool) with efficient search functionalities for optimum realizations. These functionalities,

67

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS
WITH CONSTRAINED GOAL MODELS

which are enabled by state-of-the-art SMT and OMT technologies [ST15a, ST15b], scale
very well, up to thousands of elements, as shown in the empirical evaluation of chapter 9

Fourth, unlike with [EBMJ12], where realizations are intrinsically supposed to be
minimal, in our approach minimality is an objective stakeholders can set and obtain as
a byproduct of minimum solutions, but it is not mandatory. This fact is relevant when
dealing with familiarity evolution requirements, because objective (7.1) can conflict with
minimality, because it may force the presence of tasks from the previous solution which
have become redundant in the new model. Thus, sometimes CGM-tool may return a

non-minimal model if the stakeholder prioritizes familiarity above all other objectives.

68

7.4. AUTOMATED REASONING WITH EVOLUTION REQUIREMENTS

"PRAYSIYSTY J0U INq SQISIA dJB SJUSW[D
patuep a3 ‘ony ur paySIYSIY ST UoIjeZI[eal 9], "UoIjRZI[Ral pajuswe(dwl Apeal[e s3I pue NN [eULSLIo 9y, ;1" 9In31]

0t = Ajeusd

Gl = Ajeusd 0f = Aeuad

Hoy3
Buiyorein

0z = Aeuad

01 = Ajeusd Gz = Ajeusd
wooy swooy
a|qe|eAy a|qe|eAY
asn 1]

Gl = Ajeusd

ocd"

08 = piemay
a|npayos
Ajrenppoon

Jeje.d ¥ GO = plemay
Yl = swiiom poy3

G = Ayjeusd [EWIUIA
Jepus|e)
wiasAswoly

G| = Ayeusd 06 = Ayeued 1081100
a|ge|leAy 1BpUdIE Yg = swiIom Y} = swiixiom
WooK[e00] weisAsasn G| = Aijeuad g1 = Aieusd
sjuedioiped

Jaja.d

300¢ = 1500

yg = swijyiom 0S = Aeusd

308 = 1800
§ = Aeusd 0g=Aieuad

05 = Ayeusd

e

G| = Ajeusd

Bunasy
9zlIe1oeIRY

ooy
8|gennspul
(fiponun pragmpayag v spundiigan gy, —

(UG > swi | iom) Hd (3001 > 1509)
G/ = psemay 00} = piemay

1se4 s|npayos

(8.499u2 YUOLUAANUO)PUTS IO S]) —

69

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS

WITH CONSTRAINED GOAL MODELS

‘(poppe A[mau a0 payipour) sadueyd ayj) smoys 1red anjq JySI[8Yj o[Iym ‘(uornos pajusuwedwr Apeaife ‘9°1) UoI)eZI[BaI
[eutstio si1 yo yaed a3 st NHD oY) Jo 1red pojyIIysIy oy, ‘JAD) B Ul UOI)N[0Ad sjuswasinbaa Jo sjdurexe uy g/, oangry

/ ot = Ayeued 02 = Ayeued
Hol3
Buiyorey

oY = Ajeusd Ayeusd

Gl =

0} = Ayeued 0l = Ajjeued Gz = Ajjeued
wooy swiooy
o|qe|ieAy |qe|IeAY

asn s

Gl = Ayeued

Bunesy

Ocd Joysibey

08 = Em\som,_‘
8|npsyos
Anenppoon

/GO = piemay
UL = awi|diom voy3

0L = Ayeuad [ewuIn
Jepusie)
waysAg]i4

/Yl = ewiIom
G = Ajeusd

Gl = Ayeuad sjuedioned
a|qe|leny £ Yg = swi3iom Yl = swiom
G = Ajeusd WwooY[eoo] 05 = Aieusd G| = Ajeusd Gl = Ajjeusad
wooy Jepusied sjuedioned sjuedioiued
00g welshgesn %) Irews
sjuedoiped
UG'0 = awWiLsiom

G = Ayeued
pLgY

wooy
[eooesn

94

3002 =100
0g = Ayeued wowM 1500
P 05 = Ayeued

WIIUOD ~ e = owipiom
G = Ayeusd 0g=Ayjeusd

g€cd
old

Bunssy
abeue

Yl = awiLiom

Gl = Ajeued

ooy > : . Bunesn
9|qeuNgpul4 ezueoeiey

(figonun prampaog v spundionn g) / sﬁk\iﬂ“\.\\\\\ﬁ\i\ (s10puaHUOIULAUO YUY $ 1210 95 []))—
(yg > swi]xi0m) k| (3001 > 1509)
G/ = plemay 00} = piemay

8|Npayos Bunes|\ 1S0OMOT
1se4 3|nNpayos

70

7.4. AUTOMATED REASONING WITH EVOLUTION REQUIREMENTS

JopJo dTyder3001Xa] UT [150D ‘Dl | YoM ‘(piemay — A}eusd)]

S9A1309[q0 9943 oY) sazrw1}do Yorym UOIJeZI[eal B ST SIYJ, "UOTJBZI[BAI MAU SII pUB AT) PAA[0Ad Jo o[durexs uy :g'), oIndi

ot = fyeusd G| = Ajeusd 0z = fyjeusd

/ ov = Ajjeusd
Hojg
Buiyorey

6ld”

0l = Ajeued 01 = Ayeusd Ge = Ajeusd
wooy swooy
a|ge|leAY a|qe|leAY
esn 1]

Gl = Ajeusd

Bunesn
Joisibey

08 = plemayr
a|npayos
Ayrenppoon

\/GQ = plemay
UL = SWI[3i0oM voy3
01 = Ayeuad fewiuiy
Jepusien

Ul = awipom
G = Ayeusd

waysAgl|i4
Gl = Ayeued
S|qejieAy 05 = Aieuaq Yg = swiiom Yl =swiiiom
G = Ajjeusd) wooy|eso)

wooy wooy Jepuse)
soog [eoopul4 weisAgesn

sjuedioiped

Ug'o = swixiom

.4/ G = Ajjeuad

90UBLIND00
wJyuo)

Joy0ud

G = Ajeusd

[44.]

3002 = 1500
0g = Ayeued 308 = 1500
0S = Ajeusd

yg = switIom
05=Ajeusd

okd p. G| = Ajeusd
Bunesiy Bunesy
abeue 9lgennspuly
(g prappayag v spundionan g) — (s1apuaUOKUANO)PUY S IO [S [])—
(g > owi HIom) Hd (300} > 1500)
G/ = piemay 00} = piemay

a|npayos Bunesy 1S0OMOT
ised a|Npayos

71

CHAPTER 7. REQUIREMENTS EVOLUTION AND EVOLUTION REQUIREMENTS

WITH CONSTRAINED GOAL MODELS

"INDD TeurL3LIo 9y} Jo UoIjeZI[eal pajuswo[dwil o[} pue UOT}RZI[BSI MU 9} Usam)aq
KJLIer[iure] oy} SOZIWIXBW [DIYM UOIJBZI[BAI B SI SIYJ, "'UOIJBZI[BAI MAU S}I PUB JAI))) POA[0Ad Jo o[dwrexs uy :§°), oIndig

ot = Ajeusd

g

G| = Ajeusd

0z = Aieusd

/ ot = Ajeusd
Hoy3
Buiyorey

6Ly”

Ayeusd 0l = Ayeusd Gz = Ajeusd
wooy
o|qe|eny
asn

Gl = Ajeusd

swooy
S|qe|ieny
1S

Bunesiy
J9is1b6ay

08 = pJemay/
s|npayos
Aenopoon

\1GQ = pJemay
Yl = suiiom Hoy3

01 = Ajeusd [ewlulN
Tepusen)
weysAgl|4
sjuedioiued

Ul = awiiom
G = Ajeusd

Lidw

G| = Ajeusd

Slge|leny _ Yc = suliiiom Yl = swiixiom
G = Ajeusd b wooy|eoo] ' 0g = Ayeued G| = Ajeusd G| = Ajjeusd
wooy wooy Jepusjen
@ g woalsAgesn
Jojoud syuedioiued
yg'o = swiyiom

Jajaud
G = Ajeusd

90UB1IN00Q0
wJuoD

¢ed

3002 = 1800
05 = feued 508 =109
0g = Ayeuad

ug = awiiom
0G=Ajeusd

oKy G1 = Ayeued
Bunssy Bunssiy
obeuepy 8|geHnspul

(fiponun prampayog v spundionan g n;))— (s40qua YU UPAUO U S]PIO FS [])—

(Yg > awi3pom) d (3001 > 1s09)

G/ = plemay 001} = p/emay

a|npayosg Bunes|y 1500MO]
1se4 8|npayos

72

7.4. AUTOMATED REASONING WITH EVOLUTION REQUIREMENTS

‘(SY[S®e} paysijes A[Mau Jo Joqunu
9} SAZIWIUTW '9°T) DD [BULSLIO 89U} JO UoIjeZI[eal pajuswa[duwil a3 03 300dsal YjIim UOIIRZI[BaL MU oY} Surjuowejdut
JO 710JJ9 YY) SOZIWITUIW YIIYM UOIJBZI[BdI B ST SIYJ, "UOIIBZI[BAI MAU SII pue NN POA[0Ad Jo djdwrexs uy :G°), aanSi

/ ot = Ayeued
Hoy3
Buiyore
01 = Ayeued 0l = Ayeusd Gz = Ayeued

G| = Ayeued

ot = Ayeusd G| = Ayeued

0z = Ayeued

ooy
s|qellenY
asn

swooy
o|gejleny
181

Bunssn
Ja1sibay

6lY”

08 = pJemay\/
oa|npayos
Ajrenppoon

\/GQ = pJemay

Ul = eLi oM Yl = suwiyiom uoyu3
G = Ayeusyd

0l = Ayeusd [BWIUIN
Jepusie)d
welsAglii4

Gl = Ayeusd

S|qe|ieAy

Ug = SWIHoM Y| = 3WIIHom
= Ayeus,
G = Myeusd WOOK[200'] 05 ~ fHeued 5| = Aeuagd 51 = Aeusd
Jepuse)
[SOUB] <= Jojeid sjuedioiyed
u/ G = Ajleuad Ug'o = swiyiom

G = Ajeusd

3002 = 1800
06 = Ayeusd

Ug = awi1xom

Ul = swiiom
0G=Ajeued

GL = Alleusq
[eoleWwOoINy
8|npayos

308 = 1509
06 = Ayjeusd

/

oLy
Bunssn
abeuen

(fiyponum pyranpayag v spundiin ym))— (
(UG > st spiom) Hd
G/ = piemay

G| = Ayeusd
Bunssiy

ooy
Q|gennspuly

519712 YUOLUIAUO)PU S]PIO IS []))—

(3001 > 1809)
00} = piemey

1se s|npayos

73

Part 111

Implementation and Evaluation

75

CHAPTER

IMPLEMENTATION

This chapter presents CGM-Tool, which was implemented based on the CGM
framework. CGM-Tool provides graphical constructs that support for mod-
elling and reasoning on CGMs. The tool also supports the evolution analysis
based on the requirements evolution and evolution requirements discussed in

chapter 7. The tool (and its manual) is available online (www. cgm-tool. eu).

%k %k ok ok

The chapter is organized as follows: section 8.1 introduces CGM-Tool, presents an
overview of its features, and describes its modular architechture; section 8.2 shows how

to use the tool through examples and screenshots.

8.1 CGM-Tool

CGM-Tool provides support for modelling and reasoning on CGMs. Technically, CGM-Tool
is a standalone application written in Java and its core is based on Eclipse RCP engine.
Under the hood, it encodes CGMs and invokes the OptiMathSAT ! SMT/OMT solver
[ST15b] to support reasoning on goal models. It is freely distributed as a compressed

archive file for multiple platforms 2. CGM-Tool supports:

http://optimathsat.disi.unitn.it
2http://www.cgm-tool.eu/

77

www.cgm-tool.eu
http://optimathsat.disi.unitn.it
http://www.cgm-tool.eu/

CHAPTER 8. IMPLEMENTATION

CGM RCP APPLICATION
OTHER
EMF XTEXT IPDF JAVA
GEF LIBRARIES
N
1|

OptMathSAT ¥Y“—— ' praw2d = JFace

Java Virtual Machine(JVM)

Figure 8.1: CGM-Tool: Component View

Specification of projects: CGMs are created within the scope of project containers. A
project contains a set of CGMs that can be used to generate reasoning sessions
with OptiMathSAT (i.e., scenarios);

Diagrammatic modelling: the tool enables the creation (drawing) of CGMs in terms
of diagrams; furthermore it enhances the modelling process by providing real-time
check for refinement cycles and by reporting invalid refinement, contribution and

binding links;

Consistency/well-formedness check: CGM-Tool allows for the creation of diagrams
conform with the semantics of the modelling language by providing the ability to

run consistency analysis on the model,

Automated Reasoning: CGM-Tool provides the automated reasoning functionalities
of section 6.2 by encoding the model into an SMT formula. The results of OptiMath-

SAT are shown directly on the model as well as in a tabular form.

78

8.2. AN EXAMPLE

Evolution Requirements Modelling and Automated Reasoning: by means of sce-
narios, stakeholders can generate evolution sessions, which allows for (i) defining
the first model and finding the first optimal realization, (ii) modifying the model to
obtain the new models, and (iii) generating automatically the “similar” realization

(as discussed in section 7.3).

One essential feature of the tool is that expressive constructs (which may be more
complex and difficult to use) are only available on demand: there are easy-to-use default
settings for everything, so that the user can decide the level of expressiveness he/she
feels at ease with.

CGM-Tool extends the STS-Tool [PDP*12] as an RCP application by using the major
frameworks shown in Figure 8.1: Rich Client Platform (RCP), a platform for building
rich client applications, made up of a collection of low level frameworks such as OSGi,
SWT, JFace and Equnix, which provide us a workbench where to get things like menus,
editors and views; Graphical Editing Framework (GEF), a framework used to create
graphical editors for graphical modelling tools (e.g., tool palette and figures which can be
used to graphically represent the underlying data model concepts); Eclipse Modelling
Framework (EMF), a modelling framework and a code generation facility for building
tools and applications based on a structured data model. With CGM-Tool, a CGM is built
progressively as a sequence of scenarios, which are versions of the CGM to which the

automated reasoning functionalities of the CGM-Tool can be applied.

8.2 An example

Figure 8.2 shows how to create a new diagram in the tool. Figure 8.3 shows the graphical
user interface (GUI) of the tool.

In order to create a CGM, the user will need first to identify the elements and draw
the goal graph. Figure 8.4 shows the graphical presentation of CGM in CGM-Tool.

Notice that the element name must contain only alphanumeric characters [A..Z],
[a...z], [0..9] and underscore [_] (no space or special characters). The user can use the
description properties tab to better describe the elements, as showed in Figure 8.5.

As mentioned in chapter 4 and chapter 5, refinement edges must not form a cycle
with each other, domain assumption can only be refined into sub-domain assumption(s),
goal refinement must contain at least one sub-goal, all root goals must be requirements,

and all leaf goals must be tasks.

79

CHAPTER 8. IMPLEMENTATION

Figure 8.6 and Figure 8.7 show respectively how to define a numerical attribute of
an element and how to set its value. Figure 8.8 shows how to set objective functions
from the numerical attributes (e.g., set the priorities, choose the form of optimization

(maximize/minimize), ...). Notice that:

Each element has its own local numerical attributes (i.e. local variables), which
are showed in the Node Variable tab below the model.

¢ The values of the "local" numerical attributes that are associated with an element

can be set (default value is 0).

* The total value of the "global" numerical attribute is the sum of all the "local"

numerical attributes.

¢ When an element is satisfied, its local variables is set to its positive value, otherwise,

the local variables is set to its negative value.

Figure 8.9 shows how to define the global constraints in the model. The constraints
can be Boolean or SMT(¥£ %</) formulas.

Figure 8.10 shows how to define the optimization priorities of the numerical attributes
(the lower the priority value of a attribute, the higher its optimization priority); it also
shows how to define the optimization choices: either to maximize or minimize. Figure 8.11
shows how to check for the well-formedness of the model.

In order to do automated requirements analysis, a scenario of the CGM must be
created. Figure 8.12 and Figure 8.13 show how to create and open a scenario. Figure 8.14
shows how the user assertions can be added by using the option “Force True" (element
that must be included in the realization) and “Force False" (element that must not
be included in the realization). Mandatory requirements must be set by “Force True”.
Figure 8.15 shows how to automatically generate a realization for the current scenario by
invoking the automated-reasoning functionalities. Figure 8.16 shows an automatically
generated candidate solution of a CGM. The candidate solution is coloured in blue.

Figure 8.17 shows how to check for the result analysis. Notice that:

* The tool will automatically check for the well-formedness for once last time after

the user chooses "Launch the reasoner".

* The user will also be asked for if he/she wants to generate a report before launching

the automatic reasoning.

80

8.2. AN EXAMPLE

* The user will get the message if the model is SAT after the reasoning functionalies

have finished running.

¢ "Launch the reasoner" can only be used in a scenario diagram.

81

‘welISerp Mau B 918aId 0} MO :[00]-INDD :g'8 9In31]

T E——

slopon

oweu

Pal09jes swal O

"2]Gel[eA. 10U S| U0 UY.

“/dde’|001-WOD/HAY9 OB |00LNOD/SPEOjUMOQ/S LIBWIYDU/SIaSN/ uoneso|
asiey pauy
Wd Ly:v0:0L 910Z 'SL Ao paypow ise|
onn alqewpa
osiey poAup
ol
anjep Kuadoid
Oooadd = 5 uopoeAx3 2100 LYSNN [] _._Eaz Buoseay [] _o_n-:a> 1oPoN [T_n-__; apoN [_:oaaz sishieuy B Ta_:.asa =
“2|qe|ieA. J0U S| AUIINO UY
]_ _ ounno 38 fuadoig
1 |11000y sishieuy =, | sopsedoid
138 salJadold
*AI0ISIH [BO0T WOJJ 8I0)S8Y
< YlIM asedwod
s4 ysauey (@
“Hodx3g 2
e
“odw) =2
9410 &
N& Y10 £ = --aweusy
weibeig WO MaN Aﬂ “anoN
1aloid WOD MaN 2 | & 2900 %
aised
Japjo4 £ Adog EY
a4 5]
I 5] o 09 soueuaos)
*308foid L1
sobew| <)
anuanawoisT €3 4 w3
A58 MEs IV 80|
(=™ Oo M3 8s0|D
W[al S®O IV anes)
0°0°L'A [00L-WOD e0e Sy anes)
anes 2
k Oo S es
weibeig WO MaN ﬂ

0'0°L"A |0OL-WOD

108f01d WOO MeN =

= ©» vozzuns EA%0 @ F & @ © £ Q

8.2. AN EXAMPLE

*(uor)dLIdISOP J0] dJ€ S9J0U USAILS) [JOJA] [BNUBW [00} Y3 UL SB 90BJIdIU] J9s[) [edrydelr) :[oo-]ND) :g'8 InI1]

- =1 Ay
= uoiduasag
rl FPOWINDD =1 awep
& anjep Fyadoug
0o n a"uH ﬁ el yns2y buoseay [|3jqeuep ppo [|2|geuep 2poy [|Hoday sisfjeuy - saipadolg (=5 @O
. + + + * _.n._%____,..__ [eOg) i aupng =2
uonngUIuoT-Ig o _ _ _ _ _
M\ MAIA PAIIA MIIA 140d3d MAIA
uonnguual LINe3d 19V THY A A19Y¥THYA g1 vy AlH3IdOoHd MATA INITTLNG
Piuon ONINOESYIH 13a0W JaanN
u:mEmEuE,n_R\
@ suoneRy = e
T ooy o | NOLLVOIAVN
ueq] | VAV HOLIa3 ~— 1 O30Ud —p
L O
|eog _nU
ucmEE__.__um,n_D SOUEURDG
d0L1Ia3 13qow || Fswewsdo <
G sapop] = uvd ST
= dAILDY INIHHND
BN ool paloignnd £
4 apejeg o T J1131v¥d _ &0
O o + £ WBYRPONNDD & || o _ | eN paloig o
- %00l = W _ J3UOSE YIUNET] OUEUIDS 3JRISUI0 SS3UPILUIOS-|[2M J3347) JUIBIISUOT) [BOOJD 3[QELEA | NS G
d¥d NNIW - ————— MOpulpy sisfleuy Ppow w3 34
o = |oo] [2pop [20g) paulensuc) &

83

CHAPTER 8. IMPLEMENTATION

‘ydeuy) [eon

B JO SUOT)R[9Y] ‘SIUSWAUYIY ‘SHUSWA[H JO UOIjRjuUsaId [edrydery) :[ooL-NDD :F'8 2In3L]

W awes mcw le anlil wn jouued
‘9 pue '’

1IPUo)

anJy os|e sI ¢ uayy
anJ1si oy

g uey) a|qesajald
Appus st to

DD | D mn -

uopnqLuo)

S9JuaJalald

anJy e aJe] 1 41 Ajuo pue yl anay sty
‘any e alje 'n g ‘g y Ajuo pue yiannsity g
‘anijosiesioannsiéyiotyy T

juswiauyal 40,

‘anJy e ate 'p g ‘Tg j Ajuo pue Jianiisl Yy T
‘anJyos|esiouayianiisiyy T

juswiauyal ,puy,,

uondwnssy 1uswalinbay

84

8.2. AN EXAMPLE

Subscription

Secure Restrict
FreeAccount Target GoogleAds NoAdsBlocked

Properties | & Analysis Report’ 1 Node Variable’ 1 Model Variable‘] Reasoning Result’] UNSAT Core Extraction|

Property Value
Name I=Revenue
Description = Generate Music Revenue

Positive Constraint
Negative Constraint
Weight

=
U1

=

[
o

Use properties to rename an elements or
add description to an element

Figure 8.5: CGM-Tool: How to add description to elements (instructions in red).

poal Constraint By | Check Generate Scenario L Y @ @ [100% v
. proje gigore1 com 2| =g
8% %% Palette 13
vgyusicaevmue NS
St . . . i X i & Nodes 3
ottt 1. Click on SMT Variable to define the numerical attributions Oveasrement
& scenarios eV e Define SMT Variable O Goal
Variable Name O Task
Subscrig ‘Assumption
U (= Relations 3
/" Refinement
7 Conflict
Variable Name £, Contribution
worktime 7, Bi-Contribution
s > M e N Y T | e
2. Fill in the name of the numerical
attribution and click Define
\
T m——
8 outine |
‘—Eﬂmwm’:‘m,j: Goal Model |

Figure 8.6: CGM-Tool: How to Define Numerical Attributes (instructions in red).

85

CHAPTER 8. IMPLEMENTATION

Subscription

Secure Restrict

FreeAccount Target

GcogleAdsN‘ NoAdsBlocked

"

2nd: click on an element

1st: choose the Node Variable tab

S —

Goal Model |
[Properties | *& Analysis Reporfl [Node Variablell =] Model Variable |] Reasoning Rasult‘] UNSAT Core Extraction
Name

Positive Value Negative Value
cost o
worktime 0

0

Then you will see (and be able to define) all the local numerical attributes of the chosen element

Figure 8.7: CGM-Tool: How to Define the Value of the Numerical Attributes Associated
with Elements (instructions in red).

Choose Model Variable tab to be able to access to the
global numerical attributes.

| Goal Model |

1 Properties "eAnalysis Report |] Node Variabidll] Model Variable

|

Reasoning Result |] UNSAT Core Extraction =g ‘
Name Upper Bound s Lower Bound Priority Objective Calculation Method
cost Infinity ~Infinity 0 MINIMIZE Default
worktime Infinity ~Infinity o MINIMIZE Default
You can change the value of Priority of an attribute. The lower Choose to either maximize the total value of the attribute
the value (> 1), the higher its o.pt'.lmlz.atlon prforlty..o mean or to minimize it
that we do not care about optimization of this attribute.

Figure 8.8: CGM-Tool: How to define objectives from Numerical Attributes (instructions
in red).

86

8.2. AN EXAMPLE

| 82 outine)

B

- Project Navi

¥ & MusicRe

» (=Models

(& Images.

(& Optimathsat

BBBBBBBBB

B

X & @ 100% v

[seeme

[\N—

Goal Model

Global Constraint
(not(and(NoAdsBipcked, Secure)))

Right click on the constraint
to be able to REMOVE the

=0
<5 palette. IS
— Y]
(= Nodes. @
1. Click on Global Constraint to define Constraints Spememen
/Add Global Constraint - O Task

O oomain
X Assumption
GRelators
\W /" Refinement

\ 2. Type in the ‘
constraint and click
ADD to add the
constraint

constraint (when necessary)

Figure 8.9: CGM-Tool: How to Define Global Constraints (instructions in red).

| Goal Model

Choose Model Variable tab to be able to access to the
global numerical attributes.

= Properties. "‘E Analysis Report | =] Node Variabidl T Model Variable

Reasoning Result | [UNSAT Core Extraction

=o|
Name Upper Bound Lower Bound Priority Objective Calculation Method

cost Infinity Infinity o MINIMIZE Defauit

worktime Infinity ~Infinity o MINIMIZE Defauit

You can change the value of Priority of an attribute. The lower
the value (> 1), the higher its optimization priority. 0 mean
that we do not care about optimization of this attribute.

Choose to either maximize the total value of the attribute
or to minimize it

Figure 8.10: CGM-Tool: How to Define Optimization Priorities and Choices (instructions

in red).

87

CHAPTER 8. IMPLEMENTATION

1B

SMT Variable Global Constraint [y

Click on Check well-formedness to activate the automatic

s wWell-formedness analysis

5. Project Naviga... | = O | (% Diagrat.com 53| % example?.com =B
ER- [) Well-formedness 5 Palette I
e T“I"CR"“‘"“E Well-formedness (Y]
(= Images
» (= Models ¥ o Well-formedness Analysis | = Nodes &
» (> Optimathsat o Emety Diagram O Reauirement
+ Invalic Goal Node
¥ (= Scenari
& scararics & hammarent sy Cock Ocan
< E‘;;’; , o Undeclared Variable O Task
e
[pomain
s oot > Romapion
| Relations @
/" Refinement
/' Conflict
A Contribution
4. BI-Contribution
Secure /" Refinement
GoogleAds NoAdsBlocked
/" Preference
Done
E T —————————
e®~
& ool s Goal Model
8;’5': Ereehccount || propertffe =G Analysis Roport I Node Variable | T Model Variabe | I Reasaning Result| T UNSAT Core Extraction| Z=8
ask: GoogleAds
] pomainassumtion: 1| Name Value
@ Refinement: R1
DAy
Analysis Report tab

Figure 8.11: CGM-Tool: How to Check the Well-formedness of the CGM (instructions in

red).

1B

SMIT Varise.Giabal Contraint B | Check wel-formedres

. Project Naviga... | = 01 || 42 Diagrat.com 33 |4

1. Click on Generate Scenario to create a scenario

B%~
¥ 25 MusicRevenue
imaons —
» (& Models ece
vgs:m:‘:s t Make ready to reason wizard
¥ @ Diagrat @ Invalid Name
¥ & Model
@ cxample1
» (& Reports. Neme
2. Give the scenario a name and click F £ Canivaion
4. Bl-Contribution
./ Refinement
NoAdsBlocked Binding
/" Preference
T —————————————
B outiine =
BB~
e — T
St eenceoun | propeies [anass Resert| T Nose variole | T Madel Veriabe| T Ressoning Resut | T UNSAT Cre xvacin| 4 =1
o ption: 1|| Prodlem Descri iption
@ Refin
B

Figure 8.12: CGM-Tool: How to Create a Scenario (instructions in red).

88

8.2. AN EXAMPLE

%5 Project Navigator

¥ oeostoon G

0
q 0O

[
'y

¥ (=2 MusicRevenue
(= Images
P (= Models

Click on the cgm file to open the
generated scenario

¥ (= Scenarios
¥ (= Diagra1
¥ (= Model

&P examplel.cgm
» (= Reports

Figure 8.13: CGM-Tool: How to Open the created Scenario (instructions in red).

Right-click on an element to force it as
true or false.”

% Delete

Force True
Force False

Define element constraints
Convert to Goal

E! Show Property View

Restrict

Secure

FreeAccount Target

Note that: Mandatory requirements must be “Force True”
“Force True” elements are marked as red, while “Force False” elements
are marked as green.

Figure 8.14: CGM-Tool How to Add User’s Assertions (instructions in red).

89

CHAPTER 8. IMPLEMENTATION

] SMT Variable Giobal Constraint 4y | Check well-formedness Generate Scenar @ @[100% v
. Project Naviga... | = O |[& Diagrat.com 52 | % exampiet.com =8
I=5-3d [} Well-formedness | ¢ Palette 3
¥ & MusicRevenue Well-formedness =
(@ Images
» = Models ¥ o Well-formedness Analysis | = Nodes P
» G Optimathsat o Empty Diagram ([Requirement
= Invalid Goal Node
v (= Scenarios v
%, i '+ Refinement Validity Check O ool
& Diegra o Undeclared Variable O Task
¥ & Model O
omain
& example1 Assumption
» (= Reports
| Relations @
/ Refinement
7 Conflict
/! Contribution
4 Bl-Contribution
Secure ./ Refinement
GoogleAds NoAdsBlocked Binding
" preference
Done
Sowne| =0 T ————————————
B8]
O Goal: Ads o0 Mode
Q) Task: Freeaccount | proorties | *& Analysis Report |] Node Variable |] Model Variabie | T Reasoning Resuit | [UNSAT Core Extraction Z =0
O Task: GoogleAds
[pomainAssumption: 1| Name Value
@D Refinement: R1
DAy

Figure 8.15: CGM-Tool How to Automatically Generate a Realization: click on Launch
Reasoner in the menu (instructions in red).

N
L/

[] SAT Model

] The model is SAT!
Secure . |

Figure 8.16: CGM-Tool: Automated Generated Candidate Solution.

90

8.2. AN EXAMPLE

R3
Secure
FreeAccount Target GoogleAds NoAdsBlocked
/ Short summary of the result

Goal Model |
[Properties "E Analysis Report | =] Node Variable | 7] Model Variable | [Preferences | 5 unsat core Exuaclion[;7 =8
Name Value

o weight -

4 Total Reasoning Time 0.020 Seconds

Optimal value of the optimization objectives (if set)

Figure 8.17: CGM-Tool: Results Analysis. (instructions in red).

91

CHAPTER

EMPIRICAL EXPERIMENTS

An empirical experiment of CGM-Tool on a large example.

%k %k ok ok

This chapter presents the empirical experiments and evaluation of CGM-tool focusing on

scalability of the reasoning tool.

9.1 Empirical Experiment

We address the issue of the scalability of the automated-reasoning functionalities of
chapter 4 wrt. the size of CGMs, by providing an empirical evaluation of the performance
of CGM-Tool on increasingly-large CGMs. (For the sake of readability, here we provide
only a qualitative description, whereas the data and plots are reported in an Appendix.)
As in chapter 4, all experiments have been run on a MacBook Air laptop, Intel Core 15
1.8 GHz, 2 cores, 256 KB L2 Cache per Core, 3 MB L3 Cache, 4GB RAM.

For the readers’ convenience, a compressed directory containing all the material to
reproduce these experiments (models, tools, scripts, etc.) is available at http://www.
cgm-tool.eu/experiment-version/.

We consider first the schedule-meeting CGM of chapter 4 as a seed model. The model
consists in 32 goals —among which there are 1 mandatory requirement, 4 nice-to-have

requirements, and 18 tasks— plus 20 refinements and 2 domain assumptions, totalling

93

http://www.cgm-tool.eu/experiment-version/
http://www.cgm-tool.eu/experiment-version/

CHAPTER 9. EMPIRICAL EXPERIMENTS

54 nodes. The CGM contains also 3 numerical objectives: cost, workTime, and Weight.
The user-defined objectives cost and workTime involve respectively 2 and 5 tasks and
no requirement, whilst the pre-defined attributes Weight involves 16 tasks plus all 4
non-mandatory requirements. This involves 3+2+5+0+0+16+4 = 30 rational variables
(recall Remark 7). There are also three binary preference relations (4.15).

In the example reported in chapter 4 with different configurations, the tool returned
the optimal solutions in negligible time (all took less than 0.02 seconds). This is not
surprising: as mentioned in chapter 3, in previous empirical evaluation of OMT-encoded
problems from formal verification, OptiMathSAT successfully handled optimization
problems with up to thousands Boolean/rational variables [ST15a], so that hand-made
CGMs resulting into SMT formulas with few tens of Boolean and rational variables, like
that in chapter 4, are not a computational challenge.

In perspective, since CGM-Tool is supposed to be used to design CGMs representing
possibly-large projects, we wonder how its automated-reasoning functionalities will scale
on large models. To do this, we choose to build benchmark CGMs of increasing size, by
combining different instances of the schedule-meeting CGM of chapter 4 in various ways,

and testing them with different combination of objectives.

9.2 Experiment Setup

In all our experiments CGMs were produced as follows, according to three positive
integer parameters N, k&, and p, and some choices of objectives.

Given N and &, we pick N distinct instances of the schedule-meeting CGM of chap-
ter 4, each with a fresh set of Boolean labels and rational variables, we create an artificial
root goal G with only one refinement R whose source goals are the N mandatory re-
quirements “ScheduleMeeting;” of each CGM instance. Hence, the resulting CGM has
54 -N + 2 nodes and 30- N rational variables (see Table 9.2). In another group of ex-
periments (see Table 9.1) we dropped the non-mandatory requirements and their 4
direct sub-tasks, so that each instance contains 24 goals, 2 domain assumptions and 18
refinements, and the resulting CGM has 44 - N + 2 nodes and 26 - N rational variables.

Then we randomly add (£ —1)- N contribution relations “I%” and N conflict relations
“——” between tasks belonging to different instances. When binary preference relations
are involved (see below), we also randomly add p - N binary preference relations, each

involving two refinements of one same goal.

In each group of experiments we fix the definition of the objectives and we set the

94

9.3. EXPERIMENT EVALUATION

value of £ (and p when it applies), and increase the values of N. For every choice of N,
we automatically ! generate 100 instances of random problems as in the above schema,
which we feed to our tool, and collect the median CPU times over the solved instances
—including both encoding and solving times— as well as the number of unrealizable
instances as well as the number of instances which OptiMathSAT could not solve within
a timeout of 1000 seconds.

Notice that, following some ideas from a different context [HPSS00, PSS03], the
parameters N, k£ and p have been chosen so that to allow us to increase monotonically
and tune some essential features of the CGMs under test, which may significantly

influence the performances. E.g.,
* N increases linearly the number of Boolean and rational variables,

* k (and, to some extent, p) increases the connectivity of the graph and the ratio

between unrealizable and realizable CGMs.

¢ Importantly, £ and p also play an essential role in drastically reducing the symme-

try of the resulting CGMs, and insert some degree of randomness.

Another important parameter, which we borrowed from the schedule-meeting CGM, is
the number of Boolean atoms per objective.

Table 9.3, Table 9.4, Table 9.5, and Table 9.6 show the detailed experiment data of
first group of experiment. While, Table 9.7, Table 9.8, and Table 9.9 show the detailed

experiment data of second group of experiment.

Remark 8. We are aware that the CGMs produced with this approach may not represent
realistic problems. However, we stress the fact that here we focus only on providing a test

on the scalability of our automated-reasoning functionalities.

9.3 Experiment Evaluation

We run two groups of experiments in which we focus on optimizing, respectively:
* numerical attributes, like cost, work-time, penalty/rewards;

* discrete features, like the number of binary preferences, of want-to-have require-

ments and of tasks to accomplish.

ITo perform this test automatically, we developed an automated problem generator/manipulator which
interfaces directly with the internal data structure representing the CGMs inside CGM-Tool.

95

CHAPTER 9. EMPIRICAL EXPERIMENTS

w0

=)
= 0
3, =
: =
—~) ~
q & £ 4 £ 2
) n =) =
=) o ”) = =)
< = —_ o Sl (@}
) < = & ° B
a) (=} Q =) E (2]
2 2 & 2 g2 8 & &
8 o kS o o 3 § o
g B 3 5 5 & Z B
~ Q o Q < ° - 0
s E E E £ g i
9]) =])) =] 5)
= Z A Z Z Z = Z
1 100 2 49 37 4 90 52
2 100 3 73 55 6 134 78
3 100 4 97 73 8 178 104
4 100 5 121 91 10 222 130
5 100 6 145 109 12 266 156
6 100 7 169 127 14 310 182
7 100 9 217 163 18 398 234
8 100 11 265 199 22 486 286
9 100 13 313 235 26 574 338
10 100 15 361 271 30 662 390
11 100 17 409 307 34 750 442
12 100 21 505 379 42 926 546
13 100 26 625 469 52 1146 676
14 100 31 745 559 62 1366 806
15 100 36 865 649 72 1586 936
16 100 41 985 739 82 1806 1066
17 100 46 1105 829 92 2026 1196
18 100 51 1225 919 102 2246 1326
19 100 101 2425 1819 202 4446 2626
20 100 151 3625 2719 302 6646 3926

21 100 201 4825 3619 402 8846 5226

Table 9.1: First group of experiments, summary of experimental data.

96

9.3. EXPERIMENT EVALUATION

0

g
.2 0
B, =
£ g
—~ w0 —
. & £ 2 & 2
D 0 <) —~
S 3 g £ z =
g 9 R & < e S
2 3 © s g °© B
a) (=} Q (=) B (av]
2 o 5 2 £ 2 £ &
8 1S Q'S o o LS g ©
£ g 3 5 g B Z, 8
=~ el o Q el o - 2
e g £ g g g s g
5 = = = = = = =}
S Z A Z Z z = Z
1 100 2 65 41 4 110 60
2 100 3 97 61 6 164 90
3 100 4 129 81 8 218 120
4 100 5 161 101 10 272 150
5 100 6 193 121 12 326 180
6 100 7 225 141 14 380 210
7 100 9 289 181 18 488 270
8§ 100 11 353 221 22 596 330
9 100 13 417 261 26 704 390
10 100 15 481 301 30 812 450
11 100 17 545 341 34 920 510
12 100 21 673 421 42 1136 630
13 100 26 833 521 52 1406 780
14 100 31 993 621 62 1676 930
15 100 36 1151 721 72 1946 1080
16 100 41 1313 821 82 2216 1230
17 100 46 1473 921 92 2486 1380
18 100 51 1633 1021 102 2756 1530
19 100 101 3233 2021 202 5456 3030

DO
S

100 151 4833 3021 302 8156 4530
21 100 201 6433 4021 402 10856 6030

Table 9.2: Second group of experiments, summary of experimental data.

97

CHAPTER 9. EMPIRICAL EXPERIMENTS

Table 9.3: First group of experiments, £ = 2: median time over solved instances.

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost
(2N terms) (5N terms) (16N terms)

@ °
= e
G S
§ A 2 £ 5) o) o o
£ 8 Z 5 w E E £ E E
z g E 5 2 £ B & & & &
- : ~ g E clg g 8 g g g g g
g 3 B g 8 Z = A~ E k] s 3 £ 3 s 3 z 3
& E s B 5 3 s 3 S 2 @ =4 5 E
g & 5 Z. § & w & & g 5 8 8§ g 8 5 5 5
5 = = = 2 E § 5 E E E £ E E Z B £ 2
& 5§ § 3 § b & g € £E 5 & 5 E 5 =] =
o [=) o
= Z Z = AR n =) o 1S3 o ¥ o I3 o I3 o IS
1100 2 9 52 1 000 000 000 O 001 0 002 0 001 0 002 0
2 100 3 134 78 1 000 000 001 0 001 O 003 0 001 0 025 0
3 100 4 178 104 3 0.00 0.00 0.01 0 001 0 041 0 001 0 153 0
4 100 5 222 130 3 000 000 002 0 003 0 551 0 0.02 0 748 0
5 100 6 266 156 2 0.00 000 001 0 002 0 2474 0 0.8 0 29.74 2
6 100 7 310 182 5 000 000 001 0 004 0 53390 19 0.02 0 329.34 30
7 100 9 398 234 7 000 000 002 0 009 0 18523 84 0.02 4 49433 87
8 100 11 486 286 4 0.00 000 002 0 011 0 — — 729 30 — —
9 100 13 574 338 7 000 000 005 O 030 0 — — 1798 83 — —
10 100 15 662 390 13 0.00 0.00 004 0 1813 O - - = — — —
11 100 17 750 442 15 0.00 0.00 004 0 311 0 e — — —
12 100 21 926 546 14 0.00 0.00 006 0 5808 11 — — — —
13 100 26 1146 676 13 0.00 0.00 007 0 60099 78 - - = — — —
14 100 31 1366 806 14 0.00 0.00 0.09 0 - — - - = — — —
15 100 36 1586 936 19 0.00 0.00 0.11 0 - — - — — —
16 100 41 1806 1066 26 0.00 0.00 0.13 0 - — - - = — — —
17 100 46 2026 1196 24 0.00 000 0.18 0 - — e — — —
18 100 51 2246 1326 32 0.00 000 020 0 - — - — — —
19 100 101 4446 2626 49 0.00 000 049 0 - — - - = — — —
20 100 151 6646 3926 68 0.00 0.00 0.77 0 - — e — — —
21 100 201 8846 5226 71 0.00 0.00 093 0 - — - — — —

In the first group of experiments we consider the reduced version of the CGMs (i.e.
without nice-to-have requirements) without random binary preference relations. We fix

k =2,4,5,8. In each setting, we run experiments on three functionalities:
a. plain realizability check (without objectives),
b. single-objective optimization on cost, workTime, and Weight respectively,
c. lexicographic optimization respectively on (cost,workTime,Weight) and on (Weight,workTime, cost)

Figure 9.1 shows the overall median CPU time over the solved instances of the first
group of experiments, which are plotted against the total number of nodes of the CGM
under test. 2 Figure 9.3-Figure 9.6 show the CPU time over the solved instances for each

experiment case.

2The choice of using the total number of nodes for the X axis in all our plots aims at providing an
eye-catching indication of the actual size of the CGMs under test.

98

9.3. EXPERIMENT EVALUATION

Table 9.4: First group of experiments, £ = 4: median time over solved instances.

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost
(2N terms) (5N terms) (16N terms)

w o
2 =
< g
_ c
., & £ £ g
3 3 S = @ @ @ @ @
I - - £ £ g £
% = o s 2 8 & & = = =
S 2 g = 5 9 2 o o g g g
b= G [T = [N g = 2 + g + .8 + 2 + g +
3 s B g S = 2 & £ 5 £ 3 g=! 5 B=! 5 b= 5
=} © = < > < > < > < 3 I 3
g 5 g Z 5 o 0 5 N 5] N 3 N 5] N 5] XN 15
5 = & Z =2 E 5 5 E £ £ E g £ g £ g E
2 F: % :ES oz & fioe f8 £ 8§ 8§ ¢
oz =z = Zz ® @ B O ¥ S = o ® o ® S ®
1 100 2 90 52 2 0.00 0.00 0.00 0 001 O 0.02 0 0.03 0 0.04 0
2 100 3 134 78 1 0.00 0.00 0.01 0 001 O 0.03 0 0.04 0 0.05 0
3 100 4 178 104 2 0.00 0.00 0.01 0 0.02 0 0.08 0 0.06 0 0.13 0
4 100 5 222 130 4 0.00 0.00 0.01 0 0.01 0 0.41 0 0.08 0 0.79 0
5 100 6 266 156 7 0.00 0.00 0.01 0 002 0 1.09 0 0.11 0 2.82 0
6 100 7 310 182 7 0.00 0.00 0.02 0 0.05 0 9.53 4 0.13 0 14.47 4
7 100 9 398 234 7 0.00 0.00 0.02 0 0.06 0 1354 56 0.64 0 447.13 67
8 100 12 486 286 10 0.00 0.00 0.02 0 014 O — — 1.53 5 — —
9 100 13 574 338 9 0.00 0.00 0.03 0 0.43 0 — — 36.78 23 — —
10 100 15 662 390 11 0.00 0.00 0.04 0 2.42 0 — — 368.94 55 — —
11 100 17 750 442 9 0.00 0.00 0.04 0 2845 0 — — — — — —
12 100 21 926 546 15 0.00 0.00 0.05 0 9786 2 — — — — — —
13 100 26 1146 676 22 0.00 0.00 0.09 0 537.73 62 — — — — — —
14 100 31 1366 806 25 0.00 0.00 0.12 0 — — — — — — — —
15 100 36 1586 936 27 0.00 0.00 0.16 0 — — — — — — — —
16 100 41 1806 1066 32 0.00 0.00 0.14 0 — — — — — — — —
17 100 46 2026 1196 36 0.00 0.00 0.17 0 — — — — — — — —
18 100 51 2246 1326 40 0.00 0.00 0.20 0 — — — — — — — —
19 100 101 4446 2626 55 0.00 0.00 0.80 0 — — — — — — — —
20 100 151 6646 3926 77 0.00 0.00 0.72 0 — — — — — — — —
21 100 201 8846 5226 85 0.00 0.00 1.18 0 — — — — — — — —

First, we notice that checking the realizability of the CGM, that is, finding one
realization or verifying there is none, requires negligible time, even with huge CGMs
(> 8,000 nodes, >5,000 rational variables) and even when the CGM is not realizable.
Second, the time taken to find optimal solutions on single objectives seem to depend more
on the number of variables in the objective than on the actual size of the CGM: for cost
(2N variables) the solver can find optimum solutions very quickly even with huge CGMs
(>8.000 nodes, >5,000 rational variables) whilst with Weight (16N variables) it can
handle problems of up to =400 nodes and =~ 200 rational variables. Third, lexicographic
optimization takes more time than single-objective optimization, but the time mostly

depends on the first objective in the list.

In the second group of experiments we consider the full version of the CGMs (with
nice-to-have requirements) and introduce the random binary preference relations. We fix

k =2 and we run different experiments for p =6, p =8 and p = 12. In each setting, we

99

CHAPTER 9. EMPIRICAL EXPERIMENTS

Table 9.5: First group of experiments, £ = 5: median time over solved instances.

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost
(2N terms) (5N terms) (16N terms)

@ °
= e
G S
§ A 2 £ 5) o) o o
£ 8§ £ 3 W E £ £ £ E
z g E 5 2 £ B & & & &
- : ~ g E clg g 8 g g g g g
g 3 B g 8 Z = A~ E k] s 3 £ 3 s 3 z 3
& E s B < 3 s 3 S 2 @ =4 5 E
£ & 5 . 5 & w & 5 5 IS ST S 5 S 5
5 = = = 2 E § 5 E E E £ E £ £ B E 2
& 5§ § 3 § b & g € £E 5 & 5 E 2 =] =
o [=) o
= Z Z = Z N n [o 1S3 [S IR) 1S3 o I3 o 1S3
1 100 2 9 52 4 000 0.00 0.01 0 001l 0O 002 0 003 0 003 0
2 100 3 134 78 3 0.00 0.00 0.00 0 00l 0O 006 0 004 0 008 0
3 100 4 178 104 6 0.00 0.00 0.01 0 00l 0O 007 0 004 0 011 0
4 100 5 222 130 6 0.00 0.00 0.01 0 002 0 056 0 007 0 067 0
5 100 6 266 156 7 0.00 0.00 0.03 0 003 0 151 0 014 0 169 0
6 100 7 310 182 5 0.00 0.00 0.01 0 003 0 045 0 0.11 0 069 0
7 100 9 398 234 7 0.00 0.00 0.02 0 027 0 28479 31 0.71 0 557.00 36
8 100 11 486 286 9 0.00 0.00 0.02 0 013 0 85266 80 092 0 705.92 85
9 100 13 574 338 17 0.00 0.00 0.03 0 017 0 — — 4155 9 — —
10 100 15 662 390 14 0.00 0.00 0.04 0 123 0 — — 11158 28 — —
11 100 17 750 442 13 0.00 0.00 0.05 0 1187 0 — — 3531 56 — —
12 100 21 926 546 24 0.00 0.00 0.07 0 10467 0 - — — — — —
13 100 26 1146 676 27 0.00 0.00 0.12 0 45520 51 - — — — — —
14 100 31 1366 806 32 0.00 0.00 0.12 0 - — - — — — — —
15 100 36 1586 936 33 0.00 0.00 0.12 0 - — - — — — — —
16 100 41 1806 1066 33 0.00 0.00 0.16 0 - - - — — — — —
17 100 46 2026 1196 53 0.00 0.00 0.16 0 - — - — — — — —
18 100 51 2246 1326 48 0.00 0.00 0.23 0 - — - — — — — —
19 100 101 4446 2626 73 0.00 0.00 0.51 0 - — - — — — — —
20 100 151 6646 3926 76 0.00 0.00 3.33 0 - — - — — — — —
21 100 201 8846 5226 93 0.00 0.00 1.49 0 - — - — — — — —

run experiments on three functionalities:
a. plain realizability check (without objectives),

b. lexicographic optimization on (numUnsatPrefs,numUnsatRequirements,numSatTasks)
(PRT),

c. lexicographic optimization on (numUnsatRequirements,numUnsatPrefs,numSatTasks)
(RPT).

Figure 9.2 shows the overall median CPU time over the solved instances of the second
group of experiments.
Figure 9.7-Figure 9.9 show the median CPU time over the solved instances for each

experiment case.

100

9.3. EXPERIMENT EVALUATION

Table 9.6: First group of experiments, £ = 8: median time over solved instances.

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost
(2N terms) (5N terms) (16N terms)

@ 2

2 =)

s s

- m £ S

s S5 % 2

: § =2 % w2 £ : £ g
z B et s 02 £ & & & & &

2 £ £ £ B 5 g & 5 . 5 . & . & - -
g s B g S = 2 & £ 3 £ £ 3 e 5 & =
E 35 5 2 35 § % 5 §&§ g8 § g § § % & 3 3
£E 4 ¢ 5 § £ £ < E E EE E E E g E 4
& 5 5§ £ 32 =2 =2 E & = 2 B 2 2 & 2 &
| Z =z E Z ® @ & S ® o ® o ® S N S S
1100 2 90 52 10 000 000 001 0 00l 0 003 0 0.2 0 004 0
2 100 3 134 78 15 000 000 001 O 001 0O 003 0 004 0 0.06 0
3 100 4 178 104 9 0.00 0.00 0.01 0 001 O 0.14 0 0.04 0 0.19 0
4 100 5 222 130 11 000 000 001 0 002 0 007 0 0.06 0 0.09 0
5 100 6 266 156 21 0.00 000 001 ©0 003 0 18 0 0.07 0 225 0
6 100 7 310 182 24 0.00 0.00 0.01 0 002 0 1471 0 0.10 0 1411 0
7 100 9 398 234 33 000 000 001 O 011 0 1737 1 015 0 2514 1
8 100 11 486 286 23 000 000 003 O 031 0 7955 19 051 0 253.57 28
9 100 13 574 338 28 0.00 0.00 0.03 0 022 0 13137 55 0.64 0 240.96 59
10 100 15 662 390 36 0.00 0.00 004 0 041 0 — — 689 0 — —
11 100 17 750 442 20 0.00 0.00 005 0 08 0 — — 056 1 — —
12 100 21 926 546 48 0.00 0.00 0.05 0 149.86 7 — — 10481 17 — —
13 100 26 1146 676 43 0.00 0.00 0.06 0 406.31 23 - — — — — —
14 100 31 1366 806 61 0.00 0.00 010 0 - — - — — — — —
15 100 36 1586 936 67 0.00 0.00 023 0 - — - — — — — —
16 100 41 1806 1066 71 0.00 0.00 0.39 0 - — - — — — — —
17 100 46 2026 1196 77 0.00 0.00 017 0 - — - — — — — —
18 100 51 2246 1326 75 0.00 0.00 0.17 0 - — - — — — — —
19 100 101 4446 2626 98 0.00 0.00 1.47 0 - — - — — — — —
20 100 151 6646 3926 97 0.00 0.00 40.11 0 - — - — — — — —
21 100 201 8846 5226 100 0.00 0.00 — — - — - — — — — —

First, checking realizability is accomplished in negligible time even with huge CGMs
(>10,000 nodes, >6,000 rational variables), as before. Second, we notice that optimal
solutions, even with a three-level lexicographic combination of objectives, can be found
with large CGMs (>1,000 nodes, >600 rational variables).

On the negative side, for some problems, in particular large ones with objectives
involving large amounts of elements, we notice that the search for the optimal realization
could not be accomplished within the timeout.

To this extent, a few remarks are in order.

First, when interrupted by a timeout, OptiMathSAT can be instructed to return the
current best solution. Since OptiMathSAT typically takes most of its time in fine-tuning
the optimum and in checking there is no better one (see [ST15a]), we envisage that good

sub-optimal solutions can be found even when optimal ones are out of reach.

Second, our CGMs are very large in breadth and small in depth, with a dominating

101

CHAPTER 9. EMPIRICAL EXPERIMENTS

Table 9.7: Second group of experiments, k£ =2, p = 6: median time over solved instances.

Lexic. Order PRT Lexic. Order RPT

w0 Q)

3 s

E E

~ o} =

> -
EE oy 52 4 p P

: 5§ 0§ 55 EF & £ £ 4
= 5 5 2 58 % w 5 g 8 -
5 £ = B £ % B E g E
¥ 3 5 £ 52 2 E 2 5 R
& Z A = Z R wm = o ¥ o ¥
1 100 2 110 60 1 0.00 0.00 0.04 O 0.08 0
2 100 3 164 90 2 0.00 0.00 0.07 0 0.08 0
3 100 4 218 120 1 0.00 0.00 011 O 0.09 0
4 100 5 272 150 3 0.00 0.00 0.12 0 015 O
5 100 6 326 180 2 0.00 0.00 013 O 020 O
6 100 7 380 210 3 0.00 0.00 021 O 026 0
7 100 9 488 270 2 0.00 0.00 052 0 045 O
8 100 11 596 330 7 0.00 0.00 090 O 050 0
9 100 13 704 390 8 0.00 0.00 242 0 233 0
10 100 15 812 450 4 0.00 0.00 3945 0 1556 O
11 100 17 920 510 6 0.00 0.00 164 O 1.57 0
12 100 21 1136 630 7 0.00 0.00 694.50 52 468.88 20
13 100 26 1406 780 6 0.00 0.00 — — — —
14 100 31 1676 930 14 0.00 0.00 — — — —
15 100 36 1946 1080 15 0.00 0.00 — — — —
16 100 41 2216 1230 19 0.00 0.00 — — — —
17 100 46 2486 1380 16 0.00 0.00 — — — —
18 100 51 2756 1530 27 0.00 0.00 — — — —
19 100 101 5456 3030 33 0.00 0.00 — — — —
20 100 151 8156 4530 46 0.00 0.00 — — — —
21 100 201 10856 6030 56 0.00 0.00 — — — —

102

9.3. EXPERIMENT EVALUATION

Table 9.8: Second group of experiments, £ = 2, p = 8: median time over solved instances.

Lexic. Order PRT Lexic. Order RPT

2 2

= e

E

—~ ~ i

wn
tE 5 33 . % P P

i 55 0t 55 E @ 2 3 =
E 5 5 2 5 5 W 5 § 8 § 8
8§ £ 3 = B £ % E E E E
& B 5 2 5 2 3 E 2 F 2
= Z A &= AR n = o X o ¥
1 100 2 110 60 O 0.00 0.00 006 O 0.07 O
2 100 3 164 90 1 0.00 0.00 008 O 0.08 O
3 100 4 218 120 0 0.00 0.00 018 O 0.09 O
4 100 5 272 150 2 0.00 0.00 018 O 0.14 O
5 100 6 326 180 1 0.00 0.00 036 O 0.18 O
6 100 7 380 210 2 0.00 0.00 021 O 020 O
7 100 9 488 270 6 0.00 0.00 028 0 030 O
8 100 11 596 330 4 0.00 0.00 061 O 047 O
9 100 13 704 390 6 0.00 0.00 073 O 0.53 O
10 100 15 812 450 12 0.00 0.00 1.38 O 069 O
11 100 17 920 510 6 0.00 0.00 1.81 O 099 O
12 100 21 1136 630 10 0.00 0.00 7.00 O 392 0
13 100 26 1406 780 11 0.00 0.00 330.39 10 9.38 1
14 100 31 1676 930 11 0.00 0.00 327.86 72 8.40 10
15 100 36 1946 1080 14 0.00 0.00 — — — —
16 100 41 2216 1230 13 0.00 0.00 — — — —
17 100 46 2486 1380 14 0.00 0.00 —_ — —_ —
18 100 51 2756 1530 20 0.00 0.00 — — — —
19 100 101 5456 3030 33 0.00 0.00 —_ — —_ —
20 100 151 8156 4530 40 0.00 0.00 — — — —
21 100 201 10856 6030 59 0.00 0.00 —_— — — —

103

CHAPTER 9. EMPIRICAL EXPERIMENTS

Table 9.9: Second group of experiments, £ =2, p = 12: median time over solved instances.

Lexic. Order PRT Lexic. Order RPT

w0 Q

2 =

e §

~~ = =

= =
EE oy 52 4 p P

: 5§ 0§ 55 EF & £ £ 4
E 5 8 2 5 B w & g 8 g 8
5 £ = B £ % B E g E
5 3 B 5 5 2 = E 2 g 2 E
= A = Zz X n B o N o v
1 100 2 110 60 1 0.00 0.00 006 O 006 O
2 100 3 164 90 0 0.00 0.00 009 O 0.07 O
3 100 4 218 120 0 0.00 0.00 013 O 012 O
4 100 5 272 150 0 0.00 0.00 015 O 017 O
5 100 6 326 180 0 0.00 0.00 025 O 020 O
6 100 7 380 210 0 0.00 0.00 039 O 030 O
7 100 9 488 270 O 0.00 0.00 043 O 049 O
8§ 100 11 596 330 0 0.00 0.00 081 O 056 0
9 100 13 704 390 1 0.00 0.00 1.15 0 08 0
10 100 15 812 450 1 0.00 0.00 132 0 037 O
11 100 17 920 510 2 0.00 0.00 1466 O 197 0
12 100 21 1136 630 O 0.00 0.00 602.22 23 213 0
13 100 26 1406 780 2 0.00 0.00 911.26 87 905.11 9
14 100 31 1676 930 4 0.00 0.00 — — 14.79 24
15 100 36 1946 1080 O 0.00 0.00 — — —_ —
16 100 41 2216 1230 1 0.00 0.00 — — — —
17 100 46 2486 1380 2 0.00 0.00 — — — —
18 100 51 2756 1530 1 0.00 0.00 — — — —
19 100 101 5456 3030 5 0.00 0.00 — — — —
20 100 151 8156 4530 5 0.00 0.00 — — —_ —
21 100 201 10856 6030 10 0.00 0.00 — — — —

104

9.3. EXPERIMENT EVALUATION

percentage of tasks over the total number of goals. We envisage that this may have
made the number of variables in the sums defining Weight and numSatTasks unreal-
istically large wrt. the total size of the CGMs. This underscores the need for further
experimentation to confirm the scalability of our proposal.

Third, in our experiments we did not consider user assertions which, if considered,
would force deterministic assignments and hence reduce drastically the size of the OMT
search space.

Fourth, OMT is a recent technology [ST12] which is progressing at a very high pace,
so that it is reasonable to expect further performance improvements for the future
versions of OMT tools. In particular, a recent enhancement for handling Pseudo-Boolean
cost functions as in (5.2) has provided interesting preliminary results [ST17].

Overall, our evaluation showed that CGM-Tool always checks the realizability of
huge CGMs in negligible time and finds optimal realizations on problems whose size
ranges from few hundreds to thousands of nodes, mostly depending on the number of
variables involved in the objective functions.

Figure 9.10-Figure 9.14 show the median CPU time comparison, while Figure 9.15

shows the unsatisfiable percentage of the experiments.

105

CHAPTER 9. EMPIRICAL EXPERIMENTS

‘seordad g = A7 uo 9[mq swojqoad uo {premsy — L3TeUS] ‘OUWT IHIOM ‘4500} Jo uoryezrwijdo osryder30orxa] oy
§97039p (NZ)2uSTom/awTl /1505 “§°9 1 \J JO 9N[eA 9} PUB Pasn UOI}OUN] }S0I 9Y} sojouap jo[d Yoes jo awreu oy, ;1@ 9InSI1,]

(NgJisoa/awn/1ysiem

(NS)1509/3W1/1YSIIM i
(N¥)3502/3WH/1YTIIM i
(NZ)1509/2W0/1YSIOM s
(N8)IYB19M/53WN/150 e
(NS)IYS19M/2UWN /1500 g
(NP)IYSI9M/5WN /1500 g

(NZ)1ySram/awn /1509
(N8)IYBIOM
(NS)IYBIOM e
(NY)IYSIOM e
(NZ)yBom

(Ng)own —@—
(NY)IUWN ey
(NS)oUWY i
(NZ)own

(N8)1509 e
(NS)1S00 g
(N¥)1509 e

(Ng)1s500

000TT

S9PON jO JaquinN

0011 0Tt

00°0T

00°00T

00°000T

(spuodas) swit

106

9.3. EXPERIMENT EVALUATION

"S90UB)SUIL POAJOS I9A0 SOWIT)) J)) UBIPOW [[BJISAO :SjUsWILIodXe Jo dnoas puoosg :g'¢ 9ansig

Ajuond syuswaiinbal Yos dzT —g—
Aj1oud SjUSWRIINDAL YOS™ G e
Aond syuawalinbal Yos™ 49 i

Aiond s90uR19)0Id T T wfe
Aioud s9ouasayeld ™ dg e

Ay1011d $32UB18J8.d ™ 49 e

00

S9PON j0 Jaquinn

TT

00TT

00T

00°0T

00°00T

00°000T

(spuodas) swiy

107

CHAPTER 9. EMPIRICAL EXPERIMENTS

"S9OUR)SUL PIAJOS JOA0 SOUWIT} UNLI UBIPOW ‘g = ¥ ‘sjudwiLIadxd Jo dnoas 9sarg :g'g o131

1502/3WNH/1YSIOM cijn
1YS19M/3WIN /1500 e
FIPM e

AW g

1500 cpm

00011

00TT

S9PON j}O JaquinN

i
A

P —

I-n-.-\

\n \\,

L

000

oT'o

00T

00°0T

00°00T

00°000T

(spuodas) swit

108

"S9OUB)SUI POAJOS I9A0 SOUWI) UNI URIPOW ‘§ = ¢ ‘SpuowiLIodxe Jo dnouas 3saryq ¢ oInsi

9.3. EXPERIMENT EVALUATION

S9pON jO Jaquinn

000TT 00TT o1t
000
Aw.h
e
7 100
_—
“\l
7 / P
Y. S—
_—
> P = -
o o 7 010
1500/3WNH/IYSIOM cjin b\./\ \IJ \\\
1Y319M/3W1N/150D e \\ \ l\\\ \
YoM i - l \\ / \\. \
sun—m- * — / S~ - 4 .
W~ 00T

150D e

n.~\\

< "~-.l\
5\

N
N

0001

x!&:‘h

00°00T

~
NN

A
N

4
/
\\
= = = FE——me—e— == SS=S= = 00000

109

(spuodas) swi)

CHAPTER 9. EMPIRICAL EXPERIMENTS

"S9OUR)SUL PIAJOS JOA0 SOUWIT} UTLI UBIPOW ‘G = ¥ ‘sjudwiLIadxd Jo dnoas 9sarg :g g oInJi

00011

S9PON j}O JaquinN

00TT

T
N\
- N\
= / - .
= / e
1500/3WNH/IYSIOM e \"I\ \\ll/ \‘ \4/.4\ \\
1YS19M /23U /1500 ey] \ \ \
WFM / \\ N\ \
AW i = s v 4
1500 e \0\ - ‘ ‘ (
P / /
f—1
f
1+ m
/ .-m\
Il
/ / ¥/
] /)
i i w = ES== -

oT'o

00T

00°0T

00°00T

00°000T

(spuodas) swit

110

9.3. EXPERIMENT EVALUATION

"S90UB)SUI POAJOS I9A0 SOUWI) UNI URIPAW ‘Q = ¥ ‘SpuewiLIodxe Jo dnouas 3sary :9'g oIngr

1500/3WNH/IYSIOM cjin
1Y319M/3W1N/150D e
YoM i

AW i

1500 e

000TT

S9pON jO Jaquinn

00TT

0Tt

)

™

o’

\
\
n....~

\.

|/ \
I —_ /
/ \ \ /X
m h.h h V4 \\\
I] ¥
g/ 7
/ / [NA
= == ==

000

100

oT'o

00T

0001

00°00T

00°000T

(spuodas) swi)

111

CHAPTER 9. EMPIRICAL EXPERIMENTS

"S9IUB)SUL PAAJOS JIOAO0 SOWIT) UNI UBIPOW ‘9 = d ‘g = ¥ ‘SyuowiLIodxs Jo dnoas puodag :),°6 9an3i|

S9PON jO JaquinN

000TT 00TT

000

T00

01’0

Ayond syuswalinbal YOS g

Ay101d $33U18J84d e

00T

00°0T

00°00T

00°000T

(spuodas) swi

112

9.3. EXPERIMENT EVALUATION

"S90UR)SUL POA[OS JOA0 SOWIT) UNJ URIpoW ‘Q = d ‘g = ¥ ‘SjuswiLIodxe Jo dnoasd puodsg :g8'g 9an3ig

SI9PON jO JaquinN

000TT 00TT 0Tt
100

Aond syuawalinbal YOS e 00T

Ajond s30U2.3)81d e

\ 00°0T

(spuodas) swi)

00°00T

L i L 00°000T

113

CHAPTER 9. EMPIRICAL EXPERIMENTS

‘SOJURB)ISUL PAAJOS IDAO0 SOWIT} UNJI URIPOW ‘GT = d ‘g = ¥ ‘SyudwiLIodxa Jo dnots puodag :¢'@ 93]

000TT

S9PON jO JaquinN

00TT 0Tt
T00

00T

Ayond syuswalinbal YOS g

Ay101d $33U18J84d e

—J

0001

00°00T

00°000T

(spuodas) swit

114

9.3. EXPERIMENT EVALUATION

uorjeziwrnd(1s0) :uosLreduro)) swrpuny ULIPSA [BJUSWLIOdX (0T ¢ 9INST

(N8)3S00 e
(NS)1SO? i
(N)1509 et
(NZ)1509

000TT

S9pON jO Jaquinn

00TT

0Tt

qk\

000

- 100

oT'o

00T

0001

00°00T

00°000T

(spuodas) swi)

115

CHAPTER 9. EMPIRICAL EXPERIMENTS

uonjezrunyd() awr], :uostreduwo)) swWriuNY UBIPIA [BPUSWILIOAXT :TT'6 oInS1]

(Ng)owl —@—
(NY)oW ey
(NG)oW

(NZ)aw o

000TT

S9PON jO JaquinN

00TT

0Tt

P 4
§ “
£ /
N,
/
/Al
I [£1]
[
17 /Y
I A
4
a4

000

T00

oT'o

00T

00°0T

00°00T

00°000T

(spuodas) swit

116

9.3. EXPERIMENT EVALUATION

uonyeziwrd(1YSep) ‘uosLeduro)) swruny URIPSA [BJUSWLIOdXY :ZT 6 9IN31

(NSJIYSIOM e
(NS)IYBIOM e
(ND)IYBIFM e
(NZhydam .

000TT

S9pON jO Jaquinn

00TT

0Tt

s
\ Vn.w\
A\ ...\w\ ¥
[/
I/ —
——
ja /
“.\ [..m
i ‘* /
/ 7]
/ 1/ /] J
h\\ /i
- * R T e

000

100

oT'o

00T

0001

00°00T

00°000T

(spuodas) swi)

117

CHAPTER 9. EMPIRICAL EXPERIMENTS

uonjyezruryd() 1PI)-XdT FYSIOA /AUWIL]/AS0)) :uosLredwo)) swrpuny] UBIPIA [eyuswLIodxy 16 oInS1]

S9PON }O JaquinN

000TT 00Tt 01T
VN
/ \ /
I \ /
1 \ 7
I X
(N8)IuBIPM/2WR/1500 i \4
(NS)IYBI2M/2WN/1S00 i _ e
(N¥)IUBIIM/3WH/1500 e A 4 \«v /
(NZ)1ySiam/awn /1500 f \.
\ ~
v
=V —
| I |
N
/ 1]
/ 1] 4
V4 J y A
\\ \\nh
S - =

000

T00

oT'o

00T

(spuodas) swit

00°0T

00°00T

00°000T

118

9.3. EXPERIMENT EVALUATION

uonyeziwd() I9pI)-XaT 1500 /AWILI/AYSIOA (uosLIedwo)) awuny] UBIPIA [eIUsWLIOdXY 16 oINS

(N8)1s02/3Wn/1ydiom
(NG)1s0a/awn/aysiam
(N¥)1502/2Wn/1ySiam

(NZ)1502/3Wn/1ySIom

000TT

S9PON }JO JoqUWINN

00TT

01T

000

100

0oTo0
=
()
[7,]

00T a
(@]
o
=
Q.
(7]

0007 ‘=

00°00T

00°000T

119

CHAPTER 9. EMPIRICAL EXPERIMENTS

‘syuowLIadxa Jo sdnous yjoq ‘sedue)sul a[qezi[earun Jo aSejuadIog :GT 6 oInSI]

S9IUDJ3YRIJTINT —@—
EERIVEYCTEYNT:{\F e
S9IUDIDYBIIINT e

N8 =g
NG ==
NV e
NT e

S9PON jO JaquinN

%0C

%0¥

%09

%08

%00T

98ejuadiad ajqezijeasun

120

CHAPTER

USER-ORIENTED EVALUATION

This chapter reports the evaluation process and results of our approach with

the end-users (modellers).

%k %k ok ok

As stated in chapter 1 our project aim is to advancing the state-of-the-art in goal models
and reasoning by proposing a more expressive modelling language that encompasses
many of the modelling constructs proposed in the literature, and at the same time
offers sound, complete, and tractable reasoning facilities. Hence, we have conducted a
user-oriented experiment and evaluation with the end-users (modellers). The evaluation
aimed to assess the usability of the CGM modelling language and CGM-tool for the

modellers.

10.1 Evaluation Objectives

As mentioned above, the goal of the evaluation is to assess the usability of the CGM
framework. However, the definitions and measurement models of usability is quite
varied. The International Organization for Standardization (ISO) measures usability
based on the understanding, learnability, attractiveness of the software product for the
users when used under specification conditions [ISO06]. [ISO98] measures usability

based on the effectiveness in achieving specified goal for the users. The glsieee describes

121

CHAPTER 10. USER-ORIENTED EVALUATION

usability as the ease a user can learn how to operate, prepare inputs for, understand and
interpret the outputs of a system or component [TEE90]. In [DR93], usability is defined
by the quickness and simplicity of a user task accomplishment. This definition based
on four assumptions: usability means focusing on users, usability includes productivity,
usability means ease of use, and) usability means efficient task accomplishment. [Sha91]
defines usability based on five attributes: speed, time to learn, retention, errors, and
user specific attitude. [PRS*94] measures usability based on effectiveness and efficiency
to throughput. While [CL99, Nie93] defines usability by learnability, memorability,
effectiveness, efficiency, and user satisfaction. Besides the mentioned above, there are
many more definition and measurement models of usability. The variety of definitions
and measurement of usability lead to inconsistency across the literature due to the use
of different terms for the same or similar characteristic. Therefore, this complicates the
extraction of attributes to measure the usability of modelling framework.

In our evaluation, we adopted the usability definition for modelling framework
presented in [SCR11]. The usability, therefore, is specified by “learnability, memorability,
effectiveness, efficiency, user satisfaction and perceptibility”. Their framework, however,
has a different focus than our evaluation objectives. [SCR11] goes for the usability of
modelling languages for model interpretation, while we are more interested in model
development scenarios and modellers. As stated in [SCR11], for a model development, “a

modeller needs
(i) to learn the modelling language,

(i) to remember the language’s elements and syntax to ensure correctness of the

model,
(1) to reach a fast and correct task accomplishment, and
(1) to be satisfied with the modelling language”.
In this evaluation, we focus on three main criteria:
E-C; What is the learnability of the approach? (point (i) and (ii))
E-Cy; What is the effectiveness and efficiency of the approach? (point (iii))

E-Cs What is the user satisfaction of the approach in modelling requirements and

requirements evolution? (point (iv))

122

10.2. EXPERIMENT DESIGN

We measure the learnability by the ease of learning the CGM for first time user and
the memorability, i.e., the proficiency of a user after a period of non-use. The effectiveness
is measured by the completeness, correctness of the produced CGM model and the
efficiency is measured by the time taken to model a scenario with CGM. As there is
no standardized method for measuring user satisfaction, we evaluated the satisfaction
through general impression and willingness to adopt the CGM framework. Therefore, to

evaluate the proposed criteria, we need to answer the following research questions:

E-RQ; How long does it take to learn using the CGM modelling language and CGM-Tool?

(learnability)

E-RQ:> How effective is the CGM modelling language in capturing requirements problem?

(effectiveness)

E-RQ3 How easy to use the CGM modelling language and CGM-Tool? (efficiency)

E-RQ4 What is the willingness of the end-users in adopting CGM? (user satisfaction)

10.2 Experiment Design

There are many usability evaluation methods such as cognitive modelling methods,
inspection methods, inquiry methods, prototyping methods, testing methods, etc.. Some
use data from users, others rely on usability experts. Usability evaluation methods
also vary when using in different stages of design and development. Each method has
their own advantages and disadvantages. For example, think aloud protocol proposed
in [LR94] is frequently used in designing, coding, testing and releasing phases of a
software/application. It is a low-cost evaluation method and the results are accurate to
user experience, however, the experiment environment is not natural to the participants.
remote usability testing introduced in [Nie93] is usually used in the same phases as think
aloud protocol. This method can cover three usability attributes: efficiency, effectiveness,
and satisfaction. However, additional software is necessary to observe the participants
from distance, which can be costly. Both Cognitive walkthrough [WRLP94] and pluralistic
walkthrough [Bia94] are using inspection evaluation methods. The methods may not
require a fully functional prototype, and usability issues are resolved faster. However,
both methods do not address the issue of efficiency aspect of the usability, and they are

more appropriate for the designing phase.

123

CHAPTER 10. USER-ORIENTED EVALUATION

Given the consideration of cost, time constraints, and availability of resources, we
had chosen an inquiry evaluation method: evaluating through questionnaires/surveys.
Although the data collected is subjective, it provides valuable information on the user

expectation. The evaluation process consists three main phases:

Training: - Participants attend two 90-minute lectures introducing the CGM modelling

language and given hand-on experience with the CGM-tool.

- Participants are given a training material consisting of slides used for the

introduction of the CGM modelling language and the CGM-tool manual.

Application: = - Participants work alone or in groups and applying the CGM-modelling ap-

proach to the Scheduling Meeting scenario.

— At the end of the application phase, participants have to deliver a report

documenting the application of the method.

Evaluation: - Participants are requested to evaluate the modelling approach through an-

swering questionnaires.

The training phase is needed to access the learnability of the framework (E-C;),
while the application phase is used to measure the efficiency and effectiveness of the
framework (E-Cs and E-Cj3). Evaluation phase helps to collect data for measuring all

the evaluation criteria (learnability, efficiency/effectiveness, and user satisfaction).

10.3 Experiment Procedure

In accordance with the objectives of the evaluation, we recruited two group of partici-

pants:

1. The M.Sc. students attend the M.Sc. courses in Requirements Engineering and
Organisational Information Systems at the University of Trento. Most of the
participants had already some experience in requirements modelling and goal-
orientation, however, they were all method ignorant, i.e., none of them had previous

knowledge of CGM modelling language or CGM-Tool.

2. The Ph.D. students, who research subjects involve requirements engineering and
modelling, in the Department of Information Engineering and Computer Science

at the University of Trento. They can be considered as expert modellers, who are

124

10.3. EXPERIMENT PROCEDURE

very familiar with goal-oriented requirements modelling and have knowledge of

our approach baseline: the qualitative goal model introduced in [SGMO04].

The main reason for choosing this two groups of participants is because of the E-C;:
learnability. We want to access the learnability of the CGM framework on complete
novices, the M. Sc. students, who have some background in requirements engineering
and modelling and may possess some knowledge of goal-orientation modelling, as well as
the “expert” modellers, the Ph.D. students, who have strong background in requirements
engineering and modelling and possess solid knowledge of goal-oriented requirements
modelling. Moreover, we choose university students as participants over industrial
workers/researchers not only because of the limitation of participants selection but also
because of the open-mindedness and motivation of the students when being introduced
to a new approach. Industrial workers/researchers, sometimes, set a limitation for
themselves and refuse to try a new approach if it is different from what they have been
using. Furthermore, we believe that users’ opinions collecting from university students
would be less bias than industrial workers/researchers.

Notice that: to avoid learning effects, and domain knowledge drawback, all partic-
ipants were asked to use the Scheduling Meeting scenario as presented in chapter 4

which is a very common and familiar scenario of requirements engineer.

10.3.1 Study with Master Students

Participants. Eight students enrolled in the Master’s course Requirements Engineer-
ing and Organisational Information Systems at the University of Trento have partici-
pated in the evaluation. They had a background in Security Engineering and Information

Systems.

Setting. The participants were introduced to the CGM modelling language and they
were trained to use the CGM-Tool. At the end of the training, the participants were asked
to fill in a questionnaire which assessed their gained knowledge, their understanding of
the approach, and their estimation on the quality of the training. During the application
phase, the participants were introduced to the Scheduling Meeting scenario and were
given supporting material: slides and tutorials on CGM modelling language and CGM-
Tool, and a cheat sheet summarising all concepts, relations, and formula form of the
CGM-Tool. The participants worked alone or in a group of maximum three students.

After examining the scenario, they first drafted the goal model using i* goal model,

125

CHAPTER 10. USER-ORIENTED EVALUATION

then built the model using CGM modelling language, and used CGM-tool to build and
optimize the model. The method designer (lecture) were present and observe the whole
application phase. The lecturer took notes of the questions raised by the participants,
their behaviour (discussions, notes, use of training material, etc.), and the behaviour
of the method designers (reaction to questions, answering individually or towards all
present participants, and other general impressions). Lecturer also answered to general
questions on the assigned task and on the features of the tool, and the responses were
given to all the students (not only to the student who made the question). No solution to
the raised problems or doubts was provided. After the modelling session students were
asked to fill in a questionnaire focused on their overall impression of CGM modelling

language and CGM-Tool respectively.

10.3.2 Study with Doctoral Students

Participants. Five Doctoral Students in the Department of Information Engineering
and Computer Science at the University of Trento participated in the evaluation. They all
have background in requirements engineering and have knowledge of the CGM approach

baseline: the qualitative goal model introduced in [SGMO04].,

Setting. The participants were introduced to the CGM modelling language and given
hands-on experienced the CGM-Tool. To make a comparison with the other group, the
participants were also asked to fill in the same questionnaire (which assessed their
knowledge/understanding of the CGM) as the M.Sc. student. During the application
phase, the participants were introduced to the Scheduling Meeting scenario, and were
given supporting material: slides and tutorials on CGM modelling language and CGM-
Tool, and a cheat sheet summarising all concepts, relations, and formula form of the
CGM-Tool. The participants worked alone. After examining the scenario, they were asked
to build the goal model using both i* goal model and CGM modelling language, then they
were asked to use the CGM-tool to build and optimize the model. The participants were
not observed during the application phase. Thus, to collect data about the application
phase, students were asked to deliver a report describing in details the application of the
approach and the generated models. Moreover, they were also asked to were asked to fill
in the same questionnaire provided for the M.Sc. students at the end of their application

phase.

126

10.4. EVALUATION RESULT

10.4 Evaluation Result

As mentioned above, the experiment is evaluated using the collected questionnaires
filled by the students. There are two questionnaires, one for modelling language, and
another for the tool. In addition to the questionnaire, the experiment is also evaluated
through the observation of Master Students while doing the application phase as well as

the reports of the Ph.D. Students on the application phase.

10.4.1 Training phase

In the questionnaire of the training phase, an example scenario was presented and the
student was also presented with the goal graph of the scenarios. There are 21 questions
in total (multiple-choice) focusing on the main concept of CGM modelling language to
measure the understanding of the student about CGM modelling language. The students
was also asked to indicate their level of confident when choosing an answer. The results
of the questionnaires are presented in Table 10.1. As showed in the graph plots the
correct answer versus the confidence of the student in Figure 10.1, the Ph.D. Students
get a better result than the M.Sc. student, so do their level of confidence. In most case,

the confidence rate is on par with the number of correct answers.

M.Sc. students. It is noticeable from the result of the questionnaire that the concept
of contribution and the distinction of goal vs. task and requirement were not so well
explained/presented. Five out of eight of the M.Sc. students either fail to understand or
misunderstood the concept of contribution. Three of them considered contribution relation
between two goals as refinement, while the other two completely fail to grasp the meaning
of contribution relation. Half of the M.Sc. students got confused about the concept of goal
vs. task and requirement. They sometimes cannot distinguish the difference between a
normal goal and a task/requirement. Two M.Sc. students with low scores actually fail to
understand what is a goal model refinement in general. Surprisingly, most of the M.Sc.
students got the numerical attribute/variable/SMT constrained and optimization concept
quite well. Six out of eight have correct answers in the question related to the calculation

of optimized realization.

Ph.D. students. The Ph.D. students, on the other hand, have done quite well on
understanding the CGM modelling language. Three of them fail to score 100% due to

wrong calculation of numerical attribution optimization. This, when asked, was explained

127

CHAPTER 10. USER-ORIENTED EVALUATION

Table 10.1: CGM Modelling Language Questionnaire Result

Student Percentages of Correct Answer Percentages of Confidence

Ms. 1 76% 88%
Ms. 2 81% 100%
Ms. 3 48% 50%
Ms. 4 81% 82%
Ms. 5 81% 88%
Ms. 6 71% 80%
Ms. 7 86% 89%
Ms. 8 52% 36%
PhD. 1 95% 83%
PhD. 2 90% 88%
PhD. 3 100% 100%
PhD. 4 100% 94%
PhD. 5 95% 94%
. +
09 ot
H

0,8 -+

0,7

o + Ms. Students
0 + PhD. Students

04

Percentages of confidence

0,3
0,2
0,4 0,5 0,6 0,7 0,8 0,9 1

Percentages of correct answers

Figure 10.1: CGM Modelling Language Questionnaire Result Plot.

as their carelessness while checking the variables in the goal model graph. Two of the
Ph.D. students with lower than 90% of confidence stated that the low confidence was
due to their confusion about the concept of contribution relation. It was hard for them to
distinguish the difference between contribution relation and a goal refinement that has

only one source.

128

10.4. EVALUATION RESULT

10.4.2 Application phase

In the application phase, the students were given a Scheduling Meeting scenarios (as
presented in chapter 4) and were asked to build the goal model/draw the goal graph of
the scenarios using both CGM modelling language and i* goal model. Later, they were
asked to used the CGM-Tool to generate the optimal realization of the model based on
their choices of optimization objective.

At the end of the application phase, both groups of participants were asked to filled
in a questionnaire focused on their overall impression of CGM modelling language (ef-
fectiveness/expressiveness) and CGM-Tool (usability) respectively. In addition to the
questionnaire, the experiment is also evaluated with the observation of the M.Sc. stu-
dents during the application phase/modelling section, and the report of the Ph.D. students
in the application phase.

M.Sc. students. Through observation, all of the students can use the CGM-Tool with
ease when given a goal graph or using their own goal graph/model. However, five out of
eight students complained about the installation steps of the tool. Most of them reported
that installing the CGM-Tool and its back-end OptiMathSat separately was a real hassle.
During the modelling phase, two of the students were struggling with the goal model
hierarchy, they could not distinguish the goal refinement direction (confusing about
parent/child in a refinement). It was also noticeable that the students had harder time
building goal model with i* than CGM. Half of them can build the model (both CGM and
i*) without any help. While the others can build the CGM model with some hints (mostly
concerning the goal refinement hierarchy). One of the students cannot build the i* model.
While the other two can build i* model after they were given some hints on the structure.

In the questionnaire, all of the students agreed that CGM language is simple to
use, easy to learn with intuitive concepts, and expressive enough to describe a complex
model. Five of them agreed that the CGM-Tool graphical notions are clear and easy to
understand. There were mixed feedbacks in the rest of the participants, however, they
are mostly concerning the size, colour of the GUI only. All of them reported that CGM is
effective in capturing the given scenarios while i* can capture most part of the goal model
but was not able to express variables or numerical attributes as well as optimization
aspect. Seven out of eight considered the CGM modelling language is expressive and
efficient in modelling requirements problem. Comparing to i*, all of the students agreed
that CGM was less complicated and easier to grasp. While six of them considered CGM

more expressive and efficient than i*, one of them preferred i* over CGM and the other

129

CHAPTER 10. USER-ORIENTED EVALUATION

chose “undecidable” option. All of the students agreed that CGM provided many features
supported by different goal modelling language, while given the option of optimizing the
candidate solution based on user-defined preferences and numerical attributes. Seven
of them agreed that CGM-Tool is very intuitive and easy to use and support automatic
solution generation/optimization. One of them complained about the missing concepts of
actors and links. Half of the students agreed that they would want to adopt the CGM
framework. One of them “refused” to use CGM framework, however, he confirmed that it
was not because of the framework but rather because he did not think he would need
to use goal model in future. The rest of the student choose “difficult to say” (concerning

adopting CGM framework for requirements modelling).

Ph.D. students. As the results of the Ph.D. students’ reports, all of them manage to
build the CGM model with ease, while only one of them was struggling with i* model.
All of the Ph.D. students reported that the CGM-Tool was easy to use and they installed

and run the tool without any problem.

In the questionnaire, all of the doctoral students agreed that CGM language is
intuitive, expressive, and effective in modelling requirements problem. Two of them
agree that the CGM-Tool graphical notions are clear and easy to understand. The rest
complained about the plain GUI and the “not-so-clear” distinction between conflict edge
and contribution edge graphical notions in the tool (due to the small font of the + and
— sign). All of them agreed that CGM captured the given scenarios more intuitive and
effective than i*. All of them agreed that CGM modelling language is expressive and
efficient in modelling requirements problem. When asked to compared to i*, all of them
state that it was hard to say which “less complicated” and/or “easier to grasp” as well
as “more expressive and efficient” due to the difference in nature between the two
language. All five of the students, however, agreed that CGM provided many features
supported by different goal modelling language, while given the option of optimizing the
candidate solution based on user-defined preferences and numerical attributes. They all
accepted that CGM-Tool is very intuitive and easy to use and support automatic solution
generation/optimization. All of the doctoral students agreed that they would want to

adopt the CGM framework for requirements modelling.

130

10.5. RESULT ANALYSIS

10.5 Result Analysis

Based on the experiment results, we can evaluate our research questions (presented in
section 10.1):

E-RQ;

E-RQ;

E-RQs

E-RQq

We cannot give the qualitative answer to this question. However, participants were
able to understand all the basic concepts of the CGM modelling language and
got a grasp of the CGM-Tool after a 90 minutes lectures on each. Moreover, most
of the participants perceived the language as simple to use, easy to learn with
intuitive concepts, and expressive enough to describe a complex model. The results
of the questionnaires and observation/reports support this outcome. However, a few
participants encountered difficulties in clearly distinguish the concepts of goals,

tasks, and requirements in CGM as well as the concept of contribution.

All participants reported that CGM is effective in capturing the given scenarios
while i* can capture most of the goal model except for the numerical attributes
and optimization part. Participants agreed that CGM provided many features
supported by different SoTA goal modelling languages, while given the option of
optimizing the candidate solution based on user-defined preferences and numerical
attributes. Furthermore, CGM-Tool provided automatic generation/optimization of

the candidate solution.

Most of the participants agreed that the tool is easy to use, while a few of them
gave mixed feedback about the tool. However, there was complain that it was a
hassle to install the CGM-Tool and its backend (OptimathSAT) separately.

Most of the participants agreed that they would want to adopt the CGM framework,
three of them chose "difficult to say“, and the one refused to adopt CGM in the
future. However, when asked, the "refused” participant confirmed that it was not
because of the framework, but rather because he did not think he would need to do

goal modelling in the future.

From the research question evaluation, we can assess our framework usability

through the three usability criteria:

E-C,;

As for the learnability, it can be agreed that the CGM modelling language is simple
to learn and there are not much gap in the learnability between a novice mod-
eller (like a M.Sc. student) and an “expert” modeller (a Ph.D. student). Though

131

CHAPTER 10. USER-ORIENTED EVALUATION

E-Co

E-C3

the concept of contribution relation between goals of the CGM can be confusing,
first time user can understand and get a grasp of it when given detailed expla-
nation. Differentiating a goal from a task and/or a requirement in the CGM can
be hard for novice modellers, however, it does not have a great impact on their
ability to understand the modelling language and their capability to use it for mod-
elling. Nevertheless, more detailed explanation, and a better, clearer description
of goal/task/requirement and contribution concept should be needed to prevent
any possible confusion in the future. Though there was a gap between the training
phase and application phase (2 days for the group of M. Sc. students, and 4 days for
the group of Ph.D. students), all the participants can still do well in the modelling.
Their main obstacle while modelling is not the CGM modelling language, but the

hierarchy/structure

The efficiency of the framework is proven as the participant can use CGM to model
the scenarios with ease (or with some minor hints) compare to their struggling
when building the model with i*. Moreover, the produced models of all participant
are correct and complete, unlike when they model with i*. This also proves the
effectiveness of the framework. Though not reported in previous sections, The
second group participants have stated in their application phase reports that they
found CGM very effective to capture even scenarios of their research works (which

vary from software requirements model, business model, to security model).

The satisfaction of the users is mainly measured by their willingness to adopt the
framework. Since only one of the participants refused to adopt the framework (and
the reason was not related to the framework itself), we come to a conclusion that
the user satisfaction of the framework is quite good. Moreover, through observation
during the application phase of the first group of participants and the reports of
the second group of participants, we saw that users are very interested in the CGM
framework, as they asked questions and showed interest in getting to know more
about the language as well as how should they apply the framework to their own

research/project.

As the results of the evaluation and analysis, we can conclude that:

(i) CGM is effective in modelling requirements and requirements evolution,

(i) CGM is easy to learn and simple to use in modelling,

132

10.6. THREATS TO VALIDITY

(i) CGM is expressive enough to capture a variety of requirements model (soft-

ware/business/security/etc.), and

(i) most modellers are willing to adopt CGM framework.

10.6 Threats to Validity

In this section, we discuss the four main types of threats to validity, introduced in
[WRH*12].

Conclusion validity. Conclusion validity concerns all issues that would affect the
ability to produce correct conclusion about the outcome of the experiment. The main
threat to conclusion validity in this experiment is the low statistical power due to the low

number of participants. The size of the sample is too small to come to correct conclusions.

Internal validity. Internal validity concerns all issues that may indicate a causal
relationship between the experiment procedure and the outcome of the experiment. The
main threat to internal validity in this experiment is that the selection of the participants
is too narrow. Moreover, some of the participants were in our professional network, thus,
they gained knowledge of the framework over time, and their opinion and experience
might be affected.

Construct validity. Construct validity concerns the generalization of the result of the
experiment to the concept and theory behind the experiment. Our evaluation suffers
from the so-called mono-method bias, i.e., the subjects were treated only with our method.
Participants were only asked to try out the scenarios with i* goal model, but it was not
a fair comparison since i* goal model (as well as most of the current goal modelling

language) does not provide many of the CGM features.

External validity. External validation concerns the ability to generalize experiment
results outside of the experiment setting. The main threat to external validity in this
experiment is that only small to medium sized examples was used in the experiments.
Furthermore, there was a limitation in the domain aspect as only one scenario was used
in the experiment.

As discussed above, the experiment meets various threats to validity. However, given

the short time constraint and the limited resources available for an academic doctoral

133

CHAPTER 10. USER-ORIENTED EVALUATION

student research project, the outcome is acceptable for a dissertation in academic level.
Nevertheless, re-run the experiment with more subjects, wider selection of participants,

and larger/more complex sample would be necessary to obtain a more precise conclusion.

134

CHAPTER

CONCLUSIONS

We have proposed, an expressive goal-based modelling language for requirements that
supports the representation of nice-to-have requirements, preferences, optimization
requirements, constraints and more. Moreover, we have exploited automated reasoning
solvers in order to develop a tool that supports sound and complete reasoning with
respect to such goal models, and scales well to goal models with thousands of elements.
Our proposal advances the state-of-the-art on goal modelling and reasoning with respect

to both expressiveness and scalability of reasoning.

The contributions of this work are being exploited in several directions. [AMGM16]
has proposed an expressive modelling framework for the next release problem that is
founded on the same OMT/SMT solver technology as this work. [AAGM16] has offered
a formalization of the next adaptation problem that chooses a next adaptation for an

adaptive software system that minimizes the degree of failure over existing requirements.

We have also proposed to model changing requirements in terms of changes to CGMs.
Moreover, we have introduced a new class of requirements (evolution requirements) that
impose constraints on allowable evolutions, such as minimizing (implementation) effort
or maximizing (user) familiarity. We have demonstrated how to model such requirements
in terms of CGMs and how to reason with them in order to find optimal evolutions.

The future plan for this work includes further evaluation with larger case studies,
as well as further exploration for new kinds of evolution requirements that can guide
software evolution. We have also planned to do an empirical validation of the CGM-Tool

with modellers and domain experts. We are currently working in this direction within

135

CHAPTER 11. CONCLUSIONS

our research group with PhD students and post-docs who are expert in the modelling
field. Next, we will extend the validation to industrial experts of different domains. We
have also planned to do different case studies with real-life-complex-large-scale goal
models of a specific domain, such as Air-Traffic Control Management, healthcare, and
smart cities and smart environments.

Our proposal does not address another notorious scalability problem of goal models,
namely scalability-of-use. Goal models have been shown empirically to become more
difficult to conceptualize and comprehend as they grow in size [ERPMO06], and therefore
become unwieldy for use. As with other kinds of artefacts (e.g., programs, ontologies)
where scalability-of-use is an issue, the solution lies in introducing modularization
facilities that limit interactions between model elements and make the resulting models
easier to understand and evolve. This is an important problem on our agenda for future

research on goal models.

136

[AAGM16]

[AMGM16]

[Ant96]

[AP98]

[BDHM13]

[Bia94]

[BSST09]

BIBLIOGRAPHY

K. Angelopoulos, F. Aydemir, P. Giorgini, and J. Mylopoulos.
Solving the next adaptation problem with prometheus.
RCIS, 2016.

F. Aydemir, D. Mekuria, P. Giorgini, and J. Mylopoulos.
Scalable solutions to the next release problem: A goal-oriented perspective,
2016.

Under submission.

Annie I. Anton.

Goal-based requirements analysis.

In Proceedings of the 2nd International Conference on Requirements Engi-
neering, ICRE ’96, pages 136—. IEEE Computer Society, 1996.

Annie I. Anton and Colin Potts.
The use of goals to surface requirements for evolving systems.

In Proceedings of the 20th international conference on Software engineering,
ICSE 98, pages 157-166. IEEE Computer Society, 1998.

Alexander Borgida, Fabiano Dalpiaz, Jennifer Horkoff, and John Mylopou-
los.

Requirements models for design- and runtime: A position paper.

In Proceedings of the 5th International Workshop on Modeling in Software
Engineering, MiSE ’13, pages 62—68. IEEE Press, 2013.

Randolph G. Bias.

Usability inspection methods.

chapter The Pluralistic Usability Walkthrough: Coordinated Empathies,
pages 63-76. John Wiley & Sons, Inc., New York, NY, USA, 1994.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.

137

BIBLIOGRAPHY

[CBH11]

[CGS11]

[CGSS13]

[CKMO02]

[CL99]

[DR93]

[DvLF93]

[EBJ11]

Satisfiability Modulo Theories.
In Handbook of Satisfiability, chapter 26, pages 825—-885. IOS Press, 2009.

Andreas Classen, Quentin Boucher, and Patrick Heymans.
A text-based approach to feature modelling: Syntax and semantics of TVL.
Sci. Comput. Program., 76(12):1130-1143, 2011.

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani.
Computing Small Unsatisfiable Cores in SAT Modulo Theories.
Journal of Artificial Intelligence Research, JAIR, 40:701-728, April 2011.

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani.

The MathSAT 5 SMT Solver.

In Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’13., volume 7795 of LNCS, pages 95-109. Springer, 2013.

Jaelson Castro, Manuel Kolp, and John Mylopoulos.

Towards requirements-driven information systems engineering: The tropos
project.

Inf. Syst., 27(6):365—-389, September 2002.

Larry L. Constantine and Lucy A. D. Lockwood.

Software for Use: A Practical Guide to the Models and Methods of Usage-
centered Design.

ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

Joseph F. Dumas and Janice C. Redish.
A Practical Guide to Usability Testing.
Greenwood Publishing Group Inc., Westport, CT, USA, 1st edition, 1993.

Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas.
Goal-directed requirements acquisition.
Sci. Comput. Program., 20(1-2):3-50, April 1993.

Neil A. Ernst, Alexander Borgida, and Ivan Jureta.
Finding incremental solutions for evolving requirements.
In RE, pages 15-24. IEEE, 2011.

138

BIBLIOGRAPHY

[EBJM14]

[EBMdJ12]

[EMBJ10]

[ERPMO6]

[FLM™*04]

[GMNSO04]

[Hor12]

Neil A. Ernst, Alexander Borgida, Ivan J. Jureta, and John Mylopoulos.
Agile requirements engineering via paraconsistent reasoning.
Information Systems, 43:100 — 116, 2014.

Neil A. Ernst, Alexander Borgida, John Mylopoulos, and Ivan Jureta.

Agile Requirements Evolution via Paraconsistent Reasoning.

In Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, and Stanislaw Wrycza,
editors, CAiSE, volume 7328 of Lecture Notes in Computer Science,
pages 382—397. Springer, 2012.

Neil A. Ernst, John Mylopoulos, Alex Borgida, and Ivan J. Jureta.

Reasoning with optional and preferred requirements.

In Jeffrey Parsons, Motoshi Saeki, Peretz Shoval, Carson Woo, and Yair
Wand, editors, Conceptual Modeling — ER 2010: 29th International Con-
ference on Conceptual Modeling, Vancouver, BC, Canada, November 1-4,
2010. Proceedings, pages 118-131, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Hugo Estrada, Alicia Martinez Rebollar, Oscar Pastor, and John Mylopoulos.

An empirical evaluation of the i* framework in a model-based software
generation environment.

In Eric Dubois and Klaus Pohl, editors, Advanced Information Systems
Engineering, 18th International Conference, CAiSE 2006, Luxembourg,
Luxembourg, June 5-9, 2006, Proceedings, volume 4001 of Lecture Notes
in Computer Science, pages 513-527. Springer, 2006.

Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri, and
Paolo Traverso.

Specifying and analyzing early requirements in tropos.

Requir. Eng., 9(2):132-150, May 2004.

Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebas-
tiani.

Formal reasoning techniques for goal models.

JOURNAL OF DATA SEMANTICS, 1:1-20, 2004.

Jennifer Marie Horkoff.
Iterative, Interactive Analysis of Agent-goal Models for Early Requirements

Engineering.

139

BIBLIOGRAPHY

[HPSS00]

[TEE90]

[ISO98]

[ISO06]

[JBEM10]

[JMF08]

[Lap05]

[Leh80]

[Lial2]

PhD thesis, University of Toronto, 2012.

I. Horrocks, P. F. Patel-Schneider, and R. Sebastiani.
An Analysis of Empirical Testing for Modal Decision Procedures.
Logic Journal of the IGPL, 8(3):293—-323, May 2000.

Ieee standard glossary of software engineering terminology.
IEEE Std 610.12-1990, pages 1-84, Dec 1990.

ISO.
Ergonomic requirements for office work with visual display terminals (vdts)
— Part 11: Guidance on usability.

Iso, International Organization for Standardization, 1998.

ISO.
Ergonomics of human system interaction — Part 110: Dialogue principles.

Iso, International Organization for Standardization, 2006.

Ivan Jureta, Alexander Borgida, Neil A. Ernst, and John Mylopoulos.

Techne: Towards a new generation of requirements modeling languages
with goals, preferences, and inconsistency handling.

In RE, pages 115-124. IEEE Computer Society, 2010.

Ivan Jureta, John Mylopoulos, and Stephane Faulkner.

Revisiting the core ontology and problem in requirements engineering.

In Proceedings of the 2008 16th IEEE International Requirements Engineer-
ing Conference, RE ’08, pages 71-80. IEEE Computer Society, 2008.

Alexei Lapouchnian.

Goal-Oriented Requirements Engineering: An Overview of the Current
Research.

Technical report, Department of Computer Science, University of Toronto,
Juni 2005.

Meir M. Lehman.
Programs, Life Cycles, and Laws of Software Evolution.
In Proceedings of the IEEE, pages 1060-1076, September 1980.

Sotirios Liaskos.

On eliciting contribution measures in goal models.

140

BIBLIOGRAPHY

[LLO4]

[LMSM10]

[LR94]

[MCN92]

[Mek]

[Nie93]

[NOO06]

[NSGM16a]

[NSGM16b]

In Proceedings of the 2012 IEEE 20th International Requirements Engineer-
ing Conference (RE), RE ’12, pages 221-230. IEEE Computer Society,
2012.

Axel Lamsweerde and Emmanuel Letier.

From Object Orientation to Goal Orientation: A Paradigm Shift for Require-
ments Engineering, pages 325-340.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

Sotirios Liaskos, Sheila A. Mcllraith, Shirin Sohrabi, and John Mylopoulos.
Integrating preferences into goal models for requirements engineering.
In RE, pages 135-144. IEEE Computer Society, 2010.

Clayton Lewis and John Rieman.
Task-Centered User Interface Design:A Practical Introduction.
1994.

dJ. Mylopoulos, L. Chung, and B. Nixon.

Representing and using nonfunctional requirements: A process-oriented
approach.

IEEE Trans. Softw. Eng., 18(6):483-497, June 1992.

Dagmawi Neway Mekuria.

Constrained goal modeling and reasoning tool’s user manual.

Jakob Nielsen.
Usability Engineering.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

Robert Nieuwenhuis and Albert Oliveras.
On SAT Modulo Theories and Optimization Problems.
In Proc SAT 06, volume 4121 of LNCS. Springer, 2006.

Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.
Multi-objective reasoning with constrained goal models.

Requirements Engineering Journal, pages 1-37, 2016.

Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.
Requirements Evolution and Evolution Requirements with Constrained
Goal Models.

141

BIBLIOGRAPHY

[NSGM17]

[PDP*12]

[PRS*94]

[PSS03]

[SCR11]

[Seb07]

[SGMO04]

In Proceedings of the 37nd International Conference on Conceptual Model-
ing, LNCS. Springer, 2016.

Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.

Modeling and reasoning on requirements evolution with constrained goal
models.

Software Engineering and Formal Method, 15th International Conference,
SEFM 2017, Trento, Italy, September 4-8, 2017, 2017.

submitted.

Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti, and Paolo
Giorgini.

STS-Tool: socio-technical security requirements through social commit-
ments.

In Proceedings of the 20th IEEE International Conference on Requirements
Engineering, pages 331-332, 2012.

Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Holland,
and Tom Carey.

Human-Computer Interaction.

Addison-Wesley Longman Ltd., Essex, UK, UK, 1994.

P. F. Patel-Schneider and R. Sebastiani.

A New General Method to Generate Random Modal Formulae for Testing
Decision Procedures.

Journal of Artificial Intelligence Research, (JAIR), 18:351-389, May 2003.

Christian Schalles, John Creagh, and Michael Rebstock.
Usability of modelling languages for model interpretation: An empirical

research report, 2011.

Roberto Sebastiani.

Lazy Satisfiability Modulo Theories.

Journal on Satisfiability, Boolean Modeling and Computation, JSAT, 3(3-
4):141-224, 2007.

R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Simple and Minimum-Cost Satisfiability for Goal Models.

142

BIBLIOGRAPHY

[Sha91]

[Soul2]

[ST12]

[ST15a]

[ST15b]

[ST15c]

[ST17]

[VLO1]

In Proc. 16th International Conference on Advanced Information Systems
Engineering - CAISE’04, LNCS, Riga, Latvia, May 2004. Springer.

Brian Shackel.

Human factors for informatics usability.

chapter Usability&Mdash;Context, Framework, Definition, Design and
Evaluation, pages 21-37. Cambridge University Press, New York, NY,
USA, 1991.

Vitor E. S. Souza.
Requirements-based Software System Adaptation.
Phd thesis, University of Trento, 2012.

Roberto Sebastiani and Silvia Tomasi.
Optimization in SMT with LA(Q) Cost Functions.
In IJCAR, volume 7364 of LNAI, pages 484—498. Springer, July 2012.

Roberto Sebastiani and Silvia Tomasi.
Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

Roberto Sebastiani and Patrick Trentin.

OptiMathSAT: A Tool for Optimization Modulo Theories.

In Proc. International Conference on Computer-Aided Verification, CAV
2015, volume 9206 of LNCS. Springer, 2015.

Roberto Sebastiani and Patrick Trentin.

Pushing the Envelope of Optimization Modulo Theories with Linear-
Arithmetic Cost Functions.

In Proc. Int. Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’15, volume 9035 of LNCS. Springer, 2015.

Roberto Sebastiani and Patrick Trentin.

On optimization modulo theories, maxsmt and sorting networks.

In Proceedings of the 23rd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’17., LNCS, 2017.

Axel Van Lamsweerde.

Goal-oriented requirements engineering: A guided tour.

143

BIBLIOGRAPHY

[vLLOO]

[vLLD98]

[WRH*12]

[WRLP94]

[Yu97]

[ZHMO07]

In Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, RE 01, pages 249—. IEEE Computer Society, 2001.

Axel van Lamsweerde and Emmanuel Letier.
Handling obstacles in goal-oriented requirements engineering.
IEEE Trans. Softw. Eng., 26(10):978-1005, October 2000.

Axel van Lamsweerde, Emmanual Letier, and Robert Darimont.
Managing conflicts in goal-driven requirements engineering.
IEEE Trans. Softw. Eng., 24(11):908-926, November 1998.

Claes Wohlin, Per Runeson, Martin Host, Magnus Ohlsson, and Bjorn
Regnell.
Experimentation in Software Engineering.

Springer, 2012.

Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson.

Usability inspection methods.

chapter The Cognitive Walkthrough Method: A Practitioner’s Guide, pages
105-140. John Wiley & Sons, Inc., New York, NY, USA, 1994.

Eric S. K. Yu.

Towards modeling and reasoning support for early-phase requirements
engineering.

In RE °97: Proceedings of the 3rd IEEE International Symposium on Re-
quirements Engineering (RE’97), page 226. IEEE Computer Society,
1997.

Yuanyuan Zhang, Mark Harman, and S. Afshin Mansouri.

The multi-objective next release problem.

In Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’07, pages 1129-1137, New York, NY, USA, 2007.
ACM.

144

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Contributions
	Structure of the Dissertation
	Publications

	State of The Art and Research Baselines
	State of the Art
	KAOS
	Qualitative Goal Models
	I* and Tropos
	Techne and Liaskos
	Feature Models and Search-Based Software Engineering

	Research Baselines
	Goal Models
	Satisfiability Modulo Theories and Optimization Modulo Theories
	Satisfiability Modulo Theories
	Optimization Modulo Theories

	Contributions
	Constrained Goal Models (CGMs)
	The Backbone: Goals, Refinements, and Domain Assumptions
	Boolean Constraints: Relation Edges, Boolean Formulas and User Assertions.
	Relation Edges
	Boolean Formulas
	User Assertion

	Arithmetical Constraints: Numerical Attributes and SMT(LRA) Formulas
	Numerical Attributes
	SMT(LRA) Formulas

	Realization of a CGM
	Preferences in a CGM
	Preferences via Penalties/Rewards
	Preferences via Multiple Objectives
	Preferences via Binary Preference Relations

	UNSAT core

	Abstract Syntax and Semantics of CGM
	Abstract Syntax
	Semantics

	Automated Reasoning with Constrained Goal Models
	Encoding of CGMs
	Automated Reasoning on CGMs

	Requirements Evolution and Evolution Requirements with Constrained Goal Models
	Motivation
	Requirements Evolution
	Evolution Requirements
	Recomputing realizations
	 Maximizing familiarity
	Minimizing change effort
	Combining familiarity or change effort with other objectives

	Automated Reasoning with Evolution Requirements
	Evolution Requirements
	Comparison wrt. previous approaches

	 Implementation and Evaluation
	Implementation
	CGM-Tool
	An example

	Empirical Experiments
	Empirical Experiment
	Experiment Setup
	Experiment Evaluation

	User-Oriented Evaluation
	Evaluation Objectives
	Experiment Design
	Experiment Procedure
	Study with Master Students
	Study with Doctoral Students

	Evaluation Result
	Training phase
	Application phase

	Result Analysis
	Threats to Validity

	Conclusions
	Bibliography

