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Abstract 

 

Copper is widely used in many applications demanding high thermal and 

electrical conductivity, unfortunately its low hardness and wear resistance limit its 

performance. Work hardening has been proposed as a successful strengthening 

mechanism for the production of harder copper material, keeping the intrinsic 

conductivities. In this PhD thesis initially mechanical milling (MM) has been considered 

as suited strengthening technique due to the severe strain hardening and 

microstructural refinement induced by severe plastic deformation during the process. 

Then an enhanced hardening has been obtained by dispersion of a second harder 

phase in the copper matrix by mechanical alloying (MA), leading to the production of 

metal matrix composites (MMC). In this PhD thesis strain hardened and dispersion 

hardened copper materials have been sintered by Spark Plasma Sintering (SPS). 

Firstly the MM behaviour of Cu as function of milling time has been studied, it 

consists in three stages: flaking, welding and fracturing process. Since stearic acid 

has been added as process control agent (PCA), its decomposition has been analysed 

to limit the residual porosity in sintered samples. Several focused attempts have been 

made and the best results have been obtained by using a fine particle size, decreasing 

the heating rate and applying the SPS pressure once the decomposition of PCA was 

completed. However the presence of copper oxide and microstructure defects induced 

by the severe strain hardening hinder the densification. The residual porosity is 

responsible of a decrease of hardness in sintered sample and consequently to a 

limited wear resistance, to a decrease of thermal conductivity and to a loss of ductility. 

For the production of MMC a ceramic reinforcement (0.5wt% of TiB2) has been 

selected. Increasing milling time the dispersion of the hard phase among the matrix 

becomes more homogeneous and refinement of TiB2 is highlighted. The evolution of 

particle size and morphology during MA is similar to MM; also the densification 

mechanism during SPS are the same consisting in powder rearrangement, local and 

bulk deformation. The final density generally decreases by increasing milling time, by 

the way an increasing hardness confirms that strain hardening and dispersion 

hardening abundantly compensate the negative effect of porosity. Has been proved 

that the hard particles successfully enhanced sliding and abrasion wear meanwhile 

the copper matrix guarantees high thermal conductivity, satisfying the requirements.  

Therefore considering the characteristics of the initial copper powder, promising 

results have been obtained for MMCs showing an increased hardness combined with 

a high wear resistance and a thermal conductivity comparable to atomized copper and 

much higher than the commercial Cu-Be alloy. On the other side mechanical milled 

samples exhibited some limits, but they allowed a deep understanding of the MM 

process of copper.  
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Chapter I 

 

Introduction 

 

 

 
High electrical conductivity and thermal conductivity are two of the most 

attractive properties of copper. These advantages are the driving force for copper’s 

new and challenging applications as high performance materials in thermal and 

electric fields such as plastic injection moulding, actively cooled component, 

continuous casting moulds, electrical contacts and welding electrodes (Avelar Batista 

et al., 2006; Barella et al. 2014; Futami et al., 2009; Samal et al. 2013). The high heat 

transfer capability leads a faster heating and cooling cycle of the moulds, therefore to 

a faster processing route and to a reduction of cost (Boey et al. 2005). In electrical 

contacts and welding electrodes a large contact force is desirable to maintain effective 

current transfer whilst, on other hand, it is advisable to have contact force as small as 

possible to reduce the wear (Futami et al., 2009; Samal et al. 2013). All these 

applications make copper as a competitive alternative to tool steels. 

Unfortunately the low wear resistance and the high oxidation limit the copper 

performance pushing to the development of new advanced materials. Since wear 

resistance strongly depends on hardness different solutions to improve wear 

resistance without significantly affecting conductivity have been evaluated in the last 

years. Initially a surface hardening has been performed by surface coating, i.e. 

physical vapour deposition (PVD) coating leading to a low friction, high wear and 

oxidation resistance (Avelar-Batista et al. 2006; Barella et al. 2014). By the way the 

employment of a coating is limited by elastic and plastic deformation of the substrate, 

which the hard, thin and brittle coating cannot follow without failing. The difference 

between the thermal expansion coefficients of the two constituents increase the 

microstructural mismatch leading to easier and faster failure of the component. 

Moreover coating temperatures usually have a detrimental effect on the mechanical 

properties of the alloy, as they will over-age the substrate increasing the hardness 

mismatch between PVD coating and substrate. In addition defects produced by the 

deposition process, as voids, are very common and they can act as nucleation sites 

of cracks during service (Avelar-Batista et al., 2006). These drawbacks have been an 

additional driving force to further improvements and development of advanced 

processing routes for copper components.  

In the last years, several processes based on severe plastic deformation (SPD) 

have been developed to refine the grain size and to improve hardness and strength 
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(Valiev 2004). This approach is based on heavily straining hardening by a 

microstructure refinement using severe plastic deformation induced by a high imposed 

pressure, in this way not only the properties of the surface are enhanced but of the 

entire component. Successful results have been obtained by SPD approaches as 

equal channel angular pressing (ECAP) and high pressure torsion (HPT) (Benchabane 

et al., 2011; Valiev, 2004). By the way the main limitation to these solution is the strong 

anisotropy showed by the products (Mishra et al., 2005; Setman et al., 2013). 

At this point mechanical milling (MM) has been proposed as a successful SPD 

process for the production of strengthened nanostructured base materials 

(Suryanarayana, 2001). MM is of considerable interest as the microstructure is more 

uniform than that of other SPD methods especially due to the continuous change of 

deformation axis during processing (Setman et al., 2013). MM has been widely used 

to synthesize nano crystalline materials due to its simplicity, low cost, and applicability 

to most materials (Ruzic et al., 2013; Suryanarayana, 2001). During MM a nanometre 

sized microstructure characterized by high grain boundary surface and dislocation 

density can be achieved enhancing hardness and wear resistance by mechanical 

hardening (Ruzic et al., 2013). 

An extended hardening can be obtained by dispersion strengthening, which 

consisting in the uniform dispersion of a harder second phase through the metal matrix 

by mechanical alloying (MA). This leads to the production of metal matrix composites 

(MMC), which have recently attracted substantially attention (Long et al., 2010 [1]; 

Stobrawa et al., 2009). In the specific case of this PhD thesis the hard particles have 

to withstand wear by grooving or indenting; the copper matrix has to guarantee high 

thermal and electrical conductivity and enough support for the hard particles. Work 

hardening by MM and dispersion hardening by MA are appropriate processing routes 

to give desired combination of high strength and low electrical resistivity to copper 

materials (Ashby, 2011). A similar benefit has to be expected also for thermal 

conductivity. Nevertheless, the dispersion hardening by MA will negatively affects 

conductivity more than MM only (Ashby, 2011). Beside microstructural defects 

generated by MM, i.e. dislocation, grain boundaries etc., also the reinforcement 

particles act as scattering centres slowing down the electric and thermal flows (Ashby, 

2011). By the way dispersion hardening is an appropriate processing route since 

dispersion strengthened materials are superior in structural stability than precipitation 

hardened materials, because the second phase does not dissolve at high temperature 

(Ruzic et al., 2013). In addition MA is a solid state process performed at low 

temperature thus reducing or avoiding possible chemical reactions between the 

metallic matrix and ceramic phases (Suryanarayana, 2001; Suryanarayana, 2011). 

For these reason in this PhD thesis MM and MA of copper powder and titanium di 

boride (TiB2) powder have been performed and deeply analysed. Moreover the 

selection of powder metallurgy as processing route is convenient also to avoid 

reinforcement segregation typical occurring in the ingot metallurgy process. 
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Segregation can adversely affect the properties of MMCs, and thus a homogeneous 

distribution of the reinforcement is essential for the improvement of mechanical 

properties of the composite (Ruzic et al., 2013; Suryanarayana, 2001; Suryanarayana, 

2011). In order to reduce both the potential chemical reactions between the 

constituents and the possible growth of the nanocrystalline grain occurring at high 

temperature for prolonged time, the milled materials investigated in this study have 

been sintered by Spark Plasma Sintering (SPS). SPS technique is characterized by a 

shorter time and lower temperature compering to the conventional processes as hot 

isostatic pressing (HIP) (Elsayed et al., 2015; Tokita, 1993). The process offers 

accurate control of sintering energy as well as high sintering speed, high 

reproducibility, safety and reliability. Moreover SPS can easily consolidate a 

homogeneous, high quality sintered compact because of the uniform heating, surface 

purification and activation made possible by dispersing the spark points (Tokita, 1993). 

The fundament goal of this PhD thesis is to study and to develop a copper based 

material showing high hardness, wear resistance and thermal conductivity. Two 

different processing routes have been considered: MM and MA in order to achieve a 

severe and homogenous strain hardening, the refinement of microstructure as well as 

particle size. In the first case a water atomized copper powder has been ball milled 

while in the second one 0.5wt% TiB2 has been added to the Cu powder. In this way it 

has been possible to separately evaluate the effect of strain hardening and that of 

dispersion hardening. The PhD thesis is divided into three parts. The first one is aimed 

at the study of MM as function of different parameters and at the sintering of the milled 

powders through SPS. Firstly the investigation was focused on the effects of different 

MM parameters, e.g. process control agent (PCA), ball to powder ratio (BPR) type of 

cycle and milling time, on the milled powders. It is well known that the sintering 

processing route can be severely affected by particle size, morphology and 

contamination level (Bouvard et al., 2000; Suryanarayana, 2001). For this reason in 

the first part of this PhD thesis the attention has been focused on each single step of 

MM in order to guarantee their complete understanding and their optimization for the 

further stages of the study.  

In the second part MA of copper and 0.5wt% of TiB2 powders has been 

analysed as function of milling time and the sintered MMCs have been produce by 

SPS.  MA has been proposed as an advantageous method for the production of 

composite characterized by a uniform distribution of the reinforcement.  

The last part deals with the tribological behaviour of all the produced materials 

in order to evaluate the real competitiveness of copper MMC on tools steels.  The 

severe wear service conditions of possible MMC applications request a deep wear 

analysis in order to improve the mechanical properties by an accurate choice of the 

materials, an appropriate design of the component and an optimized processing route. 

Also thermal conductivity has been evaluated and relations with the processing route 

and the material properties have been found and described. 
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Chapter II 
 

Processing technologies 

 

 

 

2.1 Mechanical Milling (MM) 

 

Approximately two decades ago it had been demonstrated that the refinement 

of materials structure to nano scale by deformation processing and other means is the 

best way to improve mechanical properties of final products due to deformation and 

refinement of the crystallite structure (Suryanarayana, 2001; Zhao et al., 2002). By 

understanding of the underlying mechanism of strain-induced grain refinement is 

crucial not only from a theoretical point of view, but for technological development of 

advance plastic deformation techniques. From this point of view MM has been very 

thoroughly investigated; however, in the majority of cases the investigations are 

confined to areas like alloying in binary or multi component systems. Here comes the 

main difference between MM and MA: generally MM refers to the milling of a uniform 

composition powder which does not need any material transport for homogenization; 

in the other MA is the milling of a mixture of powders during which material transfer is 

required in order to guarantee a homogeneous microstructure (Suryanarayana, 2001). 

The first part of this PhD thesis is focused on the production of single copper system 

by MM. The first goal is to understand the behaviour of copper during MM and SPS in 

order to apply the acquired knowledge to MMC’s production. The second goal is to 

separate the effect of strain hardening, i.e., the only strengthening mechanisms during 

MM, from that of dispersion hardening also working during MA analysed in the second 

part of this PhD thesis. 

 

2.1.1 Development of advanced materials by MM 

 

2.1.1.1 Selection of the strengthening mechanism 

 

Grain refinement induced by SPD in metals is a well-known phenomenon to 

increase the properties of materials. On such purpose several type of techniques 

based on SPD have been developed involving complex stress state or high shear, 

resulting in a high defect density and equiaxed ultrafine grain size (d < 500 nm) or 

nanocrystalline structure (d < 100 nm). For example, ECAP and HPT have been used 

for synthesizing ultrafine-grained materials with a remarkably elevated mechanical 

strength (Benchabane et al., 2011; Valiev, 2004). By the way these techniques reduce 

https://en.wikipedia.org/wiki/Crystallographic_defect
https://en.wikipedia.org/wiki/Equiaxed
https://en.wikipedia.org/wiki/Crystallite
https://en.wikipedia.org/wiki/Diameter
https://en.wikipedia.org/wiki/Nanocrystalline


6 

the grain size of bulk material, but it is not possible to act on the microstructure 

evolution of the raw materials. For this reason in the last years another SPD 

technology, i.e. MM has found considerable interest, because the repetition of 

flattening, cold welding and fracturing process causes the modification in the 

microstructure evolution of the raw powders, which can be kept by an optimized 

sintered process (Suryanarayana, 2001). Moreover MM process is of considerable 

interest because it assures a more homogeneous plastic deformation due to the 

continuous change of deformation axis during processing (Setman et al., 2013). For 

example Mishra et al. demonstrated the limits of ECAP technique by studying the 

microstructural evolution of copper processed by SPD. They obtain an ultrafine 

microstructure (<1µm) after several number of passes and they attested an 

inhomogeneity in deformation from one grain to the other and even within a grains. 

This inhomogeneity in deformation could lead to an unequal and detrimental 

distribution of grain size in the final microstructure (Mishra et al., 2005). These 

limitations of some SPD techniques, as in the case of ECAP, promote the success of 

MM processing route as an efficient alternative to induce work hardening. Different 

strengthening methods may have a very different influence on properties (Ashby, 

2011) as report in Figure II-1. 

 

 
Figure II - 1. The strengthening mechanisms to increase strength without losing electrical 

conductivity for copper (adapted from Ashby, 2011). 
 

In the case of copper (Figure II-1) it is clear that work hardening and dispersion 

hardening by MM or MA respectively represent a very promising way looking for 

materials having high strength and low electrical resistivity. A similar benefit has to be 
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expected also for thermal conductivity. Nevertheless, the dispersion hardening by MA 

will negatively affect conductivity more than MM only. Work hardening and 

precipitation hardening seem to be the best solutions to increase strength with a slight 

increase of resistivity. Dislocations and precipitates scatter less the electrons than the 

solute atoms (Fig. II-1). In fact by solute hardening the little gain in strength is 

accompanied by a drastically increase of resistivity (Fig. II-1) (Ashby, 2011). From 

Figure II-1 is clear that precipitates offer the greatest gain in strength with a slight loss 

of conductivity. By the way the precipitation hardening it is more difficult to control in 

comparison with MM and MA, because precipitation hardening relies on changes in 

solid solubility with temperature to produce fine particles of an impurity phase. With 

this respect, it is more appropriate to incorporate inert dispersoid particles such as 

oxide, carbides, borides into copper, thorough MA leading to the formation of copper 

based MMC’s (Suryanarayana, 2001). The success of MM and MA as processing 

routes to perform work hardening has been the driving force for their use for several 

purposes.   

MM has been widely used to refine the materials microstructure down to nano 

scale in order to increase their performance and also the reactivity for the sintering 

process. MM method is usually used to synthesize quasi-crystalline, nano crystalline 

and prolonging milling time the formation of amorphous materials is obtained 

(Suryanarayana, 2001). Later MM has been used also to perform mechano-chemical 

oxidation of copper by the synthesis of cuprous oxide nanoparticles (Khayati et al., 

2013; Khitouni et al., 2009). In some case MM has been used to prepare metal flakes 

as pigment in various industry or to carry out surface mechanical attrition treatment 

(SMAT) for plastic strain induced grain refinement in copper (Xiao et al., 2008; Wang 

et al., 2006). In the recent years MM has been also used to produce harmonic 

structures having bimodal grain size distribution which allows achieving both high 

strength and high ductility (Orlov et al 2013). By the way the uses of MM reported 

above are only some of the several applications of these advantageous processing 

routes. It is clear the potential of MM opening a new field of research which drew much 

interest. 

 

2.1.1.2 Evolution of particle size and morphology during MM 

 

MM is one of the high strain powder metallurgy processes because high strain 

is introduced from multi direction into the powder-material. MM induces high energy 

impacts by collision between grinding medium and particles causing SPD, repeated 

fracturing and cold welding on the particle leading to nano crystalline materials 

(Suryanarayana, 2001).The energy transfer due to the impacts is responsible for the 

morphological and microstructural evolution of ductile material shown in Figure II-2.  

 

https://en.wikipedia.org/wiki/Solubility
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Phase_%28matter%29
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Figure II - 2. Morphological and dimension evolution of ductile material powder as function of 

milling time (adapted from Suryanarayana, 2001). 

 

It is clear how for short milling time the morphology of the ductile milled powder 

changes into a flatten particles. The impact force causes the severe plastic 

deformation and the flattening of particles. The flaking level characterized by the ratio 

of the mean diameter to mean thickness drastically increases, as also particle size. In 

a later stage of the process the flakes tend to aggregate due to the predominance of 

cold welding events and particle dimension tends to increase. Increasing milling time 

the continuous work hardening leads to fracturing of the particles and a continuous 

powder refinement. Once fracturing and cold welding for long milling time reach an 

equilibrium any significant morphological and dimensional changes occur, the particle 

hardness remains constant and the size distribution is quite narrow (Suryanarayana, 

2001). A finer mean particle size and narrower particle size distribution improve 

sintering allowing the production of highly dense materials (Pellizzari et al., 2011 [1]). 

A nano microstructure is also beneficial for sintering since small grain size enhances 

the grain boundary diffusion increasing the sintering rate (Diouf et al., 2012 [1]; Diouf 

et al., 2012 [2]).  

 

2.1.1.3 Achievement of a nano-structured material 

 

By literature it is known that solids deviating from their perfectly ordered 

structure may exhibit attractive features. The various deviations may be divided in the 

following two classes. The first class is obtained by thermally disordering the crystalline 

structure of a material and by freezing-in the disordered state by means of quenching, 

e.g. glasses. In the second class of disordered materials, the deviation from the perfect 
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crystal is induced by incorporating defects such as vacancies, dislocations, and grain 

or interphase boundaries. Nano-crystalline materials produced by MM belong to the 

second class and they have attracted considerable attention due to the improved 

physical and mechanical properties, which arise from the crystallite size refinement 

and consequent high density of interfaces as well as the significant increase of grain 

boundary produced by prolonging milling time (Gleiter, 1989)  

The nanocrystalline material produced by MM can be considered as a coherent-

precipitate strengthened two-phase alloy in which all grain boundaries merge into 

whole continuous matrix and each of the grains embeds in the matrix coherently. It is 

obvious that MM induces strain deformations which create significant amount of 

defects such as vacancies, dislocations, stacking faults and grain boundaries, which 

severely affect the physical, mechanical, optical and magnetic properties in 

comparison to the coarse-grained polycrystalline materials (Gheisari et al., 2013; 

Yousefi et al., 2013; Zhao et al., 2002). The electrical conductivity is severally related 

to the microstructure refinement, and a decrease of conductivity is expected after MM 

(Yusoff et al., 2011). The electrical conductivity decreases by MM because crystallite 

size refinement after milling produces a large number of interfaces which act as a 

source for electron scattering (Rajkovic et al., 2006). Nakamichi claimed that the grain 

boundary resistivity is mainly caused by the electron scattering from the grain 

boundary dislocation core region (Nakamichi, 1996). According to the reported 

literatures, the following expression could be used to estimate the contribution of grain 

boundaries to electrical resistivity  

 

∆𝜌𝐺𝐵𝑠 =
3

2
 𝜌𝑆−𝐺𝐵𝑠  (

𝑆

𝑉
)     (2.1)

  

Where S/V is the grain boundary surface area per unit volume and ρS-GBs is specific 

grain boundary electrical resistivity, which was reported to be 3.12 x 10-12 Ωcm2 for 

pure copper. De Hoff and Rhines reported that the ratio of grain boundaries surface 

area to volume was approximately equal to 2.37/d, where d is the mean grain diameter 

(DeHoff et al., 1968; Wang et al., 2014). It is clear that grain boundaries and defects 

are responsible of the change of microstructural parameters such as crystallite size, 

lattice strain and lattice parameter which drastically influence the electrical conductivity 

(Gleiter, 1989).  

The achievement of a nanostructure material can be separated into two 

subsequent stages: continuous grain refinement and attainment of a constant grain 

size (Zhao et al., 2002). During the first stage, large amount of defects are introduced, 

causing the decrease of crystallite size, and the increase of the micro strain and the 

stored enthalpy. During the second stage, however, cycling changes of the micro-

strain and the stored enthalpy are observed, which means that the microstructural 

cyclic variation of the milled powders occurs, even though crystalline size remains 

constant (Zhao et al., 2002). It has been demonstrated that the mechanical strained 
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structure of copper usually shows the formation of shear bands and a number of 

mechanical twins of two types, i.e. multiple and high-order twins (Huang et al., 1996). 

The generation of mechanical twins has been explained as follows: the shear stress 

induced by MM exceeds the critical shear stress for twinning and when the grain size 

decreases below to a critical value, twinning rather than slip becomes the preferred 

mode of deformation (Huang et al., 1996). Moreover it has been well documented that 

Cu coarse grains are refined upon continued straining by various dislocation activities 

(Wang et al., 2006). The dislocation density during MM of copper results from the 

balance between the rate of dislocation generation by plastic deformation and the rate 

of its annihilation by dynamic recovery (Khoshkhoo et al., 2014). Dynamic 

recrystallization generally occurs during hot deformation, which usually is 

accompanied by material softening (Khoshkhoo et al., 2014). Moreover the presence 

of this defect structure decreases the diffusion distances and increases the diffusivity 

of oxygen atom absorbed on the particle surface at low temperature. In view of the 

reduced particle size and the increased surface energy by MM, the surface oxidation 

of the powder is drastically enhanced (Poluboyarov et al., 2005). Mechanical activation 

of copper in presence of molecular oxygen, in particular that absorbed by the copper 

surface, may lead to the formation of defect-rich oxide (Wen et al., 2011). The 

presence of oxide severely affects the chemical, physical and mechanical properties 

of the final product (Menapace et al; 2016). Possible sources of oxygen during milling 

are the atmosphere, the process control agent and the powder composition, as well 

(Madavali et al., 2014; Zeng et al., 1999). 

 
2.1.1.4 Influence of MM parameters 

 

MM is influenced by many variables which determine the final material 

microstructure and properties. Generally speaking the parameters which influence the 

final products are the type of milling, the milling media (vial and balls), the milling time, 

the milling speed, the ball to powder weight ratio (BPR), the milling atmosphere, the 

extent of filling the vial, the temperature of milling and the process control agent (PCA), 

(Fig.II-3) (Zhang F.L. et al., 2008). All these parameters are responsible for the 

morphological and microstructural evolution of the milled powders (Suryanarayana, 

2001; Zhang Y.F. et al., 1999).  

Actually, there are many different types of milling machines and the selection 

depends on the type, the quantity and the composition of the milled powder. In this 

PhD study a planetary ball mill has been used. This type of milling machine contains 

a vial which can be rotated both around the axis of the supporting disk on which it is 

arranged and its own axis (Fig.II-3). The rotations create centrifugal forces acting on 

powder material and milling mediums. However, since the vial and the supporting disk 

rotate in opposite direction, the centrifugal forces alternately act in-phase or anti-

phase. As consequence, the milling medium runs down to the “ground” (due to friction 
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effect) or lift off to collide against the opposing inside wall (impact effect) 

(Suryanarayana, 2001).  

 

 
Figure II - 3. Schematic drawing of a high-energy planetary ball mill and MM parameters. 

 

The typical materials used to fabricate milling vials and balls are: chrome steel, 

Cr-Ni steel, tungsten carbide (Suryanarayana, 2001). Wearing of the grinding media 

leads to the contamination of the powder (Marques et al., 2007). It has been 

demonstrated that mass wear of the media increases almost linearly by increasing 

milling time at the early stage, and then it starts to increase more rapidly (Sato et al., 

2010). Also contamination from atmosphere is one of the major problems for 

mechanical milled materials (Luo et al., 2013; Madavali et al., 2014). By the way 

contamination from the atmosphere can be avoided or minimized by milling in an inert 

high purity atmosphere or in vacuum (Gordo et al., 2005; Suryanarayana, 2001). It has 

been demonstrated that an argon atmosphere is more preferable than air for the 

processing of copper powders (Madavali et al., 2014). On the other side contamination 

from the milling media cannot be avoided. The wear rate of milling media is dependent 

on the rotation speed, the diameter of the ball and the ball filling ratio (Sato et al., 

2010). To minimize iron contamination arising from the milling medium some 

precautions can be employed as coating and step-fashion MA method (Luo et al., 

2012; Luo et al. 2013). Also the use of a PCA reduces wear, and further contributes 

to achieve a suited equilibrium between fracturing and welding events. If a ductile 

metal or alloy is milled at room temperature without any PCA welding will predominate 

over fracture and particle size will steadily increase with milling time (Harris et al., 

1995; Huang et al., 1995). Growth occurs by the continuous transfer of material from 

the smaller to the larger particle (Harris et al., 1995; Huang et al., 1996). To inhibit 

welding and to produce a fine powder, it is generally necessary to cool the vial and/or 
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use a PCA. Surfactant absorbed on the surface of the materials can reduce their 

hardness and can reduce the viscosity of the mixture (Zhang F.L. et al., 2008). The 

most used PCA’s are benzene, stearic acid, ethanol and methanol (Long et al., 2010 

[1]; Suryaranayana, 2001).  The use of PCA’s, however, is problematic, since they are 

organic compounds and inevitably increase the C, H and O levels in the powder 

(Bhattacharya et al., 2004; Gomez et al., 2006). It is well known that these impurities 

are detrimental to the ductility and conductivity of the compounds. By the way the 

addition of PCA leads to a decrease of average particle size, but increases the 

required milling time (Gheisari et al., 2013; Khayati et al., 2012; Zeng et al., 1999). 

Another benefit from the use of PCA is to reduce the temperature during the milling 

process. A limitation of MM is related to the temperature increase because only a small 

percentage of the total energy is used for the milling process, the major part of energy 

is turned in to heat (Suryaranayana, 2001). Higher speed means higher energy and 

therefore higher heating. The increase of temperature is strongly influenced by BPR. 

That is because a high BPR leads to an increase of number of collision per unit time 

resulting in a much higher energy transfer, which causes a higher increase of 

temperature and deformation (Suryanarayana, 2001; Wang et al., 2014). The use of 

increasing BPR considerably affects the microstructural evolution of the milled powder 

leading to a high dislocation density (Khoshkhoo et al., 2014). All the milling 

parameters are important and influence the milling process, by the way MM is strictly 

dependent on milling time in order to achieve the milled powder requirements. For 

every milling system there is an optimum milling time for which fragmentation and cold 

welding process are in dynamic equilibrium and MM can be considered completed. 

 

 

2.2 Mechanical Alloying 

 

MA is one of the solid state processes for the production of MMC combining 

strain hardening by microstructure refinement and dispersion hardening. MMC due to 

the complexity and to the high number of variables influencing their final behaviour 

their design is quite elaborate, but their promising properties encourage research in 

this field (Maurice et al., 1990). The goal is to combine the different properties of the 

two or more constituents in a new material with novel properties. The challenge is to 

increase the bonding strength of the interphase by controlling manufacture process 

and some particle features as size, morphology and volume fraction (Berns et al., 

2003; Estrada-Guel et al., 2014; Zum Gahr et al., 1998).  

MA is widely accepted as an appropriated technique for the development of 

MMC with better properties than those achieved by other methods (Akhtar et al., 2009; 

Long et al., 2010 [2]; Suryanarayana, 2001). By employing MA, the agglomeration of 

reinforced particles can be avoided and a homogeneous distribution of reinforcing 

phase within the matrix can be achieved. Compared to the liquid phase process, the 
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powder metallurgy technique allows better control of the reinforcement distribution and 

the production of more uniform matrix microstructure without the formation of 

segregations (Bouvard et al., 2000). Also the adhesion between the constituent must 

be guaranteed otherwise pulling out of the reinforcement may occur deteriorating the 

material properties. Moreover the presence of an interspace between the phases may 

acts as site of crack nucleation and it can be considered very detrimental for the 

mechanical properties of the component. MA due to the intense energy involved by 

impact events between the milling media and the powder assures a strong mechanical 

bonding among the constituents. A slight rise in the powder temperature during MA as 

a result of frictional forces and impact of the grinding balls against other balls and the 

vial facilitates alloy formation. Finally during the design of MMC the thermal and 

chemical stability between the constituents cannot be neglected because the 

formation of unwanted component it may not satisfy the chemical, mechanical and 

physical requirements. MA generally involves lower processing temperature thus 

reducing the reactivity between metal matrix and reinforcement phase. Therefore, due 

to these promising and suitable characteristics of MA, it has been selected as suited 

technique for the production of MMCs in the second part of this PhD thesis and its 

fundaments are described in the following section.  

 

2.2.1 Evolution of particle size and morphology during MA 

 

MA is a process that was developed by John Benjamin in the late 1960s to 

produce oxide dispersion-strengthened materials (Benjamin, 1970). Then due to its 

high performance and advantages has been widespread in several applications, for 

example some of the attributes of MA are: production of fine dispersion of second 

phase particles, extension of solid solubility limits, refinement of grain sizes down to 

nanometre range, synthesis of novel crystalline and quasicrystaline phases, 

development of amorphous phases, disordering of ordered intermetallic, possibility of 

alloying of difficult to alloy elements and inducement of chemical (displacement) 

reactions at low temperatures (Suryaranarayana, 2001). The process can be 

described as a high-energy milling process in which different types of powder particles 

are subjected to repeated cold welding, fracturing, and rewelding in order to obtain a 

uniform microstructure (Maurice et al., 1994; Maurice et al., 1995). Generally during 

MA the elemental powders are blended and formation of different types of phases 

occurs through a very fine and intimate mixture of the components. The effects of MA 

could be divided in two groups: on one side constitutional changes may occur leading 

to the formation of solid solutions, intermetallic phases, and amorphous phases in alloy 

systems; on the other side microstructural changes of the processed materials may 

occur developing ultrafine-grained and nanostructured phases, and an intense powder 

refinement. 



14 

Related to the second group of the MA effects, Gilman and Benjamin summarized the 

process into 4 stages (Gilman et al., 1983). Depending on the predominant process, 

each stage will exhibit a morphology that can describe the process taking place at that 

time (Fig.II-4) (Fogagnolo et al., 2003). These stages include: initial, intermediate, 

final, and completion stage. 

 

 
 

Figure II - 4. Various stages of ductile-brittle system during MA (adapted from Fogagnolo et al., 
2003). 

 

At the initial stage of MA, the starting soft particles generally tend to be flattened 

by compressive force. For ductile-brittle system, the hard particles tend to be less 

deformed while the ductile particles show high tendency of binding the hard particles 

together. Fracture is expected to be predominant in BCC and HCP metals (due to 

lower number of slip systems) with respect to cold welding in FCC metals (12 slip 

systems). As a result of difference in ductility between brittle and ductile phases, 

particle size distribution is wide during the initial stage of MA. A more homogenized 

particle size distribution is anticipated upon prolonging the milling duration. At the 

intermediate stage of MA, significant changes in particles’ morphology occur. Cold 

welding is now more substantial than in the previous stage. Greater plastic 

deformation results in formation of layered structures. Also, within this stage of milling, 

laminated structure can be further refined once fracture is taking place (Fogagnolo et 

al., 2003; Gilman et al., 1983). Considerable particle size reduction can be detected 

at the final stage of MA, where the layered structure is no more detected and the 

microstructure becomes very homogeneous. At this stage, further deformation is 

almost impossible since particles already reached very high hardness induced by 

accumulation of strain energy (Gilman et al., 1983). At the end of the process, i.e. 

completation stage, the particles show a heavily deformed meta-stable structure. 

Further prolonging the milling time will not improve the particles distribution anymore 

(Gilman et al., 1983; Ruzic et al., 2013). 

In some cases the presence of harder oxides in the powder mixture enhances 

the brittleness of the system leading to a finer particle size at the end of MA (Menapace 

et al., 2016; Rajkovic et al., 2008). The presence of oxide can be attributed to different 

causes: for example to the grade of purity of the starting powders, to the formation of 

oxide compounds during MA or to the severe oxidation of the reactive surface of the 
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milled powders. It is essential to notice that during MA, as for MM, due to heavy 

deformation and to numerous defects introduced into particles, the diffusivity of solute 

atoms into the matrix by preferential path is increased. Besides, both the reduction of 

diffusion distances and the slight rise in temperature during milling also aids the 

diffusion oxygen behaviour and consequently, selective reaction takes place among 

the matrix and oxygen elements (Suryanarayana, 2001). Moreover, due to an increase 

in the free energy of the system caused by a reduction of particle size and 

consequence increase in surface energy, the surface oxidation of the powder is 

drastically enhanced (Poluboyarov et al., 2005; Wen et al., 2011).The formation of 

oxide can be promoted affecting both the MA kinetic and the final composition of the 

MMC (Marques et al., 2007; Prasad et al., 2004; Ritasalo et al., 2010; Wen et al., 

2011). 

 

2.2.2 Metal matrix composite (MMC) 

 

2.2.2.1 Selection of the reinforcement for Cu MMC 

 

The success of MMC is associate to the possibility to design and to improve the 

characteristics of the component by a projected synergy of the properties of the 

constituents. The selection of the reinforcement during the design of MMC must be 

optimized in order to limit possible secondary reactions of undesired products, to 

enhance the adhesion between the matrix and the second phase and guarantee the 

tailored properties (Groza et al., 1993). The two constituents of MMCs have different 

duties: the hard particles have to withstand wear by its higher hardness; the matrix 

has to guarantee toughness and enough support for the hard particles. In the specific 

of copper MMCs the matrix has to keep its intrinsic thermal and electrical conductivity, 

meanwhile its low wear resistance must be enhanced by the homogeneous dispersion 

of a hard second phase. Since Cu MMCs are becoming attractive materials for specific 

thermal and electrical applications, different studies have been conducted in the last 

years in order to deeply investigate and improve their performance. 

Several types of reinforcement have been dispersed in copper matrix (Al2O3, 

WC, TiC, SiC, TiB2, Cr, NbC, carbon-nanotube, etc.), in most of the cases ceramic 

powders are used due to a very high hardness and a good chemical stability in 

comparison with metal reinforcements (Khaleghi et al., 2012; Sahani et al., 2011; 

Stobrawa et al., 2009). For example, even if the addition of a small amount of Cr and 

Zr seems to be effective to improve copper composite properties, it leads to unwanted 

precipitation of hard secondary phases. One of the limitations of such precipitation-

hardened alloy is the lack of strength above 500°C, related generally to the structural 

instability associated with the coarsening of precipitation particles (Girish et al., 2012; 

Tjong et al. 2000). Also Cu-graphite composite have been widely studied for 

applications requiring highly electrical conductivity in addition to low friction and wear, 
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but the processing complexity and the poor mechanical properties limited its diffusion. 

In addition it is not easy to fabricate a fully dense Cu graphite composite due to the 

poor wettability between the two phases, as well as their significant differences in 

densities. Among various ceramic dipersoids NbC has been used as reinforcement in 

copper matrix but the electrical conductivity was dramatically affected by the presence 

of NbC because the material did not reach the electrical conductivity requirements (at 

least 50% IACS) (Long et al., 2010 [2]). Also Al2O3 particles are commonly used to 

reinforce copper producing superior elevated temperature strength, increased 

hardness and improved creep resistance (Rajkovic et al., 2008). But the surface of the 

mechanically milled Al2O3 particles are covered by oxide nanometer-thick layers that 

gives rise to some problems during consolidation. Recently as copper’s reinforcement, 

a family of layered ternary carbides, including Ti3AlC2, Ti3SiC2 and Zr2Al3C4 which 

possess good thermal and electrical conductivities as well as high strength and 

modulus, have been added to copper and significant improvements in both hardness 

and strength were observed (Zhang J. et al., 2009).  

Titanium diboride (TiB2) particle has been also considered as a possible 

interesting candidate to reinforce copper because of its high melting point, high 

hardness, superior wear resistance and thermal conductivity (Kwon et al., 2006; 

Suryanarayana, 2001; Tjong et al., 2000; Tu et al., 2003). Moreover the yield strength 

of Cu-TiB2 composite produced by in situ reaction and after a suitable heat treatment, 

it is found to be higher than that of Cu-Al2O3 composites (Biselli et al., 1994, Ma et al., 

2000). This has been attributed to the good microstructural stability, arising from the 

chemical stability of TiB2 phase (Biselli et al., 1994, Ma et al., 2000). Guo et al. 

produced successfully a dispersion strengthened Cu-TiB2 alloy combining mechanical 

alloying with heat treatment (Guo et al., 2013). Increasing milling time the interface 

boundaries between the phases become vanish or disappear completely, and finally 

forming homogeneous microstructure. Also the creep resistance of the composite is 

several order of magnitude higher than that of the unreinforced Cu (Ma et al., 2000). 

At this point TiB2 can be considered as a suitable reinforcement for copper matrix 

composites. 

 

2.2.2.2  Influence of the reinforcement  

 

As already discussed, in order to achieve high strength and high wear 

resistance, it is necessary to alloy copper with reinforced ceramic particles. However, 

while most of ceramic reinforcements can enhance significantly the strength of the 

MMC with respect to that of the matrix, they tend to decrease thermal and electrical 

conductivity of composite material (Elsayed et al., 2015; Long et al., 2010 [2], 

Stobrawa et al., 2009; Uddin et al., 2010).  

Thermal and electrical conductivities are determined by many factors, such as: 

the electrical and thermal conductivities of the constituent phases, the volume fractions 
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and the distribution of the constituent phases, the size, shape, orientation and spacing 

of the phases, interaction between phases, and the preparation method (Andrews et 

al., 1969; Zhang J. et al., 2009). The electrical conductivity of MMC is related to the 

electrical resistivity of the system and several models have been developed to predict 

its value. The electrical resistivity can be calculated approximately by the rule of 

mixture (Landauer, 1952). Others more accurate models have been proposed for the 

prediction of electrical resistivity of composite materials for example Maxwell model 

and P.G. Klemens model (Girish et al., 2012). In all these methods the electrical 

resistivity is calculated by different elaboration based on the electrical resistivity and 

volume fraction of the dispersion particles and matrix. Usually the theoretical values of 

electrical resistivity of MMC are underestimated because several approximations are 

made and some phenomena are neglected. For example the presence of porosity and 

interspace between the two phases, the interfacial thermal resistance, the occurrence 

of electron scattering by thermal vibration and microstructural defects are some of the 

phenomena totally ignored. As demonstrated in previous section also grain boundary 

affects electrical conductivity according to equation 2.1. Although the limitations of 

these methods, the effect of a second phase on the electrical resistivity of the 

composite is clear, increasing the fraction of reinforcement, the electrical resistivity of 

the composite increases (Andrews et al., 1969; Nakamichi et al., 1996; Wang et al., 

2014).  

Similar behaviour is obviously shown by thermal conductivity because the 

problem of heat conduction in heterogenic materials is mathematically analogous to 

the problems of electrical conductivity of such materials. Several analytical 

expressions have been formulated, the solutions of Maxwell and Rayleigh were the 

first of many attempts to determine the effective thermal conductivity of heterogeneous 

material. Maxwell’s expression is as follows: 

 
𝐾𝑒𝑓𝑓

𝐾𝑚
= 1 + 

3Φ1

(
𝑘1+2𝑘𝑚
𝑘1−𝑘𝑚

)
     (2.2) 

 

Where, km is the thermal conductivity of the matrix, k1 the thermal conductivity of the 

filler, Φ1 is filler volume fraction. In Maxwell approximation the thermal interactions 

between filler particles is ignored. Later on also the shape, size and type of arrange of 

the inclusions have been considered by several researchers. A lot of implementations 

have been carried out in the years, and an empirical model quite popular in literature 

is Lewis–Nielsen model (Pietrak et al., 2015). The effective thermal conductivity (Keff) 

of a composite according to the Lewis-Nielsen model is given as: 

 

𝐾𝑒𝑓𝑓 =  
1+𝐴𝐵Φ1

1−𝐵𝜑Φ1
      (2.3) 
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𝐵 =  

𝑘1
𝑘𝑚

−1

𝑘1
𝑘𝑚

+𝐴
      (2.4) 

 

𝜑 = 1 + (
1−Φ𝑚

Φ𝑚
2 ) ∗ Φ1     (2.5) 

 

Where, km is the thermal conductivity of the matrix, k1 the thermal conductivity of the 

filler, Φ1 is filler volume fraction, Φm is maximum filler volume fraction as function of 

the type of packing, and A is the shape coefficient for the dispersed particles (Pietrak 

et al., 2015). These approximations are very useful to evaluate the effect of the second 

phase on the thermal conductivity, but also other characteristics can be detrimental for 

this property, for example porosity. The most common approximation of the 

dependence of thermal conductivity on porosity is the modification of Maxwell’s 

expression (Khaleghi et al., 2012; Ondracek et al., 1973). The modified equation is of 

the type: 

 

𝐾𝑒𝑓𝑓 =  𝐾0 
1−𝑃

1+𝛽𝑃
      (2.6) 

 

Where K0 is the thermal conductivity of nonporous material and β is the geometrical 

factor of pores. When pores are spherical β is equal to 0.5 (Khaleghi et al., 2012; 

Ondracek et al., 1973).The effect of porosity is detrimental as the effect of the addition 

of a second phase, a lower density leads to a lower thermal conductivity.  

Also other properties are affected by the dispersion of reinforcement, for 

example strength (Suryanarayana, 2001). The analysis of strength for composites is 

associated to the fraction of grain boundaries and hard particles. On one side the 

formation of grain boundaries is related to the occurrence of grain refinement. The 

effect of grain size refinement on strength improvement is estimated by Hall-Petch 

equation, by which decreasing grain size the strength is enhanced. On the other side 

the contribution to strength originating from hard particles can be divided into two types 

according to the particle size: Orowan mechanism for nano particles and dislocation 

pile-up mechanism for coarse particles (Anderson et al., 1993; Wang et al., 2014). 

Independently of the mechanism the dispersion of a second phase leads to an 

increase of strength of the final product. In general at a given content of hard phase, 

a finer size of reinforcing particles results in smaller interparticle spacing and leads to 

a higher tensile and bending strength but to a lower toughness in comparison with 

coarse particles (Berns et al., 1996; Srivatsan et al., 2000).  
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2.3 Spark Plasma Sintering 

 

Nanostructured materials have unique properties with respect to their 

micrometric scale counterparts, and SPS is a promising technique for their 

consolidation. The need to preserve the advantages given by these materials when 

subjected to SPS has driven the attention of many researchers. In fact in order to 

reduce the potential chemical reaction occurring at high temperature for prolonged 

time and to keep the fine microstructure obtained by MA, SPS is a diffused technology. 

In addition it has been demonstrated that SPS is very promising for the production of 

advanced materials which are difficult to produce by conventional sintering methods, 

like for example MMCs, fibre reinforced ceramics, nanocrystalline materials, 

intermetallic compounds and functionally graded materials (Dash et al., 2012; Tokita, 

1993). The process produces a highly dense compact in a shorter sintering time and 

offers ease of operation and accurate control of sintering energy as well as high 

sintering speed, high reproducibility, safety and reliability. Moreover SPS can easily 

consolidate a homogeneous, high quality sintered compact because of the uniform 

heating, surface purification and activation made possible by dispersing contact points 

(Tokita, 1993).  

The base concept of SPS is to apply beside pressure sintering system an 

electric current, this provides an enhancement of densification without microstructural 

change working at lower temperature ad in shorter time than conventional sintering 

processes (Tokita, 1993). The application of an electrical discharge leads to the 

generation of Joule heating, electric field diffusion, spark plasma and spark impact 

pressure. Recently the absence of plasma has been demonstrated during the process 

(Hulbert et al., 2009). By the way even without plasma, the pressure sintering system 

and the application of direct continuous pulsed current guarantee the production of 

fully dense high quality materials. Beside Joule effect and electric field diffusion, it has 

been proved that a localized melting may occur at the contact points due to a 

temperature increase caused by the limited contact area (Diouf et al., 2012 [2]; Song 

et al., 2006). All these phenomena promote the formation of necks allowing the 

formation of metallurgical bonds and consolidation. 

The SPS system is formed by a controlled vacuum chamber, a uniaxial vertical 

pressurization mechanisms, a sintering DC-pulse generator, and conductive designed 

punches which act also as electrodes. An advanced control unit is integrated in the 

SPS system for position, temperature, applied pressure and vacuum measuring 

(Tokita, 1999). 

 

2.3.1 Densification mechanisms 

 

Densification of powders is strictly characterized and affected by the particle 

size distribution, morphology, number of contact points and type of contact points 
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(Bonnenfant et al., 1998; Bouvard, 2000; Delie et al., 1998). When densification 

concerns different type of powders as in the case of MMC, also other factors become 

relevant such as the volume fraction of the hard phase, the particle size ratio between 

the powders and the entity of the dispersion of the reinforcement among the matrix 

(Bonnenfant et al., 1998; Bouvard, 2000; Delie et al., 1998). When powders are 

processed by MM and MA, the subsequently severe strain hardening and dispersion 

hardening hinder densification. The induced severe strain hardening limits the 

deformability of the milled powder so that in some cases the effect of the particle 

morphology and size distribution becomes negligible (Gan et al., 2008; Praminik et al., 

2008). Especially in powder metallurgy the properties of a component are directly 

related to densification. It is important to optimize and predict the densification 

behaviour during sintering because the presence of defects such as porosity, poor 

interparticle bonding, impurities and high internal stresses due to the processing stage 

may lead to premature failure, for instance under tensile or bending stress (Berns et 

al., 2003). 

Densification is closely related to the application of the pressure which initially 

promotes powder rearrangement followed by the local and bulk deformation of the 

powders. According to Bouvard’s study, under applied pressure hard particles are 

assumed to be non-deforming, while the soft powders behave in a visco-plastic 

manner promoting densification (Bonnenfant et al., 1998; Bouvard, 2000; Delie et al., 

1998). The mechanisms of densification depend on the value of applied pressure 

related to the yield pressure of the soft powders (Bouvard, 2000; Delie et al., 1998). 

Since the pressure applied to the powders is lower than their yield pressure the 

densification advances by powder rearrangement (Anselmi-Tamburini U., 2013; 

Bouvard, 2000; Munir, 2006). Powder rearrangement is severely affected by the 

packing density of the powders which is related to the particle size distribution 

(German, 1992 [1]; German, 1992 [2]). The packing density is maximum for wide 

distribution because the smaller particles can fill the gap between the bigger particles. 

Although the higher packing density, a wide particle distribution do not assure the 

highest final density, which is more promoted by a small particle size and a narrow 

distribution (Pellizzari et al., 2011[1]; Pellizzari et al., 2011[2]). The role of particle size 

distribution is very significant because it influences the thermodynamic driving force 

for sintering which is proportional to the specific surface area. Moreover particle size 

affects the number and extension of the contact areas, in turn, the local pressure and 

electrical resistance which are of great importance in SPS due to the specific heating 

mechanism (Anselmi-Tamburini et al., 2005). When applied pressure is higher than 

the yield pressure of the soft powders plastic or viscous deformation are the main 

mechanisms of densification. On one side soft powders promote densification on the 

other side hard particles hinder it (Bonnenfant et al., 1998; Bouvard, 2000; Nikzad et 

al., 2012). Three situations may occur depending on the volume fraction of hard 

particles and on the size ratio: (1) for low fraction hard particles may be mostly isolated 
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from each other, (2) for medium fraction may form aggregates or (3) for large fraction 

may create a percolating network (Bouvard, 2000) (Fig.II-5). Since hard particle are 

limited and well dispersed densification can be completed because soft particle are 

mostly responsible for densification. When hard particles are able to aggregate, the 

pores between them are difficult to close, and these excluded volumes are responsible 

for residual porosity. When the fraction of hard phase exceeds the limit, a percolation 

network is created and deformation of soft particles is obstructed (Bouvard, 2000). 

This situation is indeed the most critical because the densification can only proceed 

by rearrangement, plastic deformation or fragmentation of the hard particles, and the 

effect of soft particles can be neglected. In this case the applied load is sustained by 

the percolation, subsequently hard particle have to rearrange in order to obtain a full 

dense material (Bouvard, 2000). 

 

 
Figure II – 5. Possible type of particles dispersion depending on the fraction of hard phase 

(adepted from Bouvard 2000). 
 

The rearrangement of the powder is strictly related to the type of mechanical 

and chemical contact between the hard particles (German, 1992, [2]). If the contact 

are weak densification is facilitated, otherwise the strong rigid structure of hard particle 

drastically hinders densification. All these three cases depend on the particle size ratio 

defined as the ratio of the mean diameter of soft particles on the mean diameter of 

hard particles. Generally speaking, as particle size ratio decreases, i.e. using large 

dispersoids, densification rate increases and the maximum fraction of hard particles 

which allows densification by soft particle deformation increases (Fedrizzi et al., 2012). 

Moreover the use of very small reinforcements would give problem of agglomeration 

leading to a poor dispersion and subsequently to deteriorated mechanical properties. 

On such attempt MA has been demonstrated to be a suitable processing route to 

reduce or even avoid agglomeration problems of fine hard phase powders. At the 

same time MA leads to a much fine particle size and to a narrower particle distribution 

favouring the densification of the milled powders and also sintering behaviour is 

improved (German et al., 1992 [2]; Pellizzari et al., 2011 [2]).  
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In Diouf study it has been demonstrated that the densification of atomized 

copper powders consists in three stages: rearrangement of the powder, local 

deformation and bulk deformation (Diouf et al., 2012 [1]; Diouf et al., 2012 [2]). A 

pressure of 25MPa is applied at the beginning of SPS cycle and then is increased up 

to 60MPa at different temperature: 450, 650 and 900°C. From 450°C up to 650°C the 

fracture morphology clearly indicates that most of the particles are increasingly packed 

but not yet sintered, only a local deformation of the contact area occurred as 

demonstrated also by Song et al. (Diouf et al., 2012 [2]; Song et al., 2006). The 

absence of dimples of the fracture surface indicates that sintering phenomena 

responsible for the formation of metallic bonding between particles did not occur even 

if density significantly increases. Only at 900°C a dimpled fracture surface is evident, 

which is indicative of an effective consolidation of the material. It may be concluded 

that for atomized copper powder even if densification proceeds during the entire SPS 

cycles, mass transport phenomena responsible for the formation and growth of 

sintering necks mainly occur between 650°C and 900°C. In other words, in some case 

the material can be densified, but not yet sintered.  

 

2.3.2 Sintering mechanisms 

 

If on one side densification is related to the applied pressure and mostly 

depends on the rearrangement and on the deformability capability of the powders; on 

the other side sintering is governed by different mechanisms activated by the applied 

external load, the heating and the electric current. The consolidation of powders during 

SPS consists in the activation of four stages in series: (1) activation and refining of the 

powder; (2) formation of the sintering neck; (3) growth of the sintering neck and (4) 

plastic deformation (Tokita, 1993; Zhaohui et al. 2008). The first two stages are 

promoted by the heating and electrical discharge and they are enhanced by the 

occurrence of oxide breakage and the overheating of the contact surfaces between 

the particles (Diouf et al., 2012 [2]; Song et al., 2006). The growth of the neck and 

plastic deformation are promoted by application of the load and the Joule effect.  Even 

if the electrical current is mostly associate to the Joule effect, experimental studies 

indicate that it gives a direct contribution also to the diffusion mass transport (Munir et 

al., 2006).   

Four sintering mechanism are responsible of the formation and growth of the 

necks: plastic deformation, power law creep, grain boundaries diffusion and Nabarro-

Herring and Coble creep (Olevsky et al. 2006). It has been demonstrated that in the 

early stage of SPS, when relative density is lower than 90%, the densification 

mechanism is related to the plastic deformation of the contact areas between the 

particles. Since the local pressure is higher than the yield pressure of the particles the 

consolidation is activated by plasticity, once pressure decrease due to an increase of 

the contact area the plasticity densification stops. When pressure is constant end high 
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sintering temperature is reached, consolidation proceeds by two major diffusion 

mechanisms that contribute to mass transfer during SPS: power-law creep and grain 

boundaries diffusion mechanisms for conductive materials (Olevsky et al. 2006). 

These diffusion mechanisms are strictly related to the high levels of grain-pore and 

grain-grain interface areas in the material. Since SPS is a process involving hot 

deformation of powder under pressure power law creep plays an important role, 

especially it always dominates the consolidation process when porosity is higher than 

30% and grain size is in micro-size range (~40µm). When the level of porosity and the 

grain size of the powder decrease grain boundaries and bulk diffusion mechanisms 

predominate. The driving source for these material transport mechanisms are: external 

applied load, sintering stress and steady-state electron migration (Olevsky et al., 

2006). Depending on the value of porosity and grain size of the powders the magnitude 

of the contributions of the three different factors accordingly changes. Since the grain 

size is around 40µm the external load is the dominant transport mechanism in the 

material. For porosity lower than 30% electronmigration and surface tension become 

the main contributions to shrinkage depending on the average grain size. When the 

grain size decreases down to 1 µm the consolidation is aided by electromigration, if 

the grain size reaches nanometric dimensions close to 100 nanometres the 

mechanism governing sintering is the surface tension (Olevsky et al., 2006). By the 

way for very small porosity, an external load must be applied in order to close all the 

voids. The last mechanism during SPS is the densification by Nabarro-Herring and 

Coble creep which acts only when the grain size is much smaller than the particle size. 

All these mechanisms are strictly related to the particle size and to the SPS parameters 

(temperature, pressure, time and heating rate). The particle size determines the 

number of contact points and the extension of contact areas and consequently the 

electrical resistance. Moreover the particle size is responsible of the overheating of 

the particle surface layers in the contact region (Diouf et al., 2012 [2]; Song et al., 

2006). Finally the particle size influences mass transport phenomena because the 

finer the particle size, the larger the grain boundaries surface, which results in an 

enhanced mass transport towards the neck region. In general increasing temperature, 

applied load and time the consolidation of the powders is enhanced because the 

plastic deformation and the mass transport phenomena responsible for sintering are 

promoted. Also heating rate affects the SPS cycle, increasing the heating rate the 

grain boundary diffusion is enhanced and grain growth diminishes (Olevsky et al., 

2007). 

In the case of copper powders has been demonstrated a prevailing effect of 

temperature on the consolidation of the particles, followed by particle size and 

pressure (Diouf et al., 2012 [1]; Nefedova et al., 2015). Temperature affects resistance 

to plastic deformation and the mass transport phenomena responsible for sintering. 

Only when the sintering temperature was increased up to 900° the consolidation by 

the formation of neck occurred (Diouf et al., 2012; Song et al., 2006). Particle size 
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influences the electrical resistance, the overheating and the mass transport 

phenomena as mentioned above (Zhaohui, 2008). The temperature reached on the 

surface of the coarser particle is significantly higher than that on the finer one. 

Consequently, localized melting, thermal softening of the subsurface layers and field 

activated mass transport phenomenon in the contact regions are enhanced. The local 

overheating increases slightly with heating rate, in terms of both actual values of 

temperature and thickness involved (Diouf et al., 2012 [1]; Diouf et al., 2012 [2]). The 

effect of pressure in negligible due to the high deformability of the copper powder since 

they are not mechanical strain hardened (Diouf et al., 2012 [1]; Nefedova et al., 2015). 

In the case of mechanical milled powders on one side the nano microstructure 

aids the consolidation by the high surface energy of the powder and the large amount 

of grain boundaries; on the other side a common problem pointed is the presence of 

contaminations arising from the milling media and atmosphere which hinder the 

consolidation. Very recently the influence of oxygen and nitrogen contaminations on 

the densification of cryomilled copper powders during SPS has been evaluated (Wen 

et al., 2011). The authors found the difficulty to obtain full density related to the thermal 

decomposition of O and N based compounds to gaseous species which lead to 

porosity formation. Also copper oxide acts as a barrier to the thermal and electrical 

flows during SPS hindering the consolidation process (Menapace et al., 2016; Zhang 

R. et al., 2003). Fortunately SPS significantly reduces the grain boundary resistivity 

through the reduction of impurity segregation at grain boundaries (Chen et al., 2004; 

Diouf et al. 2013). This results in the purification of grain boundaries and in the 

improvement of the bonding quality (Risbud et al., 1994; Srinivasarao et al., 2009). 

Such advantage of SPS is of great interest specially in the processing of powders 

which suffer from contamination as an unavoidable issue during their production. 

  



25 

Chapter III 

 

Wear behaviour 

 

 

 

3.1 Introduction 
 

Wear is usually discussed in terms of its damaging effect on change of 

topography of the surface, volume of material removed, transition in wear behaviour, 

and the effect of wear debris on performance of engineering applications. It must be 

considered that wear is one of the three most commonly encountered industrial 

problems leading to the replacement of the components, the others being fatigue and 

corrosion (Eyre, 1981). Several wear mechanisms have been reviewed by Eyre as 

responsible of the wear behaviour: adhesion, abrasion, fretting, corrosion, 

delamination and fatigue (Eyre, 1981). Wear under abrasive and adhesion metal-to-

metal sliding conditions are the most often encountered in industrial components as 

wear mechanisms. Abrasive wear occurs when hard particles penetrate a surface and 

displace material in the form of wear debris. Adhesive wear occurs when surfaces 

slide against each other, and the pressure between the contacting asperities is high 

enough to cause local plastic deformation and material transfer by a process of solid-

phase welding or by a localized bonding between contacting surfaces. Adhesion is 

favoured by clean surfaces, non-oxidizing conditions, and by chemical and structural 

similarities between the sliding couple. Particles, which are removed from one surface, 

are either permanently or temporarily attached to the other surface resulting in a 

tribolayer, usually a tribo-oxidative layer.  

It must be considered that friction and wear are not intrinsic material properties 

but are characteristic of the engineering system. The tribological behaviour of a 

component is influenced by the characteristic of itself and by the conditions of service. 

In Figure III-1 a schematic representation of the engineering approach to the design 

of a component under wear is reported. Firstly the characteristics of the component 

must be carefully designed, in the case on MMCs both matrix and reinforcement could 

affect the tribological behaviour by different parameters. The matrix has the task of 

supporting the hard phase and to incorporate them in the microstructure. Therefore, 

the matrix should have not only a high hardness but also a high yield point and a 

certain degree of ductility (Fig. III-1) (Theisen, 2008). It must be also considered that 

the presence of defects in the matrix such as pores, cracks, inclusions or a not 

adequate adhesion between the two MMC constituents could affect the wear 

resistance. At the same time the selection of the type of reinforcement, and in 
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particular its size, volume content, hardness and dispersion must be optimized. The 

tribological behaviour depends also on the type of wear system (sliding, rolling etc.) 

and on the corresponding service parameters such as load, temperature, sliding 

velocity, time, the type of environmental and the presence or not of lubricant. The 

tribological behaviour of a component under wear is revealed by the predominance of 

certain wear mechanisms, (Fig.III-1) (Eyre, 1981). By the accurate analysis of the 

outputs of the wear system the tribological behaviour can be identified and described. 

The analysis of the worn surface, of the wear debris, and of the counterface allow a 

qualitative evaluation of the wear damage. To have a quantitative analysis the friction 

coefficient, the temperature in exercise, the mass loss and the derived wear rate 

coefficient must be considered. 

 

 
 

Figure III - 1. Schematic representation of engineering approach to tribology. 
 

The study of wear is now day widespread and considerable efforts are being 

made to develop improved surfaces because an improved tribology design leads to a 

potential saving in maintenance and replacement costs, to a reduction of losses 

consequential upon breaking down and to a saving in investment through increased 

life of machinery (Eyre, 1981). These benefits are the driving force toward a more 

selective and accurate choice of the materials and of the processing route of a 

component according to the specific service life conditions. 

 

3.2 Copper applications  

 

Copper has always attracted considerable interests because of its high 

electrical and thermal conductivities, producing welding electrodes, electrical switches 

and injection/casting moulds (Avelar Batista et al., 2006; Barella et al. 2014; Futami et 

al., 2009) (Fig.III-2). Until recently, conventional mould materials would mainly 
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comprise tool steels. The development of high thermal conductivity Cu alloy allowed 

these materials to be considered as an alternative to steels leading to a faster heating 

and cooling injection cycle. By the way Cu has some distinct shortcomings such as 

low hardness, strength and wear resistance, restricting its applications (Fig.III-2). From 

Figure III-2 it is evident how materials having high thermal conductivity are very soft, 

and materials showing high hardness are not good heat exchanger.  

 

 
 

Figure III - 2. Brinnel hardness versus heat conductivity. 
 

Neglecting polymer materials, also wear resistance is tightly related with 

hardness, as reported in Figure III-3. In the last years several attempts have been 

made to improve the hardness of copper because the service conditions during 

injection/casting moulding are very severe. During injection moulding abrasive wear 

occurs as hard fillers in the polymer are pressed and slid against the barrel and screw 

surfaces. In addition, the screw may also vibrate in the barrel leading to metal-metal 

contact between them, so that impact wear and adhesive wear may occurs. Finally 

attack by corrosion is possible from the polymer matrix or any other additives (Boey et 

al., 2005). Meanwhile during casting the mould is subjected to an extreme temperature 

gradient causing geometrical distortions. Moreover, long high temperature exposition 

combined with possible thermal fluctuation causes creep and thermal fatigue damage 

(Barella et al. 2014). 

In order to improve the wear resistance there are mainly two options based on 

two totally different concepts: the first one consists on surface treatments or coatings 

which involve only a thin layer of the component, and the second one is a massive 

strengthening of the bulk material by precipitation hardening or dispersion hardening.  
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Figure III - 3. Hardness versus wear rate constant for different materials. 

 

In the first case tailoring the surface to match the operating conditions is 

becoming increasingly important. There is a wide range of techniques now being used, 

including recently developed processes such as physical vapor deposition (PVD), ion 

implantation, and laser treatment, etc. Surface treatments which increase the 

hardness and place the surface in a condition of residual compressive stress are 

widely used. For example PVD of TiN, CrN and CrAlN on Cu coating can provide low 

friction, high wear and oxidation resistance, which can improve the deficient wear and 

corrosion characteristics of Cu alloy in moulding operations without significantly 

affecting the thermal conductivity of the Cu substrate (Avelar-Batista et al., 2006; Bull 

et al., 2001). At the same time coatings have been used also for copper casting moulds 

(Barella et al., 2014). Usually casting copper moulds are coated with chromium or 

nickel to provide a harder working surface and to avoid copper pick-up on the surface 

of the cast strand, which can facilitate the development of the surface cracks on the 

cast product (Barella et al., 2014). In general the employment of a coating is limited by 

elastic and plastic deformation of the substrate, which the hard, thin and brittle coating 

cannot follow without failing (Barella et al. 2014). In addition the difference between 

thermal expansion coefficients of the two constituents increases the microstructural 

mismatch leading to easier and faster nucleation and propagation of cracks on the 

surface of the component and at the interface between substrate and coating (Barella 

et al. 2014). Moreover coating temperatures usually have a detrimental effect on the 

mechanical properties of the alloy, as they will over-age the substrate and reduce its 

hardness. This will further increase the hardness mismatch between PVD coating and 

substrate. Finally, under the application of a very high load, fragmentation of the 

coating may occurs especially because defects produced by the deposition process 

are very common and they can act as crack nucleation sites. The breakage of the 
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coating leads to the formation of debris which promote a severe abrasion of the 

substrate and this limits the coating applications (Avelar-Batista et al., 2006).  

A second strategy for microstructure design and properties improvement is the 

strengthening of metals and alloys through grain refinement. In fact, most 

nanostructured metals exhibit enhanced wear resistance in comparison with their 

corresponding coarse-grained samples (Zhang Y.S. et al., 2006). Initially, as in this 

study of Zhang et al., a nanocrystalline surface layer on a Cu plate is achieved by 

means of surface mechanical attrition treatment (SMAT) (Zhang Y.S. et al., 2006; 

Zhang Y.S. et al., 2008).  The thickness of the deformed layer is 500 micron, much 

deeper than the thickness achievable by common coating. In addition the thickness of 

the strengthened layer can be tailored according to the specific requirements. The 

tribological properties of the SMAT Cu are remarkably improved at all applied loads 

and sliding speeds due to the stability of mechanical mixed layer and to the high 

hardness of the nanocrystalline structure. In addition prolonged SMAT enhances the 

wear resistance of the component because a thicker and deeper mechanical hardened 

layer is formed enhancing the load bearing capability of the substrate (Zhang Y.S. et 

al., 2007). By the way an abrupt increase of the wear volume is detected, which 

corresponds to the remove of the nanocrystalline layer. At this point in order to 

increase the thickness of the nanocrystalline layer, the use of MM is introduced for the 

production of bulk-nanostructured mechanical strengthened materials showing 

improved wear performances.  

In the last years the addition of a second hard phase by MA is a suitable 

processing route to further improve wear resistance of components. The introduction 

of a second harder phase in a soft metal matrix enhances the effectiveness of MM, 

increasing the hardness and the tribological behaviour of the alloy (Elsayed et al., 

2015). The introduction of copper matrix composites can be challenging in several 

applications, for example for injection/casting mould MMC can be used as an 

intermediate layer between the Cu substrate and the ceramic coating. MMC is 

characterized by an intermediate thermal coefficient due to the coexistence of the two 

constituents, i.e. matrix and ceramics. This could reduce the thermal and the stress 

gradient typical of coated components. A reinforced copper intermediate layer 

produced by MA could enhance the load bearing capability of the substrate, prolonging 

the permanence of the coating and slowing down the crack nucleation and 

propagation. Other applications in which Cu matrix composites play an important role 

are welding electrodes, contact wires and forming tools. The use of Cu is request in 

these components because process or frictional heat has to be removed rapidly. All of 

these applications work under dry sliding wear condition. Usually abrasion, adhesion, 

oxidation and plastic deformation are the main wear mechanisms. The addition of a 

hard phase opposes itself to the penetration of the abrasive particles of the counterpart 

and the material removal is limited (Eyre, 1981). Also the adhesion is prevented 

because the contact between the component and the counterface is not continuous 
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anymore, but hard particles stand proud of worn surface of composite sample avoiding 

solid-phase welding or localized bonding between contacting surfaces (Eyre, 1981). 

Another important wear mechanism involved during sliding wear is oxidation, which in 

some case is desirable (Eyre, 1981). The occurrence of oxidation leads to the 

formation of a continuous tribo-film which improves the wear behaviour reducing the 

friction coefficient (Straffelini et al., 2005; Zhang Y.S. et al., 2008). A harder material 

is characterized by a higher capability to sustain the oxide layer and therefore by a 

higher wear resistance. For this purpose the production of a material which facilitates 

the oxide production and increases the load bearing capability to outstand the 

protective oxide layer, is a challenging chance for material engineers, and MMC are 

suitable candidates for this goal. 

 

3.3 MMC: design and wear behaviour  

 

When ductile materials are subjected to sliding wear a severe plastic 

deformation of the near surface region is induced and the microstructure and 

properties of the sub surface metals change accordingly (Yao et al., 2015). When the 

unreinforced specimen rubs against medium carbon steel disk, the hard asperities on 

the steel counterpart penetrated and cut deeply into the surface of alloy, which results 

in a large amount of material removal and scratches. Increasing the hardness by 

dispersion hardening can be a successful solution to improve wear resistance (Zum 

Gahr, 1998). From the mechanical and tribological point of view not all the hard 

particles (HP) and metal matrix combinations are good for producing a tough and wear 

resistant composite. Both properties depend on different microstructural parameters 

(Berns et al., 1997; Berns et al., 1999; Berns, 2003). A good compromise must be 

found by tailoring accurately the characteristics of the two or more constituents. 

Dispersed HP protect the metal matrix against abrasion and the metal matrix provides 

the toughness. Oxide, carbides and borides have been successfully incorporated in 

the soft matrix to reduce the extent of surface plastic deformation and related metallic 

wear phenomena (Suryanarayana, 2001). In order to guarantee a positive effect, the 

HP have to be harder than the abrasive material and should also have a high fracture 

toughness so that the grooving particles of the counter face will tend to fracture rather 

than the HP (Theisen, 2008). It is believed that during the initial stages of the abrasive 

wear process, the abrasive particles from the counterface are capable of gouging the 

soft metal matrix, thus, protruding the HP to the composite surface. At this stage, the 

HP come in contact with the abrasive particles of the counterface. Several intrinsic 

factors but overall the relative hardness of the HP (HHP) and of the abrasive (Ha) 

particles govern the wear mechanism (Deshpande et al., 2006, Berns et al., 1999). 

The relative abrasive wear rate of composite tends to decrease when HHP exceeds 

about 0.8Ha. When HHP<0.8Ha, the abrasive particles of the counterface indent and 
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penetrate into the composite surface. When HHP>0.8Ha, the abrasive particles are 

strained and blunted (Richardson, 1968).  

Also the size of the HP affects the wear behaviour of the composite (Berns, 

2003, Zum Gahr, 1998) especially when subjected to abrasive wear. In order to 

improve the wear resistance HP must be bigger than the abrasive particles, this reduce 

the abrasion depth if they are well bonded to the matrix (Zum Gahr, 1998). Moreover 

the mean free path between the HP must be smaller than or at least as large as the 

width of the abrasive particle, if possible to act as an obstacle to the scratching 

abrasive (Akhtar et al., 2009; Zum Gahr, 1998). If the HP are too small they will be 

easily pulled out unless they are present in large quantities obstructing the penetration 

of the abrasive grain into the softer matrix. By the way it must be considered that over 

a certain volume fraction percolation of HP may occurs forming brittle network leading 

to a premature failure of the component (Bouvard, 2000; Zum Gahr, 1998). Moreover 

micro-cracking can occur if material contains internal notches such as cracks, pores, 

embrittled grain boundaries and inhomogeneous distribution of reinforcement 

particles, especially when a high normal load is applied (Deshpande et al., 2006, 

Akhtar et al., 2009). All these considerations are related only to the abrasive wear 

contribution of counterface against MMC, but once HP particle are pulled out the wear 

mechanism changes from two-body abrasion to three-body abrasion (Onat, 2010). 

The wear process thus generates a hard plastically deformed surface layer on top of 

a tougher zone that continuously renews itself as wear progresses. This leads to the 

formation of very hard wear debris, which together with the pulled out HP change the 

abrasive behaviour from two–body to three body abrasion (Zum Gahr, 1998). In some 

other case the debris and HP are compacted as a result of the load applied and a self-

protecting layer prevents deeper penetration of the hard particles into the surface and 

also avoid deeper grooves (Berns et al., 1999; Zhang Y.S. et al., 2008).  

In the specific copper base alloy are characterized by the presence of a high 

initial friction coefficient, typical of the adhesion mechanism, followed by the attainment 

of a lower value when wear become tribo-oxidative (Straffelini et al., 2005). Adhesion 

wear mechanism appears due to the formation of micro-joints between the sample and 

counter parts. As consequence of their relative movement, the softer sample is broken, 

leaving voids in the Cu alloy and transferring some material to the disc. Some cracks 

may be nucleated in the small void and grow until the delamination of the worn surface 

occurs (Gao et al., 2015, Onat 2010). As the hardness of the reinforcement particle is 

higher than that of conterface, this reduce the cutting efficiency of the abrasive particle 

and consequently the abrasion wear loss. Once reinforcing particle fracture or loosen 

from the copper matrix because bonding between the matrix and reinforcement 

becomes weak, they can be easily removed from the matrix, contributing to the mass 

loss as abrasive body. Increasing the content of reinforcement the wear resistance 

increases independently from the type of reinforcement (Akhtar et al., 2009; Lu et al., 

2012; Tu et al., 2003). In Cu-TiB2 composite increasing the content of hard phase, 
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wear resistance increased considerably if distribution of reinforcement in the matrix is 

uniform (Kwon et al. 2006; Tjong et al 2000). In some cases localized fracture easily 

occurred at brittle and weak TiB2 reinforcement-matrix interface under high load 

conditions especially for larger reinforcement particle size (Tjong et al., 2000). 

Prolonging sliding time a reduction of friction coefficient is due to the lubricating action 

exerted by the surface oxide. Usually the attainment of a tribo-oxidative wear 

mechanism is associable to the increased contact temperature (Straffelini et al., 2005). 

Increasing sliding speed or normal load or prolonging sliding time the flash 

temperature increases, which promotes the formation of a mixed surface layer rich in 

oxygen preventing the contact metal-to-metal during sliding, thus help to reduce the 

friction coefficient and the wear rate (Straffelini et al., 2005; Straffelini et al., 2004; 

Zhang Y.S. et al., 2007, Onat, 2010). 
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Chapter IV 

 

Materials and Experimental procedures 

 

 

 

4.1 Materials 

 

4.1.1 Copper 

 

In this study a water atomized copper powder was considered. Figure IV-1 

shows a scanning electron micrograph of the atomized Cu powder (AT-Cu) and a light 

optical micrograph of a polished metallographic cross-section. Cu particles are 

characterized by an irregular morphology and by the particle size distribution reported 

in Table IV-1. Most of the powders have a particle size in the range of 45 and 75 

microns. The oxygen content in AT-Cu is equal to 0.2%, others information about the 

composition cannot be declared as request by the company providing the powder. 

   

  
Figure IV - 1. SEM (a) and OM (b) micrographs of AT-Cu powder. 
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Table IV - 1. Particle size of AT-Cu powder. 

Particle size % Cumulative 

˃ 75 µm 8,7 

˃ 45 µm and < 75 µm 57,6 

< 45 µm 33,7 

 

4.1.2 TiB2 

 

The TiB2 powder was produced by continuous chemical process that controls 

stoichiometry and particle size (≈ 3μm) to create high purity powder (Fig.IV-2).  

 

 
Figure IV - 2. TiB2 powder 

 

4.2 Processing route 

 

4.2.1. Mechanical milling and mechanical alloying 

  

4.2.1.1 Process control agent, ball powder ratio and type of cycle 

 

All the MM and MA process were conducted in a Fritsch Pulverisette 6 planetary 

mono mill at 400 rotation per minute. Vial and sphere with 10 mm diameter of 100Cr6 

(63 HRC) were used. The system was evacuated down to 10-1torr to reduce the 

interaction between powders and oxidizing agent during milling.  

Initially three different milling parameters have been selected for MM: the type 

of process control agent (PCA), the ball to powder ratio (BPR) and the type of cycle. 

Firstly the effects of three different PCAs on the size, morphology and contamination 

content of the milled powder have been estimated. MM has been conducted in 

absence of PCA and with 0.5wt% of PCA (toluene or stearic acid (CH3 (CH2)16CO2H)). 
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In a first set of experiments the powder has been milled using a BPR equal to 33:1 

and an interrupted cycle (Table IV-2). In a second set, once the best PCA has been 

selected, the BPR was reduced to 10:1 keeping an interrupted cycle. In the third set 

two different milling strategies were investigated: 

 

1. Interrupted milling involving 2min on and 9min off for an effective total milling 

time comprised between 20 (time I) and 200 minutes (time II);  

2. Continuous milling for a total milling time between 20 and 200 minutes. 

 

Table IV - 2. Different milling parameters. 

 

 

4.2.1.2 Milling time  

 

Once the optimized combination of milling parameters has been found, copper 

powder and 0.5wt% of stearic acid have been mechanical milled for six milling times: 

20, 120, 200, 240, 360 and 720 minutes continuously. After proper considerations, 

also interrupted milling has been carried even for longer milling time: 3000 and 6000 

minutes, (Tab.IV-3). In the case of MMC nine powder batches were prepared using 9 

different milling times to find the condition leading to proper particle size, morphology 

and uniform dispersion of reinforcement. The milling times were from 5 up to 240 

minutes conducted in continuous as reported in Table IV-3. Each milling cycle has 

been carried out using a new powder batch in order to keep a constant filling ratio. The 

labels of all the different batches of milled powder are reported in Table IV-3. 

 

 

 

Stage Sample PCA BPR Cycle Effective MT (min) 

1 

A-I None 33 Interrupted 20 

A-II None 33 Interrupted 200 

B-I Toluene 33 Interrupted 20 

B-II Toluene 33 Interrupted 200 

C-I Stearic acid 33 Interrupted 20 

C-II Stearic acid 33 Interrupted 200 

2 
D-I Stearic acid 10 Interrupted 20 

D-II Stearic acid 10 Interrupted 200 

3 
E-I Stearic acid 10 Continuous 20 

E-II Stearic acid 10 Continuous 200 
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Table IV - 3. Labels of the different milled powders. 

Process Milling time (min) Type of cycle Symbol 

MM 

AT-Cu 

+ 

0.5wt%PCA 

20 

Continuous 

 

MM-20’ 

120 MM-120’ 

200 MM-200’ 

240 MM-240’ 

360 MM-360’ 

720 MM-720’ 

MM 

AT-Cu 

+ 

0.5wt%PCA 

20 

Interrupted 

MMi-20’ 

120 MMi-120’ 

200 MMi-200’ 

720 MMi-720’ 

3000 MMi-3000’ 

6000 MMi-6000’ 

MA 

AT-Cu 

+ 

0.5wt%PCA 

+ 

0.5wt%TiB2 

 

5 

Continuous 

MMC-5’ 

10 MMC-10’ 

20 MMC-20’ 

40 MMC-40’ 

80 MMC-80’ 

120 MMC-120’ 

160 MMC-160’ 

200 MMC-200’ 

240 MMC-240’ 

 

 

4.2.2. Spark plasma sintering 

 

The powders were sintered in a DR.SINTER® SPS1050 (Sumitomo Coal & 

Mining, now SPS Syntex, Inc.) apparatus using graphite punches and dies. Samples 

of 20mm external diameter and 5mm height were produced. SPS was performed at a 

nominal temperature (measured with a thermocouple inserted into a blind hole in the 

die wall) of 950°C, with a uniaxial pressure of 30MPa applied at 700°C. The selection 

of the loading temperature has been made on the base of the complete decomposition 

of PCA during the heating process, in order to avoid residual porosity. The heating 

rate was 100°C/min up to 900°C and 50°C/min up to the sintering temperature. Initially 

the maximum temperature and pressure were held for 1 and 3 minutes, respectively, 
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before allowing the furnace to cool to room temperature. Then, in order to improve the 

densification the pressure was increased up to 60MPa. This last setting parameters 

have been used for the production of the tensile and wear tests.  During the whole 

SPS sintering cycle, the voltage, current, displacement of the upper punch and 

temperature were recorded. The displacement of the upper punch was used to follow 

the densification process. The first derivative of displacement (ds/dT) against 

temperature is representative of the densification rate 

 

4.3 Characterization of milled powder 

 

4.3.1 Particle size 

 

4.3.1.1 Image Analysis 

 

The powder morphology was characterized by quantitative image analysis on a 

polished metallurgical cross section molded in epoxy resin. To obtain statistical 

support, at least 10 optical micrographs for each sample were considered. Two distinct 

parameters were analyzed, namely, the particle cross sectional area and the aspect 

ratio, i.e., the ratio between the maximum and minimum length of each particle. The 

first parameter is representative of the particle size, while the second resumes the 

particle morphology.  

 

4.3.1.2 Sieve analysis 

 

A sieve analysis was carried out to determine the particle size distribution under 

different milling conditions for the MMC powders. Powder samples (50g) were poured 

on the top of the sieve (355 to 25μm, 355, 250, 180, 125, 90, 45, 25μm). The column 

was then placed in a mechanical shaker, model FRITSCH 3 Spartan4 for 30minutes. 

The powder on each sieve was finally weighed by a precision balance (0.0001g). The 

weight of powder sample located on each sieve was then normalized by the total 

weight to obtain the particle sizes distribution. 

 

4.3.1.3 Metallography 

 

Milled powder have been cold molded in epoxy resin. Then standard 

metallographic preparation was also accomplished, including grinding with SiC papers 

up to 4000grit, final polishing with 3μm and 1μm diamond pastes. The powder 

morphology and dimension were evaluated by optical (OM) and Scanning Electron 

microscopy (SEM, model Philips XL30). 
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4.3.2 Contamination 

 

The iron and chromium contaminations of the powder arising from the milling 

media were measured by an inductively coupled plasma mass spectrometry (ICP). 

The oxygen and carbon content was measured by combustion analysis (LECO).  

The study of PCA decomposition has been carried out by thermo-gravimetrical 

analyses (TGA) combined with quadrupole mass spectrometry (QMS) using 

STA409CD by Netzsch. TGA of the milled powders was carried out in a protective 

argon atmosphere up to 1060 °C and at a heating rate of 20 °C/min. These analyses 

were combined with QMS which consists of four cylindrical rods, set parallel to each 

other forming a quadrupole. The quadrupole is the component of the instrument 

responsible for filtering sample ions according to their mass-to-charge ratio (m/z). 

QMS allows to detect all the gaseous products coming from the decomposition of PCA. 

The organic nature of PCA leads to the emission of C, H and O compounds that have 

been recorded applying the correct ratio of voltage to the quadrupole. All the same 

batches of powder have been used to minimize possible experimental errors (130 mg).  

 

4.3.3 Microstructural evolution 

 

X ray diffraction was carried out and the experimental data were elaborated with 

the Rietveld method using the Materials Analysis Using Diffraction software (MAUD) 

(Rietveld, 1969; Lutterotti 1997). The phase identification of the products was 

determined using Cu Kα radiation (λ= 0.15418nm). The crystallite size, the lattice 

strain of the MM-powders and the amount of dislocations were determined. The 

formers were evaluated using the X-ray peak broadening techniques. After proper 

corrections taking into account the instrumental effect, crystallite size and lattice strain 

can be calculated applying the Scherrer formula, 

 

𝛽 cos 𝜃 =
0.9∗𝜆

𝐷
+  sin 𝜃        (4.1) 

 

Where β is the peak width at half height, λ is the radiation wavelength, D is the 

crystallite size, η is the lattice strain and θ is the Bragg angle. This equation represents 

a straight line, where the lattice strain η is the slope and the intercept is 0.9λ/D. This 

method has been proved to be quite accurate for measuring crystallite size in the range 

of 10-100 nm (Suryanarayana, 2001). Dislocation density δ was calculated by the 

crystallite size and the lattice strain derived from Bragg reflection - profile analysis as 

follows: 

 

𝛿 =
2√3∗  𝜀1/2

(𝐷∗𝑏)
       (4.2) 

 

https://en.wikipedia.org/wiki/Quadrupole
https://en.wikipedia.org/wiki/Mass-to-charge_ratio
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Where b is the Burger vector of dislocation (for Cu 0.25562 nm) and ε the lattice strain 

(Zhao et al. 2002; Xiao et al., 2008; Menapace et al., 2016). 

 

 

4.4 Characterization of sintered samples 

 

4.4.1 Density 

 

The density of the SPS-processed pellets was measured according to 

Archimedes' principle (ASTM B962-08). For mechanical milled samples the relative 

density was calculated considering the theoretical densities of Cu as 8.96g/cm3. In the 

case of MMC the theoretical absolute density was calculate according to the linear rule 

of mixture, 

 

𝜌𝑀𝑀𝐶 =  𝑣𝐶𝑢𝜌𝐶𝑢 + 𝑣𝑇𝑖𝐵2𝜌𝑇𝑖𝐵2    (4.3) 

 

Where ν is the volume fraction and ρ is the absolute density of each constituent. For 

mechanical alloyed samples the relative density was calculated considering the 

theoretical densities of TiB2 as 7.76 g/cm3
. 

 

4.4.2 Metallography 

 

Metallographic cross section of the sintered samples was obtained by precision 

micro-cutting with a diamond blade. Standard metallographic preparation, including 

grinding with SiC papers up to 4000grit, final polishing with 3μm and 1μm diamond 

pastes, was also accomplished and chemical etching with 120mL of distilled water, 

30mL of hydrochloric acid and 10g of iron chloride (Petzow, 1999).  

 

4.4.3 Hardness and microhardness 

 

After standard metallographic preparation Vickers micro-hardness was 

measured on the top flat surface of the sintered disc and even on cross-section, Figure 

IV-3. A micro-hardness tester, model Anton Paar MHT4 was used using an applied 

load of 0.5N, holding time of 10 seconds and a loading rate of 0.05N/s according to 

ASTM standard E9-08. Measurements were taken in 8 different positions and the 

average value and standard deviation were reported. The Brinell hardness was also 

measured using HB5 scale (F = 306.5N and ball tip’s diameter D = 2.5mm) according 

to ASTM E10 – 01. 
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Figure IV - 3. Sample geometry and cut cross section. 

 

 

4.4.4 Tensile test 

 

Tensile test specimens of 4.9 x 4.9mm2 cross section and a gauge length of 

12.50mm length were produced directly by SPS, (Fig.IV-4). Mechanical characteristics 

were studied by means of tensile tests using an Instron 8516 SH device. Tensile tests 

were carried out with a strain rate of 0.1s-1 and an extensimeter was used to measure 

deformation. The fracture surface morphology was evaluated by SEM. 

 

 
Figure IV - 4. Tensile test specimen produced by SPS. 

 

4.4.5 Wear 

 

4.4.5.1 Sliding wear test 

 

The sintered samples were machined from the tensile test into block samples 

with the dimension of 9x13x5mm and the 9x13mm faces were employed as the wear 
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surfaces. The wear surface have been polished up to 1micron diamond paste. The dry 

sliding tests were carried using a block-on-disc configuration against AISI M3:2 

(65HRC) steel counterface with a rotating speed of 300 rotation per minute, a load 

comprised between 50N-200N and a sliding time of 15, 30 and 240 minutes. The 

configuration of the test is reported in Figure IV-5.The worn abrasive disc and the 

copper based samples were substituted by a new one for every sliding time and load. 

During the experiments, the friction coefficient was recorded and the contact 

temperature were continuously measured by a thermocouple placed in a hole at 2mm 

depth from the contact surface. The wear curve was recorded by weighing the 

specimens, using a precision balance (0.0001g). By the volume loss (V) and the sliding 

distance (s.d) the wear rate (Ka) has been calculated by the Archard’s equation 

(Straffelini et al., 2005):  

 

𝐾𝑎 =
𝑉

𝑠.𝑑.
       (4.4) 

 

The wear tracks, the counterface and worn debris were observed by optical 

(OM) and a scanning electron microscopy (SEM). Semi-qualitative chemical analysis 

was carried out by energy-dispersive X-ray spectroscopy (EDXS). All the wear tests 

have been carried out also on AT-Cu and on a copper beryllium alloys (Cu-Be) as 

reference. 

 

 
 

Figure IV - 5. Sliding wear test configuration. 

 

4.4.5.2 Abrasion wear test 

 

The abrasion wear resistance has been evaluated by scratch tests at different 

loads. The test specimens were machined from the sintered samples. Each test plane 

was polished to make a mirror surface prior to testing. The press surface, i.e., the 

sintered plane perpendicular to the pressing direction during SPS was 

indented/scratched (Fig.IV-3). The indenter was a Rockwell diamond indenter with 
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200µm of diameter. The loads of 1, 2 and 3N were applied for an abrasion distance of 

5mm and with a sliding speed of 10mm/min. In scratch testing, after applying a specific 

normal load, the specimens is horizontally slid with a programmed traveling speed on 

a monitored linear stage. The output of the test is the penetration depth with the 

accuracy of ±1µm.  

 

4.4.6 Thermal conductivity 

 

Samples were cut into disk-shaped specimens of Ф10 × 2.7mm and the thermal 

conductivity (k) of the samples was derived by the equation: 

 

k = α ∙ ρ ∙ Cp      (4.5) 

 

Where α is thermal diffusivity, ρ is the bulk density, and Cp is specific heat capacity. 

The thermal diffusivity and the specific heat were measured using the NETZSCH laser 

flash apparatus LFA 467 HyperFlash. The unit is equipped with a furnace which is 

capable for operation from -100°C to 500°C. The front surface of the sample is heated 

by a Xenon flash lamp with variation of energy by voltage and pulse-length. The 

resulting temperature increase on the rear face is measured using an IR-detector. Data 

acquisition and evaluation are accomplished by using the extensive software package. 

All samples were tested with the LFA between 400 and 500°C with 20 °C temperature 

steps. The measurements were carried out in a standard sample holder (Ø 10 mm). 

Each sample was measured five times at each temperature step. Prior to the 

measurement the front and the back of the samples were coated with graphite to 

enhance the emission/absorption properties of the sample. The specific heat was 

determined by the reference method given by ASTM-E 1461-2011. Therefore the LFA 

was calibrated with a Cp-standard (Pure-Copper: Ø 10 mm, thickness 2 mm).  
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Chapter V 

 

Mechanical Milling of Copper 

 

Part of this chapter has been published in: 

 

 

G. Cipolloni, M. Pellizzari, A. Molinari, M. Hebda, M. Zadra 

“Study of the processing route of copper powder by mechanical milling and Spark 

Plasma Sintering” 

Proc. Of the 2014 European Powder Metallurgy Congress & Exhibition 

21-24 September 2014, Salzburg, Austria 

 

G. Cipolloni, M. Pellizzari, A. Molinari, M. Hebda, M. Zadra 

“Contamination during the high-energy milling of atomized copper powder and its 

effects on spark plasma sintering” 

Powder Technology, volume 275 (2015) pp 51-59 

 

C. Menapace, G. Cipolloni, M. Hebda, G. Ischia 

“Spark plasma sintering behavior of copper powder having different particle size and 

oxygen contents” 

Powder Technology, volume 275 (2016) pp 170-177 

 

 
 

5.1 Selection of the milling parameters 

 

A major issue with MM is the contamination that arise from the milling media, 

the PCA and the atmosphere (Gordo et al., 2005; Madavali et al., 2014, 

Suryanarayana, 2001). Contaminations are generally deleterious and, in copper they 

negatively affect the electrical and thermal conductivity and for this reason must be 

minimized (Long et al., 2010 [2]). Process parameters such as the use of a PCA, the 

BPR and the milling time control the nature and the formation kinetics of 

contaminations (Suryanarayana, 2001). In this chapter the effects of the milling 

parameters are discussed according to the experimental process summarized in Table 

IV-2. Even if the PCA is a possible source of contamination, its use cannot be generally 

avoided because it delays the welding events especially in ductile materials (Harris et 

al., 1995; Huang et al., 1995; Suryanarayana, 2001).  

In Figures V-1 optical micrographs of the cross section of the powders milled in 

absence of PCA (A) and with 0.5wt% of toluene (B) or stearic acid (C) are reported. 

Initially all powders have been milled using BPR equal to 33:1 (chapter IV) and an 

http://www.sciencedirect.com/science/article/pii/S003259101500090X#bb0005
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interrupted cycle with an effective time of 20 and 200 minutes (I-II respectively). It is 

evident that the size of the powder milled without PCA is much bigger that of AT-Cu 

(Fig.IV-1). The intrinsic ductility of copper favours the predominance of welding over 

fracturing (Harris et al., 1996; Huang et al 1995). The powder morphology changes 

towards a flake-like shape, especially for short milling time (Luo et al., 2012; 

Suryanarayana, 2001,). 

Figure V - 1. OM micrographs of the variation of the powder morphology as a function of milling 
time (I–II) and PCA: (b) none, (c) toluene, and (d) stearic acid. 

The increased particle size is due to the temperature increase during MM and 

the predominance of welding events over fracturing ones. The benefit from using a 

PCA is evident because it impedes the clean metal-to-metal contact and leads to the 

dispersion of aggregates (Bailon-Poujol et al., 2011; Khayati et al., 2013, Zhang Y.F. 

et al 1999). A finer particle size is evident in powder milled with toluene even for 

prolonged MM. Using stearic acid the particle size after 200 minutes is intermediate 

between that using toluene and without any PCA (Fig.V-1). Although the smaller 
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particle size of powder milled with stearic acid for 20 minutes, the morphology of the 

particles is clearly flake like. All the assumptions made by looking at the OM 

micrographs are confirmed by image analysis. The cumulative distribution of area and 

aspect ratio (ratio between the maximum and the minimum length of each particle) of 

the milled powder as function of PCA and milling time are reported in Figure V-2.  

 

 
Figure V - 2. Cumulative distribution of area (a) and aspect ratio (b) of milled powders as 

function of process control agent and milling time (adapted from Cipolloni et al. 2015). 
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The effectiveness of PCA in reducing the particle size is evident (Fig. V-2a). 

Although the smaller particle area of powder milled with stearic acid after 20 minutes, 

toluene seems to be the best PCA because particle size is smaller even for long milling 

time. From a morphological point of view both toluene and stearic acid show a lower 

aspect ratio leading to a more equiaxial particle shape. This is due to the intense 

plastic deformation and the repeated welding events during MM. The achievement of 

a suitable particle size and morphology is very important because densification 

behaviour during SPS is severely affected by them. A round morphology is more 

suitable for sintering than a dendritic one because contact points between the powders 

are less in the former case (Gan et al., 2008). A lower amount of contact points 

between spherical particles limits the friction, enhancing the rearrangement of the 

powder, which is an important mechanism of densification during SPS. (Diouf et al., 

2012 [1]; Diouf et al., 2012 [2]). Powder rearrangement is severely affected by the 

packing density of the powders which is related to the particle size distribution 

(German, 1992 [1]; German, 1992 [2]). The packing density is maximum for wide 

distribution because the smaller particles can fill the gap between the bigger particles. 

Although the higher packing density, a wide particle distribution do not assure the 

highest final density, which is more promoted by a small particle size and a narrow 

distribution (Pellizzari et al., 2011[1]). From a dimensional and morphological point of 

view, toluene is the best PCA due to its high wettability, which allows the achievement 

of equilibrium between welding and fragmentation for a longer milling time. By the way 

the purpose of using PCA is also to limit the contamination by the milling media. In 

order to evaluate the effectiveness of the different PCAs, ICP test have been carried 

out to determine the Fe and Cr content coming from wear of the vial and of the balls. 

The content of Fe end Cr impurities in the milled powder increases when the milling 

time increases (Fig.V-3) (Long et al., 2010 [1]; Marques et al., 2007; Sato et al. 2010). 

The composition of vial and balls (100Cr6) leads obviously to a lower amount of Cr 

than Fe. The lowest contamination is observed using stearic acid: for example, with 

reference to dry milling, the iron contamination decreases from 0.25% and 0.35% after 

20 and 200 min, respectively, to 0.04% and 0.06%. Due to the relatively high viscosity, 

stearic acid promotes the formation of a protective layer all over the balls and the vial 

reducing wear of the milling media (Bailon-Poujol et al., 2011; Sato et al., 2010). On 

the other hand, toluene doesn’t offer a similar protection mechanism leading to 

stronger contamination (Fig.V-3). In can be stated that, for those applications 

demanding high electric and thermal properties, the use of stearic acid is more 

effective for mechanical milling of copper. Therefore, in spite of the better particle size 

and morphology obtained with toluene with respect to stearic acid, the latter PCA was 

selected for the next step in this PhD thesis 
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Figure V - 3. Fe and Cr contamination as function of process control agent and milling time 

(adapted from Cipolloni et al 2015). 

 

At this point the effects of different BPR and the change of the type of cycle 

have been analysed in order to increase the milling efficiency and reduce the 

contamination level in the milled powders. OM micrographs of the as milled powder 

are reported in Figure V-4.  

Figure V - 4. OM micrographs of powder milled with stearic acid using a BPR 10:1 for 20 min 

interrupted (D-I), 200 min interrupted (D-II), 20 min continuous (E-I) and 200 min continuous (E-

II) (adapted from Cipolloni et al. 2015). 
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Firstly BPR has been decreased in order to reduce the milling energy, the 

impact frequency and thus the temperature, as well (Zeng et al., 1999). A drastic 

change in particle size and morphology is evident comparing Figure V-1 with Figure 

V-4. The decreased BPR leads to a more pronounced flake like morphology and a 

finer particle size of the powder especially after 200 minutes interrupted milling (D-II). 

For short milling time the difference is not relevant. The use of a lower BPR leads to a 

lower internal temperature, to a reduced formation of larger aggregates and to a finer 

particle size. At the same time the lower BPR leads to a lower contamination as 

reported in Table V-1.  

 

Table V - 1: Fe contamination as function of type of milling cycle. 

Fe contamination (%) 

Milling time (min) A* B* C* D* E* 

20 (I) 0.24 0.09 0.04 0.01 0.01 

200 (II) 0.33 0.13 0.06 0.01 0.01 

*Letters A-E are referring to micrographs in Fig. V-1 and Fig. V-4. 

 

The Cr contamination is not reported because it was practically negligible 

compared to the previous results (Fig.V-3). The negative influence of a high BPR may 

be explained in view of the increased collision frequency resulting in a much higher 

wear of the milling media. Definitely, as far as contamination is concerned, the choice 

of a lower BPR is the most reasonable (Tab. V-1). Moreover the lower heat input does 

not require cooling pauses allowing for the replacement of the interrupted cycle with 

the continuous one shortening the production time. The use of a continuous cycle 

means a decrease of milling time of 80% in comparison with interrupted cycle (20 and 

200 minutes continuously instead of 110 and 1100 minutes interruptedly).  By the way 

the milled powder must also have a suitable particle size and morphology. Looking at 

Figure V-4, switching from interrupted to continuous cycle affects considerably the 

particle morphology especially for long milling time. The particle size of powder milled 

for 200 minutes results finer and less flake-like. From the contamination point of view 

the amount of Fe is the same of the interrupted cycle. 

At this point stearic acid, a BPR equal to 10:1 and a continuous cycle have been 

selected for the further stage. 
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5.2 Effect of milling time 

 

In order to deeply analyse the effect on copper powder the continuous milling 

time has been increased up to 720 minutes, all the studied milling time are reported in 

Table IV-3. 

 

5.2.1 Morphology and particle size 

 

Figure V-5 shows the morphology of as-atomized powder (AT-Cu). In Figure V-

6 the evolution of the powder milled up to 720 minutes is shown. In detail, up to 200 

minutes micro-forging is evident, leading to changes in particle shape without 

significant cold welding. The particle shape changed towards a flake like morphology 

in accordance with other studies (Luo et al 2012, Suryaranayana, 2001; Xiao et al. 

2008). These changes derived from the high ductility of Cu under repeated collisions 

caused by milling medium, increasing the aspect ratio. With increasing milling 

duration, from 200 up to 240 minutes, the powders are progressively fractured and a 

smaller particle size is evident looking at Figure V-6d.  

 

 
Figure V - 5. Starting copper water atomized powder. 
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Figure V - 6. Variation of powder morphology as a function of milling time: (a) 20, (b) 120, (c) 

200, (d) 240, (e) 360 and (f) 720 minutes conducted in continuous. 
 

At this stage powder particles underwent increasing strain hardening, their 

fracture was activated resulting in a finer and progressively less dispersed size 

distribution. By prolonging milling, as a result of predominance cold welding, the 

particles showed a marked increase in size and their morphology became more equi-

axed, Figure V-6e-f. The severe change of milling behaviour can be attributed to an 

increase of internal temperature inside the vial due to the continuous cycle 

configuration. For long milling time the repeated collisions of the grinding medium 

enhance the temperature inside the vial promoting welding. Looking at the large 

particle size a decrease of the effectiveness of PCA may be supposed and for this 

reason when the ball milling was extended to 720 minutes, the powders repeatedly 

tore and cold welded one other forming a matrix of randomly welded thick and highly 

deformed layers as shown in Figures V-7. An estimation of the aspect ratio of the 

powder can be made for a qualitative understand of the morphology evolution of the 

milled powder during milling. A very high aspect ratio is associated to powder milled 

for 120 and 200 minutes due to the intensive plastic deformation, meanwhile the 
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aspect ratio is gradually decreased with the increase of the milling duration (Luo et al., 

2012; Xiao et al., 2008).  

 

 
Figure V - 7. Highlight of powder compaction as a function of milling time: (a) 360 and (b) 720 

minutes conducted in continuous. 

 

Looking at Figure V-7 it is clear how the high energy impacts induced by the 

grinding balls tend to compact and smooth the particles forming shiny beads. The use 

of a not protective atmosphere leads to larger particle size than in the case of argon 

atmosphere (Madavali et al., 2014). Moreover the powder does not undergo to the 

typical milling process, but a continuous increase of particle size occurs instead of a 

severe refinement of the milled powder (Suryanarayana, 2001).  

As explained previously an important feature of this PhD thesis is to analyse the 

effect of different milling parameter on the contamination level of the powder. In this 

chapter the effect of milling time on contamination from grinding media and PCA have 

been take in account. Firstly in order to limit the contamination coming from the milling 

media, the milling process has been interrupted when the level of Fe exceeded 0.1% 

even if much lower than some data reported in literature (Long et al., 2010[1]; Luo et 

al., 2013, Marques et al. 2007). This decision comes from the necessity for some 

thermal and electrical copper applications to have low amount of contaminations.  The 

level of Fe in the powders measured by ICP analysis is reported in Table V-2 as 

function of milling time. 

 

Table V - 2. Fe and Cr content in copper milled powders. 

Milling time (min) Label Fe% 

20 MM- 20’ 0.008 

120 MM-120’ 0.011 

200 MM-200’ 0.009 

240 MM-240’ 0.019 

360 MM-360’ 0.030 

720 MM-720’ 0.117 
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Increasing milling time the level of Fe slightly increases up to 360 minutes than 

a drastically increase up to 0.12% has been attest after 720 minutes of milling. This 

can be attributed to the change of particle size of the milled powder and to the 

reduction of specific surface area. When the particle are smaller and flake like their 

adhesion on the grinding media is facilitated. A sort of protective layer is created and 

the wear of milling media is limited. Increasing milling time, when the lubricant action 

of PCA is lost, the particle size increases and powder change towards a more 

equiaxed morphology. At this point specific surface area decreases and the adhesion 

between milling media and copper powder is avoided; contact between sphere-sphere 

or sphere-vial are more frequent and the abrasion between them is enhanced. As 

mentioned above, by a drastically increase of the temperature inside the vial and the 

consequent predominance of welding events prolonging milling time, it is possible to 

deduce that the effectiveness of stearic acid is lost. The use of a continuous cycle 

leads to an overheating of the milling system and to a partial decomposition of stearic 

acid, as reported in Figure V-8.  

Figure V-8 shows the influence of the duration of MM on the oxygen and carbon 

contents. The carbon content increase from 0.1% in the AT-Cu to 0.45% during the 

first 120 minutes because stearic acid takes time to be homogenized trough the milled 

powder. Increasing milling time a slight decrease of C content attests a partial 

decomposition of stearic acid (Kleiner et al., 2005). By the way the presence of such 

amount of PCA cannot be neglected for the further sintering process. The residual 

stearic acid must be correctly decomposed before sintering avoiding any gas 

entrapment which will favour residual porosity in the final products. 

 
Figure V - 8. Oxygen and carbon content as function of milling time. 
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At the same time oxygen level must be considered because the presence of 

oxide on powder during SPS can affect considerably the process (Diouf et al., 2012 

[2], Diouf et al., 2013). By Figure V-8 a slightly increases of oxygen content for short 

milling time is reported then decreases accordingly with C content trend. By the way, 

even if a linear increase of oxygen content in powder milled in air atmosphere was 

expected, this different trend is associated to the intense variation of particle size 

involved during milling (Raghu et al. 2001).  The ratio between specific surface 

area/volume of the powders must be considered because oxidation of the particles 

during handling is intimately related to it. The ratio increases during the flaking process 

instead when welding process predominates the ratio decreases. This has severe 

effects on the amount of oxygen absorbed by the powder during milling and during 

handling. An increase of the dimension of the powder leads to a smaller oxidation 

phenomena. For this reason the oxygen level prolonging milling time decreases. The 

failure to attain complete densification of Cu powder during SPS is not completely 

related to the selection of densification parameters but instead it is related to changes 

in the chemistry of the powder too. The absorption of oxygen at powder surfaces and 

subsequent formation of thermally unstable compounds during milling and handling, 

and the subsequent thermal decomposition of these compounds during SPS 

generating gaseous species, leads to porosity formation, and consequently incomplete 

densification (Wen et al., 2010). Almost all gases generated during SPS can be 

trapped in the powder compact. The trapped gases contribute to a higher porosity and 

a reduced final density. The special surface structure and the high no equilibrium 

energy state induced by MM may enable absorption of oxygen on Cu powder surfaces. 

If SPS pressure is properly applied this phenomenon can be limited. 

At this point in order to optimize the SPS parameters TGA and QMS of some milled 

powder has been conducted to evaluate the decomposition process of stearic acid 

during heating. 

 

5.2.2 Decomposition of PCA 

 

Initially QMS analysis has been carried out on powder milled for 0 and 200 

minutes. This choice has been made thinking that the morphology and the size of the 

milled copper powders wouldn’t have affect considerably the decomposition of stearic 

acid (Kleiner et al., 2005). In Kleiners work the decomposition of 2.5wt% of stearic acid 

occurs always in the same range of temperature ~350°C, indicating that the milling 

time does not affect the decomposition process. Moreover increasing milling time the 

mass loss during TGA decreases deducing that a partial decomposition of stearic acid 

already occurs during MM and a lower amount of PCA’s contamination must be 

correctly decomposed. In Figure V-9 the TGA and the QMS curves for AT-Cu and MM-

Cu-200’ are reported. 
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Figure V - 9. TGA and QMS curves of AT-Cu and MM-200’ powders. 

 

The TGA curve of AT-Cu shows a continuous mass loss until 500°C. 

Conversely, the milled powder shows a higher mass loss indicating three different 

events, associable to the decomposition of stearic acid that occur at different 

temperatures, i.e., 150, 300 and 450°C in agreement with Kleiner (Kleiner et al., 2005). 

According to QMS, these three events could be correlated with different gas 

emissions: 

 100°C-1000°C, continuous water evaporation; 

 300°C, water evaporation and production of CO and especially CO2; 

 450°C, H2 production. 
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In the case of AT-Cu, only water evaporation up to 500°C has been revealed by 

QMS and TGA, since no stearic acid was used for milling. During preparation steps, 

the powders were exposed to the environment leading to an inevitable humidity 

adsorption on powder surfaces (Wen et al., 2010).  

In the case of MM-200’ three peaks corresponding to the three different gas 

emissions have been recorded by QMS. Accordingly TGA shows three different slopes 

of the curve depending on the atomic mass of the evaporated element. For this reason, 

the second segment (300°C) presents a higher slope due to the higher atomic mass 

of CO and CO2 than H2O and H2. 

The first peak is associated to the evaporation of H2O. The second peak, at about 

300°C, may be correlated to thermal decomposition of stearic acid. According to 

reaction (6.1) and (6.2) both CO/CO2 gases and H2O vapour might be formed as 

possible decomposition products,  

 

C18H36O2 (S) + 27O2 (g) → 18CO2 (g) + 18H2O (g)    (6.1) 

C18H36O2 (S) + 18O2 (g) → 18CO (g) + 18H2O (g)    (6.2)

  

Peak III at about 450°C can be associated to the reaction between stearic acid 

and the iron and chromium contaminants. As a consequence, larger quantities of gas 

are generated according to the reactions described by equations (6.3) and (6.4). 

 

2CH3-(CH2)16-COOH (vapour) + Fe (S) → [CH3-(CH2)16-COO]2 Fe (S) + H2 (g)  (6.3)  

6CH3-(CH2)16-COOH (vapour) + 4Cr (S) → 2[CH3-(CH2)16-COO]3 Cr2 (S) + 3H2 (g)   (6.4) 

 

From results in Figure V-9 it is clear that any possible gas emission will be 

completed at around 600°C. Accordingly, in order to allow proper decomposition of 

the stearic acid and to avoid any gas entrapment the pressure during SPS have been 

applied a 700°C, when almost all the QMS curves tend to zero. The optimized SPS 

cycle is shown in Figure V-10. 
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Figure V - 10. Optimized SPS cycle. 

 

5.2.3. Densification and sintering mechanisms 

 

Even if all powders milled for six milling times have been sintered by SPS the 

displacement and the displacement rate of MM-200’ and MM-720’ are reported in this 

section in order to facilitate the understanding (Fig.V-11). The selection of these 

samples has been made considering the two main particles morphologies obtained by 

milling, i.e. flake and large equiaxed.  Moreover the displacement and the derivative 

of displacement of AT-Cu is always reported as reference. The displacement curve is 

widely accepted as a densification measure as a function of the sintering temperature.  

The densification behaviour changes depending of the milling time but especially of 

the particle morphology. The densification behaviour can be analysed considering two 

parts of the displacement curves, namely before and after the application of pressure 

at 700°C.  

Before the load application a progressive increase of displacement for AT-Cu 

increasing temperature is observed. Comparing the densification rate of AT-Cu with 

the behaviour showed by Diouf, the peak at 100°C of powder rearrangement is absent 

but this can be attributed to the lower initial pressure (3MPa versus 23MPa) during the 

first stage of the SPS cycle. The slight increase of the displacement curve and the 

presence of a densification rate peak at 600°C can be ascribed to a powder 

rearrangement and to the local deformation (Diouf et al., 2012 [1]). The morphology 

and the particle size distribution of the AT-Cu powder and especially their higher 

ductility due to the absence of the MM treatment, enhance this behaviour. Moreover 

AT-Cu is characterized by a wider particle size distribution and this enhances the 
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powder rearrangement by a higher packing density (German, 1992 [1]; German, 1992 

[2]). 

 
Figure V - 11. Displacement of lower punch and its first derivative during SPS. 

 

In addition ductile copper powder leads to an easier compressibility of the 

powder during SPS. For this reason at 600°C the first derivative of AT-Cu is the highest 

in comparison with the other materials. During milling powders are subjected to a 

severe plastic deformation leading to a severe strain hardening. Therefore the 

densification mechanism should be retarded by a lower deformability of the powders 

under pressure. By the way before the application of the load MM-200’ shows a greater 
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increase of the displacement almost at the beginning of the SPS cycle in comparison 

with AT-Cu and MM-720’. A contribution to the larger displacement may be attributed 

to the more irregular morphology of the flake like particles shown in Figure V-6. For 

MM-200’ apparent density decreases with respect to that of AT-Cu and, in turn, 

increases the filling height in the die cavity. Under the application of the pressure, even 

if it is limited to 3 MPa, the packing of the flake like particles is therefore more 

pronounced (Diouf et al., 2013). This effect is responsible for the higher displacement 

of MM-200’, at least until the application of the pressure. It is also believed that the 

presence of residual stearic acid in the milled copper powder aids the particle 

rearrangement by its lubricant action. For MM-720’ the densification of the powder 

before the load is very little, demonstrating that powder rearrangement and local 

deformation are not active due to the higher hardness of powder milled for long milling 

time. The absence of a bimodal distribution especially for MM-720’ does not facilitate 

the filling of the inter particle space therefore the densification of the powders is limited. 

Once the load is applied, the AT-Cu rapidly densifies thanks to the lower 

hardness and favourable deformability. The sintering rate peak is the highest because 

densification is enhanced by smaller and more ductile particles (Pellizzari et al., 

2011[1]; Ting et al., 1994; Ting et al., 1995). The higher reactivity of MM-200’ before 

the application of the load leads to a limited displacements as well as to a lower 

displacement rate after 700°C.  MM-720’ recovers part of the densification when the 

load is applied and for this reason in this part of the SPS cycle the densification rate is 

higher than for MM-200’. All the displacement curves reach a plateau at 850°C, 

meaning that the maximum densification allowed to the powder has been reached. 

 

5.2.4 Characterization of sintered samples 

 

In table V-3 the density and the hardness on the cross section surface (Fig.IV-

3) of the six sintered samples are reported.  

 
Table V - 3. Real density, relative density and hardness of sintered samples. 

Sample Real density (g/cm3) Relative density (%) HB 5 

AT- Cu 8.76 99 91±2.1 

MM-Cu-20’ 8.76 99 88±1.8 

MM-Cu-120’ 8.67 97 93±1.5 

MM-Cu-200’ 8.67 97 106±2 

MM-Cu-240’ 8.37 94 121±2.3 

MM-Cu-360’ 7.83 89 102±2.4 

MM-Cu-720’ 7.88 89 113±1.9 
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It is evident that by increasing milling time the hardness increases due to the 

incremental strain hardening induced by MM. MM leads to a drastic increase of defect 

such as dislocations, vacancy, grain boundaries, which enhance hardness. The 

stronger plastic deformation limits the deformability and therefore densification, as 

confirmed by the lower density measured by increasing milling time (especially beyond 

200 minutes). In Figure V-12 and Figure V-13 the OM micrographs of all the sintered 

samples are reported. The sample sintered from AT-Cu powder shows a uniform 

microstructure (Fig.V-12). Figure V-12 suggests that AT-Cu powders have already 

reached the final stage of sintering where surface areas of pores decreased through 

closing off of pore channels and decreasing their connectivity to minimize the surfaces 

corresponding to high level of densification. Some pores are still evident and give a 

pinning effect for the grain growth (Fig.V-12) (Diouf et al., 2012 [2]; Zhang Z.H. et al., 

2008). 

By looking at the density values a very high porosity is expected in the sintered 

microstructures, especially for MM-360’ and MM-720’. However, the OM micrographs 

do not confirm this result (Fig.V-13). 

 

 
Figure V - 12. AT-Cu microstructure by OM micrograph. 
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Figure V - 13. Variation of microstructure as a function of milling time: (a) 20, (b) 120, (c) 200, 

(d) 240, (e) 360 and (f) 720 minutes conducted in continuous. 
 

The microstructure of the milled powders is severely affected by the powder 

morphology after MM. The samples from milled powder for 20, 120 and 200 minutes 

show an intrinsic anisotropy due to their flaky morphology. This kind of particles 

enhance the densification process by their rearrangement with elevate packing factor 

once pressure is applied, align them self in perpendicular direction to that of punch 

stroke leading to the distribution of porosity following the direction. This sintered 

products show a higher number of either longitudinal or interconnected pores, which 

distributed mostly along deformed particles’ boundaries (Fig.V-13abc). MM-240’ 

(Fig.V-13d) shows a stronger opposition of the particles to densification. These flake-

like powders might express an ineffective rearrangement stage. The compressed 

flakes would not be perfectly aligned in one preferable direction as for shorter milling 

time (MM-120’ and MM-200’). Therefore, instead of stacking “layer by layer”, these 

flakes tended to be wrapped up leading to the less proper contact between particles 
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when sintering, and a microstructural anisotropy is less evident (Fig.V-13d). Increasing 

milling time the microstructure becomes more uniform (Fig.V-13ef). A remarkable 

feature that should be pointed out is the white region located at particles’ boundaries 

in MM-720’, (Fig.V-14) 

 

 
Figure V - 14. OM micrograph of MM-720’. 

 

These white area can be associated to the occurrence of overheating at the 

contact points between the particles (Rajkovic et al., 2006; Rajkovic et al., 2008). Diouf 

claimed that increasing the contact area between the particles the electrical resistance 

decreases and consequently the current flow and the contact temperature increase 

according to R=ρh/S where ρ is the resistivity of copper, h is the thickness of the 

particles and S is the contact area between the particles (Diouf et al., 2012 [1], 

Yanagisawa et al., 2003). This behaviour lead to Joule effect, which promotes the 

sintering during SPS by a local overheating at the contact points between the particles, 

especially for coarse particles. The temperature increase at the surface of particles is 

very pronounced and raises on increasing particle size, overheating involves a very 

thin surface layer. Such a localized overheating causes thermal softening and 

localized melting at the surface, both enhancing deformation and the formation of 

necks by the activation of mass transport phenomena in the contact regions. By 

increasing particle size the local overheating increases dramatically and local thermal 

softening and melting support densification. At SPS temperature of 400°C it has been 

demonstrated by Diouf that the overheating of lamellar particle is confined within a 

very thin surface layer, becoming negligible at 0.2 micron of depth with a ΔT of 50°C. 
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On the other side the coarse powder shows an overheating (ΔT) of 500°C at 0.2 

microns from the surface layer, reaching 900°C as nominal temperature at the contact 

points (Diouf et al., 2012 [1]). Despite the occurrence of overheating, densification of 

MM-720’ is partially prevented because overheating does not affect the particle bulk 

temperature and, in turn, bulk deformation. Moreover also the severe strain hardening 

of the powder hinders densification. By the way by the micrograph of MM-720’ any 

porosity comparable to an 11% could be associated to the limited densification.  

LECO analysis has been carried out in order to evaluate the occurrence of the 

correct decomposition of PCA during the SPS cycle. In Figure V-15 carbon content 

before and after SPS as function of milling time is reported.  

 

 
Figure V - 15. Carbon content before and after SPS by LECO analysis as function of milling 

time. 

 

After the SPS cycle the level of carbon is reduced for all the samples, especially 

for MM-20’. This sample shows the highest loss of carbon, because stearic acid still 

not well homogenised and most of it covers the powder surfaces. Therefore its 

decomposition is facilitated. By the way the amount of carbon lost during SPS 

decreases with milling time. For MM-120, MM-200 and MM-240, when flake 

morphology is dominant the level of carbon loss is lower than MM-20. During MM 

process particles are deformed by impact contacts, and by welding events the flakes 

overlap entrapping part of the attached stearic acid between their surfaces. This slows 

down the decomposition kinetics of PCA reducing the level of carbon decomposed 

during SPS. Looking at Figure V-15 it is clear that for milling time longer than 360 

minutes the decomposition of stearic acid is practically avoided, the amount of carbon 
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before and after SPS stays almost the same. The stearic acid, due to the intense 

overlapping of the particle, is constrained between them and not reduced during SPS. 

This means that the decomposition of PCA before the application of the load at 700°C 

did not occur. At this point it is clear that the morphology and the dimension of the 

milled powder affect considerably the decomposition process of stearic acid. On such 

attempt the QMS analysis has been conducted for all the milled powders, and in Figure 

V-16 the QMS analysis of MM-200’ and MM-720’ are reported for comparison.  

 

 
Figure V - 16. TGA and QMS curves of MM-200’ (a) and MM-720’ (b) powders. 

 

In MM-720 the decomposition of stearic acid is not complete at 700°C but a 

CO2 peak is evident at 950°C. Accordingly the TGA curve (solid blue line) shows an 

intense mass loss at 950°C. The peak of H2, associated with a slight and continuous 

decrease of mass, is reported by both powders. The occurrence of the decomposition 

of stearic acid at 950°C can be attributed to the particle size and morphology as 
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mentioned above. This delays the decomposition of PCA so that the application of 

SPS pressure at 700°C is no longer adequate. The information obtained by QMS can 

be monitored during SPS by the vacuum trend (solid red line). In fact the excellent 

correspondence between the vacuum trend and the ion current recorded by QMS (Fig. 

V-16a) highlights the reliability of the vacuum level as useful measurement for the 

analysis of gas emission during SPS. The slight delay of the vacuum curve in 

comparison to the QMS curves can be attributed to the different heating rate, 

100°C/min and 20°C/min respectively. In Figure V-16b is evident that the CO2 

emission at 950°C during QMS is not detect by vacuum recording during SPS. The 

decomposition of stearic acid occurs but CO2 remains entrapped in the sintered 

sample. The presence of CO2 is the reason of the high level of carbon detected by 

LECO analysis after SPS and responsible of the low density value 

It has been demonstrated that the absorption of oxygen and other elements at 

the powder surfaces leads to the formation of thermally unstable compounds. Their 

decomposition during SPS releases gaseous species that cause the formation of 

pores and reduce the final density (Wen et al., 2010). This found also confirmation by 

the SEM micrograph displayed in Figure V-17.  

  

Figure V - 17. SEM micrograph of MM-720’ microstructure. 
 

A uniform and round shaped porosity is evident in MM-720’ sintered sample. 

The round shape is typical of porosity coming from gas emission. Moreover the SEM 

micrograph confirms the presence of a continuous copper recrystallize zone between 

the large particles caused by the overheating phenomena, as highlighted by a red 
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dashed line (Fig.V-17). Therefore the particle size of MM-720 is suitable to enhance 

the Joule effect responsible of an appropriate sintering process, but it prevents the 

decomposition of stearic acid leading to a high residual porosity.  

At this point in order to increase the density of the sintered sample three 

different solutions have been proposed: 

 i)  The optimization of the SPS cycle by changing the loading temperature in 

order to allow the proper decomposition of the PCA;  

ii)  The optimization of the particle morphology and size of the milled powder 

in order to facilitate the densification process. 

iii) The combination of i and ii. 

 

 

5.3 Optimization of SPS process 
 

5.3.1 Modification of SPS parameters 

 

The old (black lines) and the new optimized SPS cycles (blue lines) are plotted 

in Figure V-18. The main difference is that the pressure is applied at 950°C instead of 

700°C to allow the gas emission from the decomposition of stearic acid for MM-720’ 

powder. Moreover high temperature soaking time has been prolonged to four minutes 

(instead of two minutes) to maintain the same loading time (3 minutes). 

 
Figure V - 18: Pressure and temperature cycle of MM-720’ powder. 

 
As shown previously the densification process can be studied by the analysis 

of the SPS outputs. The decomposition of PCA in MM-720’ is monitored by the change 

of the vacuum pressure inside the chamber and the densification evolution by the 
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displacement trend, both parameters are reported in Figure V-19 for both previous and 

optimized cycle, named MM-720’/P-700°C and MM-720’/P-950°C respectively (Tab. 

V-4). In spite the updated SPS cycle, from Figure V-19 only one peak is recorded at 

500°C in vacuum trend and almost a perfect overlap of the two curves is evident. It 

was supposed to have a second peak at 950° in Figure V-19a corresponding to the 

CO2 emission for the optimized cycle in accordance with Figure V-16b. The perfect 

overlapping between the vacuum trends of the two cycles confirms that any additional 

gas emission occurred during SPS cycle of MM-720’/P950°C. Although the improved 

application at 950°C of the pressure, the stearic acid did not decompose, or at least 

the gas emission remained entrapped in the sintered sample as in previous results 

(Fig.V-17). At this point an improved densification of the sintered sample is not expect. 

In fact the displacement of MM-720’/P950°C (blue line) shows a gradual increase 

associated to powder rearrangement up to 900°C, but once the pressure is applied a 

vertical increase is reported. The incomplete densification of MM-720’/P950°C is firstly 

attested by the absence of gas emission at 950°C (Fig.V-19a) and then by the lower 

displacement (Fig.V-19b).  All the assumptions made by the analysis of the SPS 

outputs are confirmed by the density measurements and the LECO analysis (Tab.V-

4). 

 
Figure V - 19. Vacuum (a) and displacement (b) curves of MM-720’ milled powder sintered by 
two SPS cycles: initial SPS cycle (black dash line) and optimized SPS cycle (blue solid line). 

 

A comparison of density and content of carbon before and after SPS between 

the two samples produced by the different sintering cycles are reported in Table V-4. 

The relative density of MM-720’/P950°C is even lower than the density of MM-

720’/P700°C. Despite the delayed application of the pressure and the longer holding 
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time of the temperature, the level of carbon after SPS still high, this means that this 

solution is inefficient for the correct decomposition of the PCA, leading again to a high 

residual porosity. 

 
Table V - 4. Properties of MM-720’ sintered by two different SPS cycles. 

Processing Density Rel. Density Cpowder CSPS 

Milled powder SPS cycle (g/cm3) (%) (%) (%) 

MM - 720’ 
P - 700°C 7.88 88 0.324 0.310 

P - 950°C 7.63 86 0.324 0.321 

 

 

5.3.2 Modification of MM parameters 

 

5.3.2.1 Evolution of powder morphology and microstructure 

 

As stated in section 5.2.2 the decomposition of stearic acid is facilitated by a 

small particle size. Therefore an attempt was made to further refine the particle size. 

It is important to carry out MM for long time because this leads to a severe strain 

hardening by plastic deformation of the powders, and consequently to a fracturing 

process (Suryanarayana, 2001). In section 5.2.1 the use of a continuous cycle was 

leading to a continuous increase of the particle size. The use of a continuous milling 

cycle favoured the agglomeration of the powder due to the increase of temperature 

inside the vial. At this point to reduce particle size the milling cycle has been changed 

from continuous to interrupt in order to give time to the milling system to cool down 

during the pause of 9 minutes after 2 minutes of on. Six milling times have been 

studied: 20, 120, 200, 720, 3000 and 6000 minutes, named MMi-20’, MMi-120’, MMi-

200’, MMi-720’, MMi-3000’ and MMi-6000’ respectively (Tab.IV-3). The first four milling 

times have been selected to compare the effects of an interrupted cycle with the 

previous continuous cycle on the MM behaviour of the powders. The MMi-3000’ and 

MMi-6000’ have been chosen to strongly refine the particle size according to the 

requirements (Suryanarayana, 2001). Particle size and morphology evolution of the 

powders are shown in Figure V-20. 
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Figure V - 20. Variation of powder morphology as a function of milling time: (a) 20, (b) 120, (c) 

200, (d) 720, (e) 3000 and (f) 6000 minutes conducted by interrupted cycle. 

 

From 20 minutes to 200 minutes (Fig. V-20abc) of milling the benefit of the 

interrupted cycle is not very evident. Increasing the milling time to 720 minutes (Fig. 

V-20d) the powder becomes more homogeneous and equiaxed compared to powder 

milled in continuous (Fig.V-6f), in addition the particle size is sensibly decreased. On 

milling for 720 minutes, all the particles got compacted and more spherical because 

the impact action of the milling media smooth the powder and promote welding 

between them. Since the powder milled with an interrupted cycle experience much 

less heating from the impact events, their particle size is smaller than the powder 

milled by continuous cycle. By the way this morphology and particle size is very similar 

of MM-720’ and still not suitable for SPS cycle. According Suryaranayana after the 

predominance of welding events a fragmentation of the powder, induced by the severe 

strain hardening promoted by prolonging milling time, occurs especially if a cooling 

pause during MM is used (Suryanarayana, 2001). As MM has been prolonged up to 

6000 minutes, the particles started to fragment (Fig. V-20e-f). The ability of the 

particles to accept further deformation is diminished. Fracturing becomes significant, 

and leads to a decrease in particle size until equilibrium is reached between cold 
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welding and fracturing. The addition of the cooling pause overcomes the welding 

phenomena mentioned above, especially for very long milling times. Powders are 

subjected to a limited thermal increase and the level of strain hardening due to plastic 

deformation increases inducing brittle fracture. Fracturing goes on until a very fine size 

and regular powder particle shape is obtained as typical of every milling process 

(Sheibani et al., 2007; Suryanarayana 2001). This morphology and size are more 

suitable for sintering process because degassing of stearic acid should be promoted 

and a finer particle size is more suitable for SPS (Diouf et al., 2012 [1]; Pellizzari et al., 

2011 [1]; Pellizzari et al., 2011 [2]). Another important contribution to the fragmentation 

mechanism during MM for long milling time is given by the presence of oxide in MMi-

720’ as confirmed by LECO analysis reported in Figure V-21. For purpose of 

comparison C and O content for continuous and interrupted cycles are graphed in 

Figure V-21. 

 

 
Figure V - 21. Carbon and oxygen content of powder milled with continuous and interrupted 

cycle. 
 

It is clear that the oxygen level depends directly to the particle size and 

morphology as explained in section 5.2.1, and especially to the specific surface area 

of the powder.  The ratio between specific surface area on volume increases during 

the initial and finale stages of MM, when flaking process (MMi-120’ and MMi-200’) and 

the fracturing process predominate (MMi-3000’ and MMi-6000’). When particle size 

increases due to welding events the ratio decreases (MMi-720’). The change of the 

ration between specific surface area on volume according to the MM behaviour, has 

severe effects on the amount of oxygen absorbed by the powder during milling and 

during handling. A decrease of the dimension of the powder leads to a higher 

oxidation. For this reason the oxygen level prolonging milling time increases up to 
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3.5% while particle size drastically decreases. This is in accordance with the 

contamination level found by Madavali et al, they found an oxygen level of 4.97% after 

80 hours of milling in air (Madavali et al., 2014). Also Gomez found that oxygen content 

increases with the milling time until 8 h up to 2% (Gomez et al., 2006). Independently 

of the milling time the trend of oxygen content is the same for both cycles since particle 

morphology and size are very similar. The higher amount of oxygen for interrupted MM 

in Figure V-21 is associable to the finer particle size than continuous cycle (Fig. V-6 

versus Fig. V-20). The high absorption of oxygen for long milling time is associable 

also to the higher reactivity of the powders. The special structure (high surface area) 

and the energy state (high non equilibrium state) induced by MM enable the oxygen 

absorption on Cu powder surfaces. This is accompanied by the breakage of Cu-Cu 

surface bonds and the creation of new Cu-adsorbate bond (Besenbach et al., 1993; 

Wen et al., 2010). Moreover the high surface excess energy leads to different 

phenomena which promote the absorption of oxygen: disturbs of the balance and 

symmetry of the forces and masses, change of the interatomic distances, increase of 

the shear strain and influences of the atomic ordering pattern on the surface 

(Poluboyarov et al., 2005). Once the oxygen during milling got incorporated in to the 

copper powders to form oxide layers it acts as a hard second phase (Menapace et al., 

2016). Oxide layer makes the particle brittle and therefore should result in finer particle. 

The agglomerated coarse powders get cracked and broken prolonging MM.  

If, on one side, prolonging milling time leads to a smaller particle size, on the 

other one the use of a cooling pause limits the partial decomposition of PCA during 

MM. This is confirmed by the LECO analysis (Figure VI-21) showing that by increasing 

milling time the carbon content decreases for continuous MM (black dense square), 

whilst it remains constant for interrupted MM (black empty square). This means that a 

major amount of PCA must decompose during SPS and this may influence the correct 

progression of densification.  

In order to study the structure of the copper powder, XRD analysis have been 

carried out for all the powder milled both by continuous and interrupted milling. By the 

analysis of the spectra of mechanical milled powder any formation of second 

compounds has been detect among the entire continuous cycle. Up to 720 minutes a 

continuous decreased of the intensity of the peaks and an increase of the full width 

half maximum for milled powders have been revealed, confirming the reduction in the 

particle/crystallite size (Prasad et al., 2004; Wen et al., 2010). Similar behaviour was 

shown by powder milled interruptedly up to 3000 minutes. Only the spectra of powder 

milled for 6000 minutes shows a change in the behaviour. The presence of copper 

oxide in the MMi-6000’ sample is confirmed. For this reason in Figure V-22 only XRD 

of AT-Cu, MMi-3000’ and MMi-6000’ are reported.  
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Figure V - 22. XRD spectra of AT-Cu, MMi-3000’ and MMi-6000’ powders. 
 

XRD peak corresponding to phases Cu2O was observed, suggesting that the 

synthesized copper powder was reasonably pure and that it did not pick up excessive 

amounts of impurities to form new phases till that milling time (Xiao et al., 2008). The 

presence of the (111), (200) and (220) peaks confirms that the face-centred cubic 

structure of the copper powder is also retained after milling (Xiao et al., 2008). There 

have been instances in the literature where the mechanically alloyed powders exhibit 

changes in crystal structure due to phase transformations by increasing milling time 

(Suryanarayana, 2001; Suryanarayana et al., 2011). These include pure metals, which 

may exhibit polymorphic changes or intermetallics, where either the high-temperature 

or high-pressure phases are stabilized. This may happen due to an increase in the 

free energy of the system due to a reduction in particle size and the consequent 

increase in surface energy. In present case, are no polymorphic transformations and 

therefore no change in crystal structure were observed. The formation of oxide is 

associated with the oxygen that is absorbed at the powder surface when exposed to 

air after ball milling (Azabou et al., 2012; Khitouni et al., 2009). Possible mechano-

chemical reactions can be: 

 

2Cu+ ½O2  Cu2O 

 

Cu + ½ O2  CuO 

 

Prolonging milling the formation of copper oxide is enhanced by the reduction 

in particle size and consequent increase in surface energy and oxidation of the powder 

(Azabou et al., 2012; Khayati et al., 2013; Marques et al., 2007). Khayati et al. 
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estimated an incubation time for the solid state reaction between copper and oxygen 

of approximately 25 hours milling after which the oxidation kinetics exhibited an 

enhanced rate. In the current study it should be noted that owing to the little amount 

of Cu2O and the restriction of the XRD resolution, the actual incubation time is longer 

and between 3000 and 6000 minutes. Under these conditions, high amount of fine 

activated Cu milled powder are available to be in contact with oxygen, leading to a 

relatively high reaction rate and a fraction of copper oxide was produced. The 

presence of Cu2O enhances the fracturing process of the powders because it acts as 

hard phase during mechanical milling (Menapace et al., 2016). 

Vasil’ev and Lomaeva proposed a model for the formation of nanocrystalline 

structures during MM consisting in the formation of a thin amorphous-like layer, which 

captures oxygen atoms from the particle surface or gas phase, leading to the formation 

of metastable copper–oxygen phases (Valiev et al., 2004). It is, therefore, reasonable 

to assume that the energy delivered to the powder during milling is accumulated in 

energy-rich copper–oxygen compounds on the particle surface. Moreover the reduced 

particle size shortens the diffusion path required for the reaction of copper oxide to 

proceed (Sheibani et al., 2007; Sheibani et al., 2008). The extension of MM leads both 

to the particle size refinement with the associate oxide formation and to the 

microstructural evolution with the achievement of a nanostructure. By strain induced 

grain refinement several process are involved: lattice distortion, crystallite refinement, 

formation and evolution of sub-boundaries and creation of defects such as dislocation, 

vacancies, twins etc. (Wang et al., 2006). By the XRD analysis is possible to evaluate 

each single microstructural parameter. In Figure V-23 the evolution of crystallite size 

and lattice strain for all the milled copper powder have been calculated both for 

continuous and interrupted cycle.  

 
Figure V - 23. Evolution of crystallite size and lattice strain as function of milling time for 

powder milled by continuous and interrupted cycle. 
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Over all, the variation of crystallite size and strain with milling time of the 

interrupted and continuous cycle follows a similar trend for both the cycles. A 

prolonged MM leads to a drastic decrease of crystalline size down to 20 nm 

independently of the type of cycle. The decreasing crystallite size is due to formation 

of new defects such as dislocations that can appear in different ways: formation of 

highly dense regions of dislocations inside the parent grains, pile up at the grain 

boundaries or untidy clusters into the grain. All these phenomena lead to the formation 

of sub-grain structures, therefore decreasing the effective crystallite size (Khayati et 

al., 2013). At the same time an initial increase of lattice strain followed by a drastically 

decrease has been attested for both type of milling cycle. This is unusual for milled 

powder, which usually show a continuous increase of lattice strain (Suryanarayana, 

2001; Xiao et al., 2008). Both type of cycle show a decrease of lattice strain prolonging 

milling time. The interrupted cycle seems to show some delay of the microstructure 

evolution because the lattice strain curve is shifted at longer milling time. The addition 

of a cooling pause plausibly slows down the milling kinetic and therefore the 

microstructural evolution as well. By the value of crystallite size and lattice strain it was 

possible to calculate the dislocation density introduced by MM according to equation 

4.2 as well as the value of the cell parameter by the software MAUD (Fig.V-24). 

 
Figure V - 24. Dislocation density and lattice parameter as function of milling time for powder 

milled by continuous and interrupted cycle. 
 

As the energy is continuously input into the powder the dislocation density 

increases with the milling time and then decrease in correspondence of the longest 

milling times (MM-720’ and MMi-6000’), independently of the type of cycle. By the way 

the higher drop of dislocation density is measured for MMi-6000’. During the milling 

process, part of the mechanical energy transforms into enthalpy in the form of 

dislocation, defect, etc. stored in the milled powders. The increasing dislocation 
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density may cause the dislocation–dislocation, dislocation–twin interaction, which can 

result into formation of highly dense immobile dislocation and blocked dislocation in 

local region, such as grain and twin boundaries. The internal strain in these regions is 

higher than in the surrounding environment, where crack can easily form and grow, 

consequently causes particles to be broken into debris. After 6000 minutes a drop of 

dislocation density is reported. It has been suggested that the final grain size 

achievable by MM of pure metals is determined by the minimum grain size that can 

sustain a dislocation pile-up within a grain and by the rate of recovery during MM 

process (Marques et al., 2007; Khoshkhoo et al., 2014). The latter one can be partially 

responsible for the drop of dislocation density by increasing milling time (Khoshkhoo 

et al., 2014). 

In addition to dynamic recovery an important role is played by the dissolved 

oxygen which can be present in the copper matrix as interstitial and as substitutional 

element (Botcharova et al., 2003). Unfortunately the oxygen content measured by 

LECO is affected by the amount of oxygen present on the powder surface, so actual 

oxygen dissolved in the copper matrix is unknown. By the way in literature it has been 

proved that oxygen content dissolved in the matrix increases prolonging milling time 

(Botcharova et al., 2003; Gomez et al., 2006; Raghu et al., 2001). The effect of the 

increasing oxygen in the powder is demonstrable analysing other parameters which 

are affected by it. Botcharova et al. demonstrated the dependence of copper lattice 

parameter on milling time and consequently on the oxygen content (Botcharova et al., 

2003). In this sense the curve of lattice parameter vs. milling time in Figure V-24 is in 

accordance with what expected (Botcharova et al., 2003).  

At the beginning of milling, lattice parameter increases to a maximum of 

3.636nm, on further milling a decrease of it is observed. The dependence of the lattice 

parameter can be explained by the dissolution of oxygen, which can be assumed to 

take place by interstitial mechanism firstly and by a substitutional mechanism finally 

(Botcharova et al., 2003; Khitouni et al., 2009). Since lattice parameter increases only 

a limited amount of oxygen atoms may be dissolved on interstitial site of copper lattice 

because of their limited number. By the way as mentioned by Prasad et al., the 

interstitial oxygen atoms have a strong binding to both screw and edge dislocations in 

view of their asymmetric elastic distortions which cause a strong Cottrell locking 

(Prasad et al., 2004). Oxygen atoms take positions along the core of dislocations and 

clog the migration of vacancies along the dislocation pipe. It is sufficient that 

interstitials migrate to dislocation jogs and lock them to prevent dislocation core 

diffusion. For this reason dislocation density increases with milling time. Further 

oxygen atoms have to occupy lattice sites according to the substitutional mechanism 

no more interstitial ones. This would lead to a strong decrease of lattice parameter due 

to the larger difference in the atomic radii (atomic radius of oxygen being substantially 

smaller than that of copper). By the way dislocation density continues to increase due 

to the strong strain hardening. When the grain size reaches a saturation value, further 
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milling will not produce more dislocations due to the difficulty of generating dislocations 

at small grain sizes, and in fact the slope of dislocation density slightly decreases 

between MMi-720’ and MMi-3000’ (Fig. V-24). After 6000 minutes of milling once 

oxygen level exceeds the solubility limit the formation of copper oxide cluster occurs 

(Fig. V-22). This leads to a further decrease of lattice parameter. The interstitial oxygen 

atoms diffuse out from the face-centred cubic lattice to form copper oxide and their 

Cottrell locking action terms. At this point the dislocation density decreases drastically 

and existing dislocations will be rearranged and some will be annihilated. This 

microstructural evolution is very interesting because rarely reported in literature and 

deserves further detailed study. 

Among all the powder milled by interrupted cycle the most suitable for sintering 

is MMi-6000’ according to the dimensional and morphological requirements. In the 

next section a comparison between MM-720’ and MMi-6000’ during SPS has been 

developed. 

 

5.3.2.2 Effect of nanoparticle size and oxide during SPS 

 

From a thermodynamics perspective, nanocrystalline constituents have to be 

thought of as bulk grains with a significant fraction of grain boundaries. The grain 

boundaries, being non-equilibrium entities, provide a large driving force for grain 

coarsening during sintering, owing to their mobility (Sharma et al., 2011). Therefore 

MMi-6000’, due to its nanostructure should be more favourable for sintering in 

comparison with coarse MM-720’. Moreover MMi-6000’ is characterized by a very fine 

particle size which is supposed to enhance densification (Diouf et al. 2012 [1]; 

Pellizzari et al., 2011 [1]). In order to evaluate the effects of particle size and of oxide 

on the sintering behaviour, MM-720’ and MMi-6000’ have been compared. In Figure 

V-25 the displacement and its derivative for both powders are reported. As SPS cycle 

has been kept the initial cycle with the application of sintering pressure at 700°C (Fig. 

V-10) since MMi-6000’ particle size is supposed to be more suitable for the 

decomposition of stearic acid.  
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Figure V - 25. Displacement and displacement rate of MM-720’ and MMi-6000’. 

 

Figure V-25 highlights the different sintering behaviour of MM-720’ and MMi-

6000’. MMi-6000’ shows a higher displacement since the beginning of SPS cycle, due 

to the intense powder rearrangement (Fig.V-25a). In general, rearrangement occurs 

through the relative movements of the particles and it is negatively affected by the 

interparticle friction at the contact point, which increases by decreasing particle size 

(Diouf et al., 2013). Even if MMi-6000’ is characterized by a smaller particle size and 

therefore to a higher number of contact points, the displacement curve is higher than 

MM-720’ (Fig.V-25a). A possible explanation can be found looking at the displacement 

rate curves (Fig.V-25b). The displacement rate shows different peaks, due to the fact 

that powder rearrangement is not continuous, but it sensibly depends on the powder 

agglomeration and instantaneous movement of the batch of powder along the punch 

stroke. Nanoparticles create easy agglomerates that initially prevent the 

rearrangement by a high friction at the contact points, but by the application of a limited 

pressure (3MPa) the agglomerates can be destructed and rearrangement occurs. On 

the other side the large particle size of MM-720 should lead to a higher rearrangement 

due to the lesser number of contact points. By the way the low intrinsic packing density 

of coarse particles prevents their rearrangement and displacement is limited (Fig.V-

25a). Once the load is applied at 700°C the bulk densification begins and finishes with 

the attainment of a constant displacement and a displacement rate equal to zero for 

both powders. This confirms the complete densification of the powders.  

The microstructure of MMi-6000’ looks very fine, homogeneous without any 

evident porosity (Fig.V-26). In comparison with MM-720 (Fig.V-14) no copper 

recrystallized areas are visible, meaning that overheating did not occur as 
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consequence of the small particle size (Diouf et al., 2012 [1]). Therefore the 

densification is not aided by the presence of skin melted Cu particles leading to faster 

diffusion of atoms to neck region, (Sharma et al., 2011). By the way it is known that a 

nanocrystalline particles have a significant volume fraction of grain boundaries, which 

provide faster diffusion paths for mass transport.  

 

 
Figure V - 26. OM micrograph of MMi-6000’ microstructure. 

 

The retention of the finer crystallite size of Cu will also cause an improved 

sintering kinetics due to the higher sintering force. According to Herring’s scaling law, 

the sintering time follows a direct power law relationship with particle size. The finer 

the particle size, the faster the grain boundary diffusion induced mass transport to neck 

region. An additional contribution to enhance mass transport can be ascribed to short 

circuit diffusion, due to the presence of a large number of line defects, (Sharma et al., 

2011). At this point a higher density of MMi-6000’ was expected, by the way as 

reported in Table V-5 relative density is very low (~80%). 

 

Table V - 5. Properties of MMi-6000’. 

Sample Rel.Density Cpowder CSPS Opowder OSPS HB5 

 % 

MMi-6000’ 80.3 0.401 0.346 3.561 0.609 40 

 

 



78 

 This result seems incomprehensible, especially looking at the microstructure, 

but by further analyses two main causes have been found to be responsible of the 

poor densification of MMi-6000’: the first one is the significant presence of oxide in the 

milled powder, and the second one is the powder morphology. 

The sintering mechanism occurring during SPS of ultrafine-grained copper have 

been described by Zhaohui et al. (2008)  who has proposed a sequence of four stages: 

(1) activation and refining of the powder; (2) formation of the sintering neck; (3) growth 

of the sintering neck and (4) plastic deformation. The first two stages are promoted by 

the spark discharge; the growth of the neck and plastic deformation are promoted by 

the Joule effect and the mechanical load.  Joule heating is related to materials 

electrical resistance, which is closely associated to the particle–particle contacts. 

Electrical resistance is also affected by the presence of an oxide layer on the powder 

surfaces, particularly in the early stages of sintering when the formation of necks is 

occurring. To explain the sintering mechanisms during the early stages of sintering, 

the behaviour of oxide layers under the influence of temperature and electric field must 

be considered. For this purpose the resistance versus temperature curve of MM-720’ 

and MMi-6000’ during SPS are reported in Figure V-27. 

 
Figure V - 27. Electrical resistance versus Temperature curves of MM-720’ and MMi-

6000’ during SPS. 
 

From Figure V-27 the different behaviour of the two materials during SPS is 

evident, by the way in both cases the electrical resistance decreases increasing the 

temperature. Before the application of the sintering load at 700°C, MMi-6000’ shows 

a higher electrical resistance than MM-720’. Then the electrical resistance of MMi-

6000’ sharply decrease and it is almost the same value for both the materials once the 
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pressure is applied. The different value of electrical resistance at the beginning of SPS 

is associable to the particle size of the milled powders and to the presence of copper 

oxide. It has been demonstrated that comparing powders having different diameters, 

the contact points between the powders increase decreasing particle size and on 

contrary the total contact area decreases (Diouf et al., 2012 [1], Diouf et al., 2012 [2]). 

By the relation between contact area and resistance (R=ρh/S), a decrease of particle 

size leads to an increase of resistance. Therefore a higher resistance value is 

expected for nanocrystalline MMi-6000’ particles; since resistance is inversely 

proportional to the contact area (Diouf et al., 2012; Sharma et al., 2011). The results 

shown in Figure V.27 are in perfect accordance with what expected. At the same time 

the continuous decrease of electrical resistance for both materials is associate to the 

increase of the contact area between the particles. When the load is applied, it further 

promotes the contact between the particle, and a drastic decrease of electrical 

resistance is evident (Fig. V-27). MM-720 shows a linear trend of the electrical 

resistance till the application of the load at 700°C, instead the electrical resistance of 

MMi-6000’ shows a change of the slope at around 250°C. This phenomenon is strictly 

related to the presence of oxide which affects the electrical properties of the material 

during SPS. The electrical conductivity transition in granular materials depends on the 

statistical distribution of the shape and size of the particles, the applied force, and the 

local properties at the contacting zone between particles, i.e. degree of oxidization, 

surface state and roughness. By the representation of current-voltage and 

temperature-current curves (Fig.V-28a-b) it is possible to highlight the three main 

phenomena occurring during SPS: i) Ohmic linear behaviour, ii) non Ohmic behaviour 

and iii) destabilization of the current/voltage curve once the pressure is applied. The 

first phenomenon is an Ohmic linear behaviour without any significant change in 

temperature (Fig. V-28b). This insulating behaviour is attributed to the presence of 

copper oxide. Up to this point, the current was also flowing through the oxide-oxide 

path, other than through the die walls. The copper oxide has much higher resistivity 

(20Ohm m) as compared to copper (1.58x10-8 Ohm m), and this obstructs the flow of 

current (Sharma et al., 2011). The different current values observed up to the 

breakdown point into the compact MMi-6000’ and MM-720’ are in line with the different 

oxidation states of the two powders. The current measured in sample MMi-6000’ is 

lower than that in MM-720, confirming a much higher surface oxidation in the first 

powder. This is in agreement with the X-ray analysis, which showed 21vol% of copper 

oxide in MMi-6000’, while no oxides (or at least higher than the sensitivity of XRD 

apparatus ~3%) were detected in powder MM-720’. Moreover up to the breakdown it 

is evident that the current increase in the MM-720’ specimen is more pronounced than 

in MMi-6000’. Probably also the severe and prolonged strain hardening induce by MM 

in MMi-6000’ negatively affect the electrical resistance increasing the gap between the 

electrical resistance of the two materials. 
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Going forward SPS cycle, an instability of the current-voltage curve is observed 

at around 2V in Figure V-28a and a change in the temperature-current curve is 

observed both for MM-720’ and MMi-6000’ (Fig.V-28b).  

 

      
Figure V - 28. (a) Current-voltage curves, (b) Temperature-current curves of MM-

720’ and MMi-6000’ during SPS. 

 

The change of slope of current curve indicates the breakdown of the oxide, 

since the electrical resistance depends on the material properties (resistivity and 
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thickness) at the contact location. After this breakdown current flows more through the 

metallic particles, heating up the material, as confirmed by the temperature jump in 

Figure V-28b. Above this threshold, temperature increases and MM-720’ curves 

(current-voltage and temperature-current) have a stable behaviour. MMi-6000’ shows 

a more unstable behaviour up to 300°C, temperature at which a drastic change of the 

electrical resistance occurs (Fig. V-27).  

The third effect consisting in the destabilization of the current/voltage curve 

occurs at 700°C, when the pressure is applied. This event causes a destabilization in 

the voltage/current curve and decreases the heating efficiency confirmed by the 

decrease of the slope of the temperature-current curve. By the application of the 

pressure a sharp increase of the contacting area occurs and electrical resistance 

decreases as highlighted in Figure V-27. At this point it can be deduced that the poor 

densification of MMi-6000’ is obstructed by the high electrical resistance due to the 

mutual contribution of the small particle size and the presence of copper oxide acting 

as a surface diffusion barrier. In addition the fine particle size hinder the favourable 

occurrence of overheating, in fact no recrystallized regions are visible at the contact 

region in MMi-6000’ microstructure (Fig. V-26).   

Another reason for the poor densification of MMi-6000’ is the incomplete 

decomposition of stearic acid during SPS although the finer particle size in comparison 

with MM-720’. Even if the smaller particle size was supposed to facilitate the 

decomposition of stearic acid during SPS, the amount of carbon after SPS still high in 

MMi-6000’, only 13.5% has been decomposed (Tab V-5). The QMS analysis of MMi-

6000’ powder is reported in Figure V-29.  

 
Figure V - 29. TGA and QMS of MMi-6000’ powder and vacuum trend during SPS. 
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The decomposition of PCA occurs in two steps: firstly by the emission of CO2 

and H2 at 350°C and 500°C respectively, then at 800 and 950°C two peaks of CO 

have been recorded with a drastic mass loss in TGA curve (blue solid line). The latter 

ones are responsible of the residual porosity in the sintered material as in the case of 

MM-720’ (Fig.V-16b). This affects considerably the densification process, and as 

confirmed by the vacuum trend (red solid line) no change in pressure is recorded at 

950°C, since the SPS pressure has been applied at 700°C vanishing any possible gas 

emission. By these results is clear that also MMi-6000’ powder is not suitable for 

sintering leading to a high residual porosity (TabV-5). The SEM micrographs reported 

in Figure V-30b shows a quite irregular particles morphology for MMi-6000. Although 

this sample was looking as uniform and regular particles (Fig.V-30a), actually these 

consists in very small and compact agglomerations of very thin flake like particles.  

 

 
Figure V - 30. SEM micrographs of MMi-6000’ powder at high resolution. 

 

This powder morphology complicates the densification of the powders during 

sintering leading to a higher residual porosity. Moreover stearic acid is entrapped in 

the agglomerated particle delaying its decomposition process and increasing the 

internal porosity. In addition it may be easily appreciated that it is very difficult to pack 

irregular particle in a dense manner, and the presence of agglomerates makes the 

sintering process even more difficult (Bouvard et el., 2000; Shukla et al., 2013). Finally 

the oxygen absorption at powder surface leads to the formation of thermally unstable 

compounds. Whose decomposition during SPS releases gaseous species that cause 

the formation of pores (Wen et al., 2010). Although the invisible large porosity in Figure 

V-26 a residual nano-porosity could be confirmed by TEM (Fig.V-31a-b). The 

micrographs evidence a consistent amount of nano pores, located mainly at the grain 

boundaries. Also clearly evident it is the pinning effect exerted by these pores, as the 

grain size is much lower in the area where pores are visible at the grain boundaries 

(Diouf et al., 2013; Zhang Z.H. et al., 2008). Generally, these pores are very fine 

(< 100 nm), but some larger ones (> 100 nm) were also observed. A similar effect was 

observed by Zhang et al., (Zhang Z.H. et al., 2008).  
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Figure VI-31. TEM micrographs of MMi-6000’ sintered sample. 
 

The average grain size measured for sintered MMi-6000’ samples by XRD is in 

the range of 80nm. The XRD analysis confirms the limitation of grain coarsening by 

SPS. It is widely recognized that a major difficulty in synthesis of nanostructured 

materials is the grain growth during sintering. The use of ‘‘activated’’ sintering, 

involving a combination of lower temperature and shorter time, makes it possible to 

obtain a bulk nanocomposite; in particular, the advent of field assisted sintering 
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techniques, e.g. , SPS has the advantage in fabrication of bulk nanocomposite. As 

indicated earlier, SPS involves the application of pulsed electrical direct current in 

combination with resistance heating to achieve a high heating rate, so that grain 

coarsening can be minimized. Because of the high heating rate, the final sintering 

temperatures can be reached in less time. This has the advantageous implication of 

suppressing the low-temperature densifying mechanism (such as surface diffusion); 

hence, grain coarsening/growth can be limited within the nano-crystalline regime, 

(Sharma et al., 2011). If on one side the limited grain grow leads to improved 

mechanical properties on the other side residual porosity could be detrimental. 

Obviously the presence of high residual porosity affects the mechanical properties of 

the sintered material, as will be explain and shown in chapter VII. Meanwhile in Table 

V-5 the value of Brinell hardness of MMi-6000’ is reported and is equal to 40HB. 

Although the prolonged milling process the mechanical strengthening of the powder is 

ineffective leading to a very low hardness. This result is in conflict with what expected 

because an intense and prolonged MM usually leads to a severe plastic deformation, 

an intense introduction of defects and therefore to a strain hardening of the final 

product. Moreover also the density decrease prolonging milling time and this could be 

very detrimental for the mechanical properties of the components (Fig-V-32). At this 

point is clear how prolonging milling time is worthless both for enhancing mechanical 

properties and for the densification behaviour during SPS process. By this results the 

improvement of mechanical hardening of copper has been promoted by the addition 

of a second phase during MM, as will be explain and analysed in the next chapter. 

 

 
Figure V – 32. Relative density and hardness as function of the mechanical milling time. 
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5.3.3 Modification of MM parameters and SPS cycle 

 

Before describe the MA cycle an ultimate development and understanding of 

the SPS cycle of MM copper has been carried out in the last part of my PhD program, 

and the promising results are reported in this section. By previous sections is clear 

how the two solutions (5.3.1 and 5.3.2) are not beneficial for the densification of milled 

copper powder. In this section the densification of copper powder is enhanced 

coupling the optimized particle size of interrupted cycle, i.e. MMi-6000’ (5.3.2) and the 

optimized SPS cycle with the application of the pressure at 950°C instead 700°C 

(5.3.1). An advanced improvement has been made looking at Figure V-16 and V-29, 

in which the vacuum peaks are shifted toward higher temperature if compared to the 

QMS peaks. This is related to the different heating rate, 100°C/min during SPS and 

20°C/min during QMS. Therefore in order to have the peaks detected by QMS 

between 800 and 950C° during SPS, the heating rate must be decreased. For this 

reason the heating rate has been maintained 100°C/min up to 700°C and then 

decreased down to 20°C/min up to the sintering and loading temperature of 950°C. 

The vacuum trend during SPS and the QMS curves are reported in Figure V-33. Very 

interesting and satisfying results have been obtained, the expected peaks at 800°C 

and 900°C have been detect by the vacuum trend during SPS. This means that the 

correct decomposition of stearic acid finally occurred as confirmed by the relative 

density measurements and the level of carbon before and after SPS, reported in Table 

V-6.  

 
Figure V - 33. TGA and QMS of MMi-6000’ powder and vacuum trend during SPS with a 

heating rate of 20°C/min. 
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Table V - 6. Properties of MMi-6000’ sintered with a heating rate of 20°C/min. 

Sample Rel.Density Cpowder CSPS 

 % 

MMi-6000’_100°C/min 80 0.40 0.35 

MMi-6000’_20°C/min 90 0.40 0.06 

 

The level of carbon is drastically decreased from 0.4% to 0.06% after SPS, and 

a 10% of relative density has been gained. The increase of density may be attributed 

to two mutual effects: the correct decomposition of the PCA attested by the presence 

of the peak between 800 and 900°C, and the prolonged sintering time due to the lower 

heating rate. It is widely diffuse to carry out an annealing treatment at around 500°C 

on the powder before sintering in order to allow the proper decomposition of PCA. By 

the way sometime the annealing leads to an unwanted grain growth. Moreover in this 

specific case, where the decomposition of PCA is complete at higher temperature than 

500°C, the use of an annealing treatment could be useless and in some case even 

detrimental. The proper optimization of the SPS carried out in this section could be 

considered a suitable alternative. By the way before to affirm the complete success of 

this solution, XRD analysis must be carried out in order to evaluate the effect of a 

prolonged SPS cycle on the grain size. Unfortunately this promising result leads the 

last part of the PhD period, therefore a proper characterization of the sintered sample 

has not been possible to carry out. For this reason in chapter VII the characterization 

of the mechanical properties and of the wear behaviour have been conducted on MMi-

6000’ sintered in section 5.3.2. 

 

 

5.4 Conclusions 

 

In this chapter MM of copper powder has been deeply analysed. 

 Firstly the best MM parameters have been found to limit the contamination level 

arising from the grinding media, than the effect of milling time has been studied 

by the evolution of the particle size, morphology and microstructure of the milled 

powder. In the case of continuous cycle a predominance of welding events has 

been demonstrate prolonging milling time, instead by the use of a interrupted cycle 

the powder undergoes to the typical MM behaviour of ductile materials: flattening, 

welding and finally fracturing.  

 The particle size and morphology affect significantly the densification behaviour 

during SPS. On one side large particle size limits the correct decomposition of 

PCA during SPS even by the application of the pressure at high temperature. On 

the other side fine particle size leads to the presence of oxide which hinders the 

densification due to its high electrical resistance. Moreover, even in the case of a 
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finer particle size, the densification can be limited if the decomposition of PCA is 

not properly designed. 

  Several attempts have been made in order to increase the final density and 

successful results have been obtained by the application of the SPS pressure at 

950°C instead 700°C and by the use of a slower heating rate, 20°C/min instead 

100°C/min. This allows the proper decomposition of PCA during SPS and limits 

the residual porosity.  

 Despite the complete understanding of the processes occurring during MM and 

SPS of copper powder, materials show a sharp decrease of hardness and density 

increasing milling time. At this point is clear how prolonging milling time is 

worthless both for enhancing mechanical properties and for the densification 

behaviour during SPS process.  

From this chapter three main milling times have been selected according to the size 

and morphology of the powders after MM: MM-240’ (flaking), MM-720’ (welding) and 

MMi-6000’ (fracturing). The selection has been made in order to evaluate the thermal 

conductivity, the wear behaviour and the mechanical properties as function of the level 

of strain hardened induced by MM and compare them with the mechanical alloyed 

sample produced in next chapter. 
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Chapter VI 

 

Mechanical Alloying of Copper and TiB2 

 

Part of this chapter has been published in: 

 

 

 
G. Cipolloni, M. Pellizzari, A. Molinari 

“Tribological behavior of TiB2 reinforced Cu-matrix composites produced by mechanical 

alloying and spark plasma sintering” 

Proc. Of the 2015 European Powder Metallurgy Congress & Exhibition 

4-7 October, Reims, France 

 
 

G.Cipolloni, M.Pellizzari, A.Molinari, B.T.Cao 

“Produzione e caratterizzazione di compositi a matrice in Cu rinforzati con particelle di 

TiB2” 

Proc. Del 35° Convegno Nazionale della Associazione Metallurgia Italiana 

5-7 November 2014, Roma, Italia  

 
 

 

6.1 Effect of milling time on MA behavior 

 

6.1.1 Selection of the MMC as function of milling time 

 

The first requirement for a composite material to fully exploit its superior 

performance is the homogeneous distribution of the reinforcement. High energy ball 

milling has been successfully used to improve particle distribution throughout the 

matrix and for this reason MA process of Cu and 0.5wt%TiB2 have been deeply studied 

in this chapter.  

Figure VI-1 shows the variation of MMC’s powder morphologies as a function 

of milling duration, ranging from 5 to 240 minutes. MA was conducted using the milling 

parameters in chapter V: 0.5wt% of stearic acid as PCA, a BPR equal to 10:1 and 

milling cycle conducted in continuous. During milling, the powder mixtures are 

subjected to high-energy collisions, which would result in the occurrence of micro-

forging, fracture or agglomeration phenomena in composite powders. The specific 
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morphology is dependent on the dominant mechanism. For short milling time (5 to 20 

minutes), micro-forging is evident, leading to changes in particle shape without 

significant cold welding. After 5 and 10 minutes of milling some intact as-atomized 

powder particles are still present. The particle morphology appears mainly equiaxed 

up to 10 minutes even if some flake particles are present. A very evident flattening 

occurs after 20 minutes, when the plastic deformation of the Cu powder governs the 

alloying process (Fig. VI-1a-c). 

 

 
Figure VI - 1. SEM micrographs of MMC powders as function of milling time: a) MMC-5’, b) 

MMC-10’, c) MMC-20’, d) MMC-40’, e) MMC-80’, f) MMC-120’, g) MMC-160’, h) MMC-200’ and 
i) MMC-240’. 

 

These morphologies derive from the high ductility of Cu under repeated 

collisions caused either by milling medium or the reinforcement. By increasing milling 

duration, from 20 up to 120 minutes, the powders are progressively plastically 

deformed and their morphology turns gradually into thinner flakes (Fig.VI-1c-f) (Sahani 

et al., 2011, Maurice et al., 1994). In addition, since powder particles undergo 

increasing strain hardening, their fracture is activated resulting in a finer particle size 

(Fig. VI-1e-f). After prolonged milling (160 to 240 minutes), as a result of cold welding, 

the particles show a marked increase in size and their morphology became again more 

equiaxed (Shukla et al., 2013). Cross sectional views reported in Figure VI-2 clearly 

show that flake-like particles pile-up, according to a well-known mechanism reported 

by several authors and also shown in the previous chapter (Fogagnolo et al., 2003; 

Suryanarayana, 2001, Maurice et al., 1994). The use of a continuous cycle leads to a 
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drastic increase of the temperature inside the vial inducing the predominance of 

welding events over fracture ones. From Figure VI-2h and Figure VI-2i it is evident 

how during MA the edges of the particle become smoother increasing milling time due 

to the intense compacting action of the milling medium. 

 

 
Figure VI - 2. OM micrographs of MMC powders as function of milling time: a) MMC-5’, b) 

MMC-10’, c) MMC-20’, d) MMC-40’, e) MMC-80’, f) MMC-120’, g) MMC-160’, h) MMC-200’ and 
i) MMC-240’. 

 

The particle size distributions and the cumulative distribution curves of powders 

milled for different times are reported in Figure VI-3a-b. It should be noticed that the 

sieving experiments could not always carried out in the most proper way, owing to a 

small portion of fine particles sticking on the walls of the sieving equipment. This 

explains why, in some cases, the cumulative curves did not reach 100% of the 

analyzed powders (Fig.VI-3a). 

From Figure VI-3a it is evident that MA causes a general increase of particle 

size compared to AT-Cu (dash black line). The mean particle size value (D50) 

increases by increasing milling time, at a markedly higher rate after 120 minutes. This 

can be plausibly explained by the higher temperature achieved by the system during 

prolonged continuous milling, due to frictional heating (Rajkovic et al., 2006). 

Generally, almost all milled powders exhibit the largest particle size fraction in the 

range 45-90μm. The two only exceptions are MMC-5’ and MMC-10’, which also 

showed a relatively higher fraction of particles in the range 25-45μm. The distribution 

changed by varying the milling time. After short milling duration, namely up to 120 



92 

minutes, the powders show a narrow distribution. This suggests that for short milling 

duration, since plastic deformation and fracturing actions are predominant over cold 

welding, the milled powders did not show any significant change in size.  

 

 
Figure VI - 3. Cumulative distribution (a) and particles distribution (b) of MMC powder as 

function of milling time. 
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For longer milling duration (160, 200 and 240 minutes), the powders show two 

distinct effects: firstly a broadening of size distribution highlighting a bimodal 

distribution, then a clear shift of the curves towards larger particle size. The largest 

particles fraction (90-125 µm), which gives rise to the main distribution peak, shifts 

towards bigger sizes, if compared to the powders milled for shorter time (45-90μm). 

Moreover, for the last three milling time more than 10% of particles, having sizes bigger 

than 180μm, give rise to a second peak. In this chapter in order to give a clear and 

complete explanation of the different phenomena occurring during MA and sintering 

three representative samples have been selected according to the particle size and 

morphology, namely MMC-5’, MMC-80’ and MMC-240’ (micrographs highlighted by 

red borders in Figure VI-1 and Figure VI-2). In Figure VI-4 the three selected milled 

powders of MMC-5’, MMC-80’ and MMC-240’ are reported and their particles size 

distribution as well.  

 
Figure VI - 4. Selected MMCs powders with their cumulative and fraction particles distribution 

as function of milling time. 
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The distribution of TiB2 particles in MMC-5’, MMC-80’ and MMC-240’ can be 

evaluated by Figures VI-5-6-7, respectively. After short milling durations (MMC-5’), 

TiB2 particles are not homogeneously dispersed within Cu particles, as confirmed by 

a large fraction of free TiB2 particles between Cu particles. At the milling stage, 

collisions with milling medium promote deformation of Cu powders, but modest 

refinement only of TiB2 and poor alloying with Cu matrix. Moreover the adhesion 

between reinforcement and matrix is not adequate as demonstrated by the presence 

of voids between the two constituents (Fig. VI-5).  

 

 
 

Figure VI - 5. SEM micrograph of powder cross section of MMC-5’. 

 
When longer milling durations are employed (MMC-80’), the larger plastic 

deformation led to the formation of layered structures. The proceeding of MA process 

is clear, a continuous overlapping of flake like particle is enhanced by the impact 

events with the grinding medium (Fogagnolo et al., 2003; Rajkovic et al., 2006 [1]). 

This aids the dispersion of TiB2 within the matrix especially at particle boundaries or 

few microns below the surface. From Figure VI-6 is clear that the welding of flakes 

promotes the formation of agglomerates. Some particles area look already compact 

due to accelerate welding phenomena and a severe plastic deformation of the particle 

core which proceeds toward the surface prolonging MA (Maurice et al., 1994). 

Moreover not only welding events occur between singular flakes, but also between 

already formed MMC aggregates, as highlighted by red arrows in Figure VI-6 leading 

to a larger particle size. The high and prolonged energy impact enhances the formation 
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of bigger agglomerates by aggregation of small particles. TiB2 looks better dispersed 

than in MMC-5’ being not only found at particle surface but also in subsurface area. 

Although a higher amount of reinforcement becomes better incorporated in the Cu 

matrix in comparison with MMC-5’, the alloy powders was still inhomogeneous and for 

this reason MA has been prolonged up to 240 minutes (Fig.VI-7). 

 

 
 

Figure VI - 6. SEM micrograph of powder cross section of MMC-80’. 

 
By further increasing milling time up to 240 minutes, very few individual TiB2 

particles which have not been alloyed with Cu are presented, while most hard particles 

are incorporated within the Cu matrix giving very homogeneous composite powders 

(Fig.VI-7) (Fogagnolo et al., 2003). Although the large particles size of copper powder, 

a refinement of TiB2 is evident and this guarantees a more uniform and homogenous 

microstructure. The microstructure of particles after milling for 240 minutes evidences 

a well distribution of TiB2. The good bonding between matrix and reinforcement is now 

evident and MA can be considered completed. In this regard, welding traces between 

flakes almost disappear and just few visible crack are detected after 240 minutes. As 

demonstrated by Maurice et al. prolonging MA different types of crack are generated 

leading to different type of fracture: forging fracture, shear fracture and dynamic 

fracture. Cracks formed by forging fracture grow radially along the major axes of the 

particles. Cracks formed by shear fracture run perpendicular to the particle’s minor 

axis. Meanwhile dynamic fracture with randomly oriented cracks occurs in high energy 
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mill during impacts with high collision velocity (Maurice et al., 1994). In Figure VI-7 

typical cracks by shear and dynamic fracture are visible.  

Comparing MM and MA it is evident that particle size and morphology of MMC-

240’ is similar to MM-720’. This means that milling process of MA is accelerated and 

welding events are anticipated. The welding process that occurs during MA is driven 

by cold deformation. There is a critical deformation at which higher deformation will 

produce welding while lower deformation will not. The presence of reinforcement 

particles between the particles during welding increases local deformation in the 

vicinity of the reinforcement. Reinforcement particles can be seen trapped in the 

interfacial boundaries, thus high deformation surrounds the reinforcement particle. An 

increase in the local deformation improves the particle welding process. The 

occurrence of welding events at 240 minutes for MMC-240’ instead of 720 minutes for 

MM-720’ demonstrates that MA process is completed in a shorter time, and this can 

be attributed to the presence of TiB2 particles. Another possible explanation for the 

acceleration of MA process is that hard particles act as small milling agents, thus 

reducing the milling time. If the presence of reinforcement results in a higher 

deformation of the metallic matrix and advances the MA process, a higher 

reinforcement fraction will result in a still greater deformation of the metallic particles 

and will accelerate the process even more (Fogagnolo et al., 2003).  

 
 

Figure VI - 7. SEM micrograph of powder cross section of MMC-240’. 
 

By examining the effects of milling duration on morphology, size, and alloying 

efficiency of milled particles as well as the correlation between them, it can be 
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concluded that the optimum milling conditions are achieved for MMC-240’. This 

statement is proved in view of: (i) the equi-axed particles morphology showing high 

tendency towards isotropic sintered material, (ii) large-size particles exhibiting less 

inter-particle friction which promote the rearrangement stage of sintering, (iii) bimodal 

particle size distribution showing a possible achievement of high compacted density 

which may assist consolidation, and (iv) high mechanical alloying efficiency along with 

well dispersion of fine reinforcement particles. On the other side, the relatively big 

particle size and the intense strain hardening increasing milling time may hinder 

sintering, in view of the conclusion of chapter V. For this reason, in spite of the above 

considerations, it was decided to sinter all the nine powder batches, but in this chapter 

the sintering behavior of the three main milling times will be described: MMC-5’ (small 

nodular particles), MMC-80’ (flake-like particles), and MMC-240’ (big nodular 

particles). The SPS cycle has been kept the same of paragraph 5.2.2. (Fig. V-10). 

 
6.2  Spark plasma sintering of MMC 
 

The influence of MA on the sintering process has been evaluated following the 

densification of the samples. The displacement curves of MMC-5’, MMC-80’ and 

MMC-240’ and their derivate are displayed in Figure VI-8. In order to evaluate the 

effect of MA, AT-Cu displacement curve is reported as reference. Despite of the 

presence of 0.5wt%TiB2 the trend of displacement curves during SPS of mechanical 

milled copper and mechanical alloyed powders is almost the same (Fig. V-11 and Fig. 

VI-8). As in the case of MM the explanation of the sintering process can be divided 

into two stages: before and after the application of the load at 700°C Figure VI-8.  

 
Figure VI - 8. Displacement and displacement rate curves of AT-Cu, MMC-5’, MMC80’ and 

MMC-240’. 
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The pressure-free regime of curves will be firstly described. Densification shows 

an increasing tendency with rising temperature. For AT-Cu, MMC-5’ and MMC-80’ 

powders, densification starts much before the application of pressure (700°C) and 

gradually increased up to the loading temperature. According to previous statement 

this behavior is due to particles rearrangement and it is ruled by their compressibility 

during the early stage of sintering. Moreover, as reported in literature, bulk deformation 

at about 600°C (before load application) is quite important for AT-Cu, because of its 

low hardness (Diouf et al., 2012 [1]). The situation is very similar for MMC-5’, where 

the poor alloying with TiB2, does not significantly modify the densification behavior. 

However, the presence of hard particles between those of Cu and on Cu particles' 

surfaces clearly reduces densification with respect to AT-Cu. This is evidenced by the 

lower displacement before and after loading. In the case of MMC-80’, the displacement 

curve shows a gradual and progressive densification already above 200°C, i.e., at a 

much lower temperature than AT-Cu and MMC-5’ due to mutual powder 

rearrangement and local deformation. Although the earlier begin of densification of 

MMC-80’, the softest powder, i.e. AT-Cu, achieves the highest displacement in view 

of the highest densification rate. Increasing milling time the presence of hard TiB2 

particles in mechanical alloyed copper decreases the compressibility of the powder 

reducing densification rate. This effect is even more evident in MMC-240’ where the 

finer dispersion of TiB2 particle further impairs densification (Bouvard et al., 2000).  In 

the case of MMC-240’, densification proceeds to a very low extent only before the 

application of pressure, suggesting that both re-arrangement and localized 

deformation do not play a significant role. Rearrangement is very low, in view of the 

relatively high apparent density of large equi-axed composite powders compared to 

the flake-like ones (German, 1992). Furthermore a lower deformation is expected due 

to the higher strain hardening to which particles are subjected after longer milling time 

and due to the more efficient dispersion hardening of reinforcement particles. 

The behavior in the loading regime is rather different. Once the compacting 

force is applied (700°C), a fast shrinkage could be observed for AT-Cu, explained by 

the strong bulk deformation of equi-axed soft metal particles. A slightly lower 

displacement is shown by MMC-5’, in view of the reinforcing TiB2 particles. A 

comparable displacement is shown by MMC-240’, in spite of the lower compressibility 

of this powder. In this material the loading pressure permits the local deformation 

which couldn’t occur under free load conditions. For this reason the displacement 

curve and the displacement rate curve are higher than MMC-80’. On the other side 

very low densification is observed for MMC-80’, since it has already occurred during 

the load free regime. Figure VI-8 shows the displacement rate of all samples as a 

function of temperature. A general important observation is that in all cases the 

densification rate falls to zero at about 900°C, confirming that sintering temperatures 

higher than this value are suited to get the maximum possible density.  

Relative density data of MMCs are reported in Table VI-1 as function of milling time. 
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Table VI – 1. MMC powder characteristics. 

Sample Opowder  OSPS Cpowder  CSPS  ρ HV 0.05 

 (%) 

MMC-5’ 0.41 0.17 0.33 0.04 99.6 99 

MMC-10’ 0.83 0.18 0.35 0.18 97.9 97 

MMC-20’ 0.88 0.17 0.30 0.09 98.7 121 

MMC-40’ 1.02 0.3 0.38 0.11 98.8 133 

MMC-80’ 1.29 0.19 0.40 0.14 98.1 145 

MMC-120’ 1.19 0.36 0.39 0.24 97.8 151 

MMC-160’ 0.79 0.38 0.42 0.33 96.1 200 

MMC-200’ 0.80 0.42 0.40 0.35 96.9 217 

MMC-240’ 0.78 0.38 0.40 0.38 96.5 228 

 

Considering displacement curves it is possible to see that the relative density is 

not proportional to the final displacement. This is because the four powders are 

characterized by very different values of tap density, which is the apparent density of 

the starting powder when poured into the SPS die. Therefore the starting height of the 

lower punch, i.e. the zero point of displacement, is not the same for all the samples. 

The relative densities as in the case of MM decreases prolonging milling time due to 

the severe strain hardening subjected by the powder during milling (Fig. VI-9d). 

Moreover by the change from MM to MA a more drastic decrease of density is 

expected in MMC due to the addition of a hard second phase. By the way, from Figure 

VI-9d relative density of MMCs are acceptable in comparison with mechanical milled 

copper (Table V-3). For example MM-240’ has a density equal to 94% instead MMC-

240’ equal to 96%, this is in contrast with what expected. This result confirms that TiB2 

is not significantly detrimental for the densification of MMC which achieves very high 

relative density in comparison with MM sample. MA induces an even dispersion of fine 

hard TiB2 fragments into the copper powder avoiding the formation of agglomerates 

assuring the achievement of high relative density. By the way a residual porosity in the 

sintered sample still present even in MMCs (Table VI-1). This can be associated to the 

incomplete decomposition of stearic acid, as in the case of MM. As reported in Figure 

VI-9a-b the particle size and morphology control the oxidation level of the powder and 

decomposition kinetic of PCA.  

As stated in chapter V, the oxygen content increases increasing the specific 

surface area of the powder as in the case of flake like powder (MMC-80’), instead 

when particle size increases reducing the specific surface area the oxidation is limited 

(MMC-240’). After the SPS cycle the oxygen level has been reduced (Fig.VI-9a). From 

Figure VI-9b the carbon content in the powder is almost constant in the MMC’s 

powders independently of the milling time. By the way as in the case of MM, after SPS 
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the level of carbon decomposed decreases increasing milling time. Since particle size 

is small and flake like, the decomposition of PCA is facilitated (Table VI-1). It is evident 

how for MMC-160’, MMC-200’ and MMC-240’ the level of carbon before and after SPS 

is almost the same, confirming that the decomposition of PCA during SPS did not 

occur. The larger and more compacted powders hinder the correct and free 

decomposition of stearic acid. 

 
Figure VI - 9. Oxygen and carbon content before and after SPS, hardness and relative density 

of sintered MMC samples as function of milling time. 

 



101 

In fact TGA analysis of MMC-240’ (solid green line) shows a decrease at 900°C 

as in the case of MM-720’, corresponding to the emission of CO-CO2 during QMS 

(Fig.V-16b). This is related to the more packed and larger particle size of MMC-240’ 

which delays considerably the decomposition of PCA in comparison with MMC-5’ and 

MMC-80’ (solid blue line and solid red line respectively). The application of the load at 

700°C hinders any gas release and is responsible for the lower relative density of 

MMC-240’. Since particle size and morphology of MMC-5’ and MMC-80’ are more 

suitable for degassing, the decomposition of stearic acid during heating in the TGA 

analysis occurs up to 500°C by three different events explained in chapter V. Any other 

mass loss at higher temperature has been detected by TGA, this means that the 

decomposition of PCA in MMC-5’ and MMC-80’ finishes at 600°C. In the case of MMC-

5’ and MMC-80’ the application of the load at 700°C does not limit the decomposition 

of PCA during SPS. 

 
Figure VI - 10. TGA analysis and vacuum trend during SPS for AT-Cu, MMC-5’, MMC-80’ and 

MMC-240’.  
 

The micro-structures of etched MMC sintered from powders milled for different 

durations are shown in Figure VI-11. By considering these micrographs, interesting 

information regarding porosity, reinforcement distribution, grain size and interface 

bonding between TiB2 and copper matrix can be illustrated. In each micrograph, light 

areas correspond to the Cu matrix, blue regions are TiB2 and black dots could be either 

visible pores, copper oxide particles or even selectively etched interfaces of very fine 

TiB2 particles. From Figure VI-11 it is clear how the microstructures of sintered 

samples keep memory of the particle size and morphology of the milled powder 

(Rajkovic et al., 2008). For short milling time, the Cu area and reinforcement are clearly 

recognizable, this demonstrates the incomplete alloying between the two phases 
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(Fig.VI-11a-c). When MA leads to a severe plastic deformation and all particles turn 

into a flake morphology, microstructure of sintered sample show a clear anisotropy, as 

in the case of MMC-80’ (Fig.VI-11e). By increasing milling time, the dispersion of TiB2 

is gradually improved and the two phases look more homogenized. In MMC-120’ (Fig. 

VI-11f) flake like particles are still evident, but their rearrangement is not perpendicular 

anymore to the loading direction as in the case of MMC-40’ and MMC-80’ (Fig.VI-11d-

e). In MMC-120’ flakes look thinner and some of them are randomly pressed and 

deformed. Increasing milling time microstructure and TiB2 dispersion are more uniform 

and homogeneous, and TiB2 refinement actually occurs (Fig.VI-11g-i).  

 
Figure VI - 11. Microstructures of MMCs as function of milling time: a) MMC-5’, b) MMC-10’, c) 
MMC-20’, d) MMC-40’, e) MMC-80’, f) MMC-120’, g) MMC-160’, h) MMC-200’ and i) MMC-240’. 

 
As mentioned above clear differences can be highlighted between MMCs, in 

Figure VI-12-13-14 microstructures of the three main milling times (MMC-5’, MMC-80’ 

and MMC-240’) are reported. In the case of MMC-5’, it is clear that after short milling 

duration, due to the insufficient collisions with milling media, TiB2 particles are not 

much refined and in-homogeneously dispersed inside the matrix (Fig.VI-12). As a 

consequence, presence of large TiB2 particles associated with interconnected porosity 

at interfacial boundaries indicating discontinuous bonding between the reinforcement 

and Cu, are detected.  The nature of the interface between the constituents of the 

MMCs determines the ability of the matrix phase to hold the reinforcing particle and 

prevent its pull out during the service life. Additionally, due to the largely in-completed 

alloying generated by 5 minutes of MA, MMC-5’ shows an ineffective contacts at 
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interfaces between the large reinforced particles and the matrix, leading to the 

formation of interconnected pores upon on completion of sintering process.  

By increasing milling time, the dispersion of TiB2 inside sintered products was 

gradually improved. Micrographs of the sintered MMC-80’ show visible pores and 

reinforced particles tend to be distributed along the flake direction (Fig.VI-13). This is 

firstly supported by the fact that both porosity and reinforcement tend to locate at 

former particles boundary regions. Once milling process is completed, the powders 

possessed flake-like forms which keep the memory of its shape even after applying 

the compacting pressure. As a result, upon on the completion of sintering, majority 

amount of those thin flakes would align in the direction perpendicular to that of punch 

stroke leading to the distribution of porosity and reinforced particles following the 

direction. Nevertheless, large TiB2 particles are still present and some longitudinal 

pores could not be completely eliminated. The inhomogeneous distribution of TiB2 

leaves unreinforced Cu areas inside the composite material, which is expected to 

affect its properties. By the way the adhesion between matrix and TiB2 in MMC-80’ is 

improved with respect to MMC-5’.  

MMC-240’ exhibits the best microstructure after sintering in which porosity is 

very fine and evenly distributed and the distribution of TiB2 is quite homogeneous,. 

Visible porosity is still observed, however, it also became much finer in size and 

dispersed quite well in the matrix. Another remarkable feature that should be pointed 

out is the white region located at particles’ boundaries. As in the case of MM, they are 

portions of the Cu matrix undergoing re-crystallization during sintering (Rajkovic et al., 

2008). This was explained in view of local temperature’s increment due to Joule effect, 

which either promoted the Cu matrix re-melting or re-crystallization, as reported in 

chapter V (Diouf et al., 2012 [2]). Only for the products sintered from powders 

undergoing sufficiently long milling time, such as MMC-160’, MMC-200’ and MMC-

240’; or the as-milled MM-360’ and MM-720’ Cu powders re-crystallized regions are 

detected (Fig. VI-11g-h-i; Fig. V-13e-f). 
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Figure VI - 12. Microstructures of MMC-5’. 

 

 
Figure VI - 13. Microstructures of MMC-80’. 
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Figure VI - 14. Microstructures of MMC-240’. 

 
The hardness of sintered samples as a function of milling time is reported in 

Table VI-1. It can be observed that the hardness is directly proportional to the milling 

duration, showing an opposite tendency with respect to density. This can be partly 

explained in view of strain-hardening effect induced by high energy collisions between 

powder particles and milling media. The longer the milling process, the higher the 

strain hardening, and therefore the higher the hardness of as-milled powders. This is 

finally reflected in a higher hardness of the sintered material, since the relatively short 

sintering time and temperature used in present work, do not allow complete recovery 

and re-crystallization. It can be observed that the increasing porosity by increasing 

milling time is expected to reduce the hardness of the sintered samples. From this 

viewpoint the increasing hardness confirms that strain hardening abundantly 

compensates the negative effect of porosity.  

A comparison of hardness between MMC and MM-Cu samples is reported in 

Figure VI-15. The presence of TiB2 in the matrix, promotes dispersion strengthening 

which explains the higher hardness of MMC than MM-Cu (Fig.VI-15). As a result, the 

hardness of MMC’s powder is increased due to the well-known Orowan mechanism 

(Anderson et al., 1993; Wang et al., 2014). This seems to be confirmed also by the 

step increase of hardness for milling times longer than 120 minutes. Figure VI-11g-h-

i clearly highlight that a uniform dispersion of reinforcement is obtained only in this 

time range: no more unreinforced Cu particles are present. A comparison with MM-Cu 

(Fig.VI-15), which does not show a similar stepwise trend, supports the above 

interpretation. 
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Figure VI - 15. Hardness comparison between MMCs and MM-Cu samples. 

 

 

6.3 Conclusions 

 

In this chapter the MA process of Cu and TiB2 was investigated. 

 Up to 120 minutes the predominance of particle plastic deformation allows a 

uniform flake-like powder morphology accompanied by a slight size increase (D50 

≈ 30μm). For longer milling times (up to 240min) the occurrence of welding 

promotes the formation of equi-axed particles and a marked particle size increase 

(D50 ≈ 110μm). The milled powder highlights a bimodal particle size distribution 

and a very uniform dispersion of TiB2 for long milling time.  

 MMC materials exhibit density values between 99 and 96%, which are acceptable 

in comparison with mechanical milled copper samples. The final density generally 

decreases by increasing milling time, in view of the higher particles’ hardness. By 

MA the hardness of the sintered MMC is enhanced by TiB2 dispersion hardening. 

Increasing milling time the refinement of TiB2 and its more uniform distribution 

lead to a sharp increase of hardness. The hardness of MMC-240’ is three time 

higher than the starting hardness of AT-Cu. At this point it can be concluded that 

the choice to switch from MM to MA has been beneficial. 

From this chapter two main milling times have been selected according to the 

size and morphology of the powders after MA: MMC-80’ (flaking) and MMC-240’ 

(welding). The selection has been made in order to evaluate the thermal conductivity, 

the wear behaviour and the mechanical properties as function of the level of strain and 

dispersion hardening induced by MA and compare them with the mechanical milled 

samples produced in previous chapter.  
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Chapter VII 

 

Material characterization of  

MM-Cu and MA-Cu+TiB2  

 

Part of this chapter has been published in: 

 

 
G.Cipolloni, M.Pellizzari, A.Molinari 

“Tribological behavior of TiB2 reinforced Cu-matrix composites produced by mechanical 
alloying and spark plasma sintering” 
Proc. Of the 2015 European Powder Metallurgy Congress & Exhibition 

4-7 October, Reims, France 

 

 

 

7.1 Thermal conductivity 

 

Some representative materials produced by both, MM and MA were selected 

for the characterization: AT-Cu, MM-240’, MM-720’, MMi-6000’, MMC-80’ and MMC-

240’. MM-240’, MM-720’ and MMi-6000’ have been chosen to evaluate the effect of 

strain hardening by MM. MMC-80’ and MMC-240’ have been selected to evaluate the 

combined effect of strain and TiB2 dispersion hardening. Moreover each sample is 

representative of a certain powder morphology and size which can severely affect the 

behaviours of the sintered material. In addition Cu-Be alloy (Cu-2%Be-0.5%(Co + Ni)) 

has been tested in order to compare the materials produced by MM and MA with a 

commercial alloy widely used in thermal and electric applications. For the production 

of the samples the pressure during SPS has been changed from 30MPa to 60MPa to 

improve the densification. The pressure has been applied at 700°C and the holding 

time of pressure and temperature were 3 and 1 minutes respectively. The density and 

hardness value of the new sintered samples are reported in Table VII-1. Despite a 

slight increase of density (~1%) for all the samples, the trend still the same of chapter 

V and VI, thus increasing milling time the density decreases both for MM and MA. 
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Table VII – 1. Hardness and density values of the tested material. 

Sample HV 0.1 Density (%) 

AT-Cu 103 ± 2.1 99 

MM-240’ 150 ± 1.2 94 

MM-720’ 110 ± 2.3 90 

MMi-6000’ 45 ± 1.8 81 

MMC-80’ 130 ± 1.9 98 

MMC-240’ 207 ± 2.0 97 

Cu-Be 400 ± 1.2 100 

 

The most negative and in some case inevitable drawback of mechanical strain 

hardening by MM and of particles dispersion by MA in a copper matrix is the decrease 

of thermal conductivity due to the formation of defects among the matrix and the 

presence of a reinforcement particles acting as a barrier to the thermal flow (Sule et 

al., 2014). In the specific of this PhD thesis, on one side the use of MM and MA 

enhances the hardness, on the other side a decrease of the thermal conductivity is 

expected. In order to evaluate the effect of MM and MA on thermal properties, 

conductivity measurements have been carried out and results are reported in Figure 

VII-1. Thermal conductivity have been evaluated in a range of temperature between 

400 and 500°C. The effects of MM and MA on thermal conductivity are totally different: 

on one side a detrimental effect of MM has been attested especially for long milling 

time, on the other side MA shows some interesting and promising results in contrast 

with what expected. AT-Cu shows a thermal conductivity equal to 300W/mK. Once 

MM is carried out, MM-240’ exhibits an unexpected increase of thermal conductivity 

up to 320W/mK which needs further investigation, meanwhile MM-720’ and MMi-6000’ 

show a drastic decrease of thermal conductivity down to 270W/mK and 200W/mK 

respectively. The decrease of thermal conductivity as function of milling time is more 

related to the intense increase of the residual porosity than to the presence of 

crystallite defects (Ondracek et al., 1972). Although the lower amount of defects, i.e. 

dislocations, and lattice strain exhibited by MMi-6000’ by the XRD analysis in chapter 

V, a lower thermal conductivity than MM-720’ has been revealed due to the higher 

porosity, 19% of MMi-6000’ against 10% of MM-720’.  
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Figure VII – 1.Thermal conductivity between 400 and 500°C for all the materials. 

 

The thermal conductivity of MMC-80’ and MMC-240’ is equal to 298 and 

297W/mK respectively, very similar to the value of AT-Cu. Although the mechanical 

strain hardening and the addition of TiB2 the thermal conductivity of MMC has not been 

severely affected, and this results is very positive. Probably the small amount of 

reinforcement (0.5wt%) and the good dispersion especially for long milling time have 

been able on one side to increase the hardness and on the other side to guarantee a 

very good thermal conductivity in comparison with AT-Cu. These results broadens 

horizons of the research because since any decrease of thermal conductivity will be 

revealed, an increase of TiB2 content can be favoured in order to increase the 

hardness and the wear resistance, but this is aim of further researches. A very 

important observation is that all the materials produced by MM and MA show a higher 

thermal conductivity than commercial Cu-Be alloy, characterized by a thermal 

conductivity equal to 106W/mK. Finally it can be noticed that all the materials exhibit 

a stable thermal conductivity within the temperature range analysed (400-500°C), 

which is typical of the service temperature range during injection moulding of plastic 

materials.  

As mentioned above, a close relation between thermal conductivity and residual 

porosity exists, as demonstrated by Ondracek and Schulz (Khaleghi et al., 2012; 

Ondracek et al., 1972). In Figure VII-2 the theoretical trend of thermal conductivity as 

function of porosity calculated for all the samples according equation 7.1 is reported.  

 

𝐾 = 𝐾0 
1−𝑃

1+𝛽𝑃
      (7.1) 
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Where K0 is the thermal conductivity of nonporous material (~400W/mK), P is the 

porosity and β is the geometrical factor pf pores. 

 
Figure VII - 2.Theoretical trend of thermal conductivity and experimental values as function of 

residual porosity. 
 

It must be considered that β represents the factor shape of pores in equation 

7.1, and for calculation a round shape porosity has been consider, thus β equal to 0.5. 

A clear linear relation exists between the two values, increasing porosity the thermal 

conductivity accordingly decreases. In Figure VII-2 experimental points have been 

reported with purpose of comparison with the theoretical trend. All the empirical points 

stand below the theoretical ones for three reasons: firstly the approximation of shape 

of pores to a round shape is roughness, secondary the Ondracek equation does not 

consider the defects induced by MM and the presence of a second phase by MA, and 

finally the presence of oxides is neglected (Kaczmar et al., 2014). Copper oxide which 

is characterized by a lower thermal conductivity affects considerably the thermal 

behaviour of the powder especially for MMi-6000’. Equation 7.1, neglecting all these 

parameters, overrates the thermal conductivity of all the samples. In Figure VII-3 a 

map of thermal conductivity values versus porosity of copper based material is 

graphed, in particular experimental points of this Ph.D research (black square) and 

data collected by literature review (blue square) are reported (Gelbstein et al., 2015). 
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Figure VII - 3. Thermal conductivity of experimental values as function of residaul porosity 

(Gelbstein et al., 2015). 

 

It is clear that the relation between porosity and thermal conductivity remains 

valid and three ranges of thermal conductivity can be detected according to the entity 

of the effect of porosity. Since porosity is limited the thermal conductivity slightly 

decreases but still acceptable if compared to the thermal conductivity of pure full dense 

copper (~400W/mK). It must be considered that in the specific case of this PhD even 

the AT-Cu shows a relative low thermal conductivity in comparison with the theoretical 

value. This is due to the presence of oxide even in the starting powder. When porosity 

increases up to 10%, the thermal conductivity is almost halved, and the effect is even 

more detrimental for higher value of porosity. It can be conclude that the MMC-240’ 

still showing the best properties among the material produced: hardness has doubled 

and thermal conductivity has been kept constant. 

 

7.2 Tribological Behaviour 

 

7.2.1 Sliding wear behaviour 

 

The wear behaviour of a material depends on the testing conditions, but also 

on the interrelation generated with the counterface. For this purpose in Figure VII- 4 

the microstructure of AISI M3:2 (65HRC) is reported. It is important to notice that the 

microstructure of the counterface is uniform, and a homogeneous dispersion of the 

precipitated carbide is evident. The average dimension of the precipitates is ~3µm and 

this data is important to compare it with the width of the scratch on the worn surface. 
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Moreover in Figure VII-5 the microstructure of the Cu-Be alloy is reported in order to 

compare it with the microstructure of the over material produced in chapters V and VI.  

 
Figure VII – 4. AISI M3:2 microstructure. 

 
Figure VII – 5. Cu-Be alloy microstructure. 

 

Initially the wear tests were carried out for 15, 30 and 240 minutes under a load 

of 50N with a sliding speed of 0,63m/s and a Hertzian pressure of 85MPa. In order to 

highlight the wear mechanisms a typical record of the friction coefficient is displayed 

in Figure VII-6, as representative of those of all samples listed above for a sliding test 

of 240 minutes, since all the materials show a similar macroscopic tribology behaviour. 
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Figure VII – 6. Friction coefficient and Temperature evolution for 240min of dry sliding test of 

MMC-240’. 

 

In Figure VII-6 also the record of the temperature during the sliding test is 

reported, and a clear relation with the trend of the friction coefficient is evident. Two 

distinct friction regimes can be observed. The first one, occurring at an early stage of 

the wear process (typically within the first 30 minutes), is characterized by the 

presence of a high friction coefficient (~1). During this first stage the temperature 

increases then slightly decreases approaching 30 minutes of test. The second one is 

characterized by the attainment of a steady-state (ss) friction (~0.7) and is achieved 

after a time (tss) in accordance with other studies (Akhtar et al., 2009; Straffelini et al., 

2005). The high initial value of friction is typical of an adhesive metal-metal contact. 

The oscillations of friction coefficient observed during this period remark the 

occurrence of stick-slip phenomena. On the other side the low friction coefficient 

during the second period recalls a milder condition characterized by metal-oxide, 

oxide-oxide contact (Straffelini et al., 2004; Straffelini et al., 2005). Despite the 

oscillation due to the instability of the thermocouple, temperature shows an average 

value of 130°C during regime in the case of MMC-240’. Further the effect of 

temperature will be analysed and compared. 

By carrying out the sliding tests for 15, 30 and 240 minutes it was possible to 

characterize the evolution of the wear mechanism (Fig. VII-7). After 15 minutes only, 

the wear surface evidences a quite rough aspect, with clear traces of metallic Cu (red 

regions) and Cu oxide (grey-blue regions) as well. A clear accumulation of material is 

evident in the wear track. The inlet area is characterized by severe abrasion scratches 

which aids the formation of the track during the initial stage of test. By the formation of 

the track the contact changes from not conformal to conformal reaching a more stable 
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wear regime. The outlet area is characterized instead by an intense accumulation of 

wear debris. The high friction coefficient typical of copper-copper contact (µ~1) 

suggests the occurrence of an adhesive contact between the specimen and the 

counterpart. 

 
Figure VII – 7. Friction coefficient evolution for 15, 30 and 240 minutes of dry sliding test with 

their wear tracks. 

 

After 30 minutes the friction coefficient starts to decrease and a definitely 

different wear surface is observed (Fig VII-7). Any massive accumulation of material 

is detected in the outlet area and scratches due to the abrasion action are vanished in 

the inlet region (Fig. VII-7). The material accumulated during the running in is either 

transferred on the disc or compacted and pressed in the track to form a protective 

oxide layer. After 240 minutes, with the attainment of a lower friction regime (µ~0.7), 

the tracks is larger and clean. At this point a homogenous protective oxide layer cover 

the wear track and wear behaviour is governed by a tribo-oxidative mechanism.  In 

Figure VII-8a-b all the discs used for all the sliding times at 50N and for all the materials 

are reported, except for MMi6000’ that will be shown in the next pages due to its 

peculiar behaviour. As reference also an undamaged disc of AISI M3:2 is reported in 

Figure VII-8a. Looking at the discs a perfect correspondence is evident with the 

information obtained by the evolution of the friction coefficient about the wear 

behaviour.  Independently of the type of material tested the morphology of the disc 

after 15 and 30 minutes is almost the same, showing three different areas: a bright 

one typical of the starting surface morphology of the reference disc, some red stripes 

confirming the adhesive wear between the two surfaces and a more darker oxidized 



115 

area. Increasing sliding time up to 240 a totally different morphology is highlight by 

Figure VII-8b; the surfaces of all the discs are completely and homogeneously covered 

by an oxide layer. Only Cu-Be shows a different behaviour, even after 240 minutes the 

disc looks more shiny and only few narrow stripes of transferred material are evident, 

this lead to the different microstructure, hardness and composition in comparison with 

the material produced by MM and MA. 

 

  
Figure VII – 8. (a) AISI M3:2 discs after 15 and 30 minutes of sliding time, (b) AISI M3:2 disc 

after 240 minutes of sliding time 

 

At this point a deep characterization of the discs have been carried out, OM and 

SEM micrographs after 15 and 240 minutes of sliding test are reported in Figure VII-9 

and Figure VII-10. The occurrence of an adhesive contact between the specimen and 

the counterpart is evident in Figure VII-9, a strong materials transfer from the Cu block 

to the steel surface after the first 15 minutes test is highlighted. Patches of copper are 

evident on the surface of the disc, and they are deformed and smeared along the 



116 

sliding direction, favoured by the high ductility of the Cu matrix (Eyre et al., 1981). Even 

if the colour of the OM micrograph can be affected by the setting parameters, copper 

layer looks clean and not completely oxidized.  

 
Figure VII – 9. Top view of the surface of the disc after 15mins of sliding (a) OM (b) SEM. 

 

During the running in stage the contact nature changes from not conformal to a 

conformal, and the creation of the wear tracks leads to a severe wear. The production 

of wear debris leads to the accumulation of material inside the track which promotes 

two events: on one side the transfer of material on the disc, i.e. adhesion, on the other 

side wear debris can either be packed inside the track or pulled out of the wear system. 

Prolonging the sliding time the material transferred on the disc oxidizes due to the 

severe conditions as high contact pressure and temperature. At this point the contact 
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change from metal-metal to oxide-oxide, leading to a milder wear. When a tribo-

oxidative behaviours governs the wear mechanism adhesion phenomena are more 

difficult. When the oxide layer reaches a critical thickness it breaks producing wear 

debris. Once oxide debris are removed from the wear system, the substrate material 

could oxidize again. The continuous formation and fragmentation of oxide layer during 

sliding wear consists in a dynamic phenomenon. At this point the surface of the disc 

drastically changes, a sever oxidation is evident in Figure VII-10 (Straffelini et al., 2004; 

Straffelini et al., 2005).  

 
Figure VII - 10. Top view of the surface of the disc after 240mins of sliding (a) OM (b) SEM 

 

The severe shear stress during the test enhances the strain hardening and the 

micro fragmentation of the oxide. Oxide is removed from the track or from the disc by 
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spalling and dark spots are evident on the surface on the counter face (Fig VII-

10b).The occurrence of triboxidation is also confirmed by the SEM and EDXS analysis 

of the worn surface of the block. Figure VII-11 shows the presence of protective copper 

oxide patches responsible for the lower friction coefficient (Fig VII-6). The analysis of 

the tracks and wear debris clearly highlights that after the transition wear becomes 

tribo-oxidative, and the reduction in friction coefficient is, therefore, due to the 

lubricating action exerted by the surface oxides. The protective surface oxide layer is 

made by the compaction and sintering of the oxide particles (Gao et al., 2015; 

Straffelini et al., 2004; Zhang Y.S. et al., 2008). 

 
Figure VII – 11. The morphology of the worn surface of MMC-240’ minutes after 240 minutes of 

sliding (a); EDAX spectrum of the darker areas (b). 
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Prolonging sliding time part of the copper layer previously transferred on the 

disc is either compacted in the track or removed from the wear system by the 

production of wear debris (Zhang Y.S et al., 2007: Zhang Y.S et al., 2008). In Figure 

VII-12 the morphology of debris of MMC-240’ after 240 minutes of sliding test are 

reported.  

 
 

 
Figure VII – 12. The morphology of the wear debris of MMC-240’ after 240 minutes of 

sliding 
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The dimension of the debris is variable and most of them are covered by oxides. 

All the analysed materials show similar size and morphology of debris. The debris are 

mainly composed by two different size and morphology: large plate like debris and a 

fine white dusty oxide powder. The first one usually shows a shiny surfaces due to the 

intrinsic metallic nature which in some area is covered by the fine particles of oxide, 

as very evident in Figure VII-12b (Straffelini et al., 2004; Straffelini et al., 2005). It must 

be considered that the more the material is hard the more the debris will be hard, 

leading to a more severe abrasion contribution in addition to the abrasion action of the 

AISI M3:2 carbides.  

Since the wear mechanisms governing the sliding wear behaviour have been 

deeply investigate and explained, the PhD thesis continuous with the comparison of 

the different materials in order to evaluate the effect of MM and MA and interesting 

information can be deduced. In Figure VII-13 the friction coefficient of AT-Cu, MM-240’ 

and MMi-6000’ are reported in order to evaluate exclusivity the effect of MM. 

 
Figure VII - 13: Comparison of the friction coefficient evolution for 240 minutes of dry sliding 

test for: AT-Cu, MM-240’ and MMi-6000’. 
 

AT-Cu and MM-240 show the same friction coefficient evolution, instead MMi-

6000’ is characterized by a higher friction coefficient close to 1 which is maintained 

almost constant for the entire sliding test. The more intense oscillations of the friction 

coefficient attest the more frequent occurrence of stick and slip phenomena in MMi-

6000’. The absence of a complete and stable transition from the adhesion mechanism 

to the tribo-oxidative regime is confirmed also by the analysis of the disc reported in 

Figure VII-14. The discs, especially for 240 minutes of sliding time, look shiny and less 

oxidized than in Figure VII- 8b. Despite the high friction coefficient which suggest the 
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occurrence of a severe adhesion phenomenon even for MMi-6000’ some oxidized 

area on the counterface has been revealed by the OM micrograph (Fig.VII-14). This is 

also confirmed by a slight decrease of the friction coefficient in Figure VII-13. 

 

  
Figure VII - 14. Discs of AISI used for MMi-6000’ and highlight of the surface of the disc after 

240 minutes of sliding test. 

 

Concerning MM-240’ it can be noticed that increasing the hardness of the 

material the transition time required to achieve the steady-state (tss) shifts toward 

longer time (black line versus blue line) (Fig VII-13). For harder material it is more 

difficult to change from not conformal to conformal contact because the high hardness 

obstructs the formation of the wear track due to the higher wear resistance. This 

means that harder material takes more time to create the oxide layer (Straffelini et al., 

2004; Straffelini et al., 2005). In addition MM-240’ material shows a higher friction 

coefficient compared to AT-Cu because an addition abrasion contribution to the 

carbides of AISI M3:2 is given by the harder wear debris produced. Similar behaviour 

of the friction coefficient is shown by the MMC as reported in Figure VII-15. 



122 

 
Figure VII – 15. Comparison of the friction coefficient evolution for 240 minutes of dry sliding 

test for: AT-Cu, MMC-80’ and MMC-240’. 
 

Also for MMC increasing the hardness the transition time required to achieve 

the steady-state (tss) shifts toward longer time. The tss increases adding TiB2 and 

prolonging milling time. In addition composite materials have a higher friction 

coefficient compared to AT-Cu because a more intense abrasion contribution is given 

by the harder wear debris. Moreover for MMC the TiB2 particles give a third-body 

abrasion contribution in addition to the carbides of AISI M3:2 counterface and to the 

wear debris. From Figure VII-15 also the contribution of the dispersion of reinforcement 

can be evaluated, MMC-240’ which is characterized by a more uniform and more 

homogenous dispersion shows a lower friction coefficient than MMC-80’. In MMC-80’, 

which is characterized by a lamellar microstructure and by a not uniform dispersion of 

TiB2, the abrasion contribution is more significant than in MMC-240’ and friction 

coefficient is slightly higher. Despite the similar wear behaviour the wear coefficients 

of the materials differ.  In Figure VII-16 the wear coefficients calculated by Archard’s 

equation (Chapter IV) for all the samples tested under dry sliding conditions for 30 and 

240minutes at 50N are reported. 
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Figure VII – 16. Wear coefficient for all the samples tested under dry sliding conditions for 30 

and 240 minutes at 50N. 
 

In general the different wear coefficient shown in Figure VII-16 can be explained 

by the different ability to create and to maintain in place the surface oxide layer during 

sliding, considering that hardness severely affects this capability. Only if the oxide is 

firmly attached to the sliding surface it can get compacted protecting the underlying 

base alloy (Straffelini et al., 2005). On one side during the running in regime a low 

hardness facilitates the formation of the track in which the debris can be compacted 

generating rapidly the oxide protective layers. In this case a thick oxide layer can be 

easily formed and wear change rapidly from adhesive to tribo oxidative as confirmed 

by the shorter tss of the softer material than for MMC (Fig. VII-13 and Fig. VII-15). For 

this reason the wear rate for short sliding time of AT-Cu and mechanical milled 

samples are comparable and even lower in some case than that of MMC-240’ which 

produce lower amount of debris and take more time to reach the tribo-oxidative 

protective wear mechanism. In fact during the running in state a hard material creates 

less debris consequently the wear track is smaller and less deeper, leading to a more 

difficult accumulation and formation of the oxide layer. By the way prolonging sliding 

time it must be considered that a higher hardness leads to the formation of harder 

debris, consequently the protective oxide layer will be harder providing a lower wear 

coefficient. Moreover a harder material is characterized by a high load bearing 

capability to keep the protective layer attached to the worn surface as shown by the 

OM micrographs of the worn surface of MMC-240’ (Fig. VII-17a). On contrary softer 

material with a low load bearing capability usually highlights spalling of the softer oxide 

patches, and wear resistance is consequently reduced (Fig VII-17b).  
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Figure VII – 17. Worn surface of MMC-240 and MMi-6000’ after 240 minutes of sliding time. 

 

The dependence of wear coefficient on hardness is very clear especially for 

long sliding time, increasing hardness the wear coefficient decreases, as reported in 

Figure VII-18.  By increasing sliding time the benefits of prolonging milling time and 

adding TiB2 become more evident.  
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Figure VII – 18. Dependence of wear coefficient on hardness for long sliding time. 

 

It can be noticed that MMi-6000’ shows the highest wear coefficient because its 

oxide layer is softer and it can be easily damaged and removed during sliding leading 

to a lower wear resistance (Fig. VII-17b). As explained above the formation and 

creation of oxide layer is a dynamic phenomenon, once oxide is removed the new 

surface undergoes to adhesion again. In the case of MMi-6000’ this cycle is very fast 

and material has not time to create a thick permanent oxide layer inside the track, but 

a new copper surface emerges each time that spalling occurs. For this reason the 

friction coefficient of Figure VII-13 is close to 1, typical of the copper-copper contact.  

Beside MMi-6000’ also MMC-80 shows a strange behaviour for short sliding 

time despite its higher hardness, a high wear coefficient has been obtained after 30 

minutes of sliding test. This is associate to the unsuitable microstructure of MMC-80’. 

The flake like particle are aligned in the direction of the tangential force during sliding 

favouring the delamination of the wear surface as highlighted in Figure VII-19. A 

massive quantity of debris is promoted during the running in stage and the wear 

resistance is limited. 



126 

 
Figure VII - 19: Delamination phenomenon of MMC-80’ after sliding test of 30 minutes. 

 

It must be considered that the attainment of a tribo-oxidative wear mechanism 

is due to the increased contact temperature during sliding which favours the formation 

of oxides as demonstrate by Figure VII-6. The records of the evolution of the contact 

temperature with sliding time are reported in Figure VII-20 for AT-Cu, MM-240’, MM-

720’ and MMi-6000’. It must be considered that the temperature has been acquired by 

a thermocouple placed below the contact surface of the disc. The distance of the hole 
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from the surface has been kept constant for all the sample, by the way depending on 

where the track has been create during the test the thermocouple could be perfectly 

in the middle of it or slightly decentralized. Any way the thermocouple is indicative of 

the massive heating of the sample during the test and not of the real contact 

temperature at the contact surface.  Therefore the evolution of the temperature can be 

considered as an indirect measurement of the capability of the material to release the 

heats generated by the high friction and pressure service conditions. 

 
Figure VII – 20. Temperature evolution of AT-Cu, MM-240’, MM-720’, MMi-6000’ recorded 

during 240 minutes of sliding test at 50N. 
 

From Figure VII-20 the effects of MM are evident, increasing milling time the 

temperature increases. This is in perfect accordance with the thermal conductivity 

trend of Figure VII-1. MMi-6000’ characterized by a low thermal conductivity (200 

W/mK) shows the highest temperature close to 150°C, followed by MM-720’ and MM-

240’ with 125°C and 110°C respectively. Despite the oscillation of the thermocouple 

inside the hole AT-Cu exhibits the lowest temperature close to 75°C. Temperature 

shows a slight increase during the running-in since a steady-state condition is reached 

after 30 minutes, as in the case of friction coefficient. The formation of oxide is 

favoured by higher temperature (Straffelini et al., 2004; Straffelini et al., 2005). Once 

the tribo-oxidation governs the wear mechanism the temperature remains stable 

because the lubricant action of oxide limits the heating caused by friction. For MMi-

6000’ instead any attainment is recorded, actually a slight increase of temperature 

between the two stage is reported in Figure VII-20. The absence of a permanent oxide 

induces higher friction and consequently higher contact temperature. 

In Figure VII-21 the temperature evolutions of MMCs and AT-Cu are reported. 

In the case of MMC there is not a perfect relation between the evolution of temperature 
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during sliding and the thermal conductivity measurements in section 7.1. Despite the 

similar thermal conductivity values (300W/mK) the three materials show increasing 

temperatures as function of milling time in accordance with Figure VII-20.  

 
Figure VII – 21. Temperature evolution of AT-Cu, MMC-80’ and MMC-240’ recorded during 240 

minutes of sliding test at 50N. 
 

A schematic representation of the wear mechanisms occurring during dry 

sliding test are graphed in Figure VII-22.  

 
Figure VII – 22. Schematic representation of the wear mechanisms occurring during dry sliding 

test at 50N. 
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On one side harder materials (MMC) show a higher friction coefficient due to 

the abrasion contribution of reinforcement particles and of the harder wear debris 

produced during sliding (Zum Gahr, 1998). On the other one harder materials can 

better sustain the oxide protective layer due to the higher load bearing capability 

improved by the strain hardening and in the case of MMC-240 by the effective 

dispersion of TiB2 particles. Moreover strain hardened materials show a higher regime 

temperature in comparison with AT-Cu, which induced a more intense formation of 

wear protective oxide. For short sliding time, when the contact switches from not 

conformal to conformal, MMC-80’ shows some limits due its anisotropic 

microstructure, which enhances the delamination of the worn surface. For low load 

(50N), Cu-Be still the most competitive material by the way some improvements have 

been highlighted by MM-720’ and MMC-240.  

 

 

7.2.1.1 Effect of the load during dry sliding wear 

 

In order to investigate deeply the wear mechanisms dry sliding test have been 

carried out also at 100N for 30 and 240 minutes for all the materials, and at 200N for 

MM-720, MMC-80’ and MMC-240’ for 240 minutes of sliding test. As in the case of 

50N all the materials showed the same wear behaviour and the same phenomena. As 

reference the behaviour MMC-240’ will be discussed in this section and all the 

comments and descriptions highlighted are valid for all the tested materials, as in the 

previous section 7.2.1. The evolution of friction coefficients as function of the applied 

load for MMC-240’ are shown in Figure VII-23.  

 
Figure VII - 23: Evolution of friction coefficient of MMC-240’ as function of the applied load for 

240 minutes of sliding test. 
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From Figure VII-23 several effects of the increase of load on the evolution of 

friction coefficient are evident and they are in accordance with literature results (Gao 

et al., 2015; Onat et al., 2010; Straffelini et al., 2004; Zhang Y.S. et al., 2007): 

 µ decreases; 

 µ becomes more stable  lower stick and slip phenomenon; 

 tss decreases and almost disappears applying 200N. 

The shift of the friction coefficient curves toward lower value increasing the applied 

load are associated to a change of the temperature regime during test (Fig.VII-24). It 

is evident that increasing the applied load a drastic increase of the temperature is 

promoted. As demonstrated previously, a higher contact temperature leads to a more 

intense formation of oxide, which acts as a lubricant in the sliding system reducing the 

friction coefficient (Fig.VII-23). Moreover the adhesion phenomena are drastically 

decreased, and for this reason oscillations of friction coefficient almost disappear (Fig 

VII-23). 

 
Figure VII - 24: Evolution of temperature of MMC-240’ as function of the applied load for 240 

minutes of sliding test. 
 

From the value of the friction coefficient and of the temperature during steady 

state regime of samples MM-720’, MMC-80’ and MMC-240’, a clear relation with the 

applied load has been extrapolated, Figure VII-25a-b.  
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Figure VII – 25. Evolution of friction coefficent (a) and temperature (b) as function of the 

applied load. 

 

All the materials show the same trend, increasing the applied load the friction 

coefficient decreases meanwhile the temperature increases. The wear mechanisms 

change accordingly to the wear conditions, a tribo-oxidation is predominant at higher 

load exhibiting a less intense wear especially for long sliding time. In Figure VII-26 the 

wear coefficient of all the material tested under 100N for 30 and 240 minutes of sliding 

time are reported.  
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Figure VII – 26. Wear coefficient for all the samples tested under dry sliding conditions for 30 

and 240 minutes at 100N. 

 

For short sliding time (30 minutes) no significant difference of the wear 

coefficient between 50 and 100N is evident by the comparison of Figure VII-26 with 

Figure VII-16. Meanwhile for long sliding time the wear coefficient of all the samples 

decreases when the load is increased to 100N except for MMi-6000’ and MMC-80’ 

(Deshpande et al., 2006; Zhang Y.S. et al., 2007; Straffelini et al., 2005). The high 

wear coefficient of MMi-6000’ and MMC-80’ can be associated to the low hardness 

and to the anisotropic microstructure respectively, as demonstrated in the previous 

section. Moreover for these two materials the wear coefficient after 240 minutes is 

drastically increased if compared with Figure VII-16.  

The lower wear coefficient of the other materials is due to the better capability 

to form the oxide layer thanks to the higher temperature induced by the more severe 

wear conditions. Also the dimension of the track in Figure VII-27b is drastically reduced 

in comparison with Figure VII-7, confirming a higher wear resistance. Finally it can be 

noticed that the wear coefficients of all the other materials are quite similar after 240 

minutes of sliding time at 100N, therefore increasing the load all the materials seemed 

to be competitive with Cu-Be. In Figure VII-28 a map of the wear coefficient versus 

hardness is graphed. Neglecting MMi-6000’ and MMC-80 which show peculiar wear 

behaviours, it is evident that increasing the applied load the effectiveness of hardness 

is lost. This is very particular especially for soft AT-Cu which is supposed to have a 

low wear resistance due to its lower hardness. By the OM observation of the worn 

surfaces of AT-Cu an intense accumulation of wear debris inside the wear track is 

evident in Figure VII-27a. The wear products are stuck and compacted inside the track, 

thus altered the wear loss measurement and consequently the calculation of the wear 
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coefficient by Archard’s equation. All the others materials show a similar morphology 

of the wear surface, with the presence of an oxide protective layer but thinner than that 

in the case of AT-Cu. MMC-240’ and MM-720’ show wear coefficients even lower than 

Cu-Be, this is very promising. By the way this result deserves further investigation 

using different wear conditions as a change of sliding speed and higher load.  

 

 
Figure VII – 27. Worn surfaces of AT-Cu and MMC-240’ after 240 minutes of sliding time at 

100N. 

 
Figure VII – 28. Wear coefficient versus hardness as function of the applied load. 

 

 

7.2.2 Abrasion wear behaviour 

 

The wear resistance to abrasion has been measured by scratch test in order to 

have some more information about wear resistance of the produced materials. The 

scratch test, which is not affected by a temperature heating, by the formation of 

protective mechanisms and by long testing time/distance, evaluates the resistance to 

abrasion of a material by measuring the penetration depth of a hard indenter sliding 
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on the surface of the sample. The test have been carried out applying 1, 2 and 3N for 

a scratch length of 5mm. The penetration depth under 1N for all the materials is 

reported in Figure VII-29.  

 
Figure VII -29. Penetration depth of scratch test of all the materials under 1N. 

 

It can be noticed that  

 AT-Cu shows the deeper penetration depth, equal to 2.5mm; 

 Mechanically milled samples show a penetration depth between 1.4-2.0mm; 

 Mechanically alloyed composites show the lowest penetration depth (~1mm), 

approaching that of the Cu-Be reference alloy.  

AT-Cu exhibits very cycled up and down variations, i.e., the so-called stick-slip 

sliding (Futami et al., 2009). These events suggest that the high concentrated frictional 

forces induce the non-linear deformation and a micro-macro damage on the scratched 

contact surfaces. The penetration depth of the mechanical milled sample decreases 

by prolonging milling time accompanied by an increase of hardness. In fact MMi-6000’ 

characterized by 45Hv0.1 shows the deeper penetration depth among the mechanical 

mille samples. By the way, despite the lower hardness than AT-Cu (103Hv0.1) MMi-

6000 shows an unexpected and higher abrasion resistance. 

MMCs are characterized by a lower penetration depth. For low applied load a 

slightly deeper penetration depth has been recorded for MMC-240’ in comparison with 

MMC-80’, although the higher hardness 207 and 130 Hv0.1 respectively. Cu-Be alloy 

shows the lowest penetration depth due to its higher hardness, close to 400Hv0.1. In 

Figure VII-30 the penetration depth as function of applied load are shown; also OM 

micrographs of scratch grooves at 3N for AT-Cu, MM-240’ and MMC-240 has been 

reported as representative of each range of penetration depth. 
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Figure VII – 30. Penetration depth of scratch test of all the materials as function of applied load; 

and OM micrographs of scratch grooves of AT-Cu, MM-240’ and MMC-240’ samples at 3N. 
 

Increasing the load the penetration depth consequently increases (Futami et al., 

2009). Although the increased load, the materials still showing the same behaviour of 

Figure VII-29, and the three ranges of penetration depth still evident. AT-Cu exhibits 

the deeper penetration depth independently of the load. Increasing the hardness the 

penetration depth decreases, especially changing from MM to MA, as reported in 

Figure VII-31. This confirms the validity and the benefits promoted by MM, and 

especially by MA. MMCs show a penetration depth similar to Cu-Be even at higher 

load, and this is very satisfying and promising. 
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Figure VII – 31. Penetration depth of scratch test at 3N of all the materials as function of 

hardness. 

 

The dependence of penetration depth with hardness is clearer for scratch test 

than for sliding test because this test is very short and any heating, which could 

severely affect the test, occurs. The formation of oxide is avoided and the performance 

of the material is related to its intrinsic properties. By the OM micrographs reported in 

Figure VII-30 it is evident how AT-Cu shows a deeper and larger scratch groove than 

mechanical milled and mechanical alloyed samples. The groove of AT-Cu is 

characterized by deformed and irregular edges attesting an elastoplastic 

microcracking due to its poor hardness, this result is in accordance with Futami et al. 

work. Usually a scratched surface shows 4 stages of damage as function of the applied 

load: an elastic/plastic sliding, a plastic plowing, an elastoplastic microcracking, and a 

fracturing and chipping of the surface scratched (Futami et al., 2009). Among the 

damages stated above, AT-Cu shows the first three stages, instead mechanical milled 

and mechanical alloyed materials exhibit only the first two. 

As thermal conductivity and wear resistance point of view it can be concluded 

that the target of this PhD thesis has been reached by a good compromise between 

the two properties, especially for MMC-240’, as shown by the update map of chapter 

III reported in Figure VII-32. 
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Figure VII - 32. Brinnel hardness versus heat conductivity map. 

 

 
7.3 Mechanical properties 
  

As a final step of this PhD work, a preliminary investigation on the tensile 

properties was carried out. Figure VII-33a and Figure VII-33b show the tensile stress-

strain curves of the samples produced by MM and MA. 
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Figure VII - 33.Tensile stress-strain curves of the sintered MM (a) and MA (b) samples. 

 

By Figure VII-33 it is evident how both MM and MA processes affect the 

mechanical behaviour of the sintered materials. AT-Cu is the only material showing a 

typical stress and strain curve of ductile material, thus exhibiting a continuous 

elongation up to 29% and a slight increase of the stress up to fracture. All the 

mechanical milled samples show a drastic decrease of the elongation but an increase 

of strength due to the severe strain hardening (Fig.VII-33a).  MMC-240’ show the same 

behaviour of the mechanical milled sample, meanwhile MMC-80’ due to the shorter 

milling time highlights a different tensile stress-strain curve (Fig.VII-33b). It consists in 

an elastic deformation followed by yielding and a maximum stress. MMC-80 curve 

does not show the typical plastic instability, characterized by a continuous decrease 

of stress, but it shows a plastic field with almost no strain hardening and a plastic 

deformation reaching 8%. Table VII-2 reports the results of the tensile properties. 

 
Table VII – 2. Tensile properties of testes samples 

Sample 
Yield stress 

(MPa) 

UTS 

(MPa) 

Elongation at fracture 

(%) 

AT-Cu 110 276 28.8 

MM-240’ 209 418 1.7 

MM-720’ 164 226 0.3 

MMi-6000’ 490 510 1 

MMC-80’ 282 352 8.2 

MMC-240’ 451 489 1.2 
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By the characterization of the fracture surfaces using SEM, it has been possible 

to evaluate the mechanical behaviour of the materials and the effective consolidation 

of the powders. Firstly in Figure VII-34 the fracture surface of AT-Cu is shown.  

Figure VII - 34. Fracture surfaces of the sintered AT-Cu specimen. 
 

Regarding AT-Cu, its fracture morphologies revealed clearly typical shallow 

dimples with different sizes, distributed throughout the fracture surfaces. Dimples are 

significant of a ductile fracture and, in turn, of bonding occurred between particles. As 

can be realized from Figure VII-34, the fracture surface seem to consist of a bimodal 

size distribution of dimples, large (red) and small (blue) dimples. The small dimples 

possess their sizes of about 1μm, the coarser ones show the 10μm in size at the 

largest. Another interesting feature should be mentioned here is the presence of 

interparticle space between some particles (yellow) which may favour the failure of the 

sample. The fracture could also initiates within void clusters as a result of a sequence 

of voids nucleation, growth and coalescence (green). After AT-Cu, MMC-80’ is the only 

strain hardened material showing a considerable elongation during test because the 

loss in ductility is limited by the shorter milling time in comparison with the other 

materials. The fracture surface of MMC-80’ also evidences both dimpled areas (blue) 

and areas where the flake-like morphology of the starting powder is visible (Fig.VII-

35). The flake-like morphology recalls the structure of the mechanical alloyed powder 

and is significant of lack of bonding: fracture occurred by interparticle propagation of 

cracks (yellow).  
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Figure VII - 35. Fracture surfaces of the sintered MMC-80’ specimen. 

 

A clear change of fracture mode is evidenced by mechanical milled and 

mechanical alloyed sample milled for long time (240 and 720 minutes), they show a 

more brittle fracture morphology. In this material trans-particle fracture is combined 

with clear traces of inter-particle fracture (Fig.VII-36). The generally brittle nature of 

fracture can be explained by the higher hardness of long-time milled sample, promoted 

by the stronger strain hardening and the more effective strengthening effect of TiB2. 

Nevertheless, both effects reduce ductility together with porosity, which was shown to 

increase by increasing milling time. A quite interesting feature is the ductile nature of 

the inter-particle fracture of re-crystallized regions, characterized by fine dimples (blue) 

(Fig.VII-37). Re-crystallization is the results of the higher temperature reached during 

SPS at the contact area between particles, due to the local preferential current flow.  
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Figure VII - 36. Fracture surfaces of the sintered MMC-240’ specimen. 

 

Figure VII - 37. Detail of the fracture surfaces of the sintered MMC-240’ specimen. 

 

A totally different fracture surface is shown by MMi-6000’. The specimen does not 

show any evidence of the typical ductile behaviour of copper, since fracture has been 

propagated along the prior particle boundaries, indicating a poor consolidation.  
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The poor consolidation is associate to the high oxidation state of the milled 

particles. It is important to recognize that copper oxide on particles plays an important 

role during SPS increasing the electrical resistance of the material and hindering the 

consolidation, as explained in chapter V. This effect is very clear in Figure VII-38, 

where each particle is recognizable and any formation of sintering neck is evident. In 

other words, MMi-6000’ specimen is densified but not effectively sintered.  

 

Figure VII – 38. Fracture surfaces of the sintered MMi-6000’ specimen. 

 

7.4 Conclusions 

 

In this chapter a characterization of the materials produced by MM and MA have 

been carried out.  

 Firstly has been demonstrate that thermal conductivity is more influenced by 

prolonged milling time than by the dispersion of a second hard phase. The high 

fraction of residual porosity increasing milling time leads to a drastic decrease of 

thermal conductivity. Meanwhile the MMCs show a competitive thermal 

conductivity in comparison with the commercial Cu-Be because they keep the 

same conductivity of copper despite the MA process. 

 Then the sliding wear resistance and the abrasion wear resistance have been 

investigated. The sliding behaviour of almost all the materials except for MMi-

6000’ consists of two stages: a running in stage characterized by a high friction 

coefficient, then the attainment of a constant and lower value of friction coefficient 
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prolonging sliding time. During the first stage a severe adhesion phenomenon 

between the sample and the disc occurs by an intense transfer of material. 

Prolonging sliding test the high temperature promotes the transformation of the 

transferred layer into oxide, which acts as lubricant reducing the friction coefficient 

and the wear coefficient. A clear relation between hardness and wear coefficient 

has been found especially for long sliding time, increasing hardness the wear 

resistance increases. Since the oxide layer formed by a hard material is 

consequently harder than that of a softer material, it is more protective and less 

damaged during test. Moreover harder material are characterized by a higher load 

bearing capability to sustain and maintain in place the oxide layer. In fact in MMi-

6000’ which has a very low hardness an intense spalling of the oxide patches from 

the worn track is evident due to its low load bearing capability. By the way the 

hard materials show some drawbacks. Firstly due to their higher wear resistance 

they take more time to create the wear track and form the oxide layer, in fact they 

are characterized by a longer transition time from the running stage to the tribo-

oxidative stage. Then the harder debris of MMC give a more intense abrasion 

contribution together with TiB2 and AISI M3:2 carbides. 

Furthermore the effect of the load has been analysed, and increasing the load 

four main events occur: 

i. Friction coefficient decreases 

ii. Friction coefficient stabilizes   lowers stick and slip phenomenon 

iii. tss decreases and almost disappears applying 200N 

iv. Regime temperature increases 

Due to the more severe testing conditions the relation between hardness and wear 

coefficient is lost because all the material show the faster formation of the 

protective oxide layer leading to very low wear coefficients.  

Sliding test highlights the limit of MMC-80’, which has a strong microstructure 

anisotropy due to the flake like morphology of the milled powder. A severe 

delamination phenomenon occurs during sliding because flake particles are 

aligned to the tangential force enhancing the exfoliation process.  

 AT-Cu exhibits the lower abrasion resistance followed by the mechanical milled 

sample and finally by the mechanical alloyed materials which have a penetration 

depth similar to the Cu-Be. The wear resistance to abrasion increases increasing 

the hardness of the material. 

 Finally tensile tests show a loss of ductility and a gain of strength for all the 

mechanical milled and mechanical alloyed samples. Only MMC-80 keep partially 

the ductility of AT-Cu, its stress-strain curve consists in an elastic deformation, a 

yielding and a maximum stress followed by a plastic field with almost no strain 

hardening and a plastic deformation reaching 8%. 

 The fracture surface analysis highlights a ductile fracture surface characterized 

by dimples for AT-Cu and partially for MMC-80’. By the way the flake-like 
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morphology of the fracture surface of MMC-80’ recalls the structure of the 

mechanical alloyed. All the others material exhibit a brittle nature of fracture which 

can be explained by the higher hardness of long-time milled sample, promoted by 

the stronger strain hardening and the more effective strengthening effect of TiB2. 

Nevertheless, both effects reduce ductility together with porosity, which was 

shown to increase by increasing milling time. The fracture consist in trans-particle 

fracture combined with clear traces of inter-particle fracture. A ductile nature of 

the inter-particle fracture of re-crystallized regions is evident. Finally in MMi-6000’ 

fracture indicates a poor consolidation associable to the high oxidation state of 

the milled particles. 
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Chapter VIII 

 

 

 

Conclusions 
 

The aim of this PhD thesis was to increase the hardness and wear resistance 

of a copper preserving high thermal conductivity. For this purpose powder metallurgy 

has been employed to produce strain hardened and dispersion hardened copper 

matrix composites by mechanical milling (MM) and mechanical alloying (MA). Titanium 

diboride-TiB2 has been selected for the production of metal matrix composites (MMC), 

due to the high hardness, thermal/chemical stability and the relatively high thermal 

conductivity compared to other ceramic materials. Spark Plasma Sintering (SPS) has 

been used for the consolidation. SPS allows sintering at lower temperature and in a 

shorter time comparing to more conventional processes like Hot Isostatic Pressing 

(HIP). Indeed the high heating rate peculiar of SPS preserves the fine microstructure 

produced by MM and MA, and reduces the interaction between the metal matrix and 

the reinforcing particles.  

 

8.1 Mechanical milling   

 

The first part of the research has been focused on the investigation of the MM 

process, paying special attention to the effect of milling parameters on the particle 

size, morphology and structure. In a second step, the effect of milling time on the 

sintering behaviour of the milled powders during SPS has been analysed.  The main 

results are summarized as follows. 

 Through the analysis of different process control agents (PCA) and ball to 

powder ratio (BPR), the best combination of particle size and particle 

morphology of copper milled powders have been found using 0.5wt% of 

stearic acid as PCA and a BPR equal to 10:1. These conditions limit the 

contamination level (i.e. Fe and Cr from the milling media)  

 Continuous milling evidences two process stages: flaking dominates after 

relatively short milling time while welding prevails after longer time. 

Interrupted milling (2min ON-9min OFF) promotes an intense fracturing 

process after welding, leading to a very fine particle size. 

 XRD analyses demonstrates a similar microstructure evolution during 

continuous and interrupted milling. Prolonging milling time causes a crystallite 

refinement down to nanometre range, a decrease of crystallite strain and 

dislocation density. 
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 The decomposition of PCA has been analysed in order to limit the residual 

porosity inside the sintered samples. The decomposition of PCA occurs in 

three steps: release of H2O at 100°C, followed by emission of CO and CO2 

at 350°C, and finally H2 at 500°C. These steps are affected by the particle 

size of the milled powders: by increasing particle size the decomposition of 

PCA is delayed towards higher temperature leading to high residual nano 

porosity if the SPS cycle is not properly selected. Good results have been 

obtained by small particle size (~10µm), by decreasing the heating rate from 

100°C/min to 20°C/min up to 950°C and by applying the SPS pressure once 

the decomposition of PCA is completed at 950°C. 

 The densification process during SPS is characterized by three main 

phenomena: powder rearrangement and local deformation before the 

application of the load followed by bulk particle deformation after loading. The 

entity of these phenomena depends on the particle size, morphology and on 

the strain hardening level accumulated during MM: the stronger strain 

hardening and the larger particle size due to longer milling time hinder the 

densification. The microstructure of sintered materials keeps memory of the 

original particles morphology, a severe anisotropy being observed when 

flaking prevails. Instead for large particle size some recrystallized area have 

been detected due to an intense overheating at the contact points between 

the powders. 

 Powder milled for very long milling time (6000 minutes) shows an intense 

oxidation confirmed by the presence of 21vol% Cu2O due to the very fine 

particle size. This severely hinders the consolidation, as well as the 

mechanical properties of the sintered material.  

 The best combination of hardness and density has been obtained after 240 

minutes of MM, with an increase of hardness from 90HB5 for atomized copper 

to 120HB5 for MM-240’. The decrease of hardness and density prolonging 

milling time up to 6000 minutes attests the limitations of MM as a processing 

method for strain hardened copper, and promotes the change toward MA. 

 

8.2 Mechanical Alloying 

 

The second part of the research has been focused on the investigation of the 

MA process between copper and 0.5wt% of TiB2 powders (~3µm) as function of milling 

time.  The following main results were obtained: 

 Increasing milling time the evolution of particle size and morphology during 

MA is similar to continuous MM. Increasing milling time the particle size 

increases by the overlapping and welding events between the flakes like 

particles which promote also the MA of the two constituents. By increasing 

milling time the dispersion of the hard phase in the Cu matrix becomes more 
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homogeneous, refinement of TiB2 particles is highlighted and also the 

adhesion between the two constituents is improved. The introduction of TiB2 

leads to a faster evolution of powder morphology and to the anticipation of 

the phenomena previously described for MM. 

 The SPS evolution of mechanical alloyed sample is characterized by powder 

rearrangement, local and bulk deformation as MM process. The hardness 

increases with milling time due to the refinement of TiB2 and its more uniform 

distribution, instead relative density decreases. The hardness shown by MMC 

almost doubles the value of MM sample, from 130 HB5 to 225 HB5 for the 

same milling time (240 minutes). 

 

  8.3 Properties of sintered MM-Cu and MA-Cu+TiB2  

 

The aim of the third and last part of the PhD thesis was to characterize the 

copper based materials produced by MM and MA. Thermal conductivity, wear 

behaviour under dry sliding and abrasion conditions and mechanical properties have 

been evaluated. The following main results have been found: 

Thermal conductivity of Cu 

 A detrimental effect of MM has been attested especially for long milling time. 

Considering the thermal conductivity of the starting copper (300W/mK) a 

drastic decrease of been highlighted prolonging milling time. After 720 and 

6000 minutes of MM the thermal conductivity was 250 and 200W/mK 

respectively. The drop of thermal conductivity is related to the increase of 

residual porosity in the sintered samples. 

 On contrary MA shows some interesting and promising results keeping the 

thermal conductivity of MMC comparable to atomized copper sample 

(300W/mK) and much higher than the commercial Cu-Be alloy (106W/mK). 

For mechanical alloyed material the presence of a limited fraction (0.5wt%) of 

TiB2 is not detrimental, rather it is positive for strain hardening and ineffective 

for thermal conductivity. 

Sliding wear resistance 

Friction 

 All the materials show the same tribological evolution under dry sliding wear 

conditions against an AISI M3:2 (65HRC): a severe adhesion phenomena 

characterized by a high friction coefficient close to 1 for short sliding time, 

followed by the predominance of a tribo-oxidative mechanism with the 

attainment of a lower friction coefficient close to 0.7 prolonging sliding time. 

The formation of the oxide layer is favoured by the creation of the wear track 

during the running-in stage, in fact the wear debris produced during this stage 
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can be compacted and transferred from the sample to the disc surface, 

especially at high temperature.  

 Softer materials show a shorter transition time from high to steady state 

friction (tss) coefficient. Hard material due to their higher wear resistance take 

more time to switch for not conformal to conformal contact and the formation 

of oxide layer is slightly delayed and tss increases. 

 MMCs show a higher friction coefficient due to the additional abrasive 

contribution of hard particles and of the harder wear debris produced during 

sliding. 

Wear resistance 

Low load (50N) 

 Once the sliding time increase and the steady state regime is achieved, the 

wear resistance is governed by hardness. Harder material (MMC) can better 

sustain the oxide protective layer due to their high load bearing capability, 

improved by the strain hardening and in the case of composite milled for 240 

minutes by the better dispersion of the TiB2 particles. The wear coefficient of 

atomized copper has been increased from 2,12x10-12 m3/m to 1.5x10-12 m3/m 

for MMC milled for 240 minutes. 

 Sliding test highlights the limit of MMC-80’, which has a strong microstructure 

anisotropy due to the flake like morphology of the milled powder. A severe 

delamination phenomenon occurs during sliding because flake particles are 

aligned to the tangential force enhancing the exfoliation process. 

 Material mechanically milled for 6000 minutes exhibits a poor wear resistance 

evidenced by a severe spalling phenomenon due to the low hardness. 

Higher load (100 and 200N) 

 Increasing the load following phenomena where observed: 

i. Regime temperature increases  easier formation of the oxide layer. 

ii. Friction coefficient decreases due to the predominance of tribo-oxidation; 

iii. Friction coefficient stabilizes   less intense stick and slip phenomenon; 

iv. tss decreases and almost disappears applying 200N; 

v. Wear coefficient decreases; 

Due to the more severe testing conditions the relation between hardness and 

wear coefficient is lost because all the material show a faster formation of the 

protective oxide layer leading to very low wear coefficients, 4.22X10-13m3/m 

for MMC milled for 240 minutes. 

 Abrasion wear resistance 

 The abrasive wear behaviour, determined by the scratch test method, 

evidenced the positive influence of a higher hardness. For all the applied load 

it can be noticed that: 

i. AT-Cu shows the deeper penetration depth; 
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ii. Mechanically milled samples show an intermediate penetration; 

iii. Mechanically alloyed composites show the lowest penetration depth, 

approaching that of the Cu-Be reference alloy. 

The abrasion wear resistance of MMC is competitive with Cu-Be alloy thanks 

to the intense mechanical strain hardening combined with a uniform 

dispersion hardening. 

Tensile test 

 Tensile tests show a loss of ductility and improved strength for all the 

mechanical milled and mechanical alloyed samples. Only MMC milled for 80 

minutes keeps partially the ductility of atomized copper (29% of elongation) 

reaching 8% of strain due to the shorter milling time. All the other materials 

show an elongation lower than 1%. Ultimate tensile strength has been 

increased from 276MPa of copper to 489MPa of MMC milled for 240 minutes. 

 Only the fracture surface of atomized copper highlights a ductile fracture 

surface characterized by dimples. All the others mechanical milled material 

exhibit a brittle nature of fracture consisting in trans-particle fracture combined 

with clear traces of inter-particle fracture. The fracture of copper milled for 

6000 minutes indicates a poor consolidation associable to the high oxidation 

state of the milled particles. 

 The fracture surface analysis highlights a partial ductile fracture surface for 

MMC milled for 80 minutes. By the way the flake-like morphology of the 

fracture surface recalls the structure of the mechanical alloyed powder and is 

significant of lack of bonding. MMC milled for 240 minutes exhibits a brittle 

nature of fracture promoted by the stronger strain hardening and the more 

effective strengthening effect of TiB2. Nevertheless, both effects reduce 

ductility together with porosity, which was shown to increase by increasing 

milling time.  

In general MMC samples show better performance than mechanical milled 

samples. MMCs gain a competitive improvement of hardness and wear resistance 

maintaining an acceptable thermal conductivity. These results broadens horizons of 

the research toward MMC with a higher fraction of TiB2. Since any decrease of thermal 

conductivity will be revealed in MMC, an increase of TiB2 content can be favoured in 

order to increase the hardness and the wear resistance. It can be concluded that the 

goal of the PhD thesis has been achieved, by the way the study deserves further 

investigations in order to improve the performance of copper matrix composites. 
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List of abbreviations and acronyms 
 
 
 

BPR  ball to powder ratio  

ECAP  equal channel angular pressing 

EDXS  energy-dispersive X-ray spectroscopy  

HIP  hot isostatic pressing  

HP  hard particle  

HPT high pressure torsion 

MA  mechanical alloying  

MM  mechanical milling  

MMC  metal matrix composite  

OM optical microscopy 

PCA  process control agent  

PVD  physical vapour deposition  

SEM  scanning electron microscopy  

SMAT surface mechanical attrition treatment 

SPD severe plastic deformation 

SPS  spark plasma sintering  

TEM  transmission electron microscopy  

XRD  X-rays diffraction 

  



152 

  



153 

References 
 
 
 

Akhtar F., S.J. Askari, K.A. Shah, X. Du, S. Guo, Microstructure, mechanical properties, electrical 
conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Materials 
characterization, 2009. 60: p. 327-336. 

Anderson K.R., J.R. Groza, Microstructural evolution and thermal stability of precipitation-
strengthened Cu-8Cr-4Nb alloy. Material Science Engineering A, 1993. 169: p. 167-75. 

Andrews P.V., M.B. West, C.R. Robeson, The effect of grain boundaries on the electrical 
resistivity of polycrystalline copper and aluminum. Philosophical Magazine, 1969. 19: p. 887-898. 

Anselmi-Tamburini U., G. Spinolo, F. Maglia, I. Tredici, T.B. Holland, Field Assisted Sintering 
Mechanisms. Engineering Materials. 2013. 35: p. 159-193. 

Anselmi-Tamburini U., S. Gennari, J.E. Garay, Z.A. Munir, Fundamental investigation on the 
spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. 
Material Science and Engineering A, 2005. 394: p. 139-148. 

Ashby M.F., Materials selection in mechanical design, Editor 2011, Butterworth-Heinemann by 
Elsevier, 4th Edition. 

Avelar-Batista J.C., E. Spain, M. Letch, J. Housden, R. Beechey, Improvements on the wear 
resistance of high thermal conductivity Cu alloys using an electroless Ni-P coating prior to PVD 
deposition. Surface & Coatings Technology, 2006. 201: p. 4052-4057. 

Azabou M., H.I. Gharsallah, L.Escoda, J.J. Sunol, A.W. Kolsi, M. Khitouni, Mechanochemical 
reactions in nanocrystalline Cu-Fe system induced by mechanical alloying in air atmosphere. 
Powder Technology, 2012. 224: p. 338-344. 

Bailon-Poujol I., J.P. Bailon, G. L’Esperance, Ball-mill grinding kinetics of master alloys for steel 
powder metallurgy applications. Powder Technology, 2011. 210: p. 267-272. 

Barella S., A. Gruttadauria, C. Mapelli, D. Mombelli, Investigation of failure and dameges on 
continuous casting copper mould. Engineering Failure Analysis, 2014. 36: p. 432-438. 

Benchabane G., Z. Boumerzoug, T. Gloriant, I. Thibon, Microstructural characterization and 
recrystallization kinetics of cold rolled copper. Physica B: Condensed Matter, 2011. 406: p. 1973-
1976 

Benjamin J.S., Dispersion Strengthened Speralloys by Mechanical Alloying. Metallurgical 
Transaction, 1970. 1: p. 2943-2951. 

Berns H., N. von Chuong, A new microstructure for PM tooling material. Metallugical Physical 
Advanced Technology, 1996. 6: p. 61-71. 

Berns H., F.D. Sinesio, Effect of coarse hard particles on high-temperature sliding abrasion of 
new metal matrix composites. Wear, 1997. 203-204: p. 608-614. 

Berns H., S. Koch, Influence of abrasive particle on wear mechanisms and wear resistance in 
sliding abrasion tests at elevated temperature. Wear, 1999. 233-235: p. 424-430. 

Berns H., Comparison of wear resistant MMC and white cast iron. Wear, 2003. 254: p. 47-54. 

Besenbach F., J.K. Norskow, Oxygen chemiasorption on metal surfaces: General trends of Cu, 
Ni and Al. Process in Surface Science, 1993. 44: p. 5-66. 

Bhattacharya P., P. Bellon, R.S. Averback, S.J. Hales, Nanocrystalline TiAl powders 
synthesized by high-energy ball milling: effects of milling parameters on yield and contamination. 
Journal of Alloys and Compounds, 2004. 368: p. 187-196. 

Biselli C., D.G. Morris, N. Randall, Mechanical alloying of high-strength copper alloys containing 
TiB2 and Al2O3 dispersoid particles. Scripta Metallurgica et Materialia, 1994. 30: p. 1327-1332. 

http://www.sciencedirect.com/science/article/pii/S0921452611002031


154 

Boey P., W. Ho, S.J. Bull, The effect of temperature on the abrasive wear of coating and hybrid 
surface treatments for injection-moulding machines. Wear, 2005. 258: p. 149-156. 

Bonnenfant D., F. Mazerolle, P. Suquet, Compaction of powders containing hard inclusions: 
experiments and micromechanical modelling. Mechanics of Materials, 1998. 29: p. 93-109. 

Botcharova E., M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow et al., Supersatured 
solid solution of niobium in copper by mechanical alloying. Journal of Alloys and Compounds, 
2003. 351: p. 119-125. 

Bouvard D., Densification behavior of mixtures of hard and soft powders under pressure. Powder 
Technology, 2000. 111: p. 231-239. 

Bull S.J., Q. Zhou, A simulation test for wear in injection moulding machines. Wear, 2001. 249: 
p. 372-378. 

Chen X.J., K.A Khor, S.H. Chan, L.G. Yu, Overcoming the effect of contaminant in solid oxide 
fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5wt% silica-doped yttria-stabilized 
zirconia (YSZ). Materials Science and Engineering A. 2004. 374: p. 64–71. 

Dash K., B.C. Ray, D. Chaira, Synthesis and characterization of copper-alumina metal matrix 
composite by conventional and spark plasma sintering. Journal of Alloys and Compounds, 2012. 
516: p. 78-84. 

De Hoff R.T., F.N. Rhines, Quantitative microscopy, Editor 1968 by Mc Graw-Hill Book Co, New 
York. 

Delie F., D. Bouvard, Effect of inclusion morphology on the densification of powder composites. 
Acta Materialia, 1998. 46: p. 3905-3913. 

Deshpande P.K., R.Y. Lin, Wear resistance of WC particle reinforced copper matrix composites 
and the effect of porosity. Materials Science & Engineering A, 2006. 418: p. 137-145. 

Diouf S., A. Molinari, Densification mechanisms in spark plasma sintering: Effect of particle size 
and pressure. Powder Technology, 2012 [1]. 221: p. 220-227. 

Diouf S., C. Menapace, A. Molinari, Study of the effect of particle size on densification of copper 
during spark plasma sintering. Powder Metallurgy, 2012 [2]. 55: p. 3-7. 

Diouf S., C. Menapace, M. D’Incau, A. Molinari, G. Ischia, Spark plasma sintering of crymilled  
copper powder. Powder Metallurgy, 2013. 56: p. 420-426. 

Elsayed A., W. Li, O. A. El Kady, W. M. Daoush, E.A. Olevsky, Experimental investigations on 
the synthesis of W-Cu nanocomposite through spark plasma sintering. Journal of Alloys and 
Compounds, 2015. 639: p. 373-380. 

Estrada-Guel I., C. Carreno-Gallardo, C. Leyva-Porras, R. Martinez-Sanchez, Effect of process 
parameters on micro and macro-properties of an Al-based nanocomposite prepared by means 
of mechanical milling. Journal of Alloys and Compounds, 2014. 586: p. S85-S89. 

Eyre T.S., Wear mechanisms. Powder Metallurgy, 1981. 2: p. 57-63. 

Fedrizzi A., M. Pellizzari, M. Zadra, Influence of particle size ratio on densification behavior of 
AISI H13/AISI M3:2 powder mixture. Powder Technology, 2012. 228: p. 435-442. 

Fogagnolo J.B., F. Velasco, M.H. Robert, J.M. Torralba, Effect of mechanical alloying on the 
morphology, microstructure and properties of aluminum matrix composite powders. Materials 
Science and Engineering, 2003. A342: p. 131-143. 

Futami T., M. Ohira, H. Muto, M. Sakai, Contact/scratch-induced surface deformation and 
damage of copper-graphite particulate composites. Carbon, 2009. 47: p. 2742-2751. 

Gan K, M. Gu, The compressibility of Cu/SiCp powder prepared by high-energy ball milling. 
Journal of Materials Processing Technology, 2008. 199: p. 173-177. 

Gao Y., J.C. Jie, P.C. Zhang, et al., Wear behavior of high strength and high conductivity Cu 
alloys under dry sliding. Transactions of Nonferrous Metals Society of China, 2015. 25: p. 2293-
2300. 



155 

Gelbstein Y., Y. Haim, S. Kalabukhov, A. Kasiyan, Correlation between thermal and electrical 
properties of spark plasma sintered porous copper. Material Science-Sintering techniques of 
Materials, Editor 2015, InTech 

German R.M., Prediction of sintered density for bimodal powder mixtures. Metallurgical 
Transactions A, 1992[1]. 23A: p. 1455-1465. 

German R.M., Sintering densification for powder mixtures of varying distribution widths. Acta 
Metallurgica Materialia, 1992[2]. 40: p. 2085-2089. 

Gheisari K., S. Javadpour, The effect of process control agent on the structure and magnetic 
properties of nanocrystalline mechanically alloyed Fe-45% Ni powders. Journal of Magnetism 
and Magnetic Materials, 2013. 343: p. 133-137. 

Gilman P.S., J.S. Benjamin, Mechanical alloying. Annual Review of Materials Science, 1983. 13: 
p. 279-300. 

Girish B.M., B.R. Basawaraj, B.M. Satish, D.R.Somashekar, Electrical resistivity and mechanical 
properties of tungsten carbide reinforced copper alloy composites. International Journal of 
Composite Materials, 2012. 2(3): p. 37-42. 

Gleiter H., Nanocrystalline Materials. Progress in Material Science, 1968. 33: p. 223-315. 

Gomez B., E. Gordo, J.M. Torralba, Influence of milling time on the processing of Fe-TiCN 
composites. Materials Science and Engineering A, 2006. 430: p. 59-63. 

Gordo E., B. Gomez, E.M. Ruiz-Navas, J.M. Torralba, Influence of milling parameters on the 
manufacturing of Fe-TiCN composite powders. Journal of Materials Processing Technology, 
2005. 162-162: p. 59-54. 

Groza J.R., J.C. Gibeling, Principles of particle selection for dispersion-strengthened copper. 
Materials Science and Engineering, 1993. A171: p. 115-125. 

Guo M.X., Wang M.P., The relationship among microstructure evolution, mechanical property 
and in situ reaction mechanisms in preparing Cu-1.6wt%TiB2 alloys. Materials Chemistry and 
Physics, 2013. 138: p. 95-101. 

Harris A.M., G.B. Schaffer, N.W. Page, The morphological evolution of hollow shells during the 
machanicl milling of ductile metals. Scripta Materialia, 1996. 34: p. 67-73. 

Huang J.Y, Y.K. Wu, H.Q. Ye, Ball milling of ductile metals. Materials Science and Engineering 
A, 1995. 199: p. 165-172. 

Huang J.Y, Y.K. Wu, H.Q. Ye, Deformation structures in ball milled copper. Acta Materialia, 1996. 
44: p. 1211-1221. 

Hulbert D.M., A. Anders, J. Andersson, E.J. Lavernia, A.K. Mukherjee, A discussion on the 
absence of plasma in spark plasma sintering. Scripta Materialia, 2009. 60: p. 835-838. 

Jaw K.S., C.K. Hsu, J.S. Lee, The thermal decomposition behaviors of stearic acid, paraffin wax 
and polyvinyl butyral. Thermochimica Acta, 2001. 367-368: p. 165-168. 

Kaczmar J.W., K. Granat, A. Kurzawa, E. Grodzka, Physical properties of copper based MMC 
strengthened with alumina. Achieves of foundry engineering, 2014. 14: p. 85-90. 

Khaleghi E., M. Torikachvili, M.A. Meyers, E.A. Olevsky, Magnetic enhancement of thermal 
conductivity in copper-carbon nanotube composites produced by electroless plating, freeze 
drying, and spark plasma sintering. Materials Letter, 2012. 79: p. 256-258. 

Khayati G.R., K. Janghorban, An investigation on the application of process control agents in the 
preparation and consolidation behavior of nanocrystalline silver by mechanochemical method. 
Advanced Powder Technology, 2012. 23: p. 808-813. 

Khayati G.R., E. Nourafkan, G. Karimi, J. Moradgholi, Synthesis of cuprous oxide nanoparticles 
by mechanochemical oxidation of copper in high planetary energy ball mill. Advanced Powder 
Technology, 2013. 24: p. 301-305. 



156 

Khitouni M., R. Daly, M. Mhadhbi, A. Kolsi, Structural evolution in nanocrystalline Cu obtained 
by high-energy mechanical milling: Phases formation of copper oxides. Journal of Alloys and 
compounds, 2009. 475: p. 581-586. 

Khoshkhoo M.S, S. Sudino, J. Bednarcik, A. Kauffmann, Mechanism of nanostructure formation 
in ball-milled Cu and Cu-3wt%Zn studied by X-ray diffraction line profile analysis, Journal of Alloys 
and Compounds, 2014. 588: p. 138-143. 

Kleiner S., F Bertocco, F.A. Khalid, O. Beffort, Decomposition of process control agent during 
mechanical milling and its influence on displacement reactions in the Al.TiO2 system. Materials 
Chemestry and Physics, 2005. 89: p. 362-366. 

Kwon D.H., J.W. Kum, T.D. Nguyen, D. Dudina, P.P. Choi, et al., Production of dispersion-
strengthened Cu-TiB2 alloys by ball-milling and spark-plasma sintering. Materials Science Forum, 
2007. 534-536: p. 1489-1492. 

Kwon D.H., T.D. Nguyen, K.X. Huynh, et al., Mechanical, electrical and wear properties of Cu-
TiB2 nanocomposites fabricated by MA-SHS and SPS. Journal of Ceramic Processing Research, 
2006. 7: p. 275-279. 

Landauer R., The electrical resistance of binary metallic mixtures. Journal of Applied Physics, 
1952. 23: p. 779-784. 

Long B.D, H. Zuhailawati, M. Umemoto, Y. Todaka, R. Othman, Effect of ethanol on the formation 
and properties of a Cu-NbC composite. Journal of Alloys and Compounds. 2010[1]. 503: p. 228-
232. 

Long B.D., R. Othman, M. Umemoto, H. Zuhailawati, Spark plasma sintering of mechanically 
alloyed in situ copper-niobium carbide composite. Journal of Alloys and Compounds, 2010[2]. 
505: p. 510-515. 

Lu J., S. Shu, F. Qiu, Y. Wang, Q. Jiang, Compression properties and abrasive wear behavior of 
high volume fraction TiCx-TiB2/Cu composites fabricated by combustion synthesis and hot press 
consolidation. Materials and Design, 2012. 40: p. 157-162. 

Luo W.T., C.J. Li, G.J. Yang, Correlation between milling conditions and iron contamination, 
microstructure and hardness of mechanically alloyed cubic BN particle reinforced NiCrAl matrix 
composite powders. Journal of Alloys and Compounds, 2013. 548: p. 180-187. 

Luo X.T., G.J. Yang, C.J. Li, Preparation of cBNp/NiCrAl nanostructured composite powders by 
a step-fashion mechanical alloying process. Powder Technology, 2012. 217: p. 591-598. 

Lutterotti L., Materials Analysis Using Diffraction (MAUD), 1997. http://www.ing.unitn.it/~maud/ 

Ma Z.Y., S.C. Tjong, High temperature creep behavior of in-situ TiB2 particulate reinforced 
copper-based composite. Materials Science and Engineering A, 2000. 284: p. 70-76. 

Madavali B., J.H. Lee, J.K. Lee, K.Y. Cho, C. Suryanarayana, S.J. Hong, Effects of atmosphere 
and milling time on coursing of copper powders during mechanical milling. Powder Technology, 
2014. 256: p. 251-256. 

Marques M.T., V. Livramento, J.B. Correia, A. Almeida, R. Vilar, Study of early stages of Cu-
NbC nanocomposite synthesis. Journal of Alloys and Compounds, 2007. 434-435: p. 481-484. 

Maurice D., T.H. Courtney, The physics of mechanical alloying: A first report.  Metallurgical 
Transactions A, 1990. 21A:p. 289-303. 

Maurice D., T.H. Courtney, Modeling of mechanical alloying: Part I. Deformation, Coalescence, 
and Fragmentation Mechanisms. Metallurgical and Materials Transactions A, 1994. 25A: p. 147-
158. 

Maurice D., T.H. Courtney, Modeling of mechanical alloying: Part III. Applications of 
computational programs. Metallurgical and Materials Transactions A, 1995. 26A:p. 2437-2444. 

Menapace C., G. Cipolloni, M. Hebda, G. Ischia, Spark plasma sintering behavior of copper 
powder having different particle size and oxygen contents. Powder Technology, 2016. 291: p. 
170-177. 

http://www.ing.unitn.it/~maud/


157 

Mishra A., V. Richard, F. Gregori, R.J. Asaro, Microstructural evolution in copper processed by 
severe plastic deformation. Material Science Engineeering A, 2005. 410-411: p. 290-298. 

Munir Z.A., U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the 
synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. 
Sci. 2006. 41: p. 763-777. 

Nakamichi I., Electrical resistivity and grain boundaries in metals. Material Science Forum, 1996. 
207-209: p. 47-58. 

Nefedova E., E. Aleksandrova, E. Grigoryev, E.A. Olevsky, Research high-temperature 
consolidation of nanostructured bimodal materials. Physics Procedia, 2015. 72: p. 390-393. 

Nikzad L., R. Licheri, T. Ebadzadeh, R. Orrù, G. Cao, Effect of ball milling on reactive spark 
plasma sintering of B4C-TiB2 composite. Ceramics International, 2012. 38: p. 6469-6480. 

Olevsky E.A., L. Froyen, Constitutive modelling of spark plasma sintering of conductive 
materials, Scripta Materialia, 2006. 55: p. 1175-1178. 

Olevsky E.A., S. Kndukuri, L. Froyen, Consolidation enhancement in spark-plasma sintering: 
Impact of high heating rates. Journal of Applied Physics, 2007. 102: p. 1149131-12. 

Onat A., Mechanical and dry sliding wear properties of silicon carbide particulate reinforced 
aluminum-copper alloy matrix composites produced by direct squeeze casting method. Journal 
of Alloys and Compounds, 2010. 489: p. 119-124. 

Ondracek G., B. Shulz, The porosity dependence of the thermal conductivity for nuclear fuels. 
Journal of Nuclear Materials, 1973. 46: p. 253-258. 

Orlov D., H. Fujiwara, K. Ameyama, Obtaining copper with harmonic structure for the optical 
balance of structure-performance relationship. Materials Transictions, 2013. 54: p. 1549-1553. 

Pellizzari M., A. Fedrizzi, M. Zadra, Influence of processing parameters and particle size on the 
properties of hot work and high speed tool steels by spark plasma sintering. Materials and Design, 
2011 [1]. 32: p.1796-1805. 

Pellizzari M., A. Fedrizzi, M. Zadra, Spark Plasma co-Sintering of hot work and high speed steel 
powders for fabrication of a novel tool steel with composite microstructure. Powder technology, 
2011[2]. 214: p. 292-299. 

Petzow G., Metallographic Etching, Editor 1999 by ASM International. 

Pietrak K., T.S. Wisniewski, A Review of models for effective thermal conductivity of composite 
materials. Journal of Powder Technologies, 2015. 95: p. 14-24. 

Poluboyarov V.A., A.E. Lapin, Z.A. Korotaeva, I.P. Prosvirin, V.I. Bukhtiyarov et al., Effect of 
mechanical activation on the reactivity of powder copper. Inorganic Materials, 2005. 41: p. 110-
119. 

Pramanik A., L.C. Zhang, J.A. Arsecularatne, Deformation mechanisms of MMCs under 
indentation. Composite Science and Technology, 2008. 68: p. 1304-1312. 

Prasad Y.V.R.K., K.P. Rao, Influence of oxygen on rate-controlling mechanisms in hot 
deformation of polycrystalline copper: oxygen-free versus electrolytic grades. Materials Letter, 
2004. 58: p. 2061-2066. 

Raghu T., R. Sundaresan, P. Ramakrishnan, T.R. Rama Mohan, Synthesis of nanocrystalline 
copper-tungsten alloys by mechanical alloying. Materials Science and Engineering A, 2001. 304-
306: p. 438-441. 

Rajkovic V., D. Bozic, M.T. Jovanovic, Characterization of prealloyed copper powders treated in 
high energy ball mill. Materials Characterization, 2006. 57: p. 94-99.  

Rajkovic V., D. Bozic, M.T. Jovanovic, Properties of copper matrix reinforced with various size 
and amount of Al2O3 particles. Journal of materials processing technology, 2008. 200: p. 106-
114. 

Richardson R.C.D., The wear of metals by relatively soft abrasives. Wear, 1968. 11: p. 245-275. 



158 

Rietveld H.M., A profile refinement method for nuclear and magnetic structures. Journal of 
Applied Crystallography, 1969. 2: p. 65-71.  

Risbud S.H., J.R. Groza, M.J. Kim, Clean grain boundaries in aluminium nitride ceramics 
densified without additives by a plasma-activated sintering process. Philosophical Magazine Part 
B. 1994. 69(3): p. 525-533. 

Ritasalo R., M.E. Cura, X.W. Liu, O. Soderberg, T. Ritvonen et al., Spark plasma sintering of 
submicron-sized Cu-powder. Influence of processing parameters and powder oxidation on 
microstructure and mechanical properties. Materials Science and Engineering A, 2010. 527: p. 
2733-2737. 

Ruzic J., J. Stasic, V. Rajkovic, D. Bozic, Strengthening effects in precipitation and dispersion 
hardened powder metallurgy copper alloys. Materials and Design, 2013. 49: p. 746-754. 

Sahani P., S. Mula, P.K. Roy, P.C. Kang, C.C. Koch, Structural investigation of vacuum sintered 
Cu-Cr and Cu-Cr-4% SiC nanocomposites prepared by mechanical alloying. Materials Science 
and Engineering, 2011. A528: p. 7781-7789. 

Samal C.P., J.S. Parihar, D. Chaira, The effect of milling and sintering techniques on mechanical 
properties of Cu-graphite metal matrix composite prepared by powder metallurgy route. Journal 
of Alloys and Compounds, 2013. 569: p. 95-101. 

Sato A., J. Kano, F. Saito, Analysis of abrasion mechanism of grinding media in planetary mill 
with DEM simulation. Advanced Powder Technology, 2010. 21: p. 212-216. 

Setman D., M. Kerber, H. Bahmanpour, J. Horky, R.O. Scattergood, C.C. Koch, M.J. Zehetbauer, 
Nature and density of lattice defects in ball milled nanostructured copper. Mechanics of Materials, 
2013. 67: p. 59-64. 

Sharma A.S., K. Biswas, B. Basu, D.Chakravarty, Spark plasma sintering of nanocrystalline Cu 
and Cu-10 Wt Pct Pb alloy. Metallurgical and Materials Transactions A, 2011. 42: p. 2072-2084. 

Sheibani S., A. Ataie, S. Heshmati-Manesh, G.R. Khayati, Structural evolution in nano crystalline 
Cu synthesized by high energy ball milling. Materials Letter, 2007. 61: p. 3204-3207. 

Sheibani S., A. Ataie, S. Heshmati-Manesh, Role of process control agent on synthesis and 
consolidation behavior of nano-crystalline copper produced by mechano-chemical route. Journal 
of Alloys and Compounds, 2008. 465: p. 78-82. 

Shukla A.K., N. Murty, R. S. Kumar, K. Mondal, Spark plasma sintering of dispersion hardened 
Cu-Cr-Nb alloy powders. Journal of Alloys and Compounds, 2013. 577:p. 70-78. 

Song X., X. Liu, J. Zhang, Neck Formation and Self-Adjusting Mechanism of Neck Growth of 
conducting powders in Spark Plasma Sintering. J. Am. Ceram. Soc. 2006. 89(2): p. 494-500. 

Srinivasarao B., C. Suryanarayana, K. Oh-Ishi, K. Hono, Microstructure and mechanical 
properties of Al-Zr nanocomposite materials. Materials Science and Engineering A. 2009. 518(1-
2): p. 100–107. 

Srivatsan T.S., N. Narendra, J.D. Troxell, Tensile deformation and fracture behavior of an oxide 
dispersion strengthened copper alloy. Materials and Design, 2000. 21: p. 191.198. 

Stobrawa J.P., Z.M. Rdzawski, Characterization of nanostructured copper-WC materials. 
Journal of Achievements in Materials and Manufacturing Engineering, 2009. 2: p. 171-178. 
Straffelini G., M. Pellizzari, A. Molinari, Influence of load and temperature on the dry sliding 
behaviour of Al-based metal-matrix composites against friction material. Wear, 2004. 256: p. 754-
763. 

Straffelini G., L. Maines, M. Pellizzari, P. Scardi, Dry sliding wear of Cu-Be alloys. Wear, 2005. 
259: p. 506-511. 

Sule R., P.A. Olubambi, I. Sigalas, J.K.O. Asante, J.C Garrett, Effect of SPS consolidation 
parameters on submicron Cu and Cu-CNT composites for thermal management. Powder 
Technology, 2014. 258: p. 198-205. 



159 

Suryanarayana C., Mechanical alloying and milling. Progress in Materials Science, 2001. 46: p. 
1-184. 

Suryanarayana C., T. Klassen, E. Ivanov, Synthesis of nanocomposites and amorphous alloys 
by mechanical alloying. Journal of Materials Science, 2011. 46: p. 6301-6315. 

Theisen W., Design of wear resistant alloys against abrasion. Proceeding of abrasion, 2008. p. 
128-138. 

Ting J.M., R.Y. Lin, Effect of particle size distribution on sintering - part I modelling. Journal of 
Materials Science, 1994. 29: p. 1867-1872.  

Ting J.M., R.Y. Lin, Effect of particle size distribution on sintering - part II sintering. Journal of 
Materials Science, 1995. 30: p. 2382-2389. 

Tjong S.C, K.C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix 
composites. Materials Science and Engineering A, 2000. 282: p. 183-186. 

Tokita M., Mechanism of spark plasma sintering. Journal of the Society of Powder technology, 
1993. 30: p. 790-804. 

Tokita M., Development of Large-Size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma 
Sintering. Material Science Forum, 1999. 308-311: p. 83-88. 

Tu J.P., W. Rong, S.Y. Guo, Y.Z. Yang, Dry sliding behavior of in situ Cu-TiB2 nanocomposites 
against medium carbon steel. Wear, 2003. 255: p. 832-835. 

Uddin S.M., Mahmud T., C. Wolf, C. Glanz, Effect of size and shape of metal particles to improve 
hardness and electrical properties of carbon nanotube reinforced copper and copper alloy 
composites. Composites Science Technology, 2010. 70: p. 2253-2257. 

Valiev R., Nanostructuring of metals by severe plastic deformation for advanced properties. 
Nature Materials, 2004. 3: p. 511-516. 

Wang F., Y. Li, K. Yamanaka, K. Wakon, K. Harata, A. Chiba, Influence of two-step ball-milling 
condition on electrical and mechanical properties of TiC-dispersion-strengthened Cu alloys. 
Materials and Design, 2014. 64: p. 441-449. 

Wang K., N.R. Tao, G. Liu, J. Lu, K. Lu, Plastic strain-induced grain refinement at the nanometer 
scale in copper. Acta Materialia, 2006. 54: p. 5281-5291. 

Wen H., Y. Zhao, Z. Zhang, O. Ertorer, S. Dong, E.J. Lavernia, The influence of oxygen and 
nitrogen contamination on the densification behavior of cryomilled copper powders during spark 
plasma sintering. Journal of Materials Science. 2011. 46(9): p. 3006-3012. 

Xiao X., Z. Zeng, Z. Zhao, S. Xiao, Flaking behavior and microstructure evolution of nickel and 
copper powder during mechanical milling in liquid environment. Materials Science and 
Engineering A, 2008. 475: p. 166-171. 

Yanagisawa O., H. Kuramoto, K. Matsugi, M. Komatsu, Observation of particle behvaior in 
copper powder compact during pulsed electric discharge. Materials Science and Engineering A, 
2003. 350: p. 184-189. 

Yousefi M., S. Sharafi, A. Mehrolhosseiny, Correlation between structural parameters and 
magnetic properties of ball milled nano-crystalline Fe-Co-Si powders. Advanced Powder 
Technology, 2013. 25: p. 752-760. 

Yusoff M., R. Othman, Z. Hussain, Mechanical alloying and sintering of nanostructured tungsten 
carbide-reinforced copper composite and its characterization. Materials and Design, 2011. 32: p. 
3293-3298. 

Zeng Q., Y.F. Xiao, S.Z. Dong, X.B. Liu, B.Q. Qui, et al., Influence of milling conditions on 
magnetic properties of Nd(Fe,Mo)12Nx compounds. Journal of Magnetism and Magnetic 
Materials, 1999. 192: p. 321-324. 

Zhang F.L., M. Zhu, C.Y. Wang, Parameters optimization in the planetary ball milling of 
nanostructured tungsten carbide/cobalt powder. International Journal of Refractory Metals & 
Hard Materials, 2008. 26: p. 329-333. 



160 

Zhang J., L. He, Y. Zhou, Highly conductive and strengthened copper matrix composite 
reinforced by Zr2Al3C4 particulates. Scripta Materialia, 2009. 60: p. 976-979. 

Zhang R., L. Gao, J. Guo, Thermodynamic behaviour of copper-coated silicon carbide particles 
during conventional heating and spark plasma sintering. Communications of the American 
Ceramic Society, 2003. 86: p. 1446-1448. 

Zhang Y.F., L. Lu, S.M. Yap, Prediction of the amount of PCA for mechanical milling. Journal of 
Materials Processing Technology, 1999. 89-90: p. 260-265. 

Zhang Y.S., Z. Han, K. Wang, K. Lu, Friction and wear behaviors of nanocrystalline surface layer 
of pure copper. Wear, 2006. 260: p. 942-948 

Zhang Y.S., K. Wang, Z. Han, G. Liu, Dry sliding wear behavior of copper with nano-scaled twins. 
Wear, 2007. 262: p. 1463-1470. 

Zhang Y.S., Z. Han, K. Lu, Fretting wear behavior of nanocrystalline surface layer of copper 
under dry condition. Wear, 2008. 265: p. 396-401. 

Zhang Z.H., F.C. Wang, L. Wang, S.K. Li, Ultrafine-grained copper prepared by spark plasma 
sintering process. Materials Science and Engineering A, 2008. 476: p. 201-205. 

Zhao Y.H., K. Lu, Microstructure evolution and thermal properties in nanocrystalline Cu during 
mechanical attrition. Physical Review B, 2002. 66: p. 085404_1-8. 

Zhaohui Z., W. Fuchi, W. Lin, L. Shukui, S. Osamu, Sintering mechanism of large-scale ultrafine-
grained copper prepared by SPS method. Materials Letters. 2008. 62(24): p. 3987–3990. 

Zum Gahr K.H., Wear by hard particles. Tribology International, 1998. 31: p. 587-596. 

  



161 

 
Scientific Production 

 
 

 
International Journal: 

 
[1] M.Pellizzari, D.Ugues, G.Cipolloni, Influence of heat treatment and surface 
engineering on thermal fatigue behavior of tool steel, International Heat Treatment and 
Surface Engineering  7:4 (2013) 180 -184. DOI: 10.1179/1749514813Z.00000000091.  
 
[2] C.Menapace, G.Cipolloni, A.Molinari, Influence of high temperature sintering on 
impact properties of low alloyed steels, Materials Science Forum 802 (2014) 483-488. 
DOI:10.4028/www.scientific.net/MSF.802.483  
 
[3] G.Cipolloni, C.Menapace, I.Cristofolini, A.Molinari, A quantitative characterization 
of porosity in a Cr-Mo sintered steel by Image Analysis, Materials Characterization 94 
(2014) 58 - 68. DOI: 10.1016/j.matchar.2014.05.005 
 
[4] G.Cipolloni, M.Pellizzari, A.Molinari, M.Hebda, M.Zadra, Contamination during 
high energy milling of atomized copper powder and its effects on Spark Plasma 
Sintering, Powder Technology 275 (2015) 51-59. DOI:10.1016/j.powtec.2015.01.063 
 
[5] C.Menapace, G.Cipolloni, M.Hebda, G. Ischia, Spark plasma sintering behaviour 
of copper powders having different particle sizes and oxygen contents, Powder 
Technology 291 (2016) 170-177. DOI:10.1016/j.powtec.2015.12.020 
 
Proceedings: 

 
[1] I.Cristofolini, G.Cipolloni, A.Molinari, Macro and micro-geometrical characteristics 
of surfaces of porous sintered parts, Proc. Int. Conf. on Powder Metallurgy & 
Particulate Materials, Nashville (United State of America) 2012, pp. 714-724. ISBN: 
9780985339722 
  
[2] M.Pellizzari, D.Ugues, G.Cipolloni, Influence of heat treatment and surface 
engineering on thermal fatigue behaviour of tool steel, Proc. 2nd Mediterranean 
Conference & New Challenges on Heat Treatment and Surface Engineering, 
Dubrovnik (Croatia) 2013, pp. 207-214. ISBN: 9789537690021 
 
[3] C.Menapace, G.Cipolloni, A. Molinari, Influence of high temperature sintering on 
impact properties of low alloyed steels, Proc. Conf. on  PTECH Congress in Brazil 
2013. DOI:10.4028/www.scientific.net/MSF.802.483 
 
[4] C.Menapace, G.Cipolloni, A.Molinari, Influence of the high sintering temperature 
on the impact properties of a low alloyed Cu-Mo steel, Proc. European Powder 
Metallurgy Congress & Exhibition - EUROPM 2014, Salzburg (Austria) 2014. 
 

http://dx.doi.org/10.1179/1749514813Z.00000000091
http://www.sciencedirect.com/science/journal/10445803/94/supp/C
http://dx.doi.org/10.1016/j.powtec.2015.01.063
http://dx.doi.org/10.1016/j.powtec.2015.12.020


162 

[5] G.Cipolloni, M.Pellizzari, A.Molinari, M.Hebda, M.Zadra, Study of the processing 
route of copper powder by mechanical milling and Spark Plasma Sintering, Proc. of: 
European Powder Metallurgy Congress & Exhibition – EUROPM 2014, Salzburg 
(Austria) 2014. 
 
[6] G.Cipolloni, M.Pellizzari, A.Molinari, B.T.Cao, Produzione e caratterizzazione di 
compositi a matrice in Cu rinforzati con particelle di TiB2 , Proc. of: 35° Convegno 
nazionale della metallurgia italiana, Roma (Italy) 2014. 
 
[7] G.Cipolloni, M.Pellizzari, A.Molinari, Tribological behaviour of TiB2 reinforced Cu-
matrix composites produced by mechanical alloying and spark plasma sintering, 
Proc. of: European Powder Metallurgy Congress & Exhibition – EUROPM 2015, 
Reims (France) 2015. 

  



163 

Acknowledgments 

 

 

 
I gratefully acknowledge Pometon Powder Company for the supply of copper powder.  

This research was supported by Professor J.Kazior and his assistant M.Hebda of the 

Institute of Materials Engineering, Cracow University of Technology (Poland), for the 

thermo-gravimetrical and the quadrupole mass spectrometry analyses.  

I would like to thank Netzsch group, especially Dr.C.Baldini and Dr.F.Beckstein for the 

thermal conductivity analysis. 

Finally I would like to thank the University of Trento, especially the Department of 

Industrial Engineering. I gratefully acknowledge Professor Molinari and Professor 

Pellizzari. 

 

…e quelli meno formali… 

 

Un ringraziamento speciale va nuovamente al Professor Pellizzari che mi ha sostenuto 

in questi tre anni, e spesso mi ha indirizzato nel percorso in modo da rendere al meglio 

e ottenere soddisfazioni personali e professionali. 

Un ringraziamento alla K4Sint di Pergine per aver sinterizzato qualsiasi polvere di 

rame portassi. Un grazie speciale a Mario, che con i suoi consigli professionali e 

concreti è stato di grande aiuto in questo percorso. 

Un grazie di  cuore a tutto il laboratorio di metallurgia: a chi c’era quando sono arrivata 

e poi se ne è andato, a chi è arrivato con me e abbiamo fatto questo cammino insieme, 

e a chi è arrivato dopo e rimarrà ancora un po’ a lucidare. 

Un grazie speciale a Cinzia per l’ efficace e produttiva collaborazione, inoltre grazie 

per essere sempre stata disponibile e gentile. Il tuo supporto e la tua energia sono 

stati fondamentali per me e lo sono per tutti i boys e le girls del laboratorio. 

Un grazie a Lorena e Gloria per il vostro sostegno e la vostra professionalità, il SEM 

e il TEM (soprattutto quelli vecchi) non renderebbero così bene senza di voi. 

Ci tengo a ringraziare tutte le persone che vivono la mia quotidianità. 

Prima di tutto le ‘girls power’ con le quali l’amicizia è cresciuta giorno dopo giorno e 

durerà oltre il 15/04/2016. Grazie Lorena perchè con la tua ansia e precisione mi hai 

fatto ricordare scadenze e impegni che altrimenti avrei totalmente dimenticato, ma 

soprattutto grazie per il sostegno e l’aiuto di tutti i giorni. Grazie Ali per avermi fatto 

capire che non c’è solo il lavoro, ma esistono anche i giorni di ferie! Grazie a Sara per 

essermi stata vicina sia come perfetta segretaria del DII ma in special modo come 

amica.  

Grazie a Maida che ormai conviviamo da più di sei anni condividendo momenti up e 

down, ma alla fine tutto si risolve con una chiaccherata sul divano.  
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Anche se un po’ più distanti un grazie speciale a Fede e Ali, che sono sempre presenti 

nella mia vita e lo saranno ancora a lungo. Siete speciali amiche mie! 

Un ringraziamento dal profondo del cuore a tutta le mia famiglia, e in special modo a 

papà e mamma che senza il loro appoggio, sostegno e aiuto tutto questo non sarebbe 

stato possibile. 

E un grazie particolare ad Enrico che mi è vicino in ogni istante. 

 


