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Abstract

In this thesis we present a new and accurate series of computation methods for com-

pressible multi-phase flows with capillary effects based upon the full seven-equation Baer-

Nunziato model. For that reason, there are some numerical methods to obtain high

accuracy solutions, which will be shown here. First, a high resolution shock capturing

Total Variation Diminishing (TVD) finite volume scheme is used on both Cartesian and

unstructured triangular grids. Regarding the TVD finite volume scheme on the unstruc-

tured grid, time-accurate local time stepping (LTS) is applied to compute the solutions

of the governing PDE system, in which the results are also compared with time-accurate

global time stepping. Second, we propose a novel high order accurate numerical method

for the solution of the seven equation Baer-Nunziato model based on ADER discontinuous

Galerkin (DG) finite element schemes combined with a posteriori subcell finite volume

limiting and adaptive mesh refinement (AMR).

In multi-phase flows, the difficulty is to design accurate numerical methods for resolving

the phase interface, as well as the simulation of the phenomena occurring at the interface,

such as surface tension effects, heat transfer and friction. This is because of the inter-

actions of the fluids at the phase interface and its complex geometry. So the accurate

simulation of compressible multi-phase flows with surface tension effects is currently still

one of the most challenging problems in computational fluid dynamics (CFD). In this

work, we present a novel path-conservative finite volume discretization of the continuum

surface force method (CSF) of Brackbill et al. to account for the surface tension effect due

to curvature of the phase interface. This is achieved in the context of a diffuse interface

approach, based on the seven equation BaerNunziato model of compressible multi-phase

flows. Such diffuse interface methods for compressible multi-phase flows including capil-

lary effects have first been proposed by Perigaud and Saurel. Regarding the high order

accuracy of a diffuse interface approach, the interface is captured and allowed to travel

across one single possibly refined cell, and is computed in the context of multi-dimensional
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high accurate space/time DG schemes with AMR and a posteriori sub-cell stabilization.

The surface tension terms of the CSF approach are considered as a part of the non-

conservative hyperbolic system. We propose to integrate the CSF source term as a

non-conservative product and not simply as a source term, following the ideas on path-

conservative finite volume schemes put forward by Castro and Parés.

For the validation of the current numerical methods, we compare our numerical results

with those published previously in the literature.
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1. Introduction

1.1. Introduction

Multi-phase flow problems including surface tension and capillary effects are of great in-

terest in mechanical, chemical and aerospace engineering. They appear in many industrial

processes, such as liquid fuel sprays injected into car, air- and spacecraft engines; mixing

processes in chemical engineering; breakup of liquid jets; condensation in nuclear reactors;

off-shore engineering and bio-medical applications.

Laboratory experiments and computer simulations are the two main approaches for the

study of complex flow problems. So far, most of the knowledge obtained is experimental,

but this approach tends to be very complex and is subject to technical limitations when

obtaining some measurements. Experimental data tends to include uncertainties that do

not allow correct validation of the theory. As a consequence, numerical simulations with

modern state of the art methods can help one to understand the complexity involved in

these fluid flows more clearly without having to perform time consuming, expensive and

complicated experiments. Advances in modern computers combined with advances in nu-

merical schemes for the solution of the governing partial differential equations can provide

important information, especially at complicated conditions where it can be difficult to

extract measurements experimentally. This simulation approach is known as Computa-

tional Fluid Dynamics (CFD). In CFD, one has been trying to improve numerical schemes

in order to simulate increasingly complex flows with greater accuracy and efficiency. The

strategy of computer simulations is presented in Figure 1.1.

The simulation of the physics and the mechanics of the interaction of different materials

is of vital importance for the application of multi-phase flows, such as in high-speed flows

with droplets, bubbles and particles, and high pressure problems with strong shock waves.

The interface between the two different fluids is the location where complex phenomena,

such as heat and mass transfer and surface tension can occur. Capillary effects are also

of increasing interest in nano-mechanics, for example for the design and analysis of the

performance of new hydrophobic, non-wetting or self-cleaning surfaces. Therefore, in

this thesis the effect of surface tension is carefully studied in the context of compressible
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Figure 1.1.: The strategy of computer simulations

multi-phase flows.

In the past, many mathematical models and numerical methods have been developed

for compressible and incompressible multi-phase flows. A first problem is to determine

the location of the interface where the interactions between different fluids take place.

Further difficulties arise when shock waves travel across the interface between two fluids.

This is due to the fact that the numerical simulation of compressible multi-phase flows is

far more complex than the simulation of single phase flows.

The numerical schemes used to solve the interface tracking problem can be classified

into three basic categories: tracking methods (moving grid or Lagrangian approach),

capturing methods (fixed grid or Eulerian approach) and combined methods.

In general, Lagrangian methods [14] explicitly track the interface of the two fluids via a

moving mesh and thus always provide the exact location of the interface. However, mesh-

based Lagrangian schemes are typically not suitable for multi-phase flows with complex

vortex structures or where a complex merging and separation of the phase interface oc-

curs. Thus, a completely different approach for the modeling of multi-phase flows with

surface tension is based upon meshless Lagrangian particle schemes, such as the well-

known Smooth Particle Hydrodynamics (SPH) method [110]. SPH is well-suited for the

simulation of complex interface flows including surface tension, complex vortex flow and

separation and merging of the phase interface. The SPH method provides excellent inter-

face tracking capabilities, but it is also well known to exhibit several numerical instabili-

ties, such as the tensile instability, which require artificial viscosity and other stabilization

techniques. It is also important to note that SPH is computationally more expensive than

most of the other methods. Furthermore, the method in general lacks even zeroth order

consistency with the governing PDE. In recent years, novel SPH techniques have been

developed to provide accurate and stable solutions for weakly compressible free surface
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flows, see e.g [73, 158].

In Eulerian schemes based on a fixed mesh there are two very popular methods for the

capturing of the phase interface, namely the volume of fluid (VOF) method [85] and the

level set (LS) method [142, 115, 112]. A combination of VOF and LS proposed in [141, 154]

has shown to produce a robust method for flows with complex geometries and interface

deformations in the setting of incompressible fluids. The disadvantage of Eulerian methods

applied to multiphase flow problems is a significant amount of numerical dissipation,

which requires proper interface reconstruction techniques to avoid excessive smearing of

the phase boundary and to restore a sharp interface. However, this may become rather

cumbersome in complex configurations. The level set method also needs a periodic re-

initialization to restore the signed distance function property of the level set function,

which requires the additional solution of a Hamilton-Jacobi equation. Furthermore, VOF

has difficulties in simulating highly compressible multi-phase flows, hence most of the

applications of the VOF method are restricted to the simulation of incompressible fluids.

While the VOF method is perfectly conservative, the level-set approach is not. Due to

the piecewise linear interface reconstruction (PLIC) used in the VOF context and due to

the signed distance function property of the level-set method, both approaches are called

sharp interface methods.

A very recent and completely different method for simulating compressible multi-phase

flows is a novel type of model that uses a diffuse interface approach based upon extended

hyperbolic systems with stiff relaxation. The basic philosophy of this new type of models is

similar to the capturing of discontinuities (shockwaves) in gas dynamics. These methods

were presented for the first time by Saurel et al. in [131, 135]. The diffuse interface

approach is stabilized by the numerical diffusion provided by the Riemann solver at the

interface, and when the mesh size tends to zero, also the interface thickness is approaching

zero. Hence, the diffuse interface method is a very interesting alternative approach, and

in the limit, also the diffuse interface model tends to a sharp interface representation, but

based on a totally different mathematical formulation. The first applications of the diffuse

interface method to compressible multi-phase flows with surface tension in two space

dimensions have been presented in [121, 21], with a subsequent extension to three space

dimensions carried out in [120]. Further recent research on multi-phase flows with surface

tension has been presented in [104, 80]. A common problem of all Eulerian methods, i.e.

for both sharp and diffuse interface approaches, is the correct calculation of the interface

curvature.

Most models contain non-conservative products, so the two-phase flow of the models

can be cast into the following general form of a nonlinear system of PDE in multiple space
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dimensions
∂u

∂t
+∇ · F(u) + B(u) · ∇u = S(u) , (1.1)

where u is the state vector; F(u) = [f(u),g(u),h(u)] is the flux tensor for the conservative

part of the PDE system, with f(u), g(u) and h(u) expressing the fluxes along the x, y and

z directions, respectively; B(u) = [B1(u),B2(u),B3(u)] represents the non-conservative

part of the system, written in block-matrix notation. Finally, S(u) is the source term,

which may in principle be stiff. When written in quasilinear form, the system (1.1)

becomes
∂u

∂t
+ A(u) · ∇u = S(u) , (1.2)

where the matrix A(u) = [A1,A2,A3] = ∂F(u)/∂u+B(u) contains both the conservative

and the non-conservative contributions.

The diffuse interface method of Saurel et al. is used for the capturing of the interface.

The interface is identified by a function that represents the volume fraction of one of the

two phases. The surface tension effects are included by the continuum surface force (CSF)

method [20]. Since the CSF approach produces a source term that contains the gradient

of the volume fraction function, we propose to treat this term as a non-conservative

product rather than a classical volume source term. Recent work on numerical schemes

for systems of equations involving non-conservative terms, like Eq. (1.1), includes the

family of so-called path-conservative schemes of Castro and Parés et al. [119, 25, 75,

24] which are based on the theory proposed by Dal Maso, Le Floch and Murat [108]

and are a generalization of the usual concept of conservative methods for systems of

conservation laws. Note that the weak formulation of the Roe method by Toumi [151]

can also be considered as a path-conservative scheme. It has to be clearly stressed that

path-conservative schemes have known deficiencies, which have been studied in detail in

[2, 26].

In this thesis, various high order path-conservative schemes are used to solve hyperbolic

systems of PDEs with non-conservative products and stiff source terms (1.1) in multiple

space dimensions. The first one is the second order TVD version of the path-conservative

finite volume method. Within this scheme, the smooth part of the CSF source term is

integrated like a classical volume source term, while the contributions due to the jumps

in the volume fraction function at the element interfaces are naturally taken into account

by the path-conservative finite volume scheme. The second one is the extension of high

order path-conservative schemes which are used within the ADER approach together

with space-time Adaptive Mesh Refinement (AMR) and Discontinuous Galerkin schemes.

Due to the path-conservative framework, the surface tension force is naturally included
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into the Riemann solver. The physical properties of the interface with curvature κ are

solved by the approximate Riemann solver without spurious oscillations near the material

interface. Furthermore, the scheme satisfies the Abgrall condition [1] and is well-balanced

for a circular bubble at rest that obeys the Young-Laplace relation, i.e. where the surface

tension force is exactly balanced by the pressure jump across the interface. This well-

balancing has been shown via numerical evidence and under the assumption of an exact

knowledge of the interface curvature.

Among the numerical methods specifically developed to solve hyperbolic problems, two

well-known families are finite volume (FV) methods and Discontinuous Galerkin (DG)

schemes. While FV methods are still extremely popular, nowadays, DG methods are

becoming increasingly popular. First introduced by Reed and Hill [125] to solve a first

order neutron transport equation, DG schemes are applied in different fields, in particular

those related to fluid dynamics. In a series of well-known papers, Cockburn and Shu

[35, 34, 33, 32, 36] provided a rigorous formal framework of these methods, contributing

significantly to their popularization. DG methods are very robust and, among high order

numerical methods, they show high flexibility and adaptivity [124]. Moreover, Jiang and

Shu [86] proved that DG methods verify an entropy condition leading to nonlinear L2

stability. Unfortunately explicit DG methods have a strong stability limitation, since

usually the CFL restriction for these schemes is very severe and the time step in d space

dimensions is constrained as ∆t ≤ h
d|λmax|

1
2N+1

[66], where h is a characteristic mesh size,

λmax is the maximum signal velocity and N is the degree of the basis polynomial.

The goal of this thesis is to provide a new and accurate computational method for

compressible multi-phase flows with capillary effects based upon the full seven-equation

Baer-Nunziato model [6]. As already mentioned before, the surface tension terms of the

CSF approach are considered as a part of the non-conservative hyperbolic system and

not as pure source terms. For that purpose, there are some techniques to obtain high

accuracy schemes. Firstly, we use a high resolution shock capturing TVD finite volume

scheme based on the path-conservative version of the new generalized Osher-type Riemann

solver (DOT), the path-conservative extension of the Roe and Rusanov scheme, as well

as a novel path-conservative HLLEM Riemann solver. The key idea of our approach is

to obtain an approximate Riemann solver at the interface such that the surface tension

effect depends on the jump of the volume fraction function across the interface. Second,

we extend to a very high-order almost sharp diffuse interface method, which can be

appropriately and accurately treated with high accurate numerical method such as our

ADER DG with AMR, and combined with the a posteriori sub-cell finite volume limiter.

Last but not least, a strategy of local time stepping in TVD finite volume schemes on
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unstructured meshes is applied. For various applications of the Baer-Nunziato model the

reader is referred to the literature, see e.g. [130, 5, 137, 39, 147, 63, 59, 60]. To our

knowledge, this is the first time that a path-conservative scheme has been applied to the

problem of surface tension effects in compressible multi-phase flows in the context of the

full seven-equation Baer-Nunziato model.

1.2. The compressible Euler and Navier-Stokes equations

for single phase flows

Before going to compressible multi-phase flows, here we briefly recall the compressible

single phase flow equations. These equations are the fundamental conservation laws of

mass, momentum and energy, which are given below.

Conservation of mass
∂ρ

∂t
+∇ · (ρu) = 0, (1.3)

conservation of momentum

∂ρu

∂t
+∇ · (ρu⊗ u)−∇ · T = ρg, (1.4)

conservation of energy

∂
(
ρe+ ρ1

2
u2
)

∂t
+∇ ·

[(
ρe+

1

2
ρu2

)
u

]
+∇ · q−∇ · (T · u) = ρg · u + qs. (1.5)

Here, ρ is the density, u denotes the velocity vector, g is the gravity acceleration, e

represents the internal energy, q is the heat flux and qs is the body heating source. The

stress tensor is given by T=−p I+τ , where p represents the fluid pressure, I denotes the

unit tensor and τ is the viscous shear stress tensor, respectively. The equations (1.3)-(1.5)

are well established flow equations in the literature. They can be either derived from the

basic principles of continuum mechanics, or from kinetic gas theory as the asymptotic

limit of the Boltzmann equation in the small Knudsen number regime. It is important to

mention that if heat flux, viscosity and gravity effects are neglected then these equations

reduce to the Euler equations of compressible gas dynamics. The Euler system is a system

of non-linear hyperbolic conservation laws that governs the dynamics of compressible

materials, such as gases but also liquids or granular materials at high pressures under the

assumption that viscous effects can be neglected. We consider the homogeneous three
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dimensional Euler system as the following.

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = 0,

∂E

∂t
+∇ · [u (E + p)] = 0. (1.6)

Here, the density ρ, the pressure p and the velocity vector are mentioned in (1.3)-(1.5).

The total energy E consists of the internal energy and kinetic energy

E = ρe+
1

2
ρu2 (1.7)

and the enthalpy H denotes the specific total enthalpy in the form,

H =
E + P

ρ
(1.8)

The system (1.6) has to be closed with an equation of state that relates pressure to density

and internal energy e = e(ρ, p). For gases, the ideal gas equation of state is given by

p = (γ − 1)

(
E − 1

2
ρu2

)
, (1.9)

with γ the adiabatic exponent. For liquid fluids like water, the so-called stiffened gas

equation of state can be written by

p = (γ − 1)

(
E − 1

2
ρu2

)
− γπ, (1.10)

The constant π characterises the compressibility of the fluid.

The speed of sound a is defined by

a2 =

(
∂p

∂t

)
s

(1.11)

The speed of sound is a speed at which a disturbance produced by a sound wave travels

in a medium. The disturbance is generally very small (a sound wave is not at all as strong

as a shock wave), so that the process is considered as isentropic. For a perfect gas, we

have the isentropic relation p/γ = constant, and thus,

a2 = γ
p

ρ
(1.12)
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1.2.1. 1D Euler equations in conservation form

The one-dimensional Euler equations can be cast in conservative form as follows,

Ut + Fx = 0, (1.13)

where

Q =

 ρ

ρu

ρE

 , F =

 ρu

ρu2 + p

ρuH

 . (1.14)

The flux Jacobian reads

A =
∂F

∂U
=

 0 1 0

(γ − 3) u2

2
(γ − 3)u γ − 1(

γ−1
2
u2 −H

)
u H + (1− γ)u2 γu

 . (1.15)

The matrix A is diagonalizable

A = RΛL (1.16)

where Λ, R, L are the eigenvalues, right and left eigenvectors of the systems (1.13),

respectively. They are given by

Λ =

 u− a 0 0

0 u 0

0 0 u

 , (1.17)

R =

 1 1 1

u− a u+ a u

H − ua u2/2 H + ua

 , (1.18)

L =


1
2

(
γ−1
2a2

u2 + u
a

)
−1

2

(
γ−1
a2
u2 + 1

a

)
γ−1
2a2

1− γ−1
2a2

u2 γ−1
a2
u −γ−1

a2

1
2

(
γ−1
2a2

u2 − u
a

)
−1

2

(
γ−1
a2
u2 − 1

a

)
γ−1
2a2

 , (1.19)

LdU =


dp−ρad u

2a2

−dp−a2dρ
a2

dp+ρad u
2a2

 . (1.20)

where a is the sound speed, considering the ideal equation of state e = p/ρ/(γ − 1), the

sound speed is given by a =
√
γp/ρ. In (1.20), the quality dp−a2dρ

a2
corresponds to the
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entropy change ds and the corresponding right eigenvector indicates how the conservative

variables change due the entropy change, ∂ρ

∂ (ρu)

∂ (ρE)

 ∝

 1

u

u2/2

 . (1.21)

This is often called an entropy wave. The associated eigenvalue u gives the speed at which

the entropy wave travels: it moves with the local fluid velocity.

1.2.2. 1D Euler equations in physical form

The Euler equations can be written in terms of primitive or physical variables as follows,

Wt + AwWx = 0, (1.22)

where

W =

 ρ

u

p

 , Aw =

 u ρ 0

0 u 1
ρ

0 ρa2 u

 . (1.23)

Aw is the coefficient matrix of the primitive form of the Euler equations.

Eigenstructure

Aw = RwΛLw (1.24)

with

Λ =

 u− a 0 0

0 u 0

0 0 u

 , Rw =

 −
ρ
2a

1 ρ
2a

1
2

0 1
2

−ρa
2

0 ρa
2

 , (1.25)

Lw =

 0 1 − 1
ρa

1 0 − 1
a2

0 1 1
ρa

 , LwdU =

 d u− dp
ρa

dρ− dp
a2

d u+ dp
ρa

 . (1.26)

The second component of (1.25, 1.26) represents the entropy wave, and we thus find ∂ρ

∂u

∂p

 ∝

 1

0

0

 . (1.27)

From (1.27), the density changes due to the entropy wave; the velocity and the pressure

are not effected.

Change of variables

dU =
∂U

∂W
dW, dW =

∂W

∂U
dU, (1.28)
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where

∂U

∂W
=

 1 0 0

u ρ 0

u2/2 ρ u 1/ (γ − 1)

 , (1.29)

∂W

∂U
=

(
∂U

∂W

)−1

=

 1 0 0

−u
ρ

1
ρ

0

(γ − 1)u2/2 − (γ − 1)u γ − 1

 . (1.30)

The coefficient matrix Aw is related to the Jacobian matrix A of the conservative form by

Aw =
∂W

∂U
A
∂U

∂W
. (1.31)

Hence, the eigenvectors are given by

L = Lw
∂W

∂U
, R =

∂U

∂W
Rw. (1.32)

1.3. Baer Nunziato equations

In general, averaging is a well established mathematical tool to derive multi-phase flow

models from the single-phase equations. There are several types of averaging procedures

which can be classified into four categories, such as time averaging [106], volume averaging

[157], time and volume averaging [43], and ensemble averaging [42]. These procedures have

been used by Saurel and Abgrall in [130] to obtain a seven equation model consisting of

phase-specific mass, momentum, and energy conservation equations; one phase is consid-

ered to be consisting of an ensemble of particles embedded in a carrier fluid. A transport

equation for the volume fraction or color function (of one of the phases) completes the

system of equations. The main difference between Baer and Nunziato’s work and that

of Saurel and Abgrall is related to the use of relaxation terms and the definition of the

interface velocity and pressure. Saurel and Abgrall introduced the notion of relaxation

parameters enabling a wider application of the seven equation model. The approach by

Saurel and Abgrall [130] has been shown to apply to both interface as well as homogenous

two-phase flows.

In this section, multi-phase flows will be presented in the form of the original Baer-

Nunziato equations [6]. Two phase flows can be obtained by applying the single-phase flow

equations on both sides of the interfaces. The balance laws for each phase are similar to

those for an isolated gas, i.e., each phase can be defined by a system of compressible Euler

equations plus non-conservative terms (called nozzling terms) which take into account
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the interphase exchange of pressure and velocity. As mentioned in the literature, there

are several difficulties related to the non-conservation property of the balance equations.

Hence, the design of efficient algorithms or novel methods for solving the equations has

been a very challenging problem. Since the non-conservative terms do not represent

fluxes, they have to be integrated as source terms. In some studies, for simple schemes,

the nozzling terms are ignored to get numerical stability and non-oscillatory behavior

of numerical methods [79, 117]. However, to guarantee that the entropy inequality is

satisfied [137] these terms are required. Similar to the shallow-water equations, where a

numerical scheme must preserve the lake-at-rest solution, a two-phase flow with initially

uniform velocity and pressure should remain as such for all times, as derived by Abgrall

in [1]. In recent years some other seven-equation models have been suggested by [131]

and Romenski et al [128]. However, it has also been reduced to a five equation model in

[89, 113, 134, 93].

1.3.1. The seven-equation Baer-Nunziato model with relaxation,

surface tension, viscosity and gravity effects

In this thesis we consider the full seven-equation Baer-Nunziato model for compressible

two-phase flows including surface tension and gravity effects. The original model has been

described in [6] and has been successively modified in [131]. The original Baer-Nunziato

model has been proposed for the description of the deflagration-detonation transition in

high-energy reactive materials. The full model with relaxation terms, gravity, viscosity

and surface tension effects is given by the following non-conservative system:

∂

∂t
(α1ρ1) +∇ · (α1ρ1u1) = 0,

∂

∂t
(α1ρ1u1) +∇ · (α1 (ρ1u1 ⊗ u1 + p1I− τ1))− pσ∇α1 = α1ρ1g − λ (u1 − u2) ,

∂

∂t
(α1ρ1E1) +∇ · [α1 ((ρ1E1 + p1) I− τ1) · u1]− pσuI · ∇α1 =

α1ρ1g · u1 − λ (u1 − u2) · uI − β pI (p1 − p2),

∂

∂t
(α2ρ2) +∇ · (α2ρ2u2) = 0,

∂

∂t
(α2ρ2u2) +∇ · (α2 (ρ2u2 ⊗ u2 + p2I− τ2))− pI∇α2 = α2ρ2g + λ (u1 − u2) ,

∂

∂t
(α2ρ2E2) +∇ · [α2 ((ρ2E2 + p2) I− τ2) · u2]− pIuI · ∇α2 =

ρ2g · u2 + λ (u1 − u2) · uI + β pI (p1 − p2),

∂

∂t
α1 + uI · ∇α1 = β(p1 − p2). (1.33)
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In the above system αj is the volume fraction of phase number j, with j ∈ {1, 2}, and

the constraint α1 +α2 = 1. The constraint immediately yields the relation ∇α2 = −∇α1.

Furthermore, ρj, uj, pj and ρjEj represent the density, the velocity vector, the pressure

and the total energy per unit mass for phase number j, respectively. The viscous stress

tensor τj of phase number j that is supposed to be a Newtonian fluid under Stokes’

hypothesis is given by

τj = µj
(
∇uj +∇uTj

)
− 2

3
µj (∇ · uj) I, (1.34)

where T represents the transpose operator, µj is the dynamic viscosity of fluid j and I is

the identity matrix. The relaxation parameter for the interphase drag is given by λ, the

parameter governing the pressure relaxation is denoted by β and g is the vector of gravity

acceleration. Furthermore, the interface pressure of phase 1 that includes the surface

tension effect is abbreviated with pσ = pI − σκ, where σ is the surface tension coefficient

and κ is the interface curvature.

The model (1.33) is closed by the stiffened gas equation of state (EOS) for each phase

ej =
pj + γjπj
ρj(γj − 1)

, (1.35)

and the definition of the total energy density

ρjEj = ρjej +
1

2
ρju

2
j , (1.36)

where γj is the ratio of specific heats and πj is a material constant. In this work, we

choose uI = u1 for the interface velocity and the interface pressure is assumed to be pI

= p2. This corresponds to the original choice proposed in [6]. Other options are possible,

see for example in [131], uI is defined as velocity of the center of mass and pI is defined

by mixture pressure and they are given as follows

uI =
α1ρ1u1 + α2ρ2u2

α1ρ1 + α2ρ2

, pI = α1p1 + α2p2. (1.37)

Moreover, other closure relations were derived in [132] which are given by

pI =
Z1p2 + Z2p1

Z1 + Z2

+
Z1Z2

Z1 + Z2

∇α1

|∇α1|
· (u2 − u1) (1.38)

uI =
Z1u2 + Z2u1

Z1 + Z2

+
Z1Z2

Z1 + Z2

∇α1

|∇α1|
· (p2 − p1) (1.39)

Here, Zk represents the acoustic impedance with

Zk = ρkck, k = 1, 2, (1.40)
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where ck is the speed of sound defined by

c2
k =

pk
ρ2k
−
(
∂ek
∂ρk

)
(
∂ek
∂ρk

)
pk

k = 1, 2. (1.41)

As mention above (1.33), the interaction between the two fluids is given by the non-

conservative terms as well as by the pressure and velocity relaxation terms. The pressure

relaxation terms β(p1−p2) and ±βpI(p1−p2) appear in the volume fraction equations and

energy equations, respectively. Pressure relaxation and interface pressure condition were

mentioned by Saurel and Abgrall in [131]. These terms are important in many aspects,

for example, they control the relaxation phenomena behind the shock and pressure waves.

Also, these terms are responsible for the interfacial pressure condition between the fluids

and this condition expresses the equality of pressure.

The velocity relaxation terms ±λ (u1 − u2) appear in the momentum equations and the

terms ±λuI (u1 − u2) in the energy equations, where λ > 0 is the velocity relaxation

parameter. This parameter gives the rate at which the velocities relax to a common

value. Such terms are used to model the drag force. The drag force is because of the

imbalance of the pressure and due to the viscous stresses of an elementary particle, i.e.

solid particle, bubble or droplet. From experiments the relation for the drag force is

defined as

Fdrag = λ (u1 − u2)) . (1.42)

The parameter λ depends upon the geometric parameters of the particle and the Reynolds

number which describe the nature of the flow. Note that in the case λ → +∞ and

β → +∞ the system instantaneously relaxes to the mechanical equilibrium equations if

the surface tension and viscosity effects are ignored. As mentioned in [133], pressure and

velocity relaxation procedures are used in the seven-equation model to make it valid for

several different applications and a large variety of problems like interface flows, deto-

nation, and cavitation in multi-phase flows. According to [20], the surface force per unit

volume reads

FS = σκ
∇Φ

[Φ]
, (1.43)

where σ is the surface tension coefficient, which depends on the kind of fluids under

consideration. Φ is a color function, e.g. a volume fraction, and according to the discussion

in [121] Φ is taken as the liquid volume fraction in the following, i.e. Φ = α1. The symbol

[Φ] denotes the jump of the color function across the interface and κ is the interface

curvature. While surface tension is in reality a surface force, it can alternatively be also
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approximated as an equivalent, distributed volume force. This is exactly the approach

of the continuum surface force (CSF) method introduced by Brackbill et al. [20]. Some

numerical results obtained with the CSF approach can be seen in [107, 114, 142, 152].

For a steady circular bubble in equilibrium, the pressure jump across the interface of two

different fluids is given by the Young-Laplace equation which will be presented in section

1.4. The curvature κ is defined in terms of the normal vector to the phase boundary m

as follows:

κ = ∇ ·m = ∇ ·
(
∇α1

‖∇α1‖

)
. (1.44)

In (1.33), the surface tension terms appear only in the momentum and the energy equation

of the liquid phase (phase number 1). The interactions of the two phases are given by the

relaxation source terms, which are purely algebraic, and by the non-conservative terms

involving the gradient of the volume fractions (nozzling terms). These non-conservative

terms directly affect the wave structure of the Baer-Nunziato system. The system (1.33)

can be written in the following compact matrix-vector notation:

∂Q

∂t
+∇ · F (Q,∇Q) + B(Q, κ) · ∇Q = S(Q), (1.45)

with the state vector Q = Q(x, t), the vector of spatial coordinates x = (x, y) and

the nonlinear flux tensor F (Q,∇Q) = (f ,g) that depends on the state vector and its

gradient, to take into account also viscous effects. The purely non-conservative terms are

represented by B(Q, κ) ·∇Q, while the algebraic source terms like relaxation and gravity

effects are contained in S(Q). We furthermore introduce the symbol A(Q, κ) = ∂F/∂Q+

B(Q, κ), which groups the Jacobian of the flux tensor with the non-conservative terms.

In the description of system (1.45), the local curvature κ is considered as a parameter. In

the absence of viscous terms, the system (1.45) is called hyperbolic if for all unit normal

vectors n with ‖n‖ = 1 the matrix

A(Q, κ,n) = A(Q, κ) · n = R(Q, κ,n) Λ(Q, κ,n) R−1(Q, κ,n) (1.46)

is diagonalizable with Λ = diag(λ1, λ2, . . . λ9) real and a full set of linearly independent

right eigenvectors R.
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1.3.2. Eigenstructure of the Baer-Nunziato model in 1D

If we ignore the viscous effects, the gravity and relaxation terms in (1.33), the Baer-

Nunziato system with surface tension reads in one space dimension as follows:

∂(α1ρ1)

∂t
+
∂(α1ρ1u1)

∂x
= 0,

∂(α1ρ1u1)

∂t
+
∂(α1(ρ1u1u1 + p1))

∂x
− pσ

∂α1

∂x
= 0,

∂(α1E1)

∂t
+
∂(α1u1(E1 + p1))

∂x
− pσuI

∂α1

∂x
= 0,

∂(α2ρ2)

∂t
+
∂(α2ρ2u2)

∂x
= 0,

∂(α2ρ2u2)

∂t
+
∂(α2(ρ2u2u2 + p2))

∂x
+ pI

∂α1

∂x
= 0,

∂(α2E2)

∂t
+
∂(α2u2(E2 + p2))

∂x
+ pIuI

∂α1

∂x
= 0,

∂α1

∂t
+ uI

∂α1

∂x
= 0. (1.47)

We can rewrite system (1.47) in a more compact non-conservative form (1.48), given

below,
∂Q

∂t
+
∂f(Q)

∂x
+ B(Q, κ)

∂Q

∂x
= 0, x ∈ Ω ⊂ R, t ∈ R+

0 , (1.48)

where Q is the vector of state variables, f(Q) is the flux vector for the purely conservative

part of the system and B(Q) contains the purely non-conservative part of the system.

The quantities Q, f(Q) and B(Q, κ) are defined as,

Q =



α1ρ1

α1ρ1u1

α1E1

α2ρ2

α2ρ2u2

α2E2

α1


, f(Q) =



α1ρ1u1

α1(ρ1u1u1 + p1)

α1u1(E1 + p1)

α2ρ2u2

α2(ρ2u2u2 + p2)

α2u2(E2 + p2)

0


, (1.49)

B(Q, κ) =



0 0 0 0 0 0 0

0 0 0 0 0 0 −pσ
0 0 0 0 0 0 −pσuI
0 0 0 0 0 0 0

0 0 0 0 0 0 pI

0 0 0 0 0 0 uIpI

0 0 0 0 0 0 uI


. (1.50)
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System (1.47) can also be written in the following quasilinear form

∂Q

∂t
+ A(Q, κ)

∂Q

∂x
= 0, (1.51)

with the system matrix given by A(Q, κ) = ∂f(Q)/∂Q+B(Q, κ), where we have dropped

the dependence on the normal vector n for the 1D case. After having introduced the

vector of primitive variables W = (ρ1, u1, p1, ρ2, u2, p2, α1)T , we can rewrite the quasi-

linear system (1.52) in terms of the primitive variables as

∂W

∂t
+ C(W, κ)

∂W

∂x
= 0, (1.52)

with the system matrix

C(W, κ) =
∂W

∂Q
A(Q(W), κ)

∂Q

∂W
, and

∂W

∂Q
=

(
∂Q

∂W

)−1

. (1.53)

In one space dimension the matrix C(W, κ) and the Jacobian ∂Q
∂W

read as follows:

C(W, κ) =



u1 ρ1 0 0 0 0 0

0 u1
1
ρ1

0 0 0 p1−p2+σκ
α1ρ1

0 α2
1ρ1 u1 0 0 0 0

0 0 0 u2 ρ2 0 ρ2(u1−u2)
α2

0 0 0 0 u2
1
ρ2

0

0 0 0 0 α2
2ρ2 u2

(u1−u2)α2
2ρ2

α2

0 0 0 0 0 0 u1


, (1.54)

∂Q

∂W
=



α1 0 0 0 0 0 ρ1

α1u1 α1ρ1 0 0 0 0 ρ1u1

1
2
α1u

2
1 α1ρ1u1

α1

γ1−1
0 0 0 ρ1E1

0 0 0 α2 0 0 −ρ2

0 0 0 α2u2 α2ρ2 0 −ρ2u2

0 0 0 1
2
α2u

2
2 α2ρ2u2

α2

γ2−1
−ρ2E2

0 0 0 0 0 0 1


. (1.55)

The sound speeds of the liquid and the gas phases are given by

aj =

√
γj(pj + πj)

ρj
. (1.56)

The eigenvalues of the matrix C(W, κ) are then given by Λ = diag(u1−a1, u1, u1+a1, u2−
a2, u2, u2 +a2, u1). It is important to notice that the eigenvalues of the system (1.47) with
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and without the surface tension effect are the same. The right and left eigenvector matrix

corresponding to these eigenvalues are,

R =



−ρ1
a1

1 ρ1
a1

0 0 0 0

1 0 1 0 0 0 0

−ρ1a1 0 ρ1a1 0 0 0 −(a2
2 − u2

1 + 2u1u2 − u2
2)α2b

0 0 0 −ρ2
a2

1 ρ2
a2

−ρ2(u2
1 − 2u1u2 + u2

2)α1

0 0 0 1 0 1 −(u1 − u2)α1α
2
2

0 0 0 −a2ρ2 0 a2ρ2 −a2
2α1p2(u2

1 − 2u1u2 + u2
2)

0 0 0 0 0 0 α2(a2
2 − u2

1 − 2u1u2 − u2
2)α1


,

and

R−1 =



0 1
2
− 1

2ρ1a1
0 0 0 −p1−p2+σκ

2ρ1a1α1

1 0 − 1
a21

0 0 0 −p1−p2+σκ
a21α1

0 1
2

1
2ρ1a1

0 0 0 p1−p2+σκ
2ρ1a1α1

0 0 0 0 1
2
− 1

2a2ρ2

(u1−u2)a2
2(a2−u2+u1)α2

0 0 0 1 0 − 1
a22

0

0 0 0 0 1
2

1
2a2ρ2

(u1−u2)a2
2(a2+u2−u1)α2

0 0 0 0 0 0 1
α2(a22−u21+2u1u2−u22)α1


, (1.57)

with b = (p1− p2 +σκ). Matrix C(W, κ) can thus be written as C(W, κ) = RΛR−1 and

therefore one immediately also gets the eigenstructure of the matrix A(Q, κ) as

A(Q, κ) =

(
∂Q

∂W
R

)
Λ

(
R−1 ∂W

∂Q

)
.

From the above eigensystem we can conclude that the model (1.47) is hyperbolic with

only real eigenvalues and a full set of eigenvectors. Under surface tension effect at the

interface, the wave structure of the Riemann problem [148] for the seven-equation model

is illustrated in Figure 1.2. The pressure jump is discontinuous at the interface region, and

obeys the Young-Laplace law [74, 13]. We denote the two physical states on the left and the

right of the Riemann problem with WL and WR, respectively. For exact Riemann solvers

of the Baer-Nunziato model without surface tension effects, see [5, 39, 137]. The major

difficulty for numerical methods applied to system (1.47) consists in the non-conservative

product, i.e. the non-conservative terms containing the gradient of the volume fraction.

For that purpose, we rely in the following on the family of path-conservative schemes

forwarded by Parés and Castro in [119, 25].
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Figure 1.2.: The wave structure of an idealized Riemann problem for the seven-equation

multi-phase flow model.

1.4. Young-Laplace Equation

In the model (1.33), the surface tension is constructed as boundary values present only

at the interface, so that discontinuities or abrupt changes occur in the various variables.

The phase interface can be resolved using different methods by deriving the types of

the jump conditions. As discussed in [138, 106], these jump conditions actually contain

the exchange of mass, momentum and energy across the interface; the properties of the

phase interface are very similar the other phases in multi-phase flow systems. The jump

conditions are given by mass jump

[ρ (u− ui)] · n, (1.58)

momentum jump

[ρu (u− ui) + T] · n = mσ
i , (1.59)

energy equation [
ρ

(
e+

1

2
u2

)
u (u− ui) + T · u− q

]
· n = eσi , (1.60)

where for any variable k at both sides of the interface, the jump is defined as [k] = k+−k−.

In (1.58) - (1.60), ui represents the velocity of the interface, n is the outward pointing unit

normal vector. The interactions at the phase interface are affected by the surface tension

σ and energy related with the phase interface eσi . Here we only consider the condition

(1.59), in the case of non-equilibrium of a circular bubble, the pressure gradient and the

capillary forces at the interface are unbalanced, giving rise to a nonzero velocity field
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in the vicinity of the interface that tends to reshape an initially elliptical bubble into a

circular one. Otherwise, for a steady circular bubble in equilibrium, the pressure jump

across the interface of two fluids is given by Young-Laplace Equation as

p1 − p2 = ∆p = σκ, (1.61)

see [74, 13]. The curvature κ is defined in (1.44), and σ is the surface tension coefficient

of the fluid between the gaseous and the liquid phase. The surface tension coefficient σ is

assumed to be a positive constant and it also is dependent on the properties of the fluid.

1.5. Overview of the thesis

The focus of this thesis is on the design of numerical methods for compressible multi-

phase flows by using the Baer-Nunziato system with surface tension effects. The outline

of this thesis is as follows. In the next chapter, we describe the second order TVD

finite volume schemes on Cartesian and unstructured triangular meshes. In chapter 3

we discuss different Riemann solvers, in particular the approximate Riemann solvers of

Rusanov, Roe and Osher. Also a novel path-conservative HLLEM-type Riemann solver

will be presented there. A high order extension of numerical methods with ADER-DG

schemes is outlined in chapter 4, while numerical results in one and two space dimensions

are presented in chapter 5. Some concluding remarks and an outlook to future research

are given in chapter 6.
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2. Path-conservative Finite Volume

Schemes

In this chapter we are going to discuss the numerical methods, which are applied for solving

the equations of compressible multi-phase flows with surface tension. First, we describe

the general framework of finite volume schemes for hyperbolic conservation laws, second

we extend to path-conservative finite volume schemes on Cartesian and unstructured

meshes, as well as a finite volume scheme with time-accurate local time stepping (LTS)

on unstructured grids. Finally, the curvature computation is discussed.

2.1. Finite volume methods

Assuming the family of hyperbolic PDEs is written in the differential form of conservation

laws. In Cartesian coordinates and in three space dimensions, it is written as

∂u

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0, (2.1)

where u is the vector of conserved variables, f ,g,h are the flux vectors in the direction

of x, y, z, respectively. In order to obtain the finite volume formulation of (2.1), we

discretize the computational domain Ω in space-time control volumes defined as Iijk =

Iijk × [tn, tn + ∆t] =
[
xi− 1

2
, xi+ 1

2

]
×
[
yi− 1

2
, yi+ 1

2

]
×
[
zi− 1

2
, zi+ 1

2

]
× [tn, tn + ∆t], with ∆xi =

xi+ 1
2
− xi− 1

2
,∆yi = yi+ 1

2
− yi− 1

2
,∆zi = zi+ 1

2
− zi− 1

2
and ∆t = tn+1 − tn. After integration

of (2.1) over a space-time control volume Iijk one obtains the following finite volume

formulation:

ūn+1
ijk = ūnijk−

∆t

∆xi

[
fi+ 1

2
,j,k − fi− 1

2
,j,k

]
− ∆t

∆yj

[
gi,j+ 1

2
,k − gi,j− 1

2
,k

]
− ∆t

∆zk

[
hi,j,k+ 1

2
− hi,j,k− 1

2

]
,

(2.2)

where

ūnijk =
1

∆xi

1

∆yj

1

∆zk

x
i+1

2∫
x
i− 1

2

y
j+1

2∫
y
j− 1

2

z
k+1

2∫
z
k− 1

2

u(x, y, z, tn) dz dy dx (2.3)
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is the spatial average of the solution in the element Iijk at the time tn, while fi± 1
2
,j,k,

gi,j± 1
2
,k, and hi,j,k± 1

2
are the average fluxes along each Cartesian direction and in time as

follows:

fi± 1
2
,j,k =

1

∆t

1

∆yj

1

∆zk

tn+1∫
tn

y
j+1

2∫
y
j− 1

2

z
k+1

2∫
z
k− 1

2

f̃
(
u(xi± 1

2
,j,ky, z, t)

)
dz dy dt, (2.4)

gi,j± 1
2
,k =

1

∆t

1

∆xi

1

∆zk

tn+1∫
tn

x
j+1

2∫
x
j− 1

2

z
k+1

2∫
z
k− 1

2

g̃
(
u(x, yi,j± 1

2
,k, z, t)

)
dz dx dt, (2.5)

hi,j,k± 1
2

=
1

∆t

1

∆xi

1

∆yj

tn+1∫
tn

x
j+1

2∫
x
j− 1

2

y
k+1

2∫
y
k− 1

2

h̃
(
u(x, y, zi,j,k± 1

2
, t)
)
dy dx dt. (2.6)

2.2. Conservation laws in generalized coordinates

In general computations, geometries are not simple and, therefore, the grids associated

with these geometries are also not trivial. So, to account for these non-uniformities, modi-

fications to the above described algorithm become necessary, one considers the coordinate

transformation:

ξ = ξ (x, y, z) , η = η (x, y, z) , ζ = ζ (x, y, z) , (2.7)

which defines a map between the physical coordinates (x, y, z) and the computational (or

generalized) coordinates (ξ, η, ζ). It maps a curvilinear grid in the physical space to a

Cartesian grid in the computational space. Computing the first order derivative of any

variable φ with regard to x, y and z, respectively is done using the chain rule according

to the following formulae:

∂φ

∂x
=
∂ξ

∂x

∂φ

∂ξ
+
∂η

∂x

∂φ

∂η
+
∂ζ

∂x

∂φ

∂ζ
, (2.8)

∂φ

∂y
=
∂ξ

∂y

∂φ

∂ξ
+
∂η

∂y

∂φ

∂η
+
∂ζ

∂y

∂φ

∂ζ
, (2.9)

∂φ

∂z
=
∂ξ

∂z

∂φ

∂ξ
+
∂η

∂z

∂φ

∂η
+
∂ζ

∂z

∂φ

∂ζ
. (2.10)

The metric coefficients such as ∂ξ
∂x
, ∂ξ
∂y
, ∂ξ
∂z

, ∂η
∂x
, ∂η
∂y
, ∂η
∂z

, and ∂ζ
∂x
, ∂ζ
∂y
, ∂ζ
∂z

are given by,

∂ξ

∂x
= J (yηzζ − yζzη) ,

∂ξ

∂y
= J (xζzη − xηzζ)

∂ξ

∂z
= J (xηyζ − xζyη) (2.11)
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∂η

∂x
= J (yζzξ − yξzζ) ,

∂η

∂y
= J (xξzζ − xζzξ)

∂η

∂z
= J (xζyξ − xξyζ) (2.12)

∂ζ

∂x
= J (yξzη − yηzξ) ,

∂ζ

∂y
= J (xηzξ − xξzη)

∂ζ

∂z
= J (xξyη − xηyξ) (2.13)

where

J =
1

xξ (yηzζ − yζzη)− xη (yηzζ − yζzη)− xζ (yξzη − yηzξ)
, (2.14)

which can be used to compute spatial derivatives in (x, y, z) from variables mapped on to

(ξ, η, ζ). The set of these formulae of the derivatives xξ, xη, xζ , yξ, yη, yζ and zξ, zη, zζ are

given by

xξ =
xi+1,j,k − xi−1,j,k

2
, xη =

xi,j+1,k − xi,j−1,k

2
, xζ =

xi,j,k+1 − xi,j,k−1

2
, (2.15)

yξ =
yi+1,j,k − yi−1,j,k

2
, yη =

yi,j+1,k − yi,j−1,k

2
, yζ =

yi,j,k+1 − yi,j,k−1

2
, (2.16)

zξ =
zi+1,j,k − zi−1,j,k

2
, zη =

zi,j+1,k − zi,j−1,k

2
, zζ =

zi,j,k+1 − zi,j,k−1

2
. (2.17)

For more details, see [3, 4]. From the above transformations, the differential form of the

conservation law (2.1) will be given as

∂u∗

∂t
+
∂f∗

∂ξ
+
∂g∗

∂η
+
∂h∗

∂ζ
= 0, (2.18)

where

u∗ =
u

J
(2.19)

f∗ =
1

J

(
f
∂ξ

∂x
+ g

∂ξ

∂y
+ h

∂ξ

∂z

)
(2.20)

g∗ =
1

J

(
f
∂η

∂x
+ g

∂η

∂y
+ h

∂η

∂z

)
(2.21)

f∗ =
1

J

(
f
∂η

∂x
+ g

∂ζ

∂y
+ h

∂ζ

∂z

)
. (2.22)

If f ,g,h depend on the derivatives of u, these derivatives are transformed by Equations

of (2.8) - (2.10). In cases when the geometrical grid is uniform and aligned with the

coordinate axis, the metrics degenerate to an identity matrix.
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2.3. Total-Variation-Diminishing Schemes

The most well known and one of the most successful schemes for the numerical solution of

nonlinear systems of conservation laws is the method of Godunov. Here, data are repre-

sented by piecewise constant cell averages, and these piecewise constant data are also used

to compute the numerical fluxes. Since the original Godunov method is only first-order

accurate, it is too diffusive. Therefore, we need to develop high order schemes for hyper-

bolic problems. One of the main drawbacks of high order schemes are spurious oscillations

at shock waves and discontinuities, the so-called Gibbs’ phenomenon. According to the

Godunov theorem, there are no better than first order accurate linear monotone schemes.

This means, that in order to circumvent the theorem, high order schemes for conservation

laws must be necessarily nonlinear, to overcome the drawbacks of high order schemes and

achieve high order of accuracy, one of the most popular schemes is the MUSCL scheme,

which is both monotonicity preserving and higher than first order accurate. This scheme

was first proposed by Kolgan [90] and later independently rediscovered by van Leer [153].

This scheme makes use of piecewise linear data inside every computational cell, while

first order finite volume schemes rely only on a piecewise constant data representation

see Figure 2.1. In this section we will briefly introduce the scheme, which relate to a

Figure 2.1.: Piecewise constant data representation in a first order finite volume scheme

(left) and piecewise linear data (right) in the second order finite volume

MUSCL scheme.

linear polynomial, variations and oscillations in nonlinear systems, that is the so-called

Total Variation Diminishing (TVD) of property Harten et al [83], for a general overview,

the reader is referred to [148, 96]. The total variation for a scalar conservation law of a

discrete function q,

TV (q) =

∫
|∂q
∂x
| dx, (2.23)
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does not increase. With the definition of Harten, the total variation (TV) of a discrete

function qnh is given as,

TV (qnh) =
∞∑

i=−∞

|qni+1 − qni |, (2.24)

with qni → const. for i → ±∞. A numerical method

qn+1
i = H

(
qni−l, . . . , q

n
i+r

)
(2.25)

is called TVD if

TV
(
qn+1
h

)
≤ TV (qnh) . (2.26)

If a conservative scheme is TVD, then it converges to the weak solution. A piecewise

linear polynomial reconstruction for cell i reads

P n
i (x) = Qn

i +
∆Qn

i

∆x
(x− xi) , (2.27)

where Qn
i is the Godunov cell average and the slope

∆Qn
i

∆x
must be properly defined in

order to ensure the TVD property. This is usually achieved at the aid of so-called slope

limiters.

In (2.24) we can see that oscillations in the computational results will increase the total

variation. So numerical schemes for which the total variation of the solution satisfies the

condition in (2.26) are called TVD schemes.

2.4. Path-conservation Finite volume schemes

Here, we recall the path-conservative finite volume schemes of Parés and Castro [119, 25]

that we are going to use in order to discretize the non-conservative governing PDE system

(1.45). We also briefly summarize the new generalized Osher-type Riemann solver (DOT)

presented in [64, 65], as well as the more popular path-conservative Rusanov and Roe

schemes. For all three methods, we will, however, rely on the numerical evaluation of

the path integral along the straight line segment path by using high Gauss-Legendre

quadrature rules according to [64, 65, 63]. The method is implemented inside a classical

second order accurate high resolution TVD framework.

2.4.1. Path-conservation Finite volume schemes for the 2D

Baer-Nunziato equaion on the Cartesian meshes

The computational domain Ω is discretized by a set of non-overlapping control volumes

Ti,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]. In the following we assume an equidistant mesh spacing
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of constant width ∆x = xi+ 1
2
− xi− 1

2
and ∆y = yj+ 1

2
− yj+ 1

2
, respectively. We denote the

spatial barycenter of Ti,j with xi,j = (xi, yj) =
(

1
2
(xi− 1

2
+ xi+ 1

2
), 1

2
(yj− 1

2
+ yj+ 1

2
)
)

. The

time step is denoted by ∆t = tn+1 − tn. The cell averages at time tn on Ti,j are defined

as usual by

Qn
i,j =

1

∆x∆y

x
i+1

2∫
x
i− 1

2

y
j+1

2∫
y
j− 1

2

Q(x, y, tn) dy dx, (2.28)

from which a second order TVD scheme in space can be constructed by using the following

nonlinear slope reconstruction:

∇Qn
i,j =

(
∂xQ

n
i,j

∂yQ
n
i,j

)
=

 minmod
(

Qn
i+1,j−Qn

i,j

∆x
,
Qn

i,j−Qn
i−1,j

∆x

)
minmod

(
Qn

i,j+1−Qn
i,j

∆y
,
Qn

i,j−Qn
i,j−1

∆y

)  , (2.29)

with the classical minmod slope limiter detailed, for example, in [148], where

minmod (a, b) =


a if |a| ≤ |b| and ab > 0,

b if |a| > |b| and ab > 0,

0 if ab ≤ 0.

(2.30)

A second order MUSCL-type scheme in time can then be obtained by the following ap-

proximation of the first derivative of Q in time, which is based on a discrete form of the

governing PDE as follows:

∂tQ
n
i,j = −

f
(
Qn
i,j + ∆x

2
∂xQ

n
i,j,∇Qn

i,j

)
− f

(
Qn
i,j − ∆x

2
∂xQ

n
i,j,∇Qn

i,j

)
∆x

−
g
(
Qn
i,j + ∆y

2
∂xQ

n
i,j,∇Qn

i,j

)
− g

(
Qn
i,j −

∆y
2
∂yQ

n
i,j,∇Qn

i,j

)
∆y

−B
(
Qn
i,j, κ

n
i,j

)
· ∇Qn

i,j + S
(
Qn
i,j

)
. (2.31)

The resulting piecewise linear space-time reconstruction polynomial inside cell Ti,j then

reads

Q(x, t)|Ti,j = Qn
i,j +∇Qn

i,j · (x− xi,j) + ∂tQ
n
i,j (t− tn) . (2.32)

The second order TVD version of the path-conservative finite volume method is now

obtained by using the piecewise linear data representation (2.32) and by integration of

the governing PDE system over the space-time control volume [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]×
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[tn, tn+1]:

Qn+1
i,j = Qn

i,j −
∆t

∆x

(
fi+ 1

2
,j − fi− 1

2
,j

)
− ∆t

∆y

(
gi,j+ 1

2
− gi,j− 1

2

)
−∆t

∆x

(
Di+ 1

2
,j + Di− 1

2
,j

)
− ∆t

∆y

(
Di,j+ 1

2
+ Di,j− 1

2

)
−∆tB

(
Q
n+ 1

2
i,j , κni,j

)
· ∇Qn

i,j + ∆tS
(
Q
n+ 1

2
i,j

)
, (2.33)

with Q
n+ 1

2
i,j = Q(xi,j, t

n+ 1
2 ). In (2.33), the fi± 1

2
,j and gi,j± 1

2
denote the numerical fluxes

for the purely conservative and the viscous part of the PDE, while the terms Di± 1
2
,j and

Di,j± 1
2

take into account the jump of the piecewise linear data reconstruction (2.32) at

the element interfaces. The term B
(
Q
n+ 1

2
i,j , κni,j

)
· ∇Qn

i,j accounts for the smooth part of

the non-conservative product and S
(
Q
n+ 1

2
i,j

)
is an explicit discretization of the algebraic

source term.

The numerical flux fi+ 1
2
,j in x direction is given by

fi+ 1
2
,j =

1

2

(
f
(
Q+
i+ 1

2
,j
,∇Qn

i+ 1
2
,j

)
+ f

(
Q−
i+ 1

2
,j
,∇Qn

i+ 1
2
,j

))
− 1

2
Θi+ 1

2
,j

(
Q+
i+ 1

2
,j
−Q−

i+ 1
2
,j

)
,

(2.34)

where Θi+ 1
2
,j > 0 is a positive definite dissipation matrix that depends on the approxi-

mate Riemann solver to be used and that will be defined later. Furthermore, Q−
i+ 1

2
,j

=

Q(x−
i+ 1

2

, yj, t
n+ 1

2 ) and Q+
i+ 1

2
,j

= Q(x+
i+ 1

2

, yj, t
n+ 1

2 ) denote the boundary-extrapolated val-

ues taken at the half time level at the element interface from the left and the right,

respectively, while ∇Qn
i+ 1

2
,j

denotes the unlimited gradient at the edge that is used for

the computation of the viscous fluxes and that is defined as the average of the corner

gradients ∇Qn
i+ 1

2
,j± 1

2

as follows:

∇Qn
i+ 1

2
,j

=
1

2

(
∇Qn

i+ 1
2
,j+ 1

2
+∇Qn

i+ 1
2
,j− 1

2

)
with

∇Qn
i+ 1

2
,j+ 1

2
=

1

2

(
Qn

i+1,j+1−Qn
i,j+1

∆x
+

Qn
i+1,j−Qn

i,j

∆x
Qn

i+1,j+1−Qn
i+1,j

∆y
+

Qn
i,j+1−Qn

i,j

∆y

)
. (2.35)

The jump terms due to the non-conservative product are simply defined as

Di± 1
2
,j =

1

2

1∫
0

B
(
ψ(Q−

i± 1
2
,j
,Q+

i± 1
2
,j
, s), κn

i± 1
2
,j

)
· ni± 1

2
,j ds

≈ 1

2

∑
l

ωlB
(
ψ(Q−

i± 1
2
,j
,Q+

i± 1
2
,j
, sl), κ

n
i± 1

2
,j

)
· ni± 1

2
,j. (2.36)
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2.4.2. Curvature computation

The surface tension effect is naturally included inside the non-conservative terms of system

(1.33). Since the term pσ in system (1.33) contains the curvature κ, defined according

to (1.44), we first need to compute the gradient of the volume fraction function at the

beginning of each time step at the vertices of the two dimensional Cartesian grid, i.e. at

the location xi+ 1
2
,j+ 1

2
, while the cell centers are located at xi,j. By using this vertex-based

staggering, according to Perigaud et al [121], the unlimited corner gradient of the volume

fraction function is computed as follows:

∇αn
1,i+ 1

2
,j+ 1

2
=

1

2

(
αn
1,i+1,j+1−αn

1,i,j+1

∆x
+

αn
1,i+1,j−αn

1,i,j

∆x
αn
1,i+1,j+1−αn

1,i+1,j

∆y
+

αn
1,i,j+1−αn

1,i,j

∆y

)
. (2.37)

From ∇αn
1,i+ 1

2
,j+ 1

2

the normal vector to the interface is given in the vertices by the relation

mn
i+ 1

2
,j+ 1

2
=


∇αn

1,i+1
2 ,j+1

2

‖∇αn

1,i+1
2 ,j+1

2

‖ , if ‖∇αn
1,i+ 1

2
,j+ 1

2

‖ 6= 0,

0, if ‖∇αn
1,i+ 1

2
,j+ 1

2

‖ = 0.
(2.38)

The normal vector on the cell edges is then obtained by simple averaging

mn
i+ 1

2
,j

=
1

2

(
mn

i+ 1
2
,j+ 1

2
+ mn

i+ 1
2
,j− 1

2

)
, (2.39)

from which finally the discrete curvature in the cell centers κni,j can be computed via

κni,j =
mn

i+ 1
2
,j
−mn

i− 1
2
,j

∆x
+

mn
i,j+ 1

2

−mn
i,j− 1

2

∆y
. (2.40)

2.4.3. Second order MUSCL-type method on unstructured meshes

with global time stepping

In this section we will extend to second-order accurate schemes to two space dimensions on

unstructured meshes, which build the construction of an appropriate linear representation

of the solution within a computational cell. As mentioned above, we use the technique for

limiting the local solution gradients in order to avoid spurious oscillations in the solution

due to the presence of local extrema resulting from the high order schemes. As usual, the

global time step size is defined by ∆t = tn+1− tn, and we use a MUSCL-Hancock strategy

of van Leer [153] to produce a space-time reconstruction of the data from the known cell

averages. In here the reconstructed profile is considered as a linear profile, i.e. a plane,

leading to second-order spatial accuracy of the results. The purpose of the use of the
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piecewise linear data reconstruction is to achieve higher order of accuracy than the first

order Godunov scheme. In a finite volume framework, the data are stored and evolved at

the time level tn by the cell averaged value in the control volume T ni , defined as

Qn
i =

1

|T ni |

∫
Q (x, tn) dx, (2.41)

where |T ni | denoted the area of T ni . According to the Godunov’s theory [78], we can

only get a first order accurate scheme by using the piecewise constant data in (2.41) for

calculating the numerical fluxes. So in order to obtain high order accurate schemes, which

are better than first order ones, we need to construct piecewise space-time polynomials

for each element T ni from the known cell averages Qn
i . In this section, second order of

accuracy in space and time is given by using the well-known MUSCL-Hancock scheme

[153, 148]. We first consider the reconstruction in space and the linear polynomial wh (x, t)

is defined as

wh (x, t) |Tn
i

= Qn
i +∇Qi (x− xi) , x ∈ T ni , (2.42)

where xi is the barycenter of cell T ni . We denote Si a reconstruction stencil that consists

of element Ti and its direct side neighbors. To compute the slope ∇Qi, the corresponding

integral conservation of the reconstruction equations read

1

|T nj |

∫
Tn
j

wh (x, t) dx = Qn
j ∀Tj ∈ Si. (2.43)

The system (2.43) is in general over-determined, which can be solved with a classical con-

strained least-squares algorithm. The constraint is given by the requirement that (2.43)

holds exactly at least for T ni . Finally we obtain the non-limited slope ∇Qi in (2.42).

To obtain a stable solution with a new reconstruction process, the idea of Barth and

Jespersen [12] for using the slope limiter is applied. The main idea is to find the largest

admissible Φi for which the values of the reconstructed variables do not exceed the max-

imum and the minimum values of the cell averages. The equation reads as

w̃h (x, tn) = Qn
i + Φi∇Qi (x− xi) (2.44)

with the condition given as follows:

Qmin
i ≤ w̃h (x, tn) ≤ Qmax

i (2.45)

Here Qmin
i and Qmax

i are the componentwise minimum and maximum among the cell-

averages of the set Si = Ti ∪Ni, and they are calculated as following equations.

Qmin
i = min

j∈Si

(
Qn
j

)
and Qmax

i = max
j∈Si

(
Qn
j

)
(2.46)
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In this case, the extreme values occur at the vertices of each element T ni . From the

unlimited slope ∇Qi in (2.42), one can determine a value Φi,j for all vertices xj as follows:

Φi,j =


min

(
1,

Qmax
i −Qn

i

wh,j−Qn
i

)
, if wh,j −Qn

i > 0

min
(

1,
Qmin

i −Qn
i

wh,j−Qn
i

)
, if wh,j −Qn

i < 0

1 if wh,j −Qn
i = 0.

(2.47)

with wh,j = wh(xj, t
n). Then, from these values Φi,j, the slope limiter is calculated as

Φi = min
j

(Φi,j).

From (2.44), one has only obtained a high order scheme in space, hence to achieve a

high order scheme in time, it is necessary to build piecewise linear space-time polynomi-

als w̃i (x, t) inside each element T ni . Finally, one achieves a piecewise linear space-time

reconstruction polynomial qh (x, t) inside element like (2.32) with the limited slope that

reads as follows:

qh(x, t)|Tn
i

= Qn
i + Φi∇Qi(x− xi) + ∂tQi(t− tn), x ∈ Ti(t), t ∈ [tn, tn+1]. (2.48)

Here ∂tQi is its first time derivative, which is based on a discrete form of the governing

PDE as follows:

∂tQi = − 1

|Ti|
∑
j

|∂Tij|F (Qn
i +∇Qn

i (xij − xi)) · nij −
1

|Ti|
B (Qn

i ) · Φi∇Qn
i . (2.49)

Here, j denotes the index of edges of T ni , ∂Tij is the edge length, xij denotes the midpoint

of the common edge ∂Tij shared by elements Ti and Tj, nij is the outward-pointing unit

normal vector; xi is the barycenter of cell T ni . Then the numerical flux is given by

Fij · nij =
1

2

(
F
(
q+
h

)
+ F

(
q−h
))
· nij −

1

2
Θ
(
q+
h − q−h

)
, (2.50)

where Θ is again a positive definite dissipation matrix.

Finally the TVD finite volume scheme for nonconservative systems reads

|T n+1
i |Qn+1

i = |T ni |Qn
i − |∂Tij|

∑
j∈Ni

(
Fij

(
q−h ,q

+
h

)
+ Dij

(
q−h ,q

+
h

))
−B

(
Q
n+ 1

2
i

)
· ∇Qn

i .

(2.51)

Here Ni is the set of neighbors of element Ti.
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2.4.4. Local time stepping (LTS)

As mentioned in the literature almost all the algorithms, which the time step is computed

under a classical global CFL stability condition that is so-called an explicit global time

step (GTS). The global time step ∆t is computed as in (2.52).

∆tn = CFL min
Tn
i

hi
max |Λ(Qi)|

, ∀T ni ∈ Ωn (2.52)

where hi denotes the insphere or incircle diameter of element T ni and max |Λ(Qi)| is the

maximum eigenvalue in cell Ti. CFL < 1/d is the Courant-Friedrichs-Lewy number, d

represents the number of space dimensions, for the CFL condition, the reader is referred

to [148].

One of the main disadvantages of an explicit time discretization for computing time step

is that the global minimum is taken over all elements in the computational domain, so

the GTS restriction may become very severe and small distorted elements may cause a

very small time step for all elements of the domain. For these reasons the computational

efficiency of the algorithm drastically decreases. So an other algorithm is used to save

computational time. In this section we will now describe a different method that will

replace a global time-stepping strategy by using a local time-stepping (LTS) one. In LTS

we will give up the assumption that all grid cells with the same time step. A major

advantage of fully discrete TVD finite volume schemes based on piecewise polynomial

reconstruction in space and time is the possibility of making use of a local time stepping

scheme as has been shown in [29]. For previous works including LTS see in [44, 19, 52,

51, 54]. The LTS scheme is used to reduce the constraints of the CFL stability criterion.

Therefore, within each of the cells in the computational domain is defined a local time

step value, which is the maximum allowed by the CFL stability condition. The time step

with an LTS strategy is given in (2.53)

∆tni = CFL min
Tn
i

hi
max |Λ(Qn

i )|
, ∀T ni ∈ Si, (2.53)

and the next local time level in Ti is given as

tn+1
i = tni + ∆tni , (2.54)

where Si is the element and its direct neighbors. The ∆tn in (2.52) has been replaced by

the minimum of the local ∆tni (2.53). In a local time stepping algorithm, we denote a new

definition to recognize the updated time step that is the so-called cycle. For more details

about the cycles, see [101, 54]. Following [29], the finite volume scheme for nonconservative
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systems with an LTS in space and time for those elements Ti is given by

|T n+1
i |Qn+1

i = |T ni |Qn
i − |∂Tij|

∑
j∈Ni

∆tij

(
Fij

(
Q−ij,Q

+
ij

)
+ Dij

(
Q−ij,Q

+
ij

))
−∆tijB

(
Q
n+ 1

2
ij

)
· ∇Qn

ij + QM
i , (2.55)

where |T ni | and |T n+1
i | are the surfaces of triangle Ti at the current time level tni and the

future time level tn+1
i , respectively.

If we want to achieve time-accurate LTS, the following evolve condition or update criterion

has to be satisfied for a element Ti at a time level tni

tni + ∆tni ≤ tnj + ∆tnj or tn+1
i ≤ tn+1

j , ∀j ∈ Ni. (2.56)

This condition constrains that a cell can be only updated if its future time is less or equal

than all the future times of the Neumann neighbors. The numerical fluxes between two

elements Ti and Tj have to be computed in the time interval

[tnij, t
n+1
ij ] = [max

(
tni , t

n
j

)
,min

(
tn+1
i , tn+1

j

)
], ∆tij = tn+1

ij − tnij, ∆t
n+ 1

2
ij =

1

2

(
tnij + tn+1

ij

)
(2.57)

In order to a new high resolution TVD finite volume scheme with time-accurate LTS

on unstructured grids, some parts of the flux integral will be computed using a memory

variable QM
i , according to [44, 19, 29]. The memory variable contains all fluxes through

the element interfaces in the past between tni to tnij. We stress that the memory variables

are used only for computing the flux contributions of the neighbour elements. After a local

element Ti is updated according to (2.55), the memory variable of the element itself is

reset to zero, and the fluxes across the element boundary are added the memory variables

of the neighbor element Tj. As mentioned in [29] the memory variables have to update

as follows:

QM
i := 0, QM

j := QM
j +∆tij|∂Tij|

(
Fij

(
Q−ij,Q

+
ij

)
+Dij

(
Q−ij,Q

+
ij

))
, ∀Tj ∈ Ni. (2.58)

The boundary extrapolated values Q−ij and Q+
ij used in (2.55) are computed from the local

space-time reconstruction like a piecewise linear space-time reconstruction polynomial

qh (x, t) inside element (2.48) simply as

Q−ij(x, t) = Qn
i + Φi∇Qn

i (xij − xi) + ∂tQ
n
i (t

n+ 1
2

ij − tni ), (2.59)

Q+
ij(x, t) = Qn

j + Φj∇Qn
j (xij − xj) + ∂tQ

n
j (t

n+ 1
2

ij − tnj ). (2.60)

32



The first time derivative ∂tQ
n
i and ∂tQ

n
j in (2.59) and (2.60), respectively are computed

like (2.49) as follows:

∂tQ
n
i = − 1

|Ti|
∑
j

|∂Tij|F (Qn
i +∇Qn

i (xij − xi)) · nij −
1

|Ti|
B (Qn

i ) · ∇Qn
i . (2.61)

∂tQ
n
j = − 1

|Ti|
∑
j

|∂Tij|F
(
Qn
j +∇Qn

j (xij − xj)
)
· nij −

1

|Ti|
B
(
Qn
j

)
· ∇Qn

j . (2.62)

As well as in (2.50) then the numerical flux is given by

Fij · nij =
1

2

(
F
(
Q+
ij

)
+ F

(
Q−ij
))
· nij −

1

2
Θ
(
Q+
ij −Q−ij

)
, (2.63)

where Θ a positive definite dissipation matrix.

We can stress that the use of local time stepping instead of a global time stepping scheme

does not change the fundamental properties of the TVD finite method on unstructured

grids nor its accuracy as is described in more detail in [29]. LTS methods have been

implemented to save the computational time for the complexity of geometry and minimize

the total number of time steps for a computation with fixed end time.
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3. Riemann Solvers

In this chapter, we briefly review the Riemann problem and approximate Riemann solvers,

such as the Rusanov Riemann solver [129], the new generalized Osher-type Riemann solver

(DOT) [65, 148], the Roe Riemann solver [151] and a new HLLEM Riemann solver that

has been recently proposed by Dumbser and Balsara [61], as well as their applications to

the multi-phase flows and non-conservative hyperbolic systems.

3.1. Introduction

A fundamental ingredient for designing finite volume methods and discontinuous Galerkin

methods for hyperbolic conservation laws is the numerical flux, which is computed by the

approximate solution of a Riemann problem. Essentially two approaches to obtain the

numerical flux are the centered approach and the Godunov approach. We shall see that

Riemann solvers are based on the concept of the Riemann problem; an exhaustive overview

of existing Riemann solvers can be found in [148]. For computing exact Riemann solvers,

the reader is referred to [78, 153]. The theory of Riemann solvers is available for both lin-

ear and nonlinear hyperbolic systems. The exact Riemann solution is often too expensive

to compute for nonlinear problems. To obtain high order of accuracy and computational

efficiency, approximate Riemann solvers are used as alternative to exact ones when imple-

mented within a numerical method. These techniques of approximate Riemann solvers are

available. The most powerful linear Riemann solver is the Roe solver which has the par-

ticular advantage that it recognizes shock waves and transports all characteristics nicely,

it was first developed by Roe in [127] and then reformulated by Toumi in [151] which

makes use of a week integral formulation. In recent years, Parés and Castro have been

used the theory of Dal Maso, Le Floch and Murat in [108] to extend the Roe solver to

non-conservative hyperbolic systems, see [25, 119]. One of these disadvantages of the Roe

solver is that it is not able to recognize sonic points, so it needs an entropy fix procedure.

Some techniques for the entropy fix are presented in [148]. In the context of the family of

path-consevative schemes, Dumbser and Toro have proposed the generalised Osher-type

Riemann solver (DOT) [65, 148], which was first introduced by Osher and Solomon in [116]
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and which has been successively applied to general nonlinear hyperbolic conservation laws

and to non-conservative hyperbolic systems. The classical Osher-Solomon scheme is very

complex and computationally expensive. Hence a new Osher solver is applied by using

an appropriate Gaussian quadrature rule for computing path integrals that arise in the

definition of the dissipative part of the Osher-Solomon flux. The DOT scheme has some

general attractive advantages, such as computational robustness, entropy satisfaction,

good behaviour for slowly-moving shocks and smoothness. A much simpler approach is

that the local Lax-Friedrichs or the Rusanov method [129], which uses a one-wave model.

Since the intermediate waves are not considered, the Rusanov Riemann solver contains

the penalty of a high level of numerical dissipation. The Rusanov method is a so-called

incomplete Riemann solver. In a very recent paper of Dumbser et al [61], a novel HLLEM

Riemann solver has been extended to general conservative and non-conservative hyper-

bolic systems. This method was first proposed by Einfeldt [67] and Einfeldt et al [69]

with its applications to the compressible Euler equations. It assumes no longer a constant

intermediate state, but a piecewise linear distribution. For other approximate Riemann

solvers, the reader is referred to [148, 96].

3.2. Riemann problem

A Riemann problem in the theory of hyperbolic equations is a Cauchy problem in which

the piecewise constant initial state of the system is defined as follows:

∂q

∂t
+

∂

∂x
f (q) = 0, x ∈ R, t > 0, (3.1)

q (x, t = 0) =

qL for x ≤ 0,

qR for x > 0,
(3.2)

where qL,qR ∈ Q, Q is a distributional solution to the Cauchy problem. For hydrody-

namic problems one can consider this to be a 1-D hydrodynamics problem or shock tube

problem. Following Godunov’s theory [78], the use of the Riemann problem solution as a

building block for a finite volume scheme was proposed. We assume Qi−1 and Qi are the

cell averages in two neighboring grid cells on a finite volume grid, for solving the Riemann

problem of equation (3.1) with the initial values as: qL = Qi−1 and qR = Qi, see Figure

3.1. From information of the initial problem, we can compute the numerical fluxes at

cell interfaces over a time step. With a large number of hydrodynamic problems, shock

tube tests are used to test the performance of numerical hydrodynamics algorithms. This

problem was first proposed by Sod, see in [139]. In the classical paper of Godunov, the
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Figure 3.1.: The linear Riemann problem with initial conditions (left) and Riemann fan

for the one-dimensional Euler equations(right).

use of a piecewise constant data representation was used to construct numerical fluxes,

see Figure 3.2, so Godunov’s scheme achieves first order of accuracy and is monotone.

So to obtain high-order extensions of the Godunov method, alternative methods have

been proposed, like the MUSCL scheme of van Leer [153], the piecewise parabolic method

(PPM) of Woodward and Colella [37], the essentially non-oscillatory (ENO) schemes of

Harten et al [82], the weighted essentially non-oscillatory schemes (WENO) of Jiang and

Shu [87]. See in [148, 96], an overview of the Riemann problem in linear and nonlinear

Figure 3.2.: Piecewise constant data representation in the finite volume Godunov’s

scheme.
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hyperbolic systems. The conservation law (3.1) is called strictly hyperbolic if the Jacobian

A(q) = ∂f
∂q

has m distinct real eigenvalues

λ1 (q) < λ2 (q) < · · ·λm (q) ∀q ∈ Q. (3.3)

The right eigenvectors and left eigenvectors of equation (3.1) are {r1 (q) , · · · rm (q)} and

{l1 (q) , · · · lm (q)}, respectively. For the solution q ∈ Q we have the relationship of the

Jacobian matrix A with eigenvalues and eigenvectors as follows:

A (q) ri (q) = λi (q) ri (q) , li (q)T A (q) = λi (q) li (q)T , i = 1, · · · ,m. (3.4)

The right and left eigenvectors are orthogonal,

|ri (q) | = 1, lj (q) · ri (q) =

1, i = j,

0, i 6= j.
(3.5)

A λi characteristic field is said to be linearly degenerate if

∇λi (q) · ri (q) = 0, ∀q ∈ Q, (3.6)

or genuinely nonlinear if

∇λi (q) · ri (q) 6= 0, ∀q ∈ Q. (3.7)

Here ∇λi (q) is the gradient of the eigenvalue λi (q), say

∇λi (q) =

(
∂

∂q1

λi,
∂

∂q2

λi, · · · ,
∂

∂qm
λi

)T
. (3.8)

3.3. Approximate Riemann solvers

In this section we will introduce the three Riemann solvers, which we use to compute the

numerical flux on the Cartesian grid in (2.34) and we also extend it in a similar way to

the unstructured grid in (2.50) and (2.63). A new HLLEM Riemann solver will be defined

later. The dissipation matrix Θi+ 1
2
,j is a function of the matrix A(Q, κ,n) and hence of

the normal vectors w.r.t. the element interface, ni± 1
2
,j = (1, 0) and ni,j± 1

2
= (0, 1), which

are pointing in the corresponding coordinate direction. In the following, we will also need

the so-called straight-line segment path given by

ψ(QL,QR, s) = QL + s (QR −QL) , s ∈ [0, 1]. (3.9)
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3.3.1. Rusanov scheme (LLF)

The simplest approximate Riemann solver is the one of Rusanov [129], where the entire

wave structure of the Riemann problem is approximated by two symmetric waves moving

to the left and to the right of the interface with the maximum wave speeds ±smax. The

resulting viscosity matrix in the numerical flux is a simple diagonal matrix of the form

ΘLLF
i+ 1

2
,j

= smaxI, (3.10)

with smax = max
(∣∣∣Λ(Q+

i+ 1
2
,j
, κn

i+ 1
2
,j
,ni+ 1

2
,j

)∣∣∣ , ∣∣∣Λ(Q−
i+ 1

2
,j
, κn

i+ 1
2
,j
,ni+ 1

2
,j

)∣∣∣),

and κn
i+ 1

2
,j

= 1
2
(κni,j + κni+1,j). Note that Λ(Q, κ,n) is the diagonal matrix of eigenvalues

of A(Q, κ,n) defined in (1.46). This scheme is often also called the local Lax-Friedrichs

flux (LLF).

3.3.2. Osher-type scheme (DOT)

In the DOT Riemann solver recently proposed in [65, 64], the viscosity matrix is defined

as the numerical approximation of a path integral along the straight-line segment path

(3.9). It reads

ΘDOT
i+ 1

2
,j

=

1∫
0

∣∣∣A(ψ(Q−
i+ 1

2
,j
,Q+

i+ 1
2
,j
, s), κn

i+ 1
2
,j
,ni+ 1

2
,j

)∣∣∣ ds
≈
∑
l

ωl

∣∣∣A(ψ(Q−
i+ 1

2
,j
,Q+

i+ 1
2
,j
, sl), κ

n
i+ 1

2
,j
,ni+ 1

2
,j

)∣∣∣ , (3.11)

with the usual definition of the matrix absolute value operator |A| = R|Λ|R−1 and the

Gauss-Legendre quadrature points sl with associated weights ωl on the unit interval [0, 1].

In all numerical test problems shown later, we use 3 quadrature points, as suggested in

[65, 64]. The DOT Riemann solver is a complete Riemann solver, since it makes use of

the entire eigenstructure of the hyperbolic part of the governing PDE system. Since the

system (1.45) is hyperbolic for physically admissible values of Q, the matrix A appearing

in the summation is always diagonalizable and thus the operator |A| is always well defined.

3.3.3. Roe-type scheme

A simple weak formulation of a Roe-type Riemann solver can be obtained according to

[65, 64] by defining the Roe matrix again at the aid of a path integral, following the
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original ideas of Toumi [151]. For the simple straight line segment path (3.9) the viscosity

matrix of the resulting Roe-type Riemann solver reads:

ΘRoe
i+ 1

2
,j

=

∣∣∣∣∣∣
1∫

0

A
(
ψ(Q−

i+ 1
2
,j
,Q+

i+ 1
2
,j
, s), κn

i+ 1
2
,j
,ni+ 1

2
,j

)
ds

∣∣∣∣∣∣
≈

∣∣∣∣∣∑
l

ωlA
(
ψ(Q−

i+ 1
2
,j
,Q+

i+ 1
2
,j
, sl), κ

n
i+ 1

2
,j
,ni+ 1

2
,j

)∣∣∣∣∣ . (3.12)

In comparison with the DOT Riemann solver (3.11) we find that for the Roe-type method

defined in (3.12) the matrix absolute value operator has been exchanged with the integral

/ summation. In practice, the eigenstructure of the matrix resulting from the summation

can be easily computed numerically. Again, the path integral is approximated by Gauss-

Legendre quadrature points sl with associated weights ωl on the unit interval [0, 1]. Again,

we use 3 quadrature points to evaluate the path integral in (3.12) numerically. Also the

Roe-type Riemann solver (3.12) is a complete Riemann solver, since it makes use of the

entire eigenstructure of the hyperbolic part of the governing PDE system. However,

it can not be guaranteed in general that the matrix resulting from the summation is

always diagonalizable, while the matrices appearing in the DOT solver (3.11) are always

diagonalizable.

3.4. Jump terms in the non-conservative product

Since the entire numerical dissipation based on the matrix A·n is already contained in the

numerical fluxes (2.34), the jump terms due to the non-conservative product are simply

defined as

Di± 1
2
,j =

1

2

1∫
0

B
(
ψ(Q−

i± 1
2
,j
,Q+

i± 1
2
,j
, s), κn

i± 1
2
,j

)
· ni± 1

2
,j ds

≈ 1

2

∑
l

ωlB
(
ψ(Q−

i± 1
2
,j
,Q+

i± 1
2
,j
, sl), κ

n
i± 1

2
,j

)
· ni± 1

2
,j. (3.13)

These terms (3.13) give a meaning to the derivative of the piecewise continuous function

Q(x, t) at the location of discontinuities. This requires an interpretation of B(Q, κ)·∇Q in

the sense of distributions, according to the definition of weak solutions of non-conservative

hyperbolic PDE proposed by Dal Maso, Le Floch and Murat in [108]. For a more detailed

description of path-conservative schemes, the reader is referred to [25, 119, 64] and for

open problems concerning the discretization of non-conservative hyperbolic PDE, see [26].
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The numerical fluxes and jump terms in the y direction can be derived in a completely

analogous way.

3.5. A path-conservative HLLEM scheme for

non-conservative systems

In this section we extend the new HLLEM-type Riemann solver of Dumbser and Balsara

[69, 68, 61], combined together with a path-conservative finite volume scheme [119, 25]

to track the material interface very accurately and robustly. The HLLEM-type Riemann

solvers have been adapted to hyperbolic systems with non-conservative products. We also

show that the new HLLEM scheme is computationally cheaper than other well established

Riemann solvers, like the Osher-type scheme proposed in [65, 64].

Our aim is to provide a new computational model for compressible multi-phase flows

based upon the full Baer-Nunziato equations [6] with a highly accurate shock capturing

TVD finite volume scheme that is based on the new HLLEM-type Riemann solver, and

the surface tension terms must be considered as a part of the non-conservative part of the

hyperbolic system. The new idea of our approach is to obtain an approximate Riemann

solver at the interface such that the surface tension effect depends on the jump of the

volume fraction function across the interface. For simple implementation, the interactions

over the material interface are computed by using the Eulerian approach on fixed grids.

We recall non-linear hyperbolic systems in (1.48) in one space dimensions without source

terms as follows:

∂Q

∂t
+
∂f(Q)

∂x
+ B(Q)

∂Q

∂x
= 0, x ∈ Ω ⊂ R, t ∈ R+

0 . (3.14)

A second order path-conservative finite volume discretisation of system (3.14) based upon

the path-conservative HLLEM scheme of Dumbser and Balsara [61] reads as follows:

Qn+1
i = Qn

i −
∆t

∆x

(
f−i+1/2 − f+

i−1/2

)
− ∆t

∆x

(
D−i+1/2 + D+

i−1/2

)
− ∆t

∆x
B
(
Q
n+1/2
i

)
∆Qn

i ,

(3.15)

where ∆x = xi+1/2 − xi−1/2 and ∆t = tn+1 − tn represent the mesh spacing and the time

step, respectively. The superscripts n and n + 1 denote two successive time steps tn and

tn+1. This method is stable under conventional CFL condition:

∆t = CFL
∆x

max
i=1
|Λ(Qn

i )|
, with CFL ≤ 1. (3.16)
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In the new HLLEM Riemann solver, the jump terms and the boundary-extrapolated fluxes

at the half time level tn+ 1
2 are written as below:

D−
i+ 1

2

= D−HLLEM

(
Q
n+ 1

2
,−

i+ 1
2

,Q
n+ 1

2
,+

i+ 1
2

)
, D+

i− 1
2

= D+
HLLEM

(
Q
n+ 1

2
,−

i− 1
2

,Q
n+ 1

2
,+

i− 1
2

)
, (3.17)

and

f±
i+ 1

2

= f(Q
n+ 1

2
,±

i+ 1
2

). (3.18)

According to the derivation in [61], we find the jump terms D+
HLLEM and D−HLLEM as

follows:

D−HLLEM(QL,QR) = D−HLL(QL,QR)−T, (3.19)

D+
HLLEM(QL,QR) = D+

HLL(QL,QR) + T, (3.20)

with the HLL jump terms

D−HLL(QL,QR) = − SL
SR − SL

[
fR − fL + B̃ (QL,Q∗) (Q∗ −QL)

+B̃ (Q∗,QR) (QR −Q∗)
]

+
SLSR
SR − SL

(QR −QL) , (3.21)

D+
HLL(QL,QR) = +

SR
SR − SL

[
fR − fL + B̃ (QL,Q∗) (Q∗ −QL)

+B̃ (Q∗,QR) (QR −Q∗)
]
− SLSR
SR − SL

(QR −QL) , (3.22)

and the HLL state

Q∗ =
1

(SR − SL)

[
(QRSR −QLSL)− (fR − fL)

−
(
B̃ (QL,Q∗) (Q∗ −QL) + B̃ (Q∗,QR) (QR −Q∗)

) ]
. (3.23)

The equation (3.23) is in general non-linear in terms of Q∗ and needs to be iterated to

convergence. For the sake of clarity, and to facilitate the reader in the practical compu-

tation of the HLL state, see [61]. Here we summarize as follows: Q0
∗ is an initial guess of

Q∗, i.e.

Q0
∗ =

1

(SR − SL)

[
(QRSR −QLSL)− (fR − fL)− B̃ (QL,QR) (QR −QL)

]
. (3.24)

The HLL state Q∗ can be obtained by a very simple iterative scheme by using the initial

guess (3.24) as
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Qr+1
∗ =

1

(SR − SL)

[
(QRSR −QLSL)− (fR − fL)

−
(
B̃ (QL,Q∗) (Qr

∗ −QL) + B̃ (Q∗,QR) (QR −Qr
∗)
) ]

. (3.25)

In alternative, a quasi-Newton type iterative scheme is used to find the roots as

g (Q∗) = Q∗ −
1

(SR − SL)

[
(QRSR −QLSL)− (fR − fL)

−
(
B̃ (QL,Q∗) (Q∗ −QL) + B̃ (Q∗,QR) (QR −Q∗)

) ]
= 0. (3.26)

To simplify the algorithm and keep the simple Riemann solver, we can ignore the deriva-

tives of the Roe matrices B̃ with respect to Q∗, so the iteration can read as follows:(
I +

B̃ (QL,Q∗)− B̃ (Q∗,QR)

SR − SL

)
∆Qr

∗ = g (Qr
∗) , (3.27)

Qr+1
∗ = Qr

∗ −∆Qr
∗, (3.28)

with I is the identity matrix.

The expression B̃ (Qa,Qb) is defined by the path integral [25, 119]

B̃(Qa,Qb) =

1∫
0

B (ψ (Qa,Qb, s)) ds, (3.29)

with the linear segment path

ψ (Qa,Qb, s) = Qa + s (Qb −Qa) , with 0 ≤ s ≤ 1. (3.30)

The slopes and the boundary-extrapolated data of the state vector Q at time tn in (3.15)

are given as

∆Qn
i = minmod

(
Qn
i+1 −Qn

i ,Q
n
i −Qn

i−1

)
, Qn,∓

i± 1
2

= Qn
i ±

1

2
∆Qn

i . (3.31)

The first derivative of the state vector Q in time, and the evolution to the half time level

in (3.15), (3.17) and (3.18) are based on a discrete form of the governing PDE (3.14) as

follows:

∂tQ
n
i = −

(
f(Qn,−

i+ 1
2

)− f(Qn,+

i− 1
2

)
)

∆x
−B (Qn

i )
∆Qn

i

∆x
(3.32)

Q
n+ 1

2
,∓

i± 1
2

= Qn
i ±

1

2
∆Qn

i +
1

2
∆t∂tQ

n
i , Q

n+ 1
2

i = Qn
i +

1

2
∆t∂tQ

n
i . (3.33)
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The anti-diffusive contribution of the HLLEM method T in (3.19) and (3.20), which has

been used in [67, 68, 69, 61], using the mean state Q̄ = 1
2

(QR + QL), is given by

T = ϕ
SRSL
SR − SL

R∗(Q̄)δ∗(Q̄)L∗(Q̄)(QR −QL), (3.34)

where 0 ≤ ϕ ≤ 1 is a flattener, see [7] and R∗ is the matrix of right eigenvectors,

associated with the linearly degenerate intermediate waves. Likewise, L∗ contains the left

eigenvectors of the intermediate characteristic fields of the system (1.48). To control the

amount of anti-diffusion, the diagonal matrix δ∗
(
Q̄
)

is given by

δ∗(Q̄) = I− Λ−∗
SL
− Λ+

∗
SR

, 0 < δ∗(Q̄) ≤ 1, (3.35)

with I is the identity matrix. The computation in (3.35) is based on the diagonal elements

Λ∗ = Λ∗
(
Q̄
)
. We use the following wave speed estimates for SL and SR

SL = min(0,Λ(QL),Λ(Q̄)), SR = max(0,Λ(Q̄),Λ(QR)). (3.36)

Last but not least, if we ignore viscous and non-conservative terms in the PDE in (1.48),

the numerical HLLEM flux is computed as

fHLLEM =
SRfL − SLfR
SR − SL

+
SLSR
SR − SL

(QR −QL)

−ϕ SRSL
SR − SL

R∗(Q̄)δ∗(Q̄)L∗(Q̄)(QR −QL). (3.37)
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4. High Order Extension

In this chapter we extend our implementation of high order path-conservative schemes

for non-conservative systems of the type (1.45) using the ADER approach together with

space-time Adaptive Mesh Refinement (AMR) and the Discontinuous Galerkin discretiza-

tion framework. The seven equation Baer-Nunziato model (1.33) is written under a non-

conservative form with stiff source terms and surface tension effects are modeled through

the Continuum Surface Force (CSF) model [20] involving local curvature of the interface

separating the two fluids. In our approach several ingredients are gathered to form an

efficient numerical simulation tool. First an effective high order accurate in space and

time ADER Discontinuous Galerkin (DG) finite element method is considered [45]. Sec-

ond a high order accurate a posteriori sub-cell ADER-WENO finite volume limiter is

employed to stabilize the former scheme in presence of steep gradients and shock waves

[66]. Third space-time adaptive Cartesian meshes are considered leading to an efficient

Adaptive Mesh Refinement AMR simulation code [159]. Fourth a specific high order ac-

curate reconstruction of the curvature, which is a central part of the multiphase model,

along with the DG and AMR treatments allows for an almost sharp capturing of the

interface between phases even in the diffuse interface methodology employed in this work.

In fact the interface is captured and allowed to travel across one single possibly refined

cell. Such high accuracy allows the computation of very accurate curvature as needed in

the CSF model.

4.1. Introcduction

As mentioned in the literature, ADER schemes, originally developed by E.F. Toro and

collaborators in [149] and extensively used in the context of hyperbolic systems [145,

144, 52, 8, 9], are a class of numerical methods that obtain high order of accuracy in

one-step in time without the use of backward time levels, like in Adams-Bashforth type

time integrators, and also without the use of substages, as used inside Runge-Kutta time

integrators. The original ADER approach [149, 145, 144] suffers from the drawback that

it uses Taylor expansions in time where time derivatives are substituted in place of spatial
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derivatives through a repeated use of the governing system of equations. This so-called

Cauchy-Kowalewski procedure is rather cumbersome when dealing with complex systems

of equations, and fails in the presence of stiff source terms. Contrarily a successful alterna-

tive was proposed in [48] where the Taylor series expansions and the Cauchy-Kovalewski

procedure are replaced by a local space-time Galerkin method, that is to say by a weak

formulation of the PDE in space-time [45, 57, 8, 9]. In this work we employ this time

integrator.

ADER-DG schemes are notoriously very accurate in smooth regions, but in the presence

of sharp gradients and/or shock waves, they develop Gibbs phenomenon and give rise

to spurious numerical oscillations, since they are linear in the sense of Godunov. In-

deed according to Godunov’s theorem [78] there are no linear and monotone schemes of

order higher than the first. In the finite volume framework Godunov’s theorem is cir-

cumvented by carrying out non linear reconstructions (piecewise linear with slope limiter,

ENO or WENO, etc.). In the Discontinuous Galerkin approach, no spatial reconstruction

is needed, but in practice it is necessary to introduce some sort of limiting or stabilization

to avoid spurious oscillations. Among the most relevant limiters for DG proposed so far we

can mention the use of artificial viscosity, (H)WENO limiting procedure or slope limiting

as that performed in TVB methods [34]. In [66], a different and more efficient formula-

tion has been introduced. This formulation is an a posteriori subcell limiting approach

for DG schemes, which is based on first computing a solution by means of an unlimited

numerical scheme and detect a posteriori the cells with troubles, using certain criteria.

Once the problematic cells have been found, a subgrid is created within these cells and a

finite volume ADER-WENO approach is used on the sub-cells. The idea of introducing

an a posteriori approach to the problem of limiting was established in the finite volume

context in [31, 40, 41, 103] by means of the paradigm denominated Multi-dimensional

Optimal Order Detection (MOOD). This paradigm may be considered as the origin of the

a posteriori limiting procedure for DG schemes.

In the present work an ADER-DG scheme with a posteriori sub-cell limiter has been

adopted but the resolution is even more improved by introducing an Adaptive Mesh Re-

finement technique contrarily to the fixed grid approach developped in [66]. Adaptive

Mesh Refinement (AMR) was first proposed by Marsha J. Berger and collaborators in

the seminal works [16, 15, 17]. They introduced a patch-boxed block-structured AMR

approach developed in finite difference. These techniques have extensively been used in

different fields of research. High order accurate ADER finite volume schemes on space-

time adaptive AMR grids have been proposed in [58] for conservation laws, and extended

to nonconservative systems in [50].
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When dealing with multi dimensional computations carried out with high order accurate

DG scheme under AMR, the use of parallel computing by means of the Message Passing

Interface (MPI) system is needed. The whole numerical mehod has been therefore paral-

lelized to adapt to massively parallel machines.

Concerning the capillary effect in the BN model (1.33), a good resolution of material inter-

faces is mandatory. To achieve this goal the use of Lagrangian methods is one possibility

[105, 22, 18, 23, 30, 99, 62], or ghost-fluid and level-set methods [70, 71, 115, 112, 72],

little dissipative Riemann solvers combined with high order schemes [146, 150, 64] and,

of course, the use of adaptive mesh refinement (AMR). In this chapter we combine high

order accurate Discontinuous Galerkin schemes with AMR for the solution of compress-

ible multi-phase flow problems to assure an accurate resolution of the material interfaces.

Nevertheless an accurate description of the numerical interface does not imply an accu-

rate, non-oscillatory computation of its associated curvature which often appears as a

coefficient in front of surface tension forces like in the Continuum Surface Force model

[20, 121]. Curvature may be computed by the introduction of a smooth level set or color

function defined around the interface and constructed from the local quantities such as

the normal to the interface [20, 121], supplemented with different strategies employing

complex operators. In this thesis, we propose a novel method for the computation of

curvature within the context of multi-dimensional high accurate space/time DG schemes

with AMR and a posteriori sub-cell stabilization.

4.2. ADER-DG AMR scheme with a posteriori sub-cell

finite volume limiter

The purpose of this section is to provide a consistent, stable and accurate numerical

method devoted to solve system (1.1). Recently the authors have developed a space-time

DG scheme using one-step ADER scheme in time stabilized with an a posteriori sub-cell

finite volume limiter from [66] for homogeneous hyperbolic system of conservation laws.

Alternatively, in [159], a cell-by-cell mesh adaptation technique has been supplemented

and validated in the same DG framework. Let us describe in the following how these

schemes and techniques are combined together to form our basic scheme, a highly accu-

rate one step ADER DG scheme with a posteriori sub-cell based stabilization under the

Adaptive Mesh Refinement framework. The computational domain Ω is discretized by a
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Cartesian grid composed by conforming elements Ti, namely

Ω =

NE⋃
i=1

Ti , (4.1)

where the index i ranges from 1 to the total number of elements NE, which, in the adaptive

mesh refinement framework, is a time-dependent quantity. In the following, we denote the

cell volume by |Ti| =
∫
Ti
dx. At the beginning of each time-step, the numerical solution

of equation (1.1) is represented within each cell Ti by piecewise polynomials of maximum

degree N ≥ 0 as

uh(x, t
n) =

M∑
l=0

Φl(x) ûnl = Φl(x) ûnl x ∈ Ti , (4.2)

where uh is referred to as the discrete representation of the solution, while the coefficients

ûnl are usually called the degrees of freedom. Note that we here use the Einstein summation

convention implying summation over indices appearing twice. Basis functions Φl(x) in

(4.2) are chosen as the Lagrange interpolation polynomials of maximum degree N which

pass through the N+1 tensor-product Gauss-Legendre quadrature points [140, 91, 77, 92].

Following [159] we claim that the ADER-DG scheme with sub-cell limiter under AMR

used in this thesis is the composition of four essential bricks, which can be schematically

described as

A predictor step [81] in which (1.1) is solved within each cell in the small by means of a

locally implicit space-time Discontinuous Galerkin scheme. In other words this solve

does not need any interaction with any cell neighbor. The predictor is therefore a

space-time DG polynomial solution of the PDE (1.1) but neglecting the influence of

the neighborhood of cell Ti. As such this step is entirely parallel, see section 4.3.1;

A pure Discontinuous Galerkin (DG) scheme which, by exploiting the information ob-

tained from the predictor step, allows to compute the solution at the next time

level through a single one-step corrector. This corresponds to the unlimited PNPN
scheme according to [45] see section 4.3.2 for a detailed description. By unlimited

we emphasize here the fact that no artificial mechanism is employed to stabilize the

numerical scheme up to this step. The so-called candidate solution is therefore the

solution obtained from a highly accurate DG scheme, which is, obviously, prone to

spurious numerical oscillations due to Gibbs phenomenon.

An a posteriori sub-cell limiter [66] which recomputes the solution for troubled cells

needing some dissipation (limiting), by an ADER-WENO finite volume scheme act-

ing at the sub-cell level. Note that this step implies that troubled cells must be
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detected amongst the cells of the candidate solution obtained at the end of the time

step after the DG scheme has operated. Back to tn: DG polynomials in the troubled

cells are scattered onto sub-cells and evolved with a finite volume ADER-WENO

scheme, see section 4.4; in other words, this step can also be called an element-local

checkpointing and restarting of the code, but using for the restart a more robust

scheme on a fine subgrid.

An Adaptive Mesh Refinement (AMR) approach [159], which employs a classical cell-by-

cell strategy with the combination of specific treatments for sub-cell data involved

when the ADER-WENO scheme is triggered on troubled cells, see section 4.5.

In the following we provide a minimal description of the entire scheme but we urge the

reader to consult exhaustive descriptions and validations of each step in the following

references [45, 57, 84, 76, 10, 66, 159].

4.3. ADER-DG scheme

4.3.1. The local space-time predictor

The local space-time predictor step in our approach is inherited from the essence and origin

of the ADER approach [136, 144] or its more recent version adopted in this thesis [48, 45].

In a DG framework it consists in a time evolution of the representation polynomials at

time tn uh(x, t
n) of Eq. (4.2) independently of any neighbor effect. Each cell is considered

isolated from the rest of the mesh, and, as such, during this local evolution, it does not

receive any flux-like contribution from its neighbors. The so-called predictor, qh(x, t),

is then be defined for each point x in the current space-time cell Ti × [tn, tn+1] and is

a local solution of the system of PDEs considered. System of Eq. (1.1) is tranformed

into a space-time reference coordinate system (ξ, τ) of the space-time reference element

[0; 1]d × [0; 1]. Spatial reference element is denoted TE = [0; 1]d, whereas the time is

transformed according to t = tn + ∆t τ . As a result, we obtain

∂u

∂τ
+∇ξ · F∗ (u) + B∗(u).∇ξu = S∗(u), (4.3)

where

F∗(u) := ∆t (∂ξ/∂x)T · F(u),

B∗(u).∇ξu := ∆tB(u). (∂ξ/∂x)T ∇u, S∗(u) := ∆tS(u). (4.4)
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and where ∇ξ = ∂ξ/∂x · ∇. Next the multiplication of (4.3) with a space-time test

function θk = θk(ξ, τ) and subsequent integration over the space-time reference control

volume TE × [0; 1] yields

1∫
0

∫
TE

θk
∂u

∂τ
dξ dτ +

1∫
0

∫
TE

θk∇ξ · F∗h (u) dξ dτ

+

1∫
0

∫
TE

θkB
∗
h(u).∇ξu dξ dτ =

1∫
0

∫
TE

θkS
∗
h(u) dξ dτ . (4.5)

Mimicking (4.2), we introduce the discrete space-time solution of equation (4.5), denoted

by qh, as well as the corresponding ones for the flux, non-conservative part and the source

term i.e.

qh = qh(ξ, τ) = θlq̂l . F∗h = F∗h(ξ, τ) = θlF̂
∗
l ,

B∗h = B∗h(ξ, τ) = θlB̂
∗
l , S∗h = S∗h(ξ, τ) = θlŜ

∗
l , (4.6)

moreover

∇qh = ∇qh(ξ, τ) = ∇θl q̂l . (4.7)

A very convenient choice for our nodal basis associates the degrees of freedom for the

fluxes and the point–wise evaluation of the physical fluxes, that is

F̂∗l = F∗(q̂l), B̂∗l = B∗(q̂l), Ŝ∗l = S∗(q̂l). (4.8)

As already said this predictor step remarkably neglects the effect of neighbor cells, and,

as such an integration by part of (4.5) is relatively simple (notice the integration by part

of the first term taking into account qh(ξ, τ = 0) = uh(ξ)):∫
TE

θk(ξ, 1)qhdξ −
∫
TE

θk(ξ, 0)uhdξ −
1∫

0

∫
TE

∂θk
∂τ

qhdξ dτ

 +

1∫
0

∫
TE

θk∇ξ · F∗h dξ dτ

+

1∫
0

∫
TE

θkB
∗
h.∇ξqh dξ dτ =

1∫
0

∫
TE

θkS
∗
h dξ dτ. (4.9)

50



Substituting (4.6) and (4.7) into (4.9) we obtain the equation to be solved to get access

to a valid predictor [45, 84, 57]∫
TE

θk(ξ, 1)θl(ξ, 1) dξ −
1∫

0

∫
TE

∂θk
∂τ

θldξ dτ

 q̂l =

∫
TE

θk(ξ, 0)Φl dξ

 ûnl −

 1∫
0

∫
TE

θk∇ξθldξ dτ

F∗(q̂l)

+

 1∫
0

∫
TE

θkθl∇θj dξdτ

 B̂∗(q̂l)q̂j +

 1∫
0

∫
TE

θkθl dξdτ

 Ŝ∗(q̂l) (4.10)

Equations (4.10) corresponds to a nonlinear system to be solved in the unknown expansion

coefficients q̂l of the local space-time predictor solution. The terms ûnl are known degrees

of freedom from the DG polynomial at tn [45, 84].

4.3.2. Fully discrete one-step ADER-DG scheme

The spacetime predictor qh obtained by means of (4.10) is not a solution of the PDEs

at time level tn+1. Therefore a fully discrete one-step ADER DG step [55, 143, 122], will

now couple the current cell and its neighbors. Following the classical DG framework we

multiply the governing PDE (1.1) by a test function Φk ∈ Uh, identical to the spatial

basis functions for convenience. Then we integrate over the space-time control volume

Ti×[tn; tn+1], noticing that an integration by part in space is applied to the flux divergence

term in order to separate flux terms involving neighbor interaction from terms local to

the current cell. This yields

tn+1∫
tn

∫
Ti

Φk
∂uh
∂t

dxdt+

tn+1∫
tn

∫
∂Ti

Φk F (uh) · n dSdt−
tn+1∫
tn

∫
Ti

∇Φk · F (uh) dxdt

+

tn+1∫
tn

∫
Ti

ΦkB(uh).∇uhdxdt =

tn+1∫
tn

∫
Ti

ΦkS(uh)dxdt, (4.11)

where n is the outward pointing unit normal vector on the boundary ∂Ti of element Ti.

The second term of (4.11) is computed through the solution of a Riemann problem which

guarantees the upwind character of the method [35, 34, 33, 32, 36]. In this work we have

only considered the simple and robust Rusanov (local Lax Friedrichs) flux [129], denoted

as G. Note that it is not a limitation of the method and other more advanced numerical
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fluxes could be considered.

It is utterly important that the time integration of the terms of (4.11) are performed

to the desired order of accuracy. This is the reason for the existence of the local space-

time predictor qh allowing to compute the numerical flux function as G
(
q−h ,q

+
h

)
and the

physical flux of the third term as F (qh). We emphasize that q−h and q+
h are the left and

right states of the Riemann problem.

Moreover after substitution of uh (4.2) in the first term of (4.11) we obtain the following

arbitrary high order accurate one-step Discontinuous Galerkin (ADER-DG) scheme as∫
Ti

ΦkΦldx

(ûn+1
l − ûnl

)
+

tn+1∫
tn

∫
∂Ti

Φk G
(
q−h ,q

+
h

)
· n dSdt

−
tn+1∫
tn

∫
Ti

∇Φk · F (qh) dxdt+

tn+1∫
tn

∫
∂Ti

ΦkD−
(
q−h ,q

+
h ,n

)
dsdt

=

tn+1∫
tn

∫
Ti

ΦkS(qh)dxdt, (4.12)

where q−h denotes the boundary extroplated value from within ∂Ti whereas q+
h is the one

from the neighbor cell. The jumps in qh at the element boundaries are resolved by a

path-conservative method that defines a weak derivative in the sense of a Borel measure

by means of jump terms D−
(
q−h ,q

+
h ,n

)
which still remain to be defined [95, 151, 118, 25,

111, 24, 126, 63, 64, 50]. More precisely we use the Dal Maso–Le Floch–Murat theory [108]

where the non-smooth part of the non-conservative term is defined as a Borel measure

and the smooth part is integrated classically. For the known limitations and deficiencies

of path-conservative schemes see [2, 27]. Consequently D− is defined as a function so that

D− (q,q,n) = 0 and

D−
(
q−h ,q

+
h ,n

)
+D−

(
q+
h ,q

−
h ,−n

)
=

1∫
0

B
(
Ψ(q−h ,q

+
h , s).n

) ∂Ψ

∂s
ds, (4.13)

where in this work a simple linear path is considered: Ψ(q−h ,q
+
h , s) = q−h + s(q+

h − q−h ).

A purely numerical integration is used to define the integral in the previous equation as

described in [47, 63].

Finaly at the end of the timestep we have computed the new solution u∗h(x, t
n+1) starting

from data at tn uh(x, t
n).
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4.3.3. Timestep restriction, high order of accuracy, sub-cell

resolution and a posteriori stabilization

The Courant-Friedrichs-Lewy (CFL) restriction imposed by the ADER-DG scheme in

multiple space dimensions is restricted as [94]

∆t ≤ 1

d

1

(2N + 1)

h

|λmax|
, (4.14)

where h and |λmax| are a characteristic mesh size and the maximum signal velocity, re-

spectively. The factor 2N + 1 in the time step is tremendously restrictive particularly in

multi-dimensions (d = 2 or 3). This has to be balanced with the fact that a DG scheme

can achieve sub-cell resolution on coarse grid. Obviously, this statement is only true if

the DG scheme is able to maintain an overall stability and, at the same time, maintain-

ing the sub-cell resolution. Indeed the nominal space and time order of accuracy of the

ADER-DG scheme depicted in these sections is N + 1 if the underlying solution remains

smooth enough. The DG scheme as it is described is a so-called unlimited scheme which,

obviously can not handle steep gradients or a discontinuity (shock, contact, etc.) due

to the Gibbs phenomenon leading to spurious numerical oscillations, and, ultimately to

code crash. Consequently it is mandatory to design some sort of numerical dissipation

mechanism (sometimes called limiter, artificial viscosity, etc.) to spread those oscillations

before they grow unexpectedly. Because the main advantage of a DG scheme compared

to a high order finite volume one is its ability to achieve sub-cell resolution even on coarse

grids, the design of the dissipative mechanism is of great importance to maintain this

property. Here we employ the new a posteriori sub-cell limiter designed, developed and

validated in [66] which is briefly recalled in the following section.

4.4. A posteriori sub-cell stabilization: detection and

ADER-WENO recomputation

The discrete representation of the solution within a general cell Ti at the beginning of the

time step is denoted uh(x, t
n). At the next time level tn+1 we first calculate a so-called

candidate solution, denoted as u∗h(x, t
n+1), which results from the unlimited ADER-DG

scheme previously described. From these data the a posteriori sub-cell limiter will act in

two stages [66]:

1. Detect troubled cells in the candidate solution, that is at tn+1, which are not ac-

ceptable given physical and numerical criteria,
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2. Re-compute these troubled cells with a robust Finite Volume (FV) type of scheme

acting on a large number of sub-cells as to conserve the subcell resolution properties

of the DG scheme.

These stages are described in details in the following section 4.4.1 and 4.4.2, respectively.

4.4.1. Detection criteria

The appearence of possible spurious oscillations due to the effect of Gibbs phenomenom

renders the candidate solution not acceptable everywhere in the numerical domain. Our

sub-cell limiting strategy, like any limiting strategy, must design a mechanism to detect

troubled/problematic/bad cells. Therefore a number of detection criteria are deviced in

order to promote the candidate solution in good cells to acceptable. As already mentioned

in the Multi-dimensional Optimal Order Detection (MOOD) approach [31, 40, 41, 103]

from which our limiter is inspired, the detection of troubled cells is based on physical

considerations and it mostly consists of checking if u∗h(x, t
n+1) verifies some physical ad-

missibility constrains for the cell Ti which are dictated by the system of PDEs. In the

Baer-Nunziato model Eq. (1.33) physical admissibility is more demanding as it requires

the positivity of ρ1, ρ2, e1, e2, p1, p2 and the boundedness of α1: 0 ≤ α1 ≤ 1. Note that

the bound preservation of α1 is assured thanks to α1 +α2 = 1. Finally, if the curvature κ

is large enough, that is the difference between the maximal and minimal local curvature is

larger than the characteristics length of the cell, then the cell is considered as problematic

because the surface tension force will need extra care. These criteria are referred to as

Physical Admissibility Detection criteria (PAD).

The second set of detection criteria deals with numerical issues and is refered to as Nu-

merical Admissibility Detection criteria (NAD). NAD rely on relaxed discrete maximum

principle expressed for polynomials uh as

min
y∈Vi

(
uh(y, t

n)
)
− δ ≤ u∗h(x, t

n+1) ≤ max
y∈Vi

(
uh(y, t

n)
)

+ δ ∀x ∈ Ti , (4.15)

where the set Vi contains the current cell Ti and the cells sharing at least a common node

with Ti. (4.15) expresses the fact that the polynomial representing the candidate solution

u∗h(., t
n+1) in cell Ti must remain between the minimum and the maximum values of the

polynomials representing the solution at the previous time step uh(., t
n) in the set Vi.

The small number δ in (4.15) is a parameter used to relax the maximum principle thus

allowing for small undershoots and overshoots which permits to maintain a good accuracy
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when dealing with smooth extrema. The value used in [66] and adopted in this work is

δ = ε

(
max
y∈Vi

(
uh(y, t

n)
)
−min

y∈Vi

(
uh(y, t

n)
))

, (4.16)

with ε = 0.001. In other words, parameter δ defined by (4.16) allows the occurrence of

new extrema the values of which do not exceed one thousandth of the local jump present

at tn in the neighborhood of the current cell.

In practice, if a cell does not fulfill the PAD criteria, then it is flagged as problematic and

must be recomputed. Next the NAD criteria are tested for the remaining cells which may

or may not be flagged as problematic. The result of this step is a list of problematic cells

along with a patch of surrounding neighbor cells; these form the so-called troubled cells.

In this approach, physical and the numerical criteria are totally independent. Conse-

quently the relaxation of the maximum principle never affects the positivity of the so-

lution. More important, the detection is performed at time level tn+1 whereas classical

indicators typically use information from one time level, generally tn. This subtle but

crucial difference allows for a simple observation of problems which have occurred during

the timestep, contrarily to classical limiting strategy using tn data which must solve the

more difficult problem of predicting their occurrence.

4.4.2. Sub-cell ADER-WENO recomputation

Considering one cell Ti of the list of troubled cells obtained from the detection step,

we pave Ti with a sub-grid made of (Ns)
d sub-cells Si,j, with j = 1, · · · , (Ns)

d, where

Ns = 2N + 1. An alternative data representation vh(x, t
n) onto the sub-cells expressed

by a set of piecewise constant sub-cell averages vni,j, computed as the L2 projection of uh

onto Si,j as:

vni,j =
1

|Si,j|

∫
Si,j

uh(x, t
n)dx =

1

|Si,j|

∫
Si,j

φl(x)dx ûnl , ∀Si,j ∈ Si , (4.17)

where we denote by Si =
⋃
j Si,j the set of the sub-grid cells, i.e. the sub-cells. Following

[66] the choice Ns = 2N + 1 is doubly motivated. On the one hand, this choice, by

construction, guarantees that the timestep of the ADER-DG scheme on the main grid

computed by (4.14) matches the timestep of the finite volume scheme on the sub-grid.

As a consequence there is no need for extra manipulation such as local time-stepping

technique. On the other hand, the choice Ns = 2N + 1 leads to the maximum admissible

CFL number, thus minimizing the error, which scales as (1−CFL) for the linear advection

equation [56]. Using the new data representation vh(x, t
n) (i.e. piecewise constant data
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vni,j on sub-cells) as initial conditions, the discrete solution at time tn+1 is re-compued by

means of a robust finite volume type of scheme on the sub-grid. Any scheme from the finite

volume family can be considered as long as it is robust for the system of PDEs considered;

1st order FV, 2nd order TVD, 3rd/5th order WENO, etc. In this work we adopt a third

order ADER-WENO scheme [51, 52, 45, 11, 58, 50]. Because the ADER-DG (main grid)

and ADER-WENO (sub-grid) are one-step temporal schemes, the total amount of MPI

communications is greatly reduced compared to traditional schemes requiring substages,

such as Runge-Kutta schemes. Once a robust sub-cell solution vh(x, t
n+1) for all sub-cells

of the troubled cells has been recomputed, the DG polynomial on the main grid must be

recovered. This is achieved by requiring that the sub-cell solution vn+1
i,j in Si,j be equal to

the L2 projection of the unknown DG polynomial uh(., t
n+1) onto Si,j∫

Si,j

uh(x, t
n+1) dx =

∫
Si,j

vh(x, t
n+1) dx, ∀Si,j ∈ Si . (4.18)

The previous equation is equivalent to solving∫
Si,j

φl(x)dx ûn+1
l = vn+1

i,j , ∀Si,j ∈ Si , (4.19)

which is a standard reconstruction problem arising both within the finite volume context

as well as for spectral finite volume methods [156, 100, 155]1.

4.5. AMR framework

In this section we briefly describe the AMR framework which is exhaustively described

in [159]. Due to its simple tree-type structure and for its more general formulation, we

have adopted the cell-by-cell strategy for which each cell is individually refined. This

framework is particularly well suited for the local space-time DG predictor and the fully

discrete one-step ADER-DG scheme. First of all the DG predictor acts on every active

cell without exchanging any information with neighbors, second, the ADER-DG scheme

has a direct unstructured non-conforming grid interpretation in the presence of different

levels of grid refinement between two adjacent cells. By defining the maximum level of

refinement `max, each level of refinement is indicated by ` such that 0 ≤ ` ≤ `max. We are

therefore considering up to `max overlaying uniform lattices, whose cells are activated only

1In the case a cell is marked as troubled for the subsequent timestep we keep the sub-cell data vh(x, tn+1)

obtained from the ADER-WENO finite volume scheme of the previous time step to avoid extra L2

projection. If the cell is no more problematic then the sub-cell data are canceled.
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if necessary. Every cell is labeled by a positive integer number m and can be denoted as

Cm, with m ≤ Ne, where Ne is the (time-dependent) total number of the cells. Moreover,

each cell of a given `-th level has one status Σ among three possible ones:

• Σ = 0 for active cells updated with the finite element ADER-DG scheme described

in Section 4.3.2;

• Σ = 1 for virtual children cells, or virtual children, updated according to standard

L2 projection of the high order polynomial of the so-called mother cell at level

(`− 1)-th;

• Σ = −1 for virtual mother cells, or virtual mothers, updated by averaging recursively

the children of the upper refinement levels, from the (` + 1)-th to the level of the

corresponding active children.

Whenever Cm is refined, it generates rd children, such that

∆x` = r ∆x`+1, ∆y` = r ∆y`+1, ∆z` = r ∆z`+1 , (4.20)

where r is the so-called refinement factor. The time steps can be chosen locally (see

[53, 144, 102]) depending on the refinement level, such that ∆t` = r∆t`+1, to increase the

performance.

Like for any AMR technique we design a criterion to flag any given active cell Cm as a

cell requiring refinement or recoarsening. We therefore introduce a refinement diagnostics

function χm, built according to [98, 109, 159], which involves up to the second order

derivative of an indicator function Φ, i.e.

χm(Φ) =

√√√√√√√√√
∑
k,l

(
∂2

∂xk∂xl
Φ

)2

∑
k,l

[( ∣∣∣∣ ∂Φ

∂xk

∣∣∣∣
i+1

+

∣∣∣∣ ∂Φ

∂xk

∣∣∣∣
i

)/
∆xl + ε

∣∣∣∣ ∂2

∂xk∂xl

∣∣∣∣ |Φ|]2 . (4.21)

The sum
∑

k,l is intended to be the double summation over all the spatial directions,

so that cross derivatives contributions are properly taken into account. The refinement

diagnostics (R) is built as

(R)

{
χm > χref then Cm needs refinement ,

χm < χrec then Cm needs recoarsening .
(4.22)
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The free parameters are Φ = Φ(u) a generic function of the conservative variables, χref,

χrec upper and lower bounds and ε a filter-parameter that avoids unnecessary mesh-

refinement in regions affected by wiggles. In this work we have used Φ(u) = ρ1α1 +

ρ2α2, χref and χrec are typically chosen in the range ∼ [0.2, 0.25] and ∼ [0.05, 0.15],

respectively, and ε = 0.01. Full details about the implementation, the parallelization and

the incorporation of the sub-cell limiter are available in [58, 50, 159].

4.6. Curvature computation

At first glance the computation of a curvature given the volume fraction function φ(x)

may seem relatively simple by following Perrigaud et al. [121] and this formula has been

applied in section 2.4.2 as follows:

κ = ∇.m = ∇.
(
∇φ
‖∇φ‖

)
. (4.23)

In order to formally derive two times φ, enough numerical smoothness is needed to avoid

spurious oscillations. This is the main reason why several authors, instead of using func-

tion φ in (4.23) rather use a so-called color function c which is a smoothed enough version

of φ. Obviously the devil lies in the details on how c is computed and how spurious

oscillation on m and later κ could be avoided. Facing the same problem we have chosen

to rely on a color function initially defined by

c(x, t = 0) = f(φ(x, t = 0)), (4.24)

where f = erf function. This color function evolves as φ with the interface velocity and

is considered as an extra variable to our system of PDEs

∂

∂t
c+ vI∇c = ν(p1 − p2). (4.25)

As already described in the a posteriori sub-cell stabilization section 4.4, any cell capturing

the interface between the two phases is detected as a troubled cell. As a consequence the

starting data are not exactly the DG polynomial in cell Ti but the finite volume data on

sub-cells Si,j located in the vicinity of Ti, ci,j ∈ P0(Si,j). Because a 3rd order WENO

scheme is used in the sub-cell, we have access to the reconstruction c ∈ P2(Si,j) in each

sub-cell. From these sub-cell polynomials we increase the regularity by reconstructing

c̃i,j ∈ P4(Si,j). Next we formally derive c̃i,j as m = (m1,m2,m3)t = ∇ c̃i,j/‖∇ c̃i,j‖ and

evaluate m for each xk which is a degree of freedom of the P2 basis. Therefore we have

access to m = (m1,m2,m3)t, mk ∈ P2(Si,j) in each sub-cell. Mimicking the treatment of
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c, we start again from m ∈ P2(Si,j) and reconstruct m̃ = (m̃1, m̃2, m̃3)t, m̃k ∈ P4(Si,j)

and, formally, apply the divergence operator to evaluate the curvature κ(x) = ∇.m̃(x)

for any point x ∈ Si,j. A threshold value of the curvature is used to cut too small/large

values, which in any case would have no effect on the timestep results but may lead in

unexploitable curvature evaluations.

κ =

{
κ if |κ| > κ0

0 else
(4.26)

where κ0 = (2N + 1)/L and L is the characteristic length of the sub-cell. In our approach

the access to a genuinely high order accurate polynomial description of φ and c in the main

cell of the DG scheme, or, in the sub-cell of the WENO scheme, is somewhat equivalent

to having an almost interface capturing method on a sub-cell based resolution. In other

words the interface between phases is never spread over more than one DG cell length,

rather it lives as a sub-cell entity (i.e. spread over a maximum of three to four sub-cells).

Consequently in our approach,the diffused interface can travel across one cell.

In order to assess this statement we perform several static and dynamic computations of

curvature starting from relatively simple but sharp initial interfaces. For these compu-

tations we plot the true WENO polynomials on the sub-cells for the interface function

φ, the color function c and the curvature κ. (In other word the true values which are

actually used in the numerical scheme are displayed.) The 7th order accurate ADER DG

scheme with 3rd order WENO a posteriori sub-cell limiting is used. This means that

the number of sub-cells per direction is 13 (i.e 2N + 1 with N = 6). The number of

initial cells in the domain is restricted on purpose to 15d with d the dimension of space
2. The following two tests are only designed to illustrate the behavior of this curvature

reconstruction algorithm. Numerical tests involving the full machinery to solve physically

relevant problems will be proposed in the next section.

4.6.1. Test #1: static curvature computation

Let us initialize a simulation with an ellipsoidal interface centered at the origin and

elongated in the x direction

φ(x) = ax2 + by2 + cz2. (4.27)

In this section, we first verify the computation, which corresponds to an ellipse in 2D

(a = 4, b = 16, c = 0). In Figure 4.1 are presented the initial data φ and the associated

2We have observed better results with higher resolution, however the main reason why using a DG

scheme is to explicitly avoid employing ultra fine meshes.
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computed curvature κ and limiter in this computation (recall that the red DG cells are

limited, hence treated with a sub-cell finite volume scheme). The plotted data are the

true DG P6 polynomials and not a mean value of those polynomials in the cells. The last

panel presents a zoom on the mesh and number of degree of freedom in DG cell (sub-

mesh in blue cells). On the same figure we plot for limited cells (red) the actual sub-cell

resolution used for the FV scheme. As expected the representation of the polynomials in

the sub-cells is almost continuous and symmetric with correct values for the interface as

well as for the ellipse. Note that the color function is a diffused version of the interface

data.

4.6.2. Test #2: simple dynamic curvature computation

In this test one starts from the 2D ellipse initialized in the previous test and let it evolve

in time to retrieve a cylindrical shape as the surface tension force acts. We do not

measure the physical validity of the results (this will be studied in the numerical section

later), only do we observe the evolution of the discrete curvature to assess that our sub-

cell computation does not destroy its shape, and, more important, is able to advect the

interface across one coarse DG cell. In Figure 4.2 we present several snapshots in time of

the volume fraction of the solid phase. The snapshots are at early time apart from the last

one which show the volume fraction at late time after several oscillations. As expected

the bubble adopts an oscillatory motion, deforming from an x aligned ellipse into a y

aligned one and vice-versa. We observe that there is little diffusion of the interface, i.e.

it is captured at sub-cell level. Moreover an almost symmetry preservation is observed as

the simulation marched in time even if the interface endures significant distorsion which

are non-aligned with the main directions of the mesh. In Figure 4.3 are shown the limiter

values: red cells are treated with the subcell limiter and we observe that the curvature

computation takes place within these cells. Note that other cells away from the interface

may also be detected as problematic but this does not affect the overall scheme. At later

time (right panels) the interface is still well captured and not extremely diffused. The top

panels present the DG cells which are not limited in blue and, in red, the FV sub-cells.

The middle panels show a 3D view where the elevation corresponds to the solid volume

fraction and the color to the limiter at the same intermediate times than for the top

panels. We clearly observe that the interface is properly captured within one DG cell.

Last, the bottom panels show the solid volume fraction in color and elevation along with

the underlying resolution.
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Figure 4.1.: Curvature computation in the case of a static initial 2D ellipsoidal bubble.

Top-left: solid volume fraction. Top-right: curvature. Bottom-left: limiter.

Bottom-right: zoom on the mesh (thick line), number of degree of freedom in

DG cell (submesh in blue cells) and true sub-cell resolution used in limited

red cells.
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Figure 4.2.: Curvature computation in the case of an evolving 2D initial ellipsoidal bubble.

Solid volume fraction. From top-left to bottom-right intermediate times. Last

panel is at later time after several oscillations.
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Figure 4.3.: Curvature computation in the case of an evolving 2D initial ellipsoidal bubble.

Limiter value (color) and solid volume fraction (elevation). Right panels are

at later time after several oscillations whereas the first two are after one

oscillation. Bottom panels present a zoom on the submesh and of the solid

volume fraction to show the underlying resolution.
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5. Numerical Results

In this chapter we show numerical results for the numerical methods presented in this

thesis.

5.1. One-dimensional tests

5.1.1. TVD finite volume schemes.

In this section, we first verify our scheme on simple one-dimensional shock tube problems.

In particular, we verify if our scheme is able to maintain a bubble in equilibrium according

to the Young-Laplace law. For simplicity, we used the initial conditions for the Riemann

problems provided in [62], but including surface tension and a constant (prescribed) value

of the curvature. The data used for the 1D Riemann problems (RP) are given in Table

5.1. The five test problems are solved in the spatial domain [0, 1] using 400 cells and

the Courant-Friedrichs-Levy (CFL) number is taken as CFL= 0.9. For these 1D test

problems, viscosity, gravity and relaxation terms have been neglected.

The numerical results with the new generalized Osher-type scheme (3.11) are compared

with the path-conservative Rusanov-type scheme (3.10) and with the path-conservative

Roe-type scheme (3.12), see [129, 127, 25, 119, 28, 47, 64, 65]. For the test RP1, the value

of the surface tension σ and the curvature κ are constant, but the initial pressures of the

two fluids are not consistent with the Young-Laplace condition, hence the complex wave

structure of the Riemann problem for the BN system develops, consisting of shocks and

rarefaction waves in both phases, together with the material contact wave. The numerical

results are shown in Figure 5.1. For test RP2 and RP4, without the surface tension effect,

the system becomes the original Baer-Nunziato model, and the numerical results are seen

in Figure 5.2 and Figure 5.4, respectively. Its behavior is in agreement with the solutions

observed in [62], where also a comparison with the exact Riemann solvers [5, 137, 39] has

been provided. In the test RP3 and test RP5, the value of the surface tension σ and the

curvature κ are constant, like in test 1, but the pressure jump at the interface this time

obeys the Young-Laplace equation. The numerical solutions are shown in Figure 5.3 and
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RP ρ1 u1 p1 ρ2 u2 p2 α1 te

RP1 γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0 σ = 1 κ = −1

L 1.0 0.0 1.0 0.5 0.0 1.0 0.4 0.15

R 2.0 0.0 2.0 1.5 0.0 2.0 0.8

RP2 γ1 = 3.0 π1 = 100 γ2 = 1.4 π2 = 0 σ = 0 κ = −1

L 800.0 0.0 500.0 1.5 0.0 2.0 0.4 0.15

R 1000.0 0.0 600.0 1.0 0.0 1.0 3.0

RP3 γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0 σ = 1 κ = −1

L 2.0 0.0 2.0 1.0 0.0 1.0 0.9 0.15

R 2.0 0.0 2.0 1.0 0.0 1.0 0.1

RP4 γ1 = 3.0 π1 = 3400 γ2 = 1.35 π2 = 0 σ = 0 κ = −1

L 1900.0 0.0 10.0 2.0 0.0 3.0 0.2 0.15

R 1950.0 0.0 1000.0 1.0 0.0 1.0 0.9

RP5 γ1 = 3.0 π1 = 3400 γ2 = 1.35 π2 = 0 σ = 1 κ = −1

L 1900.0 0.0 2.0 1.0 0.0 1.0 0.99 0.15

R 1900.0 0.0 2.0 1.0 0.0 1.0 0.01

Table 5.1.: Initial state left(L) and right(R) for the Baer-Nunziato problem solved in 1D

with the surface tension effect.

Figure 5.5. We find that the initial constant density and pressure profiles are perfectly

maintained. The detailed L∞ errors for the velocities of both phases are reported in Table

5.2 for both cases and for various machine precisions. We find that the error is always

close to the chosen machine accuracy. From these results we observe numerically, that our

path-conservative scheme is well-balanced up to machine precision for the Baer-Nunziato

system including the surface tension effect. In other words, our scheme is well-balanced

for a steady circular bubble in equilibrium, if the exact curvature κ and the pressure jump

according to the Young-Laplace law (1.61) are prescribed, and if the interface is exactly

located on an edge of the computational grid.

5.1.2. Path-conservative HLLEM-type scheme.

In this section, like in section 5.1.1 we first verify our scheme on simple one-dimensional

shock tube problems. The data used for the 1D Riemann problems (RP) are given in

Table 5.1. The five test problems are solved in the spatial domain [0,1] using 400 cells

and the Courant-Friedrichs-Levy (CFL) number is taken as CFL = 0.9. A constant factor

ϕ = 1 is taken for the HLLEM Riemann solver, hence the flattener is not used here. The

numerical results obtained with the new HLLEM-type scheme are compared with the
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Figure 5.1.: Numerical results for the two phase RP1 at time t = 0.15 s.
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Figure 5.2.: Numerical results for the two phase RP2 at time t = 0.15 s.
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Figure 5.3.: Numerical results for the two phase RP3 at time t = 0.15 s.

69



Figure 5.4.: Numerical results for the two phase RP4 at time t = 0.15 s.

70



Figure 5.5.: Numerical results for the two phase RP4 at time t = 0.15 s.
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Case RP3 L∞ error u1 L∞ error u2

Single precision REAL(4) 1.0714515 10−6 1.7865468 10−6

Double precision REAL(8) 1.3435343 10−15 2.5479857 10−15

Quadruple precision REAL(16) 1.4892956 10−33 2.1358886 10−33

Case RP5 L∞ error u1 L∞ error u2

Single precision REAL(4) 1.2037556 10−5 5.4810471 10−6

Double precision REAL(8) 2.3044841 10−14 1.1247634 10−14

Quadruple precision REAL(16) 1.3201379 10−32 7.8649468 10−33

Table 5.2.: Numerical verification of the exact well-balanced property of the DOT Rie-

mann solver for the steady bubble in equilibrium in 1D for different machine

precisions. The L∞ errors refer to the velocities of the two phases u1 and u2,

respectively. In both tests the exact curvature κ = −1 and the exact pressure

jump ∆p = σκ have been prescribed.

Rusanov scheme [129] and the new Osher-type scheme of Dumbser and Toro [65, 64]. The

numerical results like in section 5.1.1, for RP1, the value of the surface tension σ and the

curvature κ are constant but the pressure jump is not consistent with the Young-Laplace

principle. In RP2 and RP4 without the surface tension effect, the system becomes the

original Baer-Nunziato system. For Riemann problems RP3-RP5, we confirm that the

new HLLEM-type scheme satisfies the pressure equilibrium condition under the surface

tension effect exactly at the discrete level. In other words, our scheme is well-balanced for

the bubble in equilibrium, if the exact curvature and pressure jumps are prescribed, and

if the interface is exactly located on an edge of the computational grid. The numerical

results of RP1-RP5 are shown in Figure 5.6.

5.2. Two dimensional tests

5.2.1. TVD finite volume schemes on a two dimensional Cartesian

grid

In this section, various two-dimensional test problems are solved according to some test

cases proposed in the literature, see [121]. In the first test, we run a numerical mesh
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Figure 5.6.: Numerical results for Riemann problems RP1-RP5 (from top to bottom).

Left: Solid density ρ1. Right: Gas density ρ2.

convergence study for a static droplet in equilibrium. The second test considers the

oscillation of a deforming droplet under surface tension effect, but without gravity. In

the third test, the dynamics of an initially wall-bound droplet with gravity and surface

tension effects are considered. Finally, we consider the influence of viscosity, gravity and

surface tension on the rising of a gas bubble. The CFL number is taken as CFL = 0.45

for all 2D test problems.

5.2.1.1. Steady bubble in equilibrium and numerical mesh convergence study

In this section, the numerical results will be confirmed as follows:

We first carry out a mesh convergence study, in order to validate our path-conservative

Osher-type scheme for the Baer-Nunziato system with surface tension effects. The initial

condition is given as follows: a circular bubble with an initial radius of R = 0.15 is

centered at (0.5, 0.5). The computational domain is defined as Ω = [0, 1] × [0, 1], which

is discretized with a two-dimensional Cartesian grid. The parameters of the liquid phase

1 are γ1 = 2.4 and π1 = 107, and the parameters of the gas phase 2 are γ2 = 1.4 and

π1 = 0. Both phases are initially at rest, i.e. u1 = u2 = 0. We furthermore set ρ1 = 1000,

ρ2 = 1 and σ = 200. The exact pressure jump based on the Young-Laplace principle is

∆p = σκ = 1333.33. The pressures are initialized with p2 = 1 and p1 = p2 + ∆p. The

error norms refer to the pressure jump (∆p = σκ), and the error norm in L2 norm is

computed from the numerical pressure jump ∆ph as

ε =

√
1

∆P

∫
Ω

(∆p−∆ph)2dxdy, (5.1)
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Grid ∆ph [Pa] ε [Pa] tCPU [s]

70×70 1329.5 0.0306 12760.52

100×100 1307.7 0.0299 37153.31

120×120 1312.0 0.0254 64244.35

150×150 1329.7 0.0219 124831.52

Table 5.3.: Numerical convergence results for the compressible Baer-Nunziato equations

with surface tension using the DOT Riemann solver. The error norms refer to

the pressure jump at time t = 0.5 s.

For this test problem, the curvature is computed numerically according to (2.40). The

resulting numerical convergence rates are given in Table 5.3 at a final time of tf = 0.5.

From the results reported in Table 5.3 we find that the error norms decrease with an

increasing number of grid cells, while the CPU time increases for finer meshes. In Figure

5.7, we also show the final pressure field of the mixture pressure p = α1p1 + α2p2, and

its dependence on the mesh size in 2D using the path-conservative finite volume scheme

based on the DOT solver (3.11).

If we repeat this test problem on a 100 × 100 grid and now prescribe the exact value

of the curvature κ = 1/R together with the exact pressure jump ∆p = σκ, the steady

bubble in equilibrium is preserved up to machine precision. In double precision arith-

metics, the error norms obtained for the absolute values of the velocities in L∞ norm

after 17216 time steps at the final time t = 0.5 are max(|u1|) = 2.0120619 · 10−12 and

max(|u2|) = 6.7706877 · 10−12, respectively. This confirms that our path-conservative

finite volume method is also well-balanced for the steady bubble in equilibrium in the

two-dimensional case, if the exact values of the curvature and the pressure jump are

prescribed. We thus can conclude, that the errors reported in Table 5.3 are due to the

numerical errors produced in the discrete curvature computation (2.40) and not due to

the path-conservative scheme (2.33) used to discretize the governing PDE system.

5.2.1.2. Droplet oscillation

Here, we consider the oscillation of an initially elliptic droplet due to the effect of surface

tension at the interface of two immiscible fluids. We are particularly interested in the

temporal evolution of the total kinetic energy and the oscillation period. For the initially

ellipsoidal shape of the droplet that separates phase 1 from phase 2, we use the same
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Figure 5.7.: 3D surface plot for the mixture pressure obtained with a path-conservative

Osher-type scheme corresponding to four different mesh sizes listed in Table

5.3.
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equation given in [121]:
(x− 0.5)2

0.22
+

(y − 0.5)2

0.122
= 1.

We use the square domain Ω = [0, 1]× [0, 1]. The liquid phase inside the droplet has the

thermodynamic parameters γ1 = 2.4, π1 = 107 and density ρ1 = 100. The gas phase is

the surrounding air, which is an ideal gas. The properties of the ideal gas are γ2 = 1.4,

π2 = 0 and ρ2 = 1. The surface tension coefficient is σ = 342. The number of cells for

our simulation is 111×111, and we apply no slip wall boundary conditions on all domain

boundaries. The volume fraction is α1 = 0.99 inside the droplet and α1 = 0.01 outside.

The initial velocities are u1 = u2 = 0 and the initial pressure is set to p1 = p2 = 1000

everywhere in the computational domain. Due to the surface tension effect, the droplet

starts to oscillate from the initially ellipsoidal shape to a circular intermediate shape

and back to an ellipsoidal one, see the sketch in Figure 5.8. The oscillation is due to

the transfer between the potential energy of the interface and the kinetic energy of the

fluid. As suggested in [121], the surface tension coefficient is set to zero for the first three

time steps, and a diffusive Riemann solver (Rusanov scheme) is used. This is in order

to spread the interface over several cells in order to allow an accurate computation of

the curvature κ according to (2.40). We call this preprocessing technique initial artificial

interface diffusion method (ADNM). The difference in the numerical results with and

without the use of this initial ADNM treatment are reported in Figure 5.9.

According to the Rayleigh formula [123] and [74], in the two dimensional case the

oscillation frequency of the droplet is given as:

ω2 = (o3 − o) σ

(ρ1 + ρ2)R3
, (5.2)

where ρ1, and ρ2 are the liquid and the gas density, respectively, o is the oscillation mode,

R is the equilibrium drop radius and σ is the surface tension coefficient. The oscillation

period can then be computed as

T =
2π

ω
. (5.3)

Here, we have R = 0.15825 and o = 2, according to [121], hence the exact period is

T = 0.0878. From Figure 5.8 and Figure 5.9, we can estimate the numerical period as

T = 0.09031. The error is about 3% in our case, while the error was about 2% in [121]

and 4% in [104] on a 128×128 grid.

5.2.1.3. Dynamics of a droplet under gravity and surface tension forces

In this test we want to simulate the elongation and breakup of the falling of a water

droplet under surface tension and gravity effects. The physical parameters are as follows:
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Figure 5.8.: The oscillations of the droplet in time

Figure 5.9.: The oscillations of the droplet in time

a drop of initial radius R = 0.25 is located on the upper wall centered at [0.5, 1.6]. The

computational domain is defined by Ω = [0, 1]×[0, 1.5]. The fluid properties are : ρ1 = 103,

σ = 200, γ1 = 4.1, π1 = 5 × 107 for the phase 1 (liquid phase), and ρ2 = 1.17, γ2 = 1.4,

π2 = 0 for the phase 2 (the surrounding ideal gas). The gravity acting downwards is taken

to be g = (0,−25). Viscosity and relaxation effects are neglected. The initial velocities

are zero and the pressure obeys the Young-Laplace equation. The contact angle at the

wall boundary is taken equal to 25◦. The number of cells for our simulation is 205× 305.

The numerical results are computed in 125000 time steps up to t = 0.6 in physical time.

At the initial time, the water droplet is hung up on the upper wall as a spherical cap,

and then due to the gravity, the water droplet moves downward and quickly distorts the

spherical cap to an elongated sack-like structure. But a part of the cap still adheres to

the upper wall due to the surface tension effect. A filament is produced that connects

the cap on the upper wall with the downward moving droplet. Our numerical results for

the process of such a falling droplet under gravity and surface tension effects are shown

in Figure 5.10. They are in good qualitative agreement with numerical and experimental

results provided in [121].
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Figure 5.10.: Drop falling under gravity effect and break-up.

5.2.1.4. A rising gas bubble under buoyancy forces

In this section, we simulate a rising gas bubble due to the buoyancy force effect. The

shape of the bubble is dependent on viscosity, surface tension and gravity effects. The

computational domain is the rectangle Ω = [0, 1] × [0, 2], the initial position of the bubble

is [0.5, 0.5], the initial diameter is 0.5. The properties of the phase 1 are: ρ1 = 1000,

µ1 = 1.14× 10−3, γ1 = 2.1 and π1 = 2× 107. The properties of the phase 2 are: ρ2 = 1,

µ2 = 1.78 × 10−5, γ2 = 1.4 and π2 = 0. The surface tension coefficient is σ = 0.0728.

The gravity acceleration is taken to be g = (0,−9.8). Our computations were carried

out on a Cartesian mesh of size 100× 200. In this test, the surface tension is very small,

so the rising bubble is unstable due to the density and velocity differences, respectively.

In Figure 5.11, the numerical results are shown at six different times of t = 0, t = 0.2,

t = 0.3, t = 0.4, t = 0.5 and t = 0.65. The solutions are similar compared with the results

presented in [88, 97].
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Figure 5.11.: Interface positions in form of volume fraction contour (α2) for a rising 2D

bubble. Mesh size is 100× 200.
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5.2.1.5. Head-on Collision of Binary Drops

In this test case, we give an example of the simulation of the head-on collision of two

equally sized liquid drops moving at a relative velocity of 10. The computational domain

is the square Ω = [0, 1]× [0, 1] with four periodic boundary conditions, the initial diameter

of two equally sized droplets is 0.2, and they are initially located at points (0.3, 0.5) and

(0.7, 0.5), respectively. The properties of the drops are: ρ1 = 1000, µ1 = 1.14 × 10−3,

γ1 = 4.1 and π1 = 5 × 107. The properties of the gas are: ρ2 = 1.17, µ2 = 1.8 × 10−5,

γ2 = 1.4 and π2 = 0. The surface tension coefficient is σ = 831. The computational

domain is discretized on a Cartesian mesh of size 200 × 200. The initial pressure is P =

105 for both drops and gas, and gravity acceleration is neglected. The numerical results

were obtained by using a Osher-type scheme (DOT) at eight different times in Figure

5.12. At the initial time t = 0, the drops are located in two-diameter distance apart

from their centers, in the future time two approaching drops will be merged together

and obtained a head-on collision. The liquid keeps moving forward in lateral direction

away to get further expansion. Depending on the initial velocity and the surface tension

coefficient, the expansion may lead to a liquid filament formation and eventually breaking

up into discrete drops. Finally, after few cycles of oscillations between the elliptical and

the circular shape, a circular shape of the liquid will be established.

5.2.2. Path-conservative HLLEM-type scheme.

As shown above 5.2.1, the path-conservative finite volume method is a well-balanced

scheme for the steady bubble in equilibrium in the two-dimensional case. In this section,

we just show two numerical tests of the path-conservative HLLEM-type scheme as follows:

In the first test, we validate the numerical convergence with surface tension when a static

droplet is in equilibrium. In the second test, the dynamics of a droplet with gravity and

surface tension effects are considered. The CFL number is taken as 0.45 for all tests, and

a constant factor ϕ = 1 is taken in the HLLEM scheme, hence the flattener is not used

in the following simulations.

5.2.2.1. Numerical Convergence Results

To validate the new HLLEM-type scheme, a stationary droplet without gravity is simu-

lated, in order to test the static performance and evaluate the pressure jump across the

interface of two immiscible fluids. The initial conditions are chosen like in section 5.2.1.1.

The resulting numerical convergence rates are given in Table 5.4 at a final time of tf =
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Figure 5.12.: Transient flow visualization of a 2D binary drop collision. Mesh size is

200× 200.
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Rusanov HLLEM Osher

Grid ε tcpu ε tcpu ε tcpu

70×70 0.3056 1874.62 0.0335 7473.49 0.0306 12760.52

100×100 0.4479 5389.30 0.0195 21696.72 0.0299 37153.31

120×120 0.4456 9580.51 0.0157 37048.27 0.0254 64244.35

150×150 0.4218 18363.42 0.0125 72945.30 0.0219 124831.52

Table 5.4.: Numerical convergence results for the compressible Baer-Nunziato equations

with surface tension using three different numerical schemes. The error norms

refer to the pressure jump at time t = 0.5 s.

0.5. The results obtained with the new HLLEM-type Riemann solver are compared with

the Rusanov- and the Osher-type scheme. In Figure 5.13 we show the pressure field and

its dependence on the mesh size in 2D using the HLLEM-type scheme. From the CPU

times listed in Table 5.4, the Rusanov-type scheme is the most efficient one, but it is

also the least accurate scheme. Otherwise, the HLLEM-type scheme produces the lowest

errors and is computationally still very efficient. The last one, the Osher-type method

presented in [65, 64], is the most expensive scheme.

5.2.2.2. Dynamics of a droplet under gravity and surface tension forces

In this test we want to simulate the elongation and breakup of the falling of a water droplet

under surface tension and gravity effects. The initial conditions are chosen like in section

5.2.1.3. The process of a falling droplet under gravity and the surface tension effects are

shown in Figure 5.14 and is in good agreement with numerical and experimental results

provided in section 5.2.1.3 and [121, 21].

5.2.3. TVD finite volume schemes on a two dimensional

unstructured grid

5.2.3.1. Numerical convergence studies

In this section a numerical convergence study for the compressible BN model is performed

in two space dimensions. The test problem is similar to those presented in [49, 50, 62, 64].

In [49] the authors have derived for the BN model the equivalent of the smooth vortex

originally designed for Euler equations. This vortex is stationary and axisymmetric with

83



Figure 5.13.: 3D surface plot for the pressure obtained with the HLLEM-type Riemann

solver corresponding to four different mesh sizes listed in Table 5.4.
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Figure 5.14.: Drop falling under gravity effect and break-up.

no motion in the radial direction. Consequently continuity and energy equations are

fulfilled by construction. Following [49, 50, 62, 64] we choose

pk = pk0

(
1− 1

4
e

(
1− r2/s2

k

))
, (k = 1, 2) , (5.4)

φ1 =
1

3
+

1

2
√

2π
e−r

2/2 , (5.5)

the momentum equations can be solved to provide the velocity field as

uθ1 =
1

2s1D

√
rD
[
p10

(
4
√

2πF1 + 6H1 − 12Gs21 + 3H1s21

)
+ 3p20s21 (4G−H2)

]
, (5.6)

uθ2 =
r
√

2

2ρ2s2

√
ρ2p20F2 , (5.7)

where

Hk = e
−2r2 + r2s2

k − 2s2
k

2s2
k , Fk = e

−(r − sk)(r + sk)

s2
k , (k = 1, 2), (5.8)

and

G = e−r
2/2, D = ρ1

(
2
√

2π + 3G
)
. (5.9)

The vortex is further boosted along the diagonal of the computational domain through

a Galilean transformation of the velocity, with components ū = v̄ = 2. In this work we

85



Glocal time stepping (GTS)

Grid L1 error L2 error L1 order L2 order CPU time

24×24 3.4113E-02 7.557E-03 — — 4.20E+01

32×32 1.5411E-02 4.250E-03 2.0 2.0 7.28E+01

64×64 2.6149E-03 1.020E-03 2.6 2.1 4.12E+02

128×128 9.4785E-04 3.530E-04 1.5 1.5 2.17E+03

Local time stepping (LTS)

Grid L1 error L2 error L1order L2 order CPU time

24×24 3.4113E-02 7.557E-03 — — 4.84E+01

32×32 1.5411E-02 4.250E-03 2.8 2.0 8.39E+01

64×64 2.6810E-03 1.050E-03 2.5 2.0 3.28E+02

128×128 9.2190E-04 3.330E-04 1.5 1.7 1.97E+03

Table 5.5.: Numerical convergence results for the compressible Baer-Nunziato equations

with comparing global time stepping (GTS) with local time stepping (LTS) in

terms of errors. The error norms refer to the variable ρ1u1α1 at time t = 10.0.

have chosen the remaining free parameters as

γ1 = 1.4, γ2 = 1.35, π1 = π2 = 0, µ = λ = 0. (5.10)

ρ1 = 1, ρ2 = 2, p10 = 1, p20 =
3

2
, s1 =

3

2
, s2 =

7

5
. (5.11)

In this configuration the computational domain Ω = [−10; 10] × [−10; 10] enjoys four

periodic boundary conditions, in such a way that, the exact solution at time t=10 is given

again by the initial condition. The numerical convergence rates are computed for the

conservative variable Q1 = ρ1u1α1 at the final time t = 10.0 on a sequence of successively

refined meshes obtained by fixing a number of elements NG along each direction. The

numerical convergence results are showed in Table 5.5 with using both the global and

local time stepping algorithm, seeing that they also obtain the second order of accuracy.

In Table 5.5, we also make a comparison about CPU time for both GTS and LTS method.

5.2.3.2. 2D Riemann problems

In this section, we validate and compare the solutions of the the TVD finite volume

schemes on a two dimensional unstructured grid with time-accurate global time stepping

and local time stepping. For simple computations we use the compressible Baer-Nunziato

86



RP ρ1 u1 p1 ρ2 u2 p2 α1 te

RP1[38] γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0

L 1.0 0.0 1.0 0.5 0.0 1.0 0.4 0.10

R 2.0 0.0 2.0 1.5 0.0 2.0 0.8

RP2[38] γ1 = 3.0 π1 = 100 γ2 = 1.4 π2 = 0

L 800.0 0.0 500.0 1.5 0.0 2.0 0.4 0.10

R 1000.0 0.0 600.0 1.0 0.0 1.0 3.0

RP3[38] γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0

L 1.0 0.9 2.5 1.0 0.0 1.0 0.9 0.10

R 1.0 0.0 1.0 1.2 1.0 2.0 0.2

RP4[137] γ1 = 3.0 π1 = 3400.0 γ2 = 1.35 π2 = 0

L 1900.0 0.0 10.0 2.0 0.0 3.0 0.2 0.15

R 1950.0 0.0 1000.0 1.0 0.0 1.0 0.9

Table 5.6.: Initial states left (L) and right (R) for the Riemann problems solved in 2D

with the Baer-Nunziato model. Values for γi, πi and the final time te are also

given.

equation without the surface tension and source term effects. The initial two-dimensional

computational domain is given by Ω (0) = [−0.5; 0.5] × [−0.5; 0.5], and the initial dis-

continuity between the left state QL and QR at the interface is located at x0 = 0. The

domain is paved with triangular meshes using a characteristic mesh spacing of h = 1/200,

corresponding to a total number of NE = 89992 elements. The boundary conditions are

similar [49, 62], these are periodic boundary conditions for the y direction and transmis-

sive boundary conditions for all other directions. The initial conditions are given in Table

5.6. The numerical results are shown in Figure 5.15 - Figure 5.18 with using CFL = 0.5.

5.3. High order extension

In this section we present the results produced by our scheme on classical and also more

demanding test cases. The methodology of testing rests upon numerically showing that
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Figure 5.15.: Results for Riemann problem RP1 on the unstructured grid.
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Figure 5.16.: Results for Riemann problem RP2 on the unstructured grid.

89



Figure 5.17.: Results for Riemann problem RP3 on the unstructured grid.
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Figure 5.18.: Results for Riemann problem RP4 on the unstructured grid.
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Components Purpose Feature/Key words

DG Spatial accuracy Subscale resolution, polynomial basis

ADER Time accuracy Local predictor, fully-discrete one-step schemes

Sub-cell limiter Nonlinear stabilization a posteriori detection criteria

Sub-cell ADER-WENO Space/time accuracy High order accurate subscale resolution

AMR Efficiency, accuracy Cell-by-cell AMR

MPI Efficiency by parallelization Massively parallel machines

Curvature computation Spatial accuracy Multiple polynomial reconstructions

Table 5.7.: Summary of the main components of our code along with associated features

and key words.

• an effective optimal high order of accuracy is maintained on smooth flows with the

results of a convergence study on the smooth vortex problem;

• an accurate resolution of material interfaces in multi-phase flows is obtained with

the numerical evidences gathered for 1D Riemann problems for the Baer Nunziato

model with exact solutions solved with our 2D method;

• Physical phenomena involving surface tension effect can be reproduced like in the

Young-Laplace test case in which an oscillating ellipsoidal bubble is monitored.

For the Young-Laplace test case, like in section 5.2.1.2 we validate the capability of the

method to produce physically relevant solutions to the BN model when surface tension

forces are present. For these last test cases we remove the AMR capability in order to

present the reaction of the scheme to the surface tension forces without polluting the

solution or hidding small spurious phenomena under the AMR technology. Nonetheless

the AMR methodology works well even with surface tension forces and this is illustrated

with the last test case of the thesis where the whole ADER-DG AMR with sub-cell limiter

machinery is employed. For all these verification test cases the full numerical machinery

is employed, that is the main scheme is ADER-DG-PM (M = 5, 6) with a posteriori

sub-cell 3rd order ADER-WENO limiter under AMR framework, see Table 5.7 where we

summarize the main components of the simulation code.

5.3.1. Numerical convergence studies

In this section, we validate the numerical convergence studies of the ADER-DG with

sub-cell limiter by using the initial conditions, mentioned in section 5.2.3.1. In this con-
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figuration the computational domain Ω = [−10; 10]×[−10; 10] uses four periodic boundary

conditions, in such a way that, given the velocity field, the exact solution of the prob-

lem coincides with the initial one after T = 10. We have tested the DG scheme with a

posteriori sub-cell WENO limiter with optimal accuracy ranging from 3rd order up to

10th order. In Table 5.8 we have reported the results of the convergence tests. Here

ρ1,0 = ρ2,0 = 1 have been chosen. The convergence rates are computed with respect to

an initially uniform mesh, see [16]. The value of Nx in the table indicates the resolution

of the ` = 0 grid in each direction. The number of degrees of freedom is computed as

N2
x×(N+1)2 were N is the degree of polynomial reconstructions. As expected, even if the

a posteriori sub-cell limiter is active, the formal order of convergence of the DG scheme

is attained. Note that the number of DG cells is reduced when the order of accuracy

increases, because the number of degrees of freedom for a single 2D DG-P9 cells already

attains 100. In figure 5.19 we present the error in logscale as a function of the number

of degrees of freedom for the DG schemes tested in table 5.8, from 3rd order up to 10th

order of accuracy. As expected the higher accurate DG schemes are more efficient than

lower ones at fixed number of degrees of freedom.

5.3.2. Riemann problems

We first propose to solve a set of 1D shock tube problems on space-time adaptive Carte-

sian meshes in 2D with our P5 ADER-DG scheme with a posteriori sub-cell WENO3

limiter and AMR. The purpose is to test the behavior of the numerical machinery, more

precisely the ability of the limiter to maintain the solution essentially non-oscillating, the

capability of the AMR framework to perform with such a limiter. Exact solutions for the

Riemann problems can be located in [5, 137, 38]. Unlike [50] only a set of four Riemann

problems is considered, see Table 5.9. Note that numerical results obtained with high or-

der unstructured one-step WENO finite volume schemes using centered path-conservative

methods can also be found in [49, 64, 50]. Let us consider a two-dimensional computa-

tional domain Ω = [−0.5; 0.5] × [0; 1] discretized at the level 0 grid with a coarse grid

made of 50 × 5 cells. A maximum number of two refinement levels (`max = 2) is chosen,

together with a refinement factor of r = 2. The discontinuity is located initially at x = 0.

Initial configurations and final simulation times are provided in Table 5.9. Transmissive

(periodic) boundary conditions are imposed in x (resp. y)-direction. For all test cases a

6th order ADER-DG scheme with 3rd order WENO sub-cell limiter is used. The param-

eters for the refinement criterion are ρ1,0 = ρ2,0 = 1 apart for RP2 where ρ1,0 = 1000 and

ρ2,0 = 1. Figures from 5.20 to 5.23 are organized likewise: The top left panel presents the
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2D isentropic vortex problem — ADER-DG-PN + WENO3 SCL

Nx L1 error L2 error L∞ error L1 order L2 order L∞ order Theor. d.o.f

D
G
-P

2
25 3.1373E-01 4.6640E-02 3.0606E-02 — — —

3

5625

50 2.7100E-02 7.4266E-03 7.2766E-03 3.5 2.7 2.1 22500

75 2.7108E-03 5.1779E-04 4.2721E-04 5.7 6.6 7.0 50625

100 1.0479E-03 2.0447E-04 2.8775E-04 3.3 3.2 1.4 90000

D
G
-P

3

25 1.4063E-02 3.2029E-03 3.5704E-03 — — —

4

1000

50 2.5865E-04 5.9017E-05 6.8442E-05 5.8 5.8 5.7 40000

75 3.4212E-05 6.6685E-06 7.7136E-06 5.0 5.4 5.4 90000

100 9.0307E-06 1.5123E-06 1.9290E-06 4.6 5.2 4.8 160000

D
G
-P

4

25 5.0585E-04 9.5326E-05 1.1607E-04 — — —

5

15625

50 2.0510E-05 5.4802E-06 6.1274E-06 4.6 4.1 4.2 62500

75 2.8471E-06 8.3349E-07 1.1184E-06 4.9 4.6 4.2 140625

100 7.6122E-07 1.9214E-07 2.7314E-07 4.6 5.1 4.9 250000

D
G
-P

5

10 3.5927E-02 5.5746E-03 8.1916E-03 — — —

6

3600

20 7.2292E-04 8.2757E-05 5.1444E-05 5.6 6.1 7.3 14400

40 5.1988E-06 1.0141E-06 1.1510E-06 7.1 6.4 5.5 57600

50 9.1567E-07 2.1590E-07 2.7839E-07 7.8 6.9 6.4 90000

D
G
-P

6

10 1.9108E-02 1.4978E-03 1.5898E-03 — — —

7

4900

20 5.2733E-05 7.1536E-06 7.8438E-06 8.5 7.7 7.7 19600

25 4.8075E-06 1.0215E-06 1.3230E-06 10.7 8.7 8.0 30625

30 1.5320E-06 3.1872E-07 4.1243E-07 6.3 6.4 6.4 44100

D
G
-P

7

5 4.7139E-01 6.5843E-02 3.0455E-02 — — —

8

1600

10 3.2259E-03 2.6498E-04 2.7646E-04 7.2 8.0 6.8 6400

15 9.8869E-05 1.1159E-05 1.2436E-05 8.6 7.8 7.6 14400

20 5.9890E-06 6.3143E-07 4.6989E-07 9.7 10.0 11.4 25600

D
G
-P

8

4 1.7938E+00 2.7979E-01 1.2589E-01 — — —

9

1296

8 4.5217E-03 4.1161E-04 4.2700E-04 8.6 9.4 8.2 5184

12 1.0525E-04 9.8229E-06 7.9624E-06 9.3 9.2 9.8 11664

16 6.6067E-06 7.5932E-07 7.8281E-07 9.6 8.9 8.1 20736

D
G
-P

9

4 5.2641E-01 7.5568E-02 4.1828E-02 — — —

10

1600

8 1.1603E-03 1.0307E-04 7.0770E-05 8.8 9.5 9.2 6400

12 1.1211E-05 1.2532E-06 1.0546E-06 11.4 10.9 10.4 14400

16 5.4982E-07 8.1196E-08 1.0714E-07 10.5 9.5 7.9 25600

Table 5.8.: L1, L2 and L∞ errors and convergence rates for the 2D isentropic vortex

problem for the ADER-DG-PN scheme with sub-cell limiter and adaptive mesh

refinement for variable ρs at final time 10 using CFL = 1/2.
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Figure 5.19.: 2D isentropic vortex problem — Error in logscale as a function of the number

of degrees of freedom for the DG schemes tested in table 5.8, from 3rd order

up to 10th order of accuracy.
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final AMR mesh, the cell color corresponds to the activation of the limiter: blue cells are

computed with 6th order pure DG on coarse cell level (a posteriori limiter off) whereas

red cells are updated with the 3rd order WENO on sub-cell level (a posteriori limiter

on). The other panels displays the a cut through the reconstructed numerical solution

uh on 200 equidistant points along the x-axis for the following variables: φs, ρs, ρg, us,

ug, ps and pg. For all problems we obtain an excellent agreement between the high order

AMR ADER-DG computations and the exact reference solutions from [5, 137, 38]. The

discontinuities are captured on a sub-cell level. This corresponds to our initial claim that

the a posteriori limiter is able to maintain the sub-cell resolution of the DG scheme even

when it is switched on and the sub-cell WENO3 scheme is triggered. Even when the lim-

iter is activated in inappropriate regions (RP2 for instance), we do not see any associated

spurious effect on the numerical solution. As such, a sharp discontinuity can truly travel

across a DG cell without being diffused on more than one or two sub-cells. In addition

the AMR capability increases even more the local resolution for steep gradients leading

to almost perfectly rendered discontinuities. The comparison with the results from [159]

using a 3rd order ADER-WENO and AMR using 100 cells in x direction, which is more

or less the same nominal accuracy than our ADER-DG-P6, seems in favor of our new

approach. Specifically for the resolution of the constact discontinuities for all problems,

see for instance figure 5.22 the panel for us or ρg where the contact is almost exact (that

is captured within one sub-cell!) compared to [159] 4th or 5th panel where the contact

is spread over 5-6 visualization points, that is over one cell length. This illustrates the

ability of the whole scheme to maintain the DG subscale resolution even when limiting

occurs thanks, according to us, to the a posteriori subcell finite volume limiting paradigm.

Obvisouly some spurious numerical effects are still produced (see RP4 for ρs variable at

x ' −0.05) however these mostly correspond to initial entropy deposition errors. As such

they can not be avoided by our scheme, and most of the other robust schemes present

in the literature. In conclusion this ADER-DG method with its add-ons produces highly

accurate results and extremely sharp discontinuities.

5.3.3. Young-Laplace law

In this section we use the code in its operational configuration to solve problems involv-

ing active surface tension forces. The Laplace law expresses a relation at the material

interface between the pressure jump and the surface tension force when equilibrium has

been reached. This law states that ∆p = σκ, where σ is the surface tension coefficient

and κ the interface curvature and ∆p the pressure jump. In order to numerically show
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RP ρs us ps ρg ug pg φs te

RP1[38] γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0

L 1.0 0.0 1.0 0.5 0.0 1.0 0.4 0.1

R 2.0 0.0 2.0 1.5 0.0 2.0 0.8

RP2[38] γ1 = 3.0 π1 = 100 γ2 = 1.4 π2 = 0

L 800.0 0.0 500.0 1.5 0.0 2.0 0.4 0.1

R 1000.0 0.0 600.0 1.0 0.0 1.0 3.0

RP3[137] γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0

L 1.0 0.0 1.0 0.2 0.0 0.3 0.8 0.2

R 1.0 0.0 1.0 1.0 0.0 1.0 0.3

RP4[5] γ1 = 1.4 π1 = 0 γ2 = 1.4 π2 = 0

L 0.2068 1.4166 0.0416 0.5806 1.5833 1.375 0.1 0.1

R 2.2263 0.9366 6.0 0.4890 -0.70138 0.986 0.2

Table 5.9.: Initial states left (L) and right (R) for the Riemann problems solved in 2D.

Values for γi, πi and the final time te are also given.
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Figure 5.20.: Results for Riemann problem RP1.
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Figure 5.21.: Results for Riemann problem RP2.
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Figure 5.22.: Results for Riemann problem RP3.
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Figure 5.23.: Results for Riemann problem RP4.
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that our method can recover this law, one observes the behavior of our scheme when a

liquid ellipse in 2D is embedded into a gas at rest [121, 21]. The ellipse is initially at

rest and kinetic energy is zero. Because of surface tension forces the ellipse starts to

deform to get a circular shape. However most of the potential energy due to surface

tension has been converted into kinetic one so that the circular drop cannot remain in

this equilibrium state, and, enters an other cycle of deformation into an ellipse. Contrar-

ily this ellipse is a shape for which the kinetic energy has been converted into potential

energy. As a consequence, although the velocity is close to zero almost everywhere, the

interface deformation is large and the bubble tends to return to a circular shape again.

The drop keeps on oscillating between ellipsoidal and circular shapes due to the transfer

between potential capillary energy and kinetic one, see Figure 5.24. In the ideal case of

zero dissipation this oscillating motion may continue indefinitely. Due to the presence

of numerical dissipation, ultimately, the ellipse ends up into a static disk configuration

at convergence when t → ∞. According to the generalized Young-Laplace law one must

retrieve: ∆P = σ/R where R is the radius of the disk of same surface than the initial

ellipse.

The code is setup with M = 6 (7th order nominally accurate DG scheme) with a pos-

teriori sub-cell ADER-WENO limiter without AMR capability. The goal being here to

validate the treatment of the surface tension force, on the full machinery without AMR.

The computational domain is set to Ω = [−1 : 1]d and paved with N = 30d cells for d = 2

in 2D. The ellipse is filled with liquid surrounded by air. Both phases are modeled with

the stiffened gas equation of state with γ1 = 1.4, π1 = 20 for liquid and γ2 = 1.4, π2 = 0

for air. The initial states are homogeneous and at rest initially with ρs = 10, ρg = 1, and

a jump in pressure ps = 2, pg = 1. We set the relaxation coefficients to λ = 0 and β = 50

and σ = 1
2
. The bubble is an initial ellipse of the form (4.27) with a = 4, b = 16, c = 0.

The volume fraction function is initialized as

φ(r) =
1

2

(
1 +

4

5
erf (−25(r − 1))

)
, with r2 = 4x2 + 16y2, (5.12)

accordingly the color function c is initially given by

c(r) =
1

2
(1 + erf (−5(r − 1))) . (5.13)

The final time is fixed at tfinal = 15 s and we monitor the kinetic energy loss during this

period and refer to the figures in section 4.6 for the interface and curvature pictures.

For the 2D ellipse, as already seen in Figure 4.2 the interface and the curvature are

captured at a sub-cell level thanks to our approach. Moreover the DG method on cells
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Figure 5.24.: Sketch of the expected behavior for the bubble deformation test starting from

an ellipse bubble. A loss of kinetic energy is expected in the dissipative case

(green) whereas in an (ideal) non dissipative case the energy remains the

same (blue).

and WENO on sub-cells both being high accurate, we expect that the loss of kinetic

energy depicted during the energy transfer potential ↔ kinetic remains small. We plot

in Figure 5.25 the total kinetic energy in the system as a function of time for several

oscillations of the bubble. We observe that the maximal kinetic energy is of the order

0.1325 and, on average, during the simulation, the kinetic energy for the bubble remains

beyond ' 0.11 which is more than 83% of the initial energy.
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6. Conclusion

This thesis has proposed a wide range of numerical methods for non-conservative hy-

perbolic systems. From a physical, mathematical view point as well as real-life applica-

tions of compressible multi-phase flows, the Baer-Nunziato model with surface tension

effects has been considered. First, we have designed a second order TVD finite volume

scheme on both Cartesian and unstructured meshes. In the Cartesian grid, several nu-

merical tests in one and two space dimensions are presented. The mathematical model

under consideration includes gravity, viscosity and capillary effects and is based on the

full seven-equation BaerNunziato model. The continuum surface force method (CSF) of

Brackbill et al. [20] is used, which replaces the surface tension force by a volume force.

The family of path-conservative finite volume schemes by using Roe-, Rusanov-, Osher-

and HLLEM-type Riemann solvers has been proposed. For a steady bubble in equilib-

rium for which the pressure jump at the interface is given by the Young-Laplace condition,

the path-conservative finite volume scheme is exactly well-balanced at the discrete level

if the exact interface curvature is known. While in the case of unstructured grids, we

developed our scheme with time-accurate local time stepping, which was implemented for

non-conservative hyperbolic systems by using a classical TVD finite volume scheme. We

have discussed and compared the differences between the GTS and LTS method, con-

cerning accuracy and CPU time. The LTS algorithm shown lowers CPU times for the

test with refined meshes. We verified the numerical convergence, both LTS and GTS

algorithm have nicely obtained the second order accuracy. A time-accurate local time

stepping method, the fluxes across the element interfaces are computed by adding the

memory variables of the neighbor elements.

Second, we also have successfully developed an effective ADER-DG numerical method

to solve the seven equation Baer-Nunziato model with CSF surface tension model and

diffuse interface model as an illustration of the ability of the method to handle hyperbolic

systems of equations, non-conservative products, stiff source terms and surface tension

effects. More precisely the ADER-DG scheme is supplemented with a posteriori sub-cell

limiter employing a 3rd order ADER-WENO scheme on sub-cell level along with AMR

capability, the numerical accuracy got better than classical second order high resolutions
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schemes can obtain with an AMR technique. Curvature computation is done by poly-

nomial reconstructions of the color function (a diffused version of the volume fraction

function) and of the gradient of the color function. Regarding curvature computations,

the a posteriori sub-cell limiter was applied for computing the color function by consid-

ering the interface phase as troubled cells, and the curvature computation is handled by

this strategy. The presented results show that the surface tension forces involving the

curvature computation can be simulated with 6th or 7th order accurate in space and

time DG scheme without large spurious oscillations. We have constructed the numerical

scheme (ADER-DG), which reaches the effective optimal orders of accuracy for smooth

solutions (up to 7th order of accuracy) even when the sub-cell limiter is on.

We have described the framework of path-conservative schemes of Parés and Castro

[119, 25], which can naturally discretize the non-conservative products B (Q) · ∇Q of

the seven-equation system. For the Young-Laplace condition, the loss of kinetic energy

in the ADER-DG scheme is less than the loss of kinetic energy in the TVD finite volume

scheme.

Future research on the numerical methods presented in this thesis, i.e. both the second

order TVD finite volume schemes and ADER-DG with a posteriori sub-cell limiting will

be extended to three space dimensions. We also plan to investigate an a posteriori sub-cell

finite volume limiter for the discontinuous Galerkin method on unstructured meshes, as

well as to the more general framework of the new PNPM method proposed in [46].

For the curvature computation will be concerned to a cut-cell interface tracking, and the

phase interface will be added by the physical phenomena, i.e. temperature and friction

will be consider at the phase interface to get closer to real-world problems.
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A. Appendix

A.1. Local time stepping

In this section we briefly describe the algorithm of the local time stepping (LTS), which

is given in 2.4.4. We recall the criterion of updating of a element Ti at a time level tni and

the formula to compute the numerical fluxes between two elements Ti and Tj as follows:

tni + ∆tni ≤ tnj + ∆tnj or tn+1
i ≤ tn+1

j , ∀j ∈ Ni. (A.1)

ans

[tnij, t
n+1
ij ] = [max

(
tni , t

n
j

)
,min

(
tn+1
i , tn+1

j

)
], ∆tij = tn+1

ij − tnij, ∆t
n+ 1

2
ij =

1

2

(
tnij + tn+1

ij

)
(A.2)

We consider a sequence of four time steps with three non-equidistantly spaced elements

T (1) to T (3) as see in Figure A.1. Assume that at the beginning of the time marching, all

elements start from a common time level t0 = 0 but their local time steps are different,

from ∆t1 to ∆t3, and t = t1 > 0 is the final time for all elements. The initial condition is

used by the cell averages and a second Total Variation Diminishing (TVD) reconstruction

can be done for all elements based on the cell averages Qj. After the reconstruction, all

contributions are gathered, and the piecewise linear space-time reconstruction polynomial

like the element-local predictor solution qh is used in each element. We stress that the

stability criterion for each element an element-local time step is given by to the local CFL

condition (2.53). The LTS method is a fully asynchronous algorithm, which means that

it is not organized in time steps, so we denote a new definition to recognize the updated

time step that is the so-called cycle. In our example, in the first cycle, the only element T 2

that satisfies (A.1) and can be evolved to t12, t12 = ∆t2 + t0. We will discus on the element

T 2, the flux integrals are calculated by ∆t2 at the left interface with neighbour T 1, ∂T2,− 1
2

and at the right interface with neighbour T 3, ∂T2,+ 1
2
. The flux memory variables QM

(1)

and QM
(3) of both neighbours are updated according to (2.58). In cycle 2, only element T1

allows the evolve condition (A.1) and can perform an update to t11, see in the lower left

corner of Figure A.1, like the element T2, t11 = t0 + ∆t1. From (A.2), the flux contribution
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Figure A.1.: Illustration of the local time stepping algorithm with 3 different elements.

of the neighbour element T2 has already been added to the flux memory variables QM
(1)

in the interval time [a, b], so only the missing flux contribution in the interval time [b, c]

will be computed to add the flux memory variables QM
(1). In practice at the end of cycle

2 QM
(1) is reset to zero. In the manner, the LTS algorithm continues doing similar ways to

search the elements, which are satisfied by the criterion (A.1), and this procedure will be

stopped, when all elements have reached the final t = t0.

A.2. Boundary conditions

In this section we will briefly review the boundary conditions, which used in the frame

work of the family of the Path-conservative finite volume methods on both Cartesian and

Unstructured meshes. For the numerical tests in this thesis, we consider only two types
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Figure A.2.: Boundary conditions. Ghost cells outside the computational domain are

created.

of boundaries: reflective and transparent or transmissive.

We first describe for the Cartesian mesh as follows: for a computational domain [0, L] is

discretised into nx computing cells of length ∆, in Figure A.2. We need to set up the

boundary conditions at the boundaries x = 0 and x = L, we will introduce ghost cells

outside the computational domain see in Figure A.2.

• Reflective Boundaries

We consider the boundary at x = L, these boundary conditions are defined as

follows: Qnx+1 = Qnx, unx+1 = −unx, here Q, u are the state vector, and the

velocity state, respectively. These states is described for the boundary state.

• Transmissive Boundaries

We also consider the boundary at x = L, these boundary conditions are defined as

follows: Qnx+1 = Qnx.

For a general coordinate, the ghost cell Tg of the element Ti, see in Figure A.3. The

boundary condition will be given as follows:

• Transmissive Boundaries

In this condition the fluid across the domain boundary, the condition is computed

as: Qg = Qi. Here Qg and Qi are the boundary state, and the state of element Ti,

respectively.
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Figure A.3.: Sketch of the boundary conditions. Ghost cell outside the computational

domain is taken, and it is based on a logically connected mesh.

• Reflective Boundaries

These conditions are given to treat the wall boundaries, and they are defined as

follows: Qg = Qi, and the velocity vector at the boundary state is as ug = ui −
2 (ui · n) n, where n is outward pointing unit normal vector on the boundary edge

of element Ti.

• Periodic Boundaries

We apply periodic boundary conditions to simulate an infinite computational do-

main, and can be given as follows: Qg = Qj, with Tj representing the logical

Neumann neighbor of element Ti, see in A.3.
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[53] M. Dumbser, M. Käser, and E. F. Toro. An arbitrary high order discontinuous

Galerkin method for elastic waves on unstructured meshes V: Local time stepping

and p-adaptivity. Geophysical Journal International, 171:695–717, 2007.

[54] M. Dumbser, M. Kser, and E. F. Toro. An arbitrary high-order discontinuous

galerkin method for elastic waves on unstructured meshes - v. local time stepping

and p-adaptivity. Geophysical Journal International, 171(2):695–717, 2007.

[55] M. Dumbser and C.D. Munz. Building blocks for arbitrary high order discontinuous

Galerkin schemes. Journal of Scientific Computing, 27:215–230, 2006.

[56] M. Dumbser, T. Schwartzkopff, and C.D. Munz. Arbitrary high order finite volume

schemes for linear wave propagation. In Computational Science and High Perfor-

mance Computing II, Notes on Numerical Fluid Mechanics and Multidisciplinary

Design (NNFM), pages 129–144. Springer, 2006.

[57] M. Dumbser and O. Zanotti. Very high order PNPM schemes on unstructured

meshes for the resistive relativistic MHD equations. Journal of Computational

Physics, 228:6991–7006, 2009.

[58] M. Dumbser, O. Zanotti, A. Hidalgo, and D.S. Balsara. ADER-WENO Finite

Volume Schemes with Space-Time Adaptive Mesh Refinement. Journal of Compu-

tational Physics, 248:257–286, 2013.

[59] Michael Dumbser. A simple two-phase method for the simulation of complex free

surface flows. Computer Methods in Applied Mechanics and Engineering, 200(9-

12):1204–1219, 2011.

[60] Michael Dumbser. A diffuse interface method for complex three-dimensional free

surface flows. Computer Methods in Applied Mechanics and Engineering, 257(0):47–

64, 2013.

[61] Michael Dumbser and Dinshaw S. Balsara. A new efficient formulation of the

HLLEM Riemann solver for general conservative and non-conservative hyperbolic

systems . Journal of Computational Physics, 304:275 – 319, 2016.

116



[62] Michael Dumbser and Walter Boscheri. High-order unstructured Lagrangian one-

step WENO finite volume schemes for non-conservative hyperbolic systems: Ap-

plications to compressible multi-phase flows. Computers & Fluids, 86(0):405–432,

2013.

[63] Michael Dumbser, Arturo Hidalgo, Manuel Castro, Carlos Pars, and Eleuterio F.

Toro. FORCE schemes on unstructured meshes II: Non-conservative hyperbolic

systems. Computer Methods in Applied Mechanics and Engineering, 199(9-12):625–

647, 2010.

[64] Michael Dumbser and Eleuterio F. Toro. A Simple Extension of the Osher Riemann

Solver to Non-conservative Hyperbolic Systems. Journal of Scientific Computing,

48(1–3):70–88, 2011.

[65] Michael Dumbser and Eleuterio F Toro. On universal Osher-type schemes for general

nonlinear hyperbolic conservation laws. Communications in Computational Physics,

10(3):635–671, 2011.

[66] Michael Dumbser, Olindo Zanotti, Raphal Loubre, and Steven Diot. A posteriori

subcell limiting of the discontinuous galerkin finite element method for hyperbolic

conservation laws. Journal of Computational Physics, 278:47 – 75, 2014.

[67] B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal.,

25:294–318, 1988.

[68] B. Einfeldt. On godunov-type methods for gas dynamics. J. Plasma Phys., 65:29–58,

2001.

[69] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen. On godunov-type methods
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