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Abstract

Three constitutive models for the mechanical description of the
behavior of ceramic materials are developed, implemented into a
numerical code, calibrated on experimental data, and validated.

- The first model is elastic-plastic and addresses the cold com-
paction of ceramic powders, combining nonlinear elasticity, elasto-
plastic coupling and increase of cohesion.

- The second model is thermal-viscous-elastic-plastic and is specif-
ically tailored to describe the thermo-mechanical behavior of re-
fractory devices under working conditions at high-temperature.

- The third model is thermal-elastic-plastic and implements a shape
evolution of the BP yield function, calibrated to simulate the
forming of green bodies and their pre-sintering phase.

Three algorithms are developed for the integration of constitu-
tive equations when pathological yield functions are involved. The
algorithms are coded in user material subroutines to be used in
commercial FE softwares and their accuracy is evaluated in model
problems allowing for semi-analytical solutions.

Material constitutive parameters are obtained from a combi-
nation of experimental tests and multi-objective optimization and
employed in FE simulations of industrial processes, such as cold-
forming of combed finish ceramic tiles and metal flow confinement
by means of refractory devices.

This PhD thesis is the outcome of the secondment period at
the Vesuvius Group, within the framework of the IAPP European
project HOTBRICKS (contract number PIAPP-GA-2013-609758).
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Chapter 1

Introduction

Ceramic materials are essential in a wide range of engineering
applications, such as aerospace, automotive, thermal protection,
braking systems, and electronics. Their industrial employment is
related to their excellent mechanical strength, high thermal shock
resistance and formidable phase stability in a broad range of pres-
sure and temperature.

A negative aspect of the production of ceramic devices is that
it represents one of the most polluting industrial processes, par-
ticularly from the point of view of the energy waste and related
greenhouse gas emission.

The design of refractory materials to be used in the liquid steel
technology faces several problems, particularly related to the safety
and reliability of the pieces.

The modeling and optimization of such processes is an ex-
tremely complex and challenging goal, especially for the variety of
the observed nonlinear effects, caused by significant changes in the
material micro-structure due to inelastic deformations and thermal
effects.

Constitutive models for ceramic materials are invaluable tools
in the design of forming of ceramic pieces from powder and in the
design of refractories to be employed at high temperature. How-
ever, reliable constitutive models, providing a realistic descriptions
of thermo-elasto-plastic behavior of ceramics are still not available.

The development of constitutive models for ceramics, for de-
scribing both powder densification and the high-temperature me-
chanical response of refractories, their numerical implementation
and their calibration and validation on experiments is the aim of
the present PhD thesis. Specifically, three different constitutive
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models are developed, implemented in external subroutines to be
used in FE codes and validated through comparison with experi-
mental tests in particular conditions, including high-temperature.

A mathematical description of the theory of rate-independent
and rate-dependent thermo-plasticity is given in Chapter 2, start-
ing from simple perfectly-plastic and isotropic hardening models,
elucidating the most important thermo-mechanical couplings and
finally introducing the ‘stretchable’ Bigoni-Piccolroaz [3–5] yield
function. Figure 1.1 shows schematically the concept of overstress
(the stress state lies outside the yield surface) allowing for rate-
dependence of the elasto-plastic constitutive equations.
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Figure 1.1: Conceptual illustration of rate-dependent plasticity. For a given
strain increment, the viscoplastic solution is found between two limiting stress
states: the ‘high rate’ solution σH which is the simple trial elastic stress and
the ‘low rate solution’ σL corresponding to the quasistatic plastic solution.

Chapter 3 is devoted to the illustration of the developed nu-
merical strategies for the efficient solution of the central problem of
computational plasticity, namely the integration of the local consti-
tutive equations. Three innovative algorithms for the integration
of non-standard constitutive models are introduced and applied to
the Bigoni-Piccoroaz criterion:

(i) An explicit integration scheme based on a forward Euler tech-
nique with a return correction directed towards the ‘centre-
of-mass’ of the yield surface;
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(ii) An implicit integration scheme based on a ‘cutoff-substepping’
return algorithm, especially designed to avoid so-called ‘false-
elastic domains’ (definition introduced by Brannon and Leela-
vanichkul [6]);

(iii) A return mapping procedure combined with the implicit def-
inition of the considered yield function [7]. Figure 1.2 shows
a convex and smooth BP yield surface (left part) and the iso-
surfaces of the corresponding implicit yield function (right
part) in the principal stress space.

Figure 1.2: A convex and smooth BP yield surface (left). Iso-surfaces of the
corresponding implicit BP yield function in the principal stress space (right).
The zero-level surface is marked in red color.

The computational performance of each of the developed algo-
rithms and the correctness of the results are investigated through
particular tests and comparisons with the semi-analytical solutions
of selected mechanical and thermo-mechanical problems.

The calibration of the constitutive models on experimental data
is a difficult task, because the response of the material model de-
pends strongly on several constants appearing in the constitutive
equations. An overview of the most effective numerical strategies
for efficient parameter identification is given in Chapter 4, with
emphasis on the algorithms employed in the present work. Figure
1.3 shows the convergence of the hybrid optimization algorithm
for aluminum silicate powder with w = 5.5% (left) and w = 7.5%
(right) water content.

Chapters 5, 6 and 7 present the newly developed constitutive
models for ceramic materials.

More specifically, Chapter 5 introduces a non-associative elasto-
plastic model designed for the simulation of the cold forming pro-
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Figure 1.3: Convergence of the hybrid optimization algorithm for aluminum
silicate powder with w = 5.5% (left) and w = 7.5% (right) water content.

cess of ceramic powders. Its formulation combines nonlinear elas-
ticity and elasto-plastic coupling with specific hardening laws gov-
erning the increase of cohesion. The model is validated through
comparison of the experimental results obtained from uniaxial de-
formation tests and triaxial test on aluminum silicate samples. A
series of simulations of particular industrial processes for the form-
ing of tiles is carried out, employing material parameters identified
through a multi-objective optimization.

In Chapter 6 a rate-dependent thermo-plastic model for refrac-
tories is proposed. The development of this model is related to
the collaboration with the Vesuvius Group, as part of the IAPP
HOTBRICKS European project. In particular, the model aims
to describe the behavior of refractory devices under working con-
ditions, thus at extremely high-temperature. This Chapter illus-
trates the thermo-mechanical couplings and the material failure
criteria included in the model together with a parameter identifi-
cation procedure of general validity. Simulation of complex heat
resistant devices employed in the foundry industries are discussed
at the end of the Chapter. Figure 1.4 shows plastic strains in a re-
fractory plate during the casting process. The results show higher
values of inelastic deformations in the external part of the plate,
where crack development is typically observed in the real device.
This simulation confirms the validity of the constitutive model in
predicting damage evolution in heat resistant components.

Finally, Chapter 7 is devoted to the unified thermo-mechanical
modelling of forming and subsequent pre-sintering of ceramics.
Pre-sintering is the initial phase of the sintering process, in which
the green body undergoes numerous endothermic and exothermic
processes, including dehydration, organic removal, decomposition,
phase formation in the case of reactive systems. Accurate mod-
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Figure 1.4: Plastic deformation in a refractory plate during the casting process:
the results show higher values of inelastic deformation in the external part of
the plate, where crack development is typically observed in the real device.

eling and simulation of the presintering stage of firing is of great
interest, given the importance of avoiding defects before the final
stage of densification is reached [2]. In the proposed model, the
‘shape evolution’ of the BP yield surface, see Fig. 1.5, is intro-
duced and applied for the first time to powder densification pro-
cesses. Thermal effects at pre-sintering temperatures are studied
in detail, comparing numerical and experimental results of tests
on alumina green bodies. A specific plastic potential function is
employed for efficient regulation of the plastic flow direction and
combination of density-dependent hardening laws.

F (σ, pc0)

q

ppc0 pcmax

F (σ, pcmax)

pc

F (σ, pc)

Figure 1.5: Example of evolution of the meridian shape of the BP yield function
during a simulation. The calibration of the yield function shape of the loose
powder (first yielding) F (σ, pc0) and of the formed green body F (σ, pcmax),
should be based on multiple experimental tests. The meridian shape of the
yield function is influenced by M , m and α.
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Chapter 2

Theory of rate-dependent
thermoplasticity

Nonlinearities are evident in the response of almost all known
materials, when these are subject to extreme actions, leading to
inelastic deformations. These effects are further amplified in high-
temperature applications, where mechanical and thermal proper-
ties of materials are often coupled. Taking into account the effects
of the strain rate on the material response introduces an additional
degree of complexity into the mathematical description of the ob-
served material behaviors.

In this Chapter, the main assumptions of the so-called theory of
thermoplasticity are presented, and both the quasi-static and rate-
dependent constitutive equations are derived. Finally, the Bigoni-
Piccolroaz yield function [3–5] is introduced and its capability in
describing a wide range of materials is described.

2.1 Plasticity

Taking into account the nonlinear effects of inelastic deforma-
tions is crucial for the correct representation of the behavior of a
wide range of materials. Usually, nonlinear effects appear after a
certain stress state, the so-called yield stress, is reached. Depend-
ing on the nature of the considered material, the causes of such
inelastic behavior are caused by dislocations (typically in metals),
micro-cracking (rock-like, concrete-like materials) or changes in the
material micro-structure (e.g. increase/reduction of the void ratio).

In solid mechanics, a description of such behaviors is made
possible by the so-called theory of plasticity, which is described in
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the following, starting from its most simple forms.

2.1.1 Unidimensional perfect plasticity

σy

−σy

εp εe

B

A

ε

σ

Figure 2.1: Perfectly plastic uniaxial constitutive model.

We consider a material with a perfectly plastic behavior as
represented in Fig.2.1. The features of such constitutive model
can be resumed as follows:
• Existence of a purely elastic domain σ ∈ (−σy, σy) where no

inelastic deformation occurs; σy is the so-called yield stress.

• Additive strain decomposition: ε = εe + εp.

• If −σy < σ < σy (e.g. at point A), then the stress state is
purely elastic, and the relationship σ = Eε is valid.

• If σ = σy, (e.g. at point B) then inelastic deformation oc-
curs. From this point it is possible to follow the plastic load
path (horizontal line) where the stress increment σ̇ = 0 gen-
erates plastic deformation ε̇p 6= 0, or the elastic unload path
(descending line) reentering the elastic domain and σ̇ = Eε̇,
ε̇p = 0.

It is therefore necessary to adopt an incremental approach to solve
the problem, since both stress and strain states depend on the load
history. To better describe the behavior of ductile materials is
however necessary to introduce a more general formulation, which
takes hardening into account.

8
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2.1.2 Plasticity with hardening

σy0

εe

B

A

σy1

C

εp

hardening softening

Figure 2.2: Hardening behavior for metallic materials.

We consider a material characterized by hardening behavior,
which can be qualitatively illustrated as in Fig.2.2. The proper-
ties described in the previous section are valid also for materials
showing hardening behavior.

However, as shown in Fig.2.2, the stress σy after the yield point
is in this case not constant. A nonlinear response is observed after
the ‘virgin’ material is loaded over the initial yield stress σy0 up
to point B. The occurred plastic deformation εp increases the yield
stress, so that in case of unloading and subsequent reloading, the
new yield stress is σy1 > σy0 .

A complete description of the behavior of a material showing in-
elastic deformations requires the three-dimensional generalization
of the cited observations by means of incremental equations and
also requires the definition of ‘yield function’.

A yield function F is a concept introduced to discriminate be-
tween purely elastic and elastoplastic states. The present descrip-
tion of the theory of plasticity is based on the stress-space formu-
lation of a general yield function, in which the material state is
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defined by the stress σ and a vector k of so-called internal vari-
ables, which define the occurred inelastic deformation.

Therefore, a yield function is a scalar-valued tensor function
depending on the tensor σ and a given set of state variables k.
Negative and null values of a general yield function are respec-
tively associated to elastic states and states for which plastic flow
becomes possible, namely,

• If F (σ,k) < 0 then the response of the material is purely
elastic,

• If F (σ,k) = 0 then plastic flow is possible.

The yield surface is the level set F (σ,k) = 0 in the hyper-space
of the variables σ and k.

If we assume that the elastic tensor E remains constant (Ė = 0),
the stress increment becomes

σ̇ = Ėε+ Eε̇ = Eε̇. (2.1)

The additive strain decomposition can be written in incremental
form as

ε̇ = ε̇e + ε̇p. (2.2)

The so called flow rule is introduced to define the increment of
plastic strain ε̇p:

ε̇p = λ̇P , (2.3)

in which λ̇ is a positive or zero valued scalar, defined as ‘plastic
multiplier’. (λ̇ = 0 indicates null plastic flow, while λ̇ > 0 indi-
cates active plastic flow), and P is a symmetric tensor that can be
expressed as

P = ∂G(σ)
∂σ

, (2.4)

in which G is the so-called plastic potential function.
In case of associative plasticity, P is taken equal to the gradient

of the yield function.

P = Q = ∂F (σ,k)
∂σ

, (2.5)

so that the plastic flow direction is normal to the yield surface in
all its points.

10
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In case of non-associative plasticity, plastic flow directions dif-
ferent from the normal to the yield surface can be defined. This
is achieved by introducing a potential function different from the
considered yield function. This is particularly important in case of
frictional and pressure-sensitive materials, such as soils, ceramic or
metallic powders, where associated plasticity often give unrealistic
high values of plastic dilatancy.

A non-associative constitutive model is usually computationally
more expensive than the corresponding associative model, since
the constitutive tangent operator, which will be introduced later,
becomes asymmetric. As a consequence, the computation of the
global tangent matrix in the context of Finite Element Analysis
and the solution of the associated linear system require a larger
number of operations.

In the considered three-dimensional case of plasticity with hard-
ening, the increase in yield strength is obtained by increasing or
modifying the size and possibly the shape (see Sec. 7.1.1) of the
yield surface. Therefore, assuming a stress value on the surface,
an increment of deformation can yield to the three different cases
presented in Fig. 2.3:

0

F (σ,k) < 0

σ2

σ1

σ3

σ̇

B

F (σ,k) = 0

σ̇ C

A

Q

σ̇

Figure 2.3: Example of yield surface and possible deformation increments.

• Plastic loading (case A): The strain increment σ̇ is directed
externally to the yield surface and ‘drags’ it with itself:
σ̇ ·Q ≥ 0⇔ λ̇ > 0;
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• Elastic unloading (case B): The strain increment σ̇ is di-
rected internally to the yield surface and the yield function
remains unchanged:
σ̇ ·Q < 0⇔ λ̇ = 0;

• Neutral loading (case C): The strain increment σ̇ is di-
rected tangentially to the yield surface:
σ̇ ·Q = 0⇔ λ̇ = 0.

During an inelastic deformation process, the actual stress vector
σ moves ‘carrying’ the yield function with itself and remaining
on it. In other words, for each instant of time F (σ,k) = 0 and
consequently Ḟ (σ,k) = 0.

This condition is the so-called Prager consistency condition, ac-
cording to which any stress state outside the yield surface is con-
sidered unfeasible, at least in case of rate-independent plasticity.
Otherwise, rate-dependent plasticity (see Sec. 2.3) allows stress
states outside the yield surface.

2.1.3 Incremental constitutive equations

Considering the case of plastic loading (case A of Fig. 2.3),
we can apply the chain rule to the Prager consistency condition to
obtain

Ḟ (σ,k) = ∂F

∂σ
· σ̇ + ∂F

∂k
· k̇ = 0. (2.6)

From equation (2.5), we can define the hardening modulus H(σ,k)
as

∂F

∂k
· k̇ = −λ̇H(σ,k), (2.7)

and rewrite Eq. (2.6) as

Q · σ̇ − λ̇H = 0. (2.8)

By substituting (2.2) and (2.3) in the constitutive equation, we
obtain

σ̇ = Eε̇e = Eε̇− λ̇EP . (2.9)

Dot product with Q yields

Q · σ̇ = Q · Eε̇− λ̇Q · EP . (2.10)

12
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This expression, substituted in (2.8), gives

Q · Eε̇− λ̇(H +Q · EP ) = 0, (2.11)

from which we can obtain

λ̇ = Q · Eε̇
H +Q · EP . (2.12)

By substituting (2.12) in (2.8) we get

σ̇ = Eε̇− Q · Eε̇
H +Q · EP EP , (2.13)

or

σ̇ = Cε̇, (2.14)

with C being a fourth order tensor named ‘elastoplastic tensor’ or
‘constitutive tangent operator’.

In case of non-associative plastic flow, the main equations for
hardening plasticity can be summarized as:

σ̇ =


Eε̇− Q · Eε̇

H +Q · EP EP , if F (σ,k) = 0 and Q · Eε̇ > 0,

Eε̇, if F (σ,k) = 0 and Q · Eε̇ ≤ 0,
Eε̇, if F (σ,k) < 0.

(2.15)

We can rewrite the last constitutive equations in a more com-
pact way by introducing the Macaulay bracket operator 〈x〉, which
return the value 0 if x ≤ 0 or x if x > 0.

Equation (2.15) becomes therefore

σ̇ =

Eε̇− 〈Q · Eε̇〉
H +Q · EP EP , if F (σ,k) = 0,

Eε̇, if F (σ,k) < 0.
(2.16)

To obtain the inverse expression it is sufficient to write Eq. (2.2)
in explicit form

ε̇ = ε̇e + ε̇p = E−1σ̇ + λ̇P , (2.17)

so that we obtain

ε̇ = E−1σ̇ + Q · σ̇
H

P . (2.18)
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2.2 Thermo-plasticity

Temperature can induce important mechanical effects, such as
strength reduction, lower stiffness or thermal deformation. Simi-
larly, thermal effect as a consequence of mechanical loading are also
possible, so that the differential equations describing both elastic
and inelastic material behavior can usually not be considered sep-
arately.

The formulation of two constitutive models proposed in this
work is based on the theory of thermo-plasticity. In the following
the main assumptions of this theory are described.

2.2.1 Thermo-mechanical coupling

Taken separately, the equilibrium equation (in absence of body
forces), the heat conduction equation and (isotropic) Fourier law
can be respectively written as

divσ = 0, σ = σ(ε), (2.19)

and

cρṪ + div q −Q = 0,

q = −k∇T,
(2.20)

where c is the specific heat capacity, ρ is the mass density, k is the
thermal conductivity and Q is the volumetric heat flux.

In the analysis of simultaneous thermal and mechanical loads,
the material response must consider the couplings between the
equilibrium equation and the heat conduction equation.

In particular, the following thermo-mechanical coupling equa-
tions are taken into account:

• Thermal expansion: the temperature increase generates
thermal deformation according to the following equation

εT = α(T − T0)I, (2.21)

where α and T0 are the thermal expansion coefficient and the
reference temperature, respectively.

• Thermal plastic softening: in a wide range of materials
(e.g. metals, concrete), high temperature induces a reduction

14
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of the yield strength. For a simple unidimensional constitu-
tive model with linear hardening, the yield strength can be
therefore expressed as

σy(εp, T ) = σ0
y + hεp − ωT, (2.22)

where ω and h are respectively the thermal softening coef-
ficient and the strain hardening coefficient. In more general
three-dimensional constitutive models, the same effect can
be achieved by imposing a relationship between the parame-
ters regulating the size of the yield surface and the temper-
ature (see Sec. 7.1.5). Positive temperature increment can
reduce the size of the yield function and consequently the
yield strength of the material.

• Piezocaloric effect: usually materials generate heat if sub-
jected to volumetric elastic strain according to the expression

H = 3KαT0 tr(ε̇−ε̇p) = 3KαT0 tr ε̇, for tr ε̇p = 0, (2.23)

where K is the elastic bulk modulus. In some cases (high
external temperature loads or small volumetric strain) this
effect can be neglected due to its very small influence. Never-
theless ‘fully coupled’ finite elements have been implemented
and compared to analytical solutions during the development
of the present work.

• Plastic heating: plastic deformation generates heat in the
material according to the following equation

Dmech = χσ · ε̇p, 0 ≤ χ ≤ 1, (2.24)

where χ is the so-called Taylor-Quinney coefficient.

Under consideration of the thermomechanical couplings, the
equilibrium equation (2.19) becomes

divσ = 0, σ = σ(ε, T ), (2.25)

and the heat conduction equation (2.20)

cρṪ +H + div q −Dmech −Q = 0,

q = −k∇T.
(2.26)
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Equations (2.25) and (2.26) represent the strong (differential)
form of the thermomechanical problem. The use of these formula-
tions for numerical analysis (finite element method) requires their
derivation in weak (integral) form through integration per parts
and application of the Gauss theorem.

2.2.2 Incremental constitutive equations

As similarly done in Sec. 2.1.3 for isothermal plasticity, the
incremental constitutive equations are now introduced while taking
into account the thermal effects.

The decomposition of the strain into the elastic (εe), plastic
(εp) and thermal (εT ) parts,

ε = εe + εp + εT , (2.27)

allows us to obtain the incremental elastic strain in the form

ε̇e = ε̇− ε̇p − ε̇T . (2.28)

Thermal strain is assumed as an isotropic function of the temper-
ature T = TR − T0, where TR is the actual temperature and T0 is
the reference temperature.

Thermal strain is proportional to the coefficient of thermal ex-
pansion αT

εT = αTTI, (2.29)

so we can write it in incremental form as

ε̇T = αT ṪI. (2.30)

The ‘accumulated plastic strain’ P (εp) is defined as

P (εp) =
∫ t

0
|ε̇p| dτ. (2.31)

By introducing the flow rule

ε̇p = λ̇P , (2.32)

where P is the gradient of the plastic potential, we obtain that the
rate of the accumulated plastic strain is proportional to the plastic
multiplier (λ̇ ≥ 0) in the form

Ṗ (ε) = λ̇ |P | . (2.33)
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With a substitution of Eq.(2.28) and Eq.(2.32) into the incremental
elastic constitutive equation σ̇ = Ėεe0 + E0ε̇

e, we obtain

σ̇ = Ėεe0 + E0(ε̇− λ̇P − αT ṪI). (2.34)

Note that for simplicity we refer to isotropic elasticity, so that the
elastic tensor E is defined in terms of elastic modulus E and Poisson
ratio ν. Moreover we introduce the dependence of the elastic tensor
E on the temperature.

During plastic loading, the stress point must satisfy the yield
condition F (σ,k) = 0 at every time increment, therefore the Prager
consistency can be written as

Ḟ = Q · σ̇ + ∂F

∂k
· k̇ = 0, (2.35)

where Q = ∂F/∂σ is the yield function gradient and k is the
hardening parameters vector. With the dependence of harden-
ing parameters on the accumulated plastic strain and temperature
k(T, P (εp)), we can rewrite Eq. (2.35) as

Q · σ̇ + ∂F

∂k

(
∂k

∂T
Ṫ + ∂k

∂P
Ṗ

)
= 0. (2.36)

Substitution of Eq. (2.34) and Eq.(2.33) into Eq.(2.36) allows us
to obtain the plastic multiplier in the following form

λ̇ =
Q ·

{
Ėεe0 + E0

[
ε̇− αT ṪI

]}
+ ∂F

∂k

∂k

∂T
Ṫ

Q · E0Q− |P |
∂F

∂k

∂k

∂P

. (2.37)

By using Eq. (2.37) into Eq. (2.34) yields the thermo-elasto-plastic
constitutive equations in the rate form

σ̇ = Ėεe0 + E0ε̇− αT ṪE0I+

−
Q ·

{
Ėεe0 + E0

[
ε̇− αT ṪI

]}
+ ∂F

∂k

∂k

∂T
Ṫ

Q · E0Q− |P |
∂F

∂k

∂k

∂P

E0P . (2.38)

2.3 Rate dependence
The equations discussed so far are only valid for rate indepen-

dent problems. In other words, only apply for quasi-static loading.
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In case of high strain rates, the elastic material response occurs
almost instantaneously. Otherwise, the damage mechanisms re-
sponsible of the observed inelastic deformation can not take place
instantaneously. Materials are characterized by a certain ‘internal
resistance’ also called ‘viscosity’ which retards the damage develop-
ment. In the following the fundamental assumptions and a general
viscoplastic formulation is described in detail.

2.3.1 General concept: overstress and relaxation

Cracks in a material grow at finite speed, they cannot change
their size instantaneously. In case of stress sufficiently high to cause
cracks, the quasi-static solution will not be realized until a suffi-
ciently long time to permit the full crack development has elapsed.
In the limit of extraordinary high strain rates (as for example near
the source of an explosion), the immediate material response is
essentially elastic, since insufficient time exists for plasticity to de-
velop.

To allow for rate dependence, an ‘overstress’ model is used.
In presence of high strain-rates, the stress state will lie outside
the yield surface until a sufficiently long time for the material to
equilibrate has passed.

t

σ

σy

2 ∆t ∆t ∆t2 ∆t

Figure 2.4: Stress ‘jumps’ induced by changes in the strain rate during loading.

Changes in the strain rate during the deformation process will
therefore result in stress ‘jumps’, which are qualitatively illustrated
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in Figure 2.4. Otherwise, when imposing a constant stress state
resulting in material yielding we expect plastic deformation to grow
over time (see Fig. 2.5), due to the ‘relaxation’ of the stress state
that proceeds towards the quasi-static solution. This mechanism
can efficiently simulate creep effects in a wide range of materials.

Initial elastic strain

Primary creep

Tertiary creep

t

ε

Steady state creep

Figure 2.5: Example of creep deformation.

The viscoplasticity theory expressed in the present work is
based on a generalized Duvaut-Lions [8–10] rate-sensitive formula-
tion. Its main assumptions are illustrated in Figure 2.6, where for
simplicity’s sake no hardening and consequent size growth of the
yield function is taken into account.

As qualitatively illustrated in Fig. 2.6, we consider an initial
stress state σn−1 and a loading increment ∆t during which a cer-
tain strain increment ∆ε takes place. Assuming the presence of
plastic flow, we can compute two limiting solutions for the updated
stress σn:

1. The low-rate solution σL, corresponding to the quasistatic
solution which can be found by solving the rate-independent
(thermo)plasticity equations described in Sections 2.1.3 and
2.2.2. According to the Prager consistency condition, the
stress state inevitably lies on the yield surface.

2. The high-rate solution σH , corresponding to insufficient
time for any inelastic damage to develop. This solution is
therefore a purely elastic step, corresponding to the trial elas-
tic stress lying outside the yield function.
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F (σ,k) < 0
quasistatic plasticity
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Figure 2.6: Conceptual illustration of rate-dependent plasticity. For a given
strain increment, the viscoplastic solution is found between two limiting stress
states: the ‘high rate’ solution σH which is the simple trial elastic stress and
the ‘low rate solution’ corresponding to the quasistatic plastic solution.

We can therefore assume that there exist a strain dependent scalar
η between 0 and 1 allowing the linear interpolation

σ ≈ σL + η(σH − σL). (2.39)

If the initial stress is on the yield surface, the expression of the rate
factor η which depends on the time-step ∆t can be written as

η = 1− e−∆t/τ

∆t/τ , (2.40)

where τ is a material parameter called the characteristic response
time of the material.

In the following, it will be proven that starting from the end
of a viscoplastic step, corresponding to a stress state outside the
yield function, the scale factor is smaller than the value cited in
Eq. (2.40). Consequently, the ‘attraction’ that the viscoplastic
stress has for the quasistatic stress increases moving farther from
the yield surface.

It is underlined that, due to the increased stiffness in case of
high strain rate scenarios, the yield stress might ‘appear’ higher.
However, the proposed formulation does not influence the yield
point of the material, which is uniquely defined by the yield surface.
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2.3.2 Viscoplasticity equations

Rate-independent solutions for stress state σL and internal
variables kL are presumed to exist and to be computable from
the constitutive equations described in Secs. 2.1.3 and 2.2.2.

Viscous effects are included decomposing the strain rate ε̇ as

ε̇ = ε̇e + ε̇vp, (2.41)

where ε̇e and ε̇vp are respectively elastic and ‘viscoplastic’ parts of
the strain rate. ε̇vp includes both the usual (quasi-static) plastic
strain rate and the retarding contributions resulting from viscosity.

The viscoplastic strain rate can be calculated as

ε̇vp = 1
τ
E−1(σ − σlow), (2.42)

while the internal state variables vary according to

k̇ = −1
τ

(k − klow), (2.43)

where σlow and qlow are respectively the values of the rate-independent
stress and internal variables throughout the time interval, which
are ultimately equal to the low rate solutions σL and qL at the end
of the step.

As usual, the stress rate is given by

σ̇ = Eε̇e. (2.44)

Thus, using Eq.(2.42), we can write

σ̇ = σ̇high − 1
τ

(σ − σlow), where σ̇high = Eε̇, (2.45)

where σhigh is the elastic trial stress throughout the time step,
ultimately equal to σH at the end of the step.

Equation 2.45 represents a set of first order differential equation
that could be solved exactly if the analytical expression of σlow
as a function of time would be known throughout the time step.
However, since the solution of the quasistatic equations is usually
computed numerically, with the use of the methods introduced in
Ch. (3), the value of σlow = σL is known only at the end of the
time step.

Nevertheless, σlow can be well approximated over the step in
the manner described in the following.
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Let us introduce a new variable u defined as

u = σ − σhigh, (2.46)

so that Eq. (2.45) can be written as

u̇ = −1
τ

(u+ σhigh − σlow). (2.47)

The increment σ̇low is assumed to be constant over the step and
consequently the rate-independent stress σlow varies linearly over
the step. Therefore, the quasi-static stress rate σ̇low is an oblique
projection of the (known) trial stress rate σhigh. By applying the
mean value theorem, we can write that

(σhigh−σlow) ≈ (σH−σL)
(
t− t0

∆t

)
+(σhigh0 −σlow0 )

(
1− t− t0

∆t

)
.

(2.48)

With the introduced approximation, Eq.(2.47) can be integrated
exactly. Being σhigh = σlow at the beginning of the time step, the
initial condition is u = 0 at t = t0. Therefore, the solution is found
as

σ = σL +RH(σH − σL) + rh(σhigh0 − σlow0 ), (2.49)

where

RH = 1− e−∆t/τ

∆t/τ and rh = e−∆t/τ −RH . (2.50)

If we approximate that σhigh0 −σlow0 is parallel to σH −σL, we can
put Eq.(2.49) in the form of Eq. (2.39) as

σ = σL + η(σH − σL), (2.51)

while the general expression of η,

η = RH + rhΥ, where Υ = |σ
high
0 − σlow0 |
|σH − σL|

, (2.52)

is not equal to Eq. (2.40) unless the initial state is on the yield
surface and σhigh0 = σlow0 . This condition is verified only at the
onset of yielding. The increase of Υ results in a lowered value of η,
that makes the viscoplastic stress more strongly attracted to the
quasistatic solution.
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Similarly, the rate dependent update of the internal state vari-
ables can be computed as

k = kL +RH(kH − kL), (2.53)

if the time variation over the step is approximated as

k = kH + (kL − kH)(t− t0)/∆t. (2.54)

2.4 BP yield function

Piccolroaz and Bigoni [3–5] have proposed a yield function (re-
ferred as the BP yield function in the following) which is convex,
smooth and extremely flexible, being able to reduce in limiting
cases to several well-known models such as Von Mises, Tresca,
Drucker-Prager, Mohr-Coulomb or Cam-Clay. The BP yield func-
tion is well-suited to represent quasi-brittle materials, rock-like ma-
terials, ceramics, concrete, soils. Furthermore, it is useful for the
description of the powder-solid transition during industrial com-
paction processes which may involve high-temperature.

In the context of ceramic materials, both in the state of loose
powder as in case of refractory devices, there are countless com-
positions that yield to the most different mechanical properties.
Reproducing the behavior of a wide range of materials with a sin-
gle constitutive model is a particularly challenging goal. The BP
yield function has been used with good results in the development
of the present work, with the purpose of generalize and unify pro-
cedures and concepts for material characterization and numerical
analysis. In the following, the formulation and the main features
of this yield criterion are introduced.

2.4.1 Definition

The BP yield function ([3]) is defined in terms of the stress
tensor σ by

F (σ) = f(p) + q

g(θ) , (2.55)

where, defining the parameter Φ as

Φ = p+ c

pc + c
, (2.56)

23



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

the meridian and deviatoric functions are respectively written as

f(p) =

 −Mpc
√

(Φ− Φm) [2(1− α)Φ + α], Φ ∈ [0, 1],

+∞, Φ /∈ [0, 1],
(2.57)

and The expression
(2.58) of g(θ) was
proposed by
Podgórski (1984;
1985) and
independently by
Bigoni and
Piccolroaz
(2004).

1
g(θ) = cos

[
β
π

6 −
cos−1 (γ cos 3θ)

3

]
, (2.58)

in which p, q and θ (the Lode’s angle) are the following stress
invariants

p = −trσ
3 , q =

√
3J2, θ = 1

3 arccos
(

3
√

3
2

J3

J
3/2
2

)
, (2.59)

functions of the second and third invariant of the deviatoric stress
S

J2 = 1
2 trS2, J3 = 1

3 trS3, S = σ − trσ
3 I, (2.60)

I being the identity tensor.
The yield function (2.55)–(2.57) is convex when the seven ma-

terial parameters defining the meridian shape function f(p) and
the deviatoric shape function g(θ) lie within the following intervals

M > 0, pc > 0, c ≥ 0, 0 < α < 2,
0 ≤ β ≤ 2, 0 ≤ γ ≤ 1, m > 1.

(2.61)

2.4.2 Shape distortion and flexibility

The seven, non-negative material parameters of the BP yield
function define the shape of the associated yield surface. In par-
ticular:

• The parameterM (dimensionless) controls the pressure-sensitivity.

• Parameters m and α define the distortion of the meridian
section.

• The shape of the deviatoric section is regulated by β and γ,
where γ → 1 leads to a piece-wise linear deviatoric surface.

24



2. THEORY OF RATE-DEPENDENT THERMOPLASTICITY

Figure 2.7: Shape distortion of the BP yield function in the meridian and
deviatoric planes and associated governing parameters.

• pc and c are respectively the yield strengths under ideal isotropic
compression and tension, respectively.

The effects of each parameter on the yield function shape is qual-
itatively shown in Fig. 2.7. The distortion of meridian section
obtained by changing parameters M , m , c/pc and α is shown in
the upper-right part of Fig. 2.7. In particular, it is to note that the
shape distortion induced by the variation of parameters m and α
is crucial to fit experimental results relative to frictional materials.

The possibility of extreme shape distortion of the deviatoric
section represent a unique capability of the BP model. The devi-
atoric shape may range between upper and lower convexity limits
and approach the Tresca, von Mises and Mohr-Coulomb criteria.

This is depicted on the left part of Fig. 2.7, where function
g(θ) is normalized through division by g(π/3) so that all deviatoric
sections coincide at the point θ = π/3.

The use of the BP criterion therefore may allow one to obtain
a convex, smooth approximation of several yielding criteria and
possible combinations of them, so that it can be considered of very
general validity.

If this is not substantial from a theoretical point of view, it
clearly avoids the necessity of introducing independent yielding
mechanisms and the related complications.
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Chapter 3

Numerical
Implementation

In solid mechanics, the solution of nonlinear boundary value
problems is based on iterative numerical solution of a discretized
version of the momentum balance equations. The main steps in-
volved in the procedure can be summarized as follows:

(a) The discretized equilibrium equations yield to incremental dis-
placements which are used to calculate incremental strains ∆ε
through the kinematic relations;

(b) Given valid initial conditions and the incremental strains cal-
culated in step (a), the local constitutive equations are inte-
grated and new values of the state variables k and stress σ are
computed.

(c) The equilibrium balance is checked for the computed stresses
and, if this is violated, the iterative procedure is continued by
returning to step (a).

In the computational solution of the cited problem, steps (a)
and (c) are usually carried out at a global level by Finite Element/
Finite Differences codes. Step (b) may be considered the central
problem of computational plasticity [11] and is strongly related to
the nature of the considered constitutive model.

This Chapter illustrates the common practices for the use of
custom constitutive models inside conventional Finite Element codes
and introduces new numerical strategies for the efficient integra-
tion of the local constitutive equations in case of pathological yield
functions. Pathologies of yield functions may include: complex
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valued functions outside the elastic domains, functions with false
elastic domains, functions which become non-smooth in some re-
gions of the stress space. Note that the Bigoni-Piccolroaz yield
function defined in Sec. 2.4 is affected by one of these pathologies,
namely it is defined +∞ in some parts of the stress space outside
the elastic domain.

Three algorithms for integration of constitutive models with a
pathological yield function are developed and efficiently applied
to the BP criterion [3, 4]. These algorithms are: (i.) an ex-
plicit integration scheme based on a forward Euler technique with
a ‘centre-of-mass’ return correction, (ii.) an implicit integration
scheme based on a ‘cutoff-substepping’ return algorithm and (iii.)
a return mapping procedure combined with the implicit definition
of the yield function.

Special focus is given to the evaluation of the numerical per-
formance of the proposed integration algorithms, both producing
particular iso-error maps in the stress-space and comparing semi-
analytical solution of mechanical and thermo-mechanical problems
with the numerical results obtained with the implemented user-
material subroutines.

3.1 User-defined material models in Finite
Element Codes

Some advanced FE software (e.g. Abaqus, Ansys, Code Aster,
CalculiX) allow the implementation of custom material models in
user material subroutines interfacing with the main code through
a standardized parameter list. These subroutines define only the
material response, while the iterative solution of the momentum
equations is handled by the FE software, so that their use in the
context of material modeling is extremely convenient.

The material models presented in Chapters 5, 6 and 7 have been
implemented in Abaqus UMAT (User MATerial) subroutines. For
the ceramic powder densification model presented in Ch. 5, an al-
ternative version of the code has been produced to be used in the
Ansys environment, where the user material subroutine is named
USERMAT. Although some negligible convention differences be-
tween the FE codes are found, the operations executed from the
user subroutine are usually coincident and can be summarized as
in Box 1.
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Box 1: User material subroutine
(1) At the current time-step n + 1 the variables stress σn,

strain εn, state variables kn and strain increment ∆εn+1
are provided as input to the user material subroutine;

(2) Update the total strain εn+1 = εn+∆εn+1;

(3) Integrate the constitutive equations using the preferred
numerical strategy (see Sec. 3.2);

(4) Update the stress σn+1 and the vector of state variables
kn+1;

(5) Compute the Jacobian J = ∂∆σ
∂∆ε and the thermal Jaco-

bian
JT = ∂∆σ

∂∆T ;

(6) Return σn+1, kn+1, J and JT to the FE code .

At each Gauss point of each element, the user subroutine is
called by the main FE code and receives as input the stress σ, the
strain ε and the vector of state dependent variables k computed
at the previous time-step. The current (guess) strain increment
∆ε is also passed to the subroutine. State variables and stress val-
ues are updated through integration of the particular constitutive
equations associated to the chosen material model using the pre-
ferred numerical procedure. As already mentioned, pathological
yield criteria such as the BP yield function (see Sec. 2.4) require
non-standard integration algorithms, which are described in Sec.
3.2.

Particularly delicate is the computation of the material Jaco-
bian Matrix for the mechanical constitutive model ∂∆σ

∂∆ε and, in
case of coupled temperature-displacement analysis, the thermal Ja-
cobian ∂∆σ

∂∆T . These operators must be accurately computed and
returned to the main FE code in order to achieve rapid conver-
gence of the global Newton scheme. In many cases, their accuracy
is the most important factor governing the convergence rate. How-
ever, the precision of the Jacobian does not affect the results of the
analysis, if these are obtained.

In the computation of the Jacobian matrix, it must be consid-
ered that the solution of an asymmetric system of equations is as
much as four times more expensive than the corresponding sym-
metric system. Some features of the constitutive model, such as
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non-associative flow rule, lead to asymmetric Jacobian matrix and
imply therefore the solution of an asymmetric system of equations
at global scale. Thus, in case of slightly asymmetric constitutive
Jacobian, it might be computationally more efficient to use a sym-
metric approximation and accept a slower convergence rate.

The complexity and the size of the tensor derivatives required
for the iterative solution of the local constitutive equations and the
computation of the consistent Jacobian penalizes the development
of advanced constitutive models.

In the implementation of the constitutive models presented in
Chapters 5, 6 and 7, the advanced hybrid symbolic-numeric ap-
proach implemented in AceGen [12, 13] results to be a particularly
valuable tool. This symbolic code generator combines automatic
differentiation techniques (AD) and optimization of formulae, pro-
viding therefore an optimal environment for designing and imple-
menting numerical code.

AceGen is available as a package of Wolfram Mathematica and
permits the automatic generation of computer code in several pro-
gramming languages (e.g. C++, FORTRAN, MATLAB), there-
fore speeding up the UMAT development and allowing frequent
improvements of the numerical procedures. Benchmarks of the
generated code are also possible within the Mathematica environ-
ment by means of the FE code AceFEM.

3.2 Stress-point integration algorithms for
constitutive models with a pathological
yield function

Used in the context of elastoplastic modelling, the BP yield
function (defined in Sec. 2.4) introduces the problem that to be
convex, it has been defined +∞ in certain regions in the stress-
space outside the elastic domain. Therefore, in its original form,
the BP yield function cannot be implemented within an elasto-
plastic integration scheme, if a gradient-based return-mapping al-
gorithm is used, for which the gradient of the yield function is
needed everywhere in the stress-space [11]. If a non-convex version
of the BP yield function (obtained by squaring the terms) is im-
plemented with a return-mapping algorithm, wrong results can be
produced, as a specific example will demonstrate.

The problem of the BP yield surface is also common to other
yield surfaces for geomaterials (see Brannon and Leelavanichkul,
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2010), so that the aim of the present Section is to overcome the
difficulty by proposing three algorithms: the first is based on a
forward Euler technique with a correction based on a ‘centre-of-
mass’ return scheme, fully applicable to the original form of the BP
yield function (defined +∞ outside the yield surface); the second is
based on a cutoff-substepping return-mapping algorithm that can
be applied on the squared (and non-convex) version of the BP yield
function; the last strategy, initially proposed by Stupkiewicz et al.
[7], involves the implicit redefinition of the BP yield function, in
order to enforce its convexity and finiteness.

3.2.1 The ‘centre of mass’ integration algorithm

As previously mentioned, the problem with the BP yield func-
tion is that it is defined +∞ in some regions outside the elastic
domain (for p /∈ [−c, pc]), Fig. 3.1. Therefore, an integration
algorithm based on a standard return mapping technique cannot
work, so that the purpose of this Section is to introduce an explicit
forward Euler algorithm to solve this problem (while an implicit al-
gorithm will be presented in the next Section defined on a ‘squared
version’ of the yield function).

Figure 3.1: The BP yield function represented as a surface in the p–q plane.

Centre of mass of the BP yield surface

The numerical integration algorithm that will be developed
later is based on the knowledge of the centre of mass of the yield
surface. This, with reference to Fig. 3.2, can be obtained as follows.
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Figure 3.2: Radius ρ(θ) and centre of mass of two indicative deviatoric sections
(located at different mean stresses p) of the BP yield surface. Due to the
isotropy symmetries of the deviatoric sections, the mass centres lie on the
hydrostatic axis.

We begin by noting that the yield surface possesses the isotropy
symmetries in the deviatoric plane (see Bigoni and Piccolroaz,
2004), therefore, the centre of mass of the yield surface lies on the
hydrostatic axis. The infinitesimal area of the deviatoric section
can be evaluated as

dA = 1
2ρ

2(θ) dθ, (3.1)

where

ρ(θ) =
√

2
3q = −

√
2
3f(p)g(θ), (3.2)

is the radius of the surface boundary evaluated with respect to
the hydrostatic axis, so that the area of the deviatoric section is
expressed as

A(p) = 2f2(p)
∫ π

3

0
g2(θ) dθ. (3.3)

On application of the definition of the centre of mass

pG =

∫ pc

−c
pA(p) dp∫ pc

−c
A(p) dp

, (3.4)

provides the coordinate of the centre of mass of the BP yield surface
along the hydrostatic axis

pG = (m+ 1)pc [(α− 3)m− 6] + c [6(α+ 1) +m(m+ 7)]
(m+ 3) [(α− 4)m− 2(α+ 2)] , (3.5)
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a formula involving all the meridian parameters of the yield func-
tion, except M .

The ‘centre of mass’ return algorithm

We propose a numerical integration procedure for rate elasto-
plastic constitutive equations based on a return algorithm which
is geometrically sketched in Fig. 3.3 and can be synthetically de-
scribed with reference to Box 2.

Figure 3.3: Geometrical sketch of the ‘centre of mass return algorithm’ for the
integration of rate elastoplastic constitutive equations.

In particular, starting from a given state at a step n [point (1)
in Box 2] and after the usual trial elastic step [point (2)], the stress
point at yielding is found along the line joining the trial and the
initial state [point (3)]; from this point, after the purely elastic
strain is eliminated from the strain increment [point (4)], a new
stress increment is found using the tangent elastoplastic operator
[point (5)]; the plastic strain increment is updated [point (6)]; and
finally, a return on the updated yield surface is performed along
the line joining with the centre of mass of the yield surface [points
(7)–(8)].
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Box 2: The ‘centre of mass’ integration algorithm
(1) Given an initial state at step n, described by the variables

σn, εen, εpn and given a strain increment ∆ε;

(2) evaluate the elastic trial solution

σtrial
n+1 = σn + E[∆ε];

(3) along the line from σn to σtrial
n+1 find the stress point σyn+1

at yielding
F
(
σyn+1, ε

p
n

)
= 0;

(4) evaluate the elastic deformation increment corresponding
to σyn+1 − σn

∆εyn+1 = E−1 [σyn+1 − σn
]
;

(5) evaluate the stress increment via the tangent elastoplastic
operator

σ
(0)
n+1 = σyn+1 + C

[
∆ε−∆εyn+1

]
;

(6) update the plastic deformation

ε
p (0)
n+1 = εpn + ∆ε− E−1[σ(0)

n+1 − σn
]
;

(7) find the stress σ(1)
n+1 on the updated yield surface

F
(
σ

(1)
n+1, ε

p (0)
n+1

)
= 0;

(8) update the plastic deformation for the final stress state on
the yield surface

ε
p (1)
n+1 = εpn + ∆ε− E−1[σ(1)

n+1 − σn
]
;

(9) EXIT.

There are two ‘find’ in the procedure explained in Box 2: the
first is at point (3) and the second is at point (7). Both corre-
spond to a root-finding procedure for a scalar function (the yield
function) of tensorial variable (the stress), which can be pursued
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with different numerical techniques, so that we have employed a
bisection method. Regarding the ‘find’ at point (3), the zero of
F is sought along the segment joining σn with σtrial

n+1, while no di-
rections are a-priori prescribed for returning on the yield surface
from the stress state σ(0)

n+1 at point (5). We propose to find the
zero of F

(
σ

(1)
n+1, ε

p (0)
n+1

)
= 0 along the segment drawn from σ

(0)
n+1 to

the centre of mass of the yield surface, σG [defined by parameter
pG, Eq. (3.5)].

Note finally that the presented numerical algorithm has the
inconvenient typical of explicit methods, for which there is a small
discrepancy at the end of the procedure, in the sense that the
stress point lies on a yield surface which does not correspond to
the updated values of hardening. A procedure alternative to the
centre-of-mass algorithm is introduced in the next Section.

3.2.2 The ‘cutoff-substepping’ integration algorithm

As an alternative to the forward Euler procedure with ‘centre
of mass’ return correction introduced in the previous Section, we
propose an implicit integration scheme. Since the standard return
mapping algorithm does not work in a zone of the stress-space, this
zone can be delimited by introducing a cutoff plane orthogonal to
the hydrostatic axis, so that a new algorithm can be set up in which
the return mapping scheme is augmented of a substepping when
the trial elastic stress falls within that zone. In particular, if the
trial elastic solution σtrial falls on the same side of the plane as the
starting point, the return mapping algorithm correctly converges
(as demonstrated in Section 3.2.2), while, if it falls beyond the
cutoff plane, an iterative subincrementation is performed, in which
the strain increment ∆ε is subdivided and the return mapping is
iteratively applied with successive updates of the BP yield func-
tion, so that, eventually, the entire initial step will be performed
remaining within the correct stress zone.

The position of this cutoff plane depends on shape and size
of the BP yield surface, see Fig. 3.4, and can be determined as
follows.

The squared BP yield function and the cutoff plane

The squared BP yield function is obtained by squaring the
terms in equation (2.57), so that its meridian part (divided by
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Figure 3.4: Cutoff plane for the BP yield surface. Stress points where the
return mapping algorithm works correctly are on the side of the plane where
the yield surface lies. The false elastic domain is shown brown.

pc) can be written as

f̃(Φ) = M2 (Φ− Φm) [2(1− α)Φ + α] . (3.6)

The first and second derivatives of this function with respect to Φ
are

df̃(Φ)
dΦ = M2

{
2(1− α) [2Φ− (1 +m)Φm] + α

(
1−mΦm−1)} ,

(3.7)

and

d2f̃(Φ)
dΦ2 = M2

{
2(1− α)

[
2−m(1 +m)Φm−1

]
− αm(m− 1)Φm−2

}
,

(3.8)

respectively. Note that the squared BP yield function is differ-
entiable (its first and second derivatives are defined everywhere),
but, in general, is no longer convex and displays a so-called ‘false
elastic domain’ (a nomenclature introduced by Brannon and Leela-
vanichkul, 2010), visible in Fig. 3.4. For this reason, the Newton-
Raphson algorithm

Φn+1 = Φn −
f̃(Φn)
df̃(Φ)
dΦ

∣∣∣
Φn

, (3.9)
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in general fails to converge. Nevertheless, it is possible to demon-
strate that, for the squared BP yield function, a non-convex re-
gion exists in which the Newton-Raphson method still converges,
despite the non-convexity. The region is delimited by the above-
introduced cutoff plane, which position can be determined as fol-
lows.

Position of the cutoff plane
Let us consider the situation sketched in Fig. 3.5. The generic

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 3.5: Determination of the position of the cutoff plane. Local stationary
(maximum and minimum) and inflection points are denoted by black spots,
while the bounds of the non-convex region (in which the Newton-Raphson
algorithm can be still used) are shown gray. The dashed lines ra and rb are the
tangent lines to the meridian function at the points Pa and Pb, respectively.
The graph f̃(Φ) has been obtained with the following set of parameters: M = 1,
m = 3, α = 1.5, pc = 100 MPa, and c = 10 MPa.

points Pa =
(
Φa, f̃(Φa)

)
and Pb =

(
Φb, f̃(Φb)

)
lie on the merid-

ian function, so that it is possible to calculate in those points the
tangents

ra : f̃(Φ) = f̃(Φa) + f̃ ′(Φa)(Φ− Φa), (3.10)
and

rb : f̃(Φ) = f̃(Φb) + f̃ ′(Φb)(Φ− Φb), (3.11)
where a prime denotes the derivative with respect to Φ. If we
impose that

(
Φa, 0

)
∈ rb and

(
Φb, 0

)
∈ ra, we obtain the following

non-linear algebraic system{
f̃(Φa) + f̃ ′(Φa)(Φb − Φa) = 0,
f̃(Φb) + f̃ ′(Φb)(Φa − Φb) = 0,

(3.12)
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with the unknowns Φa and Φb; these values, that can be calcu-
lated numerically, define the region [Φa,Φb] in which the Newton-
Raphson algorithm can be still used, even though the squared BP
yield function is not convex.

As a conclusion, Φb is the value defining the position of the cut-
off plane, to be used in the subincrementation scheme, as shown in
Box 3 (note that Φa is not needed, since in the integration algo-
rithm the trial elastic stress always lies outside the elastic domain).

Box 3: The ‘cutoff-substepping’ integration
algorithm
(1) Given an initial state at step n, described by the

variables σn, εen, εpn and given a strain increment
∆ε;

(2) Set ∆εi = ∆ε and m = 1 (where m defines the
substep interval);

(3) INITIALIZE: all variables are set equal to the value
at the initial step n;

(4) DO i = 1, m;

(5) Evaluate the elastic trial solution

σtrial
n+1,i = σn + E[∆εi];

(6) Calculate Φtrial
n+1,i = pn+1,i+cn

pc,n+cn and Φb by solving Eq.
(3.12);

(7) Check position with respect to the cutoff plane
IF Φtrial

n+1,i ≤ Φb GOTO Standard Return Mapping;

(8) Substepping procedure
ELSE m = 2m AND ∆εi = ∆ε

m ;

(9) GOTO (3)
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3.2.3 Implicit BP yield function and return mapping
algorithm

A different strategy [7] to overcome the cited difficulties related
to non-convexity or non-finiteness of the BP yield function F (σ,k)
is to define an alternative yield function F ∗(σ,k) in such a way that
its zero level surface F ∗ = 0 is coincident with that of the original
yield function.

By doing so, we maintain the elastic domain and its closure
equivalent, while enforcing finiteness and convexity of the new de-
fined BP yield function F ∗(σ,k).

Yield function redefinition

The problems in the numerical implementation are related to
the only pressure-dependent part of the BP yield function f(p).
Thus, it is more efficient to apply the implicit definition in the
p− q space.

−c (pR, 0) pc

q

p

F = 0

F ∗ = const

(p0, q0)

(p, q)

ρ0

ρ

Figure 3.6: Construction of the implicit yield function F ∗ in the p− q space.

For a fix Lode angle θ, the yield surface F = 0 can be repre-
sented in the p− q space as shown in Fig. 3.6.

The implicit yield function F ∗ can be defined as

F ∗(σ,k) = ρ

ρ0
− 1, (3.13)

where ρ is the distance between current stress point (p, q) and a
reference point (pR, 0) located on the p axis

ρ = ‖ρ‖, ρ = (p− pR, q), (3.14)
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while ρ0 is the distance between the image of (p, q) on the yield
surface and (pR, 0)

ρ0 = ‖ρ0‖, ρ0 = (p0 − pR, q0), ρ = (F ∗ + 1)ρ0. (3.15)
Through Eq. (3.13) we generate a family of self-similar sur-

faces, which are scaled with respect to the chosen reference point
(pR, 0), where pR is assumed equal to (pc + c)/2. It is underlined
that different choices for the reference point could be made, as
for instance the ‘centre of mass’ of the considered yield function
(see Sec. 3.2.1). If the ‘source’ yield surface F = 0 is convex,
self-similarity implies convexity also of the implicit yield function
F ∗.

Figure 3.7 shows the iso-surfaces of the BP yield function in
the principal stress space, where the cross-section corresponding
to the generating yield surface F = 0 is marked in red color.

Figure 3.7: A convex and smooth BP yield surface (left). Iso-surfaces of the
corresponding implicit BP yield function in the principal stress space (right).
The zero-level surface is marked in red color.

The implicit yield function F ∗ can be calculated according to
Eq. (3.13) for given value of the distance ρ0. From the condi-
tion that the image point lies on the yield surface we obtain the
following nonlinear equation in ρ0 (for fix k and σ)

F0 = (ρ0,σ,k), (3.16)
Using the iterative Newton method we can compute numerically
the solution ρ0 as

ρi+1
0 = ρi0 + ∆ρi0, ∆ρi0 = −

(
∂F0
∂ρ0

)−1
F0(ρi0), (3.17)

which implicitly depends on the stress σ and hardening variables
k.
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Return mapping algorithm

In the following constitutive update problemIn this particular
case, associative
flow rule and no
thermal effects
are considered.

, we want to find
the updated values of plastic strain εp, plastic multiplier λ and
state variables k, given their values at the previous time-step n
and satisfying the elastic constitutive equation

σn+1 = E(εn+1 − εpn+1), (3.18)

the incremental (associative) flow rule

εpn+1 = εpn + (λn+1 − λn)Q(σn+1,kn+1), Q = ∂F

∂σ
, (3.19)

the complementarity conditions

F (σn+1,kn+1) ≤ 0, ∆λ ≥ 0, ∆λF (σn+1,kn+1) = 0, (3.20)

and the considered hardening rule

kn+1 = h(εpn+1). (3.21)

The functions h define the dependence of hardening state variables
k (e.g. pc) on the plastic strain, while E is the fourth-order elastic
moduli tensor.

Box 4: The return mapping algorithm
1. Compute the trial elastic state

σtrial
n+1 = E[εn+1− εpn], F trial = F (σtrial

n+1). (3.22)

2. Check the yield condition: if F trial ≤ 0 then the step
is elastic and

εpn+1 = εpn, ∆λ = 0. (3.23)

3. If F trial > 0 then the step is plastic and the following
nonlinear algebraic equations are solved for εpn+1 and
∆λ:

0 = εpn+1 − εpn − (λn − λn−1)Q(σn+1,kn),
0 = F (σn+1,kn+1),
0 = kn+1 − h(εpn+1),

(3.24)

where the stress σn+1 is given by the constitutive
equation (3.18).
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The constitutive update problem is solved using the return
mapping algorithm [11] which involves the sequence of steps listed
in Box 4.

We define u = {εpn+1, λn+1,kn+1} and H(u) respectively as
the vector of unknowns and the residual vector for the nonlinear
system (3.24).

The numerical solution of H(u) = 0 can be found using the
Newton method, which employs the iterative scheme

ui+1 = ui + ∆ui, ∆ui = −
(
∂H
∂u

)−1
H(hi), (3.25)

with the typical initial guess u0 = {εpn, λn,kn}, corresponding to
the trial elastic step.

According to the complementarity conditions, the computed
stress σn+1 belongs to the updated elastic domain F (σn+1,kn+1) ≤
0. However, the trial elastic stress σtrialn+1 can lie well outside the
yield surface. Thus, the use of the return mapping algorithm re-
quires the yield function to be defined and differentiable for ar-
bitrary stress. The implicit definition of the BP yield function
accomplishes these requirements and is therefore suitable for the
application of this numerical procedure.

3.3 Numerical performance of the proposed
algorithms

Beside the theoretical consistency, the computational perfor-
mance, robustness and precision of the proposed algorithms are
important parameters to evaluate.

In the following, the main purpose is to analyze the discrepan-
cies between the proposed algorithms, while the correctness of the
numerical results is not investigated. This task will be discussed in
Sections 3.4 and 3.5, where four different model problems allowing
for semi-analytical solutions are analyzed.

Special focus is given to the comparison between the newly
introduced ‘centre-of-mass’ and ‘cut-off substepping’ algorithms.
The robustness and convergence rate of the return mapping algo-
rithm applied to the implicit definition of the BP yield function
and of the ‘cut-off substepping’ algorithm are further investigated
in a large FE analysis.
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3.3.1 Finite step accuracy and iso-error maps

The numerical performance of the centre-of-mass integration
technique has been tested by comparing results obtained for a pre-
scribed finite step of deformation (taken in different directions in
the hyperspace of symmetric tensors as elucidated in Table 3.1)
with those obtained with the cutting-plane return-mapping tech-
nique applied to the ‘squared-version’ of the BP yield surface, with-
out subincrementation. In this way, it will become evident that,
for certain values of the trial elastic stress, convergence will not
occur for the latter algorithm.

Deformation

∆ε1 ∆ε2 = ∆ε3

Test 1 Isotropic compression −0.024 −0.024
Test 2 Isotropic traction 0.00013714 0.00013714
Test 3 Negative uniaxial deformation −0.0080728 0
Test 4 Positive uniaxial deformation 0.00037312 0
Test 5 Triaxial compression −0.0092839 −0.0185678
Test 6 Triaxial extension −0.006091 −0.012182

Test 7 Shear ∆ε1 = −∆ε2 ∆ε3

0.00078408 0

Table 3.1: Deformation steps ∆ε used for comparing the performance of the
centre-of-mass integration algorithm with the return mapping, the latter per-
formed on the squared version of the BP yield function.

The comparison between the two integration algorithms has
been performed by assuming:

• a form of the yield surface, namely,

M = 0.26, m = 2, α = 1.99, β = 0.12, γ = 0.98,

pc = 350 MPa, c = 2 MPa,

• elastic parameters in terms of Lamé constants

λ = 2669.49 MPa, µ = 4745.76 MPa,

• linear strain-hardening.
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Note that the above parameters have been selected to be rep-
resentative of a concrete-like material and the linear-hardening
elastoplastic model has been implemented as a UMAT subroutine
for Abaqus.

The strain steps prescribed in Table 3.1 for testing the capabil-
ity of the integration algorithms and the corresponding trial elas-
tic stresses are reported together with the strain-space and stress-
space representations of the BP meridian sections, respectively in
the upper and lower parts of Fig. 3.8, where θ is the Lode’s angle,
Eq. (2.59)3. The trial elastic stresses in the deviatoric plane of the
BP yield surface are reported in the central part of Fig. 3.8.

Figure 3.8: Prescribed finite strain steps in the strain-space (upper part) and
corresponding elastic trial stresses in the deviatoric plane (central part) and
meridian plane (lower part) of the stress-space, for tests 1 to 7 reported in
Table 3.1. Finite steps are prescribed in such a way that the norm of the trial
stress exceeds by 20% the norm of the corresponding yield stress along the
radial path from the origin to the trial stress.

Note that the prescribed trial stresses have been given so that,
in all cases, exactly the 20% of its norm lies outside the elastic
domain, ‖σtrial‖= 1.2×‖σy‖. Results, in terms of stress and plas-
tic strain reached at the end of the procedure, are reported in
Tab. 3.2 for tests 1 to 6, while results of the test 7 are reported
in Tabs. 3.3 and 3.4. In addition to the two algorithms under
testing, a so-called ‘exact’ result has also been included. This is
obtained through successive subdivision of the strain increment
into a sufficiently large number of subincrements to achieve con-
vergence within a high tolerance (so that the relative error between
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the last two subincrements lies below 10−6).
For the isotropic compression deformation path (‘test 1’) the

return mapping algorithm fails to converge, as a consequence of the
lack of convexity of the squared-version of the BP yield function,
and therefore results are not reported in the table.

Stress Error Plastic strain Error

σ1 σ2 = σ3 % εp1 εp2 = εp3 %

Test 1 Centre of mass −384.8 −384.8 0.05 −2.0103 · 10−3 −2.0103 · 10−3 0.53
Return mapping − − − − − −
Exact −384.8 −384.8 −2.0210 · 10−3 −2.0210 · 10−3

Test 2 Centre of mass 2.002 2.002 0.00 2.2726 · 10−5 2.2726 · 10−5 0.00
Return mapping 2.002 2.002 0.00 2.2726 · 10−5 2.2726 · 10−5 0.00
Exact 2.002 2.002 2.2726 · 10−5 2.2726 · 10−5

Test 3 Centre of mass −95.56 −25.88 0.89 −3.7303 · 10−4 3.5937 · 10−4 8.56
Return mapping −94.56 −25.23 0.45 −4.4081 · 10−4 3.2748 · 10−4 4.25
Exact −94.89 −25.45 −4.1833 · 10−4 3.3810 · 10−4

Test 4 Centre of mass 4.029 0.616 0.23 3.3229 · 10−5 1.9628 · 10−5 2.14
Return mapping 4.015 0.628 0.31 3.4796 · 10−5 1.8526 · 10−5 2.93
Exact 4.023 0.621 3.3895 · 10−5 1.9159 · 10−5

Test 5 Centre of mass −191.4 −261.2 0.04 5.2867 · 10−4 −1.3881 · 10−3 0.16
Return mapping −191.5 −261.4 0.09 5.3819 · 10−4 1.0881 · 10−3 1.08
Exact −191.3 −261.2 5.2705 · 10−4 −1.3947 · 10−3

Test 6 Centre of mass −193.0 −146.1 0.11 −4.0150 · 10−4 7.4916 · 10−4 1.52
Return mapping −192.8 −145.9 0.00 −4.1020 · 10−4 7.3847 · 10−4 0.22
Exact −192.8 −145.9 −4.1020 · 10−4 7.3847 · 10−4

Table 3.2: Stress and plastic strain at the end of the finite step calculated with
different algorithms for the strain and stress paths 1-6 of Table 3.1, graphically
represented in Fig. 3.8.

Stress Error

σ1 σ2 σ3 %

Test 7 Centre of mass 6.460 −7.826 −0.433 0.61
Return mapping 6.441 −7.741 −0.354 0.54
Exact 6.450 −7.782 −0.391

Table 3.3: Stress at the end of the finite step calculated with different algo-
rithms for the strain and stress path 7 of Table 3.1, graphically represented in
Fig. 3.8.

Iso-error maps have been plotted to display the error trend of
the two algorithms in the stress-space for a set of different strain
increments, chosen with the condition that the trial elastic solu-
tions σtrial lie respectively in the meridian (denoted as t−n in Fig.
3.9 on the left) and deviatoric (denoted as m − n in Fig. 3.9 on
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Plastic strain Error

εp1 εp2 εp3 %

Test 7 Centre of mass 7.460 · 10−5 1.156 · 10−5 1.667 · 10−5 6.64
Return mapping 7.888 · 10−5 4.924 · 10−4 1.075 · 10−5 5.92
Exact 7.686 · 10−5 8.082 · 10−6 1.352 · 10−5

Table 3.4: Plastic strain at the end of the finite step calculated with different
algorithms for the strain and stress path 7 of Table 3.1, graphically represented
in Fig. 3.8.

the right) planes.
The iso-error maps plotting ranges have been chosen as follows:

0 ≤ ∆σtrial
n

|σy|
≤ 0.2, −0.2 ≤ ∆σtrial

t

|σy|
≤ 0.2, −0.2 ≤ ∆σtrial

m

|σy|
≤ 0.2.

(3.26)

where σy is the considered stress at yielding

∆σtrial = ∆σtrial
t t+ ∆σtrial

n n+ ∆σtrial
m m. (3.27)

Figure 3.9: Sections of the yield surface and local reference system employed
for the construction of the iso-error maps.

The iso-error maps are reported in Fig. 3.10–3.13, assuming as
yield stresses σy those corresponding to the tests 3, 4, 5, and 6 of
Tab. 3.1, graphically represented in Fig. 3.8.

It can be noted from Figs. 3.10 and 3.12 (bottom, left) that
the centre-of-mass algorithm has a low accuracy when the yield
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Figure 3.10: Iso-error maps for Test 3 (see Tab. 3.1 and Fig. 3.8).

Figure 3.11: Iso-error maps for Test 4 (see Tab. 3.1 and Fig. 3.8).

stress σy lies near the corner of the deviatoric section (see Fig.
3.8, central part, tests 3 and 5) and the stress increment is not
radial. On the other hand, the accuracy is high in both t−n and
m − n planes, when the yield stress σy lies near the flat parts of
this section (see Fig. 3.8, central part, tests 4 and 6), as shown in
Figs. 3.11 and 3.13.
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Figure 3.12: Iso-error maps for Test 5 (see Tab. 3.1 and Fig. 3.8).

Figure 3.13: Iso-error maps for Test 6 (see Tab. 3.1 and Fig. 3.8).

3.3.2 Robustness improvement with implicit BP yield
function

Tests performed on simple numerical models with limited amount
of finite elements are often not representative of the stability of a
computational implementation. More complex systems, possibly
involving non-linearities of different nature (e.g. contact interac-
tion), should be investigated properly to ensure the robustness of
the selected integration algorithm for elastoplasticity.

To this end, the computational performance of the cut-off-
substepping return algorithm (see Sec. 3.2.2) and the return map-
ping algorithm combined with the implicit definition of the BP
yield function (see Sec. 3.2.3) have been tested on large thermo-
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mechanical FE models. Since the final goal is the use of the coded
UMAT subroutines in the industrial context, this step is fundamen-
tal to evaluate possible differences between the implementations.

While a good number of analyses yield to equivalent results,
the numerical simulation of the bending test on refractory steel
stoppers shows important differences if different integration algo-
rithms are employed. In this simulation, that is described in detail
in Sec. 6.5.1, the flexural strength of a cylindrical refractory device
having the middle part heated to 1000 ◦C is investigated.

As already mentioned at the beginning of this Section, the tests
presented here do not analyze the agreement between experimental
and numerical results (see Sec. 6.5.1 for this). Instead, we aim to
compare convergence rate and robustness of the two investigated
integration algorithms.

For this reason, the analysis has been set up in such a way that
softening effects or premature termination of the analysis due to
failure criteria (see Secs. 6.3 and 6.2) can not occur. Furthermore,
the imposed load is much higher than in the real experiment, so
that significant inelastic deformations are generated.
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Figure 3.14: Comparison of ‘cut-off-substepping’ and return mapping with im-
plicit defined BP yield function: isotropic strength pc and pushing head dis-
placements u1 in the numerical simulation of bending test on refractory steel
flow stopper. The analysis with the ‘cut-off-substepping’ algorithm crashes
before the end.

Figure 3.14 shows the isotropic strength pc of the refractory
material in the most deformed element of the mesh and the dis-
placement corresponding to the pushing head with both numerical
methods. While at the beginning of the analysis the results are
coincident, the simulation using the implementation of the cutoff-
substepping return algorithm stops considerably before the end,

49



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

being unable to achieve convergence.
In the real test, the break load is much smaller than the force

corresponding to the crash of the simulation. Therefore, both al-
gorithms are able to entirely simulate this particular experiment.
As long as valid results are returned by both procedures, only
negligible differences in terms of convergence rate have been ob-
served. Although the causes related to the lower stability of the
cut-off-substepping algorithm are still not completely clear, the
test highlights the better robustness of the return mapping proce-
dure combined with implicit definition of the BP yield function.
For the cited reasons, the last procedure has been preferred in the
implementation of the constitutive models presented in the next
Chapters.

3.4 Comparison with semi-analytical solu-
tions of plastic benchmark problems

Numerical results obtained by employing the proposed algo-
rithms have been compared with semi-analytical solutions of a
simple compaction problem and a deformation of a green body.
In particular, in Section 3.4.1, the forming of a thick perfectly-
plastic layer of ceramic powder is considered, pressed against a
rigid spherical cup, see Fig. 3.15a. Moreover, a thick spherical shell
of a green body is considered in Section 3.4.2, subjected to an in-
ternal uniform pressure with a traction-free external boundary and
expanded until collapse, corresponding to complete plasticization,
see Fig. 3.15b. Due to the spherical symmetry of both the prob-
lems, it is possible in both cases to obtain accurate semi-analytical
solutions for the stress field by direct numerical integration of the
equilibrium equations.

These benchmark problems, differing only in the boundary con-
ditions, are used to check the accuracy and efficiency of the pro-
posed algorithms. They represent only model problem simulations
of industrial processes and cannot be considered fully realistic,
since hardening (and therefore the evolution of the yield surface) is
neglected, so that the increase in cohesion is not taken into account.

The problem of the expansion of a thick spherical shell is inter-
esting in itself, due to the applications in geotechnics, and it has
been previously solved under a number of hypotheses (Hill, 1950;
Bigoni and Laudiero, 1989; Cohen et al. 2009; Rapoport et al.
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Figure 3.15: Geometry for the compaction of a thick perfectly-plastic layer of
ceramic powder againt a rigid cup (a) and for the expansion of a thick perfectly-
plastic spherical shell under internal pressure (b). In both cases, the boundary
of the plasticized zone is represented by δ which moves from r = a to r = b
at increasing internal pressure Π. The reference system and stress components
are shown in part (c).

2011; Volokh, 2011), although never with the BP yield function.
The problem of compaction of a layer of powder against a rigid cup
was previously not addressed in analytically.

For both problems, the inner and outer radii of the shell are
denoted with a and b respectively, while the internal pressure is
Π, which is assumed to increase from zero to the maximum value
corresponding to the full plasticization of the shell. Since the ge-
ometry shows radial symmetry, we assume a spherical coordinate
system. The solution is known in the case of perfect plasticity with
the Tresca yield criterion (Hill, 1950), so that our objective is to
generalize the solution to the BP yield criterion.

Due to the spherical symmetry, the stress and deformation de-
pend only on the radius r. The non-vanishing deformation radial
azimuthal, and polar components are respectively

εr = du

dr
, εθ = εφ = u

r
, (3.28)

where u is the radial displacement. The compatibility equation is

εr = d

dr
(rεθ), (3.29)

while the equilibrium equation in spherical coordinates is
dσr
dr

+ 2
r

(σr − σθ) = 0, (3.30)

to be complemented by the boundary conditions.
The elastic constitutive equations are

εr = E−1(σr − 2νσθ), εθ = E−1[(1− ν)σθ − νσr
]
, (3.31)
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where E is the elastic Young modulus and ν the Poisson’s ratio.
The Tresca yield criterion coincides (under the current assump-
tions) with the von Mises criterion, which can be written as

|σr − σθ| − σ0 = 0, (3.32)

where σ0 is the uniaxial yield stress, while the BP yield criterion
(2.55) writes now in the following form

F (σ) = f
(σr + 2σθ

3
)

+ |σr − σθ|
g(π3 ) = 0. (3.33)

The elastic solution. Using equations (3.29), (3.30) and (3.31)
we obtain

1− ν
2

d

dr
(σr + 2σθ) = 0. (3.34)

This equation together with Eq. (3.30) forms a system of ODEs,
which can be solved exactly and the solution is given by

σr(r) = C1
3 + C2

r3 , σθ(r) = C1
3 −

C2
2r3 , (3.35)

where C1 and C2 are constants to be defined through the boundary
conditions. The associated deformation and displacement fields are
obtained from (3.31) and (3.28) and read

εr(r) = 1
E

[
(1− 2ν)C1

3 + (1 + ν)C2
r3

]
, (3.36)

εθ(r) = 1
E

[
(1− 2ν)C1

3 − (1 + ν) C2
2r3

]
, (3.37)

u(r) = 1
E

[
(1− 2ν)C1

3 r − (1 + ν) C2
2r2

]
, (3.38)

3.4.1 Compaction of a thick layer of perfectly-plastic
material obeying the BP yield condition against
a rigid spherical cup

For the compaction problem of a thick layer against a rigid
spherical cup, Fig. 3.15a, the boundary conditions write as follows

σr
∣∣
r=a = −Π, u

∣∣
r=b = 0, (3.39)
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where Π is the internal pressure.

The material parameters defining the shape of the BP yield
surface have been chosen to be representative of alumina powder
(Piccolroaz et al., 2006), namely

M = 1.1, m = 2, α = 0.1, β = 0.19,
γ = 0.9, pc = 40 MPa, c = 1.5 MPa.

Note that, since hardening and increasing of cohesion are neglected,
we assume an initial state corresponding to an intermediate stage
of a densification process.

The elastic solution

Initially the problem is purely elastic, which occurs when the
internal pressure is sufficiently small, say, Π ≤ Πy, where Πy is
defined as the inner pressure producing the initiation of yielding
at the inner radius of the shell.

The solution (3.35)–(3.38) together with boundary conditions
(3.39), provides the following stress field within the thick spherical
layer, a ≤ r ≤ b,

σe
r(Π, r) = − a3(1 + ν)Π

a3(1 + ν) + 2b3(1− 2ν)−
2a3b3(1− 2ν)Π

a3(1 + ν) + 2b3(1− 2ν)
1
r3 ,

(3.40)

σe
θ(Π, r) = − a3(1 + ν)Π

a3(1 + ν) + 2b3(1− 2ν)+ a3b3(1− 2ν)Π
a3(1 + ν) + 2b3(1− 2ν)

1
r3 .

(3.41)

For the von Mises yield criterion, the critical yield pressure Πy is
represented by the stress state satisfying

|σe
r − σe

θ| = σ0, (3.42)

and can be evaluated as

Πy = σ0
3

[
2 + 1 + ν

1− 2ν

(
a

b

)3
]
. (3.43)
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In the following calculations ν = 0.26 has been assumed. For the
BP yield criterion, the critical yield pressure Πy corresponds to a
stress state satisfying

max
a≤r≤b

F
(
σe
r(Πy, r), σe

θ(Πy, r)
)

= 0, (3.44)

so that Πy can be evaluated as the numerical solution of the above
equation and it can be numerically shown that the plasticization
starts from the inner surface of the layer, r = a.

The elasto-plastic solution

The elasto-plastic solution holds for an internal pressure Π >
Πy, which implies both elastic and plastic deformation of the layer.
The plastic flow starts from the inner surface of the layer and
propagates within a spherical region with inner radius a and outer
δ and moving toward b. The remaining part of the layer, namely,
for δ ≤ r ≤ b, behaves as an elastic layer with inner radius δ and
outer b, subject to an internal pressure Πδ at the interface with the
plasticized zone.

Assuming that the yield pressure at the interface r = δ is Πδ,
a generic yield criterion writes as

F
(
σe
r(Πδ, δ), σe

θ(Πδ, δ)
)

= 0, (3.45)

which provides a relation between δ and Πδ. For example, the
pressure at the interface for the von Mises criterion can be obtained
from Eq. (3.43) imposing a = δ as

Πδ = σ0
3

[
2 + 1 + ν

1− 2ν

(
δ

b

)3]
. (3.46)

whereas for the BP criterion the pressure Πδ has to be evaluated
numerically.

The solution for the elastic zone (δ ≤ r ≤ b) can be obtained
from eqs. (3.40) and (3.41) where a and Π are replaced, respec-
tively, by δ and Πδ which are given by (3.45), so that the stresses
become

σep
r (r) = − δ3(1 + ν)Πδ

δ3(1 + ν) + 2b3(1− 2ν)−
2δ3b3(1− 2ν)Πδ

δ3(1 + ν) + 2b3(1− 2ν)
1
r3 ,

(3.47)
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σep
θ (r) = − δ3(1 + ν)Πδ

δ3(1 + ν) + 2b3(1− 2ν) + δ3b3(1− 2ν)Πδ

δ3(1 + ν) + 2b3(1− 2ν)
1
r3 ,

(3.48)

Hence the elastic part of the solution is known as the relation
between the radius δ and the pressure Πδ is known.

The solution for the plasticized zone (a ≤ r ≤ δ) is obtained
from the algebraic-differential system composed by the equilibrium
equations (3.30), the boundary conditions (3.39), and the yield
condition (3.32) or (3.33) (depending on the criterion assumed).
This system writes as

dσr
dr

+ 2
r

(σr − σθ) = 0,

F
(
σr(r), σθ(r)

)
= 0,

σr
∣∣
r=a = −Π,

σr
∣∣
r=δ = −Πδ,

(3.49)

which has been solved analytically for von Mises yield and numer-
ically for the BP yield function. In particular, the system (3.49)
admits for von Mises the following solution

σep
r (r) = −σ0

3

[
2 + 1+ν

1−2ν

(
δ
b

)3
+ 6 log

(
δ
r

)]
,

σep
θ (r) = −σ0

3

[
−1 + 1+ν

1−2ν

(
δ
b

)3
+ 6 log

(
δ
r

)]
,

(3.50)

and the relation between δ and the internal pressure Π writes as

Π = σ0
3

[
2 + 1 + ν

1− 2ν

(
δ

b

)3
+ 6 log

(
δ

a

)]
, (3.51)

which is a nonlinear relation. Once a fixed value of the radius δ,
representing the amplitude of the plasticized zone, is chosen, it is
possible to obtain the internal pressure Π and the stresses in every
part of the layer, namely for a ≤ r ≤ b.

Results in terms of radial and polar stress components and the
two stress invariants p and q are reported in Fig. 3.16 as functions
of the through-thickness radius (divided by the mean radius rm =
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(a+b)/2 of the spherical layer), together with the numerical results
obtained with the two proposed algorithms. Three different plastic
boundaries δ have been considered (corresponding to the 20%, 40%
and 60 % of the thickness) for both von Mises and the BP yield
criterion.

Results presented in the figure fully support the validity of the
proposed numerical algorithms, which have given coincident re-
sults, superimposed on the semi-analytical solution.
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Figure 3.16: Compaction of a perfectly-plastic thick layer, obeying von Mises
and BP yield conditions, against a rigid spherical cup, representative of a ce-
ramic powder. Upper part: radial (left) and polar (right) stress components as
functions of the dimensionless radial position. Lower part: mean stress p (left)
and deviatoric invariant q (right) as functions of the dimensionless radial po-
sition. Note that for the von Mises criterion σ0 = 33.86 MPa has been chosen,
so that the von Mises cylinder is circumscribed around the BP surface in the
stress space.
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3.4.2 Expansion of a perfectly plastic thick shell obey-
ing the BP yield condition

For the problem of expansion of a thick spherical shell sub-
jected to an internal uniform pressure, Fig. 3.15b, the boundary
conditions are as follows

σr
∣∣
r=a = −Π, σr

∣∣
r=b = 0, (3.52)

where Π is the internal pressure and the outer boundary is assumed
traction-free. The material parameters defining the shape of the
BP yield surface have been chosen to be representative of a partially
densified ceramic powder, namely

M = 1.33, m = 2, α = 1, β = 1,
γ = 0, pc = 150 MPa, c = 150 MPa.

The solution of this problem can be obtained with the same method
as the one described in Sec. 3.4.1, since only the boundary condi-
tions are different.

The elastic solution, valid until the internal pressure is suffi-
ciently small, Π ≤ Πy, is given by

σe
r(r) = Π(

b
a

)3
− 1

[
1−

(
b

r

)3]
, σe

θ(r) = Π(
b
a

)3
− 1

[
1 + 1

2

(
b

r

)3]
.

(3.53)

For the von Mises yield criterion, |σe
r − σe

θ| = σ0, the critical yield
pressure Πy is obtained as

Πy = 2
3σ0

[
1−

(
a

b

)3
]
, (3.54)

whereas for the BP yield criterion, the critical yield pressure Πy is
obtained by solving Eq. (3.44) and it can be numerically proven
that the plasticization starts from the inner surface of the shell.

The elasto-plastic solution holds for an internal pressure Π >
Πy, which implies both elastic and plastic deformation of the shell.
The plastic flow starts from the inner surface of the shell and prop-
agates within a spherical region with inner radius a and outer δ
and moving toward b. The remaining part of the shell, namely,
for δ ≤ r ≤ b, behaves as an elastic shell with inner radius δ and
outer b, subject to an internal pressure Πδ at the interface with the
plasticized zone.
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The relation between δ and Πδ is obtained by solving Eq.
(3.45). For the von Mises criterion Πδ is obtained as

Πδ = 2
3σ0

[
1−

(
δ

b

)3 ]
, (3.55)

whereas for the BP criterion the pressure Πδ has to be evaluated
numerically.

The solution for the elastic zone, δ ≤ r ≤ b, is given by

σep
r (r) = Πδ(

b
δ

)3
− 1

[
1−

(
b

r

)3
,

]
,

σep
θ (r) = Πδ(

b
δ

)3
− 1

[
1 + 1

2

(
b

r

)3]
.

(3.56)

The solution for the plasticized zone, a ≤ r ≤ δ, is obtained
from the algebraic-differential system (3.49). This system has a
solution with closed form for the simple case of von Mises yield
criterion; in this case the stresses take the form

σr = −2
3σy

[
1−

(
δ

b

)3
+ ln

(
δ

r

)3]
,

σθ = 1
3σy

[
1 + 2

(
δ

b

)3
− 2 ln

(
δ

r

)3]
,

(3.57)

and the relation between δ and the internal pressure Π writes as

Π = 2
3σy

[
1−

(
δ

b

)3
+ ln

(
δ

a

)3]
. (3.58)

Once a fixed value of the radius δ representing the amplitude of
the plasticized zone is chosen, it is possible to obtain the internal
pressure Π and the stresses in every part of the shell, namely for
a ≤ r ≤ b.

Results in terms of radial and polar stress components and the
two stress invariants p and q are reported in Fig. 3.17 as func-
tions of the through-thickness radius (divided by the mean radius
rm = (a+ b)/2 of the thick shell), together with the numerical re-
sults obtained with the two proposed algorithms. Three different
plastic boundaries δ have been considered (corresponding to the
28%, 55% and 86% of the thickness) for both von Mises and the
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Figure 3.17: Expansion of a perfectly-plastic thick spherical shell, obeying von
Mises and BP yield conditions, representative of a green body. Upper part:
radial (left) and polar (right) stress components as functions of the dimension-
less radial position. Lower part: mean stress p (left) and deviatoric invariant q
(right) as functions of the dimensionless radial position. Note that for the von
Mises criterion σ0 = 100 MPa has been chosen, so that the von Mises cylinder
is circumscribed around the BP surface in the stress space.

BP yield criterion. Again the two proposed algorithms have given
coincident values, superimposed with the semi-analytical solution,
thus confirming once more the validity of the presented numerical
approaches.
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3.5 Comparison with semi-analytical solu-
tions of thermoplastic benchmark prob-
lems

The numerical implementations of the proposed algorithms have
been validated by comparison with semi-analytical solutions of two
simple benchmark problems involving a spherical geometry. In par-
ticular, in Sec. 3.5.1, the hot pressing of a thick perfectly plastic
layer of a ceramic powder against a spherical cup is addressed.
Moreover, in Sec. 3.5.2, the problem of thermal heating and simul-
taneous mechanical expansion of a thick spherical shell of a green
body is analyzed.

For these problems, the steady-state solution is obtained both
using a semi-analytical approach and using the finite element im-
plementation.

In the steady-state solution, the heat conduction problem de-
couples from the mechanical problem and is solved in closed form.
Denoting the inner and outer radii of the shell by a and b, re-
spectively, and assuming that the temperature is increased at the
inner surface, the temperature field is the solution of the following
differential problem:

∂2T

∂r2 + 2
r

∂T

∂r
= 0, ∀r ∈ (a, b), (3.59)

T (a) = Θ, (3.60)

T (b) = 0, (3.61)

where Θ denotes the increase of temperature, with respect to the
reference temperature, at the inner surface.

The solution is given by

T (r) = aΘ

b− a

(
b

r
− 1

)
. (3.62)

For both problems, the internal pressure, denoted by Π, is
assumed to increase from zero to the maximum value corresponding
to the full plasticization of the shell. In a spherical coordinate
system (r, θ, φ), the stress and deformation depend only on the
radius r, because of the spherical symmetry. The non-vanishing
deformations are:

εr = du

dr
, εθ = εφ = u

r
, (3.63)
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where u is the radial displacement. The compatibility equation is

εr = d

dr
(rεθ), (3.64)

while the equilibrium equation is

dσr
dr

+ 2
r

(σr − σθ) = 0. (3.65)

The elastic constitutive equations are

εer = E−1(σr − 2νσθ), εeθ = E−1((1− ν)σθ − νσr), (3.66)

where E is the Young modulus and ν the Poisson’s ratio. The
deformations admit the additive splitting

εr = εer + εTr + εpr = εer + αTT + εpr , (3.67)
εθ = εeθ + εTθ + εpθ = εeθ + αTT + εpθ, (3.68)

where αT is the coefficient of thermal expansion.
The Tresca yield criterion coincides (under the current assump-

tions) with the Von Mises criterion, which takes the form

|σr − σθ| − σY (T ) = 0, (3.69)

where

σY (T ) = σ0
Y −

σ0
Y − σ

f
Y

Tf
T, (3.70)

is a function describing linear thermal softening in the temperature
range T ∈ (0, Tf ).

The BP yield criterion with thermal softening assumes the fol-
lowing form

F (σr, σθ, T ) = f

(
σr + 2σθ

3 , pc(T ), c(T )
)

+ |σr − σθ|
g(π/3) = 0, (3.71)

where

pc(T ) = pc0 −
pc0 − pcf

Tf
T, (3.72)

c(T ) = Ω pc(T ), (3.73)

are functions describing linear thermal softening, with a constant
ratio c/pc = Ω, so to describe an homothetic contraction of the
yield surface with temperature (see Figs. 3.18 and 3.22).
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The elastic solution: Using Eqs. (3.64)–(3.68) with εpr = εpθ =
0, the following equation is derived

1− ν
2

d

dr
(σr + 2σθ) + αTE

dT

dr
= 0, (3.74)

where T = T (r) is given by (3.62). This equation together with the
equilibrium equation (3.65) forms a system of ODEs, which can be
solved exactly and the solution is given by

σr(r) = C1
3 + C2

r3 −
αTE

1− ν
abΘ

(b− a)r , (3.75)

σθ(r) = C1
3 −

C2
2r3 −

αTE

2(1− ν)
abΘ

(b− a)r , (3.76)

where C1 and C2 are constants to be defined through the boundary
conditions. The associated deformation and displacement fields are
obtained from the constitutive relations (3.66) and the compatibil-
ity conditions (3.63), respectively,

εr(r) = 1
E

[
(1− 2ν)C1

3 + (1 + ν)C2
r3

]
− αT

aΘ

b− a
,

εθ(r) = 1
E

[
(1− 2ν)C1

3 − (1 + ν) C2
2r3

]
−

αT
aΘ[2(1− ν)r + b(1 + ν)]

2(1− ν)(b− a)r ,

u(r) = 1
E

[
(1− 2ν)C1

3 r − (1 + ν) C2
2r2

]
−

αT
aΘ[2(1− ν)r + b(1 + ν)]

2(1− ν)(b− a) .

(3.77)

3.5.1 Hot pressing of a thick layer of perfectly plastic
ceramic powder against a rigid spherical mould

For the hot pressing of a thick layer of perfectly plastic ceramic
powder against a rigid spherical mould, the boundary conditions
are as follows

σr(r = a) = −Π, u(r = b) = 0, (3.78)

where Π is the internal pressure. The parameters defining the
shape of the BP yield surface are those representative of alumina
powder [14]

M = 1.1, m = 2, α = 0.1, β = 0.19, γ = 0.9. (3.79)
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The parameters describing thermal softening have been chosen
to be

pc0 = 40 MPa, pcf = 20 MPa, Tf = 1000, (3.80)

whereas the ratio between the cohesion c and the consolidation
pressure pc has been fixed to be Ω = 0.0375. The increase of
temperature at the inner surface has been chosen to be Θ = 380◦C.

The traces of the BP yield surface in the (σr, σθ)–plane for
fourth values of temperature, namely T = 0, 190, 285, and 380◦C,
are shown in Fig. 3.18 (solid lines), together with the traces of the
Von Mises cylinder circumscribed to the BP surface (dashed lines).
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Figure 3.18: Traces of the BP yield surface in the (σr, σθ)–plane for fourth
values of temperature T = 0, 190, 285, and 380◦C (solid lines) and correspond-
ing traces of the circumscribed Von Mises cylinder (dashed lines). Material
parameters have been chosen to be representative of alumina powder.

The elastic solution

Initially the problem is purely elastic, which occurs when the
internal pressure Π is smaller than ΠY , defined as the pressure
producing the initiation of yielding at the inner surface of the shell.
The solution (3.75)–(3.76) together with the boundary conditions
(3.78) provides the following stress field within the thick spherical
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layer, a ≤ r ≤ b,

σE
r (Π,Θ, r) = abEαTΘ

a(1− ν)− b(1− ν)
1
r
− 2a3b3(1− 2ν)Π
a3(1 + ν) + 2b3(1− 2ν)

1
r3−

a3(1 + ν)Π
a3(1 + ν) + 2b3(1− 2ν)+ a3b3E(2b(1− 2ν)− a(1− 3ν))αTΘ

(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν))
1
r3 +

abE
(
a2(1 + ν) + b2(1− 3ν)

)
αTΘ

(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν)) , (3.81)

σE
θ (Π,Θ, r) = − a3(1 + ν)Π

a3(1 + ν) + 2b3(1− 2ν)+ a3b3(1− 2ν)Π
a3(1 + ν) + 2b3(1− 2ν)

1
r3 +

abE
(
a2(1 + ν) + b2(1− 3ν)

)
αTΘ

(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν))+ abEαTΘ

a(1− ν)− b(1− ν)
1
2r−

a3b3E(2b(1− 2ν)− a(1− 3ν))αTΘ
(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν))

1
2r3 . (3.82)

The corresponding strains are given by

εE
r (Π,Θ, r) = a(1 + ν)

(
b(1− 2ν)(a2 − b2)− a3(1− ν)

)
αTΘ

(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν)) −

a3(1 + ν)(1− 2ν)Π
E (a3(1 + ν) + 2b3(1− 2ν))−

2a3b3(1 + ν)(1− 2ν)Π
E (a3(1 + ν) + 2b3(1− 2ν))

1
r3−

a3b3(1 + ν)(a(1− 3ν)− 2b(1− 2ν))αTΘ
(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν))

1
r3 . (3.83)

εE
θ (Π,Θ, r) = a3b3(1 + ν)(1− 2ν)Π

E (a3(1 + ν) + 2b3(1− 2ν))
1
r3

− a3(1 + ν)(1− 2ν)Π
E (a3(1 + ν) + 2b3(1− 2ν)) + ab(1 + ν)αTΘ

2(1− ν)(b− a)
1
r

− a(1 + ν)
(
b(1− 2ν)(b2 − a2) + a3(1− ν)

)
αTΘ

(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν))

+ a3b3(1 + ν)(a(1− 3ν)− 2b(1− 2ν))αTΘ
2(1− ν)(b− a) (a3(1 + ν) + 2b3(1− 2ν))

1
r3 . (3.84)

For the Von Mises criterion, the internal pressureΠY producing
the first yielding at r = a is given by a stress state satisfying

|σr − σθ| = σY (T ), (3.85)
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and can be evaluated as

ΠY = σY (Θ)
3

[
2 + 1 + ν

1− 2ν

(
a

b

)3
]

+

αTΘE
(
a(a+ b)(1 + ν) + 4b2(1− 2ν)

)
6b2(1− ν)(1− 2ν) .

(3.86)

For the BP yield criterion, the critical yield pressure ΠY corre-
sponds to a stress state satisfying

max
a≤r≤b

F (σE
r (ΠY , Θ, r), σE

θ (ΠY , Θ, r), T (r)) = 0, (3.87)

so that ΠY can be evaluated numerically using for instance the
Newton method.

The elasto-plastic solution

For an internal pressure Π exceeding the critical yield pressure
ΠY , Π > ΠY , plastic deformations develop within the spherical
shell starting from the inner surface. The plasticized zone forms
an internal layer with inner radius a and outer radius δ. The
external part of the shell, having inner radius δ and outer radius
b, behaves as an elastic layer subject to an internal pressure Πδ at
the interface with the plasticized zone.

The relationship between the interface radius δ and the corre-
sponding pressure Πδ can be obtained by imposing the fulfillment
of the yield conditions

F (σE
r (Πδ, Θδ, δ), σE

θ (Πδ, Θδ, δ), Θδ) = 0, (3.88)

where

Θδ = aΘ

b− a

(
b

δ
− 1

)
(3.89)

is the temperature at r = δ. For the Von Mises criterion the pres-
sure at the interface Πδ can be obtained analytically from (3.86)
replacing a with δ and Θ with Θδ,

Πδ = σY (Θδ)
3

[
2 + 1 + ν

1− 2ν

(
δ

b

)3]
+

αTΘδE
(
δ(δ + b)(1 + ν) + 4b2(1− 2ν)

)
6b2(1− ν)(1− 2ν) .

(3.90)
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For the BP criterion the pressure Πδ has to be evaluated numeri-
cally from Eq. (3.88).

The solution for the elastic zone, δ < r < b, can be obtained
from Eqs. (3.81)–(3.84) where a, Π and Θ are replaced, respec-
tively, by δ, Πδ and Θδ. Therefore the solution for the elastic part
of the shell is known, as the relation between the interface radius
δ and the corresponding pressure Πδ is known.

The solution for the plasticized zone, a < r < δ, is obtained
from the algebraic-differential system composed by the equilibrium
equation (3.65), the yield condition (3.70) or (3.71), depending on
the criterion assumed, and the appropriate boundary conditions.
This system writes as

dσr
dr

+ 2
r

(σr − σθ) = 0, (3.91)

F (σr(r), σθ(r), T (r)) = 0, (3.92)

σr(δ) = −Πδ, (3.93)

which can be solved analytically for the Von Mises criterion and
numerically for the BP criterion. In particular, the system (3.91)–
(3.93) admits for Von Mises the following solution

σr(r) = −Πδ − 2σ0
Y log

(
δ

r

)

− 2Θδ
σ0
Y − σ

f
Y

Tf

[(r − δ)b
(b− δ)r + δ

b− δ
log

(
δ

r

)]
, (3.94)

σθ(r) = −Πδ + σ0
Y

(
1− 2 log

(
δ

r

))

−Θδ
σ0
Y − σ

f
Y

Tf

[(2r − δ)b
(b− δ)r −

δ

b− δ

(
1− 2 log

(
δ

r

))]
,

(3.95)

in which Πδ and Θδ are given by (3.90) and (3.89), respectively.
To summarize, the solution for the Von Mises yield condition

is fully analytical. Once a fixed value of the radius δ, defining
the position of the boundary between the internal plasticized zone
and the external elastic part, is chosen, it is possible to obtain the
corresponding temperature Θδ and pressure Πδ from (3.89) and
(3.90), respectively. Then, the stresses in the elastic part of the
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shell, namely for δ < r < b, can be calculated from Eqs. (3.81) and
(3.82) with a, Π and Θ replaced by δ, Πδ and Θδ, respectively.
Finally, the stresses in the plasticized part, namely for a < r < δ,
can be calculated from Eqs. (3.94) and (3.95).

For the BP yield condition, the solution is semi-analytical. The
stresses in the elastic part can be obtained analytically, as for the
Von Mises criterion, whereas the pressure at the plasticized bound-
ary, Πδ, and the stresses in the plasticized part are to be obtained
from the numerical solution of the equation (3.88) and the system
(3.91)–(3.93), respectively. The Wolfram Mathematica comput-
ing software can be used to obtain the numerical solutions with
any degree of precision, using the built-in functions Reduce, for
Eq. (3.88), and NDSolve, for the system (3.91)–(3.93).
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Figure 3.19: Hot pressing of a perfectly plastic thick layer, obeying Von Mises
and BP yield conditions, against a rigid spherical mould. Upper part: radial
(left) and tangential (right) stresses as functions of the dimensionless radial
position. Lower part: mean stress p (left) and deviatoric stress q (right) as
functions of the dimensionless radial position.

Results in terms of radial and tangential stress components and
the two stress invariants, mean stress p and deviatoric stress q, are
reported in Fig. 3.19 as functions of the radial position (normalized
by the mean radius rm = (a+ b)/2 of the spherical shell), together
with the finite element results obtained with the proposed ther-
moplastic model. Three different plastic boundaries δ have been
considered, corresponding to the 20%, 35% and 50% of the thick-
ness, for both Von Mises and BP yield criterion. Results presented
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in the figure fully validate the proposed finite element implementa-
tion of the thermoplastic model, which has given accurate values,
essentially superimposed on the semi-analytical solution.

In addition to the stresses, the plastic strains can be obtained
from the solution of the algebraic-differential system composed by
the compatibility equation (3.64), the associative plastic flow equa-
tion and boundary conditions,

εer(r) + εpr(r) + αTT (r) = d

dr

[
r(εeθ(r) + εpθ(r) + αTT (r))

]
,

(3.96)

εpθ(r) = ω(σr, σθ)εpr(r), (3.97)

εeθ(δ) + εpθ(δ) + αTT (δ) = εE
θ (δ), (3.98)

where the temperature profile T (r) is given by (3.62), the elastic
strains εer(r) and εeθ(r) are given by the Hooke’s law (3.66) with the
stresses computed beforehand, and εE

θ (δ) is the tangential strain of
the elastic part of the shell at the boundary with the plasticized
part. The direction of the plastic flow ω(σr, σθ) is given by the
radial and tangential components of the yield surface gradient as
follows

ω(σr, σθ) = Qθ
Qr

= 1
2
∂F

∂σθ

(
∂F

∂σr

)−1
, (3.99)

which for the Von Mises criterion takes the simple form ω(σr, σθ) =
−1/2.
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Figure 3.20: Hot pressing of a perfectly plastic thick layer, obeying Von Mises
and BP yield conditions, against a rigid spherical mould. Radial (left) and
tangential (right) strains as functions of the dimensionless radial position.

Results in terms of radial and tangential strain components are
reported in Fig. 3.21 as functions of the radial distance (normal-
ized by the mean radius of the spherical shell), together with the
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finite element results, for both Von Mises and the BP yield condi-
tions and the same three fractions of plasticized thickness, namely
20%, 35% and 50%. Results pertaining to the deformation of the
layer further validate the finite element implementation of the ther-
moplastic model. The only visible discrepancy occurs for 50% of
plasticized thickness at the inner part of the layer, and it is more
pronounced for the radial strain, εr. This is due to the fact that the
radial strain εr tends to become singular at the inner surface of the
shell, as the thickness of the plasticized part increases. The finite
element discretization using standard linear or quadratic elements
cannot capture such singular behaviour.
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Figure 3.21: Hot pressing of a perfectly plastic thick layer, obeying Von Mises
and BP yield conditions, against a rigid spherical mould. Radial (left) and
tangential (right) strains as functions of the dimensionless radial position.

3.5.2 Thermal heating and expansion of a thick shell
of perfectly plastic green body

For the problem of expansion of a thick shell of perfectly plas-
tic green body subjected to both internal pressure and internal
heating, the boundary conditions are as follows

σr(r = a) = −Π, σr(r = b) = 0, (3.100)

where Π is the internal pressure and the outer surface is assumed
traction-free. The parameters defining the shape of the BP yield
surface have been chosen to be representative of a green body par-
tially densified, namely

M = 1.33, m = 2, α = 1, β = 1, γ = 0. (3.101)

The parameters describing thermal softening have been chosen to
be

pc0 = 150 MPa, pcf = 75 MPa, Tf = 1000, (3.102)
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whereas the ratio between the cohesion c and the consolidation
pressure pc has been fixed to be Ω = 1. The increase of tempera-
ture at the inner surface has been chosen to be Θ = 380◦C.

The traces of the BP yield surface in the (σr, σθ)–plane for
fourth values of temperature, namely T = 0, 190, 285, and 380◦C,
are shown in Fig. 3.22 (solid lines), together with the traces of the
Von Mises cylinder circumscribed to the BP surface (dashed lines).
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Figure 3.22: Traces of the BP yield surface in the (σr, σθ)–plane for fourth
values of temperature T = 0, 190, 285, and 380◦C (solid lines) and correspond-
ing traces of the circumscribed Von Mises cylinder (dashed lines). Material
parameters have been chosen to be representative of a green body partially
densified.

The solution of this problem can be obtained with the same
procedure as the one used in Section 3.5.1, since only the boundary
conditions are different. The elastic solution, which holds until the
internal pressure is sufficiently small, (Π ≤ ΠY ), is given by

σE
r (Π,Θ, r) = Π

(b/a)3 − 1

[
1−

(
b

r

)3]
+

abE(a− r)(b− r)[ab+ (a+ b)r]αTΘ
(b3 − a3)(1− ν)r3 ,

(3.103)
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σE
θ (Π,Θ, r) = Π

(b/a)3 − 1

[
1 + 1

2

(
b

r

)3]

− abE[a2b2 + (a2 + ab+ b2)r2 − 2(a+ b)r3]αTΘ
2(b3 − a3)(1− ν)r3 , (3.104)

εE
r (Π,Θ, r) = Π

E((b/a)3 − 1)

[
(1− 2ν)− (1 + ν)

(
b

r

)3]

+ a3b3(1 + ν)αTΘ
(b3 − a3)(1− ν)r3 −

a[a2(1− ν) + bν(a+ b)]αTΘ
(b3 − a3)(1− ν) ,

(3.105)

εE
θ (Π,Θ, r) = − Π

2E((b/a)3 − 1)

[
2(1− 2ν) + (1 + ν)

(
b

r

)3]

− a3b3(1 + ν)αTΘ
2(b3 − a3)(1− ν)r3 + ab(1 + ν)αTΘ

2(b− a)(1− ν)r

− a[a2(1− ν) + bν(a+ b)]αTΘ
(b3 − a3)(1− ν) ,

(3.106)

For the Von Mises yield condition, the critical yield pressure ΠY

is given by

ΠY = 2
3σY (Θ)

[
1−

(
a

b

)3
]

+ E(b− a)(a+ 2b)αTΘ
3b2(1− ν) , (3.107)

whereas for the BP yield criterion, the critical yield pressure ΠY

is obtained by solving Eq. (3.87).
For an internal pressure Π exceeding the critical yield pressure

ΠY , Π > ΠY , plastic deformations develop within the spherical
shell starting from the inner surface. The plasticized zone forms
an internal layer with inner radius a and outer radius δ. The
external part of the shell, having inner radius δ and outer radius
b, behaves as an elastic layer subject to an internal pressure Πδ at
the interface with the plasticized zone.

The relationship between the interface radius δ and the corre-
sponding pressure Πδ can be obtained by imposing the fulfillment
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of the yield conditions (3.88). For the Von Mises criterion, Πδ is
obtained as

Πδ = 2
3σY (Θδ)

[
1−

(
δ

b

)3]
+ E(b− δ)(δ + 2b)αTΘδ

3b2(1− ν) , (3.108)

The solution for the elastic zone, δ < r < b, can be obtained from
Eqs. (3.103)–(3.106) where a, Π and Θ are replaced, respectively,
by δ, Πδ and Θδ.

The solution for the plasticized zone, a ≤ r ≤ δ, is obtained
from the algebraic-differential system (3.91)–(3.93). This system
has a solution with closed form for the simple case of Von Mises
yield condition. In this case the stresses takes the form (3.94)
and (3.95), in which Πδ and Θδ are given by (3.108) and (3.89),
respectively.

Results in terms of radial and tangential stress components and
the two stress invariants, mean stress p and deviatoric stress q, are
reported in Fig. 3.23 as functions of the radial position (normalized
by the mean radius rm = (a+ b)/2 of the spherical shell), together
with the finite element results obtained with the proposed ther-
moplastic model. Three different plastic boundaries δ have been
considered, corresponding to the 20%, 35% and 50% of the thick-
ness, for both Von Mises and BP yield criterion.

In addition to the stresses, the plastic strains can be obtained
from the solution of the algebraic-differential system (3.96)–(3.98).

Results in terms of radial and tangential strain components are
reported in Fig. 3.24 as functions of the radial distance (normalized
by the mean radius of the spherical shell), together with the finite
element results, for both Von Mises and the BP yield conditions
and the same three fractions of plasticized thickness, namely 20%,
35% and 50%. Results pertaining to the deformation of the layer
further validate the finite element implementation of the thermo-
plastic model.
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Figure 3.23: Expansion of a thick shell of perfectly plastic green body subjected
to both internal pressure and internal heating. Upper part: radial (left) and
tangential (right) stresses as functions of the dimensionless radial position.
Lower part: mean stress p (left) and deviatoric stress q (right) as functions of
the dimensionless radial position.
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Figure 3.24: Expansion of a thick shell of perfectly plastic green body subjected
to both internal pressure and internal heating. Radial (left) and tangential
(right) strains as functions of the dimensionless radial position.
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Chapter 4

Parameter identification
through numerical
optimization

In the last decades, numerical simulation has been established
as a very powerful design and prototyping tool in the context of
structural analysis. Its main advantage is to allow the calculation
of detailed models closer to reality, where the growth of degrees of
freedom would make the time required for any manual calculation
prohibitive. Furthermore, in cases where multiple similar calcula-
tions must be carried out in a sequence, numerical simulations are
extremely time-saving.

Several commercial and open source codes have been developed
for the automatic solution of the PDE associated to mechanical,
thermal, fluid-dynamic, acoustic or dynamic problems.

The goal of these softwares is the solution of the so-called direct
problem, where a complete set of input data is used to compute the
response of the computational model.

In engineering sometimes is required to solve the inverse prob-
lem, when some responses of the considered model are known but
not some of the ‘causes’ leading to them, namely parameters on
which the solution depends.

The relatively young scientific branch dedicated to the solution
of the inverse problems takes the name of inverse analysis [15].

The growth of computer power according to ‘Moore’s Law’
makes inverse analysis combined with advanced programming tech-
niques an extremely promising field.

In the present work, inverse analysis permitted the identifica-
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tion of crucial material parameters entering in the governing equa-
tions of the proposed constitutive models (see 5.3, 6.4 and 7.2).

This chapter focus on the description of its fundamentals and
a selection of powerful optimization algorithms.

4.0.1 Numerical optimization and objective function

For the solution of a direct problem defined by a set of differ-
ential equations (e.g. through FEM), the complete description of
the input parameters is needed to compute the solution fields (e.g.
the nodal displacements in a mechanical FEA). These parameters
can be grouped in:

• Initial conditions and state variables

• Boundary conditions

• Model geometry

• Material properties

We speak of inverse problem if some of these information are un-
known, while the solution fields (or some of them) are given. An
example, if we consider a FEM mechanical simulation, is the case
when nodal displacements of the model are known (at least in some
nodes) while a set of parameters defining material properties, ge-
ometry or boundary conditions are missing.

In inverse analysis, differently from the usual direct problems,
the collection of parameters giving the desired response might be
not unique. This concept can be explained with the following trivial
example. If we consider as direct problem computing u for a given
value of x1 in equation

u = x2
1, (4.1)

we see that a unique value of the solution u exist. However, this is
not true if we consider the opposite (inverse) problem, which is to
find the value of x1 returning a known value of u: two values of x1
corresponds to only one value u.

This lack of uniqueness is common for many inverse problems,
as is the possibility of underdetermined problems, that is inverse
problems where the number of unknowns is higher than the number
of equations. This can be illustrated in the following example.
Given the equation

u = x3
1 + x2

2 + x3, (4.2)
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a possible inverse problem could be to identify x1, x2 and x3 in
order to get a desired value of u = uexp.

In this case, not only the solution (as in the previous example)
lacks uniqueness, but infinite solutions are available. To allow a
unique solution, or at least to reduce the number of equivalent
solutions, additional equations or constraints must be added to
the problem.

The single solutions are usually computed numerically, itera-
tively providing guess values of the unknown vector of parameters
x = [x1, x2, x3].

For this reason, solving the inverse problem implies an opti-
mization procedure, that aims to reduce a problem-dependent ob-
jective function that can be generally written as

f = |uexp − unum|. (4.3)

A general constrained optimization problem [16] is formulated
as follows:

Minimize: f(x)
x ∈ IRn

subject to: gL ≤ g(x) ≤ gU
h(x) = ht

aL ≤ Aix ≤ aU
Aex = at

xL ≤ x ≤ xU

(4.4)

where x is a unidimensional vector of unknown design variables.
The n-dimensional vectors xL and xU are respectively lower and
upper bounds of the design variables. These bounds define the
feasible parameter space.

It is to note that g(x) are the nonlinear inequality constraints
which are defined by gL and gU . Similarly, h(x) are the nonlin-
ear equality constraints subject to targets ht. The linear inequality
constraints are defined through the linear system Aix where Ai is
the inequality coefficient matrix. The system Aex defines the lin-
ear equality constraints, being Ae the equality coefficients matrix.

Through the applied constraints, the parameter space is divided
in feasible and unfeasible regions. Any set of parameters violating
one or more of the constraints is considered unfeasible.

The solution of the system (4.4) can be found with several
optimization algorithms, which are summarized in Sec. 4.1.
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Inverse problems can be categorized relatively to the nature of
the missing information, so that an intuitive classification can be
written as:

• Backward problems: initial conditions or initial state (in-
ternal state variables) are the goal of the inverse analysis

• Boundary inverse problems: boundary conditions, both
of type of Neumann or Dirichlet are unknown. In the most
common case the analysis aims to determine unknown exter-
nal actions (e.g. forces) in order to obtain a certain known
response.

• Shape - Topology optimization: the geometry of the the
model, that is its size and shape, might be unknown. In case
of shape optimization, the model is parametrized, so that
its form depends on a set of defined variables. This is not
required in case of topology optimization, where the optimal
geometry is found by iteratively removing unneeded regions
of the model in order to minimize a specific objective function
(e.g. mass) while satisfying some constraints (e.g. maximum
allowable stress).

• Material parameter identification: some or all the con-
stants governing the constitutive equations are unknown while
the desired responses of the model (e.g. displacements, stress)
are known.

The last type of inverse problems is particularly common in
material modeling and will therefore be detailed in the next section.

4.0.2 Material parameters identification

The identification of material parameters through inverse anal-
ysis is a very interesting field which finds several applications.

Many examples are possible:

- In structural engineering, it can be of interest identifying the
minimum volumetric amount of steel fibers to mix with concrete
in order to achieve stability in any point of a tunnel.

- In aeronautics, given the maximum deflection of a wing, we could
be interested in finding the best composite material to build it,
depending on its characteristics.
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- In material modeling, assuming that the material behavior is
completely defined from sufficient experimental tests, we might
want to find the unknown parameters for a constitutive model in
order to reproduce exactly the measured behavior.

This section gives particular focus to the problems posed in the
form of the latter example.

Developing numerical models able to reproduce the behavior
of particular materials is a promising research sector where a big
effort was made in the last years.

The main purpose, which is also the motivation of the present
work, is to achieve a precise reproduction of the material behavior,
such that ‘prediction’ of the performance of a component made of
the same material and subjected to different boundary conditions
and with any geometry is possible.

Nowadays rather complicated material models are available in
commercial and open source codes, which are able to capture a wide
range of physical phenomena, such as plasticity, thermoplasticity,
viscoplasticity, damage or crack development. Assuming that the
chosen model can correctly describe the real phenomenon, the ac-
curacy of the calculation still depends strongly on correct identifi-
cation of the constants entering into the governing equations.

In many cases, and especially for sophisticated models, these
parameters are not directly measurable by performing experimen-
tal tests, so that their identification becomes an important issue.

The identification of material parameters from measured re-
sponses is an easy task only in some simple cases (for instance, the
identification of the yield stress in the von Mises criterion). For
more complicated material models the identification of material
parameters is not that trivial.

The measured quantities can have different forms: stress-strain
or force-displacements curves, measured maximum displacements,
temperatures or failure of the sample after a certain elapsed time.

The procedure for parameter identification by inverse analysis
is qualitatively illustrated in Fig. 4.1. During an experiment on a
material specimen, we measure some meaningful responses uexp of
the system. A numerical simulation of the same process (e.g. by
FEA - finite element analysis) is then built in order to produce a
numerical counterpart of the real system. For an arbitrary set of
material parameters x the simulation computes the response unum
which can be compared with uexp in order to evaluate the objective
function f .
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Figure 4.1: Schematic representation of material parameter identification by
inverse analysis.

At this point, a certain stopping criterion should be introduced,
since a small discrepancy between simulation and experiment is al-
ways expected to be present. If the cited criterion (e.g. discrepancy
lower than a chosen tolerance) is not satisfied, a new set of parame-
ters is computed by the chosen optimization algorithm and passed
again to the simulation.

The constraint consideration can both be taken into account
after evaluation of the objective function or directly by the opti-
mization algorithm during the computation of a new set of param-
eters.

4.0.3 DACE, sensitivity analysis and uncertainty quan-
tification

The modern ‘design and analysis of computer experiments’
(DACE) is a collection of techniques which aims to obtain as much
trend data as possible from a parameter space using a limited num-
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ber of sample points. There are many possible goals in running a
computer experiment:

• Parameter space exploration: one might want to explore
(randomly or not) the input parameter space in order to bet-
ter understand the possible ranges of the responses.

• Variables influence evaluation: another goal is to de-
termine which inputs mostly influence the output, or how
changes in these parameters influence the output. Possibly,
one may also want to determine the correlation between the
single parameters. This is usually named sensitivity analysis.

• Response surface surrogates: the sample point can be
used to create an approximation of the response surface of the
model, for instance a polynomial regression model, a neural
net or a Gaussian-process model. This is a particularly useful
in case of extremely expensive computational models: some
computer models (e.g. in fluid-dynamics) may require 15-30
hours to complete on high-performance calculators, while the
associated response surface models may need just a few sec-
onds. Thus, optimizing on the constructed response surface
can be extremely efficient for some applications. This proce-
dure is called surrogate-based optimization. Response surface
models are valuable also in cases where the gradient and the
Hessian are required by the selected optimization algorithm
but expensive to compute, not available or inaccurate.

• Optimization start point search: several optimization
algorithms require a good starting point to ensure fast con-
vergence or to be able to converge to the right solution. In
this context, the exploration of the design parameter space
in order to find promising starting points is particularly im-
portant.

• Uncertainty quantification: uncertainty quantification (UQ)
answer to questions such as: what is the probability that the
response of the model is grater than 100? What is the 5th
percentile of the output? UQ introduces stochastic distribu-
tions of the input parameters and propagates them through
the model to obtain realistic distribution of the outputs. Ex-
perimental results are very often characterized by a certain
variance, so this nondeterministic approach must often be
taken into account.
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Sensitivity analysis applications are particularly important
in many engineering applications. These methods are used to iden-
tify the parameters having most influence on the response quanti-
ties. This information is helpful prior to starting an optimization
study, allowing the detection of those parameters having small or
negligible effect on the results. These parameters can then be ex-
cluded from the optimization procedure, thus importantly reducing
the required computational time.

Through a proper sensitivity analysis, the behavior of the un-
known response function can be detected prior starting an opti-
mization procedure, so that the most effective optimization algo-
rithm (see Sec. 4.1.2) can be chosen depending on the output trend
(smooth or noisy, modal or multimodal).

During post-processing, sensitivity analysis can provide assess-
ments to the robustness of the response function: in presence of
multiple local minima, some of them could be particularly sensi-
tive to small perturbation of the design point while some other
could show higher stability. This effect must be properly taken
into account in the choice of the optimal design parameters. Quasi-
Monte Carlo sampling, Latin Hypercube sampling (LHS) and vari-
ous types of centered/multidimensional parameter study techniques
are some of the techniques available for sensitivity analysis.

Uncertainty quantification (UQ) or nondeterministic anal-
ysis [16] is defined as the process of characterizing input uncertain-
ties, by propagating them through the computational model so
that statistical assessments on the resulting responses are possible.

UQ and sensitivity analysis are related by the common goal of
understanding the effects of the variations of the design parame-
ters on the responses of the model. However, in UQ some or all
the design parameters are characterized by a particular probability
distribution (e.g. Gaussian, Weibull, exponential, extreme value).
A good example are the mechanical properties of a material, since
these show usually a certain variance. Another example could be
the calculation of the failure probability of a structure for a given
stochastic distribution of the external actions (e.g. snow, water
pressure, wind).

Since sufficient data are generally available for aleatory vari-
ables, uncertainty quantification methods are often used to com-
pute response distribution statistics.
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4.1 Optimization algorithms
There are several algorithms that can be used to solve the con-

strained optimization problem expressed in system (4.4).
These algorithms require some initial guess of the design pa-

rameters and generate sequence of iterates which terminates when
either no more progress can be made, or when it seems that a
solution point has been approximated with sufficient accuracy.

In the following, an overview of the most common optimization
algorithms and their classification is given. The goal is to present
only a small portion of the theory involved in the algorithms, while
focusing on the discussion of the most effective available strategies
and the criteria to select the right numerical method depending on
the optimization problem.

4.1.1 Classification

A first distinction can be made by analyzing the order of the
derivatives required by the selected algorithm:

• Zero order algorithms: procedures that only require the
computation of the objective function (4.3) (e.g. pattern-
search methods, DIRECT (DIvision in RECTangles), evolu-
tionary algorithms)

• First order algorithms: the computation of the first deriva-
tive of the objective function with respect to the design pa-
rameters ∂f

∂x is needed to compute the solution (e.g: conju-
gate gradient method, steepest descent method)

• Second order algorithms: the second derivative (Hessian)
∂2f
∂x2 is involved in the optimization procedure (e.g. Newton
method)

The latter two groups can be unified as gradient-based al-
gorithms, while the first are usually called derivative-free al-
gorithms. Detailed information about the field of application of
each group is given in Sec. 4.1.2.

A different classification can be proposed depending on the ca-
pability of the algorithm to converge to local or global minima:

• Global methods: these algorithms are usually able to ex-
plore the full parameters space and to return the overall min-
imum of the objective function. Examples are evolutionary
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algorithms such as moga [17], heuristic methods such as DI-
RECT [16] or surrogate-based methods such as EGO [18].
With the exception of the use associated to response surface
approximations, gradient-based algorithms can be used for
global optimization just in case of multi-start procedures.

• Local methods: these family of methods are incapable to
distinguish between global and local minima. Examples are
zero order algorithms such as pattern-search, first order algo-
rithms such as conjugate gradient methods or second order
algorithms as the well known Newton method.

4.1.2 Choosing a method

ZERO ORDER

CONVERGENCE RATE

ROBUSTNESS

LOCALGLOBAL

ZERO ORDER FIRST ORDER SECOND ORDER

DIRECT

MOGA

SOGA

MESH ADAPTIVE

PATTERN-SEARCH

TRUST REGION

CONJUGATE ∇ NEWTON

QUASI-NEWTON

Figure 4.2: Convergence rate and robustness for a selection of optimization
algorithms.

The choice of the proper algorithm is always dependent on the
type and size of optimization problem that needs to be solved. Fig-
ure 4.2 shows the dependency of convergence rate and robustness
depending on the chosen algorithm.

Newton methods imply finding the solution of a linear system
of equations by setting the derivative of second-order Taylor series
to zero. A full Newton method requires the computation of both
gradient and Hessian of the objective function f with respect to
the design variables x in order to achieve quadratic convergence
rates near the solution. Since in the usual case of a computational
model the responses are not analytically defined, derivatives are
usually computed numerically by finite differences.

Given a vector of n design parameters, the computation of the
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gradient requires therefore n+ 1 evaluations of the response func-
tion, where a ‘small’ perturbation ∆xi is applied to each parameter
xi in order to obtain a component of the gradient. If we consider
the case of a two parameter set, the computation of the gradient
will therefore require three operations.

The computation of the Hessian by finite differences will require
at least additional n2 function evaluations. The computation of the
Hessian penalizes the second order methods, so most commonly
quasi-Newton methods or first order methods are used instead.
For quasi-Newton methods the Hessian approximation is calculated
from an accumulation of gradient data. In this case, superlinear
convergence rates can be obtained.

Second order optimization methods show high convergence rates,
and for this reason must be chosen if the the problem is smooth,
unimodal, and ‘behaves well’. However, gradient-based methods,
and particularly second-order methods, can be among the least ro-
bust if the optimization problem is nonsmooth, discontinuous or
shows multiple minima.

A first-order optimization algorithm of interest is the conju-
gate gradient method, which can however only be applied to
unconstrained problems.

Conjugate gradient methods minimize a quadratic function over
a space defined by the gradient and directions that are mutually
conjugate with respect to the Hessian, even though the Hessian
never needs to be computed. Some of the most well-known vari-
ants include the Fletcher-Reeves conjugate gradient method and
the Polak-Ribiere conjugate gradient method.

The trust region method is based on the Newton method: it
first selects the maximum distance - the so-called trust region ∆k -
and then sets the direction and the step length in order to improve
the objective function inside the trust region. The sub-problem
solved at each step of a trust region procedure involves

Minimize: mk(xk) = f(xk) + xTk∇f(xk) + 1
2x

T
k∇2f(xk)xk

subject to: |xk| ≤ ∆k
(4.5)

where the Hessian ∇2f(xk) is usually approximated similarly as in
the quasi-Newton methods. Differently from trust region, the line
search method starts by fixing a direction and then identifies the
appropriate distance. In both methods, adaptive computational
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procedures that enlarge/restrict either the trust region step or the
line-search step can be implemented.

Compared to full Newton methods, trust region and line search
show enhanced robustness, while the convergence rate is penalized.
The use of these methods can therefore be successful also in less
smooth or less regular optimization problems.

a)

c)

e)

b)

d)

f)

Figure 4.3: Working mechanism of the pattern-search algorithm: a) the ob-
jective function is evaluated in a collection of directions; b) the system is re-
centered to the best function evaluation point (red); c) if no improvement is
achieved the step length is reduced.

Derivative-free optimization methods can be much more ro-
bust and parallelizable than gradient-based optimization methods.
They can be applied to those optimization problems where gradi-
ent calculation is expensive or not possible. Furthermore, they are
often successful also in cases where the objective function is locally
not defined or exhibits high noisiness. They are therefore indicated
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in nonsmooth, multimodal and poorly ‘behaving’ problems.
However, the robustness of the zero-order methods is often

counterbalanced by much slower convergence rates than gradient-
based algorithms. Local derivative-free methods can require hun-
dreds or thousand of iterations (depending on the number of vari-
ables) and tens of thousands in case of global derivative-free meth-
ods.

In the context of parameter identification for nonlinear consti-
tutive models, numerical simulations might show lack of conver-
gence in case of improper set of material parameters. In this case,
such algorithms represent an important resource, which has been
often employed in the development of the present work.

Pattern-search algorithms are local heuristic optimization
methods that usually walk through the domain along a defined
stencil of search directions as illustrated in Fig. 4.3. At each iter-
ation, all search directions might be investigated in order to find
the most promising, while the step length is iteratively decreased.
The function evaluations corresponding to each stencil can easily
be performed in parallel.

Themesh adaptive search follows a similar strategy to pattern-
search, even though the search direction is defined by a mesh-
structure.

Global optimization methods allow a complete exploration of
the design parameter space.

DIRECT (DIvision in RECTangles) is a global heuristic method
that iteratively subdivides the design parameter space in subre-
gions in order to guarantee that iterates are generated in the neigh-
borhood of a global minimum. It is particularly useful to quickly
identify good candidate solutions that can be then refined by local
optimizers.

Genetic algorithms such as moga (multi-objective genetic al-
gorithm) and soga (single-objective genetic algorithm) are based
on Darwin’s theory of survival of the fittest. The general approach
consist in iterative modification of a distributed ‘population’ of
individuals (parameter sets) according to the concept of natural
selection, breeding and mutation. Following a sequence of genera-
tions, the best design points in the population are allowed to sur-
vive, reproduce and mutate. In manners depending on the specific
evolutionary algorithm, couples of selected individual contribute
their genes (the parameter values) to their children until global
convergence is achieved.

In cases where the objective function to be minimized has a
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large number of local minima, the use of genetic algorithms has
shown to be particularly effective.

Analogously to natural evolution, genetic algorithms can re-
quire very long time to show their effects. This makes their use
prohibitive for several applications, so that their combination with
other optimization algorithms is often an efficient strategy. This
possibility is described in Sec. 4.1.3.

Better Worse

Worse

Better

f2

f1f1(d)

a

b

c

d

e f

f1(c)

f2(d)

f2(c)

Figure 4.4: Example of Pareto front for an optimization problem with two
objective functions.

Multi-objective optimization is employed if two or more ob-
jective functions need to be optimized simultaneously. These func-
tions could be conflicting objectives, such as cost and performance.
Usually, the solution of a multi-objective problem is not a single
point. Rather, it is a set of points (e.g. a curve/two objective
functions, a surface/three objective functions) called the Pareto
front.

The concept of Pareto front is qualitatively illustrated in Fig.4.4:
once the Pareto front is reached, one cannot improve (minimize)
the value of the objective function f1 without increasing the value
of f2.

4.1.3 Hybrid optimization

A particular efficient strategy that has often been used in the
development of the present work is the combination of multiple
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optimization strategies in a hybrid optimization.
The goal of this method is to exploit the strengths of different

minimization algorithms through different stages of the minimiza-
tion process.

Global optimization methods, such as DIRECT and moga, can
be used for exploration of the design space in order to identify a
reasonably small number n of promising parameter sets. Since in
many applications the convergence rate of evolutionary algorithms
is too slow and the precision of the solution returned by DIRECT
is not sufficiently high, the identified set of parameters can then be
employed as starting point for local optimization strategies, such
as pattern-search.

Each one of the n parameter sets can be optimized indepen-
dently, so that the zero-order optimization method will lead to n
refined solutions. These solutions can further be improved by em-
ploying one of the gradient-based optimization methods described
previously and finally compared in order to select the preferred
one.

Hybrid optimization has shown to be a valuable tool to semi-
automatically determine optimal material parameter sets. Genetic
algorithms such as moga allow high parallelization, so that the op-
timization process speeds up enormously if high-performance cal-
culators are employed.
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Chapter 5

The constitutive model
for cold forming of
ceramic powders

Ceramic forming by cold pressing of powders is a common prac-
tice in both traditional and advanced ceramic technologies. Due
to its industrial interest, this process has been the focus of much
attention by the research community over the past decades. Two
main approaches in the modelling of granular matter can be distin-
guished: a micromechanical approach, to analyse the deformation
of individual granules in detail, and a continuum macroscopic ap-
proach, to describe averaged deformations at the macroscale.

The micromechanical approach has lead to the development of
the discrete element method (closely related to molecular dynam-
ics) [19–23]. This method can accurately describe the granular flow
during the first stage of the compaction process (low pressure), but
it is excessively detailed for later stages (high pressure) where the
material is better described as a porous solid [24, 25]. Moreover,
this method has the disadvantage that the size of the sample (num-
ber of particles) and the duration of a simulation are limited by
the available computational power [26, 27]. For this reason, the
continuum macroscopic approach is preferable for the simulation
of forming of large components. Furthermore, the continuum ma-
terial model can be implemented in a finite element computer code,
which is more accessible to the industry than the discrete element
method.

Based on the macroscopic approach, a new rational strategy
is proposed in the present Chapter for the computer simulation of
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real, large-scale ceramic component forming. The aim is to provide
the ceramic manufacturers with an effective tool for the optimal
design of moulds, punches, and presses for ceramic forming and,
thus, to make virtual prototyping a realistic technology for the
ceramic industry.

This Chapter is organized as follows. The continuum mechanics
approach to ceramic powder densification is presented in Sec. 5.2.
This includes the theoretical model as well as its finite element
implementation. In Sec. 5.3 the technique for parameter identifi-
cation is described by a multi-objective optimization of simulations
of experimental tests. Finally, in Sec. 5.4, numerical simulations
of industrial powder compaction processes are presented, namely
axisymmetric tablet formation and three-dimensional tile forming.
Die wall friction and deformation of the mould are taken into ac-
count. Simulated densities and lateral forces on die walls are com-
pared with experimental results.

5.1 Material
The material considered in the present study is the aluminum

silicate spray dried powder manufactured by Sacmi s.c. (Imola,
Italy), labelled I14730, and described in Bosi et al. [1]. Two dif-
ferent water contents are considered, namely, w = 5.5% and w =
7.5%, corresponding to values used in the industrial forming of tra-
ditional ceramics. The granule density, obtained with an helium
pycnometer [28], is ρt = 2.599 g/cm3.

5.2 Constitutive framework for ceramic pow-
der densification

The constitutive model was originally developed for the descrip-
tion of the compaction of alumina powder by Bigoni and co-workers
[7, 14, 29–31]. That model has been modified in the present work,
in order to make it more suitable for the description of the com-
paction of aluminum silicate powder.

All the essential equations of the constitutive model are given
in the following. For details, the interested reader is referred to the
above-mentioned references.

The constitutive model has been implemented in external sub-
routines to be used in commercial Finite Element softwares, as
elucidated at the end of this Section.
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5.2.1 Constitutive formulation

The main features of the model can be summarized as follows:

(a) Non-linear elastic law

Granular materials typically show non-linear response in the
elastic regime, whereas partially and fully densified green bod-
ies behave linearly. The elastic law adopted in the model,
Eq. (5.2), is able to describe this transition of elastic proper-
ties.

(b) Extremely flexible yield function [so-called ‘BP yield function’,
3] (see also Sec 2.4).

Powders and dense materials are described by yield loci of
remarkably different shape. The BP yield function has the
unique feature to continuously describe a transition between
yield surfaces typical of different materials.

(c) Cooper-Eaton hardening law [32]

The first hardening law, Eq. (5.8), describes the densification
behaviour of the material subject to isotropic compression.
This law is based on a micro-mechanical model originally pro-
posed by Cooper and Eaton [32].

(d) Increase in cohesion

The compaction process of a ceramic powder gives a form
to the green body, at the same time making it cohesive and
tractable for subsequent processing. The second hardening
law, Eq. (5.9), describes the increase in cohesion at increas-
ing forming pressure.

(e) Elasto-plastic coupling

During the compaction of a ceramic powder, the elastic stiff-
ness of the material increases, a phenomenon which is clearly
visible, for instance, from the unloading curves of a simple
uniaxial compaction test performed at different final forming
pressures [see 7]. The elastic stiffening of a ceramic powder
during densification is connected with the volumetric plastic
deformation of the material and has been addressed both ex-
perimentally and computationally [33, 34]. It is accounted for
by incorporating into the model the so-called ‘elasto-plastic
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coupling’ [5, 35–37]. For a description of the concept of elasto-
plastic coupling and its use to model ceramic powder com-
paction, see for instance Stupkiewicz et al. [38].

Compression and extension triaxial tests have been performed
on aluminum silicate powder, commonly used in industrial practice
to produce ceramic tiles [see 1]. These experimental results, for the
first time available for aluminum silicate, indicated the necessity to
introduce into the modelling a new hardening law, relating the in-
crease of deviatoric strength to the deviatoric plastic deformation,
see Eq. (5.10).

This hardening law has been adapted from the class of isotropic
hardening laws proposed in Poltronieri et al. [39] to describe the
nonlinear behaviour of concrete. These hardening laws display two
crucial features: (i) they can be given both in an incremental and
in the corresponding finite form; (ii) they describe a smooth tran-
sition from linear elastic to plastic behaviour, incorporating linear
and nonlinear hardening, and may approach the perfectly plas-
tic limit in the latter case. In particular, all three hardening laws
adopted in the present model can be formulated in a finite form, see
Eqs. (5.8)–(5.10), which allows for a more efficient finite element
implementation.

The constitutive model is defined by 22 material parameters
(see Tab. 5.1), so that an identification of these material parameters
is needed and will be performed through a technique combining
direct fitting of experimental results together with a multi-objective
optimization on simulated experiments (Sec. 5.3).

Constitutive equations of the model for ceramic powder
compaction

1. Additive split of strain into an elastic εe and plastic εp com-
ponents:

ε = εe + εp (5.1)

2. Non-linear elastic stress/strain law:

σ(εe, epv) =
{
−2

3µ e
e
v + c+ (p0 + c)[(

d(epv)−
1

d(epv)

) (1 + e0)eev
κ

− exp
(
−(1 + e0)eev
d(epv)1/nκ

)]}
I

+ 2µ εe, (5.2)
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where σ is the stress, eev = tr εe and epv = tr εp are the elastic
and plastic volumetric strains, respectively, p0 is the initial
confinement and e0 the initial void ratio.

3. Elasto-plastic coupling:

d = 1 +B〈pc − pcb〉, µ(d) = µ0 + c

(
d− 1

d

)
µ1, (5.3)

4. BP yield function:

F (σ,M, pc, c) = f(p,M, pc, c) + q g(θ), (5.4)

where p = trσ, q =
√

3 devσ · devσ/2, and f(p) and g(θ)
are the meridian and deviatoric functions:

f(p,M, pc, c) = −Mpc

√
[φ− φm] [2(1− α)φ+ α],

φ = p+ c

pc + c
,

(5.5)

g(θ) = cos
[
β
π

6 −
1
3 cos−1 (γ cos 3θ)

]
. (5.6)

5. Non-associative plastic flow rule:

ε̇p = λ̇

[
Q− 1

3ε(1− φ)(trQ)I
]
, Q = ∂F

∂σ
. (5.7)

6. Hardening laws:

epv = − e0
1 + e0

{
a1 exp

(
−Λ1
pc

)
+ a2 exp

(
−Λ2
pc

)}
,

(5.8)

c = c∞ [1− exp (−Γ < pc − pcb >)] , (5.9)

M = M0 + k1
δ

(1 + δJp2 )n−1 − 1
(n− 1)(1 + δJp2 )n−1 ,

with

J2 = 1
2 dev εp · εp.

(5.10)
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5.2.2 Finite Element implementation and integration
of the material model into commercial FEM
codes

The most efficient way to implement an elastoplastic constitu-
tive model, to be used with commercial Finite Element software, is
to develop an external subroutine describing the material response.

This procedure can be carried out in Abaqus FEA by coding a
UMAT (User MATerial) subroutine (see Sec. 3.1), which interfaces
with the FE software through a standardized parameter list in the
subroutine call statement. The UMAT code is compiled and linked
to the main Abaqus executable prior to job execution.

The implementation of the constitutive model for ceramic pow-
der compaction must overcome non-standard difficulties, which in-
clude nonlinear elastic behavior, even at small strain, and elasto-
plastic coupling. Furthermore, the “stretchable” pressure-sensitive
yield function introduced by Bigoni and Piccolroaz [3] has the in-
convenience that, in order to be convex, must be defined +∞ in
some regions outside the elastic domain. This fact, which prevents
the application of standard return-mapping techniques for the so-
lution of the plasticity equations, has been recently overcome by
Brannon and Leelavanichkul [6], Penasa et al. [30], and Stupkiewicz
et al. [38], using different strategies.

The last-mentioned technique, based on the implicit definition
of the BP yield function described in Sec. 3.2.3, has been used in
the current implementation of the constitutive elastoplastic model.
In order to increase the stability and robustness of the subroutine,
a fully-implicit return mapping technique has been combined with
a substepping procedure [40, 41].

As already mentioned in Sec 3.1, the development of the UMAT
subroutine code The developed

code has also
been translated
into a
USERMAT
subroutine for
the use in the
Ansys
environment.

has been carried out by using the advanced hy-
brid symbolic-numeric approach implemented in AceGen [12, 13],
a symbolic code generator available as a package of Wolfram Math-
ematica. The combination of automatic differentiation (AD) tech-
nique, optimization of formulae and automatic generation of com-
puter code available in AceGen made possible to efficiently and
rapidly prototype the new numerical procedure and benchmark the
generated code, which can also be tested within the Mathematica
environment by means of the flexible FE code AceFEM[12, 13].
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5.3 Material parameter identification by sim-
ulation of experimental tests

A novel strategy for the identification of the material parame-
ters governing the constitutive equations of the proposed material
model is introduced, based on a combination of:

(a) Uniaxial deformation tests and triaxial tests respectively on
ceramic powder and formed green bodies (see Bosi et al. [1]);

(b) Finite element discretization and computer implementation of
the mechanical model;

(c) Parametric identification by a multi-objective optimization of
simulated experimental tests.

In the following, the experimental tests and the various steps
of the parameter identification procedure and are accurately de-
scribed.

5.3.1 Experimental tests on aluminum silicate pow-
der

Some of the material parameters, involved in the constitutive
model for ceramic powder densification, were identified directly
from the results of a set of experimental tests by Bosi et al. [1]. In
particular, the following tests were performed:

(a) Uniaxial deformation test were carried out by imposing com-
paction of the aluminum silicate powder in a 30 mm diameter
mould, filled up to a height of 4 mm. After reaching the de-
sired pressure σ1 = {5, 10, 30, 45, 60, 80} MPa, the green body
was unloaded and extracted from the device.
The uniaxial compaction test provided the force-displacement
curves, from which the compaction behaviour of the powder,
i.e. the relation between forming pressure and density, was
deduced. This allowed the calibration of the first hardening
law, Eq. (5.8), and the related material parameters, a1, Λ1,
a2, Λ2. However, the identification of these parameters by a
uniaxial compaction test is affected by the fact that the state
of stress and deformation is not purely isotropic. This made
necessary an adjustment of the values identified by Bosi et al.
[1], as explained in Sec. 5.3.4.
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The logarithmic elastic bulk modulus κ has been evaluated
from the linear elastic phase (at very low pressure, prior to the
breakpoint pressure pcb).

(b) Equi-biaxial flexure tests were performed on the green body
tablets produced in the cylindrical mould, following the ASTM
C 1499-05 ‘Standard Test Method for Monotonic Equi-biaxial
Flexural Strength of Advanced Ceramics at Ambient Temper-
ature’. This allowed the calibration of the second hardening
law, Eq. (5.9), and the related material parameters, c∞, Γ ,
pcb, describing the increase of cohesion with forming pressure.

(c) Compression and extension triaxial tests have been performed
on pre-compacted (at σ1 = 40 MPa) cylindrical specimens (38.2
mm diameter and 70 mm height), according to the ASTM
D 2664 95a ‘Standard Test Method for Triaxial Compressive
Strength of Undrained Rock Core Specimens Without Pore
Pressure Measurements’. The results of these tests have been
used together with the results of uniaxial compaction tests in
the optimization procedure.

All the other material parameters, not identified directly through
the mechanical tests, are determined by simulating the experi-
ments and performing an iterative multi-objective optimization,
which was carried out with simplified numerical models, involving
a small number of finite elements and neglecting the effects of fric-
tion. This approach significantly sped up the FE simulations, so
that the entire parameter identification could be performed on a
simple laptop computer in a reasonable computational time. This
procedure leads to very accurate results, in particular for the uni-
axial deformation tests, which are considered with great interest
for effective simulation of industrial tile forming processes.

In both uniaxial deformation and triaxial test simulations, the
FE analyses were carried out in the Abaqus FEA environment
using axisymmetric 8-node biquadratic elements (CAX8).

5.3.2 Simulation of uniaxial deformation tests

The numerical simulation of uniaxial deformation tests, as per-
formed by Bosi et al. [1], involves the execution of the following
four steps:

1. Geostatic step: As the powder before compaction is cohe-
sionless, the analysis starts by assuming a small confinement
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given by an initial value of isotropic stress, p0, which is equi-
librated by an equivalent external load in a geostatic step.
The initial values of isotropic stress and void ratio used in
the simulation are p0 = 0.9 MPa and e0 = 2.04.

2. Loading: In this step a uniform pressure is applied to the
upper face of the sample, see Fig. 5.1, while the constraints at
the bottom and lateral surfaces reproduce frictionless contact
with the mould.

3. Unloading: In this phase the pressure on the upper face
is removed, while the boundary constraints at bottom and
lateral faces are kept active, in order to simulate the removal
of the punch.

4. Extraction: The supports on the right side of the sample
are deactivated in the last step, so that the compact is free
to expand transversally, which reproduces the ejection from
the mould.

Figure 5.1 shows the undeformed mesh with the constraints to
reproduce uniaxial deformation conditions (left) and the deformed
mesh at the end of the loading step (right, the contours denote
vertical displacement).

Figure 5.1: Simplified FE model for uniaxial compaction simulation. Unde-
formed mesh (left) and deformed mesh at the end of loading step (right, con-
tours denote vertical displacement).

5.3.3 Simulation of compression and extension triax-
ial tests

The FE analysis was carried out to simulate the triaxial tests
performed by Bosi et al. [1], on cylindrical samples, pre-compacted
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at 40 MPa. This involves two stages. The first stage corresponds to
the preparation of cylindrical specimens, formed by uniaxial com-
paction at 40 MPa, followed by an isotropic compaction at 40 MPa
in the triaxial cell. After unloading, the second stage corresponds
to the actual triaxial test. Both compression and extension triaxial
tests were simulated in the way described below.

Stage 1: forming of cylindrical specimens

1. Geostatic step: The first geostatic step aims to equilibrate,
by imposing an external pressure, p0, the assumed initial
isotropic confinement in the ceramic powder. The initial val-
ues of isotropic stress and void ratio used in the simulation
are p0 = 0.9 MPa and e0 = 2.04.

2. Uniaxial compaction at σ2 = 40 MPa: The powder is
first compacted in a uniaxial deformation step at a final ver-
tical stress equal to 40 MPa.

3. Unloading: In this step the sample is unloaded.

4. Isotropic compaction at p = 40 MPa: An uniform pres-
sure of 40 MPa is applied on both faces of the sample (see
Fig. 5.2): σ1 = σ2 = 40 MPa.

5. Unloading: In this step the sample is unloaded.

Stage 2: triaxial test

1. Isotropic loading: The confinement pressure is applied on
all faces of the sample: σ1 = σ2 = {2, 5, 10, 15, 20, 30} MPa.

2. Deviatoric loading: Compression triaxial test: on the up-
per face of the cylinder a negative displacement is imposed,
in order to reduce the hight of the sample. Extension triaxial
test: on the lateral face of the cylinder a negative displace-
ment is imposed, in order to reduce the width of the sample.

Figure 5.2 shows the undeformed mesh with the constraints
to reproduce uniaxial compaction conditions (step 2 of Stage 1,
left), the deformed mesh at the end of forming of the cylindrical
specimen (end of Stage 1, centre), and the deformed mesh at the
end of triaxial test (right). In the central and right figures, contours
denote vertical displacement.
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Figure 5.2: Simplified FE model for triaxial test simulation. Undeformed mesh
(left), deformed mesh at the end of Stage 1 (forming of cylindrical specimen,
centre) and deformed mesh at the end of Stage 2 (triaxial test, right). The
contours denote vertical displacement.

5.3.4 Material parameter identification by multi ob-
jective optimization

A multi-objective optimization procedure has been performed
in order to identify the constitutive parameters not directly cali-
brated from the experimental tests performed by Bosi et al. [1].

These parameters include: the elasto-plastic coupling parame-
ters, B, n, µ0 and µ1, governing the evolution of elastic properties
with plastic deformation, Eq. (5.3); the parameters involved in the
deviatoric hardening rule, Eq. (5.10), M0, k1, δ1 and n1; the pa-
rameter ε defining the non-associativity, Eq. (5.7).

In addition, the parameters a1, Λ1, a2, Λ2, governing the pressure-
density behaviour of the powder in isotropic compression, were in-
cluded in the optimization. This was done because isotropic com-
pression tests are not available, and thus the values identified by
Bosi et al. [1] through uniaxial compaction tests require an adjust-
ment.

With the introduction of the deviatoric hardening rule, Eq. (5.10),
the parameter M , describing the pressure-sensitivity, Eq. (5.5),
evolves during the densification. This fact is expected to influence
also the other parameters governing the meridian shape of the BP
yield function, m and α, which are therefore also included in the
optimization.

The multi-objective optimization has been performed by em-
ploying the algorithms available in the Dakota Framework [16],
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which allows the optimization with both gradient and nongradient-
based methods. The chosen optimization strategy aims to find the
best possible fit between simulated results and experimental curves,
both for uniaxial compression and triaxial compression tests.

The random combination of material parameters, even inside
their allowable ranges, may lead to unconsistent results or lack of
convergence. For this reason a gradient-free approach has been
preferred in the optimization procedure. As a sufficiently precise
starting point was not available, both global and local optimiza-
tion methods have been used to efficiently estimate the material
parameters.

The ‘hybrid’ procedure involves first a Pareto optimization, by
means of moga (multi-objective genetic algorithm). After a suffi-
ciently high number of iterations of the global algorithm, the best
five solutions are refined by a local optimization method (pattern-
search). The convergence of the optimization strategy, in terms of
relative error as a function of the number of iterations, is shown in
Fig. 5.3.

Figure 5.3: Convergence of the hybrid optimization algorithm for aluminum
silicate powder with w = 5.5% (left) and w = 7.5% (right) water content.

The graph shows how, with the increase of the number of iter-
ations, the parameters generating low error tend to become more
dense (moga algorithm). After 1500 iterations, the best five solu-
tions of the global algorithm are refined using a local optimization
method (pattern-search algorithm) until convergence.

In order to reduce the size of the problem, the optimization fo-
cused on reaching the best fit for the experimental tests considered
of highest industrial interest, namely:

• Uniaxial compaction tests at σ2 = {45, 60} MPa

• Triaxial compression tests at cell confinement: σ1 = σ3 =
{20, 30} MPa
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The final set of parameters for the compaction of aluminum silicate
for two different water contents, w = 5.5% and w = 7.5% are
reported in Tab. 5.1.

Table 5.1: Material parameters for the compaction of aluminum silicate I14730,
for two different water contents, w = 5.5% and w = 7.5%. Seven parameters
were obtained directly from the experiments by Bosi et al. [1], the other 15
parameters have been identified by multi-objective optimization.

Parameter Aluminium Silicate I14730
w = 5.5% w = 7.5%

Parameters identified directly from experiments
Log. Bulk Modulus (1) κ 0.08 0.099

Yield Surface
(2) pc0 0.09 MPa 0.09 MPa
(3) β 0.1 0.08
(4) γ 0.9 0.9

Hardening law (5.9)
(5) pcb 0.22 MPa 0.17 MPa
(6) c∞ 1.10 MPa 1.35 MPa
(7) Γ 0.06 MPa−1 0.10 MPa−1

Parameters identified by multi-objective optimization

Yield Surface
(8) M0 0.398 0.506
(9) m 2.26 3.17
(10) α 1.09 1.367

Hardening law (5.8)

(11) a1 0.763 0.780
(12) Λ1 0.702 MPa 0.507 MPa
(13) a2 0.154 0.154
(14) Λ2 36.285 MPa 25.19 MPa

Hardening law (5.10)
(15) k1 301.417 30.08
(16) δ1 456.806 165.405
(17) n1 3.647 9.149

E-P Coupling (5.3)

(18) B 9.580 MPa−1 6.908 MPa−1

(19) n 11.949 11.749
(20) µ0 0.223 MPa 9.822 MPa
(21) µ1 24.678 5.269

Plastic flow (5.7) (22) ε 0.916 0.586

With the identified parameters, it is possible to obtain a good
agreement between numerical and experimental results also in tests
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which are not considered in the optimization. This is an indica-
tion of the consistency of the constitutive model and of the va-
lidity of the optimization procedure. Figure 5.4 shows the uniax-
ial compaction (force vs. displacement) curves for water content
w = 5.5% (left) and w = 7.5% (right). Figure 5.5 shows the com-
pression/extension triaxial (von Mises stress vs. axial strain) curves
for water content w = 5.5% (left) and w = 7.5% (right).
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Figure 5.4: Uniaxial compaction test: Comparison between experimental re-
sults and numerical simulations obtained with the identified material parame-
ters (Tab. 5.1), for water content w = 5.5% (left) and w = 7.5% (right).
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Figure 5.5: Compression/extension triaxial test: Comparison between experi-
mental results and numerical simulations obtained with the identified material
parameters (Tab. 5.1), for water content w = 5.5% (left) and w = 7.5% (right).
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5.4 Numerical simulation of industrial pow-
der compaction processes

The capabilities of the proposed constitutive model are high-
lighted through computer simulations of realistic industrial com-
paction processes, namely, the forming of an axisymmetric tablet
and of a three-dimensional ceramic tile, where the material param-
eters identified according to the procedure described in Sec. 5.3
are considered.

The transversal load on the lateral die wall computed in the
numerical analyses results particularly in agreement with the val-
ues of contact pressure measured during the uniaxial deformation
tests. The density values and void ratio distribution at the end of
the compaction process appear compatible with the experimental
data.

In the following, the results of the numerical simulations are
discussed and compared with those obtained in the experiments.

5.4.1 Experimental identification of friction coefficient
between powder and die wall

At the end of process of powder compaction, the sample is
unloaded and extracted from the forming device. In this phase,
friction between the green body and the steel matrix requires the
application of an axial force on the tablet to complete the extrac-
tion.

In the experimental tests performed by Bosi et al. [1], it was
possible to measure the tangential force T required to remove the
green body from the mould. The normal force N on the steel
matrix can be calculated from the measured radial deformation of
the sample after extraction and the elastic moduli, measured by
means of ultrasound technique by Argani et al. [33].

The static friction coefficient can be estimated from the rela-
tionship between tangential and normal forces acting on the die
wall. The calculation of static friction coefficient for forming pres-
sure of 45 MPa yielded µs = T/N = 0.18. This value has been used
in the following FE simulations in order to accurately reproduce
the contact interaction between ceramic powder and steel matrix.

107



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

5.4.2 Numerical simulation of axisymmetric tablet
forming

Finite element analyses, involving contact interaction and fric-
tion, have been performed to accurately reproduce the uniaxial
compaction tests performed by Bosi et al. [1]. In these simula-
tions, the complete forming device, composed by matrix, upper
and lower punches, was modelled, and the interaction between each
single part and the ceramic powder was taken into account.

The experimental set-up used in the uniaxial compaction test
of I14730 aluminum silicate powder, performed by Bosi et al. [1]
is shown in Fig. 5.6: the schematic cross section on the left and a
photograph in the centre. The elements considered in the simula-
tion are shown on the right: ceramic powder, cylindrical matrix,
bottom and upper punches.

Figure 5.6: Experimental set-up used in the uniaxial compaction test of I14730
aluminum silicate powder, performed by Bosi et al. [1]. Cross section (left)
and photograph (centre) of the forming device. The elements considered in the
simulation: matrix, upper and lower punches, and ceramic powder (right).

The simulation comprises the following steps: geostatic step, in
which an initial confinement p0 is imposed on the powder; uniaxial
compaction phase, in which the upper punch is loaded by the given
vertical pressure; unloading step, in which the load on the upper
punch is removed; extraction, in which the matrix is removed in
order to simulate the removal of the tablet from the cylindrical
mould.

The stresses developing in the ceramic powder as well as in the
mould are shown in Fig. 5.8. The analysis made also possible to
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investigate the influence of friction in the forming process and to
determine the transversal pressure on the steel matrix.

The dimensions and densities of the formed tablets are reported
in Tables 5.2 and 5.3, for aluminum silicate powder with water
content 5.5% and 7.5%, respectively. The simulation results are
in good agreement with the experimental values. We note that a
reduced radial ‘springback’ after extraction of the tablet from the
mould was predicted by the numerical simulations.

A comparison of experimental and simulated compact densities
is shown in Fig. 5.7, for water content 5.5% (left) and 7.5% (right).
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Figure 5.7: Densities of I14730 aluminium silicate tablets, with 5.5% and 7.5%
of water content: comparison between experimental result and numerical sim-
ulation for different forming pressures. The first experimental point shows the
average bulk density of the ceramic powder when inserted in the cylindrical
mould.
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(a) Geostatic step: σxx (b) Geostatic step: σyy

(c) End of compaction phase: σxx (d) End of compaction phase: σyy

(e) Unloading: σxx (f) Extraction of the green body:
σxx

Figure 5.8: Axisymmetric numerical simulation of tablet forming. Stress dis-
tribution (lateral stress σxx and axial stress σyy) in the ceramic powder and in
the mould (composed by matrix, upper and lower punches) at the end of the
main stages of powder compaction: geostatic step (upper part), axial loading
(central part), axial unloading (lower part, left) and extraction of the tablet
(lower part, right).
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Table 5.2: Dimensions and densities of I14730 aluminum silicate tablets
(w=5.5%) after completion of the uniaxial compaction process and extraction
from the cylindrical mould.

Pressure
[MPa]

Area
[mm2]

Height
[mm]

Diameter
[mm]

Density
[g cm−3]

5 Experiment 706.387 2.338 29.990 1.653
Simulation 708.452 2.392 30.034 1.611

10 Experiment 706.858 2.198 30.000 1.757
Simulation 705.841 2.225 29.978 1.738

30 Experiment 708.273 2.042 30.030 1.957
Simulation 703.554 2.004 29.930 2.007

45 Experiment 708.745 1.966 30.040 2.009
Simulation 703.225 1.923 29.923 2.071

60 Experiment 708.745 1.880 30.040 2.056
Simulation 703.065 1.865 29.919 2.089

80 Experiment 708.745 1.844 30.040 2.081
Simulation 702.962 1.817 29.917 2.130

Table 5.3: Dimensions and densities of I14730 aluminum silicate tablets
(w=7.5%) after completion of the uniaxial compaction process and extraction
from the cylindrical mould.

Pressure
[MPa]

Area
[mm2]

Height
[mm]

Diameter
[mm]

Density
[g cm−3]

5 Experiment 705.916 2.236 29.980 1.730
Simulation 704.175 2.221 29.943 1.746

10 Experiment 705.916 2.074 29.980 1.865
Simulation 703.451 2.089 29.928 1.858

30 Experiment 707.801 1.918 30.020 2.011
Simulation 702.981 1.870 29.918 2.077

45 Experiment 707.943 1.836 30.023 2.085
Simulation 702.905 1.795 29.916 2.148

60 Experiment 708.745 1.772 30.040 2.102
Simulation 702.868 1.740 29.915 2.159

80 Experiment 708.273 1.814 30.030 2.148
Simulation 702.868 1.711 29.915 2.295
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5.4.3 Three-dimensional numerical simulation of an
industrial tile forming process

Three-dimensional FE simulations of an industrial tile form-
ing process have been performed in Abaqus FEA environment us-
ing the developed constitutive model and the identified parameters
listed in Tab. 5.1. The 3D model involves contact interactions be-
tween ceramic powder, steel matrix and top/bottom steel plates,
where the friction coefficient reported in Sec. 5.4.1 has been used.

Figure 5.9 shows the vertical and transverse stress distributions
in the ceramic powder and in the mould (composed by matrix,
upper and lower plates) at the end of the main stages of powder
compaction.

The initial values of isotropic stress and void ratio prescribed in
the geostatic step are p0 = 0.09 MPa and e0 = 2.04, respectively,
which are the same values used in the axisymmetric case. This
step corresponds to the initial confinement inside the mould, see
Fig. 5.9a and 5.9b.

At the end of the compaction phase, Fig. 5.9c and 5.9d, we no-
tice a non-uniform stress distribution, especially for the transversal
stress σyy, in the external part of the tile, which is in contact with
the die wall. This effect is mainly due to friction between the
ceramic powder and the mould.

After the unloading step (removal of the upper plate), see
Fig. 5.9e, the transversal stress σyy in the green tile is still quite
high, approximately 8 MPa, due to the lateral constraint given by
the matrix.

The residual stresses at the end of the extraction phase, pre-
dicted by the finite element simulation, are shown in Fig. 5.9f. We
notice a compressive transversal stress σyy at the upper edge of
the tile, which is balanced by a tensile σyy at the lower edge. The
capabilities of the model to predict residual stresses are crucial,
since residual stresses may lead to fracture of the green body, by
end capping or lamination.
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(a) Geostatic step: σyy (b) Geostatic step: σzz

(c) End of compaction phase: σyy (d) End of compaction phase: σzz

(e) Unloading: σyy (f) Extraction of the green body: σyy

Figure 5.9: Three-dimensional numerical simulation of industrial tile forming.
Stress distribution (lateral stress σyy and axial stress σzz) in the ceramic powder
and in the mould (composed by matrix, upper and lower plates) at the end
of the main stages of powder compaction: geostatic step (upper part), axial
loading (central part), axial unloading (lower part, left) and extraction of the
tile (lower part, right).

113



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

5.4.4 Estimation of transversal load on the lateral die
wall

All FE analyses denoted high contact pressure values on the
steel matrix. For an applied axial load of 45 MPa, three-dimensional
and two-dimensional simulations yielded average transversal pres-
sure values equal to 37.73 MPa and to 39.45 MPa, respectively. The
contact pressure for the three-dimensional simulation is shown in
Figure 5.11 (upper part). The average contact pressure has been
calculated by dividing the resultant of the nodal contact forces by
the contact area.

These values of lateral contact pressure on the die wall are much
higher than those usually considered in the design of tile forming
devices. In the industrial practice, the lateral contact pressure is
empirically assumed to be one sixth of the axial pressure applied
on the powder.

To clarify this point, a specific experimental investigation has
been performed, by placing a pressure-sensitive Fuji Prescale MS
film between ceramic powder and steel matrix, see Fig. 5.10.

Figure 5.10: Description of the performed experimental test: the pressure-
sensitive film is placed between the ceramic powder and the steel matrix.

This film is composed of a polyester base on which a colour-
developing material is coated, with the micro-encapsulated colour-
forming material layered on top. When pressure is applied on the
film, the microcapsules are broken and the colour-forming material
reacts with the colour-developing material, and this process causes
magenta colour forming. Microcapsules are designed to react to
various degrees of pressures, releasing their colour forming material
at a density that correspond to specific levels of applied pressure.

Figure 5.11 (lower part) shows the imprint left by the ceramic
powder on the pressure-sensitive film. The lateral pressure on the
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matrix was obtained by analysing the image using a dedicated pro-
gram that converts magentascale to RGB values. For a forming
axial pressure of 45 MPa, the measured average lateral pressure
on the matrix is equal to 39 MPa, confirming the results of the
simulations with a very good accuracy.

Figure 5.11: Contact pressure values in the three-dimensional simulation (upper
part) and imprint left on the pressure-sensitive film after the experimental test
(lower part).

5.4.5 Density distribution in a combed-finish tile af-
ter die pressing

The density distribution in green bodies is of primary impor-
tance in the optimization of tile forming processes. In fact, non-
uniform density can affect the subsequent sintering process, result-
ing in poor quality of the final ceramic product. Figure 5.12 shows
the void ratio distribution in a combed finish tile green body, pre-
dicted by the finite element simulation. The void ratio, defined as
the ratio of the volume of voids to the volume of solid, e = VV /VS ,
is related to the relative density by

ρ

ρ0
= 1 + e0

1 + e
, (5.11)

where ρ0 and e0 are the initial values. We notice higher void ratio
values, corresponding to lower density, in correspondence of the
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protrusions. These results pave the way to more advanced virtual
prototyping analyses, aiming at the optimization of the design of
tile forming devices, in order to produce green bodies with im-
proved density distribution.

Figure 5.12: Void ratio distribution in a combed finish tile after die pressing.
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Chapter 6

The constitutive model
for refractories

This chapter presents innovative approaches to the mechanics
of refractory materials at high-temperature for advanced industrial
design. The applications are envisaged in several industrial sectors,
in particular in the molten metal flow engineering sector.

One of the key issues is the development and implementation
of a specific constitutive model for refractories, in order to enhance
the description of their thermo-mechanical properties and thus im-
prove their performance and reliability.

In the following, the formulation of the presented model is de-
scribed in detail. Special focus is given to the identification of
material parameters, where experimental tests and multi-objective
optimization techniques were successfully employed. Finally, com-
parisons between experiments and numerical simulations are dis-
cussed.

This constitutive model is one of the outcomes of the collab-
oration between University of Trento and Vesuvius Group within
the HOTBRICKS European project. Please note that information
about the chemical composition and the constitutive parameters
describing the features of Vesuvius materials are strictly confiden-
tial and therefore not presented in the current work. The main goal
is to give a description of the constitutive formulation, parameter
identification procedure and performed experimental tests, avoid-
ing disclosure of protected information.
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6.1 Thermoplastic Constitutive formulation
The proposed constitutive model for refractories is formulated

in the frame of thermo-plasticity. Thermal effects are crucial for
refractories, which are subject to high temperature under working
conditions.

Particular care is given to the proper description of the effects
of temperature on the mechanical properties of the investigated
materials. As explained in more detail in Sec. 6.4, the temperature
usually affects the material yield strength and ultimate strength
but, for some material compositions, opposite effects are observed.
The temperature has an influence also on the elastic properties, so
these effects are taken into account in the proposed model.

Differently from the model for ceramic powder densification
presented in Ch. 5, linear behavior is assumed inside the elastic
domain, which is defined through the BP yield criterion.

The constitutive model is formulated with regard to associative
plasticity, so that the plastic flow direction is always normal to the
yield surface.

Rate-dependence has been included in the proposed thermo-
plastic constitutive model according to the general formulation il-
lustrated in Sec. 2.3. However, at present, experimental results on
this particular effect are still not sufficient for a comparison.

6.1.1 Elastic potential and temperature dependence

Heat resistant materials show an evident dependence of the
elastic properties on temperature. Therefore, a temperature de-
pendent elastic potential is introduced as

W (T, ε) = λ(T )
2 tr ε2 + µ(T )ε2, (6.1)

where λ(T ) and µ(T ) are the Lamè constants. It is assumed that
the Young’s modulus is temperature-dependent, E(T ), whereas the
Poisson ratio is constant, ν. The Lamè constants can be obtained
as

λ(T ) = E(T )
(1 + ν)(1− 2ν) , (6.2)

µ(T ) = E(T )
2(1 + ν) . (6.3)

118



6. THE CONSTITUTIVE MODEL FOR REFRACTORIES

Experimental tests on different refractory compositions have
shown very dissimilar dependence of the elastic properties on the
temperature. For this reason, a general analytic expression for the
elastic modulus is of difficult identification. The most general way
to describe the relationship between elastic modulus and temper-
ature is by introducing a polynomial in the form

E(T ) =
n∑
i=0

pi T
i (6.4)

where the vector of coefficients p can be easily identified by poly-
nomial regression for each considered material.

6.1.2 Temperature-dependent hyperbolic strain hard-
ening and thermal softening
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Figure 6.1: Temperature-dependent hardening rules for the proposed thermo-
plastic constitutive model. The limit value of isotropic strength pcmax evolve
according expression (6.7), where Apc is replaced by the ultimate isotropic
strength at room temperature pcmax0 .

The BP yield function is regulated by possibly conflicting con-
tributions due to strain hardening and thermal softening.

The dependence of isotropic strength in compression pc and in
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tension c on the temperature is set in the following form

pc = pcT + k1T
1 + δTP (εp)

P (εp), (6.5)

c = cT = Ω pcT , (6.6)

where P (εp) is the accumulated plastic strain, see Eq. (2.31), Ω is
a material parameter, pcT , k1T and δT are functions of the temper-
ature T and are defined as follows.

The first term in Eq. (6.5) regulates thermal softening and is
defined as

pcT = Apc −Bpc tanh
(
T − T pc0
Cpc

)
, (6.7)

while strain hardening depends on temperature through the func-
tions

k1T = Ak1 −Bk1 tanh
(
T − T k1

0
Ck1

)
, (6.8)

and

δT = δ0 exp
(
−T − T

δ
0

T − TF

)
. (6.9)

In the numerical implementation of the proposed constitutive model,
the accumulated plastic strain P (εp) is calculated at each time-step
i from its incremental expression (2.33) as

P (εp)i = P (εp)i−1 + (λi − λi−1) |Q| . (6.10)

where Q is the gradient of the BP yield function Q = ∂F
∂σ .

6.2 Strain softening for material failure de-
scription

An important issue with the modeling of refractories is related
to the proper simulation of the strain softening branch, which fol-
lows local failure of the material. A first problem is the determi-
nation of a proper ‘failure criterion’ for the considered materials,
since different choices are possible. In the present work, two failure
criteria are introduced:
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1. A maximum value for the isotropic strength pcmax is deter-
mined for each considered material. In the hardening phase,
pc can grow according to the hardening rule (6.5) only until
this limit value is reached. Analogously to pc, pcmax depends
on temperature according to Eq. (6.7), where the limit value
of the isotropic strength at room temperature pcmax0 replaces
Apc . The procedure to numerically identify pcmax0 is given
detailed description in Sec. 6.4.

2. A spherical strain limiter criterion is proposed. Its formula-
tion is illustrated in Sec. 6.3.

6.2.1 Material damage and softening

Sometimes it is desirable to stop the analysis immediately after
the material reaches one of the predefined failure criteria (e.g. in
pure compression or tension). In other cases, the material damage
is particularly localized (e.g. cracks develop in a delimited portion
of the material), so that global equilibrium of the loaded device is
not compromised. If a numerical simulation of the latter example
is performed, this should continue also after the material reaches
its limits at some points, since the rest of the material could still
be able to equilibrate the external loads.

This is for example the case of the slide gate simulation (see Sec.
6.5.2). During casting in foundry industries, it has been observed
that cracks develop relatively quickly in the external part of the
refractory plate. Nevertheless, the device can still operate for a
long time after the initial local failure of the material. The stress
is progressively redistributed to other parts of the plate, that must
be replaced only once the damage reaches the central hole (see Fig.
6.19), since the metal flow can not anymore be properly confined.

The best way to simulate this kind of phenomena depends on
the type of failure. Sometimes, the crack development is extremely
localized and the size of the cracks is important. More often, the
material fails for an high number of distributed micro-cracks.

In the former case, a computational formulation taking into
account fracture mechanics, such as X-FEM, would be reason-
able. However, these computations require the crack location to be
known in advance and a precise set up to work properly. Their as-
sociation to non-standard constitutive models complicates further
the work flow of the simulation.

Otherwise, failure mechanisms induced by diffused damage or
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distributed micro-cracks are better simulated through strain soft-
ening, inducing homogeneous stress reduction in the elements reach-
ing the limit state. It must nevertheless be considered that sharp
local decrease of stress can affect the convergence of the numerical
analyses. Furthermore, the problem is very likely to become mesh-
dependent, so that the size of the finite elements requires particular
consideration.

Another possible option could be the iterative removal of the
finite elements once the failure criterion is reached. This procedure
is of difficult implementation and has the disadvantage that resid-
ual stresses in the failed material can not be taken into account.
Nevertheless, the iterative removal of the elements is considered
for future developments of the present work.

Strain softening represents a sufficiently precise and general
way to obtain the desired effects in the context of industrial de-
sign of refractory devices. For this reason, its implementation is
included in the proposed constitutive model. In the following, the
softening formulation and the effects obtained in simple numerical
simulations are presented.

6.2.2 Softening formulation

legend As=0
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Ds 6= 0

pc0

pcmax

pcAsint = 0
pcAsint 6= 0

pcAsint

Cs = Cs2 > Cs1

Cs = Cs1

Figure 6.2: Influence of Cs, Ds and pcAsint on pc during softening: Cs regulates
the curvature in the transition to the the asymptotic value pcAsint while Ds
determines if hardening is immediately stopped once pcmax is reached.
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The implemented softening formulation follows an incremental
approach. In particular, before activating softening, it must be
determined if the proposed limits, namely the limit strain (see Sec.
6.3) or pcmax , have been reached or not in the previous analysis
step.

In the former case, the value of the plastic multiplier λ is saved
in the state variable λf and the material (in the considered Gauss
point) assumes the ‘failed’ state, which is maintained until the end
of the simulation.

By doing so, we accept a certain loss of precision, since big
steps would inevitably delay the activation of softening, so that
the saved λf is bigger than the ‘exact’ one.

In practice, time-steps are necessarily small when the material
is close to failure, since the investigated numerical analyses exhibit
high nonlinear behavior. However, an iterative procedure for the
precise identification of λf could easily be implemented and will be
considered in the future work.

If softening is activated, the hardening rule (6.5) is replaced
with the following expression

pc−pcT −
(k1)T

1 + (δ)T P (εp)
P (εp)+As |sBs | |

(pc − pcAsint)
pcmax

|
1
Cs = 0,

(6.11)
where s is a parameter growing with λ and equal to 0 at the onset
of softening, defined as

s = λ

λf
− 1. (6.12)

The coefficients As, Bs, Cs and pcAsint are material constants defin-
ing the softening behavior.

It should be noted that in expression (6.11) the hardening be-
havior is still active but counterbalanced by the addition of soft-
ening. Thus, even with proper set up of the softening parameters,
hardening will continue for a while after reaching the failure cri-
teria, as shown in Fig. 6.2. This leads to a tangential trend of
pc and consequently of the stress, that is particularly helpful to
ensure convergence of the simulation.

However, this particular behavior can be avoided by replacing
the accumulated plastic strain P (εp) with the accumulated plastic
strain at failure Pf (εp) in Eq. (6.11), thus obtaining

pc−pcT −
(k1)T

1 + (δ)T Pf (εp)
Pf (εp)+As |sBs | |

(pc − pcAsint)
pcmax

|
1
Cs = 0,

123



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

(6.13)

so that the third term can not continue to grow with the plastic
strain and becomes only dependent on the temperature.

In the implemented constitutive model, the user can select the
preferred behavior by setting the boolean Ds, which determines
which expression between (6.11) and (6.13) is taken into account
in the integration of the constitutive model.

Parameters As, Bs and Cs have peculiar effects on the softening
behavior (see also Fig. 6.2):

• The parameter As regulates the ‘steepness’ of the softening
curve. If too high values are chosen, the stress decreases very
quickly, so that the convergence of the simulation might be
affected. Otherwise, too low values can suppress softening
effects.

• The parameter Bs influences the transition between harden-
ing and softening behavior: Bs = 1 yields a linear transition,
while higher values Bs = {2, 3} correspond respectively to
parabolic and cubic transition. The smoothness of the tran-
sition is therefore higher with values of Bs greater than 1.

• The parameter Cs determines how ‘quickly’ the value of pc
goes to the user defined value pcAsint , which determines the
residual stress in the material after failure. High values of Cs
yield to a quick decrease of pc, particularly in the last part
of the stress curve, as shown in Fig. 6.2.

6.3 Strain limiter criterion

The following strain limiter criterion was introduced as an ad-
ditional failure condition for simulations involving the proposed
thermo-elastoplastic model. Here, softening is activated when a
defined maximum strain is reached.

The criterion is a variant of the well-known Rankine failure
criterion, but defined in the strain space and in a way that there
is no need of evaluating the eigenvalues of the strain tensor.

6.3.1 The Rankine strain limiter criterion

According to the maximum-tensile/compressive-strain criterion
proposed by Rankine (see for instance Chen and Han, 1988 [42]),
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failure in a brittle material takes place when the maximum or the
minimum principal strain at a point inside the material reaches a
value equal to the tensile εt or compressive strain εc (the latter
taken in absolute value) as found in an extension or compression
uniaxial deformation test.

Rankine failure surface

The equations for the Rankine failure surface can be written as

ε1 = −εc, ε2 = −εc, ε3 = −εc, (6.14)

in case of compression, and

ε1 = εt, ε2 = εt, ε3 = εt, (6.15)

in case of tension, which result in six planes perpendicular to the
ε1, ε2, ε3 axes.

In the three-dimensional strain space, these equations define a
cube with center shifted along the diagonal by a length depending
on the difference between the values εt and εc, so that the criterion
can be written as

F (ε, εt, εc) = Max{−εmin − εc, εmax − εt}, (6.16)

so that F < 0 corresponds to an admissible strain state, while
F = 0 corresponds to failure.

Spherical failure surface

A similar approach to the Rankine criterion is now introduced,
so that, instead than a cubical, a spherical limit surface is consid-
ered.

We assume that failure takes place when the maximum or the
minimum uniaxial strain at a certain point of a material reaches
a value equal to the uniaxial deformation in extension εt or in
compression εc.

We consider a sphere of radius R, centered on the diagonal of
the strain space at the point ε̂, so that its equation is described as

F (ε, ε̂, R) =
√

(ε1 − ε̂)2 + (ε2 − ε̂)2 + (ε3 − ε̂)2 −R. (6.17)
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F (ε, εt, εc) = 0

ε̂

C

−εc

−εc

εt

εt

ε1

ε2

Figure 6.3: Two-dimensional representation of the proposed strain limiter cri-
terion (continuous line) and Rankine criterion (dashed line).

In tensorial notation, the first term of equation (6.17) can be writ-
ten as

|ε− ε̂I| (6.18)

where I is the identity tensor and | | denotes the norm. Accord-
ingly, equation (6.18) becomes√

(ε− ε̂I) · (ε− ε̂I) =
√
ε · ε− 2ε̂ tr ε+ 3ε̂2. (6.19)

By inserting the last expression in equation (6.17) we obtain

F (ε, ε̂, R) =
√
ε · ε− 2ε̂ tr ε+ 3ε̂2 −R, (6.20)

which defines the failure criterion in the strain space as a function of
the two geometrical parameters R and ε̂. To obtain the expression
of the criterion as a function of the limit uniaxial strain values, εc
and εt, we impose the conditions{

F (ε = εt, ε̂, R) = 0
F (ε = εc, ε̂, R) = 0 (6.21)

where εt and εc are defined as

εt =

 εt 0 0
0 0 0
0 0 0

 , εc =

 −εc 0 0
0 0 0
0 0 0

 (6.22)
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Inserting (6.22) in the system (6.21) and taking into account equa-
tion (6.20) yields{ √

ε2
t − 2ε̂εt + 3ε̂2 −R = 0√

ε2
c + 2ε̂εc + 3ε̂2 −R = 0.

(6.23)

Therefore, the parameters ε̂ and R can be written as functions of
εt and εc in the form

ε̂ = (εt − εc)
2 (6.24)

and

R =

√
3(εt − εc)2

4 + εc(εt − εc) + ε2
c . (6.25)

Inserting the expressions (6.24) and (6.25) in equation (6.20) yields
the expression of the failure criterion in the strain space as a func-
tion of the uniaxial limit strains

F (ε) =

√
−(εt − εc) tr ε+ 3(εt − εc)2

4 + ε · ε−√
3(εt − εc)2

4 + εc(εt − εc) + ε2
c .

(6.26)

If we consider an extension/compression test on a cylindric
specimen, the sample deforms uniaxially (e.g. ε1 6= 0, ε2 = 0 ,
ε3 = 0) only if radial strain is prevented. For this reason, expecially
in extension, tests to identify the uniaxial limit strain parameters
are commonly difficult to perform.

Otherwise, if the specimen is free to deform radially and max-
imum strains in both longitudinal and radial direction are mea-
sured, a different expression of the failure criterion can be found
by modifying equations (6.22) as

εt =

 ε
t1It is to note that,

in this case, the
values in matrix
εt and εc are
provided with

their sign.

0 0
0 εt2 0
0 0 εt3

 , εc =

 εc1 0 0
0 εc2 0
0 0 εc3

 (6.27)

where εt2, εt3, εc2, εc3, define the limit strain in radial direction.
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Equations (6.24) and (6.25) become respectively

ε̂ = (εt · εt − εc · εt)
2(tr εt − tr εc)

(6.28)

and

R =
√
−(εt · εt − εc · εc) tr εc

tr εt − tr εc
+ 3(εt · εt − εc · εc)2

4(tr εt − tr εc)2 + εc · εc.

(6.29)

The expression of failure criterion in the strain space in its more
general form yields

F (ε, εt, εc) =
√
−(εt · εt − εc · εc) tr ε

tr εt − tr εc
+ 3(εt · εt − εc · εc)2

4(tr εt − tr εc)2 + ε · ε−√
−(εt · εt − εc · εc) tr εc

tr εt − tr εc
+ 3(εt · εt − εc · εc)2

4(tr εt − tr εc)2 + εc · εc.

(6.30)

6.4 Material parameters identification
Refractories are characterized by a wide range of compositions,

leading to extremely variable mechanical and thermal responses.
An efficient procedure to obtain the material parameters appearing
in the governing equations from experimental results is important
to obtain realistic results in the numerical simulations. This proce-
dure should be sufficiently general to allow an easy characterization
of all refractory materials. This procedure has been developed and
applied with success to several compositions. In the following, its
main steps are described in detail.

6.4.1 Temperature dependent elastic and thermal con-
stants

As anticipated in Sec. 6.1.1 different values of the elastic mod-
ulus E(T ) are obtained through a series of uniaxial tests at differ-
ent temperatures. Its expression in the implemented constitutive
model is obtained through the polynomial (6.4), whose parameters
are passed to the constitutive model as material constants.

The identification of the cited parameters is carried out by poly-
nomial regression in Wolfram Mathematica.
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The values of thermal expansion, thermal conductivity and spe-
cific heat also depend on temperature and are obtained directly
from specific experimental tests.

Only the value of the thermal expansion αT needs to be passed
directly to the subroutine UMAT for the integration of the con-
stitutive model, while Abaqus requires thermal conductivity and
specific heat to solve the heat conduction equations.

6.4.2 BP yield function parameters

One of the most challenging tasks in the identification of the
parameters for the proposed constitutive model consists in the de-
termination of the parameters governing the shape of the BP yield
function. Extremely different shapes of the BP yield function, es-
pecially in the meridian plane, have been identified for different
refractory materials.

The procedure can be divided into three parts, respectively
aiming at the identification of:

(a) The BP yield function parameters M , m, α, c and pc at room
temperature

(b) The evolution of pc depending on temperature

(c) The value of pcmax at room temperature

The shape of the yield function is obtained by identifying the
onset of plasticity in a series of experiments at room tempera-
ture. In particular, the following experimental tests are usually
performed:

• Bi-tensile test

• Uniaxial tensile test

• Three points bending

• Four points bending

• Brazilian test

• Shear test

• Uniaxial compression test

• Triaxial compression tests
with different pressure ra-
tios

• Isotropic compression test

These tests lead to a collection of yield points, defining the
shape of the BP surface in the q − p plane (see Fig. 6.5). The
values of M , m, α, c, pc are therefore obtained by minimizing the
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discrepancy between the BP yield function and these experimental
points using the method of least squares.

At this point, it is necessary to identify the thermal evolution of
pc by performing a series of experimental tests at high temperature.
Only two tests can currently be performed at high temperature,
namely the uniaxial compression test and the Brazilian test. In
both cases, heat in the sample is generated through electromagnetic
induction as shown in Fig. 6.4.

Figure 6.4: Uniaxial compression test at high temperature: the sample is heated
through electromagnetic induction.

The tests make available two points on the BP yield surface
for each considered temperature, which allow the calculation of
the corresponding values of pc, while c is calculated according to
equation (6.6).

The only change of these parameters does not influence the
shape of the yield surface, while its size is indeed modified.

It should be noted that the constant shape of the yield func-
tion is an assumption that should be experimentally confirmed.
If future investigations will detect shape modifications induced by
temperature changes, an evolution of the BP yield function shape
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depending on temperature could be implemented in a similar way
as proposed in Sec. 7.1.1.

Figures 6.5 and 6.6 show respectively the BP yield function
and pc at selected temperatures T = {20, 200, 400, 600, 800, 1000}
◦C for one of the refractory materials considered in this study.

This case is quite unusual for the considered refractories. The
material initially shows an increase of pc, so that higher tempera-
ture lead to higher yield strength. After reaching 400◦C pc begins
to decrease. As shown in Fig. 6.6, the proposed expression (6.7)
for the evolution of pc depending on temperature is in this case
unable to fit adequately well the identified values.
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Figure 6.5: Evolution of the BP yield surface depending on temperature: the
yield surface at room temperature is identified with a series of experimental
tests, while only two (uniaxial compression and Brazilian tests) are performed
at high temperature.

The identification of pcmax at room temperature follows the
same principle described previously for the calibration of pc de-
pending on the temperature: the yield function shape is kept con-
stant from the onset of plasticity until beginning of softening (cor-
responding to pc = pcmax). Since the identification is carried out at
room temperature, the complete series of experimental tests could
be performed in order to identify the precise shape of the ulti-
mate BP yield function Fult. At present, the procedure has not
been carried out yet but is planned for future developments of the
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Figure 6.6: Identified value of pc depending on temperature. This case rep-
resents an exception for the considered refractory materials. When increasing
the temperature, the material initially becomes more resistant. After reaching
400◦C the yield strength of the material starts to decrease. The proposed ex-
pression (6.7) is in this case unable to follow properly the identified values of
pc, at least in the first part.
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Figure 6.7: BP yield function at the onset of plasticity F0 and ultimate yield
function Fult defining the beginning of softening behavior.
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constitutive model.
As already mentioned in Sec. 6.2, the relationship between

pcmax and temperature is defined analogously as for pcT in expres-
sion (6.7), where Apc is replaced by the value of pcmax at room
temperature.

6.4.3 Hardening rule parameters through multi-objective
optimization

The identification of the parameters required by the tempera-
ture dependent hardening rule are identified through inverse anal-
ysis. The main steps and the resultsIt should be

noted that the
results presented
here and in Sec.
6.4.2 refer to two

different
refractory
materials.

of the optimization procedure
are summarized in the following.

The inverse problem can be posed in the following form:

• Uniaxial compressive tests at n different temperatures (in
this example T = {200, 400, 600, 800, 1000, 1200} ◦C) lead to
n values of maximum uniaxial stress σmax and n values of
maximum uniaxial strain εmax. According to the procedure
described in the previous section, at each temperature a pre-
cise value of pcmax is identified.

• The values governing the strain hardening rule and its depen-
dence on the temperature (see Eqs. (6.5), (6.8) and (6.9)),
namely Ak1, Bk1, Ck1, T k1

0 , δ0, T δ0 and TF , are unknown and
must be determined.

The most efficient way to perform the inverse analysis is to
couple a FEM simulation with the developed constitutive model
(UMAT subroutine) to the powerful optimization algorithms avail-
able in Dakota [16].

The FE analysis considers a single three-dimensional finite element,
where the maximum experimental strain εmax and associated tem-
perature are imposed as boundary conditions. At the end of the
computation, the reached values of pc and σ are respectively com-
pared to pcmax and σmax by calculating the two objective functions

fpc = |pc − pcmax |
pcmax

100 , fσ = |σ − σmax|
σmax

100, (6.31)

at each considered temperature. The considered multi-objective
optimization problem has therefore 2n objective functions to min-
imize and seven parameters to identify.
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The optimization problem In the considered
case of six
temperature
values T =
{200, 400, 600,
800, 1000, 1200}
◦C, twelve
independent
objective
functions must
be
simultaneously
minimized.

has been successfully solved with an
hybrid procedure (see Sec. 4.1.3), by combining the genetic algo-
rithm moga (multi-objective genetic algorithm) and the heuristic
method pattern-search (see Sec. 4.1.2).

The parameter space is first explored using moga. However, it is
computationally not efficient to persist until complete convergence
of this method. Therefore, after a reasonably high number of iter-
ates, the genetic algorithm already found a limited set of promising
solutions that can be further improved locally by pattern-search,
thus speeding up the convergence rate.

Zero order optimization methods have been preferred for this
optimization process due to the high noisiness of the responses:
some combinations of the material parameters lead to lack of con-
vergence of the simulation, and in this case the gradients of the
objective functions with respect to the design variables would be
inaccurate or undefined.
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Figure 6.8: Numerical stress-strain curves at different temperatures for uni-
axial compressive tests with the identified parameters: the dots represent the
maximum stresses σmax measured during the experimental tests.

Figures 6.8 and 6.9 show the results of the optimization pro-
cedure, which are summarized in Table 6.1. The parameter iden-
tification led to particularly accurate results for several analyzed
materials and can therefore be considered of general validity.
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Figure 6.9: Evolution of the isotropic strength pc in the simulation of uniaxial
compressive tests with the identified parameters: the dots represent the values
of pcmax identified from the experimental tests according to the procedure
described in Sec. 6.4.2.

The parameter identification takes into account only the yield
points (in the manner described in Sec. 6.4.2), the maximum values
of stress σmax and of isotropic strength pcmax , so that the stress
growth is feasible along multiple paths.

The experimental tests make available the complete stress-strain
curves at the prescribed temperatures, which could also be taken
into account in the optimization in order to obtain more precise re-
sults. This improvement will be considered in future developments
of the identification procedure.
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Temperature
[◦C]

ε
[10−3]

pc
[MPa]

σ
[MPa]

200 Experiment 3.75 407.81 130.35
Simulation 387.00 126.02

400 Experiment 4.11 402.73 129.28
Simulation 404.73 129.44

600 Experiment 4.99 424.43 133.45
Simulation 437.12 135.48

800 Experiment 6.35 457.33 139.86
Simulation 470.84 140.94

1000 Experiment 6.04 420.27 130.40
Simulation 422.97 122.93

1200 Experiment 6.65 372.23 109.91
Simulation 372.91 98.97

Table 6.1: Values of stress σ, strain ε and isotropic strength pc in numerical
simulations and experimental tests at the considered temperatures.

6.4.4 Strain limiter criterion

Figure 6.10: Cracked sample used in an uniaxial compression test and strain
gages for the measurement of the transversal strains.

The parameters governing the strain limiter criterion described
in Sec. 6.3, namely the maximum longitudinal strain ε1 and transver-

136



6. THE CONSTITUTIVE MODEL FOR REFRACTORIES

sal strains ε2 = ε3, can be identified through uniaxial compressive
and tensile tests. The transversal deformation of the sample has
been measured with three strain gages, placed respectively at 120◦,
240◦ and 360◦ around the specimen as shown in Fig. 6.10.
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Figure 6.11: Stress strain curves and associated transversal/longitudinal strain
in uniaxial compression test. The angles refer to the position of the strain gages
around the specimen.

The measurement of the transversal deformations at high tem-
perature is not possible with conventional strain gages, therefore
the ratio between longitudinal and transversal deformations is usu-
ally kept constant.

6.5 Exploitation of the thermo-elasto-plastic
model to describe the behavior of re-
fractories under working conditions

The proposed thermo-elasto-plastic constitutive model has been
employed in the simulation of refractory devices. In addition to its
numerical precision, already confirmed by the tests described in
Ch. 3, the computational efficiency of the implemented code is an
important parameter to evaluate. All performed simulations have
shown acceptable running times and are for this reason suitable for
efficient industrial design of refractories.

The results of the thermo-mechanical analyses show accordance
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with the observed behavior of the devices under working conditions.
A selection of the performed studies is reported in the following.
These outcomes pave the way to more complex numerical analyses
involving virtual-prototyping and shape optimization.

6.5.1 Maximum bending load of a steel flow stopper

A series of experimental bending tests at high-temperature has
been performed on steel flow stoppers. The tests identified the
bending failure loads of these refractory devices at different tem-
peratures, which have been compared with the results of numerical
simulations employing the proposed constitutive model.

Experimental set-up

Figure 6.12: Experimental set-up of the bending tests and longitudinal section
of the steel flow stopper with the applied boundary conditions.

The refractory device is first clamped at one end as shown in
Fig. 6.12. Heat in the central part of the steel flow stopper is
then generated through electromagnetic induction employing the
specially designed solenoid shown in Fig. 6.13. After temperature
stabilization, a concentrated load is applied close to the top of the
tube in order to impose bending. The force is increased until failure
of the refractory device. The test has been performed at room
temperature (T = 20◦C) and at two selected high temperatures
(T = 400, 1000◦C).

During the test, precise measurements have been made for the
applied force, but not for the displacements, since the pushing
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head locally penetrated the surface of the material, leading to over
estimated values of deflection. Nevertheless, the measured data
allow a precise determination of the failure loads.

Figure 6.13: Electromagnetically induced heat in the middle part of the refrac-
tory steel flow stopper.

Sequentially coupled thermal-stress analysis

A numerical counterpart of the bending experiment has been
prepared in Abaqus FEA environment. By exploiting symmetry,
only half of the steel flow stopper needs to be modeled. Conse-
quently, half of the applied force is considered, as well.

A ‘sequentially-coupled’ thermal-stress analysis is carried out.
This procedure first computes the transient temperature field by
solving the heat conduction problem. At each time step the calcu-
lated temperature field is then passed to the mechanical analysis,
which takes it into account for the computation of the displacement
field. In this way, the thermo-mechanical coupling is ‘one-way’:
temperature influences the mechanical response, but displacements
do not affect the temperature.

As a result, piezocaloric effect and plastic heating (see Eqs.
(2.23) and (2.24)) are neglected. Considered the small influence
of the cited phenomena and the maximum temperature reached
during the test, this approach appears to be reasonable.

The temperature increment generated through electromagnetic
induction is simulated by heat flux in the middle part of the de-
vice. Analogously to the experimental test, the mechanical load is
increased linearly once the temperature reaches a constant value.

Figures 6.14 and 6.15 show the results of the numerical simu-
lations. It should be noted that, while the maximum plastic strain
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Figure 6.14: Plastic strain distribution in the middle part of the refractory
device.

Figure 6.15: From left to right: temperature T , isotropic compressive yield
stress pc, Von Mises stress q and displacement in x direction ux at the end of
the numerical analysis.
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is reached in the center of the heated part of the refractory device
(Fig. 6.14), the value of pc (SDV14) is lower at high temperature
(Fig. 6.15 second from left). This effect is due to thermal softening
according to Eq. (6.7).

Failure of the device is assumed when, due to plastic harden-
ing, the first element of the mesh reaches the value of pcmax . The
parameters governing the evolution of pcmax depending on temper-
ature, so as all other material parameters governing the response
of the presented constitutive model, have been identified indepen-
dently from the current numerical analysis in the manner described
in Sec. 6.4. Therefore, this comparison between experimental and
numerical results represents an important test to ensure that the
identification procedure provides parameters of general validity.

The comparison between numerical and experimental break
loads is shown in Fig. 6.16 for the three considered temperatures.
The numerical results appear to be in the same order of magnitude
of the experimentally measured maximum loads. The experimental
results show higher dependence on the temperature, which affects
negatively the resistance to bending. While comparing the values,
it must be considered that the usual variance of the break load has
been calculated around 12%. The numerical results are therefore
still within a valid range.

experimental numerical

BREAK LOAD [N]

20 ◦C 400 ◦C 1000 ◦C

875.5 850.0
799.3

700.1

548.0
650.2

Figure 6.16: Comparison of experimental and numerical values of break load
in the bending test of the refractory steel flow stopper.
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6.5.2 Slide gate thermal-stress analysis

One of the most important devices for the molten steel industry
is the so called ‘slide gate’, which is shown in Fig. 6.17. This device
is employed to control the liquid metal flow during the casting pro-
cesses in foundry industries. The refractory composing the plate
is subject to extremely high thermal shock, wear and mechanical
loads. For this reason, the refractory must regularly be replaced.
Significant research studies focus on possible design improvements
for this device.

Figure 6.17: A slide gate used for confinement and regulation of molten metal
flow during casting.

Figure 6.18: Numerical model of the slide gate composed of steel and refractory
material.

Modelling

The device is composed of different types of steel and refrac-
tory materials. Two refractories with different features respectively
compose the plate and the nozzle (see Fig. 6.19). Special focus is
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given to the plate, which is subject to high wear and thermal shock,
and for this reason designed to be particularly resistant.

In the performed simulation, the aim is to identify the tem-
perature and displacement fields during the casting process, and
in the cooling phase, after the metal flow is completed and the
temperature in the device decreases.

Figure 6.19: Plate and nozzle, composed of different refractory materials.

The parameters governing the constitutive equations have been
identified in the manner reported in 6.4 for each refractory material
considered in the simulation.

A ‘sequentially-coupled’ thermal-stress analysis is carried out.
After the end of the thermal simulation, the mechanical response is
computed while taking into account the temperature field at each
time step.

As already mentioned in 6.5.1, temperature changes due to elas-
tic or plastic strain are neglected with this kind of computation.
Considered the maximum temperature reached by the refractory
plate (T = 1500◦C), this approach is certainly appropriate.

In order to perform the heat transfer analysis, it is necessary to
define the convection parameters and the temperature of the fluids
(liquid steel and air) coming in contact with the structure. The
parts coming in direct contact with the molten metal are subject
to higher convection, that is modeled with higher film coefficient
h (also called convection coefficient). When the structure cools
down these parameters change according to the lower convection
coefficient of the air.
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Figure 6.20: Interaction surfaces in the thermo-mechanical simulation. Differ-
ent convection coefficients are taken into account for molten steel and air.

This modelization can be performed with Abaqus by using the
interaction module and setting specific convection parameters on
user defined surfaces.

Figure 6.20 shows the different surfaces modeled in the simula-
tion, where thermal conductance and Coulomb friction coefficients
are considered in case of contact.

Postprocessing

The post-processing phase shows clearly how, during the cast-
ing process, the temperature distribution assumes a circular shape
around the area directly in contact with the molten steel, while
the rest of the structure increases slowly its temperature (see Fig.
6.21). Due to the high film coefficient assumed in the analysis dur-
ing the casting process, the maximum temperature around the hole
in the refractory plate reaches 1519 ◦C (see Fig. 6.24 top-right).

During the cooling process the temperature distribution in the
refractory plate appears asymmetric (see Fig. 6.24 bottom-right).
The temperature field along the X axis is both influenced by the
asymmetry of the device and higher air convection from the bottom-
lateral surfaces. The asymmetric thermal distribution along Z-axis
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Figure 6.21: Temperature distribution in Slide gate at the beginning of the
casting process.

is due to the shape of the object, which is asymmetric also with
respect to X-Y plane, even though this detail is difficult to note in
Fig. 6.24.

Figure 6.22: Plastic deformation in the refractory plate during the casting
process: the results show higher values of inelastic deformation in the external
part of the plate, where crack development is typically observed in the real
device.

The high temperature gradients induce thermal expansion and
mechanical stresses in the refractory plate, which is constrained
externally by the steel structure and therefore unable to expand
freely. As a consequence, the yield strength of the refractory ma-
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Figure 6.23: Crack development during an experimental test on the refractory
plate. The temperature of the material inside the hole is increased, in order to
simulate the liquid steel flow.

terial is reached and inelastic deformation is generated.
Plastic strain is particularly high in the external part of the

plate, as shown in Fig. 6.23. During casting processes in foundry
industries, the refractory plate often develops cracks starting from
the same location. Thus, the simulation shows the capability of
precise prediction of the observed damage mechanisms.

Figure 6.24: Temperature distribution in refractory plate at the beginning (left)
and at the end (right) of the casting process.
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6.5.3 VISO submerged pouring tubes thermal-stress
analysys

Figure 6.25: Schematic of continuous tundish casting, SEN and mold in a steel
industry.

The VESUVIUS Sub-Entry Nozzle (SEN) is a one-piece ce-
ramic tube manufactured from isostatically pressed alumina graphite
(VISO). As shown in Fig. 6.25, the molten metal flows through the
tube, the end of which is submerged in the liquid material.

The goal of this simulation is to properly describe the stress and
temperature fields during the casting process with a thermal-stress
simulation.

Modelling

Figure 6.26: Modelization of the refractory VISO - tube.
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Thanks to the symmetry of the object and of the heat flux, only
a quarter of the VISO-tube needs to be represented in the Abaqus
numerical model, which is shown in Fig. 6.26.

During the molten metal flow, the refractory pouring tube is
entirely supported by its upper, wider part. In some rare cases,
local cracks can develop in this area, so that this phenomenon
needs to be properly investigated. In order to model the reaction

Figure 6.27: Assigned symmetric boundary conditions for the thermo-
mechanical simulation of the pouring tube.

forces acting on the top of the tube, a mechanical load (pressure)
with magnitude of 4.2 MPa is applied on the bottom surface of the
supporting area, as shown in Fig. 6.28.

The temperature flux induced by the molten steel flow is mod-
eled using Abaqus interaction module. On the surfaces directly in
contact with the liquid steel, namely the inner part of the tube
and its bottom external surface, a very high convection coefficient
is assumed in order to describe properly the heat transfer effects.
For this surfaces the sink temperature is assumed equal to 1550
◦C.

On the surfaces not in direct contact with the liquid metal, such
as the external upper surface of the tube, the convection is due to
the action of the air. In this case, lower convection coefficient and
sink temperature (T = 50 ◦C) are assumed. Figure 6.29 shows the
interaction surfaces considered in the numerical model.

The constants needed by the proposed constitutive model have
been identified for the particular refractory material according to
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Figure 6.28: Applied pressure of 4.2 MPa (1300 Kg) on the highlighted surface,
in order to simulate the blocking mechanism of the nozzle.

Figure 6.29: Left and center: surfaces directly in contact with the molten metal.
Right: surfaces subject to air convection.

the procedure described in Sec. 6.4.

Postprocessing

The thermal-stress analysis shows the gradual temperature in-
crease from the surfaces in direct contact with the liquid metal,
until the steady state temperature distribution in the model is
reached. It is particularly interesting to note how the inner part
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of the submerged pouring tube shows a lower temperature with
respect to the external surfaces for about one minute from the
beginning of the casting process (Fig. 6.31).

By post-processing the mechanical analysis we note a particu-
larly high Von-Mises stress on the top of the tube, due to the action
of the applied pressure. The location of the maximum stress shown
in Fig. 6.32 is consistent with the crack development observed dur-
ing actual use of the refractory device (see Fig. 6.30).

Figure 6.30 shows the values of pc and pcmax in the critical
zone during the numerical simulation. The calibrated constitu-
tive model is able to predict the crack development during casting,
when the value of pc reaches pcmax .

Figure 6.30: Prediction of crack formation on the top part of the Sub-Entry
Nozzle under working conditions, when pc meets pcmax .
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Figure 6.31: Temperature distribution in refractory VISO - tube at different
time steps of the casting process. Respectively after one second, one minute
and one hour.

Figure 6.32: Von Mises stress in refractory VISO - tube at different time steps
of the casting process. Respectively after one second, one minute and one hour.
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Chapter 7

The unified constitutive
model for ceramic
powder densification and
pre-sintering

In the industrial process for the production of ceramic devices,
targeted material micro-structure and density are achieved through
significant inelastic deformations and temperature changes.

During the cold forming process, the loose ceramic powder is
densified through extrusion or compaction in rigid moulds at room
temperature. The green bodies obtained this way are subsequently
heated, with the purpose of initiating the sintering process.

Remarkable influence of density and temperature on the me-
chanical strength of ceramic materials is suggested by several ex-
perimental tests [1, 2, 14]. However, thermo-plastic models ac-
counting for the flexible evolution of the yield locus as a function
of density and temperature are still not available.

The present Chapter introduces a phenomenological constitu-
tive model focused on the description of the behavior of ceramics
subject to prominent plastic deformations and temperature loads,
with emphasis on the pre-sintering phase, where specific experi-
ments [2] show a reduced mechanical strength of the investigated
materials.

The model has proven to correctly describe the behavior of
alumina during the compaction process and subsequent uniaxial
compression tests at different temperatures on the formed green
bodies. This result has been accomplished thanks to a particu-
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lar formulation of the Bigoni-Piccolroaz yield surface, that allows
shape evolution, combined with the identification of constitutive
parameters through multi-objective optimization.

7.1 Thermo-plastic constitutive formulation

The most peculiar capability of the constitutive model pre-
sented herein is the possibility of ‘shape evolution’: the param-
eters of the BP yield function (see Sec. 2.4), can evolve during the
analysis, changing radically the form of the elastic locus.

This evolution is particularly important in the process of pow-
der compaction, as detected in the experimental tests performed
by Piccolroaz et al. [14] and Bosi et al. [1]. In particular, the ex-
periments revealed remarkably different BP yield surface shapes
for loose powder and formed green bodies.

Increased resistance to deviatoric loads that depends on the
material density is achieved through a proper density-dependent
hardening rule, which is described in Sec. 7.1.4.

A particular plastic potential is introduced, so that a linear
combination of two different hardening contributions is adjusted
depending on the plastic flow direction.

Thermal softening and temperature-dependent hardening are
also included in the proposed constitutive model. The dependence
on the temperature is considered with the goal of reproducing the
material behavior observed in the experimental tests performed by
Gupta et al. [2] where, before sintering is completely activated,
elastic modulus, yield strength and ultimate strength in simple
compression tests decrease by increasing the temperature of the
samples.

7.1.1 The evolution of the BP yield surface

In the most common models for plasticity (see Sec. 2.1.2),
hardening increases the size of the considered yield surface, while
its proportions are usually kept constant. In the BP yield crite-
rion, this effect can be achieved by imposing a dependence of the
isotropic compressive strength pc on the plastic deformation εp.

However, the assumption of a constant-shape yield surface is
often far from being correct, especially if the material is subject to
large deformations and thus in case of powder densification. In par-
ticular, reference BP yield function parameters for alumina loose
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powder and aluminum silicate green bodies were experimentally
identified respectively by Piccolroaz et al. [14] and Bosi et al. [1].

An improved implementation of the BP criterion allows shape
evolution of the elastic domain during the deformation process (see
Figures 7.1 and 7.2), by imposing a dependence of the yield func-
tion parameters listed in Eq. (2.61) on the plastic strain εp.

F (σ, pc0)

q

ppc0 pcmax

F (σ, pcmax)

pc

F (σ, pc)

Figure 7.1: Example of evolution of the meridian shape of the BP yield function
during a simulation. The calibration of the yield function shape of the loose
powder (first yielding) F (σ, pc0) and of the formed green body F (σ, pcmax),
should be based on multiple experimental tests. The meridian shape of the
yield function is influenced by M , m and α.

The parameter c, which represents the isotropic tensile yield
strength of the material, can both be constant or evolve during the
process as

c = ω pc (7.1)

so that, if ω is a constant, pc and c will maintain their proportion
during the analysis.

The evolution can be efficiently customized when experimental
tests make available the BP parameters at the onset of plasticity
and at a following state, for example the end of the compaction
process or the failure of the sample.

The evolution of the yield function parameters M , m, α, β
and γ is enforced through a linear dependence on the compressive
isotropic strength of the material parameter pc.Note that pc

evolves during
the analysis

according to Eq.
(7.11).

In the current implementation of the constitutive model the
evolution of the yield function can also be subject to the condi-
tion pc ≤ pcmax . In this case, if pcmax corresponds to the isotropic
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Figure 7.2: Example of evolution of the deviatioric shape of the BP yield
function during a simulation. The BP yield function parameters that influence
the deviatoric shape are β and γ.

strength at the end of the compaction process, we obtain that
the yield function shape evolves only during densification. Conse-
quently, the increase of plastic strain during the unconfined uni-
axial deformation tests on formed green bodies is assumed not to
influence the shape of the yield function, while changing its size.

As an example, the evolution of parameter M can be described
as

M(pc) =

Mmax − (pcmax−pc)
(pcmax−pc0 )(Mmax −M0) if pc ≤ pcmax

Mmax if pc > pcmax
(7.2)

where pcmax and Mmax are, respectively, the compressive isotropic
stress The parameter

pcmax can be
identified
through triaxial
experimental
tests.

and the yield function parameterM at the desired time-step
(e.g. at the end of the compaction phase). The parameters pc0

andM0 are respectively the compressive isotropic stress pc and the
parameter M at first yielding.

It should be noted that relationships different from Eq. (7.2),
for example based on the relative density of the sample, could
alternatively be selected for the evolution of the BP yield function
parameters.
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7.1.2 Elastic potential and temperature dependence

The experimental tests performed by Gupta et al. [2] have
shown the dependence of the elastic properties of alumina on tem-
perature.

Therefore, in the same way as reported in Sec. 6.1.1 for refrac-
tory materials, the elastic potential is written as

W (T, ε) = λ(T )
2 tr ε2 + µ(T )ε2, (7.3)

where λ(T ) and µ(T ) are the Lamè constants. In the following,
we consider a temperature-dependent Young’s modulus E(T ) and
a constant Poisson ratio ν. Consequently, the Lamè constants are
obtained as

λ(T ) = E(T )
(1 + ν)(1− 2ν) , (7.4)

and

µ(T ) = E(T )
2(1 + ν) . (7.5)

The experimental data suggest the following relationship for the
elastic modulus

E(T ) = E0

e
−E3·(1− T

T0
)
, (7.6)

where

E3 = C + Ẽ · (T − T02)2. (7.7)

In the above relationships T0 is the reference temperature, whereas
the material parameters E0, E3, C, Ẽ, and T02 have been identified
by inverse analysis, as specified in Section 7.3.

7.1.3 Plastic potential and non-associative flow rule

As already mentioned, the proposed constitutive model was for-
mulated for non-associative plasticity. In particular, the following
plastic potential G is introduced

G(q, p) = (p−∆p)2

a2 + q2

b2
− 1, (7.8)
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where a and b are the p-axis and q-axis of the ellipse, respectively.
Eq. (7.8) defines a shiftable ellipse in the p-q space. The material
parameter ∆p determines the shift of the ellipse along the p axis,
see Fig. 7.3.

This parameter can also be defined as a function of the current
values of p and q, so that the ellipse varies its position depending
on the stress point (p̂, q̂) along the loading path. Assuming a linear
dependence on q̂ only, Eq. (7.8) becomes

G(q, p) = (p−∆p q̂)2

a2 + q2

b2
− 1. (7.9)

The vector P (see Eq.(2.32)) is therefore written as

P = ∂G

∂σ

∣∣∣∣
q̂=const

. (7.10)

Figure 7.3 shows the operating principle of the proposed non-
associative constitutive model. The BP yield function describes
the elastic enclosure, while the plastic flow direction is determined
by the gradient of the plastic potential G.

The ratio between the major and minor axes of the ellipse reg-
ulates the plastic flow direction, which is not influenced by the
effective size of the ellipse.

F (σ)G(σ)

q

p∆p

∂G
∂σ

∂F
∂σ

a

b
2

Figure 7.3: Plastic potential function G(σ) for constant ∆p and BP yield
function F (σ) in the p - q plane. The plastic flow direction is shown for three
arbitrary loading paths.

7.1.4 Density-dependent strain hardening

The proposed hardening formulation takes separately into ac-
count the contributions of isotropic and deviatoric plastic strain.
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The increase of isotropic strength pc, which also regulates size/shape
of the yield function, must satisfy the following condition

pc − pc0 + pcT = H1 − ηH2, (7.11)

where

H1 = Λ1

log − trεp
a1 + exp −Λ1

pc0

, (7.12)

H2 = k1(T )
δ(T )

(1 + J2p)n−1 − 1
(n− 1)(1 + J2p)n−1 , where n 6= 1, (7.13)

J2p = |εp −
tr εp

3 |, (7.14)

being Λ1, a1, k1, n, δ the material parameters regulating the hard-
ening. The parameter pc0 is the initial (small) isotropic strength
of the ceramic powder, while pcT is defined by Eq. (7.19) and is
active only at high temperature.

The following dependencies on the temperature are introduced
for k1(T ) and δ(T )

k1(T ) = Ak +Bk tanh
(
T − T0k
Ck

)
, (7.15)

δ(T ) = δ0 · exp δ3 ·
(

1− T

T0

)
, (7.16)

where

δ3 = Cδ + δ̃ · (T − T0δ)2, (7.17)

with Ak, Bk, T0k, Ck, δ̃, Cδ and T0δ constant material parameters,
while T0 is the reference temperature.

Equations (7.12) and (7.13) define the proposed hardening laws,
depending respectively on isotropic and deviatoric plastic strain.

Expression (7.12) is based on the micromechanical model pro-
posed by Cooper and Eaton (1962), where a single exponential
function is considered for simplicity. The relationship (7.13) was
obtained through modification of the hardening law proposed by
Poltronieri et al. [39] for concrete.
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The combination of different hardening laws is motivated by
the usual low resistence of poorly densified samples subject to de-
viatoric loading. Therefore, the parameter η, which regulates the
deviatoric hardening in Eq. (7.12), is assumed to depend on the
relative density of the material in the following way

η(ρR) =
tanh

(
B
(
ρR − ρR1+ρR0

2

))
+ 1

2 . (7.18)

The relationship between parameter η and relative density is shown
in Figure 7.4: depending on B, the value of η increases more or
less rapidly, while ρR1 and ρR0 regulate respectively start and end
of its transition between 0 and 1.

0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

relative density ρR

η
(ρ

R
)

Figure 7.4: Dependence of parameter η (Eq. (7.18)) on the relative density.

7.1.5 Thermal softening

The experimental results presented by Gupta et al. [2] show
a clear reduction of the yield strength of the samples by increas-
ing their temperature. This effect can be efficiently reproduced
by introducing thermal softening in the constitutive model. The
isotropic yield strength of the material pc is lowered depending on
temperature, so that the yield function ‘shrinks’ homothetically,
yielding to lower yield stress for each possible loading path.

The parameter pcT influences the value of pc in expression (7.11)
depending on temperature. The following relationship

pcT = Apc +Bpc tanh
(
T − T0pc
Cpc

)
, (7.19)
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has shown to fit in a particularly good way the results of experimen-
tal tests on alumina green bodies at pre-sintering temperatures.

In Section 7.3, the procedure for the identification of the ma-
terial parameters Apc , Bpc , T0pc and Cpc from the results of the
experimental tests is explained in detail.

7.2 Experimental tests and numerical simu-
lation of cold forming and pre-sintering
of alumina

Finite element simulations with the thermo-plastic material
model have been carried out in Abaqus both for compaction of
alumina powder and unconfined compressive tests of formed green
bodies at pre-sintering temperatures. The analyses have been per-
formed in a single process: uniaxial compression is applied to the
same green bodies obtained from cold forming of alumina. In this
way, at each step of the analysis the mechanical properties of the
material depend on its complete loading history.

The numerical results have been compared to the available ex-
perimental data, which are obtained from the literature as specified
in the following.

7.2.1 Forming of cylindrical green bodies

The experimental data for powder compaction of alumina are
made available by Piccolroaz et al. [14]. In this paper, Piccol-
roaz analyzes uniaxial deformation tests on cylindrical samples at
different forming pressures σ1={60, 80, 100, 120} MPa. Force-
displacement curves were produced from the performed tests.

Piccolroaz et al. [14] also identified the shape of the BP yield
function for undensified alumina. Specifically, the BP parameters
m0=2, α0=0.1, β0=0.19, γ0=0.9 and M0=1.1 are indicated for the
loose ceramic powder.

These BP yield function parameters therefore define the initial
shape of the yield surface (see Section 7.1.1).

Conversely, the yield surface shape at the end of the compaction
process is assumed to be similar to that identified by Bosi et al.
[1]. Through a series of triaxial tests at different confining pres-
sures, Bosi was able to numerically identify the BP parameters for
aluminum silicate green bodies. The yield points corresponding to
the examined loading paths were used for the calibration.
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Accordingly, the assumed BP parameters at the end of the com-
paction process are mmax=4.38, αmax=1.95, βmax=0.10, γmax=0.9
and Mmax=0.25.

7.2.2 Uniaxial compression tests at pre-sintering tem-
peratures

In the uniaxial compression tests performed by Gupta et al. [2],
extruded alumina specimens have been heated at different temper-
atures. The cylindrical samples were either 8 mm in height and
8mm in diameter or 26 mm in height and 18 mm in diameter.

The experimental tests showed a strong decrease of the me-
chanical properties of the green bodies by increasing the tempera-
ture up to 500 ◦C. In particular, the UCS (Unconfined compressive
strength) and the yield stress both reduce as a consequence of tem-
perature.

On the contrary, at temperatures higher than 1000 ◦C the me-
chanical properties of the samples start to increase again. This
effect is due to the beginning of sintering and will not be analyzed
in the following simulations.

The experimental tests made available stress-strain curves at
25, 190, 250 and 500 ◦C, which have been compared to numerical
simulations with the proposed constitutive model.

7.2.3 Thermo-mechanical FE analysis

The performed simulation can be divided into four main steps:

1. Ceramic powder densification by uniaxial deforma-
tion: a vertical pressure of 32 MPa is applied on transver-
sally confined cylindrical samples, which are modeled with
axis-symmetric elements. The forming pressure has been
calibrated to obtain green bodies with mechanical proper-
ties equivalent to those of the samples investigated by Gupta
et al. [2].

2. Unloading and extraction: the vertical pressure is pro-
gressively reduced until complete unloading of the FE model.
The extraction of the sample is then simulated by deactivat-
ing the lateral boundary conditions.

3. Heating at pre-sintering temperature: the unloaded
sample is uniformly heated at one of the considered pre-
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sintering temperatures {25, 190, 250, 500} C◦. This condition
is then maintained for the rest of the analysis.

4. Uniaxial compression: on the upper face of the FE model
a fixed displacement (greater than the measured displace-
ment of the samples at failure) is imposed.

The constitutive parameters governing the material response
have been obtained from the available experimental data and with
a peculiar optimization strategy, which is described in following
Sec. 7.3.

7.3 Material parameters identification by in-
verse analysis

Some material parameters influence only particular responses of
the proposed constitutive model. Thus, different numerical strate-
gies have been independently employed for the identification of
small groups of parameters. This strategy is particularly efficient,
since it reduces the size of the optimization problem and enhances
the precision of the identified parameters.

In the following, the single procedures carried out for the iden-
tification of the constitutive parameters are explained in detail.

7.3.1 Temperature dependent elastic modulus

The elastic modulus of alumina green bodies at the considered
temperatures T={25, 190, 250, 500} ◦C has been determined from
the experimental results made available by Gupta et al. [2], by
evaluating the steepness of the first linear-elastic part of the stress-
strain curves. The obtained values are summarized in Table 7.1.

T [◦C] E [MPa]

25 945.17

190 424.69

250 307.66

500 8.6

Table 7.1: Values of the elastic modulus in the experimental tests of Gupta
et al. [2].
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Equation (7.6) expresses the proposed dependency of the elastic
modulus on temperature. The parameters T0 and E0 represent
respectively the reference temperature and the associated elastic
modulus. The parameters C, Ẽ, T02, have been obtained through
least squares regression with Wolfram Mathematica. Figure 7.5
shows expression (7.6) computed with the identified parameters
and the experimental values of the elastic modulus.
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Ẽ 1, 39 · 10−6 ◦C−2
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E0 945.169 MPa

Figure 7.5: Experimental values of the elastic modulus and proposed relation-
ship for E(T ) (see Eq. (7.6)) with the identified material parameters.

7.3.2 Thermal softening

The implementation of thermal softening aims to reduce the
yield stress as a consequence of temperature increase. The values
of yield stress can be obtained from the experimental stress-strain
curves provided by Gupta et al. [2], by measuring the stress corre-
sponding to the first non-linear response of the material.

The experimental values of split tensile strength allow an esti-
mation of the tensile yield stress within a sufficiently small range.
The yield stress values at the considered temperatures are listed in
Tab. 7.2.

The increase of temperature reduces the size of the BP yield
function, modifying pc according to expression (7.19). However,
temperature is assumed to have no effect on the yield surface shape
(see Section 7.1.1). Accordingly, the parameters M , m, α, β and
γ result unaffected.

The values of pc and c at the considered temperatures can be
found by forcing the yield surface to intercept the yield stresses σyt
and σyc provided in Tab. 7.2.
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T [◦C] σyt [MPa] σyc [MPa] pc [MPa]

25 0.959 - 1.163 5.676 50.88

190 0.733 - 1.016 3.98 35.60

250 0.4 - 0.6 1.997 17.50

500 0.0066 - 0.0106 0.040893 0.35

Table 7.2: Yield stresses in tension σyt and compression σyc and identified
compressive isotropic strength pc at the considered temperatures for the exper-
imental tests of Gupta et al. [2].

The dependence of c and pc on the temperature appears very
similar, so that the ratio Ω = c/pc results well-approximated by
the constant value 0.0105.
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Figure 7.6: BP yield criterion at the considered temperatures T = {25, 190, 250,
500} ◦C: the yield function shrinks homothetically according to the governing
parameter pc (see (7.19)).

Figure 7.6 shows the BP yield surface in the σ1 - σ2 biaxial
plane for the values of pc at the considered temperatures, which
are listed in Table 7.2.

Given the values of pc (see Tab 7.2) at the selected tempera-
tures, the material parameters appearing in expression (7.19) can
be easily obtained through least squares regression. Figure 7.7
shows the variation of pc at the end of compaction phase depend-

165



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

ing on temperature with the identified parameters.
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Figure 7.7: Dependence of hardening parameter pc and identified parameters
for relationship (7.19).

7.3.3 Hardening laws

The parameters governing the hardening laws (7.12), (7.13) and
the transition law (7.18) are of difficult analytical or experimental
identification.

For this reason, their determination has been carried out by
inverse analysis, by coupling the FE simulation (see Section 7.2)
to the extensible optimization algorithms available in the Dakota
Framework [16].

The iterative optimization has the goal to minimize the dis-
crepancy between numerical and experimental stress-strain curves.

The procedure can be divided in the following three main steps:

1. Identification of parameters for the isotropic hardening law
(7.12) (Λ1, a1), for the transition law (7.18) (B, ρ1, ρ0) and
for the deviatoric hardening law (7.13) (k1, δ, n) at T=25
◦C by hybrid multi-objective optimization (see Sec. 4.1.3).
The entire parameters domain is first explored with a genetic
algorithm (moga).
After this, the best solutions are refined with a local optimiza-
tion algorithm (pattern-search). The choice of derivative-free
optimization methods enhanced the robustness of the proce-
dure.

2. Identification of deviatoric hardening parameters k1 and δ
at T= 190, 250, 500 ◦C by employing a local optimization
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method (pattern-search).
The remaining material parameters determined at step 1 are
kept constant. At each temperature, the starting value for k1
and δ are those obtained at step 1. The identified parameters
at the considered temperatures are listed in Table 7.3.

3. Identification of the parameters for expressions (7.15) and
(7.17), namely Ak, Bk, T0k, Ck, δ̃, Cδ and T0δ , which regu-
late the evolution of k1 and δ depending on temperature.
The results of the optimization at step 2 are provided as tar-
gets for a least squares regression carried out with Wolfram
Mathematica.
Figures 7.8 and 7.9 show k1 and δ depending on temperature.

T [◦C] δ [-] k1 [MPa]

25 284.989 155933

190 298.167 110397

250 331.038 66070.4

500 2538.95 5955.19

Table 7.3: Values of the parameters k1 and δ at the considered temperatures
identified through inverse analysis.
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Figure 7.8: Dependence of hardening parameter k1(T ) on the temperature
and identified parameters appearing in expression (7.15).

167



Massimo Penasa - Development of rate-dependent thermoplastic constitutive
models for numerical analysis of ceramics at high-temperature

⊗ ⊗ ⊗

⊗

0 100 200 300 400 500

500

1000

1500

2000

2500

3000

T [°C]

δ
(T
)

Parameter Value Unit

δ0 284.989 -

δ̃ −7.44 · 10−7 ◦C·10−2

T0δ 110.296 ◦C

Cδ −2.12 · 10−3 -
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7.4 Results and comparison with experimen-
tal tests
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Figure 7.10: Comparison between numerical simulations and experimental tests
on alumina green bodies reported by [2]. The results are shown at the consid-
ered temperatures T={25, 190, 250, 500} C◦.
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The results of the simulations with the identified material pa-
rameters, which are summarized in Tab. 7.4, have been compared
with the experimental results made available by Piccolroaz et al.
[14] and Gupta et al. [2].

As shown in Figures 7.10 and 7.11, the discrepancy between
numerical and experimental results is negligible. Good agreement
is observed both during powder compaction and uniaxial compres-
sion of the green bodies at different temperatures.

At the beginning of the compaction phase (see Fig. 7.11), the
numerical value of the stress appears slightly lower than in the ex-
periments. Here, the results could be further optimized including
a nonlinear elastic potential and elastoplastic coupling in the con-
stitutive model. These improvements will be considered for future
developments of the thermo-plastic formulation presented herein.
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Figure 7.11: Comparison between numerical simulations (continous line) and
performed experimental tests (dashed line) [14] [2].. The alumina samples are
first formed through uniaxial compaction, extracted from the cilindric mould,
heated at the considered temperatures T={25, 190, 250, 500} C◦ and tested
through unconfined uniaxial compression.
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Parameters identified directly from experiments

Elastic Properties

E0 945.169 MPa
Ẽ 1, 39 · 10−6 ◦C−2

C 0.1211 -
T02 199.116 ◦C
ν 0.37 -

Initial Yield Surface

pc0 0.09 MPa
M0 1.1 -
m0 2.0 -
α0 0.1 -
β0 0.19 -
γ0 0.9 -
Ω 0.0105 -

Final Yield Surface

pcmax 50.87 MPa
Mmax 0.25 -
mmax 4.38 -
αmax 1.95 -
βmax 0.1 -
γmax 0.9 -

Thermal Softening

Apc 25.099 MPa
Bpc 25.4738 MPa
Cpc 80.668 ◦C
T0pc 222.825 ◦C

Parameters identified by multi-objective optimization

Non-Associativity
a 400 -
b 400 -

∆p 0.333 -

Isotropic Hardening Law
Λ 3.228 -
a1 0.4188 -

Deviatoric Hardening Law

n 2.303 -
Ak1 81874.2 MPa
Bk1 76592 MPa
Ck1 229.085 ◦C
T0k1

99.9076 ◦C
δ0 284.989 -
δ̃ −7.44 · 10−7 ◦C·10−2

T0δ 110.296 ◦C
Cδ −2.12 · 10−3 -

Hardening Transition Law
B 50 -
ρ0 0.5 -
ρ1 0.6 -

Table 7.4: Material parameters for cold forming and pre-sintering of alumina.
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  Three constitutive models for the mechanical description of the behavior of 
ceramic materials are developed, implemented into a numerical code, 
calibrated on experimental data, and validated. 
  -The first model is elastic-plastic and addresses the cold compaction of     
ceramic powders, combining nonlinear elasticity, elastoplastic coupling and 
increase of cohesion.
 -The second model is thermal-viscous-elastic-plastic and is specifically 
tailored to describe the thermo-mechanical behavior of refractory devices 
under working conditions at high-temperature.
  -The third model is thermal-elastic-plastic and implements a shape evolution 
of the BP yield function, calibrated to simulate the forming of green bodies 
and their pre-sintering phase.
Three algorithms are developed for the integration of constitutive equations 
when pathological yield functions are involved. The algorithms are coded in 
user material subroutines to be used in commercial FE softwares and their 
accuracy is evaluated in model problems allowing for semi-analytical 
solutions.
 Material constitutive parameters are obtained from a combination of 
experimental tests and multi-objective optimization and employed in FE 
simulations of industrial processes, such as cold-forming of combed finish 
ceramic tiles and metal flow confinement by means of refractory devices. 
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